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PREFACE

This is a textbook on multithreaded programming. The objective of this book
is to teach students about languages and libraries for multithreaded program-
ming, to help students develop problem-solving and programming skills, and to
describe and demonstrate various testing and debugging techniques that have been
developed for multithreaded programs over the past 20 years. It covers threads,
semaphores, locks, monitors, message passing, and the relevant parts of Java,
the POSIX Pthreads library, and the Windows Win32 Application Programming
Interface (API).

The book is unique in that it provides in-depth coverage on testing and debug-
ging multithreaded programs, a topic that typically receives little attention. The
title Modern Multithreading reflects the fact that there are effective and relatively
new testing and debugging techniques for multithreaded programs. The material
in this book was developed in concurrent programming courses that the authors
have taught for 20 years. This material includes results from the authors’ research
in concurrent programming, emphasizing tools and techniques that are of practi-
cal use. A class library has been implemented to provide working examples of
all the material that is covered.

Classroom Use

In our experience, students have a hard time learning to write concurrent pro-
grams. If they manage to get their programs to run, they usually encounter
deadlocks and other intermittent failures, and soon discover how difficult it is to
reproduce the failures and locate the cause of the problem. Essentially, they have
no way to check the correctness of their programs, which interferes with learn-
ing. Instructors face the same problem when grading multithreaded programs. It

xi



xii PREFACE

is tedious, time consuming, and often impossible to assess student programs by
hand. The class libraries that we have developed, and the testing techniques they
support, can be used to assess student programs. When we assign programming
problems in our courses, we also provide test cases that the students must use
to assess the correctness of their programs. This is very helpful for the students
and the instructors.

This book is designed for upper-level undergraduates and graduate students
in computer science. It can be used as a main text in a concurrent programming
course or could be used as a supplementary text for an operating systems course or
a software engineering course. Since the text emphasizes practical material, pro-
vides working code, and addresses testing and debugging problems that receive
little or no attention in many other books, we believe that it will also be helpful
to programmers in industry.

The text assumes that students have the following background:

ž Programming experience as typically gained in CS 1 and CS 2 courses.
ž Knowledge of elementary data structures as learned in a CS 2 course.
ž An understanding of Java fundamentals. Students should be familiar with

object-oriented programming in Java, but no “advanced” knowledge is
necessary.

ž An understanding of C++ fundamentals. We use only the basic object-
oriented programming features of C++.

ž A prior course on operating systems is helpful but not required.

We have made an effort to minimize the differences between our Java and C++
programs. We use object-oriented features that are common to both languages,
and the class library has been implemented in both languages. Although we don’t
illustrate every example in both Java and C++, the differences are very minor
and it is easy to translate program examples from one language to the other.

Content

The book has seven chapters. Chapter 1 defines operating systems terms such
as process, thread, and context switch. It then shows how to create threads, first
in Java and then in C++ using both the POSIX Pthreads library and the Win32
API. A C++ Thread class is provided to hide the details of thread creation
in Pthreads/Win32. C++ programs that use the Thread class look remarkably
similar to multithreaded Java programs. Fundamental concepts, such as atomicity
and nondeterminism, are described using simple program examples. Chapter 1
ends by listing the issues and problems that arise when testing and debugging
multithreaded programs. To illustrate the interesting things to come, we present
a simple multithreaded C++ program that is capable of tracing and replaying its
own executions.

Chapter 2 introduces concurrent programming by describing various solutions
to the critical section problem. This problem is easy to understand but hard
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to solve. The advantage of focusing on this problem is that it can be solved
without introducing complicated new programming constructs. Students gain a
quick appreciation for the programming skills that they need to acquire. Chapter 2
also demonstrates how to trace and replay Peterson’s solution to the critical
section problem, which offers a straightforward introduction to several testing and
debugging issues. The synchronization library implements the various techniques
that are described.

Chapters 3, 4, and 5 cover semaphores, monitors and message passing, respec-
tively. Each chapter describes one of these constructs and shows how to use
it to solve programming problems. Semaphore and Lock classes for Java and
C++/Win32/Pthreads are presented in Chapter 3. Chapter 4 presents monitor
classes for Java and C++/Win32/Pthreads. Chapter 5 presents mailbox classes
with send/receive methods and a selective wait statement. These chapters also
cover the built-in support that Win32 and Pthreads provide for these constructs,
as well as the support provided by J2SE 5.0 (Java 2 Platform, Standard Edi-
tion 5.0). Each chapter addresses a particular testing or debugging problem
and shows how to solve it. The synchronization library implements the test-
ing and debugging techniques so that students can apply them to their own
programs.

Chapter 6 covers message passing in a distributed environment. It presents
several Java mailbox classes that hide the details of TCP message passing and
shows how to solve several distributed programming problems in Java. It also
shows how to test and debug programs in a distributed environment (e.g., accu-
rately tracing program executions by using vector timestamps). This chapter by
no means provides complete coverage of distributed programming. Rather, it is
meant to introduce students to the difficulty of distributed programming and to
show them that the testing and debugging techniques presented in earlier chapters
can be extended to work in a distributed environment. The synchronization library
implements the various techniques.

Chapter 7 covers concepts that are fundamental to testing and debugging
concurrent programs. It defines important terms, presents several test coverage
criteria for concurrent programs, and describes the various approaches to test-
ing concurrent programs. This chapter organizes and summarizes the testing and
debugging material that is presented in depth in Chapters 2 to 6. This organiza-
tion provides two paths through the text. Instructors can cover the testing and
debugging material in the last sections of Chapters 2 to 6 as they go through those
chapters, or they can cover those sections when they cover Chapter 7. Chapter
7 also discusses reachability testing, which offers a bridge between testing and
verification, and is implemented in the synchronization library.

Each chapter has exercises at the end. Some of the exercises explore the con-
cepts covered in the chapter, whereas others require a program to be written.
In our courses we cover all the chapters and give six homework assignments,
two in-class exams, and a project. We usually supplement the text with readings
on model checking, process algebra, specification languages, and other research
topics.
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Online Resources

The home page for this book is located at

http://www.cs.gmu.edu/∼rcarver/ModernMultithreading

This Web site contains the source code for all the listings in the text and for the
synchronization libraries. It also contains startup files and test cases for some of
the exercises. Solutions to the exercises are available for instructors, as is a copy
of our lecture notes. There will also be an errata page.
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1
INTRODUCTION TO CONCURRENT
PROGRAMMING

A concurrent program contains two or more threads that execute concurrently
and work together to perform some task. In this chapter we begin with an oper-
ating system’s view of a concurrent program. The operating system manages
the program’s use of hardware and software resources and allows the program’s
threads to share the central processing units (CPUs). We then learn how to define
and create threads in Java and also in C++ using the Windows Win32 API
and the POSIX Pthreads library. Java provides a Thread class, so multithreaded
Java programs are object-oriented. Win32 and Pthreads provide a set of function
calls for creating and manipulating threads. We wrap a C++ Thread class around
these functions so that we can write C++/Win32 and C++/Pthreads multithreaded
programs that have the same object-oriented structure as Java programs.

All concurrent programs exhibit unpredictable behavior. This creates new chal-
lenges for programmers, especially those learning to write concurrent programs.
In this chapter we learn the reason for this unpredictable behavior and examine
the problems it causes during testing and debugging.

1.1 PROCESSES AND THREADS: AN OPERATING SYSTEM’S VIEW

When a program is executed, the operating system creates a process containing
the code and data of the program and manages the process until the program
terminates. User processes are created for user programs, and system processes

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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2 INTRODUCTION TO CONCURRENT PROGRAMMING

are created for system programs. A user process has its own logical address space,
separate from the space of other user processes and separate from the space (called
the kernel space) of the system processes. This means that two processes may
reference the same logical address, but this address will be mapped to different
physical memory locations. Thus, processes do not share memory unless they
make special arrangements with the operating system to do so.

Multiprocessing operating systems enable several programs to execute simul-
taneously. The operating system is responsible for allocating the computer’s
resources among competing processes. These shared resources include memory,
peripheral devices such as printers, and the CPU(s). The goal of a multiprocess-
ing operating system is to have some process executing at all times in order to
maximize CPU utilization.

Within a process, program execution entails initializing and maintaining a
great deal of information [Anderson et al. 1989]. For instance:

ž The process state (e.g., ready, running, waiting, or stopped)
ž The program counter, which contains the address of the next instruction to

be executed for this process
ž Saved CPU register values
ž Memory management information (page tables and swap files), file descrip-

tors, and outstanding input/output (I/O) requests

The volume of this per-process information makes it expensive to create and
manage processes.

A thread is a unit of control within a process. When a thread runs, it executes
a function in the program. The process associated with a running program starts
with one running thread, called the main thread, which executes the “main”
function of the program. In a multithreaded program, the main thread creates
other threads, which execute other functions. These other threads can create even
more threads, and so on. Threads are created using constructs provided by the
programming language or the functions provided by an application programming
interface (API).

Each thread has its own stack of activation records and its own copy of
the CPU registers, including the stack pointer and the program counter, which
together describe the state of the thread’s execution. However, the threads in a
multithreaded process share the data, code, resources, and address space of their
process. The per-process state information listed above is also shared by the
threads in the program, which greatly reduces the overhead involved in creating
and managing threads. In Win32 a program can create multiple processes or
multiple threads. Since thread creation in Win32 has lower overhead, we focus
on single-process multithreaded Win32 programs.

The operating system must decide how to allocate the CPUs among the pro-
cesses and threads in the system. In some systems, the operating system selects a
process to run and the process selected chooses which of its threads will execute.
Alternatively, the threads are scheduled directly by the operating system. At any
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given moment, multiple processes, each containing one or more threads, may be
executing. However, some threads may not be ready for execution. For example,
some threads may be waiting for an I/O request to complete. The scheduling
policy determines which of the ready threads is selected for execution.

In general, each ready thread receives a time slice (called a quantum) of
the CPU. If a thread decides to wait for something, it relinquishes the CPU
voluntarily. Otherwise, when a hardware timer determines that a running thread’s
quantum has completed, an interrupt occurs and the thread is preempted to allow
another ready thread to run. If there are multiple CPUs, multiple threads can
execute at the same time. On a computer with a single CPU, threads have the
appearance of executing simultaneously, although they actually take turns running
and they may not receive equal time. Hence, some threads may appear to run at
a faster rate than others.

The scheduling policy may also consider a thread’s priority and the type of
processing that the thread performs, giving some threads preference over others.
We assume that the scheduling policy is fair, which means that every ready thread
eventually gets a chance to execute. A concurrent program’s correctness should
not depend on its threads being scheduled in a certain order.

Switching the CPU from one process or thread to another, known as a context
switch, requires saving the state of the old process or thread and loading the state
of the new one. Since there may be several hundred context switches per second,
context switches can potentially add significant overhead to an execution.

1.2 ADVANTAGES OF MULTITHREADING

Multithreading allows a process to overlap I/O and computation. One thread can
execute while another thread is waiting for an I/O operation to complete. Mul-
tithreading makes a GUI (graphical user interface) more responsive. The thread
that handles GUI events, such as mouse clicks and button presses, can create
additional threads to perform long-running tasks in response to the events. This
allows the event handler thread to respond to more GUI events. Multithread-
ing can speed up performance through parallelism. A program that makes full
use of two processors may run in close to half the time. However, this level of
speedup usually cannot be obtained, due to the communication overhead required
for coordinating the threads (see Exercise 1.11).

Multithreading has some advantages over multiple processes. Threads require
less overhead to manage than processes, and intraprocess thread communication
is less expensive than interprocess communication. Multiprocess concurrent pro-
grams do have one advantage: Each process can execute on a different machine
(in which case, each process is often a multithreaded program). This type of
concurrent program is called a distributed program. Examples of distributed pro-
grams are file servers (e.g., NFS), file transfer clients and servers (e.g., FTP),
remote log-in clients and servers (e.g., Telnet), groupware programs, and Web
browsers and servers. The main disadvantage of concurrent programs is that they
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are extremely difficult to develop. Concurrent programs often contain bugs that
are notoriously difficult to find and fix. Once we have examined several concur-
rent programs, we’ll take a closer look at the special problems that arise when
we test and debug them.

1.3 THREADS IN JAVA

A Java program has a main thread that executes the main() function. In addi-
tion, several system threads are started automatically whenever a Java program
is executed. Thus, every Java program is a concurrent program, although the
programmer may not be aware that multiple threads are running. Java provides
a Thread class for defining user threads. One way to define a thread is to define
a class that extends (i.e., inherits from) the Thread class. Class simpleThread in
Listing 1.1 extends class Thread. Method run() contains the code that will be exe-
cuted when a simpleThread is started. The default run() method inherited from
class Thread is empty, so a new run() method must be defined in simpleThread
in order for the thread to do something useful.

The main thread creates simpleThreads named thread1 and thread2 and
starts them. (These threads continue to run after the main thread completes its
statements.) Threads thread1 and thread2 each display a simple message and
terminate. The integer IDs passed as arguments to the simpleThread constructor
are used to distinguish between the two instances of simpleThread.

A second way to define a user thread in Java is to use the Runnable interface.
Class simpleRunnable in Listing 1.2 implements the Runnable interface, which
means that simpleRunnable must provide an implementation of method run().
The main method creates a Runnable instance r of class simpleRunnable, passes
r as an argument to the Thread class constructor for thread3, and starts thread3.

Using a Runnable object to define the run() method offers one advantage
over extending class Thread. Since class simpleRunnable implements interface
Runnable, it is not required to extend class Thread, which means that

class simpleThread extends Thread {
public simpleThread(int ID) {myID = ID;}
public void run() {System.out.println(‘‘Thread ’’ + myID + ‘‘ is running.’’);}
private int myID;

}
public class javaConcurrentProgram {

public static void main(String[] args) {
simpleThread thread1 = new simpleThread(1);
simpleThread thread2 = new simpleThread(2);
thread1.start(); thread2.start(); // causes the run() methods to execute

}
}

Listing 1.1 Simple concurrent Java program.
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class simpleRunnable implements Runnable {
public simpleRunnable(int ID) {myID = ID;}
public void run() {System.out.println(‘‘Thread ’’ + myID + ‘‘ is running.’’);}
private int myID;

}
public class javaConcurrentProgram2 {

public static void main(String[] args) {
Runnable r = new simpleRunnable(3);
Thread thread3 = new Thread(r); // thread3 executed r’s run() method
thread3.start();

}
}

Listing 1.2 Java’s Runnable interface.

simpleRunnable could, if desired, extend some other class. This is important
since a Java class cannot extend more than one other class. (A Java class can
implement one or more interfaces but can extend only one class.)

The details about how Java threads are scheduled vary from system to system.
Java threads can be assigned a priority, which affects how threads are selected
for execution. Using method setPriority(), a thread T can be assigned a priority in
a range from Thread.MIN PRIORITY (usually, 1) to Thread.MAX PRIORITY
(usually, 10):

T.setPriority(6);

Higher-priority threads get preference over lower-priority threads, but it is diffi-
cult to make more specific scheduling guarantees based only on thread priorities.

We will not be assigning priorities to the threads in this book, which means
that user threads will always have the same priority. However, even if all the
threads have the same priority, a thread may not be certain to get a chance to
run. Consider a thread that is executing the following infinite loop:

while (true) { ; }

This loop contains no I/O statements or any other statements that require the
thread to release the CPU voluntarily. In this case the operating system must
preempt the thread to allow other threads to run. Java does not guarantee that the
underlying thread scheduling policy is preemptive. Thus, once a thread begins
executing this loop, there is no guarantee that any other threads will execute. To
be safe, we can add a sleep statement to this loop:

while (true) {
try {Thread.sleep(100);} // delay thread for 100 milliseconds

// (i.e., 0.1 second)
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catch (InterruptedException e) {} // InterruptedException must be caught
// when sleep() is called

}

Executing the sleep() statement will force a context switch, giving the other
threads a chance to run. In this book we assume that the underlying thread
scheduling policy is preemptive, so that sleep() statements are not necessary to
ensure fair scheduling. However, since sleep() statements have a dramatic effect
on execution, we will see later that they can be very useful during testing.

1.4 THREADS IN Win32

Multithreaded programs in Windows use the functions in the Win32 API. Threads
are created by calling function CreateThread() or function beginthreadex(). If
a program needs to use the multithreaded C run-time library, it should use
beginthreadex() to create threads; otherwise, it can use CreateThread(). Whether

a program needs to use the multithreaded C run-time library depends on which
of the library functions it calls. Some of the functions in the single-threaded run-
time library may not work properly in a multithreaded program. This includes
functions malloc() and free() (or new and delete in C++), any of the functions
in stdio.h or io.h, and functions such as asctime(), strtok(), and rand(). For the
sake of simplicity and safety, we use only beginthreadex() in this book. (Since
the parameters for beginthreadex() and CreateThread() are almost identical, we
will essentially be learning how to use both functions.) Details about choos-
ing between the single- and multithreaded C run-time libraries can be found
in [Beveridge and Wiener 1997].

Function beginthreadex() takes six parameters and returns a pointer, called a
handle, to the newly created thread. This handle must be saved so that it can be
passed to other Win32 functions that manipulate threads:

unsigned long _beginthreadex(
void* security, // security attribute
unsigned stackSize, // size of the thread’s stack
unsigned ( __stdcall *funcStart ) (void *), // starting address of the function

// to run
void* argList, // arguments to be passed to the

// thread
unsigned initFlags, // initial state of the thread: running

// or suspended
unsigned* threadAddr // thread ID

);
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The parameters of function beginthreadex() are as follows:

ž security: a security attribute, which in our programs is always the default
value NULL.

ž stackSize: the size, in bytes, of the new thread’s stack. We will use the
default value 0, which specifies that the stack size defaults to the stack size
of the main thread.

ž funcStart: the (address of a) function that the thread will execute. (This
function plays the same role as the run() method in Java.)

ž argList: an argument to be passed to the thread. This is either a 32-bit value
or a 32-bit pointer to a data structure. The Win32 type for void* is LPVOID.

ž initFlags: a value that is either 0 or CREATE SUSPENDED. The value 0
specifies that the thread should begin execution immediately upon creation.
The value CREATE SUSPENDED specifies that the thread is suspended
immediately after it is created and will not run until the Win32 function
ResumeThread (HANDLE hThread) is called on it.

ž threadAddr: the address of a memory location that will receive an identifier
assigned to the thread by Win32.

If beginthreadex() is successful, it returns a valid thread handle, which must
be cast to the Win32 type HANDLE to be used in other functions. It returns 0 if
it fails.

The program in Listing 1.3 is a C++/Win32 version of the simple Java pro-
gram in Listing 1.1. Array threadArray stores the handles for the two threads
created in main(). Each thread executes the code in function simpleThread(),
which displays the ID assigned by the user and returns the ID. Thread IDs are
integers that the user supplies as the fourth argument on the call to function
beginthreadex(). Function beginthreadex() forwards the IDs as arguments to

thread function simpleThread() when the threads are created.
Threads created in main() will not continue to run after the main thread exits.

Thus, the main thread must wait for both of the threads it created to complete
before it exits the main() function. (This behavior is opposite that of Java’s
main() method.) It does this by calling function WaitForMultipleObjects(). The
second argument to WaitForMultipleObjects() is the array that holds the thread
handles, and the first argument is the size of this array. The third argument
TRUE indicates that the function will wait for all of the threads to complete.
If FALSE were used instead, the function would wait until any one of the
threads completed. The fourth argument is a timeout duration in milliseconds.
The value INFINITE means that there is no time limit on how long WaitForMul-
tipleObjects() should wait for the threads to complete. When both threads have
completed, function GetExitCodeThread() is used to capture the return values of
the threads.
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#include <iostream>
#include <windows.h>
#include <process.h> // needed for function _beginthreadex()
void PrintError(LPTSTR lpszFunction,LPSTR fileName, int lineNumber) {

TCHAR szBuf[256]; LPSTR lpErrorBuf;
DWORD errorCode = GetLastError();
FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER |

FORMAT_MESSAGE_FROM_SYSTEM, NULL, errorCode,
MAKELANGID(LANG_NEUTRAL,
SUBLANG_DEFAULT), (LPTSTR) &lpErrorBuf, 0, NULL );

wsprintf(szBuf, "%s failed at line %d in %s with error %d: %s", lpszFunction,
lineNumber, fileName, errorCode, lpErrorBuf);
DWORD numWritten;
WriteFile(GetStdHandle(STD_ERROR_HANDLE),szBuf,strlen(szBuf),

&numWritten,FALSE);
LocalFree(lpErrorBuf);
exit(errorCode);

}
unsigned WINAPI simpleThread (LPVOID myID) {
// myID receives the 4th argument of _beginthreadex().
// Note: ‘‘WINAPI’’ refers to the ‘‘__stdcall’’ calling convention
// API functions, and ‘‘LPVOID’’ is a Win32 data type defined as void*

std::cout << "Thread " << (unsigned) myID << "is running" << std::endl;
return (unsigned) myID;

}
int main() {

const int numThreads = 2;
HANDLE threadArray[numThreads]; // array of thread handles
unsigned threadID; // returned by _beginthreadex(), but not used
DWORD rc; // return code; (DWORD is defined in WIN32 as unsigned long)
// Create two threads and store their handles in array threadArray
threadArray[0] = (HANDLE) _beginthreadex(NULL, 0, simpleThread,

(LPVOID) 1U, 0, &threadID);
if (!threadArray[0])

PrintError("_beginthreadex failed at ",__FILE__,__LINE__);
threadArray[1] = (HANDLE) _beginthreadex(NULL, 0, simpleThread,

(LPVOID) 2U, 0, &threadID);
if (!threadArray[1])

PrintError("_beginthreadex failed at ",__FILE__,__LINE__);
rc = WaitForMultipleObjects(numThreads,threadArray,TRUE,INFINITE);
//wait for the threads to finish

Listing 1.3 Simple concurrent program using C++/Win32.
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if (!(rc >= WAIT_OBJECT_0 && rc < WAIT_OBJECT_0+numThreads))
PrintError("WaitForMultipleObjects failed at ",__FILE__,__LINE__);

DWORD result1, result2; // these variables will receive the return values
rc = GetExitCodeThread(threadArray[0],&result1);
if (!rc) PrintError("GetExitCodeThread failed at ",__FILE__,__LINE__);
rc = GetExitCodeThread(threadArray[1],&result2);
if (!rc) PrintError("GetExitCodeThread failed at ",__FILE__,__LINE__);
std::cout << "thread1:" << result1 << "thread2:" << result2 << std::endl;
rc = CloseHandle(threadArray[0]); // release reference to thread when finished
if (!rc) PrintError("CloseHandle failed at ",__FILE__,__LINE__);
rc = CloseHandle(threadArray[1]);
if (!rc) PrintError("CloseHandle failed at ",__FILE__,__LINE__);
return 0;

}

Listing 1.3 (continued )

Every Win32 process has at least one thread, which we have been referring
to as the main thread. Processes can be assigned to a priority class (e.g., High or
Low), and the threads within a process can be assigned a priority that is higher or
lower than their parent process. The Windows operating system uses preemptive,
priority-based scheduling. Threads are scheduled based on their priority levels,
giving preference to higher-priority threads. Since we will not be using thread
priorities in our Win32 programs, we will assume that the operating system will
give a time slice to each program thread, in round-robin fashion. (The threads in
a Win32 program will be competing for the CPU with threads in other programs
and with system threads, and these other threads may have higher priorities.)

1.5 PTHREADS

A POSIX thread is created by calling function pthread create():

int pthread_create() {
pthread_t* thread, // thread ID
const pthread_attr_t* attr, // thread attributes
void* (*start)(void*), // starting address of the function to run
void* arg // an argument to be passed to the thread

};

The parameters for pthread create() are as follows:

ž thread: the address of a memory location that will receive an identifier
assigned to the thread if creation is successful. A thread can get its own
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identifier by calling pthread self(). Two identifiers can be compared using
pthread equal(ID1,ID2).

ž attr: the address of a variable of type pthread attr t, which can be used to
specify certain attributes of the thread created.

ž start: the (address of the) function that the thread will execute. (This func-
tion plays the same role as the run() method in Java.)

ž arg: an argument to be passed to the thread.

If pthread create() is successful, it returns 0; otherwise, it returns an error
code from the <errno.h> header file. The other Pthreads functions follow the
same error-handling scheme.

The program in Listing 1.4 is a C++/Pthreads version of the C++/Win32 pro-
gram in Listing 1.3. A Pthreads program must include the standard header file
<pthread.h> for the Pthreads library. Array threadArray stores the Pthreads
IDs for the two threads created in main(). Thread IDs are of type pthread t.
Each thread executes the code in function simpleThread(), which displays the
IDS assigned by the user. The IDS are integers that are supplied as the fourth
argument on the call to function pthread create(). Function pthread create() for-
wards the IDs as arguments to thread function simpleThread() when the threads
are created.

Threads have attributes that can be set when they are created. These attributes
include the size of a thread’s stack, its priority, and the policy for schedul-
ing threads. In most cases the default attributes are sufficient. Attributes are set
by declaring and initializing an attributes object. Each attribute in the attributes
object has a pair of functions for reading (get) and writing (set) its
value.

In Listing 1.4, the attribute object threadAttribute is initialized by calling
pthread attr init(). The scheduling scope attribute is set to PTHREAD SCOPE
SYSTEM by calling pthread attr setscope(). This attribute indicates that we want
the threads to be scheduled directly by the operating system. The default value
for this attribute is PTHREAD SCOPE PROCESS, which indicates that only the
process, not the threads, will be visible to the operating system. When the operat-
ing system schedules the process, the scheduling routines in the Pthreads library
will choose which thread to run. The address of threadAttribute is passed as the
second argument on the call to pthread create().

As in Win32, the main thread must wait for the two threads it created to
complete before it exits the main() function. It does this by calling function
pthread join() twice. The first argument to pthread join() is the thread ID of
the thread to wait on. The second argument is the address of a variable that will
receive the return value of the thread. In our program, neither thread returns a
value, so we use NULL for the second argument. (The value NULL can also be
used if there is a return value that we wish to ignore.)
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#include <iostream>
#include <pthread.h>
#include <errno.h>

void PrintError(char* msg, int status, char* fileName, int lineNumber) {
std::cout << msg << ' ' << fileName << ":" << lineNumber

<< "- " << strerror(status) << std::endl;
}
void* simpleThread (void* myID) { // myID is the fourth argument of

// pthread_create ()
std::cout << "Thread " << (long) myID << "is running" << std::endl;
return NULL; // implicit call to pthread_exit(NULL);

}

int main() {
pthread_t threadArray[2]; // array of thread IDs
int status; // error code
pthread_attr_t threadAttribute; // thread attribute
status = pthread_attr_init(&threadAttribute); // initialize attribute object
if (status != 0) { PrintError("pthread_attr_init failed at", status, __FILE__,

__LINE__); exit(status);}
// set the scheduling scope attribute
status = pthread_attr_setscope(&threadAttribute,

PTHREAD_SCOPE_SYSTEM);
if (status != 0) { PrintError("pthread_attr_setscope failed at", status, __FILE__,

__LINE__); exit(status);}
// Create two threads and store their IDs in array threadArray
status = pthread_create(&threadArray[0], &threadAttribute, simpleThread,

(void*) 1L);
if (status != 0) { PrintError("pthread_create failed at", status, __FILE__,

__LINE__); exit(status);}
status = pthread_create(&threadArray[1], &threadAttribute, simpleThread,

(void*) 2L);
if (status != 0) { PrintError("pthread_create failed at", status, __FILE__,

__LINE__); exit(status);}
status = pthread_attr_destroy(&threadAttribute); // destroy the attribute object
if (status != 0) { PrintError("pthread_attr_destroy failed at", status, __FILE__,

__LINE__); exit(status);}
status = pthread_join(threadArray[0],NULL); // wait for threads to finish
if (status != 0) { PrintError("pthread_join failed at", status, __FILE__,

__LINE__); exit(status);}
int status = pthread_attr_init(&threadAttribute); // initialize attribute object
status = pthread_join(threadArray[1],NULL);
if (status != 0) { PrintError("pthread_join failed at", status, __FILE__,

__LINE__); exit(status);}
}

Listing 1.4 Simple concurrent program using C++/Pthreads.
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Suppose that instead of returning NULL, thread function simpleThread()
returned the value of parameter myID :

void* simpleThread (void* myID) { // myID was the fourth argument on the call
// to pthread_create ()

std::cout << "Thread " << (long) myID << "is running" << std::endl;
return myID; // implicit call to pthread_exit(myID);

}

We can use function pthread join() to capture the values returned by the
threads:

long result1, result2; // these variables will receive the return values
status = pthread_join(threadArray[0],(void**) &result1);
if (status != 0) { /* ... */ }
status = pthread_join(threadArray[1],(void**) &result2);
if (status != 0) { /* ... */ }
std::cout << ‘‘thread1:’’ << (long) result1 << ‘‘ thread2:’’ << (long) result2

<< std::endl;

A thread usually terminates by returning from its thread function. What hap-
pens after that depends on whether the thread has been detached. Threads that are
terminated but not detached retain system resources that have been allocated to
them. This means that the return values for undetached threads are still available
and can be accessed by calling pthread join(). Detaching a thread allows the
system to reclaim the resources allocated to that thread. But a detached thread
cannot be joined.

You can detach a thread anytime by calling function pthread detach(). For
example, the main thread can detach the first thread by calling

status = pthread_detach(threadArray[0]);

Or the first thread can detach itself:

status = pthread_detach(pthread_self());

Calling pthread join(threadArray[0],NULL) also detaches the first thread. We
will typically use pthread join() to detach threads, which will make our Pthreads
programs look very similar to Win32 programs.

If you create a thread that definitely will not be joined, you can use an attribute
object to ensure that when the thread is created, it is already detached. The
code for creating threads in a detached state is shown below. Attribute detach-
state is set to PTHREAD CREATE DETACHED. The other possible value for
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this attribute is PTHREAD CREATE JOINABLE. (By default, threads are sup-
posed to be created joinable. To ensure that your threads are joinable, you may
want to use an attribute object and set the detachstate attribute explicitly to
PTHREAD CREATE JOINABLE.)

int main() {
pthread_t threadArray[2]; // array of thread IDs
int status; // error code
pthread_attr_t threadAttribute; // thread attribute
status = pthread_attr_init(&threadAttribute); // initialize the attribute object
if (status != 0) { /* ... */ }

// set the detachstate attribute to detached
status = pthread_attr_setdetachstate(&threadAttribute,

PTHREAD_CREATE_DETACHED);
if (status != 0) { /* ... */ }

// create two threads in the detached state
status = pthread_create(&threadArray[0], &threadAttribute, simpleThread,

(void*) 1L);
if (status != 0) { /* ... */ }
status = pthread_create(&threadArray[1], &threadAttribute, simpleThread,

(void*) 2L);
if (status != 0) { /* ... */ }
// destroy the attribute object when it is no longer needed
status = pthread_attr_destroy(&threadAttribute);
if (status != 0) { /* ... */ }

// allow all threads to complete
pthread_exit(NULL);

}

When the threads terminate, their resources are reclaimed by the system. This
also means that the threads cannot be joined. Later we will learn about several
synchronization constructs that can be used to simulate a join operation. We
can use one of these constructs to create threads in a detached state but still be
notified when they have completed their tasks.

Since the threads are created in a detached state, the main thread cannot call
pthread join() to wait for them to complete. But we still need to ensure that the
threads have a chance to complete before the program (i.e., the process) exits.
We do this by having the main thread call pthread exit at the end of the main()
function. This allows the main thread to terminate but ensures that the program
does not terminate until the last thread has terminated. The resulting program
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behaves similar to the Java versions in Listings 1.1 and 1.2 in that the threads
created in main() continue to run after the main thread completes.

1.6 C++ THREAD CLASS

Details about Win32 and POSIX threads can be encapsulated in a C++ Thread
class. Class Thread hides some of the complexity of using the Win32 and POSIX
thread functions and allows us to write multithreaded C++ programs that have
an object-oriented structure that is almost identical to that of Java programs.
Using a Thread class will also make it easier for us to provide some of the
basic services that are needed for testing and debugging multithreaded programs.
The implementation of these services can be hidden inside the Thread class,
enabling developers to use these services without knowing any details about
their implementation.

1.6.1 C++ Class Thread for Win32

Listing 1.5 shows C++ classes Runnable and Thread for Win32. Since Win32
thread functions can return a value, we allow method run() to return a value.
The return value can be retrieved by using a Pthreads-style call to method join().
Class Runnable simulates Java’s Runnable interface. Similar to the way that we
created threads in Java, we can write a C++ class that provides a run() method
and inherits from Runnable; create an instance of this class; pass a pointer to that
instance as an argument to the Thread class constructor; and call start() on the
Thread object. Alternatively, we can write C++ classes that inherit directly from
class Thread and create instances of these classes on the heap or on the stack.
(Java Thread objects, like other Java objects, are never created on the stack.) Cass
Thread also provides a join() method that simulates the pthread join() operation.
A call to T.join() blocks the caller until thread T’s run() method completes. We
use T.join() to ensure that T’s run() method is completed before Thread T is
destructed and the main thread completes. Method join() returns the value that
was returned by run().

Java has a built-in join() operation. There was no need to call method join() in
the Java programs in Listings 1.1 and 1.2 since threads created in a Java main()
method continue to run after the main thread completes. Method join() is useful
in Java when one thread needs to make sure that other threads have completed
before, say, accessing their results. As we mentioned earlier, Java’s run() method
cannot return a value (but see Exercise 1.4), so results must be obtained some
other way.

The program in Listing 1.6 illustrates the use of C++ classes Thread and
Runnable. It is designed to look like the Java programs in Listings 1.1 and 1.2.
[Note that a C-style cast (int) x can be written in C++ as reinterpret cast<int>(x),
which is used for converting between unrelated types (as in void* and int).] The
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class Runnable {
public:

virtual void* run() = 0;
virtual~Runnable() = 0;

};
Runnable::~Runnable() {} // function body required for pure virtual destructors

class Thread {
public:

Thread(std::auto_ptr<Runnable> runnable_);
Thread();
virtual~Thread();
void start(); // starts a suspended thread
void* join(); // wait for thread to complete

private:
HANDLE hThread;
unsigned winThreadID; // Win32 thread ID
std::auto_ptr<Runnable> runnable;
Thread(const Thread&);
const Thread& operator=(const Thread&);
void setCompleted(); // called when run() completes
void* result; // stores value returned by run()
virtual void* run() {return 0;}
static unsigned WINAPI startThreadRunnable(LPVOID pVoid);
static unsigned WINAPI startThread(LPVOID pVoid);
void PrintError(LPTSTR lpszFunction,LPSTR fileName, int lineNumber);

};

Thread::Thread(std::auto_ptr<Runnable> runnable_) : runnable(runnable_) {
if (runnable.get() == NULL)

PrintError("Thread(std::auto_ptr<Runnable> runnable_) failed at ",
__FILE__,__LINE__);

hThread = (HANDLE)_beginthreadex(NULL,0,Thread::startThreadRunnable,
(LPVOID)this, CREATE_SUSPENDED, &winThreadID );

if (!hThread) PrintError("_beginthreadex failed at ",__FILE__,__LINE__);
}
Thread::Thread(): runnable(NULL) {

hThread = (HANDLE)_beginthreadex(NULL,0,Thread::startThread,
(LPVOID)this, CREATE_SUSPENDED, &winThreadID );

if (!hThread) PrintError("_beginthreadex failed at ",__FILE__,__LINE__);
}
unsigned WINAPI Thread::startThreadRunnable(LPVOID pVoid){

Thread* runnableThread = static_cast<Thread*> (pVoid);

Listing 1.5 C++/Win32 classes Runnable and Thread.



16 INTRODUCTION TO CONCURRENT PROGRAMMING

runnableThread->result = runnableThread->runnable->run();
runnableThread->setCompleted();
return reinterpret_cast<unsigned>(runnableThread->result);

}
unsigned WINAPI Thread::startThread(LPVOID pVoid) {

Thread* aThread = static_cast<Thread*> (pVoid);
aThread->result = aThread->run();
aThread->setCompleted();
return reinterpret_cast<unsigned>(aThread->result);

}
Thread::~Thread() {

if (winThreadID != GetCurrentThreadId()) {
DWORD rc = CloseHandle(hThread);
if (!rc) PrintError("CloseHandle failed at ",__FILE__,__LINE__);

}
// note that the runnable object (if any) is automatically deleted by auto_ptr.

}
void Thread::start() {

assert(hThread != NULL);
DWORD rc = ResumeThread(hThread);
// thread was created in suspended state so this starts it running
if (!rc) PrintError("ResumeThread failed at ",__FILE__,__LINE__);

}
void* Thread::join() {

/* a thread calling T.join() waits until thread T completes; see Section 3.7.4.*/
return result; // return the void* value that was returned by method run()

}
void Thread::setCompleted() {
/* notify any threads that are waiting in join(); see Section 3.7.4. */
}
void Thread::PrintError(LPTSTR lpszFunction,LPSTR fileName, int lineNumber)
{ /* see Listing 1.3 */}

Listing 1.5 (continued )

implementation of class Thread is not simple. When a C++ Thred is created,
the corresponding Thread constructor calls function beginthreadex() with the
following arguments:

ž NULL. This is the default value for security attributes.
ž 0. This is the default value for stack size.
ž The third argument is either Thread::startThread() or Thread::startThread-

Runnable(). Method startThread() is the startup method for threads created
by inheriting from class Thread. Method startThreadRunnable() is the startup
method for threads created from Runnable objects.
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class simpleRunnable: public Runnable {
public:

simpleRunnable(int ID) : myID(ID) {}
virtual void* run() {

std::cout << "Thread " << myID << "is running" << std::endl;
return reinterpret_cast<void*>(myID);

}
private:

int myID;
};
class simpleThread: public Thread {
public:

simpleThread (int ID) : myID(ID) {}
virtual void* run() {

std::cout << "Thread " << myID << "is running" << std::endl;
return reinterpret_cast<void*>(myID);

}
private:

int myID;
};
int main() {

std::auto_ptr<Runnable> r(new simpleRunnable(1));
std::auto_ptr<Thread> thread1(new Thread(r));
thread1->start();
std::auto_ptr<simpleThread> thread2(new simpleThread(2));
thread2->start();
simpleThread thread3(3);
thread3.start();
// thread1 and thread2 are created on the heap; thread3 is created on the stack
// wait for the threads to finish
int result1 = reinterpret_cast<int>(thread1->join());
int result2 = reinterpret_cast<int>(thread2->join());
int result3 = reinterpret_cast<int>(thread3.join());
std::cout << result1 << ' ' << result2 << ' ' << result3 << std::endl;
return 0;
// the destructors for thread1 and thread2 will automatically delete the
// pointed-at thread objects

}

Listing 1.6 Using C++ classes Runnable and Thread .

ž (LPVOID) this. The fourth argument is a pointer to this Thread object,
which is passed through to method startThread() or startThreadRunnable().
Thus, all threads execute one of the startup methods, but the startup methods
receive a different Thread pointer each time they are executed.
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ž CREATE SUSPENDED. A Win32 thread is created to execute the startup
method, but this thread is created in suspended mode, so the startup method
does not begin executing until method start() is called on the thread.

Since the Win32 thread is created in suspended mode, the thread is not actu-
ally started until method Thread::start() is called. Method Thread::start() calls
Win32 function ResumeThread(), which allows the thread to be scheduled and
the startup method to begin execution. The startup method is either startThread()
or startThreadRunnable(), depending on which Thread constructor was used to
create the Thread object.

Method startThread() casts its void* pointer parameter to Thread* and then
calls the run() method of its Thread* parameter. When the run() method returns,
startThread() calls setCompleted() to set the thread’s status to completed and to
notify any threads waiting in join() that the thread has completed. The return
value of the run() method is saved so that it can be retrieved in method join().
Static method startThreadRunnable() performs similar steps when threads are
created from Runnable objects. Method startThreadRunnable() calls the run()
method of the Runnable object held by its Thread* parameter and then calls
setCompleted().

In Listing 1.6 we use auto ptr<> objects to manage the destruction of two
of the threads and the Runnable object r . When auto ptr<> objects thread1 and
thread2 are destroyed automatically at the end of the program, their destructors
will invoke delete automatically on the pointers with which they were initial-
ized. This is true no matter whether the main function exits normally or by means
of an exception. Passing an auto ptr<Runnable> object to the Thread class
constructor passes ownership of the Runnable object from the main thread to the
child thread. The auto ptr<Runnable> object in the child thread that receives
this auto ptr<Runnable> object owns the Runnable object that it has a pointer
to, and will automatically delete the pointed-to object when the child thread is
destroyed. When ownership is passed to the thread, the auto ptr<Runnable>

object in main is set automatically to a null state and can no longer be used to
refer to the Runnable object. This protects against double deletion by the child
thread and the main thread. It also prevents main from deleting the Runnable
object before the thread has completed method run() and from accessing the
Runnable object while the thread is accessing it. In general, if one thread passes
an object to another thread, it must be clear which thread owns the object and will
clean up when the object is no longer needed. This ownership issue is raised again
in Chapter 5, where threads communicate by passing message objects instead of
accessing global variables.

Note that startup functions startThreadRunnable() and startThread() are static
member functions. To understand why they are static, recall that function begin-
threadex() expects to receive the address of a startup function that has a single
(void* ) parameter. A nonstatic member function that declares a single parameter
actually has two parameters. This is because each nonstatic member function has
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in addition to its declared parameters, a hidden parameter that corresponds to
the this pointer. (If you execute myObject.foo(x), the value of the this pointer
in method foo() is the address of myObject.) Thus, if the startup function is a
nonstatic member function, the hidden parameter gets in the way and the call to
the startup function fails. Static member functions do not have hidden parameters.

1.6.2 C++ Class Thread for Pthreads

Listing 1.7 shows C++ classes Runnable and Thread for Pthreads. The interfaces
for these classes are nearly identical to the Win32 versions. The only difference
is that the Thread class constructor has a parameter indicating whether or not the
thread is to be created in a detached state. The default is undetached. The program
in Listing 1.6 can be executed as a Pthreads program without making changes.
The main difference in the implementation of the Pthreads Thread class is that
threads are created in the start() method instead of the Thread class constructor.
This is because threads cannot be created in the suspended state and then later
resumed. Thus, we create and start a thread in one step. Note also that calls to
method join() are simply passed through to method pthread join().

1.7 THREAD COMMUNICATION

The concurrent programs we have seen so far are not very interesting because
the threads they contain do not work together. For threads to work together,
they must communicate. One way for threads to communicate is by accessing
shared memory. Threads in the same program can reference global variables or
call methods on a shared object, subject to the naming and scope rules of the
programming language. Threads in different processes can access the same kernel
objects by calling kernel routines. It is the programmer’s responsibility to define
the shared variables and objects that are needed for communication. Forming the
necessary connections between the threads and the kernel objects is handled by
the compiler and the linker.

Threads can also communicate by sending and receiving messages across
communication channels. A channel may be implemented as an object in shared
memory, in which case message passing is just a particular style of shared mem-
ory communication. A channel might also connect threads in different programs,
possibly running on different machines that do not share memory. Forming net-
work connections between programs on different machines requires help from
the operating system and brings up distributed programming issues such as how
to name and reference channels that span multiple programs, how to resolve pro-
gram references to objects that exist on different machines, and the reliability of
passing messages across a network. Message passing is discussed in Chapters 5
and 6. In this chapter we use simple shared variable communication to introduce
the subtleties of concurrent programming.
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class Runnable {
public:

virtual void* run() = 0;
virtual~Runnable() = 0;

};
// a function body is required for pure virtual destructors
Runnable::~Runnable() {}

class Thread {
public:

Thread(auto_ptr<Runnable> runnable_, bool isDetached = false);
Thread(bool isDetached = false);
virtual~Thread();
void start();
void* join();

private:
pthread_t PthreadThreadID; // thread ID
bool detached; // true if thread created in detached state;

false otherwise
pthread_attr_t threadAttribute;
auto_ptr<Runnable> runnable;
Thread(const Thread&);
const Thread& operator= (const Thread&);
void setCompleted();
void* result; // stores return value of run()
virtual void* run() {}
static void* startThreadRunnable(void* pVoid);
static void* startThread(void* pVoid);
void PrintError(char* msg, int status, char* fileName, int lineNumber);

};
Thread::Thread(auto_ptr<Runnable> runnable_, bool isDetached) :

runnable(runnable_),detached(isDetached){
if (runnable.get() == NULL) {

std::cout << "Thread::Thread(auto_ptr<Runnable> runnable_,
bool isDetached) failed at " << ' ' << __FILE__ << ":"
<< __LINE__ << "- " << "runnable is NULL " << std::endl; exit(-1);

}
}
Thread::Thread(bool isDetached) : runnable(NULL), detached(isDetached){ }
void* Thread::startThreadRunnable(void* pVoid){
// thread start function when a Runnable is involved

Thread* runnableThread = static_cast<Thread*> (pVoid);
assert(runnableThread);

Listing 1.7 C++/Pthreads classes Runnable and Thread .
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runnableThread->result = runnableThread->runnable->run();
runnableThread->setCompleted();
return runnableThread->result;

}
void* Thread::startThread(void* pVoid) {

// thread start function when no Runnable is involved
Thread* aThread = static_cast<Thread*> (pVoid);
assert(aThread);
aThread->result = aThread->run();
aThread->setCompleted();
return aThread->result;

}
Thread::~Thread() { }
void Thread::start() {

int status = pthread_attr_init(&threadAttribute); // initialize attribute object
if (status != 0) { PrintError("pthread_attr_init failed at", status, __FILE__,

__LINE__); exit(status);}
status = pthread_attr_setscope(&threadAttribute,

PTHREAD_SCOPE_SYSTEM);
if (status != 0) { PrintError("pthread_attr_setscope failed at",

status, __FILE__, __LINE__); exit(status);}
if (!detached) {

if (runnable.get() == NULL) {
int status = pthread_create(&PthreadThreadID,&threadAttribute,

Thread::startThread,(void*) this);
if (status != 0) { PrintError("pthread_create failed at",

status, __FILE__, __LINE__); exit(status);}
}
else {

int status = pthread_create(&PthreadThreadID,&threadAttribute,
Thread::startThreadRunnable, (void*)this);

if (status != 0) {PrintError("pthread_create failed at",
status, __FILE__, __LINE__); exit(status);}

}
}
else {

// set the detachstate attribute to detached
status = pthread_attr_setdetachstate(&threadAttribute,

PTHREAD_CREATE_DETACHED);
if (status != 0){

PrintError("pthread_attr_setdetachstate failed at",
status,__FILE__,__LINE__);exit(status);

}

Listing 1.7 (continued )
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if (runnable.get() == NULL) {
status = pthread_create(&PthreadThreadID,&threadAttribute,

Thread::startThread, (void*) this);
if (status != 0) {PrintError("pthread_create failed at",

status, __FILE__, __LINE__);exit(status);}
}
else {

status = pthread_create(&PthreadThreadID,&threadAttribute,
Thread::startThreadRunnable, (void*) this);

if (status != 0) {PrintError("pthread_create failed at",
status, __FILE__, __LINE__); exit(status);}

}
}
status = pthread_attr_destroy(&threadAttribute);
if (status != 0) { PrintError("pthread_attr_destroy failed at",

status, __FILE__, __LINE__); exit(status);}
}
void* Thread::join() {

int status = pthread_join(PthreadThreadID,NULL);
// result was already saved by thread start functions
if (status != 0) { PrintError("pthread_join failed at",

status, __FILE__, __LINE__); exit(status);}
return result;

}
void Thread::setCompleted() {/* completion was handled by pthread_join() */}
void Thread::PrintError(char* msg, int status, char* fileName, int lineNumber)
{/*see Listing 1.4 */}

Listing 1.7 (continued )

Listing 1.8 shows a C++ program in which the main thread creates two com-
municatingThreads. Each communicatingThread increments the global shared
variable s 10 million times. The main thread uses join() to wait for the com-
municatingThreads to complete, then displays the final value of s. When you
execute the program in Listing 1.8, you might expect the final value of s to be
20 million. However, this may not always be what happens. For example, we
executed this program 50 times. In 49 of the executions, the value 20000000
was displayed, but the value displayed for one of the executions was 19215861.
This example illustrates two important facts of life for concurrent programmers.
The first is that the execution of a concurrent program is nondeterministic: Two
executions of the same program with the same input can produce different
results. This is true even for correct concurrent programs, so nondeterministic
behavior should not be equated with incorrect behavior. The second fact is that
subtle programming errors involving shared variables can produce unexpected
results.
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int s=0; // shared variable s

class communicatingThread: public Thread {
public:

communicatingThread (int ID) : myID(ID) {}
virtual void* run();

private:
int myID;

};
void* communicatingThread::run() {

std::cout << "Thread " << myID << "is running" << std::endl;
for (int i=0; i<10000000; i++) // increment s 10 million times

s = s + 1;
return 0;

}

int main() {
std::auto_ptr<communicatingThread> thread1(new communicatingThread (1));
std::auto_ptr<communicatingThread> thread2(new communicatingThread (2));
thread1->start(); thread2->start();
thread1->join(); thread2->join();
std::cout << "s: " << s << std::endl; // expected final value of s is 20000000
return 0;

}

Listing 1.8 Shared variable communication.

1.7.1 Nondeterministic Execution Behavior

The following two examples illustrate nondeterministic behavior. In Example 1
each thread executes a single statement, but the order in which the three state-
ments are executed is unpredictable:

Example 1 Assume that integer x is initially 0.

Thread1 Thread2 Thread3

(1) x = 1; (2) x = 2; (3) y = x;

The final value of y is unpredictable, but it is expected to be either 0, 1, or 2.
Following are some of the possible interleavings of these three statements:

(3), (1), (2) ⇒ final value of y is 0
(2), (1), (3) ⇒ final value of y is 1
(1), (2), (3) ⇒ final value of y is 2
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We do not expect y to have the final value 3, which might happen if the assign-
ment statements in Thread1 and Thread2 are executed at about the same time
and x is assigned some of the bits in the binary representation of 1 and some
of the bits in the binary representation of 2. The memory hardware guarantees
that this cannot happen by ensuring that read and write operations on integer
variables do not overlap. (Below, such operations are called atomic operations.)

In the next example, Thread3 will loop forever if and only if the value of x

is 1 whenever the condition (x == 2) is evaluated.

Example 2 Assume that x is initially 2.

Thread1 Thread2 Thread3

while (true) { while (true) { while (true) {
(1) x = 1; (2) x = 2; (3) if (x == 2) exit(0);

} } }

Thread3 will never terminate if statements (1), (2), and (3) are interleaved as
follows: (2), (1), (3), (2), (1), (3), (2), (1), (3), . . . . This interleaving is probably
not likely to happen, but if it did, it would not be completely unexpected.

In general, nondeterministic execution behavior is caused by one or more of
the following:

ž The unpredictable rate of progress of threads executing on a single processor
(due to context switches between the threads)

ž The unpredictable rate of progress of threads executing on different proces-
sors (due to differences in processor speeds)

ž The use of nondeterministic programming constructs, which make unpre-
dictable selections between two or more possible actions (we look at exam-
ples of this in Chapters 5 and 6)

Nondeterministic results do not necessarily indicate the presence of an error.
Threads are frequently used to model real-world objects, and the real world is
nondeterministic. Furthermore, it can be difficult and unnatural to model non-
deterministic behavior with a deterministic program, but this is sometimes done
to avoid dealing with nondeterministic executions. Some parallel programs are
expected to be deterministic [Empath et al. 1992], but these types of programs
do not appear in this book.

Nondeterminism adds flexibility to a design. As an example, consider two
robots that are working on an assembly line. Robot 1 produces parts that Robot
2 assembles into some sort of component. To compensate for differences in the
rates at which the two robots work, we can place a buffer between the robots.
Robot 1 produces parts and deposits them into the buffer, and Robot 2 withdraws
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the parts and assembles them into finished components. This adds some flexibility
to the assembly line, but the order in which parts are deposited and withdraw by
the robots may be nondeterministic. If the actions of the robots are controlled by
software, using one thread to control each robot and one thread to manage the
buffer, the behavior of the threads will also be nondeterministic.

Nondeterminism and concurrency are related concepts. Consider two nonover-
lapping events A and B that execute concurrently. The fact that A and B are
concurrent means that they can occur in either order. Thus, their concurrency can
be modeled as a nondeterministic choice between two interleavings of events:
(A followed by B) or (B followed by A). This interleaving model of concur-
rency is used by certain techniques for building and verifying models of program
behavior. But notice that the possible number of interleavings explodes as the
number of concurrent events increases, which makes even small programs hard
to manage. We quantify this explosion later.

Nondeterminism is an inherent property of concurrent programs. The burden
of dealing with nondeterminism falls on the programmer, who must ensure that
threads are correctly synchronized without imposing unnecessary constraints that
only reduce the level of concurrency. In our assembly line example, the buffer
allows the two robots to work concurrently and somewhat independently. How-
ever, the buffer has a limited capacity, so the robots and the buffer must be
properly synchronized. Namely, it is the programmer’s responsibility to ensure
that Robot 1 is not allowed to deposit a part when the buffer is completely full.
Similarly, Robot 2 must be delayed when the buffer becomes empty. Finally,
to avoid collisions, the robots should not be allowed to access the buffer at the
same time. Thread synchronization is a major concern of the rest of this book.

Nondeterministic executions create major problems during testing and debug-
ging. Developers rely on repeated, deterministic executions to find and fix pro-
gramming errors. When we observe a failure in a single-threaded program, we
fully expect to be able to reproduce the failure so that we can locate and fix the
bug that caused it. If a failure is not reproducible, that tells us something about
the problem since only certain types of bugs (e.g., uninitialized variables) cause
nondeterministic failures in sequential programs. Concurrent programs, on the
other hand, are inherently nondeterministic. Coping successfully with nondeter-
minism during testing and debugging is essential for concurrent programmers.
After we look at some common programming errors, we examine the types of
problems that nondeterministic executions cause during testing and debugging.

1.7.2 Atomic Actions

One common source of bugs in concurrent programs is the failure to implement
atomic actions correctly. An atomic action acts on the state of a program. The
program’s state contains a value for each variable defined in the program and
other implicit variables, such as the program counter. An atomic action transforms
the state of the program, and the state transformation is indivisible. For example,
suppose that in the initial state of a program the variable x has the value 0. Then
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after executing an atomic assignment statement that assigns 1 to x, the program
will be in a new state in which x has the value 1.

The requirement for state transformations to be indivisible does not necessarily
mean that context switches cannot occur in the middle of an atomic action. A state
transformation performed during an atomic action is indivisible if other threads
can see the program’s state as it appears before the action or after the action, but
not some intermediate state while the action is occurring. Thus, we can allow a
context switch to occur while one thread is performing an atomic action, even if
that action involves many variables and possibly multiple assignment statements,
as long as we don’t allow the other threads to see or interfere with the action
while it is in progress. As we will see, this means that we may have to block the
other threads until the action is finished.

The execution of a concurrent program results in a sequence of atomic actions
for each thread. Since the state transformation caused by an atomic action is
indivisible, executing a set of atomic actions concurrently is equivalent to exe-
cuting them in some sequential order. A particular execution can be characterized
as a (nondeterministic) interleaving of the atomic actions performed by the
threads. (The relationship between concurrency and nondeterminism was dis-
cussed above.) This interleaving determines the result of the execution.

Individual machine instructions such as load, add, subtract, and store are
typically executed atomically; this is guaranteed by the memory hardware. In
Java, an assignment of 32 bits or less is guaranteed to be implemented atomically,
so an assignment statement such as x = 1 for a variable x of type int is an atomic
action. In general, however, the execution of an assignment statement may not
be atomic.

Nonatomic Arithmetic Expressions and Assignment Statements When we
write a concurrent program, we might assume that the execution of a single
arithmetic expression or assignment statement is an atomic action. However, an
arithmetic expression or assignment statement is compiled into several machine
instructions, and an interleaving of the machine instructions from two or more
expressions or assignment statements may produce unexpected results.

Example 3 Assume that y and z are initially 0.

Thread1 Thread2

x = y + z; y = 1;
z = 2;

If we (incorrectly) assume that execution of each assignment statement is an
atomic action, the expected final value of x computed by Thread1 is 0, 1,
or 3, representing the sums 0 + 0, 1 + 0, and 1 + 2, respectively. However,
the machine instructions for Thread1 and Thread2 will look something like
the following:
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Thread1 Thread2

(1) load r1, y (4) assign y, 1
(2) add r1, z (5) assign z, 2
(3) store r1, x

Below are some of the possible interleavings of these machine instructions. The
character * indicates an unexpected result:

(1), (2), (3), (4), (5) ⇒ x is 0
(4), (1), (2), (3), (5) ⇒ x is 1
(1), (4), (5), (2), (3) ⇒ x is 2 *
(4), (5), (1), (2), (3) ⇒ x is 3

Example 4 Assume that the initial value of x is 0.

Thread1 Thread2

x = x + 1; x = 2;

Again we are assuming incorrectly that the execution of each assignment state-
ment is an atomic action, so the expected final value of x is 2 or 3. The machine
instructions for Thread1 and Thread2 are

Thread1 Thread2

(1) load r1, x (4) assign x, 2
(2) add r1, 1
(3) store r1, x

Following are some of the possible interleavings of these machine instructions.
Once again, the character “*” indicates an unexpected result.

(1), (2), (3), (4) => x is 2
(4), (1), (2), (3) => x is 3
(1), (2), (4), (3) => x is 1 *

As these examples illustrate, since machine instructions are atomic actions, it is
the interleaving of the machine instructions, not the interleaving of the statements,
that determines the result. If there are n threads (Thread1, Thread2, . . . , Threadn)
such that Thread i executes mi atomic actions, the number of possible interleav-
ings of the atomic actions is

(m1 * m2 * ... * mn)!

(m1! * m2! * ... * mn!)
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This formula shows mathematically what concurrent programmers are quick to
learn—there is no such thing as a simple concurrent program.

Andrews [2000] defined a condition called at-most-once under which expres-
sion evaluations and assignments will appear to be atomic. (Our definition of
at-most-once is slightly stronger than Andrews’s; see Exercise 1.10.) A criti-
cal reference in an expression is a reference to a variable that is changed by
another thread.

ž An assignment statement x = e satisfies the at-most-once property if either:
(1) e contains at most one critical reference and x is neither read nor written

by another thread, or
(2) e contains no critical references, in which case x may be read or written

by other threads.
ž An expression that is not in an assignment satisfies at-most-once if it con-

tains no more than one critical reference.

This condition is called at-most-once because there can be at most one shared
variable, and the shared variable can be referenced at most one time. Assignment
statements that satisfy at-most-once appear to execute atomically even though
they are not atomic. That is, we would get the same results from executing these
assignment statements even if we were to somehow prevent the interleaving
of their machine instructions so that the assignment statements were forced to
execute atomically. Next, we’ll use several examples to illustrate at-most-once.

Consider Example 3 again. The expression in the assignment statement in
Thread1 makes a critical reference to y and a critical reference to z, so the
assignment statement in Thread1 does not satisfy the at-most-once property.
The expressions in the assignment statements in Thread2 contain no critical
references, so the assignment statements in Thread2 satisfy at-most-once.

Example 5 Assume that x and y are initially 0.

Thread1 Thread2

x = y + 1; y = 1;

Both assignment statements satisfy the at-most-once condition. The expression in
Thread1’s assignment statement references y (one critical reference), but x is not
referenced by Thread2, and the expression in Thread2’ s assignment statement
has no critical references. The final value of x is nondeterministic and is either
1 or 2, as expected.

Nonatomic Groups of Statements Another type of undesirable nondeterminism
in a concurrent program is caused by interleaving groups of statements, even
though each statement may be atomic. In the following example, methods deposit
and withdraw are used to manage a linked list implementation of a buffer. One
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thread calls method deposit while another calls method withdraw. As shown
below, interleaving the statements in methods deposit and withdraw may produce
unexpected results.

Example 6 Variable first points to the first Node in the list. Assume that the
list is not empty

class Node {
public:

valueType value;
Node* next;

}
Node* first; // first points to the first Node in the list;
void deposit(valueType value) {

Node* p = new Node; // (1)
p->value = value; // (2)
p->next = first; // (3)
first = p; // (4) insert the new Node at the front of the list

}
valueType withdraw() {

valueType value = first->value; // (5) withdraw the first value in the list
first = first->next; // (6) remove the first Node from the list
return value; // (7) return the withdrawn value

}

If two threads try to deposit and withdraw a value at the same time, the
following interleaving of statements is possible:

valueType value = first->value; // (5) in withdraw
Node* p = new Node(); // (1) in deposit
p->value = value // (2) in deposit
p->next = first; // (3) in deposit
first = p; // (4) in deposit
first = first->next; // (6) in withdraw
return value; // (7) in withdraw

At the end of this sequence, the withdrawn item is still pointed to by first and
the deposited item has been lost. To fix this problem, each of methods deposit
and withdraw must be implemented as an atomic action. Later we will see how
to make a statement or a group of statements execute atomically.

1.8 TESTING AND DEBUGGING MULTITHREADED PROGRAMS

Looking back at Listing 1.8, we now know why the program sometimes failed
to produce the expected final value 2000000 for s. The interleaving of machine
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instructions for thread1 and thread2 sometimes increased the value of s by one
even though two increments were performed. Failures like this one, which do not
occur during every execution, create extra problems during testing and debugging.

ž The purpose of testing is to find program failures.

The term failure is used when a program produces unintended results.

ž A failure is an observed departure of the external result of software operation
from software requirements or user expectations [IEEE90].

Failures can be caused by hardware or software faults or by user errors.

ž A software fault (or defect, or bug) is a defective, missing, or extra instruc-
tion or a set of related instructions that is the cause of one or more actual
or potential failures [IEEE88].

Software faults are the result of programming errors. For example, an error in
writing an if-else statement may result in a fault that will cause an execution to
take a wrong branch. If the execution produces the wrong result, it is said to fail.
(The execution may produce a correct result even though it takes a wrong branch.)

ž Debugging is the process of locating and correcting faults.

The conventional approach to testing and debugging a program is as follows:

1. Select a set of test inputs.
2. Execute the program once with each input and compare the test results

with the intended results.
3. If a test input finds a failure, execute the program again with the same

input in order to collect debugging information and find the fault that
caused the failure.

4. After the fault has been located and corrected, execute the program again
with each of the test inputs to verify that the fault has been corrected and
that, in doing so, no new faults have been introduced. This type of testing,
called regression testing, is also needed after the program has been modified
during the maintenance phase.

This cyclical process of testing, followed by debugging, followed by more
testing, is commonly applied to sequential programs. Unfortunately, this process
breaks down when it is applied to concurrent programs.

1.8.1 Problems and Issues

Let CP be a concurrent program. Multiple executions of CP with the same input
may produce different results. This nondeterministic execution behavior creates
the following problems during the testing and debugging cycle of CP:
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Problem 1 When testing CP with input X, a single execution is insufficient
to determine the correctness of CP with X. Even if CP with input X has been
executed successfully many times, it is possible that a future execution of CP
with X will produce an incorrect result.

Problem 2 When debugging a failed execution of CP with input X, there is no
guarantee that this execution will be repeated by executing CP with X.

Problem 3 After CP has been modified to correct a fault detected during a
failed execution of CP with input X, one or more successful executions of CP
with X during regression testing do not imply that the detected fault has been
corrected or that no new faults have been introduced.

A major objective of this book is to show that these problems can be solved
and that the familiar testing and debugging cycle can be applied effectively to
concurrent programs. There are many issues that must be dealt with to solve
these problems.

Program Replay Programmers rely on debugging techniques that assume pro-
gram failures can be reproduced. This assumption of reproducible testing does
not hold for concurrent programs. Repeating an execution of a concurrent pro-
gram is called program replay. A major issue is how to replay executions of
concurrent programs and how to build libraries and tools that support replay.

Program Tracing Before an execution can be replayed it must be traced. But
what exactly does it mean to replay an execution? Consider a sequential C++
program that executes in a multiprocessing environment. If the program is exe-
cuted twice and the inputs and outputs are the same for both executions, are
these executions identical? In a multiprocessing environment, context switches
will occur during program execution. Furthermore, for two different program
executions, the points at which the context switches occur are not likely to be
the same. Is this difference important? We assume that context switches are trans-
parent to the execution, so although the executions may not be identical, they
appear to be “equivalent”. Now consider a concurrent program. Are the context
switches among the threads in a program important? Must we somehow trace the
points at which the context switches occur and then repeat these switch points
during replay?

The questions that need to be answered for tracing are: What should be
replayed, and how do we capture the necessary execution information in a trace?
The rest of this book answers these questions for various types of programs. In
general, an execution trace will contain information about the sequence of actions
performed by each thread. An execution trace should contain sufficient informa-
tion to replay the execution or to perform some other task, but attention must
also be paid to the space and time overhead for capturing and storing the trace.
In addition, an observability problem occurs in distributed systems, where it is
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difficult to observe accurately the order in which actions on different computers
occur during an execution.

Sequence Feasibility A sequence of actions that is allowed by a program is said
to be a feasible sequence. Program replay always involves repeating a feasible
sequence of actions. This is because the sequence to be replayed was traced during
an actual execution and thus is known to be allowed by the program. Testing, on
the other hand, involves determining whether or not a given sequence is feasible
or infeasible. “Good” sequences are expected to be feasible, and “bad” sequences
are expected to be infeasible.

Selecting effective test sequences is a difficult problem. Perhaps the sim-
plest technique for selecting test sequences is to execute the program under test
repeatedly and allow sequences to be exercised nondeterministically. If enough
executions are performed, one or more failures may be observed. This type of
testing, called nondeterministic testing, is easy to carry out, but it can be very
inefficient. It is possible that some program behaviors are exercised many times,
whereas others are never exercised at all. Also, nondeterministic testing cannot
show that bad sequences are infeasible.

An alternative approach is called deterministic testing, which attempts to force
selected sequences to be exercised. We expect that good sequences can be forced
to occur, whereas bad sequences cannot. This approach allows a program to
be tested with carefully selected test sequences and can be used to supple-
ment the sequences exercised during nondeterministic testing. However, choosing
sequences that are effective for detecting faults is difficult to do. A test coverage
criterion can be used to guide the selection of tests and to determine when to
stop testing.

The information and the technique used to determine the feasibility of a
sequence are different from those used to replay a sequence. In general, dif-
ferent types of execution traces can be defined and used for different purposes.
Other purposes include visualizing an execution and checking the validity of
an execution.

Sequence Validity A sequence of actions captured in a trace is definitely feasible,
but the sequence may or may not have been intended to be feasible. We assume
that each program has a specification that describes the intended behavior of the
program. Sequences allowed by the specification (i.e., good sequences) are called
valid sequences; other sequences are called invalid sequences. A major issue is
how to check the validity of a sequence captured in a trace. A goal of testing is
to find valid sequences that are infeasible and invalid sequences that are feasible;
such sequences are evidence of a program failure. In the absence of a complete
program specification, a set of valid and invalid sequences can serve as a partial
specification.

Probe Effect Modifying a concurrent program to capture a trace of its execu-
tion may interfere with the normal execution of the program [LeDoux and Parker
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1985; Gait 1986]. Thus, the program will behave differently after the trace rou-
tines have been added. In the worst case, some failures that would have been
observed without adding the trace routines will no longer be observed. If the
trace routines are eventually removed, additional time should be spent testing the
unmodified program to find these failures. In other cases, an incorrect program
may stop failing when trace routines are inserted for debugging.

The probe effect is not always negative. There may be failures that cannot
be observed without perturbing the executions. Programs may fail when running
under abnormal conditions, so checking some abnormal executions is not a bad
idea. (We point out that it may be difficult to define “normal” and “abnormal”
executions.) If we can create random interference during the executions, we may
be able to achieve better test coverage. If a program fails during an early part of
the life cycle, when we have tool support for tracing and replaying executions
and determining the cause of the failure, we are better off than if it fails later.

One way to address the probe effect is to make sure that every feasible
sequence is exercised at least once during testing. A major issue then is how
to identify and exercise all of the feasible sequences of a program. One way of
doing this, called reachability testing, is described in later chapters. However,
since the number of sequences required for exhaustive testing may be huge, it
might take too much time to exercise all the sequences or too much memory to
enumerate them. In that case we can select a subset of sequences that we hope will
be effective for detecting faults and use these sequences for deterministic testing.

The probe effect is different from the observability problem mentioned above
[Fidge 1996]. The observability problem is concerned with the difficulty of trac-
ing a given execution accurately, whereas the probe effect is concerned with the
ability to perform a given execution at all. Both of these problems are different
from the replay problem, which deals with repeating an execution that has already
been observed.

Real Time The probe effect is a major issue for real-time concurrent programs.
The correctness of a real-time program depends not only on its logical behav-
ior but also on the time at which its results are produced [Tsai et al. 1996]. A
real-time program may have computation deadlines that will be missed if trace
functions are added to the program. Instead, tracing can be performed by using
special hardware to remove the probe effect or by trying to account for or min-
imize the probe effect. Real-time programs may also receive sensor inputs that
must be captured for replay. Some of the techniques we cover in this book are
helpful for testing and debugging the logical behavior of real-time systems, but
we will not address the special issues associated with timing correctness.

Tools Solutions to these testing and debugging problems must be supported
by tools. Debugging tools that are integrated with compilers and operating sys-
tems can accomplish more than tools built from libraries of source code, such
as the libraries presented in this book. Access to the underlying virtual machine,
compiler, operating system, or run-time system maximizes the ability of a tool to
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observe and control program executions. On the other hand, this type of low-level
access limits the portability of the tool. Also, there is a difference between the
system-level events one deals with in an operating system (e.g., interrupts and
context switches) and the high-level abstract events that programmers think of
when specifying and writing their programs. For example, knowing the number
of read and write operations that each thread executes during its time quantum
may provide sufficient information for replay, but it will not help with under-
standing an execution or determining its validity. Different levels of abstraction
are appropriate for different activities.

Life-Cycle Issues Typically, a concurrent program, like a sequential program, is
subjected to two types of testing during its life cycle. During black-box testing,
which often occurs during system and user-acceptance testing, access to the
program’s implementation is not allowed. Thus, only the specification of the
program can be used for test generation, and only the result (including the output
and termination condition) of each execution can be collected. During white-box
testing, access to the implementation is allowed. Thus, any desired information
about each execution can be collected, and the implementation can be analyzed
and used for generating tests. White-box testing gives the programmer unlimited
ability to observe and control executions, but it is usually not appropriate during
system and acceptance testing. At these later stages of the life cycle, it is often
the case that a program’s source code cannot be accessed, or it is simply too
large and complex to be of practical use. Addressing the problems caused by
nondeterminism requires tools that can observe and control executions, but testing
techniques that can be used during both white- and black-box testing may be the
most useful.

The testing and debugging issues noted above are addressed in this book. We
now give a small example of how we handle some of them. We’ve modified the
C++ program in Listing 1.8 so that it can trace and replay its own executions. The
new program is shown in Listing 1.9. Classes TDThread and sharedVariable<>

provide functions that are needed for execution tracing and replay. Below we
provide a brief description of these classes and preview some of the testing and
debugging techniques that are described in detail in later chapters.

1.8.2 Class TDThread for Testing and Debugging

Threads in Listing 1.9 are created by inheriting from C++ class TDThread instead
of class Thread. Class TDThread provides the same interface as our C++ Thread
class, plus several additional functions that are used internally during tracing and
replay. (We will be using a Java version of TDThread in our Java programs.) The
main purpose of class TDThread is to generate, automatically and unobtrusively,
an integer identifier (ID) and a name for each thread. Thread IDs are recorded
in execution traces. The name for thread T is based on the name of its parent
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sharedVariable<int> s(0); // shared variable s
class communicatingThread: public TDThread {

public:
communicatingThread(int ID) : myID(ID) {}
virtual void* run();

private:
int myID;

};
void* communicatingThread::run() {

std::cout << "Thread " << myID << "is running" << std::endl;
for (int i=0; i<2; i++) // increment s two times (not 10 million times)

s = s + 1;
return 0;

}
int main() {

std::auto_ptr<communicatingThread> thread1(new communicatingThread (1));
std::auto_ptr<communicatingThread> thread2(new communicatingThread (2));
thread1->start(); thread2->start();
thread1->join(); thread2->join();
std::cout << "s: " << s << std::endl; // the expected final value of s is 4
return 0;

}

Listing 1.9 Using classes TDThread and sharedVariable<>.

thread and the order in which T and any of its sibling threads are constructed
by their parent thread. For example, suppose that we have the following main()
function, which creates two creatorThreads:

int main() {
TDThread* T1 = new creatorThread;
TDThread* T2 = new creatorThread;
...

}

Suppose also that the creatorThread ::run() method creates two nestedThreads:

void run() {
TDThread* TA = new nestedThread;
TDThread* TB = new nestedThread;
...

}
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The thread names generated for the six threads (two creatorThreads and four
nestedThreads) are as follows:

Thread Thread Name

creatorThread T1 main thread1
creatorThread T2 main thread2
nestedThread TA created by T1 main thread1 thread1
nestedThread TB created by T1 main thread1 thread2
nestedThread TA created by T2 main thread2 thread1
nestedThread TB created by T2 main thread2 thread2

In general, the name for thread T is generated by concatenating the following
values:

The name of T ’s parent thread + “ thread”

+ a number indicating T ’s construction order among its siblings.

The main thread is not a TDThread, so no name is generated for it. TDThreads
T1 and T2 have a parent thread, but it is the main thread, which does not have a
name that we can access (since main is not a TDThread ). To solve this problem,
we let the child threads of main use “main” as the default name of their parent
thread. For example, thread T1 ’s name is “main thread1,” since its parent is
“main” and it is the first thread created in main(). Thread TB created by T1 has
the name “main thread1 thread2,” since T1’s name is “main thread1” and TB
is the second thread created by T1.

Thread IDs are based on the order in which threads are constructed during
execution. (TDThread’s constructor calls a method named getID(), so it is the
order of calls to getID() that actually determines the ID values that are generated.)
The first thread constructed is assigned ID 1, the second thread is assigned ID
2, and so on. In the example above, T1’s ID will be 1. The ID value 2 will
be assigned to thread TA created by T1 or to thread T2, depending on which
thread is constructed first. If both TA and TB are constructed by T1 before T2 is
constructed, T2 will be assigned ID 4.

During tracing, the mapping between thread names and thread IDs is recorded
in a file, and this mapping is input at the beginning of replay. Thread names
are generated during replay the same way as during tracing. This means that
threads will receive the same names and IDs as long as the thread structure is
not changed. The thread IDs assigned during replay are determined from the
mapping, not from the construction order, since the construction order may be
different for each execution. Thread ID 0 is reserved for the main thread, which
is not a TDThread and does not have a name. Ensuring that threads have the
same ID during tracing and replay is important because thread IDs are recorded
in execution traces and then used during replay.

Names such as “main thread1 thread1” work fine for replay, and they are
generated automatically simply by inheriting from TDThread, but they are not
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very descriptive. A more descriptive name can be provided by supplying a name
manually to TDThread’s constructor. For example:

class namedThread : public TDThread {
// assigns ‘‘namedThread’’ as the thread name

namedThread() : TDThread(‘‘namedThread’’) {}
...

}

User-supplied thread names must be unique or they will be rejected by the ID
generator. In the example above, if there were two namedThreads, two different
thread names would be required, such as “namedThread1” and “namedThread2.”
This requires extra work on the part of the programmer, and is optional, but
having descriptive names is helpful for understanding program traces, so we will
often assign names manually.

1.8.3 Tracing and Replaying Executions with Class Template
sharedVariable<>

Class template sharedVariable<> provides functions that allow every shared
variable access to be traced and replayed. In Listing 1.9, shared variable s is
declared as sharedVariable<int> s. Class sharedVariable<> provides the usual
operators (+,−,=, <, etc.) for primitive types. It also traces and replays the
read and write operations in the implementations of these operators. Details
about how class sharedVariable<> works are provided in Chapter 2. Here we
show what sharedVariable<int> does when the program in Listing 1.9 is exe-
cuted.

The IDs generated by class TDThread for threads thread1 and thread2 are 1
and 2, respectively. In trace mode, class sharedVariable<int> records the order
in which these two threads read and write shared variable s. Each increment
“s = s + 1” involves a read of s followed by a write of s, and each thread
increments s twice. The final value of s is expected to be 4 under the incorrect
assumption that the increments are atomic.

A possible trace for Listing 1.9 is shown below. We have added comments to
make the trace easier to understand. (The actual format used for execution traces
is slightly different, as we will see later.)

Read(thread1,s) // thread1 reads s; s is 0
Read(thread2,s) // thread2 reads s; s is 0
Write(thread2,s) // thread2 writes s; s is now 1
Write(thread1,s) // thread1 writes s; s is now 1
Read(thread1,s) // thread1 reads s; s is 1
Write(thread1,s) // thread1 writes s; s is now 2
Read(thread2,s) // thread2 reads s; s is 2
Write(thread2,s) // thread2 writes s; s is now 3
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An execution that produces this trace will display the output 3, not 4. Thus,
this trace captures an interleaving of read and write operations that causes an
unexpected result. In replay mode, sharedVariable<int> forces the threads to
execute their read and write operations on s in the order recorded in the trace,
always producing the output 3.

1.9 THREAD SYNCHRONIZATION

Classes TDThread and sharedVariable<> allow us to trace and replay exe-
cutions, which helps us locate and fix bugs in our concurrent programs. The
examples in this chapter showed the failures that can occur when accesses to
shared variables are not properly synchronized. One type of synchronization is
called mutual exclusion. Mutual exclusion ensures that a group of atomic actions,
called a critical section, cannot be executed by more than one thread at a time.
That is, a critical section must be executed as an atomic action. The incre-
ment statements executed by thread1 and thread2 in Listing 1.9 require mutual
exclusion to work properly.

Failure to implement critical sections correctly is a fault called a data race
[Netzer and Miller 1992]. Note that the order in which shared variables and
critical sections are accessed usually remains nondeterministic even when critical
sections are implemented correctly. Thus, nondeterministic behavior does not
necessarily mean that a programming error has been made. We use the term
data race when a critical section is intended to be executed atomically but it
does not.

Another type of synchronization is called condition synchronization. Condition
synchronization ensures that the state of a program satisfies a particular condition
before some action occurs. For the linked list in Example 6, there is a need for
both condition synchronization and mutual exclusion. The list must not be in
an empty condition when method withdraw is allowed to remove an item, and
mutual exclusion is required for ensuring that deposited items are not lost and
are not withdrawn more than twice.

Mutual exclusion is a common requirement in concurrent programs. In Chap-
ter 2 we take a closer look at programs that contain correct and incorrect attempts
to implement critical sections. These programs are small, but they are much more
complex than their size indicates and they clearly illustrate the challenges of
concurrent programming.

FURTHER READING

Most textbooks on operating systems [Silberschatz et al. 2001; Tannenbaum
2001] and distributed systems [Coulouris et al. 2001] contain basic material on
concurrent programming. We assume that many of the readers of this book have
taken a course on operating systems.
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There are languages besides Java that provide built-in support for concurrent
programming, such as C# and Ada. We do not cover these languages in this book,
but the concepts that we cover still apply. Some of the end-of-chapter exercises
deal with these languages.

There are many books and tutorial articles on Java threads [Hyde 1999; Lea
1999; Lewis and Berg 1999; Oaks and Wong 1999; Holub 2000; Friesen 2002].
Lea [1999] discusses multithreading design principles and patterns and the myriad
ways in which objects and threads fit together in Java. Pthreads is described in
detail in [Butenhof 1997] and [Lewis and Berg 1997]. Another C++ library is
presented in [Schmidt and Huston 2002].

Windows programming, including multithreaded programming, is covered in
detail in [Beveridge and Wiener 1997; Petzold 1998; Hart 2000]. More thread
classes for Win32/C++ can be found in Cohen and Woodring’s [1997] book and
in various articles [Kougiouris and Framba 1997; Tennberg 1998; Broadman and
Shaw 1999; Harrington 1999; Calkins 2000; Peterson 2000; Huber 2001; Hush
2002; Kempf 2002; Pee 2003].

This book does not cover concurrent real-time programming [Tsai et al. 1996]
or parallel programming [Andrews 2000], but many of the testing and debug-
ging concepts that we discuss can be applied in these domains. Some of the
testing and debugging problems presented in Section 1.7 were introduced in [Tai
1985].
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EXERCISES

1.1. Assume that shared variables y and z are initially 0.

Thread1 Thread2 Thread3

x = y + z; y = 1; z = 2;

If the programmer incorrectly assumes that assignment statements are exe-
cuted atomically, can this program produce unexpected results? Explain.

1.2. Assume that shared variable x is initially 5.

Thread1 Thread2

x = x + 1; x = x+1;

If the programmer incorrectly assumes that assignment statements are exe-
cuted atomically, can this program produce unexpected results? Explain.

1.3. Assume that a concurrent program CP contains threads T1, T2, . . . , Tn,
n > 1, which are executed concurrently and access shared variables. Give
a sufficient condition for CP to be deterministic (i.e., every execution of CP
with input X produces the same result). Assume that there is no mechanism
to force a particular sequence of read and write operations to occur. (In
your condition, consider the read and write operations performed on the
shared variables. What exactly causes nondeterminism?)

1.4. A C++ Thread class for Win32 was presented in Section 1.4. This C++
class simulates Java’s built-in Thread class. Try to construct a Java class
named ThreadWin that simulates this C++ Thread class. Write an interface
RunnableWin that simulates the C++ Runnable class in Section 1.4. Java
class ThreadWin should create a Java Thread that executes the user-defined
run() method. (Class ThreadWin does not extend class Thread.) Method
run() returns an int result that can be retrieved after run() completes using
method join(). Test your classes with the following Java program:

class simpleRunnable implements RunnableWin {
public simpleRunnable(int myID) {ID = myID;}
private int ID;
public int run() {System.out.println("Thread " + ID + " running");

return ID;}
}
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class simpleThread extends ThreadWin {
public simpleThread(int myID) {ID = myID;}
private int ID;
public int run() {System.out.println("Thread " + ID + " running");

return ID;}
}
public class test {

public static void main(String args[]) {
ThreadWin thread1 = new simpleThread(1);
ThreadWin thread2 = new simpleThread(2);
simpleRunnable r = new simpleRunnable(3);
ThreadWin thread3 = new ThreadWin(r);
thread1.start(); thread2.start(); thread3.start();
int r1=0, r2=0, r3=0;
try { r1 = t1.join(); r2 = t2.join(); r3 = t3.join();}
catch (InterruptedException e) {e.printStackTrace();}
System.out.println("Thread 1 result:" + r1);
System.out.println("Thread 2 result:" + r2);
System.out.println("Thread 3 result:" + r3);

}
}

Do your RunnableWin and ThreadWin classes have any advantages over
the built-in Java Thread class?

1.5. Implement classes ThreadWin and RunnableWin from Exercise 1.4, but
this time use C#. Test your classes with the following C# program:

public class simpleThread : ThreadWin {
int ID;
public simpleThread(int ID) {this.ID = ID;}
public override void run() {Console.WriteLine("Thread "+ID+

" running");}
}
class simpleRunnable : RunnableWin {

public simpleRunnable(int ID) {this.ID = ID;}
private int ID;
public void run() {Console.WriteLine("Thread " + ID + " running");}

}
public class Test {

public static void Main(String [] argv){
ThreadWin thread1 = new simpleThread(1);
ThreadWin thread2 = new simpleThread(2);
simpleRunnable r = new simpleRunnable(3);
ThreadWin thread3 = new ThreadWin(r);
thread1.start(); thread2.start(); thread3.start();
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int r1=0, r2=0, r3=0;
try { r1 = t1.join(); r2 = t2.join(); r3 = t3.join();}
catch (ThreadInterruptedException e) {

Console.WriteLine(e.StackTrace);
}
Console.WriteLine("Thread 1 result: " + r1);
Console.WriteLine("Thread 2 result: " + r2);
Console.WriteLine("Thread 3 result: " + r3); }

}
}

1.6. The following program attempts to make the assignment statement “x =
x + 1” atomic by adding statements before and after the assignment to x:

// intendsi is true if Thread_i intends to execute its assignment
boolean intends0 = false, intends1 = false;

Thread0 Thread1

while (true) { while (true) {
while (intends1) { ; } (1) while (intends0) { ; } (1)
intends0 = true; (2) intends1 = true; (2)
x = x + 1; (3) x = x + 1; (3)
intends0 = false; (4) intends1 = false; (4)

} }
Thread0 and Thread1 use variables intends0 and intends1 to indicate their
intention to increment x. A thread will not increment x if the other thread
has already signaled that it intends to increment x.

(a) Does the use of variables intends0 and intends1 guarantee that the
assignments to x are executed atomically? Explain.

(b) If your answer to part (a) is “no,” try to modify the statements before
and after the assignment so that the assignment statement “x = x + 1”
executes atomically. Does your solution guarantee that each thread will
eventually get a chance to execute its assignment statement?

1.7. If n threads each execute m atomic actions, the number of possible inter-
leavings of the atomic actions is

(n*m)!

(m!)n

(a) How many possible interleavings are there for the program in List-
ing 1.9? Consider only the machine instructions for the assignment
statements, not the machine instructions generated for loop or the out-
put statements. (The loop still executes twice.) You can assume that
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the assignment statement for s is translated into a sequence of three
machine instructions (i.e., load s; add 1; store s). For your analysis,
you can treat s like a regular int variable.

(b) Assume that some mechanism is used to ensure that each assignment
statement in Listing 1.9 is executed atomically. Now how many pos-
sible interleavings are there?

1.8. Write a Java version of the program in Listing 1.8 of the notes. When
you execute your program, does it always display 20000000? Run your
program many times. Increasing the number of iterations may affect the
output. Describe your results.

1.9. Section 1.8.3 shows a possible format for tracing read and write operations:

Read(thread1,s) // thread1 reads shared variable s
Write(thread1,s) // thread1 writes shared variable s

A thread may execute many thousands of read and write operations during
its time quantum, causing many read and write events to be generated and
recorded. Can you suggest a scheme for “compressing” a trace of read and
write operations so that fewer events may need to be recorded?

1.10. Condition at-most-once was defined in Section 1.6.2.1. Andrews [2000]
defines the first part of condition at-most-once differently:

(Andrews-1) e contains at most one critical reference and x is not read
by another thread

This prevents x from being read by another thread but allows x to be
written. The second part of Andrews’s condition is the same as the defini-
tion in Section 1.7.2.1. Show that (Andrews-1) above is not strong enough
by finding an example where (Andrews-1) is satisfied by two assignment
statements but the assignments may not appear to execute atomically.

1.11. Amdahl’s law estimates the speedup from running a program on multiple
processors. It uses the following estimated running times:

ž ts: running time of the serial part of a program (using one processor). The
serial part of a program is the part that must run on a single processor.

ž tp(1): running time of the parallel part of the program using one proces-
sor.

ž tp(P): running time of the parallel part of the program using P processors.
The serial and the parallel programs are required to execute the same
number of instructions, so tp(P) = tp(1)/P (i.e., the P processors each
execute the same number of instructions).

ž T(1): total running time of the program, including both the serial and
parallel parts using one processor, which equals ts + tp(1).
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ž T(P): total running time of the program, including both the serial and par-
allel parts using P processors, which equals ts + tp(P) = ts + [tp(1)/P].
From Amdahl’s law, we have

speedup = T(1)/T(P) = [ts + tp(1)]/{ts + [tp(1)/P]}.

Let P = 10, tp(P) = 4, and ts = 6. What is the speedup?



2
THE CRITICAL SECTION PROBLEM

As an introduction to concurrent programming, we study a fundamental prob-
lem called the critical section problem [Dijkstra 1965]. The problem is easy to
understand and its solutions are small in terms of the number of statements they
contain (usually, fewer than five). However, the critical section problem is not
easy to solve, and it illustrates just how difficult it can be to write even small
concurrent programs.

A code segment that accesses shared variables (or other shared resources) and
that has to be executed as an atomic action is referred to as a critical section. The
critical section problem involves a number of threads that are each executing the
following code:

while (true) {
entry-section
critical section // accesses shared variables or other shared resources.
exit-section
noncritical section // a thread may terminate its execution in this section.

}

The entry- and exit-sections that surround a critical section must satisfy the
following correctness requirements [Silberschatz et al. 1991]:

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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ž Mutual exclusion. When a thread is executing in its critical section, no
other threads can be executing in their critical sections. (If a thread is
executing in its critical section when a context switch occurs, the thread
is still considered to be in the critical section. With the assumption of fair
scheduling, this thread will eventually resume execution and exit the critical
section.)

ž Progress. If no thread is executing in its critical section and there are threads
that wish to enter their critical sections, only the threads that are executing in
their entry- or exit-sections can participate in the decision about which thread
will enter its critical section next, and this decision cannot be postponed
indefinitely.

ž Bounded waiting. After a thread makes a request to enter its critical section,
there is a bound on the number of times that other threads are allowed to
enter their critical sections before this thread’s request is granted.

We assume that a thread that enters its critical section will eventually exit its
critical section. (If a thread is stuck in an infinite loop inside its critical section,
or the thread terminates in its critical section, other threads waiting to enter
their critical sections will wait forever.) The noncritical section may contain a
statement that terminates a thread’s execution.

If the threads are being time-sliced on a single processor, one simple solution
to the critical section problem is for each thread to disable interrupts before it
enters its critical section:

disableInterrupts(); // disable all interrupts
critical section
enableInterrupts(); // enable all interrupts

This disables interrupts from the interval timer that is used for time slicing and
prevents any other thread from running until interrupts are enabled again. How-
ever, commands for disabling and enabling interrupts are not always available to
user code. Also, this solution does not work on systems with multiple CPUs when
a thread on one processor is not able to disable interrupts on another processor.

In this chapter we present low-level software and hardware solutions to the
critical section problem. In Chapters 3 and 4 we show a number of solutions that
use high-level synchronization constructs.

2.1 SOFTWARE SOLUTIONS TO THE TWO-THREAD CRITICAL
SECTION PROBLEM

We first consider the case where there are only two threads T0 and T1 that are
attempting to enter their critical sections. Threads T0 and T1 may be executing in
their entry-sections at the same time. Informally, the entry-section of thread T0
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should enforce the following rules (thread T1’s entry- and exit-sections mirror
those of T0):

ž If thread T1 is in its critical section, thread T0 must wait in its entry-section.
ž If thread T1 is not its critical section and does not want to enter its critical

section, thread T0 should be allowed to enter its critical section.
ž When both threads want to enter their critical sections, only one of them

should be allowed to enter.

The exit-section of thread T0 should do the following:

ž If thread T1 is waiting to enter its critical sections, allow T1 to enter.

The derivation of correct entry- and exit-sections is not a trivial problem. It is
difficult to find a solution that satisfies all three correctness properties. The solu-
tions we examine do not use any special programming constructs; they use global
variables, arrays, loops, and if-statements, all of which are found in sequential
programming languages. This allows us to study a difficult concurrent program-
ming problem without introducing new programming language constructs.

Although shared variables are used in the entry- and exit-sections, this will
not create another mutual exclusion problem. The entry- and exit-sections will
be written carefully so that all assignment statements and expressions involving
shared variables are atomic operations and there are no groups of statements that
must be executed atomically. Thus, the entry- and exit-sections themselves need
not be critical sections.

The solutions below assume that the hardware provides mutual exclusion for
individual read and write operations on shared variables. This means that the
memory system must implement its own solution to the critical section problem.
(Later, we will see a solution that does not require atomic reads and writes
of variables.) Our focus here is on condition synchronization (i.e., defining the
conditions under which threads can enter their critical sections). As we will see
in later chapters, high-level synchronization constructs make it easy to create
critical sections, but condition synchronization will always remain difficult to
achieve.

We first present a number of incorrect solutions to the critical section problem.
Then we show a correct solution.

2.1.1 Incorrect Solution 1

Threads T0 and T1 use variables intendToEnter0 and intendToEnter1 to indicate
their intention to enter their critical section. A thread will not enter its critical
section if the other thread has already signaled its intention to enter.
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boolean intendToEnter0=false, intendToEnter1=false;

T0 T1

while (true) { while (true) {
while (intendToEnter1) {;} (1) while (intendToEnter0) {;} (1)
intendToEnter0 = true; (2) intendToEnter1 = true; (2)
critical section (3) critical section (3)
intendToEnter0 = false; (4) intendToEnter1 = false; (4)
noncritical section (5) noncritical section (5)

} }

This solution does not guarantee mutual exclusion. The following execution
sequence shows a possible interleaving of the statements in T0 and T1 that ends
with both T0 and T1 in their critical sections.

T0 T1 Comments

(1) T0 exits its while-loop
context switch →

(1) T1 exits its while-loop
(2) intendToEnter1 is set to true
(3) T1 enters its critical section

← context switch
(2) intendToEnter0 is set to true
(3) T0 enters its critical section

2.1.2 Incorrect Solution 2

Global variable turn is used to indicate which thread is allowed to enter its
critical section (i.e., the threads take turns entering their critical sections). The
initial value of turn can be 0 or 1.

int turn = 1;

T0 T1

while (true) { while (true) {
while (turn !=0){;} (1) while (turn !=1){;} (1)
critical section (2) critical section (2)
turn = 1; (3) turn = 0; (3)
noncritical section (4) noncritical section (4)

} }
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This solution forces T0 and T1 to alternate their entries into the critical section
and thus ensures mutual exclusion and bounded waiting. Assume that the initial
value of turn is 1 and consider the following execution sequence:

T0 T1 Comments

(1) T1 exits its while-loop
(2) T1 enters and exits its critical section
(3) turn is set to 0
(4) T1 terminates in its noncritical section

← context switch
(1) T0 exits its while-loop
(2) T0 enters and exits its critical section
(3) turn is set to 1
(4) T0 executes its noncritical section
(1) T0 repeats (1) forever

Thread T0 cannot exit the loop in (1) since the value of turn is 1 and turn
will never be changed by T1. Thus, the progress requirement is violated.

2.1.3 Incorrect Solution 3

Solution 3 is a more “polite” version of Solution 1. When one thread finds that the
other thread also intends to enter its critical section, it sets its own intendToEnter
flag to false and waits until the other thread exits its critical section.

T0 T1

while (true) { while (true) {
intendToEnter0 = true; (1) intendToEnter1 = true; (1)
while (intendToEnter1) { (2) while (intendToEnter0) { (2)

intendToEnter0 = false; (3) intendToEnter1 = false; (3)
while(intendToEnter1) {;} (4) while(intendToEnter0) {;} (4)
intendToEnter0 = true; (5) intendToEnter1 = true; (5)

} }
critical section (6) critical section (6)
intendToEnter0 = false; (7) intendToEnter1 = false; (7)
noncritical section (8) noncritical section (8)

} }

This solution ensures that when both intendToEnter0 and intendToEnter1 are
true, only one of T0 and T1 is allowed to enter its critical section. Thus, the
mutual exclusion requirement is satisfied. However, there is a problem with this
solution, as illustrated by the following execution sequence:
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T0 T1 Comments

(1) intendToEnter0 is set to true
(2) T0 exits the first while-loop in the entry

section
(6) T0 enters its critical section;

intendToEnter0 is true
context switch →

(1) intendToEnter1 is set to true
(2)–(3) intendToEnter1 is set to false
(4) T1 enters the second while-loop in the

entry section
← context switch

(7) intendToEnter0 is set to false
(8) T0 executes its noncritical section
(1) intendToEnter0 is set to true
(2) T0 exits the first while-loop in the entry

section
(6) T0 enters its critical section;

intendToEnter0 is true
context switch →

(4) T1 is still waiting for intendToEnter0 to
be false

← context switch
(7)
. . . repeat infinitely

In this execution sequence, T0 enters its critical section infinitely often and T1
waits forever to enter its critical section. Thus, this solution does not guarantee
bounded waiting.

The foregoing incorrect solutions to the critical section problem raise the fol-
lowing question: How can we determine whether a solution to the critical section
problem is correct? One approach is to use mathematical proofs (see [Andrews
1991]). Another formal approach is to generate all the possible interleavings of
the atomic actions in the solution and then check that all the interleavings satisfy
the three required correctness properties (see Chapter 7). Next, we suggest an
informal approach to checking the correctness of a solution.

When checking a solution to the critical section problem, consider each of
these three important cases:

1. Thread T0 intends to enter its critical section and thread T1 is not in its
critical section or in its entry-section. In this case, if T0 cannot enter its
critical section, the progress requirement is violated.

2. Thread T0 intends to enter its critical section and thread T1 is in its critical
section. In this case, if both threads can be in their critical sections, the
mutual exclusion requirement is violated.
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3. Both threads intend to enter their critical sections (i.e., both threads are in
their entry-sections, or one is in its entry-section and one is in its exit-
section). This case is difficult to analyze since we have to consider all
possible interleavings of statements in the entry- and exit-sections in order
to detect violations of the mutual exclusion, progress, and bounded waiting
requirements.

Next we show a correct solution to the critical section problem and apply
our informal correctness check. We invite the reader to try to solve the critical
section problem before looking at the solution!

2.1.4 Peterson’s Algorithm

Peterson’s algorithm is a combination of solutions 2 and 3. If both threads intend
to enter their critical sections, turn is used to break the tie.

boolean intendToEnter0 = false, intendToEnter1 = false;
int turn; // no initial value for turn is needed.

T0 T1

while (true) { while (true) {
intendToEnter0 = true; (1) intendToEnter1 = true; (1)
turn = 1; (2) turn = 0; (2)
while (intendToEnter1 && (3) while (intendToEnter0 && (3)

turn == 1) {;} turn == 0) {;}
critical section (4) critical section (4)
intendToEnter0 = false; (5) intendToEnter1 = false; (5)
noncritical section (6) noncritical section (6)

} }
A formal proof of Peterson’s algorithm is given in [Silberschatz et al. 1991,

p. 161]. Here, we show only that the algorithm works in each of three important
cases:

1. Assume that thread T0 intends to enter its critical section and T1 is not
in its critical section or its entry-section. Then intendToEnter0 is true and
intendToEnter1 is false so T0 can enter its critical section.

2. Assume that thread T0 intends to enter its critical section and T1 is in
its critical section. Since turn = 1, T0 loops at statement (3). After the
execution of (5) by T1, if T0 resumes execution before T1 tries to enter
again, then T0 can enter its critical section; otherwise, see case (3).

3. Assume that both threads intend to enter the critical section (i.e., both
threads have set their intendToEnter flags to true). The first thread that
executes "turn = . . .;" waits until the other thread executes "turn = . . .;"
and then the first thread enters its critical section. The second thread will
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enter after the first thread exits. This case is illustrated by the following
execution sequence:

T0 T1 Comments

(1) intendToEnter0 set to true
context switch →

(1) intendToEnter1 is set to true
(2) turn is set to 0
(3) T1 enters its while-loop

← context switch
(2) turn is set to 1
(3) T0 enters its while-loop

context switch →
(3) T1 exits its while-loop
(4) T1 enters and exits its critical section
(5) intendToEnter1 is set to false
(6) T1 executes its noncritical section
(1) intendToEnter1 is set to true
(2) turn is set to 0
(3) T1 enters its while-loop

← context switch
(3) T0 exits its while-loop
(4) T0 enters and exits its critical section
(5) intendToEnter0 is set to false
(6) T0 executes its noncritical section

context switch →
(3) T1 exits its while-loop
(4) T1 enters its critical section

Peterson’s algorithm is often called the tie-breaker algorithm, referring to the
way in which variable turn is used when both threads want to enter their critical
sections.

2.1.5 Using the volatile Modifier

As presented above, Peterson’s algorithm may not work in the presence of certain
compiler and hardware optimizations that are safe for single-threaded programs
but unsafe for multithreaded programs. For example, to optimize speed, the
compiler may allow each thread to keep private copies of shared variables intend-
ToEnter0, intendToEnter1, and turn. If this optimization is performed, updates
made to these variables by one thread will be made to that thread’s private
copies and thus will not be visible to the other thread. This potential incon-
sistency causes an obvious problem in Peterson’s algorithm (see also Exercise
2.12).
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In Java, the solution to this problem is to declare shared variables (that are
not also declared as double or long) as volatile:

volatile boolean intendToEnter0 = false; volatile boolean intendToEnter1 = false;
volatile int turn;

Declaring the variables as volatile ensures that consistent memory values will
be read by the threads. C++ also allows variables to be declared as volatile.
(Note that in C++, each element of a volatile array is volatile. In Java,
declaring an array object as volatile applies to the array object itself, not its
elements.) However, C++ does not make the same strong guarantees that Java
does for programs with volatile variables and multiple threads. Thus, even if
the variables are volatile, some hardware optimizations may cause Peterson’s
algorithm to fail in C++. The general solution to this problem is to add special
memory instructions, called memory barriers, that constrain the optimizations. In
Section 2.6 we discuss shared memory consistency in greater detail.

Peterson’s algorithm requires volatile variables, but this does not mean that
shared variables must always be volatile variables. In later chapters we present
high-level synchronization constructs that solve the critical section problem and
also deal with optimizations so that volatile variables are not needed.

2.2 TICKET-BASED SOLUTIONS TO THE n-THREAD CRITICAL
SECTION PROBLEM

In the n-thread critical section problem, there are n threads instead of just two.
Two correct solutions to this problem are given in this section. Both solutions
are based on the use of tickets. When a thread wishes to enter a critical section,
it requests a ticket. Each ticket has a number on it. Threads are allowed to enter
their critical sections in ascending order of their ticket numbers.

The global array number is used to hold the ticket numbers for the threads:

volatile int number[n]; // array of ticket numbers where number[i] is the ticket
// number for thread Ti

Initially, all elements of array number have the value 0. If number[i] �= 0, then
number[i] is the ticket number for thread Ti, 0 ≤ i ≤ n − 1.

2.2.1 Ticket Algorithm

The ticket algorithm uses variables next and permit and a special atomic opera-
tion. When a thread requests a ticket, it is given a ticket with a number equal to
the value of variable next, and then next is incremented by 1. A thread can enter
the critical section when it has a ticket number equal to the value of variable
permit. Variable permit is initialized to 1 and is incremented each time a thread
enters the critical section.
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Many machines provide special hardware instructions that allow us to test and
modify a value, or add two values, atomically. These instructions can be used
directly or they can be used to implement atomic functions. The Win32 API
provides a family of atomic functions called the Interlocked functions. Function
InterlockedExchangeAdd can be used to implement the ticket algorithm. The
prototype for this function is

long InterlockedExchangeAdd(long* target, long increment);

A call such as

oldValueOfX = InterlockedExchangeAdd(&x, increment);

atomically adds the value of increment to x and returns the old value (i.e., before
adding increment) of x. InterlockedExchangeAdd is used in the ticket algorithm
as follows:

number[i] = InterlockedExchangeAdd(&next, 1).

This is equivalent to the following critical section:

number[i] = next; // these statements are executed
next = next + 1; // as a critical section

On Intel processors (starting with the Intel 486 processor), function
InterlockedExchangeAdd can be implemented using the atomic XADD
(Exchange and Add) instruction. The XADD instruction also serves as a memory
barrier (see Section 2.5.6) to ensure that threads see consistent values for the
shared variables. J2SE 5.0 provides package java.util.concurrent.atomic. This
package supports operations such as getAndIncrement() and getAndSet(), which
are implemented using the machine-level atomic instructions (such as XADD)
that are available on a given processor (see Exercise 2.13).

In the ticket algorithm, each thread Ti, 0 ≤ i ≤ n − 1, executes the following
code:

volatile long next = 1; // next ticket number to be issued to a thread
volatile long permit =1; // ticket number permitted to enter critical section
while (true) {

number[i] = InterlockedExchangeAdd(&next,1); (1)
while (number[i] != permit) {;} (2)
critical section (3)
++permit; (4)
noncritical section (5)

}
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This algorithm is very simple, but it requires special machine instructions to
implement InterlockedExchangeAdd or a similar atomic function. Another short-
coming of this algorithm is that the values of permit and next grow without
bounds.

