

Multi-Agent
Programming

Languages, Platforms and Applications

Multiagent Systems, Artificial Societies, and
Simulated Organizations

International Book Series

Series Editor: Gerhard Weiss, Technische Universitdt Munchen

Editorial Board:
Kathleen M. Carley, Carnegie Mellon University, PA, USA

Yves Demazeau, CNRS Laboratoire LEIBNIZ, France
Ed Durfee, University of Michigan, USA

Les Gasser, University of Illinois at Urbana-Champaign, IL, USA
Nigel Gilbert, University of Surrey, United Kingdom

Michael Huhns, University of South Carolina, SC, USA
Nick Jennings, University of Southampton, UK

Victor Lesser, University of Massachusetts, MA, USA
Katia Sycara, Carnegie Mellon University, PA, USA

Michael Wooldridge, University of Liverpool, United Kingdom

Books in the Series:

CONFLICTING AGENTS: Conflict Management in Multi-Agent Systems, edited by
Catherine Tessier, Laurent Chaudron and Heinz-Jurgen Miiller, ISBN: 0-7923-7210-7
SOCIAL ORDER IN MULTIAGENT SYSTEMS, edited by Rosaria Conte and
Chrysanthos Dellarocas, ISBN: 0-7923-7450-9
SOCIALLY INTELLIGENT AGENTS: Creating Relationships with Computers and
Robots, edited by Kerstin Dautenhahn, Alan H. Bond, Lola Caiiamero and Bruce Edmonds,
ISBN: 1-4020-7057-8
CONCEPTUAL MODELLING OF MULTI-AGENT SYSTEMS: The CoMoMAS
Engineering Environment, by Norbert Glaser, ISBN: 1-4020-7061-6
GAME THEORY AND DECISION THEORY IN AGENT-BASED SYSTEMS, edited
by Simon Parsons, Piotr Gmytrasiewicz, Michael Wooldridge, ISBN: 1-4020-7115-9
REFUTATION IN ARTIFICIAL SOCIETIES: Social Beliefs for Social Order, by
Rosaria Conte, Mario Paolucci, ISBN: 1-4020-7186-8
AGENT AUTONOMY, edited by Henry Hexmoor, Cristiano Castelfranchi, Rino Falcone,
ISBN: 1-4020-7402-6
AGENT SUPPORTED COOPERATIVE WORK, edited by Yiming Ye, Elizabeth
Churchill, ISBN: 1-4020-7404-2
DISTRIBUTED SENSOR NETWORKS, edited by Victor Lesser, Charles L. Ortiz, Jr.,
MilindTambe, ISBN: 1-4020-7499-9
AN APPLICATION SCIENCE FOR MULTI-AGENT SYSTEMS, edited by Thomas
A. Wagner, ISBN: 1-4020-7867-6
METHODOLOGIES AND SOFTWARE ENGINEERING FOR AGENT SYSTEMS:
The Agent-Oriented Software Engineering Handbook, edited by Federico Bergenti,
Marie-Pierre Gleizes, Franco Zambonelli
AUTONOMY ORIENTED COMPUTING: From Problem Solving to Complex Systems
Modeling, Jiming Liu, XiaoLong Jin, and Kwok Ching Tsui, ISBN 1-4020-8121-9
EXTENDING WEB SERVICES TEHCNOLOGIES, edited by Lawrence Cavedon,
Zakaria Maamar, David Martin, Boualem Benatallah, ISBN 0-387-23343-1
AGENT INTELLIGENCE THROUGH DATA MINING, Andreas L. Symeonidis,
Pericles A. Mitkas, ISBN 0-387-24352-6

Multi-Agent
Programming

Languages, Platforms and Applications

Edited by

Rafael H. Bordini
University of Durham

Jiirgen Dix
Clausthal University of

Technology

Mehdi Dastani
Utrecht University

Amal El Fallah Seghrouchni
University of Paris IV

Springer

Edited by
Rafael H. Bordini
University of Durham, USA

Mehdi Dastani
Utrecht University, NETHERLANDS

Jurgen Dix
Clausthal University of Technology, GERMANY

Amal El Fallah Seghrouchni
University of Paris VI, FRANCE

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available
From the Library of Congress

ISBN-10: 0-387-24568-5 (HB) e-ISBN 10: 0-387- 26350-0

ISBN-13: 978-0387-24568-3 (HB) e-ISBN-13: 978-0387-26350-2
Printed on acid-free paper

© 2005 by Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in
part without the written permission of the publisher (Springer Science +
Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if they are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

9 8 7 6 5 4 3 2 1 SPIN 11372691

springeronline.com

http://springeronline.com

Contents

List of Figures xi

Contributing Authors xv

Preface xxiii

Foreword xxix

Acknowledgments xxxii

Part I Logic- or Process Algebra-based Programming Languages

1
Jason and the Golden Fleece of Agent-Oriented Programming 3
Rafael H. Bordini, Jomi E Hiibner, andRenata Vieira

\A. Motivation 4
L2. Language 8

L2.1 Specifications and Syntactical Aspects 10
1.2.2 Semantics and Verification 13
1.2.3 Software Engineering Issues 21
1.2.4 Other Features of the Language 21

1.3. Platform 25
1.3.1 Main Features of the Jason Platform 25
1.3.2 Available Tools and Documentation 34
1.3.3 Standards Compliance, Interoperability, and Portability 35
1.3.4 Applications Supported by the Language and the Platform 36

1.4. Final Remarks 37

Acknowledgments 37

2
Programming Multi-Agent Systems in 3APL 39
Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer

2.1. Motivation 39
2.2. Language 41

2.2.1 Specifications and Syntactical Aspects 42
2.2.2 Semantics and Verification 54
2.2.3 Software Engineering Issues 60
2.2.4 Language integration 63

vi MULTI-AGENT PROGRAMMING

2.3. Platform 63
2.3.1 Available tools and documentation 63
2.3.2 Standards compliance, interoperability and portability 65

,2.4. Applications 66
2.5. Final Remarks 66

Acknowledgments 67

3
IMPACT: A Multi-Agent Framework with Declarative Semantics 69
Jiirgen Dix and Yingqian Zhang

3.1. Motivation 69
3.2. Language 72

3.2.1 Specifications and Syntactical Aspects 74
3.2.2 Semantics and Verification 78
3.2.3 Software Engineering Issues 82
3.2.4 Other features of the language 83

3.3. Platform 87
3.3.1 Features of the platform 87
3.3.2 Available tools and documentation 92
3.3.3 Standards compliance, interoperability and portability 92

3.4. Apphcations 93

3.5. Final Remarks 93

Acknowledgments 94

4
CLAIM and SyMPA: A Programming Environment for Intelligent and 95

Mobile Agents
Amal El Fallah Seghrouchni and Alexandru Suna

4.1. Motivation 95
4.2. Language 97

4.2.1 Specifications and Syntactical Aspects 97
4.2.2 Semantics and Verification 102
4.2.3 Software Engineering Issues 112
4.2.4 Other features of the language 113

4.3. Platform 113
4.3.1 Available tools and documentation 113
4.3.2 Standards compliance, interoperability and portability 116
4.3.3 Other features of the platform 116

4.4. Applications 117
4.5. Final Remarks 122

Part II Java-Based Agent Programming Languages

5
JADE — A Java Agent Development Framework 125
Fabio Bellifemine, Federico Bergenti, Giovanni Caire, andAgostino Poggi

Contents vii

5.1. Motivation 126
5.2. Platform 126

5.2.1 Available tools and documentation 131
5.2.2 Standards compliance, interoperability and portability 133
5.2.3 Other features of the platform 133
5.2.4 Realizing multi-agent systems with the platform 134

5.3. Applications 138
5.3.1 CoMMA 138
5.3.2 Agentcities 140
5.3.3 RAP 142

5.4. Final Remarks 147

Acknowledgments 147

6
Jadex: A BDI Reasoning Engine 149
Alexander Pokahr, Lars Brauhach, and Winfried Lamersdorf

6.1. Motivation 149
6.2. Architecture 150

6.2.1 BDI Models and Systems 151
6.2.2 Concepts within Jadex 151
6.2.3 Execution Model 154

6.3. Language 156
6.3.1 Specifications and Syntactical Aspects 157
6.3.2 Software Engineering Issues 161
6.3.3 Example 162

6.4. Platform 167
6.4.1 Available tools and documentation 169
6.4.2 Standards compliance, interoperability and portability 170

6.5. Applications 172

6.6. Final Remarks 173

Acknowledgments 174

7
JACK^^ Intelligent Agents: An Industrial Strength Platform 1̂ 5
Michael Winikoff

7A. Motivation 175
7.2. Language 178

7.2.1 Specifications and Syntactical Aspects 178
7.2.2 Semantics and Verification 182
7.2.3 Software Engineering Issues 183
7.2.4 Other features of the language 184

7.3. Platform 185
7.3.1 Available tools and documentation 186
7.3.2 Standards compHance, interoperability and portability 188
7.3.3 Other features of the platform 189

7.4. Applications 190
7.5. JACK: A Platform for Research 192

vIII MULTI-AGENT PROGRAMMING

7.6. Final Remarks 192

Acknowledgments 193

Part III Industrial-Strength Applications

8
The DEFACTO System: Coordinating Human-Agent Teams for the 197

Future of Disaster Response
N. Schurr, J.Marecki, J.P. Lewis, M. Tambe, and P. Scerri

8.1. Introduction 198
8.2. Application Domain 199

8.2.1 Omni-Viewer 200
8.2.2 Proxy-based teamwork 203

8.3. Agents 203
8.3.1 Adjustable Autonomy 204

8.4. Multi-Agent System 205
8.4.1 Organisation 207
8.4.2 Interaction 208
8.4.3 MAS Environment 208

8.5. Experiments 209
8.5.1 Evaluation 209

8.6. Related Work and Summary 214

9
ARTIMIS Rational Dialogue Agent Technology: an overview 217
David Sadek

9.1. Introduction 217
9.2. Application domain 218
9.3. ARTIMIS as an autonomous agent 220

9.3.1 Formal rational interaction theory 220
9.3.2 ARTIMIS agent architecture and implementation 228

9.4. ARTIMIS agents in multi-agent systems 234
9.5. Cases of ARTIMIS-based applications 237

9.5.1 ARTIMIS as a natural human-computer dialogue agent 237
9.5.2 ARTIMIS as mediation agent 241

9.6. Conclusion 243

Summaries for Quick Reference and Comparison 245

Appendix A: Comparison Criteria 247

Appendix B: Jason Summary 250

Appendix C: 3APL Summary 253

Appendix D: IMPACT Summary 255

Appendix E: CLAIM Summary 257

Contents ix

Appendix F: JADE Summary 260

Appendix G: Jadex Summary 263

Appendix H: JACK Summary 266

References 269

Index 293

List of Figures

1.1 Examples of AgentSpeak Plans for a Bomb-Disarming Robot. 9
1.2 BNF of the AgentSpeak Extension Interpreted hy Jason, 11
1.3 An Interpretation Cycle of an AgentSpeak Program [143], 15
1.4 Jason IDE. 26
1.5 BNF of the Language for Configuring Multi-Agent Systems. 27
1.6 Simulated Environment of the Airport Scenario. 29
1.7 Customising Agents for the Airport Scenario. 31
1.8 Example of AgentSpeak Plans for an Airport Security Robot. 34
1.9 /^sow's Mind Inspector. 36
2.1 The architectures of 3APL platform (A) and individual

3APL agents (B) 43
2.2 The EBNF specification of the 3APL language for pro

gramming individual agents. 44
2.3 A cyclic interpreter (deliberation cycle) for the 3APL agents. 53
2.4 An illustration of the graphical user interface of the

3APL platform. 64
3.1 An Agent in IMPACT. 70
3.2 SHOP as a planning agent in IMPACT. 71
3.3 A code call evaluation graph 76
3.4 AgQniD'E Program 81
3.5 A%QniDE Summary Table 82
3.6 A^QxiiDE Finiteness Table 84
3.7 Agentised method for a logistics problem. 86
3.8 Actions for monitor 88
3.9 Actions in AgmiDE 89
3.10 AgQxitDE Status Set Screen 90
3.11 AgentDE Connect Library Screen 91
3.12 Agent Roost 92
4.1 The enter operation 108
4.2 The exit operation 108

List of Figures

4.3 The move operation 108

4.4 The open operation 109

4.5 The acid operation 109

4.6 SyMPA's Architecture 114

4.7 SyMPA's features 114

4.8 Agents' interfaces 115

4.9 Application's schema 119

5.1 The JADE architecture. 128

5.2 JADE architecture in the wireless environment. 130

5.3 Graphical interfaces of JADE tools. 132

5.4 Schematic view of the CoMMA multi-agent system. 140

5.5 Event organizer scenario. 142

5.6 The RAP architecture. 144

6.1 Jadex abstract architecture 152

6.2 Goal lifecycle (from [32]) 153

6.3 Jadex execution model 155

6.4 Jadex agent 156

6.5 OQL syntax in EBNF and query example 158

6.6 Agent metamodel specification fragment (XML-schema) 159

6.7 Goal metamodel specification (XML-schema) 160

6.8 Plan skeleton 162

6.9 Blocksworld scenario (left) and goal/plan tree (right) 163

6.10 Blocksworld agent model 164

6.11 Java code for StackBlocksPlan 166

6.12 Java code for ConfigureBlocksPlan 167

6.13 System realization 168

6.14 BDI introspector and logger screenshots 170

6.15 Platform integration 171

7.1 Some statements provided by JACK 179

7.2 A (very simple) Plan 180

7.3 Event handling in BDI architectures 181

7.4 Event handling in JACK 182

7.5 A simple TeamPlan 185

7.6 The JACK Development Environment (JDE) 187

8.1 DEFACTO system applied to a disaster rescue. 199

List of Figures xiii

8.2 Omni-Viewer during a scenario: (a) Multiple fires start
across the campus (b) The Incident Commander uses
the Navigation mode to quickly grasp the situation (c)
Navigation mode shows a closer look at one of the fires
(d) Allocation mode is used to assign a fire engine to the
fire (e) The fire engine has arrived at the fire (f) The fire
has been extinguished. 201

8.3 Proxy Architecture 206
8.4 Performance of subjects 1,2, and 3. 210
8.5 (a) AGH and (b) H performance 212
8.6 Amount of agents per fire assigned by subjects 1, 2, and 3 213
9.1 ARTIMIS: a wide range of applications 219
9.2 ARTIMIS functional architecture 228
9.3 Chat with a virtual contact: Wanadoo "Assistant Messager" 239

Contributing Authors

Fabio Bellifemine Is a senior project manager at Telecom Italia Lab. His
research Interests are In multi-agent systems and platforms, and their appli
cations to mobile VAS. He received a degree In Computer Science from the
University of Torino In 1998 and, before joining Telecom Italia, he held a re
searcher position at the Italian National Research Council since 1988 to 1994.
In 2000 he launched the JADE project and, since 2003, he Is the president of
the JADE Governing Board. Since last year, he chairs the sub-group Systems
Architecture of the "Distributed Intelligent Systems" Technical Committee
of IEEE Systems, Man, and Cybernetics (SMC).

Federico BergentI Is a Lecturer of Software Engineering courses at the Uni
versity of Parma. His research Interests are centred mainly on agent-based
Interoperability, agent-based software reuse, and more generally on foun
dations of agent-oriented software engineering. He participated to various
European-scale research projects, most notably, LEAP (1ST-1999-10211) and
Collaborator (IST-2000-30045). He received a Ph.D. In Information Tech
nology from the Department of Information Engineering of the University
of Parma In 2002.

Rafael H. Bordini Is a Lecturer In Computer Science at the University
of Durham. His research Interests are centred mainly on agent-oriented
programming languages, verification of multi-agent systems through model
checking, and applications of multi-agent systems to social simulation. He
received a PhD In Computer Science from the University of London (Uni
versity College London) In 1999. Before moving to Durham In 2004, he was
a Research Fellow at the Department of Computer Science, University of
Liverpool. Previous to moving to Liverpool (In 2002), he was Invited lec
turer at the Federal University of Rio Grande do Sul, Brazil.

xvi Contributing Authors

Lars Braubach received his diploma in computer science in January 2002 at
the University of Hamburg. Since then, he is research assistant at the Uni
versity of Hamburg. In the course of the DFG funded priority research pro
gram "Intelligent Agents in Real-World Business Applications", he is investi
gating the foundations of multi-agent systems, as well as practically exploring
the applicability of this technology in the Jadex Open Source project.

Giovanni Caire is a senior project manager in the Mobile Platforms divi
sion of Telecom Italia Lab. His interest is in the field of Java-based mobile
distributed applications. In particular he led the porting of JADE into MIDP
environments within the framework of the 1ST LEAP project and, currently,
he is the technical leader of the JADE Governing Board, he represents Tele
com Italia Mobile in the Java Workstream of the OMTP (Open Mobile Ter
minal Platform) initiative and he is also member of the JSR 232 - Mobile
Device Management - Expert Group. He received a degree in Engineering
from "Politecnico di Torino" in 1992 and joined Telecom Italia Lab in 1993.

Mehdi Dastani studied computer science and philosophy at university of
Amsterdam. He obtained his Ph.D. in formal analysis of visual perception
and information visualization in 1998. From 1998 to 2001 he was research
Associate at the department of artificial intelligence, Vrije Universiteit Am
sterdam, working on automatic and dynamic configuration of a multi-agent
system for electronic commerce. From 2001 until 2002 he was research as
sociate at the institute of information and computing sciences, Utrecht Uni
versity, where he was responsible for a project on methodology for agent-
oriented software design. From 2002 he is a lecturer at the Intelligent Sys
tems Group of Utrecht University. His research focus is agent theories and
agent applications, in particular the topic of specification and implementa
tion languages for cognitive agents. He is member of program committees of
various international conferences and workshops and has organized various
workshops and events.

Jiirgen Dix heads the chair for Computational Intelligence at Clausthal Uni
versity of Technology since 2004. Previously he was Reader for Knowl
edge Representation and Reasoning at The University of Manchester, United
Kingdom (2000-2003) and visiting Professor at the University of Maryland,
College Park, USA (1999). His research covers various areas of Compu
tational Logic, Planning and Multi-agent Systems. He is on the editorial
boards of several journals, member of various steering committees and coor
dinating node of CologNet and Agentlink. He organised 8 conferences and

Contributing Authors xvii

workshops, published more than 140 papers, co-authored two monographs
and co-edited 10 books and 6 special journal issues.

Amal El Fallah Seghrouchni is a professor at University Paris X, Nanterre
and member of LIP6-OASIS. Her research interests focus upon Multi-Agent
Systems as a cognitive approach that helps developing distributed and co
operative systems based on intelligent agents. This involves the specifica
tion and verification of such complex systems that take into account con
currency, interaction and cognition. She has a background on Formal spec
ification, Distributed Observation, Distributed Planning, Petri Nets, True
concurrency semantics and verification. She published more than 60 pa
pers in the major conferences in the area of multi-agent system, co-edited
3 books and co-organised several international events dedicated to Multi-
Agent Systems. She also has been invited professor and gave talks in inter
national seminars and courses for post-graduate students about multi-agent
planning, coordination, interaction protocols, etc. (For more details, please
see: h t t p : / / w w w - p o l e i a . I i p 6 . f r / ' - e l f a l l a h) . She is also leader
of the Multi-Agent Systems group (College SMA) of the French Artificial
Intelligence Association (AFIA); see h t t p : / /sma . l i p 6 . f r .

Jomi Fred Hiibner is a lecturer at the University of Blumenau, Brazil, where
he teaches courses on Artificial Intelligence and Programming since 1996.
He obtained his PhD from the University of Sao Paulo, Brazil, in 2003. The
subject of his thesis was the modelling of multi-agent organisations and the
process of reorganisation in multi-agent systems. His research interests are
on models of organisation in multi-agent systems and tools to support the
development of BDI-based multi-agent systems.

Winfried Lamersdorf is full Professor in the Department of Computer Sci
ence of Hamburg University and head of the "Distributed and Information
Systems" (Verteilte Systeme und Informationssysteme, VSIS) unit. In 1985
he received his doctorate form the University of Hamburg. From 1983 to
1990 he was a staff-member in the "Distributed Applications" research group
at the IBM Scientific Center (WZH, 1983/84) and in the IBM "European
Networking Centre" (ENC, 1984-90) in Heidelberg. In the past 15 years, he
has lead several research projects financed from various sources.

J.P. Lewis is a computer graphics researcher. His current research interests
include facial animation, computer vision, and machine learning topics. He
has worked in both academic research labs and in the movie special effects in-

http://www-poleia
http://lip6.fr

xviii Contributing Authors

dustry, and his algorithms have been incorporated in several leading graphics
software packages.

Agostino Poggi is full professor of Computer Engineering at the Diparti-
mento di Ingegneria dell'Informazione of the University of Parma. His re
search focuses on agent, Web and object-oriented technologies and their use
to develop distributed and complex systems. In these research areas, he cor-
dinated and is coordinating the research of its Department inside different
projects funded by national and international, public and private organiza
tions. He is author of more than 150 technical papers in refereed journals and
conferences and his scientific contribution has been recognized through the
"System Research Foundation Outstanding Scholarly Contribution Award"
in 1988 and through the "Innovation System Award" in 2001.

Janusz Marecki is a PHD student of Computer Science at University of
Southern California (USC). His research areas are primarly autonomous
agents and multi-agent systems. He earned a Bachelor of Science degree at
Academy of Computer Science and Management (Poland) and a Master of
Science degree at the Jagiellonian University (Poland). He was awarded the
Erasmus scholarship to study at Universite Monpellier II in France. He also
worked for the European Laboratory for Nuclear Research (CERN).

John-Jules Ch. Meyer studied mathematics with computer science and dig
ital signal processing at Leyden University. In 1985 he obtained his Ph.D.
from the Vrije Universiteit in Amsterdam on a subject in theoretical com
puter science. From 1988 to 1993 he was a professor at the computer science
department at the VU Amsterdam holding a chair in "Logic for distributed
systems and artificial intelligence". From 1989 to 1993 he also was a profes
sor of theoretical computer science at the Katholieke Universiteit Nijmegen.
Since 1993 he has been a professor at the computer science department of
Utrecht University (UU). At the moment he is heading the Intelligent Sys
tems Group of the Institute of Computing and information Sciences of the
UU. Prof. Meyer is the scientific director of the national graduate school
in Information and Knowledge-based Systems (SIKS). He is a member of
the editorial boards of the Journal of Applied Non-Classical Logics, Data
and Knowledge Engineering and the Journal of Intelligent Agents and Multi-
Agent Systems. His current research interests include intelligent agents, cog
nitive robotics and logics for AI.

Contributing Authors xix

Alexander Pokahr received his diploma in computer science in January 2002
at the University of Hamburg. Since then, he is research assistant at the Uni
versity of Hamburg, with a focus on software architectures and development
tools for intelligent agents and distributed multi-agent systems. In conjunc
tion with Lars Braubach, he is developing the Open Source agent system
Jadex.

M. Birna van Riemsdijk is a Ph.D. student at Utrecht University, The
Netherlands. She is doing research under supervision of prof. dr. John-
Jules Meyer, dr. Frank de Boer and dr. Mehdi Dastani. The main topic of
her research is semantics of cognitive agent programming languages. In par
ticular, she has worked on the semantics of the cognitive agent programming
language 3APL. Further, her research involves developing logics for speci
fication and verification of 3APL. She has published work in a number of
agent (programming) workshops and conferences such as ProMAS, DALT,
CLIMA and AAMAS.

David Sadek is director of the research program on Intelligent Agents and
Natural Interactions, at the R&D division of France Telecom. He is also
head of the industrial leverage unit for advanced human-computer dialogue
based services. His work on formal models of reasoning and interaction is
at the basis of the first effective technology of rational agents and natural
dialogue systems, throughout the world. Today, this edge technology enters
the industrial process for large-scale commercial applications. In 2002, David
Sadek received Medal Blondel for his work in Cognitive Science and Artifi
cial Intelligence and, in 1999, the France Telecom Innovation Award for the
Artimis rational dialogue agent technology.

David Sadek is director of the research program on intelligent agents and
natural interactions, at the R&D Division of France Telecom. He is also
head of the industrial leverage unit for advanced human-computer dialogue
based services. His work on formal models of cognitive agents and natural
communication is at the basis of the first world-wide effective generic tech
nology of rational agents and dialogue systems, which he has created with his
team. Currently, this leading edge technology is entering an industrial pro
cess for large-scale commercial applications. Also, his work on the semantics
of communicative actions gave birth to the FIPA ACL standard for an inter-
agent communication language. In 1999, he received, together with his team,
the France Telecom Innovation Prize for the Artimis rational dialogue agent
technology. In 2002, he was awarded Medal Blondel for his contribution to
Cognitive Science and Artificial Intelligence.

XX Contributing Authors

Paul Scerrl Is a Systems Scientist at Carnegie Mellon University's Robotics
Institute. His primary research Interests Is on coordination of large teams
and human Interaction with such teams, specifically via the use of adjustable
autonomy. He received his PhD from LInkopIngs University In Sweden In
2001. Before moving to Carnegie Mellon, he worked at the University of
Southern California's Information Sciences Institute.

Nathan Schurr Is a PhD candidate of Computer Science In the Vlterbl
School of Engineering at University of Southern California. His research
Interests are In human Interaction with multlagent systems. He was awarded
the Vlterbl School of Engineering Homeland Security Center Doctoral Fel
lowship. He served on the Program Committee for AI Technologies for
Homeland Security session at the American Association of Artificial Intelli
gence (AAAI) Spring Symposium 2005.

Alexandru Suna Is a 3rd year Ph. D. student at the University "Pierre et
Marie Curie", Paris, member of the LIP6 laboratory, OASIS group and lec
turer at the University Paris X - Nanterre. In 2001 he obtained an Engineer
Diploma In Computer Science at the "Polltehnica" University of Bucharest
and In 2002 a Master Diploma In Artificial Intelligence and Combinatorial
Optimisation at the University Paris XIII. His research Interests focus on
multi-agent systems In general, on developing distributed systems, on mo
bile agents and platfors and on programming Intelligent and mobile agents
(for more details, h t t p : / / w w w - p o l e i a . I i p 6 . f r / ~ s u n a /) .

Milind Tambe Is an Associate Professor of Computer Science at Univer
sity of Southern CalIfornIa(USC). He received his Ph.D. from the School
of Computer Science at Carnegie Mellon University. He leads the TEAM-
CORE research group at USC (h t t p : / / t e a m c o r e . u s e . edu), with re
search Interests In multi-agent systems, specifically multi-agent teamwork,
adjustable autonomy and distributed negotiations. His research on these
topics has led to some of the most highly cited papers In the field, as well
as the ACM SIGART Agents Research award (at AAMAS 2005), the Okawa
foundation research grant award (2003), AAMAS best paper award (2002), se
lection In the "best of" papers of Agents'99 and ICMAS'98 conferences, and
the RoboCup scientific challenge award (1999). He was general co-chaIr for
the International Joint Conference on Agents and Multlagent Systems (AA
MAS) 2004, and program co-chaIr of the International conf on multi-agent
systems (ICMAS) 2000. He Is also currently associate editor of the Journal
of Artificial Intelligence Research (JAIR), and on the editorial board of the
Journal of Autonomous Agents and Multi-agent Systems (JAAMAS). A cur-

Contributing Authors xxi

rent member of the board of directors of the International foundation for
multiagent systems, he has also served on the board of trustees of RoboCup,
the Robot World Cup Federation.

Renata VIeIra received a PhD in Cognitive Science from the University of
Edinburgh in 1998. Since then she has been a lecturer at the Post-Graduate
Programme in Applied Computing, Universidade do Vale do Rio dos Sinos,
Brazil. Her research interests are mainly related to natural language process
ing, intelligent agents, and Semantic-Web technologies.

Michael Winikoff is a senior lecturer in Computer Science at RMIT Univer
sity. His research interests concern notations for specifying and constructing
software. In particular, he is interested in agent oriented software engineer
ing methodologies and is co-author of the book Developing Intelligent Agent
Systems: A Practical Guide, published by John Wiley and sons in 2004. He
received a PhD in Computer Science from the University of Melbourne in
1997, and then spent a little over a year as a research fellow at the Univer
sity of Melbourne before joining the Institute for Software Research in the
USA. Michael returned to Australia in mid-1999 to join RMIT University
as a research fellow, then in 2000 he left RMIT to do industrial software
development, finally returning to RMIT University in 2001.

Yingqian Zhang is currently a PhD student in the School of Computer Sci
ence at the University of Manchester. Her research interests are mainly on
logic based multiagent systems, multiagent security and survivability, nego
tiation and cooperation among agents. She expects to graduate this Autumn.

Preface

Agent technology, in particular multi-agent systems, is beginning to play
an important role in today's software development at industrial level. Un
til recently, the main focus of the multi-agent systems community has been
on the development of concepts, architectures, interaction techniques, and
general approaches to the analysis and specification of multi-agent systems.
However, these contributions, which are sometimes formal but often infor
mal, have been quite fragmented, without any clear way of "putting it all
together", and thus completely inaccessible to practitioners. Clearly, the suc
cess of agent-oriented system design and implementation can only be guaran
teed if we can bridge the gap between analysis and implementation, and thus
develop expressive programming languages and well-developed platforms so
that the concepts and techniques of multi-agent systems can be easily and
directly implemented.

The idea for this book evolved over several years, when the editors
started the ProMAS workshop (h t t p : //www. c s .uu .n l /ProMAS/) se
ries as well as an AgentLink III Technical Forum Group on Programming
Multi-Agent Systems (h t t p : / / w w w . a g e n t l i n k . o r g / a c t i v i t i e s /
a l 3 - 1 f /) . One of the driving motivations for promoting these activities is
the observation that the area of autonomous agents and multi-agent systems
has grown into a promising technology, offering sensible alternatives for the
design of distributed, intelligent systems. Several efforts, originating from
academia, industry, and several standardisation consortia, have been made to
provide new tools, methods, and frameworks aiming at establishing the nec
essary standards for a wide use of multi-agent systems techniques. For this, it
is essential that such technology can be incorporated into existing practices
in the software industry, and not seen simply as a promising new paradigm.
We are convinced that the next step in furthering the achievement of the
multi-agent systems project is irrevocably associated with the development
of programming languages and tools that can effectively support multi-agent
programming, including the implementation of key notions in multi-agent
systems in a unified framework. We hope this book will turn out to be a
useful contribution in that direction.

http://uu.nl/ProMAS/
http://www.agentlink.org/activities/

While there exist many collections of papers and proceedings on (multi-)
agent systems, there are no books presenting in a coherent way the frame
works that can be used for designing and implementing large-scale multi-
agent systems. In most of the available books on this subject, the chapters
are only very loosely related, which makes it very difficult to compare and
evaluate different approaches and to get an idea of their suitability for partic
ular applications.

In this book we have invited several research groups to report on their
work on programming languages and platforms, or large-scale multi-agent
systems applications. Most importantly, we have explicitly asked them to
follow a particular chapter structure, according to templates we provided.
More than that, we asked them to answer several key questions providing a
summary of the main features of each framework (these can be found in the
appendices of this book).

With this structure, we aimed at providing the reader with a good basis for
comparison among the reported frameworks. The result is a book that can
be used to guide the choice of a particular framework for developing real-
world multi-agent systems or for teaching purposes and assigning practical
coursework when teaching multi-agent systems. This book has a sufficient
level of detail to introduce the reader to the use of some of the most promi
nent working agent frameworks currently available.

The Structure of Contributed Chapters

Chapters describing Programming Languages and Platforms discuss the
functionality of the languages, the communication mechanisms they pro
vide, their underlying execution model or interpreters, their expressiveness
and verification possibilities, and the software engineering principles that
they follow. These chapters discuss also the characteristics of the platforms
that correspond to the programming languages. The issues related to the
platforms are: system deployment and portability, any standards with which
they comply, their extensibility, the tools they provide, their technical inter
operability, and their performance. Finally, each of these chapters explains
which applications can be supported and implemented by the presented lan
guages and their corresponding platforms. They discuss the typical applica
tion examples and their target application domains.

In turn, chapters describing Applications present the application domains
and explain the added values of multi-agent systems for those domains, also
describing how they have designed and specified multi-agent systems for the
presented application domain. Moreover, they discuss which main features
of agents were used in the applications, which architecture was used to design
the agents, and how the designed agents were implemented. An essential is-

PREFACE XXV

sue in the development of multi-agent systems are agent organisations, which
can help coordinate the behaviour of individual agents. These chapters also
discuss how the interaction between agents and their external shared environ
ment are modelled and implemented. Finally, they explain which platforms
are used to develop and execute the multi-agent system being described, and
discuss issues related to the deployment of the multi-agent systems, such as
fault tolerance and security.

The Selected Frameworks and the Structure of the Book

The selection of the agent programming languages and platforms in this
book is, of course, a matter of taste and reflects our own viewpoint. One
important characteristic that we used to select the frameworks is that all of
them have working implementations that users can download and use to
develop their own applications. We also selected two applications that help
showing important areas in which agent-oriented programming techniques
can have a significant impact.

Unfortunately, we could not incorporate all frameworks and applications
we consider interesting: that would be an encyclopaedic task, and there was
a limited number of pages we could use for this particular book. However,
we aim to produce a sequel for this book, in which we plan to overview and
compare other existing agent programming languages and their platforms,
as well as other industrial-strength applications. Rather, we hope to have
started with some useful material for researchers, students, and practitioners
interested in theoretical aspects of agent frameworks as well as their applica
tion for practical purposes.

The book is structured in three parts. In Part I of the book, there are four
chapters describing approaches that rely heavily on computational logic or
process algebra. All programming languages described in these chapters have
formal semantics and use heavy machinery based on formal methods, but
also provide working platforms for the development of multi-agent systems.

In the first chapter of Part I, Rafael Bordini, Jomi Hiibner, and Renata
Vieira present their work on Jason, an interpreter for a programming lan
guage based on the BDI architecture (an extension of AgentSpeak). Impel-
mented in Java, Jason allows multi-agent systems to be easily configured and
distributed over a network. The platform has an explicit notion of multi-
agent environment, and allows for easy customisation of the way agents in
teract with each other and the environment, amongst other things. The IDE
provides a tool that allows the inspection of agents' mental attitudes, which
is useful for debugging.

Mehdi Dastani, Birna van Riemsdijk, and John-Jules Meyer introduce
3APL, which is a programming language for implementing multi-agent sys-

XXVI

tems. It has been developed over the last eight years in Utrecht and it is still
subject of ongoing research. The 3APL programming language supports di
rect implementation of BDI agents and provides programming constructs to
implement interaction among agents, and between agents and their shared
environment. The development of multi-agent systems is facilitated by the
3APL platform through which multi-agent systems can be programmed,
edited, debugged, and executed.

Jiirgen Dix and Yingqian Zhang report on IMPACT, an agent language
and platform developed in Maryland and extended in Austria, Israel, and
Germany. IMPACT has a declarative semantics that is closely related to de
ductive database technology and logic programming, but it is entirely imple
mented in JAVA. Its main feature is to agentise arbitrary legacy code, i.e., to
transform given code into an agent by wrapping several layers around it.

Amal El Fallah Seghrouchni and Alexandru Suna describe their work on
the CLAIM language and the distributed platform SyMPA. CLAIM is a
high-level agent-oriented programming language that combines both cogni
tive aspects of intelligent agents and constructs to deal with communication,
mobility, and concurrency. Based on process algebra (Ambient Calculus
specifically), CLAIM has an operational semantics and is suitable for dis
tributed MAS that require mobility and hierarchical topology. The SyMPA
platform is compliant with the specifications of the MASIF standard from
the OMG, and offers the necessary mechanisms for secure execution of dis
tributed multi-agent systems.

Part II comprises three chapters describing agent languages and platforms
that extend or are based on Java. Although they have no formal semantics,
the languages are well documented, and the platforms in general provide a
variety of tools that have been extensively and widely used in practice.

The first chapter of Part II reports on JADE, a well-known agent frame
work implemented in Java by Agostino Poggi and colleagues. It provides
a middleware that complies with the FIPA specifications, and offers sev
eral graphical tools that support the debugging and deployment phases of
multi-agent programming. A variety of applications has been developed with
JADE and it has a considerable large user group.

Lars Braubach, Alexander Pokhar, and Winfried Lamersdorf introduce
their work on Jadex which extends the JADE platform with BDI concepts.
The Jadex programming language is a combination of XML and Java. The
XML notation allows programmers to specify individual agents in terms of
BDI concepts. The BDI concepts are then implemented as Java programs.
The development of multi-agent systems is facilitated by the Jadex platform
which facilitates the editing, debugging, and execution of multi-agent sys
tems.

PREFACE xxvll

Then, Michael Winlkoff describes JACK, a commercial agent platform
that aims at meeting Industrial standards with respect to familiarity, scala
bility, and Integrabillty. It Is being developed and used commercially for a
number of years, and available free of charge for researchers and students.
Also based on the BDI-based reactive planning systems, JACK programs use
a particular notation for agent constructs that are added to Java code. The
platform includes an IDE with various graphical tools and extensive docu
mentation.

After these seven agent programming languages and their platforms, two
industrial-strength applications are described In Part III. There is a huge va
riety of areas of application (mentioned throught the book) for which multi-
agent programming Is suitable, and we aimed at providing two significant
examples.

In the area of disaster management, Milind Tambe's group has developed
a system, called DEFACTO, that enables teams of agents and humans to
interact for effective disaster response. The system combines various artifi
cial intelligence techniques, and Is based on a 3D visualization system and a
software proxy architecture.

The last chapter, written by David Sadek, describes a rational agent tech
nology called ARTIMIS that has been designed, developed, and recently
commercially deployed by France Telecom. It provides a generic framework
to Instantiate intelligent dialogue agents that are able to engage in rich inter
actions with human users as well as with other software agents.

Finally, we provide, as appendices, the summaries of each of the seven
agent programming languages presented in the book. Appendix A In par
ticular shows the criteria we consider appropriate for comparing agent plat
forms; they are introduced in the form of objective questions we posed to
the authors. Each of the appendices after that contains the short answers,
provided by the contributing authors, relative to each of the programming
languages and platforms presented in the book.

RAFAEL H . BORDINI

M E H D I DASTANI

JURGEN DiX
AMAL EL FALLAH SEGHROUCHNI

Foreword

The design and evaluation of programming languages is the heart and soul
of computer science. It first became possible to make practical use of high-
level programming languages in the 1950s. Since then, successive program
ming languages innovations such as subroutines, procedural and functional
abstraction, data structures, abstract data types, objects, and components
have made it progressively easier and more natural for programmers to man
age the difficult task of producing correct, efficient, manageable software
solutions.

Programming language design has progressed hand-in-hand with our un
derstanding of what kinds of problems we might tackle using computer-
based solutions. Thus as graphical user interfaces and the window-icon-
mouse-pointer paradigm began to emerge, so did object-oriented program
ming as a natural way to conceptualise and build such interfaces. Simi
larly, as distribution and concurrency became the norm, threads and syn
chronised communication mechanisms were deployed to make it possible to
easily build distributed and concurrent systems. As such features evolved,
and programming languages became richer, the importance of a proper the
oretical foundation for programming languages also became apparent, and
a host of mathematically rich formalisms were developed in an attempt to
gain a clear understanding of how programming languages could and should
behave. And yet, for all these technical developments, every programmer
knows that what makes a "good" programming language is at least in part a
kind of magic: there is an indefinable "rightness" to the best languages, that
make them somehow easier, more fun, more natural, just better to use.

This book is about programming languages for a relatively new class of
computer systems, called multi-agent systems. Much has been written about
multi-agent systems and why they are an important idea, and this foreword

is not the place to add to this mountain of words. Suffice to say that the
key feature of a multi-agent system is that it contains multiple, interacting
computing elements, called agents, where these agents are capable of "ratio
nal" autonomous (i.e., independent) action — making independent decisions
about what actions to perform in the furtherance of their goals. From the
programming language point of view, the key issue is what is the "right" way
to program such agents. In particular, the issue is what kinds of program
ming language constructs should an "agent-oriented programming language"
contain in order to reflect the desire to build these autonomous, interacting
components? In short, what is the best (most convenient, most natural, most
succinct, most efficient, most comprehensible,...) way to program agents?

The term "agent-oriented programming language" was coined by Yoav
Shoham from Stanford University in the late 1980s. In a highly influential
paper [206], he presented both the concept of agent-oriented programming,
and a prototype programming language, called AGENTO, which embodied
some of the ideas that he felt would be central to this new programming
paradigm. Since the early 1990s, Shoham's ideas have been taken up, refined,
and modified by many researchers, in the search for that elusive "rightness"
which characterises a good programming language.

The present volume contains a comprehensive survey of the state of the
art of such languages. The articles it contains describe all the major con
tenders for the status of agent programming language dujour. Some of these
languages (in particular, 3APL) can trace their heritage more-or-less directly
from Shoham's early vision — although they are of considerably more re
fined, both in terms of features and their semantic/theoretical foundation.
Other languages, by contrast, share some similar ideas but can claim a rather
different heritage. The various BDI systems described herein (Jason, Jadex,
Jack) all stem from a common root in the AI planning tradition of reactive
planning, as embodied in the Procedural Reasoning System developed in the
mid-1980s. Yet other languages (CLAIM, SyMPA) come from the very rad
ically different traditions, of mobile processes and process calculi, and these
languages have only a very slight intellectual debt with respect to the original
agent-oriented programming vision. Still other languages (IMPACT, JADE)
are focussed on different issues, and address different concerns in different
ways. Of course, all the languages described in this book are different; some
times in subtle ways, and sometimes in rather substantial ways. Readers
must decide for themselves which has that elusive "rightness" when it comes
to programming multi-agent systems.

Is this book the final word on agent-oriented programming? I doubt it.
Just as our ideas evolve with respect to what can be done with computers,
and how it can be done in terms of programming languages, so our ideas
about agents and how to program them will evolve. But this book, capturing

FOREWORD xxxi

as it does the state of the art in such a comprehensive and comprehensible
way, will make a fundamental and lasting contribution to this fascinating
area.

Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool L69 3BX, U.K., April 2005

Acknowledgments

We would like to thank Gerhard Weiss, series editor of the "Multiagent
Systems, Artificial Societies, and Simulated Organizations" international
book series, for his encouragement when we decided to edit this book. We
are also grateful to all the Programme Committee members of ProMAS'03,
ProMAS'04, and ProMAS'05, as their careful work has done a great ser
vice to the area of Programming Multi-Agent Systems in general. Finally,
we thank Peter Novak, Tristan M. Behrens, Alexandru Suna, and Yingqian
Zhang for various help with either this book or the workshop series.

We dedicate this book to all
the enthusiasts of this

exciting new approach to
programming.

I

LOGIC- OR PROCESS ALGEBRA-BASED
AGENT PROGRAMMING LANGUAGES

Chapter 1

JASON AND THE GOLDEN FLEECE OF
AGENT-ORIENTED PROGRAMMING

Rafael H. Bordinl,^ JomI F. Hlibner,^ and Renata Vieira^

Department of Computer Science, University of Durham
Durham DH13LE, U.K.
R.Bordini@durham.ac.uk

Departamento de Sistemas e Computagao, Universidade Regional de Blumenau
Blumenau, SC 89035-160, Brazil
jomi@inf.furb.br

Programa Interdisciplinar de Pos-Graduagao em Computagdo Aplicada,
Universidade do Vale do Rio dos Sinos, Sao Leopoldo, RS 93022-000, Brazil
renata@exatas.unisinos.br

Abstract This chapter describes Jason, an interpreter written in Java for an extended
version of AgentSpeak, a logic-based agent-oriented programming language
that is suitable for the implementation of reactive planning systems according
to the BDI architecture. We describe both the language and the various features
and tools available in the platform.

Keywords: Logic-Based Agent Programming, Beliefs-Desires-Intentions, Operational Se
mantics, Speech Acts, Plan Exchange, Java-based Extensibihty/Customisation.

Now was remaining as the last conclusion of this game,
By force ofchaunted herhes to make the watchfull Dragon sleepe
Within whose eyes came never winke: who had in charge to keepe
The goodly tree upon the which the golden fleeces hung

The dreadfull Dragon by and by (whose eyes before that day
Wist never erst what sleeping ment) did fall so fast asleepe
That Jason safely tooke the fleece ofgolde that he did keepe.

P. Ovidius Naso, Metamorphoses (ed. Arthur Golding), Book VII.

mailto:R.Bordini@durham.ac.uk
mailto:jomi@inf.furb.br
mailto:renata@exatas.unisinos.br

4 Jason

1,1 Motivation

Research on Multi-Agent Systems (MAS) has led to a variety of techniques
that promise to allow the development of complex distributed systems. The
importance of this is that such systems would be able to work in environ
ments that are traditionally thought to be too unpredictable for computer
programs to handle. With more than a decade of work on Agent-Oriented
Programming (AOP) — since Y. Shoham's seminal paper [206] — it has be
come clear that the task of putting together the technology emerging from
MAS research in a way that allows the practical development of real-world
MAS is comparable, in mythological terms, to the task of retrieving the
Golden Fleece from the distant kingdom of Colchis, where it hang on a tree
guarded by a sleepless dragon. Of course, this is not a task ior Jason alone,
but for the greatest heros of the time, who became known as the Argonauts
(a selection of "whom" is described throughout this book).

The work described here is the result of an attempt to revive one of the
most elegant programming languages that appeared in the literature; the lan
guage was called AgentSpeak(L), and was introduced by A. Rao in [180].
AgentSpeak(L) is a logic-based agent-oriented programming language, which
is aimed at the implementation of reactive planning systems (such as PRS
[98]) but also benefited from the experience with more clear notions of
Beliefs-Desires-Intentions (BDI) as put forward in the work on the BDI agent
architecture [182, 181] and BDI logics [183, 237]. However, AgentSpeak(L)
was not but an abstract agent programming language. The work we have
done, together with various colleagues, was both on extending AgentSpeak
so that it became a practical programming language (allowing full integra
tion with what we consider the most important MAS techniques) as well as
on providing operational semantics (a standard formalism for semantics of
programming languages) for AgentSpeak and most of the proposed exten
sions.^ The driving force of all work reported here is to have a programming
language for MAS which is practical (in the sense of allowing the develop
ment of real-world applications), yet elegant and with a rigorous formal basis.

Jason is the interpreter for our extended version of AgentSpeak, which
allows agents to be distributed over the net through the use of SACI
[115]. Jason is available Open Source under GNU LGPL at h t t p : / /
j a s o n . s o u r c e f o r g e . n e t [22]. It implements the operational seman
tics of AgentSpeak originally given in [24, 152] and improved in [229]. It
also implements the extension of the operational semantics that accounts for
speech-act based communication among AgentSpeak agents, first proposed

^We shall use AgentSpeak throughout this chapter, as a general reference to either AgentSpeak(L) as
proposed by Rao or the various existing extensions.

http://
http://jason.sourceforge.net

Motivation 5

in [153] and then extended in [229] (see Section 1.2.4). Another important
extension is on allowing plan exchange [4] (see Section 1.2.4).