2.2.2 Bakery Algorithm

As in the ticket algorithm, the bakery algorithm [Lamport 1974] allows threads to
enter their critical sections in ascending order of their ticket numbers. But unlike
the ticket algorithm, it does not require special hardware instructions. The tickets
in the bakery algorithm are a bit more complicated. Each thread Ti, 0 ≤ i ≤ n − 1,
gets a ticket with a pair of values (number[i ],i ) on it. The value number[i] is the
ticket number, and i is the ID of the thread. Since each ticket contains a pair of
values, a special comparison is used to order the tickets. If two threads have the
same ticket numbers, the IDs are used to break the tie. That is, for two tickets
(a,b) and (c,d), define

Ticket (a,b) < Ticket (c,d) if a < c or (a == c and b < d).

First, we show a simpler, but incorrect version of the Bakery algorithm to explain
the basic ideas. Each thread Ti, 0 ≤ i ≤ n − 1, executes the code below. Initially,
all elements of array number have the value 0.

while (true) {
number[i] = max(number) + 1; (1)
for(int j=0; j<n; j++ ) (2)
while (j != i && number[j] != 0 && (3)

(number[j],j) < (number[i],i) ) {;} (4)
critical section (5)
number[i] = 0; (6)
noncritical section (7)

}

In statement (1), the call to max(number) returns the maximum value in array
number. This maximum value is incremented by 1, and the result is used as the
ticket number. Since different threads may execute (1) at the same time, thread
Ti may obtain the same ticket number as another thread. As we mentioned above,
thread IDs are used to break ties when the ticket numbers are the same.

In the for-loop, thread Ti compares its ticket with the ticket of each of the
other threads. If some other thread Tj intends to enter its critical section and it has
a ticket with a value that is less than Ti’s ticket, Ti waits until Tj exits its critical
section. (If Tj tries to enter its critical section again, its new ticket will have a
value higher than Ti’s ticket and thus Tj will have to wait.) When Ti completes
the loops in (2) and (3), no other thread is in its critical section. Also, thread Ti
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is the only thread that can enter its critical section since any other threads that
are in their entry-sections will have higher ticket numbers.

This algorithm does not satisfy the mutual exclusion requirement, as illustrated
by the following sequence:

T0 T1 Comments

(1) T0 evaluates max(number) + 1, which is 1,
but a context switch occurs before
assigning 1 to number[0]

context switch →
(1) T1 sets number[1] to max(number) + 1,

which is 1
(2) T1 starts its for-loop
(3) T1 exits its while and for-loops
(4) T1 enters its critical section

← context switch
(1) T0 assigns 1 (not 2 ) to number[0].
(2) T0 starts its for-loop
(3) T0 exits its while- and for-loops since

number[0] == number[1] == 1, and
(number[0],1) < (number[1],2)

(4) T0 enters its critical section while T1 is in its
critical section

To fix this problem, once thread Ti, i > 0, starts executing statement (1), num-
ber[i] should not be accessed by other threads during their execution of statement
(3) until Ti finishes executing statement (1).

The complete bakery algorithm is given below. It uses the following global
array:

volatile bool choosing[n];

Initially, all elements of choosing have the value false. If choosing[i] is true,
thread Ti is in the process of choosing its ticket number at statement (2):

while (true) {
choosing[i] = true; (1)
number[i] = max(number)+1; (2)
choosing[i] = false; (3)
for (int j=0; j<n; j++) { (4)
while (choosing[j]) {;} (5)
while ( j != i && number[j] !=0 && (6)

(number[j],j) < (number[i],i) ) {;}
}
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critical section (7)
number[i] = 0; (8)
noncritical section (9)

}

A formal proof of the bakery algorithm is given in [Lamport 1974]. Here we
consider three important cases:

1. Assume that one thread, say Ti, intends to enter its critical section and
no other thread is in its critical section or entry-section. Then number[i]
is 1 and number[j], where j �= i, is 0. Thus, Ti enters its critical section
immediately.

2. Assume that one thread, say Ti, intends to enter its critical section and
Tk, k �= i, is in its critical section. Then at statement (6), number[k] !=0
and number[k] < number[i]. Thus, Ti is delayed at (6) until Tk executes
statement (8).

3. Two or more threads intend to enter their critical sections and no other
thread is in its critical section. Assume that Tk and Tm, where k < m,
intend to enter. Consider the possible relationships between number[k] and
number[m]:
ž number[k] < number[m]. Tk enters its critical section since (num-

ber[k],k) < (number[m],m).
ž number[k] == number[m]. Tk enters its critical section since

(number[k],k) < (number[m],m).
ž number[k] > number[m]. Tm enters its critical section since (num-

ber[m],m) < (number[k],k).
Thus, array choosing solves the problem that stems from the nonatomic
arithmetic expression in statement (2).

The bakery algorithm satisfies the mutual exclusion, progress, and
bounded waiting requirements. However, the values in number grow without
bound. Lamport [1974] showed how a practical upper bound can be placed on
these values. He also showed that the bakery algorithm can be made to work
even when read and write operations are not atomic (i.e., when the read and
write operations on a variable may overlap).

2.3 HARDWARE SOLUTIONS TO THE n-THREAD CRITICAL
SECTION PROBLEM

In this section we show how to use Win32 function InterlockedExchange to
solve the n-process critical section problem. Here is the function prototype for
the Win32 function InterlockedExchange:

long InterlockedExchange(long* target, long newValue);
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The InterlockedExchange function atomically exchanges a pair of 32-bit values
and behaves like the following atomic function:

long InterLockedExchange(long* target, long newValue) { // executed atomically
long temp = *target; *target = newValue; return temp;

}

Like InterlockedExchangeAdd(), this function also generates a memory barrier
instruction.

2.3.1 Partial Solution

This solution uses InterlockedExchange to guarantee mutual exclusion and prog-
ress but not bounded waiting. Shared variable lock is initialized to 0:

volatile long lock = 0;

Each thread executes

while (true) {
while (InterlockedExchange(const_cast<long*>(&lock), 1) == 1) {;} (1)
critical section (2)
lock = 0; (3)
noncritical section (4)

}

If the value of lock is 0 when InterlockedExchange is called, lock is set to
1 and InterlockedExchange returns 0. This allows the calling thread to drop out
of its while-loop and enter its critical section. While this thread is in its critical
section, calls to InterlockedExchange will return the value 1, keeping the calling
threads delayed in their while-loops.

When a thread exits its critical section, it sets lock to 0. This allows one of the
delayed threads to get a 0 back in exchange for a 1. This lucky thread drops out
of its while-loop and enter its critical section. Theoretically, an unlucky thread
could be delayed forever from entering its critical section. However, if critical
sections are small and contention among threads for the critical sections is low,
unbounded waiting is not a real problem.

2.3.2 Complete Solution

This solution to the n-process critical section satisfies all three correctness require-
ments. The global array waiting is used to indicate that a thread is waiting to
enter its critical section.

volatile bool waiting[n];
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Initially, all elements of waiting are false. If waiting[i] is true, thread Ti, 0 ≤
i ≤ n − 1, is waiting to enter its critical section. Each thread Ti executes the
following code:

volatile bool waiting[n]; // initialized to false
volatile long lock, key; // initialized to 0
while (true) {

waiting[i] = true; (1)
key = 1; (2)
while (waiting[i] && key) { (3)

key = InterlockedExchange(const_cast<long*>(&lock), 1); (4)
} (5)
waiting[i] = false; (6)
critical section (7)
j = (i+1) % n; (8)
while ((j != i) && !waiting[j]) { j = (j+1) % n; } (9)
if (j == i) (10)

lock = 0; (11)
else (12)

waiting[j] = false; (13)
noncritical section (14)

}

In statement (1), thread Ti sets waiting[i] to true to indicate that it is waiting
to enter its critical section. Thread Ti then stays in the while-loop until either
InterlockedExchange returns 0 or waiting[i] is set to 0 by another thread when
that thread exits its critical section.

When thread Ti exits its critical section, it uses the while-loop in state-
ment (9) to search for a waiting thread. Thread Ti starts its search by examining
waiting[i+1 ] . If the while-loop terminates with j == i, no waiting threads exist;
otherwise, thread Tj is a waiting thread and waiting[j] is set to 0 to let Tj exit
the while-loop at statement (3) and enter its critical section.

2.3.3 Note on Busy-Waiting

All of the solutions to the critical section problem that we have seen so far use
busy-waiting—a waiting thread executes a loop that maintains its hold on the
CPU. Busy-waiting wastes CPU cycles. To reduce the amount of busy-waiting,
some type of sleep instruction can be used. In Win32, execution of

Sleep(time);

releases the CPU and blocks the executing thread for time in milliseconds. In
Java, a thread sleeps by executing Thread.sleep(time) for time in milliseconds,
while Pthreads uses sleep(time) for time in seconds. Executing a sleep statement
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results in a context switch that allows another thread to execute. (We use the term
blocked to describe a thread that is waiting for some event to occur, such as the
expiration of a timer or the completion of an I/O statement. Such a thread is not
running and will not run until the target event occurs and the operating system
schedules the thread to run.) The amount of busy waiting in the while-loop in
statement (3) of the complete solution can be reduced as follows:

while (waiting[i] && key) {
Sleep(100); // release the CPU
key = InterlockedExchange(const_cast<long*>(&lock), 1);

}

If contention among threads for the critical section is low and critical sections
are small, there may be little chance that a thread will execute the while-loop
for more than a few iterations. In such cases it may be more efficient to use
busy-waiting and avoid the time-consuming context switch caused by executing
a sleep statement.

A slightly different version of this code can be used to solve a potential
performance problem on multiprocessor systems with private caches and cache-
coherence protocols that allow shared writable data to exist in multiple caches.
For example, consider the case where two processors are busy-waiting on the
value of lock in the complete solution above. When a waiting processor modifies
lock in statement (4), it causes the modified lock to be invalidated in the other
processor’s cache. As a result, the value of lock can bounce repeatedly from one
cache to the other [Dubois et al. 1988].

Instead of looping on the call to InterlockedExchange in (3), which causes the
ping-pong effect, we can use a simpler loop that waits for lock to become 0:

while (waiting[i] && key) { (3)
while (lock) {;} // wait for lock to be released (4)
// try to grab lock (5)
key = InterlockedExchange(const_cast<long*>(&lock), 1);

}

When a processor wants to acquire the lock, it spins locally in its cache with-
out modifying and invalidating the lock variable. When the lock is eventually
released, the function InterlockedExchange is still used, but only to attempt to
change the value of lock from 0 to 1. If another thread happens to “steal” the
lock between statements (4) and (5), looping will continue at statement (3).

In general, the performance of busy-waiting algorithms depends on the num-
ber of processors, the size of the critical section, and the architecture of the
system. Mellor-Crummey and Scott [1991] described many ways to fine-tune the
performance of busy-waiting algorithms (see Exercise 2.13).



62 THE CRITICAL SECTION PROBLEM

2.4 DEADLOCK, LIVELOCK, AND STARVATION

We have identified three correctness requirements for solutions to the critical
section problem: mutual exclusion, progress, and bounded waiting. Different
concurrent programming problems have different correctness requirements. How-
ever, one general requirement that is often not explicitly stated is the absence
of deadlock, livelock, and starvation. In this section we explain this requirement
and give examples of programs that violate it. A more formal definition of this
requirement is presented in Section 7.3.3.

2.4.1 Deadlock

A deadlock requires one or more threads to be blocked forever. As we mentioned
above, a thread is blocked if it is not running and it is waiting for some event to
occur. Sleep statements block a thread temporarily, but eventually the thread is
allowed to run again. In later chapters we will see other types of statements that
can permanently block the threads that execute them. For example, a thread that
executes a receive statement to receive a message from another thread will block
until the message arrives, but it is possible that a message will never arrive.

Let CP be a concurrent program containing two or more threads. Assume that
there is an execution of CP that exercises an execution sequence S, and at the
end of S, there exists a thread T that satisfies these conditions:

ž T is blocked due to the execution of a synchronization statement (e.g.,
waiting to receive a message).

ž T will remain blocked forever, regardless of what the other threads will do.

Thread T is said to be deadlocked at the end of S, and CP is said to have
a deadlock. A global deadlock refers to a deadlock in which all nonterminated
threads are deadlocked.

As an example, assume that CP contains threads T1 and T2 and the following
execution sequence is possible:

ž T1 blocks waiting to receive a message from T2.
ž T2 blocks waiting to receive a message from T1.

Both T1 and T2 will remain blocked forever since neither thread is able to send
the message for which the other thread is waiting.

2.4.2 Livelock

We assume that some statements in CP are labeled as progress statements, indicat-
ing that threads are expected eventually to execute these statements. Statements
that are likely to be labeled as progress statements include the last statement of
a thread, the first statement of a critical section, or the statement immediately
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following a loop. If a thread executes a progress statement, it is considered to be
making progress.

Assume that there is an execution of CP that exercises an execution sequence
S, and at the end of S there exists a thread T that satisfies the following conditions,
regardless of what the other threads will do:

ž T will not terminate or deadlock.
ž T will never make progress.

Thread T is said to be livelocked at the end of S, and CP is said to have a
livelock. Livelock is the busy-waiting analog of deadlock. A livelocked thread is
running, not blocked, but it will never make progress.

Incorrect solution 2 in Section 2.1.2 has an execution sequence that results in a
violation of the progress requirement for solutions to the critical section problem.
(This progress requirement should not be confused with the general requirement
to make progress. The latter is used to indicate the absence of livelock and can
be required for solutions to any problem.) Below is a prefix of this execution
sequence:

ž T0 executes (1), (2), (3), and (4). Now turn is 1.
ž T1 executes (1), (2), and (3) and then terminates in its noncritical section.

Now turn is 0.
ž T0 executes (1), (2), (3), and (4), making turn 1, and executes its while-loop

at (1).

At the end this sequence, T 0 is stuck in a busy-waiting loop at (1) waiting for
turn to become 0. T0 will never enter its critical section (i.e., make any progress).
Thus, T 0 is livelocked.

2.4.3 Starvation

Assume that CP contains an infinite execution sequence S satisfying the following
three properties:

1. S ends with an infinite repetition of a fair cycle of statements. (A cycle
of statements in CP is said to be fair if each nonterminated thread in CP
is either always blocked in the cycle or is executed at least once. Nonfair
cycles are not considered here, since such cycles cannot repeat forever
when fair scheduling is used.)

2. There exists a nonterminated thread T that does not make progress in the
cycle.

3. Thread T is neither deadlocked nor livelocked in the cycle. In other words,
when CP reaches the cycle of statements that ends S, CP may instead
execute a different sequence S′ such that T makes progress or terminates
in S′.
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Thread T is said to be starved in the cycle that ends S, and CP is said to
have a starvation. When CP reaches the cycle of statements at the end of S,
whether thread T will starve depends on how the threads in CP are scheduled.
Note that fair scheduling of the threads in CP does not guarantee a starvation-free
execution of CP.

Incorrect solution 3 in Section 2.1.3 has an execution sequence that results
in a violation of the bounded waiting requirement. Following is that execution
sequence:

(a) T 0 executes (1), (2), and (6). Now T 0 is in its critical section and intend-
ToEnter[0] is true.

(b) T 1 executes (1)–(4). Now intendToEnter [1] is false and T 1 is waiting
for intendToEnter [0] to be false.

(c) T 0 executes (7), (8), (1), (2), and (6). Now T 0 is in its critical section and
intendToEnter [0] is true.

(d) T 1 resumes execution at (4) and is still waiting for intendToEnter [0] to
be false.

(e) T 0 executes (7), (8), (1), (2), and (6).
(f) T 1 resumes execution at (4).
. . . Infinite repetition of steps (e) and (f) . . .

In this sequence, T 1 never makes progress in the cycle of statements involving
(e) and (f). However, when execution reaches step (e), the following sequence
may be executed instead:

(e) T 0 executes (7).
(f) T 1 resumes execution at (4) and executes (5), (2), (6), and (7).

Thus, T 1 is not deadlocked or livelocked, but it is starved in the cycle involving
(e) and (f).

If contention for a critical section is low, as it is in many cases, starvation
is unlikely, and solutions to the critical section problem that theoretically allow
starvation may actually be acceptable. This is the case for the partial hardware
solution in Section 2.3.1.

2.5 TRACING AND REPLAY FOR SHARED VARIABLES

In this section we show how to trace and replay executions of concurrent pro-
grams that read and write shared variables. We present a C++ class that will
allow us to demonstrate program tracing and replay and we show how to trace
and replay a C++ implementation of Peterson’s algorithm. Even though real pro-
grams use high-level synchronization constructs to create critical sections, not
algorithms like Peterson’s, the tracing and replay techniques presented in this
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section are easy to generalize and can be applied to the high-level constructs
introduced in later chapters. Also, the concepts that we introduce here are easier
to understand when complicated programming constructs are not involved.

We assume that read and write operations are atomic (i.e., that read and write
operations do not overlap), and that the synchronization of read and write oper-
ations is provided by the memory system. Thus, each thread issues its read and
write operations according to the order in its code, and its operations are serviced
by the memory system one at a time. This leads to an interleaving of the read
and write operations in different threads, resulting in a total order of memory
operations. We also assume that the total order that results is consistent with the
(partial) order specified by each thread’s code. As we will see in Section 2.5.6,
this assumption may not always hold.

We also assume that the interleaving of read and write operations is the only
source of nondeterminism. This excludes other sources of nondeterminism, such
as uninitialized variables and memory allocation problems. Under these assump-
tions, an execution of a program with the same input and the same sequence of
read and write operations will produce the same result. We first carefully define
what a sequence of read and write operations looks like, so that such a sequence
can be traced and then replayed.

2.5.1 ReadWrite-Sequences

In general, a thread executes synchronization events on synchronization objects.
Each shared object in a concurrent program is associated with a sequence of
synchronization events, called a SYN-sequence, which consists of the synchro-
nization events that are executed on that object. For the programs that we are
considering here, the synchronization objects are simply shared variables, and
the synchronization events are read and write operations on the shared variables.
(It is often the case that a synchronization event also involves communication.
This is certainly the case for read and write operations. We still refer to such
events as synchronization events.)

A SYN-sequence of a concurrent program is a collection of the SYN-
sequences for its synchronization objects. This type of SYN-sequence is called
an object-based SYN-sequence. In later chapters we introduce other types of
SYN-sequences. For example, we can define a SYN-sequence for each thread
instead of each synchronization object. A thread-based SYN-sequence may be
easier to read and understand, since programmers normally think of a concurrent
program’s behavior in terms of the behavior of its threads, not its synchronization
objects. Object-based sequences turn out to be better suited for the replay solution
we have developed.

A SYN-sequence for a shared variable v is a sequence of read and write
operations, called a ReadWrite-sequence [LeBlanc and Mellor-Crummey 1987].
Each write operation on a shared variable creates a new version of the variable.
We give each variable a version number so that we can keep track of its versions.
A program trace associates a version number with each read and write operation
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performed by a thread. An execution can be replayed by ensuring that each
thread reads and writes the same versions of variables that were recorded in the
execution trace.

During program tracing, we record the following information about each read
and write operation. When a thread reads a variable, we record the unique iden-
tifier (ID) of that thread and the version of the variable that is read. (As we
explained in Chapter 1, threads that are created by inheriting from class TDThread
receive a unique ID as part of their initialization. TDThread IDs start at 1.) The
format for a read event is

Read(ID, version)

where ID is the identifier of the reader thread and version is the version of the
variable that was read. Each write operation on a variable creates a new version
and thus increases the variable’s version number by 1. The format for a write
event is

Write(ID, version, total readers)

where ID is the identifier of the writer thread, version is the old version number
(i.e., before the version number was incremented by this write), and total readers
is the number of readers that read the old version of the variable.

As an example, consider the following three simple threads that access a single
shared variable s:

Thread1 Thread2 Thread3

temp = s; temp = s; s = s + 1;

Assume that s is initialized to 0. A possible ReadWrite-sequence of s is

Read(3,0) // Thread3 reads version 0 of s

Read(1,0) // Thread1 reads version 0 of s

Write(3,0,2) // Thread3 writes s and increments s ′ version number to one;
// 2 readers read version 0 of s

Read(2,1) // Thread2 reads version 1 of s

From the threads and this sequence, we conclude that Thread1 read the value 0
and Thread2 read the value 1. Notice that Thread1 read s after Thread3 read s

but before Thread3 wrote the new value of s.
The information in a ReadWrite-sequence is used to resolve any nondetermin-

istic choices that arise during the replay of an execution. In the example above,
Thread3’s write operation on variable s could occur either before or after the
read operations by Thread1 and Thread2. The ReadWrite-sequence above spec-
ifies that during replay Thread3 should write s after Thread1 reads s but before
Thread2 reads s.
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There are two important points to be made about the definition of ReadWrite-
sequences. First, the value read or written by a memory operation is not recorded
in a ReadWrite-sequence. If the order of read and write operations is replayed
as specified by a ReadWrite-sequence, the values read and written will also be
replayed.

The second point is that we do not actually need to label the events in a
ReadWrite-sequence as “read” or “write” events. The “Read” and “Write” labels
in the sample sequence were added to make the sequence easier to understand.
We must identify the thread that executes the event but not the type of event. It
is true that the type of an event could easily be identified by its format, since
read events have two fields and write events have three fields. However, we are
free to add a third field to read events and always give this field a value of
0. This uniform format increases the size of a trace, but it makes it easier to
input a ReadWrite-sequence. In fact, we use this input format in the replay tool
presented later. The point is that information about event types is not needed
when we perform program replay. The type (read or write) of the next operation
to be performed by a thread is fixed by its source code, the program input, and
the operations that precede it. The source code and input are the same for every
replayed execution, and the values read or written by the preceding operations
are always replayed, starting with the first operation.

Adding extra information to a trace, such as “read” and “write” labels, and
the values that are read and written can certainly make a trace more readable
during debugging. However, this information is not needed to perform replay, so
we do not include it in ReadWrite-sequences. (Also, any additional debugging
information that is needed can be collected during replay.) Different types of
traces with different amounts of information can be defined and used for different
purposes.

2.5.2 Alternative Definition of ReadWrite-Sequences

It may be possible to decrease the overhead required for tracing and replaying
executions if system-level events can be observed and controlled. For example,
another way to trace an execution is to record the number of read and write
operations that each thread executes during each time quantum that it is scheduled
on the CPU [Choi and Srinivasan 1998]. For example, assume that Thread1
executes 50 operations during its time quantum. Instead of recording each of the
50 operations, we can number each read and write operation that gets executed,
and record a single event such as (1, 20, 69) to represent the fact that Thread1
executed the (50) operations numbered 20 through 69.

We can apply this same idea to ReadWrite-sequences for shared variables. For
each Read or Write operation, we record the ID of the thread that executes the
operation. This gives us a simple sequence such as

1, 1, 1, 1, 1, 2, 2, 2
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indicating that Thread1 executed five operations and then Thread2 executed three
operations. We can “compress” this sequence into

(1, 5), (2, 3). // the format is (a, b), where a is the thread ID and b is the
// number of operations

This indicates that Thread1 executed the first five operations (1, 5), then Thread2
executed the next three (2, 3). Compressing sequences may reduce the amount
of space that is required for storing traces.

2.5.3 Tracing and Replaying ReadWrite-Sequences

During program tracing, information is recorded about each read and write oper-
ation, and a ReadWrite-sequence is recorded for each shared variable. During
program replay, the read and write operations on a shared variable are forced to
occur in the order specified by the ReadWrite-sequence recorded during tracing.
For tracing and replay, we use our original definition of ReadWrite-sequences,
which records ID and version information about each operation. Read and write
operations are instrumented by adding routines to control the start and end of the
operations:

Read(x) { Write(x) {
startRead(x); startWrite(x);
read value of x; write new value of x;
endRead(x); endWrite(x);

} }

Functions startRead(), endRead(), startWrite(), and endWrite() contain the trace
and replay code. Listing 2.1 shows a sketch of these functions. Certain details
have been omitted to simplify our discussion. For example, since these functions
access shared variables (e.g., activeReaders, totalReaders), some synchronization
mechanism must be used to create critical sections. Another mechanism is needed
so that threads are delayed by blocking them instead of using busy-waiting loops.
Both of these mechanisms are easily implemented using constructs that we discuss
in later chapters.

In trace mode, startRead(x) increments x.activeReaders to indicate that another
reader has started to read shared variable x. Then the reader thread’s ID and
variable x’s version number are recorded. Writers cannot write while any readers
are active [i.e., (x.activeReaders>0)]. Readers and writers are serviced in the
order of their requests to read and write. If a writer requests to write while
one or more readers are reading, the writer will wait until those readers are
finished. Readers that request to read while a writer is writing will wait for that
writer to finish. Function endRead(x) decrements x.activeReaders and increments
x.totalReaders. The latter represents the total number of readers that have read
the current version of x.
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startRead(x) {
if (mode == trace) {

++x.activeReaders; // one more reader is reading x
ReadWriteSequence.record(ID,x.version); // record read event for x

}
else { // replay mode

// get next event to be performed by thread ID
readEvent r = ReadWriteSequence.nextEvent(ID);
myVersion = r.getVersion(); // find version of x read during tracing
while (myVersion != x.version) delay; // wait for correct version of x to read

}
}
endRead(x) {

++x.totalReaders; // one more reader has read this version of x
--x.activeReaders; // one less reader is reading x (ignored in replay mode)

}
startWrite(x) {

if (mode = trace) {
// wait for all active readers to finish reading x
while (x.activeReaders>0) delay;

// record write event for x
ReadWriteSequence.record(ID,x.version,x.totalReaders);

}
else { // replay mode

// find version modified during tracing
writeEvent w = ReadWriteSequence.nextEvent(ID);
myVersion = w.getVersion();
// wait for correct version of x to write
while (myVersion != x.version) delay;
// find count of readers for previous version
myTotalReaders = w.getTotalReaders();
// wait until all readers have read this version of x
while (x.totalReaders < myTotalReaders) delay;

}
}
endWrite(x) {

x.totalReaders = 0;
++x.version; // increment version number for x

}

Listing 2.1 Tracing and replaying a ReadWrite-sequence.
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In trace mode, startWrite(x) waits for all current readers to finish reading
x, then it records the writer thread’s ID, x’s current version number, and the
total number of readers for the current version of x. Function endWrite(x) resets
x.totalReaders and increments the version number of x, as each write operation
creates a new version of the variable.

During replay, the read and write operations on a shared variable are controlled
so that a ReadWrite-sequence captured in trace mode can be repeated. Writers
will repeat the order of their write operations. If two or more readers read a
particular version during tracing, they must read the same version during replay,
but these reads can be in any order. Thus, reads are only partially ordered with
respect to write operations, while writes operations are totally ordered for each
shared variable.

This concurrent reading and exclusive writing (CREW) policy increases con-
currency and still produces the same result. We could, instead, use a stricter
policy that required exclusive reads and writes and a total ordering of all read
and write operations, but the result would be the same. (For example, the alter-
native definition of ReadWrite-sequences in Section 2.5.2 is a total ordering of
read and write operations.)

In replay mode, startRead(x) delays a thread’s read operation until the version
number of variable x matches the version number recorded during tracing. After
the read is performed, endRead(x) increments x.totalReaders to indicate that
one more read operation has been replayed. Write operations are delayed in
startWrite(x) until the version number of x matches the version number recorded
during tracing and until totalReaders reaches the same value that it reached
during tracing. After the write, endWrite(x) resets x.totalReaders and increments
the version number so that the next operation can be replayed.

2.5.4 Class Template sharedVariable<>

As we mentioned in Chapter 1, we have written a C++ class template called
sharedVariable that implements our tracing and replay technique for ReadWrite-
sequences. Listing 2.2 shows part of the header file for class sharedVariable.
We can use class sharedVariable to create shared variables that are of prim-
itive types such as int and double. Class sharedVariable provides operators
for adding, subtracting, assigning, comparing, and so on, and provides func-
tions for tracing and replaying the read and write operations in the imple-
mentations of these operators. It has a member variable of type T (the type
specified by the template parameter) which holds the actual value of the
sharedVariable.

The implementations of the operators are straightforward. Each operator calls
the appropriate control functions (startRead(), endRead(), startWrite(), and end-
Write()) for the variables that are read and written. Listing 2.3 shows the imple-
mentation of operator+=(). This operation contains two read operations and
a write operation. The control functions make sure that these operations are
recorded during tracing and controlled during replay.
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template <class T>
class sharedVariable {
public:

sharedVariable();
explicit sharedVariable(const T& v);
const sharedVariable<T>& operator+=(const sharedVariable<T>& sv);
const sharedVariable<T>& operator+=(const T& sv);
sharedVariable<T>& operator=(const sharedVariable<T>& sv);
sharedVariable<t>& operator=(const T& v);
/* ... more operations ... */

private:
T value; // actual value of the shared variable
void startRead(const sharedVariable<T>& sv) const;
void endRead(const sharedVariable<T>& sv) const;
void startWrite(const sharedVariable<T>& sv) const;
void endWrite(const sharedVariable<T>& sv) const;

};

Listing 2.2 C++ class template sharedVariable<>.

template<class T>
sharedVariable<T>::operator+=(const sharedVariable<T>& sv) const {
// implementation of operation A += B, which is shorthand for A = A + B

T svTemp, thisTemp;

startRead(*this);
thisTemp = value; // read A
endRead(*this);
startRead(sv);
svTemp = sv.value; // read B
endRead(sv);
startWrite(*this);
value = thisTemp + svTemp; // write A
endWrite(*this);

return *this;
}

Listing 2.3 Implementation of sharedVariable<T >::operator+=().

2.5.5 Putting It All Together

Listing 2.4 shows a C++ implementation of Peterson’s algorithm using shared-
Variables. Each thread enters its critical section twice. When executed in trace
mode, the program in Listing 2.4 will produce a ReadWrite-sequence for each
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sharedVariable<int> intendToEnter1(0), intendToEnter2(0), turn(0);
const int maxEntries = 2;
class Thread1: public TDThread {
private:

virtual void* run() {
for (int i=0; i<maxEntries; i++) {

intendToEnter1 = 1;
turn = 2;
while (intendToEnter2 && (turn == 2)) ;
// critical section
intendToEnter1 = 0;

}
return 0;

}
};
class Thread2 : public TDThread {
private:

virtual void* run() {
for (int i=0; i<maxEntries; i++) {

intendToEnter2 = 1;
turn = 1;
while (intendToEnter1 && (turn == 1)) ;
// critical section
intendToEnter2 = 0;

}
return 0;

}
};
int main() {

std::auto_ptr<Thread1> T1(new Thread1);
std::auto_ptr<Thread2> T2(new Thread2);
T1->start(); T2->start();
T1->join(); T2->join();
return 0;

}

Listing 2.4 Peterson’s algorithm using class template sharedVariable<>.

of the shared variables intendtoEnter1, intendToEnter2, and turn. Three such
sequences that were produced when we executed the program are shown in
Fig. 2.5, which also shows a totally ordered sequence of read and write events
that is consistent with the three object-based sequences. This single sequence,
which contains all the program events, is easier to follow than are the three
object-based sequences. (In the totally ordered sequence, we omitted the actual
events and simply showed the sequence of statements that are executed.)
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ReadWrite-sequence for intendToEnter1:
1 0 0 // T1: intendtoenter1 = 1
2 1 // T2: while(intendtoenter1 ... )–T2 is busy-waiting
1 1 1 // T1: intendtoenter1 = 0
2 2 // T2: while(intendtoenter1 ... )–T2 will enter its critical section
1 2 1 // T1: intendtoenter1 = 1
2 3 // T2: while(intendtoenter1 ... )–T2 is busy-waiting
1 3 1 // T1: intendtoenter1 = 0
2 4 // T2: while(intendtoenter1 ... )–T2 will enter its critical section

ReadWrite-sequence for intendToEnter2:
2 0 0 // T2: intendtoenter2 = 1
1 1 // T1: while(intendtoenter2 ... )–T1 will enter its critical section
2 1 1 // T2: intendtoenter2 = 0
2 2 0 // T2: intendtoenter2 = 1
1 3 // T1: while(intendtoenter2 ... )–T1 is busy-waiting
1 3 // T1: while(intendtoenter2 ... )–T1 will enter its critical section
2 3 2 // T2: intendtoenter2 = 0

ReadWrite-sequence for turn:
1 0 0 // T1: turn = 2
2 1 0 // T2: turn = 1
1 2 // T1: while(... && turn == 2)–T1 will enter its critical section
2 2 // T2: while(... && turn == 1)–T2 is busy-waiting
2 2 // T2: while(... && turn == 1)–T2 will enter its critical section
1 2 3 // T1: turn = 2
1 3 // T1: while(.. && turn == 2)–T1 is busy-waiting
2 3 1 // T2: turn = 1
1 4 // T1: while(... && turn == 2)–T1 will enter its critical section
2 4 // T2: while(... && turn == 1)–T2 is busy-waiting
2 4 // T2: while(... && turn == 1)–T2 will enter its critical section

A Totally-Ordered Sequence for Peterson’s Algorithm:
T1: intendtoenter1 = 1; turn = 2;
T2: intendtoenter2 = 1; turn = 1;
T1: while (intendtoenter2 && turn == 2)–T1 will enter its critical section
T2: while (intendtoenter1 && turn == 1)–T2 is busy-waiting
T1: intendtoenter1 = 0 –T1 has exited its critical section
T2: while (intendtoenter1 && turn == 1)–T2 will enter its critical section
T2: intendtoenter2 = 0 –T2 has exited its critical section
T1: intendtoenter1 = 1; turn = 2
T2: intendtoenter2 = 1

Figure 2.5 ReadWrite-sequences for shared variables intendtoEnter1, intendToEnter2,
and turn .
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T1: while (intendtoenter2 && turn == 2) –T1 is busy-waiting
T2: turn = 1
T1: while (intendtoenter2 && turn == 2) –T1 will enter its critical section
T2: while (intendtoenter1 && turn == 1) –T2 is busy-waiting
T1: intendtoenter1 = 0 –T1 has exited its critical section
T2: while (intendtoenter1 && turn == 1) –T2 will enter its critical section
T2: intendtoenter2 = 0 –T2 has exited its critical section

Figure 2.5 (continued )

Note that it is not possible to construct the totally ordered sequence in Fig. 2.5
from the three object-based sequences without adding or computing some addi-
tional information to determine whether one event “happened before” another
during the execution (see Chapter 6). Alternatively, we could modify our tracing
mechanism so that a single totally ordered sequence is recorded, but this would
create a bottleneck at the tracing module and reduce the amount of concurrency
during execution.

The ability to replay an execution of Peterson’s algorithm is helpful, but it
still leaves the difficult problem of determining whether a given execution of
Peterson’s algorithm, or of some other solution to the critical section problem,
is correct. Expressing the required correctness properties of the execution is dif-
ficult in itself. One approach to checking correctness is to generate user-level
events representing each thread’s entry into, and exit from, its critical section.
Then we can systematically generate all possible ReadWrite-sequences of the
implementation and check whether these user-level events occur in their proper
order. For example, events enter-1 and exit-1 can be generated at the begin-
ning and end of Thread1’s critical section. Given consecutive enter-1 and exit-1
events executed by Thread1, any enter-2 event executed by Thread2 must hap-
pen before enter-1 or after exit-1. Various mechanisms for ordering the events
of an execution are described in Chapter 6. This general approach to testing,
called reachability testing, is overviewed in Chapters 3 through 5 and described
in detail in Chapter 7.

2.5.6 Note on Shared Memory Consistency

In the cases outlined above, it may be difficult to determine the actual order of
read and write operations on shared variables. We have been assuming that read
and write operations are executed in an order that is consistent with the order
implied by the source code. This allows read and write operations in different
threads to be interleaved but requires operations in the same thread to occur in the
order specified by that thread’s code. Lamport [1979] formalized this notion when
he defined sequentially consistent multiprocessor systems: “[A multiprocessor
system is sequentially consistent if] the result of any execution is the same as if
the operations of all the processors were executed in some sequential order, and
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the operations of each individual processor appear in this sequence in the order
specified by its program.”

Note that sequential consistency does not require the actual execution order
of operations to be consistent with any particular sequential order. In particular,
operations of the same processor may be performed in an order that differs from
program order as long as both orders give the same result [Anderson 2001]. We
use a similar notion of consistent executions during program replay. The events
exercised during replay may be performed in an order that differs from the
original execution as long as both executions give the same result. For example,
two concurrent write events on different shared variables can be performed in
either order.

Sequential consistency may not hold for several reasons [Adve and Ghara-
chorloo 1995]:

ž Due to performance optimizations performed by the compiler or the memory
hardware, the actual order of execution of the shared variable read and
write operations of a thread may be different from the order specified in
the program, and the result of the execution may violate the semantics of
sequential consistency.

ž If multiple copies of the same shared variable exist, as is the case with cache-
based multiprocessor systems and certain compiler optimizations, and if all
the copies are not updated at the same time, different threads can individually
observe different ReadWrite-sequences during the same execution [Dubois
et al. 1988] (see Exercise 2.15).

In such cases, the effects of compiler and hardware optimizations create a
larger number of possible interleavings than is implied by the program’s source
code. More important, the actual order of read and write operations might not be
known at the program level; rather, the order may be known only at the hardware
level. The result of all this is that the actual SYN-sequence of an execution
may involve low-level events such as cache invalidations and therefore may be
unobservable and uncontrollable at levels above the hardware. Verifying program
correctness then becomes a “monumental task” [Lamport 1979].

Following is a simple example that illustrates the complexity of dealing with
shared memory consistency. Thread1 and Thread2 communicate using shared
variables x and y:

int x = 1;
boolean y = false;

Thread1 Thread2

x = 0; if (y)
y = true; /* what is the value of x? */
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If Thread2 finds that y is true, Thread2 might also expect x to be 0 since Thread1
assigns 0 to x before it assigns true to y. But there are several reasons why this
might not be the case:

1. If each thread is allowed to keep a private copy of shared variable y in a
register in order to speed up access to y, the update to y by Thread1 will
not be visible to Thread2. Thus, Thread2 will always find that y is false.

2. Hardware optimizations such as allowing write operations to overlap can
result in reorderings of the write operations in Thread1. Thus, y may be
assigned true before x is assigned 0.

3. A compiler optimization may reorder the assignment statements in Thread1
so that the assignment to y is performed before the assignment to x.

Guaranteeing sequential consistency would rule out these and some other
optimizations, which would also mean that these optimizations could not be
used to speed up individual sequential processors. Instead of slowing down all
the processors, programmers are asked to identify the places in the program at
which the optimizations should be turned off.

In Section 2.1.5 we saw that one way to turn off optimizations on shared
variables is to declare them as volatile. Declaring a variable as volatile
indicates that the value of the variable may be read or written from outside the
thread or even outside the program in which the variable appears. For instance, in
the example program above, the value of variable y in Thread2 can be changed
by Thread1. If y is declared as volatile, the compiler will ensure that updates to
y by Thread1 are immediately visible to Thread2. As another example, consider
a program that used memory-mapped I/O. A variable’s memory location may be
mapped to a data port for an input device. This allows the program to perform
input simply by reading the value of the variable. Since the variable is written
by the input device, not by the program, the compiler may assume that the value
of the variable never changes and then perform optimizations that are based
on this incorrect assumption. Declaring the variable as volatile turns these
optimizations off for this variable.

In our example Java program we can deal with problem 1 above by declaring
y to be volatile:

volatile boolean y = false;
int x = 1;

This prohibits the compiler from allocating y to a register. However, in versions
of Java before J2SE 5.0, problems 2 and 3 remain even when y is declared as
volatile. In these earlier versions, reads and writes of volatile variables
cannot be reordered with reads and writes of other volatile variables, but they
can be reordered with reads and writes of non-volatile variables. This type of
reordering is prohibited in J2SE 5.0. Thus, if Thread2 reads the value true for
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y, it is guaranteed to see the write of 0 to x that happened before the write of
true to y, even though x is not volatile.

The compiler ensures that the reordering rules for volatile variables are
obeyed by emitting special memory barrier instructions, which control the inter-
actions among the caches, memory, and CPUs. The atomic XADD (Exchange
and Add) instruction mentioned in Section 2.2.1 is an example of a memory
barrier. Prior to executing an XADD instruction, the processor ensures that all
previous read and write operations have been completed.

The semantics of volatile variables and other issues related to shared mem-
ory consistency in Java are spelled out in the Java Memory Model, which is
part of the Java Language Specification. The goal of the Java Memory Model is
to ensure that multithreaded Java programs can be implemented correctly on a
variety of hardware platforms and with a variety of compiler and hardware opti-
mizations. Programmers can rely on the guarantees provided by the Java Memory
Model when they are reasoning about the possible behavior of their programs.
The original Java Memory Model had several flaws [Pugh 2000] that were fixed
in J2SE 5.0. Since C++ does not have threads built into the language, C++ does
not have a memory model like Java’s. The reorderings that are permitted in a
multithreaded C++ program depend on the compiler, the thread library being
used, and the platform on which the program is run [Meyers and Alexandrescu
2004a,b].

In the next two chapters we study higher-level synchronization constructs that
are designed to hide some of the complexity we’ve seen in this chapter. Cre-
ating critical sections will be easier with these constructs, as will be execution
tracing and replay. As it turns out, critical sections are exactly the place where
special care is needed to ensure sequential consistency. Thus, these synchroniza-
tion constructs are implemented with memory barrier instructions that guarantee
sequential consistency as a side effect of using the constructs to create critical
sections.

FURTHER READING

Our treatment of the critical section problem in Section 2.1 follows [Silberschatz
et al. 1991]. The first solution to the two-process critical section problem was
developed in 1962 by Th. J. Dekker [Dijkstra 1968]. Edsger Dijkstra [1965]
presented the first solution to the n-process critical section problem. Dijkstra’s
solution satisfied mutual exclusion but was not starvation free. Knuth’s [1966]
solution remedied this, and further improvement’s in the algorithm’s fairness
were presented by deBruijn [1967] and Eisenberg and McGuire [1972]. Lamport
[1974] pointed out that all of these solutions assumed atomic reads and writes
and presented his bakery algorithm (see Section 2.2.2). Anderson [2001] surveys
Lamport’s other contributions to research on mutual exclusion.

Mellor-Crummey and Scott [1991] analyzed the performance of five hardware-
based busy-waiting solutions to the critical section problem for shared-memory
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multiprocessors. Adve and Gharachorloo [1995] have written a tutorial on shared
memory consistency.
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EXERCISES

2.1. The following solutions are intended to solve the two-thread critical section
problem. Thread0 and Thread1 execute the same code, which is shown
below. When Thread0 executes the code, i is 0 and j is 1. When Thread1
executes the code, i is 1 and j is 0. Variable turn can be initialized to 0 or 1.
The execution of the break statement inside the first while-loop transfers
control to the statement immediately following the loop. For each solu-
tion, determine whether it guarantees mutual exclusion. If mutual exclusion
is guaranteed, determine whether it guarantees progress. If mutual exclu-
sion and progress are guaranteed, determine whether it guarantees bounded
waiting. Justify your answers.

(a) while (true) {
flag[i] = true; (1)
while (flag[j]) { (2)

if (turn != i) { (3)
flag[i] = false; (4)
while (turn == j) {;} (5)
flag[i] = true; (6)
break; (7)

}
}
critical section
turn = j; (8)
flag[i] = false; (9)
noncritical section

}

(b) while (true) {
flag[i] = true; (1)
while (flag[j]) { (2)

flag[i] = false; (3)
while (turn == j) {;} (4)
flag[i] = true; (5)

} (6)
critical section
turn = j; (7)
flag[i] = false; (8)
noncritical section

}

(c) while (true) {
flag[i] = true; (1)
turn = j; (2)
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while (flag[j] && turn== i) {;} (3)
critical section
flag[i] = false; (4)
noncritical section

}

2.2. In Peterson’s algorithm, is every assignment statement atomic? Explain.

2.3. The “eventual entry” requirement for the critical section problem is as
follows: A thread that intends to enter its critical section must eventually
succeed.

(a) If the progress requirement is satisfied, does that necessarily imply that
eventual entry is also satisfied? Explain.

(b) If the bounded waiting requirement is satisfied, does that necessarily
imply that eventual entry is also satisfied? Explain.

(c) If the eventual entry requirement is satisfied, does that necessarily
imply that progress and bounded waiting are also satisfied? Explain.

2.4. For Peterson’s algorithm, is it necessary to assume that Thread0 and
Thread1 have the same priority? Explain.

2.5. Suppose that we switch the order of the first two statements in Peter-
son’s algorithm:

boolean intendToEnter0 = false, intendToEnter1 = false;
int turn; // no initial value for turn is needed.

T0 T1

while (true) { while (true) {
turn = 1; (1) turn = 0; (1)
intendToEnter0 = true; (2) intendToEnter1 = true; (2)
while (intendToEnter1 && (3) while (intendToEnter0 && (3)

turn == 1) {;} turn == 0) {;}
critical section (4) critical section (4)
intendToEnter0 = false; (5) intendToEnter1 = false; (5)
noncritical section (6) noncritical section (6)

} }

Does the modified solution guarantee mutual exclusion? Explain. If
yes, does the modified solution guarantee progress and bounded
waiting? Explain.

2.6. For the bakery algorithm in Section 2.2.2, assume that thread Ti, i > 0, has
just executed statement (3) and thread Tk, k != i, is in its critical section.
Prove that (number[i],i) > (number[k],k).



EXERCISES 81

2.7. For the bakery algorithm in Section 2.2.2, the value of number[i] is not
bounded.

(a) Explain how the value of number[i] grows without bound.
(b) One suggestion for bounding the value of number[i] is to replace the

statement

number[i] = max(number) + 1;

with the statement

// numThreads is # of threads in the program
number[i] = (max(number) + 1) % numThreads;

Is this suggestion correct? Explain.

2.8. Simplify the bakery algorithm in Section 2.2.2 for the case where there
are only two threads, Thread0 and Thread1. Use turn0 and turn1 to denote
number[0] and number[1] , respectively. Try to simplify the algorithm as
much as possible.

2.9. Suppose that a computer has an atomic DecrementAndCompare() function:

int DecrementAndCompare (int& v) { // done atomically
v = v - 1;
if (v>=0) return 0; else return 1;

}

(a) Is the following a correct solution to the n-thread critical section prob-
lem?

volatile int v = 1;
while (DecrementAndCompare(v)) {v++;} // entry-section
// Note: Stay in the loop if 1 is returned
critical section
v++; // exit-section

(b) How can DecrementAndCompare() be used to develop a critical section
solution for n threads? Your solution does not have to satisfy the
bounded waiting requirement.

2.10. Assume that each thread in Peterson’s algorithm runs on a separate pro-
cessor. Also assume that processors use a write buffer with bypassing
capability. On a write, a processor inserts the write operation into a write
buffer and proceeds without waiting for the write to complete. Subsequent
reads are allowed to bypass any previous writes in the write buffer for
faster completion. This bypassing is allowed as long as the read address
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does not match the address of any of the buffered writes (on the same
processor). Can Peterson’s algorithm fail if write buffers are used?

2.11. The java.concurrent.atomic package introduced in J2SE 5.0 provides class
AtomicBoolean to store Boolean values. Method set(b) sets the stored value
to b, while getAndSet(b) atomically replaces the stored value with value
b and returns the previous value. Thus, getAndSet() is equivalent to the
testAndSet instruction provided by some machines.

(a) Show how to use getAndSet() to solve the critical section problem by
writing a solution that is similar to the partial solution in Section 2.3.1.

(b) Use getAndSet() to solve the critical section problem by writing a solu-
tion that is similar to the second solution in Section 2.3.3 (i.e., the one
that use two loops).

(c) Fine-tune your solution to part (b) by using the exponential backoff
technique. If a thread’s call to getAndSet() fails to acquire the lock, the
thread should sleep for some random amount of time between 0 and
32 milliseconds. If the next call to getAndSet() also fails, double the
maximum sleep time (i.e., the thread should sleep a random amount of
time between 0 and 64 milliseconds). Continue doubling the maximum
sleep time until it reaches some upper bound, then stop doubling the
maximum sleep time if further calls fail. The idea behind this scheme is
as follows. If a call to getAndSet() fails, threads are contending for the
critical section. The contending threads should sleep a random amount
of time (i.e., “back off”) so that they all don’t try to acquire the lock
again at the same time. The more times getAndSet() fails, the more
contention there is and the greater variability there should be in the
amount of time threads should sleep before they try again.

2.12. Consider a program such as the following, which is similar to Listing 1.9:

int s = 0;

Thread0 Thread1

for (int i=0; i<2; i++) { for (int i=0; i<2; i++) {
s = s + 1; s = s + 1;

} }
Modify this program so that Thread0 and Thread1 take turns incrementing
s, starting with Thread0. Use one of the solutions to the critical section
problem to create critical sections for Thread0 and Thread1. Then use an
integer to keep track of whose turn it is to do the increment. If a thread
tries to increment s out of turn, it should busy-wait in a loop until its turn
arrives.
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2.13. Consider the following programs, which are executed concurrently on three
processors:
int a, b, c, = 0;

P1 P2 P3

(1) a = 1; (3) b = 1; (5) c = 1;
(2) output(bc); (4) output(ac); (6) output(ab);

Function output() atomically reads and displays the values of the variables
passed as arguments. For example, if the statements are executed in the
order (1), (2), (3), (4), (5), (6), the program displays 001011.

(a) Assume that the processors execute the statements in program order
[i.e., (1) before (2), (3) before (4), and (5) before (6)]. How many pos-
sible interleavings of the statements are there?

(b) If processors are allowed to execute the statements out of program
order, how many possible interleavings are there?

(c) Is there any interleaving that preserves program order and that produces
the output 111111? If so, show an interleaving. You can assume that
only a single copy of shared variables a, b, and c, exists (i.e., that
shared variables are not cached).

(d) Is there any interleaving, either preserving program order or not pre-
serving program order, that produces the output 011001? If so, show
an interleaving. You can assume that only a single copy of shared
variables a , b, and c, exists (i.e., that shared variables are not cached).

(e) Repeat part (d), but this time assume that multiple copies of shared
variables a , b, and c can exist (as in a cache-based system) and that
the copies may not be updated at the same time. This allows different
processors to observe different interleavings during the same execution.
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SEMAPHORES AND LOCKS

Semaphores and locks are synchronization objects. Semaphores are used to
provide mutual exclusion and condition synchronization. Locks provide mutual
exclusion and have special properties that make them useful in object-oriented
programs. In this chapter we learn how to use semaphores and locks to cre-
ate critical sections and solve various programming problems. We then see how
semaphores and locks are supported in Java, Win32, and Pthreads. Finally, we
show how to build custom semaphore and lock classes that support testing and
replay.

3.1 COUNTING SEMAPHORES

A counting semaphore is a synchronization object that is initialized with an inte-
ger value and then accessed through two operations, named P and V [Dijkstra
1965]. These operations are sometimes called down and up, decrement and incre-
ment, or wait and signal, respectively. (The classes in our synchronization library
support all these names.) Traditionally, a counting semaphore is defined as a spe-
cial integer-valued variable that is passed as a parameter to procedures P() and
V(). We use an object-oriented definition in which a counting semaphore is an
instance of a class named countingSemaphore:

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.

84
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class countingSemaphore {
public countingSemaphore(int initialPermits) {permits = initialPermits;}
public void P() {...};
public void V() {...};
private int permits;

}

When defining the behavior of methods P() and V(), it is helpful to interpret
a counting semaphore as having a pool of permits. A thread calls method P() to
request a permit. If the pool is empty, the thread waits until a permit becomes
available. A thread calls method V() to return a permit to the pool. A counting
semaphore s is declared and initialized using

countingSemaphore s(1);

The initial value, in this case 1, represents the initial number of permits in the
pool.

Here is a sketch of one of the many possible implementations of methods P()
and V(). The private integer variable permits holds the current number of permits
in the pool:

public void P( ) {
if (permits > 0)

--permits; // take a permit from the pool
else // the pool is empty so wait for a permit

wait until permits becomes positive and then decrement permits by one.
}

public void V( ) {
++permits; // return a permit to the pool

}

If a thread calls P() when the value of permits is zero, it waits until permits is
positive, decrements permits, and then exits P(); otherwise, permits is positive, so
the thread decrements permits and exits P(). Method V() increments permits and
never blocks the thread that calls it. There may be many threads waiting in P()
for a permit. The waiting thread that gets a permit as the result of a V() operation
is not necessarily the thread that has been waiting the longest.

For a counting semaphore s, at any time, the following relation holds:

(the initial number of permits) + (the number of completed s.V() operations)
≥ (the number of completed s.P() operations).

This relation is referred to as the invariant for semaphore s. Notice that the
invariant refers to “completed” P() and V() operations. A thread that starts a P()
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operation may be blocked inside P(), so the operation may not be completed
right away. Thus, the number of completed P() operations may be less than the
number of started P() operations. For a counting semaphore, V() operations never
block their caller and are always completed immediately.

We will try to avoid referring to the “value of semaphore s” when describing
the behavior of s, since a semaphore’s value is not clearly defined. Often, the
value of a semaphore is taken to mean the number of available permits, which is
expected to be a nonnegative number. In the sample implementation above, the
variable permits represents the number of available permits, and permits is never
negative, so variable permits could be used as the “value of s.” However, this
is an implementation detail that may not always hold. In other implementations
of P() and V(), permits can have a negative value when threads are waiting for
a permit.

Class countingSemaphore does not provide any methods for accessing the
value of a semaphore; only P() and V() are provided. Even if the value were
available, it would not be useful since the value could be changed by a P() or
V() operation immediately after it was retrieved. Thus, we rely on a semaphore’s
invariant to define its behavior.

The implementation above defines P() and V() without specifying any details
about how to implement the wait operation in P() or how to provide mutual exclu-
sion for accessing shared variable permits. Later, we discuss these implementation
issues and provide Java and C++ implementations of class countingSemaphore.

3.2 USING SEMAPHORES

Learning to use semaphores takes practice. There are, however, some common
idioms or minipatterns in the way semaphores are used to solve problems. These
patterns are described below. Being able to recognize and apply these patterns is
a first step toward understanding and writing semaphore-based programs.

3.2.1 Resource Allocation

Consider the problem where three threads are contending for two resources.
If neither resource is available, a thread must wait until one of the resources
is released by another thread. Listing 3.1 shows a semaphore solution to this
problem. The countingSemaphore s is initialized to 2, which is the initial number
of available resources. Calls to s.P() and s.V() surround the use of a resource.
If two of the threads are using resources, the third thread will be blocked when
it executes s.P(). A thread executing s.V() makes its resource available to the
other threads. This means that a thread that is blocked in an s.P() operation
will be awakened when s.V() is performed. The invariant for semaphore s and
the placement of the P() and V() operations guarantees that there can be no
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countingSemaphore s(2); //two resources are available initially

Thread1 Thread2 Thread3
s.P(); s.P(); s.P();
/* use the resource */ /* use the resource */ /* use the resource */
s.V(); s.V(); s.V();

Listing 3.1 Resource allocation using semaphores.

more than two consecutive completed s.P() operations without an intervening
s.V() operation.

Counting semaphores provide a perfect solution to the resource allocation
problem. The pool of permits represented by semaphore s maps directly to the
managed pool of resources. For example, if the value of s.permits is 2, two
resources are available. Methods P() and V() do all of the necessary bookkeeping
internally: counting resources, checking the number of available resources, and
blocking threads when no resources are available. Unfortunately, such a simple
solution is not possible for every problem. Some problems require bookkeeping
to be done outside methods P() and V(), and semaphores are used for other things
besides managing resources.

3.2.2 More Semaphore Patterns

Listing 3.2 shows an alternative solution to the resource allocation problem.
This solution is much more complicated, but it illustrates some commonly used
semaphore patterns. In this solution, shared variable count tracks the number of
resources available. Variable count is initialized to 2. When the value of count
is greater than zero, a resource is available. The value of count is decremented
when a resource is taken and incremented when a resource is released.

Shared variable waiting tracks the number of threads waiting. When a thread
wants to use a resource, it checks the value of count. If count is less than or
equal to zero, the thread increments waiting and then blocks itself by executing
resourceAvailable.P(). When a thread releases a resource, it checks the value
of waiting. If waiting is greater than zero, a waiting thread is notified that a
resource is available; otherwise, count is incremented so that future requests for
resources will be granted. Notice that count is not incremented when a wait-
ing thread is notified, just as count is not decremented after a waiting thread
receives a resource. This solution contains several patterns that commonly appear
in semaphore-based solutions. These patterns rely on the semaphore invariant and
the placement of P() and V() operations to create the necessary synchronization.

Mutex Semaphores can be used to solve the critical section problem. A sema-
phore, typically named mutex (for “mutual exclusion”) is initialized to 1. A
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// variables shared by the threads
int count = 2; // number of available resources
int waiting = 0; // number of waiting threads
// provides mutual exclusion for count and waiting
countingSemaphore mutex = new countingSemaphore(1);
// used as a queue of blocked threads
countingSemaphore resourceAvailable = new countingSemaphore(0);
Thread i { // each thread executes the following code:
mutex.P(); // enter the critical section

if (count>0) { // is a resource available?
count--; // one less resource available
mutex.V(); // exit the critical section

}
else {

waiting++; // one more waiting thread
mutex.V(); // exit the critical section
resourceAvailable.P(); // wait for a resource

}
/* use the resource */
mutex.P(); // enter the critical section
if (waiting>0) { // are there waiting threads?

--waiting; // one less waiting thread
resourceAvailable.V(); // notify a waiting thread

}
else count++; // return a resource to the pool
mutex.V();

}

Listing 3.2 Alternative solution to the resource allocation problem.

critical section begins with a call to mutex.P() and ends with a call to
mutex.V():

mutex.P()
/* critical section */
mutex.V()

The semaphore invariant ensures that the completion of P() and V() operations
alternates, which allows one thread at a time to be inside the critical section.
In Listing 3.2, semaphore mutex is used to create critical sections for shared
variables count and waiting.
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Enter-and-Test Often, a thread will enter a critical section and then test a condi-
tion that involves shared variables. In Listing 3.2, the test for available resources
follows the call to mutex.P():

mutex.P();
if (count>0) { // test for available resources; count is a shared variable
...; // count>0 means that resource is available

}
else {
...;
resourceAvailable.P(); // wait for a resource
}

One of the alternatives of the if-statement will contain a P() operation so that
the thread can block itself until it is notified that the condition is satisfied.

Exit-Before-Wait A thread executing inside a critical section will exit the crit-
ical section before blocking itself on a P() operation. Exit-before-wait is nec-
essary since a thread that blocks itself in a critical section may create a dead-
lock. In Listing 3.2, when no resource is available, mutex.V() is executed before
resourceAvailable.P().

mutex.V(); // exit critical section
resourceAvailable.P(); // wait for a resource

If a thread did not call mutex.V() to leave the critical section before it called
resourceAvailable.P(), no other threads would be able to enter the critical section,
and no calls to resourceAvailable.V() would ever occur. Exit-before-Wait is a use-
ful pattern, but it is also the source of subtle programming errors. In Section 3.4
we show one way to make this pattern safer.

Condition Queue A semaphore can be used as a queue of threads that are
waiting for a condition to become true. If the initial value of a semaphore s is 0,
and the number of started s.P() operations is never less than the number of s.V()
operations completed, the semaphore invariant ensures that every s.P() operation
is guaranteed to block the calling thread. This indicates that s is being used as a
queue, not as a resource counter.

In Listing 3.2, semaphore resourceAvailable is used as a queue of threads that
are waiting for a resource to become available. Semaphore resourceAvailable is
initialized to 0, and all resourceAvailable.V() operations are performed when at
least one thread is waiting:

if (waiting>0) // if one or more threads are waiting
resourceAvailable.V(); // then notify a blocked thread
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Under these conditions, a call to resourceAvailable.P() will always block the
calling thread and a call to resourceAvailable.V() will always unblock a waiting
thread.

These patterns represent the building blocks of semaphore solutions. We will
see these patterns and several others used throughout the example programs in
Section 3.5.

3.3 BINARY SEMAPHORES AND LOCKS

The mutex pattern is the most commonly used semaphore pattern and it deserves
a closer look. A semaphore named mutex is initialized with the value 1. The
calls to mutex.P() and mutex.V() create a critical section [Dijkstra 1968]:

Thread1 Thread2

mutex.P(); mutex.P();
/* critical section */ /* critical section */
mutex.V(); mutex.V();

Due to the initial value 1 for mutex and the placement of mutex.P() and
mutex.V() around the critical section, a mutex.P() operation will be completed
first, then mutex.V(), then mutex.P(), and so on. For this pattern, we can let mutex
be a counting semaphore, or we can use a more restrictive type of semaphore
called a binary semaphore.

A binary semaphore must be initialized with the value 1 or 0, and the comple-
tion of P() and V() operations must alternate. (Note that P() and V() operations
can be started in any order, but their completions must alternate.) If the initial
value of the semaphore is 1, which is the case for critical sections, the first opera-
tion completed must be P(). If a V() operation is attempted first, the V() operation
will block its caller. Similarly, if the initial value of the semaphore is 0, the first
completed operation must be V(). Thus, the P() and V() operations of a binary
semaphore may block the calling threads. Recall that counting semaphores have
a blocking P() operation, but the V() operation never blocks the calling thread.

A third type of synchronization object, called a mutex lock or simply lock,
can also be used to solve the critical section problem. (Locks can provide mutual
exclusion but not condition synchronization.) The operations on a lock are named
lock() and unlock(). The Mutex pattern for locks and semaphores looks the same:

mutexLock mutex;

Thread1 Thread2

mutex.lock(); mutex.lock();
/* critical section */ /* critical section */
mutex.unlock(); mutex.unlock();
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Unlike a semaphore, a lock has an owner, and ownership plays an important
role in the behavior of a lock:

ž A thread requests ownership of lock L by calling L.lock().
ž A thread that calls L.lock() becomes the owner if no other thread owns the

lock; otherwise, the thread is blocked.
ž A thread releases its ownership of L by calling L.unlock(). If the thread

does not own L, the call to L.unlock() generates an error.
ž A thread that already owns lock L and calls L.lock() again is not blocked.

In fact, it is common for a thread to request and receive ownership of a lock
that it already owns. But the owning thread must call L.unlock() the same
number of times that it called L.lock() before another thread can become
L’s owner.

ž A lock that allows its owning thread to lock it again is called a recur-
sive lock.

Locks are commonly used in the methods of classes. This is illustrated by the
following class:

class lockableObject {
public void F() {

mutex.lock();
...;
mutex.unlock();

}
public void G() {

mutex.lock();
...; F(); ...; // method G() calls method F()
mutex.unlock();

}
private mutexLock mutex;

}

Lock mutex in class lockableObject is used to turn methods F() and G()
into critical sections. Thus, only one thread at a time can execute inside a
method of a lockableObject. When a thread calls method G(), the mutex is
locked. When method G() calls method F(), mutex.lock() is executed in F(),
but the calling thread is not blocked since it already owns mutex. If mutex were
a binary semaphore instead of a lock, the call from G() to F() would block
the calling thread when mutex.P() was executed in F(). (Recall that comple-
tions of P() and V() operations on a binary semaphore must alternate.) This
would create a deadlock since no other threads would be able execute inside
F() or G().
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There are several differences between locks and binary semaphores:

ž For a binary semaphore, if two calls are made to P() without any intervening
call to V(), the second call will block. But a thread that owns a lock and
requests ownership again is not blocked. (Beware of the fact that locks are
not always recursive, so check the documentation before using a lock.)

ž The owner for successive calls to lock() and unlock() must be the same
thread. But successive calls to P() and V () can be made by different threads.

Since locks are more flexible when it comes to calling methods, we will
typically use locks instead of semaphores to create lockable objects. However, we
will encounter situations where it is not possible to use locks without violating the
ownership restriction. In such situations, we use binary or counting semaphores.

3.4 IMPLEMENTING SEMAPHORES

Semaphores can be implemented at the user level, the operating system level,
or with hardware support. There are no commercial operating systems or
any programming languages that we are aware of that provide semaphores
supporting program replay. In this section we discuss how to implement
semaphores. Later we present user-level semaphore implementations in Java and
C++/Win32/Pthreads. We also show how these implementations can be extended
to support execution tracing and replay, as well as an interesting testing technique.

3.4.1 Implementing P() and V()

Listings 3.3 and 3.4 show several possible implementations of operations P()
and V(). These implementations illustrate various mechanisms for blocking and
unblocking threads. Implementations 1 and 2 in Listing 3.3 are for P() and
V() operations on counting semaphores. These implementations differ in how
they handle the wait operation in P(). Implementation 1 uses busy-waiting to
delay threads. Notice that when a waiting thread is awakened in P(), it must
recheck the value of permits. It is possible that an awakened thread will always
find that the value of permits is 0 and will thus never be allowed to complete
its P() operation. Semaphores with this type of implementation are called weak
semaphores.

Implementation 2 blocks waiting threads in a queue until they are notified.
Blocking the threads avoids wasted CPU cycles but requires support from the
underlying language or operating system. When a thread blocked in P() is awak-
ened by a V() operation, the thread is allowed to complete its P() operation. This
implements a strong semaphore. The Java class countingSemaphore presented
later is based on Implementation 2.
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// Implementation 1 uses semi-busy-waiting.
P(): while (permits == 0) {

Sleep(..); // voluntarily relinquish CPU
}
permits = permits - 1;

V(): permits = permits + 1;

// Implementation 2 uses a queue of blocked threads; permits may be negative.
P(): permits = permits - 1;

if (permits < 0) wait on a queue of blocked threads until notified;
V(): permits = permits + 1;

if (permits <= 0) notify one waiting thread;

Listing 3.3 Implementations of P() and V() for counting semaphores.

//Implementation 3 uses two queues of blocked threads. V() may block calling
//thread.
P(): if (permits == 0)

wait in a queue of blocked threads until notified;
permits = 0;
if (queue of threads blocked in V() is not empty)

notify one blocked thread in V();

V(): if (permits == 1)
wait in a queue of blocked threads until notified;

permits = 1;
if (queue of threads blocked in P() is not empty)

notify one blocked thread in P();

Listing 3.4 Implementation of P() and V() for binary semaphores.

Implementation 3 in Listing 3.4 is for a (strong) binary semaphore. In Imple-
mentation 3, a thread executing s.V() on a binary semaphore s will be blocked
if permits has the value 1. According to this implementation, the invariant for a
binary semaphore s is the following:

((the initial value of s (which is 0 or 1))

+ (the number of completed s.V () operations)
− (the number of completed s.P () operations)) = 0 or 1.

Many books that define binary semaphores do not clearly indicate whether
the V() operation is blocking or nonblocking. In this book we use a
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blocking V() operation. Java class binarySemaphore presented later is based on
Implementation 3.

An implementation of P() and V() must ensure that mutual exclusion holds
when the shared variables and queues in the implementation are accessed. Con-
sider Implementation 1 in Listing 3.3. Suppose that the value of permits is 1. If
several threads perform a P() operation at about the same time, one of the threads
should decrement permits to 0 and the other threads should wait. Implementa-
tions of P() and V() can solve this n-thread critical section problem for shared
variable permits by using one of the software or hardware solutions discussed in
Chapter 2:

P(): entry-section;
while (permits == 0) {

exit-section;
; // null-statement
entry-section;

};
permits = permits - 1;
exit-section;

V(): entry-section;
permits = permits + 1;
exit-section;

Operations P() and V() are now atomic actions.
Other solutions to the critical section problem can be used in the implementa-

tion of P() and V() if they are available. Java provides a construct that is similar
to the mutex lock mentioned in Section 3.3. Java locks are used in the Java
semaphore implementations presented in Section 3.6. The semaphore implemen-
tations that we have seen so far can be implemented at the user level. Semaphores
can also be implemented at the operating system level. Listing 3.5 shows imple-
mentations of P() and V() as operations in the kernel of an operating system.
Critical sections are created by disabling and enabling interrupts. For a shared-
memory multiprocessor machine, disabling interrupts may not work, so atomic
hardware instructions like those described in Section 2.3 can be used. [Andrews
2000] describes how to implement semaphores in the kernel.

3.4.2 VP() Operation

An additional semaphore operation that we use in this book is the VP() operation
[Tai and Carver 1996]. Instead of writing

s.V();
t.P();
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P(s): disable interrupts;
permits = permits - 1;
if (permits < 0) {

add the calling thread to the queue for s and change its state to blocked;
schedule another thread;

}
enable interrupts;

V(s): disable interrupts;
permits = permits + 1;
if (permits <= 0) {

select a thread from the queue for s; change the thread’s state to ready;
}
enable interrupts;

Listing 3.5 Implementation of P() and V() in the kernel of an operating system.

we combine the separate V() and P() operations into a single atomic VP()
operation:

t.VP(s);

An execution of t.VP(s) is equivalent to s.V(); t.P(), except that during the exe-
cution of t.VP(s), no intervening P(), V(), or VP() operations are allowed to be
started on s and t .

We make the restriction that t.VP(s) can only be used in cases where the V()
operation on s cannot block the calling thread. This means that s is a counting
semaphore, or s is or a binary semaphore that is guaranteed to be in a state in
which a V() operation will not block. We use the VP() operation extensively in
Chapter 4, where due to the particular way in which we use VP(), this restriction
is always guaranteed to be satisfied.

Consider the following program fragment:

binarySemaphore t(0);

Thread1 Thread2

s.V(); t.P();
t.P();

Assume that a context switch occurs immediately after Thread1 executes the
s.V() operation. Then it is possible that the t.P() operation in Thread2 will be
executed before the t.P() in Thread1 is executed. On the other hand, if t.VP(s)
is used in Thread1, a context switch is still possible after the s.V() part of the
VP() operation, but the t.P() part of the VP() operation is guaranteed to block
Thread1 before the t.P() operation blocks Thread2.
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A context switch between successive V() and P() operations is often a source
of subtle programming errors. A V() operation followed by a P() operation
appears in the exit-before-wait pattern:

mutex.V(); // exit critical section
someCondition.P(); // wait until some condition is true

A thread T that executes mutex.V() releases mutual exclusion. Thus, other threads
may enter their critical sections and perform their mutex.V() and someCondi-
tion.P() operations before thread T has a chance to execute someCondition.P().
This can create a problem, which is often in the form of a deadlock. Further-
more, an equivalent solution that does not use the exit-before-wait pattern can
be difficult to find. The VP() operation removes these types of errors and, as we
will see in later chapters, VP() will prove to be helpful for building classes that
support testing and debugging.

The implementation of t.VP(s) is a combination of the implementations of
V() and P() with one complication: Mutual exclusion must be obtained for both
semaphores s and t when the VP() operation starts. This is necessary to prevent
any other operations on s and t from completing while the VP() operation is
in progress. However, the locking of s and t must be done carefully to avoid a
deadlock. An implementation of VP() is presented in Section 3.6.

3.5 SEMAPHORE-BASED SOLUTIONS TO CONCURRENT
PROGRAMMING PROBLEMS

In this section we present solutions to various classical synchronization problems.
These problems were developed to demonstrate that a particular synchronization
construct could be used to solve a commonly occurring synchronization problem.

3.5.1 Event Ordering

Assume that code segment C1 in Thread1 has to be executed after code segment
C2 in Thread2 . Let s be a counting or binary semaphore initialized to 0.

Thread1 Thread2

s.P(); C2;
C1; s.V();

The s.P() operation will block Thread1 until Thread2 does its s.V() operation.
This guarantees that code segment C1 is executed after segment C2.

3.5.2 Bounded Buffer

The bounded-buffer problem [Dijkstra 1965] was introduced in Chapter 1. A
bounded buffer has n slots. Each slot is used to store one item. Items are deposited
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int buffer[ ] = new int[n];
countingSemaphore emptySlots(n);
countingSemaphore fullSlots(0);

Producer {
int in = 0;
int item;
...
/* produce item */
emptySlots.P(); // wait if there are no empty slots
buffer[in] = item; // in is the index for a deposit
in = (in + 1) % n; // 0 ≤ in < n; and in = (out+#items in buffer)%n
fullSlots.V(); // signal that a slot was filled
...

}

Consumer {
int out = 0;
int item;
fullSlots.P(); // wait if there are no full slots
item = buffer[out]; // out is the index for a withdraw
out = (out + 1) % n; // 0 ≤ out < n
emptySlots.V(); // signal that a slot was emptied
/* consume item */

}

Listing 3.6 Bounded buffer using semaphores.

into the buffer by a single producer and withdrawn from the buffer by a single
consumer. A producer is not permitted to deposit an item when all the slots
are full. A consumer is not permitted to withdraw an item when all the slots
are empty.

The solution to the bounded-buffer problem in Listing 3.6 uses two counting
semaphores for condition synchronization. Semaphores fullSlots and emptySlots
are used as resource counters, counting the full and empty slots, respectively, in
the buffer.

countingSemaphore fullSlots = 0; // the number of full slots
countingSemaphore emptySlots = n; // the number of empty slots

The condition (number of full slots+number of empty slots == n) is true before
and after each deposit and withdraw operation. The producer deposits items into
slot buffer[in] and the consumer withdraws items from slot buffer[out]. Since
in and out cannot have the same value when the buffer is accessed, no critical
section is required for accessing the slots in the buffer.
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3.5.3 Dining Philosophers

There are n philosophers who spend their time eating and thinking [Dijkstra
1971]. They sit at a table with n seats. A bowl of rice sits in the center of
the table. There is one chopstick between each pair of philosophers. When a
philosopher is hungry, she picks up the two chopsticks that are next to her one at
a time. When she gets her chopsticks, she holds them until she is finished eating.
Then she puts down her chopsticks one at a time and goes back to thinking.

Solutions to the dining philosophers problem are required to be free from
deadlock and starvation. In fact, the dining philosophers problem is the origin of
the term starvation, which in this case refers to the possibility that a philosopher
will literally starve if not allowed to eat. A classical deadlock situation is created
in solutions that use a hold-and-wait policy. This policy allows a philosopher
to hold one chopstick, which she is not willing to relinquish, while waiting on
another chopstick.

In general, deadlocks can be avoided by preventing threads from holding some
resources while waiting on others. This can be done by making a blocked thread
give back its resources so that other threads will have enough, by forcing a
thread to request all of its resources at once, or by ordering resource requests in
a way that prevents deadlocks from occurring (see Section 3.7.3). Despite our
best efforts, deadlocks may still occur, in which case deadlock detection becomes
important. In Section 3.8.4 we describe a deadlock detection scheme that is built
into our semaphore and lock classes.

An additional property, called maximal parallelism, may also be required. This
property is satisfied by a solution that allows a philosopher to eat as long as her
neighbors are not eating. This requirement is violated in hold-and-wait situations,
where neighboring philosophers each hold only one chopstick and cannot eat.

Solution 1 In the solution in Listing 3.7, all n philosophers pick up their chop-
sticks in the same order. Each chopstick is represented as a binary semaphore,
which serves as a simple resource counter that is initialized to 1. Picking up a
chopstick is implemented as a P() operation, and releasing a chopstick is imple-
mented as a V() operation.

For a program with five philosophers, the following execution sequence is
possible:

ž Philosopher 0 completes chopsticks[0].P() and has a context switch.
ž Philosopher 1 completes chopsticks[1].P() and has a context switch.
ž Philosopher 2 completes chopsticks[2].P() and has a context switch.
ž Philosopher 3 completes chopsticks[3].P() and has a context switch.
ž Philosopher 4 completes chopsticks[4].P() and is blocked at chopstick[0].P().
ž Each of philosophers 0, 1, 2, and 3 resumes execution and is blocked on

her next P() operation.

Now all five philosophers are blocked. A global deadlock occurs since each
philosopher holds her left chopstick and waits forever for her right chopstick.
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binarySemaphore chopsticks[ ] = new binarySemaphore[n];
for (int j = 0; j < n; j++) chopsticks[j] = new binarySemaphore(1);

philosopher(int i /* 0..n-1 */) {
while (true) {

/* think */
chopsticks[i].P(); // pick up left chopstick
chopsticks[(i+1) % n].P(); // pick up right chopstick
/* eat */
chopsticks[i].V(); // put down left chopstick
chopsticks[(i+1) % n].V(); // put down right chopstick

}
}

Listing 3.7 Dining philosophers using semaphores: Solution 1.

Solution 2 This solution is the same as Solution 1 except that only (n − 1)
philosophers are allowed to sit at a table that has n seats. A semaphore seats
with initial value (n − 1) is used as a resource counter to count the number of
seats available. Each philosopher executes seats.P() before she picks up her left
chopstick and seats.V() after she puts down her right chopstick. This solution
does not satisfy maximal parallelism since it is possible that two neighboring
philosophers hold a single chopstick but are unwilling to let each other eat.
(There are enough chopsticks for every other philosopher to eat but only one
actually does.) This solution is deadlock-free. If semaphores with first-come-
first-serve (FCFS) P() and V() operations are used (see Section 3.6), this solution
is also starvation free.

Solution 3 This solution is the same as Solution 1 except that one philosopher
is designated as the “odd” philosopher. The odd philosopher picks up her right
chopstick first (instead of her left chopstick). This solution is deadlock-free, and
it is starvation free if semaphores with FCFS P() and V() operations are used.
This solution does not satisfy maximal-parallelism.

Solution 4 In the solution in Listing 3.8, a philosopher picks up two chopsticks
only if both of them are available. Each philosopher has three possible states:
thinking, hungry, and eating. A hungry philosopher can eat if her two neighbors
are not eating. After eating, a philosopher unblocks a hungry neighbor who is
able to eat. This solution is deadlock-free and it satisfies maximal parallelism,
but it is not starvation-free. A hungry philosopher will starve if whenever one of
her neighbors puts her chopstick down the neighbor on her other side is eating.
This scheme can be extended to prevent starvation even if the semaphores are
not FCFS (see Section 4.2.3).

The key to this solution is the self[k].V() operation in function test(). Array
self[] is an array of semaphores used to block philosophers who are unable to eat.
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final int thinking = 0; final int hungry = 1; final int eating = 2;
int state[] = new int[n];
for (int j = 0; j < n; j++) state[j] = thinking;
// mutex provides mutual exclusion for accessing state[].
binarySemaphore mutex = new binarySemaphore(1);
// philosopher i blocks herself on self[i] when she is hungry but unable to eat
binarySemaphore self[] = new binarySemaphore[n];
for (int j = 0; j < n; j++) self[j] = new binarySemaphore(0);

philosopher(int i /* 0..n-1 */) {
while (true) {

/* think */
mutex.P()
state[i] = hungry;
test(i); // performs self[i].V() if philosopher i can eat
mutex.V();
self[i].P(); // self[i].P() will not block if self[i].V() was
/* eat */ // performed during call to test(i)
mutex.P();
state[i] = thinking;
test((n + i - 1) %n); // unblock left neighbor if she is hungry and can eat
test((i +1) %n); // unblock right neighbor if she is hungry and can eat
mutex.V();

}
}
void test(int k /* 0..n-1 */) {
// philosopher i calls test(i) to check whether she can eat.
// philosopher i calls test ((n + i - 1) % n) when she is finished eating to
// unblock a hungry left neighbor.
// philosopher i calls test((i + 1) % n) when she is finished eating to
// unblock a hungry right neighbor.

if ((state[k] == hungry) && (state[(k+n-1) % n)] != eating) &&
(state[(k+1) % n] != eating)) {

state[k] = eating;
self[k].V(); // unblock philosopher i’s neighbor, or guarantee

} // that philosopher i will not block on self[i].P().
}

Listing 3.8 Dining philosophers using semaphores: Solution 4.

Philosopher i blocks itself on semaphore self[i] when she is hungry but unable
to eat. Philosopher i ’s first call to test() is to check whether her neighbors are
eating:

ž If neither neighbor is eating, Philosopher i executes self[i].V() in function
test(). Since only Philosopher i executes a P() operation on self[i], and
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since Philosopher i is obviously not blocked on semaphore self[i] at the
time she executes self[i].V(), no thread is unblocked by this V() operation.
Furthermore, since self[i] is initialized to 0, this V() operation does not block
and Philosopher i is allowed to continue. The purpose of this V() operation is
not clear until we notice that Philosopher i immediately thereafter executes
self[i].P(), which, thanks to the V() operation just performed, is guaranteed
not to block.

ž If one or both of Philosopher i’s neighbors are eating when test(i) is called,
self[i].V() is not executed, causing Philosopher i to be blocked when she
executes self[i].P().

The other two calls to test() that Philosopher i makes are to unblock hungry
neighbors that are able to eat when Philosopher i finishes eating.

3.5.4 Readers and Writers

Data is shared by multiple threads [Courtois et al. 1971]. When a thread reads
(writes) the shared data, it is considered to be a reader (writer). Readers may
access the shared data concurrently, but a writer always has exclusive access.
Table 3.1 shows six different strategies for controlling how readers and writers
access the shared data. These strategies fall into one of three categories based on
whether readers or writers get priority when they both wish to access the data:

1. R=W: readers and writers have equal priority and are served together in
FCFS order.

2. R>W: readers generally have a higher priority than writers.
3. R<W: readers generally have a lower priority than writers.

Several strategies exist within each category due to changing priorities in
specific situations. The strategies differ in the conditions under which permission

TABLE 3.1 Strategies for the Readers and Writers Problem

Access
Strategy Description

R=W.1 One reader or one writer with equal priority
R=W.2 Many readers or one writer with equal priority
R>W.1 Many readers or one writer, with readers having a higher priority
R>W.2 Same as R>W.1 except that when a reader arrives, if no other reader is

reading or waiting, it waits until all writers that arrived earlier have
finished

R<W.1 Many readers or one writer, with writers having a higher priority
R<W.2 Same as R<W.1 except that when a writer arrives, if no other writer is

writing or waiting, the arriving writer waits until all readers that
arrived earlier have finished
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to read or write will be granted and, in some cases, permission may never be
granted:

ž In strategies R>W.1 and R>W.2, writers will starve if before a group of
readers finishes reading there is always another reader requesting to read.

ž In strategies R<W.1 and R<W.2, readers will starve if before a writer
finishes writing there is always another writer requesting to write.

ž In strategies R=W.1 and R=W.2, no readers or writers will starve.

Figure 3.9 compares strategies R<W.1 and R<W.2. This scenario contains
events for two readers and two writers. In the shaded part at the top, Reader 1,
Reader 2, and Writer 2 issue a request after Writer 1 finishes writing. Below
the dashed line, the scenario is completed using the two different strategies. For
strategy R<W.1, Writer 2 writes before the readers read. For strategy R<W.2,
both readers are allowed to read before Writer 2 writes. Strategy R<W.2 requires
Writer 2 to wait until the readers that arrived earlier have finished since Writer 2
requested to write when no other writer was writing or waiting. We are assuming
that multiple request events can occur before a decision is made as to whether
to allow a reader or writer to start. This assumption is important in order to
distinguish between the various strategies.

Figure 3.10 compares strategies R>W.1 and R>W.2. This scenario contains
events for three writers and one reader. In the shaded part at the top, Reader
1, Writer 2, and Writer 3 issue a request while Writer 1 is writing. For strategy
R>W.1, Reader 1 reads before the writers write. For strategy R>W.2, both
writers are allowed to write before Reader 1 reads. This is because Reader 1
requested to read when no other reader was reading or waiting, so Reader 1 must
wait until the writers who arrived earlier have finished.

In our solutions to the readers and writers problem, threads execute Read()
and Write() operations of the following form:

Read() { Write() {
entry-section entry-section
read write
exit-section exit-section

} }

The entry- and exit-sections implement one of the strategies in Table 3.1.
Below, we show implementations for three of the strategies. The reader will
surely agree that these implementations offer a terrific test of one’s proficiency
with semaphores.

R>W.1 This strategy gives readers a higher priority than writers and may cause
waiting writers to starve. In Listing 3.11, semaphore mutex provides mutual
exclusion for the Read() and Write() operations, while semaphores readers que
and writers que implement the Condition Queue pattern from Section 3.2.2. In
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Writer1 Reader1 Writer2

R<W.1

Start W2

End W2

Start R1
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Start R1

End R1
End R2

Start R2

Req R1
Req R2

Req W2

Req W1

Start W1

End W1

Reader2

Figure 3.9 Comparing strategies R<W.1 and R<W.2.

operation Write(), a writer can write if no readers are reading and no writers
are writing. Otherwise, the writer releases mutual exclusion and blocks itself by
executing writers que.P() The VP() operation ensures that delayed writers enter
the writer que in the same order that they entered operation Write().

In operation Read(), readers can read if no writers are writing; otherwise,
readers block themselves by executing readers que.P(). At the end of the read
operation, a reader checks to see if any other readers are still reading. If not,
it signals a writer blocked on writers que. A continuous stream of readers will
cause waiting writers to starve.
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Writer1 Writer2 Writer3 Reader1

R>W.1
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Figure 3.10 Comparing strategies R > W.1 and R > W.2.

At the end of a write operation, waiting readers have priority. If readers are
waiting in the readers que, one of them is signaled. This first reader checks to
see if any more readers are waiting. If so, it signals the second reader, which sig-
nals the third, and so on. This cascaded wakeup continues until no more readers
are waiting. If no readers are waiting when a writer finishes, a waiting writer is
signaled.

This implementation illustrates another important semaphore pattern, called
passing-the-baton [Andrews 2000]. Notice that delayed readers and writers
exit their critical sections before they block themselves on readers que.P() or
writers que.P(). This is part of the exit-before-wait pattern mentioned earlier.
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int activeReaders = 0; // number of active readers
int activeWriters = 0; // number of active writers
int waitingWriters = 0; // number of waiting writers
int waitingReaders = 0; // number of waiting readers
binarySemaphore mutex = new binarySemaphore(1); // exclusion
binarySemaphore readers_que = new binarySemaphore(0); // waiting readers
binarySemaphore writers_que = new binarySemaphore(0); // waiting writers
sharedData x ... ; // x is shared data

Read() { Write() {
mutex.P(); mutex.P();
if (activeWriters > 0) { if (activeReaders > 0 ||

activeWriters > 0 ) {
waitingReaders++; waitingWriters++;
readers_que.VP(mutex); writers_que.VP(mutex);

} }
activeReaders++; activeWriters++;
if (waitingReaders > 0) { mutex.V();

waitingReaders--;
readers_que.V(); /* write x */

}
else mutex.P();

mutex.V(); activeWriters--;
if (waitingReaders > 0) {

/* read x */ waitingReaders--;
readers_que.V();

mutex.P(); }
activeReaders--; else if (waitingWriters > 0) {
if (activeReaders == 0 && waitingWriters--;

waitingWriters > 0) { writers_que.V();
waitingWriters--; }
writers_que.V(); else

} mutex.V();
else }

mutex.V();
}

Listing 3.11 Strategy R>W.1.

However, after these delayed threads are signaled, they never execute mutex.P()
to reenter the critical section. That is, we expect to see readers executing

readers_que.VP(mutex); // exit the critical section
// (mutex.V()) and (readers_que.P())

mutex.P(); // reenter the critical section before continuing
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but the mutex.P() operation is missing. To understand why this operation is not
needed, it helps to think of mutual exclusion as a baton that is passed from
thread to thread. When a waiting thread is signaled, it receives the baton from the
signaling thread. Possession of the baton gives the thread permission to execute
in its critical section. When that thread signals another waiting thread, the baton
is passed again. When there are no more waiting threads to signal, a mutex.V()
operation is performed to release mutual exclusion. This will allow some thread
to complete a future mutex.P() operation and enter its critical section for the
first time.

This technique is implemented using an if-statement, such as the one used in
the cascaded wakeup of readers:

if (waitingReaders > 0) { // if another reader is waiting
waitingReaders--;
readers_que.V(); // then pass the baton to a reader (i.e., do not

// release mutual exclusion)
}
else

mutex.V(); // else release mutual exclusion

When a waiting reader is awakened, it receives mutual exclusion for accessing
shared variables activeReaders and waitingReaders. If another reader is waiting,
the baton is passed to that reader. If no more readers are waiting, mutual exclusion
is released by executing mutex.V(). Andrews [1989] shows how to apply passing-
the-baton to a wide variety of synchronization problems.

R>W.2 This strategy allows concurrent reading and generally gives readers
a higher priority than writers. Writers have priority in the following situation:
When a reader requests to read, if it is a lead reader (i.e., no other reader is
reading or waiting), it waits until all writers that arrived earlier have finished
writing. This strategy may cause waiting writers to starve.

In Listing 3.12, when a reader R executes Read():

ž If one or more other readers are reading, R starts reading immediately.
ž If one or more other readers are waiting for writers to finish, R is blocked

on mutex.
ž If no reader is reading or waiting, R is a lead reader, so R executes

writers r que.P(). If a writer is writing, R will be blocked on writers r que
behind any waiting writers that arrived before R. (Writers that arrived before
R executed writers r que.P() before R did.) Otherwise, R can start reading,
and writers will be blocked when they execute writers r que.P().

When a Write() operation ends, semaphore writers r que is signaled. Waiting
writers that arrived before a lead reader will be ahead of the reader in the queue
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int activeReaders = 0; // number of active readers
mutexLock mutex = new mutexLock(); // mutual exclusion for activeReaders
// condition queue for waiting writers and the first waiting reader
binarySemaphore writers_r_que = new binarySemaphore(1);
sharedData x ... ; // x is shared data

Read() {
mutex.lock(); // block readers if lead reader waiting in writers_r_que
++activeReaders;
if (activeReaders == 1)

writers_r_que.P(); // block lead reader if a writer is writing
mutex.unlock();

/* read x */

mutex.lock();
--activeReaders;
if (activeReaders == 0)

writers_r_que.V(); // allow waiting writers, if any, to write
mutex.unlock();

}

Write() {
writers_r_que.P(); // block until no readers are reading or waiting and
/* write x */ // no writers are writing
writers_r_que.V(); // signal lead reader or a writer at the front of the queue

}

Listing 3.12 Strategy R>W.2.

for writers r que; thus, the lead reader will have to wait for these writers to
finish writing.

This solution is interesting because it violates the exit-before-wait pattern
described earlier. As a rule, a thread will exit a critical section before blocking
itself on a P() operation. However, lead readers violate this rule when they
execute writers r que.P() without first executing mutex.V() to exit the critical
section. This is a key part of the solution. Only a lead reader (i.e., when
activeReaders == 1) can enter the queue for writers r que since any other readers
are blocked by mutex.P() at the beginning of the read operation. When the lead
reader is released by writers r que.V(), the lead reader allows the other waiting
readers to enter the critical section by signaling mutex.V(). These other readers
will not execute writers r que.P() since (activeReaders == 1) is true only for the
lead reader. (Note that the name of the semaphore writers r que indicates that
multiple writers but only one reader may be blocked on the semaphore.)
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R<W.2 This strategy allows concurrent reading and generally gives writers
a higher priority than readers. Readers have priority in the following situation:
When a writer requests to write, if it is a lead writer (i.e., no other writer is writing
or waiting), it waits until all readers that arrived earlier have finished reading.
This strategy and strategy R>W.2 are symmetrical. The solution in Listing 3.13
for R<W.2 differs from the solution in Listing 3.12 for R>W.2 as follows:

ž Semaphore readers w que is used to allow a lead writer to block readers.
Only one writer (a lead writer) can be blocked in this queue.

ž Semaphore writers r que is renamed writers que, since readers are never
blocked in this queue. (When a reader executes writers que.P() in its entry-
section, it will never block; why? See Exercise 3.3.)

ž Variable waitingOrWritingWriters is used to count the number of waiting
or writing writers. At the end of a write operation, readers are permitted to
read only if there are no waiting or writing writers.

When a writer W executes Write():

ž If one or more other writers are waiting for readers to finish, W is blocked
on mutex w.

ž If no writer is writing or waiting, W is a lead writer, so W executes
readers w que.P(). (If a writer is writing, waitingOrWritingWriters will
be greater than 1 after it is incremented by W, so W will not execute
readers w que.P().) If a reader is reading, W will be blocked on
readers w que behind any waiting readers; otherwise, W can start writing,
and readers will be blocked when they execute readers w que.P().

ž W can be followed by a stream of writers. When the last of these writers fin-
ishes, it executes readers w que.V() to signal waiting readers. If a finishing
writer always finds that another writer is waiting, readers will starve.

The use of readers w que ensures that readers that arrive before a lead
writer have a higher priority. This is because readers and lead writers both call
readers w que.P(), and they are served in FCFS order. When a reader blocked in
readers w que is given permission to read, it executes readers w que.V() to sig-
nal the next waiting reader, who executes readers w que.V() to signal the next
waiting reader, and so on. This cascaded wakeup continues until there are no
more waiting readers or until the readers w que.V() operation wakes up a lead
writer. The lead writer executes writers que.P() to block itself until the readers
have finished. The last reader executes writers que.V() to signal the lead writer
that readers have finished.

3.5.5 Simulating Counting Semaphores

Suppose that a system provides binary semaphores but not counting semaphores.
Listing 3.14 shows how to use binary semaphores to implement the P() and
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int activeReaders = 0; // number of active readers
int waitingOrWritingWriters = 0; // number of writers waiting or writing
mutexLock mutex_r = new mutexLock(); // exclusion for activeReaders
// exclusion for waitingOrWritingWriters
mutexLock mutex_w = new mutexLock();
binarySemaphore writers_que = new binarySemaphore(1); // waiting writers
// condition queue for waiting readers and the first waiting writer
binarySemaphore readers_w_que = new binarySemaphore(1);
sharedData x ... ; // x is shared data

Read() {
readers_w_que.P(); // serve waiting readers and lead writer FCFS
mutex_r.lock();
++activeReaders;
if (activeReaders == 1)

writers_que.P(); // block writers reads are occurring
mutex_r.unlock();
readers_w_que.V(); // signal the next waiting reader or a lead writer

/* read x */

mutex_r.lock();
--activeReaders;
if (activeReaders == 0)

writers_que.V(); // allow writing
mutex_r.unlock();

}

Write () {
// if a lead writer is waiting in readers_w_que, this blocks other writers
mutex_w.lock();
++waitingOrWritingWriters;
if (waitingOrWritingWriters == 1) // true if this is a lead writer

readers_w_que.P(); // block lead writer if there are waiting readers
mutex_w.unlock();
writers_que.P(); // block if a writer is writing or a reader is reading

/* write x */

writers_que.V(); // signal writing is over; wakes up waiting writer (if any)
mutex_w.lock();
-- waitingOrWritingWriters;
if (waitingOrWritingWriters == 0) // no writers are waiting or writing

readers_w_que.V(); // so allow reading
mutex_w.unlock();

}

Listing 3.13 Strategy R<W.2.
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class countingSemaphore {
private int permits = 0;
// provides mutual exclusion for permits
private binarySemaphore mutex = new binarySemaphore(1);
// condition queue for threads blocked in P
private binarySemaphore delayQ = new binarySemaphore(0);
public void P() {

mutex.P();
--permits;
if (permits < 0){

mutex.V();
delayQ.P();

}
else

mutex.V();
}
public void V() {

mutex.P();
++permits;
if (permits <= 0)

delayQ.V();
mutex.V();

}
}

Listing 3.14 Implementing counting semaphores by using P() and V() operations on
binary semaphores.

V() operations in a countingSemaphore class. Here is a possible execution sce-
nario for four threads T1, T2, T3, and T4 that are using a countingSemaphore s

initialized to 0:

1. T1 executes s.P (): T1 decrements permits to −1 and has a context switch
immediately after completing the mutex.V() operation but before it executes
delayQ.P().

2. T2 executes s.P (): T2 decrements permits to −2 and has a context switch
immediately after completing the mutex.V() operation but before it executes
delayQ.P().

3. T3 executes s.V(): T3 increments permits to −1 and executes delayQ.V().
4. T4 executes s.V(): T4 increments permits to 0 and executes delayQ.V().

Since T3 just previously completed an s.V () operation in which the value
of delayQ was incremented to 1, T4 is blocked at delayQ.V().

5. T1 resumes execution, completes delayQ.P(), and then completes its
s.P() operation.
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6. T4 resumes execution and completes its delayQ.V() operation.
7. T2 resumes execution, completes delayQ.P(), and then completes its

s.P () operation.

In step 4, T4 executes s.V () and is blocked by the delayQ.V() operation. If
V () operations for binary semaphores are redefined so that they never block the
calling thread, this scenario would not execute correctly (see Exercise 3.5).

3.6 SEMAPHORES AND LOCKS IN JAVA

The Java language does not provide a semaphore construct, but Java’s built-
in synchronization constructs can be used to simulate counting and binary
semaphores. First, we describe how to create user-level semaphore and lock
classes. Later, we extend them with the functions that are needed for testing
and debugging. J2SE 5.0 (Java 2 Platform, Standard Edition 5.0) introduces
package java.util.concurrent, which contains a collection of synchronization
classes, including classes Semaphore and ReentrantLock. We also describe how
to use these classes.

Following is an abstract class named semaphore:

public abstract class semaphore {
protected abstract void P();
protected abstract void V();
protected semaphore(int initialPermits) {permits = initialPermits;}
protected int permits;

}

Next we show a Java countingSemaphore class that extends class semaphore and
provides implementations for methods P() and V().

3.6.1 Class countingSemaphore

The implementations of methods P() and V() in class countingSemaphore are
based on Implementation 2 in Listing 3.3, which is reproduced here:

// Implementation 2 uses a queue of blocked threads. The value of permits may be
// negative.
P(): permits = permits - 1;

if (permits < 0) wait on a queue of blocked threads

V(): permits = permits + 1;
if (permits <= 0) notify one waiting thread;

To complete this implementation, we need to provide mutual exclusion for
accessing shared variable permits and implementations for the wait and notify
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operations. Java’s built-in synchronization constructs, which include operations
wait and notify, make this easy to do.

Each Java object is associated with a built-in lock. If a thread calls a method
on an object, and the method is declared with the synchronized modifier,
the calling thread must wait until it acquires the object’s lock. Here are the
declarations of synchronized methods P() and V() in class countingSemaphore:

public synchronized void P() {...};
public synchronized void V() {...};

Only one thread at a time can execute in the synchronized methods of an object.
Java’s implementation of a synchronized method ensures that the object’s lock
is properly acquired and released. If an object’s data members are only accessed
in synchronized methods, the thread that owns the object’s lock has exclusive
access to the object’s data members.

We can use Java’s wait operation to complete the implementation of P().
A thread must hold an object’s lock before it can execute a wait operation.
(The use of synchronized ensures that this restriction is satisfied.) When a
thread executes wait, it releases the object’s lock and waits in a wait set that
is associated with the object. The thread waits until it is notified or interrupted.
(A thread T is interrupted when another thread calls T.interrupt().) Here is the
implementation of method P():

synchronized public void P() {
permit--;
if (permit<0)

try { wait(); } // same as this.wait();
catch (InterruptedException e) {}

}

If a thread is interrupted before it is notified, the thread returns from wait
by throwing InterruptedException. This is why wait usually appears in a try-
catch block. Since none of our programs use interrupts, we have elected to catch
InterruptedException with an empty catch block instead of adding the clause
“throws InterruptedException” to the header of method P(). Threads that call P()
are thus not required to handle InterruptedException, which is convenient, but
unsafe if interrupts are possible. We discuss interrupts again in Chapter 4.

A notify operation notifies one of the waiting threads, but not necessarily the
one that has been waiting the longest or the one with the highest priority. If no
threads are waiting, a notify operation does nothing. Here is method V() using
Java’s notify operation:

synchronized public void V() {
++permits;
if (permits <= 0)

notify(); // same as this.notify()
}
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public final class countingSemaphore extends semaphore {
public countingSemaphore(int initialPermits) {super(initialPermits);}
synchronized public void P() {

permits--;
if (permits<0)

try { wait(); } catch (InterruptedException e) {}
}
synchronized public void V() {

++permits;
if (permits <=0)

notify();
}

}

Listing 3.15 Java class countingSemaphore.

A notified thread must reacquire the lock before it can begin executing in the
method. Furthermore, notified threads that are trying to reacquire an object’s lock
compete with threads that have called a method of the object and are trying to
acquire the lock for the first time. The order in which these notified and calling
threads obtain the lock is unpredictable.

The complete implementation of class countingSemaphore is shown in List-
ing 3.15. Notice that this implementation does not allow threads that call P() to
barge ahead of waiting threads and “steal” permits. When a waiting thread is
notified, it may compete with other threads for the object’s lock, but when it
eventually reacquires the lock, it will not execute wait again. Instead, it will
start executing in P() after the wait operation, which means that it will definitely
be allowed to complete its P() operation.

This Java implementation of countingSemaphore does not guarantee a FCFS
notification policy among waiting threads. That is, the order in which threads are
notified is not necessarily the same order in which the threads waited. In Chapter
4 we discuss more details about Java’s wait and notify operations and present
semaphore implementations that guarantee a FCFS notification policy for waiting
threads. These implementations are needed to build the testing and debugging
tools described later.

We should also point out that Java implementations are permitted to perform
spurious wakeups (i.e., wakeup threads without there having been any explicit
Java instructions to do so). If spurious wakeups occur, class countingSemaphore
may fail (see Exercise 3.18). A countingSemaphore implementation that deals
with spurious wakeups and interrupts is given in Chapter 4.

3.6.2 Class mutexLock

Listing 3.16 shows Java class mutexlock. Class mutexlock is more flexible than
the built-in Java locks obtained through the synchronized keyword. A
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public final class mutexLock {
private Thread owner = null; // owner of this lock
private int waiting = 0; // number of threads waiting for this lock
private int count = 0; // number of times mutexLock has been locked
private boolean free = true; // true if lock is free; false otherwise

public synchronized void lock() {
if (free) {

count = 1; free = false;
owner = Thread.currentThread();

}
else if (owner == Thread.currentThread()) {

++count;
}
else {

++waiting;
while (count > 0)

try {wait();} catch (InterruptedException ex) {}
count = 1;
owner = Thread.currentThread();

}
}

public synchronized void unlock() {
if (owner != null) {

if (owner == Thread.currentThread()) {
--count;
if (count == 0) {

owner = null;
if (waiting > 0) {

--waiting;
notify(); // free remains false

}
else {free = true;}

return;
}

else {
return;

}
}

}
throw new ownerException();

}
}

Listing 3.16 Java class mutexLock.
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mutexlock object can be locked in one method and unlocked in another, and
one method can contain multiple calls to lock() and unlock(). On the other hand,
calls to lock() and unlock() are not made automatically on method entry and exit
as they are in synchronized methods.

Member variable owner holds a reference to the current owner of the lock.
This reference is obtained by calling Thread.currentThread(), which returns the
thread that is currently executing method lock(). The value of member variable
free is true if the lock is not owned currently. A thread that calls lock() becomes
the owner if the lock is free; otherwise, the calling thread increments waiting
and blocks itself by executing wait(). When a thread calls unlock(), if there are
any waiting threads, waiting is decremented and one of the waiting threads is
notified. The notified thread is guaranteed to become the new owner, since any
threads that barge ahead of the notified thread will find that the lock is not free
and will block themselves on wait(). Member count tracks the number of times
that the owning thread has called lock(). The owning thread must call unlock()
the same number of times that it called lock() before another thread can become
the owner of the lock.

3.6.3 Class Semaphore

Package java.util.concurrent contains class Semaphore. Class Semaphore is a
counting semaphore with operations acquire() and release() instead of P() and
V(). The constructor for class Semaphore optionally accepts a fairness parameter.
When this fairness parameter is false, class Semaphore makes no guarantees
about the order in which threads acquire permits, as barging is permitted. When
the fairness parameter is set to true, the semaphore guarantees that threads
invoking acquire() obtain permits in FCFS order.

Semaphore mutex = new Semaphore(1,true); // mutex is a FCFS semaphore
// initialized to 1

Thread1 Thread2

mutex.acquire(); mutex.acquire();
/* critical section */ /* critical section */
mutex.release(); mutex.release();

Class Semaphore also provides method tryAcquire(), which acquires a permit
only if one is available at the time of invocation. Method tryAcquire() returns
true if a permit was acquired and false otherwise.

if (mutex.tryAcquire()) { ... }

A limit can be placed on the amount of time that a thread will wait for a permit:

if ( mutex.tryAcquire(50L, TimeUnit.MILLISECONDS) ) {...}
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This call to tryAcquire() acquires a permit from semaphore mutex if one becomes
available within 50 milliseconds and the current thread has not been interrupted.
Note that a call to the (untimed) tryAcquire() method does not honor the fairness
setting. Even when a semaphore has been set to use a fair ordering policy, a call
to tryAcquire() will immediately acquire a permit if one is available, whether or
not other threads are currently waiting.