Some of the features available in Jason are:

• speech-act based inter-agent communication (and annotation of beliefs
with information sources);

• annotations on plan labels, which can be used by elaborate (e.g., deci
sion theoretic) selection functions;

• the possibility to run a multi-agent system distributed over a network
(using SACI, but other middleware can be used);

• fully customisable (in Java) selection functions, trust functions, and
overall agent architecture (perception, belief-revision, inter-agent com
munication, and acting);

• straightforward extensibility (and use of) by means of user-defined
"internal actions";

• clear notion of multi-agent environments, which can be implemented
in Java (this can be a simulation of a real environment, e.g., for testing
purposes before the system is actually deployed).

Interestingly, most of the advanced features are available as optional, cus
tomisable mechanisms. Thus, because the AgentSpeak core that is inter
preted hy Jason is very simple and elegant, yet having all the main elements
for expressing reactive planning system with BDI notions, we think that Ja
son is also ideal for teaching AOP for under- and post-graduate studies.

An important strand of work related to AgentSpeak that adds to mak
ing Jason a promising platform is the work on formal verification of MAS
systems implemented in AgentSpeak by means of model checking techniques
(this is discussed in Section 1.2.2); that work in fact draws on there being pre
cise definitions of the BDI notions in terms of states of AgentSpeak agents.
Before we start describing/<^sow in more detail, we will introduce a scenario
that will be used to give examples throughout this chapter. Although not all
parts of the scenario are used in the examples given here, we introduce the
whole scenario as we think it contains most of the important aspects of envi
ronments for which multi-agent systems are appropriate, and may therefore
be useful more generally than its use in this chapter.

Scenario for a Running Example: The Airport Chronicle

The year is 2070 ad. Airports have changed a lot since the beginning of
the century, but terrorist attacks are hardly a thing of the past. Anti-terror
technology has improved substantially, arguably to compensate for the sheer

6 Jason

irrationality of mankind when it comes to resolve issues such as economic
greed, religious fanaticism, and group favouritism, all of which remain with
us from evolutionary times when they may have been useful.

Airports are now completely staffed by robots, specially London
Heathrow, where different robot models are employed for various specific
tasks. In particular, security is now completely under the control of spe
cialised robots: due to a legacy from XX and early XXI century, Heathrow
is still number one... terrorist threat target, that is. The majority of the
staff, however, is formed by CPH903 robots. These are cute, polite, handy
robots who welcome people into the airport, give them a "hand" with pieces
of luggage (e.g., lifting them to place on a trolley), and, of course, provide
any information (in natural language, also using multi-media presentations
whenever useful) that costumers may need.

Most of the security-related tasks are carried out by model MDS79 robots.
The multi-device security robots are very expensive pieces of equipment, as
they are endowed with all that technology can provide, in 2070, for bomb
detection. They use advanced versions of the technology in use by the be
ginning of the century: x-ray, metal detectors, and computed tomography
for detecting explosive devices, ion trap mobility spectrometry (ITMS) for
detecting traces of explosives, as well as equipment for detecting radioactive
materials (gamma ray and neutrons) used in "dirty bombs".

These days at Heathrow, check-in and security checks are no longer cen
tralised, being carried out directly at the boarding gates. Thus, there are
one or two replicas of robot model MDS79 at each departure gate. When
unattended luggage is reported, all staff in the vicinity are informed of its lo
cation through a wireless local area network to which they all are connected.
The robots then start a process of negotiation (with a very tight deadline for
a final decision) in order to reach an agreement on which of them will be
relocated to handle the unattended luggage report.

All staff robots know that, normally, one MDS79 and one CPH903 robot
can cooperate to ensure that reported unattended luggage has been cleared
away. The way they actually do it is as follow. The MDS79 robot replica
uses all of its devices to check whether there is a bomb in the unattended
luggage. If there is any chance of there being a bomb in the luggage, the
MDS79 robot sends a high priority message to the bomb-disarming team of
robots. (Obviously, robots communicate using speech-act based languages,
such as those used for agent communication since the end of last century.)
Only three of these very specialised robots are operational for all Heathrow
terminals at the moment. Once these robots are called in, the MDS79 and
CPH903 robots that had been relocated can go back to their normal duties.
The bomb-disarming robots decide whether to set off a security alert to evac
uate the airport, or alternatively they attempt to disarm the bomb or move it

Motivation 7

to a safe area, if they can ensure such courses of action would pose no threat
to the population.

In case the MDS79 robot detects no signs of a bomb in the unattended
luggage, the job is passed on to the accompanying CPH903 robot. Luggage
these days usually come with a magnetic ID tag that records the details of
the passenger who owns it. Replicas of robot CPH903 are endowed with
a tag reader and, remember, they are heavily built so as to be able to carry
pieces of luggage (unlike MDS79). Besides, MDS79 are expensive and much
in demand, so they should not be relocated to carry the piece of luggage
after it has been cleared. So, in case the luggage is cleared, it is the CPH903
robot's task to take the unattended luggage to the gate where the passenger is
(details of flights and passengers are accessed through the wireless network)
if the passenger is known to be already there, or to the lost luggage centre, in
case the precise location of the passenger in the airport cannot be determined
(which is rather unusual these days).

Thus, all staff robots have, as part of their knowledge representation, that
normally an MDS79 robot and a CPH903 robot can cooperate to eventually
bring about a state of affairs where the unattended luggage has been cleared
away. When unattended luggage is reported, they negotiate (for a very lim
ited period of time, after which a quick overriding decision based simply
on distance to the unattended luggage is used) so as to determine the best
group of robots to be relocated to sort out the incident. Ideally, the MDS79
robot to be relocated will be currently at a gate where two MDS79 robots
are available, to avoid excessive delays in boarding at that gate. Robots of
type CPH903 are easy to relocate as they exist in large numbers and do not
normally execute critical tasks.

An important aspect to consider is that the whole negotiation process, un
der normal circumstances, is about the specific MDS79 robot to be relocated,
and the choice of one CPH903 robot to help out. However, other more dif
ficult situations may arise under unpredicted circumstances. For example,
on the 9th of May 2070, at Heathrow, an unattended piece of luggage was
reported near gate 54. It turned out that the robot with ID S39 (an MDS79
replica) was helping out another MDS79 in charge of gate 56 close by. After
briefly considering the situation, S39 volunteered to check out the reported
unattended luggage, and so did H124 (a CPH903 replica). However, while
running a self check, S39 realised that its internal ITMS equipment had Just
been damaged, which it reported to other robots involved in the negotiation.

In the light of that recent information, negotiation was resumed among
the involved robots, to try and define an alternative course of action. An
other MDS79 robot could have been relocated, which would have led to de
lays at one of the nearby gates (gate 52), as that MDS79 robot was alone tak
ing care of security at that gate. Based on an argument put forward by S39,

8 Jason

the agreed course of action was that another (suitably positioned) CPH903
robot would be relocated to take (from a storage facility in that terminal) a
handheld ITMS device, while S39 and HI24 made their way to the location
of the unattended luggage. Any of the three relocated robots can actually
operate the portable ITMS device, so together they were able to bring about
a state of affairs where the unattended luggage had been cleared away.

1.2 Language

The AgentSpeak(L) programming language was introduced in [180]. It is a
natural extension of logic programming for the BDI agent architecture, and
provides an elegant abstract framework for programming BDI agents. The
BDI architecture is, in turn, the predominant approach to the implementa
tion of intelligent or rational agents [237].

An AgentSpeak agent is defined by a set of beliefs giving the initial state of
the agent's belief base ̂ which is a set of ground (first-order) atomic formula,
and a set of plans which form its plan library. Before explaining exactly how
a plan is written, we need to introduce the notions of goals and triggering
events. AgentSpeak distinguishes two types of goals: achievement goals and
test goals. Achievement goals are formed by an atomic formulas prefixed
with the *!' operator, while test goals are prefixed with the ' ?' operator. An
achievement goal states that the agent wants to achieve a state of the world
where the associated atomic formula is true. A test goal states that the agent
wants to test whether the associated atomic formulas is (or can be unified
with) one of its beliefs.

An AgentSpeak agent is a reactive planning system. The events it reacts to
are related either to changes in beliefs due to perception of the environment,
or to changes in the agent's goals that originate from the execution of plans
triggered by previous events. A triggering event defines which events can ini
tiate the execution of a particular plan. Plans are written by the programmer
so that they are triggered by the addition ('+') or deletion (*-') of beliefs or
goals (the "mental attitudes" of AgentSpeak agents).

An AgentSpeak plan has a head (the expression to the left of the arrow),
which is formed from a triggering event (specifying the events for which that
plan is relevant), and a conjunction of belief literals representing a context.
The conjunction of literals in the context must be a logical consequence
of that agent's current beliefs if the plan is to be considered applicable at
that moment in time (only applicable plans can be chosen for execution). A
plan also has a body, which is a sequence of basic actions or (sub)goals that
the agent has to achieve (or test) when the plan is triggered. Plan bodies
include basic actions — such actions represent atomic operations the agent
can perform so as to change the environment. Such actions are also written

Language

skill(plasticBomb).
skill(bioBomb).
-skill(nuclearBomb).

safetyArea(fieldl).

@pl
+bomb(Terminal, Gate, BombType) : skill(BombType)

<- !go(Terminal, Gate);
disarm(BombType).

@p2
+bomb(Terminal, Gate, BombType) : -skill(BombType)

<- ImoveSafeArea(Terminal, Gate, BombType).

@p3
+bomb(Terminal, Gate, BombType) : not skill(BombType) &

not -skill(BombType)
.broadcast(tell, alter)

@p4
+ImoveSafeArea(T,G,Bomb) ; true

<- ?safeArea(Place) ,•
!discoverFreeCPH(FreeCPH);
.send(FreeCPH, achieve,

carryToSafePlace(T,G,Place,Bomb)).

Figure 1.1. Examples of AgentSpeak Plans for a Bomb-Disarming Robot.

as atomic formula, but using a set of action symbols rather than predicate
symbols.

Figure 1.1 shows an example of AgentSpeak code for the initial beliefs
and plans of a bomb-disarming agent described in Section 1.1. Initially, the
agent believes it is skilled in disarming plastic and biological bombs, but not
skilled in nuclear bombs; it knows that "field 1" is a safe area to leave a bomb
that it cannot disarm. When this agent receives a message from an MDS79
robot saying that a biological bomb is at terminal t l , gate g43, a new event
for +bomb{t l , g43 , bioBomb) is created. A bomb-disarming agent
has three relevant plans for this event (identified by the labels p i , p2, and
p3), given that the event matches the triggering event of those three plans.
However, only the context of the first plan is satisfied (s k i l l (bioBomb)),
so that the plan is applicable. In plans p l - p 3 , the context is used to decide

10 Jason

whether to attempt to disarm a bomb (in case the agent is skilled in disarm
ing that type of bomb), to move it to a safe area (in case it is not skilled),
or to set off a security alarm (if it is not sure it is sufficiently skilled). As
only the first plan is applicable, an intention based on it is created and the
plan starts to be executed. It adds a sub-goal ! g o (t l , g43) (the plans
for achieving this goal are not included here) and performs a basic action
d i s a r m (BombType). In plan p4, we have an example of a test goal
whereby the agent consults its own beliefs about where to take the bomb
(?saf eArea (P l ace)) , and an example of an internal action used to send
a message (. send (. . .)) . The details of the AgentSpeak code in Figure 1.1
will be explained in the next sections.

1,2,1 Specifications and Syntactical Aspects

The BNF grammar in Figure 1.2 gives the AgentSpeak syntax as accepted
by Jason . Below, < ATOM> is an identifier beginning with a lowercase letter
or *.', <VAR> (i.e., a variable) is an identifier beginning with an uppercase
letter, <NUMBER> is any integer or floating-point number, and <STRING>
is any string enclosed in double quote characters as usual.

The main differences to the original AgentSpeak(L) language are as fol
lows. Wherever an atomic formulas^ was allowed in the original lan
guage, here a literal is used instead. This is either an atomic formulas
p (t i , . . . , t^2), n > 0, or -p (t i , . . . , tn), where '-* denotes strong nega
tion^. Default negation is used in the context of plans, and is denoted by
*not' preceding a literal. The context is therefore a conjunction of default
literals. For more details on the concepts of strong and default negation,
plenty of references can be found, e.g., in the introductory chapters of [135].
Terms now can be variables, lists (with Prolog syntax), as well as integer
or floating point numbers, and strings (enclosed in double quotes as usual);
further, any atomic formulae can be treated as a term, and (bound) variables
can be treated as literals (this became particularly important for introduc
ing communication, but can be useful for various things). Infix relational
operators, as in Prolog, are allowed in plan contexts.

Also, a major change is that atomic formulae now can have "annotations".
This is a list of terms enclosed in square brackets immediately following the
formula. Within the belief base, annotations are used, e.g., to register the
sources of information. A term s o u r c e (s) is used in the annotations for

^Recall that actions are special atomic formula with an action symbol rather than a predicate symbol.
What we say next only applies to usual predicates, not actions.
^Note that for an agent that uses Closed-World Assumption, all the user has to do is not to use literals
with strong negation anywhere in the program, nor negated percepts in the environment (see "Creating
Environments" under Section 1.3.1).

Language 11

agent
beliefs

plans
plan

beliefs plans
(literal ".")*
N.B. : a semantic error is generated if the
literal was not ground.
(plan)+
["©" atomic_formula]
triggering_event ":" context "<-" body "."

triggering_event

literal

default_literal

" +"

" +

literal
literal

' literal
' literal
' literal
' literal

atomic_formula
"~" atomic_formula
<VAR>
literal
"not" literal
"not" "(" literal
term ("<"|"<="|">"
literal ("=="|"\\=

') "

:..| = ") literal
" =") term

context

body

body_formula

atomic_f
list_of_
term

list

"ormula
.terms

1

r
—t

1
1
1
1

- t

-̂
1
1

1

"true"
default_literal ("&" default_literal)*
"true"
body_formula (";" body_formula)*
literal
"!" literal
"?" literal
"+" literal
"-" literal
<ATOM>["("list_of_terms")"] ["["list_of_terms
term ("," term)*
atomic_formula
list
<VAR>
<NUMBER>
<STRING>

[term (("," term)*

1 "1" (list 1 <VAR>)

] • ']

] "] "

Figure 1.2. BNF of the AgentSpeak Extension Interpreted by Jason.

that purpose; s can be an agent's name (to denote the agent that commu
nicated that information), or two special atoms, p e r c e p t and s e l f , that
are used to denote that a belief arose from perception of the environment,
or from the agent explicitly adding a belief to its own belief base from the
execution of a plan body, respectively. The initial beliefs that are part of the
source code of an AgentSpeak agent are assumed to be internal beliefs (i.e.,
as if they had a [s o u r c e (s e l f)] annotation), unless the belief has any

12 Jason

explicit annotation given by the user (this could be useful if the programmer
wants the agent to have an initial belief about the environment or as if it
had been communicated by another agent). Fore more on the annotation of
sources of information for beliefs, see [153].

Plans also have labels, as first proposed in [18]. However, a plan label
can now be any atomic formula, including annotations, although we suggest
that plan labels use annotations (if necessary) but have a predicate symbol
of arity 0, as in aLabe l or a n o t h e r L a b e l [c h a n c e S u c c e s s (0 .7) ,
e x p e c t e d P a y o f f (0 .9)] . Annotations in formulas used as plan labels
can be used for the implementation of sophisticated applicable plan (i.e.,
option) selection functions. Although this is not yet provided with the cur
rent distribution oi Jason, it is straightforward for the user to define, e.g.,
decision-theoretic selection functions; that is, functions which use something
like expected utilities annotated in the plan labels to choose among alter
native plans. The customisation of selection functions is done in Java (by
choosing a plan from a list received as parameter by the selection functions),
and is explained in Section 1.3.1. Also, as the label is part of an instance
of a plan in the set of intentions, and the annotations can be changed dy
namically, this provides all the means necessary for the implementation of
efficient intention selection functions, as the one proposed in [18]. However,
this also is not yet available as part oi Jason's distribution, but can be set up
by users with some customisation.

Events for handling plan failure are already available in Jason, although
they are not formalised in the semantics yet. If an action fails or there is no
applicable plan for a subgoal in the plan being executed to handle an internal
event with a goal addition + ! g, then the whole failed plan is removed from
the top of the intention and an internal event for - ! g associated with that
same intention is generated. If the programmer provided a plan that has a
triggering event matching - ! g and is applicable, such plan will be pushed
on top of the intention, so the programmer can specify in the body of such
plan how that particular failure is to be handled. If no such plan is available,
the whole intention is discarded and a warning is printed out to the con
sole. Effectively, this provides a means for programmers to "clean up" after
a failed plan and before "backtracking" (that is, to make up for actions that
had already been executed but left things in an inappropriate state for next
attempts to achieve the goal). For example, for an agent that persist on a goal
! g for as long as there are applicable plans for +! g, suffices it to include a
plan - ! g : t r u e <- ! g . in the plan library. Note that the body can
be empty as a goal is only removed from the body of a plan when the in
tended means chosen for that goal finishes successfully. It is also simple to
specify a plan which, under specific condition, chooses to drop the intention
altogether (by means of a standard internal action mentioned below).

Language 13

Finally, as also Introduced In [18], internal actions can be used both In
the context and body of plans. Any action symbol starting with \ \ or
having a ' . ' anywhere, denotes an Internal action. These are user-defined
actions which are run Internally by the agent. We call them "Internal" to
make a clear distinction with actions that appear In the body of a plan and
which denote the actions an agent can perform In order to change the shared
environment (In the usual jargon of the area, by means of Its "effectors"). In
Jason, Internal actions are coded In Java, or In Indeed other programming
languages through the use of JNI (Java Native Interface), and they can be
organised In libraries of actions for specific purposes (the string to the left
of *.' Is the name of the library; standard Internal actions have an empty
library name).

There are several standard Internal actions that are distributed with
Jason, but we do not mention all them here (see [22] for a complete list).
As an example (see Figure 1.1, plan p4), Jason has an Internal action
that Implements KQML-lIke Inter-agent communication. The usage Is:
, s e n d (+ r e c e i v e r , + i l l o c u t i o n a r y _ f o r c e , +prop_con ten t)
where each parameter Is as follows. The r e c e i v e r Is simply referred to
using the name given to agents In the multi-agent system (see Section 1,3.1).
The i l l o c u t i o n a r y _ f o r c e s available so far are: t e l l , u n t e l l ,
a c h i e v e , u n a c h i e v e , te l lHow, un te l lHow, a s k l f , askOne,
a s k A l l , and askHow. The effects of receiving messages with each of
these types of Illocutlonary acts are explained In Section 1.2.4. Finally, the
p r o p _ c o n t e n t Is a literal (see l i t e r a l In the grammar above).

Another Important class of standard Internal actions are related to query
ing about the agent's current desires and Intentions as well as forcing Itself
to drop desires or Intentions. The notion of desire and intention used Is ex
actly as formalised for AgentSpeak agents in [24]. The standard AgentSpeak
language has provision for beliefs to be queried (In plan contexts and by test
goals) and since our earlier extensions beliefs can be added or deleted from
plan bodies. However, an equally important feature, as far as the generic
BDI architecture Is concerned, is for an agent to be able to check current
desires/intentions and drop them under certain circumstances. In Jason, this
can be done by the use of certain special standard Internal actions.

L2.2 Semantics and Verification

As we mentioned in the Introduction, one of the important characteris
tics oi Jason is that It implements the operational semantics of an extension
of AgentSpeak. Having formal semantics also allowed us to give precise def
initions for practical notions of beliefs, desires, and intentions in relation
to running AgentSpeak agents, which in turn underlies the work on formal

14 Jason

verification of AgentSpeak programs, as discussed later In this section. The
formal semantics, using structural operational semantics [169] (a widely-used
notation for giving semantics to programming languages) was given then Im
proved and extended In a series of papers [152, 23, 24, 153, 229], In par
ticular, [229] presents a revised version of the semantics and Include some
of the extensions we have proposed to AgentSpeak, Including rules for the
Interpretation of speech-act based communication.

However, due to space limitation, we are not able to Include a complete
formal account of the semantics of AgentSpeak here. In this section we will
just provide the main Intuitions behind the Interpretation of AgentSpeak
programs, and after that we will give examples of the rules that are part of
the formal semantics.

Informal Semantics

Besides the belief base and the plan library, the AgentSpeak Interpreter
also manages a set of events and a set of intentions, and Its functioning re
quires three selection functions. The event selection function {Sg) selects a
single event from the set of events; another selection function (SQ) selects an
"option" (I.e., an applicable plan) from a set of applicable plans; and a third
selection function (<Sj) selects one particular Intention from the set of Inten
tions. The selection functions are supposed to be agent-specific. In the sense
that they should make selections based on an agent's characteristics (though
previous work on AgentSpeak did not elaborate on how designers specify
such functions'^). Therefore, we here leave the selection functions undefined,
hence the choices made by them are supposed to be non-determlnlstlc.

Intentions are particular courses of actions to which an agent has com
mitted In order to handle certain events. Each Intention Is a stack of par
tially Instantiated plans. Events, which may start off the execution of plans
that have relevant triggering events, can be external, when originating from
perception of the agent's environment (I.e., addition and deletion of beliefs
based on perception are external events); or internal, when generated from
the agent's own execution of a plan (I.e., a subgoal In a plan generates an
event of type "addition of achievement goal"). In the latter case, the event
Is accompanied with the Intention which generated It (as the plan chosen
for that event will be pushed on top of that Intention). External events cre
ate new Intentions, representing separate focuses of attention for the agent's
acting on the environment.

'^Our extension of AgentSpeak in [18] deals precisely with the automatic generation of efficient intention
selection functions. The extended language allows one to express relations between plans, as well as
quantitative criteria for their execution. We then use decision-theoretic task scheduling to guide the
choices made by the intention selection function.

Language 15

AgentSpeak(L) Agent

Intended
Means

Intentions

Intentions

Push \,

\ 1 New '

"-̂ ^Intention

-

Figure 1.3. An Interpretation Cycle of an AgentSpeak Program [143].

We next give some more details on the functioning of an AgentSpeak In
terpreter, which Is clearly depicted In Figure 1.3 (reproduced from [143]).
Note, however, that this Is a depiction of the essential aspects of the Inter
preter for the original (abstract) definition of AgentSpeak; It does not Include
the extensions Implemented In Jason. In the figure, sets (of beliefs, events,
plans, and Intentions) are represented as rectangles. Diamonds represent se
lection (of one element from a set). Circles represent some of the processing
Involved In the Interpretation of AgentSpeak programs.

At every Interpretation cycle of an agent program, the Interpreter updates
a list of events, which may be generated from perception of the environ
ment, or from the execution of Intentions (when subgoals are specified In
the body of plans). It Is assumed that beliefs are updated from perception
and whenever there are changes In the agent's beliefs, this Implies the Inser
tion of an event In the set of events. This belief revision function Is not
part of the AgentSpeak Interpreter, but rather a necessary component of the
agent architecture.

After S^ has selected an event, the Interpreter has to unify that event
with triggering events In the heads of plans. This generates the set of all
relevant plans for that event. By checking whether the context part of the

16 Jason

plans in that set follows from the agent's beliefs, the set oi applicable plans is
determined — these are the plans that can actually be used at that moment
for handling the chosen event. Then SQ chooses a single applicable plan
from that set, which becomes the intended means for handling that event,
and either pushes that plan on the top of an existing intention (if the event
was an internal one), or creates a new intention in the set of intentions (if
the event was external, i.e., generated from perception of the environment).

All that remains to be done at this stage is to select a single intention to be
executed in that cycle. The Sx function selects one of the agent's intentions
(i.e., one of the independent stacks of partially instantiated plans within the
set of intentions). On the top of that intention there is a plan, and the
formula in the beginning of its body is taken for execution. This implies
that either a basic action is performed by the agent on its environment, an
internal event is generated (in case the selected formula is an achievement
goal), or a test goal is performed (which means that the set of beliefs has to
be checked).

If the intention is to perform a basic action or a test goal, the set of in
tentions needs to be updated. In the case of a test goal, the belief base will
be searched for a belief atom that unifies with the atomic formula in the
test goal. If that search succeeds, further variable instantiation will occur in
the partially instantiated plan which contained that test goal (and the test
goal itself is removed from the intention from which it was taken). In the
case where a basic action is selected, the necessary updating of the set of in
tentions is simply to remove that action from the intention (the interpreter
informs to the architecture component responsible for the agent effectors
what action is required). When all formulae in the body of a plan have been
removed (i.e., have been executed), the whole plan is removed from the in
tention, and so is the achievement goal that generated it (if that was the case).
This ends a cycle of execution, and everything is repeated all over again, ini
tially checking the state of the environment after agents have acted upon it,
then generating the relevant events, and so forth.

Formal Semantics

We emphasise again that the purpose of this section is to give a general
idea of the style used for giving semantics to the language interpreted hy Ja
son, For a complete account of the formal semantics, we refer the interested
reader to [229].

We have defined the formal semantics of AgentSpeak using operational
semantics, a widely used method for giving semantics to programming lan
guages and studying their properties [169]. The operational semantics is

Language 17

given by a set of rules that define a transition relation between configura
tions {ag, C, M,T,s) where:

• An agent program ag is, as defined above, a set of beliefs and a set of
plans.

• An agent's circumstance C is a tuple {I,E,A) where:

- I is a set of intentions {i, i',,..}. Each intention i is a stack of
partially instantiated plans.

- E is a set of events {{te,i),{te\i^),.,,}. Each event is a pair
{te, f), where te is a triggering event and / is an intention (a stack
of plans in case of an internal event or T representing an external
event).
When the belief revision function, which is not part of the
AgentSpeak interpreter but rather of the general architecture of
the agent, updates the belief base, the associated events (i.e., addi
tions and deletions of beliefs) are included in this set. These are
called external events; internal ones are generated by additions or
deletions in the agent's goals.

- A is a set of actions to be performed in the environment. An ac
tion expression included in this set tells other architecture com
ponents to actually perform the respective action on the environ
ment, thus changing it.

• M is a tuple {In, Out, SI) whose components register the following
aspects of communicating agents:

- In is the mail inbox: the system includes all messages addressed
to this agent in this set. Elements of this set have the form
{niid,id,ilf,cnt), where mid is a message identifier, id identifies
the sender of the message, /// the illocutionary force of the mes
sage, and cnt its content (which can be an AgentSpeak atomic
formula, a set of AgentSpeak atomic formulas, or a set of AgentS
peak plans, depending on the illocutionary force of the message).

- Out is where the agent posts all messages it wishes to send
to other agents; the underlying multi-agent system mechanism
makes sure that messages included in this set are sent to the agent
addressed in the message. Messages here have exactly the same
format as above, except that now id refers to the agent to which
the message is to be sent.

- SI is used to keep track of intentions that were suspended due to
the processing of communication messages; this is explained in

18 Jason

more detail in the next section, but the intuition is: intentions
associated to illocutionary forces that require a reply from the
interlocutor are suspended, and they are only resumed when such
reply has been received.

• T is the tuple {R, Ap, i, e, p), used to keep temporary information that
is required in subsequent stages within a single reasoning cycle; its
components are:

- R for the set of relevant plans (for the event being handled).

- Ap for the set oi applicable plans (the relevant plans whose context
are true).

- t, £, and p keep record of a particular intention, event and appli
cable plan (respectively) being considered along the execution of
an agent.

• The current step s within an agent's reasoning cycle is symbolically
annotated by s G {ProcMsg,SelEv, RelPI, ApplPI,SelAppl, AddIM,
Selint, Execint, CIrInt}, which stand for: processing a message from
the agent's mail inbox, selecting an event from the set of events, re
trieving all relevant plans, checking which of those are applicable, se
lecting one particular applicable plan (the intended means), adding the
new intended means to the set of intentions, selecting an intention,
executing the select intention, and clearing an intention or intended
means that may have finished in the previous step.

Formally, all the selection functions an agent uses are also part of its con
figuration, (as is the social acceptance function that we mention below).
However, as they are fixed, i.e., defined by the agent's designer when con
figuring the interpreter, we avoid including them in the configuration, for
the sake of readability.

In order to keep the semantic rules clear, we adopt the following nota
tions:

•

•

If C is an AgentSpeak agent circumstance, we write Cg to make refer
ence to the component E of C. Similarly for all the other components
of a configuration.

We write T̂ = _ (the underline symbol) to indicate that there is no
intention being considered in the agent's execution. Similarly for Tp
and T .̂

We write z[p] to denote an intention / that has plan p on its top.

Language 19

We now present a selection of the rules which define the operational se
mantics of the reasoning cycle of AgentSpeak. In the general case, an agent's
initial configuration is {ag,C,M,T, ProcMsg), where ag is as given by the
agent program, and all components of C, M, and T are empty.

Updating the Set of Intentions: At the stage of the reasoning cycle where
a relevant and applicable plan has been found for an event, the interpreter
can then update the set of intentions. Events can be classified as external or
internal (depending on whether they were generated from the agent's per
ception, or whether they were generated by the previous execution of other
plans, respectively). Rule ExtEv says that if the event e is external (which
is indicated by T in the intention associated to e) a new intention is created
and its single plan is the plan p annotated in the p component. If the event
is internal, rule IntEv says that the plan in p should be put on top of the
intention associated with the event.

T, = {teJ) Tp = {p,e)
(ExtEv)

(IntEv)

(^g,C,M,T,AddlM) —> (^g,C^M,T,Sellnt)

where: Cj = Cj U { [pO] }

Te = {teJ) Tp = {p,e)

(^g,C,M,T,AddlM) —> (^g,C',M,T,Sellnt)

where: Cj = CiU{{i[p])9}

Note that, in rule IntEv, the whole intention / that generated the internal
event needs to be inserted back in Cj, with p as its top. This issue is related
to suspended intentions, see rule Achieve.

Intention Selection: Rule IntSeli uses an agent-specific function (<Sj) that
selects an intention (i.e., a stack of plans) for processing, while rule IntSe^
takes care of the situation where the set of intentions is empty (in which case,
the reasoning cycle is simply restarted).

Ci ^ {} SxiCi) = i

(^g,C,M,T,Sellnt) —> (^g ,C ,M,r , Execint)

where: T! = i

Ci = {]
^,C,M,r,Sellnt) —> (^g,C,M,T, ProcMsg)

(IntSeli)

(IntSelz)

Executing a Plan Body: Below we show part of the group of rules that de
fine the effects of executing the body of a plan. The plan being executed is

20 Jason

always the one on top of the intention that has been previously selected. Ob
serve that all the rules in this group discard the intention i; another intention
can then be eventually selected.
Achievement Goals: this rule registers a new internal event in the set of events
E. This event will, eventually, be selected and handled at another reasoning
cycle.

Tt = i[head ^— \at;h]
(Achieve) (^g,C,M,T,Execlnt) —> (^g,C',M,T, ProcMsg)

where: Cg = CE U {{-\-latJ[head <— /z])}

c; = Q\{T,}

Note how the intention that generated the internal event is removed from
the set of intentions C/. This denotes the idea of suspended intentions (see
[23] for details).
Updating Beliefs: rule AddBel below simply adds a new event to the set of
events E. The formula -\-h Is removed from the body of the plan and the
set of intentions is updated properly. There is also a DelBel rule, for delet
ing beliefs, which works similarly. In both rules, the set of beliefs of the
agent should be modified in a way that either the ground atomic formula h
(with annotation "source(self)") is included in the new set of beliefs (rule
AddBel) or it is removed from there (rule DelBel).

Z = i[head^^-h;h] (AddBel)
{ag, C, M, T, Execint) —> {ag\ C, M,T,s)

where: ag'^^ = ĝ̂ ^ + t[source(self)]
C^ = CE U{(+b[source(self)] ,T)}
C\ = {Ci\{Z})U{i[head^h]}

(CIrInt if/z = T
"" \ ProcMsg otherwise

Verification

One of the reasons for the growing success of agent-based technology is
that it has been shown to be quite useful for the development of various types
of applications, including air-traffic control, autonomous spacecraft control,
health care, and industrial systems control, to name just a few. Clearly, these
are application areas for which dependable systems are in demand. Conse
quently, formal verification techniques tailored specifically for multi-agent
systems is also an area that is attracting much research attention and is likely
to have a major impact in the uptake of agent technology. One of the advan
tages of the approach to programming multi-agent systems resulting from

Language 21

the research reviewed In this chapter Is precisely the fact that It Is amenable
to formal verification. In particular, model checking techniques (and state-
space reduction techniques to be used In combination with model checking)
for AgentSpeak have been developed [20, 21, 19, 26],

1.2.3 Software Engineering Issues

Although very little has been considered so far In regards to using agent-
oriented software engineering methodologies for the development of de
signs for systems to be Implemented with/<^sow, existing methodologies that
specifically concern BDI agents, such as Prometheus [164], should be per
fectly suitable for that purpose. In that book, the authors show an example
of the use of JACK (see Chapter 7) for the Implementation, but they ex
plicitly say that any platform that provides the basic concepts of reactive
planning systems (such as goals and plans) would be most useful In the sense
of providing all the required constructs to support the Implementation of
designs developed In accordance to the Prometheus methodology. Because
AgentSpeak code Is considerably more readable than other languages such
as JACK and Jadex (see Chapter 6), It Is arguable that Jason will provide at
least a much more clear way of Implementing such designs. However, being
an Industrial platform, JACK has, currently, far better supporting tools and
documentation, but on the other hand, Jason Is open source^ whereas JACK
Is not.

A construct that has an Important Impact In maintaining the right level of
abstraction In AgentSpeak code even for sophisticated systems Is that of In
ternal actions (described earlier In Section 1.2.1). Internal actions necessarily
have a boolean value returned, so they are declaratlvely represented within
a logic program In AgentSpeak — In effect, we can keep the agent program
as a high-level representation of the agent's reasoning, yet allowing It to be
arbitrarily sophisticated by the use of existing software Implemented In Java,
or Indeed any programming language through the use of JNI. Thus, the way
In which Integration with traditional object-oriented programming and use
of legacy code Is accomplished In Jason Is far more elegant than with other
agent programming languages (again, such as JACK and Jadex).

1.2.4 Other Features of the Language

Communication in AgentSpeak

The performatives that are currently available for communication In
AgentSpeak are largely Inspired by KQML performatives. We also Include
some new performatives, related to plan exchange rather than communica
tion about propositions. The available performatives are briefly described

22 Jason

below, where s denotes the agent that sends the message, and r denotes the
agent that receives the message. Note that t e l l and u n t e l l can be used
either for an agent to pro-actively send information to another agent, or as
replies to previous a s k messages.

t e l l : s intends r to believe (that s believes) the sentence in the message's
content to be true;

u n t e l l : s intends r not to beUeve (that s believes) the sentence in the mes
sage's content to be true;

a c h i e v e : s requests that r try to achieve a state of the world where the
message content is true;

u n a c h i e v e : s requests that r try to drop the intention of achieving a state
of the world where the message content is true;

t e l lHow: s informs r of a plan;

un te l lHow: s requests that r disregard a certain plan (i.e., delete that plan
from its plan library);

a s k i f: s wants to know if the content of the message is true for r;

a s k A l l : s wants all of r's answers to a question;

askHow: s wants all of r's plans for a triggering event;

A mechanism for receiving and sending messages asynchronously is used.
Messages are stored in a mail box and one of them is processed by the agent
at the beginning of a reasoning cycle. The particular message to be handled
at the beginning of the reasoning cycle is determined by a selection function,
which can be customised by the programmer, as three selection functions
that are originally part of the AgentSpeak interpreter.

Further, in processing messages we consider a "given" function, in the
same way that the selection functions are assumed as given in an agent's
specification. This function defines a set of socially acceptable messages. For
example, the receiving agent may want to consider whether the sending agent
is even allowed to communicated with it (e.g., to avoid agents being attacked
by malicious communicating agents). For a message with illocutionary force
a c h i e v e , the agent will have to check, for example, whether the sending
agent has sufficient social power over itself, or whether it wishes to act altru
istically towards that agent and then do whatever it is being asked.

Note that notions of trust can also be programmed into the agent by
considering the annotation of the sources of information during the agent's

Language 23

practical reasoning. When applied to t e l l messages, the function only de
termines if the message is to be processed at all. When the source is "trusted"
(in this limited sense used here), the information source for a belief acquired
from communication is annotated with that belief in the belief base, enabling
further consideration on degrees of trust during the agent's reasoning.

When the function for checking message acceptance is applied to an
a c h i e v e message, it should be programmed to return true if, e.g., the
agent has a subordination relation towards the sending agent. However this
"power/subordination" relation should not be interpreted with particular
social or psychological nuances: the programmer defines this function so as
to account for all possible reasons for an agent to do something for another
agent (from actual subordination to true altruism). Similar interpretations
for the result of this function when applied to other types of messages (e.g.,
a s k l f) can be derived easily. For more elaborate conceptions of trust and
power, see [42].

As a simple example of how the user can customise this power relation
in Jason, we may consider that a CPH903 robot only does what an MDS79
robot asks. The following agent customisation class implements that:

package cph;
import jason.asSemantics.Agent;

public class CPHAgent extends Agent {

public boolean socAcc(Message m) {
if (m.getSender().startsWith("mds") &&

m.getllForce().equals("achieve")) {
return true;

} else {
return false;

}

In order to endow AgentSpeak agents with the capability of processing
communication messages, we annotate, for each belief, what is its source.
This annotation mechanism provides a very elegant notation for making ex
plicit the sources of an agent̂ s belief. It has advantages in terms of expressive
power and readability, besides allowing the use of such explicit information
in an agent's reasoning (i.e., in selecting plans for achieving goals). For exam
ple, the triggering event of MDS79's plan p b l , seen later in Figure 1.8, uses
this annotation to identify the sender of the bid.

Belief sources can be annotated so as to identify which was the agent in the
society that previously sent the information in a message, as well as to denote
internal beliefs or percepts (i.e., in case the belief was acquired through per-

24 Jason

ception of the environment). By using this information source annotation
mechanism, we also clarify some practical problems in the implementation
of AgentSpeak interpreters relating to internal beliefs (the ones added during
the execution of a plan). In the interpreter reported in [18], we dealt with
the problem by creating a separate belief base where the internal beliefs were
included or removed.

Due to space restriction, we do not discuss the interpretation of received
messages with each of the available illocutionary forces. This is presented
both formally and informally in [229].

Cooperation In AgentSpeak

Coo-BDI (Cooperative BDI, [4]) extends traditional BDI agent-oriented
programming languages in many respects: the introduction of cooperation
among agents for the retrieval of external plans for a given triggering event;
the extension of plans with access specifiers-^ the extension of intentions to take
into account the external plan retrieval mechanism; and the modification of
the the interpreter to cope with all these issues.

The cooperation strategy of an agent Ag includes the set of agents with
which it is expected to cooperate, the plan retrieval policy, and the plan
acquisition policy. The cooperation strategy may evolve during time, allow
ing greater flexibility and autonomy to the agents, and is modelled by three
functions:

• tr\istedi{Te^TrustedAgentSet)^ where 7e is a (not necessarily ground)
triggering event and TrustedAgentSet is the set of agents that Ag will
contact in order to obtain plans relevant for 7e.

• TetT±e-va.lVol±CY{Te^Retrieval)^ where Retrieval may assume the
values a lways and noLoca l , meaning that relevant plans for the
trigger Te must be retrieved from other agents in any case, or only
when no local relevant plans are available, respectively.

• acquis!tionPolicy(7e,i4c^^i5itio^7), where Acquisition may as
sume the values d i s c a r d , add and r e p l a c e meaning that, when
a relevant plan for Te is retrieved from a trusted agent, it must be used
and discarded, or added to the plan library, or used to update the plan
library by replacing all the plans triggered by Te.

Plans. Besides the standard components which constitute BDI plans, in
this extension plans also have a source which determines the first owner of
the plan, and an access specifier which determines the set of agents with which
the plan can be shared. The source may assume two values: s e l f (the agent
possesses the plan) and Ag (the agent was originally from Ag). The access

Platform 25

specifier may assume three values: p r i v a t e (the plan cannot be shared),
p u b l i c (the plan can be shared with any agent) and only fTrustedAgentSet)
(the plan can be shared only with the agents contained in TrustedAgentSet).

The Coo-AgentSpeak mechanism to be available m Jason soon will allow
users to define cooperation strategies in the Coo-BDI style, and takes care of
all other issues such as sending the appropriate requests for plans, suspending
intentions that are waiting for plans to be retrieved from other agents, etc.
The Coo-AgentSpeak mechanism is described in detail in [4].

One final characteristic oi Jason that is relevant here is the configuration
option on what to do in case there is no applicable plan for a relevant event.
If an event is relevant, it means that there are plans in the agent's plan library
for handling that particular event (representing that handling that event is
normally a desire of that agent). If it happens that none of those plans are
applicable at a certain time, this can be a problem as the agent does not
know how to handle the situation at that time. Ancona and Mascardi [4]
discussed how this problem is handled in various agent-oriented program
ming languages. In Jason, a configuration option is given to users, which can
be set in the file where the various agents and the environment composing
a multi-agent system are specified. The option allows the user to state, for
events which have relevant but not applicable plans, whether the interpreter
should discard that event altogether (e v e n t s = d i s c a r d) or insert the event
back at the end of the event queue (event s=requeue) . Because oi Jason's
customisation mechanisms, the only modification that were required for Ja
son to cope with Coo-AgentSpeak was a third configuration option that is
available to the users — no changes to the interpreter itself was required.
When Coo-AgentSpeak is to be used, the option e v e n t s = r e t r i e v e must
be used in the configuration file. This makes Jason call the user-defined
s e l e c t O p t i o n function even when no applicable plans exist for an event,
This way, part of the Coo-BDI approach can be implemented by provid
ing a special s e l e c t O p t i o n function which takes care of retrieving plans
externally, whenever appropriate.

1.3 Platform

13.1 Main Features of the Jason Platform

Configuring Multi-Agent Systems

The configuration of a complete multi-agent system is given by a very
simple text file. Figure 1.4 shows an example of this configuration file for
the Heathrow scenario. Briefly, the environment is implemented in a class
named HeathrowEnv; the system has three types of agents: five instances
of MDS79, ten CPH903, and three bomb-disarmers; MDS79 agents have a

26 Jason

© O 6 Jason

Projea Help

ifSl^leir^Pl!!
f HeathrowRobots.mas2j i cph.asi mds.asi bd.asi] ^

MAS heathrow {

environment:
HeathrowEnv

agents:
mds agentclass md)s.MDSAgent

cph agentArchclass cph.CPHAgArch
agentclass cph.CFHAgent
#10;

bd #5;

Figure 1 A. Jason IDE.

customised agent class and CPH903 have customised agent and agent archi
tecture classes.

The BNF grammar in Figure 1.5 gives the syntax that can be used in the
configuration file. In this grammar, <NUMBER> is used for integer numbers,
<ASID> are AgentSpeak identifiers, which must start with a lowercase letter,
<ID> is any identifier (as usual), and <PATH> is as required for defining file
pathnames as usual in ordinary operating systems.

The <ID> used after the keyword MAS is the name of the society. The
keyword a r c h i t e c t u r e is used to specify which of the two overall agent
architectures available with Jason's distribution will be used. The options
currently available are either " C e n t r a l i s e d " or "Saci"; the latter option
allows agents to run on different machines over a network. It is important to
note that the user's environment and customisation classes remain the same
with both (system) architectures.

Next an env i ronmen t needs to be referenced. This is simply the name
of Java class that was used for programming the environment. Note that an
optional host name where the environment will run can be specified. This
only works if the SACI option is used for the underlying system architecture.

The keyword a g e n t s is used for defining the set of agents that will take
part in the multi-agent system. An agent is specified first by its symbolic
name given as an AgentSpeak term (i.e., an identifier starting with a lower
case letter); this is the name that agents will use to refer to other agents in

Platform 17

environment
agents
agent

":" <ID> [
(agent)+

"MAS" <ID> "{"
["architecture"
environment
agents

"}"
"environment
"agents" ":"
<ASID>
[filename]
[options]
["agentArchClass" <ID>
["agentClass" <ID>]
["#" <NUMBER>]
["at" <ID>]

<ID>]

"at" <ID>]

filename
options
option

[<PATH>] <ID>
" [" option (" , " option)•

—^ "events" " = " ("discard" | "requeue" | "retrieve")
I "intBels" "=" ("sameFocus" | "newFocus")
I "verbose" "=" <NUMBER>

Figure 1.5. BNF of the Language for Configuring Multi-Agent Systems.

the society (e.g., for Inter-agent communication). Then, an optional filename
can be given where the AgentSpeak source code for that agent Is given; by de
fault/^sow assumes that the AgentSpeak source code Is In file <name> . a s l ,
where <name> Is the agent's symbolic name. There Is also an optional list
of settings for the AgentSpeak Interpreter available with Jason (these are ex
plained below). An optional number of Instances of agents using that same
source code can be specified by a number preceded by #; If this Is present,
that specified number of "clones" will be created In the multi-agent system.
In case more than one Instance of that agent Is requested, the actual name of
the agent will be the symbolic name concatenated with an Index Indicating
the Instance number (starting from 1). As for the e n v i r o n m e n t keyword,
an agent definition may end with the name of a host where the agent(s) will
run (preceded by "at"). As before, this only works If the SACI-based archi
tecture was chosen.

The following settings are available for the AgentSpeak Interpreter avail
able In Jason (they are followed by *=' and then one of the associated key
words, where an underline denotes the option used by default):

e v e n t s : options are either d i s c a r d , r equeue , or r e t r i e v e ; the
d i s c a r d option means that external events for which there are no
applicable plans are discarded, whereas the r e q u e u e option Is used
when such events should be Inserted back at the end of the list of events

28 Jason

that the agent needs to handle. When option r e t r i e v e is selected,
the user-defined s e l e c t Op t ion function is called even if the set of
relevant/applicable plans is empty. This can be used, for example, for
allowing agents to request plan from other agents who may have the
necessary know-how that the agent currently lacks, as mentioned in
Section 1.2.4 and described in detail in [4].

i n t B e l s : options are either sameFocus or newFocus. When internal
beliefs are added or removed explicitly within the body of a plan, the
associated event is a triggering event for a plan, the intended means
resulting from the applicable plan chosen for that event is pushed on
top of the intention (i.e., the focus of attention) which generated the
event, if the sameFocus option is used). If the newFocus option is
used, the event is treated as external (i.e., as the addition or deletion
of belief from perception of the environment), creating a new focus of
attention.

v e r b o s e : a number between 0 and 6 should be specified. The higher the
number, the more information about that agent (or agents if the num
ber of instances is greater than 1) is printed out in the console where
the system was run. The default is in fact 1, not 0; verbose 1 prints
out only the actions that agents perform in the environment and the
messages exchanged between them.