3.6.4 Class ReentrantLock

Package java.util.concurrent.locks provides a mutex lock class called Rentrant-
Lock with methods lock() and unlock(). Class ReentrantLock has the same
behavior and semantics as the implicit monitor lock accessed using synchro-
nized methods and statements. Like class Semaphore, the constructor for class
ReentrantLock accepts an optional fairness parameter. When set to true, pri-
ority is given to the longest-waiting thread. Class ReentrantLock also provides
untimed and timed tryLock() methods that behave the same as the untimed and
timed tryAcquire() methods of class Semaphore.

It is recommended that a call to lock() be followed immediately by a try block:

class illustrateTryBlock {
private final ReentrantLock mutex = new ReentrantLock();
public void foo() {

mutex.lock();
try {

/* body of method foo() */
} finally { // ensures that unlock() is executed

mutex.unlock()
}

}
}

3.6.5 Example: Java Bounded Buffer

Listing 3.17 is a Java solution to the bounded buffer problem for two producers
and two consumers. This solution is based on the solution in Listing 3.6. Since
there are multiple producers and consumers, two mutexLocks are used. Lock
mutexD provides mutual exclusion among the Producers and lock mutexW pro-
vides mutual exclusion among the Consumers. (No mutual exclusion is needed
between Producers and Consumers since a Producer and a Consumer can never
access the same slot simultaneously.)

A better programming style would be to move the four semaphores and the
P() and V() operations that are executed on them into the methods of the Buffer
class. We will save this step until Chapter 4, where we present a synchroniza-
tion construct that better supports the concepts of encapsulation and information
hiding.
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public final class boundedBuffer {
public static void main (String args[]) {

final int size = 3;
Buffer b = new Buffer(size);
mutexLock mutexD = new mutexLock(); // exclusion for Producers
mutexLock mutexW = new mutexLock(); // exclusion for Consumers
countingSemaphore emptySlots = new countingSemaphore(size);
countingSemaphore fullSlots = new countingSemaphore(0);
Producer p1 = new Producer (b,emptySlots,fullSlots,mutexD,1);
Producer p2 = new Producer (b,emptySlots,fullSlots,mutexD,2);
Consumer c1 = new Consumer (b,emptySlots,fullSlots,mutexW,1);
Consumer c2 = new Consumer (b,emptySlots,fullSlots,mutexW,2);
p1.start(); c1.start();
p2.start(); c2.start();

}
}
final class Producer extends Thread {

private Buffer b = null;
private int num;
private countingSemaphore emptySlots;
private countingSemaphore fullSlots;
private mutexLock mutexD;
Producer (Buffer b, countingSemaphore emptySlots,

countingSemaphore fullSlots, mutexLock mutexD, int num) {
this.b = b; this.num = num;
this.emptySlots = emptySlots; this.fullSlots = fullSlots;
this.mutexD = mutexD;

}
public void run () {

System.out.println ("Producer Running");
for (int i = 0; i < 3; i++) {

emptySlots.P();
mutexD.lock();
b.deposit(i);
System.out.println ("Producer # "+ num + "deposited "+ i);
System.out.flush();
mutexD.unlock();
fullSlots.V();

}
}

}

Listing 3.17 Java bounded buffer using semaphores and locks.
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final class Consumer extends Thread {
private Buffer b;
private int num;
private countingSemaphore emptySlots;
private countingSemaphore fullSlots;
private mutexLock mutexW;
Consumer (Buffer b, countingSemaphore emptySlots,

countingSemaphore fullSlots, mutexLock mutexW, int num) {
this.b = b; this.num = num;
this.emptySlots = emptySlots; this.fullSlots = fullSlots;
this.mutexW = mutexW;

}
public void run () {

System.out.println ("Consumer running");
int value = 0;
for (int i = 0; i < 3; i++) {

fullSlots.P();
mutexW.lock();
value = b.withdraw();
System.out.println ("Consumer # "+ num + "withdrew "+ value);
System.out.flush();
mutexW.unlock();
emptySlots.V();

}
}

}
final class Buffer {

private int[] buffer = null;
private int in = 0, out = 0;
private int capacity;
public Buffer(int capacity) {

this.capacity = capacity;
buffer = new int[capacity];

}
public int withdraw () {

int value = buffer[out];
out = (out + 1) % capacity; // out is shared by consumers
return value;

}
public void deposit (int value) {

buffer[in] = value;
in = (in + 1) % capacity; // in is shared by producers

}
}

Listing 3.17 (continued )
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3.7 SEMAPHORES AND LOCKS IN Win32

Win32 provides four types of objects that can be used for thread synchronization:

ž Mutex
ž CRITICAL SECTION
ž Semaphore
ž Event

Mutex and CRITICAL SECTION objects are Win32 versions of the lock
objects we have been using, while Win32 Semaphores are counting semaphores.
(Unfortunately, Win32 uses “CRITICAL SECTION” as the name of the lock
instead of the name of the code segment that the lock protects.) Semaphore, Event,
and Mutex objects can be used to synchronize threads in different processes or
threads in the same process, but CRITICAL SECTION objects can only be used
to synchronize threads in the same process.

3.7.1 CRITICAL SECTION

A CRITICAL SECTION is a lock object that can be used to synchronize threads
in a single process. A CRITICAL SECTION is essentially a Win32 version of
the recursive mutexLock object described in Section 3.3:

ž A thread that calls EnterCriticalSection() is granted access if no other thread
owns the CRITICAL SECTION; otherwise, the thread is blocked.

ž A thread releases its ownership by calling LeaveCriticalSection().
A thread calling LeaveCriticalSection() must be the owner of the
CRITICAL SECTION. If a thread calls LeaveCriticalSection() when it does
not have ownership of the CRITICAL SECTION, an error occurs that may
cause another thread using EnterCriticalSection() to wait indefinitely.

ž A thread that owns a CRITICAL SECTION and requests access again
is granted access immediately. An owning thread must release a
CRITICAL SECTION the same number of times that it requested ownership
before another thread can become the owner.

Listing 3.18 shows how to use a CRITICAL SECTION. A CRITICAL
SECTION object must be initialized before it is used and deleted when it
is no longer needed. Listing 3.19 shows class win32Critical Section, which
is a wrapper for CRITICAL SECTION objects. Class win32Critical Section
hides the details of using CRITICAL SECTIONs. The methods of
win32Critical Section simply forward their calls to the corresponding
CRITICAL SECTION functions. The CRITICAL SECTION member cs is
initialized when a win32Critical Section object is constructed and deleted when
the object is destructed.
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CRITICAL_SECTION cs; // global CRITICAL_SECTION
unsigned WINAPI Thread1(LPVOID lpvThreadParm) {

EnterCriticalSection(&cs);
// access critical section
LeaveCriticalSection(&cs);
return 0;

}
unsigned WINAPI Thread2(LPVOID lpvThreadParm) {

EnterCriticalSection(&cs);
// access critical section
LeaveCriticalSection(&cs);
return 0;

}
int main() {

HANDLE threadArray[2];
unsigned winThreadID;
InitializeCriticalSection(&cs);
threadArray[0]= (HANDLE)_beginthreadex(NULL,0, Thread1, NULL,0,

&winThreadID );
threadArray[1]= (HANDLE)_beginthreadex(NULL,0, Thread2, NULL,0,

&winThreadID );
WaitForMultipleObjects(2,threadArray,TRUE,INFINITE);
CloseHandle(threadArray[0]);
CloseHandle(threadArray[1]);
DeleteCriticalSection(&cs);
return 0;

}

Listing 3.18 Using a Win32 CRITICAL SECTION.

class win32Critical_Section {
// simple class to wrap a CRITICAL_SECTION object with lock/unlock
operations
private:

CRITICAL_SECTION cs;
public:

win32Critical_Section () { InitializeCriticalSection(&cs); }
∼win32Critical_Section () { DeleteCriticalSection(&cs);}
void lock() { EnterCriticalSection(&cs);}
void unlock() { LeaveCriticalSection(&cs);}

};

Listing 3.19 C++ class win32Critical Section.
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Class win32Critical Section can be used to create lockable objects as shown
in Section 3.3:

class lockableObject {
public:

void F() {
mutex.lock();
...;
mutex.unlock();

}
void G() {

mutex.lock();
...; F(); ...; // method G() calls method F()
mutex.unlock();

}
private:

...
win32Critical_Section mutex;

};

A better approach to creating lockable objects is to take advantage of C++
semantics for constructing and destructing the local (automatic) variables of a
method. Listing 3.20 shows class template mutexLocker<> whose type param-
eter lockable specifies the type of lock (e.g., win32Critical Section) that will be
used to create a lockable object. The constructor and destructor for mutexLocker
are responsible for locking and unlocking the lockable object that is stored as
data member aLockable.

To make a method a critical section, begin the method by creating a
mutexLocker object. A new lockableObject class is shown below. Methods F()
and G() begin by constructing a mutexLocker object called locker, passing locker
a win32Critical Section lock named mutex to manage:

class lockableObject {
public:

void F() {
mutexLocker< win32Critical_Section > locker(mutex);
...

}
void G() {

mutexLocker< win32Critical_Section > locker(mutex);
...; F(); ...; // this call to F() is inside a critical section

}
private:

...
win32Critical_Section mutex;

};
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template<class lockable> class mutexLocker {
public:

mutexLocker(lockable& aLockable_) : aLockable(aLockable_) {lock();}
∼mutexLocker() { unlock();}
void lock() {aLockable.lock();}
void unlock() {aLockable.unlock();}

private:
lockable& aLockable;

};

Listing 3.20 C++ class template mutexLocker.

The locking and unlocking of mutex will occur automatically as part of the
normal allocation and deallocation of local variable locker. When locker is con-
structed, mute.lock() is called. When locker is destructed, mutex.unlock() is called.
It is now impossible to forget to unlock the critical section when leaving F() or
G(). Furthermore, the destructor for locker will be called even if an exception is
raised.

3.7.2 Mutex

A Mutex is a recursive lock with behavior similar to that of a CRITICAL
SECTION. Operations WaitForSingleObject() and ReleaseMutex() are analogous
to EnterCriticalSection() and LeaveCriticalSection(), respectively:

ž A thread that calls WaitForSingleObject() on a Mutex is granted access
to the Mutex if no other thread owns the Mutex; otherwise, the thread is
blocked.

ž A thread that calls WaitForSingleObject() on a Mutex and is granted access
to the Mutex becomes the owner of the Mutex.

ž A thread releases its ownership by calling ReleaseMutex(). A thread calling
ReleaseMutex() must be the owner of the Mutex.

ž A thread that owns a Mutex and requests access again is immediately granted
access. An owning thread must release a Mutex the same number of times
that it requested ownership, before another thread can become the owner.

Mutex objects have the following additional features:

ž A timeout can be specified on the request to access a Mutex.
ž When the Mutex is created, there is an argument that specifies whether the

thread that creates the Mutex object is to be considered as the initial owner
of the object.

Listing 3.21 shows how to use a Mutex object. You create a Mutex by calling
the CreateMutex() function. The second parameter indicates whether the thread
creating the Mutex is to be considered the initial owner of the Mutex. The last
parameter is a name that is assigned to the Mutex.
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HANDLE hMutex = NULL; // global mutex

unsigned WINAPI Thread1(LPVOID lpvThreadParm) {
// Request ownership of mutex.
DWORD rc =::WaitForSingleObject(

hMutex, // handle to the mutex
INFINITE); // wait forever (no timeout)

switch(rc) {
case WAIT_OBJECT_0: // wait completed successfully

break; // received ownership
case WAIT_FAILED: // wait failed

// received ownership but the program’s state is unknown
case WAIT_ABANDONED:
case WAIT_TIMEOUT: // timeouts impossible since INFINITE used

PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);
// see Listing 1.3 for PrintError().
break;

}

// Release ownership of mutex
rc = ::ReleaseMutex(hMutex);
if (!rc) PrintError("ReleaseMutex failed at ",__FILE__,__LINE__);

return 0;
}

unsigned WINAPI Thread2(LPVOID lpvThreadParm) {
/* same as Thread1 */

}

int main() {
HANDLE threadArray[2];

unsigned threadID;
hMutex = CreateMutex(

NULL, // no security attributes
FALSE, // this mutex is not initially owned by the creating thread
NULL); // unnamed mutex that will not be shared across processes

threadArray[0]= (HANDLE)_beginthreadex(NULL,0, Thread1, NULL,0,
&threadID );

threadArray[1]= (HANDLE)_beginthreadex(NULL,0, Thread2, NULL,0,
&threadID );

WaitForMultipleObjects(2,threadArray,TRUE,INFINITE);
CloseHandle(threadArray[0]); // release references when finished with them
CloseHandle(threadArray[1]);
CloseHandle(hMutex);
return 0;

}

Listing 3.21 Using Win32 Mutex objects.
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Unlike a CRITICAL SECTION, a Mutex object is a kernel object that can
be shared across processes. A Mutex’s name can be used in other processes
to get the handle of the Mutex by calling CreateMutex() or OpenMutex(). The
fact that Mutex objects are kernel objects means that CRITICAL SECTIONS
may be faster than Mutexes. If a thread executes EnterCriticalSection() on
a CRITICAL SECTION when the CRITICAL SECTION is not owned, an
atomic interlocked test is performed (see Sections 2.2.1 and 2.3) and the thread
continues without entering the kernel. If the CRITICAL SECTION is already
owned by a different thread, the thread enters the kernel and blocks. A call
to WaitForSingleObject() on a Mutex always enters the kernel. In practice, the
relative performance of CRITICAL SECTIONS and Mutexes depends on several
factors [Hart 2000b].

If a thread terminates while owning a Mutex, the Mutex is considered to be
abandoned. When this happens, the system will grant ownership of the Mutex to
a waiting thread. The thread that becomes the new owner receives a return code
of WAIT ABANDONED.

We can wrap a Mutex object inside a C++ class, just as we did for
CRITICAL SECTION objects. Instead of showing wrapper class win32Mutex,
later we present a C++/Win32/Pthreads version of Java class mutexLock. This
custom class guarantees FCFS notifications and can be extended to support
tracing, testing, and replay.

3.7.3 Semaphore

Win32 Semaphores are counting semaphores. Operations WaitForSingleObject()
and ReleaseSemaphore() are analogous to P() and V(), respectively. When a
Semaphore is created, the initial and maximum values of the Semaphore are
specified. The initial value must be greater than or equal to zero and less than or
equal to the maximum value. The maximum value must be greater than zero. The
value of the Semaphore can never be less than zero or greater than the maximum
value specified.

HANDLE hSemaphore;
hSemaphore = CreateSemaphore(

NULL, // no security attributes
1L, // initial count
LONG_MAX, // maximum count (defined in C++ as at least 2147483647)
NULL); // unnamed semaphore

if (!hSemaphore)
PrintError("CreateSemaphore",__FILE__,__LINE__);

The last parameter of CreateSemaphore() is a name that is assigned to the
Semaphore. Other processes can use this name to get the handle of the Semaphore
by calling CreateSemaphore() or OpenSemaphore(). A Semaphore is not consid-
ered to be owned by a thread—one thread can execute WaitForSingleObject()
on a Semaphore and another thread can call ReleaseSemaphore().
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DWORD rc = WaitForSingleObject(
hSemaphore, // handle to Semaphore
INFINITE); // no timeout

switch(rc) {
case WAIT_OBJECT_0:

break; // wait completed successfully
case WAIT_FAILED:
case WAIT_TIMEOUT: // no timeouts possible since INFINITE used

PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);
break;

}

rc = ReleaseSemaphore(
hSemaphore, // handle to Semaphore
1, // increase count by one
NULL); // not interested in previous count

if (!rc) PrintError("Release Semaphore failed at ",__FILE__,__LINE__);

The second argument for ReleaseSemaphore() specifies how much to incre-
ment the value of the Semaphore. Thus, many threads can be unblocked by a
single call to ReleaseSemaphore(). The increment amount must be greater than
zero. If the amount specified would cause the Semaphore’s value to exceed the
maximum value that was specified when the Semaphore was created, the value
is not changed and the function returns FALSE. The last argument for Releas-
eSemaphore() is the address of a long value that will receive the value of the
Semaphore’s count before incrementing the count.

When you are finished with the Semaphore, call CloseHandle() to release your
reference to it:

CloseHandle(hSemaphore);

A simple C++ wrapper class called win32Semaphore is shown in Listing 3.22.
The methods of class win32Semaphore forward their calls through to the cor-
responding Win32 Semaphore functions. To assist with testing and debugging,
we’ll need user-level lock and Semaphore classes. We can use win32Semaphore
to implement both of these classes.

Class mutexLock Class mutexLock in Listing 3.23 guarantees FCFS notifica-
tions. This C++ class is similar to the Java version of mutexLock in Listing 3.16
except for the way in which threads are blocked. The Java version blocks
threads on calls to wait(). Here we block threads by calling a P() operation
on a win32Semaphore. When a thread needs to wait in method lock(), it acquires
a win32Semaphore from a pool of available Semaphores, inserts the Semaphore
into a FCFS queue, and executes a P() operation on the Semaphore. In method
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#include <windows.h>
#include <limits.h>

const int maxDefault = LONG_MAX; //defined in C++ as at least 2147483647
class win32Semaphore {
private:

HANDLE hSemaphore;
int initialValue;
int maxValue;

public:
void P();
DWORD P(long timeout);
void V();
win32Semaphore(int initial);
win32Semaphore(int initial, int max);
∼win32Semaphore();

};
win32Semaphore :: win32Semaphore(int initial) : initialValue(initial),
maxValue(maxDefault) {

hSemaphore = CreateSemaphore(
NULL, // no security attributes
initial, // initial count
maxValue, // maximum count
NULL); // unnamed semaphore

if (!hSemaphore)
PrintError("CreateSemaphore",__FILE__,__LINE__);

}
win32Semaphore :: win32Semaphore(int initial, int max) : initialValue(initial),

maxValue(max) {
hSemaphore = CreateSemaphore(

NULL, // no security attributes
initial, // initial count
maxValue, // maximum count
NULL); // unnamed semaphore

if (!hSemaphore)
PrintError("CreateSemaphore",__FILE__,__LINE__);

}
win32Semaphore :: ∼win32Semaphore() {

DWORD rc = CloseHandle(hSemaphore);
if (!rc)

PrintError("CloseHandle",__FILE__,__LINE__);
}

Listing 3.22 Class win32Semaphore.
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void win32Semaphore :: P() {
DWORD rc = WaitForSingleObject(

hSemaphore, // handle to semaphore
INFINITE); // no timeout

if (!rc)
PrintError("WaitForSingleObject",__FILE__,__LINE__);

}
DWORD win32Semaphore :: P(long timeout) {

DWORD rc = WaitForSingleObject(
hSemaphore, // handle to semaphore
timeout); // no timeout

if (!(rc==WAIT_OBJECT_0)||(rc==WAIT_TIMEOUT))
PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);

return rc;
}
void win32Semaphore :: V() {

DWORD rc = ReleaseSemaphore(
hSemaphore, // handle to semaphore
1, // increase count by one
NULL); // not interested in previous count

if (!rc)
PrintError("ReleaseSemaphore failed at ",__FILE__,__LINE__);

}

Listing 3.22 (continued )

unlock(), ownership of the mutexLock is passed to a waiting thread by perform-
ing a V() operation on the Semaphore at the front of the queue. The unblocked
thread returns its win32Semaphore to the pool by calling release().

The FCFS queue of Semaphores maintained by class mutexLock guaran-
tees FCFS notifications for mutexLock objects. Each thread that is blocked in
method lock() is blocked on a win32Semaphore in the queue. The unlock()
operation unblocks the thread that has been blocked the longest. As we men-
tioned, win32Semaphores are acquired from a Semaphore pool and then returned
to the pool when they are no longer needed. This makes it possible to reuse
win32Semaphores instead of creating a new one each time a thread blocks. The
Semaphore pool initially contains a single Semaphore. If an attempt is made
to acquire a Semaphore when the pool is empty, the acquire() method creates
another Semaphore and adds it to the pool. This type of resource pooling is
commonly used for resources that are expensive to create.

Class countingSemaphore Class countingSemaphore in Listing 3.24 uses a
FCFS queue of win32Semaphores to implement FCFS notifications just as
mutexLock did. Class countingSemaphore also provides an implementation of the
VP() operation. An execution of t.VP(s) performs a V() operation on s followed
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class mutexLock {
// A FCFS mutex lock
private:

semaphorePool pool; // pool of semaphores
std::queue<win32Semaphore*> waitingLock; // threads blocked in lock()
unsigned long owner;
int count;
win32Semaphore mutex; // mutual exclusion for lock() and unlock()

public:
void lock();
void unlock();
mutexLock();
~mutexLock();

};
mutexLock::mutexLock(): owner(0), count(0), mutex(1) {}
mutexLock::∼mutexLock() {}
void mutexLock::lock() {

mutex.P();
if (count == 0) { count = 1; owner = GetCurrentThreadId(); }
else if (owner == GetCurrentThreadId()) {++count;}
else { // block threads

win32Semaphore* s = pool.acquire();
waitingLock.push(s); // otherwise append semaphore
mutex.V(); // release mutual exclusion before blocking
s->P(); // call to P () returns holding mutex since unlock() doesn’t release it
count = 1;
owner = GetCurrentThreadId();
pool.release(s);

}
mutex.V();

}

void mutexLock::unlock() {
mutex.P();
if (owner != 0) {

if (owner == GetCurrentThreadId()) {
--count;
if (count == 0) {

owner = 0;
if (!waitingLock.empty()) { // any threads waiting for the lock?

// wakeup longest waiting thread
win32Semaphore* oldest = waitingLock.front();

Listing 3.23 Class mutexLock.
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waitingLock.pop();
oldest->V();
// mutex not released so oldest thread completes P () next
return;

}
else { mutex.V(); return; }

}
else { mutex.V(); return; }

}
else {

std::cout << "unlock failed at line " << __LINE__ << " in "
<< __FILE__ << " with error: Calling thread is not the owner."
<< std::endl; exit(1);

}
}
else {

std::cout << "unlock failed at line " << __LINE__ << " in " << __FILE__
<< " with error: Calling thread is not the owner."<< std::endl;

exit(1);
}

}

Listing 3.23 (continued )

by a P() operation on t . The VP() operation must lock both Semaphores before
either operation is begun. This locking must be done carefully. Consider the case
where two threads are performing a VP() operation on the same two Semaphores:

Thread1 Thread2

t.VP(s); s.VP(t);

If thread1 succeeds in locking s while thread2 succeeds in locking t , neither
thread will be able to lock its other Semaphore, resulting in a deadlock. To prevent
this circular waiting condition from occurring, the locks for the two Semaphores
are always acquired in the same order. This is accomplished by giving each
Semaphore a unique ID and forcing the VP() operation to lock the Semaphore
with the lowest ID first.

The V() part of a VP() operation must satisfy the requirement that it will
not block. This is checked by VP(). If a V() is attempted on a binary Semaphore
whose permits value is 1, the VP() operation fails. If the P() part of the operation
is required to block, VP() releases both Semaphore locks and blocks the calling
thread.
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class countingSemaphore : public semaphore {
// a countingSemaphore with FCFS notifications
private:

std::queue<win32Semaphore*> waitingP; // queue of threads blocked on P
bool doP();
semaphorePool pool; // pool of semaphores
virtual bool isBinary() {return false;}

public:
countingSemaphore(int initialPermits);
void P();
void V();
void VP(semaphore* vSem);

};

countingSemaphore::countingSemaphore(int initialPermits) :
semaphore(initialPermits) {}

void countingSemaphore::P() {
lock(); // lock is inherited from class Semaphore
--permits;
if (permits>=0) {unlock(); return; }
// each thread blocks on its own semaphore
win32Semaphore* s = pool.acquire();
waitingP.push(s); // append the semaphore
unlock();
s->P(); // block on the semaphore
pool.release(s);

}

void countingSemaphore::V() {
// each thread blocks on its own semaphore

lock(); // lock semaphore
++permits;
if (permits>0) { unlock(); return; }
win32Semaphore* oldest = waitingP.front();
waitingP.pop();
oldest->V();
unlock(); // end synchronized(this) to avoid doing s.P () while

} // holding the lock on this semaphore

bool countingSemaphore::doP() {
// Called by VP() operation; checks permits and returns true if P() should block;
// false otherwise.

--permits;

Listing 3.24 C++/Win32 class countingSemaphore.
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if (permits>=0)
return false; // P () does not block

else
return true; // P () does block

}

void countingSemaphore::VP(semaphore* vSem) {
// Execute {vSem->V(); this->P();} without any intervening P () or V () operations
// on this or vSem. Return 0 if this operation fails.
// Lock the semaphores in ascending order of IDs to prevent circular deadlock (i.e.,
// T1 holds the lock of this and waits for vSem’s lock while T2 holds vSem’s lock
// and waits for the lock of this)

semaphore* first = this;
semaphore* second = vSem;
if (this->getSemaphoreID() > vSem->getSemaphoreID()) {

first = vSem;
second = this;

}
first->lock();
second->lock();
//vSem.V() must not block
if (vSem->permits==1 && vSem->isBinarySemaphore()) {
// method isBinarySemaphore() is inherited from class semaphore

std::cout << "VP failed at line " << __LINE__ << " in " << __FILE__
<< " with error: V operation will block." << std::endl;

exit(1);
}
// perform vSem.V()
vSem->V(); // okay to already hold vSem’s lock (which is first or second)

// since it is a recursive lock
// perform this->P()
bool blockingP = doP();
if (!blockingP) {

second->unlock();
first->unlock();

}
// each thread blocks on own semaphore
win32Semaphore* s = pool.acquire();
waitingP.push(s); // otherwise append blocked thread
second->unlock(); // unlock semaphores before blocking
first->unlock();
s->P(); // s is already in waitingP so FCFS is enforced
pool.release(s);

}

Listing 3.24 (continued )
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3.7.4 Events

One thread can signal the occurrence of an activity or event to one or more
other threads using a Win32 Event object. An Event can be either a manual-reset
or auto-reset Event. The state of an Event is either signaled or nonsignaled.
When an Event is created, the initial state (signaled or nonsignaled) and the
type (manual-reset or auto-reset) is specified. When the state of a manual-reset
Event object is set to signaled, it remains signaled until it is explicitly reset to
nonsignaled by the ResetEvent() function. Any number of waiting threads, or
threads that subsequently begin wait operations for the Event object specified,
can be released while the object’s state is signaled. When the state of an auto-
reset Event object is set to signaled, it remains signaled until a single waiting
thread is released; the system then automatically resets the state to nonsignaled.

The state of an Event is changed using operations SetEvent(), ResetEvent(), or
PulseEvent():

ž For an auto-reset Event, SetEvent() sets the state to signaled until one waiting
thread is released. That is, if one or more threads are waiting, one will be
released and the state will be reset to nonsignaled. If no threads are waiting,
the state will stay signaled until one thread waits, at which time the waiting
thread will be released and the state will be returned to nonsignaled. For a
manual-reset Event, all waiting threads are released and the state remains
signaled until it is reset by ResetEvent(). Setting an Event that is already in
the signaled state has no effect.

ž ResetEvent() sets the state to nonsignaled (for both manual-reset and auto-
reset Events). Resetting an Event that is already in the nonsignaled state has
no effect.

ž For a manual-reset Event, PulseEvent() sets the state to signaled, wakes up
all waiting threads, then returns the state to nonsignaled. For an auto-reset
Event, PulseEvent() sets the state to signaled, wakes up a single waiting
thread (if one is waiting), then returns the state to nonsignaled. If no threads
are waiting, PulseEvent() simply sets the state to nonsignaled and returns.

We used a manual-reset Event in the implementation of the C++/Win32 Thread
class from Chapter 1. Listing 3.25 shows several methods of class Thread.
Recall from Chapter 1 that the Thread class constructor calls Win32 function
beginthreadex() to create a new Win32 thread. Several arguments are passed to
beginthreadex(), including:

ž Thread::startThread(): the startup method for the Win32 thread.
ž (LPVOID) this: a pointer to the Thread object that is being constructed.

This pointer is forwarded to method startThread().

Method startThread() casts its void* pointer parameter to Thread* and then
calls the run() method of the Thread. When run() returns, startThread() calls
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Thread::Thread(std::auto_ptr<Runnable> runnable_) : runnable(runnable_) {
if (runnable.get() == NULL)

PrintError("Thread(std::auto_ptr<Runnable> runnable_) failed at ",
__FILE__,__LINE__);

completionEvent = CreateEvent(
NULL, // no security attributes
1, // manual reset Event
0, // initially nonsignaled
NULL); // unnamed event

hThread = (HANDLE)_beginthreadex(NULL,0, Thread::startThreadRunnable,
(LPVOID)this, CREATE_SUSPENDED, &winThreadID );

if (!hThread)
PrintError("_beginthreadex failed at ",__FILE__,__LINE__);

}

unsigned WINAPI Thread::startThread(LPVOID pVoid) {
Thread* aThread = static_cast<Thread*> (pVoid);
assert(aThread);
aThread->result = aThread->run();
aThread->setCompleted();
return reinterpret_cast<unsigned>(aThread->result);

}

void* Thread::join() {
DWORD rc = WaitForSingleObject(

completionEvent, // handle to event
INFINITE); // no timeout

if (!(rc==WAIT_OBJECT_0))
PrintError("WaitForSingleObject failed at ",__FILE__,__LINE__);

return result;
}

void Thread::setCompleted() {
DWORD rc = SetEvent(completionEvent);
if (!rc)

PrintError("SetEvent failed at ",__FILE__,__LINE__);
}

Listing 3.25 Event object in the Win32 Thread class.

setCompleted() to set the thread’s status to completed and to notify any threads
waiting in join() that the thread has completed. Methods setCompleted() and join()
are implemented using an Event called completionEvent that is created in the
Thread class constructor. A thread calling T.join() is blocked on
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completionEvent if T has not yet completed. The call to setCompleted() releases
all threads that are blocked on completionEvent and leaves completionEvent in
the signaled state. Since the completionEvent is never reset, threads that call
join() after setCompleted() is called are not blocked.

If completionEvent were an auto-reset Event, a call to setCompleted() would
release all the waiting threads and reset completionEvent to the nonsignaled state.
This would cause a problem since any threads that then called T.join() would be
blocked forever even though thread T had already completed.

3.7.5 Other Synchronization Functions

The WaitForMultipleObjects() function was described in Section 1.4, where it
was used in the main thread to wait for child threads to finish. Threads are
kernel objects and thus are either in the signaled or nonsignaled state. When a
thread is created and running, its state is nonsignaled. When the thread terminates,
it becomes signaled.

The SignalObjectAndWait() function allows the caller to signal an object atom-
ically and wait on another object. When used with semaphores, it is equivalent
to the VP() operation defined in Section 3.4.2.

DWORD SignalObjectAndWait(
HANDLE // handle to object for signal
HANDLE // handle to object for wait
DWORD // timeout interval
BOOL // alertable option: specifies whether the

// wait state can be aborted
);

Function SignalObjectAndWait() is available in Windows NT/2000 4.0 and
higher. It is not supported in Windows 95/98.

3.7.6 Example: C++/Win32 Bounded Buffer

Listing 3.26 is a Win32 solution to the bounded buffer problem that is based on
the Java version in Listing 3.17. Notice that Semaphores fullSlots and emptySlots
and locks mutexD and mutexW, which protect the Buffer, are declared outside
the Buffer class. A better design would be to encapsulate the Semaphores within
class Buffer. We will save this improvement for Chapter 4, where we also address
some of the difficulties of programming with Semaphores.

3.8 SEMAPHORES AND LOCKS IN PTHREADS

Mutex locks are part of the Pthreads (POSIX1.c) standard. Semaphores are not
a part of Pthreads, but are in POSIX1.b.
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const int capacity = 3;
class Buffer {
private:

int buffer[capacity];
int count, in, out;

public:
Buffer() : in(0), out(0), count(0) { }
int size() { return count;}
int withdraw () {

int value = 0;
value = buffer[out]; // out is shared by Consumers
out = (out + 1) % capacity;
count--;
return value;

}
void deposit (int value) {

buffer[in] = value; // in is shared by Producers
in = (in + 1) % capacity;
count++;

}
};
Buffer sharedBuffer; // 3-slot buffer
mutexLock mutexD, mutexW;
countingSemaphore emptySlots(capacity);
countingSemaphore fullSlots(0);
class Producer : public Thread {
public:

virtual void* run () {
int i;
std::cout << "producer running" << std::endl;
for (i=0; i<2; i++) {

emptySlots.P();
mutexD.lock();
sharedBuffer.deposit(i);
std::cout << "Produced: " << i << std::endl;
mutexD.unlock();
fullSlots.V();

}
return 0;

}
};

Listing 3.26 Win32 bounded buffer using countingSemaphores and mutexLocks .
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class Consumer : public Thread {
public:

virtual void* run () {
int result;
std::cout << "consumer running" << std::endl;
for (int i=0; i<2; i++) {

fullSlots.P();
mutexW.lock();
result = sharedBuffer.withdraw();
mutexW.unlock();
std::cout << "Consumed: " << result << std::endl;
emptySlots.V();

}
return 0;

}
};
int main() {

std::auto_ptr<Producer> p1(new Producer);
std::auto_ptr<Producer> p2(new Producer);
std::auto_ptr<Consumer> c1(new Consumer);
std::auto_ptr<Consumer> c2(new Consumer);
p1->start();c1->start(); p2->start();c2->start();
p1->join(); p2->join(); c1->join(); c2->join();
return(0);

}

Listing 3.26 (continued )

3.8.1 Mutex

A Pthreads mutex is a lock with behavior similar to that of a Win32 CRITICAL
SECTION. Operations pthread mutex lock() and pthread mutex unlock() are
analogous to EnterCriticalSection() and LeaveCriticalSection(), respectively:

ž A thread that calls pthread mutex lock() on a mutex is granted access to the
mutex if no other thread owns the mutex ; otherwise, the thread is blocked.

ž A thread that calls pthread mutex lock() on a mutex and is granted access
to the mutex becomes the owner of the mutex.

ž A thread releases its ownership by calling pthread mutex unlock(). A thread
calling pthread mutex unlock() must be the owner of the mutex.

ž There is a conditional wait operation pthread mutex trylock (pthread mutex
t* mutex) that will never block the calling thread. If the mutex is currently
locked, the operation returns immediately with the error code EBUSY. Oth-
erwise, the calling thread becomes the owner.
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Listing 3.27 shows how to use a Pthreads mutex. You initialize a mutex by
calling the pthread mutex init() function. The first parameter is the address of
the mutex. If you need to initialize a mutex with nondefault attributes, the second
parameter can specify the address of an attribute object. When the mutex is no
longer needed, it is destroyed by calling pthread mutex destroy().

When you declare a static mutex with default attributes, you can use the
PTHREAD MUTEX INITIALIZER macro instead of calling pthread mutex
int(). In Listing 3.27, we could have written

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

You do not need to destroy a mutex that was initialized using the PTHREAD
MUTEX INITIALIZER macro.

By default, a Pthreads mutex is not recursive, which means that a thread
should not try to lock a mutex that it already owns. However, the POSIX 1003.1
2001 standard allows a mutex’ s type attribute to be set to recursive:

pthread_mutex_t mutex;
pthread_mutexattr_t mutexAttribute;
int status = pthread_mutexattr_init (&mutexAttribute);
if (status !=0) { /* ... */ }
status = pthread_mutexattr_settype(&mutexAttribute,

PTHREAD_MUTEX_RECURSIVE);
if (status != 0) { /* ... */}
status = pthread_mutex_init(&mutex,&mutexAttribute);
if (status != 0) { /* ... */ }

If a thread that owns a recursive mutex tries to lock the mutex again, the thread
is granted access immediately. Before another thread can become the owner, an
owning thread must release a recursive mutex the same number of times that it
requested ownership.

3.8.2 Semaphore

POSIX semaphores are counting semaphores. Operations sem wait() and
sem post() are equivalent to P() and V(), respectively. POSIX semaphores have
the following properties:

ž A semaphore is not considered to be owned by a thread—one thread
can execute sem wait() on a semaphore and another thread can execute
sem post().

ž When a semaphore is created, the initial value of the semaphore is specified.
The initial value must be greater than or equal to zero and less than or equal
to the value SEM VALUE MAX.
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#include <pthread.h>
pthread_mutex_t mutex;

void* Thread1(void* arg) {
pthread_mutex_lock(&mutex);
/* critical section */
pthread_mutex_unlock(&mutex);
return NULL;

}

void* Thread2(void* arg) {
pthread_mutex_lock(&mutex);
/* critical section */
pthread_mutex_unlock(&mutex);
return NULL;

}

int main() {
pthread_t threadArray[2]; // array of thread IDs
int status; // error code
pthread_attr_t threadAttribute; // thread attribute

// initialize mutex
status = pthread_mutex_init(&mutex,NULL);
if (status != 0) { /* See Listing 1.4 for error handling */ }
// initialize the thread attribute object
status = pthread_attr_init(&threadAttribute);
if (status != 0) { /* ... */}
// set the scheduling scope attribute
status = pthread_attr_setscope(&threadAttribute,

PTHREAD_SCOPE_SYSTEM);
if (status != 0) { /* ... */}

// Create two threads and store their IDs in array threadArray
status = pthread_create(&threadArray[0], &threadAttribute, Thread1,

(void*) 1L);
if (status != 0) { /* ... */}
status = pthread_create(&threadArray[1], &threadAttribute, Thread2,

(void*) 2L);
if (status != 0) { /* ... */}
status = pthread_attr_destroy(&threadAttribute); // destroy attribute object
if (status != 0) { /* ... */}

Listing 3.27 Using Pthreads mutex objects.
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// Wait for threads to finish
status = pthread_join(threadArray[0],NULL);
if (status != 0) { /* ... */}
status = pthread_join(threadArray[1],NULL);
if (status != 0) { /* ... */}

// Destroy mutex
status = pthread_mutex_destroy(&mutex);
if (status != 0) { /* ... */ }

}

Listing 3.27 (continued )

ž Semaphore operations follow a different convention for reporting errors.
They return 0 for success. On failure, they return a value of −1 and store
the appropriate error number into errno. We use the C function perror(const
char* string) to transcribe the value of errno into a string and print that
string to stderr.

ž There is a conditional wait operation sem trywait(sem t* sem) that will
never block the calling thread. If the semaphore value is greater than 0, the
value is decremented and the operation returns immediately. Otherwise, the
operation returns immediately with the error code EAGAIN indicating that
the semaphore value was not greater than 0.

Listing 3.28 shows how Pthreads semaphore objects are used. Header file
<semaphore.h> must be included to use the semaphore operations. Semaphores
are of the type sem t. A semaphore is created by calling the sem init() function.
The first argument is the address of the semaphore. If the second argument has
a nonzero value, the semaphore can be shared between processes. With a zero
value, it can be shared only between threads in the same process. The third
argument is the initial value. When the semaphore is no longer needed, it is
destroyed by calling sem destroy().

We can create a simple C++ class that wraps POSIX semaphores, just as we
did with Win32 semaphores. Listing 3.29 shows wrapper class POSIXSemaphore.
The methods of PthreadSemaphore forward calls to the corresponding POSIX
semaphore functions. To assist with testing and debugging, we’ll need user-level
lock and semaphore classes like the ones we developed for Win32. We can use
POSIXSemaphore to implement both of these classes. The code for C++/Pthreads
classes mutexLock and countingSemaphore is identical to the code in List-
ings 3.23 and 3.24, respectively, except that class win32Semaphore should be
replaced by class POSIXSemaphore. The difference between Win32 and POSIX
is encapsulated in the semaphore classes.
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#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

sem_t s;

void* Thread1(void* arg) {
int status;
status = sem_wait(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_wait failed"); exit(status);

}
/* critical section */
status = sem_post(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_post failed"); exit(status);

}
return NULL; // implicit call to pthread_exit(NULL);

}
void* Thread2(void* arg) {

int status;
status = sem_wait(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_wait failed"); exit(status);

}
/* critical section */
status = sem_post(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_post failed"); exit(status);

}
return NULL; // implicit call to pthread_exit(NULL);

}

int main() {
pthread_t threadArray[2]; // array of thread IDs
int status; // error code
pthread_attr_t threadAttribute; // thread attribute

Listing 3.28 Using POSIX semaphore objects.
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// initialize semaphore s
status = sem_init(&s,0,1);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_init failed"); exit(status);

}
// initialize the thread attribute object
status = pthread_attr_init(&threadAttribute);
if (status != 0) { /* see Listing 1.4 for Pthreads error handling */}
// set the scheduling scope attribute
status = pthread_attr_setscope(&threadAttribute,

PTHREAD_SCOPE_SYSTEM);
if (status != 0) { /* ... */}

// Create two threads and store their IDs in array threadArray
status = pthread_create(&threadArray[0], &threadAttribute, Thread1,

(void*) 1L);
if (status != 0) { /* ... */}
status = pthread_create(&threadArray[1], &threadAttribute, Thread2,

(void*) 2L);
if (status != 0) { /* ... */}
status = pthread_attr_destroy(&threadAttribute); // destroy the attribute object
if (status != 0) { /* ... */}

// Wait for threads to finish
status = pthread_join(threadArray[0],NULL);
if (status != 0) { /* ... */}
status = pthread_join(threadArray[1],NULL);
if (status != 0) { /* ... */}

// Destroy semaphore s
status = sem_destroy(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_destroy failed"); exit(status);

}
}

Listing 3.28 (continued )

3.9 ANOTHER NOTE ON SHARED MEMORY CONSISTENCY

Recall from Section 2.5.6 the issues surrounding shared memory consistency.
Compiler and hardware optimizations may reorder read and write operations on
shared variables, making it difficult to reason about the behavior of multithreaded
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#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#include <iostream>

const int maxDefault = 999;
class POSIXSemaphore {
private:

sem_t s;
int permits;

public:
void P();
void V();
POSIXSemaphore(int initial);
~POSIXSemaphore();

};

POSIXSemaphore::POSIXSemaphore (int initial) : permits(initial) {
// assume semaphore is accessed by the threads in a single process
int status = sem_init(&s, 0, initial);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_init failed"); exit(status);

}
}
POSIXSemaphore:: ~ POSIXSemaphore () {

int status = sem_destroy(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_destroy failed"); exit(status);

}
}
void POSIXSemaphore::P() {

int status = sem_wait(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_wait failed"); exit(status);

}
}
void POSIXSemaphore::V() {

int status = sem_post(&s);
if (status !=0) {

std::cout << __FILE__ << ":" << __LINE__ << "- " << flush;
perror("sem_post failed"); exit(status);

}
}

Listing 3.29 Class POSIXSemaphore.
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programs. Fortunately, critical sections created using Java’s built-in synchroniza-
tion operations or the operations in the Win32 or Pthreads library provide mutual
exclusion and also protect against unwanted reorderings.

These synchronization operations in Java and in the thread libraries inter-
act with the memory system to ensure that shared variables accessed in critical
sections have values that are consistent across threads. For example, the shared
variable values that a thread can see when it unlocks a mutex can also be seen
by any thread that later locks the same mutex. Thus, an execution in which
shared variables are correctly protected by locks or semaphores is guaranteed to
be sequentially consistent. This guarantee allows us to ignore shared memory
consistency issues when we use locks and semaphores to create critical sections
in our programs. For this reason, we make it a rule always to access shared
variables inside critical sections. Next we will see that this rule also simplifies
testing and debugging.

3.10 TRACING, TESTING, AND REPLAY FOR SEMAPHORES
AND LOCKS

In this section we address two testing and debugging issues for programs that use
semaphores and locks. First, we describe a special testing technique for detecting
violations of mutual exclusion. Then we show how to trace and replay program
executions during debugging.

3.10.1 Nondeterministic Testing with the Lockset Algorithm

A concurrent program that uses semaphores and locks can be tested for data
races. Recall from Chapter 1 that a data race is a failure to correctly implement
critical sections for nonatomic shared variable accesses. The approach we will
use to detect data races is to monitor shared variable accesses and make sure
that each variable has been properly locked before it is accessed. Since program
executions are nondeterministic, we will need to execute the program several
times with the same test input in order to increase our chances of finding data
races. This type of testing is called nondeterministic testing.

Nondeterministic testing of a concurrent program CP involves the following
steps:

1. Select a set of inputs for CP.

2. For each input X selected, execute CP with X many times and examine
the result of each execution.

Multiple, nondeterministic executions of CP with input X may exercise different
behaviors of CP and thus may detect more failures than a single execution of CP
with input X.
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The purpose of nondeterministic testing is to exercise as many distinct pro-
gram behaviors as possible. Unfortunately, experiments have shown that repeated
executions of a concurrent program are not likely to execute different behav-
iors [Hwang et al. 1995]. In the absence of significant variations in I/O delays or
network delays, or significant changes in the system load, programs tend to exhibit
the same behavior from execution to execution. Furthermore, the probe effect
(see Section 1.7), which occurs when programs are instrumented with debugging
code, may make it impossible for some failures to be observed.

There are several techniques we can use to increase the likelihood of exercis-
ing different behaviors. One is to change the scheduling algorithm used by the
operating system (e.g., change the value of the time quantum that is used for
round-robin scheduling). However, in many commercial operating systems this
is simply not an option. The second technique is to insert Sleep(t) statements
into the program with the sleep amount t randomly chosen. Executing a Sleep
statement forces a context switch and thus indirectly affects thread scheduling.
We have implemented this second technique as an execution option for programs
that use the binarySemaphore, countingSemaphore, and mutexLock classes in our
synchronization library. When this option is specified, Sleep statements are exe-
cuted at the beginning of methods P(), V(), lock(), and unlock(). The Sleep time
is randomly chosen within a programmable range. The random delays can be
used in conjunction with the tracing and replay functions so that any failures that
are observed can also be replayed.

To detect data races, we combine nondeterministic testing with the lockset
algorithm [Savage et al. 1997]. The lockset algorithm checks that all shared
variables follow a consistent locking discipline in which every shared vari-
able is protected by a lock. Since there is no way of knowing which locks
are intended to protect which variables, we must monitor the executions and
try to infer a relationship between the locks and variables. For each variable,
we determine if there is some lock that is always held whenever the variable is
accessed.

For shared variable v, let the set CandidateLocks(v) be those locks that have
protected v during the execution so far. Thus, a lock l is in CandidateLocks(v)
if, during the execution so far, every thread that has accessed v was holding l at
the moment of the access. CandidateLocks(v) is computed as follows:

ž When a new variable v is initialized, its candidate set is considered to hold
all possible locks.

ž When v is accessed on a read or write operation by T, CandidateLocks(v)
is refined. The new value of CandidateLocks(v) is the intersection of Can-
didateLocks(v) and the set of locks held by thread T.

Based on this refinement algorithm, if some lock l protects v consistently,
it will remain in CandidateLocks(v) as CandidateLocks(v) is refined. If Candi-
dateLocks(v) becomes empty, it indicates that there is no lock that protects v

consistently. Following is the lockset algorithm:
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Thread1 LocksHeld(Thread1) CandidateLocks(s)
{} {mutex1,mutex2}

mutex1.lock(); {mutex1} {mutex1,mutex2}
s = s+1; {mutex1} {mutex1}
mutex1.unlock(); {} {mutex1}

mutex2.lock(); {mutex2} {mutex1}
s = s+1; {mutex2} {}
mutex2.unlock(); {} {}

Figure 3.30 Lockset algorithm.

// Let LocksHeld(T) denote the set of locks currently held by thread T
For each shared variable v, initialize CandidateLocks(v) to the set of all locks.
On each read or write access to v by thread T:

CandidateLocks(v) = CandidateLocks(v) ∩ LocksHeld(T);
if (CandidateLocks(v) == {}) issue a warning;

For example, in Fig. 3.30, Thread1 ’s access of shared variable s is protected
first by mutex1 then by mutex2. This is a violation of mutual exclusion that can
be detected by the lockset algorithm. CandidateLocks(s) is initialized to {mutex1,
mutex2 } and is refined as s is accessed. When Thread1 locks mutex1, Lock-
sHeld(Thread1) becomes {mutex1 }. When s is accessed in the first assignment
statement, CandidateLocks(s) becomes mutex1, which is the intersection of sets
CandidateLocks(s) and LocksHeld(Thread1). When the second assignment state-
ment is executed, Thread1 holds lock mutex2 and the only candidate lock of s

is mutex1. After the intersection of CandidateLocks(s) and LocksHeld(Thread1),
CandidateLocks(s) becomes empty. The lockset algorithm has detected that no
lock protects shared variable s consistently.

We have implemented the lockset algorithm in the mutexLock class and in the
C++ sharedVariable class template that was presented in Chapter 2:

ž We assume that threads can access a sharedVariable only after it is ini-
tialized. Thus, no refinement is performed during initialization (i.e., in the
constructor of sharedVariable).

ž Read-only variables can be accessed without locking. This means that warn-
ings are issued only after a variable has been initialized and has been
accessed by at least one write operation.

ž The refinement algorithm can be turned off to eliminate false alarms. For
example, the bounded-buffer program in Listing 3.26 can be modified to use
a buffer of sharedVariables. These variables are shared by the Producer and
Consumer threads, but no locks are needed. Even so, when this program
is executed, a warning will be issued by the lockset algorithm. When it is
determined that the warning can safely be ignored, the lockset algorithm can
be disabled for these variables. Alternatively, the buffer can be implemented
without using sharedVariables.
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The lockset algorithm was originally implemented in a testing tool called
Eraser [Savage et al. 1997]. It has also been implemented as part of a Java
virtual machine called Java Pathfinder [Havelund and Pressburger 2000]. The
lockset algorithm has been shown to be a practical technique for detecting data
races in programs that protect shared variables with locks. However, programs
that use semaphores for mutual exclusion, with patterns like passing-the-baton,
will generate false alarms. As shown above for the bounded buffer program,
lockset can produce false alarms even if locks are used. The number of false
alarms can be reduced by allowing users to turn off the detection algorithm for
regions of code or to provide the detection algorithm with extra information. As
a nondeterministic testing technique, the lockset algorithm cannot prove that a
program is free from data races. Still, knowing that a particular execution contains
no data races can be helpful during tracing and replay, as we will see next.

3.10.2 Simple SYN-Sequences for Semaphores and Locks

In general, we can characterize an execution of a concurrent program as a
sequence of synchronization events on synchronization objects. A sequence of
synchronization events is called a SYN-sequence. First we define the types of syn-
chronization events and synchronization objects that occur in programs containing
semaphores and locks. Then we show how to collect and replay SYN-sequences
of these programs. These two steps are not independent. There are several ways
to define a SYN-sequence, and the definition of a SYN-sequence has an effect
on the design of a replay solution, and vice versa.

Let CP be a concurrent program that uses shared variables, semaphores, and
locks. The result of executing CP with a given input depends on the (unpre-
dictable) order in which the shared variables, semaphores, and locks in CP are
accessed. The semaphores are accessed using P and V operations, the locks are
accessed using lock and unlock operations, and the shared variables are accessed
using read and write operations. Thus, the synchronization objects in CP are its
shared variables, semaphores, and locks. The synchronization events in CP are
executions of read/write, P /V , and lock/unlock operations on these objects.

We point out that there may be shared variables that are accessed in the imple-
mentations of the P/V and lock/unlock operations. In fact, these shared variables
may be accessed a large number of times, due to busy waiting loops. However,
we will not trace the read and write operations on these shared variables. Since
P/V and lock/unlock operations are atomic operations; we will consider them to
be operating on a single (shared) semaphore or lock variable. This abstraction
decreases the number of operations that need to be traced during execution.

A SYN-sequence for a shared variable v is a sequence of read and write oper-
ations on v. ReadWrite-sequences for shared variables were defined in Chapter 2.
A SYN-sequence for a binarySemaphore or countingSemaphore s is a sequence
of events of the following types:

ž Completion of a P operation
ž Completion of a V operation
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binarySemaphore mutex(1);
Thread1 Thread2
mutex.P(); mutex.P();
x = 1; x = 2;
mutex.V(); mutex.P(); // error: should be mutex.V();

Listing 3.31 ReadWrite-sequences and PV-sequences.

ž Start of a P operation that is never completed due to a deadlock or an
exception

ž Start of a V operation that is never completed due to a deadlock or an
exception

We refer to such a sequence as a PV-sequence of s. An event in a PV-sequence
is denoted by the identifier (ID) of the thread that executed the P or V operation.
The order in which threads complete their P and V operations is not necessarily
the same as the order in which they call P and V or even the same as the order in
which the P and V operations start. For operations that are completed, it is their
order of completion that must be replayed, since this order determines the result
of the execution. We also replay the starts of operations that do not complete, so
that the same events, exceptions, and deadlocks will occur during replay.

A SYN-sequence for a mutexLock l is a sequence of events of the following
types:

ž Completion of a lock operation
ž Completion of an unlock operation
ž Start of a lock operation that is never completed due to a deadlock or an

exception
ž Start of an unlock operation that is never completed due to a deadlock or

an exception

We refer to such a sequence as a LockUnlock-sequence of l. An event in a
LockUnlock-sequence is denoted by the identifier (ID) of the thread that executed
the lock or unlock operation. To illustrate these definitions, consider the simple
program in Listing 3.31. The final value of shared variable x is either 1 or 2.

A possible ReadWrite-sequence of shared variable x is

(1, 0, 0), (2, 1, 0). // from Chapter 2, the event format is (thread ID, version
// number, total readers)

This denotes that x was first accessed by Thread1 and then by Thread2. Since
Thread1 accessed x first, the PV-sequence for mutex must be

1, 1, 2, 2
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indicating that Thread1 performed its P and V operations before Thread2. The
second P operation in Thread2 is an error. This P operation will start but not
complete and should be a V operation instead.

A SYN-sequence for concurrent program CP is a collection of ReadWrite-
sequences, PV-sequences, and LockUnlock-sequences. There is one sequence
for each shared variable, semaphore, and lock in the program. A SYN-sequence
for the program in Listing 3.31 contains a ReadWrite-sequence for x and a PV-
sequence for mutex :

((ReadWrite-sequence of x: (1, 0, 0), (2, 1, 0); PV-sequence of mutex: (1, 1, 2, 2)).

This is a partial ordering of the synchronization events in the program. That
is, the events on a single object are (totally) ordered, but the order of events
among different objects is not specified. Alternatively, we can define a SYN-
sequence of a program as a single totally ordered sequence of synchronization
events over all the synchronization objects. A totally ordered sequence of events
that is consistent with the partially ordered sequence above is

1, (1, 0, 0), 1, 2, (2, 1, 0), 2.

In general, there may be two or more totally ordered sequences that are consistent
with a given partial ordering since two concurrent events can appear in the total
ordering in either order.

The definition of a SYN-sequence is intended to capture what it means for one
execution to replay another. Suppose that when the program above is executed,
Thread2 executes mutex.P() and blocks because Thread1 is already in its critical
section. During the replay of this execution, assume that Thread2 executes its
first mutex.P() operation without blocking, because Thread1 has already executed
its mutex.P() and mutex.V() operations. These two executions are not identical.
However, in both executions:

ž The sequence of completed P() and V() operations is the same.
ž The final value of x is 2.

Thus, we consider the second execution to replay the first. Although we
could include events such as “call V()” or “block in P()” in the SYN-sequence
of a semaphore object, we are not required to trace these events in order to
do a successful replay, so we omit them. The events that we ignore during
replay may be important when we are doing other things. Thus, we define
different types of SYN-sequences for the different activities that occur dur-
ing testing and debugging. Since the SYN-sequences that we use for replay
tend to be much simpler than the other types of SYN-sequences, we use the
term simple SYN-sequences to refer to the SYN-sequences that are used for
replay.
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According to the foregoing definition of a simple SYN-sequence for CP,
we must be prepared to record and replay arbitrary interleavings of read and
write operations on shared variables. This is a general replay solution, which
can be applied to programs that use shared variables and constructs other than
semaphores and locks. However, this general solution may not be easy to imple-
ment. Controlling read and write operations during replay adds a significant
amount of execution overhead and requires access to the implementation of CP.
Hence, we examine some alternative solutions.

In Listing 3.31, observe that the simple ReadWrite-sequence for shared vari-
able x is completely determined by the simple PV-sequence of mutex. That is,
if we replay the PV-sequence for mutex, we will, with no additional effort, also
replay the ReadWrite-sequence for x. This is an important observation, for it
means that if we assume that shared variables are always safely accessed within
critical sections, we can develop a simpler and more efficient solution.

Of course, in general, we cannot assume that mutual exclusion holds when
shared variables are accessed. A programmer may make an error when writing
the program, or even violate mutual exclusion on purpose. If mutual exclusion
for a particular shared variable is not critical to a program’s correctness, a critical
section can be eliminated to eliminate the overhead of acquiring a lock. Also, a
statement accessing a shared variable need not occur within a critical section if
the execution of the statement is atomic. (But remember that accessing a shared
variable outside a critical section raises the shared memory consistency issues
discussed in Section 3.9.)

Our observation about critical sections does not lead to a better replay solution.
It does, however, highlight the importance of mutual exclusion and the need for
synchronization constructs that aid in implementing mutual exclusion correctly.
The monitor construct in Chapter 4 is such a construct. Using monitors greatly
improves the chances that shared variables are accessed inside critical sections
and, as we will see, makes it easier to replay executions.

For now, we will try to improve our replay solution by using the lockset algo-
rithm in concert with replay. During replay, we will assume that shared variables
are accessed inside critical sections that are implemented with mutexLocks that
are being used as locks. This allows us to ignore read and write operations on
shared variables. During tracing, we will use the lockset algorithm to validate
our assumption. The lockset algorithm will tell us when replay may fail.

As we mentioned earlier, in cases where a shared variable can safely be
accessed outside a critical section, the lockset algorithm can be turned off for
that variable so that no warnings will be issued. However, this may create a
problem for replay since we depend on each shared variable to be accessed
inside a critical section so that each shared variable access is represented by a
lock() or P() operation in the execution trace. In these cases, locks can be used
to create critical sections, at least temporarily, so that replay can be performed.
Designing a program so that it will be easier to test and debug increases the
testability of the program.
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Let CP be a concurrent program containing mutex locks, binary semaphores,
and counting semaphores. Assume that shared variables are correctly accessed
inside critical sections:

ž Each semaphore and lock in CP is a synchronization object.
ž The synchronization events in a simple PV-sequence for a semaphore are

the four types of events defined above.
ž The synchronization events in a simple LockUnlock-sequence for a mutex

lock are the four types of events defined above.
ž Each synchronization event is denoted by the identifier of the thread that

executed the event.

To replay an execution of CP, we must replay the simple PV-sequences for
the semaphores in CP and the simple LockUnlock-sequences for the locks in CP.
In the next section we show how to do this.

3.10.3 Tracing and Replaying Simple PV-Sequences
and LockUnlock-Sequences

We now show how to modify the semaphore and lock classes so that they can
trace and replay simple PV-sequences and LockUnlock-sequences.

Modifying Methods P() and V() The implementations of methods P() and
V() in classes binarySemaphore and countingSemaphore can be modified so that
simple PV-sequences can be collected and replayed. Collecting a PV-sequence
for a semaphore s is simple. During execution, the identifier of the thread that
completes a call to method s.P() or s.V() is recorded and saved to a trace file
for s. Methods P() and V() can easily be modified (see below) to collect these
events.

For the purpose of explaining our replay method, we assume that each
semaphore has a permit, called a PV-permit. A thread must hold a semaphore’s
PV-permit before it executes a P() or V() operation on that semaphore. The order
in which threads receive a semaphore’s PV-permit is based on the PV-sequence
that is being replayed. A thread requests and releases a semaphore’s PV-permit
by calling methods requestPermit() and releasePermit(). These calls are added
to the implementations of methods P() and V(). Method P() becomes

void P() {
if (replayMode)

control.requestPermit(ID);

// code to lock this semaphore appears here

if (replayMode)
control.releasePermit();
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/* rest of body of P() */

if (traceMode)
control.traceCompleteP(ID);

// code to unlock this semaphore appears here
}

Method V() becomes:

public final void V() {
if (replayMode)

control.requestPermit(ID);

// code to lock this semaphore appears here

if (replayMode)
control.releasePermit();

/* rest of body of V() */

if (traceMode)
control.traceCompleteV(ID);

// code to unlock this semaphore appears here
}

We assume that the implementations of P() and V() contain critical sections
for accessing the variables that they share. We have indicated this with comments
referring to the lock and unlock operations that create these critical sections. Calls
to requestPermit(), releasePermit(), traceCompleteP(), and traceCompleteV()
must be positioned correctly with respect to the critical sections in P() and
V(). The call to requestPermit() appears before the lock operation, and the
call to releasePermit() appears right after the lock operation. The calls to
traceCompleteP() and traceCompleteV() both appear inside the critical section.
This ensures that events are recorded in the execution trace in the order in which
they actually occur. If the calls to the trace function are made outside the critical
section, the order of the calls may not be consistent with the order in which the
threads actually complete their P() and V() operations.

Modifying Methods lock() and unlock() The implementations of methods lock()
and unlock( ) in class mutexLock are modified just like methods P() and V(). Class
mutexLock contains calls to requestPermit() and releasePermit() before and after,
respectively, the lock operation in mutexLock. Calls to traceCompleteLock() and
traceCompleteUnlock() appear at the end of their respective critical sections.
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To simplify tracing and replay, we do not trace events that represent the start
of a P, V , lock, or unlock operation that never completes due to a deadlock or
exception. Thus, when deadlock-producing operations are replayed, the calling
threads will not be blocked inside the body of the operation; rather, they will
be blocked forever on the call to requestPermit() before the operation. Since in
either case the thread will be blocked forever, the effect of replay is the same.
Similarly, events involving exceptions that occur during the execution of a P, V ,
lock, or unlock operation will not be replayed. But the trace would indicate
that the execution of these operations would raise an error, which probably pro-
vides enough help to debug the program. Our solution can be extended so that
incomplete events are actually executed.

Class Control Each semaphore and lock is associated with a control object. In
replay mode, the control object inputs the simple SYN-sequence of the semaphore
or lock and handles the calls to requestPermit() and releasePermit(). In trace
mode, the control object collects the synchronization events that occur and records
them in a trace file. When a thread calls requestPermit() or one of the trace
methods, it passes its identifier (ID). We assume that all threads are instances
of class TDThread, which was described in Chapter 1. TDThread handles the
creation of unique thread IDs.

A C++ control class is shown in Listing 3.32. Consider a semaphore s and a
simple PV-sequence for s that was recorded during a previous execution. When
the control object for s is created, it reads the simple PV-sequence for s into vector
SYNsequence. Assume that the first j − 1, j > 0, operations of SYNsequence have
been completed (i.e., index == j) and the value of SYNsequence[j] is k, which
means that thread Tk is required to execute the next event. When thread Ti,
i <> k, calls method requestPermit(), it blocks itself by executing Threads[i].P().
When thread Tk calls requestPermit(), it is allowed to return from the call (i.e.,
it receives the PV-permit). Thread Tk then starts the jth operation on s. Assume
that this operation is a completed P() or V() operation. After completing this
operation, thread Tk calls method releasePermit() to increment index to j + 1
and allow the next operation in the SYNsequence. The ID of the thread that is
to execute the next operation is the value SYNsequence[index]. If this thread
was previously blocked by a P() operation in method requestPermit(), method
releasePermit() performs operation threads[SYNsequence[index]].V() to unblock
this thread. Otherwise, when the next thread eventually calls requestPermit(), it
will not block itself since its ID will match the next ID in the SYNsequence.

To illustrate the operation of the controller, consider a corrected version of the
simple program in Listing 3.31. In this version, Thread2 calls mutex.P() followed
by mutex.V(). Assume that the PV-sequence traced during an execution of this
program is

1, 1, 2, 2

which indicates that Thread1 entered its critical section first. During replay,
the controller will guarantee that Thread1 will be the first thread to enter its
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class control {
public:

control() {
/* input integer IDs into SYNsequence; initialize arrays threads and
hasRequested */

}
void requestPermit(int ID) {

mutex.lock();
if (ID != SYNsequence[index]){ // thread ID should execute next event?

hasRequested[ID] = true; // No; set flag to remember ID’s request
mutex.unlock();
threads[ID].P(); // wait for permission
hasRequested[ID] = false; // reset flag and exit requestPermit

}
else mutex.unlock(); // Yes; exit requestPermit

}
void releasePermit() {

mutex.lock();
++index;
if (index < SYNsequence.size()) { // Are there more events to replay?

// Has the next thread already requested permission?
if (hasRequested[SYNsequence[index]])

threads[SYNsequence[index]].V(); // Yes; wake it up.
}
mutex.unlock();

}
void traceCompleteP(int ID) {...} // record integer ID
void traceCompleteV(ID) {...} // record integer ID

private:
// PV-sequence or LockUnlock-sequence; a sequence of integer IDs
vector SYNsequence;
binarySemaphore* threads; // all semaphores are initialized to 0
// hasRequested[i] is true if Thread i is delayed in requestPermit(); init to false
bool* hasRequested;
int index = 0; // SYNsequence[index] is ID of next thread to execute an event
mutexLock mutex; // note: no tracing or replay is performed for this lock

}

Listing 3.32 C++ class control for replaying PV-sequences and LockUnlock-
sequences.

critical section. Suppose, however, that Thread2 tries to execute mutex.P() first
and thus calls requestPermit(2) before Thread1 calls requestPermit(1). Since the
value of index is 0 and the value of SYNsequence[index] is 1, not 2, Thread2
blocks itself in requestPermit() by executing Threads[2].P(). When Thread1
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eventually calls requestPermit(1), it will be allowed to exit requestPemit() and
execute its mutex.P() operation. Thread1 will then call releasePermit(). Method
releasePermit() increments index to 1 and checks whether the thread that is
to execute the next P/V operation has already called requestPermit(). The next
thread is SYNsequence[1], which is 1. Thread1 has not called requestPermit()
for the next operation, so nothing further happens in releasePermit(). Eventually,
Thread1 calls requestPermit(1) to request permission to execute its mutex.V()
operation. Thread1 receives permission, executes mutex.V(), and calls releasePer-
mit(). Method releasePermit() increments index to 2 and finds that the thread
to execute the next P/V operation is Thread2. Thread2, having already called
requestPermit(), is still blocked on its call to Threads[2].P(). This is indicated
by the value of hasRequested[2], which is true. Thus, releasePermit() calls
Threads[2].V(). This allows Thread2 to exit requestPermit() and perform its
mutex.P() operation. Thread2 will eventually request and receive permission for
its mutex.V() operation, completing the replay.

3.10.4 Deadlock Detection

Deadlock is a major problem, especially for concurrent programming novices.
In Chapter 2 we defined a deadlock as a situation in which one or more threads
become blocked forever. In this chapter, we learned that threads may be blocked
forever when they call P(), V(), or lock() operations. Let CP be a concurrent
program containing threads that use semaphores and locks for synchronization.
Assume that there is an execution of CP that exercises a SYN-sequence S, and
at the end of S, there exists a thread T that satisfies these conditions:

ž T is blocked due to the execution of a P(), V(), or lock() statement.
ž T will remain blocked forever, regardless of what the other threads will do.

Thread T is said to be deadlocked at the end of S, and CP is said to have a
deadlock. A deadlock in CP is a global deadlock if every thread in CP is either
blocked or completed; otherwise, it is a local deadlock.

Programmers typically become aware of a deadlock when their programs don’t
terminate; however, there is usually no indication about how the deadlock was
created. Below, we describe a deadlock detection method that we have built
into our synchronization classes. When a deadlock is detected, the threads and
synchronization operations that are involved in the deadlock are displayed.

Deadlock prevention, avoidance, and detection algorithms are covered in most
operating system textbooks. In operating systems, processes request resources
(e.g., printers and files) and enter a wait-state if the resources are held by other
processes. If the resources requested can never become available, the processes
can never leave their wait-state and a deadlock occurs. The information about
which process is waiting for a resource held by which other process can be
represented by a wait-for graph. An edge in a wait-for graph from node Pi to



TRACING, TESTING, AND REPLAY FOR SEMAPHORES AND LOCKS 155

Pj indicates that process Pi is waiting for process Pj to release a resource that
Pi needs [Silberschatz et al. 2001]. A deadlock exists in the system if and only
if the wait-for graph contains a cycle. To detect deadlocks, the operating system
maintains a wait-for graph and periodically invokes an algorithm that searches
for cycles in the wait-for graph.

Deadlock detection using wait-for graphs is not always applicable to concur-
rent programs. A thread blocked in a P() operation, for example, does not know
which of the other threads can unblock it, and thus the wait-for relation among
the threads is unknown. We use a different approach, which assumes that a dead-
lock occurs if all the threads in a program are permanently blocked [Feitelson
1991]. We also assume that all of the threads are expected to terminate. To detect
deadlocks, we maintain a count of the threads that have not completed their run()
methods, and a count of the blocked threads, and compare the two counts:

ž The numThreads counter is incremented when a thread starts its run()
method and decremented when a thread completes its run() method.

ž The blockedThreads counter is incremented when a thread blocks in a P(),
V(), or lock() operation, and is decremented when a thread is unblocked
during a V() or unlock() operation. The blockedThreads counter should also
be maintained in other blocking methods, such as join().

ž If the numThreads and blockedThreads counters are ever equal (and
nonzero), all of the threads are blocked and we assume that a deadlock
has occurred.

This approach can be used to detect global deadlocks, but not local deadlocks,
since it requires all nondeadlocked threads to be completed. Implementation
of this approach in our synchronization classes is simple but incomplete. For
example, we do not modify the blockedThreads counter inside the join() method.
Also, we do not modify the numThreads counter when the main thread starts and
completes, simply because there is no convenient and transparent way to do so.
Since we do not include the main thread in numThreads and we do not know the
status of the main thread, it is possible for the numThreads and blockedThreads
counters temporarily to become equal (indicating that a deadlock has occurred)
and then for more threads to be created and start running. Thus, we cannot be
certain that a deadlock has occurred when the counters are equal.

Despite these shortcomings, our implementation handles successfully both the
example programs in this book and programs written to solve end-of-chapter
programming exercises. This makes deadlock detection easy to use and helpful
for students, which is our main objective. Typically, these programs have a simple
main method that creates several threads and then completes; thus, the main
thread does not need to be included in the deadlock analysis.

There are several ways to handle the uncertainty about whether a deadlock
has truly occurred. One way is to compare the numThreads and blockedThreads
counters after some initial waiting period and then periodically (e.g., every 2
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seconds), which gives plenty of time for all the threads to be created. Another
way is to let the trace and replay control object check for deadlocks while it is
tracing the program’s execution. The control object can compare the numThreads
and blockedThreads counters after it observes that no synchronization events have
been generated for some period of time, indicating that all the threads are blocked
or completed, or that running threads are stuck in infinite loops (i.e., livelocked).
This is exactly what our control object does.

To aid in understanding why a deadlock has occurred, we maintain a list of
blocked threads along with a reason why each thread is blocked. This status
information is displayed when a deadlock is detected. The events leading to a
deadlock can be traced and replayed using the methods described earlier. As an
example, here is the output for a deadlock detected in Solution 1 of the dining
philosophers problem from Section 3.5:

Deadlock detected:
- philosopher3 blocked on operation P() of semaphore chopstick[4]
- philosopher2 blocked on operation P() of semaphore chopstick[3]
- philosopher4 blocked on operation P() of semaphore chopstick[0]
- philosopher1 blocked on operation P() of semaphore chopstick[2]
- philosopher0 blocked on operation P() of semaphore chopstick[1]

Some wait-for relations among threads can be captured by wait-for graphs.
For example, a thread blocked in a lock() operation knows that the thread that
owns the lock can unblock it. Thus, the wait-for relation among threads and locks
is known. When one thread tries to lock two locks in one order while another
thread tries to lock them in reverse order, a deadlock may occur. (This situation
is discussed in Section 3.7.3.) Such a deadlock will be indicated by a cycle in
the wait-for graph. Wait-for graphs can be used to detect both local and global
deadlocks, and local deadlocks can be detected and reported as soon as they
occur. Other wait-for relations, like the relation between threads and semaphores,
can be approximated by using information extracted from the source code. This
allows wait-for graphs to be used to detect other deadlock situations. However,
the approximation can introduce a delay between the time local deadlocks occur
and the time they are reported [Nonaka et al. 2001].

A deadlock detection utility has been incorporated into the Java HotSpot
VM [Sun Microsystems 2002]. This utility is invoked by typing Ctrl+ (for Linux
or the Solaris Operating Environment) or Ctrl-Pause/Break (for Microsoft Win-
dows) on the command line while an application is running. The utility displays
a description of any deadlocks it detects. If the application is deadlocked because
two or more threads are involved in a cycle to acquire locks, the list of threads
involved in the deadlock is displayed. This utility will not find deadlocks involv-
ing one or more threads that are permanently blocked in a monitor (see Chapter 4)
waiting for a notification that never comes, which is similar to the situation
where a thread is blocked in a P() operation waiting for a V() operation that will
never come.
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3.10.5 Reachability Testing for Semaphores and Locks

The testing and debugging tools that we have seen so far are very helpful dur-
ing nondeterministic testing. If a program failure such as a deadlock occurs, the
program can be debugged by replaying the execution repeatedly and collecting
debugging information until the fault is located. Although this process is easy
to carry out, it can be very inefficient. It is possible that some behaviors will
be exercised many times, while others will not be exercised at all. For example,
we performed 100 executions of Solution 1 for the dining philosophers problem
with five philosophers and no deadlock was detected. After inserting random
delays, deadlocks were detected in 18 of 100 executions. When we doubled the
number of philosophers to 10, deadlocks were detected in only 4 of 100 execu-
tions. As the number of threads increases and thus the total number of possible
behaviors increases, it apparently becomes more difficult to detect deadlocks with
nondeterministic testing.

In general, nondeterministic testing may or may not uncover an existing fault.
Furthermore, the instrumentation added to perform tracing and deadlock detection
may create a probe effect that prevents some failures from being observed. What
is needed is a testing technique that allows us to examine all the behaviors of a
program, or at least as many different behaviors as is practical, in a systematic
manner. By systematic we mean that there is an attempt to execute a given STN-
sequence only once and it is possible to know when all the SYN-sequences have
been exercised. Reachability testing is such a technique.

Reachability testing combines nondeterministic testing and program replay.
During reachability testing, the SYN-sequence exercised by a nondeterministic
execution is traced as usual. The execution trace captures the behavior that actu-
ally happened. But if the trace is defined carefully, it can also capture alternative
behaviors that could have happened, but didn’t, due to the way in which race
conditions were arbitrarily resolved during execution. These alternative behav-
iors are called race variants of the trace. Replaying a race variant ensures that a
different behavior is observed during the next test execution.

Identifying race conditions and race variants is the key challenge for reacha-
bility testing. Figure 3.33a shows a portion of an execution trace for the dining
philosophers program. The diagram visually represents an execution in which
Philosopher1 picks up its left and right chopsticks before Philosopher2 can pick
up its left chopstick. (Philosopher1 and Philosopher2 share chopstick[2], which
lies between them.) A labeled arrow from a philosopher to a semaphore rep-
resents a P() or V() operation that the philosopher called and completed on the
semaphore. In the trace in Fig. 3.33a, Philosopher1 and Philosopher2 race to pick
up chopstick2, with Philosopher1 completing its P() operation on chopstick[2]
before Philosopher2 can complete its P() operation.

In general, there is a race between calls to P() or V() operations on the same
semaphore if these calls could be completed in a different order during another
execution (with the same input). Figure 3.33b shows a race variant of the execu-
tion in Fig. 3.33a. In this race variant, Philosopher2 wins the race to chopstick[2]



158 SEMAPHORES AND LOCKS

chopstick[1] Phil1 chopstick[2] Phil2

complete

complete

call
call

call

call

call

complete

complete

complete

P

P

V

V

P

chopstick[1] Phil1 chopstick[2] Phil2

complete call

call

complete

P

P

(a) (b)

P

call

Figure 3.33 Execution trace and a race variant.

and picks it up before Philosopher1 can grab it. The dashed arrow indicates that
Philosopher1’s P() operation on chopstick[2] was called but not completed in the
race variant. As we explain next, this call will be completed in an execution that
replays the variant.

In general, a race variant represents the beginning portion of a SYN-sequence.
Reachability testing uses replay to make sure that the events in the race variant
are exercised and then lets the execution continue nondeterministically so that a
complete sequence can be traced. Note that there may be many complete SYN-
sequences that have a given race variant at the beginning. One of these sequences
will be captured in the nondeterministic portion of the execution. The complete
traced sequence can then be analyzed to derive more race variants, which can
be used to generate more traces, and so on. When replay is applied to the race
variant in Fig. 3.33b, Philosopher1 and Philosopher2 will both pick up their left
chopsticks, which is part of the deadlock scenario in which all the philosophers
hold their left chopstick and are waiting for their right. Although the complete
deadlock scenario may not occur immediately, reachability testing ensures that
every possible PV-sequence of the dining philosophers program will eventually
be exercised and thus that the deadlock will eventually be detected.

In addition to the information required for replay, reachability testing requires
execution traces to have sufficient information for identifying races. Also, algo-
rithms are needed for race analysis and race variant generation. We describe these
details in Chapter 7. Here, we mention the results of applying reachability testing
to three of the example programs in Section 3.5.

The three Java programs and the reachability testing results are shown in
Table 3.2. The first column shows the names of the programs. Program BB is the
bounded buffer program from Listing 3.6, modified to allow multiple producers
and consumers. Programs DP1 and DP4 are solutions 1 and 4 of the dining
philosophers problem in Listings 3.7 and 3.8, respectively. (Recall that program
DP1 has a deadlock.) Program RW is the readers and writers program from
Listing 3.11. The second column shows the configuration of each program. For
BB it indicates the number of producers (P), the number of consumers (C),
and the number of slots (S) in the buffer. For RW it indicates the number of
readers (R) and the number of writers (W). For DP, it indicates the number of
philosophers (P).
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TABLE 3.2 Reachability Testing for the Example
Programs in Section 3.5

Program Configuration No. Seqs.

BB 1P+1C+2S 1
BB 2P+2C+2S 132
BB 3P+3C+2S 9252
RW 2R+2W 608
RW 2R+3W 12816
RW 3R+2W 21744
DP1 5P/10P 31/1023
DP4 4P 720
DP4 5P 22300

The threads in these programs deposit, withdraw, read, write, or eat one time.
The third column shows the number of PV-sequences generated during reach-
ability testing. To shed some light on the total time needed to execute these
sequences, we observe that, for instance, the total reachability testing time for
the DP4 program with five philosophers is 10 minutes on a 1.6-GHz PC with
512 MB of random access memory.

Following are several observations about the results in Table 3.2:

1. There is only one possible sequence for program BB with one producer
and one consumer. We might expect more sequences to be possible since
there are six P() and V() operations exercised during an execution of BB.
There are two reasons why this is not the case. First, reachability testing
exercises all of the partially ordered PV-sequences of BB, not all of the
totally ordered sequences. That is, in a given execution trace, if events
E1 and E2 are concurrent and E1 appears before E2, no race variant is
generated to cover the case where the order of E1 and E2 is reversed.
This creates a considerable reduction in the number of sequences. Second,
reachability testing considers only sequences of completed P() and V()
operations. Although there are many different orders in which the producer
and consumer threads can start their P() and V() operations, there is only
one order in which they can complete these operations.

2. Program DP1, with five philosophers, has a total of 31 sequences, one of
which results in a deadlock. For DP1 with 10 philosophers, there is one
deadlock sequence in 1023 possible sequences.

3. The ability to exercise all of the behaviors of a program maximizes test
coverage. Notice, however, that in Table 3.2 the number of sequences exer-
cised during reachability testing grows quickly as the number of threads
increases. Thus, it may be impractical to exercise all of the sequences,
let alone to inspect manually the output of all the test executions. At
present, deadlocks can be detected and assertion can be checked auto-
matically during reachability testing, but additional tool support is needed



160 SEMAPHORES AND LOCKS

to help programmers analyze test results. Also, reachability testing does
not have to be applied exhaustively; rather, it can stop when a selected
coverage criterion is satisfied.

4. Exercising and examining every PV-sequence may be more effort than
is really required. Consider program BB again. There is an execution of
BB with two producers in which Producer1 executes fullSlots.V() followed
immediately by Producer2 executing fullSlots.V(). A race variant of this
execution can be created simply by reversing the order of these two V()
operations. But this variant is not very interesting since the order of the V()
operations has no effect on the rest of the execution. In fact, if you use the
semantics of P() and V() operations to ignore these types of variants, the
number of sequences for BB with three Producers and three Consumers
drops from 9252 to 36. For two Producers and two Consumers, the num-
ber of sequences drops from 132 to 4. The remaining sequences may still
be more than what is needed. For example, reachability testing with three
Producers will exercise all the possible orders in which the three Produc-
ers can deposit their items: (Producer1, Producer2, Producer3), (Producer2,
Producer1, Producer3), (Producer3, Producer2, Producer1), and so on. But
the Producers all execute the same code and their behavior is independent
of their IDs, so this batch of variants is not very interesting. If you use the
symmetry of the threads to ignore these types of variants, the number of
sequences for BB with three Producers and three Consumers drops from
36 to 4. For two Producers and two Consumers, the number of sequences
drops from four to two [or perhaps even lower (see Exercise 7.5)]. These
numbers are in line with the numbers we would probably come up with
if we tried to generate sequences manually. Obviously, we need to think
carefully about the types of sequences and the coverage criteria that we
use for reachability testing.

We examine these issues in more detail in Chapter 7.

3.10.6 Putting It All Together

We have implemented these tracing, testing, and replay techniques in our
semaphore and lock classes for C++/Win32/Pthreads and Java.

Tracing and Replaying C++/Win32/Pthreads Programs To trace and replay
executions of the C++/Win32/Pthreads bounded buffer program in Listing 3.26,
class Buffer is modified to use sharedVariables and to turn tracing and race
analysis off for the sharedVariables in the buffer array:

const int capacity = 3;
class Buffer {
private:

sharedVariable<int> buffer[capacity];
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sharedVariable<int> count, in, out;
public:

Buffer() : in(0), out(0), count(0) {
for (int i=0; i<capacity; i++) {
// Turn tracing and race analysis off
// for the sharedVariables in array buffer

buffer[i].setTrace(sharedVariable<int>::traceOff);
buffer[i].setAnalysis(sharedVariable<int>::analysisOff);

}
}
int size() { return count;}
int withdraw () {

int value = 0;
value = buffer[out];
out = (out + 1) %capacity;
count--;
return value;

}
void deposit (int value) {

buffer[in] = value;
in = (in + 1) %capacity;
count++;

}
};

Class TDThread ensures that the Producer and Consumer threads receive
unique thread IDs, which in this case are 1 and 2, respectively. Tracing, replay,
and analysis are controlled through the values of environment variables MODE
and RACEANALYSIS. To set tracing on in Windows, execute the command

set MODE=TRACE // Unix: setenv MODE TRACE

before executing the program. To execute random delays during TRACE mode,
execute the command

set RANDOMDELAY=ON // Unix: setenv RANDOMDELAY ON

This will enable the execution of Sleep statements at the beginning of meth-
ods P(), V(), lock(), and unlock(). The command “set RANDOMDELAY=OFF”
will turn off random delays, and OFF is the default value. To turn on deadlock
detection during trace mode, execute the command

set DEADLOCKDETECTION=ON
// Unix: setenv DEADLOCKDETECTION ON
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The command “set DEADLOCKDETECTION=OFF” will turn off deadlock
detection, and OFF is the default value. Data race detection using the lockset
algorithm is enabled by

set DATARACEDETECTION=ON
// Unix: setenv DATARACEDETECTION ON

The command “set DATARACEDETECTION=OFF” will turn off data race
detection, and OFF is the default value.

Environment variable CONTROLLERS is used to determine the number of
trace files that will be created. The value SINGLE causes one controller and one
trace file to be created:

set CONTROLLERS=SINGLE // Unix: setenv CONTROLLERS SINGLE

The trace file semaphores-replay.txt will contain a totally ordered sequence of
events for the two countingSemaphore objects and the two mutexLock objects.
To create a separate controller for each object, which results in a separate trace
file for each object’s SYN-sequence, use the value MULTIPLE:

set CONTROLLERS=MULTIPLE
// Unix setenv CONTROLLERS MULTIPLE

The default value for the number of controllers is SINGLE. When the bounded-
buffer program is executed, no races will be reported for the sharedVariables of
Buffer since race analysis was turned off for each variable.

An execution is replayed by setting the MODE to REPLAY and executing the
program:

set MODE=REPLAY // Unix: setenv MODE REPLAY

The value of CONTROLLERS must be the same during tracing and replay. No
data race detection or random delays are performed during replay.

Finally, reachability testing is performed on Buffer by setting the MODE to
RT and customizing the driver process in file RTDriver.cpp, which is part of
the synchronization library. Directions for customizing the driver process are in
the file.

Tracing and Replaying Java Programs For Java programs, tracing and replay
are controlled using a property named mode. An execution of a Java version of
Buffer is traced using the command

java–Dmode=trace–DrandomDelay=on–Dcontrollers=single Buffer

This executes the program Buffer with random delays and creates a single con-
troller and a trace file named semaphores-replay.txt. The trace file will contain
a totally ordered sequence of events for the two countingSemaphore objects and
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the two mutexLock objects. To create a separate controller for each synchroniza-
tion object and a separate file for each object’s SYN-sequence, set the value of
the controllers property to multiple:

–Dcontrollers=multiple

The default value for property controllers is single and the default value for
property randomDelay is off. To turn on deadlock detection during trace mode,
specify –DdeadlockDetection=on. The default value for property deadlockDe-
tection is off .

An execution is replayed by setting the mode property to replay :

java –Dmode=replay Buffer

The value of CONTROLLERS must be the same during tracing and replay. No
random delays are performed during replay.

Finally, reachability testing is performed on Buffer by setting the mode prop-
erty to rt and executing a driver process named RTDriver that is part of the
synchronization library:

java –Dmode=rt RTDriver Buffer

The class name Buffer is passed as a command-line parameter to driver process
RTDriver, which carries out the reachability testing process.

FURTHER READING

Andrews [1989] describes a systematic method for using semaphores to solve
synchronization problems. Starting with an assertion that specifies a desired
synchronization invariant, a sequence of steps is followed to derive a correct
program that maintains this invariant. He also illustrates passing-the-baton and
other semaphore patterns.

Details about using Win32 CRITICAL SECTION, Semaphore, Mutex, and
Event objects can be found in [Beveridge and Wiener 1997; Petzold 1998; Hart
2000a]. Hart [2000b] compares the performance of these objects. Ringle [1999a,b]
discusses issues related to creating singleton objects in multithreaded C++/Win32
programs. He presents a lock class that avoids certain construction order prob-
lems inherent with static lock objects. More information on C++ and Win32
synchronization can be found in various articles [Becker 1999; Manley 1999;
Kleber 2000; Lowy 2000; Abramson 2002, 2003; Chaudry 2002; Khamsi 2003;
LaPlante 2003].

The VP operation was introduced in [Tai and Carver 1996]. Howard [2000]
illustrates the use of Win32’s SignalObjectAndWait() operation, which when
applied to semaphores is equivalent to VP(). Pugh [1999] describes some poten-
tial problems with certain programming idioms that are commonly used with
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Java threads. One of these idioms, called double-checked locking, has been
the subject of a tremendous amount of discussion [Goetz 2001; Meyers and
Alexandrescu 2004a,b]. Reading about problems with double-checked locking
is a good way to learn more about volatile variables and shared memory con-
sistency. Courtois et al. [1971] introduced the readers and writers problem. The
tracing and replay techniques in Section 3.8 are from [Carver 1985; Carver and
Tai 1986, 1991].
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EXERCISES

3.1. Can the bounded-buffer solution in Section 3.5 be used with multiple pro-
ducers and consumers? If not, modify it to produce a correct solution.

3.2. Section 3.4 defined strong and weak semaphores. Assume that semaphore
mutex is initialized to 1 and that each thread executes:

mutex.P();
/* critical section */
mutex.V();

(a) Suppose that there are two threads and mutex is a weak semaphore. Is
the critical section problem solved?

(b) Suppose there are three threads and mutex is a strong semaphore. Is
the critical section problem solved?

(c) Is class countingSemaphore in Listing 3.15 a strong or weak
semaphore?

3.3. Consider the semaphore-based solution to strategy R<W.2 in Section 3.5.4.

(a) Is it possible that a writer waits on readers w que.P()? Explain.
(b) Is it possible that a reader waits on writers que.P()? Explain.

3.4. The InterlockedExchange function was described in Section 2.3. It has two
parameters and behaves like the following atomic function:

LONG InterlockedExchange (LONG* target, LONG newValue) {
LONG temp = *target; *target = newValue; return temp;

}

The following is an implementation of a countingSemaphore using Inter-
lockedExchange():

class countingSemaphore {
private:

volatile int permits;
volatile LONG mutex; // provides mutual exclusion for permits
volatile LONG block; // used to delay threads waiting on permits

public:
countingSemaphore(int init) : permits(init), mutex(0), block(1) {}
voidP() {

while (InterlockedExchange(const_cast<LONG*>(&mutex),true))
{Sleep(0);}

permits = permits - 1 ;
if (permits < 0) {

mutex = false;



EXERCISES 167

while (InterlockedExchange(const_cast<LONG*>(&block),true))
{Sleep(0);}

}
else

mutex = false;
}
void V() {

while (InterlockedExchange(const_cast<LONG*>(&mutex),true))
{Sleep(0);};

permits = permits + 1 ;
if (permits <= 0) {

while (!block) {Sleep(0);};
block = false;

}
mutex = false;

}
};

Statements

while (InterlockedExchange(const_cast<LONG*>(&mutex),true))
{Sleep(0);};

and

mutex = false;

are used to enforce mutual exclusion for permits. In the P() operation,
the statement

while (InterlockedExchange(const_cast<LONG*>(&block),true))
{Sleep(0);}

is used to delay threads that are waiting to be awakened by V() operations.
In the V() operation, the statement

while (!block) {Sleep(0);};

is used to make sure that block is set to false only when it is true. The ini-
tial value of block is true. Block is set to false in order to awaken a delayed
thread. After block is set to false, it remains false until a delayed thread exe-
cutes InterlockedExchange(const cast<LONG∗> (&block),true). (Then the
delayed thread becomes awakened.) If block is false when V() is executed,
the previous V() operation has not yet awakened a delayed thread.

(a) Show that the deletion of while (!block) {Sleep(0);} in V() can create
an error.
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(b) Can the implementation of V() be replaced by the following?

public void V(int s) {
while (InterlockedExchange(const_cast<LONG*>(&mutex),true))

{Sleep(0);};
permits = permits + 1;
if (permits <= 0) {

mutex = false;
while (!block) {Sleep 0;};
block = false;

}
else

mutex = false;
}

3.5. Section 3.5.5 shows how to use binary semaphores to implement P()
and V() operations for a countingSemaphore class. Suppose that binary
semaphores are redefined so that a V() operation never blocks the calling
thread. That is, if the value of a binary semaphore is 1 when a V() operation
is called, the value is not modified and the calling thread simply completes
the operations and returns.

(a) Are the implementations of P() and V() still correct if these new binary
semaphores are used? Explain.

(b) If not, suppose that we replace the statements

mutex.V();
delayQ.P();

with the single statement

delayQ.VP(mutex);

Is this new implementation correct? Explain.

3.6. In Section 3.5.4 a semaphore-based solution to strategy R<W.2 for the
readers and writers problem is given.

(a) Below is a revised version of the read operation, in which semaphore
mutex r is deleted and semaphore readers w que is used to provide
mutual exclusion for accessing activeReaders and for synchronization
between readers and writers. Does the revised solution still implement
strategy R<W.2? Explain.

Read() {
readers_w_que.P(); // readers may be blocked by a writer
++activeReaderCount;
if (activeReaderCount = 1) writer_que.P()
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readers_w_que.V();
/* read x */
readers_w_que.P();
--activeReaderCount;
if (activeReaderCount = 0) writer_que.V();
readers_w_que.V();

}

(b) Below is a revised version of the read operation in which the last two
statements have been reversed. Does the revised solution still imple-
ment strategy R<W.2? Explain.

Read() {
readers_w_que.P();
mutex_r.lock();
++activeReaders;
if (activeReaders == 1) writers_que.P();
mutex_r.unlock();
readers_w_que.V();
/* read x */
mutex_r.lock();
--activeReaders;
mutex_r.V(); // ***** these two statements
if (activeReaders == 0) writers_que.V(); // ***** were reversed

}

3.7. The unisex bathroom [Andrews 2000]. This problem is similar to the read-
ers and writers problem. Suppose that there is one bathroom in your office.
It can be used by both men and women, but not by both at the same time.

(a) Develop a semaphore solution that allows any number of men or any
number of women (but not both) in the bathroom at the same time. Your
solution should ensure the required exclusion and avoid deadlock, but it
need not be fair (i.e., some people may never get to use the bathroom).

(b) Modify your solution to part (a) to ensure that at most four people are
in the bathroom at the same time.

(c) Develop a semaphore solution that ensures fairness:

ž All men and women eventually get to use the bathroom.
ž When the last man in the bathroom exits, all women that are currently

waiting are allowed to enter the bathroom.
ž When the last woman in the bathroom exits, all men that are currently

waiting are allowed to enter the bathroom.
ž If men are in the bathroom, another man cannot enter the bathroom

if women are waiting.
ž If women are in the bathroom, another women cannot enter the bath-

room if men are waiting.
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3.8. Write a semaphore implementation of an Event object that is similar to the
Event object in Win32. Event objects have operations block() and set().
A call to block() always blocks the caller. A call to set() awakens every
thread that has called block() since the last time set() was called. Use P()
and V() (but no VP()) operations on semaphores. Declare and initialize any
variables and semaphores that you use.

3.9. Are the following busy-waiting definitions of operations P() and V() for a
counting semaphore s correct?

P(): permits = permits-1; while (permits < 0) {;}
V(): permits = permits + 1;

3.10. Solution 4 of the dining philosophers problem allows a philosopher to
starve. Show an execution sequence in which a philosopher starves.

3.11. Below is a proposed implementation of operations P() and V() in class
BinarySemaphore. Is this implementation correct? Explain.

public synchronized void P() {
while (value==0) try { wait(); } catch ( InterruptedException e) { }
value=0;
notify();

}
public synchronized void V() {

while (value==1) try { wait(); }catch ( InterruptedException e) { }
value=1;
notify();

}

3.12. Many problems require iterative solutions. In these solutions, n threads are
created at the beginning of execution. Each thread performs some subtask
on each iteration. All n threads synchronize at the end of each iteration:

Worker Thread i {
while (true) {

perform thread i’s task;
wait for all n threads to complete;

}
}

This is called barrier synchronization, because the wait at the end of each
iteration represents a barrier that all threads have to arrive at before any
are allowed to pass. Notice that the same barrier is reused at the end of
each iteration.

Use semaphores to implement a reusable barrier for n threads. A tem-
plate for class Barrier is given below.
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class Barrier {
private int count = 0; // count of waiting threads
private int n = 0; // number of threads
private binarySemaphore mutex(1); // provides mutual exclusion
private binarySemaphore go(0); // a queue for threads to wait in until

// they are permitted to go
public Barrier (int n) {this.n = n);
public void waitB() { // call b.waitB() to wait on Barrier b

/* implement this method */
}

}

Complete the template. You can assume that the semaphores are FCFS
semaphores.

3.13. The bear and the honeybees [Andrews 2000]. There are n bees and one
bear who share a pot of honey. The pot is initially empty; its capacity is
H portions of honey, where H ¡= n.

ž The bee threads repeatedly put one portion of honey in the pot (i.e.,
pot++); the bee who fills the pot awakens the bear. When the pot is full,
bees must wait until the bear eats all the honey.

ž The bear thread sleeps until the pot is full (i.e., pot == H), then eats all
the honey and goes back to sleep.

The pot is a shared resource (implemented as a variable), so at most
one bee or the bear can access it at a time. Write implementations of bee
and bear threads using P() and V() operations on semaphores.

3.14. Message exchange [Carr et al. 2001]. There are two groups of threads.
Threads from group A wish to exchange integer messages with threads in
group B. Group A threads execute method exchangeWithB() while group
B threads execute method exchangeWithA():

void exchangeWithB() { void exchangeWithA {
while (true) { while (true) {

msgA = ‘‘A message’’; msgB = ‘‘B message’’;
/* exchange message */ /* exchange message */
// now msgA is ‘‘B message’’ // now msgB is ‘‘A message’’

} }
} }

There are two constraints:

ž Once a thread TA from group A makes a message available, TA can
continue only if it receives a message from a thread TB in group B
that has successfully retrieved TA’s message. Similarly, thread TB can
continue only if it receives a massage from TA rather than from some
other thread in group A.
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ž Once a thread TA from group A makes its message available, another
thread in group A should not be allowed to overwrite TA’s message
before the message is retrieved by a thread in group B.

For each solution below, state whether the solution is correct or incor-
rect. If the solution is incorrect, describe a scenario that illustrates the error.

(a) countingSemaphore A(0), B(0);77
int bufferA, bufferB;

void exchangeWithB() { void exchangeWithA() {
int msgA; int msgB;
while (true) { while (true) {

// create the messages that will be exchanged
msgA = ...; msgB = ...;
// signal the other thread that you are ready
B.V(); A.V();
// wait for signal from the other thread
A.P(); B.P();
// make a copy of message for the other thread
bufferA = msgA; bufferB = msgB;
// swap copies; now msgB contains A’s message
msgA = bufferB; msgB = bufferA;
// and msgA contains B’s message
...; ...;

} }
} }

(b) binarySemaphore mutex(1); countingSemaphore A(0), B(0); int bufferA,
bufferB;

void exchangeWithB() { void exchangeWithA() {
int msgA; int msgB;
while (true) { while (true) {

// create the messages that will be exchanged
msgA = ...; msgB = ...;
// signal the other thread you are ready
B.V(); A.V();
// wait forsignal from the other thread
A.P(); B.P();
// critical section start
mutex.P(); mutex.P();
// make copy for the other thread
bufferA = msgA; bufferB = msgB;
// critical section end
mutex.V(); mutex.V();
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// signal ready to swap
B.V(); A.V();
// wait for signal from the other thread
A.P(); B.P();
// critical section start
mutex.P(); mutex.P();
// swap copies
msgA = bufferB; msgB = bufferA;
// critical section end
mutex.V(); mutex.V();
// now msgB contains A’s message
...; ...;
// and msgA contains B’s message

} }
} }

(c) binarySemaphore Aready(1), Bready(1); countingSemaphore Adone(0),
Bdone(0);

int bufferA, bufferB;

void exchangeWithB() { void exchangeWithA() {
int msgA; int msgB;
while (true) { while (true) {

// create the messages that will be exchanged
msgA = ...; msgB = ...;
// critical section start
Aready.P(); Bready.P();
// make a copy of message for the other thread
bufferA = msgA; bufferB = msgB;
// signal ready to swap
Adone.V(); Bdone.V();
// wait for signal from the other thread
Bdone.P(); Adone.P();
// swap copies
msgA = bufferB; msgB = bufferA;
// critical section end
Aready.V(); Bready.V();
// now msgB contains A’s message
...; ...;
// and msgA contains B’s message

} }
} }

(d) binarySemaphore Aready(1), Bready(1); countingSemaphore Adone(0),
Bdone(0);

int bufferA, bufferB;
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void exchangeWithB() { void exchangeWithA() {
int msgA; int msgB;
while (true) { while (true) {

// create the messages that will be exchanged
msgA = ...; msgB = ...;
// critical section start
Bready.P(); Aready.P();
// make copy for the other thread
bufferA = msgA; bufferB = msgB;
// signal ready to swap
Adone.V(); Bdone.V();
// wait for signal from the other thread
Bdone.P(); Adone.P();
// swap copies
msgA = bufferB; msgB = bufferA;
// critical section end and signal other ...;
Aready.V(); Bready.V();
// now msgB contains A’s message
...; ...;
// and msgA contains B’s message

} }
} }

(e) binarySemaphore Amutex(1), Bmutex(1);
binarySemaphore notFullA(1), notFullB(1), notEmptyA(1),

notEmptyB(0);

void exchangeWithB() { void exchangeWithA() {
int msgA; int msgB;
while (true) { while (true) {

// create the messages that will be exchanged
msgA = ...; msgB = ...;
// critical section start
Amutex.P(); Bmutex.P();
// wait for previous swap complete
notFullA.P(); notFullB.P();
// make copy
bufferA = msgA; bufferB = msgB;
// signal the other thread copy made
notEmptyA.V(); notEmptyB.V();
// wait for copy to be made
notEmptyB.P(); notEmptyA.P();
// swap
msgA = bufferB; msgB = bufferA;
// signal swap complete
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noFullB.V(); notFullA.V();
// critical section end
Amutex.V(); Bmutex.V();
// now msgB contains A’s message
...; ...;
// and msgA contains B’s message

} }
} }

(f) binarySemaphore notFull(1), notEmptyA(0), notEmptyB(0);
int shared;

void exchangeWithB() { void exchangeWithA() {
int msgA; int msgB, temp;
while (true) { while (true) {

// create the messages that will be exchanged
msgA = ...; msgB = ...;
// mutual exclusion for exchange
notFull.P();
// A makes copy for B
shared = msgA;
// signal copy made for B
notEmptyA.V(); notEmptyA.P();
// B gets A’s copy
temp = shared;
// B makes copy for A
shared = msgB;
// signal copy made for A
notEmptyB.P(); notEmptyB.V();
// A gets B’s copy
msgA = shared;
// allow next exchange
notFull.V();
// now msgB contains A’s message
...; ...;
// and msgA contains B’s message

} }
} }

3.15. Alternating threads [Reek 2003]. Consider method alternate(), which two
threads call in order to alternate execution with one another. Each time a
thread calls alternate(), it signals the other thread and then blocks itself. The
signaling thread remains blocked until the other thread calls alternate().

(a) Is the following implementation of method alternate() correct? Explain
your answer.
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boolean isWaiting = false;
binarySemaphore mutex = new binarySemaphore(1);
binarySemaphore block = new binarySemaphore(0);
public void alternate() {

mutex.P()
if (isWaiting) {block.V(); block.P();}
else {isWaiting = true; mutex.V(); block.P();}
mutex.V();

}

(b) If you believe that this solution is incorrect, describe how to fix it
without making any major changes. (For example, do not change the
number of semaphores.)

(c) Write another solution to this problem. You may add additional
semaphores, but you cannot use operation VP().

3.16. Suppose that reachability testing is applied to program CP. Assume that
every execution of CP is checked during reachability testing and that all
outputs and all sequences are correct. Can we say then that program CP is
correct? Explain.

3.17. The number of sequences exercised during reachability testing for the
bounded-buffer program in Listing 3.6 is shown in Table 3.2. There are
at least two possible ways to modify the program in Listing 3.6 to allow
multiple producers and consumers (see Exercise 3.1). Compare the num-
ber of sequences exercised by reachability testing for each program. Which
program is the best, considering all factors?

3.18. The countingSemaphore class in Section 3.6.1 may fail if threads blocked
on the wait operation in method P() can be interrupted or if spurious
wakeups can occur. Describe a sequence of P() and V() operations that
leads to a failure if interrupts or spurious wakeups occur. Hint : Assume
that semaphore s is initialized to 1 and consider the value that variable
permits should have after each P() and V() operation.

3.19. Figures 3.9 and 3.10 shows scenarios in which multiple readers and writers
issue requests before any one of them is allowed to read or write. Consider
strategy R>W.2 in Section 3.5.4. Where in the code for readers and writers
would you consider a “read request” or “write request” event to occur?
After identifying the location, determine whether it is possible to have
two successive “read request” events or two successive “write request”
events without an intervening read or write event. Can the scenarios in
Figs. 3.9 and 3.10 occur in the readers and writers solutions presented in
Section 3.5.4?
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Semaphores were defined before the introduction of programming concepts such
as data encapsulation and information hiding. In semaphore-based programs,
shared variables and the semaphores that protect them are global variables. This
causes shared variable and semaphore operations to be distributed throughout
the program. Since P and V operations are used for both mutual exclusion and
condition synchronization, it is difficult to determine how a semaphore is being
used without examining all the code.

Monitors were invented to overcome these problems. The monitor concept
was developed by Tony Hoare and Per Brinch Hansen in the early 1970s. This is
the same time period in which the concept of information hiding [Parnas 1972]
and the class construct [Dahl et al. 1970] originated. Monitors support data
encapsulation and information hiding and are adapted easily to an object-oriented
environment.