Finally, user-defined overall agent architectures and other user-defined
functions to be used by the AgentSpeak interpreter for each particular agent
can be specified with the keywords a g e n t A r c h C l a s s and a g e n t C l a s s .

Creating Environments

Jason agents can be situated in real or simulated environments. In the for
mer case, the user would have to customise the "overall agent architecture",
as described in the next part of this section; in the latter case, the user must
provide an implementation of the simulated environment. This is done di
rectly in a Java class that extends xh^ Jason base Environment class. A very
simple simulated version of the environment for the Heathrow airport sce
nario is shown in Figure 1.6 as an example.

All percepts (i.e., everything that is perceptible in the environment)
should be added to the list returned by getPerceptS; this is a list of liter
als, so strong negation can be used in applications where there is open-world
assumption. It is possible to send individualised perception; that is, in pro
gramming the environment the developer can determine what subset of the
environment properties will be perceptible to individual agents. Recall that
within an agent's overall architecture you can further customise what beliefs

Platform 29

public class HeathrowEnv extends Environment {

Map agsLocation = new HashMap();

public List getPercepts(String agName) {
if (... unattended luggage has been found ...) {

// all agents will perceive the fact that
// there is unattendedLuggage

getPercepts().add(Term.parse("unattendedLuggage"));

}

if (agName.startsWith("mds")) {
// mds robots will also perceive their location
List customPerception = new ArrayList();
customPerception.addAll(getPercepts())/
customPerception.add(agsLocation.get(agName));
return customPerception;

} else {
return getPercepts();

}
}

public boolean executeAction(String ag, Term action) {
if (action.hasFunctor("disarm")) {

... the code that implements the disarm action

... on the environment goes here
} else if (action.hasFunctor("move")) {

... the code for changing the agents' location and

... updating the agsLocation map goes here
}

return true;

}

Figure 1.6. Simulated Environment of the Airport Scenario.

the agent will actually aquire from what it perceives. Intuitively, the envi
ronment properties available to an agent from the environment definition
itself are associated to what is actually perceptible at all in the environment
(for example, if something is behind my office's walls, I cannot see it). The
customisation at the agent overall architecture level should be used for sim
ulating faulty perception (i.e., even though something is perceptible for that
agent in that environment, it may still not include some of those properties
in its belief revision process, because it failed to perceive it). Customisation
of agent's individual perception within the environment is done by overrid-

30 Jason

ing the " g e t P e r c e p t s (agName)" method; the default methods simply
provide all current environment properties as percepts to all agents. In the
example above, only MDS79 robots will perceive their location at the air
port.

Most of the code for building environments should be (referenced) in the
body of the method executeAction which must be declared as described
above. Whenever an agent tries to execute a basic action (those which are
supposed to change the state of the environment), the name of the agent and
a Term representing the chosen action are sent as parameter to this method.
So the code for this method needs to check the Term (which has the form
of a Prolog structure) representing the action (and any parameters) being ex
ecuted, and check which is the agent attempting to execute the action, then
do whatever is necessary in that particular model of an environment — nor
mally, this means changing the percepts, i.e., what is true or false of the envi
ronment is changed according to the actions being performed. Note that the
execution of an action needs to return a boolean value, stating whether the
agent's attempt at performing that action on the environment was executed
or not. A plan fails if any basic action attempted by the agent fails.

Customising Agents

Certain aspects of the cognitive functioning of an agent can be customised
by the user overriding methods of the Agent class (see Figure 1.7). The three
first selection functions are discussed extensively in the AgentSpeak literature
(see Section 1.2.2 and Figure 1.3). The social acceptance function (socAcc,
which is related to pragmatics, e.g., trust and power social relations) and
the message selection function are discussed in [229] and Section 1.2.4. By
changing the message selection function, the user can determine that the
agent will give preference to messages from certain agents, or certain types
of messages, when various messages have been received during one reasoning
cycle. While basic actions are being executed by the environment, before the
(boolean) feedback from the environment is available the intention to which
that action belongs must be suspended; the last internal function allows cus
tomisation of priorities to be given when more than one intention can be
resumed because feedback from the environment became available during
the last reasoning cycle.

As an example of customising an agent class, consider again the Heathrow
scenario. The MDS79 robots must give priority to events related to unat
tended luggage over any other type of event. A customised MDS79 agent
class which overrides the selectEvent method can implement this priority
as follows:

Platform 31

•
•
•
•
•
•

® Agent

selectActionO: ActionExec 1

selectEventO: Event 1

selectlntentionO: Intention 1

selectMessageO: Message 1
selectOptionO: Option 1

socAccQ: boolean 1

Q CentralisedAgArch

• actO

• brfO

• checkMailO

• perceive!)

T

' M D S A g e n t

selectEventiList): Event

' c p h : : C P H A g e n t

o socAcc(Message): boolean

' cph::CPHAgArch

« actO

Figure 1.7. Customising Agents for the Airport Scenario.

pub l i c c l a s s MDSAgent extends Agent {

pub l i c Event s e l e c t E v e n t (L i s t evList) {
I t e r a t o r i = e v L i s t . i t e r a t o r () ;
while (i .hasNext ()) {

Event e = (E v e n t) i . n e x t () ;
i f (e . g e t T r i g g e r () . g e t F u n c t o r () . e q u a l s (

"unattendedLuggage"))
i . r emove() ;
r e t u r n e;

}
}
r e t u r n s u p e r . s e l e c t E v e n t (e v L i s t) ;

Similarly, the user can customise the functions defining the overall agent
architecture (see Figure 1.7, AgArch class). These functions handle: (i) the
way the agent will perceive the environment; (ii) the way it will update its be
lief base given the current perception of the environment, i.e., the so called
belief revision function (BRF) in the AgentSpeak literature; (iii) how the
agent gets messages sent from other agents (for speech-act based inter-agent
communication); and (iv) how the agent acts on the environment (for the ba
sic actions that appear in the body of plans) — normally this is provided by
the environment implementation, so this function only has to pass the action
selected by the agent on to the environment, but clearly for multi-agent sys
tems situated in a real-world environment this might be more complicated,
having to interface with, e.g., available process control hardware.

32 Jason

For the perception function, it may be interesting to use the function de
fined in Jason's distribution and, after it has received the current percepts,
then process further the list of percepts, in order to simulate faulty percep
tion, for example. This is on top of the environment being modelled so as
to send different percepts to different agents, according to their perception
abilities (so to speak) within the given multi-agent system (as with ELMS
environments, see [25]).

It is important to emphasise that the belief revision function provided
with Jason simply updates the belief base and generates the external events
(i.e., additions and deletion of beliefs from the belief base) in accordance with
current percepts. In particular, it does not guarantee belief consistency. As
percepts are actually sent from the environment, and they should be lists of
terms stating everything that is true (and explicitly false too, if closed-wo rid
assumption is dropped), it is up to the programmer of the environment to
make sure that contradictions do not appear in the percepts. Also, if AgentS-
peak programmers use addition of internal beliefs in the body of plans, it is
their responsibility to ensure consistency. In fact, the user might be inter
ested in modelling a "paraconsistent" agent, which can be done easily.

Suppose, for example, that under no circumstances a CPH903 robot is
allowed to disarm a bomb. To prevent them from performing this action,
even if they have decided to do so (e.g., they could be infected by a soft
ware virus), the developer could override the act method in the CPH903's
customised AgArch class and ensure that the selected action is not d i s a r m
before allowing it to be executed in the environment:

pub l i c c l a s s CPHAgArch extends CentralisedAgArch {
pub l i c void a c t () {

/ / get the cu r r en t a c t i on to be performed
Term a c t i o n = fTS .ge tC() .ge tAct ion() .ge tAct ionTerm() ;

i f (! a c t i o n . g e t F u n c t o r () . e q u a l s (" d i s a r m ")) {
/ / ask the environment to execute the a c t i o n
fEnv.executeAction(getName(), a c t i o n)) ;

}

Defining New Internal Actions

An important construct for allowing AgentSpeak agents to remain at the
right level of abstraction is that of internal actions, which allows for straight
forward extensibility and use of legacy code. As suggested in [18], internal
actions that start with *.' are part of a standard library of internal actions
that are distributed with/^sow. Internal actions defined by users should be
organised in specific libraries, which provides an interesting way of organis-

Platform 33

ing such code, which is normally useful for a range of different systems. In
the AgentSpeak program, the action is accessed by the name of the library,
followed by * / , followed by the name of the action. Libraries are defined as
Java packages and each action in the user library should be a Java class, the
name of the package and class are the names of the library and action as it
will be used in the AgentSpeak programs.

When unattended luggage is perceived by the MDS79 robots, they send
bids to each other that represent how suitable they are for coping with the
new situation (see Figure 1.8, plan pn2). The robot with the highest bid
will be relocated to handle the unattended luggage. Now, suppose a complex
formula is used to calculate the initial bid and further checks and calculations
are requested to adjust the bid; clearly imperative languages are normally
more suitable for implementing this kind of algorithms. The user can thus
use the following Java class to implement this algorithm, and refer to it from
within the AgentSpeak code as mds . c a l c u l a t e M y B i d (Bid) :

package mds;
import ...

public class calculateMyBid implements InternalAction {

public boolean execute(TransitionSystem ts, Unifier un,
Term[] args) throws Exception {

int bid = ... a complex formula ...;
... plus complex algorithm and calculations

for adjusting the agent's bid ...

un.unifies(args[0], Term.parse(""+bid))/
return true;

}

It is important that the class has an execute method declared exactly as above,
since Jason uses class introspection to call it. The internal action's arguments
are passed as an array of Terms. Note that this is the third argument of the
execute method. The first argument is the transition system (as defined by
the operational semantics of AgentSpeak), which contains all information
about the current state of the agent being interpreted. The second is the
unifying function currently determined by the execution of the plan, or the
checking of whether the plan is applicable^; the unifying functions is impor
tant in case the value bound to AgentSpeak variables need to be used in the
implementation of the action.

^This depends on whether the internal action being run appears in the body or the context of a plan.

34 Jason

free. // I'm not currently handling unattended luggage

+unattendedLuggage(Terminal,Gate) : true
<- !negotiate.

@pnl
+!negotiate : not free

<- .broadcast(tell, bid(O)).

@pn2
+!negotiate : free

<- .myName(I); // Jason internal action
+winner(I); // belief I am the negotiation winner
+bidsCount(1)/
mds.calculateMyBid(Bid); // user internal action
+myBid(Bid);
.broadcast(tell, bid(Bid)).

©pbl // for a bid better than mine
+bid(B)[source(Sender)] :

myBid(MyBid) & MyBid < B &
.myName(I) & winner(I)

<- -winner(I);
+winner(Sender).

@pb2 // for other bids (and I'm still the winner)
+bid(B) : .myName(I) & winner(I)

<- laddBidCounter;
!endNegotiation.

©pendl // all bids was received
+!endNegotiation : bidsCount(N) & numberOfMDS(M) & N >= M

<- -free; // I'm no longer free
!checkUnattendedLuggage.

@pend2 // void plan for endNegotiation not to fail
+!endNegotiation : true <- true.

Figure 1.8. Example of AgentSpeak Plans for an Airport Security Robot.

1,3.2 Available Tools and Documentation

Jason is distributed with an Integrated Development Environment (IDE)
which provides a GUI for editing a MAS configuration file as well as AgentS
peak code for the individual agents. Through the IDE, it is also possible to

Platform 35

control the execution of a MAS, and to distribute agents over a network in a
very simple way. There are three execution modes:

Asynchronous: in which all agents run asynchronously. An agent goes to
its next reasoning cycle as soon as it has finished its current cycle. This
is the default execution mode.

Synchronous: in which each agent performs a single reasoning cycle in ev
ery "global execution step". That is, when an agent finishes a reasoning
cycle, it informs/^sow's execution controller, and waits for a "carry
on" signal. The Jason controller waits until all agents have finished
their current reasoning cycle and then sends the "carry on" signal to
them.

Debugging: this execution mode is similar to the synchronous mode; how
ever, the Jason controller also waits until the user clicks on a "Step"
button in the GUI before sending the "carry on" signal to the agents.

There is another tool provided as part of the IDE which allows the user
to inspect agents' internal states when the system is running in debugging
mode. This is very useful for debugging MAS, as it allows "inspection of
agents' minds" across a distributed system. The tool is called "mind inspec
tor", and is shown in Figure 1.9.

Jason's distribution comes with documentation which is also available on
line at h t t p : / / j a s o n . s o u r c e f o r g e . n e t / J a s o n . p d f . The docu
mentation has something of the form of a tutorial on AgentSpeak, followed
by a description of the features and usage of the platform. Although it covers
all of the currently available features oi Jason, we still plan to improve sub
stantially the documentation, in particular because the language is at times
still quite academic. Another planned improvement in the available docu
mentation, in the relatively short term, is to include material (such as slides
and practical exercises) for teaching Agent-Oriented Programming with Ja
son. Because of the elegance and simplicity of the core agent language inter
preted by Jason, at the same time having all the important elements for the
implementation of BDI-based reactive planning systems, we think Jason can
become an important tool for teaching multi-agent systems.

1.3J Standards Compliance, Interoperability, and
Portability

As Jason is implemented in Java, there is no issue with portability, but
very little consideration has been given so far to standards compliance and in
teroperability. However, components of the platform can be easily changed
by the user. For example, at the moment there are two "system architectures"

http://jason.sourceforge.net/Jason.pdf

36 Jason

eee MAS &(ecutJon Control

Agents
cph6 :
cph2 j
cph7 !
cph8 i
cpM I
cphl I
cph9 \
mdsl
mdsS
bdl
mdsj
bd3
cphlO
cph3
bd2
cphS
mds2
mds4

Agent Inspection

Belief ft btd(lO)tsource(mdsl).source(serO]
unatiendedLuggage(t1.g3)[source(percepl)J
myBid(50)[source(setf)]
blds(l)[sourc0(seif))

winner(mds5)[source(sel01
locaiion(ti ,g3)[source(percept)]
bomb(t1 ,g3)[50urce(seif))
(reetsource(self)J
mds(5)[source(setf)]

MallBox <mld5.mds4 ,ieil.mds5,bW(40)>

events Set Trigger Intention

+recelved(mds3.tell,bld(30).mld4)

X +bid(10){source(mdsl), source (self)] 11

Plane App Scl Plan

X X @pb2
+bid(B): .myName(i) &winner(l)

<• laddBtdCounier: lend Negotiation

{I=nnds5,
B=10}

Intentions Set Id

X 17

@pt)l
i-bld(6}[Sender]: free & myBld{MyBkf) & .gi(B.MyBkf) &
.myName(t) & winner(l)

<• -wlnner{l); +wlnner(Sender); .print("noi winner)

Pen Intended Means Stack and Unifier

+recetved(S,ietl.KQMLcon (S=mds2. CA=bld(20)[source(mds2)I.
lentVar.M); M=mid3. KQMLcontentVar=bld(20)}

<-+CA

(Step all agents } (Clean console)

Figure 1.9. /<?sow's Mind Inspector.

V

available with Jason's distribution: a centralised one (which means that the
whole system runs in a single machine) and another which uses SACI for
distribution. It should be reasonably simple to produce another system ar
chitecture which uses, e.g., JADE (see Chapter 5) for FIPA-compliant distri
bution and management of agents in a multi-agent system.

1.3.4 Applications Supported by the Language and the
Platform

As yet, Jason has been used only for a couple of application described
below, and also for simple student projects in academia. However, due to
its AgentSpeak basis, it is clearly suited to a large range of applications for
which it is known that BDI systems are appropriate; various applications of

Final Remarks 37

PRS [98] and dMARS [126] for example have appeared in the literature [238,
Chapter 11].

Although we aim to use it for a wide range of applications in the future,
in particular Semantic Web and Grid-based applications, one particular area
of application in which we have great interest is Social Simulation [74], In
fact, Jason is being used as part of a large project to produce a platform tai
lored particularly to Social Simulation. The platform is called MAS-SOC
and is described in [25]; it includes a high-level language called ELMS [162]
for defining multi-agent environments. This approach was used to develop a
simple social simulation on social aspects of urban growth is also mentioned
(the simulation was briefly presented in [131]). Another area of application
that has been initially explored is the use of AgentSpeak for defining the
behaviour of animated characters for computer animation (or virtual real-
ity)[223].

1,4 Final Remarks

Jason is constantly being improved and extended. The long term objective
is to have a platform which makes available important technologies result
ing from research in the area of Multi-Agent Systems, but doing this in a
sensible way so as to avoid the language becoming cumbersome and, most
importantly, having formal semantics for most, if not all, of the essential
features available in Jason. We have ongoing projects to extend Jason with
organisations, given that social structure is an essential aspect of developing
complex multi-agent systems, and with ontological descriptions underlying
the belief base, thus facilitating the use oi Jason for Semantic Web and Grid-
based applications. We aim to contribute, for example, to the area of e-Social
Science, developing large-scale Grid-based social simulations using/^50W.

Acknowledgments

As seen from the various references throughout this document, the re
search on AgentSpeak has been carried out with the help of many col
leagues. We are grateful for the many contributions received over the last
few years from: Davide Ancona, Marcelo G. de Azambuja, Deniel M. Basso,
Ana L.C. Bazzan, Antonio Carlos da Rocha Costa, Guilherme Drehmer,
Michael Fisher, Rafael de O. Jannone, Romulo Krafta, Viviana Mascardi,
Victor Lesser, Rodrigo Machado, Alvaro F. Moreira, Fabio Y. Okuyama,
Denise de Oliveira, Carmen Pardavila, Marios Richards, Maira R. Rodrigues,
Rosa M. Vicari, Willem Visser, Michael Wooldridge.

Chapter 2

PROGRAMMING MULTI-AGENT SYSTEMS IN
3APL

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer

Institute of Information and Computing Sciences
Utrecht University
The Netherlands

{mehdi,birnajj} ©cs.uu.nl

Abstract This chapter presents 3APL, which is a muhi-agent programming language,
and its corresponding development platform. The 3APL language is moti
vated by cognitive agent architectures and provides programming constructs
to implement individual agents directly in terms of beliefs, goals, plans, ac
tions, and practical reasoning rules. The syntax and semantics of the 3APL
programming language is explained. Various features of the language and plat
form and some software engineering issues are discussed.

Keywords: Multi-Agent Programming Language, Cognitive Agents, Multi-Agent Systems

2.1 Motivation

In research on agents, besides architectures, the areas of agent theories
and agent programming languages are distinguished. Theories concern de
scriptions of (the behavior of) agents. Agents are often described using logic
[181, 224]. Concepts that are commonly incorporated in such logics are
for instance knowledge, beliefs, desires, intentions, commitments, goals and
plans.

It has been argued in the literature that it can be useful to analyze and
specify a system in terms of these concepts [58, 182]. However, if the sys
tem would then be implemented using an arbitrary programming language,
it will be difficult to verify whether it satisfies its specification: if we cannot
identify what for instance the beliefs, desires and intentions of the system
are, it will be hard to check the system against its specification expressed in

40 3APL

these terms. This is referred to by Wooldridge as the problem of ungrounded
semantics for agent specification languages [238]^ It will moreover be more
difficult to go from specification to implementation if there is no clear cor
respondence between the concepts used for specification and those used for
implementation.

To support the practical development of intelligent agents, several pro
gramming languages have thus been introduced that incorporate some of the
concepts from agent logics. 3APL ("triple-a-p-l") is one such language. The
first version of 3APL was designed by Hindriks et al. [107]. In this version,
beliefs, plans^, and rules for revising plans are the basic building blocks of
3APL agents. An extension to this first version was the addition of declar
ative goals [54, 228]. Declarative goals^ describe the state an agent wants to
reach and can be used to program pro-active behavior. Plans form the pro
cedural part of an agent and can be executed by the agent in order to achieve
its goals. The notion of a goal is important in agent logics and the exten
sion of 3APL with goals is thus important if we are to deal with the issue of
ungrounded semantics. Together with the addition of goals, rules were in
troduced to generate plans on the basis of these goals (and beliefs). Another
extension to 3APL was the addition of communication to allow describing
multi-agent 3 APL systems [53], in the vein of work on ACPL [225].

A 3APL agent thus consists of beliefs, plans, goals and reasoning rules.
Given these mental attitudes, issues arise with respect to the operation of
the agent; these are issues such as which plan should be executed at a certain
point, which goal(s) should be pursued, which (type of) rule should be ap
plied, etc. The choices made affect the operation of the agent and it is thus
an important point to consider. To be able to make these kinds of choices ex
plicit, Hindriks et al. introduced a meta-language on top of basic 3 APL [107].
This deliberation language was extended by Dastani et al. [52] and includes
constructs for tests, planning, and different types of selection functions by
means of which plans and rules can be selected.

In this paper, we present the concrete syntax and semantics of the 3APL
programming language and give examples to illustrate how cognitive agents
can be implemented. The presented version of 3APL is extended with a
shared environment in which 3APL agents can perform actions. We then
discuss the use of the 3APL programming language from a software engi-

^Note that the way the problem is named suggests the problem resides in the specification language,
which uses terms that do not relate to computational notions, and should therefore be changed). Al
though we agree that there is a problem here, we believe that it might also be solved by introducing the
notions used in the specification language into the implementation (viz. the programming language),
thus in effect grounding the specification language.
^What we refer to as plans are called "goals" in [107].
^From now on, we will use the term "goal" to refer to the notion of declarative goal.

Language 41

neering point of view and describe the 3APL platform that supports the
development of 3APL multi-agent systems.

2.2 Language

In general, the Implementation of a multi-agent system requires two pro
gramming languages: one single-agent programming language to Implement
Individual agents, and one multi-agent programming language to Implement
multi-agent aspects, such as which and how Individual agents should be ex
ecuted. The multi-agent programming language can be used to Implement
organization and coordination of multi-agent systems directly and explic
itly. Using the multi-agent programming language one can, for example,
Implement sequential or parallel execution of Individual agents or block the
execution of Individual agents when their actions are not permitted.

A 3APL multi-agent system consists of a set of concurrently executed
3APL agents that can Interact with each other either directly through com
munication or Indirectly through the shared environment. In order to Im
plement a 3APL multi-agent system, the 3APL platform has been built to
support the design. Implementation, and execution of a set of 3APL agents
that share an external environment. The 3APL platform thus allows the Im
plementation and parallel execution of a set of 3APL agents and therefore
It fulfills the function of a 3APL multi-agent programming language. This
choice Implies that all organization and coordination Issues should be Imple
mented Implicitly through the Implementations of Individual 3APL agents.

The Individual 3APL agents can be Implemented by the 3APL program
ming language that facilitates direct Implementation of various aspects of
cognitive agents, and the shared environment can be Implemented in the
Java [99] programming language. In particular, the shared environment Is
Implemented as a Java class such that its methods correspond with the ac
tions that agents can perform in the environment. Besides the Interaction
with the environment, the agents can Interact with each other through di
rect communication. Using 3APL, one can Implement agents that observe
the shared environment, communicate with each other, reason about and
update their states, and execute actions In the shared environment.

In designing the 3APL programming language, a separation was created
between mental attitudes (data structures) and the deliberation process (pro
gramming Instructions) that manipulate the mental attitudes. Therefore, the
3APL programming language consists of programming constructs to imple
ment the agent's mental attitudes, represented as data structures, as well as
the agent's deliberation process, represented as instructions, to manipulate
the mental attitudes. In particular, 3APL allows direct specification of men
tal attitudes such as beliefs, goals, plans, actions and reasoning rules. Actions

42 3APL

form the basic building blocks of plans and can be internal mental actions,
external actions, or communication actions. The deliberation constructs
allow the implementation of selection and execution of actions and plans
through which an agent's belief base can be updated and through which the
shared environment can be modified. It also allows the selection and ap
plication of reasoning rules through which the goal and plan bases can be
modified.

The basic deliberation constructs can be composed by means of sequen
tial composition and by using if-then-else and while constructs, forming the
deliberation language (see [52] for the formal specification). This enables the
programmer to implement, for example, a deliberation program that consists
of (the iteration of the sequential composition of) two conditional iterations
(while-loops) such that the condition of the first holds as long as there is no
emergency situation while the condition of the second holds as long as there
is an emergency situation. The body of the first iteration could then be used
to plan new goals, while the body of the second could generate emergency
plans and execute them. This example illustrates that the language is expres
sive enough to implement important aspects of subsumption architectures
[36], in which emergency behavior can be realized at the reactive layer while
complex behavior can be realized at higher deliberative layers. Note that
also the usual 'standard' sense-reason-act cycle can be implemented in this
deliberation language.

This view on programming multi-agent systems has resulted in the 3APL
multi-agent platform architecture and the 3APL agent architecture, as illus
trated in figure 2.1. The 3APL platform consists of a number of agents, a
directory facilitator called agent management system (AMS), a message trans
port system which delivers messages between agents, a shared environment,
and a plugin interface that allows agents to execute actions in the shared envi
ronment. The function of the agent management system is to register agents
that are loaded and executed on the platform and it answers a set of questions
from agents about other agents that are present on the platform. These ques
tions can be, for example, about the names of agents, their functions, and the
services they provide. Each individual 3APL agent consists of a belief base, a
goal base, a plan base, an action base for the specification of internal mental
actions, a base for goal planning rules (which can be applied to plan a goal),
and a base for plan revision rules (which can be used to revise, adopt, and
drop plans).

2.2,1 Specifications and Syntactical Aspects

In the following subsections, we explain how various ingredients of the
individual 3APL agent architecture and the 3APL platform can be imple-

Language 43

Ny NI^VW

<->

Communication

r NETWORK ^

Belief
Base

Goal
Base

Plan

Base

^ ^ ^

^r^

V
Deliberation

Process

/
\

Goal Planning

Rule Base

^ ' f - ^

/
Action Base

Plan Revision

Rule Base ;

Figure 2.1, The architectures of 3APL platform (A) and individual 3APL agents (B)

mented. In particular, we describe the programming constructs to imple
ment individual agents, explain how the deliberation cycle of individual
agents can be implemented, and discuss the implementation of the shared
environment. Before starting to describe the programming constructs for
implementing individual agents, we present the EBNF grammar of the lan
guage.

The EBNF specification of the 3APL programming language for individ
ual agents is illustrated in Figure 2.2.1. In this specifications, we use (atom)
to denote an atomic formula"^ the terms of which can include Prolog-like list
representations of the form [a , b , [3 , f]] , [X | T] , and [a , [4 , d] | T] ,
etc. Moreover, we use {ground-atom) to denote a ground atomic for
mula, which is an atomic formula that contains no variables. The terms
of ground atomic formulae can include Prolog-like list representations such
as [a , b , c] , [e , [9 , d , g] , 3] . Finally, we use (Atom) to denote atomic
formulae where the predicate letter starts with a capital letter, {ident) to
denote a string, and {var) to denote a variable.

Beliefs and goals

The beliefs of a 3APL agent describe the situation the agent is in. Beliefs
are implemented by the belief base, which contains information the agent
believes about the world. The goals of the agent on the other hand denote

'̂ A predicate name parameterized with a number of terms, e.g. on (a, b) .

44 3APL

(Program) ::= "Program" (ident)
("Load" {ident))?
"Capabilities :" {{capabilities))?
" Bel ief Base : " ((^d / e / s))?
"GoalBase :" ({goals))?
"PlanBase :" ({plans))?
"PG-rules :" {{p.rules))?
"PR-rules :" {{r.rules))?

{capabilities) ::= {capability) (" ," {capability))''"
{capability) ::= " { " {query) " } " {Atom) " { " {literals) " } "
(Z7d/e/s) ::= {{belief))''
{belief) v. = {groundMom) "." \ {atom) ":-" {literals)"."
{goals) v.^ {goal){"r {goal) y^
{goal) ::= {groundJitom) ("and" {groundMom))'•*
{plans) ::= {;?/an) ("," (;?/fln))''"
(/?/fln) ::= {basicaction) \ {composedplan)
{basicaction) w^ "e" | {Atom) \ "Send{"{iv)y{iv),{atom)")" \

" Ja.vai{" {ident),{atom),{var)")" \ {wff)"?" \ {atom)
{composedplan) ::= "if" (w / /) "then" {plan) ("else" (p/an))? |

"while" {query) "do" {plan) \
{plan) ";" (;?/an>

{pj-ules) ::= {p.rule) ("," {p.rule))'•'
{pj-ule) ::= {atom) "<-" {query) "|" (p/«n)
{psule) ::= '•<_•• {query) "\" {plan)
{r.rules) ::= {rsule) ("," {rsule))'•'
{rsule) ::= (;?/«n> " < - " {query) "\" {plan)
{literals) ::= (/zYer^/) ("," (//fera/))'••
{literal) v.= {atom) \ "not{"{atom)")"
{wff) ::= (;/Jer«/) | (u; / /) "and" (u;//> | («; / /) "or" (u;/ /)
{query) ::= (^ / /) I "true"
(/i;) ::= {ident) \ {var)

Figure 2.2. The EBNF specification of the 3APL language for programming individual
agents.

the situation the agent wants to realize, which is implemented by an agent's
goal base.

The belief base is implemented by a Prolog program consisting of Prolog
facts and rules. The initial belief base of a 3APL agent is preceded by the
keyword "Belief Base ;". Note that the syntax of Prolog is in accordance
with the specification of {beliefs) as given above. The following is an exam
ple of the initial belief base of a 3APL agent which indicates that blocks a
and b are on the floor, block c is on block a, and that a block is clear if there
is no block placed on top of it.

Language 45

B e l i e f B a s e :
o n (a , f l) .
o n (b , f l) .
o n (c , a) .
c l e a r (Y) : - n o t (o n (X , Y)) .

Note that, like in Prolog, the specification of beliefs allows the use of
negation in the body of the rules. The n o t in these rules stands for
negat ion-as-failure.

We allow individual agents to load a separate file containing the back
ground knowledge. The syntax of the background knowledge is the same as
the syntax of beliefs and is implemented by a Prolog program that can be
loaded into the initial belief base of an agent through the optional " Load"
construct. The argument of the load construct is the name of a file that con
tains a Prolog program. Such a file can be loaded by different agents. In this
way, one can implement the background knowledge once and allow different
agents to load it as part of their initial beliefs.

The goal base of a 3APL agent is a set of goals, each of which is imple
mented by a conjunction of ground Prolog atoms. The initial goal base of
a 3APL agent is preceded by the keyword "GoalBase :". The following
is an example of the initial goal base of a 3APL agent which indicates
that the agent has two goals. The first goal is to have block a on block
b and block b on block c, and the second goal is to have block d on the floor.

GoalBase:
on(a,b) and on(b,c) , on(d,fl)

The difference between the two goals in this goal base and the single goal
o n (a , b) and o n { b , c) and o n (d , f l) is that the two separate
goals in the goal base may be fulfilled at different times, whereas the three
conjuncts of the single goal have to be satisfied at the same time.

As we will see below, it is useful to be able to check whether a formula
follows from the belief base or the goal base, for example for test actions,
for the application of reasoning rules, or for performing mental actions.
For these purposes, we use the so-called belief and goal query expressions
(i.e. {query)) which are either the special atomic formulae t r u e or a well-
formed formula (i.e. {wff)) constructed from atoms and logical connec
tors. In the implementation of 3APL, the keywords and, or , and n o t are
used as logical connectives. For example, (on (X, b) and on (b, Y)) o r
n o t (on (b, f 1)) can be a belief query expression which is derivable from

46 3APL

the belief base if either on (X, b) and on (b, Y) is derivable from the be
lief base or on (b, f 1) is not derivable^.

Basic Actions

In order to reach its goals, a 3APL agent adopts plans. A plan is built from
basic actions that can be composed through co-called program operators. We
first discuss the various kinds of basic actions and then explain how they can
be composed to form plans. In 3APL, beside the neutral action (denoted by
e) that does not change the current state of affairs, five other types of actions
are distinguished: mental actions, communication actions, external actions,
test actions, and so-called abstract plans.

The mental actions can update the belief base of agents, if successfully exe
cuted. A mental action has the form of an atomic formula and thus consists
of a predicate name and a list of terms with the exception that the first letter
of the predicate name is a capital letter (i.e. {Atom)). The effect of the execu
tion of a mental action is a change in the agent's belief base. The conditions
under which a mental action can be successfully executed (also called the pre
condition of the mental action), and its effects on the belief base (also called
the post-condition of the mental action) should be specified in the 3APL
program.

The pre- and post-conditions of mental actions are specified through
so-called capabilities which consist of three parts: the mental action itself
(i.e. {Atom))y a pre-condition which is a belief query expression (i.e. a
{query)), and a post-condition which is a list of literals (i.e. {literals)). An
agent can execute a mental action if the pre-condition of the corresponding
capability holds. The effect of the execution of a mental action is then
a change in the agent's belief base such that the post-condition of the
corresponding capability holds. In order to realize this effect, a function is
defined in the interpreter that adds the positive literals to the belief base and
retracts the atoms of the negative literals from the belief base, if present. In
the implementation of 3APL, the specification of capabilities is preceded
by the keyword "Capabi l i t i es :". The following is an example of a
capability that defines the effect of the mental Move action.

Capabilities:
{on(X,Y)} Move(X,Y,Z) {not(on(X,Y)) , on(X,Z)}

The idea is, that the action Move (X, Y, Z) moves a block X from

^Note that as we use the Prolog reasoning engine to implement the evaluation of the query expressions,
the o r and and operators are not commutative.

Language 47

block Y to block Z. If this Move (X, Y, Z) action is executed, the variables
X, Y and Z will be instantiated with a value. Assume for example that X =
a, Y = b and Z = c. The action can then be executed in case on (a, b)
is derivable from the belief base, i.e., if block a is on b. The result should
be that n o t (on (a, b)) and on (a, c) are derivable from the belief base.
This is implemented by removing fact on (a, b) and adding on (a, c) .

A send action can be used to pass a message to another agent. A message
contains the name of the receiver of the message, the speech act or perfor
mative (e.g. inform, request, etc.) of the message, and the content. The send
action is like an atomic formula which has Send as the predicate name and
has three arguments. The first argument is either an identifier or a variable
(i.e. {iv)) denoting the name of the receiving agent, the second argument
is also either an identifier or a variable (i.e. {iv)) denoting the performative
of the message, and the third argument is an atomic formula (i.e. {atom)),
which specifies the content of the message. If the receiver or the performa
tive is a variable, they should be instantiated with constants denoting the
name of the receiver and the performative, respectively, before the send ac
tion is executed. An example of a send action is Send(ag2, i n fo rm,
on (a, b)), which specifies that agent agi informs agent ag2 that block a
is on block b.

If an agent sends a message Send (R e c e i v e r , P e r f o r m a t i v e ,
C o n t e n t) to another agent, the belief base of the sender is updated with the
formula s e n t (R e c e i v e r , P e r f o r m a t i v e , C o n t e n t) and the be
lief base of the receiver is updated with the formula r e c e i v e d (Sender ,
P e r f o r m a t i v e , C o n t e n t) . Agents can receive a message in their belief
base at each moment in time. Note that unlike the mental actions, the send
actions can always be executed.

The external actions are means to change the external environment in
which the agents operate. The effects of external actions are assumed to
be determined by the environment and might not be known to the agents.
The agent thus decides to perform an external action and the external envi
ronment determines the effect of this action. The agent can come to know
the effects of an external action by performing a sense action. This sense
action can be defined as an external action in an agent's plan, or it could be a
pre-defined operation that is part of the sense-reason-act loop of the agent's
deliberation cycle.

External actions are performed by 3APL agents with respect to an envi
ronment which is assumed to be implemented as a Java class. In particular,
the actions that can be performed in this environment are determined by the
methods of the Java class (i.e., the methods specify the effect of those actions

48 3APL

in that environment), and the state of the environment is represented by the
instance variables of the class.

The external actions that can be performed by 3APL agents have the form
J a v a (Classname, Method, L i s t) where Classname is the name
of the Java class that implements the environment, Method is the action to
be performed in the environment, and L i s t is a list of returned values. The
parameter Method corresponds with a parameterized method of the Java
class Classname and L i s t is a list of values returned by Method. The
method can be implemented to return the result of the action in the list, or
the list could for example be empty. In that case, an explicit sense action
would have to be executed to obtain the result of the action.

An example of an external action is J a v a (BlockWorld, e a s t () ,
L) where the external action e a s t () is performed in the environment
BlockWorld.^ The effect of this action is that the position of the agent in
the block world environment is shifted one slot to the east.

A test action checks whether a well-formed formula (i.e. {wff)) is deriv
able from the belief base. Such an action, which consists of a well-formed
formula followed by a question mark, will be blocked if the formula is not
derivable from the belief base. Note that the derivation relation is imple
mented by the Prolog reasoning engine. If the arguments of a test action are
variables and the well-formed formula is derivable from the belief base, then
the effect of the test action is a substitution that assigns terms to the vari
ables. The assignment is useful for retrieving information from the belief
base and passing it to other actions for further manipulation.

An example of a test action is (on (a , X) and on (X, c)) ? which will
be successfully executed if the agent believes that there is a block X placed
on top of block c such that block a is placed on top of it. The result of a
successful execution is a substitution such as {X/b} which indicates that
the relevant block is block b.

An abstract plan, which is represented as an atomic formula (i.e. {atom)),
is an abstract representation of a plan which can be instantiated with a (more
concrete) plan during execution. An abstract plan cannot be executed di
rectly and should be rewritten into another plan, possibly (and even prob
ably) containing executable basic actions, through application of reasoning
rules (see below for a detail description of these rules). The application of
rules to abstract plans involves a unification of abstract plans with the head
of rules through which values can be passed to the instantiated plan.

^BlockWorld is in this case a two-dimensional grid with obstacles in which the agents may move in
any direction that is not blocked by obstacles (or walls).

Language 49

Plans

Basic actions, as discussed above, can be composed to build plans through
so-called program operators. There are three 3APL program operators: the
sequential operator (denoted by ;), the iteration operator (denoted by a
w h i l e - d o construct), and the conditional choice operator (denoted by an
i f - t h e n - e l s e construct). In particular, if ^ is a well-formed formula, fi'
is a query expression (i.e. a well-formed formula or t r u e) , and Actions is
the set of basic actions as defined above, then the set of plans, denoted by
Plans is defined as follows:

• Actions C Flans

• if 71,7x' G Plans, then i f /3 t h e n n e l s e n' G Plans

• if Tt 6 Plans, then w h i l e /3' do TT G Plans

• if n, 7x' G Plans, then 7i;7x' G Plans

We use e to denote the empty plan and we identify e; n with zr.
The plan base of a 3APL agent consists of a set of plans. In the imple

mentation of 3APL, the specification of the initial plan base of an agent is
preceded by the keyword "PlanBase :" and consists of a number of plans
separated by a comma. The following is an example of the initial plan base
of a 3APL agent.

P l a n B a s e :
w h i l e (on{X, f l) and n o t (o n (V , X)) do {

(on(Y,Z) and n o t (Z = = f 1)) ? ;
Move(X,f l ,Y)

}

This plan base consists of one plan which will find all free blocks
(blocks with no block on top) that are placed on the floor and move them
to an existing block which itself is not placed on the floor.

Reasoning Rules

In order to reason with goals and plans, 3APL has two types of rules: goal
planning rules and plan revision rules. These rules are conditionalized by
beliefs. Let ^ be a query expression, K be an atomic formula, and n, 71}^, 7ti)
be plans. The set of goal planning rules (PG) and the set of plan revision
rules (PR) are then defined as follows:

50 3APL

K^ (i\n, <r- (^\7X e PG
Tth^ P\7ti, G PR.

The goal planning rules are used to generate plans to achieve goals. In the
first goal planning rule, the belief condition /3 indicates when the plan n
could be generated to achieve the specified goal K. The second goal planning
rules can be used to model reactive behavior by omitting the head of the
rule. This special kind of goal planning rule states that under the belief
condition /3, a plan can be adopted. The specification of the set of goal
planning rules is preceded by the keyword "PG — ru les :". The follow
ing is an example of the specification of a goal planning rule of a 3APL agent.

P G - r u l e s :
on(X,Z) ^ on(X,Y) | Move(X,Y,Z)

This rule states that if the agent wants to have block X on block Z,
but it believes that X is on block Y, then it plans to move X from Y onto Z.

The plan revision rules are used to revise plans from the plan base. The
specification of the set of plan revision rules is preceded by the keyword
"PR — ru les :". The following is an example of the specification of a plan
revision rule of a 3APL agent.

P R - r u l e s :
Move(X,Y,Z) ^ n o t (c l e a r (X)) |

on (U,X)? ;Move(U,X, f l) ;Move(X,Y,Z)

This plan revision rule informally means that if the agent plans to
move block X from block Y onto block Z, but it cannot move X because (it
believes that) there is a block on X, then the agent should revise its plan by
finding out which block (U) is on X, moving U onto the floor, and finally
moving X from Y onto Z.

A plan revision rule Tt/̂ <— /3 | TT̂ can be applied to a plan n, if
7th can be matched to a prefix of zr, i.e., if n is of the form rcii; n',
For example, a plan Move{a,h,c)',Move(h,fl,a) can be revised into
a plan Move{a,h,fl)',Move{h,fl,a) by applying the plan revision rule
Move{a,h,c) ^ t r u e | Move{a,h,fl). Note that a plan revision rule
could be used to drop (part of) a plan if its body ni) is the empty plan e.

Deliberation Cycle

The beliefs, goals, plans and reasoning rules form the mental attitudes
or data structures of 3APL agents. These data structures can be modified by
deliberation operations such as applying a rule or executing a plan. These de-

Language 51

liberation operations constitute the deliberation process of individual agents.
The deliberation process or program can be viewed as the interpreter, as it
determines which deliberation operations should be performed in which or
der. For example, it can be programmed to determine whether a goal should
be dropped if it is not reachable using any possible plan and plan revision
rule. A deliberation process programmed in this way could be viewed as an
implementation of "single minded" agents [182], Some more moderate al
ternatives are also possible. Moreover, the interpreter can determine if and
when to check the relation between plans and goals. For example, the in
terpreter can check whether a goal still exists during plan execution to avoid
continuing with a plan of which the goal is reached (or dropped) already.
The interpreter can also perform a kind of "garbage collection" and remove
a left-over plan for a goal that no longer exists. If this would not be done, the
left-over plan could become active again at a later time and this might not be
desired behavior.

Another issue that the interpreter can determine is related to multiple
(parallel) goals and/or plans. For example, it can decide whether only one
or more plans can be adopted for the same goal at any time. It seems not
unreasonable to allow only one plan at a time for each goal, which coincides
with the idea that we try different plans consecutively and not in parallel,
because this might lead to a lot of unnecessary interactions between plans and
also a waste of resources. If we allow only one current plan for each goal, the
plans in the plan base will all be for different goals. Also in this case one has
to determine whether the plans will be executed interleaved or consecutively.
Interleaving might be beneficial, but can also lead to resource contention
between plans in a way that no plan executes successfully anymore (see also
[222, 221, 220]). E.g., a robot needs to go to two different rooms that are in
opposite directions. If it has a plan to arrive in each room and interleaves
those two plans, it will keep oscillating around its starting position. Many
of the existing work on concurrent planning can however be applied in this
setting to avoid most problems in this area.

For 3APL, a set of deliberation operations is proposed [52], includ
ing S e l e c t P l a n n i n g G o a l r u l e , S e l e c t P l a n R e v i s i o n r u l e ,
S e l e c t P l a n , E x e c u t e P l a n , A p p l y P l a n n i n g G o a l r u l e , and
A p p l y P l a n R e v i s i o n r u l e . These operations can be composed to form
a deliberation program by using operators such as sequential composition,
test (on both belief, goal and plan bases), conditional choice (if-then-else
construct), and conditional iteration (while loop).

In order to facilitate the implementation of a deliberation process and
since the 3APL interpreter is implemented in Java, we have implemented
each mental attitude as a Java class, i.e., a Java class for the belief base, one
for the capabilities, one for the goal base, one for the plan base, one for the

52 3APL

goal planning rule base, and one for the plan revision rule base. Each of these
classes has an internal representation for its specific mental attitude, which
will initially be set by parsing the input 3APL program. The parser is part
of the Java implementation of the 3 APL interpreter.

Each class implementing a mental attitude has a set of methods. These
methods implement the deliberation operations that are relevant for that
mental attitude. For example, the class that implements the belief base has a
method for updating the belief with new facts, and the class that implements
the goal planning rule base has a method for selecting a goal planning rule
and another method for applying that rule. In order to implement a delib
eration process for 3APL agents, a programmer should thus have the source
code of the interpreter and implement a Java class that calls the methods of
the classes that correspond to the mental attitudes.

Although the idea is that the agent programmer implements the deliber
ation process, an interpreter is provided that implements a cyclic order of
deliberation operations as illustrated in figure 2.3. According to this delib
eration program, an agent starts with searching for an applicable planning
rule (in their order of occurrence) to generate a plan for one of its goals and
applies the first applicable planning rule that it finds. The agent then con
tinues with searching for an applicable plan revision rule (in their order of
occurrence) to revise one of its plans. A plan needs to be revised when, for
example, it starts with an abstract plan which is not executable. The agent
applies the first applicable plan revision rule that it finds. Then, the agent
continues with searching for the executable plans (in their order of occur
rence) and executes the first plan it finds. Note that a plan that starts, for
example, with a mental action of which the pre-condition does not hold,
cannot be executed. Finally, the agent continues with either the same cycle
of operations or it suspends its activities until a message is arrived. The agent
suspends its activities if no sensible operation could be performed during the
previous cycle, i.e. if no rules could be applied and no plan could be exe
cuted. Note that the arrival of a message may make either a rule applicable
or a plan executable.

This order of operations is by no means universal, since it does not guar
antee the proper agent behavior for all kinds of situations. For example,
in an emergency situation it may be more plausible that an agent does not
continue executing its current plans, but starts adopting and executing emer
gency plans. As we have argued in [52], we believe that an agent's interpreter
should be programmable to allow the implementation of different types of
behavior. The proposed interpreter for 3APL is an example which can in
principle be modified by the agent programmers to generate different types
of behavior. At this moment, the source code of 3APL is under development

Language 53

and is not available for modifying and implementing the deliberation cycle.
However, we hope to make this possible in the near future.

Applying Goal Planning Rules

Figure 2.3. A cyclic interpreter (deliberation cycle) for the 3APL agents.

3APL Platform

The 3APL platform provides a user interface that allows 3APL agents to
be programmed, loaded, and executed. During execution there are various
facilities in the interface such as the sniffer, which allows monitoring the
exchanges of messages between agents, and specific windows, which allow
monitoring the changes of all mental attitudes of individual agents. Also,
there are various icons in the interface that allow monitoring the execution
of agents, either step by step or continuously. The graphical user interface of
the 3APL platform is illustrated in Figure 2.4 and described in section 2.3. A
detailed description of the platform interface can be found in the 3 APL user
guide [51].

The only part of the platform architecture that is programmable to this
date is the shared environment. As noted, the environment of 3APL agents is
assumed to be implemented as a Java class, the actions that can be performed
in this environment are determined by the methods of the Java class (i.e.,
the methods specify the effect of those actions in that environment), and the
state of the environment is represented by the instance variables of the class.
In particular, the environment is modelled as plugin to the platform. This

54 3APL

is a systematic way to interface between the 3APL platform and Java classes.
The plugin facilitates the interaction between individual agents running on
the platform and the instantiation of the Java classes. These interactions in
clude method calls from agents to Java classes and event notification from
the platform interface. To create a plugin you need to implement three in
terfaces.

1. i c s . Tr ip leApl . Plugin: factory class

2. i c s . Tr ip leApl . Ins tance: product class

3. i c s . T r i p l e A p l .Method: plugin method (function).

At startup, the platform loads all Plugin-implementing classes from the
p l u g i n s / directory (this directory is created when the 3APL platform
is downloaded and unpacked). It then queries the found plugin classes
for their external functionalities (Java methods) they provide to individual
agents. This is done by the platform through invocation of the method
ge tMethods of the Plugin interface. The idea behind the plugin is to sys
tematize the relation between agent platform and environment that can be
used by the agents. In particular, the environment should be linked to the
individual agents running on the platform such that the effect of any change
on individual agents (create, reset or remove) on the platform can be realized
and passed on to the environment.

For example, consider a two-dimensional grid such as the block world
environment in which the agents running on the platform can be present
and move around. In such a case, if the user creates, resets or removes an
agent on or from the platform, the agent should be added to, reset (moved
to initial position), or removed from the block world environment, respec
tively. The effects of the mentioned events (on the platform) are realized
by the platform through invocation of one of the following methods from
the Plugin interface: createlnstance, resetlnstance, and removelnstance. The
downloadable version of the 3 APL platform comes with an implementation
of a block world environment. The details of this environment and its Java
implementation are described in the 3APL user guide [51]. Note that this
environment is just an example and that the programmer can implement its
own environment.

2.2,2 Semantics and Verification

To program a 3APL multi-agent system is to program individual 3APL
agents and to specify the initial state of their shared environment. To pro
gram an agent means to specify its initial beliefs, goals, plans and capabilities,
and to specify sets of goal planning rules and plan revision rules. The initial
state of the shared environment is specified by a set of facts.

Language 55

D E F I N I T I O N 2.1 (3 A P L A G E N T) An individual 3APL agent is a tuple
{i,crQ,YQ,Caj),T\Q,PG,PR,E,) where i is the agent identifier, CTQ is the ini
tial belief base, 70 is the initial goal base. Cap is the capability base, TTQ C
Plans X { t r u e } is the initial plan base, PG is a set of goal planning rules, PR
is a set of plan revision rules, and £, is the environment the agent shares with
other agents, which is represented by a set of ground atoms.

The plan base of a 3APL agent consists of a set of plan-goal pairs. The goal
for which a plan is selected is recorded with the plan, because this for instance
provides for the possibility to drop a plan of which the goal is reached. The
initial plan base of a 3APL agent consists of a set of plans, rather than a set
of plan-goal pairs. We take these initial plans as having the associated goal
t rue ' ' . Furthermore, goals may be revised or dropped and one might want
to remove a plan associated with a goal which has been dropped, from the
plan base (see also the discussion on the deliberation cycle of section 2.2.1).

The beliefs, goals and plans of individual agents and their shared environ
ment are the elements that change during the execution of the agent, while
the capabilities and the reasoning rules remain unchanged. Together with a
substitution component, these changing components of the agent constitute a
3APL agent configuration. The substitution part of the configuration is used
to store values or bindings associated with variables.

D E F I N I T I O N 2.2 ((GROUND) SUBSTITUTION, BINDING, DOMAIN,

FREE VARIABLES) A substitution 9 is a finite set of the form
{x\/ti,... ,Xn/tn], where Xi E Var and tj E Term and \/i y^ j : Xj ^ Xj.
9 is called a ground substitution if all tj are ground terms. Each element Xi/tf
is then called a binding for Xi. The set of variables { x i , . . . , x„} is the domain
of 9 and will be denoted by dom{9). The application of a substitution 9 to a
syntactic expression e is denoted as e9. It refers to the expression resulting from
simultaneously replacing all occurrences of variable x in efor which x/t E 9 by
t.

Below, we first define the configuration of an individual 3 APL agent in terms
of the elements that change during the execution of the agent. Then, we
define the configuration of a 3APL multi-agent system in terms of the con
figurations of the involved agents and their shared environment.

D E F I N I T I O N 2.3 (CONFIGURATION) A configuration of an individual
3APL agent is a tuple {i, (J, Y,T\,9,^), where i is an agent identifier, a is the
belief base of the agent, y is the goal base of the agent, TT is the plan base of the
agent, 9 is a ground substitution that binds domain variables to domain terms,

^Although t r u e as a logical formula cannot be an agent's goal according to the 3APL semantics, we use
it only to indicate that there is no specific goal associated to a plan.

56 3APL

and £, is the environment it interacts with, where E, is a set of ground atoms. The
goal base in a configuration is such that for any goal cp E y it holds that cp is not
entailed by the agent's beliefs.

A configuration of a 3APL multi-agent system is a tuple {Ai,,., ,An,E,)
where Ajfor 1 < i < n is the configuration of individual agent i and E, is the
shared environment. This shared environment is the same as the environment of
each individual agent.

The rationale behind the condition on the goal base is the following. The
beliefs of an agent describe the state the agent is in and the goals describe
the state the agent wants to realize. If an agent believes 0 is the case, it
cannot have the goal to achieve (̂ , because the state of affairs (\) is already
realized. This is thus an implementation of achievement goals, as opposed to
maintenance goals.

Transition system

In the following, we present the general idea of the type of semantics that
is given to the 3APL programming language. It is an operational semantics
which is defined in terms of a transition system [169]. A transition system
is a set of derivation rules for deriving transitions. A transition is a trans
formation of one configuration into another and it corresponds to a single
computation step. For the purpose of this paper, we present only a subset of
derivation rules. A complete set of derivation rules is presented in [54].

We define first a derivation rule for transitions between multi-agent con
figurations. This derivation rule, which captures the parallel execution of the
set of individual agents, forms the only transition at the multi-agent level.

D E F I N I T I O N 2.4 (MULTI-AGENT EXECUTION) Let

A\,,.., Ai,... ,An,A!i be agent configurations and let i, and E,' be spec
ifications of the environment. Further, let Ai = ((J,7, IT, 0,^) and let
A'l = {CF',y ,T\',0',E,'). Then the derivation rule for multi-agent configura
tions is defined as follows.

sAi > Jx^

This derivation rule states that a transition between multi-agent configura
tions can be defined in terms of a transition between single-agent configura
tions. This amounts to an interleaved execution of the agents in the system.
Note that the environment of the multi-agent configuration is shared among
all individual agents.

We now define transition rules that can derive transitions transforming
single-agent configurations. These derivation rules specify the semantics of
the execution of plans and the application of reasoning rules.

Language 57

The first derivation rule specifies the execution of the plan base of a 3 APL
agent. The plan base of the agent Is a set of plan-goal pairs. This set can be
executed by executing one of the constituent plans. The execution of a plan
can change the agent's configuration.

D E F I N I T I O N 2.5 (plan base execution) Let
n = {{7Xi,Ki),,.,,{7ti,Ki),,,.,{7Xn,Kn)} and

W = {{ni,Ki),.,. ,{n'-,Ki),.., ,{nn,Kn)] be plan bases, 0,9' be ground
substitutions, and ^,E^ be environment specifications. Then, the derivation
rule for the execution of a set of plans is specified in terms of the execution of
individual plans as follows,

Now we will Introduce some of the derivation rules for the execution of
Individual plans. We Introduce derivation rules for external actions, com
munication actions and tests.

An external action J a v a (C l a s sname, oc{ti,,.. ,tn), x) has two
functionalities. First, based on the Input terms and the state of the envi
ronment, It generates a term and assigns It to variable x. The term assigned
to X Is the output of the action which Is returned to the agent from the envi
ronment. For sense actions, this output can be programmed to be the sensed
Information. For other actions, the output could for example be Information
such as whether the action has been performed, or the result of the action.
Note that this term can be a list of terms. Second, actions are assumed to
have effects on the environment.

In order to capture these two functionalities. I.e., calculating a value for x
and updating the current environment, we assume for each external action
with a method name ex a function Fa which maps terms ti,.., ,tn and the
environment <̂ to a term which will be assigned to variable x. Further, we
assume a function Ga which maps terms t\,.., ,tn and the environment <̂ to
a new environment ^^ An agent can execute an external action only If the
goal associated to the action Is still a goal of the agent.

D E F I N I T I O N 2.6 (external action execution) Let t,ti,,,, ,tn be terms, x be a
variable, let £,,£,' be agent environments, a be the method name of an external
action, and assume functions F^ and G« as explained above. The execution of an
external action is then defined as follows:

r N^

(i, (J, y, (Java(ciassname, a{ti,... ,tn), x), K), 9, £,) -> (i, a, y, (e, K), 9', S,')

where0' = 9U {x/t} witht = Fpc{ti,... ,tn,K)yand^' = Goc{ti,... ,tn,^).

58 3APL

Note that the execution of an external action thus influences only the substi
tution and the environment component of the configuration.

The next type of basic action is the communication action Send{r, lp,(p).
We assume that each agent can receive a message at any moment in time. We
use then a synchronization mechanism for sending and receiving messages.
This synchronization mechanism takes care of simultaneously taking a mes
sage from the sending agent and putting it in the belief base of the receiving
agent. How these messages are then handled by the receiving agent is done
in a completely asynchronous fashion.

The semantics of a Sendij, p, (p) action affects both sending and receiving
agents. The communication action Send{r, ip, (p) is removed from the plan
base of the sending agent and the formula sent{r, p, (p) is added to its belief
base. Moreover, the formula received{s, p, (p) is added to the belief base of
the receiving agent, where s is the name of the sending agent. This informa
tion about incoming and outgoing messages can respectively be used by the
receiving and sending agents for their future deliberations. In order to be
able to identify the sending agent when defining the addition of a fact of the
form received{s, p, (p) to the belief base of the receiver, we add the name of
the sending agent to messages.

D E F I N I T I O N 2.7 (COMMUNICATION ACTION EXECUTION) Let

(s, r, p, (p) be the format of the message that is sent and received by the
agents, where s is the name of the sending agent, r is the name of the receiving
agent, p is the communication performative, and <p is the message content. The
following three transition rules specify the semantics for sending and receiving
messages between agents, and their synchronization, respectively,

• The transition rule for the sending agent:

(s, 0-, y, {Send{r, p, 0) , K), 9, i) '-^^ " (s, a', y, (e, K), 0,£^)

where a' = aU {sent{r, p,(p)},

The transition rule for the receiving agent:

(r, (7,y, n , 0, ̂) ^ ' ' ^ ' (r, C7̂ y, n , 0, <̂)

where cr' = cr U {received{s, p, (p)],

• The transition rule for synchronization:

Language 59

Note that the second transition rule guarantees that each agent can receive
the messages that are directed to the agent at any moment In time. More
discussion on communication between 3APL agents can be found In [53].

Next, we specify the derivation rule for the execution of the test action.
A test action can bind the free variables that occur In the test formula for
which no bindings have been computed yet.

D E F I N I T I O N 2.8 (TEST EXECUTION) Let (3 be a well formed formula and
let r bea ground substitution.

a[=l3er^y\=K

The entailment relation |= In the condition a \= (59r Is Implemented by
the Prolog Inference engine. When posing a query ^, the substitution 0 Is
first applied to (i. The substitution r Is the substitution returned by Prolog
and should bind the variables of /30. The entailment relation |= In y |= K Is
Implemented In a similar fashion.

The derivation rules for the execution of composite plans are defined In a
standard way.

Next, we define the transition rule for the goal planning rule. A goal
planning rule K ^- (5 \ n specifies that the goal K can be achieved by plan
TT If ^ Is derivable from the agent's beliefs. A goal planning rule only affects
the plan base of the agent.

D E F I N I T I O N 2.9 (GOAL PLANNING RULE APPLICATION) Let K ^ ^ \

71 bea goal planning rule. Let also Ti, T2 be ground substitutions,

(t,(7,r,n,0,i) ^ (t,o-,r,nu{(7rTiT2,KTi)},0,̂)
Note that the goal KTI that should be achieved by the plan /rri T2 Is associated
with It. It Is only this rule that associates goals with plans. The goal base of
the agent does not change because the plan 7rTiT2 Is not executed yet; the
goals of agents may change only after execution of plans: goals are removed
If believed to be achieved. We do not add substitutions Ti, T2 to 9 since these
substitutions should only Influence the new plan zr.

Finally, the transition rule for the goal planning rule that defines reac
tive behavior, I.e. the goal planning rule In which the head Is omitted. Is a
modification of the above transition rule.

D E F I N I T I O N 2.10 (REACTIVE GOAL PLANNING RULE APPLICATION)

Let —̂ p> I n be a reactive goal planning rule and let also r be a ground
substitution.

c^h^^
(t,c7,r,n,a,^) -> (t,a-,7,nu{(7rT,true)},0,£)

60 3APL

Note that the goal associated to the generated plan is set to true, which means
that the plan is not generated to achieve a specific goal.

Semantics of a 3APL agent

The semantics of an individual 3APL agent as well as the semantics of a
3APL multi-agent system is derived directly from the transition relation -^.
The meaning of individual agents and multi-agent systems consists of a set
of so called computation runs.

D E F I N I T I O N 2.11 (COMPUTATION RUN) Given a transition system, a
computation run CR(so) is a finite or infinite sequence $Q, .., ,SnorSQ,.,. where
Si are configurations, and V/>o '- Sf_i -^ Sf is a transition in the transition sys
tem.

We can now use the concept of a computation run to define the semantics of
individual 3APL agents and the semantics of 3APL multi-agent systems.

D E F I N I T I O N 2.12 (SEMANTICS OF 3APL MULTI-AGENT SYSTEMS)

The semantics of a 3APL multi-agent system {Ai,... ,An,^) is the set of
computation runs CR{{Air - ^ - ,Anr^)) of the transition system for 3APL
multi-agent systems.

Note that the computation runs of a 3APL multi-agent system consist of
multi-agent transitions which can be derived by means of two multi-agent
transition rules. The first is defined in definition 2.4 and the second is the
synchronization rule specified in definition 2.7.

3APL Verification

We deem the verification of multi-agent systems very important (cf.
[150]). At the moment we do not yet have verification tools for 3APL
agents. We have done some theoretical work on agent verification in gen
eral [116, 108], and some work more focused on the language 3APL in par
ticular [226]. However, this work is still too theoretical to be the basis of a
practical tool. Following related work on the verification of AgentSpeak pro
grams [19] we plan to employ model-checking techniques. At the moment
we are investigating if we can check (LTL) temporal properties of agents
programmed in a light version of 3APL, using PROMELA, the finite state
model specification language for the SPIN LTL model checker [110].

2.2,3 Software Engineering Issues

The 3APL platform and 3APL programming language are designed to re
spect a number of software engineering and programming principles. Below
we give an overview of these principles and how they can be used.

Language 61

Separation of concerns

Development methodologies for multi-agent systems [234] differ from
each other in many respects. Some of them focus on inter-agent aspects,
while others also provide support for the design of internal components of
an agent, such as mental attitudes and the deliberation process. Finally, some
methodologies explicitly deal with the environment, while others do not.
The tools to develop and implement multi-agent systems should therefore
support each of these issues separately.

The 3APL programming language supports the implementation of inter-
agent issues by providing the communication action Send^ and the 3APL
platform manages the transportation of the communicated messages. More
over, the platform provides information about existing agents to other agents
through the Agent Management System (AMS). The information provided
by the AMS to agents is required for agents' interactions. The environment
of 3APL multi-agent systems can be implemented directly and explicitly
through external programs accessible to the agents through APFs (applica
tion program interfaces).

Finally, the 3APL programming language respects the separation of con
cerns related to the distinction between an agent's data structures and an
agent's operations. In particular, the data structures are mental attitudes
such as beliefs, goals, and plans while operations concern manipulation of
the mental attitudes such as updating of beliefs, plans and goals, and execu
tion of plans. This distinction is made explicit by introducing two levels of
programming: at the data level one can specify the mental attitudes of the
agents and at the operation level one can implement the deliberation process
of the agent.

Modularity

The implementation of an agent is modular in the sense that an agent can
be implemented in terms of seven different modules. The first module is
the capability base of the agent which implements the mental actions that
an agent can perform to update its beliefs. The second module is the belief
base of the agent which contains information the agent believes about the
world as well as information that is internal to the agent. The initial beliefs
of the agents can be distinguished in two kinds. The first kind of initial
beliefs constitutes the background knowledge which can be used by different
agents. The second kind of initial beliefs is specific to agents and cannot
be used by other agents. Since the background knowledge can be used by
different agents, we allow individual agents to load a separate file containing
the background knowledge. In this way, one can implement the background
knowledge once and allow different agents to load it as part of their initial

62 3APL

beliefs. The third module is the goal base that denotes the situation the agent
wants to realize. The fourth module is the plan base of the agent which
contains the plans that the agent intends to perform. The fifth module is the
goal planning rule base that contains the rules that can be used to generate a
plan for the possible goals of an agent. The sixth module is the plan revision
rule base that contains rules to revise existing agent's plans. Finally, the
seventh module is the deliberation module that allows the implementation
of an agent's deliberation process.

Abstraction

The abstraction mechanisms that can be exploited in the 3APL program
ming language are related to external actions and abstract plans. In particular,
the external actions allow the 3APL programmers to use external programs
through their corresponding API's without having any access to the internal
data and operations of the programs. The second abstraction mechanism is
related to abstract plans which allow users to abstract over certain parts of
plans. The abstract plans can be instantiated with a plan through the appli
cation of plan revision rules. It is very important to note that an abstract
plan should be introduced, not only because it occurs in different plans, but
also because its specific instantiation depends on the conditions known only
at run time. For example, going to work can be considered an abstract plan
since its specific instantiations such as going to work by bus, by taxi, by
train, or by own car depend on the conditions that hold when the plan is to
be executed. For example, if the agent does not have enough money, then it
may consider going by bus or train, otherwise it may consider using a taxi.

The introduction of abstract plans in 3APL implies the introduction of
plan revision rules. In implementing 3APL agents, the programmers tend
to conceive abstract plans as a kind of procedure calls and the plan revision
rules as the corresponding procedure. It is important to note that this is not
the optimal and principal use of abstract plans and their corresponding plan
revision rules.

Reusability

Finally, the 3APL platform allows reusing multi-agent systems by provid
ing a library of templates for individual agents and templates for multi-agent
systems. Using the templates for individual agents, the 3APL programmer
can use generic agents that have certain initial mental attitudes. The tem
plates for multi-agent systems, also known as projects, allow the 3APL pro
grammers to use a set of generic agents that, in addition to their initial mental
attitudes, follow a specified interaction protocol. Such a template can include
an environment with which the agents are supposed to interact. An example

Platform 63

of a multi-agent template Is a template for an auction. In order to Implement
such an auction, a 3APL programmer can load such a multi-agent template
and Implement both the details of the agents, such as their specific Initial
mental attitudes, as well as the details of their environment.

2,2.4 Language integration

The 3APL programming language together with Its platform allows the
Integration of Prolog and Java. The Prolog programs can be Integrated since
they can be loaded In 3APL and used as background knowledge. Given a
loaded Prolog program, the agent can pose queries In three different con
texts: as the pre-condition of mental actions, as test actions In plans, and as
the guard of the reasoning rules. The Prolog programs can thus be used to
control the execution of mental actions, the execution of plans, and the appli
cation of reasoning rules. Note that the queries may yield substitutions that
can bind other variables used In the post-conditions of the mental actions,
In the rest of plans that follow a test action, and In the bodies of reasoning
rules.

Moreover, the 3APL programming language allows Java programs to be
used through external actions. The external actions can be used to call meth
ods of Java classes. Using the arguments of these methods. It Is possible to
pass data from 3APL to Java and vice versa. In this way, data can be passed
from Java to the plans of the agent to the Prolog part (belief base) of the agent
and vice versa. Note that the Integration of Java Is also used to Implement
the multi-agent environment with which the agents Interact.

2.3 Platform

23.1 Available tools and documentation

The 3APL platform Is an experimental tool, designed to support the devel
opment, Implementation, and execution of 3APL agents [54]. The detailed
Information about Installation and deployment of the 3APL platform can
be found In the 3APL user guide which Is available online at the following
URL:

http://www.cs.uu.nl/3apl/download/java/userguide.pdf

or In [217]. Moreover, we are developing a tutorial and training material
which will be available soon from the 3APL web page:

http://www.cs.uu.nl/3apl

Also, various papers on 3APL can help to understand how to deploy the
3APL platform [107, 228, 54, 52, 227]. Finally, the Implementation docu
mentation of the platform can be found at:

http://www.cs.uu.nl/3apl/download/java/userguide.pdf
http://www.cs.uu.nl/3apl

64 3APL

http://www.cs.uu.nl/3apl/docs/aplp-refman/index.html

The 3APL platform provides a graphical interface, as shown in Figure 2.4,
through which a user can develop and execute 3APL agents using several
facilities, such as a syntax-colored editor and several debugging tools. The
platform allows communication among agents and provides the Agent Man
agement System (AMS) that is responsible for registration of the hosted
agents. Multiple 3APL platforms can run on different machines connected
in a network at the same time, such that agents hosted on these platforms
can communicate with each other. When the 3APL platform is started, the
user should select whether the multi-agent application is intended to act as
a server or as a client. The server option must be selected the first time the
3APL platform is run. The client option can be selected only if the 3APL
platform is running as a server already. When the user selects the client op
tion, the IP of the server with which the (client) platform should connect,
must be filled in.

C^3APL Platform (Unnamed Project)

Rie Edit Project Tools Help
^M^

a (3 Sniffer K n I ^\>A l \ \ <

AMS •

agantl «
agent2 #

Communication | System Messages | Agent properties Source |

Save and recompile | Revert chariQes 1

PR0*5RAM "agent I"

CAPABILITIES;

{on(X ,Y | } MovetX,Y,Z) {not (ontX, Y)) , on (X,Z)}

BELIEFBASG:

; o n (a , f l) .

o n (b , f l) .

, on (c ,a) .

|k;lear (b) .

!c lear.(c) .

^ciear (f i) .

c l e a r (Y) : - n o t (o n (X , Y ^) .

|GOALBASE; :

| ! o n [a , b) and on(b,c] i and o n [c , f l)

|)fCtt^5ii!l
.d

±J

FigHve 2.4, An illustration of the graphical user interface of the 3APL platform.

The graphical interface shows in the left side window the names of the
agents that are hosted and running on the platform in a tree-like structure.
The tree includes also the AMS (Agent Management System) which is mod
elled as a non-programmable agent that provides information about hosted

http://www.cs.uu.nl/3apl/docs/aplp-refman/index.html

Platform 65

agents to each of the running agent. The information will be provided only
on request. The same window of the graphical interface presents also the
status of the hosted agents such as initial, running, stopped, final, and er
roneous. Moreover, the Communicat ion tab of the graphical interface
provides a message window that displays the messages that are exchanged
between agents. The System Messages tab is a window that shows the
system messages such as parse errors or the errors that are generated dur
ing the execution. The Agent p r o p e r t i e s tab is a window that can be
used to monitor the (mental) states of the agents during their execution. The
Source tab provides an editor that allows programmers to modify the ini
tial mental state of agents. In addition, the interface provides a sniffer button
that displays the graphical representation of the message exchange.

2J,2 Standards compliance, interoperability and
portability

The 3APL platform has been tested on Windows 98, Windows NT and
Windows XP, as well as on Linux, Unix (Solaris) and Mac OS X. 3APL is
written in Java 2 SDK 1.4, and makes use of the Prolog engine of JlProlog,
which is also implemented in Java. We have tested it for Java 2 SDK 1.4.0_02
and upwards. The downloadable 3APL package consists of a .Jar file that
contains all the .class files needed, as well as examples of 3APL programs.
The package needs approximately 800 KB.

The 3APL platform adheres to the FIPA standard to the extent that it pro
vides a simplified version of an Agent Management System which provides
a combination of name service and yellow-page services. Moreover, the for
mat of the messages that are communicated between 3APL agents are based
on FIPA standards, consisting of the identifiers of the sender and receiver
of the message, the performative or speech act, and the content of the mes
sage. The 3APL platform supports only the development, implementation,
and execution of multi-agent systems that consist of 3APL agents. At this
moment, the platform does not support open multi-agent systems, mobile
agents, or heterogeneous agents.

The 3APL platform is still in a prototyping stage and can execute only
a small number of agents. The performance of the platform decreases if
the number of agents, which are loaded and executed concurrently on the
platform, grows. One reason for the low performance is the complex and
cognitive nature of agents and the fact that agents have the capability to
reason with their mental attitudes. The platform can handle the messages
that are exchanged by the agents, although the number of agents that can be
run efficiently on the 3APL platform is small.

66 3APL

The platform provides distributed control such that the agents can be ex
ecuted concurrently. This enables loading, executing, and stopping agents
while other agents are running. The platform also provides the possibility
to build a library of agents, multi-agent systems and agent templates. The
templates can be loaded and extended to build multi-agent systems. Finally,
based on the templates it is possible to have interaction protocols in the plat
form's library, since the protocols can be defined in terms of a set of agent
templates in which only the actions prescribed by the protocols are specified.

2.4 Applications supported by the language and/or the
platform

The applications that can be developed using the 3APL platform and the
3APL programming language are those that are best understood in terms
of cognitive and social concepts like beliefs, goals, plans, actions, norms,
organizational structures, resources and services that are part of the multi-
agent environment. We have already implemented a number of toy problem
applications such as block world logistics, Axelrod's tournament, English
Auction, and Contract Net protocols. Also, 3APL is already applied to im
plement the high-level control of mobile robots. In this project, external
actions of 3APL were defined and connected to some simple sensory and
motor actions of the mobile robot. In this way, a programmer can imple
ment a 3APL program that senses the position of the robot it is controlling
and determine how to reach a goal position in a rectangular environment,
a model of which is accessible to the 3APL program. Currently, 3APL is
also being applied to control the behavior of SONY AIBO robots and to
implement small device mobile applications.

2.5 Final Remarks

The 3APL platform can be employed to implement multi-agent systems
where each individual agent is implemented through the 3APL program
ming language. Using the 3APL programming language, individual agents
can directly be implemented in terms of cognitive concepts such as beliefs,
goals, plans, actions, and reasoning rules. Experience from deploying the
3APL platform for educational purposes have proved it to provide appropri
ate programming constructs for direct and easy implementation of applica
tions that are analyzed and designed by existing multi-agent system develop
ment methodologies such as Prometheus [163] and Gaia [242].

The programming language 3APL is subject to constant theoretical and
practical improvements. For example, the definition of the 3APL language
is extended with specific programming constructs to implement the agent's
deliberation process, declarative goals, other types of reasoning rules such

Final Remarks 67

as goal planning rules, and external and communication actions. Also, the
specification of belief is distinguished from the belief query expressions. The
practical development consists of the implementation of the 3APL platform
that allows the design, implementation, and testing of multi-agent applica
tions. Facilities provided by the platform ease the task of developing multi-
agent systems.

Currently, we are working to extend and refine the implementation of
the 3APL platform by adding additional features needed to facilitate the de
velopment of multi-agent systems. One of the extensions is to provide pro
gramming constructs for adopting different types of goals such as achieve
ment goals, perform goals and maintenance goals at run time. The exten
sion will add basic actions dedicated for adopting different types of goals
such that executing plans that include these types of basic actions generates
goals. Another extensions is to provide programming constructs to allow
explicit implementation of the organizational structures and the multi-agent
environment. In particular, we are building on the existing coordination
mechanisms designed for concurrent component-based systems and extend
them with social and organizational concepts needed to specify multi-agent
organizations. Moreover, we aim at using the existing web technologies such
as XML and web services to define the environment of multi-agent systems.
Our aim is that any introduced extension and refinement should have a the
oretical foundation, being defined in terms of formal syntax and semantics.

Acknowledgments

Thanks to Frank de Boer and Frank Dignum for discussion on the issues
raised in this paper.

Chapter 3

IMPACT: A MULTI-AGENT FRAMEWORK
WITH DECLARATIVE SEMANTICS

Jlirgen DIx-̂ and YIngqIan Zhang^

Clausthal University of Technology
Department of Computer Science
Chair for Computational Intelligence
Julius-Alhert-Str, 5, 38678 Clausthal
Germany
dix@tu-clausthal.de

University of Manchester
School of Computer Science
Oxford Road, Manchester M13 9PL
United Kingdom
zhangy@cs.man.ac.uk

Abstract The IMPACT project (h t t p : //www. c s .umd. e d u / p r o j e c t s / i m p a c t)
aims at developing a powerful multi-agent system platform, which (1) is able
to deal with heterogenous and distributed data, (2) can be realised on top of
arbitrary legacy code, (3) is built on a clear foundational basis, and (4) scales up
for realistic applications. We will describe its main features and several exten
sions of the language that have been investigated (and partially implemented).

Keywords: formal methods, heterogeneity, legacy code, annotated logic programming,
reasoning with time, uncertainty and beliefs

3.1 Motivation

One of the main features of IMPACT Is the Idea oi agentisation: IMPACT
agents are usually built around given legacy code (see [209]). Another Impor
tant feature Is to provide a clear semantics for agents (based on the notion
of an agent program) that can be easily extended (Incorporating time, uncer-

mailto:dix@tu-clausthal.de
mailto:zhangy@cs.man.ac.uk

70 IMPACT

talnty, beliefs etc). The third feature Is to Identify classes of programs that
can be efficiently Implemented (polynomial modulo the underlying code).

In this chapter we are trying to illustrate these features through two exam
ples. While Example 3.2 serves to illustrate the syntax and semantics of (tem
poral) agent programs, Example 3.3 shows the agentisation Idea by turning a
dedicated planning system into an agent collaborating with other agents in a
wider environment. This example Is also used to demonstrate some aspects
of the third feature.

Before turning to the examples in Section 3.2, we need to make some gen
eral remarks. In order to turn legacy codeinto an agent a, we need to abstract
from the given code and describe its main features. Such an abstraction is
given by the set of all datatypes and functions the software is managing. We
call this a body of software code and denote it by S^ =^ef iTs^/ ^s'^r ^5^)-
J^S^ is a set of predefined functions which makes access to the data objects
(Ts^) managed by the agent available to external processes. 0$^ are compo
sition operators to build new datatypes from the given ones.

A Single a g e n t

Actions Agent Program

V Sem cone

r j KJKJk • TT J

•iMessages | Lcgacy Data : Update

Figure 3.1 An Agent in IMPACT.

To get a bird's eye view of IMPACT, here are the most important features
(see Figure 3.1):

Each IMPACT agent has certain actions oc available. Agents act In
their environment according to their agent program V and a well de-

Motivation 71

fined semantics Sem determining which of the actions the agent should
execute.

• Each agent continually undergoes the following cycle:

1. Get messages sent by other agents. This changes the state O of
the agent.

2. Determine (based on its program P , its semantics Sem and its
state O) for each action a its status (permitted, obliged, forbid
den, . . .) . The agent ends up with a set of status atoms,

3. Based on a notion of concurrency cone, determine the actions
that can be executed and update the state accordingly.

• IMPACT agents are built on top of arbitrary software code S^ =def
{rs'',J's'',Cs'') {LegacyData),

• A methodology for transforming arbitrary software (legacy code) into
an agent has been developed.

A complete description of all these notions is out of scope of this paper and
we refer to [209] for a detailed presentation.

Before explaining an agent in more detail, we start with some remarks
about the general architecture. In IMPACT agents communicate with other
agents through the network. Not only can they send out (and receive) mes
sages from other agents, they can also ask the server to find out about ser
vices that other agents offer. For example a planning agent (let us call it
A-SHOP), confronted with a particular planning problem, can find out if
there are agents out there with the data needed to solve the planning prob
lem; or agents can provide A-SHOP with information about relevant legacy
data.

In many applications a statistics agent is needed. This agent keeps track
of distances between two given points and the authorised range or capacity
of certain vehicles. This information can be stored in several databases. An
other example is the supplier agent. It determines through its databases
which vehicles are accessible at a given location.

DEFINITION 3.1 (STATE OF AN AGENT, Os{t)) ^^ ^^y gi'^^^ point t in
time, the state of an agent, denoted Os{ty ^^ ^^^ ^^^ o/< /̂/ data objects that are
currently stored in the relations the agent handles—the types of these objects must
be in the base set of types in T $,

The state of the statistics agent consists of all tuples stored in the
databases it handles. The state of the supplier agent is the set of all tuples
describing which vehicles are accessible at a given location.

72 IMPACT

IMPACT Architecture

IMPACT Server

Figure 3,2. SHOP as a planning agent in IMPACT.

We noted that agents can send and receive messages. There is therefore a
special datastructure, the message box, part of each agent. This message box
is just one of those types. Thus a state change already occurs when a message
is received.

3,2 Language

Agents are specified in IMPACT through agent programs. The basic lan
guage of IMPACT does not allow to formalise mental attitudes, or temporal
or probabilistic reasoning. However all these features have been investigated
(see [65, 64, 63, 70, 72]) and the approach using both temporal as well as
probabilistic reasoning is currently implemented.

In order to illustrate the language and semantics of IMPACT with an ex
ample, that is not too technical nor too trivial, we have chosen one involving
temporal reasoning alone. This example serves to show the salient features
of IMPACT.

EXAMPLE 3.2 (RESCUE SCENARIO I, TEMPORAL REASONING)

Consider a simplistic rescue operation where a natural calamity (e.g., a
flood) has stranded many people. Rescuing these people requires close coordina
tion between helicopters and ground vehicles. For the sake of this example, we
assume the existence of

Language 73

L A helicopter agent that conducts aerial reconnaissance and supports aerial
rescues;

2. A set gvl, gv2, gv3 of ground vehicles that move along the ground to
appropriate locations—such vehicles may include ambulances as well as
earth moving vehicles.

3. An immobile command centre agent come that coordinates between the
helicopter and the ground vehicles.

Llere is a typical statement that should be expressible in an agent language.

"If the maximal time previously taken to ship some equipment E from location
A to location B is T], and if equipment £ is required to be at location B at time
T, then ship £ sometime between time T — T\ — 10 and T — Tj."

This is a very reasonable statement to make not only in our rescue example,
but in any logistics application. The time T might depend on the production
schedule of the company at location B (which may be determined at run-time
from a database), and Ti likewise might depend on the identities of locations
A, B (which may be instantiated at run time and whose locations might therefore
need to be inferred at run-time from a database).

The second example, similar in spirit, is used to illustrate the agentisation
procedure.

EXAMPLE 3.3 (RESCUE SCENARIO II, AGENTISING A PLANNER) The

planner SHOP [155] is a stand-alone system which did very well in planning
competitions. It uses a particular framework to encode planning problems:
hierachical task networks. While SHOP is a very efficient planner, it requires
that all data is stored locally and given in a particular format (atomic facts
in Lisp notation). Such planning systems usually support only one kind of
reasoning: symbolic or numeric, but not both.

How can such a planning system be agentised in IMPACT as a planning
agent A-SHOP?

The typical test domain for a planner where data is heterogenous and stored at
different places is a simple transportation planning problem for a rescue mission
(NEO [154]). Computing plans involves performing a rescue mission where a
task force is grouped and transported between an initial location (the assembly
point) and the NEO site (where the evacuees are located). After the troops arrived
at the NEO site, evacuees are re-located to a safe haven.

The planning task involves:

1. selecting possible pre-defined routes, consisting of four or more segments
each;

2. choosing a transportation mode for each segment;

74 IMPACT

3, determining conditions such as whether communication exists with State
Department personnel and the type of evacuee registration process,

Here we have four different IMPACT information sources available:

• Transport Authority: Maintains information about the transportation
assets available at different locations.

• Weather Authority: Maintains information about the weather condi
tions at the different locations,

• Airport Authority: Maintains information about availability and condi
tions of airports at different locations,

• Math Agent: m a t h evaluates arithmetic expressions. Typical evalua
tions include to subtract a certain number of assets use for an operation
and update time delays,

Agentising given legacy code cannot be done automatically: the agent de
signer has to determine the abstraction level. In particular she has to decide
which of the data structures find their way into the state of the agent (to be
built) and which are considered mere "implementation details'\

3,2,1 Specifications and Syntactical Aspects

In IMPACT^ each agent a is built on top of a body of software code
(built in any programming language) that supports a well defined application
programmer interface (either part of the code itself, or developed to augment
the code).

D E F I N I T I O N 3.4 (SOFTWARE C O D E) We may characterise the code on top
of which an agent a is built as a triple S^ =def (^5^/ ^s^f ^S^) 'where:

1, Ts ^ is the set of all data types managed by S,

2, J^s^ i^ ^^^ ^^^ of predefined (API) functions over T s^ through which ex
ternal processes may access a's data^ and

3, Cs ^ is a set of type composition operations, A type composition operator is
a partial n-ary function c which takes as input types TI , . . . , T„ and yields
as output a type C(TI, . . . , T^).

This characterisation of a piece of software code is widely used (cf. the Ob
ject Data Management Group's ODMG standard [43] and the CORBA frame
work [207]).

Each agent also has a message box having a well defined set of associated
code calls that can be invoked by external programs.

Language 75

EXAMPLE 3.5 (RESCUE SCENARIO I) Consider the rescue mission described
earlier. The Hell agent may have the following data types and code calls.

• Data Types: speed,hearing of type int , location of type point (record
containing x, y, z fields), nextdest of type s t r ing , and inventory—a re
lation having schema (item, Qty, Unit).

• Functions:

- Hell: location{): which returns the {x, y, z) coordinates of the cur
rent position of the helicopter

- Hell: inventory {item): returns a pair of the form {Qty, Unit). For
example. Hell: inventory {blood) may return {25, litres) specifying
that the helicopter currently has 25 units of blood available.

An agent's state may change because it took an action, or because it re
ceived a message. We assume that except for appending messages to an agent
a's mailbox, another agent b cannot directly change a's state. However, it
might do so indirectly by sending the other agent a message requesting a
change.

EXAMPLE 3.6 (RESCUE SCENARIO I: STATE) For instance, at a given in
stant of time, the state of the hell agent may consist of location =
(45,50,9000), and inventory containing the tuples: {fuel, 125, gallons),
{blood,25, litres), {bandages,50,-), {cotton,20, lbs).

Queries and/or conditions may be evaluated w.r.t. an agent state using the
notion of a code call atom and a code call condition (CCC) defined below.

D E F I N I T I O N 3.7 (C O D E CALL (CC)/CoDE CALL ATOM) T/' 5 is the

name of a software package, f is a function defined in this package, and
{di,...,dn) is a tuple of arguments of the input type of f, then the term
S : / (d i , . , . , dn) is called a code call (denoted by CC).

If CO is a code call, and X is either a variable symbol, or an object of the output
type of CC, then in(X, cc) is called a codo, call atom.

If X is a variable over type r and r is a record structure with field / , then X./
is a variable ranging over objects of the type of field / .

D E F I N I T I O N 3.8 (C O D E CALL C O N D I T I O N (CCC))

1. Every code call atom is a code call condition.

2. Ifs, t are either variables or objects, then s = t is a code call condition.

3. If s,t are either integers/real valued objects, or are variables over the in
tegers/reals, then s < t , s > t , s > t , s < t are code call conditions.

76 IMPACT

'^' IfxifXi ^y^ code call conditions, then xi & Xi is a code call condition.

For example, in(X, Heli:mi;^nfori/(fuel)) &X.Qty < 50 is a code call
condition that is satisfied whenever the helicopter has less than 50 gallons of
fuel left.

The code call condition

in(FinanceRec,rel:sdecf(^^i?e/,^^te, " = ", "Nov. 99")) &
FinanceRec.sales > lOK &
in(C, excel: chart{excFile, FinanceRec,day)) &
In(Slide, pp t : include{Q, "presnt.ppt"))

is a complex condition that accesses and merges data across a relational
database, an Excel file, and a PowerPoint file. It first selects all finan
cial records associated with " Nov. 99": this is done with the variable
FinanceRec in the first line. It then filters out those records having sales
more than lOK (second line). Using the remaining records, an Excel chart is
created with day of sale on the x-axis and the resulting chart is included in
the PowerPoint file "presentation.ppt" (fourth line).

in(FinanceRec, re\\ select{finRel,date, " = ", "Nov. 99"))

FinancRec.sales > lOK in(C, excel: chart{excFile,FinanceRec,day))

in(Slide,ppt •.include{C, "presnt.ppt"))

Figure 3.3. A code call evaluation graph

In the above example, it is very important that the first code call be evalu
able. If, for example, the constant fiuRel were a variable, then

rel:sekcf(finRel,date, " = ", "Nov. 99")

would not be evaluable, unless there were another condition instantiating
this variable.

Language 77

We have introduced syntactic conditions, similar to safety in classical
databases, to ensure evaluability of CCC's. It is also quite easy to store CCC's
as evaluation graphs (see Figure 3.3), thereby making explicit the dependency
relation between its constituents (see [71]).

Code call conditions provide a simple, yet powerful language syntax to
access heterogeneous data structures and legacy software code. However, in
general their use in agent programs is not constrained: it is perfectly possible
that a CCC cannot be evaluated (and thus the status of actions cannot be
determined). A reason for this could be uninstantiated variables (so that the
underlying functions cannot be executed).

Actions in IMPACT

Each agent has an associated action-base describing various actions that the
agent is capable of executing. An action (whose behaviour is that of a partial
function from states to states) is implemented by a body of code in any suit
able imperative (or declarative) programming language. The agent reasons
about actions via a set of preconditions and effects defining the conditions
an agent state must satisfy for the action to be considered executable, and the
new state that results from such an execution. We assume that the precon
ditions and effects associated with an action correctly specify the behaviour
of the code implementing the action. Note, that in addition to changing the
state of the agent, an action may change the state of other agents' msgboxes.

Here is an example of a timed action drive{) of the truck agent which
may be described via the following components:

Name: dni;e(From, To, Highway)

Schema: (String,String,String)

Pre: in (From, t ruck: location{))

Dun {T I m{l,math:di$tance{FTom,To))S>cm{T,math:compute{^))}

Tet:

Istarg : rel:{20}
2nd arg :{in(NewPos i t ion, truck :/ocaf/on (Xnow)) }
3rdarg :{in(01dPosition, truck:/ocafzon(Xnow — 20)) }

The Tet part says that the truck agent updates its location every 20 minutes
(assuming a time period is equal to 1 minute) during the expected time it
takes it to drive the distance between From to To at 70km per hour.

78 IMPACT

3,2.2 Semantics and Verification

One of the main features of IMPACT Is that It has a precise, formal se
mantics based on the notion of agent programs. These programs are, from
an abstract point of view, logic programs {if-then-else rules). The semantics
of such programs has been Investigated extensively In the last three decades.
Consequently there Is a vast amount of techniques we can build on.

Our language Is not purpose-specific: It Is a general framework to design
arbitrary agents collaborating together. While the original framework did
not support temporal or probabilistic reasoning, these features are currently
Implemented.

While we have not yet developed the formal machinery for verifying
agents, the path for doing so Is certainly laid.

Each agent has (i) a set of integrity constraints 2"C—only states that sat
isfy these constraints are considered to be valid or legal states, (ii) a notion of
concurrency specifying how to combine a set of actions Into a single action,
(iii) a set of action constraints that define the circumstances under which
certain actions may be concurrently executed, and (iv) an agent program
that determines what actions the agent can take, what actions the agent can
not take, and what actions the agent must take. Agent programs are defined
In terms of status atoms defined below.

DEFINITION 3.9 (STATUS ATOM/STATUS SET) IfaiJ) is an action, and
Op € {P, F, W, D o , O}, then Opoc(t) is called a status atom. If A is a status
atom, then A, -lA are called status literals. A status set is a finite set of ground
status atoms.

Intuitively, Fa means a is permitted, Fct means a Is forbidden, Oa means
(X is obligatory. Do a means a Is to be done, and Wet means that the obliga
tion to perform a is waived. Note that these operators are not independent
from each other. For example, an action a cannot have the status F and O at
the same time. And Oa should always Imply Do a. These Interrelations are
taken Into account by the semantics.

DEFINITION 3.10 (AGENT PROGRAM) An agent program V is a finite set
of rules of the form A <— x & î i & . . . & L ,̂ where x is ^ code call condition, Li
are status literals and A is a status atom,

Several alternative semantics for agent programs are presented in [78, 77\
For example, the Heli agent in our Rescue Example may execute the ac

tion //j/("BIgRag", "StonyPoInt"). This action lasts for a period of time
during which the location of Heli Is changing continuously. More Impor
tantly, if we know the location of the plane now and we know the plane's
velocity and climb angle, we can precisely compute Its location In the future

Language 79

(assuming no change in these parameters). Thus, in order to specify a timed
action, we must:

1. Specify an estimate of the total amount of time it takes for the action
to be "completed".

2. Specify exactly how the state of the agent changes while the action is
being executed.

It is worth noting that the duration of an action can be precisely speci
fied in some cases, but not in others. For instance, saying that the action
drive {195, south, 60) should be executed for 2 hours is a precise specification
saying that the action "Drive south on Interstate 1-95 at 60 mph" is to be
executed for 2 hours. However, it is hard to specify durations of actions such
as drive{washington,baltimore). In this case, the above definition requires
an estimate to be provided.

D E F I N I T I O N 3.11 (TEMPORAL A G E N T R U L E / P R O G R A M TV) A tem
poral agent rule is an expression of the form Op a : [taii,tai2] —̂ Pi :
tai & • • • & p^j: ta„, where Op G {P, D o , F, O, W}, and p i : t a i , . . . , p„ : ta„
are tascs^. A temporal agent program (tap) is a finite set of temporal agent
rules.

Intuitive Reading of Temporal Agent Rule
"Iffor all 1 < i < Uy there exists a time point tf such that p/ is true at time tj such
that ti G ta/ then Op a is true at some point t > tpow fi-^-y ̂ ow or in the future)
such that tail < ^ < ^^k "

How can taps be used to express the statement in Example 3.2? We
use two relational databases—one called s h i p d a t a containing at least
the attributes s h i p t i m e , o r i g , d e s t (and perhaps other ones as well)
which specifies data (such as shipping time) associated with past shipments.
The other relational table is called sched which has at least the attributes
r e q t i m e , p l a c e , i t e m specifying which items are required at what time
by what places.