In this chapter we show how to use semaphores to implement monitor classes
for C++ and Java. These custom classes support cyclical testing and debugging
techniques for monitor-based programs. Even though Java and Pthreads provide
built-in support for monitor-like objects, our monitor classes are still useful since
it is not easy to test and debug built-in Java or Pthreads monitors. Win32 does
not provide monitors, but we can use our custom classes to simulate monitors in
C++/Win32 programs.

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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4.1 DEFINITION OF MONITORS

A monitor encapsulates shared data, all the operations on the data, and any
synchronization required for accessing the data. A monitor has separate constructs
for mutual exclusion and condition synchronization. In fact, mutual exclusion is
provided automatically by the monitor’s implementation, freeing the programmer
from the burden of implementing critical sections. We will use an object-oriented
definition of a monitor in which a monitor is a synchronization object that is an
instance of a special monitor class. A monitor class defines private variables and
a set of public and private access methods. The variables of a monitor represent
shared data. Threads communicate by calling monitor methods that access the
shared variables. The need to synchronize access to shared variables distinguishes
monitor classes from regular classes.

4.1.1 Mutual Exclusion

At most one thread is allowed to execute inside a monitor at any time. How-
ever, it is not the programmer’s responsibility to provide mutual exclusion for
the methods in a monitor. Mutual exclusion is provided by the monitor’s imple-
mentation, using one of the techniques discussed in previous chapters. If a thread
calls a monitor method but another thread is already executing inside the monitor,
the calling thread must wait outside the monitor. A monitor has an entry queue
to hold the calling threads that are waiting to enter the monitor (see Fig. 4.2).

4.1.2 Condition Variables and SC Signaling

Condition synchronization is achieved using condition variables and operations
wait() and signal(). A condition variable denotes a queue of threads that are
waiting for a specific condition to become true. (The condition is not explicitly
specified as part of the condition variable.) A condition variable cv is declared as

condition Variable cv;

Operation cv.wait() is analogous to a P operation in that it is used to block a
thread. Operation cv.signal() unblocks a thread and is analogous to a V operation.
But as we will see below, operations wait() and signal() do more than just block
and unblock threads.

A monitor has one entry queue plus one queue associated with each con-
dition variable. For example, Listing 4.1 shows the structure of monitor class
boundedBuffer. Class boundedBuffer inherits from class monitor. It has five data
members, condition variables named notFull and notEmpty, and monitor methods
deposit() and withdraw(). Figure 4.2 is a graphical view of class boundedBuffer,
which shows its entry queue and the queues associated with condition variables
notFull and notEmpty.
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class boundedBuffer extends monitor {
public void deposit(...) { ... }
public int withdraw (...) { ... }
public boundedBuffer( ) { ... }

private int fullSlots = 0; // # of full slots in the buffer
private int capacity = 0; // capacity of the buffer
private int [] buffer = null; // circular buffer of ints
// in is index for next deposit, out is index for next withdrawal
private int in = 0, out = 0;
// producer waits on notFull when the buffer is full
private conditionVariable notFull;
// consumer waits on notEmpty when the buffer is empty
private conditionVariable notEmpty;

}

Listing 4.1 Monitor class boundedBuffer .

deposit() {..}

withdraw() {..}entry queue

notFull

notEmpty

Figure 4.2 Graphical view of monitor class boundedBuffer.

A thread that is executing inside a monitor method blocks itself on condition
variable cv by executing

cv.wait();

Executing a wait() operation releases mutual exclusion (to allow another thread
to enter the monitor) and blocks the thread on the rear of the queue for cv. The
threads blocked on a condition variable are considered to be outside the monitor.
If a thread that is blocked on a condition variable is never awakened by another
thread, a deadlock occurs.

A thread blocked on condition variable cv is awakened by the execution of

cv.signal();

If there are no threads blocked on cv, the signal() operation has no effect; oth-
erwise, the signal() operation awakens the thread at the front of the queue for
cv. What happens next depends on exactly how the signal() operation is defined.
There are several different types of signaling disciplines. For now, we assume
that the signal-and-continue (SC) discipline is used. This is the discipline used
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by Java’s built-in monitor construct. Other types of signals are described in
Section 4.4.

After a thread executes an SC signal to awaken a waiting thread, the signaling
thread continues executing in the monitor and the awakened thread is moved
to the entry queue. That is, the awakened thread does not reenter the monitor
immediately; rather, it joins the entry queue and waits for its turn to enter. When
SC signals are used, signaled threads have the same priority as threads trying to
enter the monitor via public method calls.

Let A denote the set of threads that have been awakened by signal() operations
and are waiting to reenter the monitor, S denote the set of signaling threads, and
C denote the set of threads that have called a monitor method but have not yet
entered the monitor. (The threads in sets A and C wait in the entry queue.) Then
in an SC monitor, the relative priority associated with these three sets of threads
is S > C = A.

Operation cv.signalAll() wakes up all the threads that are blocked on condition
variable cv. Operations empty() and length() return information about the queue
associated with a condition variable. The execution of

cv.empty()

returns true if the queue for cv is empty, and false otherwise. Executing

cv.length()

returns the current length of the queue for cv.
Listing 4.3 shows a complete boundedBuffer monitor. This solution uses con-

dition variables notEmpty and notFull. Operations deposit() and withdraw() check
the state of the buffer, perform their buffer operations, and signal each other
at the end. As shown, the signal() statements at the ends of the methods are
always executed. Alternatively, since signal() operations may involve context
switches and thus may be relatively expensive, they can be guarded with if-
statements so that they are only executed when it is possible that another thread
is waiting.

Assume that the buffer is empty and that the thread at the front of the
entry queue is Consumer1 (C1). The queues for condition variables notFull and
notEmpty are also assumed to be empty (Fig. 4.4a). When Consumer1 enters
method withdraw(), it executes the statement

while (fullSlots == 0)
notEmpty.wait();

Since the buffer is empty, Consumer1 blocks itself by executing a wait() operation
on condition variable notEmpty (Fig. 4.4b).

Producer1 (P1) then enters the monitor. Since the buffer is not full, Producer1

deposits an item and executes notEmpty.signal(). This signal operation awak-
ens Consumer1 and moves Consumer1 to the rear of the entry queue behind
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class boundedBuffer extends monitor {
private int fullSlots = 0; // number of full slots in the buffer
private int capacity = 0; // capacity of the buffer
private int[] buffer = null; // circular buffer of ints
private int in = 0, out = 0;
private conditionVariable notFull = new conditionVariable();
private conditionVariable notEmpty = new conditionVariable();

public boundedBuffer(int bufferCapacity ) {
capacity = bufferCapacity;buffer = new int[bufferCapacity];}
public void deposit(int value) {
while (fullSlots == capacity)

notFull.wait();
buffer[in] = value;
in = (in + 1) % capacity; ++fullSlots;
notEmpty.signal(); //alternatively:if (fullSlots == 1) notEmpty.signal();

}
public int withdraw() {

int value;
while (fullSlots == 0)

notEmpty.wait();
value = buffer[out];
out = (out + 1) % capacity; --fullSlots;
notFull.signal(); //alternatively:if (fullSlots == capacity–1) notFull.signal();
return value;

}
}
...
boundedBuffer bb;
bb.deposit(...); // executed by Producers
bb.withdraw(...); // executed by Consumers

Listing 4.3 Monitor class boundedBuffer .

Consumer2 (C2) (Fig. 4.4c). After its signal() operation, Producer1 can continue
executing in the monitor, but since there are no more statements to execute,
Producer1 exits the monitor. Consumer2 now barges ahead of Consumer1 and
consumes an item. Consumer2 executes notFull.signal(), but there are no Pro-
ducers waiting, so the signal has no effect. When Consumer2 exits the monitor,
Consumer1 is allowed to reenter, but the loop condition (fullSlots == 0 ) is true
again:

while (fullSlots == 0)
notEmpty.wait();
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deposit() {..}

withdraw() {..}
C2 P1 C1

deposit() {..}

withdraw() {..}
C2 P1

C1

deposit() {P1}

withdraw() {..}
C2C1

deposit() {..}

withdraw() {..}
C1

entry queue

entry queue

entry queue

entry queue

wait

notFull

notFull

notFull

notEmpty

notEmpty

notEmpty

notEmpty

(a) (b)

(c) (d)

Figure 4.4 Bounded buffer monitor.

Thus, Consumer1 is blocked once more on condition variable notEmpty
(Fig. 4.4d ). Even though Consumer1 entered the monitor first, it is Consumer2

that consumes the first item.
This example illustrates why the wait() operations in an SC monitor are

usually found inside while-loops: A thread waiting on a condition variable can-
not assume that the condition it is waiting for will be true when it reenters
the monitor.

4.2 MONITOR-BASED SOLUTIONS TO CONCURRENT
PROGRAMMING PROBLEMS

We now show several monitor-based solutions to classical concurrent program-
ming problems. These solutions assume that condition variable queues are first-
come-first-serve (FCFS).

4.2.1 Simulating Counting Semaphores

Solution 1 Listing 4.5 shows an SC monitor with methods P() and V() that
simulates a counting semaphore. In this implementation, a waiting thread may
get stuck forever in the while-loop in method P(). To see this, assume that
the value of permits is 0 when thread T1 calls P(). Since the loop condition
(permits == 0) is true, T1 will block itself by executing a wait operation. Now
assume that some other thread executes V() and signals T1. Thread T1 will join
the entry queue behind any threads that have called P() and are waiting to enter
the monitor for the first time. These other threads can enter the monitor and
decrement permits before T1 has a chance to reenter the monitor and examine
its loop condition. If the value of permits is 0 when T1 eventually evaluates its
loop condition, T1 will block itself again by issuing another wait operation.
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class countingSemaphore1 extends monitor {
private int permits; // The value of permits is never negative.
private conditionVariable permitAvailable = new conditionVariable();
public countingSemaphore1(int initialPermits) { permits = initialPermits;}
public void P() {

while (permits == 0)
permitAvailable.wait();

--permits;
}
public void V() {

++permits;
permitAvailable.signal();

}
}
// Threads call methods P() and V():
countingSemaphore1 s;
s.P();
s.V();

Listing 4.5 Class countingSemaphore1 .

Solution 2 The SC monitor in Listing 4.6 is based on Implementation 2 in
Listing 3.3. Unlike solution 1, this solution does not suffer from a starvation
problem. Threads that call P() cannot barge ahead of signaled threads and “steal”
their permits. Consider the scenario that we described in Solution 1. If thread
T1 calls P() when the value of permits is 0, T1 will decrement permits to −1
and block itself by executing a wait operation. When some other thread executes
V(), it will increment permits to 0 and signal T1. Threads ahead of T1 in the
entry queue can enter the monitor and decrement permits before T1 is allowed
to reenter the monitor. However, these threads will block themselves on the
wait operation in P(), since permits will have a negative value. Thread T1 will
eventually be allowed to reenter the monitor, and since there are no statements
to execute after the wait operation, T1 will complete its P() operation. Thus, in
this solution, a waiting thread that is signaled is guaranteed to get a permit.

4.2.2 Simulating Binary Semaphores

The SC monitor in Listing 4.7 is based on Implementation 3 in Listing 3.4.
Threads in P() wait on condition variable allowP, while threads in V() wait on
condition variable allowV. Waiting threads may get stuck forever in the while-
loops in methods P() and V().

4.2.3 Dining Philosophers

Solution 1 The SC monitor in Listing 4.8 is similar to Solution 4 (using
semaphores) in Section 3.5.3. A philosopher picks up two chopsticks only if
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class countingSemaphore2 extends monitor {
private int permits; // The value of permits may be negative.
private conditionVariable permitAvailable = new conditionVariable();
public countingSemaphore2(int initialPermits) { permits = initialPermits;}
public void P() {

--permits;
if (permits < 0)

permitAvailable.wait();
}
public void V() {

++permits;
permitAvailable.signal();

}
}

Listing 4.6 Class countingSemaphore2 .

class binarySemaphore extends monitor {
private int permits;
private conditionVariable allowP = new conditionVariable();
private conditionVariable allowV = new conditionVariable();
public binarySemaphore(int initialPermits) { permits = initialPermits;}
public void P() {

while (permits == 0)
allowP.wait();

permits = 0;
allowV.signal();

}
public void V() {

while (permits == 1)
allowV.wait();

permits = 1;
allowP.signal();

}
}

Listing 4.7 Class binarySemaphore.

both of them are available. Each philosopher has three possible states: thinking,
hungry, and eating. A hungry philosopher can eat if her two neighbors are not
eating. A philosopher blocks herself on a condition variable if she is hungry
but unable to eat. After eating, a philosopher will unblock a hungry neighbor
who is able to eat. This solution is deadlock-free but not starvation-free, since a
philosopher can starve if one of its neighbors is always eating (Exercise 4.25).
However, the chance of a philosopher starving may be so highly unlikely that
perhaps it can be safely ignored [Turski 1991].
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class diningPhilosopher1 extends monitor {
final int n = ...; // number of philosophers
final int thinking = 0; final int hungry = 1; final int eating = 2;
int state[] = new int[n]; // state[i] indicates the state of Philosopher i
// philosopher i blocks herself on self[i] when she is hungry but unable to eat
conditionVariable[] self = new conditionVariable[n];
diningPhilosopher1() {
for (int i = 0; i < n; i++) state[i] = thinking;
for (int j = 0; j < n; j++) self[j] = new conditionVariable( );
}
public void pickUp(int i) {

state[i] = hungry;
test(i); // change state to eating if Philosopher i is able to eat
if (state[i] != eating)
self[i].wait();

}
public void putDown(int i) {

state[i] = thinking;
test((n+i-1) % n); // check the left neighbor
test((i+1) % n); // check the right neighbor

}
private void test(int k) {
// if Philosopher k is hungry and can eat, change her state and signal her queue.

if (( state[k] == hungry) && (state[(k+n-1) % n] != eating ) &&
(state[(k+1) % n] != eating )) {

state[k] = eating;
self[k].signal(); // no effect if Philosopher k is not waiting on self[k]

}
}

}

Philosopher i executes:
while (true) {

/* thinking */
dp1.pickUp(i);
/* eating */
dp1.putDown(i)

}

Listing 4.8 Class diningPhilosopher1 .

Solution 2 Solution 1 can be revised to prevent starvation. In Listing 4.9, each
philosopher has an additional state called starving. A hungry philosopher is not
allowed to eat if she has a starving neighbor, even if both chopsticks are available.
Also, two neighboring philosophers are not allowed to be starving at the same
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class diningPhilosopher2 extends monitor {
final int n = ...; // number of philosophers
final int thinking = 0; final int hungry = 1;
final int starving = 2; final int eating = 3;
int state[] = new int[n]; // state[i] indicates the state of Philosopher i
// philosopher i blocks herself on self[i] when she is hungry, but unable to eat
conditionVariable[] self = new conditionVariable[n];
diningPhilosopher2() {

for (int i = 0; i < n; i++) state[i] = thinking;
for (int j = 0; j < n; j++) self[j] = new conditionVariable( );

}
public void pickUp(int i) {

state[i] = hungry;
test(i);
if (state[i] != eating)

self[i].wait();
}
public void putDown(int i) {

state[i] = thinking;
test((n+i-1) % n);
test((i+1) % n);

}
private void test(int k) {
// Determine whether the state of Philosopher k should be changed to
// eating or starving. A hungry philosopher is not allowed to eat if she has a
// neighbor who’s starving or eating.

if (( state[k] == hungry || state[k] == starving ) &&
(state[(k+n-1) % n] != eating && state[(k+n-1) % n] != starving ) &&
(state[(k+1) % n] != eating && state[(k+1) % n] !=starving)) {

state[k] = eating;
self[k].signal(); // no effect if Phil. k is not waiting on self[k],

} // which is the case if test() was called from pickUp().
// a hungry philosopher enters the ‘‘starving’’ state if she cannot eat and her
// neighbors are not starving
else if ((state[k] == hungry) && (state[(k+n-1) % n] != starving ) &&

(state[(k+1) % n] != starving )) {
state[k] = starving;

}
}

}

Listing 4.9 Class diningPhilosopher2 .
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time. Thus, a hungry philosopher enters the starving state if she cannot eat and
her two neighbors are not starving. This solution avoids starvation. If there are
five philosophers, no more than four philosophers can eat before a given hungry
philosopher is allowed to eat. However, some philosophers may not be allowed
to eat even when both chopsticks are available. Compared to Solution 1, this
solution limits the maximum time that a philosopher can be hungry, but it can
also increase the average time that philosophers are hungry [Robbins 2001].

4.2.4 Readers and Writers

Listing 4.10 is an SC monitor implementation of strategy R>W.1, which
allows concurrent reading and gives readers a higher priority than writers (see
Section 3.5.4). Reader and writer threads have the following form:

r_gt_w_1 rw;

Reader Threads Writer Threads

rw.startRead(); rw.startWrite();
/* read shared data */ /* write to shared data */
rw.endRead(); rw.endWrite();

Writers are forced to wait in method startWrite() if any writers are writing
or any readers are reading or waiting. In method endWrite(), all the waiting
readers are signaled since readers have priority. However, one or more writers
may enter method startWrite() before the signaled readers reenter the monitor.
Variable signaledReaders is used to prevent these barging writers from writing
when the signaled readers are waiting in the entry queue and no more readers
are waiting in readerQ. Notice above that the shared data is read outside the
monitor. This is necessary in order to allow concurrent reading.

4.3 MONITORS IN JAVA

As we mentioned in Chapter 3, Java’s wait, notify, and notifyAll operations,
combined with synchronized methods and user-defined classes, enables the
construction of objects that have some of the characteristics of monitors. There
are some notable differences, however, between Java’s monitor-like objects and
the monitors that we have been describing.

First, adding synchronized to the methods of a Java class automatically pro-
vides mutual exclusion for threads accessing the data members of an instance of
this class. However, if some or all of the methods are inadvertently not synchro-
nized, a data race may result. This enables the very types of bugs that monitors
were designed to eliminate. Other languages, such as Concurrent Pascal [Brinch
Hansen 1975], provide full support for monitors and make it possible for the
compiler to prevent any data races from being written into the program.
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class r_gt_w_1 extends monitor {
int readerCount = 0; // number of active readers
boolean writing = false; // true if a writer is writing
conditionVariable readerQ = new conditionVariable();
conditionVariable writerQ = new conditionVariable();
int signaledReaders = 0; // number of readers signaled in endWrite
public void startRead() {

if (writing) { // readers must wait if a writer is writing
readerQ.wait();
--signaledReaders; // another signaled reader has started reading

}
++readerCount;

}
public void endRead() {

--readerCount;
if (readerCount == 0 && signaledReaders==0)

// signal writer if no more readers are reading and the signaledReaders
// have read
writerQ.signal();

}
public void startWrite() {
// the writer waits if another writer is writing, or a reader is reading or waiting,
// or the writer is barging

while (readerCount > 0 || writing || !readerQ.empty() || signaledReaders>0)
writerQ.wait();

writing = true;
}
public void endWrite() {

writing = false;
if (!readerQ.empty()) { // priority is given to waiting readers

signaledReaders = readerQ.length();
readerQ.signalAll();

}
else writerQ.signal();

}
}

Listing 4.10 Class r gt w 1 allows concurrent reading and gives readers a higher pri-
ority than writers.

The second major difference is that there are no explicit condition variables
in Java. When a thread executes a wait operation, it can be viewed as waiting
on a single, implicit condition variable associated with the object. Having only
one condition variable available can make Java monitors hard to write.
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Operations wait, notify, and notifyAll use SC signaling on the implicit
condition variable:

ž A thread must hold an object’s lock before it can execute a wait, notify,
or notifyAll operation. Thus, these operations must appear in a syn-
chronized method or synchronized block (see below); otherwise, an
IllegalMonitorStateException is thrown.

ž Every Java object has a lock associated with it. Methods wait, notify,
and notifyAll are inherited from class Object, which is the base class for
all Java objects.

ž When a thread executes wait, it releases the object’s lock and waits in the
wait set that is associated with the object. A notify operation awakens a
single waiting thread in the wait set. A notifyAll operation awakens all
the waiting threads. Operations notify and notifyAll are not guaranteed
to wake up the thread that has been waiting the longest.

ž A waiting thread T may be removed from the wait set due to any one of the
following actions: a notify or notifyAll operation; an interrupt action
being performed on T; a timeout for a timed wait [e.g., wait(1000) allows
T to stop waiting after 1 second]; or a spurious wakeup, which removes T
without explicit Java instructions to do so.

ž A notified thread must reacquire the object’s lock before it can begin execut-
ing in the method. Furthermore, notified threads that are trying to reacquire
an object’s lock compete with any threads that have called a method of the
object and are trying to acquire the lock for the first time. The order in
which these notified and calling threads obtain the lock is unpredictable.

ž If a waiting thread T is interrupted at the same time that a notification
occurs, the result depends on which version of Java is being used.

ž In versions before J2SE 5.0 [JSR-133 2004], the notification may be “lost.”
For example, suppose that thread T and several other threads are in the
wait set and thread T is notified and then interrupted before it reacquires the
monitor lock. Then the wait operation that was executed by T throws Inter-
ruptedException and the notification gets lost since none of the other waiting
threads is allowed to proceed. Thus, it is recommended that the catch block
for InterruptedException execute an additional notify or notifyAll to
make up for any lost notifications [Hartley 1999]. Alternatively, the pro-
grammer should use notifyAll instead of notify to wake up all waiting
threads even when just one thread can logically proceed.

ž J2SE 5.0 removes the possibility of lost notifications by specifying that if
the interrupt of T occurs before T is notified, T’s interrupt status is set to
false, wait throws InterruptedException, and some other waiting thread (if
any exist at the time of the notification) receives the notification. If the
notification occurs first, T eventually returns normally from the wait with
its interrupt status set to true.
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Note that a thread can determine its interrupt status by invoking the static
method Thread.isInterrupted(), and it can observe and clear its interrupt status
by invoking the static method Thread.interrupted().

4.3.1 Better countingSemaphore

Lea [1999] showed how to revise the countingSemaphore class in Listing 3.15 to
handle interrupts and spurious wakeups. Class countingSemaphore in Listing 4.11
assumes that J2SE 5.0 interrupt semantics are used, which prevents notifications
from being lost when a waiting thread is interrupted right before it is notified.
Variable notifyCount counts the number of notifications that are made in method
V(). The if-statement in method V() ensures that only as many notifications are
done as there are waiting threads. A thread that awakens from a wait operation
in P() executes wait again if notifyCount is zero since a spurious wakeup must
have occurred (i.e., a notification must have been issued outside of V().)

Assume that two threads are blocked on the wait operation in method P() and
the value of permits is 0. Now suppose that three V() operations are performed
and all three V() operations are completed before either of the two notified threads
can reacquire the lock. Then the value of permits is 3 and the value of waitCount
is still 2. A thread that then calls P() and barges ahead of the notified threads is
not required to wait and does not execute wait since the condition (permits <=
waitCount) in the if-statement in method P() is false.

Finally, assume that two threads are blocked on the wait operation in method
P() when two V() operations are executed. Then notifyCount and permits both
become 2. But suppose that the two threads notified are interrupted so that wait-
Count becomes 0 (due to the interrupted threads decrementing waitCount in their
finally blocks). If three threads now call method P(), two of the threads will
be allowed to complete their P() operations, and before they complete P(), they
will each decrement notifyCount since both will find that the condition (notify-
Count > waitCount) is true. Now permits, notifyCount, and waitCount are all
0. If another thread calls P(), it will be blocked by the wait operation in P(),
and if it is awakened by a spurious wakeup, it will execute wait again since
notifyCount is zero.

In Section 3.6.3 we described the Semaphore class in the J2SE 5.0 pack-
age java.util.concurrent. As we mentioned, class Semaphore provides methods
acquire() and release() instead of P() and V(), respectively. The implementation
of acquire() handles interrupts as follows. If a thread calling acquire() has its
interrupted status set on entry to acquire(), or is interrupted while waiting for a
permit, InterruptedException is thrown and the calling thread’s interrupted
status is cleared. Any permits that were to be assigned to this thread are, instead,
assigned to other threads trying to acquire permits. Class Semaphore also provides
method acquireUninterruptibly(). If a thread calling acquireUninterruptibly() is
interrupted while waiting for a permit, it will continue to wait until it receives
a permit. When the thread does return from this method, its interrupt status will
be set.
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public final class countingSemaphore {
private int permits = 0; int waitCount = 0; int notifyCount=0;
public countingSemaphore(int initialPermits) {

if (initialPermits>0) permits = initialPermits;
}
synchronized public void P() throws InterruptedException {

if (permits <= waitCount) {
waitCount++; // one more thread is waiting
try {

do { wait(); } // spurious wakeups do not increment
while (notifyCount == 0); // notifyCount

}
finally { waitCount--; } // one waiting thread notified or interrupted
notifyCount--; // one notification has been consumed

}
else {

if (notifyCount > waitCount) // if some notified threads were
notifyCount--; // interrupted, adjust notifyCount

}
permits--;

}

synchronized public void V() {
permits++;
if (waitCount > notifyCount) { // if there are waiting threads yet to be

notifyCount++; // notified, notify one thread
notify();

}
}

}

Listing 4.11 Java class countingSemaphore, which handles interrupts and spurious
wakeups.

4.3.2 notify vs. notifyAll

A Java monitor has available to it only a single (implicit) condition variable.
Since two or more threads waiting on the same implicit condition variable may
be waiting for different conditions to become true, notify operations must be
handled carefully. Listing 4.12 shows Java class binarySemaphore. Threads that
are blocked in P() or V() are waiting in the single queue associated with the
implicit condition variable. Any execution of notifyAll awakens all the waiting
threads, even though one entire group of threads, either those waiting in P() or
those waiting in V(), cannot possibly continue. (A notification that is issued in
method P() is intended for a thread waiting in method V(), and vice versa.) All the
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public final class binarySemaphore extends semaphore {
public binarySemaphore(int initialPermits) {

super(initialPermits);
if (initialPermits != 0 && initialPermits != 1) throw new

IllegalArgumentException("initial value of binarySemaphore must be 0 or 1");
}
synchronized public void P() {

while (permits == 0) // assume that no interrupts are possible
try { wait(); } catch (InterruptedException ex) {}

permits = 0;
notifyAll();

}
synchronized public void V() {

while (permits == 1) // assume that no interrupts are possible
try { wait(); } catch (InterruptedException ex) {}

permits = 1;
notifyAll();

}
}

Listing 4.12 Java class binarySemaphore.

threads signaled must reacquire the monitor lock one by one and then determine
if their loop condition is true or false. The first thread, if any, to find that its loop
condition is false exits the loop and completes its operation. The other threads
may all end up blocking themselves again. This type of semi-busy-waiting can
become a performance bottleneck [Anderson et al. 1989].

If notify were used instead of notifyAll, the single thread that was awak-
ened might be a member of the wrong group. For example, a thread in method
P() might notify another thread waiting in P() instead of a thread waiting in
V(). The thread notified would execute another wait operation and the notify
operation would be lost, potentially causing a deadlock.

Use notifyAll instead of notify unless the following requirements are met:

1. All the waiting threads are waiting on conditions that are signaled by the
same notifications. This means that if one condition is signaled by a notifi-
cation, the other conditions are also signaled by this notification. Usually,
when this requirement is met, all the waiting threads are waiting on the
exact same condition.

2. Each notification is intended to enable exactly one thread to continue. (In
this case, it would be useless to wake up more than one thread.)

An example of a class that satisfies these requirements is the class count-
ingSemaphore in Listing 3.15. All threads waiting in P() are waiting for the
same condition (permits ≥ 0), which is signaled by the notify operation in V().
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final class boundedBuffer {
private int fullSlots=0; private int capacity = 0;
private int[] buffer = null; private int in = 0, out = 0;
public boundedBuffer(int bufferCapacity) {

capacity = bufferCapacity; buffer = new int[capacity];
}
public synchronized void deposit (int value) {

while (fullSlots == capacity) // assume that no interrupts are possible
try { wait(); } catch (InterruptedException ex) {}

buffer[in] = value;
in = (in + 1) % capacity;
if (fullSlots++ == 0) // note the use of post-increment.

notifyAll(); // it is possible that Consumers are waiting for ‘‘not empty’’
}
public synchronized int withdraw () {

int value = 0;
while (fullSlots == 0) // assume that no interrupts are possible

try { wait(); } catch (InterruptedException ex) {}
value = buffer[out];
out = (out + 1) % capacity;
if (fullSlots-- == capacity) // note the use of post-decrement.

notifyAll(); // it is possible that Producers are waiting for ‘‘not full’’
return value;

}
}

Listing 4.13 Java monitor boundedBuffer .

Also, a notify operation enables one waiting thread to continue. Even though
both of these requirements might be satisfied in a given class, they may not be
satisfied in subclasses of this class, so using notifyAll may be safer. The poten-
tial for subclassing must be considered when deciding whether to use notify
or notifyAll. (We used the final keyword for classes binarySemaphore and
countingSemaphore to prevent any subclassing from them.)

Listing 4.13 shows a Java monitor boundedBuffer, which solves the bounded
buffer problem. Monitor boundedBuffer uses notifyAll operations since Pro-
ducers and Consumers wait on the same implicit condition variable and they wait
for different conditions that are signaled by different notifications. Producers wait
for the condition “not full” to be signaled by the notification in withdraw(), and
Consumers wait for the condition “not empty” to be signaled by the notification
in deposit(). The notifyAll operation is issued only if it is actually possible for
threads to be waiting. Compare this with the real monitor solution in Listing 4.3,
which uses two condition variables in order to separate the threads waiting in
P() from the threads waiting in V().



194 MONITORS

4.3.3 Simulating Multiple Condition Variables

It is possible to use simple Java objects to achieve an effect that is similar to the
use of multiple condition variables. Listing 4.14 shows a new version of class
binarySemaphore that uses objects allowP and allowV in the same way that con-
dition variables are used. Threads waiting in methods P() and V() wait on objects
allowP and allowV, respectively. Notice that methods P() and V() are not syn-
chronized since it is objects allowP and allowV that must be synchronized
in order to perform wait and notify operations on them. (Adding synchro-
nized to methods P() and V() would synchronize the binarySemaphore2 object,
not objects allowP and allowV.)

The use of a synchronized block,

synchronized (allowP) {
/* block of code */

}

creates a block of code that is synchronized on object allowP. A thread must
acquire allowP’s lock before it can enter the block. The lock is released when
the thread exits the block.

Note that a synchronized method,

public synchronized void F() {
/* body of F */

}

is equivalent to a method whose body consists of a single synchronized block:

public void F() {
synchronized(this) {

/* body of F */
}

}

If methods P() or V() in Listing 4.14 were also synchronized, a thread that
blocked itself on allowP or allowV would do so while holding the lock for
the binarySemaphore2. This would result in a deadlock since no other thread
would be able to execute inside P() or V(). Variables pPermits and vPermits
are used to determine whether threads should block themselves on allowP and
allowV, respectively.

4.4 MONITORS IN PTHREADS

Pthreads does not provide a monitor construct, but it provides condition variables,
which enables the construction of monitor-like objects.
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public final class binarySemaphore2 {
int vPermits = 0;
int pPermits = 0;
Object allowP = null; // queue of threads waiting in P()
Object allowV = null; // queue of threads waiting in V()
public binarySemaphore2(int initialPermits) {

if (initialPermits != 0 && initialPermits != 1) throw new
IllegalArgumentException("initial binary semaphore value must be 0 or 1");

pPermits = initialPermits; // 1 or 0
vPermits = 1 − pPermits; // 0 or 1
allowP = new Object();
allowV = new Object();

}
public void P() {

synchronized (allowP) {
--pPermits;
if (pPermits < 0) // assume that no interrupts are possible

try { allowP.wait(); } catch (InterruptedException e) {}
}
synchronized (allowV) {

++vPermits;
if (vPermits <=0)

allowV.notify(); // signal thread waiting in V()
}

}

public void V() {
synchronized (allowV) {

--vPermits;
if (vPermits < 0) // assume that no interrupts are possible

try { allowV.wait(); } catch (InterruptedException e) {}
}
synchronized (allowP) {

++pPermits;
if(pPermits <= 0)

allowP.notify(); // signal thread waiting in P()
}

}
}

Listing 4.14 Java class binarySemaphore2 .
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4.4.1 Pthreads Condition Variables

The operations that can be performed on a Pthreads condition variable are
pthread cond wait(), pthread cond signal(), and pthread cond broadcast(). The
signal and broadcast operations are similar to Java’s notify and notifyAll
operations, respectively. Also like Java, wait operations are expected to be exe-
cuted inside a critical section. Thus, a condition variable is associated with a
mutex and this mutex is specified when a wait operation is performed.

A condition variable is initialized by calling pthread cond init().

ž When a thread waits on a condition variable it must have the associated
mutex locked. This means that a wait operation on a condition variable
must be preceded by a lock operation on the mutex associated with the
condition variable.

ž Each condition variable must be associated at any given time with only
one mutex. On the other hand, a mutex may have any number of condition
variables associated with it.

ž A wait operation unlocks the associated mutex automatically if the calling
thread is blocked and tries to lock the associated mutex when the blocked
thread is awakened by a signal or broadcast operation. The awakened thread
competes with other threads for the mutex.

ž A signal operation wakes up a single thread, while a broadcast operation
wakes up all waiting threads.

ž A thread can signal or broadcast a condition variable without holding the
lock for the associated mutex. (This is different from Java since a Java notify
or notifyAll operation must be performed in a synchronized method or
block.) A thread that executes a signal or broadcast continues to execute.
If the thread holds the lock for the associated mutex when it performs a
signal or broadcast, it should eventually release the lock.

Listing 4.15 shows a C++/Pthreads monitor class named boundedBuffer that
solves the bounded buffer problem. Producers wait on condition variable notFull
and Consumers wait on condition variable notEmpty. The use of two explicit
condition variables makes this Pthreads version similar to the solution in List-
ing 4.3. Note that the wait operations appear in loops since Pthreads uses the SC
signaling discipline. Also, it is recommended that loops always be used because
of the possibility of spurious wakeups (i.e., threads can be awakened without any
signal or broadcast operations being performed).

4.4.2 Condition Variables in J2SE 5.0

Package java.util.concurrent.locks in Java release J2SE 5.0 contains a lock class
called ReentrantLock (see Section 3.6.4) and a condition variable class called
Condition. A ReentrantLock replaces the use of a synchronized method, and
operations await and signal on a Condition replace the use of methods wait and



MONITORS IN PTHREADS 197

#include <iostream>
#include <pthread.h>
#include "thread.h"

class boundedBuffer {
private:

int fullSlots; // # of full slots in the buffer
int capacity;
int* buffer;
int in, out;
pthread_cond_t notFull; // Producers wait on notFull
pthread_cond_t notEmpty; // Consumers wait on notEmpty
pthread_mutex_t mutex; // exclusion for deposit() and withdraw()

public:
boundedBuffer(int capacity_) : capacity(capacity_), fullSlots(0), in(0),

out(0), buffer(new int[capacity_]) {
pthread_cond_init(&notFull,NULL);
pthread_cond_init(&notEmpty,NULL);
pthread_mutex_init(&mutex,NULL);

}
~boundedBuffer() {

delete [] buffer;
pthread_cond_destroy(&notFull); pthread_cond_destroy(&notEmpty);
pthread_mutex_destroy(&mutex);

}
void deposit(int value) {

pthread_mutex_lock(&mutex);
while (fullSlots == capacity)

pthread_cond_wait(&notFull,&mutex);
buffer[in] = value;
in = (in + 1) % capacity;
++fullSlots;
pthread_mutex_unlock(&mutex);
pthread_cond_signal(&notEmpty);

}
int withdraw() {

pthread_mutex_lock(&mutex);
int value;
while (fullSlots == 0)

pthread_cond_wait(&notEmpty,&mutex);
value = buffer[out];
out = (out + 1) % capacity;
--fullSlots;
pthread_mutex_unlock(&mutex);

Listing 4.15 C++/Pthreads class boundedBuffer .
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pthread_cond_signal(&notFull);
return value;

}
};

class Producer : public Thread {
private:

boundedBuffer& b;
int num;

public:
Producer (boundedBuffer* b_, int num_) : b(*b_), num(num_) { }
virtual void* run () {

std::cout << "Producer Running" << std::endl;
for(int i = 0; i < 3; i++) {

b.deposit(i);
std::cout << "Producer # " << num << " deposited " << i << std::endl;

}
return NULL;

}
};

class Consumer : public Thread {
private:

boundedBuffer& b;
int num;

public:
Consumer (boundedBuffer* b_, int num_) : b(*b_), num(num_) { }
virtual void* run () {

std::cout << "Consumer Running" << std::endl;
int value = 0;
for(int i = 0; i < 3; i++) {

value = b.withdraw();
std::cout << "Consumer # " << num << " withdrew " <<

value << std::endl;
}
return NULL;

}
};

int main ( ) {
boundedBuffer* b1 = new boundedBuffer(3);
Producer p1(b1, 1); Consumer c1(b1, 1);
p1.start(); c1.start();
p1.join(); c1.join();
delete b1;
return 0;

}

Listing 4.15 (continued )
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notify. A Condition object is bound to its associated ReentrantLock object. Method
newCondition() is used to obtain a Condition object from a ReentrantLock :

ReentrantLock mutex = new ReentrantLock();
Condition notFull = mutex.newCondition(); // notFull and notEmpty are both

// bound to mutex
Condition notEmpty = mutex.newCondition();

Conditions provide operations await, signal, and signallAll, including those with
timeouts. Listing 4.16 shows a Java version of class boundedBuffer using Condi-
tion objects. The try-finally clause ensures that mutex is unlocked no matter
how the try block is executed. Furthermore, if an interrupt occurs before a signal,
the await method must, after reacquiring the lock, throw InterruptedExcep-
tion. [If the interrupted thread is signaled, some other thread (if any exist at the
time of the signal ) receives the signal.] But if the interrupt occurs after a signal,
the await method must return without throwing an exception, but with the current
thread’s interrupt status set. (See the discussion of interrupts in Section 4.3.)

4.5 SIGNALING DISCIPLINES

All the monitors that we have seen so far use the signal-and-continue (SC)
discipline. Below we describe three other signaling disciplines. Monitors that
use these new disciplines are often simpler than their SC counterparts. Later, we
show how to implement all four signaling disciplines in Java and C++ so that
we can choose which discipline to use in our programs.

4.5.1 Signal-and-Urgent-Wait

Signal-and-urgent-wait (SU) was defined by Hoare [Hoare 1974]. Below we
describe the behavior of the wait and signal operations for an SU monitor.

When a thread executes cv.signal():

ž If there are no threads waiting on condition variable cv, this operation has
no effect.

ž Otherwise, the thread executing signal (which is called the signaler thread )
awakens one thread waiting on cv and blocks itself in a queue, called the
reentry queue. Threads blocked in the reentry queue are considered to be
outside the monitor. The thread signaled reenters the monitor immediately.

When a thread executes cv.wait():

ž If the reentry queue is not empty, the thread awakens one signaler thread
from the reentry queue and then blocks itself on the queue for cv.

ž Otherwise, the thread releases mutual exclusion (to allow a new thread to
enter the monitor) and then blocks itself on the queue for cv.
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import java.util.concurrent.locks.*;
final class boundedBuffer {

private int fullSlots=0; private int capacity = 0; private int in = 0, out = 0;
private int[] buffer = null;
private ReentrantLock mutex;
private Condition notFull;
private Condition notEmpty;

public boundedBuffer(int bufferCapacity) {
capacity = bufferCapacity; buffer = new int[capacity];
mutex = new ReentrantLock();
// notFull and notEmpty are both attached to mutex
notFull = mutex.newCondition(); notEmpty = mutex.newCondition();

}
public void deposit (int value) throws InterruptedException {

mutex.lock();
try {

while (fullSlots == capacity)
notFull.await();

buffer[in] = value;
in = (in + 1) % capacity;
notEmpty.signal();

} finally {mutex.unlock();}
}
public synchronized int withdraw () throws InterruptedException {

mutex.lock();
try {

int value = 0;
while (fullSlots == 0)

notEmpty.await();
value = buffer[out];
out = (out + 1) % capacity;
notFull.signal();
return value;

} finally {mutex.unlock();}
}

}

Listing 4.16 Java class boundedBuffer using Condition objects.

When a thread completes and exits a monitor method:

ž If the reentry queue is not empty, it awakens one signaler thread from the
reentry queue.

ž Otherwise, it releases mutual exclusion to allow a new thread to enter
the monitor.
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In an SU monitor, the threads waiting to enter a monitor have three levels of
priority (from highest to lowest):

ž The awakened thread (A), which is the thread awakened by a signal oper-
ation

ž Signaler threads (S), which are the threads waiting in the reentry queue
ž Calling threads (C), which are the threads that have called a monitor method

and are waiting in the entry queue

A thread waiting in the entry queue is allowed to enter a monitor only when
no other threads are inside the monitor and there is no signaled thread and no
signaler threads. In an SU monitor, the relative priority associated with the three
sets of threads is A > S > C. We will illustrate an SU monitor by considering
again the boundedBuffer monitor in Listing 4.3. This time we assume that SU
signals are used instead of SC signals. Assume that the buffer is empty and that
the thread at the front of the entry queue is Consumer1. The queues for condition
variables notFull and notEmpty are also assumed to be empty (Fig. 4.17a).

When Consumer1 enters method withdraw(), it executes the statement

while (fullSlots == 0)
notEmpty.wait();

Since the buffer is empty, Consumer1 is blocked by the wait() operation on condi-
tion variable notEmpty (Fig. 4.17b). Producer1 then enters the monitor. Since the
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Figure 4.17 SU monitor boundedBuffer .
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buffer is not full, Producer1 deposits its item and executes notEmpty.signal().
This signal awakens Consumer1 and moves Producer1 to the reentry queue
(Fig. 4.17c).

Consumer1 can now consume an item. When Consumer1 executes
notFull.signal(), there are no Producers waiting, so none are signaled and
Consumer1 does not move to the reentry queue. When Consumer1 exits the
monitor, Producer1 is allowed to reenter the monitor since the reentry queue
has priority over the entry queue (Fig. 4.17d). Producer1 has no more statements
to execute, so Producer1 exits the monitor. Since the reentry queue is empty,
Consumer2 is now allowed to enter the monitor. Consumer2 finds that the buffer
is empty and blocks itself on condition variable notEmpty (Fig. 4.17e).

Unlike the scenario that occurred when SC signals were used, Consumer2 was
not allowed to barge ahead of Consumer1 and consume the first item. When
Consumer1 was signaled by Producer1, instead of moving to the rear of the entry
queue, Consumer1 reentered the monitor and consumed the item deposited by
Producer1. Since signaled threads have priority over new threads, a thread waiting
on a condition variable in an SU monitor can assume that the condition it is waiting
for will be true when it reenters the monitor. In the boundedBuffer monitor, this
means that we can safely replace the while-loops with if-statements and avoid
the unnecessary reevaluation of the loop condition after a wait() operation returns.

As another example, Listing 4.18 shows an SU monitor implementation
of strategy R>W.1. This implementation is simpler than the SC monitor in
Section 4.2.4 since there is no threat of barging. When a writer signals waiting
readers, these waiting readers are guaranteed to reenter the monitor before any
new writers are allowed to enter startWrite(). Notice how waiting readers are
signaled in endWrite() and startRead(). The first waiting reader is signaled in
endWrite(). The awakened reader continues executing in startRead() and signals
the second waiting reader, which signals the third waiting reader, and so on.
This cascaded wakeup continues until all waiting readers have been signaled.
(The last reader to be signaled issues a final signal that has no affect.)

4.5.2 Signal-and-Exit

Brinch Hansen [1975] defined a signaling discipline called signal-and-exit (SE)
that is a special case of signal-and-urgent-wait (SU) [Andrews 1991]. When a
thread executes an SE signal operation it does not enter the reentry queue; rather,
it exits the monitor immediately. Thus, an SE signal statement is either the last
statement of a method or is followed immediately by a return statement. As with
SU signals, the thread awakened by a signal operation is always the next thread
to enter the monitor. In an SE monitor, since there are no signaling threads that
want to remain in or reenter the monitor, the relative priority associated with the
sets of awakened (A) and calling (C) threads is A > C.

When a signal statement appears in a monitor method, it is very often the last
statement of the method, regardless of the type of signal. Notice that this was the
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class r_gt_w_1SU extends monitorSU {
int readerCount = 0; // number of active readers
boolean writing = false; // true if a writer is writing
conditionVariable readerQ = new conditionVariable();
conditionVariable writerQ = new conditionVariable();

public void startRead() {
if (writing) // readers must wait if a writer is writing

readerQ.wait();
++readerCount;
readerQ.signal(); // continue cascaded wakeup of readers

}
public void endRead() {

--readerCount;
if (readerCount == 0)

writerQ.signal(); // signal writer if there are no more readers reading
}
public void startWrite() {
// writers wait if a writer is writing, or a reader is reading or waiting, or the
// writer is barging

while (readerCount > 0 || writing || !readerQ.empty())
writerQ.wait();

writing = true;
}
public void endWrite() {

writing = false;
if (!readerQ.empty()) { // priority is given to waiting readers

readerQ.signal(); // start cascaded wakeup of readers
}
else

writerQ.signal();
}

}

Listing 4.18 Class r gt w 1SU allows concurrent reading and gives readers a higher
priority than writers.

case for all the SC monitor examples in Section 4.2 and for the SU monitor in
Listing 4.18. Using SE semantics for these special SU signal operations avoids
the extra cost of having a thread exit a monitor and join the reentry queue, and
then later reenter the monitor only to exit the monitor again immediately. In
the Java and C++ monitor classes that we present in the next section, we have
provided a signal-and-exit operation that allows SE signals to be used at the end
of SU monitor methods.
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TABLE 4.1 Signaling Disciplines

Relative Priority Name

S > A = C Signal-and-continue [Lampson and Redell 1980]
A > S > C Signal-and-urgent-wait [Hoare 1974]
A > C Signal-and-exit [Brinch Hansen 1975]
S > A > C Urgent-signal-and-continue [Howard 1976]

4.5.3 Urgent-Signal-and-Continue

In the urgent-signal-and-continue (USC) discipline, a thread that executes a sig-
nal operation continues to execute just as it would for an SC signal. But unlike SC
signals, a thread awakened by a signal operation has priority over threads wait-
ing in the entry queue. That is, a thread waiting in the entry queue is allowed to
enter a monitor only when no other threads are inside the monitor and no signaled
threads are waiting to reenter. When signal operations appear only at the end of
monitor methods, which is usually the case, this discipline is the same as the SE
discipline, which is a special case of the SU discipline. The USC discipline was
originally called signal-and-continue [Howard 1976], but signal-and-continue is
now the name commonly used for Java’s semantics. (Java’s semantics was origi-
nally called wait-and-notify [Lampson and Redell 1980].) In a USC monitor, the
relative priority associated with the three sets of threads is S > A > C.

Table 4.1 lists the signaling disciplines and shows the relative priorities asso-
ciated with the three sets of threads. Another signaling discipline is described in
Exercise 4.17.

4.5.4 Comparing SU and SC Signals

If a thread executes an SU signal to notify another thread that a certain condition
is true, this condition remains true when the signaled thread reenters the monitor.
However, this does not hold for an SC signal. A signal operation in an SC
monitor is only a “hint” to the signaled thread that it may be able to proceed
[Lampson and Redell 1980]. Other threads may enter the monitor and make the
condition false before the signaled thread reenters the monitor. This situation,
called barging, may cause subtle errors in SC monitors and often makes SU
monitors easier to program [Dahl 2000].

Listing 4.19 shows a monitor that uses the SU signaling discipline to simulate
a counting semaphore correctly. If we assume that condition variable queues are
FCFS, threads will exit P() in the same order that they enter P(). We now show
that monitor countingSemaphore3 is incorrect if SC signals are used. Assume that
thread T1 is blocked on condition variable permitAvailable in method P (); thread
T3 is waiting in the entry queue; and thread T2 has just executed ++permits in
method V (), making the value of permits 1. The following scenario can occur:

ž T2 executes permitAvailable.signal() and awakens T1, which blocks itself
in the entry queue behind T3.
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class countingSemaphore3 extends monitor {
private int permits; // The value of permits is never negative.
private conditionVariable permitAvailable = new conditionVariable();
public countingSemaphore3(int initialPermits) { permits = initialPermits;}
public void P() {

if (permits == 0)
permitAvailable.wait();

--permits;
}
public void V() {

++permits;
permitAvailable.signal(); // SU signal

}
}

Listing 4.19 Class countingSemaphore3 .

ž T2 exits the monitor, which allows T3 to enter, decrement permits from 1
to 0, and exit the monitor.

ž T1 resumes execution, executes the statement permits, and exits the monitor.
The value of permits is −1.

This scenario shows that monitor countingSemaphore3 with SC signals is
incorrect since a single V() operation has allowed the completion of two P()
operations. The reason for this error is that when T1 resumes execution, the
condition (permits > 0) is not true, but T1 completes method P() anyway. This
error is fixed by replacing the if-statement in method P(),

if (permits == 0)
permitAvailable.wait();

with the while-loop

while (permits == 0)
permitAvailable.wait();

Now if condition (permits == 0) is not true when the wait() operation returns,
the signaled thread will wait again. The resulting monitor is the same as count-
ingSemaphore1 in Listing 4.4, but as we mentioned, it does not implement a
FCFS semaphore.

Using a while-loop instead of an if-statement in an SC monitor requires an
extra evaluation of condition (permits == 0) after a wait(). On the other hand, the
execution of an SU monitor requires additional context switches for managing
the signaler threads in the Reentry queue. Using signal-and-exit semantics for
a signal operation that appears at the end of an SU method avoids the costs
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of the extra condition evaluation and the extra context switches. Thus, we use
signal-and-exit wherever possible.

4.6 USING SEMAPHORES TO IMPLEMENT MONITORS

Monitors can be implemented in the kernel [Andrews 2000]. In this section we
show how to use semaphores to implement monitors with SC, SU, or SE signal-
ing [Hoare 1974]. The implementation of USC signaling is left as an exercise.
Semaphores provide mutual exclusion for threads inside the monitor and are used
to implement wait() and signal() operations on condition variables.

If a language or API provides semaphores but not monitors, which is the case
for Win32 and Pthreads, monitors can be simulated using this semaphore imple-
mentation. In Sections 4.7 and 4.8 we present Java and C++ monitor classes
that use semaphores to simulate monitors. Then we extend these classes to sup-
port cyclical testing and debugging techniques for monitor-based programs. Even
though Java provides built-in support for monitors, our custom Java monitor
classes are still helpful since it is not easy to test and debug built-in Java mon-
itors. Also, we can choose which type of monitor—SC, SU, SE, or USC—to
use in our Java programs.

4.6.1 SC Signaling

The body of each public monitor method is implemented as

public returnType F(...) {
mutex.P();
/* body of F */
mutex.V();

}

Semaphore mutex is initialized to 1. The calls to mutex.P() and mutex.V() ensure
that monitor methods are executed with mutual exclusion.

Java class conditionVariable in Listing 4.20 implements condition variables
with SC signals. Since it is not legal to overload final method wait() in Java,
methods named waitC() and signalC() are used instead of wait() and signal().
A signalCall() operation, which behaves the same as Java’s notifyAll, is also
implemented, along with operations empty() and length().

Each conditionVariable is implemented using a semaphore named thread-
Queue, which is initialized to 0. When a thread executes waitC(), it releases
mutual exclusion and blocks itself using threadQueue.P(). Since signalC() opera-
tions must determine whether any threads are waiting on the condition variable, an
integer variable named numWaitingThreads is used to count the waiting threads.
The value of numWaitingThreads is incremented in waitC() and decremented in
signalC() and signalCall(). The signalC() operation executes threadQueue.V() to
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final class conditionVariable {
private countingSemaphore threadQueue = new countingSemaphore(0);
private int numWaitingThreads = 0;
public void waitC() {

numWaitingThreads++; // one more thread is waiting in the queue
threadQueue.VP(mutex); // release exclusion and wait in threadQueue
mutex.P(); // wait to reenter the monitor

}
public void signalC() {

if (numWaitingThreads > 0) { // if any threads are waiting
numWaitingThreads--; // wake up one thread in the queue
threadQueue.V();

}
}
public void signalCall() {

while (numWaitingThreads > 0) { // if any threads are waiting
--numWaitingThreads; // wake up all the threads in the queue
threadQueue.V(); // one by one

}
}
// returns true if the queue is empty
public boolean empty() { return (numWaitingThreads == 0); }
// returns the length of the queue
public int length() { return numWaitingThreads; }

}

Listing 4.20 Java class conditionVariable.

signal one waiting thread. Operation signalCall() uses a while-loop to signal all
the waiting threads one by one.

Notice that the implementation of method waitC() uses a VP() operation. Oper-
ation threadQueue.VP(mutex) prevents deadlocks that otherwise could occur if the
mutex.V() and threadQueue.P() operations were issued separately (see Exercises
4.10 and 4.22). The VP() operation also guarantees that threads executing waitC()
are blocked on semaphore threadQueue in the same order that they entered the
monitor. Without VP(), context switches between the V() and P() operations
would create a source of nondeterminism in the implementation of the moni-
tor. We will see shortly how the VP() operation simplifies tracing and replay
for monitor-based programs. (A monitor implementation that does not use VP()
operations is considered in Exercise 4.23.)

4.6.2 SU Signaling

Java class conditionVariable in Listing 4.21 implements condition variables with
SU signals. Threads that execute a signalC() operation must wait in the reentry
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final class conditionVariable {
private countingSemaphore threadQueue = new countingSemaphore(0);
private int numWaitingThreads = 0;
public void signalC() {

if (numWaitingThreads > 0) {
++reentryCount;
reentry.VP(threadQueue); // release exclusion and join reentry queue
--reentryCount;

}
}
public void waitC() {

numWaitingThreads++;
if (reentryCount > 0) threadQueue.VP(reentry); // the reentry queue has
else threadQueue.VP(mutex); // priority over entry queue
--numWaitingThreads;

}
public boolean empty() { return (numWaitingThreads == 0); }
public int length() { return numWaitingThreads; }

}

Listing 4.21 Java class conditionVariable for SU monitors.

queue. Therefore, each SU monitor has a semaphore named reentry (initialized
to 0), on which signaling threads block themselves. If signalC() is executed
when threads are waiting on the condition variable, threadQueue.V() is executed
to signal a waiting thread, and reentry.P() is executed to block the signaler
in the reentry queue. These V() and P() operations are executed together as
reentry.VP(threadQueue). As we mentioned above, this removes a possible source
of deadlock and nondeterminism in the implementation of the monitor.

When a thread executes waitC(), the thread must determine whether any sig-
naler threads are waiting in the reentry queue, since signaler threads in the
reentry queue have priority over calling threads in the entry queue. If signalers
are waiting, the thread releases a signaler by executing reentry.V(); otherwise, the
thread releases mutual exclusion by executing mutex.V(). Integer reentryCount is
used to count the number of threads waiting in reentry. Method signalC() incre-
ments and decrements reentryCount as threads enter and exit the reentry queue.
Method waitC() uses the value of reentryCount to determine which V() operation
to execute.

Threads exiting the monitor also use reentryCount to give signaler threads
priority over new threads. The body of each public monitor method is imple-
mented as

public returnType F(...) {
mutex.P();
/* body of F */
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if (reentryCount >0)
reentry.V(); // allow a signaler thread to reenter the monitor
else mutex.V(); // allow a calling thread to enter the monitor

}

4.7 MONITOR TOOLBOX FOR JAVA

A monitor toolbox is a program unit that is used to simulate the monitor con-
struct [Boddy 1983]. The Java monitor toolboxes we use are class monitorSC
for SC monitors and class monitorSU for SU monitors. Classes monitorSC and
monitorSU implement operations enterMonitor and exitMonitor and contain a
member class named conditionVariable that implements waitC and signalC oper-
ations on condition variables.

A regular Java class can be made into a monitor class by doing the following:

1. Extend class monitorSC or monitorSU .
2. Use operations enterMonitor() and exitMonitor() at the start and end of

each public method.
3. Declare as many conditionVariables as needed.
4. Use operations waitC(), signalC(), signalCall(), length(), and empty(), on

the conditionVariables.

Listing 4.22 shows part of a Java boundedBuffer class that illustrates the use of
class monitorSC.

final class boundedBuffer extends monitorSC {
...
private conditionVariable notFull = new conditionVariable();
private conditionVariable notEmpty = new conditionVariable();
...
public void deposit(int value) {

enterMonitor();
while (fullSlots == capacity)

notFull.waitC();
buffer[in] = value;

in = (in + 1) % capacity;
++fullSlots;
notEmpty.signalC();
exitMonitor();

}
...

}

Listing 4.22 Using the Java monitor toolbox class monitorSC .



210 MONITORS

Simulated monitors are not as easy to use or as efficient as real monitors, but
they have some advantages:

ž A monitor toolbox can be used to simulate monitors in languages that do
not support monitors directly. For example, as we show below, a monitor
toolbox allows monitors to be used in C++/Win32/Pthreads programs.

ž Different versions of the toolbox can be created for different types of signals.
Java’s built-in monitors use SC signaling. An SU toolbox can be used to
allow SU signaling in Java.

ž The toolbox can be extended to support testing and debugging.

The last advantage is an important one. If a language provides monitors
but does not provide any mechanism for coping with nondeterminism during
testing and debugging, it may be better to use simulated monitors to avoid time-
consuming testing and debugging problems.

4.7.1 Toolbox for SC Signaling in Java

Listing 4.23 shows a monitor toolbox that uses semaphores to simulate moni-
tors with SC signaling. Class conditionVariable is nested inside class monitor,
which gives class conditionVariable access to member object mutex in the mon-
itorSC class.

4.7.2 Toolbox for SU Signaling in Java

Listing 4.24 shows a Java monitor toolbox with SU signaling. The SU tool-
box provides method signalC and exitMonitor(), which can be used when a
signal operation is the last statement in a method (other than a return state-
ment). When this method is called, the signaler does not wait in the reen-
try queue. For example, method deposit() using signalC and exitMonitor()
becomes

public void deposit(int value) {
enterMonitor();
if (fullSlots == capacity)

notFull.waitC();
buffer[in] = value;
in = (in + 1) % capacity;
++fullSlots;
notEmpty.signalC_and_exitMonitor();

}
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public class monitorSC { // monitor toolbox with SC signaling
private binarySemaphore mutex = new binarySemaphore(1);
protected final class conditionVariable {

private countingSemaphore threadQueue = new countingSemaphore(0);
private int numWaitingThreads = 0;
public void signalC() {

if (numWaitingThreads > 0) {
numWaitingThreads--;
threadQueue.V();

}
}
public void signalCall() {

while (numWaitingThreads > 0) {
--numWaitingThreads;
threadQueue.V();

}
}
public void waitC() {

numWaitingThreads++; threadQueue.VP(mutex); mutex.P();
}
public boolean empty() { return (numWaitingThreads == 0); }
public int length() { return numWaitingThreads; }

}
protected void enterMonitor() { mutex.P(); }
protected void exitMonitor() { mutex.V(); }

}

Listing 4.23 Java monitor toolbox monitorSC with SC signaling.

4.8 MONITOR TOOLBOX FOR WIN32/C++/PTHREADS

The C++ version of the monitor toolbox is very similar to the Java version.
Listing 4.25 shows how to use the C++ monitorSC toolbox class to define a
monitor for the bounded buffer problem. The major difference between using
the Java and C++ toolboxes is in the creation of conditionVariable objects. The
conditionVariable constructor receives a pointer to the monitor object that owns
the variable. The conditionVariable uses this pointer to access the mutex object
of the monitor.

boundedBuffer(int bufferCapacity_) : fullSlots(0), capacity(bufferCapacity),
in(0), out(0),
// each condition variable receives a pointer to this monitor, which is the
// monitor that owns it
notFull(this), notEmpty(this), buffer( new int[capacity]) {}
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public class monitorSU { // monitor toolbox with SU signaling
private binarySemaphore mutex = new binarySemaphore(1);
private binarySemaphore reentry = new binarySemaphore(0);
private int reentryCount = 0;
proteced final class conditionVariable {

private countingSemaphore threadQueue = new countingSemaphore(0);
private int numWaitingThreads = 0;
public void signalC() {

if (numWaitingThreads > 0) {
++reentryCount;
reentry.VP(threadQueue);
--reentryCount;

}
}
public void signalC_and_exitMonitor() { // does not execute reentry.P()

if (numWaitingThreads > 0) threadQueue.V();
else if (reentryCount > 0) reentry.V();
else mutex.V();

}
public void waitC() {

numWaitingThreads++;
if (reentryCount > 0) threadQueue.VP(reentry);
else threadQueue.VP(mutex);
--numWaitingThreads;

}
public boolean empty() { return (numWaitingThreads == 0); }
public int length() { return numWaitingThreads; }

}
public void enterMonitor() { mutex.P(); }
public void exitMonitor() {

if (reentryCount > 0) reentry.V();
else mutex.V();

}
}

Listing 4.24 Java monitor toolbox monitorSU with SU signaling.

Monitor methods are written just as they are in Java:

void boundedBuffer::deposit(int value) {
enterMonitor();
while (fullSlots == capacity)

notFull.waitC();
buffer[in] = value;
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class boundedBuffer : private monitorSC { // Note the use of private inheritance–
private: // methods of monitorSC cannot be called outside of boundedbuffer.

int fullSlots; // # of full slots in the buffer
int capacity; // # of slots in the buffer
int* buffer;
int in, out;
conditionVariable notFull;
conditionVariable notEmpty;

public:
boundedBuffer(int bufferCapacity);
~boundedBuffer();
void deposit(int value, int ID);
int withdraw(int ID);

};

Listing 4.25 Using the C++ monitorSC toolbox class.

in = (in + 1) % capacity;
++fullSlots;
notEmpty.signalC();
exitMonitor();

}

4.8.1 Toolbox for SC Signaling in C++/Win32/Pthreads

Listing 4.26 shows a C++/Win32/Pthreads monitor toolbox with SC signaling.
Class conditionVariable is a friend of class monitorSC. This gives conditionVari-
ables access to private member mutex of class monitor. Class conditionVariable
could be nested inside class monitorSC, as we did in the Java toolbox, but that
would not give class conditionVariable direct access to member object mutex in
class monitorSC. C++ and Java rules for nested classes are different. (This may
change in a future version of C++.)

4.8.2 Toolbox for SU Signaling in C++/Win32/Pthreads

Listing 4.27 shows a C++/Win32/Pthreads monitor toolbox with SU signaling.

4.9 NESTED MONITOR CALLS

A thread T executing in a method of monitor M1 may call a method in another
monitor M2. This is called a nested monitor call. If thread T releases mutual
exclusion in M1 when it makes the nested call to M2, it is said to be an open
call. If mutual exclusion is not released, it is a closed call. Closed calls do not



214 MONITORS

class monitorSC { // monitor toolbox with SC signaling
protected:

monitorSC() : mutex(1) {}
void enterMonitor() { mutex.P(); }
void exitMonitor() { mutex.V(); }

private:
binarySemaphore mutex;
friend class conditionVariable; // conditionVariable needs access to mutex

};
class conditionVariable {
private:

binarySemaphore threadQueue;
int numWaitingThreads;
monitorSC& m; // reference to the monitor that owns this conditionVariable

public:
conditionVariable(monitorSC* mon) :

threadQueue(0),numWaitingThreads(0),m(*mon) {}
void signalC();
void signalCall();
void waitC();
bool empty() { return (numWaitingThreads == 0); }
int length() { return numWaitingThreads; }

};

void conditionVariable::signalC() {
if (numWaitingThreads > 0) {

--numWaitingThreads;
threadQueue.V();

}
}
void conditionVariable::signalCall() {

while (numWaitingThreads > 0) {
--numWaitingThreads;
threadQueue.V();

}
}
void conditionVariable::waitC(int ID) {

numWaitingThreads++;
threadQueue.VP(&(m.mutex));
m.mutex.P();

}

Listing 4.26 C++ monitor toolbox for SC signaling.
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class monitorSU { // monitor toolbox with SU signaling
protected:

monitorSU() : reentryCount(0), mutex(1), reentry(0) { }
void enterMonitor() { mutex.P(); }
void exitMonitor(){

if (reentryCount > 0) reentry.V();
else mutex.V();

}
private:

binarySemaphore mutex; binarySemaphore reentry;
int reentryCount; friend class conditionVariable;

};
class conditionVariable {
private:

binarySemaphore threadQueue;
int numWaitingThreads;
monitorSU& m;

public:
conditionVariable(monitorSU* mon) : threadQueue(0), numWaitingThreads(0),

m(*mon) { }
void signalC();
void signalC_and_exitMonitor();
void waitC();
bool empty() { return (numWaitingThreads == 0); }
int length() { return numWaitingThreads; }

};
void conditionVariable::signalC() {

if (numWaitingThreads > 0) {
++(m.reentryCount);
m.reentry.VP(&threadQueue);
--(m.reentryCount);

}
}
void conditionVariable::signalC_and_exitMonitor() {

if (numWaitingThreads > 0) threadQueue.V();
else if (m.reentryCount > 0) m.reentry.V();
else m.mutex.V();

}
void conditionVariable::waitC() {

numWaitingThreads++;
if (m.reentryCount > 0) threadQueue.VP(&(m.reentry));
else threadQueue.VP(&(m.mutex));
--numWaitingThreads;

}

Listing 4.27 C++ monitor toolbox for SU signaling.
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require any extra effort to implement, since they do not affect the monitor in
which the call is made. Closed calls, however, are prone to create deadlocks.
Consider the following monitor classes:

class First extends monitorSU { class Second extends monitorSU {
Second M2;
public void A1() { public void A2() {

... ...
M2.A2(); wait(); // Thread A is blocked
... ...

} }
public void B1() { public void B2() {

... ...
M2.B2(); ...

// wake up Thread A
... signal-and-exit();

} }
}

Suppose that we create an instance of the first monitor:

First M1;

and that this instance is used by two threads:

Thread A Thread B

M1.A1(); M1.B1();

Assume that Thread A enters method A1() of monitor M1 first and makes a
closed monitor call to M2.A2(). Assume that Thread A is then blocked on the wait
statement in method A2(). Thread B intends to signal Thread A by calling method
M1.B1, which issues a nested call to M2.B2(), where the signal is performed. But
this is impossible since Thread A retains mutual exclusion for monitor M1 while
Thread A is blocked on the wait statement in monitor M2. Thus, Thread B is
unable to enter M1 and a deadlock occurs.

Open monitor calls are implemented by having the calling thread release
mutual exclusion when the call is made and reacquire mutual exclusion when
the call returns. The monitor toolboxes described in Section 4.8 make this easy
to do. For example, method A1() above becomes

public void A1() {
enterMonitor(); // acquire mutual exclusion
...
exitMonitor(); // release mutual exclusion
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M2.A2();
enterMonitor(); // reacquire mutual exclusion
...
exitMonitor(); // release mutual exclusion

}

This gives equal priority to the threads returning from a nested call and the
threads trying to enter the monitor for the first time, since both groups of threads
call enterMonitor(). Alternatively, the monitor toolboxes can be modified to give
returning threads higher priority so that they will reenter the monitor first (see
Exercise 4.3).

Open calls can create a problem if shared variables in monitor M1 are used
as arguments and passed by reference on nested calls to M2. This allows shared
variables of M1 to be accessed concurrently by a thread in M1 and a thread in
M2, violating the requirement for mutual exclusion.

4.10 TRACING AND REPLAY FOR MONITORS

In this section we present techniques for tracing, replaying, and testing monitor-
based programs. We first define a simple M-sequence of a monitor-based program.
Then we show how to trace and replay simple M-sequences during debugging
and how to modify the SC and SU monitor toolboxes to support our tracing
and replay techniques. After that, we define a complete M-sequence and present
a technique for using complete M-sequences to test monitor-based programs.
Finally, we show how to apply reachability testing to monitor-based programs.

4.10.1 Simple M-Sequences

In Sections 4.6 and 4.7 we described monitor toolboxes for SC and SU monitors.
Let M be a monitor that is implemented using one of these implementations.
An execution of a program that uses M can be viewed as a sequence of P()
and V() operations on the semaphores in the implementation of M. (Recall that
each monitor is implemented using one semaphore for mutual exclusion and
one semaphore for each of the condition variables in the monitor. SU monitors
also use a semaphore to implement the reentry queue.) Hence, a simple SYN-
sequence for M is the collection of simple PV-sequences for the semaphores in
the implementation of M.

We can replay an execution of a program that uses M by applying the
replay method that was presented in Chapter 3 for replaying PV-sequences of
semaphore-based programs. However, special properties of the monitor toolboxes
allow us to simplify this replay method. These monitor toolboxes use semaphores
with FCFS notifications and VP() operations, both of which place extra constraints
on the behavior of threads once they (re)enter a monitor:

ž The execution of threads inside an SU monitor is determined completely by
the order in which the threads enter the monitor via monitor calls and the
values of the parameters on these calls.
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ž The execution of threads inside an SC monitor is determined completely by
the order in which the threads enter the monitor via monitor calls, the values
of the parameters on these calls, and the order in which signaled threads
reenter the monitor.

Thus, the only nondeterminism that is present in these SU and SC monitors is
the order in which threads (re)enter the monitor. We refer to this as entry-based
execution: The execution of threads in a monitor having entry-based execution
is determined completely by the order in which the threads (re)enter the monitor
and the values of the parameters on the calls to the monitor.

This observation about entry-based execution leads to the following definition
of a simple SYN-sequence for a monitor-based program. Let CP be a concurrent
program that uses monitors. The synchronization objects in CP are its monitors.
The synchronization events in a simple SYN-sequence of CP depend on the type
of monitors being used:

1. SC monitors: A simple SYN-sequence for an SC monitor is a sequence of
events of the following types:
ž Entry into the monitor by a calling thread
ž Reentry into the monitor by a signaled thread

2. SU monitors: A simple SYN-sequence for an SU monitor is a sequence of
events of the following type:
ž Entry into the monitor by a calling thread

Simple SYN-sequences of monitors are called simple M-sequences. An event
in a simple M-sequence is denoted by the identifier (ID) of the thread that exe-
cuted the event. The simple M-sequence of a program CP is a collection of
simple M-sequences for the monitors in CP. We can replay an execution of CP
by replaying the simple M-sequence for each monitor.

To illustrate these definitions, consider the SC bounded buffer monitor in List-
ing 4.3. A possible simple M-sequence of boundedBuffer for a single Producer
thread (with ID 1) and a single Consumer thread (with ID 2) is

(2, 1, 2, 1, 1, 2, 2).

This sequence is generated when the Consumer enters the monitor first and
executes notEmpty.wait(). The Producer then enters the monitor, deposits an
item, and signals the Consumer. The Consumer then reenters the monitor and
consumes an item. Thus, this sequence begins with 2, 1, 2 since the Consumer
generates one event when it enters the monitor (the first 2) and one event when
it reenters the monitor (the second 2). If the same scenario were to occur when
boundedBuffer was an SU monitor, the simple M-sequence of boundedBuffer
would be

(2, 1, 1, 1, 2, 2).
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In this sequence, the Consumer does not generate an event when it reenters the
monitor, since boundedBuffer is an SU monitor. Thus, the sequence begins with
2, 1 and is followed by a second entry event for the Producer (the second 1) and
not a reentry event for the Consumer.

We are making several important assumptions in our definition of simple
M-sequences:

1. All shared variables are accessed inside a monitor, and monitor (re)entry
is the only source of nondeterminism in the program.

2. Semaphores with FCFS notifications are used in the implementation of con-
dition variables. If notifications wake up waiting threads in an unpredictable
order, nondeterminism is introduced in the implementation of the monitor.

3. VP() operations are used in the semaphore implementation of a moni-
tor. Without VP() or some other mechanism (see Exercise 4.23), context
switches can occur between V() and P() operations, which introduces non-
determinism in the implementation of the monitor.

Assumptions 2 and 3 are necessary for entry-based execution. If assumption 1
does not hold, replaying the simple M-sequences of an execution may not replay
the execution.

4.10.2 Tracing and Replaying Simple M-Sequences

We now show how to modify the monitor toolboxes so that they can trace and
replay simple M-sequences. In the SU toolbox, semaphore mutex controls entry
into the monitor. During execution, the identifier of a thread that completes
a mutex.P() operation is recorded and saved to a trace file. Toolbox method
enterMonitor() is easily modified (see below) to send monitor entry events to a
control monitor that records and saves them.

Tracing for SC monitors is almost as easy. In the SC toolbox, semaphore
mutex controls entry into the monitor for threads calling the monitor, and reentry
into the monitor for signaled threads. As with SU monitors, the identifier of the
thread that completes a mutex.P() operation is recorded and saved to a trace
file. This requires modifications to methods enterMonitor() in class monitor and
method waitC() in class conditionVariable.

To replay a simple M-sequence, we use the same basic technique that we
used with semaphores. Before each mutex.P() operation, a thread calls con-
trol.requestEntryPermit(ID) to request permission to enter the monitor. After
completing mutex.P(), the thread calls control.releaseEntryPermit() to allow the
next thread in the simple M-sequence to enter the monitor. Method enterMonitor()
in the SU and SC toolboxes becomes

public final void enterMonitor() {
if (replayMode)

control.requestEntryPermit(ID);
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mutex.P();

if (replayMode)
control.releaseEntryPermit();

else if (traceMode)
control.traceMonitorEntry(ID);

}

Method waitC() in the SC toolbox becomes

public void waitC() {
numWaitingThreads++;
threadQueue.VP(mutex);

if (replayMode)
control.requestEntryPermit(ID);

mutex.P();

if (replayMode)
control.releaseEntryPermit();

else if (traceMode)
control.traceMonitorReEntry(ID);

}

Java monitor class monitorTracingAndReplay in Listing 4.28 is very similar
to the control object in Listing 3.32 that was used for replaying simple PV-
sequences. Threads that try to enter the monitor out of turn are delayed in method
requestEntryPermit() on a separate conditionVariable in the threads array. A
thread uses its ID to determine which conditionVariable in the threads array to
wait on.

Method releaseEntryPermit() increments index to allow the next (re)entry
operation in the simpleMSequence to occur. Suppose that thread T is expected
to execute the next (re)entry operation. Since thread T may already have been
delayed by a waitC() operation when T called method requestEntryPermit(),
method releaseEntryPermit() performs a signalC and exitMonitor() operation.
If thread T is blocked on the waitC() operation in requestEntryPermit(), it will
be awakened by this signal. Otherwise, when thread T eventually calls reques-
tEntryPermit(), it will not call waitC() (since T’s ID will match the next ID in
the simpleMSequence), and thus thread T will not be blocked.

4.10.3 Other Approaches to Program Replay

Another approach to replaying an execution of a multithreaded Java program is to
trace and replay the scheduling events of the operating system. A thread schedule
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class monitorTracingAndReplay extends monitorSU {
monitorTracingAndReplay () {
/* input sequence of Integer IDs into vector simpleMSequence

and initialize the threads array */
}
public requestEntryPermit(int ID) {

enterMonitor();
if (ID != ((Integer)simpleMSequence.elementAt(index)).intValue())
threads[ID].waitC(); // thread with identifier ID is delayed on
exitMonitor(); // condition variable threads[ID]

}
public releaseEntryPermit() {

enterMonitor();
if (index < simpleMSequence.size()-1) {

++index;
// if the next thread in the simpleMSequence was delayed in
// requestEntryPermit(), wake it up.
threads[((Integer)simpleMSequence.elementAt(index)).intValue()].

signalC_and_exitMonitor();
return;

}
exitMonitor();

}
// record integer ID of entering thread in trace file
public void traceMonitorEntry(int ID) { ... }
// record integer ID of reentering thread in trace file
public void traceMonitorReEntry(int ID) { ... }
// simple M-sequence traced during a previous execution.
private vector simpleMSequence;
// out of order threads are delayed on condition variables.
private conditionVariable[] threads;
// index of the next event in simpleMSequence to be replayed.
private int index = 1;

}

Listing 4.28 Java monitor monitorTracingAndReplay for tracing and replaying simple
M-sequences.

is a sequence of time slices, where a time slice is the interval of time between two
context switches. A thread schedule of an execution can be replayed by forcing
context switches to occur at the exact same points during the execution. Since
detailed scheduling information is not always available from the operating system,
a logical thread schedule can be used instead. A logical thread schedule of an
execution is a record of the number of critical operations that the threads executed
during their time slices. Critical operations are read and write operations on shared
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variables, entering and exiting synchronized methods and blocks, and wait and
notify operations. A logical thread schedule can be replayed my modifying the
Java Virtual Machine (JVM) to count critical operations. For example, assume
that Thread1 executes 50 critical operations during its time quantum. This can
be represented by recording an event such as (1, 20, 69) to represent the fact
that Thread1 executed the (50) operations numbered 20 through 69. (A similar
representation was also discussed in Section 2.5.2.) Using this scheme, a time
slice consisting of thousands of critical operations can be encoded very efficiently
by a single event. The DejaVu system [Choi and Srinivasan 1998] uses logical
thread schedules to replay multithreaded Java programs. Java applications can be
traced and replayed in DejaVu without any modifications to the source code.

4.11 TESTING MONITOR-BASED PROGRAMS

In this section we present a technique for testing monitor-based programs. A com-
plete M-sequence can be used during (regression) testing to determine whether
a particular behavior is allowed by a program. We also show how to modify the
SC and SU monitor toolboxes to support this testing technique.

4.11.1 M-Sequences

Simple M-sequences help us carry out an important part of a typical debugging
session. Debugging begins after a program is executed and a failure is observed.
The simple M-sequence of the execution is replayed, perhaps several times, to
locate the fault that caused the failure. When the fault is located, the program
is modified and replay stops. However, this is not the end of the process. The
modification must be tested to make sure that the fault has been corrected and
that no new faults were introduced by the modification. This is commonly known
as regression testing.

For a concurrent program, regression testing requires that we determine
whether or not a particular SYN-sequence is feasible. (A feasible SYN-sequence
is a sequence that can be exercised by the program.) The SYN-sequence may
represent an illegal (or invalid ) behavior that was observed when the program
failed. For example, a sequence of three consecutive deposits into a bounded
buffer with only two slots is an invalid sequence. In this case, we hope that the
modification has corrected the program by making this invalid SYN-sequence
infeasible. If, on the other hand, a SYN-sequence represents a legal (or valid )
behavior that was exhibited previously, this valid sequence should remain feasible
after the modifications.

Determining the feasibility of a SYN-sequence is a problem that is subtly
different from the replay problem. Replaying a SYN-sequence involves repeating
a sequence that is known to be feasible since, presumably, the sequence was just
exercised and the program has not been modified. The feasibility of a sequence
is not in question during replay.
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During regression testing, we want to know whether or not a program that
is executed with a given input can exercise a particular sequence and produce
a particular output. To answer this question for a program that uses monitors,
we need more information than is contained in a simple M-sequence. Consider
a program that contains an SU monitor for a two-slot bounded buffer. Assume
that an execution of the program with a single Producer (with ID 1) and a single
Consumer (with ID 2) exercises the following simple M-sequence:

(1, 1, 1, 2, 2).

During replay, we can assume that the Producer will be the first thread to enter
the monitor, and it will enter the monitor by calling the same method as it
did in the original execution. But which method did it call? The name of the
method does not appear in a simple M-sequence. Granted, the bounded buffer
program is very simple, and we might insist that the Producer is calling method
deposit(). However, in general, when we test a program we don’t know for sure
if the threads in the program are calling the correct methods in the correct order.
Hence, during testing, we must check the names of the monitor methods.

Suppose now that we specify the name of the method and the thread ID for
each entry event in the test sequence:

((1,deposit), (1,deposit), (1,deposit), (2,withdraw), (2,withdraw)).

Furthermore, suppose that we check that the method name and ID for each entry
event in the sequence matches the actual method name and ID for each entry
event that occurs during execution. This sequence shows the Producer entering
the monitor three consecutive times without any intervening withdraw. If the
third item was deposited into a full buffer, the first item was lost. But if the
Producer executed notFull.wait(), a third deposit was not made until after a
withdrawal, and a failure was avoided. We simply cannot, from the information
in this sequence, determine what happened. Even after checking the output, we
may still be unsure about what happened. If the items deposited were C, A, and
C, the items withdrawn are also C, A, and C, even if the first item is overwritten
by the third item.

To characterize the execution of a monitor-based program more completely,
we consider the following types of monitor events:

1. The entry of a monitor method and, for SC monitors, the reentry of a
monitor method

2. The exit of a monitor method
3. The start of execution of a wait operation
4. The start of execution of a signal, or signalAndExit, or signalAll operation

Notice that this list does not include events that mark the end of execution of
a wait or signal operation, or the resumption of a monitor method after a wait



224 MONITORS

or an SU signal operation. We omit these events since their occurrence can be
inferred by the occurrence of events of types 1 through 4. However, it may still
be desirable to trace these events to aid in understanding executions.

A sequence of events of types 1 through 4 is called a complete M-sequence.
In the remainder of the book, the term M-sequence always refers to a complete
M-sequence. We will continue to use the term simple M-sequence to refer to
the simpler format that is used for replay. The format of an M-sequence for a
monitor is

((Type1,Thread1,Method1,ConditionVariable1), (Type2,Thread2,Method2,
ConditionVariable2), ...)

where (Typei, Threadi, Methodi, ConditionVariable1) denotes the ith, i > 0, event
in the M-sequence. The fields in an event are:

ž Type: the type of this event
ž Thread: the ID of the thread executing this event
ž Method: the monitor method of this event, qualified with the monitor name

if there are multiple monitors
ž ConditionVariable: the name of the condition variable if this event is a wait,

signal, signalAndExit, or signalAll event; and “NA” otherwise.

The M-sequence of a program CP is a collection of M-sequences for the
monitors in CP. As an example, a possible M-sequence of the SC bounded
buffer monitor in Listing 4.3 is

((enter, consumer, withdraw, NA ),
(wait, consumer, withdraw, notEmpty ),
(enter, producer, deposit, NA ),
(signal, producer, deposit, notEmpty ),
(exit, producer, deposit, NA ),
(reenter, consumer, withdraw, NA ),
(signal, consumer, withdraw, notFull ),
(exit, consumer, withdraw, NA )).

To make this sequence more readable, we’ve used the names of the producer and
consumer threads in place of their IDs.

Another way to make an M-sequence clearer is to allow user-level events to
appear in the sequence. These events label the (atomic) communication actions
that occur inside the monitor. A call to method exerciseEvent(“event”) generates
a communication event labeled “event” and records it in the M-sequence.
For example, in the following SC bounded buffer monitor, we have inserted
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calls to exerciseEvent() to generate communication events labeled “deposit”
and “withdraw”:

public void deposit(int value) {
enterMonitor();
while (fullSlots == capacity)

notFull.waitC();
buffer[in] = value;
exerciseEvent(‘‘deposit’’); // generate a ‘‘deposit’’ event
in = (in + 1) % capacity; ++fullSlots;
notEmpty.signalC();
exitMonitor();

}
public int withdraw() {

enterMonitor();
int value;
while (fullSlots == 0)

notEmpty.waitC();
value = buffer[out];
exerciseEvent(‘‘withdraw’’); // generate a ‘‘withdraw’’ event
out = (out + 1) % capacity; --fullSlots;
notFull.signalC();
exitMonitor();
return value;

}

The M-sequence shown above with communication events “deposit” and
“withdraw” added is

((enter, consumer, withdraw, NA ),
(wait, consumer, withdraw, notEmpty ),
(enter, producer, deposit, NA ),
(comm, producer, deposit, NA ), // comm. event
(signal, producer, deposit, notEmpty ),
(exit, producer, deposit, NA ),
(reenter, consumer, withdraw, NA ),
(comm, consumer, withdraw, NA ), // comm. event
(signal, consumer, withdraw, notFull ),
(exit, consumer, withdraw, NA ().

For each communication event, we record its label and the ID of the thread that
executed the event.
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A sequence of communication events is useful for understanding what hap-
pened, that is, the communication that occurred among the threads, without any
details about how the threads were synchronized to achieve that communication:

(comm, producer, deposit, NA ),
(comm, consumer, withdraw, NA ).

It is easy to imagine several different monitors that are equivalent in the sense
that they allow the same set of communication sequences, even if some of the
monitors are SC monitors and some are SU monitors.

If all shared variables are accessed inside monitors, the result of an execution
of a monitor-based program can be determined by the program, the input, and
the M-sequence of this execution. Notice that this same statement holds when
we substitute “simple M-sequence” for “M-sequence,” which is why we can use
simple M-sequences for replay. (Again, we are assuming that monitor entry is
the only source of nondeterminism in the program.)

M-sequences contain more information than a simple M-sequence because they
are used to solve a different problem. When we modify a program to correct a
fault, we want an answer to the following question: If we execute the program
with the same the input that detected the fault, can the same path be exercised
and the same output be produced? An M-sequence partially identifies the path
exercised by a program and helps us answer this question.

Consider the following monitor method:

public void F() {
enterMonitor();
if (...) {

condition.waitC();
}

if (...) {
/* true-part*/

}
else {

/* false-part */
}

condition.signalC();
exitMonitor();

}

An M-sequence for an execution of a program containing method F () indicates
the order in which threads entered F () and whether or not the wait() operation in
F () was executed. (The signal() operation is always executed.) This tells us a lot
about the path through F () that each thread executed. However, an M-sequence,



TESTING MONITOR-BASED PROGRAMS 227

by itself, does not indicate whether the threads executed the true or the false
part of the second if-statement in F (). A path consists of more than just an
M-sequence.

Whenever we determine the feasibility of an M-sequence, we will also check
the output that is produced during the execution. The output of an execution
involving method F () is likely to indicate whether the true or the false part
was executed. Thus, the M-sequence and the output of an execution, together,
describe the execution very well.

Despite the fact that M-sequences offer only a partial characterization of the
path of an execution, they still tell us a lot about what happened. We can often
examine an M-sequence and determine whether there is a fault in the program
without looking at the output or any additional information that was recorded
about the execution. In fact, some executions can produce outputs that mask
faults. So even though an execution produces correct outputs, an examination of
the M-sequence may show that a fault is present.

This discussion raises the question of how to define a path of a concurrent
program. Many path-based testing techniques have been developed for sequential
programs. In a sequential program, where there is a single thread of control, a
path is simply the sequence of statements exercised during an execution. But
in a concurrent program, each thread executes its own sequence of statements.
Furthermore, even if the threads in a program execute the same sequence of
statements during two different executions, it is possible that these two execu-
tions produce different results. Thus, the sequence of statements executed by each
thread does not provide sufficient information to characterize the path that was
executed. (You may already have guessed that the SYN-sequence of an execu-
tion provides the missing information about the path.) This issue is resolved in
Chapter 7.

4.11.2 Determining the Feasibility of an M-Sequence

The feasibility of an M-sequence is determined using the same technique that
was used for replay. Before a thread can perform a monitor operation, it requests
permission from a control module. The control module is responsible for reading
an M-sequence and forcing the execution to proceed according to this sequence.
If the M-sequence is determined to be infeasible, the control module displays a
message and terminates the program.

Modifying Monitor Operations Each monitor operation is modified by adding
one or more calls to the controller. Below we describe the modifications made
to the SC monitor operations. The modifications for the SU monitor operations
are very similar.

Method enterMonitor() contains calls to control.requestMPermit() and con-
trol.releaseMPermit() to control entry into the monitor during testMode. The call
to control.trace(. . .) is made during traceMode to record the necessary informa-
tion about each monitor entry.
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public final void enterMonitor(String methodName) {
if (testMode)

control.requestMPermit(ENTRY,threadID,methodName,’’NA’’);

mutex.P();

if (testMode)
control.releaseMPermit();

else if (traceMode)
control.trace(ENTRY,threadID,methodName,’’NA’’);

}

The arguments for the call to control.requestMPermit() are

(ENTRY, ID, methodName, ’’NA’’),

which correspond to the type of event (ENTRY), the identifier (ID) of the entering
thread, the method name, and the name of the associated conditionVariable. Since
the name of a conditionVariable is not applicable on monitor entries, “NA”
is used.

For the method name to be available inside the toolbox, it must be passed by
the user as an argument to enterMonitor():

public void deposit(char value) {
enterMonitor(’’deposit’’);
...

}

The methodName passed to enterMonitor() is saved locally in the monitor so that
it can be used by any waitC(), signalC(), signalCall(), or exitMonitor() operations
that appear in the same monitor method.

Method waitC() in the SC toolbox has a call to control.requestMPermit() with
event type WAIT. This call occurs before the VP() operation that implements the
wait. There is also a call to control.requestMPermit() with event type REENTRY.
This call appears immediately before the mutex.P() operation that guards reentry.
The value of methodName is the name that was saved in enterMonitor(), and the
value of conditionName is the name of the conditionVariable.

public void waitC() {
if (testMode)

control.requestMPermit(WAIT,threadID,methodName,conditionName);
else if (traceMode)

control.trace(WAIT,threadID,methodName,conditionName);
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numWaitingThreads++;
threadQueue.VP(mutex);

if (testMode)
control.requestMPermit(REENTRY,threadID,methodName,’’NA’’);

mutex.P();

if (testMode)
control.releaseMPermit();

else if (traceMode)
control.trace(REENTRY,threadID,methodName,’’NA’’);

}

A conditionVariable’s name is generated automatically when the conditionVa-
riable is constructed. This internal name is generated using the same technique
that is used to generate thread names (see Section 1.7.2). Alternatively, a more
descriptive name can be specified when the conditionVariable is constructed, but
each name must be unique:

notFull = new conditionVariable("notFull’’);

The call to releaseMPermit() after the mutex.P() operation notifies the controller
that reentry has occurred and that the next monitor event can be permitted.

There is no call to releaseMPermit() after a WAIT event since such a call is
not necessary. The same thing is true for events of types SIGNAL and EXIT (see
below). This is because wait, signal, and exit operations all occur within critical
sections. Thus, once permission is received to perform one of these operations,
the operation is guaranteed to occur before the next operation in the sequence
(for the same monitor). This guarantee is based on the fact that mutual exclusion
is not released until after the wait, signal or exit operation is performed, so
no other operation can possibly barge ahead.

For ENTRY and REENTRY events, the controller must confirm that the cur-
rent ENTRY or REENTRY event has occurred before it allows the next event
to occur. To see why, assume that thread T1 is required to enter the monitor
before thread T2. T1 will receive permission to enter the monitor first; however,
a context switch may occur after T1 receives permission but before T1 enters the
monitor. Now T2 can receive permission to enter the monitor and barge ahead of
T1. To prevent this from happening, the controller will wait for T1 to enter the
monitor and call releaseMPermit() before the controller will give T2 permission
to enter. Thread T2 may try to enter the monitor before T1 exits, but T2 will not
be able to enter until T1 releases mutual exclusion by executing exitMonitor() or
waitC().
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Threads executing signalC() or exitMonitor() in an SC monitor must request
permission before executing a SIGNAL or EXIT event:

public void signalC() {
if (testMode)

control.requestMPermit(SIGNAL,threadID,methodName,conditionName);
else if (traceMode)

control.trace(SIGNAL,threadID,methodName,conditionName);
if (numWaitingThreads > 0) {

numWaitingThreads--;
threadQueue.V();

}
}

public void exitMonitor() {
if (testMode)

control.requestMPermit(EXIT,threadID,methodName,’’NA’’);
else if (traceMode)

control.trace(EXIT,threadID,methodName,’’NA’’);
mutex.V();

}

If a monitor contains calls to exerciseEvent(), threads executing exerciseEvent()
must request permission before executing a communication (COMM) event:

public void exerciseEvent(String eventLabel) {
if (testMode)

control.requestMPermit(COMM,threadID,eventlabel,’’NA’’);
else if (traceMode)

control.trace(COMM,threadID,eventLabel,’’NA’’);
}

Controller The function of the controller is very similar to that of the controller
used for replay. It attempts to force a deterministic execution of the program
according to the M-sequence that it inputs. The M-sequence is feasible if and
only if the M-sequence is exercised completely. We would like the controller to
display a message if it finds that an M-sequence definitely cannot be exercised.
However, the problem of determining whether a concurrent program terminates
for a given input and SYN-sequence is, in general, undecidable. (This problem
can be reduced to the halting problem [Hamburger and Richards 2002], which is
undecidable.)

A practical way to deal with this undecidable problem is to specify a maximum
time interval that is allowed between two consecutive events. In other words,
this timeout value represents the maximum amount of time that the controller
is willing to wait for the next event to occur. If a timeout occurs, the sequence
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is assumed to be infeasible. It is always possible that some larger timeout value
would give the next event enough time to occur and allow the sequence to
complete. However, the timeout value can be made large enough so that a timeout
always indicates that a real problem exits: Either the event cannot occur, or
possibly it can occur but something else is wrong and is holding up the event.

The controller is implemented in two parts. The first part is the control monitor
shown in Listing 4.29. The control monitor inputs an M-sequence and then forces
the execution to proceed according to the order of events in the M-sequence.
The event in Msequence[index] is the next event to be exercised. Threads call
requestMPermit() to request permission to perform a monitor operation. If a
requesting thread with identifier ID attempts to perform its operation out of
sequence, the thread is delayed on condition variable threads[ID]. When the ID
of the requesting thread matches the ID for the next event, the controller verifies
that the requested event’s type and method name match the expected values
for the next event. For WAIT and SIGNAL events, the condition name is also
checked. If a mismatch is detected, a diagnostic is issued and the program is
terminated.

For ENTRY and REENTRY events, the controller waits for a call to releaseM-
Permit() before incrementing index to allow the next event to be issued. For
WAIT, SIGNAL, COMM and EXIT events, no releaseMPermit() calls will be
made, so index is incremented when permission is granted in requestMPermit().
At any point in the sequence, if an expected request does not arrive within the
timeout interval, a diagnostic is issued and the program is terminated. This time-
out function of the controller is handled by a watchdog thread that monitors the
value of index to make sure that progress is being made. If the value of index
does not change within the timeout interval, the M-sequence is assumed to be
infeasible.

final class watchDog extends Thread {
public void run() {

while (index < MSequence.size()) {
int saveIndex = index;
try { Thread.sleep(2000); } // 2-second timeout interval
catch (InterruptedException e) {}
if (saveIndex == index) {

/* issue diagnostic and exit program */
}

}
}

}

Splitting the controller into a monitor and a watchdog thread is one way to
implement the dual functions of the controller, which are ordering monitor events
and handling timeouts. In Chapter 5 we show how both functions can be handled
by a single thread.
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public void requestMPermit(eventType op, int ID, String methodName,
String conditionName) {
//get the next event in the M-sequence
monitorEvent nextEvent = (monitorEvent) MSequence.elementAt(index);
// compare the ID of the requesting thread with the ID of the thread
// for the next event
if(ID != nextEvent.getThreadID()) {

// the nextEvent does not involve the requesting thread
threads[ID].waitC(); // thread ID must wait for its turn
//get nextEvent again since it may have changed during the wait
nextEvent = (monitorEvent)MSequence.elementAt(index);

}
// verify that the requested event has the expected type
if (!(op.equals(nextEvent.getEventType()))) { /* issue msg and terminate */ }
// verify the requested event has the expected method name (for COMM events
// this is the event label)
if (!(methodName.equals(nextEvent.getMethodName()))) {

/* issue diagnostic and terminate */ }
if (op.equals(WAIT) || op.equals(SIGNAL)) {

// the event is a WAIT or SIGNAL so check the condition name
if (!(conditionName.equals(nextEvent.getConditionName()))) {

/*issue diagnostic and terminate */ }
++index;
if (index < MSequence.size()) // signal thread waiting for next event

threads[((monitorEvent)MSequence.elementAt(index)).getThreadID()].
signalC();

}
else if (op.equals(EXIT) || op.equals(COMM)) {

// event is EXIT or COMM so signal any thread waiting for the next event
++index;
if (index < MSequence.size())

threads[((monitorEvent)MSequence.elementAt(index)).getThreadID()].
signalC();

}
}

public void releaseMPermit() {
// This method is called when the current event is of type ENTRY or REENTRY.
// It will signal the thread waiting for the next event. Events of type WAIT,
// SIGNAL, or EXIT do not issue a call to releaseMPermit(). Thus, the thread
// waiting for the next event is signaled in requestMPermit() when the ENTRY or
// REENTRY event occurs.

++index;
if (index < MSequence.size())

threads[((monitorEvent)MSequence.elementAt(index)).getThreadID()].
signalC();

}

Listing 4.29 Control monitor for checking feasibility.
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4.11.3 Determining the Feasibility of a Communication-Sequence

A Communication-sequence is a sequence of communication events. A set of
Communication-sequences can be generated to test a monitor without knowing
the details about the synchronization events in the monitor. The details that are
abstracted away include calls to methods waitC() and signalC() and the names
of the condition variables and monitor methods.

The feasibility of a Communication-sequence is determined just like that of an
M-sequence, except that only the thread IDs and event labels of communication-
events are checked. Monitor (re)entry events do not appear in a Communication-
sequence and thus they need not be checked, but they must be controlled. The rule
for controlling monitor (re)entry is as follows: If Threadi is expected to execute
the next communication-event (inside the monitor), only Threadi is permitted to
(re)enter the monitor.

Threads that wish to (re)enter a monitor must request permission from the
controller first. The controller grants permission for Threadi to enter the monitor
only if Threadi is the thread expected to execute the next communication event in
the sequence. In other words, the order in which threads execute communication
events must match the order in which they (re)enter the monitor. If this is not
possible, the Communication-sequence is not feasible. Monitor events of types
EXIT and SIGNAL do not require any permission from the controller, so no
calls to the controller are made in methods exitMonitor() and signalC(). Threads
in method waitC() of an SC monitor must call the controller before they reenter
the monitor. Section 4.10.5 shows an example of how to use Communication-
sequences to test a program.

4.11.4 Reachability Testing for Monitors

In Section 3.8.5 we described reachability testing and showed how to use reacha-
bility testing to test programs that use semaphores and locks. Reachability testing
can also be used to derive and exercise automatically every (partially ordered)
M-sequence of a monitor-based program. Reachability testing identifies race con-
ditions in an execution trace and uses the race conditions to generate race variants.
Recall from Chapter 3 that a race variant represents an alternative execution
behavior that definitely could have happened, but didn’t, due to the way that race
conditions were arbitrarily resolved during execution. Replaying a race variant
ensures that different behavior is observed during the next execution.

Figure 4.30a shows an execution trace of a bounded buffer program with two
producers (P1 and P2), two consumers (C1 and C2), and an SC monitor M. A
solid arrow from a producer or consumer thread to monitor M indicates that the
thread called and entered monitor M. In this execution, the producer and consumer
threads enter the monitor in the order (C1, P1, C1, P2, C2). Note that the second
entry by C1 occurs when C1 reenters the monitor after being signaled by P1.

Informally, there is a race between two monitor calls in an execution trace
if the entries for these calls could occur in a different order during another
execution. In Fig. 4.30a we have identified the racing threads, called the race
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Figure 4.30 Execution trace and a race variant.

set, for each entry event. For example, the race set for C1’s reentry event is
shown beside the reentry event as {P2, C2}. This indicates that P2 or C2 could
have entered the monitor instead of C1. Note that the monitor calls made by
P2 and C2 were concurrent with C1’s call to reenter the monitor. This is how
the racing monitor calls were identified. Mechanisms for identifying concurrent
events are presented in Chapter 6.

A race variant is created by changing the calling thread for a monitor
(re)entry event. The new calling thread must be a member of the race set
for the (re)entry event. Figure 4.30b shows one of the eight race variants for
the trace in Fig. 4.30a. In this variant, P2 enters the monitor before C1 reenters
the monitor. The dotted arrows for C1 and C2 indicate that the variant contains
the monitor calls made by C1 and C2, but not their entries. When this race
variant is replayed, the two producers will both deposit their items before either
consumer withdraws one. The order in which the two consumers will (re)enter the
monitor and withdraw their items after the variant is replayed is nondeterministic.
The complete trace of whichever sequence occurs can be analyzed to derive
more variants, which can be replayed to generate more traces, and so on. This
iterative process ensures that producers and consumers will enter the monitor
in all possible orders so that all possible M-sequences are exercised during
reachability testing.

We have implemented reachability testing for the monitorSC and monitorSU
toolbox classes. Details about reachability testing for monitors are given in
Chapter 7. Here we present the results of applying reachability testing to sev-
eral monitor programs. The three Java programs and the results are shown in
Table 4.2. This table has the same format as that of Table 3.2. Program BB is
the bounded-buffer program in Listing 4.3. Program DP2 is the second solution
to the dining philosophers program in Listing 4.8. Program RW is the readers
and writers program in Listing 4.9. For the sake of comparison, we have shown
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TABLE 4.2 Reachability Testing Results for the
Example Programs in Section 4.2

Program Config. No. Seqs.

BB-MonitorSU 3P + 3C + 2S 720
BB-MonitorSC 3P + 3C + 2S 12096
RW-MonitorSU 3R + 2W 13320
RW-MonitorSC 3R + 2W 70020
DP2-MonitorSU 3 30
DP2-MonitorSU 4 624
DP2-MonitorSU 5 19330

the results for two versions of BB and RW, one version using class monitorSU
and one version using class monitorSC.

The results in Table 4.2 indicate that the choice of signaling discipline has a
large effect on the number of M-sequences generated during reachability testing.
SC monitors generate more M-sequences than SU monitors since SC monitors
have races between signaled threads that are trying to reenter the monitor and
calling threads that are trying to enter the monitor for the first time. SU monitors
avoid these races by giving signaled threads priority over calling threads. These
results help to quantify the difference between SU and SC monitors.

As we discussed in Section 3.10.5 regarding Table 3.2, the number of
sequences exercised during reachability testing can be reduced by considering
the symmetry of the threads in the programs. For the bounded-buffer program,
reachability testing considers all the possible orders in which a group of producers
can perform their deposit operations or a group of consumers can perform their
withdraws. For example, the order in which Producer threads enter the monitor
may be (Producer1, Producer2, Producer3), or (Producer2, Producer1, Producer3),
or (Producer3, Producer2, Producer1), and so on. If you use the symmetry of the
threads, the number of sequences exercised for the two bounded buffer programs
drops from 720 and 12096 to 20 and 60, respectively.

4.11.5 Putting It All Together

Next we demonstrate how to use the monitor toolbox classes to trace, test, and
replay Java and C++/Win32/Pthreads monitor-based programs.