Dos/7 /p(P ,A,B): [T-Ti -10 ,T-Ti] ^
(in(Ti,db:s^/('SELECTtimeFROMdataWHEREorig = A&dest = B)))&

in(T, db:S(̂ /('SELECT reqtime FROM place WHERE item = P'))) : [Xnow/Xnow]-

Here is another example. ''If a prediction package expects a stock to rise K%
after TK units of time and K >25 then buy the stock at time {y^now + '̂ K — 2).''
We assume a prediction package that given a stock uses some stock expertise
to predict the change in the value of the stock at future time points. This

Â tasc (temporal action status conjunct) is, intuitively, a conjunction of temporal status actions. We
refer to [63] for further detail.

80 IMPACT

function returns a set of pairs of the form (T, C). Intuitively, this says that
T time units from now, the stock price will change by C percent (positive or
negative).

Do huy(S): [Xnow + X.T - 2, Xnow + X.T - 2] ^
(in(X,pred:rfesf(S))&X.C > 25): [Xnow, Xnow] •

Finally, here is a tap using several rules and different status atoms.

1. Fdn'z;e(was, bal , hw295): [tnow/ "tnow + 2] <—
in(hw295, msgbox :gafterWammg(comc)): [tnow — 3, tnow]

2. Do/i7/_/w^/(): [tnow, tnow] ^
in(true, t ruck: tank-empty{)): [tnow — 2, tnow]

3. Oorder_zfem(f a_bag): [tnow/ tnow + 4] ^
in(l , t ruck: mz;enfory(f a_bag)) [tnow — 3, tnow]

4. Fdrive{\JdiS, bal , hw95): [tnow/ tnow] ^^
In(false, t ruck: tankxmptyi)): [tnow/ tnow] &
Fdn'i;6(was, bal , hw295): [tnow + 1/ tnow + 2]

Figure 3.4 shows two rules (with Do 's in the head) of the monitoring
agent in A-SHOP.

Our approach is to base the semantics of agent programs on consistent and
closed status sets. Consistent means that there are no inconsistencies (such as
Fa and Voc in the same set) and closed means that when Do a is in the set,
then so is Va.

However, we also have to take into account not only the rules of the pro
gram but also the integrity constraints XC. This leads us to the notion of a
feasible status set. The operator App^ ^̂ (S) is similar to the immediate con
sequence operator in logic programming: it computes all the consequences
obtainable from applying all agent rules once.

DEFINITION 3.12 (FEASIBLE STATUS SET) Let V be an agent program,
and let 0$ he an agent state. Then, a status set S is a feasible status set for
V on 0$, if the following conditions hold:

(51) (closure under the program rules) Appp^Q^{S) C S;

(52) (deontic/action consistency) S is deontically and action consistent;

(53) (deontic/action closure) S is action closed and deontically closed;

(54) (state consistency) (9^ [= XC, where O'^ = apply{Do (S), Os) is the
state which results after taking all actions in Do (S) on the state Os-

Language 81

m IMPACT AgentOC

File E(Jrt Heln Debug

- .Jnf x]

Inter iictcve Mdiyl^intl Pldtfonn for A(]utits CoUaboratrng Together (IMPACT)
Aoent Develoijment Environment (AycntDE)

6 Connection denned tyiius

Name:
0): InteycrSet -
1): TakeriSet
2):I[IIL'IJL'IRL(;(I

3): liittiyerSul j
4): MussriOtiKiM j
5): Messao8Re(:<

Selected schema:

jl.

1 ._ J

135 Connection defined functions

Kwiie; SHOP">AshotJ:startPlannlno ^ \

2Para[neters:
,0): bzHtuijifnihienarne /strlruj
jl): OlJ) JSTiine JOliject

L

UserDeTT&FLm ;.

UswDHrtiwioiiUbJ

Cotmect T&F lib t

ActkmProc Ul)

Return t^pe: Obj_Answer/{rt)|ect

1-VPhto i 2-Connect 3-Types { 4J^unc(ions ; 5.Acbon» ePtoa

[iii(H5<;Rec,Loc4l-->a3gBo>;:<jet;(e33«tfc3()),

(HsgRec.SsCoaitand/ 'Pftss Touc") ,
[-(SsTgCAgent/ 'PPT A g e n t ") ,

(3zCo«iiand,"P«93 F iv t i ") ,
| - (F l « g 3 , 0 K
» (Da t4 , HsgFlec. A_DttCa).
//
b o (Rendei;He5S«geTttrgeC3 tSsTgcA^ent/SzCoiuiand, f l a g s , D a t a)) :
in(H3gRec,Loctt l—>fc5gBox:gecJ)e33age3()) ,
• (MsgRecSzCoknai id / 'Pass T h r e e " J ,

j-(SzTgcA(3enc,"PPT A g e n t ") ,

(SzCo»Mand/'Pa33 Fouc") ,
(F l a g s , 0) ,

| - (Da ta ,«3gRec ,A_ t ' ' i r -) .
I//

74C«K 8-ACorw •• 9.Cates. f'lOJUito P i t

Parse Prooram • Irnjjact aoent iiroorani definition page.

L J LoaMessaoei i . . EchoOebua TestDcf...

Status: Auent derinrtion loaded; FieHasliintj & restoring controls...

, Deploy...

Figure3,4. AgentDE Program

The last con(Jition ensures that the successor state (when all (doable actions
are execute<j) still satisfies the integrity constraints XC,

The semantics of agent programs is then defined by rational status sets.

DEFINITION 3.13 (GROUNDEDNESS; RATIONAL STATUS SET) A status
set S is grounded, if there exists no status set S' ^ S such that S' satisfies condi
tions (SI)-{S3) of a feasible status set,

A status set S is a rational status set if S is a feasible status set and S is
grounded.

Thus given an agent program, our semantics computes all rational status
sets of this program. In the case of positive agent programs (all examples
in this chapter have this property) it can be shown that there always exists
exactly one rational status set. Rational status sets are natural generalisations
of stable models (or answer sets) in logic programming.

82 IMPACT

Figure 3.5 shows the successful compilation of an agent program (the
monitoring agent in A-SHOP). In the first phase the rules are organised
in several layers, then the program is unfolded (sometimes producing more
rules but obtaining an optimised version), the data connection is checked,
and the status set is generated.

ftAgentOE test dt^og. ill
Test resiJtts for ayent: Monitor Agent

j Summary Message queue Deflnitlon Layer info UnFoldinfo Status set info

Agent test summary data:

1) Layering: Passed

J2) VtoqxmM unfolding: PksiAd - - Prograk untold iucc«*d*d.
(15 »ourc« rul«s unfolded —> 11 irul«s)
(0 "boguf" \«^folded trul* p*riiUCACions cue)

M3) Dsta conn«ct:lon(s>: Passed —
"SHOP" d*c« connection togyltd op*n/clos*d.

*Local2" d«c« conn«ct^ion coggled op*n/clos*d.

"Local" dat.a conn«ct.lon toggled op«n/clos«d.

_i44) Scacus sac ganaracion: Passed -'• lAD^PrograA S$C: Succaedad.

t) Status AtpB execution: Passed -- Succeeded.

Begin test j l

': n Eclio Answers. Echo Debuy : Skip SSG. H Run base f J Log timing

(5 Cut Boyus Rules Test iterations: [l J

I Status: Agent tests succeeded - Detiloytnent possible.

Figure 3.5. AgentDE Summary Table

3.2.3 Software Engineering Issues

We have finished the IMPACT implementation based on our main the
ory (extensions are underway for temporal programs, temporal probabilistic
programs, etc.). Several nontrivial multiagent applications have been devel
oped with IMPACT. The IMPACT implementation has a simple Java-based,
web accessible interface which allows the user to specify an agent's differ
ent component definitions (type, function, action, agent program, etc.) and
communication between agents. It provides an easy way to maintain and test
the different components within a multiagent system. We will introduce it
further later in this chapter.

Language 83

As we showed in the previous section, IMPACT is able to agentise any
software program and plug it into the provided solution. IMPACT supports
this both in its theory and in its implementation. Code call condition mecha
nism supports queries to arbitrary legacy code or specialised data structures.
Moreover, the implementation of IMPACT supports execution of code call
conditions over a wide variety of software packages.

We also consider the reliability issue in our method. The reliability of
IMPACT is provided by replication and by minimising the dependency of
individual agents in IMPACT, We refer to [209] for further detail.

3.2.4 Other features of the language

As already mentioned in the beginning, IMPACT is based on two impor
tant features.

Complexity: special emphasis is put on identifying classes of programs that
can be efficiently implemented. The class of regular agents (based on
a special class of agent programs) ensures that its complexity modulo
the underlying legacy code is only polynomial [79].

Legacy code: existing legacy code can be turned into an IMPACT agent
(agentisation). This is illustrated with A-SHOP, which is an agentised
version of SHOP, a well-known planning system ([66, 68, 69, 67]).

Our framework supports the design of mobile agents because mobility
can be considered as an action that any agent can execute. In addition, we
show in [209] that Java applets can be viewed as IMPACT agents.

Our language is modular and can be easily extended by new constructs.
Not only syntactic sugar, but also non trivial features such as temporal or
probabilistic reasoning can be incorporated (through annotated logic pro
grams). These extensions are not always trivial, but the overall system is
designed so as to allow them. We consider this to be a salient feature of our
framework.

Complexity Issues

We mentioned in Subsection 3.2.1 the condition of safeness to ensure
evaluability of a code call. We also mentioned that an evaluable CC does
not need to terminate. Consider the code call

m{X, math:geq{2b)) &:
m{Y,matln:square{X))&:Y < 2000,

which constitutes all numbers that are less than 2000 and that are squares of
an integer greater than or equal to 25.

84 IMPACT

Clearly, over the integers there are only finitely many ground substitu
tions that cause this code call condition to be true. Furthermore, this code
call condition is safe. However, its evaluation may never terminate. The rea
son for this is that safety requires that we first compute the set of all integers
that are greater than 25, leading to an infinite computation.

Thus, in general, we must impose some restrictions on code call condi
tions to ensure that they are finitely evaluable. This is precisely what the
condition of strong safeness ([79, 209]) does for the code-call conditions. Intu
itively, by requiring that the code call condition is safe, we are ensuring that
it is executable and by requiring that it is strongly safe, we are ensuring that
it will only return finitely many answers.

IMPACT AoentOE

File Eitrt Holp DolJUd

iQiiU

Irtleraclivti MdrvfaniJ PlaUoni) ror Audits Coll
Ayent Devoloiirtient Eiiuirotinient (AgeDtOE)

6 Connection defltietJ tyims

Name:
U): InteuerSet ^
l);IokRnS(;t *^.j
2): liiteuerKecd
3): InteuurSut
4): MessayeRer j
6): MessayeKec.

< [> :

Saldcted schenruK
JrileserSel

integer

:|.

13G Coniiectioti (lefindd functions

NarnG: SHOP->Aiihop:starlPi<jiriniiH)

UserDerT&FUi

Userper Action Lb

Connoct T&F Lil)

ActionProc LID
0): SfProbletnrtlename / strinu
•l):Ot)j_JSIini(!/ohjL*c1

Return ty(ie: Ohj.Attswer / object

;i-yp1nto : 2-Cpnnoct 3-Typei f-Fvictions [. S-Aption? J 6-Prog

Function 'Tinitct)ess" constraint table:

y-iCwA . >ACoiu i >C»k;s I lO-fKuiH

i ' ,••• (AifjiyTyFie1,yuri2yT¥lJ!£.•?,

Dti/riain_l Fi.;/ittion_l
Dotnam^l :Function_^
Domain_2:Functton_l_

jDomain_?.Functton_3

aOomain_2 Funclion_3
_0omain_3 Funclion 1

I ' ^ X S ^ f u n c t i o n I I Edit errtiy-. | S |

•^ .oaMeuaaes > EchodebuQ j TostPeU j j ^ S & ^ J K b J i i l

Stotus;: Ayent loailud; RL'Mdsliinu & rcsturirM) controls^

Figure 3.6. AgentDE Finiteness Table

Note that the problem of deciding whether an arbitrary code call execu
tion terminates is undecidable (and so is the problem of deciding whether
a code call condition x holds in O). Therefore we need some input of the
agent designer (or of the person who is responsible for the legacy code the

Language 85

agent is built upon). The information needed is stored in ^finiteness table
(see [79, 209] and Figure 3.6). This information is used in the purely syntac
tic notion of strong safeness. It is a compile-time cheeky an extension of the
well-known (syntactic) safety condition in databases.

Agentisation

Our Example 3.3 serves to illustrate how to turn a planner into an plan
ning agent within a multi-agent environment.

SHOP, as an HTN planner, is based on the concepts of tasks, operators
and methods. Methods are used to decompose a nonprimitive task and form
the heart of HTN planning.

A comparison between IMPACT'S actions and SHOP's methods shows
that IMPACT actions correspond to fully instantiated methods. While
S H O P ' S methods and operators are based on STRIPS, the first step is to mod
ify the atoms in SHOP's preconditions and effects, so that SHOP's precon
ditions will be evaluated by IMPACT'S code call mechanism and the effects
will change the state of the IMPACT agents. This is a fundamental change
in the representation of SHOP. In particular, it requires replacing SHOP's
methods and operators with agentised methods and operators. These are de
fined as follows.

D E F I N I T I O N 3.14 (RESCUE II, Agentised Operator) An agentised opera
tor is an expression of the form (AgentOp hxadd Xdel)y "^here h (the headj is
a primitive task and Xadd ^^d Xdel ^^^ l^^ts of code calls (called the add- and
delete-listSy). The set of variables in the tasks in Xadd ^^d, Xdel ^^ ^ subset of the set
of variables in h.

LEMMA 3.15 (RESCUE II, Evaluating Agentised Operators) Let
(AgentOp h Xadd Xdel) be an agentised operator. If the add and delete-
lists Xadd ^^d Xdel ^^^ Strongly safe wrt. the variables in h, the problem of
applying the agentised operator to O can be algorithmically solved.

In SHOP, preconditions were logical atoms, and SHOP would infer these
preconditions from its current state of the world using Horn-clause infer
ence. In contrast, the preconditions in an agentised method are IMPACT'S
code call conditions rather than logical atoms. Also A-SHOP (the agentised
version of SHOP) does not use Horn-clause inference to establish these pre
conditions but instead simply invokes those code calls, which are calls to
other agents (which may be Horn-clause theorem provers or may instead be
something entirely different). This opens the way to use arbitrary reasoning
mechanisms and data distributed over the net.

THEOREM 3.16 (RESCUE SCENARIO II, Sound- and Completeness)
Let O be a state and V be a collection of agentised methods and operators. If

86 IMPACT

all the preconditions in the agentised methods and add- and delete-lists in the
agentised operators are strongly safe wrt, the respective variables in the heads,
then AS HOP is sound and complete.

Figure 3.7 shows a method for our application to logistics planning. The
method indicates how to transport a cargo that has a certain weight be
tween two locations. The method calls the statistics agent three times,
in order to evaluate the distance between two geographic locations: (1) the
authorised range of a certain aircraft type (the authorised range is lower than
the real distance that the aircraft can fly), and (2) the authorised capability (in
metric tones) of an aircraft. The method calls the supplier agent to evaluate
the cargo planes that are available at a location.

Head:
AirTransport {LocFTom, LocTo, Cargo, CargoWeight)

Preconditions:
in(CargoPL, supplier : cargoPlane{hoc¥Tom))&:
in(Dist , s ta t i s t ics : distance{LocFrom, locTo))&
in(DCargoPL, s t a t i s t i c s : authorRange(C3iTgoPL))&c
Dist < DCargoPL&
in(CCargoPL, statislics : authorCapacity{Cargo?L))&:
CargoWeight < CCargoPL&

Subtasks:
/oflrf(Cargo, LocFrom)
/Zi/(Cargo, LocFrom, LocTo)
unload {Cax go, LocTo)

Figure 3.7. Agentised method for a logistics problem.

This top level task is decomposed into several subtasks, one for each seg
ment in the route that the task force must cover (these segments are pre
determined as part of the problem description). Within each segment, A-
SHOP must plan for the means of transportation (planes, helicopters, vehi
cles, etc.) to be used and select a route for that segment. The selection of
the means of transportation depends on their availability for that segment,
the weather conditions, and, in the case of airplanes, the availability and
conditions of airports. The selection of the route depends on the transporta
tion vehicle used and may lead to backtracking. For example, the choice of
ground transportation assets needs to be revised if no roads are available, or
they are blocked, or too risky to take.

Our test domain was a simplification of the actual conditions that occur
in practice. Primarily because many more information sources are available
in practice, and as such the resulting plans will be more complicated.

Platform 87

A-SHOP*s knowledge base included six agentised operators and 22 agen-
tised methods. We ran our experiments on 30 problems of increasing size
and refer to [244, 69, 67] for detailed results.

3.3 Platform

3.3.1 Features of the platform

The IMPACT system consists of five major software components to sup
port the development and deployment of IMPACT agents.

Agent Development Environment. Agent developers can easily build
and test agents within the IMPACT Agent Development Environment
{AgentDE for short). As described earlier, the core parts of an IMPACT
agent are:

1. a set of data type definitions and API function calls manipulated by
the agent;

2. a set of actions that the agent may take;

3. a set of integrity constraints IC on the agent state and action con
straints ACy

4. an agent program V specifying the behaviour of the agent;

5. a notion of concurrency cone.

The AgentDE provides a network accessible, easy-to-use graphical user
interface through which an agent developer can specify all the above param
eters of an agent, compile and then test if they work properly.

AgentDE contains libraries of data types, API functions, actions and no
tions of concurrency. When the agent developer builds a new agent, each
data type must be explicitly defined via the AgentDE, The agent manipu
lates its data types via API function calls, which can be defined within the
AgentDE. Similarly, the developer needs to specify a set of actions that the
agent can execute via AgentDE, Figure 3.8 shows how the developer can
reuse actions in the library and assign them to the monitoring agent.

Figure 3.9 shows the interface of the AgentDE when the developer has fin
ished specifying the data types, API functions and actions. The tab marked
"Calcs" allows the user to specify the notion of concurrency^ he wants to

^For example a very simple cone would be to just take the union of all add-lists and the union of all
delete-lists. A more sophisticated cone would check whether all actions can be ordered in a way such
that there are no conflicting actions, and then execute them one after the other. The latter is of course
more complex than the first.

IMPACT

^ISJili
File Edit Help Debuu

Interactive MatytanU Platform ror Ayents Collaborating Together (IMPACT)
Agent Developnient Etivironinent (AgentDE)

63 system defined Af:tIon procedures

Details (selected procedure)

1 ^ Description;

p); CIP_Speah
j1): execCommanU
f2):jdbc
3): (tynamicAgent^Hir^
A): ilyiitiniicAu«iit_Ret
6): ectiaCoitsole
^):faxFlle
|7): raxStrlng

[elRbosl

S2Taiget_Roost=="Air •-> Mig|
rates agent to all actfve Roosts,

Parameters (i
)); S2Source_AgeittDef_F)le /string

}1): SzAgent_MetaFtle /sTrlng
!): SzTdrget_Roa$t /string
i):L_Flags/in(8oer
I): B JiTeslOnty / boolean

UserDeTT&f Ut)

UfiEHTOer Action Ltt)

ActionProc Lilt

LYPlrito ^ 2-Coon6Ct; '; 3-Typ«'.'j. 4-Functk)ns

Yellow-Pages Inforniaton (this Agent)

Name:

JMonjlOf Ayeiil

Descriptiori;

'j^Cont f 9-CfttC4 10- Firt* e • 11 -Sked

Provides services (pentting)

Receives requests from Condftion$ to cnecka code call;
.Mainiatn$ ctianges to states resulting (torn the application ot Ashop's opei
ators,

Status: Agent Uonnilion loaded; ReHashtng & restoring controls...

Figure 3.8. Actions for mon i to r

use. All these new items are added to the appropriate library so that during
the development process, whenever the developer accesses the AgentDE, the
definitions will be directly imported from the libraries for use.

After defining these parameters, the agent developer may start testing the
agent. The AgentDE performs compile-time checks such as strong safety
check, deontic satisfaction, and boundedness check. Pressing "Test Program"
in Figure 3.9 triggers the test. When the test is started, unfolding is done
first, then the data connections requested by the program are tested and es
tablished. After the test phase is completed, status sets are generated and
executed. Figure 3.10 shows the status set computations.

IMPACT Connection. The IMPACT connection library allows IM
PACT agents to access third party platforms. The developer can define
a connection alias and specific parameters for the target connection in the
AgentDE Connection specification dialog. Figure 3.11 shows the AgentDE

Platform 89

^IMPACT AgentDE Frame2

Interactive Maryland Platform for Agents Collaborating Together (IMPACT)

Agent Development Environment (AgentDE)

Status Success — "AppendTotalsFile" action added to table

Figure 3.9, Actions in AgentDE

interface with the accepted Jilad connection definition, which taps a Her
mes data mediator, through the remote Hermes interface accessed through
the jilad.cs.umd.edu:8222 port. When a connection is established, IMPACT
can execute code call over the data source and process the returned re
quests. Some currently implemented examples also include IBM Aglet, Or
acle servers, ODBC (Open Database Connectivity), JDBC (Java Database
Connectivity) and CORBA (Common Object Request Broker Architec
ture).

IMPACT Server. The IMPACT Server provides various services that are
required by a group of agents as a whole. It supports the following services:

Registration Services: When the agent developer deploys an agent within
the IMPACT AgentDE, it automatically provides her with the option
of registering this agent with the registration server. The developer
can register the services provided by the agent and also specify who
can use those services.

90 IMPACT

BSAgentOE lett dialog.

IfBBHfffflll Mpftgano queue Definition ; Layer mfo UnFold Info Status set Info

"DoAble" atom ttat.):

jProgram :
jHACallArraynode 2639:

CreateLocERCTowlsFileC'AX.LocERCToCdls.txO
CreateLocERCTotalsFile(-WP.LocERCTotals t« ')
CreaieLocERCTotalsFileCCP.LocERCTotals.txt')

{HACallArrav node 4683-
MailLocERCTowls('AX.LocERCTowls m' , "ALEXANDRIA", "roQers«>cs.umd.edu")
MailLocERCTotdlsCWP.LocERCTDials.uC 'WEST POINT", "dj4119e>exmail,usma.armvmO
MaJILocERCTotals('CP.LocERCTotali.txt', -COLLEGE PARK", "Vs îcs umd edu^

Permitted

Obliged \

forbidden!

Waived \

DoAble

iHACallArrav node 5205:
AppendTotalsRle('AX,
AppendTotalsFile('AX,
AppendTotalsFjle('AX,
AppendTotalsFile('WP,
AppendTotalsRle('WP,
AppendTotalsFileC 'WP.
AppendTotalsFileC 'CP
AppendTotalsFile('CP
AppendTotal5File('CP,

LocERCTotals txt', "ALEXANDRIA", -B/C", "ALEXANDRIA, B/C, 6928.0, 63<(3.0")
LocERCTotals,txt'. "ALEXANDRIA", "A", "ALEXANDRIA, A, 2138.0. IZOeO")
LocERCTotals txf, "ALEXANDRIA", "P", "ALEXANDRIA, P. ^44 0, 422 0")

.LocERCTotais.txt', 'WEST POINT", "B/C", "WEST POINT, B/C, 6449.0, 6062.0")
,LocERCTotals.txt'. 'WEST POINT", "A", 'WEST POINT, A, 1504 0, 1303.0")
.LocERCTotais.txt", 'WEST POINT", "P", 'WEST POINT, P, 349 0, 336.0")
.LocERCTotals.txt', -COLLEGE PARK", "B/C", -COLLEGE PARK, B/C, 5365.0, 4947.0")
.LocERCTotais.txt', "COLLEGE PARK" "A", -COLLEGE PARK, A, 1758.0, 13 55.O'0
.LocERCTotals.txt', "COLLEGE PARK", "P", 'COLLEGE PARK, P, 934.0, 868.0")

[J t rh r i KHerniK"!. [T; Kttin Dehrtu [J. Ĵ lf i|> ^W». L] Hun I w^ f
Status; AQpnt le!.ts succfocipd — l^nrilnympnt possthit?.

[sj Lixj Unnng

Figure 3.10. AgentDE Status Set Screen

Yellow Pages Services: the Yellow Pages Server can access the data struc
tures created by the Registration Server. IMPACT agents can find the
desired services by other agents via the Yellow Pages Server.

Type Services: Agent developers can specify the datatypes they use as well
as the relationship between the newly created datatypes and other ex
isting types within the IMPACT Type Server.

Thesaurus Server: This server receives requests when new agent services
are being registered and when the IMPACT Yellow Pages Server is
looking for agents providing a service.

Ontology Services: The IMPACT server is able to provide ontology ser
vices. An agent can reformulate its query in terms the other agent can
understand.

http://umd.edu

Platfoi 91

^ IMPACT AgentDE Fraine2

File Edit Help Debug

interactive Maryland Platform for Agents uoilaboratrng Together (IMPACT)

Agent Development Environment (AgentDE)

mm

I f Connection defined types

[TokenSet/ {SzSzEntry/ s t r ing} ;
lessageRecd/ <SzTo/ str ing, SzFrom/ i
lessageRecdSet/ {MessageRecd/ <S2T

Connection defined code calls

Local—>time;ge6tring (void):SzTime/stj^

Local—>tinne;getHrMinlnt (void):L_Time';

Local—>math:int_Add (L.Valuel/tntegel

Local—>math:int_Subtract (L.Value V in j

Local—>math:int_Mod (L.Value 1 /intege-

iJJserDeOb ;

Connect lib j

! ActionX lib

1-YPInfo : 2Connect 3-Tvpes j 4-FunctiQns ;'S-AcUons f'G-Progiam :;7-1 Cons ; 8-ACons 9-Calcs 10-Finitenes$

1 ;•• uii d datd source (DS) connection*.

i j . i l . i '.unrce (Alias): Description: j Etjjt

I Uilad
Local

[RHermes type data connection: I .'
Server: jilad,cs.unnd.edu:8222 j
DS: /fs/jilad/rogers/Hermes/Data/'Logistics/Li"

[Data.mcd
Login: 'Walley"

(":lonp

jpcho debug : Test Program... | Deploy Prograi

Status Agent Mei li u<:>,; i. lored - continue work...

Figure 3,11. AgentDE Connect Library Screen

Agent Roost. An agent roost Is a location where a set of deployed agents
resides (Figure 3.12 shows the five agents in A-SHOP: the screen depicts the
moment when the codecallconditions agent is active and sends a message
to the raonitoring agent). An agent roost serves as a duty officer since it
manages all messages for this set of agents. Initially, all agents are inactive.
When one of these agents receives a message, the agent roost includes it in
this agent's message box and lets it run. If an agent sends out a message to
another internal agent (i.e., an agent who is managed by the same roost),
this message can be delivered by the roost in the same way. If the message is
addressed to an external agent, the roost first contacts the IMPACT server
to determine the location of the target agent. It then routes the message to
the appropriate roost, which will pass it to the specified agent.

Agent Log. The agent log allows an agent developer to maintain a record
of agent communication and agent actions. The log supports log queries
by content or time, and action browse, playback of video, text and image
message objects. It can be used for many purposes such as record keeping,
usage statistics, and it is essential for monitoring system performance and
debugging.

92 IMPACT

ftBasel.Roost

Platfonnfor Aoents Collaborating TogetiuM (iMPAC i >
11) net woflted K>S debug view-port

Mess<iue Queue (Incorniny and Otituolny)

Delete nte&saye

Agent listing (5 total)

jO) Monitor Aoentc§Base1_F^ Pescriptton:
h) Customer Agent^Basel!
2) PPT Aoentti»Base1_Roo!

\ b) CodetallCotuJitions Agen j
W) SHOP Agent@Base1_Ro

Sends a request to SHOP Agent, askinfl for solvi
ng a planning problem.

Wake-up agent

Pause

!l
: Debug

Log Messages
J Echo CC Answers
: Echo Message.Q XFers

Status: "CodeCallConditions Agent" run lime data cleared...

Figure 3.12. Agent Roost

3.3.2 Available tools and documentation

A tutorial about IMPACT can be found at h t t p : / / w w w . c s . u m d .
e d u / p r o j e c t s / i m p a c t . In particular, there is an IMPACT soft
ware library user documentation, which is available at h t t p : / /www. c s .
u m d . e d u / p r o j e c t s / i m p a c t / D o c s , and includes: (1) implementation
overview, (2) introduction of agent instantiation life cycle, (3) agent defini
tion syntax, (4) sample agent development, and f^J selected user and devel
oper code API JavaDocs.

3.3.3 Standards compliance, interoperability and
portability

The implementation code consists of three main components: the IM
PACT AgentDE (containing a series of compilers, written in Java, which
render an agent instantiation from a given agent definition (text)); the IM
PACT Yellow-pages server, written in Java and C, provides agent directory
lookup services necessary for agent construction and run-time communica
tion; the IMPACT Roost, written in Java, provides a run-time environment
for IMPACT agents to work, sleep, or travel the network. Most of the imple-

http://www.cs.umd
http://umd.edu/projects/impact/Docs

Final Remarks 93

mentation code is written currently compliant to the Java 1.2 specification.
This provides maximal code portability across operating systems and plat
forms. It does, however, require loading Java 1.2 runtime library on the
target platform. The existing implementation code libraries appear fairly
generic. The code should prove readily adaptable to most micro-device en
vironments through cross-compilation techniques. Some applications have
been created to show the interoperability between IMPACT agents and IBM
Aglets.

Future enhancements include an enhanced Roost network viewport for
debugging global agent communities distributed across multiple roosts, and
Java Jini enabled server front-ends to facilitate network configuration.

3.4 Applications supported by the language and the
platform

The IMPACT project has built applications in the following areas:

1. US Army Logistics Integration Agency's "Virtual Operations Cen
tre" involves the integration of a wide variety of distributed, heteroge
neous databases, together with diverse alert, analysis and visualisation
requirements.

2. US Army Research Laboratory's "Combat Information Processor"
project where IMPACT is used to provide yellow pages matchmak
ing services, and is also providing alert mechanisms for multiple users
with diverse battlefield monitoring requirements.

3. Aerospace applications where IMPACT technology has led to the de
velopment of a multi-agent solution to the "Controlled Flight into
Terrain" problem which is the single largest cause of human fatalities
in aircraft crashes (Washington Post, Feb. 7, 1998).

4. US Army STRICOM's JANUS project where IMPACT technology is
used to analyse massive amounts of simulation data.

5. Coordinated route and flight planning applications over free terrain.

New applications in the banking and finance sector are under considera
tion. In addition, IMPACT has been used for student projects in academia,
including University of Maryland, Technical University of Vienna, The Uni
versity of Manchester, and Clausthal Institute of Technology.

3.5 Final Remarks

IMPACT has been started by VS Subrahmanian in 1997 and its core has
been developed in a series of papers [6, 78, 77^ 79] and also in a book [209].

94 IMPACT

Acknowledgments

Several examples and screenshots Included here are taken from the book
and the following papers [63, 65, 71, 61]. The authors would like to thank
their co-authors for their permission to use material from these papers.

Chapter 4

CLAIM AND SYMPA:
A PROGRAMMING ENVIRONMENT FOR
INTELLIGENT AND MOBILE AGENTS

Amal El Fallah Seghrouchni and Alexandru Suna

LIP6 • CNRS UMR 7606 University of Paris 6
8, Rue du Capitaine Scott
75015, Paris
{AmaI.EIfallah.Alexandru.Suna} @lip6.fr

Abstract The multi-agent systems (MAS) paradigm is one of the most important and
promising approaches to occur in computer science during the 90s. However,
for an effective use of the agent technology in real life applications, specific
programming languages are required. CLAIM is a high-level agent-oriented
programming language that combines cognitive aspects such as knowledge,
goals and capabilities and computational elements such as communication,
mobility and concurrence in order to reduce the gap between the design and
the implementation phase. CLAIM has an operational semantics that is a first
step towards the verification of the built MAS. The language is supported by
a distributed platform called SyMPA, implemented in Java, compliant with
the specifications of the MASIF standard from the OMG, that offers all the
necessary mechanisms for a secure execution of a distributed MAS. CLAIM
and SyMPA have been used for developing several applications that proved the
expressiveness of the language and the robustness of the platform.

Keywords: Agent-oriented programming, mobile agents, ambient calculus.

4.1 Motivation

The emergence of autonomous agents and multi-agent technology is one
of the most exciting and important events to occur in computer science dur
ing the 1990s. The main focus of the multi-agent systems (MAS) community
has been on the development of informal and formal tools {e.g. consortiums

96 CLAIM and SyMPA

such as FIPA^ or OMG^ have attempted to propose a wide range of stan
dards to cover the main aspects of MAS engineering), concepts (e.g. concern
ing mental or social attitudes, communication, co-operation, organization),
techniques (e.g. AUML^) and modal languages (e.g. BDI[182]) in order to
be able to analyze and specify MAS. Unfortunately, the design of declarative
languages and tools which can effectively support MAS programming and al
low implementing the key concepts of MAS remained at an embryonic stage.
In addition, the potential of MAS technology for large-scale, cross-functional
deployment of general purpose in industrial setting has been hampered by
insufficient progress on infrastructure, architecture, security and scalability
issues.

Recently, the mobile agents technology (the mobility is seen as a transver
sal property for agents) tries to improve the systems' performances since
it provides powerful programming constructs for designing distributed and
mobile applications. Thanks to the mobile agents paradigm, it becomes easy
to design active entities that move over the network and perform tasks on
hosts {target sites or computers)^ thus reducing the network traffic and in
creasing the scalability and the flexibility of such applications.

Despite the plethora of approaches and platforms that have been proposed
for mobile agents, the main focus remains on the development of mobile ob
jects and processes. Mainly implemented using object-oriented frameworks,
the mobile agents provide a collection of extensible classes modelling simple
concepts of agent that are specified rather at the implementation level.

For an effective use of the MAS paradigm, we claim that specific high-
level programming languages are required. The programming environment
presented in this chapter is motivated by three main objectives:

1. Propose an agent oriented programming language that:

• helps the designer to reduce the gap between the design and the imple
mentation phases; i.e. the designer should think and implement using
the same paradigm, namely through agents;

• allows the representation of cognitive skills such as knowledge, beliefs,
goals and more complex mechanisms such as planning, decision mak
ing and reasoning;

• meets the requirements of mobile computation in order to support the
geographic distribution of complex systems and of their computation
over the net;

^FIPA on-line : http://www.fipa.org
^OMG : http://www.omg.org
^AUML : http://www.auml.org/

http://www.fipa.org
http://www.omg.org
http://www.auml.org/

Language 97

• allows the dynamic adaptability and reconfiguring of the MAS.
Thanks to mobility, to the hierarchical representation of agents and
to the language' features, our agents (and consequently the MAS) are
able to reconfigure themselves autonomously, to acquire new knowl
edge and capabilities and to dynamically adapt their structure in accor
dance with the changes in the environment and the demands of target
applications.

2. Make possible the verification of MAS. Indeed, at a short term we would
like an agent-oriented programming language that allows the verification of
the built systems. A first and necessary step towards developing methods
for verifying formally agent-oriented programs is the design of a suitable
operational semantics. It opens the way to the application of standard tech
niques like type systems or model-checking to the setting of agent-oriented
programming.

3. Provide a distributed platform that supports the proposed language and
the deployment and secure execution of mobile MAS.

To reach our objectives, we proposed a high-level declarative language
called CLAIM (Computational Language for Autonomous, Intelligent and
Mobile agents) [81] that combines the main advantages of the intelligent
agents paradigm (e.g. intelligence, autonomy, communication primitives and
cognitive skills) with those of the concurrent languages such as the ambi
ent calculus [41] (e.g. concurrence, hierarchical representation of agents and
mobility primitives). CLAIM has an operational semantics [83] that is a
first step towards the verification of the built MAS. The language is sup
ported by a distributed platform, called SyMPA (SYstem Multi-Platform of
Agents) [211] that offers all the necessary mechanisms for the deployment of
distributed MAS designed in CLAIM and for its secure execution.

4,2 Language

CLAIM is a high-level declarative language allowing to design intelligent
and mobile agents.

4,2.1 Specifications and Syntactical Aspects

A MAS in CLAIM is a set of hierarchies of agents distributed over a net
work. The notion of hierarchy in our approach can be also seen as a mem
bership relation. Thus, "an agent is sub-agent of another agent" means that
he is contained in the higher-level agent. A CLAIM agent is a node in a hier
archy; he is an autonomous, intelligent and mobile entity that can be seen as
a bounded place where the computation happens and has a parent, a list of

98 CLAIM and SyMPA

local processes and a list of sub-agents. In addition, an agent has intelligent
components such as knowledge, capabilities, goals, that allow a reactive or
proactive behavior.

In CLAIM, agents and classes of agent can be defined using:

defineAgent agentName {
authority = null; \ agentName;
parent = null; \ agentName;
knowledge=null; \ { (knowledge;)-^}
goals = null; \ {(goal;)+}
messages = null; \ { (queueMessage;)+}
capabilities = null; \ { (capability;)+}
processes = null; \ {(process D'''process}
agents = null; \ {(agentName;)-^}

}
defineAgentClass className ((argj'') {,„}

An new agent can be instantiated from an already defined class using the
primitive:

new Agent namexlassName ((argj^'j

In CLAIM, variables (denoted by ?x) can be used to replace agents' names,
messages, goals, etc. There are global (for a class) or local (to a capabil
ity) variables. The agents' components we propose allow representing the
agents' mental state, communication and mobility and will be presented be
low. Most of the components are null in the definition (e.g. parent, messages,
etc.) but will evolve during the agent's execution.

An agent is uniquely identified in the MAS by his name and he belongs to
an authority. Thus, the authority component is instantiated at the agent's
creation and is composed of the authority and the name of the agent that has
created the current agent. This component is necessary for security reasons
(e.g. for authentication).

The agents in CLAIM are hierarchically represented, like the ambi-
ents [41]. So an agent's parent is represented by the name of the agent that
currently contains him. When an agent is created, his parent and his author
ity indicate the same agent; after the migration, his parent will change, but
his authority will always be the same.

The knowledge component contains pieces of information about other
agents (i.e. about theirs capabilities or their classes) or about the world (divers
propositions). This knowledge base is a set of elements of knowledge type,
defined as follows:

knowledge ::= agentName(capahilityNameymessage,effectJ
I agentNamexlassName
I proposition

Language 99

We can notice that the knowledge about other agents has a standard format,
containing the name of the known agent and his class or capability. In addi
tion, the user can define his own ontology of information about the world,
represented as propositions containing a name and a list of arguments.

proposition = nafne{argi, arg2, ,.>, argn)

Propositions can also be used for denoting goals or messages.
The current goals of an agent are represented as user-defined propositions,

in accordance with the current application. The agent will try to achieve his
goals using his capabilities or services offered by other agents.

The CLAIM agents communicate asynchronously using messages. Every
agent has a queue for storing the received messages. The messages are pro
cessed using a FIFO policy and are used to activate capabilities. A message
from the queue contains the sender of the message and the arrived message:

queueMessage .-.•= agentName > message

An agent can send messages to an agent {unicast)^ to all the agents in a class
{multicast)^ or to all the agents in the system {broadcast)^ using the primitive:

send(receiverymessageX where the receiver can be:
- this - the message is sent to himself;
- parent or authority - the message is sent to the agent's current parent or

authority (the agent that created the current agent);
- agentName - the message is sent to the specified agent;
- all - the message is sent to all the running agents;
- ^Ag.'className - the message is sent to all the agents that have been instan

tiated from the specified class of agents;

In CLAIM there are three types of messages:

1. propositions, defined by the designer to suit the current application and
used to activate capabilities;
2. the messages concerning the knowledge, used by agents to exchange
information about their knowledge and capabilities. These messages have a
predefined treatment, but a designer can write capabilities to treat them in a
different manner:

- tell(knowledge) - to give an agent a piece of information; the specified knowl
edge is added in the agent's knowledge base.
- askAllCapabilitiesO - an agent requests all the capabilities of another agent;
The later inform the first agent about all his capabilities, using the tell prim
itive.
- asklfCapability(capabilityName) - an agent asks another agent if he has the
specified capability; If the later has this capability, he confirms using the tell
communication primitive.

100 CLAIM and SyMPA

- achieveCap ability (capability Name) - an agent requests from another agent
the execution of the specified capability; if this capability's condition is veri
fied, it is executed.
- askEffect(effect) - to ask the achievement of an effect from another agent.
- doneEffect(effect) - to confirm the accomplishment of an effect.

3. the mobility messages are used by the system during the mobility op
erations, for asking, granting or not granting mobility permissions. Their
treatment can be redefined by the designer in order to control the mobility.
They are represented at the semantical level by co-actions. In the ambient
calculus, the only condition for the mobility operations is a structure condi
tion (e.g. for the enter operation, the involved agents must be on the same
level in the agents' hierarchy). In CLAIM, we kept this condition, but we
added the mobility messages for an advanced security and control.

The capabilities are the main elements of an agent and dictate his
behavior. They represent the actions an agent can do in order to achieve
his goals or that he can offer to other agents. A capability has a message of
activation, a condition, the process to execute in case of activation and a set
of possible effects:

capability .v= capabilityName {
message=null; \ message;
condition = null; \ condition;
do {process}
effects = null; \ { (effect;)+ }

}

To execute a capability, the agent must receive the activation message and
verify the condition. If the message is null, the capability is executed
whenever the condition is verified. If the condition is null, the capability
is executed when the message is received. A condition can be a Java
function that returns a boolean, an achieved effect, a condition about agent's
knowledge or sub-agents, or a logical formula:

condition ;;=]^\^(ohjectNamefHnction(argsJ)
agentName. effect
hasKnowledge(knowledge)
ha$Agent(agentName)
not(condition)
and(condition,(condition)+)
or(condition,(condition)+)

An agent concurrently executes several processes. One of these concur
rent processes can be a sequence of processes, an instruction, a variable's
instantiation, a method implemented in other programming language (e.g.
Java), the invocation of a known Web Service, the creation of a new agent

Language 101

or the removal on an existing one, a mobility operation or a message
transmission:

process .'.'^^ process.process
I instruction
I h = (value \ Javafohj.methodfargsJ))
I Java(ohj.method(args))
I WebServicefaddresSy method(args))
I new Agent agentNamexlassNamef (argy)'''')
I ^^7/ (agentName)
I opew (agentName)

I jw (mobilityArgument,agentName)
I o«^ (mobilityArgumentyagentName)
I mo-ye (mobilityArgumentyagentName)
I send (receiverymessage)

We defined two instructions:
forAllKnowledge(knowledge) { process } - execute the process for all

agent's knowledge that satisfy a criteria (e.g. all agent's knowledge about a
certain agent).

forAllAgentsfagentNameJ { process } - execute the process for all the
agent's sub-agents that satisfy a criteria (e.g. all the agent's sub-agents that
belong to a certain class).

The mobility primitives have the same utilization as in the ambient calculus
but they have been adapted to intelligent agents. Hence, an agent can open
the borders of one of his sub-agents (open) or can open his own borders
(acid); in both cases, the parent of the open agent inherits knowledge,
capabilities, processes and sub-agents from the open agent. Also, an agent
can enter an agent form the same level in the hierarchy, i.e. having the same
parent (m), can exit the current parent (put) or can migrate into another
agent (move). With respect to the hierarchical representation of agents,
these operations allow flexible reconfiguring of MAS and dynamic gathering
of capabilities and knowledge.

An important problem is the migration's granularity, and the question
is "who can migrate?". We specify this using the mobility argument that
allows the migration of the agent himself, of a clone of the agent or of a
process:

mobilityArgument = this \ clone \ process

The agent component represents the agent's current sub-agents.

The CLAIM language offers to the agents' designer the possibility to de
fine two types of behavior for the agents:

The reactive behavior (or forward reasoning):

102 CLAIM and SyMPA

• get a message from the queue (the first or using a selection heuristic);

• find the capabilities that have this message of activation and replace the
variables In the body of the capability;

• verify the conditions of the chosen capabilities;

• execute the process of the verified capabilities; let us note that several
capabilities can be concurrently activated.

The pro-active behavior (or backward reasoning):

• get a goal from the list of goals (the first or using a selection heuristic);

• find the capabilities that allow to achieve this goal;

• verify the conditions of the chosen capabilities; If the condition is an
agent's effect, add this effect in his list of goals; if the condition is other
agent's effect, request the execution of the corresponding capability;

• execute the process of the verified capabilities.

Before reading the next section, about CLAIM'S semantics, the reader can
see in section 4.4 a list of applications implemented in CLAIM, one of them
presented in details in order to illustrate the language's specifications.

4.2.2 Semantics and Verification

The specifications of the CLAIM programming language, presented in the
previous section, are used by the programmer to define agents and classes
of agents. Nevertheless, these specifications are complex and the reduction
rules of the semantics using the same notations are difficult to read and un
derstand. That's why we are using another formalism (equivalent with the
specifications) to re-write the syntax and the operational semantics of the
language, semantics that must take into account the mobility, the communi
cation and the specificity of cognitive agents. All the components presented
at the specification level will be also represented at the semantical level, with
a different notation, to facilitate the understanding and the readability of the
reduction rules.

A MAS in CLAIM is a set of connected hierarchies of agents. At the se
mantical level, a MAS (or a CLAIM program) is a set TT of running agents
(deployed on several sites).
We consider that oc, (i, n, ... are agents' names. We also consider that a\,a2,
... are agents (with all the components) belonging to IT. The goals, the mes
sages, the capabilities' effects and the pieces of information about the world
are propositions containing a name and a list (possibly empty) of arguments,

Language 103

denoted by: p = n(fi, 2̂/ •••/ ̂ m)- The other notations will be explained as
they are introduced.

A program is: TT = ai || Ui \\ ... || cin,n > 0. The notation || represents
concurrent agents inside the MAS, running on the same computer or on dif
ferent connected computers.
An agent: Uj = {a, n, K, G, G', M, C, P, S, £) , where:

- a is the agent's name;
- n is the name of the agent's current parent;
- K is the knowledge base, containing pieces of information about the world
(represented as propositions) or about other agents' capabilities (containing
the name, the message and the effect) or classes.

^ = {h,ki,'",K],ki = Pi I oci{ni,mi,Ei) \ Uf : elf
- G is the agent's set of current goals (not treated yet); this list can contain
not only agent's goals, but also goals requested by other agents, denoted by
e.g. I5.g
- G' is the agent's set of currently processing goals;
- M is the messages queue containing a set of pairs representing the sender
and the message. The received messages are treated sequentially:

M = 0 I ai{mi}.a2{m2}....;
- C is the agent's list of capabilities. A capability has a name (n/) and triggers
a process (p/) according to a message (m/) if a (optional) pre-condition (jQ/) is
verified. A capability may have eventual effects (post-conditions) (£/):

Ci = {ni,mi,ai,ipi,Ei) e C
A condition can be a Java method that returns a boolean, an effect (used
for the goal-driven behavior), a condition about the agent's knowledge, sub-
agents or effects, or a logical formula. We defined a function V : (H, TT) —>
{true, false} (detailed later), that evaluates the boolean value of a CLAIM
agent condition in the context of a running MAS.
- P is the list of the agent' concurrent running processes (the notation | rep
resents concurrent processes inside an agent): P ::= pi \ pj \ ... \ pj^

- S is the set of names of the agent's sub-agents;
- E is the list of achieved goals or effects.