Using Java Toolboxes Java program Buffer is shown in Listing 4.31. This
program creates two pairs of Producer and Consumer threads and two SC bound-
edBuffer monitors, one for each Producer–Consumer pair. The Producer and
Consumer classes extend class TDThread instead of class Thread. This ensures
that each thread receives a unique ID. We chose to supply names for the threads,
monitors, and condition variables to make the traces more readable. These names
can also be used in any test sequences that we generate by hand.
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public final class Buffer {
public static void main (String args[]) {

boundedBuffer b1 = new boundedBuffer(3,1);
boundedBuffer b2 = new boundedBuffer(3,2);
Producer p1 = new Producer (b1, 1); Consumer c1 = new Consumer (b1, 1);
Producer p2 = new Producer (b2, 2); Consumer c2 = new Consumer (b2, 2);
p1.start(); c1.start(); p2.start(); c2.start();

}
}
final class Producer extends TDThread {

private boundedBuffer b; private int num;
Producer (boundedBuffer b, int num) {super(‘‘Producer’’+num); this.b = b;

this.num = num; }
public void run () {

for (int i = 0; i < 3; i++) {
b.deposit(i);
System.out.println ("Producer # "+ num + "deposited "+ i);

}
}

}
final class Consumer extends TDThread {

private boundedBuffer b;
private int num;
Consumer (boundedBuffer b, int num) {

super(‘‘Consumer’’+num);this.b = b; this.num = num;}
public void run () {

int value = 0;
for (int i = 0; i < 3; i++) {

value = b.withdraw();
System.out.println ("Consumer # "+ num + "withdrew "+ value);

}
}

}

final class boundedBuffer extends monitorSC { // SC monitor
private int fullSlots = 0; // # of full slots in the buffer
private int capacity = 0;
private int[] buffer = null; private int in = 0, out = 0;
private conditionVariable notFull; private conditionVariable notEmpty;

public boundedBuffer(int bufferCapacity, int num) {
super("Buffer"+num);
capacity = bufferCapacity;

Listing 4.31 Bounded buffer using the Java monitor toolbox.
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buffer = new int[capacity];
notFull = new conditionVariable("notFull"+num);
notEmpty = new conditionVariable("notEmpty"+num);

}

public void deposit(int value) {
// the method name ‘‘deposit’’ is required for feasibility checking
enterMonitor(‘‘deposit’’);
while (fullSlots == capacity)

notFull.waitC();
buffer[in] = value;
// generate communication event ‘‘deposit’’ for the Producer
exerciseEvent(‘‘deposit’’);
in = (in + 1) % capacity;
++fullSlots;
notEmpty.signalC();
exitMonitor();

}

public int withdraw() {
// the method name ‘‘withdraw’’ is required for feasibility checking
enterMonitor(‘‘withdraw’’);
int value;
while (fullSlots == 0)

notEmpty.waitC();
value = buffer[out];
// generate communication event ‘‘withdraw’’ for the Consumer
exerciseEvent(‘‘withdraw’’);
out = (out + 1) % capacity;
--fullSlots;
notFull.signalC();
exitMonitor();
return value;

}
}

Listing 4.31 (continued )

When Buffer is executed, a property named mode specifies the function (trac-
ing, replay, or testing) to be performed. An execution of Buffer is traced using
the command

java –Dmode=trace Buffer

This creates three files. File monitor-replay.txt contains the simple M-sequence of
the execution; file monitor-test.txt contains the M-sequence of the execution; and
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file monitor-comm.txt contains the Communication-sequence of the execution.
One control module is used to trace both monitors, so the simple M-sequence
that is recorded is a totally ordered sequence containing events from both moni-
tors. The same is true for the M-sequence and Communication-sequence that are
recorded. Random delays can be executed during trace mode by setting property
randomDelay to the value on.

java –Dmode=trace –DrandomDelay=on Buffer

When on is specified, random delays are executed before each (re)entry of a mon-
itor. To turn random delays off, use off ; this is also the default value. The value
of property randomDelay is ignored during replay and test modes. The deadlock
detection method described in Section 3.8.4 has also been implemented in the
monitor toolbox classes. To turn deadlock detection on during tracing or reacha-
bility testing, specify –DdeadlockDetection=on. To turn deadlock detection off,
set property deadlockDetection to off ; this is also the default value.

If separate sequences are desired for each monitor, the controllers property
can be used to create one controller per monitor. Valid values for this property
are single, which is the default value, and multiple. For example,

java –Dmode=trace –DrandomDelay=on –Dcontrollers=multiple Buffer

creates multiple controllers, resulting in a separate simple M-sequence, complete
M-sequence, and Communication-sequence for each monitor.

The simple M-sequence in file monitor-replay.txt is replayed using

java –Dmode=replay Buffer

As in Chapter 3, reachability testing is performed on Buffer by setting the mode
property to rt and executing a driver process named RTDriver :

java –Dmode=rt –DdeadlockDetection=0n RTDriver Buffer

The feasibility of the M-sequence in file monitor-test.txt is determined using

java –Dmode=test Buffer

The feasibility of the Communication-sequence in file monitor-comm.txt is deter-
mined using

java –Dmode=commTest Buffer

The value used for property controllers during replay and testing must match
the value that was used during tracing. If the mode is not specified, the default
value for the mode property turns tracing, replay, and testing off. Specifying
“–Dmode=none” has the same effect.
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The M-sequence recorded during a program’s execution can be used to replay
the execution. If the program is not modified after the M-sequence is recorded,
the M-sequence remains feasible, and checking the feasibility of this feasible M-
sequence (using –Dmode=test) amounts to replaying the execution. This means
that we never actually have to use replay mode, since test mode can be used for
replay, albeit with more overhead.

In trace mode, with random delays on, it is likely that nondeterministic testing
will exercise several different M-sequences of the boundedBuffer monitor. This
monitor is expected to have a capacity of 3. Even if we never see a trace with four
consecutive deposit operations during nondeterministic testing, it is possible that
boundedBuffer contains a fault that allows a deposit into a full buffer. Similarly,
it is possible that a withdrawal is allowed from an empty buffer. To test these
cases, we can specify two Communication-sequences and check their feasibility.
A sequence that checks for an invalid withdrawal is

(comm, consumer,withdraw, NA) // withdraw from an empty buffer

The following invalid sequence contains four consecutive deposits:

(comm, producer, deposit, NA),
(comm, producer, deposit, NA),
(comm, producer, deposit, NA),
(comm, producer, deposit, NA). // deposit into a full buffer

If either of these Communication-sequences is feasible, a fault is detected
in boundedBuffer. Alternatively, we can use reachability testing to check the
feasibility of these sequences indirectly. That is, if neither of these sequences is
exercised during reachability testing, they are infeasible.

Selecting sequences and checking their feasibility is part of a general testing
technique called deterministic testing. In general, valid sequences are expected
to be feasible and invalid sequences are expected to be infeasible. In Chapter 5
we describe deterministic testing and compare it to nondeterministic testing. In
Chapter 7 the sets of valid and feasible sequences are used to provide a general
definition of correctness for concurrent programs.

Using C++/Win32/Pthreads Toolboxes C++ program Buffer is shown in
Listing 4.32. The mode of execution is specified using the environment variable
MODE. The possible values for MODE are TRACE, REPLAY, TEST, RT
(for Reachability T esting), COMMTEST (to determine the feasibility of a
Communication-sequence), and NONE. For example, an execution of Buffer is
traced in Windows by executing the command

set MODE=TRACE // Unix: setenv MODE TRACE

and then executing program Buffer. In trace mode, random delays are controlled
by variable RANDOMDELAY, just as we did for semaphores in Chapter 3:

set RANDOMDELAY=ON // Unix: setenv RANDOMDELAY ON
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class boundedBuffer : private monitorSC { // An SC bounded-buffer monitor
private:

int fullSlots; // # of full slots in the buffer
int capacity; int* buffer; int in, out;
conditionVariable notFull; conditionVariable notEmpty;

public:
boundedBuffer(int capacity_, std::string ID)

: monitorSC("boundedBuffer"+ ID), fullSlots(0),
capacity(capacity_), in(0), out(0), notFull(this,"notFull"+ID),
notEmpty(this,"notEmpty"+ID) {
buffer = new int[capacity];

}
~boundedBuffer() {delete [] buffer;}
void deposit(int value) {

enterMonitor("deposit");
while (fullSlots == capacity)

notFull.waitC();
buffer[in] = value;
in = (in + 1) % capacity;
++fullSlots;
notEmpty.signalC();
exitMonitor();

}

int withdraw() {
enterMonitor("withdraw");
int value;
while (fullSlots == 0)

notEmpty.waitC();
value = buffer[out];
out = (out + 1) % capacity;
--fullSlots;
notFull.signalC();
exitMonitor();
return value;

}
};

class Producer : public TDThread {
private:

boundedBuffer& b; std::string num;
public:

Producer (boundedBuffer* b_, std::string num_) :

Listing 4.32 Bounded buffer using the C++/Win32/Pthreads monitor toolbox.
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TDThread("Producer"+num_), b(*b_), num(num_) {}
void* run () {

std::cout << "Producer Running" << std::endl;
for (int i = 0; i < 3; i++) {

b.deposit(i);
std::cout << "Producer # " << num << " deposited " << i << std::endl;

}
return 0;

}
};

class Consumer : public TDThread {
private:

boundedBuffer& b; std::string num;
public:

Consumer (boundedBuffer* b_, std::string num_)
: TDThread("Consumer"+num_), b(*b_), num(num_) {}

void* run () {
std::cout << "Consumer Running" << std::endl;
int value = 0;
for (int i = 0; i < 3; i++) {

value = b.withdraw();
std::cout << "Consumer # " << num << " withdrew "

<< value << std::endl;
}
return 0;

}
};

int main ( ) {
boundedBuffer* b1 = new boundedBuffer(3,’’1’’);
boundedBuffer* b2 = new boundedBuffer(3,’’2’’);
std::auto_ptr<Producer> p1(new Producer (b1, ‘‘1’’));
std::auto_ptr<Consumer> c1(new Consumer (b1, ‘‘1’’));
std::auto_ptr<Producer> p2(new Producer (b2, ‘‘2’’));
std::auto_ptr<Consumer> c2(new Consumer (b2, ‘‘2’’));
p1->start(); c1->start(); p2->start(); c2->start();
p1->join(); c1->join(); p2->join(); c2->join();
delete b1; delete b2;
return 0;

}

Listing 4.32 (continued )
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Similarly, deadlock detection is controlled by variable DEADLOCKDETEC-
TION:

set DEADLOCKDETECTION=ON
// Unix: setenv DEADLOCKDETECTION ON

An execution in TRACE mode creates trace files that contain the simple M-
sequence, the M-sequence, and the Communication-sequence of the execution.
(The files names are the same as those created by the Java trace mode.) The
value of environment variable CONTROLLERS determines how many sequence
files are created:

set CONTROLLERS=SINGLE // one simple M-sequence and M-sequence
// per program
// Unix: setenv CONTROLLERS SINGLE

set CONTROLLERS=MULTIPLE // one simple M-sequence and M-sequence
// per monitor
// Unix: setenv CONTROLLERS MULTIPLE

The default value for CONTROLLERS is SINGLE.
As in Chapter 3, reachability testing is performed on Buffer by setting the

MODE to RT and customizing the driver process in file RTDriver.cpp, which is
part of the synchronization library. Directions for customizing the driver process
are in the file.

Some development environments have powerful debuggers that make it pos-
sible to stop threads, examine the call stacks and variables of threads, suspend
and resume threads, and more. Working with these debuggers may be frustrating,
however, since stopping one thread may not stop the others, depending on the
debugger. These debuggers are easier to use with a monitor toolbox. In replay
mode you can set a breakpoint inside the control monitor at the point where a
thread receives permission to execute the next event:

if (ID != nextEvent.getThreadID()) {
// nextEvent does not involve the requesting thread
threads[ID].waitC(); // wait for permission
//get nextEvent again since it may have changed during the wait
nextEvent = (monitorEvent)MSequence.elementAt(index);

}
// set breakpoint here; a thread has received permission to execute the next event.

With this breakpoint in place, it is possible to step through the execution and
replay monitor events one at a time. Additional breakpoints can be set in the
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run() methods of the threads to watch what each thread does between events,
without disturbing the replay. The Win32 OutputDebugString() function can be
used to send text messages to the debugger while the program is running. (In the
Visual C++ environment, these messages appear in the tabbed window labeled
“Debug.”) Of course, this entire process would be improved if tracing, testing, and
replay were implemented as native functions of the development environment. In
that case, the monitor toolbox classes can serve as portable, high-level designs
for these implementations.

FURTHER READING

Per Brinch Hansen [2002] has written a personal account of how the monitor
concept was invented. Hoare’s [1974] monitor paper presented the SU monitor
construct and showed how to implement monitors using semaphores. The concept
of a monitor toolbox is from Boddy [1983]. Brinch Hansen’s [1978] paper on
reproducible testing of monitors is the earliest paper we know of on testing and
replaying concurrent programs. Brinch Hansen [1973] also wrote an earlier paper
on reproducible testing for operating systems. The monitor replay techniques
presented in this chapter are from [Carver 1985; Carver and Tai 1991].

Greg Andrews [1991] shows how to prove the correctness of a monitor. Magee
and Kramer’s book [1999] shows how to use labeled transition systems (LTS)
to model monitor-based programs. They also show how to verify mechanically
that a model satisfies specified correctness properties. Steven Robbins [2001]
has developed a simulator for monitor solutions to the dining philosopher prob-
lem. This simulator can be used to explore how these solutions might behave
in practice.
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EXERCISES

4.1. Modify monitor r gt w 1SC in Listing 4.10 so that it uses the cascaded
wakeup technique of Listing 4.18 to wake up waiting readers.

4.2. Write an SU monitor that implements the strategy R<W.2. This strategy
gives writers a higher priority than readers, except that when a writer
arrives, if it is a lead writer (i.e., no writer is writing or waiting), it waits
until all readers that arrived earlier have finished.

4.3. In Section 4.9, threads execute exitMonitor() before making a nested mon-
itor call and enterMonitor() when the call returns. This gives returning
threads the same priority as new threads that are trying to enter the mon-
itor for the first time. Consider using the reentry queue to give returning
threads higher priority than new threads. Returning threads call method
reenterMonitor():

exitMonitor();
/* nested monitor call;*/
reenterMonitor();

(a) Assume that methods exitMonitor() and reenterMonitor() are imple-
mented as follows:

exitMonitor(): if (reentryCount >0) reentry.V(); else mutex.V();
reenterMonitor():reentry.P();

Describe the problem with this implementation.
(b) Assume that methods exitMonitor() and reenterMonitor() are imple-

mented as follows:

exitMonitor(): if (reentryCount >0) reentry.V(); else mutex.V();
reenterMonitor():reentryCount ++ reentry.P();reentryCount --;

Describe the problem with this implementation.
(c) Show how to implement method reenterMonitor() correctly, and show

any modifications that need to be made to the other methods in class
monitorSU.

4.4. The following implementation of methods waitC() and signalC() for an SC
monitor is incorrect:

public void waitC() {
++numWaitingThreads;
threadQueue.VP(mutex);
mutex.P();
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--numWaitingThreads;
}
public void signalC() {

if (numWaitingThreads > 0)
threadQueue.V();

// continue in the monitor; perhaps send more signals
}

Why is this implementation incorrect? Consider what can happen if two
successive signal operations are performed on a condition variable on
which one thread is waiting.

4.5. Section 4.7 shows toolboxes for SC and SU monitors in Java. These tool-
boxes use a binarySemaphore named mutex :

(a) In the SC toolbox, can mutex be a mutexLock instead of a binary-
Semaphore? Explain your answer.

(b) In the SC toolbox, can mutex be a mutexLock instead of a binary-
Semaphore? Explain your answer.

If you answer “no,” be sure to describe a scenario that causes a problem
(e.g., “Thread1 enters the monitor and does a wait, Thread2 enters the
monitor . . .”).

4.6. When semaphore programs are being replayed, we assume that all sema-
phores are FCFS (threads are awakened by V operations in the same
order that they were blocked in P operations). This assumption is nec-
essary to make P and V operations deterministic. The monitor toolboxes
in Section 4.5 use binarySemaphores. A solution for replaying simple M-
sequences is presented in Section 4.7. Is this solution guaranteed to work
if the semaphores in the toolboxes are not FCFS? Specifically:

(a) If semaphore mutex in the SC toolbox is not FCFS, is the solution
guaranteed to work?

(b) If semaphore mutex in the SU toolbox is not FCFS, is the solution
guaranteed to work?

(c) If semaphore reentry in the SU toolbox is not FCFS, is the solution
guaranteed to work?

Explain your answers.

4.7. The sleeping barber problem. A barbershop consists of a waiting room with
n chairs, and the barber room containing the barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters the
barbershop and all the chairs are occupied, the customer leaves the shop.
If the barber is busy, but chairs are available, the customer sits in one of
the free chairs. If the barber is asleep, the customer wakes up the barber.
Here is a semaphore solution to the problem.
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binarySemaphore mutex(1);
countingSemaphore customer(0), done(0), chair(0);
int waiting = 0; // count of waiting customers
barber() {

while (true) {
customer.P(); // wait for or get the next customer
mutex.P();
--waiting; // one fewer waiting customer
chair.V(); // show customer to chair
mutex.V();
sleep(...); // cut hair
done.V(); // tell the customer that the haircut is done

}
}
customer() {

while (true) {
mutex.P();
if (waiting < numChairs) {

++waiting;
customer.V(); // wake up the barber if he’s asleep
mutex.V();
chair.P(); // wait for the barber to show you to a chair
done.P(); // wait until the barber says that you’re done

}
else mutex.();

}
}

The barber waits on semaphore customer for the next customer. When a
customer is available, the barber decrements the count of waiting customers
and signals the semaphore chair, allowing the next customer into the barber
chair for a haircut. A customer who needs a haircut accesses the count of
waiting customers and increments the count if there is a free chair in
the waiting room. After entering the waiting room, a customer signals
the semaphore customer, which wakes up the barber, and then waits on
semaphore chair for a chair. The barber releases the customer with the
done semaphore.

(a) Write an SU monitor that solves the sleeping barber problem.

(b) In method barber() of the semaphore solution, customer.V() occurs
before mutex.V(). Is the program correct if customer.V() occurs imme-
diately after mutex.V()? Explain.

(c) Does numChairs include the barber chair? Explain.
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4.8. Develop monitor solutions to the unisex bathroom problem. Your moni-
tor should have four methods: enterMen(), exitMen(), enterWomen(), exit-
Women(), and it should use the SU signaling discipline.

(a) Develop a monitor solution that allows any number of men or any
number of women (but not both) in the bathroom at the same time. Your
solution should ensure the required exclusion and avoid deadlock, but it
need not be fair (i.e., some people may never get to use the bathroom).

(b) Develop a monitor solution that ensures fairness:

ž All men and women eventually get to use the bathroom.
ž When the last man in the bathroom exits, all women who are cur-

rently waiting are allowed to enter the bathroom.
ž When the last woman in the bathroom exits, all men who are cur-

rently waiting are allowed to enter the bathroom.
ž If men are in the bathroom, another man cannot enter the bathroom

if women are waiting.
ž If women are in the bathroom, another women cannot enter the

bathroom if men are waiting.

4.9. Develop an SU monitor solution to the following strategy for the readers
and writers problem: Many readers or one writer with writers having a
higher priority, except that at the end of writing, waiting readers have a
higher priority than waiting writers. (That is, readers that are waiting when
the write ends are allowed to read, but not the readers that arrive afterward.)
Use methods startRead(), endRead(), startWrite(), and endWrite() like the
solution in Section 4.2.4. Note that this strategy does not create starving
readers or writers. A waiting writer does not starve since the number of
readers allowed to proceed at the end of each writing is finite. A waiting
reader does not starve since it will be allowed to proceed when the next
write ends.

4.10. Suppose that monitor threadOrderer below uses an SC toolbox that is
implemented without VP() operations.

(a) Describe how monitor threadOrderer orders the operations by the
three threads.

(b) SC toolbox “monitorNoVP” is like the SC toolbox presented in
Section 4.7 except that it uses separate V() and P() operations in
place of a VP() operation. Does this cause any problems in monitor
threadOrderer? If so, show a scenario that illustrates the problem.

import java.util.*;
public final class Order {

public static void main (String args[]) {
threadOrderer c = new threadOrderer();
orderedThread t0 = new orderedThread (c,0);
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orderedThread t1 = new orderedThread (c,1);
orderedThread t2 = new orderedThread (c,2);
t0.start(); t1.start(); t2.start();

}
}
final class orderedThread extends Thread {
// a simple thread that calls operations beginOp and endOp of a monitor.

private int num; // ID of thread.
threadOrderer c; // monitor to call
orderedThread (threadOrderer c, int num) {this.c = c; this.num = num; }
public void run () {

try {
for (int i=0; i<10; i++) {

Thread.sleep((long)(Math.random()*1000));
c.beginOp(num);
System.out.println(num+ "Did op");
c.endOp();

}
} catch (InterruptedException e) {}

}
}
final class threadOrderer extends monitorSCNoVP {

private int next=0;
private int wakeCount=0; // number of waiting threads that have been

// awakened
private int waitCount=0; // number of waiting threads
private int[] sequence;
private conditionVariable myTurn = new conditionVariable();
public threadOrderer() {

sequence = new int[3]; // three threads in the program
sequence[0] = 2; sequence[1] = 1; sequence[2] = 0;

}
public void beginOp(int ID) {

enterMonitor();
if (ID != sequence[next]) {

++waitCount;
System.out.println(ID + "waiting");
myTurn.waitC(); // first waitC()
while (ID != sequence[next]) {

++wakeCount;
if (wakeCount < waitCount) {

myTurn.signalC(); // wake up next thread
myTurn.waitC(); // second waitC()

}
else
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myTurn.waitC(); // third waitC(). All threads have had a
turn

}
-- waitCount;

}
exitMonitor();

}
public void endOp() {

enterMonitor();
next = (next+1) %3;
System.out.println("waitCount is " + waitCount);
if (waitCount>0) {

wakeCount=0;
myTurn.signalC(); // wake up first thread

}
exitMonitor();

}
}

4.11. Below is an implementation of the strategy R<W.2 using SC monitors. This
strategy allows concurrent reading and generally gives writers a higher pri-
ority than readers. Readers have priority in the following situation: when
a writer requests to write, if it is a lead writer (i.e., no other writer is writ-
ing or waiting), it waits until all readers that arrived earlier have finished
reading.

(a) Is this implementation correct? If not, give a scenario that demon-
strates any errors that you found. Methods startRead() and startWrite()
contain if-statements that determine whether a waitC() operation is
executed.

(b) If these if-statements are changed to while-loops, is the implementa-
tion correct? If not, give a scenario that demonstrates any errors that
you found.

(c) If you believe that the implementations in parts (a) and (b) are incor-
rect, show how to modify the implementation below to correct it.

public final class r_lt_w_2 extends monitorSC {
int readerCount = 0; // number of active readers
boolean writing = false;
int waitForReaders = 0; // if waitForReaders > 0, lead writer waits

// for readers that arrived earlier
conditionVariable readerQ = new conditionVariable();
conditionVariable writerQ = new conditionVariable();
public void startRead() {
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enterMonitor();
if (writing || !(writerQ.empty()) || waitForReaders > 0)

readerQ.waitC();
++readerCount;
if (waitForReaders>0)

waitForReaders--;
exitMonitor();

}
public void endRead() {

enterMonitor();
--readerCount;
if (readerCount==0)

writerQ.signalC();
exitMonitor();

}
public void startWrite() {

enterMonitor();
if (readerCount > 0 || writing || waitForReaders > 0)

writerQ.waitC();
writing = true;
exitMonitor();

}
public void endWrite() {

enterMonitor();
writing = false;
if (!(writerQ.empty()))

writerQ.signalC();
else {

waitForReaders = readerQ.length();
for (int i = 1; i <= waitForReaders; i++)

readerQ.signalC();
}
exitMonitor();

}
}

4.12. Write a correct SC monitor implementation of strategy R<W.2. Your
monitor should have methods request(int ID, boolean isReadRequest),
startRead(int ID), endRead(), startWrite(int ID), and endWrite(). Reader
and writer threads pass their IDs on calls to request(ID,isReadRequest),
startRead(ID), and startWrite(ID). Method request() saves read requests in
a queue for reader requests and write requests in a queue for writer requests.
The request queues are used in methods startRead() and startWrite() to
force reader and writer threads to read and write in the correct order. For
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example, method startWrite(int ID) might contain an if-statement such as
the following:

if (writing || // writer writing
readerCount>0 || // reader(s) reading
earlierReadersHavePriority || // readers temporarily

// have priority
ID != ((request)writeRequests.getFirst()).ID // ID not first in the

// write request queue
)

waitingWriters[ID].waitC(); // wait on the condition
// variable used by thread ID

4.13. Section 3.5.4.2 showed a semaphore implementation of strategy R>W.2.
This strategy allows concurrent reading and generally gives readers a
higher priority than writers. Writers have priority in the following case:
When a reader requests to read, if it is a “lead reader” (i.e., no other
reader is reading or waiting), it waits until all writers that arrived ear-
lier have finished writing. Below is an SU monitor implementation of this
strategy.

(a) Is this monitor solution equivalent to the semaphore-based solution in
Section 3.5? Explain.

(b) If they are not equivalent, show how to modify the monitor solution
to make it equivalent to the semaphore solution.

int readers = 0; /* number of readers */
boolean writing = false;
conditionVariable writers_readers_que;
conditionVariable readers_que;
public void startRead() {

if (writing)
if (readers == 0)

writers_readers_que.wait();
else readers_que.wait();

readers++;
}
public void endRead() {

--readers;
if (readers == 0) writers_readers_que.signal();

}
public void startWrite() {

if (writing || readers > 0) writers_readers_que.wait();
writing = true;

}
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public void endWrite() {
writing = false; writers_readers_que.signal();

}

4.14. Write a monitor implementation of an Event object that is similar to the
Event object in Win32. Event objects have operations block() and set().
A call to block() always blocks the caller. A call to set() awakens every
thread that has called block() since the last time set() was called.

(a) Write implementations of operations block() and set() for an SU mon-
itor. Declare and initialize any variables and condition variables that
you use.

(b) Write implementations of operations block() and set() for an SC mon-
itor. Declare and initialize any variables and condition variables that
you use.

4.15. Show how to modify classes monitorSC and conditionVariable to pro-
duce a monitor with urgent-signal-and-continue (USC) semantics (see Sec-
tion 4.5.3) such that signaled threads have priority over new threads. In
class monitorSC in Section 4.7.1, waiting threads that are signaled wait in
the mutex queue with new threads:

public void waitC() {
numWaitingThreads++;
threadQueue.VP(mutex);
mutex.P(); // enter the mutex queue with new threads.

}

In your new implementation, waiting threads will not join the mutex queue
when they are signaled. If threads have been signaled but have not yet
reentered the monitor, they should be allowed to reenter before new threads
can enter. Threads that execute signalC() are allowed to continue. Check
your implementation to make sure that you allow only one thread in the
monitor at a time.

4.16. In an SU monitor, the reentry queue is used to keep signaling threads, and
each condition variable has a queue to keep waiting threads. Consider the
two queuing strategies FIFO (first-in-first-out) and LIFO (last-in-first-out).

(a) Compare the effects of using these strategies for the reentry queue in
terms of fairness and correctness.

(b) Compare the effects of using these strategies for the condition queues
in terms of fairness and correctness.

4.17. Show how to modify the SC monitor toolbox to create a signal-and-wait
(SW) [Howard 1976; Andrews 2000] monitor toolbox. In an SW monitor, a
thread calling signalC() joins the rear of the entry queue and the awakened
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thread enters the monitor immediately. The resulting relative priorities are
A(wakened) > S(ignaling) = C(alling).

4.18. Section 4.5.1 shows an SU monitor solution for strategy R>W.1 of
the readers and writers problem. Below is a revised version of method
startRead.

public void startRead {
if (writing)
readerQ.wait();
readerQ.signal();
++readerCount;

}

(a) Assume that the monitor is still of type SU; does the revised solution
still implement strategy R>W.1?

(b) Assume that the monitor is of type SW (see Exercise 4.17); does the
revised solution still implement strategy R>W.1?

(c) Assume that the monitor is of type SC; does the revised solution imple-
ment strategy R>W.1?

Justify your answers.

4.19. The bear and the honeybees (see Exercise 3.13). The bear calls method
sleep() to wait for a full honey pot, then method eat() to eat the honey.
The bees call method fillPot().

(a) Write implementations of monitor methods eat(), sleep(), and
fillPot() as members of an SU monitor using operations wait(), signal(),
and signalAndExit().

(b) Write implementations of monitor methods eat(), sleep(), and
fillPot() as members of an SC monitor using operations wait(), signal(),
and signalAll().

4.20. In Exercise 3.11 you were asked to write a semaphore implementation of
method waitB() in class Barrier. Here you are asked to write a monitor
implementation. Threads call B.waitB() to wait at Barrier B:

class Barrier extends monitor {
public Barrier(int n) {this.n = n;}
private conditionVariable go; // a condition variable for waiting threads
public void waitB() { .. }

}

Assume that conditionVariables are FCFS.

(a) Write an SU monitor implementation of method waitB().
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(b) Write an SC monitor implementation of method waitB(). (Be careful
to make sure that new threads will be delayed if there are old threads
that have been signaled but have not yet had a chance to leave the
barrier.)

4.21. In Listing 4.11, assume that there are many threads blocked in methods
P() and V(). Suppose that a thread executes the notifyAll operation in
method V(). One notified thread that was waiting in P() may find that the
condition it is waiting for is true. Are all the other notified threads (that
were waiting in P() or V()) guaranteed to find that the condition they are
waiting for is false?

4.22. Suppose that monitor alternateThreads below uses either an SC toolbox
(Listing 4.23) or a USC toolbox (see Exercise 4.15) that is implemented
without VP() operations. (That is, toolboxes monitorSCNoVP and mon-
itorUSCNoVP use separate V() and P() operations in place of a VP()
operation.) Method alternate() forces two threads to alternate execution
with one another. Each time a thread calls alternate() it signals condi-
tion other (unblocking the other thread) and then blocks itself. The thread
remains blocked until the other thread calls alternate(). Suppose that these
toolboxes use strong FCFS semaphores (and no VP() operations, as men-
tioned above). Is monitor alternateThreads correct? If not, show a scenario
that illustrates the problem.

final class alternateThreads extends monitorSCNoVP
/*or extends monitorUSCNoVP*/ {

conditionVariable other = new conditionVariable();
public final void alternate() {

other.signalC();
other.waitC();

}
}

4.23. The SC toolbox in Listing 4.23 uses operation VP(). Show how to achieve
the same effect without using VP(). That is, without using VP(), make sure
that threads are signaled in the same order that they execute waitC(). To
help you design a solution, you may want to examine the FCFS implemen-
tations of classes countingSemaphore and binarySemaphore.

4.24. Below is an SC monitor implementation of strategy R>W.1, which allows
concurrent reading and gives readers a higher priority than writers. Variable
stopBarging is used to prevent barging writers from writing when the
signaled reader is waiting in the entry queue and no more readers are
waiting in the readerQ Is this solution correct? If two readers are waiting
when a writer executes endWrite(), are both readers guaranteed to read
before another writer can write?
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class r_gt_w_1 extends monitor {
int readerCount = 0; // number of active readers
boolean writing = false; // true if a writer is writing
boolean stopBarging = true; // set to true to stop writers from barging

// ahead of readers
conditionVariable readerQ = new conditionVariable();
conditionVariable writerQ = new conditionVariable();
public void startRead() {

if (writing) // readers must wait if a writer is writing
readerQ.wait();

++readerCount;
stopBarging = false; // writers will still be delayed since

// readerCount > 0 is now true
readerQ.signal(); // awaken the next waiting reader

}
public void endRead() {

--readerCount;
if (readerCount == 0) // a writer is signaled if there are no

// more readers reading
writerQ.signal();

}
public void startWrite() {
// writers wait if a writer is writing, or a reader is reading or waiting,
// or the writer is barging

while (readerCount > 0 || writing || !readerQ.empty() || stopBarging)
writerQ.wait();

writing = true;
}
public void endWrite() {

writing = false;
if (!readerQ.empty()) { // priority is given to waiting readers

readerQ.signal();
stopBarging = true; // if writers barge ahead of the

// signaled reader, they will be delayed
}
else

writerQ.signal();
}

}

4.25. For the solutions to the dining philosophers problem in Section 4.2.3:

(a) Give a scenario for Solution 1 that illustrates how a philosopher can
starve.

(b) Show how this scenario is avoided in Solution 2.
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4.26. In Exercise 3.18 you were asked to give a scenario that demonstrates how
class countingSemaphore in Section 3.6.1 may fail if threads blocked on the
wait operation in method P() can be interrupted or if spurious wakeups can
occur. Describe how this scenario is prevented by the countingSemaphore
class in Listing 4.11.

4.27. Solve the problem in Exercise 4.12 using either Java or Pthreads condition
variables.

4.28. Implement the SC monitor toolbox for Win32 from Section 4.8.1 using
Win32 Semaphores and Events. Use Semaphores for mutual exclusion.
Threads that block in waitC() should block on a Win32 Event. You can
use operation SignalObjectAndWait() (see Section 3.7.5) in place of VP().
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MESSAGE PASSING

In Chapters 3 and 4, threads used shared variables to communicate and they used
semaphores, locks, and monitors to synchronize. Threads can also communicate
and synchronize by sending and receiving messages across channels. A channel
is an abstraction of a communication path between threads. If shared memory
is available, channels can be implemented as objects that are shared by threads.
Without shared memory, channels can be implemented using kernel routines that
transport messages across a communication network.

Chapter 6 deals with message passing for distributed programs, in which mes-
sages are passed between processes that run on separate nodes in a network. The
focus of this chapter is message passing between threads that run in the same
process. Programming problems will be solved by sending and receiving mes-
sages across channels instead of reading and writing shared variables protected
by semaphores and monitors. This offers us a new style for solving familiar
problems. First, we describe basic message passing using send and receive com-
mands. Then we will see how to use a higher-level mechanism called rendezvous.
Finally, we show how to test and debug message-passing programs.

5.1 CHANNEL OBJECTS

Threads running in the same program (or process) can access channel objects
in shared memory. If the programming language does not provide built-in chan-
nel objects, a channel class can be defined at the user level. In the program

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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below, Thread1 and Thread2 use methods send() and receive() to send and
receive messages through two channel objects. Thread1 sends requests through
the requestChannel, and Thread2 responds through the replyChannel :

channel requestChannel = new channel();
channel replyChannel = new channel();

Thread1 Thread2

requestChannel.send(request); ⇒ request = requestChannel.receive();
reply = replyChannel.receive(); ⇐ replyChannel.send(reply);

A thread that calls send() or receive() may be blocked. Thus, send and receive
operations are used both for communication and synchronization. Several types
of send and receive operations can be defined:

ž Blocking send: The sender is blocked until the message is received (by a
receive() operation).

ž Buffer-blocking send: Messages are queued in a bounded message buffer,
and the sender is blocked only if the buffer is full.

ž Nonblocking send: Messages are queued in an unbounded message buffer,
and the sender is never blocked.

ž Blocking receive: The receiver is blocked until a message is available.
ž Nonblocking receive: The receiver is never blocked. A receive command

returns an indication of whether or not a message was received.

Asynchronous message passing occurs when blocking receive operations are
used with either nonblocking or buffer-blocking send operations. Synchronous
message passing is the term used when the send and receive operations are both
blocking. When synchronous message passing is used, either the sender or the
receiver thread will be blocked, whichever one executes its operation first. Even
if the receiver is waiting for a message to arrive, the sender may be blocked since
the sender has to wait for an acknowledgment that the message was received.
Thus, there are more delays associated with synchronous message passing.

Synchronous message passing can be simulated using asynchronous message
passing. For instance, if a blocking send command is not available, the sender
can issue a buffer-blocking send followed immediately by a blocking receive.
This also works in cases where the message sent to a receiver represents a
request for the receiver to perform some service. The receiver can examine the
request, perform the service at the appropriate time, and then send a reply to the
waiting sender.

5.1.1 Channel Objects in Java

Threads in the same Java Virtual Machine (JVM) can communicate and synchro-
nize by passing messages through user-defined channels that are implemented
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as shared objects. We have written Java classes that implement several different
types of channels. Interface channel specifies the form of send() and receive()
operations supported by channel objects.

public abstract class channel {
public abstract void send(Object m); // send a message object
public abstract void send(); // send with no message object

// acts as a signal to the receiver
public abstract Object receive(); // receive an object

}

There are three types of channels, which differ in the number of sender and
receiver threads that are allowed to access a channel object:

ž Mailbox: Many senders and many receivers may access a mailbox object.
ž Port: Many senders but only one receiver may access a port object.
ž Link: Only one sender and one receiver may access a link object.

Each of the three types of channels has a synchronous version and an asyn-
chronous version. A synchronous mailbox class is shown in Listing 5.1. Oper-
ations send() and receive() are implemented using a member variable named
message and two binary semaphores. A sending thread copies its message into
the channel’s message object and issues sent.V() to signal that the message is
available. The sending thread then executes received.P() to wait until the message
is received. The receiving thread executes sent.P() to wait for a message from the
sender. When the sender signals that a message is available, the receiver makes
a copy of the message object and executes received.V() to signal the sender that
the message has been received.

For convenience, mailbox provides a send() operation with no message param-
eter, which sends a null message. A send() operation with no message acts as a
signal to the receiver that some event has occurred. (In other words, the signal
is the message.) Such a send is analogous to a V () operation on a semaphore,
which allows one thread to signal another but does not exchange any data between
the threads.

The send() methods for classes port and mailbox are the same. The receive()
methods for classes port and link are also the same. Only one thread can ever
execute a receive operation on a port or link object. In Listing 5.2 we have
modified the receive method of Listing 5.1 to check for multiple receivers. An
exception is thrown if multiple receivers are detected. Since a link can have only
one sender, a similar check is performed in the send() method of class link.

An asynchronous mailbox class is shown in Listing 5.3. The implementation
of the buffer-blocking send() operation is based on the bounded-buffer solution in
Section 3.5.2. The send() will block if the message buffer is full. The messages
that a thread sends to a particular mailbox are guaranteed to be received in the
order they are sent. If Thread1 executes a send() operation on a particular mailbox
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public class mailbox extends channel {
private Object message = null;
private final Object sending = new Object();
private final Object receiving = new Object();
private final binarySemaphore sent = new binarySemaphore(0);
private final binarySemaphore received = new binarySemaphore(0);
public final void send(Object sentMsg) {

if (sentMsg == null) {throw new
NullPointerException("Null message passed to send()");

}
synchronized (sending) {
message = sentMsg;
sent.V(); // signal that the message is available
received.P(); // wait until the message is received
}

}
public final void send() {

synchronized (sending) {
message = new Object(); // send a null message
sent.V(); // signal that message is available
received.P(); // wait until the message is received

}
}
public final Object receive() {

Object receivedMessage = null;
synchronized (receiving) {

sent.P(); // wait for message to be sent
receivedMessage = message;
received.V(); // signal the sender that the message has

} // been received
return receivedMessage;

}
}

Listing 5.1 Synchronous mailbox class.

before Thread2 executes a send() operation on the same mailbox, Thread1’s
message will be received from that mailbox before Thread2’s message.

The asynchronous link and port classes are very similar to the mailbox class.
In the asynchronous link class, methods send() and receive() must check for
multiple senders and receivers. In the asynchronous port class, method receive
must check for multiple receivers. Since links have a single sender, there is no
need for semaphore senderMutex in method send. Similarly, there is no need for
semaphore receiverMutex in the receive() methods of classes link and port.
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public final Object receive() {
synchronized(receiving) {

if (receiver == null) // save the first thread to call receive
receiver = Thread.currentThread();

// if currentThread() is not first thread to call receive, throw an exception
if (Thread.currentThread() != receiver) throw new

InvalidLinkUsage("Attempted to use link with multiple receivers");
Object receivedMessage = null;
sent.P(); // wait for the message to be sent
receivedMessage = message;
received.V(); // signal the sender that the message has
return receivedMessage; // been received

}
}

Listing 5.2 Synchronous receive method for the link and port classes.

public final class asynchMailbox extends channel {
private final int capacity = 100;
private Object messages[] = new Object[capacity]; // message buffer
private countingSemaphore messageAvailable = new countingSemaphore(0);
private countingSemaphore slotAvailable = new

countingSemaphore(capacity);
private binarySemaphore senderMutex = new binarySemaphore(1);
private binarySemaphore receiverMutex = new binarySemaphore(1);
private int in = 0, out = 0;

public final void send(Object sentMessage) {
if (sentMessage == null) {

throw new NullPointerException("null message passed to send()");
}
slotAvailable.P();
senderMutex.P();
messages[in] = sentMessage;
in = (in + 1) % capacity;
senderMutex.V();
messageAvailable.V();

}

public final void send() {
/* same as send(Object sentMessage) above except that the line

‘‘messages[in] = sentMessage;’’ becomes ‘‘messages[in] = new Object();’’ */
}

Listing 5.3 Asynchronous asynchMailbox class.
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public final Object receive() {
messageAvailable.P();
receiverMutex.P();
Object receivedMessage = messages[out];
out = (out + 1) % capacity;
receiverMutex.V();
slotAvailable.V();
return receivedMessage;

}
}

Listing 5.3 (continued )

Listing 5.4 shows how to use the link class. Producer and Consumer threads
exchange messages with a Buffer thread using links deposit and withdraw. The
Buffer thread implements a one-slot bounded buffer. The Producer builds a
Message object and sends it to the Buffer over the deposit link. The Buffer then
sends the Message to the Consumer over the withdraw link.

5.1.2 Channel Objects in C++/Win32

Listing 5.5 shows a C++ version of the synchronous mailbox class. Methods
send() and receive() operate on objects of type message ptr<T>. A message ptr
<T> object is a smart pointer. Smart pointers mimic simple pointers by provid-
ing pointer operations such as dereferencing (using operator *) and indirection
(using operator ->). Smart pointers also manage memory and ownership for their
pointed-to objects. We use smart pointers to help manage message objects that
are passed between threads.

A message ptr<T> object contains a pointer to a message object of type T.
The message ptr<T> class template uses reference counting to manage mes-
sage objects. Ownership and memory management are handled by maintaining
a count of the message ptr objects that point to the same message. Copying a
message ptr object adds one to the count. The message is deleted when the count
becomes zero. Sending and receiving message ptr<T> objects simulates mes-
sage passing in Java. Messages are essentially shared by the sending and receiving
threads, and messages are deleted automatically when they are no longer being
referenced. As in Java, virtually any type T of message object can be used.

A message that contains an integer can be defined as follows:

class Message {
public:

int contents;
Message(int contents_) : contents(contents_){}
Message(const Message& m) : contents(m.contents) {}
Message* clone() const {return new Message(*this);}

};
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public final class boundedBuffer {
public static void main (String args[]) {

link deposit = new link();
link withdraw = new link();
Producer producer = new Producer(deposit);
Consumer consumer = new Consumer(withdraw);
Buffer buffer = new Buffer(deposit,withdraw);
// buffer will be terminated when producer and consumer are finished
buffer.setDaemon(true); buffer.start();
producer.start();
consumer.start();

}
}
final class Message {

public int number;
Message(int number ) {this.number = number;}

}
final class Producer extends Thread {

private link deposit;
public Producer (link deposit) { this.deposit = deposit; }
public void run () {

for (int i = 0; i<3; i++) {
System.out.println("Produced " + i);
deposit.send(new Message(i));

}
}

}

final class Consumer extends Thread {
private link withdraw;
public Consumer (link withdraw) { this.withdraw = withdraw; }
public void run () {

for (int i = 0; i<3; i++) {
Message m = (Message) withdraw.receive(); // message from Buffer
System.out.println("Consumed " + m.number);
}

}
}

final class Buffer extends Thread {
private link deposit, withdraw;
public Buffer (link deposit, link withdraw) { this.deposit = deposit;

this.withdraw = withdraw; }

Listing 5.4 Java bounded buffer using channels.
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public void run () {
while (true) {

Message m = ((Message) deposit.receive()); // message from Producer
withdraw.send(m); // send message to Consumer

}
}

}

Listing 5.4 (continued )

template <class T>
class mailbox {
public:

mailbox() : sent(0), received(0), msg(0) {}
void send(message_ptr<T> sentMsg) {

if (sentMsg.get() == NULL) {
throw new NullMessageException("Null message passed to send()");

}
mutexSending.lock();
msg = sentMsg;
sent.V();
received.P();
mutexSending.unlock();

}
message_ptr<T> receive() {

mutexReceiving.lock();
sent.P();
message_ptr<T> receivedMessage = msg;
received.V();
mutexReceiving.unlock();
return receivedMessage;

}
void send() {

mutexSending.lock();
sent.V();
received.P();
mutexSending.unlock();

}
private:

message_ptr<T> msg;
mutexLock mutexSending;
mutexLock mutexReceiving;
win32Semaphore sent; // or use a POSIXSemaphore
win32Semaphore received;

};

Listing 5.5 C++ synchronous mailbox class.
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A message object can be sent over channel deposit using

mailbox<Message> deposit; // create a mailbox for message
// objects

message_ptr<Message> m(new Message(i)); // create a message object m
deposit.send(m); // send message m

Message objects are received using

message_ptr<Message> m = deposit.receive();
std::cout << "Received:" << m->contents << std::endl;

Notice that nothing prevents the sending thread from accessing a message after
it has been received. This may interfere with the receiving thread, since the
receiver is expecting mutually exclusive access to the message. If the sender
needs to access a message after it is sent, or just to be completely safe, the
sender should send a copy of the message:

Message m1(1);
message_ptr<Message> m2(m1.clone()); // send a copy of m1 to ensure mutual

// exclusion
deposit.send(m2);

Java threads that use the Java channel classes should also consider sending cloned
messages to prevent the sending and receiving threads from referencing the same
message objects.

Other ownership schemes can be implemented with help from class templates
such as auto ptr or other smart pointer classes. The use of such classes depends
on the level of support that the compiler provides for C++ templates, which varies
from compiler to compiler. The link and port classes can easily be produced from
C++ class mailbox<T> and the Java link and port counterparts. Listing 5.6
shows a C++/Win32/Pthreads version of the Java bounded buffer program in
Listing 5.4.

5.2 RENDEZVOUS

The following message-passing paradigm is common in a client–server environ-
ment:

Clienti Server

loop {
request.send(clientRequest); ⇒ clientRequest = request.receive();

/* process clientRequest and compute result */
result = replyi.receive(); ⇐ replyi.send(result);

}
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class Message {
public:

int contents;
Message(int contents_) : contents(contents_){}
Message(const Message& m) : contents(m.contents) {}
Message* clone() const {return new Message(*this);}

};
class Producer : public Thread {
private:

mailbox<Message>& deposit;
public:

Producer (mailbox<Message>& deposit_) : deposit(deposit_) {}
virtual void* run () {

for (int i=0; i<3; i++) {
message_ptr<Message> m(new Message(i));
std::cout << "Producing " << i << std::endl;
deposit.send(m);

}
return 0;

}
};
class Consumer : public Thread {
private:

mailbox<Message>& withdraw;
public:

Consumer (mailbox<Message>& withdraw_) : withdraw(withdraw_) {}
virtual void* run () {

for (int i=0; i<3; i++) {
message_ptr<Message> m = withdraw.receive();
std::cout << "Consumed " << m->contents << std::endl;

}
return 0;

}
};
class Buffer : public Thread {
private:

mailbox<Message>& deposit; mailbox<Message>& withdraw;
public:

Buffer (mailbox<Message>& deposit_, mailbox<Message>& withdraw_)
: deposit(deposit_), withdraw(withdraw_) {}

virtual void* run () {
for (int i=0; i<3; i++) {

message_ptr<Message> m = deposit.receive(); withdraw.send(m);

Listing 5.6 C++ bounded buffer using channels.



268 MESSAGE PASSING

}
return 0;

}
};
int main () {

mailbox<Message> deposit; mailbox<Message> withdraw;
std::auto_ptr<Producer> producer(new Producer(deposit));
std::auto_ptr<Consumer> consumer(new Consumer(withdraw));
std::auto_ptr<Buffer> buffer(new Buffer(deposit,withdraw));
producer->start(); consumer->start(); buffer->start();
producer->join(); consumer->join(); buffer->join();
return 0;

}

Listing 5.6 (continued )

Implementing this paradigm with basic message passing requires one channel
that the server can use to receive client requests and one channel for each
client’s reply. That is, each client uses a separate channel to receive a reply
from the server.

This paradigm can be implemented instead as follows:

Client Server

entry E;
loop {

E.accept(clientRequest, result) {
E.call(clientRequest,result); ⇔ /* process Client’s request and compute result */

} // end accept()
} // end loop

The server uses a new type of channel called an entry. Clients issue requests by
making entry calls to the server. In the client, the pair of send and receive state-
ments

request.send(clientRequest);
result = reply.receive();

is combined into the single entry call statement

E.call(clientRequest, result);

This call on entry E is very similar to a procedure call with arguments clien-
tRequest and result. Object clientRequest holds the message being sent to the
server. When the call returns, object result will hold the server’s reply.



RENDEZVOUS 269

In the server, the code that handles the client’s request is in the form of an
accept statement for entry E:

E.accept(clientRequest,result) {
/* process the clientRequest and compute result*/
result = ...;

}

Only one thread can accept the entry calls made to a given entry. When a server
thread executes an accept statement for entry E:

ž If no entry call for entry E has arrived, the server waits.
ž If one or more entry calls for E have arrived, the server accepts one call

and executes the body of the accept statement. When the execution of the
accept statement is complete, the entry call returns to the client with the
server’s reply, and the client and server continue execution.

This interaction is referred to as a rendezvous. Rendezvous are a form of
synchronous communication. A client making an entry call is blocked until the
call is accepted and a reply is returned. Executing an accept statement blocks
the server until an entry call arrives.

Java does not have built-in support for entries and rendezvous. Listing 5.7
shows a Java class named entry that simulates a rendezvous [Magee and Kramer
1999]. Class entry uses the link and port channels of Section 5.1. A client issues
an entry call to entry E as follows:

reply = E.call(clientRequest);

Method call() is implemented using a send() operation on a port named request-
Channel. The send() operation sends the clientRequest, along with a link named
replyChannel, to the server. A new replyChannel is created on each execution
of call(), so that each client sends its own replyChannel to the server. The call()
operation ends with replyChannel.receive(), allowing the client to wait for the
server’s reply.

The server accepts entry calls from its client and issues a reply:

request = E.accept(); // accept client’s call to entry E
...
E.reply(response); // reply to the client

The accept() method in class Entry is implemented using a receive() operation
on the requestChannel (see Fig. 5.8). Method accept() receives the clientRequest
and the replyChannel that was sent with it. Method accept() then saves the reply-
Channel and returns the clientRequest to the server thread. The reply() method
sends the server’s response back to the client using replyChannel.send(). As
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class entry {
private port requestChannel = new port();
private callMsg cm;
public Object call(Object request) throws InterruptedException {

link replyChannel = new link();
requestChannel.send(new callMsg(request,replyChannel));
return replyChannel.receive();

}
public Object call() throws InterruptedException {

link replyChannel = new link();
requestChannel.send(new callMsg(replyChannel));
return replyChannel.receive();

}
public Object accept() throws InterruptedException {
// check the for multiple callers is not shown

cm = (callMsg) requestChannel.receive();
return cm.request;

}
public void reply(Object response) throws InterruptedException {

cm.replyChannel.send(response);
}
public void reply() throws InterruptedException { cm.replyChannel.send(); }
public Object acceptAndReply() throws InterruptedException {
// the check for multiple callers is not shown

cm = (callMsg) requestChannel.receive();
cm.replyChannel.send(new Object()); // send empty reply back to client
return cm.request;

}
private class callMsg {

Object request;
link replyChannel;
callMsg(Object m, link c) {request=m; replyChannel=c;}
callMsg(link c) {request = new Object(); replyChannel=c;}

}
}

Listing 5.7 Java class entry .

we mentioned above, the client waits for the server’s response by executing
replyChannel.receive() in method call().

If the server does not need to compute a reply for the client, the server can
execute method acceptAndReply(). This method accepts the client’s request and
sends an empty reply back to the client so that the client is not delayed. The
client simply ignores the reply. Listing 5.9 shows a client and server program
using Java entries and rendezvous.
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( clientRequest, replyChannel )

Object call(Object clientRequest){ Objectaccept() {
   ...requestChannel.receive();
}

request Channel

replyChannel

( result )

requestChannel.send(...;)

...

replyChannel.receive();
}

void reply(Objectresult) {
replyChannel.send(...);

}

Figure 5.8 Entries are implemented using a port named requestChannel and a link
named replyChannel. The call() operation sends the clientRequest along with a reply-
Channel that the server can use for its reply. The call() and accept() operations are both
blocking.

public final class clientServer {
public static void main (String args[]) {

entry E = new entry();
Client c1 = new Client(E, 2); // send value 2 to the server using entry E
Client c2 = new Client(E, 4); // send value 4 to the server using entry E
Server s = new Server(E);
s.setDaemon(true);
s.start();
c1.start(); c2.start();

}
}
final class Message {

public int number;
Message(int number) { this.number = number; }

}
final class Client extends Thread {

private entry E;
int number;
public Client (entry E, int number) { this.E = E; this.number = number; }
public void run () {

try {
// send number and wait for reply
int i = ((Integer)E.call(new Message(number))).intValue();
System.out.println (number + "x " + number + " = " + i);
// (e.g., 2 × 2 = 4)

}
catch(InterruptedException e) {}

}
}
final class Server extends Thread {

private entry E;

Listing 5.9 Client and server using Java entries and rendezvous.
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public Server (entry E) { this.E = E; }
public void run () {

Message m;
int number;
while (true) {

try {
m = ((Message) E.accept()); // accept number from client
number = m.number;
E.reply(new Integer(number*number)); // reply to client
}
catch(InterruptedException e) {}

}
}

}

Listing 5.9 (continued )

5.3 SELECTIVE WAIT

Assume that server thread boundedBuffer has entries deposit and withdraw. Two
possible implementations of the run() method of thread boundedBuffer follow.

Implementation 1 Implementation 2

while (true) { while (true) {
if (buffer is not full) { if (buffer is not empty) {

item = deposit.acceptAndReply(); withdraw.accept();
... ...

} withdraw.reply(item);
}

if (buffer is not empty) {
withdraw.accept(); if (buffer is not full) {
... item = deposit.acceptAndReply();
withdraw.reply(item); ...

} }
} }

Both implementations create unnecessary delays for threads calling entries
deposit and withdraw:

ž In Implementation 1, while boundedBuffer is blocked waiting to accept an
entry call to deposit, it is possible that a call to withdraw has arrived and
is waiting to be accepted.

ž In Implementation 2, while boundedBuffer is blocked waiting to accept an
entry call to withdraw, it is possible that a call to deposit has arrived and
is waiting to be accepted.
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This problem is solved by allowing a thread to wait for a set of entries instead
of a single entry. When one or more of the entries becomes acceptable, one of
them is selected for execution. This idea is captured by the following select
statement:

select:
when (the buffer is not full) => accept a call to entry deposit and deposit

the item;
or

when (the buffer is not empty) => accept a call to entry withdraw and return
an item;

end select;

When one of the entries is acceptable and the other is not, the acceptable entry is
selected for execution. When both entries are acceptable, one of them is selected
for execution.

The Ada language provides a select statement just like the one above. A
select statement can optionally contain either a delay or an else alternative.
These alternatives limit the amount of time that a select statement will wait for
an acceptable entry:

ž A delay t alternative is selected if no entry can be accepted within t
seconds.

ž An else alternative is executed immediately if no entries are acceptable.

Ada’s selective wait statement can be simulated in Java. Magee and Kramer
[1999] showed how to simulate a selective wait containing multiple accept()
alternatives. Below we describe how to use a class named selectiveWait that
allows a selection over accept(), delay, and else alternatives.

First, create a selectiveWait object:

selectiveWait select = new selectiveWait();

Then add one or more selectableEntry objects to the selectiveWait :

selectableEntry deposit = new selectableEntry();
selectableEntry withdraw = new selectableEntry();
select.add(deposit);
select.add(withdraw);

The selectableEntry objects are entry objects that have been extended so they
can be used as alternatives in a selectiveWait. A selectiveWait can also contain
one delayAlternative:

selectiveWait.delayAlternative delayA = select.new delayAlternative(500);
// delay for half a second
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or one elseAlternative (but not both):

selectiveWait.elseAlternative elseA = select.new elseAlternative();

The timeout value for a delayAlternative is specified as an argument to the
constructor. A delay or else alternative is added to a selective wait in the same
way as a selectableEntry :

select.add(delayA);

Each selectableEntry and delayAlternative is associated with a condition, called
a guard, which determines whether the alternative is allowed to be selected. The
guard for each selectableEntry and delayAlternative must be evaluated before a
selection takes place. Method guard() is called with a boolean expression that
sets the guard to true or false:

deposit.guard (fullSlots<capacity); // guard is set to the boolean value of
// (fullSlots<capacity)

withdraw.guard(fullSlots>0); // guard is set to the boolean value of
// (fullSlots>0)

delayA.guard(true); // guard is always set to true

Method choose() selects one of the alternatives with a true guard:

switch (select.choose()) {
case 1: deposit.acceptAndReply(); /* alternative 1 */

...
break;

case 2: withdraw.accept(); /* alternative 2 */
...
withdraw.reply(value);
break;

case 3: delayA.accept(); /* alternative 3 */
break;

}

Method choose() returns the alternative number of the alternative selected.
Alternative numbers are based on the order in which the alternatives are added
to the selective wait. In the example above, the selectableEntry object deposit
was added first; thus, its alternative number is 1. The alternative number for
withdraw is 2 and the number for delayA is 3. A switch statement uses the
alternative number to execute the appropriate alternative.

When the selectiveWait contains no delay or else alternatives:

ž choose() will select an open accept() alternative (i.e., one with a true guard)
that has a waiting entry call.
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ž If several accept() alternatives are open and have waiting entry calls, the
one whose entry call arrived first is selected.

ž if one or more accept() alternatives are open but none have a waiting
entry call, choose() blocks until an entry call arrives for one of the open
accept() alternatives.

When the selectiveWait has an else or delay alternative:

ž An else alternative is executed if all the accept() alternatives are closed or
all the open accept() alternatives have no waiting entry calls.

ž An open delay alternative is selected when its expiration time is reached if
no open accept() alternatives can be selected prior to the expiration time.

When all of the guards of the accept alternatives are false and there is no delay
alternative with a true guard and no else alternative, method choose() throws a
SelectException indicating that a deadlock has been detected.

Listing 5.10 shows a boundedBuffer server class that uses a selective wait.
The delayAlternative simply displays a message when it is accepted. Note that
the guards of all the alternatives are evaluated each iteration of the while-loop.
Changes made to variables fullSlots and emptySlots in the alternatives of the
switch statement may change the values of the guards for entries deposit and
withdraw. This requires each guard to be reevaluated before the next selection
occurs.

If a boundedBuffer thread is marked as a Java daemon thread before it is
started, it will stop automatically when its clients have stopped. A C++ version
of class boundedBuffer would look very similar to the Java version, without the
daemon threads. Instead, we can use a delayAlternative to detect when the clients
have stopped.

case 3: delayA.accept(); // terminate the boundedBuffer thread when it
// becomes inactive for some period

return;

The delayAternative will stop the boundedBuffer thread after a period of
inactivity.

5.4 MESSAGE-BASED SOLUTIONS TO CONCURRENT
PROGRAMMING PROBLEMS

Below we show solutions to three classical synchronization problems. All three
solutions use message passing with selective waits.

5.4.1 Readers and Writers

Listing 5.11 shows a solution to the readers and writers problem for strategy
R>W.1 (many readers or one writer, with readers having a higher priority). Class
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final class boundedBuffer extends Thread {
private selectableEntry deposit, withdraw;
private int fullSlots=0; private int capacity = 0;
private Object[] buffer = null; private int in = 0, out = 0;
public boundedBuffer(selectableEntry deposit, selectableEntry withdraw,

int capacity) {
this.deposit = deposit; this.withdraw = withdraw; this.capacity = capacity;
buffer = new Object[capacity];

}

public void run() {
try {

selectiveWait select = new selectiveWait();
selectiveWait.delayAlternative delayA =

select.new delayAlternative(500);
select.add(deposit); // alternative 1
select.add(withdraw); // alternative 2
select.add(delayA); // alternative 3
while(true) {

withdraw.guard(fullSlots>0);
deposit.guard (fullSlots<capacity);
delayA.guard(true);
switch (select.choose()) {

case 1: Object o = deposit.acceptAndReply();
buffer[in] = o;
in = (in + 1) % capacity; ++fullSlots;
break;

case 2: withdraw.accept();
Object value = buffer[out];
withdraw.reply(value);
out = (out + 1) % capacity; --fullSlots;
break;

case 3: delayA.accept();
System.out.println("delay selected");
break;

}
}

} catch (InterruptedException e) {}
catch (SelectException e) {System.out.println("deadlock detected");

System.exit(1); }
}

}

Listing 5.10 Java bounded buffer using a selectiveWait .
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final class Controller extends Thread {
//Strategy R>W.1 : Many readers or one writer; readers have a higher priority

private selectablePort startRead = new selectablePort ();
private selectablePort endRead = new selectablePort ();
private selectablePort startWrite = new selectablePort ();
private selectablePort endWrite = new selectablePort ();
private boolean writerPresent = false;
private int readerCount = 0;
private int sharedValue = 0;

public int read() {
try {startRead.send();} catch(Exception e) {}
int value = sharedValue;
try {endRead.send();} catch(Exception e) {}
return value;

}

public void write(int value) {
try {startWrite.send();} catch(Exception e) {}
sharedValue = value;
try {endWrite.send();} catch(Exception e) {}

}

public void run() {
try {

selectiveWait select = new selectiveWait();
select.add(startRead); // alternative 1
select.add(endRead); // alternative 2
select.add(startWrite); // alternative 3
select.add(endWrite); // alternative 4
while(true) {

startRead.guard(!writerPresent);
endRead.guard(true);
startWrite.guard(!writerPresent && readerCount == 0 &&

startRead.count() == 0);
endWrite.guard(true);
switch (select.choose()) {

case 1: startRead.receive();
++readerCount;
break;

case 2: endRead.receive();
--readerCount;
break;

Listing 5.11 Readers and writers using a selectiveWait .
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case 3: startWrite.receive();
writerPresent = true;
break;

case 4: endWrite.receive();
writerPresent = false;
break;

}
}

} catch (InterruptedException e) {}
}

}

Listing 5.11 (continued )

Controller uses a selectiveWait with selectablePort objects startRead, endRead,
startWrite, and endWrite. A selectablePort object is a synchronous port that can
be used in selective waits. The guard for startRead is (!writerPresent ), which
ensures that no writers are writing when a reader is allowed to start reading.
The guard for startWrite is (!writerPresent && readerCount == 0 && startRead.
count() == 0). This allows a writer to start writing only if no other writer is
writing, no readers are reading, and no reader is waiting for its call to startRead to
be accepted. The call to startRead.count() returns the number of startRead.send()
operations that are waiting to be received.

Notice that the selectablePorts are private members of Controller and thus
cannot be accessed directly by reader and writer threads. Instead, readers and
writers call public methods read() and write(), respectively. These public methods
just pass their calls on to the private entries, ensuring that the entries are called
in the correct order (i.e., startRead is called before endRead, and startWrite is
called before endWrite).

5.4.2 Resource Allocation

Listing 5.12 shows a solution to the resource allocation problem. A resource-
Server manages three resources. A client calls entry acquire to get a resource
and entry release to return the resource when it is finished. Vector resources
contains the IDs of the available resources. The integer available is used to
count the number of resources available. A resource can be acquired if the guard
(available > 0) is true. A resource’s ID is given to the client that acquires the
resource. The client gives the resource ID back when it releases the resource.
Notice that both case alternatives contain statements that occur after the server
replies to the client. Replying early completes the rendezvous with the client and
allows the client to proceed as soon as possible.

Listing 5.13 shows an SU monitor solution for this same resource alloca-
tion problem. Monitor resourceMonitor and thread resourceServer demonstrate
a mapping between monitors and server threads. Thread resourceServer is an
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final class resourceServer extends Thread {
private selectableEntry acquire;
private selectableEntry release;
private final int numResources = 3;
private int available = numResources;
Vector resources = new Vector(numResources);

public resourceServer(selectableEntry acquire, selectableEntry release) {
this.acquire = acquire;
this.release = release;
resources.addElement(new Integer(1));
resources.addElement(new Integer(2));
resources.addElement(new Integer(3));

}

public void run() {
int unitID;
try {

selectiveWait select = new selectiveWait();
select.add(acquire); // alternative 1
select.add(release); // alternative 2
while(true) {

acquire.guard(available > 0);
release.guard(true);
switch (select.choose()) {

case 1: acquire.accept();
unitID = ((Integer)
resources.firstElement()).intValue();
acquire.reply(new Integer(unitID));
--available;
resources.removeElementAt(0);
break;

case 2: unitID = ((Integer)
release.acceptAndReply()).intValue();
++available;
resources.addElement(new Integer(unitID));
break;

}
}

} catch (InterruptedException e) {}
}

}

Listing 5.12 Resource allocation using a selectiveWait .
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final class resourceMonitor extends monitorSU {
private conditionVariable freeResource = new conditionVariable();
private int available = 3;
Vector resources = new Vector(3);
public resourceMonitor() {

resources.addElement(new Integer(1));
resources.addElement(new Integer(2));
resources.addElement(new Integer(3));

}
public int acquire() {

int unitID;
enterMonitor();
if (available == 0)

freeResource.waitC();
else

--available;
unitID = ((Integer)resources.firstElement()).intValue();
resources.removeElementAt(0);
exitMonitor();
return unitID;

}
public void release(int unitID) {

enterMonitor();
resources.addElement(new Integer(unitID));
if (freeResource.empty()) {

++available;
exitMonitor();

}
else

freeResource.signalC_and_exitMonitor();
}

}

Listing 5.13 Resource allocation using a monitor.

active object that executes concurrently with the threads that call it. The resource-
Monitor is a passive object, not a thread, which does not execute until it is called.
A monitor cannot prevent a thread from entering one of its methods (although
the monitor can force threads to enter one at a time). However, once a thread
enters the monitor, the thread may be forced to wait on a condition variable until
a condition becomes true. Condition synchronization in a server thread works in
the opposite way. A server thread will prevent an entry call from being accepted
until the condition for accepting the call becomes true.

The conversion between a monitor and a server thread is usually simple (except
for cases where the server contains a timeout alternative). It has been shown
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final class countingSemaphore extends Thread {
private selectablePort V, P;
private int permits;
public countingSemaphore(int initialPermits) {permits = initialPermits;}
public void P() { P.send();}
public void V() {V.send();}
public void run() {

try {
selectiveWait select = new selectiveWait();
select.add(P); // alternative1
select.add(V); // alternative 2
while(true) {

P.guard(permits>0);
V.guard(true);
switch (select.choose()) {

case 1: P.receive();
--permits;
break;

case 2: V.receive();
++permits;
break;

}
}

} catch (InterruptedException e) {}
}

}

Listing 5.14 Using a selectiveWait to simulate a counting semaphore.

elsewhere that communication using shared variables and communication using
message passing are equivalent (i.e., they have the same expressive power). Thus,
a program that uses shared variables with semaphores or monitors can be trans-
formed into an equivalent program that uses message passing, and vice versa.

5.4.3 Simulating Counting Semaphores

Listing 5.14 shows an implementation of a countingSemaphore that uses a selec-
tiveWait with selectablePorts named P and V . Clients call public methods P()
and V(), which pass the calls on to the (private) ports. A P() operation can be
performed only if the guard (permits > 0) is true.

5.5 TRACING, TESTING, AND REPLAY FOR MESSAGE-PASSING
PROGRAMS

In this section we define SYN-sequences for channel-based programs and present
solutions to the replay and feasibility problems. We show how to modify the
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channel classes so that they can be used to trace, replay, and check the feasibility
of SYN-sequences. We will also describe how to perform reachability testing for
programs that use the channel classes.

5.5.1 SR-Sequences

We begin by defining an object-based SYN-sequence of a message-passing pro-
gram, which means that there is one SYN-sequence for each synchronization
object in the program. A thread-based SYN-sequence, which has one SYN-
sequence for each thread, is defined after that.

Object-Based SR-Sequences Let CP be a concurrent program that uses chan-
nels. Assume for now that CP has no selective wait statements. The synchro-
nization objects in CP are its channels, and the synchronization events in CP
are executions of send() and receive() operations on these channels. A SYN-
sequence for a channel is a sequence of send and receive events (or SR-events)
of the following types:

ž SRsynchronization: a synchronization between send and receive operations
on a synchronous channel

ž asynchronousSendArrival: an arrival of an asynchronous send operation
whose message is eventually received

ž asynchronousReceive: a receive operation that eventually receives a mes-
sage on an asynchronous channel

ž unacceptedSend: a synchronous send operation whose message is never
received

ž unacceptedAsynchSend: an asynchronous send operation whose message is
never received

ž unacceptedReceive: a receive on an asynchronous or synchronous channel
that never receives a message

ž sendException: a send operation on an asynchronous or synchronous chan-
nel that causes an exception to be thrown

ž receiveException: a receive operation on an asynchronous or synchronous
channel that causes an exception to be thrown

ž startEntry: the start of a rendezvous on an entry
ž endEntry: the end of a rendezvous on an entry

Notice that for asynchronous messages, there are arrival events but no send
events. This is because it is the order in which messages arrive that determines
the result of an execution, not the order in which messages are sent. As we will
see later, send events are needed for reachability testing, where they are used to
identify the race conditions that occur during an execution.

An object-based SR-event for channel C is denoted by

(S, R, NS, NR, eventType)
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where

ž S is the sending thread of a send operation or the calling thread of an
entry call.

ž R is the receiving thread of a receive operation or the accepting thread of
an entry call.

ž NS is the sender’s order number, which gives the relative order of this event
among all of the sending/calling thread’s events.

ž NR is the receiver’s order number, which gives the relative order of this
event among all of the receiving/accepting thread’s events.

ž eventType is one of the send–receive event types, which are listed above.

The order number of an event executed by thread T gives the relative order
of this event among all the events exercised by T . For example, an event T with
order number 2 is the second event exercised by T . For asynchronousSendAr-
rival, unacceptedSend , and sendException events, R and NR are not applicable
(NA) since no receiving thread is involved with these events. Similarly, for unac-
ceptedReceive and receiveException events, S and NS are not applicable since
there is no sending thread. The order number of an asynchronousSendArrival
event is for the send operation of the thread that generated it.

The program in Listing 5.15 shows why order numbers are needed in SR-
events. Assume that order numbers are not specified. Then the only feasible
SR-sequence for channel C1 (without order numbers) contains the single event

(Thread1, Thread2, SRsynchronization).

The only feasible SR-sequence for C2 also contains a single event:

(Thread1, Thread3, SRsynchronization).

Suppose now that we create a new program by reversing the order of the send
operations in Thread1 :

Thread1 Thread2 Thread3

C2.send(); C1.receive(); C2.receive();
C1.send();

mailbox C1, C2; // synchronous mailboxes
Thread1 Thread2 Thread3
C1.send(); C1.receive(); C2.receive();
C2.send();

Listing 5.15 Demonstrating the need for order numbers.
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Then the feasible SR-sequences (without order numbers) for channels C1 and
C2 in the new program are the same as in the original program, even though the
two programs are different in an obvious and important way.

Adding order numbers to the SR-events distinguishes between these two dif-
ferent programs. The SR-sequence for C1 in the first program becomes

(Thread1, Thread2, 1, 1, SRsynchronization). // first event of Thread1 and
// first event of Thread2

and the SR-sequence for C1 in the second program becomes

(Thread1, Thread2, 2, 1, SRsynchronization). // second event of Thread1 and
// first event of Thread2

When order numbers are specified, an SR-sequence of C1 that is feasible for the
first program will be infeasible for the second, and vice versa.

Given the format above for an object-based SR-event, an SR-sequence of
channel C is denoted as

C: ((S1, R1, NS1, NR1, eventType1), (S2, R2, NS2, NR2, eventType2), ...)

where (Si, Ri, NSi, NRi, eventTypei) denotes the ith, i > 0, SR-event in the SR-
sequence of C. An object-based SR-sequence of a program contains an SR-
sequence for each channel in the program.

Thread-Based SR-Sequences We now define two formats for thread-based SR-
sequences. Each thread in the program has its own SR-sequence. There are two
possible formats for the SR-events in a thread-based SR-sequence.

Format 1 A thread-based SR-event for thread T is denoted by

(C, NC, eventType)

where

ž C is the channel name.
ž NC is the channel order number.
ž eventType is the type of the event.

The channel order number NC gives the relative order of this event among all
the events involving channel C. The list of event types is the same as that above
for object-based events, except that we remove type SRsynchronization and add
separate event types for synchronous send and receive operations:

ž Send: a synchronous send operation executed by thread T where the mes-
sage is eventually accepted
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ž Receive: a synchronous receive operation executed by thread T that even-
tually receives a message

We could also have used separate synchronous-send and synchronous-receive
events for the events in object-based sequences, but combining them into a single
send-receive synchronization event makes object-based sequences easier to read.

The second format for thread-based SR-sequences is used for programs that
have selective wait statements. Format 2 below has the same amount of informa-
tion as Format 1, but the two formats are best suited for different tasks: Format
2 better matches the solution that we have developed for determining feasibility
and replaying SR-sequences, while Format 1 is a better format for visualizing
the trace of an execution. The trace tool that we will describe later outputs
thread-based SR-sequences in both formats.

In Format 2, each channel has one thread that is considered to be the “owner”
of the channel. For a link, port, or entry (or actually, their selectable versions),
the owner is the thread that executes receive() operations on the channel. For
these types of channels, there is only one thread that can be the receiver. A
mailbox can have multiple receiving threads, so one of the receivers must be
chosen arbitrarily to be the owner.

If a thread T contains a selective wait, the selective wait will choose among
one or more channels, all of which we require to be owned by thread T . To
simplify things, we add another restriction on selective waits, which is that the
channels of a selective wait in T must be links, ports, or entries that are owned
by T . This means that mailboxes cannot be used in selective waits. Since thread
T is associated with all the channel events generated by its selective waits, it is
convenient to record these events in the SR-sequence for thread T .

Format 2 A thread-based SR-event for thread T, where T is the owner of the
channel associated with the event, is denoted by

(S, NS, C, eventType)

where

ž S is the sending thread (T is always the receiver).
ž NS is the sender’s order number.
ž C is the channel name.
ž eventType is the type of the event.

The list of thread-based SR-event types is the same as that above for object-
based events, except that we add an elseDelay event type for selective wait
statements:

ž elseDelay: selection of an else or delay alternative.
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An SRsynchronization event representing a synchronization between send and
receive operations on a synchronous channel appears in the SR-sequence for the
owning thread (i.e., the receiving thread). There is no corresponding send event
in the sequence for the sending thread. In Format 2, no order number is required
for channel C since the SR-sequence of the owning thread T contains all the
events for channel C, and thus the order numbers for events on C are given
implicitly (i.e., the ith event for C implicitly has order number i).

As we mentioned above, we are grouping the events involving channels owned
by thread T into one sequence: the SR-sequence of T. This gives Format 2 its
thread-based flavor. On the other hand, Format 2 is derived from the format
used for object-based events. Format 2 is slightly simpler than the object-based
SR-event format since the receiving thread is always the owning thread, and
thus the receiving thread does not need to be specified in Format 2. Also, the
order number of the owning thread is given implicitly by the order of events in
the sequence.

Given the two formats for thread-based SR-events, we can now define thread-
based SR-sequences for threads and programs. For Format 1, an SR-sequence of
thread T is denoted as

T: ((C1, VC1, eventType1), (C2, VC2, eventType2), ...).

For Format 2, an SR-sequence of thread T is denoted as

T: ((S1, NS1, C1, eventType1), (S2, NS2, C2, eventType2), ...).

A thread-based SR-sequence of a program contains a thread-based SR-sequence
for each thread in the program.

We can easily translate a thread-based SR-sequence into an object-based SR-
sequence, and vice versa. Consider again the simple program in Listing 5.15.
The object-based SR-sequence of this program is

C1: (Thread1, Thread2, 1, 1, SRsynchronization)
C2: (Thread1, Thread3, 2, 1, SRsynchronization).

The corresponding thread-based SR-sequence using Format 1 is

Thread1: (C1, 1, send), (C2, 1, send)
Thread2: (C1, 1, receive)
Thread3: (C2, 1, receive).

The thread-based SR-sequence using Format 2 is

Thread1: // send events do not appear in
// SR-sequence of the sender

Thread2: (Thread1, 1, C1, SRsynchronization) // 1 is Thread1’s order number
// for its first send operation
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Thread3: (Thread1, 2, C2, SRsynchronization). // 2 is Thread1’s order number
// for its second send operation

Thread1’s sequence is empty under Format 2, since Thread1 only executes send
events, and these send events appear as SRsynchronization events in Thread2
and Thread3.

No information is lost in this translation. Order numbers for threads are spec-
ified explicitly in the object-based sequences but are implicit in the ordering of
events in the SR-sequence for each thread. Similarly, order numbers for channels
appear explicitly in thread-based SR-sequences using Format 1 but are implicit
in the object-based SR-sequence for each channel.

Totally Ordered SR-Sequences The object- and thread-based SR-sequences de-
fined above are all partially ordered; there is a separate sequence for each channel
or thread in the program. We can also create totally ordered SR-sequences. That
is, there is only one SR-sequence for the program and this sequence includes
events for all the channels and threads.

An SR-event in a totally ordered SR-sequence is denoted by

(S, R, C, eventType)

where

ž S is the sending thread of a send operation or the calling thread of an entry
call.

ž R is the receiving thread of a receive operation or the accepting thread of
an entry call.

ž C is the channel name.
ž eventType is one of the types listed above for Format 2.

A totally ordered SR-sequence contains no order numbers for channels or
threads, since this information is specified implicitly by the ordering of events in
the sequence. A totally ordered SR-sequence of program CP is denoted as

((S1, R1, C1, eventType1), (S1, R2, C2, eventType2), ...).

For example, a totally ordered SR-sequence for the program in Listing 5.15 is

((Thread1, Thread2, C1, SRsynchronization), (Thread1, Thread3, C2,
SRsynchronization)).

A programmer must choose between the various formats for SR-sequences:
total order vs. partial order and object-based vs. thread-based. A totally ordered
SR-sequence can be translated into a partially ordered sequence, and vice versa.
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Similarly, we have already seen that object- and thread-based SR-sequences can
easily be translated into one another.

A totally ordered sequence is usually easier to understand than is a partially
ordered one. If a program is running on a single CPU, a single controller can
easily record a totally ordered sequence. However, using a single controller cre-
ates a bottleneck during execution. Since threads and channels are user-level
objects in the program, they can be instrumented to collect either thread- or
object-based sequences.

In a distributed program, which involves multiple machines, a channel is
typically not a user-level object, so object-based sequences may be difficult to
collect. If multiple controllers (e.g., one controller per machine) are used to collect
partially ordered SR-sequences, a bottleneck is avoided, but the trace files will be
created on separate machines across the network. This makes it less convenient
to view the trace files and to create a totally ordered sequence from the files.
If a single controller is used to collect a totally ordered SR-sequence from a
distributed program, certain event-ordering issues must be addressed so that the
SR-sequence is captured accurately (see Section 6.3).

5.5.2 Simple SR-Sequences

Object-based simple SR-sequences can be used for replaying channel-based pro-
grams. The format of a simple send–receive event depends on the type of channel
being used:

ž Mailbox. A simple send–receive event for mailbox M is denoted by (S, R),
where S is the ID of the sending thread and R is the ID of receiving thread
for mailbox M.

ž Port or Entry. A simple send–receive event for port P or entry E is denoted
by (S), where S is the ID of the sending thread for port P or the calling
thread for entry E. The receiving thread is not recorded since the receiving
thread for a port or entry is always the same thread, which is the owner of
the port or entry.

ž Link. A simple send–receive event for a link requires no information about
the sender and receiver. This is because the sender and receiver are always
the same thread. If program CP uses only links for communication and
no selective wait statements, there is no nondeterminism that needs to be
controlled during replay. (This assumes that message passing is the only
possible source of nondeterminism in CP.)

To simplify the recording and replaying of simple SR-sequences, we use the
common format (S, R) for all channel types, where S is the ID of the sending
thread and R is the ID of the receiving thread for the link, port, entry, or mail-
box. Using a common format simplifies the design of the replay tool, and even
though information about the sender and receiver threads is not always required
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for replay, it is useful for other things, such as understanding and visualizing
the trace.

A simple object-based SR-sequence of channel C is denoted as

C: ((S1, R1), (S2, R2) ...).

An object-based simple SR-sequence of a program contains a simple SR-sequence
for each channel in the program.

A thread-based simple SR-event has two possible formats, corresponding to
Formats 1 and 2 defined above.

Format 1 A simple SR-event is denoted as (NC), where NC is the order number
of channel C, which is the mailbox, port, entry , or link that is involved in this
event. A simple SR-sequence of a thread T using Format 1 is denoted as

T: ((NC1), (NC2), ...)

Format 2 A simple SR-event is denoted as (S), where S is the sending thread
for this event. A simple SR-sequence of a thread T using Format 2 is denoted as

T: ((S1), (S2), ...)

A totally ordered simple SR-sequence of program CP is denoted as

((S1, R1) (S2, R2), ...)

where

ž S is the sending thread of a send operation or the calling thread of an
entry call.

ž R is the receiving thread of a receive operation or the accepting thread of
an entry call.

For the program in Listing 5.15, the object-based simple SR-sequence of this
program is

C1: (Thread1, Thread2)
C2: (Thread2, Thread3)

The thread-based simple SR-sequence using Format 1 is

Thread1: (1), (1)
Thread2: (1)
Thread3: (1)
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Let Thread2 be the owner of channel C1 and Thread3 be the owner of channel
C2; the thread-based simple SR-sequence using Format 2 is

Thread2: (Thread1)
Thread3: (Thread1).

The thread-based totally ordered simple SR-sequence is

(Thread1, Thread2), (Thread1, Thread3).

5.5.3 Determining the Feasibility of an SR-Sequence

The feasibility of an SR-sequence is determined using the same general technique
that was used to determine the feasibility of an M-sequence for monitors. Before
a thread can perform a send or receive operation, it must request permission
from a control module. The controller is responsible for reading an SR-sequence
and forcing the execution to proceed according to this sequence. We will show
how to implement the controller using a single thread. This controller thread uses
channels and a selective wait statement to perform both functions of the control
module: ordering events and handling timeouts.

The send() and receive() methods in the channel classes are modified by
adding one or more calls to the controller. Listing 5.16 shows a sketch of Java
class link with the modifications highlighted. In trace mode, methods send() and
receive() notify the controller of any exceptions that occur. Operation receive()
notifies the controller when a message is received, which causes an SRsynchro-
nization event to be recorded. The arguments on the calls refer to the fields of
an SR-event, which were defined in Section 5.5.2. The fields were sender (S),
receiver (R), order number of the sender (NS), order number of the receiver (NR),
channel name (C), order number of the channel (NC), and the various event types.
In test mode, methods send() and receive() issue a call to the controller to request
permission to exercise send and receive events. The call to control.msgReceived()
notifies the controller that the event has occurred, so that permission can be given
for the next event.

The controller uses channels to communicate with the threads. For example,
there is an array of selectableEntrys that are used by threads requesting the
sendPermit :

private selectableEntry requestSendPermit[];
requestSendPermit = new selectableEntry[numberOfThreads+1];
for (int i=0; i<(numberOfThreads+1);i++)

requestSendPermit[i] = new selectableEntry();

When a thread makes a method call to control.requestSendPermit(), the call
is forwarded as an entry call over the channel associated with that thread. The
implementation of method requestSendPermit(...) is shown below. The ID of the
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public class link extends channel {
...
public final void send(Object sentMsg) {

if(mode == TEST)
control.requestSendPermit(S,NS,C);

synchronized(sending) {
// save first thread to call send
if (sender == null) sender = Thread.currentThread();
if (Thread.currentThread() != sender) {

if (mode == TRACE)
control.traceMsg(S, NS, C, VC, sendException);

if (mode == TEST) {
control.requestSendExceptionPermit(S, NS, C);
control.msgReceived();

}
throw new InvalidLinkUsage

("Attempted to use link with multiple senders");
}
if (sentMsg == null) {

if (mode == TRACE)
control.traceMsg(S, NS, C, VC, sendException);

if (mode == TEST) {
control.requestSendExceptionPermit(S, NS, C);
control.msgReceived();

}
throw new NullPointerException("Null message passed to send()");

}
message = sentMsg;
sent.V();
received.P();

}
}
public final Object receive() {

Object receivedMessage = null;
if (mode == TEST) control.requestReceivePermit(R,NR,C);
synchronized (receiving) {

// save first thread to call receive
if (receiver == null) receiver = Thread.currentThread();
f (Thread.currentThread() != receiver) {

if (mode == TRACE)
control.traceMsg(R,NR,C,VC,receiveException);

Listing 5.16 Class link modified for tracing and feasibility.
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if (mode == TEST) {
control.requestReceiveExceptionPermit(R, NR, C);
control.msgReceived();

}
throw new InvalidLinkUsage

("Attempted to use link with multiple receivers");
}
sent.P();
receivedMessage = message;
if (mode == TRACE) control.traceMsg

(S, R, NS, NR, C, VC, SR_SYNCHRONIZATION);
else if (mode == TEST) control.msgReceived();
received.V();
return receivedMessage;

}
}

}

Listing 5.16 (continued )

sending thread, in this case S, is used to select the proper channel for requesting
the sendPermit :

public void requestSendPermit(int S, int NS, String C) {
// sender (S), order number of sender (NS), channel name (C)

try {
requestPermitMessage m = new requestPermitMessage(S, NS, C);
requestSendPermit[S].call(m); // S is the ID of the calling thread

} catch(InterruptedException e) {...}
}

A sketch of the controller thread’s run() method is shown in Listing 5.17. The
controller inputs an SR-sequence and then issues permits based on the order of
events in the SR-sequence. The controller uses a selective wait statement with
a delay alternative to control the execution of events. The selective wait state-
ment contains alternatives for each of the five types of permits—sendPermit,
receivePermit, sendExceptionPermit, receiveExceptionPermit, and elseDelayPer-
mit—and a delay alternative named timeout. For each permit, there is an array of
selectableEntrys (see above), one entry per thread. As explained above, a thread
requests permission by using its thread ID to index the array and call the proper
channel (e.g., requestSendPermit[ID].call(...)).

If the next event in the SR-sequence indicates that thread T is expected to
request a certain permit, the guard of the selective wait alternative corresponding
to T’s channel is set to true and the other thread’s guards are set to false. The
controller will wait for T to issue an entry call to the appropriate channel. If no
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// Method run() for the controller thread:
while (the next SR-event is available) {

nextEvent = SR-sequence[index]; // get the next event in the SR-sequence
// Let T be the ID of the thread executing the next rendezvous event;
if (T is expected to request the sendPermit) requestSendPermit[T].guard(true);
else if (T is expected to request the receivePermit)

requestReceivePermit[T].guard(true);
else if (T is expected to request the sendExceptionPermit)

requestSendExceptionPermit[T].guard(true)
else if (T is expected to request the receiveExceptionPermit)

requestReceiveExceptionPermit[T].guard(true)
else if (T is expected to request a permit for a selective wait event)

requestSelectPermit[T].guard(true);
else if (T is expected to request the elseDelayPermit)

requestElseDelayPermit[T].guard(true);
Set all other guards to false;
choice = select.choose();
if (choice <= (numberOfThreads+1)) {

requestedEvent =
(requestPermitMessage)requestSendPermit[choice-1].accept();

/* if (the channel name and order numbers of requestedEvent do not match
those of nextEvent) issue diagnostic and terminate */

requestSendPermit[choice-1].reply();
if (nextEvent.getEventType().equals(UNACCEPTED_SYNCH_SEND))

index++;
} else if (choice <= 2*(numberOfThreads+1)) {

requestedEvent = (requestPermitMessage)
requestReceivePermit[choice-(numberOfThreads+1)-1].accept();
/* if (the channel name and order numbers of requestedEvent do not match

those of nextEvent) issue diagnostic and terminate; */
requestReceivePermit[choice-(numberOfThreads+1)-1].reply();
if (nextEvent.getEventType().equals(UNACCEPTED_RECEIVE))

index++;
} else if (choice <= 3*(numberOfThreads+1)) {

requestSelectPermit[choice-(2*(numberOfThreads+1))-1].accept();
boolean oneArrival = true; int caller = nextEvent.getOtherThread();
if (caller != -1) oneArrival = true; else oneArrival = false;
requestSelectPermit[choice-(2*(numberOfThreads+1))-1].

reply(new Boolean(oneArrival));
} else if (choice <= 4*(numberOfThreads+1)) {

requestedEvent = (requestPermitMessage)
requestElseDelayPermit[choice-(3*(numberOfThreads+1))-1].accept();

Listing 5.17 Method run() for the controller thread.
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/* if (order number of requestedEvent doesn’t match that of nextEvent)
issue diagnostic and terminate; */

requestElseDelayPermit[choice-(3*(numberOfThreads+1))-1].reply();
} else if (choice <= 5*(numberOfThreads+1)) {

requestedEvent = (requestPermitMessage)
requestSendExceptionPermit[choice-(4*(numberOfThreads+1))-1].accept();
/* if (the channel name and order numbers of requestedEvent do not match

those of nextEvent) issue diagnostic and terminate; */
requestSendExceptionPermit[choice-(4*(numberOfThreads+1))-1].reply();

} else if (choice <= 6*(numberOfThreads+1)) {
requestedEvent = (requestPermitMessage)
requestReceiveExceptionPermit[choice-(5*(numberOfThreads+1))

-1].accept();
/* if (the channel name and order numbers of requestedEvent do not match

those of nextEvent) issue diagnostic and terminate; */
requestReceiveExceptionPermit[choice-(5*(numberOfThreads+1))

-1].reply();
} else if (choice == (6*(numberOfThreads+1))+1){

msgReceived.acceptAndReply(); ++index; // go on to next event
} else { timeout.accept(); /* issue a diagnostic and terminate */ }

}

Listing 5.17 (continued )

call arrives before the timeout in the delay alternative expires, the sequence is
assumed to be infeasible.

The selective wait alternative also contains alternatives for entry requestSe-
lectPermit. These entries are used to control the execution of any selective wait
statements in the program. Let W be a selective wait in Thread j. The choose()
method for class selectiveWait is instrumented as follows:

public synchronized int choose(){
if (mode == TEST) {

boolean oneArrival = control.requestSelectPermit(((TDThread)Thread.
currentThread()).getID());

if (oneArrival) { // wait for entry call to arrive before making choice
currentArrivals = number of entry calls that have arrived for the

channels in the selective wait
if (currentArrivals < 1)

wait(); // wait until an entry call arrives
}

}
/* rest of choose() */

}
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The purpose of the code at the start of choose() is to guarantee that when a
choice is made:

1. If an accept() or receive() alternative in W is expected to be selected
(according to the SR-sequence), this alternative is the only one having
a call to accept.

2. If a delay or else alternative in W is expected to be selected, no call is
available for acceptance.

The call to requestSelectPermit(j) is accepted by the controller when, according
to the given SR-sequence, the next SR-event has Thread j as the accepting or
receiving thread. When the controller accepts this call, it determines whether an
entry call is required to arrive before the execution of W:

ž If an entry is to be accepted by Thread j, an arrival is needed.
ž If an else or delay alternative is to be selected by Thread j, no arrivals are

needed.

The call to requestSelectPermit() returns a boolean value oneArrival to indi-
cate whether an arrival is needed. In addition, if an arrival is needed, the controller
will give permission to the corresponding caller to make its entry call.

The rest of the code in choose() does the following. When an arrival is needed,
Thread j computes the current number of entry call arrivals for the channels in
selectiveWait W; a nonzero value indicates that a call has arrived. If an entry
call arrival is needed (i.e., oneArrival is true, but no call has arrived), Thread
j executes wait() to block itself until the call arrives. After the call arrives, W
is executed and the expected SRsynchronization occurs. If no arrival is needed
(i.e., oneArrival is false), W is executed immediately, and either a delay or else
alternative is selected.

The accept() method for else and delay alternatives traces an elseDelay event
in trace mode and requests the elseDelayPermit in test mode:

void accept() {
if (mode == TRACE)

control.traceMsg(R, NR, elseDelay) // notify controller that an
// else/delay event has occurred

else if (mode == TEST) {
control.requestElseDelayPermit(R, NR); // request permission to

// execute else/delay event
control.msgReceived(); // notify controller that else/

// delay was accepted
}

}

We mention again that the code shown above at the beginning of choose() is
executed at the beginning of a selective wait, before any accept() statement is
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executed. If the next event in the SR-sequence is expected to be an elseDelay
event, the code in choose() ensures that no entry call has arrived when the choice
is made, so that an else/delay can be selected.

In all cases, if the thread expected to request permission does not do so before
the timeout, or the thread receives permission but executes an event with an
unexpected attribute (i.e., unexpected channel name, unexpected order number,
etc.), the controller issues a message that the SR-sequence is infeasible.

5.5.4 Deterministic Testing

A collection of tracing, replay, and feasibility tools enables us to test our programs
using a strategy called deterministic testing. Deterministic testing of a concurrent
program CP involves the following steps:

1. Select a set of tests, each of the form (X, S), where X and S are an input
and a complete SYN-sequence of CP, respectively.

2. For each test (X, S) selected, force a deterministic execution of CP with
input X according to S. This forced execution determines whether S is
feasible for CP with input X. (Since S is a complete SYN-sequence of CP,
the result of such an execution is deterministic.)

3. Compare the expected and actual results (including the output, feasibility
of S, and termination condition) of the forced execution. If the expected
and actual results are different, a fault is detected. The replay tool can be
used to locate the fault.

Note that for deterministic testing, a test for CP is not just an input of CP.
A test consists of an input and a SYN-sequence and is referred to as an IN-SYN
test. Deterministic testing is similar to the concept of forcing a path mentioned
in [Taylor et al. 1992].

The selection of IN-SYN tests for CP can be done in different ways:

ž Select inputs and then select a set of SYN-sequences for each input.
ž Select SYN-sequences and then select a set of inputs for each SYN-sequence.
ž Select inputs and SYN-sequences separately and then combine them.
ž Select pairs of inputs and SYN-sequences together.

To use an IN-SYN test (X, S) for deterministic testing of CP, we need to
specify the expected output, the expected feasibility of SYN-sequence S (feasi-
ble or infeasible), and the expected termination condition (normal or abnormal).
Different symbols may be used for different types of abnormal termination, such
as divide-by-zero, deadlock, and so on. Also, different threads in CP may have
different termination conditions.

A combination of nondeterministic and deterministic testing is used during
reachability testing, which was described in Chapters 3 and 4. Assume that every
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execution of CP with input X terminates and the number of distinct feasible SYN-
sequences of CP with input X is finite. Reachability testing is a systematic way
of exercising all possible SYN-sequences of CP with input X. By doing so,
reachability testing can determine the correctness of CP with input X.

5.5.5 Reachability Testing for Message-Passing Programs

Reachability testing can be used to derive and exercise automatically every par-
tially ordered SR-sequence of a message-passing program. Reachability testing
identifies race conditions in an execution trace and uses the race conditions to
generate race variants. Recall from Chapters 3 and 4 that a race variant repre-
sents an alternative execution behavior that could have happened, but didn’t,
due to the way that race conditions were resolved arbitrarily during execution.
Replaying a race variant ensures that a different behavior is observed during the
next execution.

Figure 5.18a shows an execution trace for three threads that use asynchronous
ports for message passing. Thread1 and Thread3 each send a single message to
Thread2. In this trace, Thread2 receives the message from Thread1 first. Figure 5-
18b shows a race variant of this trace. In this variant, Thread2 receives the
message from Thread3 first. The dotted arrow indicates that Thread1’s message
is sent but not received in the variant. Note that the race variant in Fig. 5.18b
contains only one receive event for Thread2. We cannot include a second receive
event for Thread2 since we cannot be sure that Thread2 will execute another
receive statement after the variant is replayed. To see this, suppose that Thread2
executes the following statements:

x = p2.receive();
if(x)

p2.receive();

In the execution trace in Fig. 5.18a, Thread2 executes both receive events. Thus,
we can say with certainty that the value x received from Thread2 caused the
condition in Thread2’s if-statement to be evaluated to true. In the race variant
in Fig. 5.18b, we have changed the sending thread for Thread2’s first receive to
Thread3. The value Thread2 receives from Thread3 may or may not cause the
condition in Thread2’s if-statement to be evaluated to true. Since we generate
variants without examining the source code of the program, we can no longer be

Thread1 Thread2

send

Thread3

receive

sendreceive

Thread1 Thread2

send

Thread3

sendreceive

(a) (b)

Figure 5.18 Execution trace and a race variant.
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sure what will happen after Thread2’s first receive. Thus, to be safe, we remove
from the variant all events that happen after the changed receive event.

Another point about race analysis is that the variants of a trace depend on
the type of synchronization that is provided by the channels. For asynchronous
ports, there are several possible synchronization schemes. Figure 5.19a shows
a program that uses asynchronous ports. An execution trace of this program is
given in Fig. 5.19b. Assume that the ports used in the program of Fig. 5.19a are
the asynchronous ports implemented in Section 5.1. Note that Thread1’s send to
Thread3 definitely happens before Thread2’s send to Thread3 since Thread1 and
Thread2 synchronize in between sending their messages to Thread3. Based on
this “happened before” relation, the port implementation used in this chapter guar-
antees that Thread3 will receive the message sent by Thread1 before it receives
the message sent by Thread2. In general, if a message m1 is sent to thread T
before another message m2 is sent to T, message m1 is received by T before
m2 is received. This type of synchronization is called causal synchronization. If
causal synchronization is used, no race variants can be generated for the trace in
Fig. 5.19b. Formal definitions of the “happens before” relation and causality are
given in Chapter 6.

Causal synchronization is not always guaranteed. FIFO synchronization is
commonly used in distributed programs, which send messages across a com-
munications network. FIFO synchronization guarantees that messages sent from
one thread to another thread are received in the order in which they are sent.
Figure 5.19c shows a variant of the trace in Fig. 5.19b. This variant assumes that
FIFO synchronization is used, which allows Thread3 to receive messages from
Thread1 and Thread2 in the reverse order that they were sent. (FIFO synchro-
nization guarantees that Thread3 receives Thread1’s messages in the order that
Thread1 sends them, and that Thread3 receives Thread2’s messages in the order
that Thread2 sends them, but the first message Thread3 receives can be from
Thread1 or from Thread2.)

Distributed programming is discussed in Chapter 6. To prepare for Chapter 6,
we have implemented a special asynchronous channel port with FIFO synchro-
nization and support for reachability testing. These FIFO ports make it possible

Thread1 Thread2 Thread3

p3.send(m1);
p2.send(m2);

x = p2.receive();
p3.send(x);

y = p3.receive();
z = p3.receive();

Thread1 Thread2

s1

Thread3

r1

s3

r2s2

r3

Thread1 Thread2

s1

Thread3

r1

s3

r2s2
r3

(a)

(b) (c)

Figure 5.19 Execution trace and a variant for asynchronous ports with FIFO synchroniz-
ation.
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TABLE 5.1 Reachability Testing Results for
Message-Passing Programs

Program Config. No. Seqs.

BB-Select 3P + 3C + 2S 144
RW-Select 3R + 2W 768

to write programs that behave like distributed programs but run on a single com-
puter and so are easier to write and easier to debug. Writing such a program is
a good first step toward writing a real distributed program.

Table 5.1 shows the results of applying reachability testing to programs that
use message passing with selective waits. This table has the same format as that
of Tables 3.2 and Table 4.2. Program BB is the bounded buffer program in List-
ing 5.10. Program RW is the readers and writers program in Listing 5.11. Notice
that these programs, which use selective waits, generate far fewer sequences than
the corresponding bounded buffer and reader and writer programs in Chapters 3
and 4 that used semaphores and monitors. We say more about this in Chapter 7.

5.5.6 Putting It All Together

Next, we demonstrate how to use the channel classes to trace, test, and replay
Java and C++/Win32/Pthreads message-passing programs.

Using Java Channel Classes To test and debug executions of channel-based
Java programs, use the property mode to specify the function (tracing, replay,
feasibility, or reachability testing) to be performed. An execution of program
Buffer in Listing 5.20 is traced by setting the mode to trace:

–Dmode=trace

and then specifying whether the tracing strategy should be object- or thread-based:

–Dstrategy=object // collect object-based SR-sequences
–Dstrategy=thread // collect thread-based SR-sequences

and whether there should be a single Controller or multiple Controllers:

–Dcontrollers=single // single Controller thread
–Dcontrollers=multiple // multiple Controller threads

Using a single Controller results in a totally ordered (object- or thread-based)
SR-sequence. If multiple Controllers are used, the SR-sequence collected will be
partially ordered (one per thread or object). If the program contains a selective-
Wait, the tracing strategy must be thread-based and mailboxes cannot be used in
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the selectiveWait. When a thread-based strategy is used, the owner of each link,
port, mailbox, or entry P must be indicated by calling P.setOwner(T), where
thread T is the owner of port P. An example of this is shown in the main()
method in Listing 5.20.

The command

java –Dmode=trace –Dstrategy=thread –Dcontrollers=single Buffer

creates several trace files for Buffer. The file channel-replay.txt contains a totally
ordered simple SR-sequence of the execution, and the file channel-test.txt contains
a totally ordered complete SR-sequence. The command

java –Dmode=trace –Dstrategy=thread –Dcontrollers=multiple Buffer

creates files that contain a separate simple SR-sequence and complete SR-sequence
for each of the Producer, Consumer, and boundedBuffer threads.

Random delays are executed during trace mode by setting –DrandomDelay =
on . When on is specified, random delays are executed before each send() and
receive(). To turn random delays off, use off ; this is also the default value. The
value of property randomDelay is ignored during replay and test modes. The
deadlock detection method described in Section 3.8.4 has also been implemented
in the channel classes. To turn deadlock detection on during tracing, specify
–DdeadlockDetection = on . To turn deadlock detection off, use off ; this is also
the default value.

A simple SR-sequence is replayed by specifying replay mode and using the
same values for the strategy and controllers that were used during tracing:

java –Dmode=replay –Dstrategy=thread –Dcontrollers=single Buffer

As in Chapters 3 and 4, reachability testing is performed on Buffer by setting
the mode property to rt and executing a driver process named RTDriver with
“Buffer” as the command-line argument:

java –Dmode=rt RTDriver Buffer

The feasibility of an SR-sequence is determined in test mode:

java –Dmode=test –Dstrategy=thread –Dcontrollers=single Buffer

If the mode is not specified, the default value for the mode property will turn
tracing, replay, and testing off.

The default value for the strategy property is object and the default value for
the controllers property is single.

Using the C++ Channel Classes To test and debug executions of channel-based
C++/Win32/Pthreads programs, use environment variable MODE to specify the
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function (tracing, replay, feasibility, or reachability testing) to be performed. In
Windows, an execution of a C++ version of program Buffer in Listing 5.20 is
traced by executing the command

set MODE=TRACE // Unix: setenv MODE TRACE

and then specifying whether the tracing strategy should be object- or thread-based:

set STRATEGY=OBJECT // collect object-based SR-sequences;
// Unix: setenv STRATEGY OBJECT
set STRATEGY=THREAD // collect thread-based SR-sequences;
// Unix: setenv STRATEGY THREAD

and whether there should be a single Controller or multiple Controllers:

set CONTROLLERS=SINGLE // single Controller thread;
// Unix: setenv CONTROLLERS SINGLE
set CONTROLLERS=MULTIPLE // multiple Controller threads;
// Unix: setenv CONTROLLERS MULTIPLE

Using a single Controller results in a totally ordered (object- or thread-based)
SR-sequence. If multiple Controllers are used, the collected SR-sequence will be
partially ordered (one per thread or object). If the program contains a selective-
Wait, the tracing strategy must be thread-based. When a thread-based strategy
is used, the owner of each link, port, or entry P must be indicated by calling
P.setOwner(T), where thread T is the owner of port P. An example of this is
shown in the main() method in Listing 5.20.

Tracing an execution with a THREAD strategy and a SINGLE controller
creates several trace files for Buffer. The file channel-replay.txt contains a totally
ordered simple SR-sequence of the execution, and the file channel-test.txt contains
a totally ordered complete SR-sequence. Using MULTIPLE controllers creates
files that contain a separate simple SR-sequence and complete SR-sequence for
each of the Producer, Consumer, and boundedBuffer threads.

Random delays can be executed during trace mode using “set RANDOMDE-
LAY=ON.” When ON is specified, random delays are executed before each send()
and receive(). To turn random delays off, use OFF; this is also the default value.
The value of variable RANDOMDELAY is ignored during replay and test modes.
The deadlock detection method described in Section 3.8.4 has also been imple-
mented in the channel classes. To turn deadlock detection on during tracing or
reachability testing, execute “set DEADLOCKDETECTION=ON.” To turn dead-
lock detection off, use OFF; this is also the default value. A simple SR-sequence is
replayed by executing “set MODE=REPLAY” and using the same values for the
STRATEGY and the CONTROLLERS variables that were used during tracing.

As in Chapter 3, reachability testing is performed on Buffer by setting the
MODE to RT and customizing the driver process in file RTDriver.cpp. This
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publicfinal class Buffer {
public static void main (String args[]) {

selectableEntry deposit = new selectableEntry();
selectableEntry withdraw = new selectableEntry();
boundedBuffer b = new boundedBuffer(deposit,withdraw,3);
Producer pl = new Producer (deposit, 1);
Consumer cl = new Consumer (withdraw, 1);
deposit.setOwner(b); withdraw.setOwner(b);
b.setDaemon(true);
b.start(); cl.start(); pl.start();
try{cl.join(); pl.join();}
catch (InterruptedException e) {System.exit(1);}

}
}
final class Producer extends TDThread {

private selectableEntry deposit;
private int num;
Producer (selectableEntry deposit, int num) {

this.deposit = deposit;this.num = num;}
public void run () {

System.out.println ("Producer Running");
for (int i = 0; i < 3; i++) {

try {
System.out.println ("Producer calling deposit.");
deposit.call(new Integer(i));

}
catch(InterruptedException e) {}
System.out.println ("Producer # " + num + "deposited " + i);

}
}

}
final class Consumer extends TDThread {

private selectableEntry withdraw;
private int num;
Consumer (selectableEntry withdraw, int num) {

this.withdraw = withdraw; this.num = num;}
public void run () {

Object value = null;
System.out.println ("Consumer running");
for (int i = 0; i < 3; i++) {

try {
System.out.println ("Consumer calling withdraw.");
value = withdraw.call();

}
catch (InterruptedException e) {}
System.out.println ("Consumer # " + num + "withdrew " +

Listing 5.20 Bounded buffer using entries and a selectiveWait .
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((Integer)value).intValue()); // + value);
}

}
}
final class boundedBuffer extends TDThread {

private selectableEntry deposit, withdraw;
private int fullSlots=0; private int capacity = 0;
private Object[] buffer = null; private int in = 0, out = 0;
public boundedBuffer(selectableEntry deposit, selectableEntry withdraw,

int capacity) {
this.deposit = deposit; this.withdraw = withdraw;
this.capacity = capacity;
buffer = new Object[capacity];

}
public void run() {

System.out.println ("Buffer running");
try {

selectiveWait select = new selectiveWait();
select.add(deposit); // alternative 1
select.add(withdraw); // alternative 2
while(true) {

withdraw.guard(fullSlots>0);
deposit.guard (fullSlots<capacity);
int choice = select.choose();
switch (choice) {

case 1: Object o = deposit.accept();
buffer[in] = o;
deposit.reply();
in = (in + 1) % capacity;
++fullSlots;
break;

case 2: withdraw.accept();
Object value = buffer[out];
withdraw.reply(value);
out = (out + 1) % capacity;
--fullSlots;
break;

}
}

} catch (InterruptedException e) {}
catch (SelectException e) {

System.out.println("deadlock detected");System.exit(1);
}

}
}

Listing 5.20 (continued )



304 MESSAGE PASSING

file is part of the synchronization library. Directions for customizing the driver
process are in the file. The feasibility of an SR-sequence is determined in TEST
mode: set MODE TEST. If the mode is not specified, the default value for the
MODE variable will turn tracing, replay, and testing off. The default value for the
STRATEGY variable is OBJECT and the default value for the CONTROLLERS
variable is SINGLE.

FURTHER READING

The entry and selectiveWait classes were developed by Magee and Kramer
[1999]. More message-passing classes may be found in Hartley’s book [Hart-
ley 1998]. Entries, rendezvous, and selective wait statements are part of the Ada
language [Ada Language Reference Manual 1983]. The testing and debugging
techniques presented in Section 5.5 were originally developed for concurrent
Ada programs [Tai 1985a,b; Tai et al. 1991].
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EXERCISES

5.1. In Exercise 4.14 we asked you to write a monitor implementation of a Win32
Event object. Event objects have operations block() and set(). A call to block
always blocks the caller. A call to set() awakens every thread that has called
block() since the last time set() was called. Here you are asked to write
implementations of operations block() and set() using selectablePorts and a
selective wait statement. Declare and initialize any variables that you use.
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5.2. In Exercise 3.11 you were asked to write a semaphore implementation of
operation waitB() in class Barrier. Here you are asked to write an implemen-
tation using send() and receive() operations and a selective wait statement.
Threads call B.waitB() to wait at Barrier B:

class Barrier extends Thread {
public Barrier(int n) {this.n = n;}
public void waitB() {arrive.send(); block.send(); }
public void run() { /* receive calls to ports arrive and block */ }
private selectablePort arrive = new selectablePort();
private selectablePort block = new selectablePort();

}

Inside method waitB(), a call to arrive.send() signals a thread’s arrival
at the barrier. The call to block.send() blocks the threads until all n threads
have arrived at the barrier. Assume that the message queues for ports are
FCFS. Implement method run() using a selective wait statement.

5.3. In Exercise 4.8 you were asked to write a monitor implementation of the
unisex bathroom problem. Here you are asked to write an implementation
using send() and receive() operations on selectablePorts.

(a) Implement the strategy in Exercise 4.8, part (a).
(b) Implement the strategy in Exercise 4.8, part (b).

Your implementation should complete the run() method below. Provide
expressions for the guards, and implement the body for each of the four
cases. Remember that a call to E.count() returns the number of messages
that are waiting to be received for port E.

public void run() {
try {

selectiveWait select = new selectiveWait();
select.add(menEnter); // alternative 1
select.add(menExit); // alternative 2
select.add(womenEnter); // alternative 3
select.add(womenExit); // alternative 4
while(true) {

menEnter.guard(/* TBD */);
menExit.guard(/* TBD */);
womenEnter.guard(/* TBD */);
womenExit.guard(/* TBD */);
int choice = select.choose();
switch (choice) {

case 1: menEnter.receive(); /* ...; TBD; ...; */ break;
case 2: menExit.receive(); /* ...; TBD; ...;*/ break;
case 3: womenEnter.receive(); /* ...; TBD; ...; */ break;
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case 4: womenExit.receive(); /* ...; TBD; ...; */ break;
}

}
} catch (InterruptedException e) {}

}

5.4. The bear and the honeybees (see Exercise 3.13). Solve this problem using
selectablePorts and a selective wait statement. The bear calls port eat to eat
the honey. The bees call port fillPot. Your implementation should complete
the run() method below. Provide expressions for the guards, and implement
the body for both cases.

public void run() {
try {

selectiveWait select = new selectiveWait();
select.add(eat); // alternative 1
select.add(fillPot); // alternative 2
while(true) {

eat.guard(/* TBD */);
fillPot.guard(/* TBD */);
int choice = select.choose();
switch (choice) {

case 1: eat.receive(); /* ...; TBD; ...; */ break;
case 2: fillPot.receive(); /* ...; TBD; ...;*/ break;

}
}

} catch (InterruptedException e) {}
}

5.5. This exercise compares if-else statements and selective wait statements.

(a) Consider the following if-else statement:

if (condition) // this can be any condition (e.g., A > 0)
E1.receive();

else
E2.receive();

Show how to simulate this if-else statement by using a selectiveWait.
If you cannot write an exact simulation, explain why.

(b) Consider the following if-else statement:

if (condition) // this can be any condition (e.g., A > 0)
E1.receive();
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Show how to simulate this if-statement by using a selectiveWait. If you
cannot write an exact simulation, explain why.

5.6. An else alternative of a selective wait is selected if (1) there are no other
open alternatives (i.e., no alternatives with a true guard), or (2) at least one
open alternative exists, but no messages are waiting for the open alterna-
tives. Assume that the other alternatives are accept alternatives for ports
E1, E2, . . . , En. Is (2) equivalent to the following condition? If not, try to
correct this condition:

(!E1.guard() || E1.Count()==0) && (!E2.guard() || E2.Count()==0) && ...
&& (!En.guard() || En.Count()==0)

5.7. An implementation of readers and writers strategy R>W.1 is given below.
Modify this implementation of R>W.1 to implement the following three
strategies:

(a) R<W.1: Many readers or one writer, with writers having a higher pri-
ority.

(b) R<W.2: Same as R<W.1, except that when a writer requests to write,
if no writer is writing or waiting, it waits until all readers that issued
earlier requests have finished reading.

(c) R<W.3: Same as R<W.1 except that at the end of writing, waiting
readers have a higher priority than waiting writers (see Exercise 4.9).

Strategies R<W.1 and R<W.2 differ as follows. Assume that when writer
W1 arrives, reader R1 is reading and another reader, R2, has requested to
read but has not started reading. R<W.1 lets W1 start before R2, while
R<W.2 lets W1 start after R2. For R<W.1 and R<W.2, readers starve if
before a writer finishes writing, the next writer requests to write.

In strategy R<W.3, at the end of a writing, waiting readers have higher
priority than waiting writers. Note that waiting readers are readers that have
already requested to read and are waiting when the write completes, not
readers who request to read after the write completes. This strategy does
not create starving readers or writers. A waiting writer does not starve since
the number of readers allowed to proceed at the end of each write is finite.
A waiting reader does not starve since it will be allowed to proceed before
the writers that request to write after this reader.

The R>W.1 implementation contains a timestamp that you can use in
strategies R<W.2 and R<W.3 to order the requests (i.e., determine whether
a request was issued earlier or later than another request).

import java.util.*;
final class requestMessage {

public requestMessage(int ID, boolean isRead) {this.ID = ID;
this.isRead = isRead;}

public int ID; // ID of reader (0,1,2) or writer (0,1)
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public boolean isRead; // true if requesting to read
int timeStamp; // value of clock when request is made

}
public final class readersAndWriters {

public static void main (String args[]) {
Controller c = new Controller();
Reader r0 = new Reader (c,0); Reader r1 = new Reader (c,1);
Reader r2 = new Reader (c,2);
Writer w0 = new Writer (c,0); Writer w1 = new Writer (c,1);
c.setDaemon(true); c.start();
w0.start(); w1.start(); r0.start(); r1.start(); r2.start();
try{r0.join(); r1.join(); r2.join(); w0.join(); w1.join();}
catch (InterruptedException e) {System.exit(1);}

}
}
final class Reader extends Thread {

private int num;private Controller c;
Reader (Controller c, int num) { this.c = c;this.num = num;}
public void run () {

try {
// random returns value between 0 and 1 using time of day as seed
Thread.sleep((long)(Math.random()*1000)); // sleep 0...1 second

} catch (InterruptedException e) {}
int value = c.read(num);

}
}
final classWriter extends Thread {

private int num; private Controller c;
Writer (Controller c, int num) {this.c = c; this.num = num; }
public void run () {

try {
// random returns value between 0 and 1 using time of day as seed
Thread.sleep((long)(Math.random()*1000)); //sleep 0...1 second

} catch (InterruptedException e) {}
c.write(num);

}
}
final class Controller extends Thread {
// Strategy R>W.1 : Many readers or one writer, with readers having a
// higher priority

final int numReaders = 3; final int numWriters = 2;
private selectableEntry request = new selectableEntry();
// reader i calls entry startRead[i]
private selectableEntry[] startRead = new selectableEntry[numReaders];
private selectableEntry endRead = new selectableEntry();
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// writer i calls entry startWrite[i]
private selectableEntry[] startWrite = new selectableEntry[numWriters];
private selectableEntry endWrite = new selectableEntry();
private boolean writerPresent = false;
private int readerCount = 0; private int sharedValue = 0;
private ArrayList readersQueue = new ArrayList(); // queue of reader IDs
private ArrayList writersQueue = new ArrayList(); // queue of writer IDs
private int clock = 1;
public Controller() {
for (int i = 0; i<numReaders; i++) startRead[i] = new selectableEntry();
for (int i = 0; i<numWriters; i++) startWrite[i] = new selectableEntry();
}
public int read(int ID) {

requestMessage req = new requestMessage(ID,true);
try {request.call(req);} catch(InterruptedException e) {}
try {startRead[ID].call();} catch(InterruptedException e) {}
int value = ID;
System.out.println ("Reader #" + ID + "Read " + value);
try {endRead.call();} catch(InterruptedException e) {}
return value;

}
public void write(int ID) {

requestMessage req = new requestMessage(ID,false);
try {request.call(req);} catch(InterruptedException e) {}
try {startWrite[ID].call();} catch(InterruptedException e) {}
sharedValue = ID;
System.out.println ("Writer #" + ID + "Wrote " + ID);
try {endWrite.call();} catch(InterruptedException e) {}

}
publicvoid run() {

try {
selectiveWait select = new selectiveWait();
select.add(request); // alternative 1
select.add(startRead[0]); // alternative 2
select.add(startRead[1]); // alternative 3
select.add(startRead[2]); // alternative 4
select.add(endRead); // alternative 5
select.add(startWrite[0]); // alternative 6
select.add(startWrite[1]); // alternative 7
select.add(endWrite); // alternative 8
while(true) {

request.guard(true);
// startRead if no writers writing and this reader is at head of the
// readersQueue
startRead[0].guard(!writerPresent && readersQueue.size() >
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0 && ((requestMessage)readersQueue.get(0)).ID==0);
startRead[1].guard(!writerPresent && readersQueue.size() >

0 && ((requestMessage)readersQueue.get(0)).ID==1);
startRead[2].guard(!writerPresent && readersQueue.size() >

0 && ((requestMessage)readersQueue.get(0)).ID==2);
endRead.guard(true);
// startWrite if no readers reading or requesting and this
// writer is at head of the writersQueue
startWrite[0].guard(!writerPresent && readerCount == 0 &&

readersQueue.size() == 0
&& writersQueue.size() > 0 && ((requestMessage)

writersQueue.get(0)).ID==0);
startWrite[1].guard(!writerPresent && readerCount == 0 &&

readersQueue.size() == 0
&& writersQueue.size() > 0 && ((requestMessage)

writersQueue.get(0)).ID==1);
endWrite.guard(true);
int choice = select.choose();
switch (choice) {

case 1: requestMessage req = (requestMessage)request.
acceptAndReply();

// Note: timeStamps are not used in R>W.1
req.timeStamp = clock++; // save arrival time
if (req.isRead ) // true when it’s a read request

readersQueue.add(req);
else writersQueue.add(req);
break;

case 2: startRead[0].acceptAndReply(); ++readerCount;
readersQueue.remove(0); break;

case 3: startRead[1].acceptAndReply(); ++readerCount;
readersQueue.remove(0); break;

case 4: startRead[2].acceptAndReply(); ++readerCount;
readersQueue.remove(0); break;

case 5: endRead.acceptAndReply(); --readerCount; break;
case 6: startWrite[0].acceptAndReply(); writerPresent = true;

writersQueue.remove(0); break;
case 7: startWrite[1].acceptAndReply(); writerPresent = true;

writersQueue.remove(0); break;
case 8: endWrite.acceptAndReply(); writerPresent = false;

break;
}

}
} catch (InterruptedException e) {}

}
}
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5.8. In Section 5.5.2 we say that if program CP uses only links for communica-
tion and no selective wait statements, there is no nondeterminism that needs
to be controlled during replay. But the implementation of class link uses P()
and V() operations on semaphores. Chapter 3 describes a replay method for
semaphores. Why is it that the P() and V() operations in the link class do
not need to be controlled during replay?



6
MESSAGE PASSING IN DISTRIBUTED
PROGRAMS

A distributed program is a collection of concurrent processes that run on a
network of computers. Typically, each process is a multithreaded program that
executes on a single computer. A process (or program) on one computer com-
municates with processes on other computers by passing messages across the
network. The threads in a single process all execute on the same computer, so
they can use message passing and/or shared variables to communicate.

In this chapter we examine low- and high-level mechanisms for message pass-
ing in distributed programs. Since Java provides a class library for network
programming, we focus on Java. We also design our own Java message-passing
classes and use them to develop distributed solutions to several classical syn-
chronization problems. Entire books have been written about distributed pro-
gramming, so this chapter is only a small introduction to a large topic. However,
we hope to shed some new light on ways to trace, test, and replay distributed
programs.

6.1 TCP SOCKETS

The channel objects in Chapter 5 were regular program objects shared by the
threads in a single program. In this chapter we are working with a collection
of programs that run on different machines. Since a program on one machine
cannot directly reference objects in programs on other machines, channels can

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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network
SocketSocket

Machine 1 Machine 2

Figure 6.1 Sockets are the endpoints of channels across a network.

no longer be implemented as regular program objects. Instead, channels will be
formed across a communications network, with help from the operating system.

When two threads want to exchange messages over a channel, each thread
creates an endpoint object that represents its end of the network channel. The
operating system manages the hardware and software that is used to transport
messages between the endpoints (i.e., “across the channel”). These endpoint
objects are called sockets (Fig. 6.1):

ž The client thread’s socket specifies a local I/O port to be used for sending
messages (or the I/O port can be chosen by the operating system). The
client’s socket also specifies the address of the destination machine and the
port number that is expected to be bound to the server thread’s socket.

ž The server’s socket specifies a local I/O port for receiving messages. Mes-
sages can be received from any client that knows both the server’s machine
address and the port number bound to the server’s socket.

ž The client issues a request to the server to form a connection between the
two sockets. Once the server accepts the connection request, messages can
be passed in either direction across the channel.

6.1.1 Channel Reliability

Messages that travel across a network may be lost or corrupted, or they may
arrive out of order. Some applications may be able to tolerate this. For example,
if the data being sent across the network represents music, losing a message may
create only a slight distortion in the sound. This might sound better to the listener
than a pause in the music while lost messages are resent.

An application can choose how reliably its messages are transmitted by select-
ing a transport protocol:

ž Transmission Control Protocol (TCP) ensures the reliable transmission of
messages. TCP guarantees that messages are not lost or corrupted and that
messages are delivered in the correct order. However, this adds some over-
head to message transport.

ž User Data Protocol (UDP) is a fast but unreliable method for transporting
messages. Messages sent using UDP will not be corrupted, but they may be
lost or duplicated, and they may arrive in an order different from the order
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in which they were sent. If this is not acceptable, the application must take
care of error handling itself, or use TCP instead.

Both TCP and UDP utilize the Internet Protocol (IP) to carry packets of data.
The IP standard defines the packet format, which includes formats for specifying
source and destination addresses and I/O ports.

6.1.2 TCP Sockets in Java

The java.net class library provides classes Socket and ServerSocket for TCP-
based message passing.

Class Socket We will use a simple client and server example to illustrate the
use of TCP sockets in Java. A client’s first step is to create a TCP socket and
try to connect to the server:

InetAddress host; // server’s machine address
int serverPort = 2020; // port number bound to

// server’s socket
Socket socket; // client’s socket
try {host = InetAddress.getByName(‘‘www.cs.gmu.edu’’); }
catch (UnknownHostException) { ... }
try {socket = new Socket(host,serverPort); } // create a socket and

// request a connection to host
catch (IOException e) { ... }

The client assumes that the server is listening for TCP connection requests on
port serverPort. The Socket constructor throws an IOException if it cannot make
a connection.

When the client’s request is accepted, the client creates an input stream to
receive data from its socket and an output stream to send data to the socket
at the server’s end of the channel. To the programmer, sending and receiving
messages using TCP sockets looks just like reading and writing data from files:

PrintWriter toServer = new PrintWriter(socket.getOutputStream(),true);
BufferedReader fromServer = new BufferedReader(new inputStreamReader

(socket.getInputStream()));
toServer.println("Hello"); // send a message to the

// server
String line = fromServer.readLine(); // receive the server’s reply
System.out.println ("Client received: "+ line + ‘‘ from Server’’);
toServer.close(); fromServer.close(); socket.close();

A read operation on the InputStream associated with a Socket normally blocks.
It is possible to set a timeout so that a read operation will not block for more
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than a specified number of milliseconds. To set a 1-second timeout, call the
setSoTimeout() method:

socket.setSoTimeout(1000); // set a 1-second timeout

When the timeout expires, a java.net.SocketTimeoutException is raised and the
Socket is still valid.

Class ServerSocket The server begins by creating a ServerSocket :

int serverPort = 2020;
ServerSocket listen;
try { listen = new ServerSocket(serverPort); }
catch (IOException e) { ... }

The server then calls the accept() method of the ServerSocket in order to listen
for connection requests from clients. Method accept() waits until a client requests
a connection; then it returns a Socket that connects the client to the server. The
server then gets input and output streams from the Socket and uses them to
communicate with the client. When the interaction ends, the client, server, or
both, close the connection, and the server waits for a connection request from
another client.

try {
listen = new ServerSocket(serverPort);
while (true) {

Socket socket = listen.accept(); // wait for a connection request
// from a client

toClient = new PrintWriter(socket.getOutputStream(),true);
fromClient = new BufferedReader(new InputStreamReader(socket.

getInputStream()));
String line = fromClient.readLine(); // receive a message from the client
System.out.println("Server received "+ line);
toClient.println("Good-bye"); // send a reply to the client

}
}
catch (IOException e) { ... }
finally { if (listen != null) try { listen.close();} catch (IOException e)

{ e.printStackTrace(); }}

If the client–server interaction is not short, the server can create a separate
thread to handle the client’s requests. Here we construct a clientHandler Thread
to handle the socket returned by method accept():

Socket socket = listen.accept();
clientHandler c = new clientHandler(socket); // class clientHandler extends Thread
c.start();
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The run() method of class clientHandler uses input and output streams obtained
from the Socket to communicate with the client, exactly as shown above.

Listing 6.2 shows a client and server program using TCP sockets. Message
objects are serialized and passed between the client and the server. If the client
sends a Message containing the integer n, the server replies with a message
containing n2. For example, if the client program is executed using “java Client
2,” the client will send the value 2 to the server, receive the value 4 from the
server, and display the message “2 × 2 = 4.”

import java.net.*;
import java.io.*;
public final class Client {

public static void main (String args[]) {
int serverPort = 2020; Socket socket = null;
ObjectOutputStream toServer = null; ObjectInputStream fromServer=null;
try {

if (args.length != 1) {
System.out.println("need 1 argument"); System.exit(1);

}
int number = Integer.parseInt(args[0]);
// client and server run on the same machine, known as the Local Host
InetAddress serverHost = InetAddress.getLocalHost();
socket = new Socket(serverHost,serverPort);
// send a value to the server
toServer = new ObjectOutputStream(new BufferedOutputStream

(socket.getOutputStream()));
Message msgToSend = new Message(number);
toServer.writeObject(msgToSend); toServer.flush();
// This will block until the corresponding ObjectOutputStream in the
// server has written an object and flushed the header.
fromServer = new ObjectInputStream(new
BufferedInputStream(socket.getInputStream()));
Message msgFromReply = (Message) fromServer.readObject();
System.out.println (number + "x "+ number + "= "+

msgFromReply.number);
}
catch (IOException e) { e.printStackTrace(); System.exit(1); }
catch (ClassNotFoundException e) {e.printStackTrace(); System.exit(1); }
finally { if (socket != null) try { socket.close();} catch (IOException e) {

e.printStackTrace(); }}
}

}
public final class Server {

Listing 6.2 Client and server using TCP sockets.
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public static void main (String args[]) {
int serverPort = 2020; ServerSocket listen=null;
ObjectOutputStream toClient; ObjectInputStream fromClient;
try {

listen = new ServerSocket(serverPort);
while (true) {
Socket socket = listen.accept();
toClient = new ObjectOutputStream(new BufferedOutputStream
(socket.getOutputStream()));
// This will block until the corresponding ObjectOutputStream in the
// client has written an object and flushed the header.
fromClient = new ObjectInputStream(new BufferedInputStream
(socket.getInputStream()));
Message msgRequest = (Message) fromClient.readObject();
// compute a reply and send it back to the client
int number = msgRequest.number;
toClient.writeObject(new Message(number*number));
toClient.flush();
}

}
catch (IOException e) {e.printStackTrace(); System.exit(1); }
catch (ClassNotFoundException e) {e.printStackTrace(); System.exit(1); }
finally { if (listen != null) try { listen.close();} catch (IOException e) {

e.printStackTrace(); }}
}

}
public final class Message implements Serializable {

public int number;
Message(int number) {this.number = number; }

}

Listing 6.2 (continued )

6.2 JAVA TCP CHANNEL CLASSES

We have created three pairs of channel classes for TCP-based communication.
These classes provide asynchronous and synchronous message passing and can
be used with the selective wait statement presented in Chapter 5. There are many
possible ways to design a set of channel classes. Our main objective was to create
some easy-to-use classes that hid the complexity of using TCP and enabled us
to illustrate how deterministic testing and debugging techniques can be used in a
distributed environment. We also tried to be consistent with the channel classes in
Chapter 5 so that much of what we covered there would carry over to this chapter.
As such, our classes are not built on a client–server paradigm. Instead, they are
based on the notion of a mailbox that holds messages deposited by senders and
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withdrawn by receivers. Channel classes for client–server interactions are left as
an exercise (Exercise 6.9).

6.2.1 Classes TCPSender and TCPMailbox

The first pair of channel classes consists of classes TCPSender and TCPMailbox.
Classes TCPSender and TCPMailbox provide asynchronous message passing
using a buffer-blocking send() method and a blocking receive() method, respec-
tively. Listing 6.3 illustrates the use of these classes in a distributed solution
to the bounded-buffer problem. Program Producer creates a TCPSender object
named deposit for sending items to program Buffer. Program Buffer creates a
TCPMailbox object named deposit for receiving items from the Producer, and a
TCPSender object named withdraw for sending items to the Consumer. Program
Buffer acts as a one-slot bounded buffer, receiving items from the Producer and
forwarding them to the Consumer. Program Consumer has a TCPMailbox object
named withdraw to receive the messages sent by Buffer.

import java.net.*;
import java.io.*;
public final class Producer {

public static void main (String args[]) {
final int bufferPort = 2020; String bufferHost = null;
try {

bufferHost = InetAddress.getLocalHost().getHostName();
TCPSender deposit = new TCPSender(bufferHost,bufferPort);
deposit.connect();
for (int i=0; i<3; i++) {

System.out.println("Producing"+ i);
messageParts msg = new messageParts(new Message(i));
deposit.send(msg);

}
deposit.close();

}
catch (UnknownHostException e) {e.printStackTrace();}
catch (TCPChannelException e) {e.printStackTrace();}

}
}
public final class Buffer {

public static void main (String args[]) {
final int bufferPort = 2020; final int consumerPort = 2022;
try {

String consumerHost = InetAddress.getLocalHost().getHostName();
TCPMailbox deposit = new TCPMailbox(bufferPort,"deposit");
TCPSender withdraw = new TCPSender(consumerHost,consumerPort);

Listing 6.3 Distributed bounded buffer using TCPSender and TCPMailbox.
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withdraw.connect();
for (int i=0; i<3; i++) {

messageParts m = (messageParts) deposit.receive();
withdraw.send(m);

}
withdraw.close(); deposit.close();

}
catch (UnknownHostException e) {e.printStackTrace();}
catch (TCPChannelException e) {e.printStackTrace();}

}
}
public final class Consumer {

public static void main (String args[]) {
final int consumerPort = 2022;
try {

TCPMailbox withdraw = new TCPMailbox(consumerPort,"withdraw");
for (int i=0; i<3; i++) {

messageParts m = (messageParts) withdraw.receive();
Message msg = (Message) m.obj;
System.out.println("Consumed "+ msg.number);

}
withdraw.close();

}
catch (TCPChannelException e) {e.printStackTrace();}

}
}
public final class messageParts implements Serializable {

public Object obj; // message to be sent
public String host; // host address of the sender
public int port; // port where sender will wait for a reply, if any
messageParts(Object obj, String host, int port) {

this.obj = obj; this.host = host; this.port = port;
}
// no return address
messageParts(Object obj) {this.obj = obj; this.host = ""; this.port = 0;}

}

Listing 6.3 (continued )

Method connect() must be called before a TCPSender can be used to send
messages. A call to connect() opens a TCP connection using the host and port
number specified when the TCPSender object is constructed. When there are
no more messages to send, method close() is called and the TCP connection is
closed. Methods send() and receive() both operate on messageParts objects. A
messageParts object packages the message to be sent with the return address
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of the sender. (The return address is optional.) The return address information
includes the sender’s host address and a port number that the sender will use to
wait for a reply. A thread that calls receive() receives a messageParts object. The
return address in this object can be saved and used later to reply to the sender. If
no return address is needed, a messageParts object can be constructed without a
return address.

Listing 6.4 shows classes TCPSender and TCPMailbox. Class TCPSender pro-
vides method send(), which simply encapsulates the code for sending messages
using TCP. A TCPSender object is used to send messages to a particular TCP-
Mailbox. The host address and port number of the destination TCPMailbox are
specified when the TCPSender object is constructed. Method connect() is used to
connect the TCPSender to the TCPMailbox. Once the connection is made, each
call to send() uses the same connection. The connection is closed with a call to
method close().

A single TCPMailbox object may receive connection requests from any
number of TCPSenders. A TCPMailbox objects begins listening for connection
requests when the TCPMailbox object is constructed. If multiple TCPSenders
connect to the same TCPMailbox, the connections are handled concurrently.
When method close() is called on a TCPMailbox object, it stops listening for
new connection requests. (This is not to be confused with a call to method close()
on a TCPSender object, which closes the TCPSender object’s connection with
its TCPMailbox.)

Method receive() of class TCPMailbox returns a messageParts object. The
messageParts object returned by receive() is withdrawn from a messageBuffer
called buffer. A messageBuffer is simply a bounded buffer of messagePart
objects implemented as an SU monitor (see Listing 6.4). The interesting thing
about TCPMailbox is the way in which messagePart objects are deposited into
buffer. A TCPMailbox object is an active object —during construction it auto-
matically starts an internal thread to receive messages:

public class TCPMailbox implements Runnable {
...
public TCPMailbox( int port, String channelName ) throws

TCPChannelException {
this.port = port;
this.channelName = channelName;
try {listen = new ServerSocket( port ); }
catch (IOException e) { e.printStackTrace(); throw new

TCPChannelException(e.getMessage());}
buffer = new messageBuffer(100);
Thread internal = new Thread(this);
internal.start(); // internal thread executes method run()

}
...

}
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import java.net.*;
import java.io.*;
import java.util.*;
public class TCPSender {

String destinationHostname = null; // destination host of this channel
int destinationPort; // destination port of this channel
Socket socket = null;
ObjectOutputStream to = null;
Object lock = new Object();
public TCPSender(String destinationHostname, int destinationPort ) {

this.destinationHostname = destinationHostname;
this.destinationPort = destinationPort;

}
public void connect() throws TCPChannelException {

try {
socket = new Socket( destinationHostname, destinationPort );
to = new ObjectOutputStream(socket.getOutputStream());

} catch (Exception e) { e.printStackTrace(); throw new
TCPChannelException(e.getMessage());}

}

public void send( messageParts message) throws TCPChannelException{
try {synchronized (lock) {to.writeObject(message); to.flush();}}
catch (NullPointerException e) {

e.printStackTrace();
throw new TCPChannelException

("null stream - call connect() before sending messages");
}
catch (Exception e) { e.printStackTrace(); throw new

TCPChannelException (e.getMessage());}
}
public void send( ) throws TCPChannelException{

send(new messageParts(new nullObject())); }
public void close() throws TCPChannelException {

try {
if (to != null) to.close(); if (socket != null) socket.close();

} catch (Exception e) { e.printStackTrace(); throw new
TCPChannelException(e.getMessage());}

}
}
public class TCPMailbox implements Runnable {

private ServerSocket listen = null;
private messageBuffer buffer = null;
Socket socket = null;
int port;

Listing 6.4 Classes TCPSender and TCPMailbox.
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String channelName = "";
ObjectInputStream from = null;
private boolean closed = false;
Object lock = new Object();
public TCPMailbox( int port) throws TCPChannelException {this(port,"");}
public TCPMailbox( int port, String channelName ) throws

TCPChannelException {
this.port = port;
this.channelName = channelName;
try {listen = new ServerSocket( port ); }
catch (IOException e) { e.printStackTrace(); throw new

TCPChannelException(e.getMessage());}
buffer = new messageBuffer(100);
Thread internal = new Thread(this);
internal.start(); // internal thread executes method run()

}
public messageParts receive( ) throws TCPChannelException {

try {
synchronized(lock) {

messageParts msg = buffer.withdraw();
return msg;

} // end synchronized lock
} catch (Exception e) {e.printStackTrace(); throw new

TCPChannelException(e.getMessage());}
}
public synchronized void close() throws TCPChannelException {

try {if (listen != null) {closed = true;listen.close();}}
catch (Exception e) {e.printStackTrace(); throw new

TCPChannelException(e.getMessage());}
}

public void run() {
try {

while (true) {
// listen for connection requests from senders
Socket socket = listen.accept();
(new connectionHandler(socket)).start();

}
}
catch (SocketException e) { if (!closed) e.printStackTrace(); }
catch (Exception e) {e.printStackTrace();}
finally {

try { if (listen != null) listen.close(); }
catch (IOException e2) { e2.printStackTrace(); }

}
}

Listing 6.4 (continued )
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class connectionHandler extends Thread { //handle client connections
private ObjectInputStream from;
private Socket socket;
connectionHandler(Socket socket) throws IOException {

this.socket = socket;
from = new ObjectInputStream(socket.getInputStream());

}

public void run() {
try { // run

messageParts closeMessage = null;
while (true) { // read objects until get EOF

messageParts msg = null;
try {

msg = (messageParts) from.readObject(); // read message
buffer.deposit(msg);

}
catch (EOFException e) {break; } // end catch

} // end while true
// issue passive close (after active close by sender)
from.close(); socket.close();

} // end try run
catch (SocketException e) { if (!closed) e.printStackTrace(); }
catch (Exception e) {e.printStackTrace();}
finally {

try { if (from != null) from.close(); }
catch (IOException e2) { e2.printStackTrace(); }
try { if (socket != null) socket.close(); }
catch (IOException e3) { e3.printStackTrace(); }

}
} // run

} // connectionHandler
}

class messageBuffer extends monitor { // SU monitor
private int fullSlots = 0; // # of full slots in the buffer
private int capacity = 0;
private conditionVariable notFull = new conditionVariable();
private conditionVariable notEmpty = new conditionVariable();
private LinkedList buffer;
public messageBuffer( int capacity ) {

this.capacity = capacity;
buffer = new LinkedList();

Listing 6.4 (continued )
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}
public void deposit( messageParts msg ) {

enterMonitor();
if (fullSlots == capacity)

notFull.waitC();
buffer.addLast(msg);
++fullSlots;
notEmpty.signalC_and_exitMonitor();

}
public messageParts withdraw() {

enterMonitor();
if (fullSlots == 0)

notEmpty.waitC();
messageParts msg = (messageParts) buffer.getFirst();
buffer.removeFirst();
--fullSlots;
notFull.signalC_and_exitMonitor();
return(msg);

}
}

Listing 6.4 (continued )

The run() method of TCPMailbox accepts connection requests from
TCPSender objects and starts a connectionHandler thread to handle the con-
nection:

public void run() {
while (true) {

Socket socket = listen.accept(); // listen for connection requests from
// senders

(new connectionHandler(socket)).start();
}

}

The connectionHandler thread obtains an input stream from the socket :

connectionHandler (Socket socket) throws IOException {
this.socket = socket;
from = new ObjectInputStream(socket.getInputStream());

}

and then uses the input stream to receive messageParts objects. The messagePart
objects are deposited into the messageBuffer :
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while (true) { // read objects until get EOF
messageParts msg = null;
try {

msg = (messageParts) from.readObject(); // receive messageParts object
buffer.deposit(msg); // deposit messageParts object

// into Buffer
}
catch (EOFException e) { break;}

}

If buffer becomes full, method deposit() will block. This will prevent any more
messagePart objects from being received until a messagePart object is with-
drawn using method receive().

There are two basic ways to use TCPSender and TCPMailbox objects. A
single TCPMailbox object R can be used to receive messages from multiple
senders. Each sender constructs a TCPSender object S with R’s host and port
address, and executes the following operations each time it sends a message to R:

S.connect(); S.send(message); S.close();

TCPMailbox object R will receive all the messages that the sender sends to it.
This connect–send–close scheme can cause a problem if many messages are

sent to the same TCPMailbox object. Each execution of connect–send–close
requires a new connection to be opened and closed. Operation connect() relies
on the operating system to choose a local port for each new connection. After the
message is sent and the connection is closed, the socket enters a TIME WAIT
state on the sender’s machine. This means that a new socket connection with the
same port numbers (local and remote) and the same host addresses (local and
remote) will be unavailable on the sender’s machine for a specified period of
time, which is usually 4 minutes.

Without this 4-minute wait, an “old” message that was sent over socket A

but that failed to arrive before socket A was closed, could eventually arrive
and be mistaken as a “new” message sent on a different socket B, where B

was constructed after A with the same port number and host address as A. The
TIME WAIT state gives time for old messages to wash out of the network.

Of course, the operating system can choose a different local port number for
each connect() operation, but the number of these “ephemeral” ports is limited
and is different for different operating systems. (Each system has its own default
number of ephemeral ports, which can usually be increased [Gleason 2001].)
Thus, it is possible to exhaust the supply of ephemeral ports if thousands of
messages are sent within 4 minutes.

The preferred way to use a TCPSender object S is to issue an S.close() opera-
tion only after all the messages have been sent. Using this scheme, an S.connect()
operation appears at the beginning of the program and an S.close() operation
appears at the end (refer back to Listing 6.3). All the messages sent over S will
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use a single connection, so the number of ephemeral ports is less of an issue. If
multiple TCPSender objects connect to the same TCPMailbox, the TCPMailbox
will handle the connections concurrently.

6.2.2 Classes TCPSynchronousSender and TCPSynchronousMailbox

As we mentioned, TCPSender and TCPMailbox implement asynchronous chan-
nels. Synchronous channels can be created by forcing method send() to wait
for an acknowledgment that the sent message has been received by the destina-
tion thread. The receive() method sends an acknowledgment when the message
is withdrawn from the messageBuffer, indicating that the destination thread has
received the message.

Classes TCPSynchronousSender and TCPSynchronousMailbox incorporate
these changes. Methods connect(), send(), and receive() are shown in Listing 6.5,
along with a portion of the connectionHandler thread. Method connect() in
TCPSynchronousSender connects to the associated TCPMailbox and obtains
an output stream for sending a message and an input stream for receiving
an acknowledgment. Method send() sends the message and then waits for an
acknowledgment. The message is received by a connectionHandler thread in
the TCPMailbox. The connectionHandler deposits the message, along with the
ObjectOutputStream to be used for sending the acknowledgment, into the
message buffer. Method receive() in TCPSynchronousMailbox withdraws a
message and its associated ObjectOutputStream from buffer and uses the
ObjectOutputStream to send a nullObject as an acknowledgment.

public void connect() throws TCPChannelException {
// from class TCPSynchronousSender

try {
socket = new Socket( destinationHostname, destinationPort );
to = new ObjectOutputStream(socket.getOutputStream());
from = new ObjectInputStream(socket.getInputStream());

} catch (Exception e) { e.printStackTrace(); throw new
TCPChannelException(e.getMessage());}

}
public void send( messageParts message) throws TCPChannelException {
// from class TCPSynchronousSender

try {
synchronized(lock) {
to.writeObject(message); to.flush();
nullObject msg = (nullObject) from.readObject();
}

}

Listing 6.5 Methods connect(), send(), and receive() in classes TCPSynchronousSender
and TCPSynchronousMailbox.
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catch (NullPointerException e) {
e.printStackTrace();
throw new TCPChannelException

("null stream - call connect() before sending messages");
}
catch (Exception e) { e.printStackTrace(); throw new

TCPChannelException(e.getMessage());}
}
class connectionHandler extends Thread {
// from class TCPSynchronousMailbox

...
// for receiving message objects from the sender
from = new ObjectInputStream(socket.getInputStream());
// for sending acknowledgements to the sender
to = new ObjectOutputStream(socket.getOutputStream());
...
public void run() {

...
msg = (messageParts) from.readObject(); // read message from sender
// stream to is used to send acknowledgment back to sender
msg.to = to;
buffer.deposit(msg); // msg will be withdrawn in receive() by receiving
... // thread and msg.to will be used to send an acknowledgment

}
}
public messageParts receive( ) throws TCPChannelException {
// from class TCPSynchronousMailbox

try {
synchronized(lock) {

messageParts msg = buffer.withdraw();
// stream to is still connected to the sending thread
ObjectOutputStream to = msg.to;
// receiver is not given access to the acknowledgment stream
msg.to = null;
to.writeObject(new nullObject()); // send null object as ack.

} // end synchronized lock
} catch (Exception e) {

e.printStackTrace();
throw new TCPChannelException(e.getMessage());

}
}

Listing 6.5 (continued )



328 MESSAGE PASSING IN DISTRIBUTED PROGRAMS

6.2.3 Class TCPSelectableSynchronousMailbox

Our final TCP-based class is TCPSelectableSynchronousMailbox. As its name
implies, this class enables synchronous TCP mailbox objects to be used in selec-
tive wait statements. A TCPSelectableSynchronousMailbox object is used just
like a selectableEntry or selectablePort object in Chapter 5. Listing 6.6 shows
bounded buffer program Buffer, which uses a selectiveWait object and TCPSe-
lectableSynchronousMailbox objects deposit and withdraw. Distributed Producer
and Consumer processes can use TCPSynchronousSender objects in the usual
way to send messages to Buffer. Recall that a messageParts object contains an
optional return address, which the Buffer uses to send a withdrawn item back to
the Consumer.

Notice that Buffer selects deposit and withdraw alternatives in an infinite loop.
One way to terminate this loop is to add a delay alternative to the selective wait,
which would give Buffer a chance to timeout and terminate after a period of
inactivity. In general, detecting the point at which a distributed computation has
terminated is not trivial since no process has complete knowledge of the global
state of the computation, and neither global time nor common memory exists in
a distributed system. Alternatives to global time are described in the next section.
Distributed algorithms for termination detection are presented in [Brzezinski et al.

public final class Buffer {
public static void main (String args[]) {

final int depositPort = 2020;
final int withdrawPort = 2021;
final int withdrawReplyPort = 2022;
int fullSlots=0;
int capacity = 2;
Object[] buffer = new Object[capacity];
int in = 0, out = 0;
try {

TCPSelectableSynchronousMailbox deposit = new
TCPSelectableSynchronousMailbox(depositPort);

TCPSelectableSynchronousMailbox withdraw = new
TCPSelectableSynchronousMailbox (withdrawPort);
String consumerHost = InetAddress.getLocalHost().getHostName();
TCPSender withdrawReply = new
TCPSender(consumerHost,withdrawReplyPort);
selectiveWait select = new selectiveWait();
select.add(deposit); // alternative 1
select.add(withdraw); // alternative 2
while(true) {

withdraw.guard(fullSlots>0);

Listing 6.6 Using a selectiveWait statement in a distributed program.
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deposit.guard (fullSlots<capacity);
switch (select.choose()) {

case 1: Object o = deposit.receive(); // item from Producer
buffer[in] = o;
in = (in + 1) %capacity; ++fullSlots;
break;

case 2: messageParts withdrawRequest = withdraw.receive();
messageParts m = (messageParts) buffer[out];
try {// send an item back to the Consumer

withdrawReply.send(m);
} catch (TCPChannelException e)

{e.printStackTrace();}
out = (out + 1) %capacity; --fullSlots;
break;

}
}

}
catch (InterruptedException e) {e.printStackTrace();System.exit(1);}
catch (TCPChannelException e) {e.printStackTrace();System.exit(1);}
catch (UnknownHostException e) {e.printStackTrace();}

}
}

Listing 6.6 (continued )

1993]. These algorithms could be incorporated into the channel classes presented
in this chapter and in Chapter 5, along with a “terminate” alternative for selective
wits that would be chosen when termination is detected.

6.3 TIMESTAMPS AND EVENT ORDERING

In a distributed environment, it is difficult to determine the execution order of
events. This problem occurs in many contexts. For example, distributed processes
that need access to a shared resource must send each other requests to obtain
exclusive access to the resource. Processes can access the shared resource in the
order of their requests, but the request order is not easy to determine. This is the
distributed mutual exclusion problem.

Event ordering is also a critical problem during testing and debugging. When
synchronization events occur during an execution, trace messages can be sent to
a special controller process so that the events can be recorded for replay. But care
must be taken to ensure that the event order observed by the controller process
is consistent with the event order that actually occurred. Similarly, reachabil-
ity testing depends on accurate event ordering to identify concurrent events and
generate race variants. Since event ordering is a prerequisite for solving many
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distributed programming problems, we’ll look first at mechanisms for ordering
events and then we examine several distributed solutions to classical synchro-
nization problems.

6.3.1 Event-Ordering Problems

Fidge [1996] pointed out several problems that can occur when the controller
relies on the arrival order of trace messages to order events. A convenient way
to visualize these problems is to view an execution of a distributed program as
a space-time diagram. In a space-time diagram, each thread is represented as a
directed line, with time moving from top to bottom. The events of a thread are
shown along its time line according to their order of occurrence, with earlier
events at the top and later events at the bottom. Message passing is depicted
by an arrow connecting send events with their corresponding receive events. An
asynchronous message that is passed from send event s to receive event r is
represented using a single-headed arrow s → r . A double-headed arrow s ↔ r

represents synchronous message passing between s and r .
Consider the following program, which uses asynchronous communication:

Thread1 Thread2 Thread3

(a) send A to Thread2; (b) receive X; (d) send B to Thread2;
(c) receive Y;

The possible executions of this program are represented by diagrams D1 and D2
in Fig. 6.7. In diagram D1, the messages are a → b and d → c, whereas in D2,
the messages are a → c and d → b.

Assume that the threads in diagram D1 send asynchronous trace messages
to the controller whenever they execute a message passing event. Figure 6.8
illustrates two observability problems that can occur when the controller relies
on the arrival order of the trace messages to determine the order of events:

ž Incorrect orderings. The controller observes event b occur before event a,
which is not what happened.

Thread1 Thread2 Thread3

a

b

c

d

Thread1 Thread2 Thread3

a

b

c

d

time

Diagram D1 Diagram D2

Figure 6.7 Diagrams D1 and D2.
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Thread1 Thread2 Thread3 Controller

a

b

c

b

a

c

time

d d

Figure 6.8 Observability Problems for Diagram D1.

TABLE 6.1 Effectiveness of Timestamping Mechanisms

Timestamp Mechanisms

Observability
Problems

Arrival
Order

Local
Real-Time

Clocks

Global
Real-Time

Clock
Totally Ordered
Logical Clocks

Partially Ordered
Logical Clocks

Incorrect orderings × ×
Arbitrary orderings × × × ×
Source: Fidge [1996].
a An × indicates that a problem exists.

ž Arbitrary orderings. The controller observes event d occur before event
b. Since d and b are concurrent events they can occur in either order,
and the order the controller will observe is nondeterministic. However, the
controller cannot distinguish nondeterministic orderings from orderings that
are enforced by the program. During debugging, a programmer may see that
d precedes b and mistakenly conclude that d must precede b. Similarly, the
programmer may feel the need to create a test case where the order of events
d and b is reversed, even though this change in ordering is not significant.

To overcome these observability problems, extra information, in the form
of a timestamp, must be attached to the trace messages. The controller can
use the timestamps to order events accurately. Table 6.1 shows five timestamp
mechanisms (including arrival order) and their ability to overcome observability
problems. An × indicates that a timestamp mechanism has a particular observ-
ability problem.

Four of these timestamping mechanisms involve the use of clock values. The
first two clock schemes use real-time clocks.

6.3.2 Local Real-Time Clocks

This simple scheme uses the real-time clock available on each processor as the
source of the timestamp. Since the real-time clocks on different processors are
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Figure 6.9 Timestamps using unsynchronized local real-time clocks.
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Figure 6.10 Timestamps using a real-time global clock.

not synchronized, incorrect orderings may be seen, and concurrent events are
arbitrarily ordered. Figure 6.9 shows two ways in which the events in diagram
D1 of Fig. 6.7 can be timestamped. On the left, the clock of Thread1’s processor
is ahead of the clock of Thread2’s processor, so event b appears erroneously to
occur before event a. The ordering of events d and b is arbitrary and depends
on the relative speeds of the threads and the amount by which the processor’s
real-time clocks differ.

6.3.3 Global Real-Time Clocks

If the local real-time clocks are synchronized, there is a global reference for real
time. This avoids incorrect orderings, but as shown in Fig. 6.10, arbitrary order-
ings are still imposed on concurrent events d and b. Also, sufficiently accurate
clock synchronization is difficult and sometimes impossible to achieve.

6.3.4 Causality

The remaining two schemes use logical clocks instead of real-time clocks. Logical
clock schemes rely on the semantics of program operations to determine whether
one event occurred before another event. For example, if events A and B are local
events in the same thread and A is executed before B, then A’s logical timestamp
will indicate that A happened before B. Similarly, if S is an asynchronous send
event in one thread and R is the corresponding receive event in another thread,
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S’s logical timestamp will indicate that S occurred before R. (More accurately,
S occurred before the completion of R, since the send operation S might have
occurred long after the receive operation R started waiting for a message to
arrive.) It is the execution of program operations that governs the passage of
logical time, not the ticking of a real-time clock.

If we consider a send operation and its corresponding receive operation to
have a cause-and-effect relationship, ordering the send before the receive places
the cause before the effect. It is important that any event ordering is consistent
with the cause-and-effect relationships between the events. Thus, if event C can
potentially cause or influence another event E, we will say that C occurs before
E in causal order.

The causality or happened-before relation “⇒” for an execution of a message-
passing program is defined as follows [Lamport 1978]:

(C1) If events e and f are events in the same thread and e occurs before f ,
then e ⇒ f .

(C2) If there is a message e → f (i.e., e is a nonblocking send and f is the
corresponding receive), then e ⇒ f .

(C3) If there is a message e ↔ f or f ↔ e (i.e., one of e or f is a blocking
send and the other is the corresponding blocking receive), for event g

such that e ⇒ g, we have f ⇒ g, and for event h such that h ⇒ f , we
have h ⇒ e.

(C4) If e ⇒ f and f ⇒ g, then e ⇒g. (Thus, “⇒” is transitive.)

It is easy to examine a space-time diagram visually and determine the causal
relations. For two events e and f in a space-time diagram, e ⇒ f if and only if
there is no message e ↔ f or f ↔ e and there exists a path from e to f that
follows the vertical lines and arrows in the diagram. (A double-headed arrow
allows a path to cross in either direction.)

For events e and f of an execution, if neither e ⇒ f nor f ⇒ e, then e and
f are said to be concurrent, denoted as e||f . This also means that if there is a
message e ↔ f or f ↔ e, then e and f are concurrent events. Since e||f and
f ||e are equivalent, the “||” relation is symmetric. However, the “||” relation is
not transitive. In diagram D1, a → b, b → c, d → c, a → c, a||d , and d||b, but
a and b are not concurrent events. In diagram D2, a → c, b → c, d → c, d → c,
b||a, and a||d , but b and d are not concurrent events.

Since two concurrent events are not ordered (i.e., they can happen in either
order), the causality relation only partially orders the events in an execution
trace, but a partial order is still useful: Given a program, an input, and a partially
ordered execution trace of synchronization events that is based on the causality
relationship, there is only one possible result. Thus, a partially ordered trace
of synchronization events that is based on the causality relation is sufficient
for tracing and replaying an execution. SYN-sequence definitions for distributed
programs are given in Section 6.5.
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We will consider two or more executions that have the same input and the
same partially ordered synchronization sequence to be equivalent executions.
Furthermore, the relative order of events in an execution will be determined
using a partial order, not a total order, of the execution’s events. By doing so, if
we say that event a happens before event b during an execution E with a given
input, a happens before b in all other executions that have the same input and
the same partially ordered synchronization sequence as E.

6.3.5 Integer Timestamps

Our objective is to determine the causality relationships of the events in an
execution. We will do this by using logical clocks. Logical clocks serve as a
substitute for real-time clocks with respect to the causality relation. Each event
receives a logical timestamp, and these timestamps are used to order the events.
Consider a message-passing program that uses asynchronous communication and
contains threads Thread1, Thread2, . . ., and Threadn. Threadi, 1 ≤ i ≤ n, contains
a logical clock Ci, which is simply an integer variable initialized to 0. During
execution, logical time flows as follows:

(IT1) Threadi increments Ci by one immediately before each event it executes.
(IT2) When Threadi sends a message, it also sends the value of Ci as the

timestamp for the send event.
(IT3) When Threadi receives a message with ts as its timestamp, if ts ≥ Ci,

then Threadi sets Ci to ts + 1 and assigns ts + 1 as the timestamp for
the receive event. Hence, Ci = max(Ci, ts + 1).

Denote the integer timestamp recorded for event e as IT(e), and let s and t

be two events of an execution. If s ⇒ t , then IT(s) will definitely be less than
IT(t). That is, the integer timestamps will never indicate that an event occurred
before any other events that might have caused it. However, the converse is not
true. The fact that IT(s) is less than IT(t) does not imply that s ⇒ t . If s and t

are concurrent, their timestamps will be consistent with one of their two possible
causal orderings. Thus, we cannot determine whether or not s ⇒ t by using the
integer timestamps recorded for s and t .

Diagram D3 in Fig. 6.11 represents an execution of three threads that use
asynchronous communication. The messages in this diagram are a → o, c → r ,
q → x, w → p, and z → d . Diagram D3 also shows the integer timestamp for
each event. Notice that the integer timestamp for event v is less than the integer
timestamp for event b, but v ⇒ b does not hold. (There is no path from v to b

in diagram D3.)
Although integer timestamps cannot tell us the causality relationships that

hold between the events, we can use integer timestamps to produce one or more
total orders that preserve the causal order. For example, in Section 6.4.1 we
show how to use integer timestamps to order the requests made when distributed
processes want to enter their critical sections. The strategy for producing a total
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Total-ordering of the events in D3

Figure 6.11 Diagram D3 and a total-ordering for D3.

ordering is the following: Order the events in ascending order of their integer
timestamps. For the events that have the same integer timestamp, break the tie
in some consistent way.

One method for tie breaking is to order events with the same integer times-
tamps in increasing order of their thread identifiers. The total ordering that results
from applying this method to the events in diagram D3 is also shown in Fig. 6.11.
Referring back to Table 6.1, integer timestamps solve only one of the observabil-
ity problems, since incorrect orderings are avoided but independent events are
ordered arbitrarily. Thus, integer timestamps have the same advantages as global
real-time clocks, while being easier to implement.

6.3.6 Vector Timestamps

Integer timestamps produce a total ordering of events that is consistent with
the causality relationship. Because of this, integer timestamps can be used to
order events in distributed algorithms that require an ordering. However, integer
timestamps cannot be used to determine that two events are not causally related.
To do this, each thread must maintain a vector of logical clock values instead of
a single logical clock. A vector timestamp consists of n clock values, where n is
the number of threads involved in an execution.

Consider a message-passing program that uses asynchronous and/or
synchronous communication and contains Thread1, Thread2, . . ., and Threadn.
Each thread maintains a vector clock, which is a vector of integer clock values.
The vector clock for Threadi, 1 ≤ i ≤ n, is denoted as VCi, where VCi[j],
1 ≤ j ≤ n, refers to the jth element of vector clock VCi. The value VCi[i] is
similar to the logical clock Ci used for computing integer timestamps. The value
VCi[j], where j �= i, denotes the best estimate Threadi is able to make about
Threadj’s current logical clock value VCj[j], that is, the number of events in
Threadj that Threadi “knows about” through direct communication with Threadj
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or through communication with other threads that have communicated with
Threadj and Threadi.

Mattern [1989] described how to assign vector timestamps for events involv-
ing asynchronous communication (i.e., nonblocking sends and blocking receives).
Fidge [1991] described how to assign timestamps for events involving asyn-
chronous or synchronous communication or a mix of both. At the beginning of
an execution, VCi, 1 ≤ i ≤ n, is initialized to a vector of zeros. During execution,
vector time is maintained as follows:

(VT1) Threadi increments VCi[i] by one before each event of Threadi.
(VT2) When Threadi executes a nonblocking send, it sends the value of its

vector clock VCi as the timestamp for the send operation.
(VT3) When Threadi receives a message with timestamp VTm from a non-

blocking send of another thread, Threadi sets VCi to the maximum
of VCi and VTm and assigns VCi as the timestamp for the receive
event. Hence, VCi = max (VCi, VTm), that is, for (k = 1; k <= n;
k++) VCi[k] = max(VCi[k], VTm[k]).

(VT4) When one of Threadi or Threadj executes a blocking send that is
received by the other, Threadi and Threadj exchange their vector clock
values, set their vector clocks to the maximum of the two vector
clock values, and assign their new vector clocks (which now have
the same value) as the timestamps for the send and receive events.
Hence, Threadi performs the following operations:
ž Threadi sends VCi to Threadj and receives VCj from Threadj.
ž Threadi sets VCi = max (VCi, VCj).
ž Threadi assigns VCi as the timestamp for the send or receive event

that Threadi performed.

Threadj performs similar operations.
Diagram D4 in Fig. 6.12 shows two asynchronous messages a → d and b → c

from Thread 1 to Thread 2. These two messages are not received in the order they
are sent. The vector timestamps for the events in D4 are also shown. Diagram
D5 in Fig. 6.13 is the same as diagram D3 in Fig. 6.11, except that the vector
timestamps for the events are shown.

Denote the vector timestamp recorded for event e as VT(e). For a given exe-
cution, let ei be an event in Threadi and ej an event in (possibly the same thread)

Thread1 Thread2

[1,0] a

[2,0] b c [2,1]

d [2,2]

Figure 6.12 Diagram D4.
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Figure 6.13 Diagram D5.

Threadj. Threads are permitted to use asynchronous or synchronous communica-
tion, or a mix of both. As mentioned earlier, ei ⇒ ej if and only if there exists
a path from ei to ej in the space-time diagram of the execution and there is no
message ei ↔ ej or ej ↔ ei. Thus:

(HB1) ei ⇒ ej if and only if (for 1 ≤ k ≤ n, VT(ei)[k] ≤ VT(ej)[k]) and

(VT(ei) �= VT(ej)).

Note that if there is a message ei ↔ ej or ej ↔ ei, then VT(ei) = VT(ej) and
(HB1) cannot be true.

Actually, we only need to compare two pairs of values, as the following rule
shows:

(HB2) ei ⇒ ej if and only if (VT(ei)[i] ≤ VT(ej)[i]) and

(VT(ei)[j] < VT(ej)[j]).

If there is a message ei ↔ ej or ej ↔ ei, then ei ⇒ ej is not true and (VT(ei)[j]
< VT(ej)[j]) cannot be true (since the timestamps of ei and ej will be the
same). This is also true if ei and ej are the same event. In Fig. 6.13, events
v and p are in Thread3 and Thread2, respectively, where VT(v) = [0, 0, 1] and
VT(p) = [1, 3, 2]. Since (VT(v)[3] ≤ VT(p)[3]) and (VT(v)[2] < VT(p)[2]), we
can conclude that v ⇒ p. For event w in Thread3 we have VT(w) = [0, 0, 2].
Since there is a message w ↔ p, the timestamps for w and p are the same, which
means that VT(v)[3] ≤ VT(w)[3] must be true and that VT(v)[2] < VT(w)[2]
cannot be true. Hence, w ⇒ p is not true, as expected. In general, suppose that
the value of VT(ei)[j] is x and the value of VT(ej)[j] is y. Then the only way for
VT(ei)[j] < VT(ej)[j] to be false is if Threadi knows (through communication
with Threadj or with other threads that have communicated with Threadj) that
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Threadj already performed its xth event, which was either ej or an event that
happened after ej (as x ≥ y). In either case, ei ⇒ ej can’t be true (otherwise, we
would have ei ⇒ ej ⇒ ei, which is impossible).

If events ei and ej are in different threads and only asynchronous communi-
cation is used, the rule can be simplified further to

(HB3) ei ⇒ ej if and only if VT(ei)[i] ≤ VT(ej)[i].

Diagram D6 in Fig. 6.14 represents an execution of three threads that use both
asynchronous and synchronous communication. The asynchronous messages in
this diagram are a → o, q → x, and z → d . The synchronous messages in this
diagram are c ↔ r and p ↔ w. Diagram D6 shows the vector timestamps for
the events.

Referring back to Table 6.1, vector timestamps solve both of the observabil-
ity problems—incorrect orderings are avoided and independent events are not
arbitrarily ordered. A controller process can use vector timestamps to ensure that
the SYN-sequence it records is consistent with the causal ordering of events. A
recording algorithm that implements causal ordering is as follows [Schwarz and
Mattern 1994]:

(R1) The controller maintains a vector observed, initialized to all zeros.

(R2) On receiving a trace message m = (e,i) indicating that Threadi executed
event e with vector timestamp VT(e), the recording of message m is
delayed until it becomes recordable.

(R3) Message m = (e,i) is recordable iff (observed[i] = VT(e)[i] − 1) and
observed[j] ≥ VT(e)[j] for all j �= i.

(R4) If message m = (e,i) is or becomes recordable, m is recorded and
observed[i] = observed[i] + 1;

Thread1 Thread2 Thread3

[1,0,0] a n [0,1,0]

o [1,2,0]

r [3,5,2]

v [0,0,1]

w [1,3,2]

x [1,4,3]

y [1,4,4]

z [1,4,5]

[2,0,0] b

[3,5,2] c

[4,5,5] d

[1,3,2] p

[1,4,2] q

Figure 6.14 Diagram D6.
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The vector observed counts, for each thread, the number of events that have
been observed so far. Step (R3) ensures that all the events that Threadi exe-
cuted before it executed e have already been observed, and that any events
that other threads executed that could have influenced e (i.e., the first VT(e)[j]
events of Threadj, j �= i) have already been observed, too. Other applications
of vector timestamps are discussed in [Raynal 1988] and [Baldoni and
Raynal 2002].

In previous chapters we did not use vector or integer timestamps during tracing
and replay. SYN-events were collected by a control module, but timestamps are
not used to order the events. Timestamps are not needed to trace events accurately
since (1) we were able to build the tracing mechanism into the implementations
of the various synchronization operations, and (2) we used synchronous, shared
variable communication to notify the control module that an event had occurred.
Thus, the totally ordered or partially ordered SYN-sequences that were recorded
in previous chapters were guaranteed to be consistent with the causal ordering
of events. It is also the case that vector timestamps can be computed for the
events by analyzing the recorded SYN-sequences. (Actually, vector timestamps
are generated for the message passing events in Chapter 5, and these timestamps
are recorded in special trace files in case they are needed by the user, but the
timestamps are not used for tracing and replay.)

6.3.7 Timestamps for Programs Using Messages and Shared Variables

Some programs use both message passing and shared variable communication.
In such programs, vector timestamps must be assigned to send and receive events
and also to events involving shared variables, such as read and write events or
entering a monitor. Netzer and Miller [1993] showed how to generate timestamps
for read and write events on shared variables. Bechini and Tai [1998] showed
how to combine Fidge’s scheme [1991] for send and receive events with Netzer’s
scheme for read and write events. The testing and debugging tools presented in
Section 6.5 incorporate these schemes, so we describe them below.

First, we extend the causality relation by adding a fifth rule. For two read/write

events e and f on a shared variable V, let e
V−−−→ f denote that event e occurs

before f on V.

(C1–C4) Same as rules C1 to C4 above for send and receive events.
(C5) For two different events e and f on shared variable V such that at

least one of them is a write event, if e
V−−−→ f, then e ⇒ f .

Rule (C5) does not affect the other rules.
Next, we show how to assign vector timestamps to read and write events using

the rules of [Netzer and Miller 1993]. Timestamps for send and receive events
are assigned as described earlier. For each shared variable V, we maintain two
vector timestamps:
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ž VT LastWrite(V): contains the vector timestamp of the last write event on
V, initially all zeros.

ž VT Current(V): the current vector clock of V, initially all zeros.

When Threadi performs an event e:

(VT1–VT4) If e is a send or receive event, the same as (VT1–VT4) in
Section 6.3.6.

(VT5) If e is a write operation on shared variable V, Threadi performs
the following operations after performing write operation e:
(VT5.1) VCi = max(VCi, VT Current(V)).
(VT5.2) VT LastWrite(V) = VCi.
(VT5.3) VT Current(V) = VCi.

(VT6) If e is a read operation on shared variable V, Threadi performs
the following operations after performing read operation e:
(VT6.1) VCi = max(VCi, VT LastWrite(V)).
(VT6.2) VT Current(V) = max(VCi, VT Current(V)).

For write event e in rule (VT5), VCi is set to max(VCi, VT Current(V)). For
read event e in rule (VT6), VCi is set to max(VCi, VT LastWrite(V)). The reason
for the difference is the following. A write event on V causally precedes all the
read and write events on V that follow it. A read event on V is concurrent with
other read events on V that happen after the most recent write event on V and
happen before the next write event, provided that there are no causal relations
between these read events due to messages or accesses to other shared variables.
Figure 6.15 shows the vector timestamps for an execution involving synchronous
and asynchronous message passing and read and write operations on a shared
variable V. Values of VT LastWrite(V) and VT Current(V) are also shown.

Thread1 Thread2 Thread3 VT_Last Write VT_CurrentV

asynch
synch
read
write

[0,1,0] [0,1,1]

[0,1,2]
[0,2,2]

[1,3,2] [1,3,2]

[2,3,2]

[2,4,2]

[2,5,2][3,5,2]

[4,5,2]

[0,1,2] [0,1,2]

[0,2,2]

[2,3,2]

[2,4,2] [2,4,2]

[4,5,2]

W

R

R

W

R

Figure 6.15 Timestamps for a program that uses message passing and shared variables.
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6.4 MESSAGE-BASED SOLUTIONS TO DISTRIBUTED
PROGRAMMING PROBLEMS

Below, we first show distributed solutions to two classical synchronization prob-
lems: the mutual exclusion problem and the readers and writers problem. Both
problems involve events that must be totally ordered, such as requests to read or
write, or requests to enter a critical section. Requests are ordered using integer
timestamps as described in Section 6.3.5. We then show an implementation of
the alternating bit protocol (ABP). The ABP is used to ensure the reliable trans-
fer of data over faulty communication lines. Protocols similar to ABP are used
by TCP.

6.4.1 Distributed Mutual Exclusion

Assume that two or more distributed processes need mutually exclusive access
to some resource (e.g., a network printer). Here we show how to solve the
mutual exclusion problem by using message passing. Ricart and Agrawala [1981]
developed the following permission-based algorithm. When a process wishes to
enter its critical section, it requests and waits for permission from all the other
processes. When a process receives a request:

ž If the process is not interested in entering its critical section, the process
gives its permission by sending a reply as soon as it receives the request.

ž If the process does want to enter its critical section, it may defer its reply,
depending on the relative order of its request among the requests made by
other processes.

Requests are ordered based on a sequence number that is associated with each
request and a sequence number maintained locally by each process. Sequence
numbers are essentially integer timestamps that are computed using logical clocks
as described in Section 6.3. If a process receives a request having a sequence
number that is the same as the local sequence number of the process, the tie is
resolved in favor of the process with the lowest ID. Since requests can be totally
ordered using sequence numbers and IDs, there is always just one process that
can enter its critical section next. This assumes that each process will eventually
respond to all the requests sent to it.

In program distributedMutualExclusion in Listing 6.16, thread distributedPro-
cess is started with an ID assigned by the user. We assume that there are three
distributedMutualExclusion programs running at the same time, so the numberOf-
Processes is 3 and the IDs of the processes are 0, 1, and 2.

Each distributedProcess uses an array of three TCPSender objects for sending
requests, and another array of three TCPSender objects for sending replies. (A
process never sends messages to itself, so each process actually uses only two
of the TCPSender elements in the array.) When a TCPSender object is con-
structed, it is associated with the host address and port number of a TCPMailbox
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import java.io.*;
import java.net.*;
class distributedMutualExclusion {

public static void main(String[] args) {
if (args.length != 1) {

System.out.println("need 1 argument: process ID (IDs start with 0)");
System.exit(1);

}
int ID = Integer.parseInt(args[0]);
new distributedProcess(ID).start();

}
}
class distributedProcess extends TDThreadD {

private int ID; // process ID
private int number; // the sequence number sent in request messages
private int replyCount; // number of replies received so far
final private int numberOfProcesses = 4;
final private int basePort = 2020;
String processHost = null;
// requests sent to other processes
private TCPSender[] sendRequests = new TCPSender[numberOfProcesses];
private TCPSender[] sendReplies = new TCPSender[numberOfProcesses];
private TCPMailbox receiveRequests = null;
private TCPMailbox receiveReplies = null;
private boolean[] deferred = null; // true means reply was deferred
private Coordinator C; // monitor C coordinates distributedProcess and helper
private Helper helper; // manages incoming requests for distributedProcess
distributedProcess(int ID) {

this.ID = ID;
try {processHost = InetAddress.getLocalHost().getHostName(); }
catch (UnknownHostException e) {e.printStackTrace();System.exit(1);}
for (int i = 0; i < numberOfProcesses; i++) {

sendRequests[i] = new TCPSender(processHost,basePort+(2*i));
sendReplies[i] = new TCPSender(processHost,basePort+(2*i)+1);

}
receiveRequests = new TCPMailbox(basePort+(2*ID),"RequestsFor"+ID);
receiveReplies = new TCPMailbox(basePort+(2*ID)+1,"RepliesFor"+ID);
C = new Coordinator();
deferred = new boolean[numberOfProcesses];
for (int i=0; i<numberOfProcesses; i++) deferred[i] = false;
helper = new Helper();
helper.setDaemon(true); // start helper in run() method

}
class Helper extends TDThreadD {
// manages requests from other distributed processes

Listing 6.16 Permission-based algorithm for distributed mutual exclusion.
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public void run() { // handle requests from other distributedProcesses
while (true) {

messageParts msg = (messageParts) receiveRequests.receive();
requestMessage m = (requestMessage) msg.obj;
if (!(C.deferrMessage(m))) { // if no deferral, then send a reply

messageParts reply = new messageParts(new Integer(ID),
processHost,basePort+(2*ID));

sendReplies[m.ID].send(reply);
}

}
}

}
class Coordinator extends monitorSC {
// Synchronizes the distributed process and its helper

// requestingOrExecuting true if in or trying to enter CS
private boolean requestingOrExecuting = false;
private int highNumber; // highest sequence number seen so far
public boolean deferrMessage(requestMessage m) {

enterMonitor("decideAboutDeferral");
highNumber = Math.max(highNumber,m.number);
boolean deferMessage = requestingOrExecuting &&

((number < m.number) ||| (number == m.number && ID < m.ID));
if (deferMessage)

deferred[m.ID] = true; // remember that the reply was deferred
exitMonitor();
return deferMessage;

}
public int chooseNumberAndSetRequesting() {
// choose sequence number and indicate process has entered or is
// requesting to enter critical section

enterMonitor("chooseNumberAndSetRequesting");
requestingOrExecuting = true;
number = highNumber + 1; // get the next sequence number
exitMonitor();
return number;

}
public void resetRequesting() {

enterMonitor("resetRequesting");
requestingOrExecuting = false;
exitMonitor();

}
}
public void run() {

int count = 0;
try {Thread.sleep(2000);} // give other processes time to start

Listing 6.16 (continued )
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catch (InterruptedException e) {e.printStackTrace();System.exit(1);}
System.out.println("Process "+ ID + "starting");
helper.start();
for (int i = 0; i < numberOfProcesses; i++) {
// connect to the mailboxes of the other processes

if (i != ID) {
sendRequests[i].connect(); sendReplies[i].connect();

}
}
while (count++<3) {

System.out.println(ID + "Before Critical Section"); System.out.flush();
int number = C.chooseNumberAndSetRequesting();
sendRequests();
waitForReplies();
System.out.println(ID + "Leaving Critical Section-"+count);
System.out.flush();
try {Thread.sleep(500);} catch (InterruptedException e) {}
C.resetRequesting();
replytoDeferredProcesses();

}
try {Thread.sleep(10000);} // let other processes finish
catch (InterruptedException e) {e.printStackTrace();System.exit(1);}
for (int i = 0; i < numberOfProcesses; i++)// close connections

if (i != ID) {sendRequests[i].close(); sendReplies[i].close();}
}
public void sendRequests() {

replyCount = 0;
for (int i = 0; i < numberOfProcesses; i++) {

if (i != ID) {
messageParts msg = new messageParts(new

requestMessage(number,ID));
sendRequests[i].send(msg); // send sequence number and process ID
System.out.println(ID + "sent request to Thread "+ i);
try {Thread.sleep(1000);} catch (InterruptedException e) {}

}
}

}
public void replytoDeferredProcesses() {

System.out.println("replying to deferred processes");
for (int i=0; i < numberOfProcesses; i++)

if (deferred[i]) {
deferred[i] = false; // ID sent as a convenience for identifying sender
messageParts msg = new messageParts(new Integer(ID));
sendReplies[i].send(msg);

Listing 6.16 (continued )
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}
}
public void waitForReplies() { // wait for all the other processes to reply

while (true) {
messageParts m = (messageParts) receiveReplies.receive();
// ID of replying thread is available but not needed
int receivedID = ((Integer)m.obj).intValue();
replyCount++;
if (replyCount == numberOfProcesses-1)

break; // all replies have been received
}

}
}
class requestMessage implements Serializable {

public int ID; // process ID
public int number; // sequence number
public requestMessage(int number, int ID) {

this.ID = ID; this.number = number;}
}

Listing 6.16 (continued )

object owned by one of the distributed processes. All messages sent through the
TCPSender object are addressed to the associated TCPMailbox. This allows us
to address messages once, when we construct the TCPSender objects, instead of
specifying an address each time we send a message.

Each distributedProcess uses TCPMailbox objects named receiveRequests and
receiveReplies to receive request and reply messages from the other processes.
Connections between all the TCPSender and TCPMailbox objects are made by
calling the connect() method of each TCPSender object at the start of the run()
method for each distributedProcess.

We assume that all three distributedMutualExclusion programs run on the
same computer. The port numbers used for TCPMailbox objects receiveRequests
and receiveReplies are as follows: distributedProcess0 uses 2020 and 2021 for
its two TCPMailbox objects, distributedProcess1 uses 2022 and 2023 for its two
TCPMailbox objects, and distributedProcess2 uses 2024 and 2025 for its two
TCPMailbox objects. So, for example, when distributedProcess0 sends requests
to the other two processes, it sends them to ports 2022 and 2024. Requests from
the other two processes to distributedProcess0 are addressed to port 2020, while
replies from the other two processes to distributedProcess0 are addressed to
2021. Replies from distributedProcess0 to distributedProcess1 and distributed-
Process2 are addressed to ports 2023 and 2025, respectively. Thus, each port
number P is associated with one TCPMailbox object, which is used by one of
the distributedProcesses to receive messages. The other two distributedProcesses
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use TCPSender objects associated with P to send messages to the TCPMailboxes
associated with P.

When a distributedProcess wants to enter its critical section in method run(),
it computes a sequence number and sets flag requestingOrExecuting to true. It
then sends a request to each of the other processes and waits for each of the
processes to reply.

Each distributedProcess has a Helper thread that handles requests received
from the other processes [Hartley 1998]. If the Helper for distributedProcess i

receives a requestMessage from distributedProcess j , the Helper replies imme-
diately if the sequence number in j ’s request is less than the sequence number
stored at i or if distributedProcess i is not trying to enter its critical section. The
Helper defers the reply if distributedProcess i is in its critical section, or if dis-
tributedProcess i wants to enter its critical section and the requestMessage from
distributedProcess j has a higher sequence number. If the sequence numbers
are the same, the tie is broken by comparing process identifiers. (Each request
message contains a sequence number and the identifier of the sending process.)

When a distributedProcess sends its request, it computes a sequence number
by adding one to the highest sequence number it has received in requests from
other processes. Class Coordinator is a monitor that synchronizes a distributed-
Process thread and its Helper thread. A sample execution for this program is
given in Section 6.5.4, where we show how to trace and replay its executions.

6.4.2 Distributed Readers and Writers

Here we show how to solve the distributed readers and writers problem by using
message passing. The strategy we implement is R = W.2, which allows con-
current reading and gives readers and writers equal priority. Mutual exclusion
is provided using the permission-based distributed mutual exclusion algorithm
described earlier. When a process wants to perform its read or write operation,
it sends a request to each of the other processes and waits for replies. A request
consists of the same pair of values (sequence number and ID) used in the mutual
exclusion algorithm, along with a flag that indicates the type of operation (read
or write) being requested. When process i receives a request from process j ,
process i sends j an immediate reply if:

ž Process i is not executing or requesting to execute its read or write operation.
ž Process i is executing or requesting to execute a “compatible” operation.

Two read operations are compatible, but two write operations, or a read and
a write operation, are not compatible.

ž Process i is also requesting to execute a noncompatible operation, but pro-
cess j ’s request has priority over process i’s request.

Program distributedReadersAndWriters is almost identical to program dis-
tributedMutualExclusion in Listing 6.16, so here we will only show the differ-
ences. First, each distributedProcess is either a reader or a writer. The user
indicates the type of process and the process ID when the program is started:
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java distributedReadersAndWriters 0 Reader // Reader process with ID 0

The integer variable readerOrWriter is assigned the value READER or the value
WRITER, depending on the command-line argument.

The second difference is in the decideAboutDeferral() method of the Coordi-
nator monitor, which is shown in Listing 6.17. The flag requestingOrExecuting
is true when a distributedProcess is requesting to execute or is executing its read
or write operation. The requestMessage m contains the type of operation being
requested and the sequence number and ID of the requesting process. If the
receiving process is executing its operation or is requesting to execute its opera-
tion, method compatible() is used to determine whether or not the two operations
are compatible.

We point out that if process i is executing read or write operation OP when
it receives a request m from process j , the condition (number < m.number) in
method decideAboutDeferral() must be true. This is because process j must have
already received process i’s request for operation OP, sent its permission to i,
and updated its sequence number to be higher than the number in process i’s
request. In this case, if process j ’s operation is not compatible, it will definitely
be deferred.

public void decideAboutDeferral(requestMessage m) {
enterMonitor();
highNumber = Math.max(highNumber,m.number);
boolean deferMessage = requestingOrExecuting &&

!compatible(m.operation) && ((number < m.number) ||
(number == m.number && ID < m.ID));

if (deferMessage) {
deferred[m.ID] = true;

}
else {

messageParts msg = new messageParts(new Integer(ID));
sendReplies[m.ID].send(msg);

}
exitMonitor();

}

private boolean compatible(int requestedOperation) {
if (readerOrWriter == READER && requestedOperation == READER)

return true; // only READER operations are compatible
else // READER/WRITER and WRITER/WRITER operations incompatible

return false;
}

Listing 6.17 Methods decideAboutDeferral() and compatible() in program
distributedReadersAndWriters.
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6.4.3 Alternating Bit Protocol

The Alternating Bit Protocol (ABP) is designed to ensure the reliable transfer of
data over an unreliable communication medium [Bartlet et al. 1969]. The name
of the protocol refers to the method used—messages are sent tagged with the
bits 1 and 0 alternately, and these bits are also sent as acknowledgments.

Listing 6.18 shows classes ABPSender and ABPReceiver and two client
threads. Thread client1 is a source of messages for an ABPSender thread called
sender. The sender receives messages from client1 and sends the messages
to an ABPReceiver thread called receiver. The receiver thread passes each
message it receives to thread client2, which displays the message. We assume that
messages sent between an ABPSender and an ABPReceiver will not be corrupted,
duplicated, or reordered, but they may be lost. The ABP will handle the detection
and retransmission of lost messages.

An ABPSender S works as follows. After accepting a message from its client,
S sends the message and sets a timer. To detect when the medium has lost a
message, S also appends a 1-bit sequence number (initially 1) to each message
it sends out. There are then three possibilities:

ž S receives an acknowledgment from ABPReceiver R with the same sequence
number. If this happens, the sequence number is incremented (modulo 2),
and S is ready to accept the next message from its client.

ž S receives an acknowledgment with the wrong sequence number. In this
case S resends the message (with the original sequence number), sets a
timer, and waits for another acknowledgment from R.

ž S gets a timeout from the timer while waiting for an acknowledgment. In
this case, S resends the message (with the original sequence number), sets
a timer, and waits for an acknowledgment from R.

An ABPReceiver R receives a message and checks that the message has the
expected sequence number (initially, 1). There are two possibilities:

ž R receives a message with a sequence number that matches the sequence
number that R expects. If this happens, R delivers the message to its client
and sends an acknowledgment to S. The acknowledgment contains the same
sequence number that R received. R then increments the expected sequence
number (modulo 2) and waits for the next message.

ž R receives a message but the sequence number does not match the sequence
number that R expects. In this case, R sends S an acknowledgment that
contains the sequence number that R received (i.e., the unexpected number)
and then waits for S to resend the message.

Note that in both cases, the acknowledgment sent by R contains the sequence
number that R received.

Communication between the sender and its client, and the receiver and its
client, is through shared link channels. Class link was presented in Chapter 5.
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public final class abp {
public static void main(String args[]) {

link nextMessage = new link();
source client1 = new source(nextMessage);
ABPSender sender = new ABPSender(nextMessage);
link deliver = new link();
destination client2 = new destination(deliver);
ABPReceiver receiver = new ABPReceiver(deliver);
client1.start(); client2.start(); sender.start(); receiver.start();

}
}
final class source extends TDThreadD {

private link nextMessage;
public source(link nextMessage) {this.nextMessage = nextMessage;}
public void run() {nextMessage.send("one"); nextMessage.send("two");
nextMessage.send("three"); }

}
final class destination extends TDThreadD {

private link deliver;
public destination(link deliver) {this.deliver = deliver;}
public void run() {

String msg;
msg = (String) deliver.receive(); System.out.println(msg);
msg = (String) deliver.receive(); System.out.println(msg);
msg = (String) deliver.receive(); System.out.println(msg);

}
}
final class ABPSender extends TDThreadD {

private link nextMessage;
private TCPSender messageSender;
private TCPUnreliableSelectableMailbox ackMailbox; // loses 50% of the acks
private final int receiverPort = 2022; private final int senderPort = 2020;
private String receiverHost = null; private int sequenceNumber = 1;
public ABPSender(link nextMessage) {this.nextMessage = nextMessage;}
public void run() {

try {
receiverHost = InetAddress.getLocalHost().getHostName();
ackMailbox = new TCPUnreliableSelectableMailbox (senderPort);
messageSender = new TCPSender(receiverHost,receiverPort);
selectiveWait select = new selectiveWait();
selectiveWait.delayAlternative delayA = select.new

delayAlternative(3000);
select.add(ackMailbox); // alternative 1

Listing 6.18 Classes ABPSender and ABPReceiver and their clients.
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select.add(delayA); // alternative 2
ackMailbox.guard(true);
delayA.guard(true);
while (true) {

// accept message from client 1
String nextMsg = (String) nextMessage.receive();
abpPacket packet = new abpPacket(nextMsg,sequenceNumber);
messageParts msg = new messageParts(packet);
boolean receivedAck = false;
while (!receivedAck) {

messageSender.send(msg); // (re)send message to receiver
switch (select.choose()) {

case 1: messageParts m = ackMailbox.receive();
// receive ack
int ackNumber = ((Integer)m.obj).intValue();
if (ackNumber == sequenceNumber) {

receivedAck = true;
}
break;

case 2: delayA.accept(); // timeout
break;

}
}
sequenceNumber = (sequenceNumber+1)%2; // increment mod 2

}
}
catch (InterruptedException e) {e.printStackTrace();}
catch (UnknownHostException e) {e.printStackTrace();}
catch (TCPChannelException e) {e.printStackTrace();}

}
}
final class ABPReceiver extends TDThreadD {

private link deliver;
private TCPSender ackSender;
private TCPUnreliableMailbox messageMailbox; // loses 50%of the messages
private final int receiverPort = 2022;
private final int senderPort = 2020;
private String senderHost = null;
private int expectedSequenceNumber = 1;
public ABPReceiver(link deliver) {this.deliver = deliver;}
public void run() {

try {
senderHost = InetAddress.getLocalHost().getHostName();

Listing 6.18 (continued )
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messageMailbox = new TCPUnreliableMailbox (receiverPort);
ackSender = new TCPSender(senderHost,senderPort);
while (true) {

// receive message from sender
messageParts msg = (messageParts) messageMailbox.receive();
abpPacket packet = (abpPacket) msg.obj;
if (packet.sequenceNumber == expectedSequenceNumber) {

deliver.send(packet.obj); // deliver message to client 2
msg = new messageParts(new

Integer(packet.sequenceNumber));
ackSender.send(msg); // send ack to sender
expectedSequenceNumber = (expectedSequenceNumber+1)%2;

}
else {

msg = new messageParts(new
Integer(packet.sequenceNumber));

ackSender.send(msg); // resend ack to sender
}

}
}
catch (UnknownHostException e) {e.printStackTrace();}
catch (TCPChannelException e) {e.printStackTrace();}

}
}
class abpPacket implements Serializable{

public abpPacket(Object obj,int sequenceNumber) {
this.obj = obj;this.sequenceNumber = sequenceNumber;

}
public Object obj; // message
public int sequenceNumber; // sequence number: 0 or 1

}

Listing 6.18 (continued )

The sender and receiver threads communicate using TCPSender and TCPMailbox
objects, and a selectable asynchronous mailbox called TCPSelectableMailbox.
The delayAlternative in the sender’s selective wait statement allows the sender
to timeout while it is waiting to receive an acknowledgment from the receiver.

To simulate the operation of ABP over an unreliable medium, we have mod-
ified classes TCPMailbox and TCPSelectableMailbox so that they randomly
discard messages and acknowledgments sent between the sender and receiver.
These unreliable mailbox classes are called TCPUnreliableMailbox and TCPUn-
reliableSelectableMailbox. Figure 6.19 shows one possible flow of messages
through the ABP program. In this scenario, no message or acknowledgment is
lost. In Figure 6.20, the ABPSender’s message is lost. In this case, the ABPSender
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Client 1 ABPSender ABPReceiver Client 2

accept msg

send msg receive msg

deliver

send ackreceive ack

Figure 6.19 ABP scenario in which no messages or acknowledgements are lost.
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Figure 6.20 ABP scenario with no lost message or acknowledgement.
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Figure 6.21 ABP scenario with a spurious timeout.

receives a timeout from its timer and resends the message. In Figure 6.21, the
ABPSender’s message is not lost, but the ABPSender still receives a timeout
before it receives an acknowledgment. In this case, the ABPReceiver delivers
and acknowledges the first message but only acknowledges the second. The
ABPSender receives two acknowledgments, but it ignores the second one.
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6.5 TESTING AND DEBUGGING DISTRIBUTED PROGRAMS

A tracing and replay technique for shared memory channels was presented in
Chapter 5. That same technique can be applied here with certain modifica-
tions that are necessary in a distributed environment. We begin by defining
SYN-sequences for distributed Java programs that use classes TCPSender and
TCPMailbox for message passing. Afterward, we present solutions to the tracing,
replay, and feasibility problems. We did not implement reachability testing for the
TCPSender and TCPMailbox classes. The overhead of running in a distributed
environment, including the cost of open and closing connections and detecting
termination, would slow down reachability testing significantly. Still, it could be
done since tracing, replay, and timestamping have already been implemented. On
the other hand, it is easy to transform a program that uses the TCP classes into
one that uses the channel classes in Chapter 5. This allows distributed algorithms
to be tested in a friendlier environment.

Let DP be a distributed program. We assume that DP consists of multiple Java
programs and that there are one or more Java programs running on each node
in the system. Each Java program contains one or more threads. These threads
use TCPSender and TCPMailbox objects to communicate with threads in other
programs and possibly on other nodes. Threads in the same Java program can
communicate and synchronize using shared variables and the channel, semaphore,
or monitor objects presented in previous chapters. Shared variable communication
and synchronization can be traced, tested, and replayed using the techniques
described previously. Here, we focus on message passing between programs on
different nodes.

6.5.1 Object-Based Sequences

The SYN-sequence definitions in this chapter are similar to the definitions pre-
sented in Chapter 5 for shared channel objects. We begin by defining an object-
based SYN-sequence, which means that there is one SYN-sequence for each
synchronization object in the program. The synchronization objects in a dis-
tributed Java program DP are its TCPMailbox objects. The threads in DP execute
synchronization events of the following four types:

ž Connection. A connection is created between a TCPSender object and its
associated TCPMailbox object by calling connect() on the TCPSender.
(The host address and port number of a TCPMailbox is associated with
a TCPSender object when the TCPSender object is constructed.)

ž Arrival. A message M is sent by a thread that calls operation send(M)
on a TCPSender object. The arrival of message M at the corresponding
TCPMailbox occurs some time after M it is sent. When message M arrives,
it is queued in the message buffer of the TCPMailbox object.

ž Receive. A message is received by a thread that calls operation receive()
on a TCPMailbox object. A receive() operation withdraws and returns a
message from the message buffer of the TCPMailbox object.
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ž Close. A connection between a TCPSender object and its associated TCP-
Mailbox object is closed by calling close() on the TCPSender object.

We refer to these events as CARC (ConectArrivalReceiveClose) events.
Notice that there are arrival events but no send events. This is because it is

the order in which messages arrive that determines the result of an execution, not
the order in which messages are sent. This list of event types hides some of the
complexity of TCP-level message passing. For instance, several TCP message
passing events occur during the execution of operations connect() and close().
Both operations involve the exchange of multiple TCP messages as part of a
handshaking process that occurs when a TCP connection is opened or closed.
As another example, a send() operation may require a TCP packet to be sent and
then resent multiple times before it arrives. Similarly, TCP acknowledgments are
issued to the sender when a message arrives at its destination. None of these
TCP-level message passing events appear in SYN-sequences of programs using
TCPSender and TCPMailbox objects.

To illustrate the four types of CARC events, consider the distributed bounded
buffer program in Listing 6.22. This is the program in Listing 6.3 with two
minor modifications for tracing, testing, and replay: (1) The Producer, Buffer, and
Consumer programs use TCPSender and TCPMailbox objects named “deposit”
and “withdraw” to pass messages. The names are assigned when the objects
are constructed. (2) Classes Producer, Buffer, and Consumer inherit from class
TDThreadD, which is class TDThread modified for distributed programs.

Figure 6.23 shows a diagram of the three threads in Listing 6.22, their thread
IDs, and the TCPSender and TCPMailbox objects they use to communicate with
each other. Figure 6.24 shows part of a feasible sequence of connect, arrival,
receive, and close events for this program.

An object-based CARC-event for a TCPMailbox M is denoted by

(threadID, orderNumber, eventType)

where

ž threadID is the ID of the thread that executed this event. This means that
this thread sent a message that arrived at mailbox M , or opened or closed
a connection with M , or received a message from M .

ž orderNumber is the order number of the thread that executed this event,
which gives the relative order of this event among all of the thread’s CARC-
events.

ž eventType is the type of this event, which is either connection, arrival,
receive, or close.

Technically, there is no sending thread involved in a receive() operation. This
is because a receive() operation only withdraws a message from the message
buffer of a TCPMailbox object, as opposed to actually receiving a message over
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import java.net.*;
public final class Producer extends TDThreadD {

public static void main (String args[]) {(new Producer()).start();}
public void run() {

final int bufferPort = 2020;
String bufferHost = null;
try {

bufferHost = InetAddress.getLocalHost().getHostName();
TCPSender deposit = new TCPSender(bufferHost,bufferPort,"deposit");
// assign name ‘‘deposit’’
deposit.connect();
for (int i=0; i<3; i++) {

System.out.println("Producing"+ i);
messageParts msg = new messageParts(new Message(i));
deposit.send(msg);

}
deposit.close();

}
catch (UnknownHostException e) {e.printStackTrace();}
catch (TCPChannelException e) {e.printStackTrace();}

}
}
public final class Buffer extends TDThreadD {

public static void main (String args[]) {(new Buffer()).start();}
public void run() {

final int bufferPort = 2020; final int consumerPort = 2022;
try {

String consumerHost = InetAddress.getLocalHost().getHostName();
TCPMailbox deposit = new TCPMailbox(bufferPort,"deposit");
TCPSender withdraw = new

TCPSender(consumerHost,consumerPort,"withdraw");
withdraw.connect();
for (int i=0; i<3; i++) {

messageParts m = (messageParts) deposit.receive();
withdraw.send(m);

}
withdraw.close(); deposit.close();

}
catch (UnknownHostException e) {e.printStackTrace();}
catch (TCPChannelException e) {e.printStackTrace();}

}
}

Listing 6.22 Distributed bounded-buffer program in Listing 6.4 modified for tracing,
testing, and replay.
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public final class Consumer extends TDThreadD {
public static void main (String args[]) { (new Consumer()).start();}
public void run() {

final int consumerPort = 2022;
try {

TCPMailbox withdraw = new TCPMailbox(consumerPort,"withdraw");
// name is ‘‘withdraw’’
for (int i=0; i<3; i++) {

messageParts m = (messageParts) withdraw.receive();
Message msg = (Message) m.obj;
System.out.println("Consumed "+ msg.number);

}
withdraw.close();

}
catch (TCPChannelException e) {e.printStackTrace();}

}
}

Listing 6.22 (continued )

Producer Thread (ID = 1) Consumer Thread (ID = 3)

Buffer Thread (ID = 2)

TCPSender
deposit

TCPSender
withdraw

TCPMailbox
withdraw

TCPMailbox
deposit

Figure 6.23 Threads and mailboxes in the distributed bounded buffer program.

the network. The message withdrawn by a receive() operation is one that arrived
earlier. Thus, it was a previous arrival event that actually involved receiving the
message from the sender and depositing the message into the message buffer.
The order number of an arrival event is the order number of the send operation
that generated it.

Even though the sending thread is not specified on a receive() operation,
it is nevertheless helpful to include the sending thread’s ID in the information
recorded for receive events. This and other information, such as the vector times-
tamp generated for each event, is helpful for understanding and visualizing an
execution. For this reason, our trace tool generates a separate trace file containing
extra information about the execution.

Given the format above for an object-based CARC-event, a CARC-sequence
of TCPMailbox M is denoted by



TESTING AND DEBUGGING DISTRIBUTED PROGRAMS 357

Producer Buffer Consumer

deposit.connect() connection request accepted
by TCPMailbox deposit

withdraw.connect()
connection request accepted
by TCPMailbox withdraw

deposit.send(1)

arrival of message(1)
at TCPMailbox deposit

deposit.receive()

withdraw.send(1) arrival of message(1)
at TCPMailbox withdraw

withdraw.receive()
... ...

...deposit.close() close request accepted
by TCPMailbox deposit

withdraw.close() close request accepted
by TCPMailbox withdraw

Figure 6.24 Sequence of connect, arrival, receive, and close events for the program in
Listing 6.22.

M: ((threadID1, orderNumber1, eventType1), (threadID2, orderNumber2,
eventType2), ...)

where (threadIDi orderNumberi, eventTypei) denotes the ith, i > 0, CARC-event
in the CARC-sequence of M. An object-based CARC-sequence of a program
contains a CARC-sequence for each TCPMailbox in the program.

For a TCPSynchronousMailbox object M, there are connection and close
events as defined above, and a third event type:

ž SRsynchronization: a synchronization between a send() and receive() oper-
ation involving M.

No arrival events are recorded for a TCPSynchronousMailbox object since the
order of arrivals is implied by the order of SRsynchronization events.

An object-based connection, SRsynchronization, or close event (CSC-event)
for TCPSynchronousMailbox M is denoted by

(callingThreadID, calledThreadID, callerOrderNumber, calledOrderNumber,
eventType)
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where

ž callingThreadID is the ID of the thread that opened or closed a connection
with M , or the ID of the sending thread in an SRsynchronization at M.

ž calledThreadID is the ID of the receiving thread in an SRsynchronization at
M . There is no calledThread for connection or close events involving M .

ž callingOrderNumber is the order number of the callingThread, which gives
the relative order of this event among all the callingThread’s events.

ž calledOrderNumber is the order number of the calledThread, which gives
the relative order of this event among all the calledThread’s events. There
is no calledOrderNumber for connection and close events involving M .

ž eventType is the type of this event, which is either connection, SRsynchro-
nization, or close.

We will use the value −1 for the calledThread and calledOrderNumber in
connection and close events to indicate that the information about the called
thread is not applicable.

Thread-Based Sequences We now define two formats for thread-based CARC-
and CSC-sequences.

Format 1 A thread-based CARC- or CSC-event for thread T is denoted by

(mailbox, mailboxOrderNumber, eventType)

where

ž mailbox is the TCPMailbox name.
ž mailboxOrderNumber is the order number of mailbox.
ž eventType is the type of the event.

The order number of M gives the relative order of this event among all the events
involving M . The list of event types is the same as that above for object-based
events.

In Format 2, each TCPMailbox and TCPSynchronousMailbox has one receiv-
ing thread that is considered to be the “owner” of the mailbox. Since a mailbox
can have multiple receiving threads, one of the receivers must be arbitrarily cho-
sen to be the owner. If a thread T contains a selective wait, the selective wait will
choose among one or more TCPSelectableSynchronousMailboxes, all of which
we require to be owned by thread T . As in Chapter 5, we need to add a new
event type for selective waits:

ž elseDelay : selection of an else or delay alternative
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Since thread T is associated with all of the mailbox and elseDelay events gener-
ated by its selective waits, it is convenient to record these events in the sequence
for thread T .

Format 2 A thread-based CARC- or CSC-event for thread T, where T is the
owner of the mailbox associated with the event, is denoted by

(sendingThreadID, sendingThreadOrderNumber, mailbox, eventType)

where

ž sendingThreadID is the ID of the sending thread (and T is always the
receiver).

ž sendingThreadOrderNumber is the sending thread’s order number.
ž mailbox is the name of the mailbox.
ž eventType is the type of this event.

An SRsynchronization event representing a synchronization between send and
receive operations on a synchronous mailbox appears in the CSC-sequence for
the owning thread (i.e., the receiving thread). There is no corresponding send
event in the sequence for the sending thread. In Format 2, no order number is
required for mailbox M since the CARC- or CSC-sequence of M’s owning thread
T contains all of the events for mailbox M , and thus the order numbers for M

are given implicitly (i.e., the ith event for M implicitly has order number i).
Given the two formats for thread-based CARC- and CSC-events, we can now

define thread-based sequences for threads and for programs. For Format 1, a
CARC- or CSC-sequence of thread T is denoted by

T: ((mailbox1, mailboxOrderNumber1, eventType1), (mailbox2,
mailboxOrderNumber2, eventType2), ...).

For Format 2, a CARC- or CSC-sequence of thread T is denoted by

T: ( (sendingThreadID1, sendingThreadOrderNumber1, mailbox1, eventType1),
(sendingThreadID2, sendingThreadOrderNumber2, mailbox2, eventType2),

...).

A thread-based CARC- or CSC-sequence of a program contains a thread-based
CARC- or CSC-sequence for each thread in the program.

Totally Ordered Sequences When totally ordered sequences are used, there is
only one sequence for the program, and this sequence contains all the events for
all the mailboxes and threads. A CARC-event in a totally ordered sequence is
denoted by

(threadID, mailbox, eventType)
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where

ž mailbox is the name of the mailbox. Each mailbox is associated with a name
that is generated when it is constructed. (We assume that the user supplies
a name for each mailbox, or the name will be generated automatically as
we have done for other objects.)

ž threadID is the ID of the thread that executed this event. This means that
this thread sent a message to the mailbox, or opened or closed a connection
with the mailbox, or executed a receive() operation on the mailbox.

ž eventType is the type of this event, which is either connection, arrival,
receive, or close.

A CSC-event in a totally ordered sequence is denoted by

(callingThreadID, calledThreadID, mailbox, eventType)

which requires both the calling and the called thread to be specified for SRsyn-
chronization events.

A totally ordered CARC- or CSC-sequence contains no order numbers for
mailboxes or threads, since this information is specified implicitly by the ordering
of events in the sequence. A totally ordered CARC-sequence of program DP is
denoted as

DP: ((threadID1, mailbox1, eventType1), (threadID1, mailbox2, eventType2), ...)

A totally ordered CSC-sequence of program DP is denoted as

DP: ( (callingThreadID1, calledThreadID1, mailbox1, eventType1),
(callingThreadID2, calledThreadID2, mailbox2, eventType2), ...)

Node-Based Sequences The tracing, replay, and testing tools described in the
next section do not use any of the SYN-sequence formats that we have seen so
far. To simplify the tracing and replay process, these tools use one sequence for
each node in the system. There may be several programs running on a single
node. A totally ordered CARC-sequence of node N is denoted by

N: (eventType1, threadID1, mailbox1, orderNumber1), (eventType2, threadID2,
mailbox2, orderNumber2) . . .

where threadIDi is the ID of the thread that executed the ith event, orderNumberi

is the order number of the thread that executed the ith event, and mailboxi is
the name of the TCPMailbox involved in this event. Mailbox mailboxi must be
a mailbox created in a program on node N. This means that the only events in
a CARC-sequence of node N are events that involve some TCPMailbox created
on node N. If a thread running on node N is a calling thread for a connection,
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arrival, or close event, that event appears in the CARC-sequence of the receiving
node, not the CARC-sequence of N. Since the sender’s order number is recorded
in connection, arrival, and close events, the total order of the sending thread’s
events can be determined by analyzing the CARC-sequence(s) for all the nodes.

A totally ordered CSC-sequence of node N is denoted by

N: ( (eventType1, callingThreadID1, calledThreadID1, callerOrderNumber1,
calledOrderNumber1, mailbox1),

(eventType2, callingThreadID2, calledThreadID2, callerOrderNumber2,
calledOrderNumber2, mailbox2), ...)

Again, mailboxi must be a mailbox created in a program on node N.
A CARC- or CSC-sequence of a distributed program DP contains a CARC- or

CSC-sequence for each node in the program. Figure 6.25 shows a feasible CARC-
sequence of the distributed bounded buffer program in Listing 6.22. Since the
Producer, Buffer, and Consumer programs are all executed on the same node,
there is a single totally ordered sequence of CARC-events. If the three programs
were executed on three separate nodes, the CARC-sequence for the Producer’s
node would be empty, since the Producer is always the sending thread for the
events it is involved with.

A complete tracing and replay solution must consider how to handle any
exceptions that are raised during an execution. But the exceptions that are raised
by operations of the TCPSender and TCPMailbox classes may be raised due
to physical network failures that are impossible to replay. One strategy is to
simulate the exceptions during replay (i.e., throw an exception whenever the

(connection,2,withdraw,1) // buffer connects to mailbox withdraw
(connection,1,deposit,1) // producer connects to mailbox deposit
(arrival,1,deposit,2) // producer’s first message arrives at mailbox deposit
(receive,2,deposit,2) // buffer receives producer’s first message
(arrival,2,withdraw,3) // buffer’s first message arrives at mailbox withdraw
(receive,3,withdraw,1) // consumer receives first message from withdraw
(arrival,1,deposit,3) // producer’s second msg arrives at mailbox deposit
(receive,2,deposit,4) // buffer receives producer’s second message
(arrival,1,deposit,4) // producer’s third message arrives at mailbox deposit
(arrival,2,withdraw,5) // buffer’s second message arrives at withdraw
(receive,2,deposit,6) // buffer receives producer’s third message
(close,1,deposit,5) // producer closes connection with deposit
(arrival,2,withdraw,7) // buffer’s third message arrives at withdraw
(close,2,withdraw,8) // buffer closes connection with withdraw
(receive,3 ,withdraw,2) // consumer receives second message from withdraw
(receive,3,withdraw,3) // consumer receives third message from withdraw

Figure 6.25 CARC-sequence of the distributed bounded-buffer program in Listing 6.19.
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trace file shows that an exception is needed). To simplify tracing and replay, we
use a different strategy, which is to trace exceptions but not replay them. Testing
a program’s response to exceptions is important, but it can often be done by
simulating failures without running the entire system. If the response is simple,
such as terminating the program, this may be sufficient. Some errors, such as
assigning the same port number to multiple TCPMailboxes, are exasperating but
can be debugged without any replay. We are more interested in uncovering logic
errors that involve the coordinated behavior of several threads, such as the threads
in the distributed mutual exclusion program. Using our scheme, we can replay
an execution up to the point where an exception was generated, but we do not
replay the exception itself. Our solution can be extended to simulate exceptions
during testing and replay.

6.5.2 Simple Sequences

During deterministic testing, we check the feasibility of a (complete) CARC- or
CSC-sequence. Simpler sequences can be used for replay. A simple CARC-event
for a TCPMailbox is denoted as

(threadID)

where threadID is the ID of the thread that executed the CARC-event. A simple
CARC-sequence of node N is denoted by

(threadID1), (threadID2), ...

where the TCPMailbox for each event is some mailbox created on node N. A
simple CARC-sequence of a distributed program DP contains a simple CARC-
sequence for each node in the program. Figure 6.26 shows the simple CARC-
sequence corresponding to the complete CARC-sequence in Fig. 6.25.