A process may be executed either if it is explicitly coded in the agent or as
a result of a triggered capability or in order to achieve a goal. Several pro
cesses can be concurrently executed by an agent. One of these concurrent
processes can be, as seen in the previous section, a (possibly empty) sequence
of processes, a message transmission, the creation of a new agent (belonging
to an already defined class) or the removal of an existing one, a mobility op
eration (we added co-actions, represented in the previous section as mobility

104 CLAIM and SyMPA

messages), an effect achievement, a variable instantiation or an instruction
(the last two). We do not treat at the semantical level the Java methods and
the Web Services invocations.

p/::= 0 I PyPk \send{a,m) \
new Agent {a, 0 , K, G, 0 , 0 , C, P, 0 , 0) |
mm _
in{l3) I in_{a) \
out{l5) I out{a) I
move{(5) \
open{(5) I 'open{cx) \
acid I acid{l3) \
addEffect{ei) \
7x = value \
forAllKnowkedge(k){pj} \
f or All Agents {oci){pj}

Additional notations

Propositions are important notions in our language. A proposition has a
name and contains a set of arguments: p = /^(h/ 2̂/ •••/ ̂ m)- They are used
to represent goals, messages, information about the world and effects. The
propositions may contain variables (denoted by ?x) as arguments. We say
that a proposition is instantiated if it contains no variables (all the arguments
are instantiated).

D E F I N I T I O N 4.1 A proposition.p = n{ti,t2,>^^,tm) is to^dX with another
proposition p' = n'[ty t'2,.../ 0̂) (notation p = p') if p and p' are instantiated
andn — n'ym = oand\/i € {1,...,m},f/ = fj.

D E F I N I T I O N 4,2 A proposition p belongs to a set A (e.g. G, E) of propositions
(notation p £ A) if3p' G A and p = p\

D E F I N I T I O N 4.3 A proposition p = n(fi, ^2/ .•./ tm) corresponds to another
proposition p' = yi'[t\,i^2, ...,i^^ (notation p = p') if p' is instantiated and
n =z n\m = 0 andMi G {1,. . . , m}, ti = t[or ti is a variable.

D E F I N I T I O N 4.4 A proposition p has a correspondent in a set A (e.g. G, E)
of propositions (notation p ^E A) if^p' G A and p = p'.

These definitions also apply to all types of knowledge, with slight differences
and with the same notations.

Conditions

The function V (as seen before, V : conditions —> {true,false})
evaluates the boolean value of a capability condition in the context of a

Language 105

running MAS. We will use the notation V{Q.),

Vinull) = true

n

true if e/̂ ~G £

T//r fr^i • r \\ J ^^^^ if Java rcturns true V{]ava{Obj.func)) = { ^^^^^ J ^

V{this.e,) - ^ ^^^^^ ^^^^

(true if3fly=: {(5,...,Ej) eU
V{(3.e„)= I mdek-^eEj

[false else

V{husKnowkedse(k)) = {
false else

ViHasAsentm = {%:, I f ^

v(notia)) = -(v(a))
V(and{Cli,Cl2,...,Clm)) = V{CL^) A V(Cl2) A ... A V(CLm)

v(or(cii,ci2, ...,a^)) = y(ai) v 1/(02) v... v v(CLm)

Reduction rules

We recall that a program in CLAIM contains a set of concurrent running
agents: TT = ai \\ ai || ...^«, where the notation || represents concurrent
running agents in the MAS. For representing the semantics of CLAIM pro
grams we choose an operational approach [169] consisting in a transition
relation —> between states of a program. We use a different notation, giving
a set of reduction rules, from an initial state of a program, verifying certain
conditions, to another stable state, after the execution of actions by agents
in the program: ^ (instead of fl —> TT').

For readability reasons we omit the unchanged components of agents. All
the actions are considered to be atomic. At each step of an agent's execution,
either a message is treated via a capability or a running process is executed or
a goal is processed.

Terminal configuration

A very important notion for studying a program behavior is the terminal
configuration. We give two related definitions, appropriate for CLAIM
programs. The first one defines the termination of a CLAIM program, using
the second definition that defines the termination of a CLAIM agent.

DEFINITION 4.5 (PROGRAM TERMINATION) A CLAIM program is in a
terminal configuration (denoted by T\t) if it contains no agents (i.e, T\t = 0) or
if all its agents are in terminal configurations (see next definition),

D E F I N I T I O N 4.6 (AGENT TERMINATION) A CLAIM agent is in a termi

nal configuration if he has no message or goal to treat and no running process.

106 CLAIM and SyMPA

Ex. Ui = {a, n, K, 0 , 0 , 0 , C, 0 , S, £)

Even if an agent can still receive messages that activate capabilities, we call
this kind of configuration a terminal configuration.

Message transmission

Using the send primitive and the language's possibilities, an agent can send
a message to himself or to another agent, to all the agents belonging to a class
(multicast), or to all the agents in the MAS. The message is added at the end
of the messages queue M (rule 4.1).

{a,send{(5,m)) \\ {15, M) -^ {a,0) \\ {(5,M.a{m}) (4.1)

Message processing

The arrived messages are processed sequentially, following a FIFO policy.
The language offers to the designer the possibility to create his own messages,
or to use several pre-defined messages {e.g. tell, asklfCapability, askAllCapa-
bilities, achieveCapability, askEffect, doneEffect), that can be used by agents to
exchange information about their capabilities, effects and knowledge base.
These messages have a pre-defined treatment. We present next (rule 4.2) the
treatment of the tell message, used by an agent to send a piece of information
to another agent. By default, the information is added in the knowledge base.
Nevertheless, the agent's designer can write a capability having this message
of activation, for treating it someway else {e.g. verifying the trust level of the
sender).

{^,K,oc{tell{k))) -^ (/3,KU{fc},0) (4.2)

If the triggering message of a capability arrives and its condition is verified,
the associated processes are executed and the effects are updated (rule 4.3).
When a message arrives, the variables in the condition, process or effects
are replaced with the corresponding values sent in the message. In the next
reduction rule (4.3), we consider that if the capability's message m/ has a list
of variables-attributes instantiated with real values in the received message,
and if jQ/, p/ and ei G E/ contains as attributes some of the variables x^
from m/, then Oj, p\ and e\ G E/ will have the variables replaced with the
corresponding values from the received message.

(^, (K{m}, C, 0) , and 3{ni, m/, O/, pi, Ej) e C, nti ̂ m and V{C1'-) = true
{(3,0,C,p'i-addEffect{e[).,..addEffect(e'j)), e[...e'- e EJ ^'^' ''

If there are several capabilities activated by a message, the rule above is
applied concurrently for each of these capabilities.

A message that does not have a corresponding capability or whose condi
tion is not verified is simply removed from the queue, without any change
in the agent's state.

Language 107

Capabilities without messages

The CLAIM language gives the possibility to the agents to have capabili
ties that are not started by a received message, but only by a condition {e.g.
concerning the internal state, a certain moment in time, etc.). If a capability
does not have a message, it is executed whenever the condition is verified
(rule 4.4).

(13, C, Q)), and 3(n,v Q), O-j, Pi, £/) G C, Vjaj) = true
{l5,C,Pi'addEffect{ei)....addEffect(ej)), ei...ej G £/ ^ ' •^

Agents' creation and removal

When an agent is created using the new Agent operation, his components
are instantiated from an already defined class (rule 4.5).

(a, newAgent{^, 0 , K, G, 0 , 0 , C, P, 0 , 0) , 0)
(a,0,{i3}) II (/3,a,K,G,0,0,C,P,0,0>

An agent can completely remove one of his sub-agents:
{cc,7T,kill(l3),Sa) II {(5, cc),where 15 G Sg

(a,7r,0,S«-{/3}>

(4.5)

(4.6)

Mobility operations

The mobility primitives are inspired from the ambient calculus. The re
duction rules will be accompanied for these operations by a graphical repre
sentation that emphasizes the changes in the MAS hierarchy. Using zn, an
agent can enter another agent from the same level in the hierarchy (rule 4.7
and Figure 4.1) and using out, an agent can exit his parent (rule 4.8 and Fig
ure 4.2). Unlike the ambient calculus, where there is no control, we added an
asking/granting permission mechanism, represented in term of co-actions,
in the same spirit with the safe ambients [136], with the main difference that
one can specify the agent to whom he will grant a permission. By default, a
CLAIM agent will receive these permissions, unless another agent is explic
itly programmed to refuse to give them.

{n,Srx) II {oc,nAn{^)) \\ {l5,nM^)^Sp),a,[5 G S^
{n, Sn - [oc]) II {a, 13,0) || {(3, n, 0 , S^ U {«}) ^ ' ^

{7i,Sn) II {(K,^,out{(3)) II {^,7i,Wt{a),S^),(3eSn,oceS^
(71, Sn U [oc]) II {oc, n, 0) II (^, n, 0 , S^ - {«}) ^ ''^

In both cases, if the structural condition is not verified or if the agent does
not receive the permission (i.e. the other does not have the correspondent
co-action), the mobility process waits until the operation is possible.

The move mobility operation is a direct migration to another agent, with
out verifying a structure condition (rule 4.9 and Figure 4.3). Nevertheless,
the operation is subject to the in and out permissions.

{n,'oui{(x),Sn) II {a,7T,move((3),Sa) \\ {(3,m(a), Sp,), oc e Sn , .
{n, Q), Sn - {«}) II (oc, (3,0, S«) II (13,0,SpU{a]) ^' ^

108 CLAIM and SyMPA

Pe = in(x)-p|q I
|>> = p|q]

Figure 4.1. The enter operation Figure 4.2. The exit operation

5 @ &_i'̂ '̂̂ pi3l fp>=̂ iq'̂ 6 %

Figure 4.3. The move operation

The open and acid actions are used as in the original ambient calculus,
respectively for opening one of the sub-agents (rule 4.10 and Figure 4.4), and
for opening his own boundaries (rule 4.11 and Figure 4.5). Nevertheless,
they have been adapted to intelligent agents. Hence, not only the running
processes and the sub-agents of the open agent, but also his knowledge base
and capabilities, become components of his parent. In this way, an agent can
dynamically gather new knowledge and capabilities and can adapt himself
to the requirements of an application. These operations are controlled by
co-actions and allow a dynamic reconfiguration of a MAS.

{a,KaXa,P\open{[5),Sa) \\ {(5,a,K,iXi3rQ \open{a),S,i) \\ ap
where (5 € S«,fl^ = {y^,(^),^y^ € S^

{(x,Koc^K^,Ca\JC^>P I Q, S« U Ŝ > II a^, where a^ = {y^,CK),'iy(i G S^

{oc,Ka,Ca,P\^dd{^),Sa) || {^, (X, K^Xp, Q \ acid, S^) \\aii
where /3 e Scc.a^ = {r(i, I3),\frii G S^

(4.10)

(4.11)
(a,i<:«Ui<^,C«UC^,P| Q,S«US^) ||fl^,wherefl^ = (r^,«),Vr/3 6 S^

All these mobility operations are considered atomics at the semantical level
and are executed in one step.

Instructions
There are two instructions in CLAIM. The first one, f orAllKnowledge,

allows to sequentially execute a process for all the elements in the knowledge
base verifying a criterion (rule 4.12). The second instruction, for All Agents^
allows to execute a process for all the sub-agents verifying a certain criterion
{e.g. all sub-agents - rule 4.13, or all sub-agents belonging to a specific class

file:////aii

Language 109

• I f / V f , = open(p).p|q:/

fZ^

4 ©̂ 5© ^®>^§

\'lC>C,uCg

«0 ^ ^ ^ .:=K

xQ ^
f^ = acid.piq̂

C'̂ = Ĉ u Ĉ

P'.^PJplq

^ 6̂̂ 0

Figure 4,4. The open operation Figure 4.5, The acid operation

- rule 4.14). The notation Pi{xi/x} symbolizes the substitution of all the
occurrences of x with X/ (or of the variables in x with corresponding values
from Xi) in p.

{a, K, forAllKnowledge(k) {pj})
{oc,K,pi{ki/k}.,..pi{kj/k}),\/ki G X,l < / < j,k^ki

{a,K,forAllAgents{?x){pi},S)

{cx,K,pi{n/r}....Pi{rn/r}.s),\/ri eSA<i<n
{oc,K,forAllAgents{?x : cl){pi},S),Sci C S^Yi G Sci,Yi : cl,Yi belongs to the class c/

{oc.K,pi{ri/r}.,.,pi{rj/r},s),\fy, e SdA <i<j

(4.12)

(4.13)

(4.14)

Updating effects

The effects are added in the effect list after the successful execution of the
capability's process. If the achieved effects correspond to goals, they will be
removed from the lists of not treated and processing goals.

{oc,G,G',addEffect[ei),E)
{a,G-{e/},G'-{%},0,£U{e,}) (4.15)

The goal-driven behavior

Concurrently with the reactive behavior, in which processes are executed
when messages are received, an agent has a proactive behavior, accomplished
using the capabilities' effects. When a capability has an effect corresponding
to one of his goals, the agent will try to execute the capability. If its condition
is true, the corresponding process is executed, (rule 4.16, where pJ, Hj and
e'-^.-.e': have the variables replaced with values from g),

(«. {g]> 0 . C, 0), 3{si, mj, dj, Pi, Ej) e C, 3ei € £,-, e/ ^ g, V(Q.\) =^ true
{oc,(2),{g],C,p'i-addEffect{e[),.,.addEffect(e'-)),e\.,.e'.eE, ^ ' ^

If the condition allowing to achieve the goal contains an agent' effect not
achieved yet, the agent will try first to achieve this effect, by adding it in his
goals list. In the same time, the fist goal is moved from the current goals list

110 CLAIM and SyMPA

to the processing goals (rule 4.17).

{«,te},0,C),3(s,-,m/,a/,p/,£/> G C,3ei G Ei,ei^g,
V(D.i) = false, Cli conmns this.Ci

^ ') J ' ~ (4.17)
{<^>{e'i}r{g],C)

If the condition allowing to achieve the goal contains an effect of another
agent, the effect is requested to the other agent using a specific message,
asfcE//ecf (rule 4.18).

(«/ {g]> 0 / C 0) , 3(s/, nii, O/, Pi, Ei) G C, 3e/ G E/,e/ ^ ^,
V(Cli) = false, Cli contains B.ei ^ " J ' ' (4.18)

{oc,(d,{g],C,send{^,askEffect{e'.)))

When an agent receives an askEffect message, if he does not have a capabil
ity with this message, meaning that the agent is programmed to treat differ
ently the requests for services from other agents, he will add the demanded
effect to his list of goals (rule 4.19).

((5,0,(x{askEffect(ei)}) -> (/3, {a:.^/},0) (4.19)

The treatment of this new goal, resulting from another agent's demand, is
done in the same way as his own goals. The only difference is that after the
successful achievement of this external goal, a doneEffect message is sent to
the agent that requested it (rule 4.20).

{l3,G,G\addEffect(ei),E), and Ba.ej e G or Ba.ej G G'
{I5,G- {ei},G' - {ei},send((x,doneEffect(ei)),EU{ei}) ^ ' ^

The treatment of a doneEffect message consists in removing the effect from
the goals lists and adding it in the effect list, similar with the addEffect
process.

Variable instantiation
The language allows to instantiate variables that will be used in the fol

lowing processes in the current sequence (rule 4.21).

{a,?x = v.pi) —> {a,pi{v/?x}) (4.21)

Sequence

If an agent can evolve from a state containing a process pi into another
state containing the process p-, then the agent containing pi followed (in
sequence) by another process q is able to evolve into pj followed by q.

if {a. Pi) -^ {a, p'i) then {a, pi.q) -^ {a, p^.q) (4.22)

Language 111

Java and Web Services

As seen in the previous section, the programming language offers addi
tional features, for calling Java methods or for invoking Web Services, that
cannot change the components of an agent and we do not treat them at the
semantical level.

Verification of programs: a discussion

The operational semantics presented above is just a first necessary step
towards the formal verification of multi-agent programs written in CLAIM.
The formal definition of an agent is more complex than the other formalisms
treating mobile processes and the verification become much more compli
cated. We are currently studying aspects as programs' correctness (desirable
properties that programs should verify [5]) and verification and we provide
here a brief discussion about the characteristics of CLAIM programs. A
CLAIM program is distributed and concurrent, containing agent communi
cating asynchronously and that do not share common variables. We have
already presented the notion of program termination. We continue in this
section with other important properties.
Determinism: A program is determinist if for any given state, there is ex
actly one next possible computational state. CLAIM programs are implicitly
non-deterministic, because starting from a state, a program can evolve in sev
eral different states (see below).

The next configuration is a valid CLAIM program.

(T,SrU{7r}> II (7r,^(^).pfc,S^Uja,^}) ||
(a,7T,in{(3),pi) \\ {(5,7r,out(n).pi | m(a).;?y, S)̂

This configuration can evolve (with equal probabilities) in two different con
figurations. If a executes in:

{T,SrU{7T}) II (n,Wt{l5).pk,SnU{(5}) \\
{a, (3, Pi) II ([5,n,outin).pi\pi,SpU{a})

or, if out is executed by /3:

{T,SrU{7T,(3}) II {7l,pj„SnU{a}) \\
{cx,n,in{l3).pi) \\ {(5,T,pi |m(a).py,S^)

In the first case, (5 will still be capable of executing owf(7r), but in the
second case, a no longer can enter /3, because he is not at the same level in
the hierarchy anymore. Nevertheless, we guarantee at the implementation
level that this kind of program will evolve in a stable state (one of the two
in our example), in concordance with the reduction rules.
Deadlock: A configuration of a program is called deadlock if the configura
tion is non-terminal and there is no possible successor configuration (using
a reduction rule). In CLAIM, because of the needed structure condition

112 CLAIM and SyMPA

for the mobility operation, an agent may try infinitely to execute an in
operation, for entering an agent that is not in his neighborhood (and may
never be), and consequently the next processes (in the same sequence)
are blocked. However, we are not considering this as being a deadlock
configuration, because the destination agent may be sometimes in the future
in the neighborhood thus verifying the structural condition and unblocking
the execution.
Correctness: A program is correct if it satisfies the intended input-output
relation. To prove the correctness of CLAIM programs in syntax-directed
manner, we are using a proof system. A proof system is a finite set of axiom
schemas and proof rules. An axiom is a correctness formula representing
the intended next states of a program starting from initial states. These
axioms correspond to the reduction rules introduced earlier (note that we
did not present in this chapter all the reduction rules; however, the proof
system contains them all). A correctness formula is true with respect to
the operational semantics reduction rules. Our current work tackles the
soundness and the completeness of the proof system.
Structural congruence: As a first step towards the verification of MAS
built using CLAIM, we studied the structural congruence of programs. We
defined a CLAIM program as a set of running agents. Two programs are
equivalent if they exhibit an identical behavior for an external observer.
Following this reasoning, two programs are equivalent if they have equiva
lent running agents. That is, the same agents, with the same name, parent,
knowledge base, goals, messages, capabilities and with equivalent running
processes. So, the equivalence between programs is reduced at equivalence
between processes inside agents. Processes are grouped into equivalence
classes using the structural congruence relation = . Its properties are
presented below.

V = V

p = q,q = r=>p = r
p\0 = p
p.O = p

p\q = q\p
{p\q)\r = p\(q\r)
p = q=^p\r = q\r
p ^ q =^ p.r = q.r
p = q =^ r.p = r.q

4,2,3 Software Engineering Issues

The language includes the notion of class of agents. Generic classes can
be defined and instantiated later. In this version of the language there is no
inheritance as in object-oriented programming, but we intend to offer the
possibility to define classes of agents that are sub-classes (specializations) of
other classes. Nevertheless, at the agent level, CLAIM offers two primitives,

Platform 113

open and acid, allowing an agent to gather sub-agents, processes, knowledge
and capabilities from an open sub-agent, thus allowing a dynamic reconfigur
ing and adaptability of a MAS. We also developed several libraries of classes
of agents for different domains, that can be parameterized and used by de
signers.

The CLAIM agents can invoke Java methods or Web Services for com
putational purposes. In the future, we intend to give the agents the possi
bility to invoke methods or programs implemented in other programming
languages.

4,2.4 Other features of the language

The lack of formalisms to deal with both intelligent and mobile agents was
one of our main motivations in developing CLAIM. The agents' mobility is a
central aspect in our framework. We can easily model agents' reasoning, but
our target applications must take advantage of both mobility and cognitive
skills. There is a strong mobility at the agents' processes level and a week
mobility for the invoked Java methods.

Concerning the extensibility of the language, the main constructs of
CLAIM (e.g. agents' creation, mobility and communication primitives) are
fixed. Nevertheless, the language offers the possibility to the agents' designer
to develop his own ontology for representing knowledge or goals and for
creating his own messages, with a specific treatment (represented by capabil
ities), to suit the current application.

4.3 Platform

The CLAIM language is supported by a dedicated platform, called SyMPA
(French: Systeme Multi-Plateforme d'Agents), implemented in Java and that
offers all the necessary mechanisms needed for the design and the secure
execution of a distributed MAS.

4.3.1 Available tools and documentation

There are many platforms for mobile agents nowadays. The main differ
ence of SyMPA with respect to other mobile agents platforms is that it sup
ports agents implemented in CLAIM, an agent-oriented programming lan
guage while the other platforms support agents implemented using mainly
object-oriented languages (e.g. Java in most cases). In addition, a CLAIM
agent deployed in SyMPA can use Java methods. SyMPA is compliant with
the specifications of the MASIF [151] standard from OMG, that provides a
set of interfaces and definitions for the mobile agents' management, identifi-

114 CLAIM and SyMPA

cation, authentication, localization, tracking, communication, mobility and
security.

Agent System Agant System Agent and Qasses Defnition / Editor

Complter

Agents' Creation

Agents' Interfaces

Agents*
Depfciyment

Agents'
Migration

Agents'
Communication

Security

Figure 4.6. SyMPA's Architecture Figure 4.7. SyMPA's features

SyMPA can be deployed on a set of connected computers. It provides in
stallation and deployment guidelines and a tutorial is currently developed.
The platform's architecture is presented in Figure 4.6. There is a central
system providing management functions. An agent system is deployed on
each computer connected to the platform. It provides a graphical interface
for defining and creating agents and for visualizing their execution, a com
piler, mechanisms for agents' deployment, communication, migration and
management (conf. Figure 4.7), all of these in a secure and fault tolerant en
vironment. The compiler was implemented using JavaCC (Java Compiler
Compiler) [84].

The agent system is also in charge of the communication with other agent
systems or with the central system and of the mobility. The communication
and the mobility are implemented using Java on top of the TCP/IP protocol.
For each running agent, a optional graphical interface (Figure 4.8) can be
used to monitor his behavior, communication or mobility.

Mobility

Due to the hierarchical representation of the agents and the distributed
deployment of an MAS, we distinguish local and remote migrations. The
local migration takes place inside a hierarchy, while the remote migration is
the migration between hierarchies, using the move primitive.
The remote mobility in SyMPA can be considered at two levels. First, there
is a strong migration at the language level, because, before the migration, the
state of an agent is saved and then transferred to the destination. The agent's

Platform 115

Figure 4.8. Agents' interfaces

language-specific processes are resumed from their interruption point. An
agent can be at any moment saved in a format similar to the definition, con
taining the current state (e.g. knowledge, messages, running processes). This
representation is sent through the network to the destination agent system,
in an encrypted format and the agent's execution is resumed from the saved
state.
At the Java level, we use its mobility facilities, so there is a weak migration.
A Java method that has begun before the migration will be reinvoked af
ter the arrival at the destination. Since the migration is achieved using the
language's primitives, unlike in other platforms, where there are Java ob
jects that migrate during their execution, a solution can also be to let all the
agent's running Java methods terminate before his migration.

Security

The mobile agents are programs running in a distributed and insecure en
vironment (e.g. the Internet) where there are possible different attacks from
the agents against the host agent system or attacks against an agent during
the migration or during his execution. Several solutions exist against these
attacks [101]. For the agent systems' protection, we are using agents' authen
tication, the control of the access to the system's resources in accordance

116 CLAIM and SyMPA

with a set of permissions given to agents with regard to their authority, and
audit techniques. For the agents' protection, we are using encryption during
the migration and during the execution on a agent system (when the agent
is stored on the disk), and also fault-tolerance mechanisms. The reader can
find in [211] a detailed description of these security aspects.

4.3.2 Standards compliance, interoperability and
portability

The SyMPA platform is implemented in Java and takes advantage of the
portability and the platform-independence of this language. The SyMPA en
vironment is composed of an ensemble of packages that can be installed on
every computer with an operating system supporting Java Virtual Machine.
After installing the packages, a few configuring operations are needed and
the CLAIM language supported by the platform is ready to be used to im
plement MAS applications. We easily installed and tested the platform on
Windows, Unix-based or Macintosh systems.

As we have already specified, SyMPA is compliant with the specifications
of the MASIF [151] standard from the OMG, that provides a set of interfaces
and definitions for the mobile agents' management, identification, authenti
cation, localization, tracking, communication, mobility and security.

We have seen that CLAIM offers a set of agent-specific concepts and prim
itives for the agents' reasoning, communication and mobility. In addition, an
agent can use Java methods or Web Services invocations for computational
purposes.

Considering that the interoperability between heterogenous agents is a
very important aspect in the MAS applications, we used the Web Services ap
proach to develop an interoperability environment, called Web-MASI [80].
This environment is based on two key elements: an architecture that in
cludes the MAS in the functional model of the Web Services and an inter
operability module playing the role of interface between the agents and the
Web Services layer. Using this plug-in module, the agents can publish their
capabilities as Web Services, that can be invoked by other agents, indepen
dently from conceptual (agent architecture, interaction model) or technical
(platform, programming language) characteristics.

4.3.3 Other features of the platform

The implementation of the platform is in a prototype stage, in continuous
development and optimization and has already been used to implement sev
eral applications, presented in the next section. The results are very promis
ing and an open-source version will be available soon, that will allow us to

Applications 117

improve our implementation and to detect the expressiveness and the power
but also the limits of the language and of the platform.

The developed applications cover a wide area, starting from simple ap
plications with a small number of agents to largely distributed applications,
with big number of highly communicating mobile agents. Concerning the
reached performances, we could deploy up to 30 agents on one computer,
but this number could easily increase if the resources consuming graphical
interfaces of agents are not used. Nevertheless, in our current applications
we used the interfaces to monitor the agents' execution, behavior, communi
cation and migration. Concerning the scale of tests, until now we developed
application using agents deployed on up to 10 connected computers.

As specified before, there is a central system with management func
tions in our environment. In the first phases, the central system had some
problems with treating a great number of messages, but after adding fault-
tolerance techniques and optimizations, the communications proceeded in a
satisfying manner. Nevertheless, we are studying the possibility to introduce
different management solutions (e.g. distributed, non-centralized) that the
developer can choose in function of the current application's requirements.

The code reutilization is another of our priorities. The notion of class in
central in our framework. Our long term goal is to have different already
defined classes of agents for different types of applications that can be only
parameterized and easily used by the designers.

4.4 Applications supported by the language and/or the
platform

The CLAIM language supported by the SyMPA platform has been used
to develop several applications, summarized below, that emphasize the main
features of the framework, show the expressiveness and the facility of usage
of the language and the robustness of the platform.

Translations

In the first phase of development of the CLAIM language, applications
from other agent-oriented programming languages, such as Airline reserva
tions from AGENTO [206] or Bolts Make Scenario from AgentSpeak [233],
were translated. FIPA protocols were also programmed using CLAIM. There
is no mobility in these applications, but the agents' reasoning and communi
cation were easily translated.

118 CLAIM and SyMPA

Research of information

One of the first appHcations implemented was the research of informa
tion on a network [82] using mobile agents. Receiving requests from users,
these agents migrate to all the available connected sites searching for pieces
of information corresponding to a request.

Electronic commerce

A more complex application, that justified the hierarchical representation
of agents, was an e-commerce application [81], where there are several elec
tronic markets distributed on a network. Each e-market has various depart
ments (represented as sub-agents of a market), for different types of products.
The markets can move with all the sub-departments to other sites in order
to find clients and the clients can move to different markets searching for
products.

Load balancing

In the two applications previously presented, the intelligent elements of
the agents were central. An application focused on the computational aspects
was implemented next. Thus, CLAIM and SyMPA served for programming
an application of load balancing and resource sharing [212]. The connected
computers' characteristics are gathered by mobile agents and the computers
are classified using different criterions. The users' tasks are executed on com
puters satisfying some requirements and can dynamically migrate during the
execution in order to finish the execution in the fastest way possible.

E-libraries network

The next step was to combine the intelligent features of the agents with
the results of the load balancing application in an application containing a
network of distributed cooperative digital libraries [129]. The libraries have
sections and are used by customers searching for various documents. The
libraries manage the subscribers, the documents and have information about
other libraries, as the goal is to satisfy the customers, even if this means to
direct them towards other libraries. A library can also distribute one or
several sections to another site when there are too many clients on the local
computer, using results from the load-balancing application.

Veracruz coffee market

Another complex application developed using CLAIM was the modelling
of the coffee market in Veracruz, Mexico [213]. Using our framework, all

Applications 119

the involved actors were designed, proposing an agent-based application able
to deal with the different types of transaction negotiations and covering the
entire value chain of coffee.

A Case Study

In order to illustrate the language's specifications, we present here an appli
cation inspired from strategy games, such zsAge of Empires'^. As a simplified
version, there is a village of people in a prehistoric era, trying to survive by
gathering resources. There are sites of resources distributed on several com
puters of a network. Each site can contain three types of resources: wood,
stone and food. The population is represented by a Creator agent that can
create Seeker agents and resource gatherer agents for each type of resource
(resources are consumed when creating new agents): Woodcutter, Miner and
Hunter, Each type of agent has capabilities for gathering only his corre
sponding resource. The goal is to gather all the resources. We implemented
several strategies, in order to observe the agents' behavior in different situa
tions. Since the goal here is only to show examples of agents implemented
in CLAIM, we focus on one scenario.

•.** 4 k.
Figure 4.9. Application's schema

The Creator agent creates (using new Agent) a Seeker agent, finds out the
list of the existing sites and tells to the Seeker to migrate to each of them
(using move). When the Seeker arrives on a site, he "counts" the available

'*http://www.microsoft.com/games/empires/

http://www.microsoft.com/games/empires/

120 CLAIM and SyMPA

resources and asks (using send) speciahzed agents from the Creator, who
will create (using newAgent) one specialized agent for each type of resource,
agents that migrate to the specific resource agents on the site. After gathering
the resources, they return to the village, give the resources to the Creator and
wait for other calls. Meanwhile, the Seeker moves to other sites, searches for
resources and asks for specialized agents. If there is no specialized agent
available at the Creator when a new ask for help arrives, a new specialized
agent is created.

We present only some of the most important capabilities of our agents.
Every identified actor of our scenario will be represented as a class of agents.
When programming a CLAIM class, one must identify the possible parame
ters of the class, the knowledge ontology (that can evolve during the execu
tion), the chosen type of reasoning (forward reasoning or proactive or both),
the goals (for agents with a proactive behavior), the capabilities, the messages
to be exchanged with other agents and the necessary Java methods used for
various computations.

The agents in the presented scenario use a forward reasoning, ue,
they execute actions when specific messages arrive and some (optional)
conditions are verified. The Creator has an initial amount of resources,
given as parameters for the class and represented in the knowledge base as
'wood{?'woodQuant), stone{?stoneQuant) and food{?foodQuant), The
quantities of resource evolve during the execution (decrease when new
agents are created and increase when resources are brought by agents).
Other manipulated knowledge represents the found sites (not known a
priori). Several Java methods were needed for verifying if the agent has
sufficient resources when he tries to create a new agent, for waiting an
amount of time, for updating the quantities of resources, etc.

defineAgentClass Crea to r (?w,?s , ? f) {

a u t h o r i t y = n u l l ; pa r en t=nu l l ;

knowledge= {wood(?w) ; s t o n e (? s) ; f o o d (? f) ; }

goa l s=nu l l ; messages=null ;

c a p a b i l i t i e s {

f i n d S i t e s {

capability for sending to all the existing Site agents a message for asking their names; the Site agents which answer to

this messages are added in the Creator' knowledge base

message=findSites() ;

cond i t i on=nu l l ;

d o { s e n d (? a g S : S i t e () , a s k S i t e N a m e ()) . J a v a (A O E . w a i t (3 0)) . s e n d (t h i s , i n i t S e a r c h O) }

e f f e c t s = n u l l ;

}

c rea teSeeker {

capability for creating a Seeker (if there are sufficient resources), for telling him the names of the known sites and for

Applications 121

requesting his departure

message=initSearch();

condition=Java(AOE,hasResources(this,0,0));

do{?n=Java (AOE.baptise (tihis, 0)) .newAgent ?n: Seeker () .

f o r A l l K n o w l e d g e (s i t e (? a g s)) { s e n d (? n , t e l l (s i t e (? a g s))) } . s e n d (? n , s e e k ()) }

e f f e c t s = n u l l ;

} . . .

the class has several other capabilities for creating specialized agents when the Seeker arrives on a site and requests help

and for updating the resources when these agents return.

}

processes={send(this,findSites())}

agents=null;

}

The Site class has parameters representing the amount of each resource
(the knowledge base contains pieces of information similar with those of a
Creator) and capabilities for creating the sub-resource agents and for answer
ing the questions concerning his names and his resources. The sub-resource
agents are represented in a simple class (named Resource) that can receive
agents and updates the amount of resources after a gatherer agent's passage.

A Seeker manipulates pieces of information about the known sites, about
the visited sites and about the sites' resources. When created, he selects a
destination site (known and not visited already; he uses a Java method for
this), migrates to this site, finds out the amount of available resources (by
communicating with the site agent) and then requests specialized agents
from the Creator,
defineAgentClass Seeker() {

a u t h o r i t y = n u l l ; pa r en t=nu l l ; knowledge=null; goa l s=nu l l ; messages=null ;

c a p a b i l i t i e s {

seek {

capability for migrating to a not visited site and for asking the amount of available resources

message=seek();

cond i t i on=nu l l ;

do{?d=Java(AOE.f indDes t ina t ion(th i s)) .move(th i s , ?d) . send(?d ,needResources (?d))}

e f f e c t s = n u l l ;

} . . .

he requests next specialized agents and continues the search migrating to other sites.

}

processes=nu l l ; agen t=nul l ;

}

The specialized gatherer agents (Woodcutter, Miner and Hunter) can mi
grate to specific Resource agents, return to the Creator, give him the gathered
resources and await for new requests.

122 CLAIM and SyMPA

After defining all the classes of agents for our scenario (but also for the
other considered scenarios) and writing all the necessary Java methods, the
SyMPA platform was deployed on several computers of the network. Sev
eral sites of resources were started on different computers and a Creator. We
observed the behavior of all the agents in our application (not only for pre
sented scenario) that migrate in order to gather resources and we also counted
the times for gathering all the resources and the Creator' resource variation
for different scenarios.

4,5 Final Remarks

In this chapter, we argue that the development of MAS applications needs
specific languages {i,e, agent-oriented) in order to reduce the gap between the
design and the implementation phases.

The presented language, CLAIM, frees the designer from time-consuming
implementation aspects and combines in a unified framework the advantages
of the intelligent agents with those of the ambient calculus (particularly suit
able for mobile computation). Hence, both computational aspects (commu
nication, mobility, processing) and cognitive features (knowledge, goals and
reasoning) of agents are easily represented thanks to CLAIM.

For using the language in real-life applications, we would like to be able to
verify some important aspects of the built MAS, using a formal operational
semantics, whose main elements were also presented in this chapter.

Using a flexible hierarchical topology of the MAS, a goal-driven behav
ior and a mental state of agents that continuously evolves in an autonomous
manner, CLAIM allows a dynamic re-configuring of the built MAS in or
der to give the system the full scope to adapt its structure and to meet the
requirements of target applications.

The language is supported by a distributed platform, SyMPA, that offers
all the necessary mechanisms for creating and deploying CLAIM agents and
for a secure execution of a distributed MAS.

CLAIM and SyMPA have been used for developing several complex ap
plications that showed the expressiveness of the language and the robustness
and the strength of the platform, such as an application for information re
search on the Web, electronic commerce applications, a load balancing and
resource sharing application using mobile agents or an application of a digital
libraries network. All the results were very promising.

The current work tackles the verification of CLAIM programs, using the
defined operational semantics, the optimization of the platforms and the
adaptability and interoperability issues. We would like to deploy SyMPA
on mobile devices in order to fulfill the ambient intelligence requirements.

II

JAVA-BASED AGENT PROGRAMMING
LANGUAGES

Chapter 5

JADE - A JAVA AGENT DEVELOPMENT
FRAMEWORK

Fabio Bellifemine/ Federico Bergenti,^ Giovanni Caire/ and
Agostino Poggi^

Telecom Italia Lab
Via G. ReissRomoliy 274
10148, Torino, Italy
{fabio.bellifemine.giovanni.caire} ©tilab.com

DII • University of Parma
Par CO Area delle Scienze 181A
43100, Parma, Italy
{bergenti.poggi) @ce.unipr.it

Abstract JADE (Java Agent Development Framework) is a software environment to
build agent systems for the management of networked information resources
in compliance with the FIPA specifications for interoperable multi-agent sys
tems. JADE provides a middleware for the development and execution of
agent-based applications which can seamless work and interoperate both in
wired and wireless environment. Moreover, JADE supports the development
of multi-agent systems through the predefined programmable and extensible
agent model and a set of management and testing tools. Currently, JADE is
one of the most used and promising agent development framework; in fact,
it has a large user group, involving more than two thousands active members,
it has been used to realize real systems in different application sectors, and its
future development is guided by a governing board involving some important
industrial companies.

Keywords: Agent development framework, FIPA compliant agent platform. Middleware
for heterogeneous networks, Java

http://unipr.it

126 JADE

5.1 Motivation

Since ten years ago, agents are considered one of the most promising in
formation technologies, in particular, to realize distributed interoperable sys
tems [95, 239, 123, 238]. However, researchers realized that agent-based tech
nologies could not keep their promises and become wide-spread, until there
were no suitable standards to support agent interoperability and adequate
environments for the development of agent systems. Therefore, In those
years, different groups of researchers started working towards the definition
of standards for agent technologies and the realization of development envi
ronments for multi-agent systems.

FIPA specifications [89] and the JADE software framework [12, 10, 119]
may be considered two of most interesting results In these two fields. FIPA
specifications define the reference model of an agent platform and a set of
services that should be provided to realize truly Interoperable multi-agent
systems. JADE (Java Agent Development framework) is a software environ
ment to build agent systems for the management of networked Information
resources in compliance with the FIPA specifications.

The focus of this chapter is the JADE software framework. In particular,
we describe the main features of this framework and give a short description
of some applications realized with it.

5.2 Platform

The JADE framework is based on a middleware that facilitates the de
velopment of distributed multi-agent applications based on a peer-to-peer
communication architecture [12, 10, 119]. The Intelligence, the Initiative,
the information, the resources and the control can be fully distributed on
mobile terminals as well as on hosts in the fixed network. The environment
can evolve dynamically with agents that appear and disappear in the system
according to the needs and the requirements of the context. Communica
tion between agents, regardless of whether they are running In the wireless
or wireline network, is completely symmetric with each agent is able to play
both the initiator and the responder role.

JADE is fully developed In Java and Is based of the following main princi
ples:

• Interoperability. JADE is compliant with FIPA specifications [89]. As
a consequence a JADE agent can interoperate with other peers not
running on the JADE run-time (provided that they comply with the
same standard).

• Uniformity and portability. JADE provides applications with a homo
geneous set of APIs that are Independent from the underlying network

Platform 127

and Java version. More in details, the JADE run-time provides the
same APIs both for the J2EE, J2SE and J2ME environment. In theory,
developers could decide the Java run-time environment at deploy-time.

• Ease of use. The complexity of the middleware is hidden behind a
simple and intuitive set of APIs.

• Pay-as-you-go philosophy. Programmers do not need to use all the
features provided by the middleware. Features that are not used do
not require programmers to know anything about them, neither add
any computational overhead.

JADE includes both the libraries of Java classes required to develop appli
cation agents and the run-time environment that provides the basic services
and that must be active on a given device before one or more agents can be
executed on that device. Each instance of the JADE run-time is called con
tainer (since it "contains" agents). The set of all containers is called platform
and provides a homogeneous layer that hides completely from agents (i.e.,
from applications) the complexity and the diversity of the underlying tires
(hardware, operating systems, types of network, JVM).

As depicted in figure 5.1, JADE framework is compatible with Java J2ME
CLDC/MIDPl.O environment and it has already been tested on the fields
over the GPRS network with different mobile terminals among which:
Nokia 3650 and 6600, Motorola AccompliOOS, Siemens SX45, PalmVx,
Compaq iPaq, Psion5MX, HP Jornada 560. The JADE run-time memory
footprint in a MIDPl.O environment is around 100 KB, but can be further re
duced until 23 KB using the ROMizing technique [14], i.e., compiling JADE
together with the JVM. The limited memory footprint allows installing
JADE on mostly all cell phones provided that they are Java-enabled.

JADE is extremely versatile and therefore, not only it fits the constraints
of environments with limited resources, but it has already been integrated
into complex architectures such as .NET or J2EE [17] where JADE becomes
a service to execute multi-party proactive applications.

From the functional point of view, JADE provides the basic services nec
essary to distributed peer-to-peer applications in the fixed and mobile envi
ronment. JADE allows each agent to dynamically discover other agents and
to communicate with them according to the peer-to-peer paradigm. From
the application point of view, each agent is identified by a unique name and
provides a set of services. It can register and modify its services and/or search
for agents providing new services, control its life cycle and, most of all, com
municate with all other peers.

Agents communicate by exchanging asynchronous messages, a communi
cation model suitable for distributed and loosely-coupled communications ,

128 JADE

Distributedappli cation composed of a set of agents

(i^ (ih. fii^] (ih. (%i\ (^
\kyJ Vv^ \ \ ^ v ^ W^J \!sJ

JADE LAYER

J _
Container Container Container

J.AI)E

Container

JAVAVM LAYER

Wireless environment

Figure 5.1. The JADE architecture.

i.e., between heterogeneous entities that do not know anything about each
other. In order to communicate, an agent just sends a message to a desti
nation. Agents are identified by a name (no need for the destination object
reference to send a message) and, as a consequence, there is no temporal de
pendency between communicating agents. The sender and the receiver could
not be available at the same time. The receiver may not even exist (or not
yet exist) or could not be directly known by the sender that can specify, e.g.,
"all agents interested in football" as a destination.

Despite this type of communication, security is preserved, since (for ap
plications that require it) JADE provides proper mechanisms to authenticate
and verify "rights" assigned to agents. When needed, an application can ver
ify the identity of the sender of a message and prevent actions that it is not
allowed to perform (for instance an agent may be allowed to receive messages
from the agent representing its boss, but not to send messages to it). All mes
sages exchanged between agents are carried out within an envelope including
only the information required by the transport layer. This allows, among
others, to encrypt the content of a message separately.

The structure of a message complies with the ACL language defined by
FIPA [89] and includes fields, such as variables indicating the context a mes
sage refers to and timeout that can be waited before an answer is received,

Platform 129

aimed at supporting complex interactions and multiple parallel conversa
tions.

To further support the implementation of complex conversations, this
development framework provides a set of skeletons of typical interaction
patterns associated with specific tasks such as negotiations, auctions and task
delegation. By using these skeletons (implemented as Java abstract classes),
programmers can get rid of the burden of dealing with synchronization is
sues, timeouts, error conditions and, in general, all those aspects that are not
strictly related to the application logic.

To facilitate the creation and handling of messages content, JADE pro
vides a rich support for automatically converting back and forth between a
string formats including XML and RDF (suitable form to transfer informa
tion) and Java objects (suitable form to manipulate information). This sup
port is integrated with existing ontology creation tools allowing program
mers to graphically create their ontology and then work with Java objects to
handle message contents conformant to it.

To increase scalability or to meet the constraints of environments with
limited resources, JADE provides the opportunity of executing multiple par
allel tasks within the same Java thread. Several elementary tasks may then be
combined to form more complex tasks structured as concurrent Finite States
Machines.

In the J2SE and Personal Java environments, JADE supports code and
execution-state mobility. That is an agent can stop running on a host, mi
grate on a different remote host (without the need to have the agent code
already installed on that host) and restart its execution there from the very
point it was interrupted. This functionality allows for example to distribute
computational load at runtime by moving agents on less loaded machines
without any impact on the application.

The platform also includes a naming service (ensuring each agent has a
unique name) and a yellow pages service that can be distributed across multi
ple hosts. Federation graphs can be created to support the definition of agent
services domains.

As already mentioned, the JADE run-time can be executed on a wide class
of devices ranging from servers to cell phones with the only requirement to
support Java MIDPl.O (or higher versions). In order to properly address the
memory and processing power limitations of mobile devices and the charac
teristics of wireless networks (GPRS in particular) in terms of bandwidth,
latency, intermittent connectivity and IP addresses variability, and at the
same time to be efficient when executed on fixed network hosts, JADE can
be configured to adapt to the characteristics of the deployment environment.
JADE architecture is completely modular and, by activating certain modules

130 JADE

instead of others, it is possible to meet different requirements in terms of
connectivity, memory and processing power.

More in details, a module called LEAP allows optimising all communi
cation mechanisms when dealing with devices with limited resources and
connected through wireless networks. By activating this module, a JADE
container is "split", as depicted in figure 5.2, into a front-end, actually run
ning on the mobile terminal, and a back-end, running in the fixed network.
A proper architectural element, called mediator, must be already active. It
is in charge of instantiating and holding the back-ends (that basically are en
tries in the mediator itself). To face work-load problems it is possible to de
ploy several mediators each one holding several back-ends. Each front-end is
linked to its corresponding back-end by means of a permanent bi-directional
connection. It is important to note that there is no difference at all for appli
cation developers depending on whether an agent is deployed on a normal
container or on the front-end of a split container, since both the available
functionality and the APIs to access them are exactly the same.

JADE APIs

• •

^ ^

fl
\

w& y^

Figure 5.2. JADE architecture in the wireless environment.

The described approach has a number of advantages:

• Part of the functionality of a container are delegated to the back-end,
thus making the front-end extremely lightweight in terms of required
memory and processing power.

Platform 131

• The back-end masks the actual IP address assigned to the wireless de
vice to other containers (no matter whether they are normal or split).
This allows hiding a possible change of IP address from the rest of the
platform.

• The front-end Is able to detect a loss of connection with the back-end
(for Instance due to an out of coverage condition) and to re-establish It
as soon as possible.

• Both the front-end and the back-end use a store-and-forward mech
anism to buffer messages, that cannot be transmitted due to a tem
porary disconnection, and then deliver as soon as the connection Is
re-established.

• Several Information that containers exchange (for Instance to retrieve
the container where an agent Indicated as the receiver of a message Is
currently running) are handled only by the back-end. This approach,
together with a bit-efficlent encoding of communications between the
front-end and the back-end, allows optimising the usage of the wireless
link.

5,2,1 Available tools and documentation

JADE offers a set of documents (manuals and tutorials) and code examples
to help users to Install and use It; they are all available from the official JADE
Web site [119]. Moreover, JADE provides a rich suite of graphical tools sup
porting both the debugging, management and monitoring phases of the ap
plication life cycle, (figure 5.3 shows their graphical Interfaces). By means
of these tools, for Instance, It Is possible to emulate remote conversations,
"sniff" messages exchanged by agents, monitor tasks executed by a specific
agent and view Its life cycle. As far as deployed applications management and
monitoring Is concerned. It Is also possible to control agents running In the
system, start, suspend and terminate agents even on remote hosts. Inspect
and modify the services published In the yellow pages and generate suitable
logs. All these tools are Implemented as agents themselves. They require no
special support to perform their tasks and they simply rely on JADE AMS
(Agent Management System). The general management console for a JADE
agent platform Is called RMA (Remote Management Agent). The KM A ac
quires Information about the platform and executes the GUI commands to
modify the status of the platform (creating new agents, shutting down pe
ripheral containers, etc.) through the AMS. On one hand, the RMA asks
the AMS to be notified about changes of state of platform agents, on the
other hand. It transmits to the AMS the requests for creation, deletion, sus
pension and restart received by the user. The Directory Facilitator agent

132 JADE

also has a GUI of its own, with which the DF can be administered, adding
or removing agents and configuring their advertised services.

Actiam Tool* RonxHt PMfortnc H«Hi

j6rB[tfitfi#i#% fisffl ittia: ijfi&iSjii^ j s j
» DAgentPiatfofms

t Q ' A P i099i/J«;tE"
f • MalrvContainer

Q rt(@AP)099/JADE
Q PM;Kg!AP ia99'JA[:<E
S am3@AP 1099/JAOE

>P:1099;JAC€

Q lnt;o3pectorO@AP 1D39/JADE!

Q ini;o4pec:tQrt>-orvMain-Coinaln
Q IOgO@AP 1099/JADE

Cont&iner-1

Q
: i > ; i ^ ' > f e ^ . : /

f'pftnillng I Hcccwuti

• Mill l.il Mi l l . . i ; . - ! - ill.

AMSJadeAgentMsnsoem
EvontManigtr
AMBFipMtfî ntManau r̂ni
Dortgl̂ torToolficriaviout
PagiiierTooJBsnsvloui j

ri»rne EvenMinagti
KUts; lade.oor

Figure 5,3. Graphical interfaces of JADE tools.

The graphical tools with which JADE users can debug their agents are
the Dummy Agent, the Sniffer Agent, the Introspector Agent and the Log
Manager Agent. The Dummy Agent is a simple, yet very useful, tool for
inspecting message exchanges among agents. The Dummy Agent facilitates
validation of an agent message exchange pattern before its integration into a
multi-agent system and facilitates interactive testing agents. The graphic in
terface provides support to edit, compose and send ACL messages to agents,
to receive and view messages from agents, and, eventually, to save/load mes
sages to/from disk. The Sniffer Agent makes it possible to track messages
exchanged in a JADE agent platform. When the user decides to sniff a single
agent or a group of agents, every message directed to or coming from that
agent or group of agents is tracked and displayed in the sniffer window, using
a notation similar to UML Sequence Diagrams. Every ACL message can be
examined by the user, that can also save and load every message track for
later analysis. The Introspector Agent, finally, is a very powerful tool that
allows to debug and introspect a running agent through the following func-

Platform 133

tlonalltles: a) monitor and control the agent life-cycle; b) Inspect all Its ex
changed messages, both the queue of sent and received messages; c) monitor
the queue of behaviours. Including the possibility of executing a behaviour
step-by-step. In a similar way to a code debugger. Finally, the Log Manager
Agent tracks and stores events happening during the life of multi-agent sys
tems.

Moreover, different "add-ons" to the JADE framework are provided by
both the JADE team and other JADE users (all these add-ons are available
from the official JADE Web site [119]). In particular, tools and software
libraries have been developed and made available for the management of:
the persistence of agents, the security of systems, the exchange of messages
and the management of ontologies, etc. Add-ons are also available for the
Integration of JADE with other technologies, such as Servlets, JSP, Applets,
the JESS rule engine, and the Protege ontology tool.

5.2.2 Standards compliance, interoperability and
portability

JADE Is written In Java language and comprises various Java packages,
giving application programmers both ready-made pieces of functionality and
abstract Interfaces for custom, application-dependent tasks. Java was the cho
sen programming language because of Its many attractive features, which are
particularly geared towards object-oriented programming In distributed het
erogeneous environments.

JADE Is available on all the Java versions from J2EE to J2ME. Moreover,
JADE facilities the SportlngS of applications among different Java versions
and allows the bl-dlrectlonal communication between agents acting on dif
ferent wired and wireless networks. This last feature allows, for example, the
communication of an agent acting on a network server with an agent acting
on a mobile phone.

JADE allows to build agent systems In compliance with FIPA specifica
tions [89]. Therefore, JADE allows the Interoperability with agents acting
on different agent platforms with the constraint that they must be FIPA-
compllant. For this purpose, JADE participated to the bake-off organized
by FIPA where the Interoperability with the other FIPA based middleware
has been verified.

5.2.3 Other features of the platform

The whole JADE source code Is distributed under an open source pol
icy, the Lesser GNU Public License (LGPL for short). LGPL enables full
exploitation of JADE, even In a business environment, while enforcing the
constraint that any modification of JADE source code and any derivative

134 JADE

work be returned to the community under the LGPL license itself. No re
strictions, instead, are put on applications and other categories of software
that simply uses JADE. TILAB, as project initiator, holds the exclusive right
to re-release JADE under different or additional license terms.

The different releases of the JADE software (including the last one: 3.2)
are stable and used in different research and application projects in different
part of world. Moreover, different agent development platforms derive from
JADE (see, for example, JADEX [120] and BlueJADE [17]).

A JADE system is based on a set of agent platforms each of them com
posed of a set of agent containers deployed on an heterogeneous network.
Moreover, message exchanges between agents is managed efficiently using
different techniques for intra- and inter-container (i.e., Java Virtual Machine)
communication. Therefore, a JADE system may contain thousands of agents
exchanging a huge amount of messages (a more detailed study on Jade scala
bility and performance is given in [48]).

A JADE system provides a centralized control. Following the FIPA stan
dard, each JADE platform is controlled by the AMS. However, JADE offers
a fault tolerance mechanism that allows an agent platform to survive the
failure of its AMS. In fact, each agent platform may have different AMSs
usually on different containers: one is active, the others are in backup ready
to replace it when it fails.

5.2A Realizing multi-agent systems with the platform

A JADE multi-agent application is composed of the FIPA standard agents,
provided by the JADE platform, and of a set of application dependent agents
realized by the application developer. Agents are implemented through a
Java class containing a set of inner classes that realize the different behaviours
of the agent. Agent behaviours can be composed of other behaviours and
can be executed either a single time (one-shot behaviours) or different times
(cyclic behaviours).

Agent classes are based on a method, called setup, that performs the agent
initialization, and another method, called takedown, that performs clean
up operations at the end of its execution. Agent behaviours are based on a
method, called action, that defines the operations to be performed when the
behaviour is in execution. Moreover, cyclic behaviours may have another
method, called done, that returns a Boolean value indicating whether or not
this behaviour has completed its iterative execution.

Therefore, the code of an agent class has the following structure:

Platform 135

public class AgentClassName extends Agent {

E variables definition E

protected void setup() {

... initialize the agent ...

}

protected void takeDown() {

... clean-up operations .,.

}

private class RBehaviourClassName extends Behaviour {

... variables definition ...

public void action() {

... behaviour execution ...

}

// optional method for cyclic behaviours
public boolean done() {
... return true if execution is completed

}
}

other behaviour inner classes ...

}

As an example of how is possible to realize a multi-agent system with
JADE, we illustrate how to implement a simple book trading multi-agent
system showing also some parts of its Java code .̂

This system is based on some seller and buyer agents. Each buyer agent re
ceives the title of the book to buy as a command line argument from its user
and periodically requests all known seller agents to provide an offer. As soon
as an offer is received, the buyer agent accepts it and issues a purchase order.
If more than one seller agent provides an offer the buyer agent accepts the
best one (lowest price). Having bought the target book the buyer agent ter
minates. Each seller agent has a minimal GUI by means of which the user can
insert new titles and the associated price) in the local catalogue of books for
sale. Seller agents continuously wait for requests from buyer agents. When
asked to provide an offer for a book, they check if the requested book is in
their catalogue, and in this case reply with the price; otherwise they refuse.

^The complete code can be found in the JADE software distribution

136 JADE

When they receive a purchase order they serve it and remove the requested
book from their catalogue.

A buyer agent is implemented by the BookBuyerAgent class. Given that a
buyer agent has the only goal of buying books on the behalf of its user, then
it needs to realize a single behaviour implemented by the RequestPerformer
inner class. This behaviour has to send a call for proposal (CFP) message to
the known seller agents, get back all the replies and, in case at least a reply
proposing a bid for the request is received, send a further message accepting
the proposal to the seller agent that made the best proposal and, finally, get
back the response.

A seller agent is implemented by the BookSellerAgent class. This agent
needs to wait for book requests from buyer agents and serves them; these re
quests can be requests to provide an offer for a book or purchase orders. This
is done through two different cyclic behaviours: one dedicated to serve offer
requests, implemented by the OfferRequestsServer inner class, and the other
dedicated to serve purchase orders, implemented by the PurchaseOrdersServer
inner class. Moreover, the seller agent needs to execute a one-shot behaviour
updating the catalogue of books available for sale whenever its user adds a
new book from the GUI. This is done through a method, called updateCat-
alogue^ that creates the behaviour the agent needs and adds it to the list of
running behaviours.

In particular, the code of the RequestPerformer, OfferRequestsServer and
PurchaseOrdersServer action methods has the following structure^:

pub l i c void ac t i on () { / / RequestPerformer
switch (step) {

case 0: / / Send the cfp to a l l s e l l e r s
E CFP message c o n s t r u c t i o n E
myAgent.send(cfp);
. . . message type r ecep t ion s e t t i n g . . .
s t ep = 1;
break;

case 1: / / Receive a l l p r o p o s a l s / r e f u s a l s
ACLMessage r ep ly = myAgent.receive(mt)/
i f (reply != nu l l) { / / Reply rece ived

. . . update the be s t of fer . . .
}

}
r e p l i e s C n t + + ;
i f (r e p l i e s C n t >= s e l l e r A g e n t s . l e n g t h) {

/ / W e r e c e i v e d a l l r e p l i e s
s t e p = 2 ;

^Note that the block method blocks a behaviour until a new message arrives.

Platform 137

e l s e { b l o c k () ; }
break;
case 2: // Send the purchase order
... order message construction ...
myAgent.send(order);
... message type reception setting ...
step = 3;
break/
case 3: // Receive the purchase order reply
reply = myAgent.receive(mt);
if (reply != null) { // Purchase order reply received
if (reply.getPerformative() == ACLMessage.INFORM) {
... inform the user about success and exit ...

}
else

}
step

}
else {
break;

{
print: re

= 4;

: block 0;

public void action() { // RequestPerformer
... message type reception setting ...
ACLMessage msg = myAgent.receive(mt);
if (msg != null) { // CFP Message received. Process it
String title = msg.getContent();
ACLMessage reply = msg.createReply();
Integer price = (Integer) catalogue.get(title);
if (price != null) {
// The requested book is available: reply with the price
reply.setPerformative(ACLMessage.PROPOSE);
reply.setContent(String.valueOf(price.intValue()));
}
else { // The requested book is not available
reply.setPerformative(ACLMessage.REFUSE);
reply.setContent("not-available");
}

myAgent.send(reply);

}

else { block(); }

}

public void action() { // PurchaseOrdersServer
... message type reception setting ...
ACLMessage msg = myAgent.receive(mt);
if (msg != null) {
// ACCEPT_PROPOSAL Message received. Process it

138 JADE

string title = msg.getContent();
ACLMessage reply = msg.createReply();
Integer price = (Integer) catalogue.remove(title);
if (price != null) {
reply.setPerformative(ACLMessage.INFORM);
... print: information about the sold book ...

}
else {
// The requested book has been already sold
reply.setPerformative(ACLMessage.FAILURE);
reply.setContent("not-available"); }
myAgent.send(reply);
}

else { block(); }
}

5.3 Applications supported by the platform
JADE is being used in a plethora of projects and appHcations, both from

the academic and the industrial communities (see, for example, [11]). JADE
applications cover different domains: collaborative work support, e-learning,
e-tourism, network management, entertainment, knowledge management,
manufacturing and supply-chain management and simulation.

In the following, we present some applications that have been realized
taking advantage of JADE: the CoMMA system [93], the Agentcities agent
network [1] and the RAP system [146].

5.3.1 ColVIlVIA

CoMMA (Corporate Memory Management through Agents) is a FIPA
compliant multi-agent system for the management of a corporate memory,
implemented by using JADE [93]. It is the result of an international project
funded by the European Commission. The project started in January 2000
and ended in Jannuary 2002. The CoMMA system was completely imple
mented and tested in different companies to offer a helping service for en
hancing the insertion of new employees and as a support system for technol
ogy monitoring.

The innovative aspect of the system is the integration of several emerg
ing technologies that were generally used separately in the former infor
mation retrieval and management systems. These technologies are: agent
technology, knowledge modelling, XML technology, information retrieval
techniques and machine learning techniques [56, 87, 16, 177]. The multi-
agent approach, relying on loosely-coupled software components, is natu
rally prone to facilitate integration of different and heterogeneous technolo
gies in one system. CoMMA developers therefore decided to use agents for

Applications 139

wrapping information repositories defining the corporate memory, for the
retrieval of information, for enhancing scaling, flexibility and extensibility of
the corporate memory and to adapt the system interface to the users. One
of the points that makes CoMMA system different from the majority of
former multi-agent information systems is that agents are not only used for
the retrieval of information, but also for the insertion of new information
in the corporate memory. The use of JADE increases system modularity
and flexibility. The separation between the software platform infrastructure
managing agent life-cycle, distribution and communication and the software
implementing agent tasks decouples modifications in these two parts. The
behaviour based agent model, that JADE offers, allows to separate the soft
ware code realizing the different tasks of the agents; therefore, the modifi
cation of a task or the introduction of new tasks usually do not cause the
modification of other parts of agent code. Moreover, given that the main
complexity of the CoMMA system is given by the interaction between the
different types of agents cooperating in the different tasks of the system, the
availability in JADE of a FIPA ACL library for agent communication and
a set of predefined behaviours for the management of FIPA communication
protocols much reduces the cost of realizing the multi-agent system.

The CoMMA system aims at helping users in the management of an or
ganization corporate memory and in particular at facilitating the creation,
dissemination, transmission and reuse of knowledge in an organization. The
services offered by the CoMMA system are the result of three main tasks:
insertion of XML annotations of new or updated documents, search of ex
isting documents, and autonomous document delivery in a push fashion to
provide her/him with information about new interesting documents (figure
5.4 shows a schematic view of the CoMMA multi-agent system). These tasks
are performed through the cooperation among different kinds of agents that
can be divided in four sub-societies: document and annotation management;
ontology (enterprise and user models) management; user management; agent
interconnection and matchmaking.

The agents belonging to the document dedicated sub-society are con
cerned with the exploitation of documents and annotations composing the
corporate memory, they search and retrieve the references matching the
query of the user with the help of the ontological agents. A hierarchical
organization of the document sub-society has been chosen since separates
the task of maintaining document repositories from the task of intelligent
Interface towards the other agents of the system. The agents belonging to
the ontology dedicated sub-society are concerned with the management of
the ontological aspects of the Information retrieval activity, especially the
queries about the hierarchy of concepts and the different views. The ontol
ogy repository, composed of RDF schema forms, maintains a set of concepts

140 JADE

Document
auth

Ontology
author

Figure 5.4. Schematic view of the CoMMA multi-agent system.

and their relationships. Documents of the community are annotated using
these ontologies and the same ontologies are used to search documents into
the corporate memory and to navigate into it. In particular, the CoMMA
ontology describes the documents maintained in the organization corporate
memory and the enterprise model describes the structure of the organization
ruling, for example, the access to the different type of documents of the cor
porate memory. A replicated organization of the ontology sub-society has
been chosen since ontologies shared by users should be quite stable and most
of the queries will need the whole ontology to apply inference algorithms.
Agents belonging to the user dedicated sub-society are concerned with the in
terface, the monitoring, the assistance and the adaptation to the user. More
over, they maintain the user profile repository and distribute information
about user profiles to the agents needing it. Finally agents belonging to the
interconnection dedicated sub-society are in charge of the matchmaking of
the other agents based upon their respective needs.

5J,2 Agentcities

Agentcities is a network of FIPA compliant agent platforms that consti
tute a distributed environment to demonstrate the potential of autonomous
agents. It started on the second half of 2001 as a research project funded by
the European Commission [1]. One of the aims of the project is the develop
ment of a network architecture to allow the integration of platforms based on
different technologies and models. It provides white pages and yellow pages
services to allow the dynamic discovery of hosted agents and the services
they offer. An important outcome is the exploitation of the capability of

Applications 141

agent-based applications to adapt to rapidly evolving environments. This is
particularly appropriate to dynamic societies where agents act as buyers and
sellers negotiating their goods and services, and composing simple services
offered by different providers into new compound services. To allow the
integration of different applications and technologies in open environments,
high level communication technologies are needed. The project largely re
lies on semantic languages, ontologies and protocols in compliance with the
FIPA standards.

The Agentcities network grows around a backbone of 14 agent platforms,
mostly hosted in Europe. These platforms are deployed as a testbed, hosting
the services and the prototype applications developed during the lifetime of
the project. The backbone is an important resource for other organizations,
even external to the project, that can connect their own agent-based services,
making the network really open and continuously evolving.

Currently, the Agentcities network counts 160 registered platforms. The
platforms are based on more than a dozen of heterogeneous technologies, in
cluding Zeus [160], FIPA-OS [37] and Opal [175]. More than 2/3 of them are
based on JADE and its derived technologies, as LEAP [133] and BlueJADE
[17].

The main rationale for using agents is their ability to adapt to rapidly
evolving environments and yet being able to achieve their goals. In many
cases, this can only be accomplished by collaborating with other agents and
leveraging on services provided by cooperating agents. This is particularly
true when the desired goal is the creation of a new service to be provided to
the community, as this scenario often calls for the composition of a number
of simple services that are required to create the desired compound service.
The Event Organizer is an agent-based prototype application showing the
results that can be achieved using the services provided by the Agentcities
project (figure 5.5 gives a graphical description of the event organizer). It
allows a conference chair to organize an event, booking all needed venues
and arranging all needed services, and then sell the tickets for the new event.
Using the Web interface of the Event Organizer, users can list a set of needed
services, fixing desired constraints on each individual service and among dif
ferent services. The global goal is then split into sub-goals, assigned to skilled
solver agents. The Event Organizer uses the marketplace infrastructure de
ployed on the Agentcities network to search for relevant venues. These are
matched against cross-service constraints and, if found, a proper solution
is proposed to the user as a list of services that allow the arrangement of
the event. These services are then negotiated on the marketplace with their
providers and a list of contracts is returned to the user. Finally, when the
new event is successfully organized, the tickets for it can be sold, once again
using the marketplace infrastructure. The process requires the cooperation

142 JADE

of a number of partners. Each of them can exploit the directory services to
dynamically discover the location of others. The Event Organizer directly
interacts with a Trade House to search for venues and negotiate selected ser
vices. Other agents are responsible to offer goods (e.g., hotel and conference
rooms) on the Trade House and to negotiate them on behalf of their users.
A Banking Service takes care of managing the banking accounts of the in
volved partners, securing all requests against tampering and eavesdropping.
An Auction House is used to create auctions and sell tickets of the new event.
The interesting part of the process is that these tickets are available for other
agent-based applications. In fact, an Evening Organizer helping its user to ar
range an evening out (e.g., booking a restaurant and buying the tickets for a
concert) can discover the new event and bid for some tickets on the Auction
House.

Personal Agent

Hotd Agents

Event Organizer

Evening Organ! zi

Banking Service

Security Service

Ontology Service

Restaurant Agents

Show Agents

Figure 5.5, Event organizer scenario.

5.3.3 RAP
RAP (Remote Assistant for Programmers) is a multi-agent system that

integrates information and expert searching facilities for communities of stu
dents and researchers working on related projects developed in Java [146].
RAP associates a personal agent with each user, which helps her/him to

Applications 143

solve problems proposing information and answers, extracted from some
information repositories, and forwarding answers received by "experts" rec
ommended on the basis of their expertise on the topic. A personal agent also
maintains a profile of its user. This profile contains information about the
competences and experience of its user and is built by using the answers sent
to other users and the code written by the user.

The RAP system is based on seven different kinds of agents: Personal
Agents, Code Documentation Managers, Answer Managers, User Profile
Managers, Email Managers, Starter Agents and Directory Facilitators. Figure
5.6 gives a graphical representation of the architecture of the RAP platform;
in particular, this figure presents the interactions of the personal agents and
of the directory facilitator with the other agents of the platform.

Personal Agents are the agents that allow the interaction between the user
and the different parts of the system and, in particular, between the users
themselves. Moreover, this agent is responsible for building the user profile
and maintaining it when its user is on-line. User-agent interaction can be per
formed in two different ways: when the user is active in the system, through
a Web based interface; when it is off-line through emails. Usually, there is
a Personal Agent for each on-line user, but sometimes Personal Agents are
created to interact with off-line users via emails.

User Profile Managers are responsible for maintaining the profile of off
line users and for activating Personal Agents when it is necessary that they
interact with their off-line users via emails.

Code Documentation Managers are responsible for maintaining code doc
umentation and for finding the appropriate pieces of information to answer
the queries done by the users of the system.

Answer Managers are responsible for maintaining the answers provided by
users during the life of the system and for finding the appropriate answers to
the new queries of the users. Besides providing answers to users, these agents
are responsible for updating the score of the answer and forwarding the vote
to either the Personal Agent or the user profile manager for updating the
profile of the user that answered.

Email Managers are responsible for receiving emails from off-line users
and forwarding them to the corresponding Personal Agents.

Starter Agents have the duty of activating a Personal Agent when either a
user logs on or another agent requests it.

Directory Facilitators are responsible for informing an agent about the
address of the other agents active in the system (e.g., a Personal Agent can
ask about the address of all the other Personal Agents, of the code documen
tation managers, etc.).

A quite complete description of the behaviour of the system can be given
showing the scenario where a user asks information to its personal agent to

144 JADE

Mail Manager

User Prc file
Managers

Directory Fadlitatpr W^J ^^\

i
Document Profile

Managers

Agent Starter Answer Profile
Managers

Figure 5.6. The RAP architecture.

solve a problem in its code and the personal agent finds one (or more) pieces
of information that may help her/him. The description of this scenario can
be divided in the following steps:

1) Select answer types. The user can receive: information extracted from
code documentation, old answers stored in the answer repositories and
new answers sent by the other users of the system. Therefore, before
submitting the query, the user can select the types of answers (one or
more) she/he likes to receive.

2) Submit a query. The user, through its user interface, provides the
query to its personal agent. In particular, the user can query either
about a class or an aggregation of classes for implementing a partic
ular task or about a problem related to her/his current implementa
tion. The query is composed of two parts. The first part (we call
it "annotation") identifies the context of the query and can contains
keywords provided by a system glossary and/or the identification of
classes and/or methods in a univocal way (i.e., the user needs to spec
ify the complete package name for a class and the class name for a
method). The second part contains the textual contents of the query.

Applications 145

3) Find answers. The personal agents perform different actions and Inter
act with different agents to collect the various types of answers. For
getting code documentation, the personal agent asks the directory fa
cilitator about all the code documentation managers. After receiving
this Information, the personal agent forwards the query to all these
agents. These agents search pieces of code documentation related to
the query and send them to the personal agent associating a score with
each piece. For getting answers from the answer system repositories,
the personal agent asks the directory facilitator about all the answer
managers. After receiving this Information, the personal agent for
ward the query to all these agents. These agents search answers related
to the query and send them to the personal agent associating a score
with each answer. The reception of new answers from the system users
Is a more complex activity and Its description can be divided In four
further steps:

3.1) Find experts. The personal agent asks the directory facilitator
about the other active personal agents (i.e., the personal agents of
the user that are available on-line) and all the user profile man
agers of the system (i.e., the agents managing the profile of the
users that are off-line). After receiving this Information, the per
sonal agent forwards the query to these personal agents together
to the user profile managers.

3.2) Receive expert rating. All these agents (personal agents and user
profile managers) compute the rating of their users to answer to
this query on the basis of the query itself and of the user profile.
The agents that compute a positive score (I.e., its user may give an
appropriate answer to the query) reply to the querying personal
agent with the rating of Its user (In the case of a personal agent)
or Its users (in the case of user profile manager).

3.3) Select experts. The personal agent divides on-line and off-line
users, order them on the basis of their rating and, finally, presents
these two lists to Its user. The user can select more than one user
and then the personal agent sends the query to the corresponding
personal agents (for the on-line users) and to the corresponding
user profile managers (for the off-line users).

3.4) Receive answers. The replying personal agents Immediately
present the query to their user and forward the answer as soon as
the user provides it. User profile manager activates the personal
agents of the Involved users through the starter agent. These per
sonal agents forward the query to their user via email and then
terminate themselves. Users can answer either via email or when

146 JADE

they log again on the system. In the case of email, the email
manager starts the appropriate personal agent that extracts the
answer from the email and forwards it. When the querying per
sonal agent receives an answer, it immediately forward it to its
user.

4) Rate answers. After the reception of all the queries, or when the dead
line for ending them expired, or, finally, when the user has already
found an answer satisfying its request, the personal agent presents the
list of read answers to its user asking her/him to rate them. After the
rating, it forwards each rating to the corresponding personal agent,
code documentation manager, answer manager or user profile man
ager that provides to update the user profile and/or the answer rating
(when a user rates an answer retrieved from the answer repository, this
rating is also used to updated the user profile of the user that previously
proposed the answer). Note that in the case of rating of users answers,
the rating cannot be known by the user that sent the answer and users
that did not send answers automatically received a negative rating.

The management of user and document profiles is performed in two dif
ferent phases: an initialization phase and an updating phase.

In order to simplify, speed-up and reduce the possibility of inaccuracy due
to peopleSs opinions of themselves and to incomplete information, we de
cided to build the initial profile of the users and documents in an automated
way that, for the users, is very similar to the one used by Expert Finder
system [230].

Profiles are represented by vectors of weighted terms whose value are re
lated to the frequency of the term in the document or to the frequency of
the use of the term by the user. The set of terms used in the profiles is not ex
tracted from a training set of documents, but it corresponds to those terms
included in the system glossary, provided to the users for annotating their
queries, and to the names of the classes and methods of the Java software
libraries used by the community of the users of the system.

Document and user profiles are computed by using term frequency inverse
document frequency (TF-IDF) [200] and profiles weighted terms correspond
to the TF-IDF weight. Each user profile is built by userSs personal agent
through the analysis of the Java code she/he has written. The profile built
by personal agents is only the initial userSs profile, and it will be updated
when the user writes new software and especially when the user helps other
users answering their queries.

Final Remarks 147

5,4 Final Remarks

In this chapter we presented JADE (Java Agent Development framework),
a software framework to support the development of agent applications that
is considered the reference implementation of the FIPA specifications.

JADE is written in Java and comprises various Java packages, giving ap
plication programmers both ready-made pieces of functionality and abstract
interfaces for custom, application dependent tasks. Java was chosen because
of its many attractive features, which are particularly geared towards object-
oriented programming in distributed heterogeneous environments. Starting
from the same assumption behind FIPA specifications, i.e., that only the
external behaviour of system components should be specified, leaving the
implementation details and internal architectures to agent developers, JADE
provides a very general but primitive agent model that can serve as a useful
basis to implement more sophisticated agent architectures. In addition, the
behaviour abstraction of the JADE agent model permits an easy integration
of external software and it was done with success allowing, for example, the
integration of JADE with rules engines (JESS and DROOLS), Web tech
nologies (servlets and JSP), ontology management tools (Protege and Jena).

Three of the most important features of JADE are: heterogeneous device
and network support, performance and scalability. In fact, JADE has been
proved suitable to realize large and complex multi-agent systems composed
of thousands of agents distributed on different heterogeneous networks, run
ning on heterogeneous devices and exchanging huge amount of messages.

JADE is an open source project around which a community of users
and contributors has grown up, and recently also an International Govern
ing Board, called "JADE board" has been established. The JADE board is
a no-profit organization that join five industrial companies (TILAB, Mo
torola, Whitestein Technologies, Profactor, and France Telecom), with the
intent of promoting the evolution and the adoption of JADE by the mobile
telecommunications industries as a Java-based de-facto standard middleware
for agent-based applications in the mobile personal communication sector.

Acknowledgments

This work is partially supported by the European Commission through
the contracts "@lis Technology Net (ALA/2002/049-055)" and by MIUR
(Ministero dellTstruzione, deirUniversita e della Ricerca) through the
COFIN project ANEMONE.

Chapter 6

JADEX: A BDI REASONING ENGINE

Alexander Pokahr,^ Lars Braubach,^ and Winfried Lamersdorf^

University of Hamburg
Distributed Systems and Information Systems
22527 Hamburg, Germany
\pokahr\ braubach \ lamersd}@informatik. uni-hamburg.de

Abstract This chapter presents Jadex, a software framework for the creation of goal-
oriented agents following the belief-desire-intention (BDI) model. The Jadex
project aims to make the development of agent based systems as easy as pos
sible without sacrificing the expressive power of the agent paradigm. The
objective is to build up a rational agent layer that sits on top of a middleware
agent infrastructure and allows for intelligent agent construction using sound
software engineering foundations. Fostering a smooth transition from tradi
tional distributed systems to the development of multi-agent systems, well es
tablished object-oriented concepts and technologies such as Java and XML are
employed wherever applicable. Moreover, the Jadex reasoning engine tries to
overcome traditional limitations of BDI systems by introducing explicit goals.
This allows goal deliberation mechanisms being realized and additionally facil
itates application development by making results from goal-oriented analysis
and design easily transferable to the implementation layer. The system is freely
available under LGPL license and provides extensive documentation as well as
illustrative example applications.

Keywords: BDI agents, FIPA standard, object-oriented software engineering, explicit
goals.

6,1 Motivation
Today, a numerousness of different agent platforms is available for devel

oping multi-agent applications [144]. Nevertheless, most of these platforms
are developed with a specific technological focus such as the cognitive or
infrastructural architecture. Hence, not all aspects of agent technology are

150 Jadex

covered equally well. General applicability of an agent platform for a great
variety of domains demands that at least three categories of requirements are
considered: openness, middleware, and reasoning. Openness is closely re
lated to the vision of interconnected networks of originally unrelated appli
cations whereas middleware aspects emphasize traditional software engineer
ing concerns such as service management, security and persistency aspects.
Reasoning, in turn, focuses on the agent's internal decision-making process
and mostly tries to map this process from a natural archetype such as insects
or humans.

According to these aspects, the existing platforms can be classified into
two almost distinct groups. On the one hand, FIPA-compliant platforms
mainly address openness and middleware issues by realizing the FIPA com
munication respectively platform standards [172]. On the other hand,
reasoning-centered platforms exist, that focus on the behaviour model of
a single agent, e.g. trying to achieve rationality and goal-directedness. This
gap between middleware and reasoning-centered systems is one main motiva
tion for the realization of the Jadex BDI (Belief-Desire-Intention) reasoning
engine [30, 171], which aims to bring together both research strands.

Besides this overall objective to support both classical virtues from mid
dleware and BDI reasoning, the design of the system is driven by two main
factors. On the one hand, the development of the reasoning engine is ac
companied by an ongoing effort of enhancing the BDI architecture in gen
eral. The system addresses shortcomings of earher BDI agent systems, e.g.
by providing an explicit representation of goals and a systematic way for the
integration of goal deliberation mechanisms. On the other hand, the system
respects the current state of the art regarding mainstream object-oriented
software engineering, and is designed to be used not only by AI experts,
but also by the normally skilled software developer. Therefore, agent de
velopment is based on established techniques such as Java and XML, and is
further supported by software engineering aspects, such as reusable modules
and development tools.

6,2 Architecture

This section presents the architectural underpinnings of the Jadex system.
It starts with a short review of the BDI model and related systems. Sub
sequently, an overview of the architecture of Jadex is presented. The basic
concepts - beliefs, goals, and plans - of the system are introduced by high
lighting their main characteristics and differences to other BDI agent sys
tems. Finally, the execution model is shortly sketched, showing how the
components of the system interoperate.

Architecture 151

6.2A BDI Models and Systems

The BDI model was initially conceived by Bratman as a theory of human
practical reasoning [28]. Its success is based on its simplicity reducing the
explanation framework for complex human behavior to the motivational
stance [58]. In this model, causes for actions are only related to desires ig
noring other facets of cognition such as emotions. Another strength of the
BDI model is the consistent usage of folk psychological notions that closely
correspond to the way people communicate about human behavior [157].

The BDI theory of Rao and Georgeff [182] defines beliefs, desires, and
intentions as mental attitudes represented as possible world states. The in
tentions of an agent are subsets of the beliefs and desires, i.e., an agent acts
towards some of the world states it desires to be true and believes to be possi
ble. To be computationally tractable Rao and Georgeff also proposed several
simplifications to the theory, the most important one being that only beliefs
are represented explicitly. Desires are reduced to events that are handled by
predefined plan templates, and intentions are represented implicitly by the
runtime stack of plans to be executed.

According to Martha Pollack [96], work on BDI can be further subdivided
into three categories: 1. General models for practical reasoning, based on
BDI concepts. 2. Computational models based on the "Intelligent Resource-
Bounded Machine Architecture" (IRMA) [27], exhibiting close correspon
dence to Bratman's philosophy. 3. The computational model employed in
the PRS family of systems [98, 118], which found many uses in practice.
Nowadays, current descendants of the PRS family, in particular commer
cial products and solutions such as Agent Oriented Software's JACK 7 and
Agentis' AdaptivEnterprise Suite [127] have the most practical relevance con
cerning development of agent-based software systems.

In the next sections, the architecture of the Jadex reasoning engine, which
basically follows the PRS computational model, will be described. Important
differences to other representatives of the PRS family will be highlighted in
the corresponding subsections.

6.2.2 Concepts within Jadex

In Fig. 6.1 an overview of the abstract Jadex architecture is presented.
Viewed from the outside, an agent is a black box, which receives and sends
messages. As common in PRS-like systems, all kinds of events, such as in
coming messages or goal events serve as input to the internal reaction and
deliberation mechanism, which dispatches the events to plans selected from
the plan library. In Jadex, the reaction and deliberation mechanism is the
only global component of an agent. All other components are grouped into
reusable modules called capabilities.

152 Judex

Massages

Agent

Reaction
Deliberation

Handle
Events

Capability

Plans

Application Events Dispatch
I ^ (Sub-) Goals

Beliefs Goals

Figure 6.1. Jadex abstract architecture

Beliefs

One objective of the Jadex project is the adoption of a software engineer
ing perspective for describing agents. In other BDI systems, beliefs are rep
resented in some kind of first-order predicate logic (e.g. Jason, described in
chapter 1) or using relational models (e.g. JACK and JAM [114]). In Jadex,
an object-oriented representation of beliefs is employed, where arbitrary ob
jects can be stored as named facts (called beliefs) or named sets of facts (called
belief sets). Operations against the beliefbase can be issued in a descriptive
set-oriented query language. Moreover, the beliefbase is not only a passive
data store, but takes an active part in the agent's execution, by monitoring
belief state conditions. Changes of beliefs may therefore directly lead to ac
tions such as events being generated or goals being created or dropped.

Goals

Goals are a central concept in Jadex, following the general idea that goals
are concrete, momentary desires of an agent. For any goal it has, an agent
will more or less directly engage into suitable actions, until it considers the
goal as being reached, unreachable, or not wanted any more. In other PRS-
like systems, goals are represented by a special kind of event. Therefore, in
these systems the current goals of an agent are only implicitly available as
the causes of currently executing plans. In Jadex, goals are represented as
expHcit objects contained in a goalbase, which is accessible to the reasoning

Architecture 153

Creation
Condition ^-

adopt

' Ltflend
• ^

L>"0
[!> - .

Negated condition
Condition guards transition

Condition triggers transition

M

^
i
w

Option

ac///afe

Adopted

y

Context
Condition

I op//on !
•< i m /

^"^N^^ suspend

Active

^ J

'
> '1 Suspended

J
y
finished

k " '

suspend

Drop
Condition ^

d/cp
^

Figure 6.2, Goal lifecycle (from [32])

component as well as to plans if they need to know or want to change the
current goals of the agent. Because goals are represented separately from
plans, the system can retain goals that are not currently associated to any
plan. As a result, unlike other BDI systems, Jadex does not require that all
adopted goals are consistent to each other, as long as only consistent subsets
of those goals are pursued at any time. To distinguish between just adopted
and actively pursued goals, a goal lifecycle is introduced which consists of
the goal states option, active, and suspended (see Fig. 6.2). When a goal is
adopted, it becomes an option that is added to the agent's goalbase, either as
top-level goal, or when created from a plan as subgoal of a plan's root goal.
Application specific goal deliberation settings specify dependencies between
goals, and are used for managing the state transitions of all adopted goals
(i.e. deciding which goals are active and which are just options). In addition,
some goals may only be valid in specific contexts determined by the agent's
beliefs. When the context of a goal is invalid, it will be suspended until the
context is valid again.

Jadex supports four types of goals, which extend the general lifecycle and
exhibit different behaviour with regard to their processing as explained be
low. K perform goal is directly related to the execution of actions. Therefore,
the goal is considered to be reached, when some actions have been executed,
regardless of the outcome of these actions. An achieve goal is a goal in the
traditional sense, which defines a desired world state without specifying how
to reach it. Agents may try several different alternative plans, to achieve a
goal of this type. A query goal is similar to an achieve goal, but the desired
state is not a state of the (outside) world, but an internal state of the agent, re
garding the availability of some information the agent wants to know about.

154 Judex

For goals of type maintain, an agent keeps track of a desired state, and will
continuously execute appropriate plans to re-establish this maintained state
whenever needed. More details about goal representation and processing in
Jadex can be found in [32].

Plans

Plans represent the behavioural elements of an agent and are composed of
a head and a body part. The plan head specification is similar to other BDI
systems and mainly specifies the circumstances under which a plan may be
selected, e.g. by stating events or goals handled by the plan and precondi
tions for the execution of the plan. Additionally, in the plan head a context
condition can be stated that must be true for the plan to continue executing.
The plan body provides a predefined course of action, given in a procedural
language. This course of action is to be executed by the agent, when the plan
is selected for execution, and may contain actions provided by the system
API, such as sending messages, manipulating beliefs, or creating subgoals.

Capabilities

Capabilities, introduced in [39], represent a grouping mechanism for the
elements of a BDI agent, such as beliefs, goals, plans, and events. In this
way, closely related elements can be put together into a reusable module,
which encapsulates a certain functionality (e.g. for interaction with a FIPA
directory facilitator). The enclosing capability of an element represents its
scope, and an element only has access to elements of the same scope (e.g. a
plan may only access beliefs or handle goals or events of the same capability).
To connect different capabilities, flexible import / export mechanisms can
be used that define the external interface of the capability (e.g. beliefs or goals
visible to the outside).

6,2.3 Execution IVIodel

This section shows the operation of the reaction and deliberation compo
nent, given the Jadex BDI concepts as described earlier. All of the required
functionality is assigned to cleanly separated components, which will be ex
plained in turn. Incoming messages are placed in the agent's global message
queue by the underlying agent platform such as JADE (see chapter 5). Before
the message can be forwarded to the system, it has to be assigned to a capabil
ity, which is able to handle the message. If the message belongs to an ongoing
conversation, an event for the incoming message is created in the capability
executing the conversation. Otherwise, a suitable capability has to be found,
which is done by matching the message against event templates defined in

Architecture 155

Jadex Agent

Intemal/goal

1 Message queue

Message
receiver

^

3
^"Y^^ Select message

Create event
for message

^
V

^
+

Event list |

Dispatcher

^

^ r " " ^ Select event

Find applicable
candidates

•
Select

candidates

>•
V.

^
^

^ •
1 Ready list |

Scheduler

,

^ Y ^ Select intention

Execute
plan step

^
Capabilities/eventbases

J^

^
^

Capabilities/planbases

Meta-level reasoning

Figure 6,3. Jadex execution model

the eventbase of each capability. The best matching template is then used to
create an appropriate event in the scope of the capability. In either case, the
created event is subsequently added to the agent's global event list.

The dispatcher is responsible for selecting applicable plans for the events
from the event list. This is done in two steps: First, a list of applicable
plans is generated by matching the event against the plan heads as defined in
the planbases of each capability, whereby only those capabilities have to be
considered, where the event is visible. The second step is to select a subset
of the applicable plans for execution. Regarding this step several important
questions arise, such as if all of the applicable plans should be executed con
currently, or if the event is posted to another plan if the first plan fails [39].
The decision of which plan to execute is called meta-level reasoning and may
be as simple as selecting the first plan from the list, or as complicated as
finding and executing meta-plans for the decision. Jadex provides flexible
settings to influence this event processing individually for event types and
instances. As a default, messages are posted to only one single plan, while
for goals, many plans are executed sequentially until the goal is reached or fi-

156 Judex

Agent Plattform

' ' : ^ ^ : ^ -

ADF
<agent name-"ping">

<beliefs>

<goals>

<plans>

</agent>

• ^

Plan
public class PingPlan 1

extends ThreadedPlan T
{ ;

public void bodyO 1'
{ ;

)
} li

^

Figure 6.4. Jadex agent

nally failed, when no more plans are applicable. Internal events are posted to
all plans at once, as they are considered only as a change notification and no
return value Is expected from executed plans. After plans have been selected,
they are placed In the ready list, waiting for execution.

The execution of plans Is performed by a scheduler, which selects the plans
from the ready list. Plans are executed step-by-step, whereby (In contrast to
other PRS-lIke systems) the length of plan step depends on the context, and
not only on the plan Itself. A plan Is executed only until It waits explicitly or
significantly affects the Internal state of the agent (e.g. by creating or drop
ping a goal). Internal state changes can be caused directly or through side
effects, e.g. when a belief change triggers the creation condition of a goal.
After the plan waits or Is Interrupted, the state of the agent can be properly
updated, e.g. a newly created goal might lead to other plans being scheduled.

6.3 Language

Jadex Is neither based on a new agent programming language nor does It
employ or revise an existing one. Instead, a hybrid approach Is chosen, dis
tinguishing explicitly between the language used for static agent type specifi
cation and the language for defining the dynamic agent behaviour. According
to this distinction, a Jadex agent consists of two components: An agent defi
nition file (ADF) for the specification of inter alia beliefs, goals and plans as

Language 157

well as their initial values and on the other hand procedural plan code (see
Fig. 6.4). For defining ADFs, an XML language is used that follows the Jadex
BDI metamodel specified in XML Schema. The XML structure specification
is augmented by a declarative expression language, e.g. for specifying goal-
conditions. The procedural part of plans (the plan bodies) are realized in an
ordinary programming language (Java) and have access to the BDI facilities
of an agent through an application program interface (API).

6,3.1 Specifications and Syntactical Aspects

The Jadex BDI metamodel defined in XML Schema is very extensive and
hence cannot be presented completely in this paper (for a complete intro
duction see [170]). Generally, the corresponding language was specified with
two design principles in mind. The first design objective is the support for
strong typing and explicit representation of all kinds of elements, be it be
liefs, goals or events. In consequence, this requires users to write detailed
ADFs, but in return allows for more rigorous consistency checking of agent
models. Additionally, at runtime certain kinds of failures can be discovered
more easily, e.g. the attempt of storing a fact value in an undefined belief can
be immediately reported.

The second design objective regards increasing the expressive power of the
ADF for the following purposes: The arbitrary complex creation of objects
(e.g. values within beliefs or parameters), the description of boolean condi
tions (e.g. when a certain goal should be dropped) and the construction of
queries (e.g. for retrieving values from the beliefbase). To achieve this, an em
bedded expression language is used for specifying parts of the agent model,
not easily represented in XML. Expressions are used throughout the XML
ADF, whenever values have to be obtained for certain elements at runtime,
e.g. values of beliefs, conditions of goals, etc. Expressions should be side
effect free, because they are often evaluated internally by the system. The
expression language has been designed to fully comply with the syntax of
Java expressions (right hand side of assignments) extended with a subset of
OQL (object query language) instructions [15]. The syntax of the OQL
extension is depicted in Fig. 6.5 in EBNF notation. It allows for query state
ments being created in the well-known select-from-where form, whereby it
can be additionally specified if exactly one (iota), the first satisfying (any)
or all satisfying results are expected (line 1). In the/rom clause (lines 3-4)
it is specified from which object set (line 4) or joined sets (line 3) results
are generated. The identifiers define variables, which iterate over the ob
ject sets specified as arbitrary expressions. These iterated values are checked
against the boolean where condition (line 6) and can possibly be ordered (line
7). The example query, corresponding to the example presented in section

158 Jadex

01: select.expression ::= "SELECT" ("ALL" | "ANY" | "IOTA")?
02: (
03: expression "FROM" ("$" identifier "IN" expression) ("," "$" identifier "IN" expression)*
04: I "$" identifier "FROM" expression
05:)
06: ("WHERE" expression)?
07: ("ORDER" "BY" expression ("ASC" | "DESC")?)?

Example: SELECT $block FROM $beliefbase.blocks WHERE $block.isClear()

Figure 6,5. OQL syntax in EBNF and query example

6.3.3, shows that it is possible to use Java method calls like isClearQ in the
expression language. While queries can be used in any expression, they are
most useful for predefined views on subsets of the agent's beliefs, which can
be evaluated at runtime (e.g. from within plans).

In the following the essential BDI concepts as presented in Section 6.2.2
will be taken on and their realization on language level will be detailed.
These concepts are specified as part of an agent or capability description
in the same manner. In Fig. 6.6 (left hand side) the allowed attributes and
subtags of the agent tag are shown. Each agent type is identified by a name
and package declaration and can be provided with a description text. In ad
dition, the corresponding agent class and runtime properties can be set. For
most cases, the default values are sufficient and need not be modified. It
can be seen that besides the subtags for the core BDI concepts (beliefs, goals,
plans and events which are explained below) several other elements can be
declared. Most of these elements (languages, ontologies, servicedescriptions
and agentdescriptions) are FIPA related and facilitate agent communication
respectively the interaction with yellow page services. The remaining ele
ments (imports, expressions, properties) are implementation details, serving
for convenience (e.g. to avoid duplicate declarations) and agent configuration
purposes, such as logging or debugging settings.