For TCPSynchronousMailboxes and TCPSelectableSynchronousMailboxes, a
simple CARC-event is denoted by

(callingThreadID, calledThreadID)

which identifies the IDs of the calling and called threads for the event. For
connect and close events, there is no called thread. For elseDelay events, there
is no calling thread. In these cases, we use −1 as the ID of the missing calling
or called thread.

6.5.3 Tracing, Testing, and Replaying CARC-Sequences
and CSC-Sequences

The general technique that we use for tracing, replaying, or determining the
feasibility of a CARC-sequence is the same as the one used in Chapter 5. Before
a thread can perform a connect(), close(), send(), or receive() operation, it must
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(1)
(1)
(2)
(2)
(1)
(2)
(1)
(1)
(3)
(2)
(2)
(2)
(2)
(3)
(3)

Figure 6.26 Simple CARC-sequence of the distributed bounded-buffer program.

request permission from a control module. The control module is responsible for
reading a complete or simple CARC- or CSC-sequence and forcing the execution
to proceed according to this sequence.

Since we are tracing and replaying one sequence per node, we use one Con-
troller per node. The Controller is a separate program that runs on the node along
with the programs being tested and debugged. An alternative scheme would be to
use a single Controller for the entire system. The global Controller would trace
or replay a totally ordered sequence that contained all the events of all the nodes.
In such a scheme, the Controller is a bottleneck, but it is convenient to have a
single global trace of all the events when you are trying to understand an execu-
tion. Yet another alternative is to create a separate Controller for each mailbox
or each thread, based on the object and thread-based CARC- and CSC-sequence
definitions above. This creates a potentially large number of Controllers, and it
also complicates tracing and replay due to the complexity of addressing all of
the Controllers in a distributed environment.

Modifying Classes TCPSender and TCPMailbox Methods connect(), send(),
close(), and receive() in classes TCPSender and TCPMailbox are modified by
adding one or more calls to the Controller. In replay and test mode, meth-
ods connect(), send(), and close() shown below issue a call to the Controller
to request permission to exercise a connection, arrival, or close event, respec-
tively. The arguments on the calls to requestSRPermit() refer to the thread
ID, order number, and event type of the CARC- or CSC-event being exe-
cuted. Method requestSRPermit() sends a request message to the Controller and
waits for a reply indicating that permission has been received to execute the
operation.
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Methods connect(), send(), and close() do not trace any connection, arrival, or
close events during trace mode. Instead, these events are traced by the destination
TCPMailbox. To trace an event, the TCPMailbox needs the thread ID and order
number of the calling thread. Since this information is not provided by the under-
lying Java implementation of TCP, it must be sent as part of each operation.
Thus, method connect() sends this information immediately after the connec-
tion is opened; method close() sends this information immediately before the
connection is closed; and method send() sends this information with each user
message.

public void connect() throws TCPChannelException {
try {

if (mode == REPLAY)
// wait for permission from Controller
requestSRPermit(ID);

else if (mode == TEST)
// wait for permission from Controller
requestSRPermit(ID,orderNumber,CONNECT);

synchronized(lock) {
// open a connection
socket = new Socket( destinationHostname, destinationPort );
to = new ObjectOutputStream(socket.getOutputStream());
if (mode == TRACE || mode == REPLAY || mode == TEST) {

// send caller’s ID and order number
messageParts message = new messageParts(new nullObject());
message.caller = ID; message.orderNumber = orderNumber;
to.writeObject(message); to.flush();

}
}

} catch (...) {...}
}
public void close() throws TCPChannelException {

try {
if (mode == REPLAY)

// wait for permission from Controller
requestSRPermit(ID);

else if (mode == TEST)
// wait for permission from Controller
requestSRPermit(ID,orderNumber,CLOSE);

synchronized (lock) {
if (mode == TRACE || mode == REPLAY || mode == TEST) {

// send caller’s ID and order number
messageParts message = new messageParts(new nullObject());
message.caller = ID; message.orderNumber = orderNumber;
// this is a special control message
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message.isCLOSE = true;
// not a user-level message
to.writeObject(message); to.flush();

}
if (to != null) to.close(); // close the connection
if (socket != null) socket.close();

}
} catch(...) {...}

}

public void send( messageParts message) throws TCPChannelException{
try {

if (mode == REPLAY)
// wait for permission from Controller
requestSRPermit (ID);

else if (mode == TEST)
// wait for permission from Controller
requestSRPermit(ID,orderNumber,ARRIVAL);

synchronized (lock) {
message.caller = ID; message.orderNumber = orderNumber;
to.writeObject(message); to.flush(); // send the message

}
} catch(...) {...}

}

In replay and test mode, method receive() issues a call to the Controller to request
permission to exercise a receive event. Since the message buffer is FCFS, we are
sure that messages are withdrawn in the order in which they are deposited. Thus,
in replay and test mode, controlling the order in which messages arrive and the
order in which receive() operations are executed by receiving threads ensures that
a receive() operation withdraws the same message from the same sending thread
that was recorded during tracing. What happens after a message is withdrawn
from the message buffer depends on the execution mode. In trace mode, receive()
notifies the Controller that a receive event has occurred. In replay mode, receive()
calls nextEvent() to notify the Controller that the receive event has occurred and
that permission can be given for the next event in the sequence. In test mode,
receive() calls acknowledgeEvent(), which sends information about the receive
event to the Controller. The Controller checks whether the expected event has
occurred and, if so, gives permission for the next event in the sequence. If an
unexpected receive event occurs, the Controller issues a diagnostic message. If
the Controller does not receive a request for the next event within a specified
time period, the Controller assumes that the sequence is infeasible and issues a
diagnostic message.
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Note that the message buffer is a monitor object; thus, we are indirectly replay-
ing the monitor operations in the implementation of the TCPMailbox object. More
precisely, in method receive() we are replaying the order in which the receiving
threads call operation withdraw(). The deposit() operations are performed by the
internal threads of the TCPMailbox object and, as we show below, these deposit()
operations are implicitly replayed when we replay arrival events.

public messageParts receive( ) throws TCPChannelException {
try {

if (mode == REPLAY)
// wait for permission from Controller
requestSRPermit(ID);

else if (mode == TEST)
// wait for permission from Controller
requestSRPermit(ID,channelName,orderNumber,RECEIVE);

synchronized(lock) {
// withdraw a message
messageParts msg = buffer.withdraw();
if (traceOrReplay mode == TRACE)

// trace the receive event
traceEvent(ID,channelName,orderNumber,RECEIVE);

else if (mode == REPLAY)
// notify Controller that a receive event occurred
nextEvent();

else if ( mode == TEST)
// verify event with Controller
acknowledgeEvent(ID,channelName,orderNumber,RECEIVE);

return msg;
}

} catch(...) {...}
}

The run() method of the connectionHandler thread in TCPMailbox traces all
of the connection, arrival, and close events of the TCPMailbox object:

ž Method run() reads the connection information sent when a thread executes
method connect() and passes this information to the Controller.

ž Message arrivals are traced in method deposit() of the message buffer.
ž Method run() reads the information sent when a thread executes method

close() and passes this information to the Controller.

In replay mode, method nextEvent() notifies the Controller that an event has
occurred so that permission can be given for the next event in the sequence. In
test mode, method acknowledgeEvent() sends information about the connection,
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arrival , or close event that just occurred to the Controller, which checks whether
the event that occurred is the expected event.

class connectionHandler extends Thread {
...
public void run() {

try { // run
if (mode == REPLAY)

// notify Controller that the connection event occurred
nextEvent();

if (mode == TRACE || mode == REPLAY || mode == TEST) {
// read the connection information sent by the client
messageParts connectionInfo = ((messageParts) from.readObject());
if (mode == TRACE) // trace the connection event

traceEvent(connectionInfo.caller,connectionInfo.
callerOrderNumber,channelName,CONNECT);

else if (mode == TEST)
// verify the connection event with the Controller
acknowledgeEvent(connectionInfo.caller,connectionInfo.

callerOrderNumber,channelName,CONNECT);
}
messageParts closeMessage = null;
while (true) { // read objects until EOF

messageParts msg = null;
try {

msg = (messageParts) from.readObject(); // read message
if (!msg.isClose)

// if it’s a user message, deposit it in message buffer
buffer.deposit(msg);

else { // else it’s a close message; EOFException will be
// raised when the actual close occurs
// save close message information
closeMessage = new messageParts(new nullObject());
closeMessage.caller = msg.caller;
closeMessage.orderNumber = msg.orderNumber;
closeMessage.senderChannelName = msg.

senderChannelName;
closeMessage.isClose = true;

}
}

catch (EOFException e) { // raised when TCP connection is closed
if (mode == TRACE) // trace close event

traceEvent(closeMessage.caller,
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closeMessage.callerOrderNumber,channelName,
CLOSE);

else if (mode == REPLAY)
// notify Controller that a close event occurred
nextEvent();

else if (mode == TEST)
// verify the close event with the Controller
acknowledgeEvent(closeMessage.caller,closeMessage.

callerOrderNumber,channelName,CLOSE);
break;
}

}
from.close();
socket.close();

}
catch (..) {...}

}
}

// Method deposit() of the messageBuffer class
public void deposit( messageParts msg ) {

enterMonitor();
try { // trace arrival event

if (traceOrReplay == propertyParameters.TRACE) { // trace close event
String name = channelName;
traceEvent(msg.caller,called,msg.callerOrderNumber,-1,name,

ARRIVAL);
}
else if (traceOrReplay == propertyParameters.REPLAY) {

nextEvent(); // notify Controller that an arrival event occurred
}
else if (traceOrReplay==propertyParameters.TEST) {

String name = channelName;
// verify the arrival event with the Controller
acknowledgeEvent(msg.caller,-1,msg.callerOrderNumber, -1,

name, ARRIVAL);
}

}
catch (Exception e) {System.out.println("Trace/Replay Error.");

e.printStackTrace(); System.exit(1)};
if (fullSlots == capacity)

notFull.waitC();
buffer.addLast(msg);
++fullSlots;
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notEmpty.signalC_and_exitMonitor();
}

Modifying Class TCPSynchronousMailbox Tracing, testing, and replaying
CSC-sequences for TCPSynchronousMailboxes requires several minor changes.
Since there are no arrival events in CSC-sequences, no arrival events are traced
in the run() method of the connectionHandler. Instead, the receive() method
traces SRsynchronization events whenever a message is received.

The testing and replay code for TCPSynchronousMailbox is the same as the
code for TCPMailbox as shown above, except that arrival events are ignored.
The Controller module allows thread T to send a message when the next event
is an SRsynchronization with thread T as the sending thread. Connection and
close events are handled as shown above.

Controller Program The design of the Controller program is almost identical
to the Controller in Chapter 5. The major difference is that the Controller uses
vector timestamps to ensure that the CARC- or CSC-sequence it records in trace
mode is consistent with the causal ordering of events. The recording algorithm
was given in Section 6.3.6.

To handle communications with the user programs the Controller use four
TCPSelectableMailboxes. These mailboxes receive trace events, requests for per-
mission to execute events, acknowledgment events, and next message notifica-
tions. The ports used by these mailboxes are computed as offsets to a base port
(basePort + 0, basePort+1, etc.), where the base port is hard coded as port 4040.
The Controller maintains an open connection between itself and each of the other
nodes in the system. All the threads on a given node share that node’s connection
with the Controller and use the connection to send messages to the Controller.
During replay and testing, each node uses a TCPMailbox to receive replies from
the Controller. All the threads on a node share this TCPMailbox. By sharing
connections, the number of connections between each node and the Controller
is limited to one connection for tracing, three connections for replay, and four
connections for checking feasibility.

6.5.4 Putting It All Together

To trace, test, and debug executions, use the mode property to specify the function
(tracing, testing, or replay) to be performed. An execution of the distributed
mutual exclusion (DME) program in Listing 6.16 is traced as follows. First,
execute the Controller program. The Controller will start and then immediately
wait for trace events to arrive. Next, start each of the four user programs. The
commands to run the Controller and the DME programs on a single node are
shown below. (Run each program in a separate window.)

java–Dmode=trace–DprocessName=Node1 Controller
java–Dmode=trace–DstartID=1–DprocessName=process0

distributedMutualExclusion0
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java–Dmode=trace–DstartID=5–DprocessName=process1
distributedMutualExclusion1

java–Dmode=trace–DstartID=9–DprocessName=process2
distributedMutualExclusion2

java–Dmode=trace–DstartID=13–DprocessName=process3
distributedMutualExclusion3

The processName property specifies a unique name for each DME program.
This name is used as a prefix for all the names and files generated for that
program. The startID property specifies the starting value for the identifiers to
be generated for the threads in this program. Each of the DME programs requires
four thread IDs. One ID is required for the main thread and one for its helper.
There is also one ID reserved for each of the two TCPMailbox objects. This
ensures that space is allocated for four objects in the vector timestamps. Recall
that the timestamps are used to ensure that the Controller process records a
correct ordering of events during tracing. After 10 seconds of inactivity, the
Controller will assume that the execution has stopped and terminate itself.

In trace mode, the Controller creates several trace files:

ž Node1 channel-replay.txt contains a simple totally ordered CARC-sequence.
ž Node1 channel-test.txt contains a totally ordered CARC-sequence.
ž Node1 channel-trace.txt contains a trace of additional information, such as

the value of the vector timestamp for each event.

Since each DME program uses a monitor to synchronize the communication
between the main thread and its helper thread, trace files are also generated for
the monitor events as explained in Chapter 4. The trace files generated for the
monitor in the program named “process1” are:

ž process1 monitor-replay.txt //simple M-sequence of the monitor in
//process1

ž process1 monitor-test.txt //M-sequence of the monitor in process1
ž process1 monitorID.txt //monitor IDs for process1
ž process1 ThreadID.txt //thread IDs for process 1

A similar set of four files is produced for the monitors in the other three programs.
A simple SR-sequence is replayed by running the Controller and each user

program in replay mode:

java–Dmode=replay -DprocessName=Node1 Controller
java –Dmode=replay -DstartID=1–DprocessName=process0–DackPort=3030

distributedMutualExclusion0
java–Dmode=replay -DstartID=5–DprocessName=process1–DackPort=3032

distributedMutualExclusion1
java–Dmode=replay -DstartID=9–DprocessName=process2–DackPort=3034
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distributedMutualExclusion2
java–Dmode=replay -DstartID=13–DprocessName=process3–DackPort=3036

distributedMutualExclusion3

The processNames and startIDs must be the same ones used during tracing.
The ackPort property specifies a port number that the user program can use
to receive messages from the Controller program. Each program should use
a unique ackPort. The Controller will read the simple CARC-sequence in file
Node1 channel-replay.txt and force this sequence to occur during execution. The
simple M-sequences of the monitors are replayed as described in Chapter 4.

The feasibility of a CARC-sequence is determined by running the Controller
and each user program in test mode:

java–Dmode=test -DprocessName=Node1 Controller
java–Dmode=test -DstartID=1–DprocessName=process0–DackPort=3030

distributedMutualExclusion0
java–Dmode=test -DstartID=5–DprocessName=process1–DackPort=3032

distributedMutualExclusion1
java–Dmode=test -DstartID=9–DprocessName=process2–DackPort=3034

distributedMutualExclusion2
java–Dmode=test -DstartID=13–DprocessName=process3–DackPort=3036

distributedMutualExclusion3

The Controller will read the CARC-sequence in file Node1 channel-test.txt
and attempt to force this sequence to occur during execution. If the CARC-
sequence is infeasible, the Controller will issue a diagnostic and terminate. The
feasibility of the M-sequence is determined as described in Chapter 4. If the
mode is not specified, the default value for the mode property will turn tracing,
replay, and testing off.

Figure 6.27a shows a CARC-sequence of the DME program in which each
process enters its critical section once. We traced an execution and then grouped,
reordered, and commented the events to make the sequence easier to understand.
The M-sequence for the monitor in process1 is shown in Fig. 6.27b.

6.5.5 Other Approaches to Replaying Distributed Programs

Multithreaded and distributed Java applications can be replayed by extending the
Java Virtual Machine (JVM). Section 4.10.3 described a system called DejaVu
[Choi and Srinivasan 1998] that provides deterministic replay of multithreaded
Java programs on a single JVM. DejaVu has been extended to support distributed
Java applications. Distributed DejaVu [Konuru et al. 2000] uses a modified Java
Virtual Machine that records and replays nondeterministic network operations in
the Java TCP and UDP Socket API. Some of these operations are accept, connect,
read, write, available, bind, listen, and close. Multithreaded and distributed Java
applications can be traced and replayed using Distributed DejaVu without any
modifications to the source code.
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// Connect events issued by p0:
(connect,1,RequestsFor1,1), (connect,1,RepliesFor1,2),
(connect,1,RequestsFor2,3),
(connect,1,RepliesFor2,4), (connect,1,RequestsFor3,5), (connect,1,RepliesFor3,6),
// Connect events issued by p1:
(connect,5,RequestsFor0,1), (connect,5,RepliesFor0,2),
(connect,5,RequestsFor2,3),
(connect,5,RepliesFor2,4), (connect,5,RequestsFor3,5), (connect,5,RepliesFor3,6),
// Connect events issued by p2:
(connect,9,RequestsFor0,1), (connect,9,RepliesFor0,2),
(connect,9,RequestsFor1,3), (connect,9,RepliesFor1,4)
(connect,9,RequestsFor3,5), (connect,9,RepliesFor3,6),
// Connect events issued by p3:
(connect,13,RequestsFor0,1),(connect,13,RepliesFor0,2),
(connect,13,RequestsFor1,3),
(connect,13,RepliesFor1,4),(connect,13,RequestsFor2,5),
(connect,13,RepliesFor2,6),

(arrival,5,RequestsFor0,8), (arrival,9,RequestsFor0,8), (arrival,13,RequestsFor0,8)

// All three requests have arrived at p0.

(arrival,1,RequestsFor1,8), (arrival,9,RequestsFor1,9), (arrival,13,RequestsFor1,9)

// All three requests have arrived at p1.

(arrival,1,RequestsFor2,9), (arrival,5,RequestsFor2,9),
(arrival,13,RequestsFor2,10)
// All three requests have arrived at p2.

(arrival,1,RequestsFor3,10),
(arrival,5,RequestsFor3,10),(arrival,9,RequestsFor3,10)
// All three requests have arrived at p3.
// Now each process has had a request arrive from all the other processes.

(receive,8,RequestsFor1,1) // p1’s helper receives p0’s request and replies
(arrival,8,RepliesFor0,3) // p1’s helper’s reply arrives at p0
(receive,12,RequestsFor2,1) // p2’s helper receives p0’s request and replies
(arrival,12,RepliesFor0,3) // p2’s helper’s reply arrives at p0
(receive,16,RequestsFor3,1) // p3’s helper receives p0’s request and replies
(arrival,16,RepliesFor0,3) // p3’s helper’s reply arrives at p0
// Replies from all the processes have arrived at p0.

Figure 6.27 (a) Feasible CARC-sequence for the distributed mutual exclusion program
in Listing 6.19.
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(receive,12,RequestsFor2,4) // p2’s helper receives p1’s request and replies
(arrival,12,RepliesFor1,6) // p2’s helper’s reply arrives at p1
(receive,16,RequestsFor3,4) // p3’s helper receives p1’s request and replies
(arrival,16,RepliesFor1,6) // p3’s helper’s reply arrives at p1
// Replies from p2 and p3 have arrived at p1.

(receive,16,RequestsFor3,7) // p3’s helper receives p2’s request and replies
(arrival,16,RepliesFor2,9) // p3’s helper’s reply arrives at p2
// Reply from p3 has arrived at p2

(receive,4,RequestsFor0,1) // p0 receives requests from p1, p2, and p3
(receive,4,RequestsFor0,3) // but defers all replies since p0 has priority
(receive,4,RequestsFor0,5)

(receive,1,RepliesFor0,11) // p0 receives replies from p1, p2, and p3
(receive,1,RepliesFor0,12) // and enters/exits its critical section
(receive,1,RepliesFor0,13)

(arrival,1,RepliesFor1,15) // p0 sends all of its deferred replies
(arrival,1,RepliesFor2,16)
(arrival,1,RepliesFor3,17)

(receive,8,RequestsFor1,4) // p1’s helper receives requests from p2 and p3 but
(receive,8,RequestsFor1,6) // defers replies since p1 has priority over p2 and p3

(receive,12,RequestsFor2,7) // p2’s helper receives rqst from p3, but defers reply

(receive,5,RepliesFor1,11) // p1 receives all replies and enters/exits CS
(receive,5,RepliesFor1,12)
(receive,5,RepliesFor1,13)

(arrival,5,RepliesFor2,15) // p1 sends its deferred replies to p2 and p3
(arrival,5,RepliesFor3,16)

(receive,9,RepliesFor2,11) // p2 receives all replies and enters/exits CS
(receive,9,RepliesFor2,12)
(receive,9,RepliesFor2,13)

(arrival,9,RepliesFor3,15) // p2 sends its deferred reply to p3

(receive,13,RepliesFor3,11) // p3 receives all replies and enters/exits CS
(receive,13,RepliesFor3,12)
(receive,13,RepliesFor3,13)

Figure 6.27 (a) (continued )
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// Close events issued by p0:
(close,1,RequestsFor1,18), (close,1,RepliesFor1,19), (close,1,RequestsFor2,20),
(close,1,RepliesFor2,21), (close,1,RequestsFor3,22), (close,1,RepliesFor3,23),
// Close events issued by p1:
(close,5,RequestsFor0,17), (close,5,RepliesFor0,18), (close,5,RequestsFor2,19),
(close,5,RepliesFor2,20), (close,5,RequestsFor3,21), (close,5,RepliesFor3,22),
// Close events issued by p2:
(close,9,RequestsFor0,16), (close,9,RepliesFor0,17), (close,9,RequestsFor1,18),
(close,9,RepliesFor1,19), (close,9,RequestsFor3,20), (close,9,RepliesFor3,21),
// Close events issued by p3:
(close,13,RequestsFor0,15), (close,13,RepliesFor0,16),
(close,13,RequestsFor1,17),
(close,13,RepliesFor1,18), (close,13,RequestsFor2,19), (close,13,RepliesFor2,20).

Figure 6.27 (a) (continued )

(exit,5,Coordinator:chooseNumberAndSetRequesting,NA)
(entry,8,Coordinator:decideAboutDeferral,NA)
(exit,8,Coordinator:decideAboutDeferral,NA)
(entry,8,Coordinator:decideAboutDeferral,NA)
(exit,8,Coordinator:decideAboutDeferral,NA)
(entry,8,Coordinator:decideAboutDeferral,NA)
(exit,8,Coordinator:decideAboutDeferral,NA)
(entry,5,Coordinator:resetRequesting,NA)
(exit,5,Coordinator:resetRequesting,NA)

Figure 6.27 (b) Feasible M-sequence for the monitor of process1.

Distributed DejaVu does not try to address the feasibility problem. It would
be difficult for users to specify test sequences in DejaVu format since DejaVu
traces contain low-level implementation details about the network operations. By
contrast, the CARC-sequences used by our mailbox classes are at a higher level
of abstraction. Combining the precise and transparent control that is enabled at
the JVM level with the expressiveness of working at the source-code level is
probably the best approach.

FURTHER READING

Distributed programming paradigms are discussed in [Raynal 1988], [Andrews
2000], and [Garg 2002]. Several TCP libraries for Windows are described in [Pee
2001], [Smerka 2001], [Sobczak 2001], and [Schmidt and Huston 2002]. C++
classes for socket programming are described in [Smerka 2001] and [Sobczak
2001]. The Windows.NET framework provides a socket interface similar to the
Java library. It is not difficult to create C# and .NET versions of our tracing,
testing, and replay solutions.
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EXERCISES

6.1. For a given execution, let ei be an event in thread Ti and ej be an event in
a different thread Tj, i ! = j. If only asynchronous communication is used,
then ei ⇒ εj if and only if VT(ei)[i] ≤ VT(ej)[i]. Give a rule that can be
used to determine when events ei and ej are concurrent.

6.2. Show that if event e1 occurs before event e2 in real time, it is possible
that the integer timestamp for e1 is greater than the integer timestamp for
e2 [i.e., IT(e1)>IT(e2)]. (The real-time order of events e1 and e2 may not
be possible to know, but assume that e1 occurs before e2 in real time.)
Now consider vector timestamps. If VT(e1) > VT(e2), is it possible that
e1 occurred before e2 in real time?

6.3. Figure 6.28 shows a computation of processes P, Q, and R using asyn-
chronous communication. The messages in this computation are p1 → q1,
r1 → q2, q3 → p2, p3 → q4, and r2 → q5.

P

Q

R

p1 p2 p3

q1 q2 q3 q4 q5

r1 r2

Figure 6.28 A distributed computation.

(a) Determine the integer timestamp of each event in the computation
above.

(b) Determine the vector timestamp of each event in the computation
above. Each vector timestamp has three elements, with the first, sec-
ond, and third elements indicating logical clock values for P, Q, and
R, respectively.

(c) Indicate all of the events that are concurrent with P3.
(d) Indicate all of the events that are concurrent with R2.

6.4. The Alternating Bit Protocol (ABP) in Section 6.4.3 handles lost messages
but assumes that messages are not corrupted, duplicated, or reordered.
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Show that reordered messages are not handled correctly by ABP. Messages
are considered to be reordered when the order in which they are received
is not the same as the order in which they were sent.

6.5. The following is a description of a token-based distributed mutual exclusion
algorithm.

There is a single token shared by n threads. A thread cannot enter its
critical section unless it holds the token. A thread holding the token may
send it to any other thread:

ž The token has a vector [E1, E2, . . . , En], where Ei indicates the number
of times thread Ti has entered its critical section.

ž When thread Ti wants to enter its critical section for the (Mi)th time, it
sends the message “request(Ti,Mi)” to all the other threads in the system.
It then waits until it receives the token. At that time, it modifies the token
vector by setting Ei = Mi and enters its critical section.

ž After exiting the critical section, Ti examines the incoming request queue:

ž If the request queue is empty, Ti continues execution (i.e., Ti contin-
ues entering and exiting its critical section) until it receives a request
message.

ž If the request queue is nonempty, Ti does the following:

do {
remove the first request message (Tj,Mj);
if (Mj > Ej) // Ej is the vector value in the token that Ti is holding

Ti sends the token to Tj and exits the loop;
else Ti discards this useless request;

} until (the request queue is empty);

(a) Implement this algorithm using the same structure used in
the permission-based distributedMutualExclusion algorithm in Sec-
tion 6.4.1 of the notes. For this exercise, you may want to use the
channel classes from Chapter 5 instead of the TCP mailbox classes.

(b) This algorithm contains the statement

if (Mj > Ej) // Ej is the vector value in the token that Ti is holding
Ti sends the token to Tj and exits the loop;

else Ti discards this request;

If the comparison (Mj > Ej) is replaced with (Mj == Ej+1), is the
resulting algorithm correct?

(c) Based on this algorithm, a thread deletes old messages in its request
queue only when the thread has the token. But is it possible for a thread
to delete old messages when the thread does not have the token? If you
believe that it is possible, show how to delete as many old messages as
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possible when a thread does not have the token. Your solution cannot
involve a thread making a copy of the token before sending it to another
thread.

6.6. Suppose that there are two communicating processes. Process P1 sends
three messages to process P2, which receives all three messages. The
sends are nonblocking, and the order in which messages are received is not
necessarily the order in which they are sent. Figure 6.29 shows an incom-
plete space-time diagram (i.e., the arrows are missing) that describes such
a scenario. Assume that each si and rj event is timestamped with a vector
timestamp. Is it possible to use the timestamps to complete the space-time
diagram by drawing arrows between matching send and receive events?
For example, if we determine from the timestamps that the message sent
by s1 must have been received by receive event r5, we would draw an
arrow between s1 and r5: s1 → r5. Describe how to use the timestamps
to draw the arrows, or show that this cannot be done (i.e., that we cannot
always be certain how to draw the arrows based on the information in the
timestamps alone).

P1 P2

s1

s2

s3 r4

r5

r6

s1, s2, and s3 are
non-blocking sends
r4, r5, and r6 are
blocking receives

Figure 6.29 Distributed computation.

6.7. Show how to convert vector timestamps into integer timestamps. The inte-
ger timestamps that you generate do not have to have the values that would
be produced by the algorithm in Section 6.3.5. Just make sure that if event
s happens before event t , the integer timestamp of s is less than the integer
timestamp of t .

6.8. Distributed parking lot [Plouzeau and Raynal 1992]. Implement a dis-
tributed algorithm for the case where two gate threads (Gate1 and Gate2)
control access to a parking lot (Fig. 6.30). The gate threads must com-
municate by using message passing; no shared variable communication is
allowed between the gates. The automobile threads (Auto) call the gates
to enter and exit the parking lot. The size of the parking lot is 3. Denote
the number of automobiles that have entered the parking lots as “in,” and
the number of automobiles that have exited the parking lot as “out.” Then
the following global condition must always be true: in − out ≤ 3.
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Parking Lot

Gate 1 Gate 2

auto1 auto2 auto3 auto4 auto5

Figure 6.30 Distributed parking lot.

The Gate threads exchange messages about the count of automobiles
that have entered and exited through them. These messages are never lost
and they arrive in the order sent. The counters used by the Gates are:

ž in1 = number of automobiles that have entered through Gate1

ž in2 = number of automobiles that have entered through Gate2

ž out1 = number of automobiles that have exited through Gate1

ž out2 = number of automobiles that have exited through Gate2

Then the global condition above becomes in1 + in2 − (out1 + out2) ≤ 3.
Note that each gate has exact knowledge only about the value of its own
counters (e.g., Gate1 knows in1 and out1 but not Gate2’s counters). Thus,
neither Gate can evaluate the global condition exactly. Each Gate can,
however, maintain a “safe” approximation for the other Gate’s values. (For
example, if the value that Gate1 uses for in2 is always greater than or equal
to Gate2’s actual value of in2, Gate1 is safe from making errors.) Use a
simple request/reply protocol to make sure that each Gate maintains a safe
value for the other’s variables. (That is, the Gates will need to exchange
messages to coordinate their counters and to make sure that their messages
have been seen by the other Gate.)

Make sure you consider the case where the Gates have both sent a
request message. Is a deadlock possible in your program? Should one Gate
cancel its request? What if the both Gates cancel their requests? How can
a tie be broken? For this exercise, you may want to use the channel classes
from Chapter 5 instead of the TCP mailbox classes.

6.9. Implement classes TCPEntryClient and TCPEntryServer. Together, they
should provide the same interface as class Entry in Chapter 5, and support
client–server communication through methods call(), accept(), and reply().

Class TCPEntryClient encapsulates a socket and the stream-based code
for communicating with the server. A client creates a TCPEntryClient
object and uses it to send a serialized request object to the server and
receive a serialized reply object from the server:

TCPEntryClient requestAndReply = new
TCPEntryClient(serverHost,serverPort);

...
Message reply = (Message) requestAndReply.call(request);
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No connection is made with the server until a call() occurs. Class TCPEn-
tryServer encapsulates a ServerSocket and the stream-based code for com-
municating with clients. A server creates a TCPEntryServer object and
executes accept() to receive a message and reply() to send a reply:

TCPEntryServer requestAndReply = new TCPEntryServer(serverPort);
request = (Message) requestAndReply.accept();
requestAndReply.reply(result);

6.10. For diagram D5 in Fig. 6.13, determine the causal relation between the
following pairs of events: (n, o), (b, r), (p, z), (a, z), (a, n), (b, n), (c, n),
b, z), (n, w). For a given pair (e1, e2), indicate either e1 ⇒ e2, e2 ⇒ e1, or
e1 || e2. Justify your answers using rules (HB1)–(HB3) in Section 6.3.5.

6.11. Distributed mutual exclusion. The following questions refer to Listing 6.16:

(a) Suppose that method resetRequesting() is not in the Coordinator mon-
itor (i.e., remove the calls to enterMonitor() and exitMonitor from
this method). Suppose further that method deferrMessage() returns the
boolean value deferMessage immediately before the if-statement, so
that the statement “deferred[m.ID] = true;” is executed by the helper
thread whenever it receives a true return value from deferMessage().
Show that a deadlock is possible.

(b) Suppose that process m decides to enter its critical section and sends
a request message to process n. Process n sends a reply to process m

indicating that process n does not want to enter its critical section. Sup-
pose further that process n later decides to enter its critical section and
sends a request message to process m (and to all the other processes).
What happens if process n’s request message is received by process
m before process n’s earlier reply message is received by process m?



7
TESTING AND DEBUGGING
CONCURRENT PROGRAMS

Software development is a complex activity. Requirements are collected from
users and then analyzed to create a specification of what the software is expected
to do. Programs are designed and coded to satisfy the specification and then
maintained after they are delivered to the customer. The life cycle of a program
also includes testing and debugging phases. In fact, there are many development
activities that can produce executable programs of one sort or another: prototypes,
specifications, and designs all may be targeted for testing.

ž The purpose of testing is to find program failures.

A successful test is a test that causes a program to fail. Ideally, tests are designed
before the program is written. Designing good tests is not easy, but the thought
that goes into test design can find and fix potential failures before they are written
into the software.

The conventional approach to testing a program is to execute the program with
each test input selected once and then compare the test results with the expected
results. Performing this comparison manually is usually tedious, time consuming,
and error-prone, and is the hardest part of testing. The term failure is used when
a program produces unexpected results.

ž A failure is an observed departure of the external result of software operation
from software requirements or user expectations [IEEE90].

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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In earlier chapters we saw several special ways in which concurrent programs
can fail, including deadlock, livelock, starvation, and data races. Failures can be
caused by hardware or software faults.

ž A software fault (or “bug”) is a defective, missing, or extra instruction, or a
set of related instructions that is the cause of one or more actual or potential
failures.

Faults are the result of human errors. For example, an error in writing an if-
else statement may result in a fault that causes an execution to take a wrong
branch. If this execution produces the wrong result, it is said to fail; otherwise,
the result is coincidentally correct, and the internal state and path of the execution
must be examined to detect the error.

If a test input causes a program to fail, the program is executed again, with
the same input, in order to collect debugging information.

ž Debugging is the process of locating and correcting faults.

Since it is not possible to anticipate the information that will be needed to pinpoint
the location of a fault, debugging information is collected and refined over the
course of many executions until the problem is understood.

After the fault has been located and corrected, the program is executed again
with each of the previously tested inputs to verify that the fault has been corrected
and that in doing so, no new faults have been introduced. Such testing, called
regression testing, is also needed after the program has been modified during the
maintenance phase.

This cyclical process of testing, followed by debugging, followed by more test-
ing, is commonly applied to sequential programs. Together, testing and debugging
account for at least half of the cost of developing large software systems [Beizer
1979]. Unfortunately, this cyclical process breaks down when it is applied to
concurrent programs.

Let CP be a concurrent program. Multiple executions of CP with the same
input may produce different results. This nondeterministic execution behavior
creates the following problems during the testing and debugging cycle of CP.

Problem 1 When testing CP with input X, a single execution is insufficient
to determine the correctness of CP with X. Even if CP with input X has been
executed successfully many times, it is possible that a future execution of CP
with X will fail.

Problem 2 When debugging a failed execution of CP with input X, there is no
guarantee that this execution will be repeated by executing CP with X.

Problem 3 After CP has been modified to correct a fault detected during a failed
execution of CP with input X, one or more successful executions of CP with X
during regression testing does not imply that the detected fault has been corrected.
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Our general framework for understanding and solving these three problems
focuses on the synchronization behavior of CP. We assume that CP consists of
two or more concurrent processes or threads that communicate and synchronize
with each other via constructs such as semaphores, monitors, shared variables,
and message passing. An execution of CP is characterized by CP’s inputs and
the sequence of synchronization events that CP exercises, referred to as the
synchronization sequence (or SYN-sequence) of the execution. The definition
of a SYN-sequence is based on the programming language and the synchro-
nization constructs used in the program. We intentionally avoid dealing with
implementation-level concerns, such as the compiler, the virtual machine, or the
operating system, to keep our framework as abstract and as portable as possible.
Defining various types of SYN-sequences is the focus of Section 7.1. In later
sections, the general issues and problems that are encountered during testing and
debugging are discussed in terms of SYN-sequences. SYN-sequences are used
in Section 7.2 to define the paths of a concurrent program and in Section 7.3
to define program correctness and the types of faults in concurrent programs.
Section 7.4 describes several approaches to testing concurrent programs. One of
these approaches, reachability testing, is described in detail in Section 7.5. All
of these approaches were illustrated in earlier chapters.

7.1 SYNCHRONIZATION SEQUENCES OF CONCURRENT
PROGRAMS

The definition of a SYN-sequence can be language-based or implementation-
based, or a combination of both. A language-based definition is based on the
concurrent programming constructs available in a given programming language.
An implementation-based definition is based on the implementation of these con-
structs, including the interface with the run-time system, virtual machine, and
operating system. In this section we discuss language-based definitions of SYN-
sequences. In the following discussion, it is assumed that a concurrent program
has no real-time constraints and that all nonsynchronization constructs are deter-
ministic.

Threads in a concurrent program synchronize by performing synchronization
operations on synchronization objects, or SYN-objects. For example, threads may
perform P() and V() operations on semaphore objects, or send() and receive()
operations on channel objects. A synchronization event, or SYN-event, refers to
the execution of one of these operations. Thus, an execution of a concurrent
program consists of concurrent threads performing SYN-events on SYN-objects.
The order in which SYN-events are executed is nondeterministic.

7.1.1 Complete Events vs. Simple Events

Consider the program in Listing 7.1, which uses the synchronous mailboxes
defined in Chapter 5. The order in which the messages sent by Thread1 and
Thread4 will arrive at mailboxes C1 and C2 is unpredictable. Also, the order in
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mailbox C1, C2; // synchronous mailboxes
Thread1 Thread2 Thread3 Thread4

C1.send(msg1); msg = C1.receive(); msg = C1.receive(); C1.send(msg1);
C2.send(msg2); msg = C2.receive(); msg = C2.receive(); C2.send(msg2);

Listing 7.1 Message passing using synchronous mailboxes.

which Thread2 and Thread3 will receive messages from these mailboxes is unpre-
dictable. In general, a complete characterization of an execution of a concurrent
program requires information to be recorded about the SYN-events exercised
during this execution. This information can be used to replay an execution or to
determine whether a particular SYN-sequence can or cannot occur.

For a concurrent programming language or construct, its complete SYN-event
set is the set of all types of SYN-events. For example, for the monitor construct in
Chapter 4, the types of SYN-events included entering and exiting a monitor and
executing a wait or signal operation. The complete SYN-event format is the for-
mat used for recording information about each type of SYN-event. The complete
SYN-event set and SYN-event format are not necessarily unique, but they must
provide sufficient information to describe the synchronizations between threads.
In general, the complete SYN-event format contains the following information:

(thread name(s), event type, object name, additional information)

which indicates that a specific thread, or a pair of synchronizing threads, exe-
cutes a SYN-event of a specific type on a specific SYN-object. Some additional
information may be recorded to capture important details about the event, such
as the event’s vector timestamp (see Section 6.3.6).

Notice that the information recorded about a SYN-event may not include the
values of the messages that are received or the values of the shared variables
that are read or written. These values may or may not be needed for a partic-
ular task. For example, they are not needed for program replay, since they will
be (re)computed during the normal course of execution. Omitting these values
from SYN-events reduces the amount of space required for saving traces. On
the other hand, we may need to know something about these values in order
to assess the correctness of an execution. In this case, some representation of
these values can be included as part of the additional information recorded about
SYN-events.

Example 1 The SYN-events for the program in Listing 7.1 involve sending and
receiving messages through mailboxes and are called SR-events. Assume that we
list all of the SYN-events of an execution as a single linear sequence. Then the
complete format of an SR-event is

(sending thread, receiving thread, mailbox name, event type).
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One possible complete SR-sequence of this program is

(Thread1, Thread2, C1, SendReceive-synchronization),
(Thread4, Thread3, C1, SendReceive-synchronization),
(Thread1, Thread2, C2, SendReceive-synchronization),
(Thread4, Thread3, C2, SendReceive-synchronization).

SR-sequences for links, ports, and mailboxes were defined in Section 5.5.1.

The complete SYN-sequence of an execution of program CP is the sequence
of SYN-events exercised during this execution, where the information recorded
about each SYN-event appears in the complete SYN-event format. The complete
SYN-sequence of an execution of CP provides sufficient information to resolve
any sources of nondeterminism during execution. For example, if two threads
send messages at the same time to the same mailbox, the SYN-sequence specifies
the order in which the messages will be received. Consequently, the result of an
execution of CP is determined by CP and the input and complete SYN-sequence
of this execution. In Section 7.3 we also see that the input and complete SYN-
sequence of an execution together determine the path exercised by the execution.

Some of the information recorded in a complete SYN-event is not needed
for program replay. Since the SYN-sequences that we use for replay tend to
be simpler than other types of SYN-sequences, we use the term simple SYN-
sequence to refer to a SYN-sequence that is used for replay. Just as complete
SYN-sequences do, a simple SYN-sequence of CP provides sufficient information
to resolve any sources of nondeterminism during execution. Thus, the result of
an execution of CP is determined by CP and the input and simple SYN-sequence
of this execution.

Example 2 For the program in Listing 7.1, the format of a simple SR-event is

(Sender, Receiver).

The simple SR-sequence corresponding to the complete SR-sequence in Exam-
ple 1 is

(Thread1, Thread2),
(Thread4, Thread3),
(Thread1, Thread2),
(Thread4, Thread3).

Simple SR-sequences were defined in Section 5.5.2.

Notice that the first simple SR-event in Example 2 does not specify which
channel is accessed by Thread1 and Thread2. During replay, the first channel
that Thread1 and Thread2 access is guaranteed to be C1, assuming that we have
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not made any changes to the program in Listing 7.1. Since the particular channel
accessed by a thread does not need to be controlled or checked during replay,
the channel name “C1” does not appear in the first simple SR-event. However,
during replay there is a need to control which pair of threads, Thread1 and
Thread2 or Thread4 and Thread3, access channel C1 first. Thus, thread names
appear in the simple SR-events recorded during an execution. During replay,
the threads are forced to access the channels in the order given in the recorded
sequence.

The situation is different during testing. When we test the program in List-
ing 7.1, we need to determine whether the threads are synchronizing on the
correct channels, in the correct order. In this case, whether Thread1 and Thread2
can and should synchronize on channel C1 is a question that we need to answer.
To check this, we use complete SR-events, which specify the threads and the
channel name for each synchronization event, and a complete SR-sequence, which
specifies a synchronization order. During execution, we try to force the threads
to synchronize in the specified order, on the specified channels. If the results are
not as expected, either there is a problem with the program or we made a mistake
when we generated the test sequence.

In general, it takes less information to replay an execution than to determine
whether an execution is allowed by a program. But information that is ignored
during both of these activities may be important when we are performing others.
Thus, we define different types of SYN-sequences for the various activities that
occur during testing and debugging.

7.1.2 Total Ordering vs. Partial Ordering

A SYN-sequence can be a total or partial ordering of SYN-events. The SYN-
sequences in Examples 1 and 2 were totally ordered. A totally ordered SYN-
sequence of a program is a single, linear sequence of complete or simple SYN-
events. Such a sequence contains all the events exercised by all the threads in the
program. When a concurrent program is tested or debugged using totally ordered
SYN-sequences, events must be executed one by one, in sequential order, which
can have a significant impact on performance. This problem can be alleviated if
a partially ordered SYN-sequence is used instead.

A partially ordered SYN-sequence is actually a collection of sequences—there
is one sequence for each thread or SYN-object in the program. In a partially
ordered sequence, SYN-events that are concurrent are unordered. This means that
concurrent events can be executed at the same time, which speeds up execution.
Assume that a concurrent program CP consists of threads T1, T2, . . . , Tm, m > 0,
and SYN-objects O1, O2, . . . , and On, n > 0. A partially ordered SYN-sequence
of CP may be thread- or object-based:

Thread-Based Sequences The general format of a partially ordered thread-based
SYN-sequence of CP is (S1, S2, . . . , Sm), where sequence Si, 1 ≤ i ≤ m, denotes
a totally ordered sequence of SYN-events of thread Ti. Each event in Si has thread
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Ti as the executing thread and has the general format (object name, object order
number, event type, other necessary information). An object’s order number is
used to indicate the relative order of this event among all the events executed on
the object. That is, an event with object order number i is the ith event executed
on the object.

Object-Based Sequences The general format of an partially ordered object-based
SYN-sequence of CP is (S1, S2, . . . , Sn), where sequence Sj, 1 ≤ j ≤ n, denotes a
totally ordered sequence of SYN-events on object Oj. Each event in Sj has object
Oj as the SYN-object and has the general format (thread name(s), thread order
number(s), event type, other necessary information). A thread’s order number is
used to indicate the relative order of this event among all the events executed by
the thread.

Thread-based sequences are a natural way to visualize message-passing pro-
grams. The space-time diagrams in Chapter 6 are partially ordered thread-based
sequences. Object-based sequences are helpful for understanding the behavior of
an individual SYN-object. For example, object-based M-sequences were defined
in Chapter 4 for monitors. Program replay can be implemented using either
thread- or object-based sequences. Implementation details and the desired user
interface may favor one approach over the other.

Example 3 For the program in Listing 7.1, the synchronization objects are syn-
chronous mailboxes. The format of an SR-event in an object-based sequence is

(sending thread, receiving thread, sender’s order number, receiver’s order number,
eventType)

where

ž the sending thread executed the send operation.
ž the receiving thread executed the receive operation.
ž the sender’s order number gives the relative order of this event among all

of the sending thread’s events.
ž the receiver’s order number gives the relative order of this event among all

of the receiving thread’s events.
ž eventType is the type of this send–receive event.

One feasible object-based SR-sequence of this program is

Sequence of mailbox C1: (Thread1, Thread2, 1, 1, SendReceive-synchronization),
(Thread4, Thread3, 1, 1, SendReceive-synchronization).

Sequence of mailbox C2: (Thread1, Thread2, 2, 2, SendReceive-synchronization),
(Thread4, Thread3, 2, 2, SendReceive-synchronization).
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A thread-based SR-event for thread T is denoted by

(channel name, channel’s order number, eventType)

where

ž the channel name is the name of the channel.
ž the channel order number gives the relative order of this event among all

the channel’s events.
ž eventType is the type of this send–receive event.

The thread-based SR-sequence corresponding to the object-based sequence
above is

Sequence of Thread1: (C1, 1, SendReceive-synchronization),
(C2, 1, SendReceive-synchronization).

Sequence of Thread2: (C1, 1, SendReceive-synchronization),
(C2, 1, SendReceive-synchronization).

Sequence of Thread3: (C1, 2, SendReceive-synchronization),
(C1, 2, SendReceive-synchronization).

Sequence of Thread4: (C2, 2, SendReceive-synchronization),
(C2, 2, SendReceive-synchronization).

Thread- and object-based SR-sequences were defined in Section 5.5.
Totally ordered SYN-sequences can be converted into partially ordered object-

and thread-based SYN-sequences. Object- and thread-based sequences can be
converted into each other. Note that the totally and partially ordered SYN-
sequences of an execution should have the same happened-before relation. Chap-
ter 6 described how to use integer timestamps to translate a partially ordered
sequence into a totally ordered sequence.

7.2 PATHS OF CONCURRENT PROGRAMS

In this section we address the relationship between the paths and SYN-sequences
of a concurrent program. First we define what a path is in a concurrent program.
Based on this definition, we then provide a brief overview of path-based test
coverage criteria for sequential programs and describe several path-based criteria
for concurrent programs.

7.2.1 Defining a Path

An execution of a sequential program exercises a sequence of statements, referred
to as a path of the program. The result of an execution of a sequential program
is determined by the input and the sequence of statements executed during the
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port M; // synchronous port
Thread1 Thread2 Thread3

(1) M.send(A); (2) M.send(B); (3) X = M.receive();
(4) Y = M.receive();
(5) output the difference (X –Y) of X and Y

Listing 7.2 Program CP using synchronous communication.

execution. However, this is not true for a concurrent program. Consider program
CP in Listing 7.2, which uses synchronous communication.

Assume that an execution of CP with input A = 1 and B = 2 exercises the
totally ordered sequence of statements (1), (2), (3), (4), (5). Since this sequence
does not specify whether the message sent at statement (1) is received at statement
(3) or at statement (4), it does not provide sufficient information to determine
the output of the execution. Note that this same problem exists if we consider
partially ordered sequences. That is, every execution of CP executes the following
partially ordered sequence of statements:

Sequence of Thread1: (1)
Sequence of Thread2: (2)
Sequence of Thread3: (3), (4), (5)

But this partially ordered sequence does not provide enough information to deter-
mine the result of the execution.

Based on this discussion, we now define a proper definition of a path. A
totally ordered path of a concurrent program is a totally ordered sequence of
statements plus additional information about any synchronization events that are
generated by these statements. For example, a totally ordered path of program
CP in Listing 7.2 is

((1), (2), (3, Thread1), (4, Thread2), (5)).

Events (3, Thread1) and (4, Thread2) denote that the receive statements in (3)
and (4) receive messages from Thread1 and Thread2, respectively.

Of course, information about the synchronization events of a path can be
specified separately in the form of a SYN-sequence. Thus, a totally ordered path
of CP is associated with a SYN-sequence of CP, referred to as the SYN-sequence
of this path. Assume that CP contains threads T1, T2, . . ., and Tn. A partially
ordered path of CP is (P1, P2, . . . , Pn), where Pi, 1 ≤ i ≤ n, is a totally ordered
path of thread Ti. A partially ordered path of CP is associated with the partially
ordered SYN-sequence of this path. In the following discussion, unless otherwise
specified, SYN-sequences of CP are thread-based and totally or partially ordered.

A path (SYN-sequence) of CP is said to be feasible for CP with input X if
this path (SYN-sequence) can be exercised by some execution of CP with input
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X. A path (SYN-sequence) of CP is said to be feasible for CP if this path (SYN-
sequence) can be exercised by some execution of CP. The domain of a path or
SYN-sequence S of CP is a set of input values. Input X is in the domain of a
path or SYN-sequence S if S is feasible for CP with input X. The domain of an
infeasible path or SYN-sequence is empty.

The following relationships exist between the paths and SYN-sequences of CP:

1. If a path is feasible for CP with input X, the SYN-sequence of this path is
feasible for CP with input X.

2. If a partially ordered SYN-sequence S is feasible for CP with input X, there
exists only one partially ordered feasible path of CP with input X such that
the partially ordered SYN-sequence of this path is S. Thus, there exists a
one-to-one mapping between partially ordered feasible paths of CP with
input X and partially ordered feasible SYN-sequences of CP with input X.

3. If a totally ordered SYN-sequence S is feasible for CP with input X, there
exists at least one totally ordered feasible path of CP with input X such
that the totally ordered SYN-sequence of this path is S.

4. If two or more totally ordered feasible paths of CP with input X have the
same totally or partially ordered SYN-sequence, these paths produce the
same result and thus are considered to be equivalent.

5. The domains of two or more different partially ordered feasible paths of
CP are not necessarily mutually disjoint. This statement is also true for two
or more totally ordered feasible paths of CP. The reason is that CP with
a given input may have two or more different partially or totally ordered
feasible SYN-sequences.

6. If two or more different partially ordered feasible paths of CP have the
same partially ordered SYN-sequence, their input domains are mutually
disjoint. However, this statement is not true for totally ordered feasible
paths of CP (see Exercise 7.11).

We will illustrate relationship 5 with an example. Consider the following pro-
gram:

Thread1 Thread2 Thread3

(1) p1.send(); (1) p2.send(); (1) input(x);
(2) if (x)
(3) output(x);
(4) select
(5) p1.receive();
(6) p2.receive();
(7) or
(8) p2.receive();
(9) p1.receive();

(10) end select;
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One partially ordered path of this program is

Thread1: (1)
Thread2: (1)
Thread3: (1), (2), (3), (5,Thread1), (6,Thread2)

and another path is

Thread1: (1)
Thread2: (1)
Thread3: (1), (2), (3), (8,Thread2), (9,Thread1)

These paths are different, but the value of input x is true in both paths, so their
input domains are not disjoint. In sequential programs, paths that are different
have disjoint domains.

7.2.2 Path-Based Testing and Coverage Criteria

A number of test coverage criteria have been developed for sequential programs.
Coverage criteria are used to determine when testing can stop and to guide the
generation of input values for test cases. Structural coverage criteria focus on the
paths in a program. The all-paths criterion requires every path to be executed at
least once. Since the number of paths in a program may be very large or even
infinite, it may be impractical to cover them all. Thus, a number of weaker criteria
have been defined [Myers 1979]. The minimum structural coverage criterion is
statement coverage, which requires every statement in a program to be executed
at least once.

Some stronger criteria focus on the predicates in a program. The predicates in
if-else and loop statements divide the input domain into partitions and define
the paths of a program. Simple predicates contain a single condition which is
either a single Boolean variable [e.g., if (B)] or a relational expression [e.g., if
(e1 < e2)], possibly with one or more negation operators (!). Compound pred-
icates contain two or more conditions connected by the logical operators AND
(∧) and OR (∨) [e.g., if ((e1 < e2) ∧ (e2 < e3))]. Predicate coverage criteria
require certain types of tests for each predicate:

ž Decision coverage requires every (simple or compound) predicate to eval-
uate to true at least once and to false at least once. Decision coverage is
also known as branch coverage.

ž Condition coverage requires each condition in each predicate to evaluate
to true at least once and to false at least once. Note that decision cov-
erage can be satisfied without testing both outcomes of each condition in
the predicate. For example, decision coverage for the predicate (A ∧ B) is
satisfied by two tests, the first being (A = true, B = true) and the second
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being (A = true, B = false). But neither of these tests causes A to be false.
Condition coverage requires A to be false at least once.

ž Decision/condition coverage requires both decision coverage and condition
coverage to be satisfied. Note that condition coverage can be satisfied with-
out satisfying decision coverage. For example, for the predicate (A ∨ B),
condition coverage is satisfied by two tests: (A = true, B = false) and
(A = false, B = true). But neither of these tests causes the predicate to
be false. Decision/condition coverage requires the predicate to be false at
least once.

ž Multiple-condition coverage requires all possible combinations of condition
outcomes in each predicate to occur at least once. Note that for a predicate
with N conditions, there are 2N possible combinations of outcomes for the
conditions.

These criteria can be compared based on the subsumes relation [Frankl and
Weyuker 1988]. A coverage criterion C1 is said to subsume another criterion C2

if and only if any set of paths that satisfies criterion C1 also satisfies criterion
C2 [Taylor et al. 1992]. For example, decision coverage subsumes statement
coverage since covering all decisions necessarily covers all statements. This does
not mean, however, that a coverage criterion that subsumes another is always
more effective at detecting failures. Whether or not a failure occurs may also
depend on the particular input values that are chosen for a test. Figure 7.3 shows
a hierarchy of criteria based on the subsumes relation. A path from criterion X
to Y indicates that X subsumes Y.

Instead of focusing on the control characteristics of a program, other struc-
tural coverage criteria focus on the patterns in which data is defined and used.
The all-du-paths criterion requires tests for definition–use (du) pairs: If a vari-
able is defined in one statement and used in another, there should be at least
one test path that passes through both statements. Uses may occur in predicates
or in computations. Under certain assumptions, all-du-paths subsumes decision
coverage [Parrish and Zweben 1995].

Structural coverage criteria are often defined with respect to a flowgraph model
of a program. In a flowgraph, each circular node represents a statement or a
collection of sequential statements that will be executed as a block. That is, if

multiple condition coverage

decision/condition coverage

decision coverage condition coverage

statement coverage

Figure 7.3 Hierarchy of sequential, structural coverage criteria based on the subsumes
relation.
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Thread1
B1;
if (C1)

B2;
else

B3;
do{

B4;
} while (C2);

B1

B2 B3

if

do

B4

while (C2)

Figure 7.4 A thread and its control-flow graph.

the first statement in the block is executed, all the statements in the block will be
executed. The edges between the nodes represent the flow of control from one
block of code to the next. Figure 7.4 shows an example flowgraph for a thread
that contains an if-else statement and a do-while loop. Note that some paths
through a flowgraph may represent program paths that are not executable. The
predicates in the if-else and loop statements must be examined to determine
which paths are executable.

In a flowgraph model, statement coverage is achieved by covering all-nodes.
Note that when a node is executed, each statement in the block represented by that
node is guaranteed to be executed. Decision coverage is achieved by covering all-
edges of the flowgraph. These structural criteria can be applied during unit testing
to the individual threads in a concurrent program. Consider again program CP
in Listing 7.2. None of the threads in CP contain any branches. Thus, any single
execution of the program will cover all the statements in CP and all the paths in
each of the threads. (Each thread has one path.) However, based on the definition
of a path in Section 7.2.1, there are two partially ordered paths of CP: one path
in which T3 receives T1’s message first, and one path in which T3 receives
T2’s message first. Path-based coverage criteria for concurrent programs should
consider the statements exercised within threads and also the synchronization
between threads, since both are used to define the paths of a concurrent program.

The paths of a concurrent program can be presented by a graph structure
called a reachability graph. There are several ways to build reachability graphs.
They differ in their cost and the completeness and accuracy of the resulting graph
model. Taylor [1983] showed how to use the flowgraphs of individual threads to
build a reachability graph of a program. In this case, the flowgraph constructed for
a thread contains only the nodes and edges necessary to capture the thread’s syn-
chronization activity (e.g., sending and receiving messages, selecting alternatives
in a selective wait). Thus, the flowgraphs of individual threads are simplified by
ignoring thread activities unrelated to synchronization. Flowgraphs of the indi-
vidual threads are analyzed to derive a concurrency graph of the program. A
concurrency graph contains nodes that represent the concurrency states of the
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(1) send

Thread1

end

(2) send

Thread2

end

(3) rcv

Thread3

(4) rcv

end

Concurrency Graph

(1) send, (2) send, (3) rcv

end, (2) send, (4) rcv

end, end, end

(1) send, end, (4) rcv

end, end, end

Figure 7.5 Concurrency graph for the program in listing 7.2.

program and edges representing transitions between the states. A concurrency
state specifies the next synchronization activity to occur in each of the program’s
threads. Figure 7.5 shows the flowgraphs for the threads in Listing 7.2 and the
concurrency graph for the program. Note that the concurrency graph captures
both paths in the program.

Since concurrency graphs ignore statements that are unrelated to synchroniza-
tion, a path through a concurrency graph corresponds to a SYN-sequence of
a program, not a path of the program. This is because two or more different
program paths may exercise the same SYN-sequence. In general, the concur-
rency graph of program CP may not be an accurate representation of the feasible
SYN-sequences of CP because the concurrency graph may have been constructed
without considering all of CP’s semantics. For example, some paths in the graph
might not be allowed if the predicates in selective wait and if-else statements
were taken into consideration. Building accurate graph models of programs is
hard to do. Also, reachability graph models are limited by the state explosion
problem, which refers to the rapid increase in the number of states as the number
of threads increases.

Based on the concurrency graph model, Taylor et al. [1992] defined structural
coverage criteria for synchronous message-passing programs analogously to the
criteria for sequential programs:

ž all-concurrency-paths requires all paths through the concurrency graph (i.e.,
all SYN-sequences) to be exercised at least once. This criterion is impossible
to satisfy if cycles exist in the concurrency graph.

ž all-proper-concurrency-paths requires all proper paths through the concur-
rency graph to be exercised at least once. A proper path is a path that does
not contain any duplicate states, except that the last state of the path may
be duplicated once. Thus, proper paths have a finite length.

ž all-edges-between-concurrency-states requires that for each edge E in the
concurrency graph there is at least one path along which E occurs.

ž all-concurrency-states requires that for each state S in the concurrency graph
there is at least one path along which S occurs.
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all-concurrency-paths

all-proper-concurrency-paths

all-edges-between-concurrency-states

all-concurrency-states

all-possible-rendezvous

Figure 7.6 Subsumes hierarchy of structural coverage criteria for concurrent programs.

ž all-possible-rendezvous requires that for each state S in the concurrency
graph that involves a rendezvous between threads there is at least one path
along which S occurs.

The subsumes hierarchy for these criteria is shown in Fig. 7.6.
Once a coverage criterion is chosen, a set of SYN-sequences can be selected

from the concurrency graph to satisfy the criterion selected. The deterministic
testing process, which was illustrated in Section 5.5 for message-passing pro-
grams and is described in Section 7.4, can be applied with the test sequences
selected.

7.3 DEFINITIONS OF CORRECTNESS AND FAULTS
FOR CONCURRENT PROGRAMS

The purpose of testing is to find failures (i.e., show that a program is incorrect).
This raises two important questions: How should the correctness of a concurrent
program be defined? What types of failures and faults can be found when testing
concurrent programs? In this section we present general definitions of correctness,
failure, and fault for concurrent programs and illustrate these definitions with the
help of a channel-based program. We then formally define three common types
of failures, which are known as deadlock, livelock, and starvation. Definitions of
these terms are usually informal and often inconsistent, which makes it difficult
to discuss the issues involving this important class of failures.

7.3.1 Defining Correctness for Concurrent Programs

Let CP be a concurrent program. A SYN-sequence is said to be feasible for CP
with input X if this SYN-sequence can be exercised during an execution of CP
with input X. Due to nondeterministic execution behavior, there may be several
feasible SYN-sequences for CP with input X.

Feasible(CP,X) = the set of feasible SYN-sequences of CP with input X.
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A SYN-sequence is said to be valid for CP with input X if, according to the speci-
fication of CP, this SYN-sequence is expected to be exercised during an execution
of CP with input X. Since nondeterministic execution behavior is expected, there
may be several valid SYN-sequences for CP with input X.

Valid(CP,X) = the set of valid SYN-sequences of CP with input X.

These definitions permit some flexibility in how we define the inputs and outputs
of a concurrent program. CP could be a stand-alone program (i.e., it reads data
from and writes data to files) or a program that interacts with other processes.
In the latter case, the inputs and outputs of CP may involve communications
with other processes. Also, these definitions assume that synchronization events
in the implementation of CP are also events in the specification of CP. If some
of the events in the specification of CP are more abstract than the corresponding
events in the implementation of CP, specification events must be transformed into
implementation events, and there may not be a one-to-one mapping between spec-
ification and implementation events. Several other possible relationships between
specifications and implementations are discussed below.

Although the sets Feasible and Valid are, in general, impossible to deter-
mine, they are still useful for defining the correctness of concurrent programs,
classifying the types of failures in concurrent programs, and comparing various
validation techniques for concurrent programs. CP is said to be correct for input
X (with respect to the specification of CP) if:

(a) Feasible(CP,X) = Valid(CP,X).

(b) Every possible execution of CP with input X produces the correct (or
expected) result. The result of an execution includes the output and termi-
nation condition of the execution. The possible types of abnormal termi-
nation include divide-by-zero errors, deadlock, and expiration of allocated
CPU time, among others.

CP is said to be correct (with respect to the specification of CP) if and only
if CP is correct for every possible input. For some concurrent programs, it is
possible that the valid/feasible SYN-sequences are independent of the values of
the program inputs. This was true for all of the programs in the previous chapters.

Condition (a) specifies a strict equivalence relation between specifications
and their implementations. Nonetheless, it is an appropriate relationship for the
deterministic testing techniques described in this book. When other validation
techniques are being used, condition (a) can be relaxed. Several possible modi-
fications of condition (a) are given below.

(a1) Feasible(CP,X) is a proper subset of Valid(CP,X). This condition is used
when the specification of CP uses nondeterminism to model design deci-
sions that are to be made later. That is, a choice that is to be made
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during the design process is modeled in the specification as a nondeter-
ministic selection between design alternatives. Making design decisions
amounts to a reduction of the nondeterminism in the specification [Chung
et al. 2000]. In this context, specifications and implementations are rel-
ative notions in a series of system descriptions, where one description
is viewed as an implementation of another description, the specification
[Vissers et al. 1991].

(a2) Valid(CP,X) is a proper subset of Feasible(CP,X). This condition is used
when the specification of CP is incomplete and thus is extended by the
implementation. In this case, the implementation adds information that
is consistent with the specification.

(a3) Valid(CP,X) = Feasible(CP,X)\S, where S is a set of implementation
events that are not mentioned in the specification of CP. Feasible(CP,X)\S
is obtained from Feasible(CP,X) by deleting from each sequence in Feasi-
ble(CP,X) any events that are in S. This condition is used when the events
in CP’s specification are a proper subset of those in CP’s implementa-
tion. An example of this appeared in Section 4.10.3, where specification-
based communication events and sequences were defined for monitor-
based programs. A specification may contain communication events such
as “deposit” and “withdraw” while abstracting away implementation events
such as entering or executing a monitor or executing a wait or signal
operation.

These alternative equivalence relations can be used by other verification tech-
niques and may be more appropriate at certain phases of the life cycle. In such
cases, the foregoing definitions of feasibility, validity, and correctness for a con-
current program can be modified according to the required relationship between a
specification and its implementation. At some point, the reductions or extensions
made to a specification can be used to generate a new specification, and the valid
SYN-sequences of this new specification can be expected to be equivalent to the
feasible sequences of the implementation.

When checking the correctness of an execution, it may be convenient to
annotate each event in a SYN-sequence with a label that provides an abstract
representation of the event (e.g., the label of a receive event can convey infor-
mation about the value of the message that was received or that is expected to
be received). These abstract labels are especially useful for mapping between
(abstract) specifications and their implementations and for determining whether
or not a feasible sequence of the implementation is also a valid sequence of the
specification [Koppol et al. 2002].

7.3.2 Failures and Faults in Concurrent Programs

Based on our earlier definition of correctness, CP is incorrect for input X if and
only if one or more of the following conditions hold:
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(a) Feasible(CP,X) is not equal to Valid(CP,X). Thus, one or both of the
following conditions hold:
(a1) There exists at least one SYN-sequence that is feasible but invalid

for CP with input X.
(a2) There exists at least one SYN-sequence that is valid but infeasible

for CP with input X.
(b) There exists an execution of CP with input X that exercises a valid (and

feasible) SYN-sequence but computes an incorrect result.

The existence of condition (a) is referred to as a synchronization failure. (This
term has several commonly used synonyms, such as timing error and data race.)
The existence of condition (b) is referred to as a computation failure. Note that a
sequential program may have computation failures but not synchronization failures.

After an execution of CP with input X completes, it is necessary to determine
whether any synchronization or computation failures exist. Assume that an exe-
cution exercises a SYN-sequence S and produces a result R. Then one of the
following conditions holds: (1) S is valid and R is correct; or (2) S is valid and
R is incorrect; or (3) S is invalid and R is incorrect; or (4) S is invalid and R
is correct. Condition (2) implies that a computation failure has occurred, while
conditions (3) and (4) imply that a synchronization failure has occurred. Note that
in condition (4) a correct result R is produced from an incorrect SYN-sequence
S, a condition also known as coincidental correctness. If the programmer checks
only the correctness of R, the invalidity of S will go undetected and might cause
condition (3) to occur in the future for the same input or a different input. Thus,
when CP is executed, it is important to collect the SYN-sequences that are exer-
cised and determine the validity of each collected SYN-sequence. (As we have
already mentioned, the collected SYN-sequences are also needed for regression
testing and debugging.)

To illustrate these types of failures, consider the faulty bounded buffer solution
in Listing 7.7. Assume that the capacity of the buffer is 2 and that a single
producer and a single consumer execute deposit.call() and withdraw.call() three
times, respectively. Note that the set of feasible SR-sequences and the set of
valid SR-sequences of this program are independent of the program’s inputs.

Thread boundedBuffer contains a fault. The guard for the deposit alternative:

deposit.guard (fullSlots <= capacity);

is incorrect because it uses the wrong relational operator <=. (The operator
should be <.) This fault causes a synchronization failure since it allows an item
to be deposited when the buffer is full. Consider an execution of boundedBuffer
in which the producer deposits items A, B, and C, and the following invalid
SR-sequence is exercised:

(producer, boundedBuffer, deposit, rendezvous),
(producer, boundedBuffer, deposit, rendezvous),
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final class boundedBuffer extends TDThread {
private selectableEntry deposit, withdraw;
private int fullSlots=0; private int capacity = 0;
private Object[] buffer = null; private int in = 0, out = 0;
public boundedBuffer(selectableEntry deposit, selectableEntry withdraw,

int capacity) {
this.deposit = deposit; this.withdraw = withdraw; this.capacity = capacity;
buffer = new Object[capacity];

}
public void run() {

try {
selectiveWait select = new selectiveWait();
select.add(deposit); // alternative 1
select.add(withdraw); // alternative 2
while(true) {

deposit.guard (fullSlots <= capacity); // *** (fullSlots < capacity)
withdraw.guard(fullSlots > 0);
switch (select.choose()) {
case 1: Object o = deposit.acceptAndReply();

buffer[in] = o; in = (in + 1) % capacity; ++fullSlots;
break;

case 2: withdraw.accept();
Object value = buffer[out]; withdraw.reply(value);
out = (out + 1) % capacity; --fullSlots;
break;

}
}

} catch (InterruptedException e) {}
catch (SelectException e) {

System.out.println("deadlock detected"); System.exit(1);
}

}
}

Listing 7.7 Faulty bounded buffer.

// deposit into a full buffer
(producer, boundedBuffer, deposit, rendezvous),
(consumer, boundedBuffer, withdraw, rendezvous),
(consumer, boundedBuffer, withdraw, rendezvous),
(consumer, boundedBuffer, withdraw, rendezvous).

The SR-sequence above starts with three consecutive rendezvous at deposit, fol-
lowed by three consecutive rendezvous at withdraw. (Each rendezvous is actually
two events: the start of an entry call followed by the end of an entry call.) The
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output of this execution is (C,B,C), not the expected output (A,B,C). This is an
example of failure condition (3) above, since this SR-sequence is invalid and the
output (C,B,C) is incorrect.

If an execution of boundedBuffer with input (C,B,C) exercises the invalid
SR-sequence above, the output of this execution is (C,B,C). This is an example
of failure condition (4) above, since this SR-sequence is invalid but the output
(C,B,C) is correct. Note that an execution of boundedBuffer that does not exercise
the foregoing SR-sequence will not produce an invalid SR-sequence nor will it
produce an incorrect result.

Finally, assume that the incorrect guard for deposit is modified to

deposit.guard (fullSlots+1 < capacity);

Now thread boundedBuffer allows at most one character in the buffer. In this
case, the set of feasible SR-sequences of boundedBuffer is a proper subset of the
set of valid SR-sequences of boundedBuffer (i.e., boundedBuffer has a missing
path). Thus, boundedBuffer still has a possible synchronization failure. However,
this failure cannot be detected by a nondeterministic execution of boundedBuffer
since such an execution will always exercise an SR-sequence that is feasible and
valid, and will always produce a correct result.

7.3.3 Deadlock, Livelock, and Starvation

Deadlock, livelock, and starvation, and other terms, such as deadness errors,
infinite wait, global blocking, indefinite blocking, and indefinite postponement,
have been used to describe failures involving threads that are permanently blocked
or not making any progress. Deadlock and livelock are important failures since
the absence of deadlock and livelock is usually an implicit requirement of all
programs. Informal definitions of deadlock, livelock, and starvation were given in
Chapter 2. In this section we provide formal definitions of deadlock, livelock, and
starvation in terms of the reachability graph of a concurrent program [Tai 1994].

Reachability graphs were introduced in Section 7.2.2. The reachability graph
of program CP, denoted by RGCP, contains all the reachable states of CP. We
assume that a state of RGCP contains the number of the next statement to be
executed by each of the threads in CP, and the values of the variables in CP. A
path of RGCP corresponds to a sequence of statements and SYN-events in CP.
In this section we also present algorithms for detecting deadlock, livelock, and
starvation. These algorithms assume that the reachability graph of CP contains a
finite number of states.

Let CP be a concurrent program containing threads T1, T2, . . . , Tr, where
r > 1. A state of CP is denoted as (S1, S2, . . . , Sr, other information), where Si,
1 ≤ i ≤ r, is the atomic action or the set of atomic actions that can possibly
be executed next by thread Ti. The “other information” in a state may include
the values of local and global variables, the contents of message queues, and
so on. Let S = (S1, S2, . . . , Sr, other information) be a state of CP. If action Si,
1 ≤ i ≤ r, is a blocking synchronization statement, and executing Si blocks thread
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Figure 7.8 Directed graph G and condensed(G).

Ti in state S, thread Ti is said to be blocked in state S. If thread Ti, 1 ≤ i ≤ r,
is neither terminated nor blocked in state S, then S has one or more outgoing
transitions for thread Ti resulting from the execution of Si. If Si is an if, while,
or assignment statement, S has exactly one outgoing transition for Ti. If Si is
a nondeterministic statement, such as a selective wait statement, S may have
multiple outgoing transitions for Ti. If Si is an input statement for one or more
variables, S may have one outgoing transition for each possible combination of
values of the input variables.

The algorithms that we present below first find the strong components of a
reachability graph. A strong component G′ of a directed graph G is a maximal
subgraph of G in which there is a path from each node of G′ to any other node
of G′ [Baase 1988]. Let the condensation of graph G, denoted as Condensed(G),
be G modified by considering each strong component as a node. Condensed(G)
is cycle-free and has a tree structure. A leaf node in Condensed(G) is a node
without child nodes. Figure 7.8 shows a directed graph and the condensation of
the graph. Nodes B and C are leaf nodes. Beside each node N in Condensed(G),
we show the nodes of G that N contains.

Deadlock A deadlock requires one or more threads to be blocked permanently.
A thread is blocked if it is not running and it is waiting for some event to
occur. Sleep statements block a thread for a specified amount of time, but only
temporarily. A blocking receive statement permanently blocks the thread that
executes it if a message never arrives.

Assume that at the end of some execution of program CP there exists a thread
T that satisfies these conditions:

ž T is blocked due to the execution of a synchronization statement (e.g.,
waiting for a message to be received).

ž T will remain blocked forever, regardless of what the other threads do.

Thread T is said to be deadlocked and CP is said to have a deadlock.
As an example, assume that CP contains Thread1 and Thread2 and the fol-

lowing execution sequence is possible:

ž Thread1 is blocked waiting to receive a message from Thread2.
ž Thread2 is blocked waiting to receive a message from Thread1.
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Both Thread1 and Thread2 will remain blocked forever since neither thread is
able to send the message for which the other thread is waiting.

Let CP be a concurrent program and S be a state in RGCP:

ž If a thread T in CP is blocked in S and all states reachable from S, then T
is deadlocked in S and S is a deadlock state of T.

ž S is a deadlock state if at least one thread of CP is deadlocked in S. A
deadlock state S is a global deadlock state if every thread is either blocked
or terminated in S; otherwise, S is a local deadlock state.

ž CP has a deadlock if RGCP contains at least one deadlock state.

Algorithm for Detecting Deadlock Let CP be a concurrent program containing
threads T1, T2, . . . , Tr. For each node N in the condensed reachability graph,
algorithm DeadlockTest computes two sets of threads:

ž Blocked(N) is the set of threads that are blocked in every state in node N.
(Remember that all the states in N are in the same strong component of the
reachability graph.)

ž Deadlock(N) contains i, 1 ≤ i ≤ r, if and only if thread Ti is deadlocked in
every state in node N.

Program CP contains a deadlock if Deadlock(N) is not empty for some node
N. Algorithm DeadlockTest is as follows:

(a) Construct the condensation of RGCP, denoted as Condensed(RGCP). A
node in Condensed(RGCP) is a set of states in RGCP.

(b) Perform a depth-first traversal of the nodes in Condensed(RGCP). For each
node N in Condensed(RGCP), after having visited the child nodes of N:

ž Blocked(N) = {i| thread Ti is blocked in every state in N}.
ž If N is a leaf node of Condensed(RGCP), Deadlock(N) = Blocked(N), else

Deadlock(N) = the intersection of Blocked(N) and the Deadlock sets of N’s
child nodes.

Figure 7.9 shows four threads and the reachability graph for these threads.
(The reachability graph and the condensed graph are the same.) The state labels
show the next statement to be executed by each thread. Algorithm DeadlockTest
proceeds as follows:

ž Node (2,2,2,end) is a leaf node. Since Thread1, Thread2, and Thread3 are
blocked, Deadlock(2,2,2,end) = {Thread1, Thread2, Thread3}.

ž In node (2,2,1,1), Thread1 and Thread2 are blocked. The only child node of
(2,2,1,1) is node (2,2,2,end), where Deadlock(2,2,2,end) was just computed
to be {Thread1, Thread2, Thread3}. Thus, Deadlock(2,2,1,1) = {Thread1,
Thread2} ∩ {Thread1, Thread2, Thread3} = {Thread1, Thread2}.
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Thread1 Thread2 Thread3 Thread4

(1) p.send (1) p.receive (1) q.receive (1) q.send
(2) p.send (2) r.send (2) s.send (2) end
(3) r.receive (3) p.receive (3) end
(4) end (4) end

1,1,1,1
Blocked = { }

Blocked = {Thread3}
Terminated = {Thread4}

1,1,2,end2,2,1,1

2,2,2,end

Blocked = {Thread1, Thread2, Thread3}
Terminated = {Thread4}
Deadlock = {Thread1, Thread2, Thread3}

Blocked =
{Thread1, Thread2}

Deadlock = { }

Deadlock =
{Thread1, Thread2}

Deadlock = {Thread3}

Figure 7.9 A program and its reachability graph.

ž In node (1,1,2,end), thread Thread3 is blocked. The only child node of
(1,1,2,end) is node (2,2,2,end). Thus, Deadlock(1,1,2,end) = {Thread3} ∩
{Thread1, Thread2, Thread3} = {Thread3}.

ž In node (1,1,1,1), there are no blocked threads. Thus, Deadlock(1, 1, 1, 1) =
{ }.

Hence, DeadlockTest has detected a deadlock in the program. States (2,2,1,1)
and (1,1,2,2) are both local deadlock states, and state (2,2,2,end) is a global
deadlock state.

Let n be the number of transitions in RGCP. Since RGCP has only one initial
state, the number of states in RGCP is less than or equal to n + 1. The running
time of step (a) is at most O(n) [Baase 1988] and that of step (b) at most O(n∗r).
So the time complexity of algorithm DeadlockTest is at most O(n∗r).

Livelock We assume that some statements in CP are labeled as progress state-
ments, indicating that the threads are expected eventually to execute these state-
ments. Statements that are likely to be labeled as progress statements include the
last statement of a thread, the first statement of a critical section, or the statement
immediately following a loop or a synchronization statement. If a thread executes
a progress statement, it is considered to be making progress.

Assume that there is an execution of CP that exercises an execution sequence
S, and at the end of S there exists a thread T that satisfies the following conditions,
regardless of what the other threads will do:

ž T will not terminate or deadlock.
ž T will never make progress.

Thread T is said to be livelocked at the end of S, and CP is said to have a
livelock. Livelock is the busy-waiting analog of deadlock. A livelocked thread
is running (or ready to run), not blocked, but it can never make any progress.

Incorrect solution 2 in Section 2.1.2 (reproduced below) has an execution
sequence that results in a violation of the progress requirement for solutions
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to the critical section problem. (The progress requirement defined specifically
for the critical section problem should not be confused with the more general
requirement to “make progress” that we introduced in this section. The latter is
used to indicate the absence of livelock and is a requirement for all programs.)
The first statement of the critical section is designated as a progress statement.

int turn = 0;

Thread0 Thread1

while (true) { while (true) {
while (turn != 0){ ; } (1) while (turn != 1){ ; } (1)
critical section (2) critical section (2)
turn = 1; (3) turn = 0; (3)
noncritical section (4) noncritical section (4)

} }
Below is a prefix of the execution sequence that violates the progress require-

ment of the critical section problem.

ž Thread0 executes (1), (2), and (3). Now turn is 1.
ž Thread1 executes (1), (2), and (3) and then terminates in its noncritical

section. Now turn is 0.
ž Thread0 executes (4), (1), (2), (3), (4), and (1). Now turn is 1.

At the end of this sequence, Thread0 is stuck in its busy-waiting loop at (1)
waiting for turn to become 0. Thread0 will never exit this busy-waiting loop and
enter its critical section (i.e., make any progress). Thus, Thread0 is livelocked.

Let CP be a concurrent program and S a state of RGCP:

ž A thread in CP is said to make progress in S if S contains a progress
statement for this thread.

ž If a thread T in CP is not deadlocked, terminated, or making progress in S
or any state reachable from S, T is livelocked in S and S is a livelock state
for T.

ž S is a livelock state of RGCP if at least one thread is livelocked in S. A
livelock state S is a global livelock state if every thread in S is either
livelocked or terminated; otherwise, S is a local livelock state.

ž CP has a livelock if RGCP contains at least one livelock state.

Algorithm for Detecting Livelock Let CP be a concurrent program containing
threads T1, T2, . . . , Tr. For each node N in the condensed reachability graph,
algorithm LivelockTest computes two sets of threads:

ž NoProgress(N) is the set of threads that are not deadlocked, terminated, or
executing a progress statement in any state in N.
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ž Livelock(N) contains i, 1 ≤ i ≤ r, if and only if thread Ti is livelocked in
every state in N.

Program CP contains a livelock if Livelock(N) is not empty for some node
N. Algorithm LivelockTest is as follows:

(a) Construct Condensed(RGCP).
(b) Perform a depth-first traversal of the nodes in Condensed(RGCP). For each

node N in Condensed(RGCP), after having visited the child nodes of N:

ž NoProgress(N) = {i| thread Ti is not deadlocked, terminated, or executing
a progress statement in any state in N}.

ž If N is a leaf node of Condensed(RGCP), Livelock(N) = NoProgress(N),
else Livelock (N) = the intersection of NoProgress(N) and the NoProgress
sets of N’s child nodes.

Algorithm LivelockTest has the same time complexity as algorithm DeadlockTest.

Starvation We assume that the scheduling policy used in executing a concurrent
program CP is fair (i.e., a thread ready for execution will eventually be scheduled
to run). A cycle in RGCP is said to be a fair cycle if for every thread T in CP, either
this cycle contains at least one transition for T, or T is blocked or terminated in
every state on this cycle.

Informally, CP is said to have a starvation if CP can reach a state on a fair
cycle such that some thread in CP is not deadlocked, livelocked, or terminated
in this state, but this thread may not make any progress in any state on this
cycle. Incorrect solution 3 in Section 2.1.3 (reproduced below) has an execution
sequence that results in a violation of the bounded waiting requirement for critical
sections. We will show that solution 3 also has a starvation.

boolean intendToEnter0=false, intendToEnter1 = false;

Thread0 Thread1

while (true) { while (true) {
intendToEnter0 = true; (1) intendToEnter1 = true; (1)
while (intendToEnter1) { (2) while (intendToEnter0) { (2)

intendToEnter0 = false; (3) intendToEnter1 = false; (3)
while(intendToEnter1) {; } (4) while(intendToEnter0) {; } (4)
intendToEnter0 = true; (5) intendToEnter1 = true; (5)

} }
critical section (6) critical section (6)
intendToEnter0 = false; (7) intendToEnter1 = false; (7)
noncritical section (8) noncritical section (8)

} }



406 TESTING AND DEBUGGING CONCURRENT PROGRAMS

Denote a state of Thread0 and Thread1 as (S0, S1), where S0 and S1 are the
next statements to be executed by Thread0 and Thread1, respectively. State (4,2)
is not a livelock state for Thread0 since the following execution sequence allows
Thread0 to enter its critical section:

(a) Thread1 executes (2) and (6), enters and exits it critical section, and then
executes (7).

(b) Thread0 executes (4), (5), and (2), and then enters its critical section at (6).

State (4,2) has a cycle to itself that contains one transition for Thread0 [repre-
senting an iteration of the busy-waiting loop in (4)] and no other transitions. This
cycle is not a fair cycle since it does not contain a transition for Thread1. State
(4,2) has another cycle to itself that represents the following execution sequence:

(c) Thread1 executes (2) and (6), enters and exits it critical section, and then
executes (7), (8), and (1).

(d) Thread0 executes (4) and stays in its busy-waiting loop.

This cycle is fair. After state (4,2) is entered, if this cycle is repeated forever,
Thread0 never enters its critical section. State (4,2) is called a starvation state
for Thread0.

Let CP be a concurrent program and S a state of RGCP:

ž A cycle in RGCP is said to be a no-progress cycle for a thread T in CP if
T does not make progress in any state on this cycle. (Assume that some
statements are labeled as progress statements.)

ž A cycle in RGCP is said to be a starvation cycle for a thread T in CP if
(1) this cycle is fair, (2) this cycle is a no-progress cycle for T, and (3) each
state on this cycle is not a deadlock, livelock, or termination state for T.

ž A starvation cycle for thread T is said to be a busy-starvation cycle for
T if this cycle contains at least one transition for T, and is said to be a
blocking-starvation cycle for T otherwise (i.e., T is blocked in each state on
this cycle).

ž If state S is on a starvation cycle for thread T, then S is a starvation state
for T. A starvation state is a global starvation state if every thread in S is
either starved or terminated; otherwise, it is a local starvation state.

ž CP is said to have a starvation if RGCP contains at least one starvation state.

If contention for a critical section is low, as it is in many cases, starvation
is unlikely, and solutions to the critical section problem that theoretically allow
starvation may actually be acceptable [Tarski 1991]. This is the case for the first
hardware solution in Section 2.3.
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Algorithm for Detecting Starvation Let CP be a concurrent program containing
threads T1, T2, . . . , Tr. For each node N in the condensed reachability graph,
algorithm StarvationTest computes two sets of threads:

ž NoProgress(N) is the set of threads that do not terminate in N and for which
N contains a fair, no-progress cycle.

ž Starvation(N) contains i, 1 ≤ i ≤ r, if and only if a starvation cycle for
thread Ti exists in N.

Program CP contains a starvation if Starvation(N) is not empty for some node
N. Algorithm StarvationTest is as follows:

(a) Construct Condensed(RGCP).
(b) Perform a depth-first traversal of the nodes in Condensed(RGCP). For each

node N in Condensed(RGCP), after having visited the child nodes of N:

ž If N does not contain any fair cycles, Starvation(N) = empty.
ž Else NoProgress(N) = {i|thread Ti does not terminate in N, and N con-

tains a fair, no-progress cycle for Ti} and Starvation(N) = NoProgress(N) −
Deadlock(N) − Livelock(N).

To compute NoProgress(N), we need to search for fair cycles in N. We must
consider cycles of length at most (1 + #Transitions) where #Transitions is the
number of transitions in N. The number of cycles with length less than or equal
to (1 + #Transitions) is at most O(2#Transitions). Let n be the number of transitions
in RGCP. The time complexity of algorithm StarvationTest is at most O(r∗2n).

Other Definitions Local deadlock has been referred to as a deadness error [Ger-
man 1984; Helmbold and Luckham 1985] and permanent blocking [Avrunin et al.
1991]. Global deadlock has been referred to as infinite wait [Taylor 83], global
blocking [German 1984; Helmbold and Luckham 1985], deadlock [Avrunin et al.
1991], and system-wide deadlock [Karam and Buhr 1991].

One special type of deadlock, called a circular deadlock, refers to a circular
list of two or more threads such that each thread is waiting to synchronize with
the next thread in the list. A circular deadlock is similar to a circular wait condi-
tion, which arises during resource allocation (see Section 3.10.4). Circular wait
refers to a list of two or more processes such that each process is waiting for
a resource that is held by the next process in the list. A circular wait condition
is a necessary condition for deadlock during resource allocation. According to
our definition, a deadlock in a concurrent program is different from a deadlock
during resource allocation, since the former is not necessarily a circular deadlock.
Several definitions of deadlock for concurrent programs require the existence of
a circular wait condition among a set of threads [Cheng 1991; Masticola and
Ryder 1991; Silberschatz et al. 1991].
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Andrews [1991] defined a livelocked thread as one that is spinning (i.e., execut-
ing a loop) while waiting for a condition that will never become true. Holzmann
[1991] defined livelock as the existence of an execution sequence that can be
repeated infinitely, often without ever making effective progress. Starvation (or
indefinite postponement) has been defined in several ways. Deitel [1984] said that
starvation occurs when a process, even though not deadlocked, waits for an event
that may never occur. Silberschatz et al. [1991] defined starvation as a situation
in which processes wait indefinitely, and Tannenbaum [1992] defines starvation
as a situation in which processes continue to run indefinitely but fail to make
any progress.

Our definitions of deadlock, livelock, and starvation have the following char-
acteristics: They are independent of the programming language and constructs
used to write the program; they are formally defined in terms of the reachabil-
ity graph of a program; they cover all undesirable situations involving blocking
or not making progress; they define deadlock, livelock, and starvation as dis-
tinct properties of concurrent programs; and they provide a basis for developing
detection algorithms.

In Chapter 2 we defined the mutual exclusion, progress, and bounded waiting
requirements for solutions to the critical section problem. These requirements
can be defined in terms of deadlock, livelock, and starvation, as some of the
examples above showed [Tai 1994]. Thus, the correctness of a solution to the
critical section problem can be verified automatically.

7.4 APPROACHES TO TESTING CONCURRENT PROGRAMS

Typically, a concurrent program CP, like a sequential program, is subjected to
two types of testing:

ž Black-box testing. Access to CP’s implementation is not allowed during
black-box testing. Thus, only the specification of CP can be used for test
generation, and only the result (including the output and termination condi-
tion) of each execution of CP can be collected.

ž White-box testing. Access to CP’s implementation is allowed during white-
box testing. In this case, both the specification and implementation of CP
can be used for test generation. Also, any desired information about each
execution of CP can be collected.

White-box testing may not be practical during system or acceptance testing,
due to the size and complexity of the code or the inability to access the code.
Following is a third type of testing, which lies somewhere between the first two
approaches:

ž Limited white-box testing. During an execution of CP, only the result and
SYN-sequence can be collected. Thus, only the specification and the SYN-
sequences of CP can be used for test generation. Also, an input and a



APPROACHES TO TESTING CONCURRENT PROGRAMS 409

SYN-sequence can be used to control the execution of CP deterministically.
Deterministic testing is described below.

The remainder of this section describes several approaches to testing concur-
rent programs and discusses the relationships they have with the types of testing
described above.

7.4.1 Nondeterministic Testing

Nondeterministic testing of a concurrent program CP involves the following steps:

1. Select a set of inputs for CP.
2. For each selected input X, execute CP with X many times and examine

the result of each execution.

Multiple, nondeterministic executions of CP with input X may exercise dif-
ferent SYN-sequences of CP and thus may detect more failures than a single
execution of CP with input X. This approach can be used during both (limited)
white-box and black-box testing.

The purpose of nondeterministic testing is to exercise as many distinct SYN-
sequences as possible. Unfortunately, experiments have shown that repeated exe-
cutions of a concurrent program do not always execute different SYN-sequences
[Hwang et al. 1995]. In the absence of significant variations in I/O and network
delays, or changes in the system load, programs tend to exhibit the same behav-
ior from execution to execution. Furthermore, the probe effect, which occurs
when programs are instrumented with testing and debugging code, may make it
impossible for some failures to be observed (see Sections 1.8.1 and 7.4.2).

There are several techniques that can be used to increase the likelihood of
exercising different SYN-sequences during nondeterministic testing. One is to
change the scheduling algorithm used by the operating system (e.g., change the
value of the time quantum that is used for round-robin scheduling and vary the
order that ready processes are selected for execution). This may have the desired
affect on program executions [Hwang et al. 1995]; however, in many commercial
operating systems, this is simply not an option.

The second technique is to insert Sleep statements into the program with the
sleep time chosen randomly [Yang and Pollock 1997; Stoller 2002]. Executing a
Sleep statement forces a context switch and affects thread scheduling indirectly.
The objective of this technique is to ensure a nonzero probability for exercising
an arbitrary SYN-sequence while minimizing the number of delays or removing
redundant delays, since each delay adds to the execution time.

Even though both of these techniques increase the number of SYN-sequences
that are exercised during nondeterministic testing, some sequences are likely to
be exercised many times, which is inefficient, and some may never be exercised
at all. In general, nondeterministic executions are easy to perform; however,
each execution creates additional work since the result of the execution must be
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checked. If a formal specification exits, the checking can be partially automated
[Koppol et al. 2002]. Otherwise, checking must be done manually, which cre-
ates a lot of work for the programmer and effectively restricts the number of
nondeterministic executions that can be performed.

Certain types of failures can be detected automatically. The lockset algorithm
in Chapter 3 checks that all shared variable accesses follow a consistent locking
discipline in which every shared variable is protected by a lock. Data races are
detected automatically and reported as they occur. Deadlocks can also be detected
automatically using techniques such as the one described in Section 3.10.4.

7.4.2 Deterministic Testing

Deterministic testing of a concurrent program CP involves the following steps:

1. Select a set of tests, each of the form (X, S), where X and S are an input
and a complete SYN-sequence of CP, respectively.

2. For each test (X, S) selected, force a deterministic execution of CP with
input X according to S. This forced execution determines whether S is
feasible for CP with input X. (Since S is a complete SYN-sequence of CP,
the result of such an execution is deterministic.)

3. Compare the expected and actual results of the forced execution (includ-
ing the output, the feasibility of S, and the termination condition). If the
expected and actual results are different, a failure is detected in the program
(or an error was made when the test sequence was generated). A replay
tool can be used to locate the fault that caused the failure. After the fault
is located and CP is corrected, CP can be executed with each test (X,S) to
verify that the fault has been removed and that in doing so, no new faults
were introduced.

Note that for deterministic testing, a test for CP is not just an input of CP.
A test consists of an input and a SYN-sequence and is referred to as an IN-SYN
test. Deterministic testing is similar to the concept of forcing a path, mentioned
in [Taylor et al. 1992].

Deterministic testing provides several advantages over nondeterministic test-
ing:

ž Nondeterministic testing may leave certain paths of CP uncovered. Several
path-based test coverage criteria were described in Section 7.2.2. Deter-
ministic testing allows carefully selected SYN-sequences to be used to test
specific paths of CP.

ž Nondeterministic testing exercises feasible SYN-sequences only; thus, it can
detect the existence of invalid, feasible SYN-sequences of CP, but not the
existence of valid, infeasible SYN-sequences of CP. Deterministic testing
can detect both types of failures.
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ž After CP has been modified to correct an error or add some functionality,
deterministic regression testing with the inputs and SYN-sequences of pre-
vious executions of CP provides more confidence about the correctness of
CP than does nondeterministic testing of CP with the inputs of previous
executions.

The selection of IN-SYN tests for CP can be done in different ways:

ž Select inputs and then select a set of SYN-sequences for each input.
ž Select SYN-sequences and then select a set of inputs for each SYN-sequence.
ž Select inputs and SYN-sequences separately and then combine them.
ž Select pairs of inputs and SYN-sequences together.

Chapters 1 through 6 dealt with various issues that arise during deterministic
testing and debugging. These issues are summarized below:

Program Replay Repeating an execution of a concurrent program is called pro-
gram replay. The SYN-sequence of an execution must be traced so that the
execution can be replayed. Program replay uses simple SYN-sequences, which
have a simpler format than the complete sequences used for testing. Definitions
of simple SYN-sequences for semaphores, monitors, and message passing were
given in Chapters 3 to 6. A language-based approach to replay uses a concur-
rency library that supports various types of thread and synchronization objects
and contains embedded code for program tracing and replay. Alternatively, replay
code can be inserted into a program automatically by a source transformation
tool [Tai et al. 1991]. An implementation-based approach to replay involves
modifying the compiler, debugger, run-time system, virtual machine [Choi and
Srinivasan 1998; Konuru et al. 2000], or operating system. In Chapters 1 to 6
we presented a library of Java and C++ classes supporting threads, semaphores,
monitors, and several types of message-passing channels. Our synchronization
library also supports replay, but it does not have the benefit of being closely
integrated with a source-level debugger. However, it does serve as a high-level
design for an effective implementation-based testing and debugging tool.

Program Tracing Chapters 2 to 6 showed how to trace simple and complete
SYN-sequences for shared variables, semaphores, monitors, and various types of
message channels.

An observability problem occurs when tracing a distributed program because
it is difficult to determine accurately the order in which actions occur during an
execution. In Chapter 6 we saw how to use vector timestamps to ensure that an
execution trace of a distributed program is consistent with the actual execution.

For long-running programs, storing all the SYN-events requires too much
space. Netzer and Miller [1994] developed an adaptive tracing technique that
records the minimal number of SYN-events required to replay an execution
exactly. Netzer’s technique makes run-time decisions about which events to trace
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by detecting and tracing certain race conditions during execution. Experiments
show that for some programs it is possible to achieve a reduction in trace size
of two to four orders of magnitude over techniques that trace every event.

Sequence Feasibility A sequence of events that is allowed by a program is said
to be a feasible sequence. Program replay always involves repeating a feasible
sequence of events. This is because the sequence to be replayed was captured
during an actual execution and thus is known to be allowed by the program.
(Replay assumes that the program has not been changed.) Testing, on the other
hand, involves determining whether or not a given sequence is feasible or infea-
sible. Valid sequences are expected to be feasible, whereas invalid sequences
are expected to be infeasible. For example, feasibility becomes an issue when a
synchronization failure is discovered. Testing is required to determine whether
the invalid but feasible sequence that exposed the failure is still feasible after the
program is changed in an attempt to fix the fault.

The information and the technique used to determine the feasibility of a SYN-
sequence are different from those used to replay a SYN-sequence. The techniques
illustrated in Chapters 4 to 6 check the feasibility of complete SYN-sequences
of monitors and message channels. Selecting valid and invalid SYN-sequences
for program testing is a difficult problem. One approach is simply to collect
the feasible SYN-sequences that are randomly exercised during nondeterministic
testing. These SYN-sequences can be used for regression testing when changes
are made to the program. Another approach is to generate sequences that satisfy
one of the coverage criteria described in Section 7.2.2 or that are adequate for the
mutation-based testing procedures described in Section 7.4.3.2. Mutation testing
has the advantage that it requires both valid and invalid sequences to be generated.
This is helpful since there are usually a huge number of invalid sequences to
choose from.

Sequence Validity A sequence of actions captured in a trace is definitely fea-
sible, but the sequence may or may not be valid. The goal of testing is to find
valid sequences that are infeasible and invalid sequences that are feasible; such
sequences are evidence of a program failure. A major issue then is how to check
the validity of a sequence. If a formal specification of valid program behavior is
available, checking the validity of a SYN-sequence can be partially automated.
Without such a test oracle, manually checking validity becomes time consuming,
error prone, and tedious.

Probe Effect Modifying a concurrent program to capture a trace of its execu-
tion may interfere with the normal execution of the program [Gait 1985; LeDoux
and Parker 1985]. Working programs may fail when instrumentation is removed,
and failures may disappear when debugging code is added. As we mentioned
in Section 7.4.1, executions can be purposely disturbed during nondeterministic
testing in order to capture as many different SYN-sequences as possible. Instru-
mentation at least offers the prospect of being able to capture and replay the
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failures that are observed. One approach to circumventing the probe effect is to
generate all the possible SYN-sequences systematically, which leaves no place
for faults to hide. This approach can be realized through reachability testing
if the number of sequences is not too large (see Sections 3.10.5, 4.11.4, 5.5.5,
and 7.5).

The probe effect is different from the observability problem described in
Section 6.3. The observability problem is concerned with the difficulty of accu-
rately tracing an execution of a distributed program. In Section 6.3.6 we saw
how to use vector timestamps to address the observability problem. The probe
effect is concerned with the ability to perform a given execution at all. Deter-
ministic testing addresses the probe effect partially by allowing us to choose
a particular SYN-sequence that we want to exercise. As we’ve already seen,
reachability testing goes one step further and attempts to exercise all possible
SYN-sequences. The observability problem and the probe effect are different
from the replay problem, which deals with repeating an execution that has already
been observed.

Real Time The probe effect is a major issue for real-time concurrent programs.
The correctness of a real-time program depends not only on its logical behavior,
but also on the time at which its results are produced [Tsai et al. 1996]. A real-
time program may have execution deadlines that will be missed if the program is
modified for tracing. Instead, tracing is performed by using special hardware to
remove the probe effect or by trying to account for or minimize the probe effect.
Real-time programs may also receive sensor inputs that must be captured for
replay. Some of the techniques we have covered may be helpful for testing and
debugging the logical behavior of real-time systems, but we have not considered
the special issues associated with timing correctness.

Tools The synchronization library that we presented in Chapters 1 to 6 demon-
strates that tracing, replay, and feasibility can be applied to a wide range of
synchronization constructs. Our library is a simple but useful programming tool;
however, it is no substitute for an integrated development environment that sup-
ports traditional source-level debugging as well as the special needs of concurrent
programmers. Commercial debugging tools that are integrated with compilers and
operating systems can accomplish much more than the library presented in this
book. Access to the underlying virtual machine, compiler, operating system, or
run-time system maximizes the ability of a tool to observe and control program
executions.

On the other hand, testing and debugging tools should allow programmers to
work at a level of abstraction that is appropriate for the task at hand. For example,
program replay can be accomplished by counting the number of instructions that
each thread executes during each of its time quantums [Mellor-Crummey and
LeBlanc 1989]. However, instruction counts provide little help for understanding
an execution or determining its validity. (Of course, instruction counts can be
used to replay an execution and collect additional information.) Different levels
of abstraction are appropriate for different activities.
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Life-Cycle Issues Deterministic testing is better suited for the types of testing
that occur early in the software life cycle. Feasibility checking and program replay
require information about the internal behavior of a system. Thus, deterministic
testing is a form of white-box or limited white-box testing. This is not always
possible during later stages, such as system and user-acceptance testing, where
knowledge about internal behavior may not be available, or the system may just
be too large. Nevertheless, deterministic testing can be applied during early stages
of development allowing concurrency bugs to be found as early as possible, when
powerful debugging tools are available and bugs are less costly to fix.

7.4.3 Combinations of Deterministic and Nondeterministic Testing

Although deterministic testing has advantages over nondeterministic testing, it
requires considerable effort for selecting SYN-sequences and determining their
feasibility. This effort can be reduced by combining deterministic and non-
deterministic testing. Below are four possible strategies for combining these
approaches:

1. First, apply nondeterministic testing with random delays to collect random
SYN-sequences and detect failures. Then apply deterministic regression
testing with the sequences collected. No extra effort is required for gener-
ating SYN-sequences since they are all randomly selected during nonde-
terministic executions.

2. Apply nondeterministic testing until test coverage reaches a certain level.
Then apply deterministic testing to achieve a higher level of coverage. This
strategy is similar to the combination of random and special value testing
for sequential programs. Theoretical and experimental studies of random
testing for sequential programs show that random testing should be supple-
mented with the use of carefully selected inputs [Duran and Ntafos 1984].
In [Vouk et al. 1986], six Pascal programs were randomly tested against
the same specification. Random testing rapidly reached steady-state values
for several test coverage criteria: 60% for decision (or branch) coverage,
65% for block (or statement) coverage, and 75% for definition-use cover-
age, showing that special values (including boundary values) are needed to
improve coverage.

3. The SYN-sequences collected during nondeterministic testing can be modi-
fied to produce new SYN-sequences for deterministic testing. This is easier
than generating sequences from scratch.

4. Apply deterministic testing during module and integration testing and non-
deterministic testing during system and acceptance testing.

Prefix-Based Testing Another interesting combination of nondeterministic and
deterministic testing is called prefix-based testing. The purpose of prefix-based
testing is to allow nondeterministic testing to start from a specific program state
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other than the initial one. Prefix-based testing uses a prefix sequence, which
contains events from the beginning part of an execution, not a complete execution.

Prefix-based testing of CP with input X and prefix sequence S proceeds as
follows:

1. Force a deterministic execution of CP with input X according to S. If this
forced execution succeeds (i.e., it reaches the end of S), then go to step 2;
otherwise, S is infeasible.

2. Continue the execution of CP with input X by performing nondeterministic
testing of CP.

If S is feasible for CP with input X, prefix-based testing replays S in step 1.
The purpose of step 1 is to force CP to enter a particular state (e.g., a state in
which the system is under a heavy load), so that we can see what happens after
that in step 2.

Prefix-based testing is an important part of a general testing technique called
reachability testing. Assume that every execution of CP with input X terminates
and the number of distinct feasible SYN-sequences of CP with input X is finite.
Reachability testing is a systematic way of exercising all possible SYN-sequences
of CP with input X. By doing so, reachability testing can determine the correct-
ness of CP with input X. In Chapters 3, 4, and 5, we described the results of
applying reachability testing to programs that use semaphores, monitors, and/or
message passing. Details about reachability testing are described in Section 7.5.

Mutation-Based Testing To illustrate the combination of deterministic and non-
deterministic testing, we will now show how to apply both approaches during
mutation-based testing [Hamlet 1977; DeMillo et al. 1979]. Mutation-based test-
ing helps the tester create test cases and then interacts with the tester to improve
the quality of the tests. Mutation-based testing is interesting since it subsumes the
coverage criteria in Fig. 7.3. That is, if mutation coverage is satisfied, the criteria
in Fig. 7.3 are also satisfied [Offutt and Voas 1996]. Furthermore, mutation-based
testing also provides some guidance for the generation of invalid SYN-sequences,
unlike the criteria in Fig. 7.3.

Mutation-based testing involves the construction of a set of mutants of the
program under test. Each mutant differs from the program under test by one
mutation. A mutation is a single syntactic change made to a program statement,
generally inducing a typical programming fault. For example, the boundedBuffer
thread in Listing 7.7 was created by making a single mutation to the correct
version in Listing 5.10. The relational operator < in the guard for deposit was
changed to <=, creating a fault.

Test cases are used to cause a mutant to generate an output which is different
from that of the program under test. If a test case causes a mutant program to
produce output different from the output of the program under test, that test case
is strong enough to detect the faults represented by that mutant, and the mutant is
considered to be distinguished from the program under test. The goal of mutation-
based testing is to distinguish a large number of mutant programs. Each set of
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(1) Generate mutants (m1,m2,...,mn) from P;
(2) repeat {
(3) Execute P with test input X producing actual result Actualp;
(4) Compare the actual result Actualp with the expected result Expectedp;
(5) if (Expectedp != Actualp)
(6) Locate and correct the error in P and restart at (1);
(7) else
(8) for (mutant mi, i<=i<=n) {
(9) Execute mi with test input X producing actual result Actualmi ;
(10) if (Actualp <> Actualmi)
(11) mark mutant mi as distinguished;
(12) }
(13) }
(14) until (the mutation score is adequate);

Figure 7.10 Mutation-based testing procedure for a sequential program P.

test cases is used to compute a mutation score. A score of 100% indicates that
the test cases distinguish all mutants of the program under test and are adequate
with respect to the mutation criterion. (Some mutants are functionally equivalent
to the program under test and can never be distinguished. This is factored into
the mutation score.)

Figure 7.10 shows a mutation-based testing procedure for a sequential pro-
gram P. This testing procedure encounters problems when it is applied to a
concurrent program CP. In addition to the three general problems 1 to 3 described
at the beginning of this chapter, nondeterministic execution behavior creates the
following problem:

Problem 4 In line (10), the condition Actualp <> Actualmi is not sufficient to
mark mutant mi as distinguished. Different actual results may be a product of
nondeterminism and not the mutation.

Problems 1 to 4 can be solved by using a combination of deterministic testing
and nondeterministic mutation-based testing. Below we outline a two-phase pro-
cedure for deterministic mutation testing (DMT). In phase one, SYN-sequences
are randomly generated using nondeterministic testing, until the mutation score
has reached a steady value. In phase two, we select IN SYN test cases and apply
deterministic testing until we achieve an adequate mutation score.

Figure 7.11 shows a phase one test procedure using nondeterministic testing to
select SYN-sequences randomly for mutation-based testing. In line (4), if SYN-
sequence SCP and actual result ActualCP were produced by an earlier execution
of CP with input X, we should execute CP again until a new SYN-sequence or
actual result is produced. In line (16), deterministic testing is used to distinguish
mutant programs by differentiating the output and the feasible SYN-sequences of
the mutants from those of the program under test. If the SYN-sequence randomly
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(1) repeat {
(2) Generate mutants (m1,m2,...mn) from CP;
(3) Apply non-determ. testing to randomly execute CP with test input X;
(4) Assume execution exercises new SYN-sequence SCP , or produces a new

actual result ActualCP .
(5) Check which of the following conditions holds:
(6) (a) SCP is valid and ActualCP is correct
(7) (b) SCP is valid and ActualCP is incorrect
(8) (c) SCP is invalid and ActualCP is correct
(9) (d) SCP is invalid and ActualCP is incorrect;
(10) if (condition (b), (c), or (d) holds) {
(11) Locate and correct the error in CP using program replay; apply
(12) Apply det. testing to validate the correction by forcing an execution

of CP with IN_SYN test case (X,SCP ); and restart at (1);
(13) } else
(14) for (mutant mi, i<=i<=n) {
(15) Apply deterministic testing to mi with IN_SYN test case (X,SCP )

producing actual result Actualmi ;
(16) if ((SCP is infeasible for mi) or

(SCP is feasible and ActualCP <> Actualmi))
(17) mark mutant mi as distinguished;
(18) }
(19) }
(20) until (the mutation score reaches a steady value);

Figure 7.11 Deterministic mutation testing using nondeterministic testing to generate
SYN-sequences.

exercised by CP during nondeterministic testing is infeasible for the mutant pro-
gram, or this sequence is feasible but the mutant program produces results that
are different from CP’s, the mutant is marked as distinguished.

Although nondeterministic testing reduces the effort needed to select SYN-
sequences for testing, it may not be possible to distinguish some of the mutants
if nondeterministic testing alone is applied to CP in line (3). To distinguish a
mutant mi, we may need to exercise SYN-sequences that are feasible for mutant
mi but infeasible for CP; however, in line (3) only feasible SYN-sequences of
CP can be exercised using nondeterministic testing.

Example 1 Assume that the program under test is an incorrect version of the
bounded buffer that allows at most one (instead of two) consecutive deposits into
the buffer. (In other words, the program under test has a fault.) Call this program
boundedBuffer1. A possible mutant of this program is the correct version in
Listing 5.10. Call this correct version boundedBuffer2. Mutant boundedBuffer2
is distinguished by an SR-sequence that exercises two consecutive deposits, as
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this sequence differentiates the behaviors of these two versions. But this SR-
sequence is a valid, infeasible SR-sequence of boundedBuffer1 that cannot be
exercised when nondeterministic testing is applied to boundedBuffer1 in line (3).

Example 2 Assume that the program under test is boundedBuffer2, which cor-
rectly allows at most two consecutive deposit operations. A possible mutant of this
program is boundedBuffer3 , representing the mutation shown in Listing 7.7. Mutant
boundedBuffer3 is distinguished by an SR-sequence that exercises three consec-
utive deposits. But this SR-sequence is an invalid, infeasible SYN-sequence of
boundedBuffer2 that cannot be exercised when nondeterministic testing is applied
to boundedBuffer2 in line (3).

These examples suggest that upon reaching a steady mutation score, we should
select IN SYN test cases and apply deterministic testing (DT) to CP in line (3)
in order to distinguish more mutants. As Examples 1 and 2 showed, the SYN-
sequences selected for deterministic testing may need to be infeasible for CP.
Also, both valid and invalid SYN-sequences should be selected. A phase two test
procedure using selected IN SYN test cases in line (3) is shown in Fig. 7.12.

We now describe the results of applying deterministic mutation testing to the
correct version of the bounded buffer program, denoted as boundedBuffer2. The
boundedBuffer thread was mutated manually using the mutation operators of
the Mothra mutation system [King and Offutt 1991]. (Statements that involved
accesses to the buffer or to the buffer indices in and out were not mutated.)
Since Mothra was developed for Fortran 77, a few of the mutations were not
applicable or they needed to be modified slightly for our program. For example,
some of the mutations resulted in errors that were caught by the compiler. The
result was a set of 95 mutants. Since 14 of the mutations resulted in mutants that
were equivalent to boundedBuffer2, this left 81 live mutants.

The DMT testing procedures in Figs. 7.11 and 7.12 were applied to bounded-
Buffer2 and the 81 mutant programs: In phase one we used nondeterministic test-
ing to generate SR-sequences of boundedBuffer2. Random delays were inserted
into boundedBuffer2 to increase the chances of exercising different SR-sequences
during nondeterministic testing. The mutation score leveled off at 71%. At this
point, all four valid and feasible sequences of deposit (D) and withdraw (W)
events had been exercised:

ž (D,D,W,W,D,W)
ž (D,W,D,D,W,W)
ž (D,W,D,W,D,W)
ž (D,D,W,D,W,W)

It was not possible to distinguish any more mutants using nondeterministic testing
to select SR-sequences of boundedBuffer2.

Two of the SR-sequences exercised using nondeterministic testing were mod-
ified to produce two new invalid SR-sequences:
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(1) repeat {
(2) Generate mutants (m1,m2,...mn) from CP;
(3) Apply DT to deterministically execute CP with a selected IN_SYN test

case (X,S);
(4) Compare the actual and expected results of this forced execution:
(5) (a) The results are identical. Then no error is detected by the test (X,S).
(6) (b) The results differ in the feasibility of S.
(7) (c) The results agree on the feasibility of S, but not on the termination

condition of CP.
(8) (d) The results agree on the feasibility of S and the termination

condition, but not on the output of CP.
(9) if (condition (b), (c), or (d) holds) {
(10) Locate and correct the error in CP using program replay;
(11) Apply DT to validate the correction by forcing an execution of CP

with IN_SYN test case (X,S); and restart at (1);
(12) } else
(13) for (mutant mi, i<=i<=n) {
(14) Apply DT to mi with IN_SYN test case (X,S);
(15) Compare the actual results of the forced executions of CP and

mutant mi;
(16) if (the results differ in the feasibility of S, the termination

condition, or the output)
(17) mark mutant mi as distinguished;
(18) }
(19) }
(20) until (the mutation score is adequate);

Figure 7.12 Deterministic mutation testing using deterministic testing with selected
IN SYN test cases.

ž (D,D,D,W,W,W) //invalid: three consecutive deposits into a two-slot buffer
ž (W,D,D,W,D,W) //invalid: the first withdrawal is from an empty buffer

These sequences were used to create IN SYN tests for phase two. Both of
these invalid SR-sequences were shown to be infeasible for boundedBuffer2,
but feasible for the remaining mutants. Thus, all of the remaining mutants were
distinguished. This example illustrates the need for deterministic testing with
carefully selected SYN-sequences to distinguish mutants. It also shows that both
valid and invalid SYN-sequences should be generated during testing.

7.5 REACHABILITY TESTING

In Section 7.4 we described several approaches to testing concurrent programs.
Nondeterministic testing is easy to carry out, but it can be very inefficient. It
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is possible that some behaviors of a program are exercised many times while
others are never exercised at all. Deterministic testing allows a program to be
tested with carefully selected valid and invalid test sequences. Test sequences
are usually selected from a static model of the program or of the program’s
design. Several coverage criteria for reachability graph models were defined in
Section 7.2.2. However, accurate static models are difficult to build for dynamic
program behaviors.

Reachability testing is an approach that combines nondeterministic and deter-
ministic testing. It is based on prefix-based testing, which was described in
Section 7.4.3.1. Recall that prefix-based testing controls a test runup to a cer-
tain point and then lets the run continue nondeterministically. The controlled
portion of the test run is used to force the execution of a prefix SYN-sequence,
which is the beginning part of one or more feasible SYN-sequences of the pro-
gram. The nondeterministic portion of the execution randomly exercises one of
these feasible sequences.

A novel aspect of reachability testing is that it uses prefix-based testing to gen-
erate test sequences dynamically. That is, test sequences are derived automatically
and on the fly as the testing process progresses. In this framework, the SYN-
sequence traced during a test run is analyzed to derive prefix SYN-sequences
that are race variants of the trace. A race variant represents the beginning part of
a SYN-sequence that definitely could have happened but didn’t, due to the way
that race conditions were resolved arbitrarily during execution. The race variants
are used to conduct more test runs, which are traced and then analyzed to derive
more race variants, and so on. If every execution of a program with a given input
terminates, and the total number of possible SYN-sequences is finite, reachability
testing will terminate and every partially ordered SYN-sequence of the program
with the given input will be exercised.

7.5.1 Reachability Testing Process

In this section we introduce some basic concepts of reachability testing and illus-
trate the reachability testing process by applying it to a message-passing solution
to the bounded buffer program. Assume that an execution of some program CP
with input X exercises SYN-sequence Q represented by the space-time diagram
in Fig. 7.13. Send events s1 and s2 in Q have a race to see which message will
be received first by Thread2. While s1 wins the race this time, by analyzing Q
we can see that there exists at least one execution of CP with input X in which
the message sent at s2 is received by r1. Thus, we say that the message sent by
s2 is in the race set for r1.

Thread1 Thread2 Thread3
s1 r1 s2

r2

Figure 7.13 Sequence Q.
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Computing race sets is one of the major tasks of reachability testing. Race
sets are used to identify alternative paths that an execution could have executed.
Later we will see how to compute race sets. For now, note that race sets are
computed by analyzing execution traces, not by analyzing programs. Although
program analysis might allow us to perform reachability testing more efficiently,
an accurate static analysis of source code is difficult to do; hence, we do not rely
on static analysis to compute race sets. As we will see below, we can and do use
program information that is captured through dynamic analysis (i.e., while the
program is running). This information is recorded in execution traces and used
to perform race analysis.

An analysis of sequence Q in Fig. 7.13 allows us to guarantee that s2 can be
received at r1. It does not, however, allow us to guarantee that s1 can be received
at r2 since we cannot guarantee that Thread2 will always execute two receive
statements. For example, the code in Thread2 that generates r1 and r2 could be:

Thread2

x = port.receive(); //generates event r1 in Q
if (x > 0)

y = port.receive(); //generates event r2 in Q

If r1 receives the message sent by s2 instead of s1, the condition (x > 0) may
be false, depending on the value of s2’s message. But if the condition (x > 0)
is false, the second receive statement will not be executed, and since we do not
examine CP’s code during race analysis, it is not safe to put s1 in the race set
of r2.

The second major task for reachability testing is to use race sets to generate
the race variants of an execution trace. A race variant represents the beginning
part of one or more alternative program paths (i.e., paths that could have been
executed if the message races had been resolved differently). When a race variant
is used as a prefix sequence during prefix-based testing, one of these alternative
paths will be selected nondeterministically.

Figure 7.14 shows the race variant produced for sequence Q in Fig. 7.13.
When this variant is used for prefix-based testing, Thread2 will be forced to
receive its first message from Thread3, not Thread1. What Thread2 will do after
that is unknown. Perhaps Thread2 will receive the message sent at s1, or perhaps
Thread2 will send a message to Thread1 or Thread3. The dashed arrow from
s1 indicates that s1 is not received as part of the variant, although it may be
received later. In any event, whatever happens after the variant is exercised will

Thread1 Thread2 Thread3
s1 r1 s2

Figure 7.14 Race variant for sequence Q in Fig. 7.13.
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be traced, so that new variants can be generated from the trace and new paths
can be explored.

Next, we illustrate the reachability testing process by applying it to a solution
for the bounded buffer program. Pseudocode for threads Producer, Consumer,
and Buffer is shown below. The Buffer thread uses a selective wait statement (see
Section 5.3) to accept entry calls from the Producer and Consumer threads. The
guards on the accept alternatives control whether an entry call can be accepted
for one or both of entries deposit and withdraw.

Producer Consumer Buffer

(s1) deposit.call(x1); (s4) item = withdraw.call(); loop
(s2) deposit.call(x2); (s5) item = withdraw.call(); select
(s3) deposit.call(x2); (s6) item = withdraw.call(); when (buffer is not full) =>

item = deposit.acceptAndReply();
/* insert item into buffer */

or
when (buffer is not empty) =>

withdraw.accept();
/* remove item from buffer */
withdraw.reply(item);

end select;
end loop;

The reachability testing process for this bounded buffer program proceeds as
follows. First, assume that sequence Q0 is recorded during a nondeterministic
execution. Sequence Q0 and the three variants derived from Q0 are shown in
Fig 7.15. [The labels on the arrows for the send events match the labels on the
send statements in the Producer (P) and Consumer (C) threads.] The variants are
derived by changing the order of deposit (D) and withdraw (W) events whenever
there is a message race. If the message for a receive event r is changed, all the
events that happened after r are removed from the variant (since we cannot
guarantee that these events can still occur). Notice that there is no variant in
which the first receiving event is for a withdraw. Run-time information collected
about the guards will show that the guard for withdraw was false when the
first deposit was accepted in Q0. Thus, we do not generate a variant to cover
this case.

P Buffer
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s3

s4
s5

s6

D
D

D

W
W

W
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C

s1
s2

s3
s4
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D
D

D
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W

W
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P Buffer C
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s3 s4

s5

s6
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D
D

W
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W

V2

P Buffer C

s1

s2

s3

s4

s5

s6

D

D

D

W

W

W

V3

P Buffer C

Figure 7.15 Sequence Q0 and its variants.
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To create variant V1 in Fig. 7.15, the outcome of the race between s3 and
s5 in Q0 is reversed. During the next execution of CP, variant V1 is used for
prefix-based testing. This means that variant V1 is replayed, and afterward, the
execution proceeds nondeterministically. Sequence Q1 in Fig. 7.16 is the only
sequence that can be exercised when V1 is used as a prefix. No new variants can
be derived from Q1.

To create variant V2 in Fig. 7.15, the outcome of the race between s3 and
s4 in Q0 is reversed. During the next execution of CP, variant V2 is used for
prefix-based testing and sequence Q2 in Fig. 7.16 is the only sequence that can
be exercised. No new variants can be derived from Q2.

To create variant V3 in Fig. 7.15, the outcome of the race between s2 and s4
in Q0 is reversed. During the next execution of CP, variant V3 is used for prefix-
based testing. Assume that sequence Q3 in Fig. 7.17 is exercised. Variant V4 can
be derived from Q3 by changing the outcome of the race between s3 and s5.
Notice that there is no need to change the outcome of the race between s2 and s5
in Q3 since the information collected about the guard conditions will show that a
withdraw for s5 cannot be accepted in place of the deposit for s2. During the next
execution of CP, variant V4 is used for prefix-based testing, and sequence Q4 in
Fig. 7.17 is the only sequence that can be exercised. Reachability testing stops
at this point since Q0, Q1, Q2, Q3, and Q4 are all the possible SYN-sequences
that can be exercised by this program.
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D
D

D
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W
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Q1

P Buffer C

s1
s2
s3

s4

s5
s6

D
D
D

W
W
W

Q2

P Buffer C

Figure 7.16 Sequences Q1 and Q2.
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Figure 7.17 Sequences Q3 and Q4 and variant V4.
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7.5.2 SYN-Sequences for Reachability Testing

To perform reachability testing we need to find the race conditions in a SYN-
sequence. The SYN-sequences defined for replay and testing were defined without
any concern with identifying races. Together, a program, an input, and a com-
plete or simple SYN-sequence contain sufficient information to identify the path
and determine the result of an execution, but they do not contain sufficient infor-
mation to identify the alternative paths of an execution. For example, a (simple)
M-sequence of a monitor-based execution records the sequence in which threads
entered a monitor, which determines the result of an execution, but it does not
contain any monitor call events, which are the events that must be analyzed to
determine the alternative order(s) in which threads could have entered the mon-
itor. Similarly, a PV-sequence for a semaphore-based program records the order
in which threads completed their P and V operations, but there are no events
representing calls to these operations. To compute the races in an execution, we
need to capture this new type of execution event.

For reachability testing, an execution is characterized as a sequence of event
pairs:

ž For asynchronous and synchronous message-passing programs, an execution
is characterized as a sequence of send and receive events. (For the execution
of a synchronous send statement, the send event represents the start of the
send, which happens before the message is received.)

ž For programs that use semaphores or locks, an execution is character-
ized as a sequence of call and completion events for P , V , lock, and
unlock operations.

ž For programs that use monitors, an execution is characterized as a sequence
of monitor call and monitor entry events.

We refer to a send or call event as a sending event, and a receive, completion,
or entry event as a receiving event. We also refer to a pair < s, r > of sending
and receiving events as a synchronization pair. In the pair < s, r >, s is said to
be the sending partner of r , and r is said to be the receiving partner of s. An
arrow in a space-time diagram connects a sending event to a receiving event if
the two events form a synchronization pair.

An event descriptor is used to encode certain information about each event:

ž A descriptor for a sending event s is denoted by (SendingThread, Destina-
tion, op, i), where SendingThread is the thread executing the sending event,
Destination is the destination thread or object (semaphore, monitor, etc.),
op is the operation performed (P , V , send, receive, etc.), and i is the event
index indicating that s is the ith event of the SendingThread.

ž A descriptor for a receiving event r is denoted by (Destination, OpenList,
i), where Destination is the destination thread or object and i is the event
index indicating that r is the ith event of the Destination thread or object.



REACHABILITY TESTING 425

The OpenList contains program information that is used to compute the
events that could have occurred besides r . For example, the OpenLists for
the receive events in the example bounded buffer program above capture
run-time information about the guard conditions (i.e., the list of accept alter-
natives that are open when a deposit or withdraw alternative is selected).
This information enabled us to determine, for example, that a withdraw
event could not be executed in place of the first deposit event. More Open-
List examples are given below.

The individual fields of an event descriptor are referenced using dot notation.
For example, operation op of sending event s is referred to as s.op. Tables 7.1
and 7.2 summarize the specific information that is contained in the event descrip-
tors for the various synchronization constructs. Although the information is
construct-specific, the format and general meaning of the fields in the event
descriptors are the same for all constructs. This will allow us to present a single
race analysis algorithm that operates on event descriptors and thus works for any
construct. The values for most of the fields in the event descriptors are straight-
forward, except for the OpenList in receiving events. Below we describe how
to compute OpenLists and provide examples of event descriptors for the various
constructs.

Descriptors for Asynchronous Message Passing Events For asynchronous mes-
sage passing, the OpenList of a receive event r contains a single port, which is
the source port of r . A send event s is said to be open at a receive event r if
port s.Destination is in the OpenList of r , which means that the ports of s and
r match. For a sending event s to be in the race set of receive event r , it is
necessary (but not sufficient) for s to be open at r . The race analysis algorithm
presented in the next section can be used to determine whether s is involved in
a race condition that could allow s to be the send partner of r .

Figure 7.18 shows a space-time diagram representing an execution with three
threads. Thread T2 receives messages from ports p1 and p2. Thread T1 sends
two messages to port p1. Thread T3 sends its first message to port p1 and its
second message to port p2. Event descriptors are shown for each of the events.

TABLE 7.1 Event Descriptors for a Sending Event s

Synchronization
Construct SendingThread Destination Operation i

Asynchronous
message passing

Sending thread Port ID Send Event index

Synchronous
message passing

Sending thread Port ID Send Event index

Semaphores Calling thread Semaphore ID P or V Event index
Locks Calling thread Lock ID Lock or unlock Event index
Monitors Calling thread Monitor ID Method name Event index
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TABLE 7.2 Event Descriptors for a Receiving Event r

Synchronization
Construct Destination OpenList i

Asynchronous
message passing

Receiving thread Port of r Event index

Synchronous
message passing

Receiving thread List of open ports
(including the port of r)

Event index

Semaphores Semaphore ID List of open operations
(P and/or V )

Event index

Locks Lock ID List of open operations
(lock and/or unlock)

Event index

Monitors Monitor ID List of the monitor’s
methods

Event index

s2 (T1,p1,send,1)

s4 (T1,p1,send,2)

r1 (T2,p1,1)

r3 (T2,p2,3)

r2 (T2,p1,2)

r4 (T2,p1,4)

T1 T2 T3

s1 (T3,p1,send,1)

s3 (T3,p2,send,2)

Figure 7.18 Sequence of asynchronous send/receive events.

Descriptors for Synchronous Message Passing Events Synchronous message
passing may involve the use of selective waits. The OpenList of a receive event r

is a list of ports that had open receive alternatives when r was selected. Note that
this list always includes the source port of r . For a simple receive statement that
is not in a selective wait, the OpenList contains a single port, which is the source
port of the receive statement. Event s is said to be open at r if port s.Destination
is in the OpenList of r .

Figure 7.19 shows a space-time diagram representing an execution with three
threads. Thread T1 sends two messages to port p1, and thread T3 sends two mes-
sages to port p2. Thread T2 executes a selective wait with receive alternatives for
p1 and p2. Assume that whenever p2 is selected, the alternative for p1 is open,
and whenever p1 is selected, the alternative for p2 is closed. This is reflected in
the OpenLists for the receive events, which are shown between braces {. . .} in the
event descriptors. Note that each solid arrow is followed by a dotted arrow in the
opposite direction. The dotted arrows represent the updating of timestamps when
the synchronous communication completes. Timestamp schemes are described in
Section 7.5.4.

Descriptors for Semaphore Events Figure 7.20 shows an execution involving
threads T1 and T2 and semaphore s, where s is a binary semaphore initialized
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T1 T2
r1 (T2,{p1,p2},1)

s2 (T1,p1,send,1)

T3

r2 (T2,{p1},2)

s1 (T3,p2,send,1)

s3 (T3,p2,send,2)r3 (T2,{p1,p2},3)

s4 (T1,p1,send,2) r4 (T2,{p1},4)

Figure 7.19 Sequence of synchronous send/receive events.

T1 s T2

p1 (T2,s,P,1)

v1 (T2,s,V,2)

p2 (T1,s,P,1)

v2 (T1,s,V,2)

e1 (s,{P},1)

e2 (s,{V},2)

e3 (s,{P},3)

e4 (s,{V},4)

Figure 7.20 Sequence of P and V operations.

to 1. There is one time line for each thread and each semaphore. A solid arrow
represents the completion of a P() or V() operation. The open lists for the com-
pletion events model the fact that P and V operations on a binary semaphore
must alternate. This means that the OpenList of a completion event for a binary
semaphore always contains one of P or V but not both. OpenLists for binary and
counting semaphores can easily be calculated at run time based on the semaphore
invariant (see Sections 3.1 and 3.4.1). A call event c for a P or V operation is
open at a completion event e if c and e are operations on the same semaphore
(i.e., c.Destination = e.Destination , and operation c.op of c is in the OpenList
of e).

Descriptors for Lock Events If a lock is owned by some thread T when a
completion event e occurs, each operation in the OpenList of e is prefixed with
T to indicate that only T can perform the operation. (Recall that if a thread T

owns lock L, only T can complete a lock() or unlock() operation on L.) For
example, if the OpenList of a completion event e on a lock L contains two
operations lock() and unlock(), and if L is owned by thread T when e occurs, the
OpenList of e is {T : lock , T : unlock}. A call event c on lock L that is executed
by thread T is open at a completion event e if (1) c.Destination = e.Destination;
(2) operation c.op is in the OpenList of e, and (3) if L is already owned when e

occurs then T is the owner.
Figure 7.21 shows a space-time diagram representing an execution with two

threads and a mutex lock k. Thread T2 performs two lock() operations followed
by two unlock() operations, and thread T1 performs one lock() operation followed
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T1 k

e1 (k,{lock},1)

l3 (T1,k,lock,1)

T2

e2 (k,{T2:lock,T2:unlock},2)

l1 (T2,k,lock,1)

l2 (T2,k,lock,2)

u3 (T1,k,unlock,2)

u1 (T2,k,unlock,3)

u2 (T2,k,unlock,4)

e3 (k,{T2:lock,T2:unlock},3)

e4 (k,{T2:lock,T2:unlock},4)

e5 (k,{lock},5)

e6 (k,{T1:lock,T1:unlock},6)

Figure 7.21 Sequence of lock and unlock operations.

by one unlock() operation. The OpenList for e2 reflects the fact that only thread
T2 can complete a lock() or unlock() operation on k since T2 owns k when
e occurs.

Descriptors for Monitor Events The invocation of a monitor method is modeled
as a pair of monitor-call and monitor-entry events:

ž SU monitors. When a thread T calls a method of monitor M , a monitor-call
event c occurs on T . When T eventually enters M , a monitor-entry event
e occurs on M , and then T starts to execute inside M .

ž SC monitors. When a thread T calls a method of monitor M , a monitor-
call event c occurs on T . A call event also occurs when T tries to reenter a
monitor M after being signaled. When T eventually (re)enters M , a monitor-
entry event e occurs on M , and T starts to execute inside M .

In these scenarios, we say that T is the calling thread of c and e, and M is
the destination monitor of c as well as the owning monitor of e. A call event c is
open at an entry event e if the destination monitor of c is the owning monitor of
e (i.e., c.Destination = e.Destination). The OpenList of an entry event always
contains all the methods of the monitor since threads are never prevented from
entering any monitor method (although they must enter sequentially and they
may be blocked after they enter).

Figure 7.22 shows a space-time diagram representing an execution involving
three threads T1, T2, and T3, an SC monitor m1 with methods a() and b(), and
an SC monitor m2 with a single method c(). Thread T1 enters m1.a() first and
executes a wait operation. The second call event performed by T1 occurs when
T1 reenters m1.a() after being signaled by T2. Note that if m1 were an SU
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c1 (T1,m1,a,1)
wait

e3 (m1,{a,b},3)c3 (T1,m1,a,2)

e1 (m1,{a,b},1)

e2 (m1,{a,b},2)
signal

c2 (T2,m1,b,1)

c4 (T1,m2,c,3) e4 (m2,{c},1)

e5 (m2,{c},2)

e6 (m1,{a,b},4)

c5 (T3,m2,c,1)

c6 (T3,m1,b,2)

T1 m1 T2 m2 T3

Figure 7.22 Sequence of monitor call and entry events.

monitor, there would be no c3 event representing reentry. After T1 exits from
m1, T1 enters and exits m2. This is followed by thread T3 entering and exiting
m2 and then entering and exiting m1.

7.5.3 Race Analysis of SYN-Sequences

In this section we show how to perform race analysis on SYN-sequences. Sect-
ion 7.5.2 showed a common event descriptor format for a variety of synchro-
nization constructs. To illustrate race analysis, we will first consider a program
CP that uses asynchronous ports. We assume that the messages sent from one
thread to another may be received out of order. To simplify our discussion, we
also assume that each thread has a single port from which it receives messages.

Let Q be an SR-sequence recorded during an execution of CP with input X.
Assume that a → b is a synchronization pair in Q, c is a send event in Q that
is not a, and c’s message is sent to the same thread that executed b. We need to
determine whether sending events a and c have a race (i.e., whether c → b can
happen instead of a → b during an execution of CP with input X). Furthermore,
we need to identify races by analyzing Q, not CP.

To determine accurately all the races in an execution, the program’s semantics
must be analyzed. Fortunately, for the purpose of reachability testing, we need
only consider a special type of race, called a lead race. Lead races can be identi-
fied by analyzing the SYN-sequence of an execution (i.e., without analyzing the
source code).

Definition 6.1 Let Q be the SYN-sequence exercised by an execution of a
concurrent program CP with input X. Let a → b be a synchronization pair in Q
and let c be another sending event in Q. There exists a lead race between c and
< a, b > if c → b can form a synchronization pair during some other execution
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of CP with input X, provided that all the events that happened before c or b in
Q are replayed in this other execution.

Note that Definition 6.1 requires all events that can potentially affect c or b

in Q to be replayed in the other execution. If the events that happened before b

are replayed, and the events that happened before c are replayed, we can be sure
that b and c will also occur, without having to analyze the code.

Definition 6.2 The race set of a → b in Q is defined as the set of sending
events c such that c has a (lead) race with a → b in Q.

We will refer to the receive event in Q that receives the message from c as
receive event d , denoted by c → d . (If the message from c was not received in
Q, d does not exist.) To determine whether a → b and c in Q have a message
race, consider the 11 possible relationships that can hold between a, b, c, and d

in Q:

(1) c ⇒ d and d ⇒ b.
(2) c ⇒ d , b ⇒ d , and b ⇒ c.
(3) c is send event that is never received and b ⇒ c.
(4) c ⇒ d , b ⇒ d , c||b, and a and c are send events of the same thread.
(5) c ⇒ d , b ⇒ d , c||b, and a and c are send events of different threads.
(6) c ⇒ d , b ⇒ d , c ⇒ b, and a and c are send events of the same threads.
(7) c ⇒ d , b ⇒ d , c ⇒ b, and a and c are send events of different threads.
(8) c is a send event that is not received, c||b, and a and c are send events

of the same thread.
(9) c is a send event that is not received, c||b, and a and c are send events

of different threads.
(10) c is a send event that is not received, c ⇒ b, and a and c are send events

of the same thread.
(11) c is a send event that is not received, c ⇒ b, and a and c are send events

of different threads.

The happened before relation e ⇒ f was defined in Section 6.3.4. Recall that
it is easy to examine a space-time diagram visually and determine the causal
relations. For two events e and f in a space-time diagram, e ⇒ f if and only if
there is no message e ↔ f or f ↔ e and there exists a path from e to f that
follows the vertical lines and arrows in the diagram.

Figure 7.23 shows 11 space-time diagrams that illustrate these 11 relations.
Each of the diagrams contains a curve, called the frontier. Only the events hap-
pening before b or c are above the frontier. (A send event before the frontier
may have its corresponding receive event below the frontier, but not vice versa.)
For each of diagrams (4) through (11), if the send and receive events above the
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Figure 7.23 For message a → b and send event c → d in Q, the eleven possible rela-
tions between a, b, c, and d .

frontier are repeated, events b and c will also be repeated and the message sent
by c could be received by b. This is not true for diagrams (1), (2), and (3).

Based on these diagrams, we can define the race set of a → b in Q as follows:

Definition 6.3 Let Q be an SR-sequence of a program using asynchronous
communication and let a → b be a synchronization pair in Q. The race set of
a → b in Q is {c|c is a send event in Q; c has b’s thread as the receiver; not
b ⇒ c; and if c → d , then b ⇒ d}.

Figure 7.24a shows an asychronous SR-sequence and the race set for each
receive event in this SR-sequence. Consider send event s8 in Fig. 7.24a. Send
event s8 is received by Thread2 and is in the race sets for receive events r1 and
r2 of Thread2. Send event s8 is not in the race set for receive event r6 since
r6 happens before s8. Send event s8 is not in the race set for receive event r7
since s8 → r8 but r8 ⇒ r7 . Thus, s8 is in the race sets for receive events of
Thread2 that happen before r8 but do not happen before s8.

The asynchronous ports and mailboxes used in Chapters 5 and 6 are FIFO
ports, which means that messages sent from one thread to another thread are
received in the order that they are sent. With FIFO ordering, some of relations
(1) through (11) above must be modified:

ž Relations (4) and (8) no longer have a race between message a → b and c.
ž Relations (6) and (10) are not possible.
ž Relations (5), (7), (9), and (11) have a race between a → b and c if and

only if all the messages that are sent from c’s thread to b’s thread before c

is sent are received before b occurs.
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Figure 7.24 Race sets for SR-sequences.

Thus, the definition of race set must also be modified for FIFO asynchronous
SR-sequences.

Definition 6.4 Let Q be an SR-sequence of a program using FIFO asynchronous
communication, and let a → b be a message in Q. The race set of a → b in Q is
{c|c is a send event in Q; c has b’s thread as the receiver; not b ⇒ c; if c → d ,
then b ⇒ d; and all the messages that are sent from c’s thread to b’s thread
before c is sent are received before b occurs}.

Figure 7.24b shows a FIFO asynchronous SR-sequence and the race set for
each receive event in this SR-sequence. (Since the asynchronous SR-sequence
in Fig. 7.24a satisfies FIFO ordering, it is also used in Fig. 7.24b.) Consider
the nonreceived send event s3 in Fig. 7.24b. Send event s3 has Thread2 as the
receiver and is in the race sets for receive events r7 and r8 in Thread2. Thread2
executes r2 immediately before executing r8. Since r2 has the same sender as
s3 and s2 is sent to Thread2 before s3 is sent, s2 has to be received by Thread2
before s3 is received. Thus, s3 is not in the race set for receive event r2. (Note
that in Fig. 7.24a, s3 is in the race sets for receive events r6, r1, r2, r8, and r7.)

In some parallel programs, nondeterminism is considered to be the result of a
programming error [Empath et al. 1992]. If an execution of CP with input X is
expected to be deterministic, the race set for each receive event in Q should be
empty. If the race set for each receive event in Q is empty, all executions of CP
with input X exercise the same SR-sequence and produce the same result.

In general, sending and receiving events may involve constructs such as
semaphores, locks, and monitors, not just message passing. The following defi-
nition describes how to compute the race set of a receiving event assuming that
all the constructs use FIFO semantics.

Definition 6.5 Let Q be a SYN-sequence exercised by program CP. A sending
event s is in the race set of a receiving event r if (1) s is open at r; (2) r does
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not happen before s; (3) if < s, r ′ > is a synchronization pair, r happens before
r ′; and (4) s and r are consistent with FIFO semantics (i.e., all the messages
that were sent to the same destination as s, and were sent before s, are received
before r).

Following are some examples of race sets:

ž Asynchronous message passing. The race sets for the receive events in
Fig. 7.18 are as follows: race(r1 ) = {s2 } and race(r2 ) = race(r3 ) =
race(r4 ) = {}. Note that s3 is not in the race set of r1 because s3 is sent to
a different port and thus s3 is not open at r1. For the same reason, s4 is not
in the race set of r3. Note also that s4 is not in the race set of r1, because
FIFO semantics ensures that s2 is received before s4.

ž Synchronous message passing. The race sets of the receive events in
Fig. 7.19 are as follows: race(r1 ) = {s2 }, race(r2 ) = {}, race(r3 ) = {s4 },
and race(r4 ) = {}. Since the receive alternative for port p2 was open
whenever thread T2 selected the receive alternative for port p1, the race
set for r1 contains s2 and the race set for r3 contains s4. On the other hand,
since the receive alternative for p1 was closed whenever thread T2 selected
the receive alternative for p2, the race set for r2 does not contain s3.

ž Semaphores. The race sets of the completion events in Fig. 7.20 are as
follows: race(e1) = {p2} and race(e2) = race(e3) = race(e4) = {}. Note
that since P() is not in the OpenList of e2, the race set for e2 does not contain
p2. This captures the fact that the P() operation by T1 could start but not
complete before the V () operation by T2 and hence that these operations
do not race.

ž Locks. The race sets of the completion events in Fig. 7.21 are as fol-
lows: race(e1) = {l3} and race(e2) = race(e3) = race(e4) = race(e5) =
race(e6) = {}. Note that since T2 owned lock k when the operations for
events e2, e3, and e4 were started, the race sets for e2, e3, and e4 are
empty. This represents the fact that no other thread can complete a lock()
operation on k while it is owned by T2.

ž Monitors. The race sets of the entry events in Fig. 7.22 are as follows:
race(e1) = {c2}, race(e2) = race(e3) = {}race(e4) = {c5}, and race(e5) =
race(e6) = {}. Sending event c3 is not in the race set of e2 since c3 happened
after e2. (Thread T2 entered monitor m at e2 and executed a signal operation
that caused T1 to issue the call at c3.)

7.5.4 Timestamp Assignment

As we just saw, the definition of a race between sending events is based on
the happened-before relation, which was defined in Section 6.3.3. In this section
we present thread-centric and object-centric timestamp assignment schemes for
capturing the happened-before relation during race analysis. A thread-centric
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timestamp has a dimension equal to the number of threads involved in an exe-
cution. An object-centric timestamp has a dimension equal to the number of
synchronization objects involved. Therefore, a thread-centric scheme is preferred
when the number of threads is smaller than the number of synchronization objects,
and an object-centric scheme is preferred otherwise.

Thread-Centric Scheme The vector timestamp scheme described in Sec-
tion 6.3.5 is thread-centric by our definition and can be used for race analy-
sis. Recall that in this scheme each thread maintains a vector clock. A vector
clock is a vector of integers used to keep track of the integer clock of each
thread. The integer clock of a thread is initially zero and is incremented each
time the thread executes a send or receive event. Each send and receive event is
also assigned a copy of the vector clock as its timestamp.

Let T .v be the vector clock maintained by a thread T . Let f.ts be the vector
timestamp of event f . The vector clock of a thread is initially a vector of zeros.
The following rules are used to update vector clocks and assign timestamps to
the send and receive events in asynchronous message passing programs:

1. When a thread Ti executes a nonblocking send event s, it performs the fol-
lowing operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v. The message
sent by s also carries the timestamp s.ts.

2. When a thread Tj executes a receive event r with synchronization partner s,
it performs the following operations: (a) Tj .v[j ] = Tj .v[j ] + 1; (b) Tj .v =
max(Tj .v, s.ts); (c) r.ts = Tj .v.

Figure 7.25a shows the timestamps for the asynchronous message passing
program in Fig. 7.18. A timestamp scheme for synchronous message passing
was also described in Section 6.3.5, but this scheme must be extended before
it can be used for race analysis. The scheme in Section 6.3.5 assigns the same
timestamp to send and receive events that are synchronization partners:

1. When a thread Ti executes a blocking send event s, it performs the operation
Ti.v[i] = Ti.v[i] + 1. The message sent by s also carries the value of vector
clock Ti.v.

T1 T2

r1 [0,1,1]
s2 [1,0,0]

T3

r2 [1,2,1]
s1 [0,0,1]

s3 [0,0,2]r3 [1,3,2]

s4 [2,0,0] r4 [2,4,2]

T1 T2

r1 [0,1,1]

s2 [1,2,1]

T3

r2 [1,2,1]

s1 [0,1,1]

s3 [1,3,2]r3 [1,3,2]

s4 [2,4,2] r4 [2,4,2]

(a) (b)

Figure 7.25 Traditional timestamp schemes for asynchronous and synchronous message
passing.
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2. When a thread Tj executes a receiving event r that receives the message
sent by s, it performs the following operations: (a) Tj .v[j ] = Tj .v[j ] + 1;
(b) Tj .v = max(Tj .v, Ti.v); (c) r.ts = Tj .v. Thread Tj also sends Tj .v back
to thread Ti .

3. Thread Ti receives Tj .v and performs the following operations: (a) Ti.v =
max(Ti .v, Tj .v); (b) s.ts = Ti.v.

The exchange of vector clock values between threads Ti and Tj represents the
synchronization that occurs between them; their send and receive operations are
considered to be completed at the same time. Figure 7.25b shows the timestamps
for the synchronous message passing program in Fig. 7.19. In our execution
model for synchronous message passing, a send event models the start of a
send operation, not its completion. This allows us to identify synchronous send
operations that start concurrently, which is essential for race analysis. For send
and receive events that are synchronization partners, the start of the send is
considered to happen before the completion of the receive, which means that
the timestamps for sending and receiving partners should not be the same. Thus,
when a synchronization completes, we use the timestamp of the receive event to
update the vector clock of the sending thread, which models the synchronization
that occurs between the threads. But we do not use the timestamp of the receive
event to update the timestamp of the send event, since the start of the send is
considered to happen before the completion of the receive.

The timestamp scheme synchronous message passing is as follows:

1. When a thread Ti executes a blocking send event s, it performs the fol-
lowing operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v. The message
sent by s also carries the value of vector clock Ti.v.

2. When a thread Tj executes a receiving event r that receives the message
sent by s, it performs the following operations: (a) Tj .v[j ] = Tj .v[j ] + 1;
(b) Tj .v = max(Tj .v, Ti.v); (c) r.ts = Tj .v. Thread Tj also sends Tj .v back
to thread Ti .

3. Thread Ti receives Tj .v and performs the operation Ti.v = max(Ti .v, Tj .v).

Figure 7.26 shows the timestamps that are assigned so that race analysis can
be performed on the synchronous message passing program in Fig. 7.19. Note
that the dashed arrows represent the application of rule 3. The timestamps for
s1 and s2 indicate that these send events were concurrent even though the syn-
chronization between T1 and T2 happened after the synchronization between T3
and T2.

Below we describe a thread-centric timestamp scheme for semaphores, locks,
and monitors. We refer to semaphores, locks, and monitors generally as synchro-
nization objects. In this scheme, each thread and synchronization object maintains
a vector clock. (As before, position i in a vector clock refers to the integer clock
of thread Ti ; synchronization objects do not have integer clocks and thus there
are no positions in a vector clock for the synchronization objects.) Let T .v (or
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T1 T2

r1 [0,1,1]

s2 [1,0,0]

T3

r2 [1,2,1]

s1 [0,0,1]

s3 [0,1,2]r3 [1,3,2]

s4 [2,2,1] r4 [2,4,2]

Figure 7.26 Timestamp scheme for race analysis of synchronous message passing
programs.

O.v) be the vector clock maintained by a thread T (or a synchronization object
O). The vector clock of a thread or synchronization object is initially a vector of
zeros. The following rules are used to update vector clocks and assign timestamps
to events:

1. When a thread Ti executes a sending event s, it performs the following
operations: (a) Ti.v[i] = Ti.v[i] + 1; (b) s.ts = Ti.v.

2. When a receiving event r occurs on a synchronization object O, the fol-
lowing operations are performed: (a) O.v = max(O.v, s.ts); (b) r.ts =
O.v, where s is the sending partner of r .

3. Semaphore/Lock. When a thread Ti finishes executing an operation on a
semaphore or lock O, it updates its vector clock using the component-wise
maximum of Ti.v and O.v [i.e., Ti.v = max(Ti.v, O.v)].
SU monitor. When a thread Ti finishes executing a method on a monitor
O, it updates its vector clock using the component-wise maximum of Ti.v

and O.v [i.e., Ti.v = max(Ti .v,O.v)].
SC monitor. When a thread Ti finishes executing a method on a monitor
O, or when a thread Ti is signaled from a condition queue of O, it updates
its vector clock using the component-wise maximum of Ti.v and O.v [i.e.,
Ti.v = max(Ti.v,O.v)].

Figure 7.27a and b show the thread-centric timestamps assigned for the exe-
cutions in Figs. 7.20 and 7.22, respectively. Again, dotted arrows represent appli-
cation of the third rule. Thread-centric timestamps can be used to determine the
happened-before relation between two arbitrary events, as the following propo-
sition shows:

Proposition 6.1 Let CP be a program with threads T1, T2, . . . , Tn and one or
more semaphores, locks, or monitors. Let Q be a SYN-sequence exercised by CP.
Assume that every event in Q is assigned a thread-centric timestamp. Let f.tid be
the (integer) thread ID of the thread that executed event f , and let f1 and f2 be
two events in Q. Then, f1 → f2 if and only if (1) < f 1, f 2 > is a synchronization
pair; or (2) f1.ts[f1.tid] ≤ f2.ts[f1.tid] and f1.ts[f2.tid] < f 2.ts[f 2.tid].
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signal
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Figure 7.27 Timestamp scheme for race analysis of semaphore-based and monitor-based
programs.

Object-Centric Scheme In an object-centric scheme, each thread and synchro-
nization object (port, semaphore, lock, or monitor) maintains a version vector. A
version vector is a vector of integers used to keep track of the version number of
each synchronization object. The version number of a synchronization object is
initially zero and is incremented each time a thread performs a sending or receiv-
ing event. Each sending and receiving event is also assigned a version vector as
its timestamp.

Let T .v (or O.v) be the version vector maintained by a thread T (or a synchro-
nization object O). Initially, the version vector of each thread or synchronization
object is a vector of zeros. The following rules are used to update version vectors
and assign timestamps to events:

1. When a thread T executes a sending event s, T assigns its version vector
as the timestamp of s (i.e., s.ts = T .v;).

2. When a receiving event r occurs on a synchronization object O, letting
s be the sending partner of r , the following operations are performed:
(a) O.v = max(O.v, s.ts); (b) r.ts = O.v.

3. Semaphore/Lock. When a thread T finishes an operation on a semaphore or
lock O, T updates its version vector using the component-wise maximum
of T .v and O.v [i.e., T .v = max(T .v,O.v)].
SU monitor . When a thread T finishes executing a method on a monitor
O,T updates its version vector using the component-wise maximum of
T .v and O.v [i.e., T .v = max(T .v, O.v)].
SC monitor . When a thread T finishes executing a method on a monitor O,
or when a thread T is signaled from a condition queue of O, T updates its
version vector using the component-wise maximum of T .v and O.v [i.e.,
T .v = max(T .v,O.v)].
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Figure 7.28 Object-centric timestamps.

Timestamps assigned using the rules above are called object-centric times-
tamps. Note that this scheme is preferred only if the number of synchronization
objects is smaller than the number of threads. Considering that in a message-
passing program, each thread usually has at least one port, we do not expect that
this scheme will frequently be used for message-passing programs. Figure 7.28
shows object-centric timestamps assigned for the executions in Fig. 7.27.

Object-centric timestamps cannot be used to determine the happened-before
relation between two arbitrary events. However, they can be used to determine
the happened-before relation between two events if at least one of the events is
a receiving event, which is sufficient for our purposes.

Proposition 6.2 Let CP be a program that uses synchronization objects O1, O2,

. . . , Om, and let Q be a SYN-sequence exercised by CP. Assume that every event
in Q is assigned an object-centric timestamp. Let e be a receiving event on Oi

and f be a receiving event on Oj , where 1 ≤ i, j ≤ m. Then e → f if and only
if e.ts[i] ≤ f.ts[i] and e.ts[j ] < f.ts[j ].

Proposition 6.3 Let CP be a program that uses synchronization objects O1, O2,

. . . , Om, and let Q be the SYN-sequence exercised by CP. Assume that every
event in Q is assigned an object-centric timestamp. Let r be a receiving event
on Oi and s be a sending event on Oj , where 1 ≤ i, j ≤ m. Then r → s if and
only if r.ts[i] ≤ s.ts[i].

In Fig. 7.28b, monitor entry e3 happens before entry e4 since e3.s[1] ≤ e4.ts[1]
and e3.ts[2] < e4.ts[2]. Monitor entry e3 happens before call c6 since e3.ts[1] ≤
c6.ts[1].
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7.5.5 Computing Race Variants

The race variants of a SYN-sequence Q are computed by constructing a race
table, where every row in the race table represents a race variant of Q. Each
race variant V of Q is required to satisfy the following three conditions: (1) If
we create V by changing the sending partner of receiving event r , the new
sending partner of r must be a sending event in the race set of r; (2) if we
create V by changing the sending partner of receiving event r , any event e

that happens after r must be removed from V if e’s execution can no longer be
guaranteed; and (3) there must be at least one difference between Q and V. As an
example, consider the race table for sequence Q0 of the bounded buffer program
in Section 7.5.1. Sequence Q0 and its variants are reproduced in Fig. 7.29. The
receiving events in Q0 are numbered and shown with their race sets.

Table 7.3 is the race table for sequence Q0. The three columns represent the
three receiving events whose race sets are nonempty. Each row represents a race
variant of Q0. Consider the second row, which is (0, 1, −1). Each value indicates
how the sending partner of the corresponding receiving event in Q0 is changed
to create variant V2. The value 0 indicates that the sending partner of receiving
event r2 will be left unchanged. The value 1 indicates that the sending partner of
receiving event r3 will be changed to s3, which is the first (and only) send event
in race(r3). The value −1 indicates that receiving event r4 will be removed from
V2. In general, let r be the receiving event corresponding to column j , V the
race variant derived from row i, and v the value in row i column j . Value v

indicates how receiving event r is changed to derive variant V :

1. v = −1 indicates that r is removed from V.
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Figure 7.29 Reachability testing for the bounded buffer program.

TABLE 7.3 Race Table for Q0

r2 r3 r4

1 0 0 1
2 0 1 −1
3 1 −1 −1
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2. v = 0 indicates that the sending partner of r is left unchanged in V.
3. v > 0 indicates that the sending partner of r in V is changed to the vth

(sending) event in race(r), where the sending events in race(r) are arranged
in an arbitrary order and the index of the first sending event in race(r) is 1.

The receiving events with nonempty race sets are arranged across the columns
in left-to-right order with respect to the happened-before relation. (If receiving
event a happens before receiving event b, the column for a appears to the left
of the column for b.) Conceptually, a race table is a number system in which
each row is a number in the system and each column is a digit in a number.
In Table 7.3, each receiving event has a race set of size 1. Thus, the base of
the number system is 2 and each digit (i.e., column value) has the value 0 or 1.
(In general, the race sets of the receiving events may have different sizes.) The
significance of the digits increases from right to left.

The rows in the race table are computed iteratively. Starting with the number
0, all the numbers in the number system are enumerated by adding 1 at each
iteration. Each new number (not including 0) becomes the next row in the table.
Observe that the addition of 1 to a number can be accomplished by incrementing
the least significant digit g whose value is less than the value of its base minus 1
and then setting all the digits that are less significant than g to 0. For the binary
(base 2) system in Table 7.3, the first row of the race table is 001. Adding 1 to
this row generates the second row 010, adding one to the second row generates
the third row 011, and so on. This process generates variants representing all
the possible combinations of outcomes of the race conditions. There is a slight
complication, however, for dealing with the case where the value of a digit is, or
becomes, −1. The value −1 is used to ensure that each row represents a variant
that is a feasible prefix of the program being tested, as described below.

To compute the next row in the race table for a SYN-sequence Q, we increment
the least significant digit whose value is less than the value of its base minus 1
and whose value is not −1. Let t[] be an array representing the next row in the
race table. We use the following rules to ensure that t[] represents a valid race
variant V of sequence Q:

1. Whenever we change digit t[i] from 0 to 1, which means that the send-
ing partner of receiving event ri will be changed to create V, we set
t[j ] = −1, i < j ≤ n, if ri happens before rj and rj is no longer guar-
anteed to occur. (Recall that changing the sending partner of ri may affect
the execution of the events that happen after ri .) This removes receiving
event(s) rj from V and ensures that V represents a feasible prefix of one
or more executions.

2. Let bi be the base of digit t[i]. Whenever we change digit t[i] from bi to
0, which means that the sending partner of ri will be changed back to ri’s
original sending partner in Q, we set t[j ] = 0, i < j ≤ n, if the current
value of t[j] is −1 and there no longer exists an index k, 1 ≤ k < j , such
that t[k] > 0 and rk happens before rj . In other words, if ri is the only
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event causing t[j ] to be set to −1 [due to the application of rule (1)] and
we change ri’s sending partner back to its original sending partner in Q,
we need to change t[j ] to 0 so that rj is no longer removed from V.

3. Whenever we increment t[i], we need to determine whether there exists an
index j such that t[j ] = m, m > 0, and ri → s, where s is the mth send
event in race(rj ). Array t[] is added to the race table as the next row if
and only if such an index j does not exist. If such an index j does exist,
the sending partner of receiving event rj was previously changed to s but
since ri → s and the sending partner of ri has just been changed, we can
no longer guarantee that send event s will occur.

As an example, consider how to add 1 to the number represented by row 1 in
Table 7.3. First, we increment the value in the second column (i.e., the column
for r3), which is the rightmost column whose value is less than its base minus
1 and is not −1. (The base of the third column is 2, which is one more than
the number of send events in the race set of r4. The value 1 in the third column
is not less than 2 minus 1; hence we do not increment the value in the third
column.) We then apply rule 1, changing the value in the third column to −1
since r3 happens before r4 in sequence Q0. Rule 2 is not applicable since we
did not change the second column from 1 to 0. For rule 3, observe that no other
column has a value greater than 0; hence, changing the sending partner of r3

does not affect the sending partners of any other receiving events.
Notice that when we change t[i] from 0 to 1 or from bi to 0, we need only

check the values of t[k], i < k ≤ n, which are the values in the columns to
the right of t[i]. This is because receiving events are ordered from left to right
based on the happened-before relation. This ordering also ensures that the value
represented by t[] increases at each iteration. Therefore, this iterative process of
computing rows will eventually terminate.

Every row in a race table represents a unique, partially ordered variant, which
means that totally ordered sequences are not considered during race analysis. As
a result, race analysis never produces two sequences that differ only in the order
of concurrent events (i.e., two different totally ordered sequences that have the
same partial ordering). To see this, consider a race table that has columns for
two concurrent receiving events r1 and r2. Three variants will be generated: one
in which the sending partner of r1 is changed, one in which the sending partner
of r2 is changed, and one in which the sending partners of both r1 and r2 are
changed. No variants are generated to cover the two orders in which r1 and r2

themselves can be executed (r1 followed by r2, and r2 followed by r1). The order
in which r1 and r2 are executed is not specified by the variants. This avoids the
“test sequence explosion problem” that would result if test sequences were to be
generated to cover all the possible interleavings of concurrent events.

7.5.6 Reachability Testing Algorithm

In the preceding section we described how to generate race variants for a single
SYN-sequence. The reachability testing process, however, is iterative. A sequence
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is collected and its race variants are derived and used to collect more sequences,
which are used to derive more variants, and so on. The objective of this pro-
cess is to exercise every (partially ordered) SYN-sequence exactly once during
reachability testing. However, if a newly derived race variant V is a prefix of a
SYN-sequence Q that was exercised earlier, prefix-based testing with V could
exercise Q again. Reachability testing algorithms must deal with this potential
for collecting duplicate sequences.

One approach to preventing duplicates is to save all the SYN-sequences that
are exercised. Then a newly derived variant can be used for prefix-based testing
only if it is not a prefix of a SYN-sequence that has already been exercised. For
large programs, the cost of saving all of the sequences can be prohibitive, both
in terms of the space to store the sequences and the time to search through them.
As a result, the scalability of this approach is limited.

In this section we describe an alternative approach that does not save any
exercised sequences. The idea is to identify variants that may cause duplicates
and prevent them from being generated. Some of these variants, however, cannot
be prevented, since the best we can say before we execute these variants is that
they might produce duplicates. In such cases, we allow the suspect variants to be
executed, but we prevent duplicate sequences from being collected from them.

To understand this alternative approach, it is helpful to consider reachability
testing from a graph-theoretic perspective. Let CP be a concurrent program. All
the possible SYN-sequences that could be exercised by CP with input X can be
organized into a directed graph G, which we refer to as the Sequence/Variant
graph of CP, or simply the S/V -graph . For example, Fig. 7.30a is the S/V-graph
for the bounded buffer example in Section 7.5.1.

Each node n in S/V -graph G represents a SYN-sequence that could be exer-
cised by CP with input X. Each edge represents a race variant. An edge labeled
V from node n to node n′ indicates that sequence n′ could be exercised by prefix-
based testing with the variant V derived from sequence n. Note that a node n

may have multiple outgoing edges that are labeled by the same variant of n. The
reason for this is that prefix-based testing with a race variant forces the variant to
be exercised at the beginning of the test run and then lets the run continue nonde-
terministically; this nondeterministic portion can exercise different sequences in
different test runs. For example, in Fig. 7.30a node Q0 has two outgoing edges
that are both labeled V3 since prefix-based testing with variant V3 may exercise

Q0

Q1 Q2

Q3 Q4

V1 V2

V3 V3

V4

Q0

Q1 Q2

Q3 Q4

V1 V2

V3

V4

(a) (b)

Figure 7.30 SV-graph and spanning tree for the bounded buffer program.



REACHABILITY TESTING 443

Q3 or Q4. Note also that an S/V-graph is strongly connected, which means that
there is a path in the graph from each node to every other node.

From a graph-theoretic perspective, the goal of reachability testing is to con-
struct a spanning tree of the S/V-graph. A spanning tree of S/V-graph G is a
subgraph of G that is a tree (i.e., a graph with no cycles) and that connects the
n nodes of G with n − 1 edges (i.e., each node, except the root, has one and
only one incoming edge.). Since S/V-graphs are strongly connected, reachability
testing can start from an arbitrary node, which explains why the reachability
testing process begins by collecting a sequence during a nondeterministic execu-
tion. Also note that each variant is used to conduct a single test run. Therefore,
in a spanning tree that represents the reachability testing process, no two edges
should be labeled with the same variant. Figure 7.30b shows the spanning tree
representing the reachability testing process that was illustrated in Section 7.5.1.

A reachability testing algorithm must constrain the way variants are generated
so that every sequence is exercised exactly once (i.e., so that the reachability test-
ing process represents a spanning tree of the SV-graph). Of course, the SV-graph
is not known when reachability testing begins, so we are only using SV-graphs
and spanning trees as a device to guide the implementation of, and demonstrate
the correctness of, our reachability testing algorithm. Below, we describe several
constraints that are implemented in the reachability testing algorithm and show
how they relate to SV-graphs and spanning trees. Details about the algorithm can
be found in the references at the end of this chapter.

Let G be the S/V graph of program CP with input X. If we can find some
constraints on the paths through G such that given two arbitrary nodes n and
n′ in G there is exactly one acyclic path from n to n′ that satisfies these con-
straints, we can construct a spanning tree of G by enforcing these constraints. If
the reachability testing algorithm implements these constraints, the reachability
testing process will exercise every sequence once. We will refer to node n and n′
as the source node and target node, or the source sequence and target sequence,
respectively. The two constraints we present next constrain the path between n

and n′ such that there is exactly one path H that satisfies the constraints.

Constraint C1 The sending partner of a receiving event can be changed only
if the receiving event exists in the target sequence and can be changed at most
once along a path. This constraint ensures that path H between n and n′ is
acyclic. Consider again the S/V-graph in Fig. 7.30a. A reachability testing process
involving the cyclic path Q0Q1Q0 would not represent a spanning tree of the S/V-
graph since trees cannot have cycles. Such a path would represent a reachability
testing process in which sequence Q0 was exercised twice. Note that receiving
event r4 has a different sending partner in Q0 and Q1. Indeed, variant V1 changes
r4 so that its sending partner is s3 instead of s5. Therefore, the edge from Q1 to
Q0 must change the sending partner of r4 back to s5. This is, however, impossible
due to Constraint C1, since the sending partner of r4 was already changed once
in V1 and is not allowed to be changed again. Therefore, the cyclic path Q0Q1Q0
cannot occur during reachability testing.
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Constraint C1 can be implemented during reachability testing by associating
each receiving event r in variant V with a color that is either black or white. If the
sending partner of r is changed to derive variant V, r’s color is set to black, and
this color is inherited by r in any sequences collected from V. Black receiving
events are excluded from race tables (even though they may have nonempty race
sets), which prevents the sending partners of black receiving events from being
changed again. For example, in Fig. 7.30a , variant V1 was derived by changing
the sending partner of r4 (see Fig. 7.29). Therefore, the color of r4 in V1 will
be black, and this color will be inherited by r4 in Q1. Thus, r4 will be excluded
from the heading of Q1’s race table, preventing the sending partner of r4 from
being changed again when deriving race variants from Q1.

Constraint C2 Each edge along a path must reconcile as many differences as
possible. A difference between source sequence n and target sequence n′ refers to
a receiving event r that exists in both sequences but has different sending partners
in each sequence. In terms of these differences, reachability testing can be viewed
as the process of transforming, through one or more variants, sequence n into
sequence n′. Each variant resolves one or more differences between n and n′.
Constraint C2 says that if there are differences that can be reconciled by an edge
(e.g., the sending partner of r in n′ is in the race set of r in n), these differences
should be reconciled by this edge. This means that when deriving a variant V,
if there are receiving events whose sending partners can be changed but are not
changed, these unchanged receiving events cannot be changed afterward in any
sequences derived from V. Recall that it is common for a variant to leave some
receiving events unchanged since all combinations of changed and unchanged
receiving events are enumerated in the race table. Constraint C2 ensures that a
particular set of changes occurs in only one variant.

To illustrate Constraint C2, consider sequence Q0 and its three variants in
Fig. 7.31. A variant and the sequence that was collected from it are shown in
the same space-time diagram, with the variant above the dashed line and the rest
of the sequence below it. The SV-graph and spanning tree for these sequences
are also shown in Fig. 7.31. Notice that the SV-graph contains paths Q0Q2Q3
and Q0Q3, both of which are paths from Q0 to Q3. Constraint C2 excludes path
Q0Q2Q3 from the spanning tree. To see this, observe that receiving events r2 and
r4 exist in Q0 and also in Q3, but the messages they receive in Q0 are different
from the messages they receive in Q3. Also observe that edge V2 along the path
Q0Q2Q3 only changes the sending partner of r4, leaving the sending partner
of r2 unchanged. The sending partner of r2 is changed afterward by the edge
from Q2 to Q3. Thus, path Q0Q2Q3 violates Constraint C2, which prohibits r2
from being changed in any sequences derived from V2 since r2 could have been
changed in V2 but wasn’t. Note that edge V3 of path Q0Q3 can be included in
the spanning tree since it changes the sending partners of both r2 and r4.

Constraint C2 can be implemented during reachability testing by removing
old sending events from the race sets of old receiving events before variants are
derived. A sending or receiving event in a SYN-sequence VQ is an old event if it
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Figure 7.31 Illustrating constraint C2.

also appears in the variant V that was used to collect VQ. For example, consider
SYN-sequence Q2 in Fig. 7.31. Events r1 and s2 are old events because they
appear in both V2 (the variant that was used to collect Q2) and Q2. Therefore,
s2 will be removed from the race set of r1 in Q2, which means that the sending
partner of r1 cannot be changed to s2 when the race variants of Q2 are derived.
As a result, path Q0Q2Q3 cannot be generated during reachability testing, as in
order to reach Q3 from Q2, the sending partner of r1 must be changed from s1
to s2.

Implementing Constraints C1 and C2 is complicated by the possibility that a
receiving event may be removed from a variant and then recollected when the
variant is used for prefix-based testing. Figure 7.32 shows a variant V containing
a receiving event r1 that happens before receiving event r2. Suppose that variant
V is used to collect sequence VQ, which is also shown in Fig. 7.32. Suppose
further that some thread executes a sending event s that is received by Thread2
and is in the race set of r1 in VQ. When the sending partner of r1 is changed from
s1 to s in order to derive variant VQV of VQ, r2 will be removed from VQV
since r1 happens before r2 in VQ. Notice, however, that r2 will be recollected
when VQV is used for prefix-based testing since Thread3 will definitely execute
r2 again. In this case, changing the sending partner of r1 to s does not affect the
flow of control in Thread3 before the point where Thread3 executes r2 (though
possibly after that point). This can be determined by examining VQ, which allows

Thread1 Thread2 Thread3

r1
r2

V

Thread1 Thread2 Thread3

r1
r2

VQ

sr3

Thread1 Thread2 Thread3

r1

VQV

ss1
s2

s1
s2

Figure 7.32 Recollected events.
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us to guarantee that Thread3 will execute r2 in the sequence collected from
variant VQV.

Recollected events such as r2 must be handled carefully. There are two cases
to consider:

1. Event r2 in V is a black receiving event, indicating that the sending partner
of r2 was changed earlier in the reachability testing process. When r2 is
recollected during prefix-based testing with VQV, it will be recollected
as a new (i.e., white) event. The send partners of white receiving events
can be changed. However, Constraint C1 would be violated if we allowed
r2’s sending partner to be changed when deriving variants of VQV since it
was already changed earlier. To prevent a violation of Constraint C1, when
r2’s color is set to black in V, receiving event e’s color in V is also set to
black for any receiving event e that happened before r2, such as r1. This
prevents r1’s sending partner from being changed when deriving variants
from VQ, which in turn prevents r2 from being removed from any variant
derived from VQ or from any sequence collected afterward. [Recall that if
event e is colored black in a variant, e inherits that color in any sequence(s)
collected from that variant.]

2. Event r2 in V is a white receiving event, indicating that the sending partner
of r2 has not yet been changed. When r2 is recollected during prefix-based
testing with VQV, it will be recollected as a white receiving event, but r2
will also be an old receiving event. This means that old sending events must
be pruned from r2’s race set in the sequences collected from variant VQV;
otherwise, Constraint C2 would be violated when we changed the sending
partner of r2 to an old sending event. Recollected white receiving events
such as r2 are handled as follows. When the race table of a sequence such
as VQ is built, r2 should not be removed (i.e., set to −1) when variants such
as VQV are created, since r2 will definitely be recollected. Furthermore, in
a variant such as VQV, which has recollected event r2 in it, we allow r2’s
sending partner to be changed just like the other receiving events in the race
table. If r2’s sending partner is changed, nothing special must be done when
the variant is used for prefix-based testing. If, however, the sending partner
of r2 is not changed, the sending partner of r2 must be left unspecified in
the variant, since the original sending partner of r2 must be removed. (For
example, the sending partner s2 of r2 in VQ happens after r1 in VQ, so
s2 must be removed when the sending partner of r1 is changed to derive
VQV.) In this case, r2 must be prevented from receiving a message from
any old sending events when the variant is used for prefix-based testing.
This prevents Constraint C2 from being violated.

Figure 7.33 shows the algorithm that drives the reachability testing process.
Algorithm Reachability-Testing starts with a SYN-sequence Q0 that is collected
from a nondeterministic test run. It then applies Constraints C1 and C2 and builds
the race table of Q0 to generate the race variants of Q0. Each of these race
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ALGORITHM Reachability-Testing (CP: a concurrent program; I: an input of
CP) {

let variants be an empty set;
collect SYN-sequence Q0 by executing CP with input I nondeterministically;
compute race variants of Q0, variants(Q0), by constructing the race table of

Q0 and enforcing Constraints C1 and C2;
variants = variants(Q0);
while (variants is not empty) {

withdraw a variant V from variants;
collect a SYN-sequence Q by performing prefix-based testing with V;
compute the race variants of Q, variants(Q), by constructing the race table

of Q and enforcing Constraints C1 and C2;
variants = variants ∪ variants(Q);

}
}

Figure 7.33 Reachability testing algorithm.

variants is used for prefix-based testing to collect a new SYN-sequence. This
process is then repeated for each newly collect SYN-sequence until no more
race variants can be generated. The results of applying algorithm Reachability-
Testing to semaphore, monitor, and message passing programs were described in
Sections 3.10.5, 4.11.4, and 5.5.5, respectively.

7.5.7 Research Directions

In this section we suggest several interesting ways in which it may be possible
to improve or extend the results of reachability testing.

Coverage-Based Reachability Testing Reachability testing is inherently an
exhaustive testing approach. Exhaustive testing, however, may take too much
time or may be unnecessary for some applications. To strike a balance between
the cost and coverage of testing, reachability testing can be modified to exercise
a set of SYN-sequences selectively. Sequence selection can be guided by test
coverage criteria or by heuristics designed to expose bugs as early as possible.
The goal of coverage-based reachability testing is to shorten the testing phase
and produce meaningful results when exhaustive testing is impractical.

Coverage-Preserving Reductions Exercising every possible SYN-sequence may
be impractical, but it may also be unnecessary. In Section 3.10.5 we suggested
several ways to reduce the number of sequences exercised by reachability testing
without reducing its ability to detect failures. The results in Section 3.10.5 suggest
that significant reductions are possible.
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The number of sequences can be reduced based on the semantics of syn-
chronization operations. For example, the semantics of P and V operations on
a semaphore can be used to identify race conditions whose outcomes have no
effect on the rest of the execution. For instance, the order of two consecutive
V () operations on a semaphore s has no effect on the operations that follow.
Thus, if an s.V () operation by Thread1 is followed immediately by an s.V ()

operation by Thread2, we can ignore the race variant that reverses the order of
these V () operations.

The number of sequences can be reduced based on the symmetry of program
threads. For example, the number of possible test sequences for a solution to
the readers and writers problem is greatly reduced if you avoid generating test
sequences that differ only in the order in which two or more readers perform the
same operation (e .g., start reading), or the order in which two or more writers
perform the same operation (e .g., start writing). Notice that three readers can
start reading in six different ways, but exercising more than one of these six
orders may not increase test coverage in any useful way.

The number of sequences can be reduced based on properties of the appli-
cation. Sometimes, two or more sequences are equivalent in terms of some
application-level property. Perhaps this equivalence can be expressed and verified
formally, and perhaps it can be discovered automatically by analyzing the code.
Otherwise, the programmer can simply assert this equivalence based on his or
her intuition about the program. As an example, consider the distributed mutual
exclusion (DME) program in Section 6.4.1. A process that wishes to gain mutu-
ally exclusive access to some resource requests and waits for permission from
all the other processes. The code that the processes use for receiving replies is
as follows:

public void waitForReplies() { // wait for all the other processes to reply
while (true) {

messageParts m = (messageParts) receiveReplies.receive();
// the value of m is not used
replyCount++;
if (replyCount == numberOfProcesses-1)

break; // all replies have been received
}

}

Exercising all the possible orders in which replies can be received accounts
for a large number of the sequences that can be exercised by the DME program.
For three processes there are 4032 possible sequences. Note, however, that the
behavior of a process does not depend on the values received in the replies, on
the identities of the senders, or on the order in which the replies are received;
it depends only on the number of replies (replyCount) that are received. If we
only require reachability testing to exercise one of the possible orders of receiving
replies, the total number of sequences for three processes drops from 4032 to 504.
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Run-Time Monitoring and Failure Detection Analyzing the large number of
sequences exercised during reachability testing must be automated at least par-
tially. In Chapter 3 we described techniques for detecting data races and dead-
locks automatically. Since reachability testing provides some guarantees about
the completeness of testing, it can be used to bridge the gap between testing and
verification. Run-time verification techniques are needed for specifying and ver-
ifying correctness properties against the individual sequences generated during
reachability testing.

Formal Methods and Model Checking There is growing interest in combining
formal methods and testing. Some formal methods are model based, which means
that a finite-state model must be extracted from a program before the program can
be verified. Static analysis methods for model extraction have difficulty handling
dynamic objects such as threads, heaps, and data structures. These objects ought
to be easier to handle in a dynamic framework. Since reachability testing is
dynamic and can be exhaustive, it is possible to extract complete models of
behavior from concurrent programs and then verify the extracted models. As
we mentioned above, correctness properties can also be verified as the program
is running, without building a finite-state model. However, model-based formal
methods are supported by a variety of powerful state-reduction techniques, model
checkers, and specification languages, which makes this approach attractive.

FURTHER READING

Hwang et al. [1995] presented a reachability testing algorithm that exercises all
possible interleavings of read and write operations on shared variables. A reacha-
bility testing algorithm for asynchronous message-passing programs was reported
by Tai [1997]. Tai’s algorithm constructs a race variant of an SR-sequence by
changing the outcome of a single race condition and then uses the race variant
for prefix-based testing. Eventually, this process produces race variants that repre-
sent changes to the outcomes of two or more race conditions. Lei and Tai [2002]
developed an improved algorithm, which generates all the race variants of an SR-
sequence at once. Lei and Carver [2004a,b; 2005] and Carver and Lei [2004]
developed the reachability testing models and algorithms presented in this chapter.
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EXERCISES

7.1 Suppose that CP is a nondeterministic concurrent program. Must it be true
that there are two or more different possible outputs for an execution of CP
with some input X?

7.2 Create several mutations of the message-passing solution to the readers and
writers program in Section 5.4.1. List your mutations and indicate whether
the sequence that distinguishes the mutant from the correct solution is a
valid or an invalid sequence.

7.3 Show a sequential program for which a set of test sequences that satisfies
decision coverage may not detect a failure that is detected by a set of test
sequences that satisfies statement coverage but not decision coverage.

7.4 Figure 7.34 shows a sequence of call and completion events for semaphores
s1 and s2. Semaphore s1 is a counting semaphore initialized to 2. Semaphore
s2 is a binary semaphore initialized to 1.

(a) Based on the semaphore invariant, compute the OpenList for each com-
pletion event ei, 1 ≤ i ≤ 10.

(b) Compute a timestamp for each call and completion event using the
object-centric timestamp scheme.

(c) Compute the race set for each completion event.
(d) Compute the race table for this sequence.

7.5 It is possible to reduce the number of sequences exercised during reacha-
bility testing by considering the semantics of P and V operations.

(a) Show how to perform such a reduction by modifying the definition of
an OpenList for P and V operations. For example, if operation V is
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c2 (T1,s1,P,1)

e4 (s1,{},4)

c10 (T1,s1,V,2)

e1 (s1,{},1)

e2 (s1,{},2)

e3 (s1,{},3)

c4 (T2,s1,P,1)

c5 (T2,s2,P,2) e5 (s2,{},1)

c6 (T2,s2,V,3) e6 (s2,{},2)

e9 (s1,{},5) c9 (T2,s2,V,4)

e7 (s2,{},3) c7 (T3,s2,P,3)

c8 (T3,s2,V,4)

c1 (T3,s1,P,1)

c3 (T3,s1,V,2)

e10 (s1,{},6) e8 (s2,{},4)

T1 s1 T2 s2 T3

Figure 7.34 Sequence of P and V operations.

excluded from the OpenList of completed V operations, race analysis
will not consider an alternative order of two V operations on the same
semaphore since V operations will never race with each other.

(b) Given your answer to part (a), how many sequences would be exer-
cised during reachability testing for the bounded-buffer program in
Listing 3.17?

7.6 In Sections 3.10.5 and 4.11.4 we reported the results of applying reach-
ability testing to semaphore and monitor solutions for the bounded-buffer
problem. It was reported that with reductions based on thread symmetry and
the semantics of P and V operations (see Exercise 7.5), reachability testing
of the semaphore solution with two producers and two consumers exercised
only two sequences. With reductions based on thread symmetry, reachability
testing of the SU monitor solution with two producers and two consumers
exercised 20 sequences. Why is the reduction greater for the semaphore
program? The SU monitor was implemented using semaphores. Would it
help to apply reachability testing directly to the semaphore implementation?

7.7 Suppose that we apply reachability testing to a monitor-based bounded-
buffer program with three producers and three consumers. Suppose that in
the first sequence exercised, Producer1 enters the monitor first, Consumer2
enters the monitor second, and the other Producers and Consumers enter
after that. Based on the notion of thread symmetry, what are the variants
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of this sequence? You only need to consider the first entry into the moni-
tor. That is, should we generate variants in which some other Producer or
Consumer enters the monitor first?

7.8 The beginning of Section 7.5 says: “If every execution of a program with
a given input terminates, and the total number of SYN-sequences is finite,
reachability testing will terminate and every partially ordered SYN-sequence
of the program with the given input will be exercised.”

(a) Write a program or point out one in the text that terminates for every
input but does not have a finite number of possible SYN-sequences.
Hint: Consider programs that have a loop that makes an undetermined
number of iterations.

(b) Does the program really have an infinite number of possible sequences?
If not, is it possible to put an upper bound on the number of sequences?

7.9 Draw a concurrency graph for the following program:

port p1, p2; // synchronous ports

Thread1 Thread2 Thread3 Thread4

p1.send(x); x = p1.receive(); p2.send(y); y = p2.receive();
end; end; end; end;

(a) How many states and transitions does your concurrency graph have?
(b) Would it be possible to reduce the number of states in your graph

without losing any information about the program?

7.10 Suppose that a thread has a loop, which could be a for -loop or a while
-loop. Will the concurrency graph for the thread include a cycle? Under
what conditions would the concurrency graph not have a cycle?

7.11 In Section 7.2.1 we mentioned the following relationship between the paths
and SYN-sequences of a concurrent program: “If two or more different
partially ordered feasible paths of CP have the same partially ordered SYN-
sequence, their input domains are mutually disjoint.” The input domain of
a path T is the set of inputs for which T is feasible. If the input domains of
a path are mutually disjoint, there is no input that appears in the domains
of both paths. For example, here is a simple sequential program with two
feasible paths:

int main() {
1. int x;
2. std::cout << "Enter an integer:";
3. std::cin >> x;
4. if (x%2==0)
5. std::cout << x << "is even."<< std::endl;
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6. else
7. std::cout << x << "is odd."<< std::endl;
8. return 0;
9. }

The feasible paths are (1,2,3,4,5,8,9) and (1,2,3,4,6,7,8,9). The input domain
of the first path is {even integers}, and the input domain of the second path
is {odd integers}. The input domains of these paths are mutually disjoint.
Explain why this statement is not true for totally ordered feasible paths
of concurrent program CP. That is, show that if different totally ordered
feasible paths of CP have the same totally ordered SYN-sequence, their
input domains may have a nonempty intersection. Remember, in a totally
ordered path, concurrent events from different threads are interleaved in an
arbitrary order.

7.12 Can reachability testing be used to detect livelock and starvation? Explain
your answer.

7.13 In Fig. 7.31, explain how Constraint C1 and/or Constraint C2 in Section 7.5.6
prevents path Q0Q1Q2 from being included in the spanning tree for the
SV-graph.
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abandoned Mutex, 124
accept

alternative, 273
statement, 269

accept() (Java), 315
acquire() (Java), 190
acquireUninterruptibly() (Java), 190
Active object, 320
Ada language, 273
Adaptive tracing, 411. See also Tracing,

testing, and replay
all-du-paths, 392. See also Path, -based

coverage criteria
Alternating bit protocol, 348
Amdahl’s law, 44
Asynchronous message passing, 259
at-most-once property, 28, 44. See also Atomic

actions
Atomic

actions, 25, 43. See also at-most-once
property

operations, 24, 95
AtomicBoolean (Java), 82
auto ptr<> (C++), 18, 266
Auto-reset Event, 132

Bakery algorithm, 56–58
Barging, 113, 202

Barrier, 170
Bathroom problem, Unisex, 169, 248, 305
Bear-and-the-honeybees problem, 171, 254,

306
beginhthreadex() (Win32), 6, 16

Binary semaphore, 90
implementation, 93
simulating, 183

binarySemaphore (Java), 192, 195
Black-box testing, 34, 408
Blocking receive, 259
Blocking send, 259
boundedBuffer (class)

C++/Pthreads, 197
C++/Win32, 135
Java, 117, 193, 195, 236
message-passing, 276
monitor, 179, 181

Bounded buffer problem, 25, 96
programmed using

message-passing, 275, 328
monitors, 181
semaphores, 97

reachability testing, and, 159, 235, 299
Bounded waiting requirement, 47
Breakpoint, 242
Buffer-blocking send, 259
Busy-waiting, 60–61

Modern Multithreading: Implementing, Testing, and Debugging Multithreaded Java
and C++/Pthreads/Win32 Programs, By Richard H. Carver and Kuo-Chung Tai
Copyright  2006 John Wiley & Sons, Inc.
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C#, 42
Cache, 61

consistency problem, 74
multiprocessor, in a, 75

call(), 269. See also Rendezvous
CARC-sequence, 353–362. See also

SYN-sequence
Cascaded wakeup, 104, 202
Causality, 332
Causal ordering for tracing, 338
Causal synchronization, 298
Channel, for message passing, 258
channel (Java class), 260
choose(), 274
Circular wait, 407
Client and server, 266
clone(), 266
CloseHandle() (Win32), 9, 123, 125
Closed monitor call, 213
Coincidental correctness, 398
Communication channel, see Channel
Communication event, 224
Communication-sequence, 233, 239. See also

SYN-sequence
Concurrency graph, 393

coverage, based on
all-concurrency-paths, 394
all-concurrency-states, 394
all-edges-between-concurrency-states, 394
all-possible-rendezvous, 395
all-proper-concurrency-paths, 394

Concurrent Pascal language, 187
Concurrent program, definition of, 1
Concurrent reading exclusive writing (CREW),

70
Condition (Java class), 196

operations on
await(), 196
signal(), 196

Condition synchronization, 38, 178
Condition variable, 178

Java, in, 194, 196
operations on, 178–180
Pthreads, in, 196
signaling disciplines, 199

conditionVariable (class)
(C++), 214–215
(Java), 207–208

Consumer thread, see Bounded buffer problem
Context switch, 3
Controlling executions

distributed programs, 369
message-passing programs, 290–294
monitor-based programs, 230–233

semaphore- and lock-based programs,
152–153

Correctness
checking, 74
definition, of, 395

Counting semaphore, 84
implementation, 93, 95
simulating, 182, 281

countingSemaphore
C++ class, 130
Java class, 111–113, 191

Coverage-based reachability testing, 447
Coverage criteria, see Path, -based coverage

criteria;
Concurrency graph, coverage, based on

Coverage-preserving reductions, 447
CreateMutex() (Win32), 122
CreateSemaphore() (Win32), 124
CREATE SUSPENDED (Win32), 7
CreateThread() (Win32), 6
Critical section of code, 46
Critical section problem, 46

bakery algorithm, 56–58
busy-waiting solution, 60–61
Peterson’s algorithm, 52–53, 72
semaphore solution, 88
ticket algorithm, 54

CRITICAL SECTION (Win32), 119–120
C run-time library, 6
CSC-sequence, 357–362. See also

SYN-sequence

Data race, 38, 187
detection, 144

Deadlock, 62. See also Deadlock detection
avoiding during VP(), 129
avoiding using locks, 91
detection algorithm, 402
dining philosophers program, in, 98
formal definition, 401

Deadlock avoidance, 154
Deadlock detection, 154

instructions for using, 161, 238, 300, 301
Java Hotspot VM, in, 156

Deadlock prevention, 154
Deadness error, 400
Debuggers, 242–243
Debugging, 30, 382. See also Tracing, testing,

and replay
definition-use (du) pairs, 392, 414. See also

Path, -based coverage criteria
Déjà vu, 222, 331
Delay alternative, 273
delayAlternative (Java class), 273
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delete (C++), 18
DeleteCriticalSection() (Win32), 120
Detached thread, 12
Deterministic testing, 296, 410

advantages over nondeterministic testing,
410

combined with nondeterministic testing,
414

distributed programs, applied to, 362–369
issues, 411–414
message-passing programs, applied to,

290–296
monitor-based programs, applied to, 239

Dining philosophers problem, 98
deadlock detection, and, 156
programmed using

monitors, 183–187
semaphores, 98–101

reachability testing, and, 159, 235
Distributed mutual exclusion, 341
Distributed program

definition of, 3, 312
testing and debugging

CARC-sequence, 353–362
controller, 369
instructions for running programs,

369–371
node based sequence, 360–362
object-based SYN-sequence, 353–358
simple CARC-sequence, 362
thread-based sequence, 358–360
totally ordered sequence, 359–360

Distributed programming, 19, 312
Distributed readers and writers, 346
down() operation, 84. See also Semaphore
Duality of monitors and message passing,

278–281

EAGAIN (Pthreads), 139
EBUSY (Pthreads), 136
else alternative, 273
elseAlternative (Java class), 274
empty(), 180
EnterCriticalSection() (Win32), 119
Entry, 268. See also Rendezvous
Entry-based execution, 218
entry (Java class), 268
Entry queue, 178
Eraser, 146
errno (C++), 139
error.h (C++), 10
Event ordering problem, 96

during tracing, 330
Event (Win32), 119, 132

Failure, 30, 381
types of, 398

Fault, 30, 382
example of, 397

Fairness, 3
parameter, 115–116

False alarms, 145
FCFS semaphore, 113, 115
Feasibility, 32, 412. See also Deterministic

testing
CARC-sequences, of, 362–369
Communication-sequences, of, 233, 239
M-sequences, of, 222
SR-sequences, of, 290

Feasible SYN-sequence, 32, 222, 396
FIFO synchronization, 298
Flowgraph, 392
Frontier of a race set, 430

getAndIncrement() (Java), 55, 82
getAndSet() (Java), 55, 82
GetExitCodeThread() (Win32), 7
getInputStream() (Java), 315
getOutputStream() (Java), 315
Global real-time clock, 332
Guard condition, 274

HANDLE (Win32), 6–7
Happened-before relation, 333
Hold-and-wait, 98. See also Circular wait

illegalMonitorStateException (Java), 189
Implementation of

monitors, 206–213
semaphores, 92–96
rendezvous, 269–271

Implementation relation, 396–397
Indefinite postponement, 400
Indivisible action, see Atomic, action
InetAddress (Java class), 314
Infinite wait, 400
InitializeCriticalSection() (Win32), 120
Instruction count, 413
IN-SYN test, 296, 410

selecting, 411
Integer timestamp, 334
Interleaving, 27, 65
Interlocked functions (Win32), 55
InterlockedExchange (Win32), 58
InterlockedExchangeAdd() (Win32), 55
Internet Protocol (IP), 314
interrupted() (Java), 190
InterruptedException (Java), 112, 189–190

class Condition, and, 199
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interrupts. See also InterruptedException
critical section problem, and, 47
implementing P and V, 94, 199

Interval timer, 47
Invalid sequence, 222, 396
IOException (Java), 314
I/O port, 313
isInterrupted() (Java), 190

java.concurrent.locks, 116, 196
Java Hot Spot VM, 156
java.net, 314
Java PathFinder, 146
java.util.concurrent.atomic, 55, 82
join(), 14, 133

Kernel object, 124
Kernel space, 1

Lead race, 429
LeaveCriticalSection() (Win32), 119
length(), 180
Life cycle, 34
Limited white-box testing, 408
Link, 260
link (Java), 261–262
Linked list, 29
Livelock, 62

detection algorithm, 404
formal definition, 403

load-add-store, 26–28
Local real-time clock, 331
Lock, 90. See also Mutex lock
lockableObject (C++ class), 121
Lockset algorithm, 144–146
LockUnlock-sequence, 147. See also

SYN-sequence
Logical address, 1
Lost notification, 189
LPVOID (Win32), 7

Machine instructions, 26
Mailbox, 260
mailbox (Java)

synchronous, 261
asynchronous, 262

main thread, 2
Java, in, 4
Pthreads, in, 10
Win32, in, 7

manual-reset Event (Win32), 132
Mapping between specification and

implementation, 397
MAX PRIORITY (Java), 5

Memory barrier, 54, 59
Memory cache, see Cache
Memory consistency, 74–77, 141–143
Memory management, 2
Memory mapped I/O, 76
Memory model, 77
messageParts (Java class), 320
Message passing, 258, 312. See also

Asynchronous message passing;
Synchronous message passing

duality with monitors, 278–281
solution to concurrent programming problems

readers and writers, 275–278
resource allocation, 278–281
simulating counting semaphores, 281

message ptr<> (C++ class), 263
MIN PRIORITY (Java), 5
Monitor, 177

condition variables, 178–182
duality with message passing, 278–281
implementation of, 206
Java, in, 187
Pthreads, in, 196
signaling disciplines, 199–206
solution to concurrent programming problems

dining philosophers, 183
readers and writers, 187
resource allocation, 278–280
simulating binary semaphore, 183
simulating counting semaphore, 182

Monitor toolbox
C++/Win32/Pthreads, 211–213
Java, 209–211

M-sequence, 222–227. See also SYN-sequence
Multiprocessing, 2
Multithreading, 2

advantages, of, 3
Mutation-based testing, 415–419
Mutex, 88

abandoned, 124
Pthreads, 136–137
Win32, 119, 122–124

Mutex lock, 90. See also Mutex
mutexLock

C++ class, 125–129
Java class 113–115

mutexLocker<> (C++ class), 121–122
Mutual exclusion, 38. See also Critical section

problem
advantages for replay, 149

Nested monitor call, 213–217
Node-based sequence, 360–362
Non-atomic operations, 26–29
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Non-blocking send, 259
Nondeterminism, Nondeterminsitic, 22, 23–25,

65
concurrency, and, 25
during testing and debugging, 25, 382
execution behavior, 24, 65
interleavings, 15, 23
problems for testing and debugging, 382
sources of, 23–35

Nondeterministic testing, 143–144, 409–410
combining with deterministic testing, 414
detecting deadlocks, 157

Non-signaled state (Win32), 132
notify() (Java), 112, 189
notify vs. notifyAll, 191

Object, active, 320
Object-based SYN-sequence, 65, 387–388
Object (Java class), 189
Observability problem, 330–331, 413
Open monitor call, 213
OpenMutex() (Win32), 124
OpenSemaphore() (Win32), 124
Operating system, 1
Optimizations, compiler and hardware, 75–76
Ordering events in distributed systems,

330–339
Order number, 283–284
OutputDebugString() (Win32), 243

Parallel program, 432
Partial order, 70, 148

object-based, 387–388
thread-based, 386–387
total order, vs., 288, 386–388

Passing-the-batton, 104
Path

-based testing, 391
-based coverage criteria

all-paths, 391
branch coverage, 391
condition coverage, 391
decision/condition coverage, 391
decision coverage, 391, 414
multiple condition coverage, 392
statement coverage, 391, 414

definition, 388
domain, 390
feasibility, 389
relationship to SYN-sequence, 390

Patterns, semaphore. See Semaphore patterns
Peterson’s algorithm, 52, 72
P operation, 84. See also Semaphore
Port, 260. See also Channel

port (Java), 261
POSIX1.b, 134
POSIX1.c, see Pthreads
POSIX Semaphore (C++ class), 142
Preemption, 3

Java, and, 5
Win32, and, 9

Prefix-based testing, 414, 420
PrintError(), 8
Priority, 5, 9
Probe effect, 33, 412

nondeterministic testing, and, 144
Process state information, 2
Process

definition, 1
scheduling, 2–3
state information, 2

Producer consumer problem, see Bounded
buffer problem

Producer thread, see Bounded buffer problem
Program replay, 31, 411. See also Tracing,

testing, and replay
Program testing, 31, 411. See also Tracing,

testing, and replay
Program tracing, 31, 411. See also Tracing,

testing, and replay
Progress requirement, 47
Progress statement, 403
pthread attr destroy() (Pthreads), 11
pthread attr init() (Pthreads), 10
pthread attr setscope() (Pthreads), 10
pthread attr t() (Pthreads), 9
pthread cond broadcast() (Pthreads), 196
pthread cond signal() (Pthreads), 196
pthread cond wait() (Pthreads), 196
pthread create() (Pthreads), 9
PTHREAD CREATE DETACHED (Pthreads),

12
PTHREAD CREATE JOINABLE (Pthreads), 12
pthread detach() (Pthreads), 12
pthread equal() (Pthreads), 10
pthread exit() (Pthreads), 13
pthread.h (Pthreads), 10
pthread join() (Pthreads), 10
pthread mutexattr settype() (Pthreads), 137
pthread mutex destroy() (Pthreads), 137
pthread mutex init() (Pthreads), 137
PTHREAD MUTEX INITIALIZER (Pthreads),

137
pthread mutex lock() (Pthreads), 136
PTHREAD MUTEX RECURSIVE (Pthreads),

137
pthread mutex unlock() (Pthreads), 136
PTHREAD SCOPE PROCESS (Pthreads), 10
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PTHREAD SCOPE SYSTEM (Pthreads), 10
pthread self() (Pthreads), 10
pthread setdetachstate() (Pthreads), 13
Pthreads library

condition variable, 196
mutex lock, 136–137
semaphore, 137–141
threads, 9–14

Pthreads threads
attributes, 10
creating, 9
detaching, 12

pthread t (Pthreads), 10
PulseEvent() (Win32), 132
PV-sequence, 146–147. See also

SYN-sequence

Quantum, 3
changing, 144, 409

Race analysis, 421. See also Reachability
testing

message-passing programs, of, 297
monitor-based programs, of, 233
semaphore-based programs, of, 157

Race set, 430. See also Reachability testing
Race table, 440. See also Reachability testing
Race variant, 421. See also Reachability

testing
computing, 439
message-passing programs, of, 297
monitor-based programs, of, 233
semaphore- and lock-based programs,

of, 157
Random delay, 300, 301, 409

creating in
message-passing programs, 300–301
monitor-based programs, 238–239
semaphore- and lock-based programs,

161–162
during nondeterministic testing, 409

Random testing, 414
Reachability graph, 393, 400
Reachability testing, 74

algorithm, 444–447
event descriptors, 424–429
message passing programs, 297–299
monitor-based programs, 233–235
open list, 425
process, 420–424
race analysis, 421

message-passing programs, of, 297
monitor-based programs, of, 233
semaphore-based programs, of, 157

race set, 430
race table, 440
race variant, 421

computing, 439
message-passing programs, of, 297
monitor-based programs, of, 233
semaphore- and lock-based programs, of,

157
symmetry, use of, 235
SYN-sequences for, 424–429

Read and write events, 66–67
Readers and writers problem, 101

distributed, 346–347
programmed with

message-passing, 275–278
monitors, 187–188
semaphores, 102–109

reachability testing, and, 159, 299
scheduling policies, 101–102

ReadWrite-sequence, 65–67, 146–148. See
also SYN-sequence

Real-time, 33, 413
Real-time clock, 331–332
Recollected events, 445–446. See also

Reachability testing
Recursive mutex, 137
Reduction of nondeterminsim, 397
ReentrantLock (Java class), 116, 196
Reentry queue, 199
Regression testing, 30, 222
reinterpret cast<> (C++), 14
release() (Java), 190
ReleaseMutex() (Win32), 122
ReleaseSemaphore() (Win32), 124
Remote procedure call, see Rendezvous
Rendezvous, 266–269. See also Entry
Replay, see Tracing, testing, and replay
ResetEvent() (Win32), 132
Resource allocation problem, 86

programmed with
message passing, 278
semaphores, 87
SU monitor, 278

Resource pooling, 127
ResumeThread() (Win32), 7, 18
Round-robin scheduling, 9
run() (Java), 4
Runnable interface

C++/Pthreads, 19
C++/Win32, 14–15
Java, 4

Run-time monitoring, 449
Run-time verification, 449
Scheduling policy, 2–3
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selectableEntry (Java class), 273, 290
selectablePort (Java class), 278
selective wait, 272–278
selectiveWait (Java class), 273–275
select statement, 273–275
Semaphore, 84

binary, 90–92
counting, 84–86
implementation of, 92–96
invariant, 85, 93
lock, vs., 92
patterns

condition queue, 89, 102
enter-and-test, 89
exit-before-wait, 89, 96, 104, 107
mutex, 84
passing-the-batton, 104

solution to concurrent programming problems
event ordering, 96
bounded buffer, 96–98
dining philosophers, 98–101
readers and writers, 101–108
simulating counting semaphores, 108–111

POSIX, in, 137
Win32, in, 119, 124

Semaphore (Java), 115
semaphore (Java), 111
semaphore.h (POSIX), 139
Semaphore pool, 127
sem destroy() (POSIX), 139
sem post() (POSIX), 137
sem t (POSIX), 139
sem trywait() (POSIX), 139
SEM VALUE MAX (POSIX), 137
sem wait() (POSIX), 137
Sequence/Variant graph (SV-graph), 442
Sequential consistency, 74
Serializable (Java), 317
ServerSocket (Java), 315
setCompleted(), 18, 133
SetEvent() (Win32), 132
setPriority() (Java), 5
setSoTimeout() (Java), 315
Shared memory consistency, see Memory

consistency
sharedVariable (C++), 34–37

lockset algorithm, and, 145
tracing and replay, for, 70–71

signal(), 179
signal-and-continue, 180–182
signaling disciplines, 199–206

signalAll() (Java), 180

Signal-and-continue (SC), 179, 180–182
C++/Win32/Pthreads toolbox, 213
comparing with SU signals, 204
implementing with semaphores, 206–207
Java toolbox, 210–211

Signal-and-exit (SE), 202–203, 212
Signal-and-urgent-wait (SU), 199–202, 207

C++/Win32/Pthreads toolbox, 213
comparing with SU signals, 204
Java toolbox, 210–211

Signal-and-wait (SW), 253
Signaled state (Win32), 132
SignalObjectAndWait() (Win32), 134
Simple SYN-sequence, 148, 383–386

simple CARC-sequence, 362
simple LockUnlock-sequence, 146–150
simple M-sequence, 217–219
simple PV-sequence, 146–150
simple ReadWrite-sequence, 65–68,

146–149
simple SR-sequence, 288–290

Simulating a binary semaphore programmed
with monitor, 183–184

Simulating a counting semaphore programmed
with

binary semaphores, 108–110
message passing, 281

sleep(), 60
Sleeping barber problem, 246
Sleep statement, 5, 144
Smart pointer, 263
Socket (Java), 314–317
Sockets, 312
SocketTimeoutException (Java), 315
Speedup, 3. See also Amdahl’s law
Spurious wakeup, 113, 189, 196
SR-sequence, 282. See also Tracing, testing,

and replay; SYN-sequence
determining feasibility, of, 290
object-based, 282–284, 387–388
simple SR-sequence, 288–290, 384–386
thread-based, 284–287, 387–388
totally ordered, 287–288

Stack size, 7
start(), 4, 18
startThread(), 16–18, 132
startThreadRunnable(), 16–18, 132
Starvation, 63–64

detection algorithm, 407
dining philosophers program, in, 98, 184
formal definition, 405
ignoring, 184

State transformation, 26
Static function, 18–19
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stderr (C++), 139
Strong component, 401
Strong semaphore, 92
Structural coverage criteria, see Path, -based

coverage criteria
Subsumes relation, 392
synchronized (Java), 112, 187

synchronized block, 194
Synchronous message passing, 259
SYN-sequence. See also Tracing, testing, and

replay
complete vs. simple, 383–386
definition of, 65, 383
implementation-based definition, 383
language-based definition, 383
total vs. partial order, 386–388
types of

CARC-sequence, 357–362
Communication-sequence, 233
CSC-sequence, 357–362
M-sequence, 222–227
simple CARC-sequence, 362
simple LockUnlock-sequence, 146–150
simple M-sequence, 217–219
simple PV-sequence, 146–150
simple ReadWrite-sequence, 65–68,

146–149
simple SR-sequence, 288–290
SR-sequence, 282–288

TCPMailbox (Java class), 318–326
TCPSelectableSynchronousMailbox (Java

class), 328–329
TCPSender (Java class), 318–326
TCP sockets, 312–314

Java, in, 314–317
TCPSynchronousSender (Java class), 326–328
TCPUnreliableMailbox (Java class), 351
TCPUnreliableSelectableMailbox (Java class),

351
TDThread (class), 34–37
Test oracle, 412
Testability, 149
Testing. See also Deterministic testing;

Non-deterministic testing;
Tracing, testing, and replay

definition of, 30
problems and issues, 30
tools, 33

this pointer, 19
Thread

C++/Pthreads, 19
C++/Win32, 14
Java, 4–5

Thread attribute, 10
Thread-based SYN-sequence, 65, 386
Thread.currentThread() (Java), 115
Thread, definition of, 2
Thread IDs, 36–37
Thread.interrupt() (Java), 112
Thread schedule, 221–222
Thread.sleep() (Java), 5
Ticket algorithm, 54
Tie-breaker algorithm, see Peterson’s

algorithm
Time slice, 2
Timed wait, 189
Timestamp

causality, and, 332–224
event ordering, and, 330
integer, 334–335
real-time clock, 331–332
shared variables, for, 339
vector timestamp, 335–339

Timestamps for reachability testing
object-centric, 437–439
thread-centric, 433–437

total order, 70–73, 148
partial order, vs., 288, 386–388

Tracing, testing, and replay. See also
Deterministic testing; Nondeterministic
testing;
Reachability testing; SYN-sequence;

feasibility
adaptive tracing, 411
approaches to testing, 408–419
class sharedVariable<>, 37–38
class TDThread, 34–37
deadlock detection, 154–157
distributed programs, see Distributed

program, testing and debugging
lock-based programs, 143–154

instructions for running programs,
160–163

memory consistency, and, 74–77
message-passing programs, 281–296

instructions for running programs,
299–304

monitor-based programs, 217–233
instructions for running programs,

235–243
semaphore-based programs, 143–154

instructions for running programs,
160–163

shared variables, 64–71
Transmission Control Protocol (TCP),

313–317
Transport protocol, 313
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tryAcquire() (Java), 115
try—finally, 199
tryLock() (Java), 116

Unbounded waiting, 59. See also Bounded
waiting requirement

Unisex bathroom problem, 169, 248, 305
UnknownHostException (Java), 314
up() operation, 84. See also Semaphore
Urgent-signal-and-continue (USC), 204. See

also signal()
User Data Protocol (UDP), 313

Valid SYN-sequence, 222, 396
validity, 32, 412. See also Valid SYN-sequence
Vector timestamp, 335–339. See also

Timestamp
Version number, 66
Visual C++, 243
volatile, 53–54, 76
V operation, 84. See also Semaphore
VP operation, 94–96. See also Semaphore

implementation of, 127

wait()
Java operation, see wait() and notify()
monitor operation, 178–182

WAIT ABANDONED (Win32), 124
wait() and notify() (Java), 111–112,

189
Wait, circular, 407
WAIT FAILED (Win32), 123, 125
Wait-for graph, 154
WaitForMultipleObjects() (Win32), 7,

134
WaitForSingleObject() (Win32), 122,

124
WAIT OBJECT 0 (Win32), 123, 125
WAIT TIMEOUT (Win32), 123, 125
Watchdog thread, 231
Weak semaphore, 92
White-box testing, 34, 408
WINAPI (Win32), 8
win32Critical Section (C++/Win32 class),

119–121
win32Mutex (C++/Win32 class), 124
win32Semaphore (C++/Win32 class),

125–127
Win32 threads

creating, 6
priority, 9
scheduling, 9

XADD, 55, 77
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