Beliefs

In Jadex, beliefs are represented in an object-oriented way allowing arbi
trary Java objects being stored as facts. Like all elements of a capability,
beliefs and belief sets can be supplied with a name, a description text and
an exported flag. Exporting an element makes it accessible from the outer
scope (respectively a capability or an agent) and is turned off by default. For
beliefs and belief sets, the Java class for facts must be defined. Besides the
type-relevant information, initial fact data can also be supplied for configur-

Language 159

<agent>

Attribute
name
description
packaqe
class
propertyfile

<lmports> 1
<capabiliti»s>
<betlefs>
<goals> 1
<plan8>
<eV8nts> 1
<languages> 1
<ontologies>
<expressions> 1
<propert[es>
<servlcedG5cript[on$> 1
<a^entdescriptions> |
Type
xs:string
xs:string
xs:string
xs:string
xs:string

Use

optional
optional
optional
optional

Default 1

[...IJadeWrapperAgent
jadGx.config. Runtime

Fig.

<belief> {0..n)
<beliefset> (0„n)
name
description
exported
class
updaterate

<fact>
<fact>(0,.n)
xs;string
xs:strinq
xs:boolean
xs:string
xs:long

optional
optional
optional
optional

false 1

0 1

<plan> {0..n)

name
description
exported
instant
1 priority

<trigger> 1
<precondition>
<contextcondition> 1
<bindtngs>
<body>
xs:string
xs:string
xs:boolean
xs:boolean
xsiint

optional
optional
optional
optional

false
false
0

Legend: ->• Subtag refinements <Ugname> XML-Tag attmame Attribute

Figure 6.6. Agent metamodel specification fragment pCML-schema)

ing an agent's mental state at creation time. The value of a fact has to be
stated in the expression language and can be declared as static or dynamic,
whereby dynamic facts are useful e.g. for representing values continuously
sensed from an environment or time-relevant aspects. Re-calculation of such
dynamic facts occurs on access and additionally in fixed time intervals (using
the update rate). At runtime, beliefs and belief sets are accessible from within
plans via operations on the beliefbase and additionally by issuing OQL-like
queries.

Goals

As described earlier in Jadex four different goal types are distinguished
(perform, achieve, maintain and query). All these goal types are based on
the generic life cycle and hence exhibit many common properties that are
summarized in an abstract base goal type (see Fig. 6.7). According to the
lifecycle, creation, drop and context conditions can be specified as boolean
expressions. Customization of goal types can be further achieved by defining
named in-, out- and inout-parameters that are used to transfer information
between a goal's originator and its processing plans. Additionally, binding
parameters can be used for generating one goal instance for every possible
binding. The runtime processing of goals can be refined using the various
BDI-flags, which inter alia control if a goal is retried when a plan fails (retry),
if meta-level reasoning is used (mlreasoning) and if applicable plans are tried
sequentially or in parallel (posttoall). A complete explanation can be found
in [170].

160 Judex

goal (abstract)

Attribute
[name
Idescription
1 exported
1 retry
retrydelay
1 ml reasoning
randomselection
[exclude
[posttoall

< parameter > (0..n) 1
< parameterset > (0..n) 1
< bindings > 1
<creationcondlt[on >
<contextcondition >
<dropcondition > |
Type
xs:string
xs:string
xs:boolean
xsiboolean
xs:iong
xsibooiean
xs:boolean
xs:boo!ean
xs:boolean

Use

optional
optional
optional
optional
optional
optional
optional
optional

Default 1

false
tme 1
0

true 1
false 1
when tried 1
false]

<achiev8goal >
<targetcondltlon >

<fallurecondition >

<querygoal >
<targetcondltion >
<faiturecondition >

<maintalngoal >

recurdelay

<malntaincondition >
<targetcondition >
xs:boolean
xs:long

optional
optional

false

<performgoaI > Legend

< <tagname>
attrname

inheritance
XML-Tag
Attribute 1

Figure 6.7. Goal metamodel specification (XML-schema)

From the abstract goal type, all concrete types are derived. The simplest
one being the perform goal used for executing (possibly repeatedly) certain
actions, which does not require extra specification data. An achieve goal
extends this abstract goal type and adds support for the specification of a
target and a failure condition. The target condition is used for describing the
world state this goal seeks to bring about as a boolean expression. Similarly,
a boolean failure condition has the purpose to abort goal processing in case
its achievement has become impossible. The query goal provides the same
kind of conditions, but exhibits a slightly different behaviour in that it is
used for information retrieval purposes.

Most complex behaviour is exposed by the maintain goal type, which is
used to monitor a specific world state (maintain condition) and automati
cally tries to reestablish this state whenever it becomes invalid. A boolean
target condition can be used to refine the state that is tried to be restored.
Maintain goals are not dropped when they are achieved once, but remain in
active until the monitored state is violated again. Moreover, a maintain goal
can be configured to retry re-establishment in certain time intervals (recur
and recurdelay), when it has failed for some reason. In addition to the spec
ification of the four types of goals, possibly parametrized initial goals can
be declared that will be created when the agent is born. At runtime, goal
instances can be created from within plans by referring to their type name.
Typically, some parameter values need to be supplied before a goal can be
dispatched as top-level goal or as subgoal of the current plan.

Language 161

Plans

The declaration of plans In Jadex Is very similar to other PRS-lIke systems
and requires the specification of the plan heads describing the circumstances
under which a plan Is applicable In the ADF. As plan trigger, Internal events,
messages, and goals, as well as a belief state condition (for data driven plans)
can be provided. The pre- and context condition of a plan can be specified
as boolean expressions. To facilitate goal achievement with plans. It Is some
times advantageous to create several different parametrized plan Instances of
a plan type and try them one after another until a plan succeeds. For this
purpose, binding parameters can be specified and used for plan configura
tion. Furthermore, the selection of which plan Is executed In response to an
occurring trigger can be adjusted by setting a priority value. As part of the
Initial mental state of an agent. It can be further declared whether a plan Is
Instantiated when the agent Is created (using the Instant flag).

The plan body needs to be supplied as expression for the creation of a
suitable plan Instance. Currently, two different types of plan bodies (stan
dard and mobile) are supported, which both require a Java class to be Imple
mented. Mobile plan bodies have several disadvantages compared to the stan
dard versions, but nonetheless make sense In mobile scenarios as agent mi
gration Is provided. In Fig. 6.8 the skeleton of an application plan Is depicted.
Mandatory Is only the extension of a corresponding framework class (Plan)
and the Implementation of the abstract bodyO method. In which the domain-
specific plan behaviour can be placed. In addition to the body method, three
other methods exist that optionally can be Implemented. These methods are
called when plan processing has finished according to the plans final state.
The passedQ method Is called when the body method completes, whereas
the falledQ method Is Invoked when an uncatched exception Is thrown within
the bodyO method. Finally, the abortedQ method Is called, when plan pro
cessing was Interrupted from outside. Two different abort cases can be dis
tinguished, either when the corresponding goal succeeds before the plan Is
finished or when the plans root goal Is dropped.

6,3,2 Software Engineering Issues

The overall goal of the Jadex project Is to provide a sophisticated reasoning
engine allowing to develop arbitrary complex Intelligent agents. Therefore,
while trying to be as easily useable as possible, the system does not sacrifice
expressiveness for simplicity. Nonetheless, software engineering Issues play
an Important role In the design of the system.

As stated earlier, a primary goal of the project Is to facilitate a smooth tran
sition from mainstream object-oriented software development to an agent-
oriented approach. This Is achieved by resorting to established techniques

162 Jadex

01:
02:
03:
04:
05
06
07
08
09
10
11
12
13
14
15
16;
17:

/** Plan skeleton for an application plan. V
public class SomePlan extends jadex.runtlme.Plan {

public void body() {
// Plan code.

}

public void passed() {
// Optional cleanup code in case of a plan success.

}
public void failed() {
// Optional cleanup code in case of a plan failure.

}
public void aborted() {
// Optional cleanup code in case the plan is aborted.

}
}

Figure 6.8. Plan skeleton

wherever possible. E.g., the system builds on Java and XML, therefore the
developer does not have to learn a new language. Another advantage is that
the developer can continue to operate in a familiar environment. As the
agent developer only has to create Java and XML files, existing development
environments such as Eclipse^ or IntelliJ IDEA^ can be used to develop Jadex
agents. In recent editions of these environments, features such as on-the-fly
checking and auto-completion not only apply to Java coding but can also eas
ily be adopted for XML ADF creation,"^ therefore offering extensive support
for Jadex agent development.

Moreover, the system provides advanced software engineering features,
such as reusability and consistency checking. The capability concept allows
encapsulating agent functionality into a reusable module while maintaining
the abstraction level of BDI elements. The explicit specification and strong
typing of beliefs, goals, etc. facilitates consistency checks of ADFs to detect
errors (e.g. spelling mistakes) as early as possible.

6.3.3 Example

To further explain the syntax and semantics of the Jadex agent languages,
in this section a simple example is provided. The example does only cover
a small subset of the features of Jadex. Another example covering all dif
ferent types of goals can be found elsewhere [32]. The example presented

^ http://www.eclipse.org/
^ http://www.jetbrains.com/idea/
^In eclipse this can be realized by the XMLBuddy plug-in (see .http://xmlbuddy.com/).

http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://xmlbuddy.com/

Language 163

<:\rwt BMtiwdU

A

yellow n

Jj^Hi ..reC); ; L

A'

H

^ i i

^^m ^^^H

^ yellow 1

î bl •^^^^^i
(»<•) J i ('•''

^ C ^ (^

V^L^ Cj^i^' -^^^

(§)

O c ^

Figure 6.9. Blocksworld scenario (left) and goal/plan tree (right)

here is a fully functional agent, taken directly from the current Jadex dis
tribution. The purpose of the agent is to establish given configurations in
a blocksworld environment, where colored blocks are placed in stacks on
top of a table. The example provides a graphical user interface, where the
user can visually create custom block configurations (see Fig. 6.9, left hand
side). The configurations have to be established by the agent by moving the
blocks. As only clear blocks (without other blocks on top) can be moved,
the agent has to perform some ad-hoc planning. The implemented solution
is very simple, creating the stacks bottom-to-top. Fig. 6.9 (right hand side)
shows the planning process. To achieve the target configuration, subgoals
are created to stack the red block on the table, the yellow block on the red,
and the blue block on the yellow (see ConfigureBlocksPlan). To stack two
blocks on each other, a StackBlocksPlan clears both blocks and performs the
stackOn action. To clear a block, all obstructing blocks are moved to the
table.

The ADF of the agent is shown in Fig. 6.10, where tags (elements of the
Jadex metamodel) are in boldface, and embedded expressions are in italics.
The model starts with the declaration of the agent tag, specifying the name
and package of the agent (line 1). The package is used as first place to resolve
references to other files such as capabilities and Java classes. More packages
and files can be explicitly specified in the imports section (lines 2-4). In this
case the class java.awt.Color is imported, because it is used to represent the
color of a block.

The beliefs of the agent are given in the beliefs section (lines 6-16). A belief
"table" (lines 7-9) is used to represent the environment, which consists of a
table on which blocks are located. As initial fact of the belief, an instance
of the Table class (located in package jadex.examples.blocksworld) is created
(line 8). The known blocks are collected in a belief set "blocks" (lines 10-15).

164 Judex

01
02;
03:
04:
05:
06:
07:
08:
09:
10:
11:
12
13
14
15
16
17
18
19
20
21
22
23
24
25:
26
27
28
29
30
31:
32:
33
34
35
36
37
38
39
40
41
42
43
44:
45
46
47
48
49
50
51
52
53
54
55

<agent name="Blocksworlcl" package="jadex.examples.blocksworld">
<imports>

<import>yava.awf.Co/or</import>
</imports>

<beliefs>
<belief name="table" class="Table">

<fact>neiv Table()</iacX>
</belief>
<beliefset name="blocks" class="Block">

<fact>nen' Block(new Color(240,16,16),$bellefbase.table)</1acX>
<fact>new Block(new Color(16,16,240),$bellefbase.table.allBlocks[0])</iacX>
<fact>new Block(new Color(240,240,16),$bellefbase.table.allBlocks[1])<l\aoX>

</beliefset>
</bellefs>

<goals>
<achievegoal name="clear">

<parameter name="block" class="Block" />
<targetcondltlon>$gfoa/.t>/oc/c./sC/earO</targetconditlon>

</achievegoal>
<achievegoal name="stack">

<parameter name="block" class="Block" />
<parameter name="target" class="Block" />
<targetconditJon>$5foa/./?/oc/c./oiver==5s'oa/.fargef</targetcondltJon>

</achievegoal>
<achievegoal name="configure">

<parameter name="configuration" class="Table" />
<targetcondltlon>

$bellefbase. table. conflguratlonEquals($goal. configuration)
</targetcondition>

</achlevegoal>
</goals>

<plans>
<plan name="stack">

<body>neiv StackBlocksPlan($event.goal.block, $event.goal.target)</bo6y>
<trigger><goal ref="stack"/></trigger>

</plan>
<plan name="configure">

<bo6y>newConfigureBlocksPlan($event.goal.conflguration)</bo6y>
<trigger><goal ref="configure7></trlgger>

</plan>
<plan name="clear">

<bindings>
<binding name="upper">

select Supper from $beliefbase.blocks where $upper.lower==$event.goal.block
</binding>

</bindlngs>
<bo6y>new StackBlocksPlan($upper, $beliefbase.table)</bo6y>
<trigger><goal ref="clear"/></trigger>

</plan>
</plans>

</agent>

Figure 6.10. Blocksworld agent model

Language 165

A number of blocks (class Block) with different colors Is Initially created
given by single fact Items (lines 11, 12, 13 . . .) . The first block Is created on
the table, while the other blocks are created on top of each other (referenced
by table.allBlocks[]).

The agent has three achieve goals, each with a name, parameters and a
corresponding target condition (lines 18-34). The "clear" goal (lines 19-22)
represents the goal to clear (I.e. remove blocks located on top) a block given
In a parameter (line 20). The target condition (line 21) refers directly to
the IsClearQ method of this block. The "stack" goal (lines 23-27) alms at
placing a given block (line 24) on a target block (line 25). Achieving this
goal means that the block below the first block Is now equal to the target
block as stated by the target condition (line 26). To establish a complete
configuration of blocks on the table, the "configure" goal (lines 28-31) Is used.
The desired configuration Is given as a parameter of type Table (line 29).
The target condition (line 30-32) refers to the configuratlonEqualsQ method
Implemented In the Table class. No Initial Instances of these three goal types
are defined In the model. The agent starts Idle, waiting for goals to appear,
which are created by the user through a GUI.

The goals are handled by the plans of the agent (lines 36-54). In this ex
ample, there Is one plan for each goal, although this kind of one to one
mapping Is not required. The plan head declarations of the first two plans
"stack" (lines 37-40) and "configure" (lines 41-44) are straightforward. The
trigger (lines 39 and 43) defines when the plan Is applicable. In this case for
goals of type "stack" and "configure", respectively. The body (lines 38, 42)
defines how the plan body object Is Instantiated. In both cases, the creation
expression refers to parameters of the triggering goal to supply the arguments
for the Java constructor (cf. Figs. 6.11, 6.12). The "clear" plan definition Is
more complex, as the body of the "stack" plan Is reused (see line 51) to move
all blocks from the top of the block to be cleared to the table. To resolve the
parameters used for body creation, a bindings declaration Is used (lines 46-
50). The variable Supper Is assigned to all blocks located on top of the given
block (select statement In line 48). For each of these variable assignments an
Instance of the plan Is created, assuring that all blocks are removed from the
given block.

The Java files of the two plan bodies are shown In Figs. 6.11 and 6.12,
respectively. References to classes and methods provided by the Jadex en
gine are shown In boldface. Both plan classes define a constructor which
takes the plan arguments and stores them In corresponding fields (lines 6-
12 respectively 6-10) such that they are accessible from the bodyQ methods,
which will be described In turn.

The bodyO method of the StackBlocksPlan (Fig. 6.11, lines 14-24) first
clears both blocks provided as arguments, and then moves the first block on

166 Judex

01
02;
03:
04:
05:
06:
07:
08
09
10
11
12
13
14
15
16
17;
18
19
20;
21
22
23
24
25

package jadex.examples.blocksworld;
import jadex.runtime.*;

/** Plan to stack one block on top of another target block. V
public class StackBlocksPlan extends Plan {

protected Block block;
protected Block target;

public StackBlocksPlan(Block block, Block target) {
this.block = block; ,
this.target = target;

}

public void body() {
IGoal clear = createGoal("clear");
clear.getParameter("block").setValue(block);
dispatchSubgoalAndWait(clear);

clear = createGoal("clear");
clear.getParameter("block").setValue(target);
dispatchSubgoalAndWait(clear);

block.stackOn(target);
}

}

Figure 6.11, Java code for StackBlocksPlan

top of the other. To clear the first block, a goal of type "clear" (cf. Fig. 6.10)
is created (line 15) and the parameter is set to the block (line 16). The dis-
patchSubgoalAndWaitQ method (line 17) forces the agent to adopt the goal,
and halts the execution of the plan until goal processing is finished. If the
goal fails, an exception is thrown causing the whole plan to fail. Otherwise,
the plan continues to clear the target block in a similar fashion (lines 19-21).
Finally, the plan stacks the blocks on each other by calling the stackOnQ
method of the Block class (line 23).

In the ConfigureBlocksPlan (Fig. 6.12), the bodyO method (Hnes 12-25)
consists of two loops through all stacks on the table, and all blocks of each
stack, as returned by the getStacksQ method of the Table class (line 13). This
table object represents the desired target configuration. The agent now has
to look up the corresponding blocks in its beliefbase, and then operate on
these blocks such that they resemble the target configuration. The lookup
is simple for the block itself, as the corresponding object can be obtained
directly from the belief set (line 16). The lookup of the object below the
block (lines 17-19) is somewhat more difficult, because the block could be
located directly on the table (line 18) or on top of another block (line 19). To
perform the actual changes to the retrieved objects, a "stack" goal is created

Platform 167

01
02
03
04
05
06
07
08
09:
10;
11
12
13:
14
15;
16;
17;
1
19;
20;
21
22;
23;
24
25;
26;
27;
28;

package jadex.examples.blocksworld;
import jadex.runtlme.*;

/** Plan to to establish a given configuration of blocf<s. */
public class ConfigureBlocksPlan extends Plan {

protected Table table;

public ConfigureBlocksPlan(Table table) {
this.table = table;

}

public void body() {
Block[][] stacks = table.getStacks();
for(int i=0; i<stacks.length; i++) {

for(int j=0; j<stacks[i].length; j++) {
Block block=(Block)getBeliefbase().getBeliefSet("blocks").getFact(stacks[i]0]);
Block target=stacks[i]0].getLower()==table
?(Table)getBellefbase().getBellef("table").getFact()
:(Block)getBellefbase().getBellefSet("blocks").getFact(stacks[i]0].getLower());

IGoal stack = createGoal("stack");
stack.getParameter("block").setValue(block);
stack.getParameter("target").setValue(target);
dispatchSubgoalAndWait(stack);

}
}

Figure 6.12. Java code for ConfigureBlocksPlan

and dispatched (lines 21-24). Because the loop processes the stacks bottom-
to-top, the sequential execution of all "stack" goals ensures that the final
configuration resembles the desired target configuration.

6,4 Platform
This section describes the realization of the Jadex reasoning engine, and

Its Integration Into the JADE platform. Figure 6.13 shows the essential com
ponents required for developing and executing a Jadex agent, and highlights
the dependencies between those components. The components are distin
guished In core system components (upper row) which realize the reasoning
engine, system interface components (middle row) that provide and define the
access points to the system, and custom application components (lower row)
which have to be supplied by the agent developer. The links between the
components can be categorized In runtime dependencies (I.e. between com
ponents In the first two columns from the left), dependencies that only apply
during the agent startup phase (see third column components), and dependen
cies resolved at design time (right column).

168 Judex

Core
System
Components

System-
Interface
Components

Custom
Application
Components

Interpreter

Jadex Agent

Instance Elements
(e.g. Goal Irwtances)

Model Elements L
{e.a. Goal Types) " ^

I T

Plan Executors

Plan Code
(e.g. Java ClassM)

BDI API
(Plan/OUl Wrapper)

;̂
Agent Type Loader [|n7.

Application Code
(a.g. Java Classes)

auaifv

ADFXML

Runtime
(Invocation of Operationa)

Agent Startup
(XML Parsing / Creation of Model Elements)

XML Databinding
(Code Generator)

Jadex Metamodei
(XML Schema)

Design Time
n / Code Generation)

Figure 6.13. System realization

We will describe the components starting from the right. Jadex is based on
a BDI metamodei defined in XML Schema (cf. Sect. 6.3.1). This schema is on
the one hand used to validate the agent models specified in XML agent def
inition files (ADF). On the other hand, an XML databinding framework"^ is
used to generate Java classes for the elements of the metamodei and for read
ing model elements from XML. When an agent is instantiated, the generated
agent type loader reads the user supplied XML agent model and automatically
creates the corresponding model elements.

From these model elements, instances are continuously created at run
time, represented by instance elements. The main interpreter operates on the
current instance elements and executes plans to handle events and goals. Plan
executors are used to hide the details of plan implementation types from the
system. As a default, there is a plan executor for executing plan code writ
ten in Java. Plan code may access any other application code or third party
libraries written in a suitable language. Both plan and application code has
access to the reasoning engine through a BDI API. It is provided to plan and
other application (e.g. GUI) code by wrappers that encapsulate the instance
elements, and ensure proper synchronization and deadlock-avoidance when
the API is called from the plans, or from external threads respectively.

For integration into JADE, the platform management tool (RMA) has
been extended slightly to support launching of Jadex agents, by selecting the
corresponding agent model with a file chooser. The Jadex interpreter itself is
realized as a special type of JADE agent, which loads an agent model supplied

'^JBind Java-XML Data Binding Framework, see http://jbind.sourceforge.net/

http://jbind.sourceforge.net/

Platform 169

at startup, and creates its own instance of the reasoning engine according to
the settings given in the model (e.g. initial beliefs, goals, and plans). The
functionalities corresponding to the execution model components (message
receiver, dispatcher, scheduler, cf. section 6.2.3), are implemented as cyclic
behaviours (cf. chapter 5), always running inside the agent. These behaviours
call the reasoning engine to process incoming messages, and perform internal
reasoning. In each JADE agent cycle, the reasoning engine is called to process
one event and execute one plan step. Using a reference to the JADE agent
object, Jadex plans have direct access to all operations of the JADE API as
well (e.g. for handling of FIPA ACL messages).

6.4,1 Available tools and documentation

The system distribution contains complete documentation materials for
quick start and reference purposes. An introductory tutorial made up of
several exercises shows the usage of basic system features in a step-by-step
manner. Moreover, the distribution provides several example applications
including their commented source code. A user guide provides a systematic
overview of all features and also serves as a reference manual. In addition,
Javadocs of the plan programming API and a reference to the metamodel
defined in XML Schema are provided. The available tools are covered in a
separate guide. Apart from the documentation material included in the dis
tribution, there are publicly available online tools kindly hosted by Source-
Forge.net, such as web forums for discussion and support requests, a database
for bug-reports and feature requests, and a general mailing list with online
archives.

As a Jadex agent is still a JADE agent, all runtime tools provided by the
JADE platform such as Sniffer and Dummy agent can also be used with
Jadex agents. To enable a comfortable testing of the internals of Jadex agents
additional tool agents have been developed. In Fig. 6.14 an example applica
tion (marsworld) is depicted together with the logger and introspector tools
in a typical debugging session. The BDI introspector (Fig.6.14 bottom left
and right hand side) serves two purposes. First, it supports the visualiza
tion and modification of the internal BDI concepts thus allowing inspection
and reconfiguration of an agent at runtime. Secondly, it simplifies debug
ging through a facility for the stepwise agent execution. In the step mode, it
is possible to observe and control each event processing and plan execution
step having detailed control over the dispatcher and scheduler. Hence it can
be easily figured out what plans are selected for a given event or goal.

With the help of the logger (see Fig.6.14 on the top right) the agent's out
puts can be directed to a single point of responsibility at runtime. In contrast
to simple console outputs, the logger agent preserves additional information

170 Judex

Tm '•••1 ^
•(3

i S
e

! \^i

iK' • ^ r - w ' j

Figure 6.14. BDI introspector and logger screenshots

about the output such as its time stamp and its source (the agent and method).
Using these artifacts the logger agent offers facilities for filtering and sorting
messages by various criteria allowing a personalized view to be created.

Moreover, a tracer tool for on-line visualization of agent execution based
on ideas from [132] is provided. It generates a unified view of multi-agent
and internal agent behaviour, relating message-based communication and in
ternal agent processes. The Jadexdoc tool allows generating documentation
of agent applications similar to Javadoc. In addition to these tools already
included in the latest release, a tool for multi-agent application deployment
is currently in development (see [29]).

6,4.2 Standards compliance, interoperability and
portability

One driving factor for the development of Jadex was the need for a FIPA-
compliant platform supporting advanced BDI reasoning capabilities, FIPA-
compliance is achieved through the JADE platform, which provides sophis
ticated implementations of all important FIPA specifications. The Jadex rea
soning engine, realized on top of the JADE platform, in itself only supports

Platform 171

8

i
i

Host Platform (e.g. JADE) 1

r

V

''

^

Adapter Agent (e.g. JADE Agent)

Adapter Layer
(e.g. Timing-, MessageReceiver -, Scheduler-. Dispatchersehaviour)

t Adapter Agent interface Q

: Jadex Agent
V

V Jadex Agent Interfece

Core Reasoning Layer
{Beliafe. Plans. Goals, etc.)

A 1

11

^

1

1
3

) \

1

Figure 6.15. Platform integration

homogeneous (i.e. BDI) agents, but provides interoperability with agents
based on other models. Agents realized using the conventional JADE pro
gramming techniques can be executed directly together with Jadex agents
running on the same platform. Interoperability with other kinds of agents
is straightforward as long as those agents adhere to the FIPA standard. E.g.
in an example application, Jadex agents have been successfully connected to
agents running on the CAPA platform [76], which provides a petri-net based
computation model for agents.

The reasoning engine has been realized as a separate component, inten
tionally limiting the dependencies to the underlying platform. To use the
reasoning engine on top of other platforms, an adapter has to be realized
(see Fig. 6.15). This adapter has to implement a handful of methods used by
the Jadex engine (e.g. to send messages) and has to call the engine when it
is expected to do the reasoning. Therefore, although the current implemen
tation is designed to be used with JADE, the reasoning engine can be easily
integrated with other FIPA-compliant agent platforms such as CAPA [76]
or ADK^, given that they provide a similar interface for message handling.
It is also possible to use the system in conjunction with other middleware
environments such as J2EE or .NET, when FIPA-compliance is not needed.
Currently, in addition to the JADE integration, we have developed experi
mental adapters for the DIET agent platform [147] and for running a set of
Jadex agents as a standalone Java application.

^ http://www.tryllian.com/

http://www.tryllian.com/

172 Jadex

The engine was realized in Java 1.4 and includes the third party packages
JBind for XML data binding and Apache Velocity^ for generating the content
of some tool dialogs. To support mobile devices, a port of the engine is also
available in a reduced version based on J2ME / CDC. Moreover, all kinds of
tools and libraries with a Java API can easily be used to provide additional
features. For example, in a larger project the Cayenne database mapping
framework^ was used to connect agents to a relational database.

6.5 Applications supported by the language and/or the
platform

Jadex is a general-purpose development environment for creating multi-
agent system applications, allowing to build agents with reactive (event-
based) and deliberative (goal-driven) behaviour. It is not bound to a specific
target domain, but has been used to realize applications in different domains
such as simulation, scheduling, and mobile computation. Jadex originated
in the MedPAge ("Medical Path Agents") project [166, 167], which is part
of the German priority research programme 1083 Intelligent Agents in Real-
World Business Applications funded by the Deutsche Forschungsgemeinschaft
(DFG). In cooperation with the business management department of the
University of Mannheim, the project investigates the advantages of using
agent technology in the context of hospital logistics. In this project Jadex
is used to realize a multi-agent appHcation for market-based negotiation of
treatment schedules [167], as well as for the simulation of a hospital model
to test the negotiation mechanism [31]. In other contexts, Jadex was used
to realize portable PDA-based applications. A personal mobile task plan
ner was developed, to test the Jadex J2ME port and to prove the usefulness
of BDI agents on mobile devices [104]. Elsewhere, in the PITA ("Personal
Intelligent Travel Assistant") project at the Delft University of Technology,
Jadex was used to realize a prototype of a mobile personal travel assistant
application [9].

Besides building specific agent applications, Jadex has also been used for
teaching and research regarding agent oriented software development in gen
eral. Due to its simple language based on well-known technologies such as
Java and XML, and the extensive documentation material and illustrative ex
ample applications, Jadex is well suited for teaching purposes. It has been
successfully applied in several courses at the University of Hamburg, and
is also evaluated by other institutes. Regarding research in agent systems,
the project is also designed as a means for researchers to further investigate

^http://jakarta.apache.org/velocity/
'̂ http://objectstyle.org/cayenne/

http://jakarta.apache.org/velocity/
http://objectstyle.org/cayenne/

Final Remarks 173

which mentalistic concepts are appropriate in the design and implementation
of agent systems. The combination of XML Schema with Java databind-
ing techniques allows the Jadex metamodel to be flexibly adapted and ex
tended for experimentation purposes. While investigating different repre
sentations for beliefs, goals and plans, the system has been applied to several
well-known AI problem domains (blocksworld, cleanerworld, mars robots,
hunter-prey). These applications are also included in the distribution. More
over, the Technical University of Karlsruhe has used Jadex to implement an
experimental system for representing norms in multi-agent systems [204].

6.6 Final Remarks

In this chapter, the Jadex BDI reasoning engine has been presented. The
realization of the system is motivated mainly by three factors. Firstly, the
system aims to combine the benefits of agent middleware and internal agent
reasoning processes. Secondly, it intends to enhance the state-of-the-art BDI
architecture by addressing some shortcomings of current BDI agent plat
forms such as implicit goal representation and thirdly, the system targets on
making agent technology more easily usable by exploiting current software
engineering techniques such as XML, Java and OQL.

The architecture of Jadex is in principle similar to traditional PRS systems,
when event and goal processing is considered. Nevertheless, conceptual dif
ferences exist mainly concerning the representation of BDI core concepts
and as well on language level. According to the usability requirement, beliefs
are expressed in an object-oriented way instead of using logical formulae or
relational models. Moreover, goals are represented as explicit durable entities
instead of relying on events. On language level, Jadex differentiates between
the description of an agent's behaviour and its static structure. Therefore,
for each of these purposes different languages are employed. The static agent
structure is declared in an XML-dialect following the Jadex BDI metamodel
specified in XML-schema, whereas ordinary Java is used for plan realization.
BDI-specific facilities are made accessible from within plan through an appli
cation program interface.

Ongoing work currently focuses on two aspects of the system: Exten
sions to internal concepts and additional tool support. On the conceptual
level extensions to the basic BDI-mechanisms are developed, such as support
for planning, teams, and goal deliberation. It is planned to utilize the explicit
representation of goals by improving the BDI architecture with a generic fa
cility for goal deliberation, which alleviates the necessity for designing agents
with a consistent goal set. Additionally the explicit representation allows in
vestigating task delegation by considering goals at the inter-agent level. Work
on tools mainly addresses the usability of agent technology as a mainstream

174 Judex

software engineering paradigm. The tool support of Jadex currently focuses
on the implementation and testing phase supplying tools like the debugger
and logger agent. To achieve a higher degree of usability it is planned to
support the design phase as well with a graphical modeling tool based on
the MDA-approach [8]. Additionally, a tools for deployment of multi-agent
applications is being developed [29].

The current version is Jadex 0.931, which can be freely downloaded un
der LGPL license from the project homepage http://jadex.sourceforge.net/.
It is termed a beta stage release, and has reached considerable stability and
maturity to be used in experimental and practical settings.

Acknowledgments

This work is partially funded by the German priority research programme
1083 Intelligent Agents in Real-World Business Applications.

http://jadex.sourceforge.net/

Chapter 7

JACRTM INTELLIGENT AGENTS:
AN INDUSTRIAL STRENGTH PLATFORM

Michael Winikoff

RMIT University
GPO Box 2476V
Melbourne, 3001, AUSTRALIA

winikoff@cs.rmit.edu.au

Abstract Software agents offer a range of benefits to the development of complex soft
ware systems. However, before these benefits can be realised by the computing
industry there is a need for an agent platform that can be accepted by industry.
In this paper we describe the JACK agent platform: a mature and robust com
mercial product. We argue that JACK meets requirements such as familiarity,
scalability and integratibility which make it suitable for adoption by industry.
We also describe interesting features of JACK such as the use of capabilities
for structuring agents, and JACK's approach to teamwork which allows hier
archical team structures.

Keywords: Agent Oriented Programming Language, Belief-Desire-Intention, Agent Plat
form.

7.1 Motivation

Software agents offer a range of potential benefits to the development and
deployment of complex software systems, such as increased flexibility and
adaptability, and more natural models of complex "nearly decomposable"
systems [122,123,141,142]. These benefits stem from the combination of
features that are generally considered to be associated with intelligent soft
ware agents: being autonomous, proactive, reactive and social. Some argue
that because agents are autonomous they reduce coupling [123,161], Some
focus on the use of plans and goals in Belief-Desire-Intention (BDI) agents
(and similar platforms), arguing that the resulting number of ways in which

mailto:winikoff@cs.rmit.edu.au

176 JACK

a goal can be achieved gives agents flexibility in dealing with situations, and
robustness in recovering from various types of failure (e.g., [164, Section
2.5]). Others argue that aspects of agents (e.g., autonomy, flexibility) are al
ready being adopted by mainstream software engineering, and that this is
evidence that these aspects are useful to modern software systems [243].

However, in order for these benefits to be realisable by the computing
industry, a number of key technological pieces are required. One of the
key pieces is a methodology (including concepts, notations, a process and
techniques) that guides practitioners in designing agent systems. We do not
focus on this here, but note that a number of methodologies have been de
veloped including Gaia [242], Tropos [33], MaSE [57], Prometheus [164],
ROADMAP [125] and others [13,105]. Some of these methodologies have
also been evaluated and compared in various ways [44,50,208,210].

A second key piece of technology is an agent platform which can be used to
create agent systems. Like the term "methodology", the meaning of the term
"agent platform" is somewhat debatable. We believe that an agent platform
needs to contain at least the following components:

An agent-oriented programming language that allows agents to be
written directly using agent concepts (e.g., plans, goals, beliefs), rather
than encoded in non-agent-oriented languages.

A library or framework providing facilities for inter-agent communi
cation including facilities for transmitting and receiving messages, and
for locating agents (e.g., a name server).

JACK^^Intelligent Agents (referred to as "JACK" in the remainder of this
chapter) [40] is an agent platform that includes these components and more.
JACK includes an agent-oriented programming language; a platform for ex
ecuting agents with infrastructure such as message marshalling and a name
server; and development tools including a design tool, a graphical plan editor
and a number of debugging views. Additionally, JACK includes a number of
additional functionalities such as the ability to construct hierarchical teams
of agents [121].

Looking at the history of object-oriented technologies, it is interesting to
note that object-oriented programming languages such as Simula (developed
in the 1960s) and Smalltalk (developed in the 1970s) significantly pre-dated
work on object-oriented analysis and design (in the 1980s and 1990s). By
analogy with this history one could argue that the availability of a widely
accepted "standard" agent-oriented programming language is more crucial
to the success of agents as a technology than the development of a widely
accepted methodology. To be widely accepted an agent platform must be
accepted by industry, and so it is natural to ask what an industry-acceptable
agent platform might look like.

•

•

Motivation 177

We believe that to be acceptable to industry an agent platform must be:

• Familiar: presented as an extension of objects, rather than as a revo
lutionary new paradigm [161]. In particular, this means that the pro
gramming language should be easily learned by programmers who are
used to currently popular languages (e.g., Java). In particular, this rules
out languages that are based on alternative, less mainstream, paradigms
such as logic programming.

• Integratable: the platform must allow agents to communicate and inte
grate not Just with existing software including objects written in Java
or C+-I-, but also with databases, web servers, graphical user inter
faces, etc. In particular, in order to flexibly integrate with a wide range
of existing systems, the agent platform must be agnostic (or at least
flexible) with respect to communication infrastructure. Supporting a
single approach only, such as FIPA^ is not desirable as there are many
communication and integration approaches in current use (e.g., Web
Services, CORBA, Java RMI, HLA).

• Scalable: the language must support good software engineering prac
tice, including the provision of suitable facilities for structuring large
systems.

• Industrial Strength (Robust, Stable, Efficient): the implementation
must be robust and reliable, and it must be able to support large num
bers of agents efficiently.

• Documented and Supported: when using a technology that is not (yet)
widely-known, it is vital to have good documentation and support.

Additionally, it is important for the agent platform to provide development
tools (such as an integrated development environment and design tools), and
debugging tools.

It is clear that, in today's computing environment, developing an agent
platform built on top of the Java platform is highly attractive: it provides
for portability across computing platforms and access to a rich collection of
libraries. One approach to using the Java platform as a basis is to use the
Java language as the programming language and provide a library of agent
features. This approach has the benefit of familiarity - the programming lan
guage used is Java itself - but has the drawback that the language's semantics
is fixed and cannot be changed. This approach is taken by the Jadex^ system

^Foundation for Intelligent Physical Agents, h t t p : / /www. f i pa . org.
^ h t t p : / / v s y s l . i n f o r m a t i k . u n i - h a m b u r g . d e / p r o j e c t s / j a d e x /

http://vsysl.informatik.uni-hamburg.de/projects/jadex/

178 JACK

(see Chapter 6), and one consequence is that when a plan has a sub-goal, the
programmer must write code to check whether the sub-goal has succeeded,
and if not fail the plan. This check cannot be done automatically in Jadex
(as it should be) without changing Java's execution semantics. An alternative
approach to using the Java platform as a basis is to create a new language
and implement it using Java, either by compiling it to Java or writing an
interpreter for the new language in Java. The new language can be quite
different to Java (e.g., JAM [114] or Jason (see Chapter 1)) or, as in JACK, a
conservative extension of Java.

Although there are clear benefits to using Java as a basis and there are good
reasons to conservatively extend Java's syntax, this does have the drawback of
yielding a programming language that is relatively verbose. To some degree,
JACK addresses this issue by using development tools that generate code
skeletons by interaction with a GUI.

In the following section we briefly describe the JACK agent language and
its features. In section 7.3 we discuss the JACK agent platform, and in sec
tion 7.4 we present applications developed with JACK. Although JACK is a
commercial platform which caters for industrial usage, one of JACK's major
design goals was "to enable further applied research" [113], and so we briefly
discuss research that has extended or built on JACK in section 7.5.

7.2 Language

The JACK programming language extends Java in a number of ways, both
syntactic and semantic. The JACK language is a superset of the Java program
ming language, so all of Java's libraries and facilities are easily accessible.

In the following sections we briefly describe the JACK programming lan
guage and its execution.

7.2,1 Specifications and Syntactical Aspects

Syntactically, JACK extends Java in three ways:

1. JACK adds new top-level declaration types which are used to declare
agents, beliefsets, views, events, plans and capabilities.

2. Each of the top-level types is defined using various # declarations
which define the properties of the entity and relationships between
entities.

3. Within plan bodies JACK defines a range of @ statements such as post
ing an event (e.g., @post) or waiting for a condition (@wait_f or).
Some of the @ statements defined by JACK are listed in figure 7.1.

Language 179

• ©post, @subtask - simple event posting within an agent. @post
is asynchronous, whereas @subtask waits for the event processing
to finish before continuing.

• ©send, @reply - inter-agent communication.

• ©achieve, © i n s i s t - post a (goal) event under certain
conditions. ©achieve (c o n d i t i o n , g o a l _ e v e n t) checks
whether the condition holds, and posts the event if it doesn't.
© i n s i s t (c o n d i t i o n , g o a l _ e v e n t) is similar, but also checks
whether the condition holds after the processing triggered by the
event has finished. If not, the event is posted again.

• ©main ta in - checks for condition while handling event.
©main ta in (c o n d i t i o n , e v e n t) will subtask the event, but
will monitor the condition while the event processing runs. If the
condition becomes false the plans that handled the event are aborted.

• ©sleep, ©wait_f o r - do nothing for a certain amount of time
(©sleep) or until a certain condition is true (©wait_f or).

Figure 7.1. Some statements provided by JACK

Figure 7.2 shows how these three syntactic extensions are used to define a
(very simple) plan called P roces sReques t which is triggered by a message
(declared with the # h a n d l e s declaration), and replies to it with a response.

The top-level entities that JACK defines are:

Agent: An agent is an obvious basic entity for an agent-oriented program
ming language! In JACK, agents are specified by defining the events
they handle and send, the data (including beliefsets) they have, and the
plans and capabilities they use.

Beliefset: A beliefset is effectively a (small) relational database that is stored
in memory, rather than on disk. JACK makes it easy to define these
and to define queries on beliefsets. Beliefsets can also post events in
certain situations (e.g., whenever the beliefset is modified).

View: Views are "virtual" beliefsets that are computed from other beliefsets.

Event: An event is an occurrence in time that represents some sort of
change that requires a response. Events are used in JACK (and in other
BDI architectures) to model messages being received, new goals being
adopted, and information being received from the environment.

180 JACK

public plan ProcessRequest extends Plan {
#handles event Request req;
#sends event Response resp;

context() {

req.isValid;
}

#reasoning method body() {
// Can contain Java code as well
//as JACK ©-statements

@reply(req,resp.response(...));
}

}

Figure 7.2. A (very simple) Plan

Plan: A plan is a "recipe" for dealing with a given event type. Plans include
an indication of which event they handle, a context condition which
describes in which situations the plan can be used, and a plan body.
The plan body, which can include Java code as well as JACK code, is
what is actually executed as the system runs.

Capability: A capability is a modularisation construct. We discuss capabili
ties in section 7.2.3.

The execution of JACK is fairly typical for a BDI architecture. Events
(which include messages from other agents) trigger plans. Each event will
normally have a number of plans that handle that event, these are the relevant
plans. Of the relevant plans, some will be applicable to the agent's current
situation. This is determined by evaluating the plan's context condition^. If
there are no (more) applicable plans the event has failed, and failure handling
is triggered. Otherwise, one of the applicable plans is selected and its body
is executed. This is summarised in figure 7.3.

The execution of a plan's body is fairly straightforward: the statements in
the plan body are executed in sequence. However, there is one key difference
between executing Java code and executing JACK code: each statement can

•'if the context condition has multiple solutions this will lead to multiple plan instances being considered
as applicable.

Language 181

1. Event posted.

2. Determine the set of relevant plans.

3. Determine the applicable plans.

4. Select an applicable plan and run it.

5. If plan fails, go to step 4 (select an applicable plan).

Figure 7.3. Event handling in BDI architectures

fail, and if it does the rest of the plan is not executed and failure handling is
triggered instead.

When a plan fails the event that triggered it is considered to have not been
handled, and alternative plans for handling it are considered. This process
looks for another applicable plan to try. If there is another applicable plan,
it is tried. If all applicable plans have failed the event cannot be handled. If
the event was posted from a plan (events can also be posted from Java code)
that plan fails and its triggering event is re-posted in an attempt to find an
alternative applicable plan for it.

This execution cycle of events triggering plans is common to a whole
family of BDI architectures (e.g., dMARS [59], JAM [114], PRS [97,118],
UM-PRS [134]). However, there are some details of the cycle that are spe
cific to JACK and distinguish it from other platforms. Firstly, by default"̂
JACK re-computes the applicable set when considering alternative plans due
to failure. This means that when a plan fails and alternatives are considered,
the applicability of these alternatives is evaluated in the current situation,
not the situation when the event was first posted. Some other BDI archi
tectures (such as JAM) do not re-compute the applicable plan set, and thus
select plans based on out-of-date information when failure occurs.

Another detail that is specific to JACK is that the context condition is
actually split into two parts: a context condition and a relevance condition.
The relevance condition is a Boolean condition that is only evaluated once
(eagerly) and can only access the details of the event, not any other data. The
relevance condition is used to exclude plans based on the details of the event
(which do not change). For example, if the event is a request for credit which
specifies the amount and there are separate plans depending on the amount
requested, the selection of plans can be done using a relevance condition

'*This behaviour, and other aspects of event handHng, can be customised on a per-event-type basis.

182 JACK

1. Event posted.

2. Find plans that # h a n d l e it.

3. Determine the set of relevant plans using r e l e v a n t () method
(Relevant method can only access event, not beliefs).

4. Determine applicable plans using c o n t e x t () .

5. Select a plan and run its body () . (meta-reasoning can be used to
make the selection).

6. If plan fails, go to step 4 (recompute applicable plan set).

Figure 7.4. Event handling in JACK

rather than a context condition. The JACK execution cycle is summarised
in figure 7.4.

When there are multiple applicable plans that can be used, the question
arises of which one an agent should select (step 5 in figure 7.4). JACK pro
vides a number of mechanisms that allow the programmer to specify how a
plan should be selected. One mechanism is that plans will (by default) be se
lected in the order in which they are listed in the agent. Another mechanism
runs another plan (a "meta-plan") to decide which plan to select.

It is worth mentioning that JACK actually provides a variety of event
types which behave differently. For example, message events do not trigger
failure handling if their handling plan fails.

7*2.2 Semantics and Verification

Although JACK is quite well documented, its semantics have not been for
mally specified. Since JACK is a superset of Java, formally defining JACK's
semantics would require a formal definition of Java's semantics, something
that is still an active area of research^ [3].

However, although JACK itself has not been formally specified, the event-
plan execution cycle which JACK shares with other BDI platforms has been
formalised in various ways by various researchers. Anand Rao's work on
AgentSpeak(L) [180] aims to bridge the "BDI gap" between theories and im
plementations by defining a language capturing the essence of BDI platforms
whilst having precisely defined semantics. Although the formal semantics

^For example, the formalisation described at h t t p : //www-sop. i n r i a . f r / o a s i s / J a v a / j a v a _
s em. html is for a subset of Java.

Language 183

given by Rao is incomplete, the work has inspired a number of implemen
tations of the language such as AgentTalk^, an implementation based on
SIM_AGENT [143], an implementation in Java that is designed to run on
hand-held devices [178], and the Java-based Jason'̂ (see Chapter 1).

Since Rao introduced AgentSpeak(L), a number of authors have published
complete formal semantics for the language. The specification language Z
("Zed") was used to formally specify the essential execution cycle of AgentS-
peak [60], and an operational semantics for AgentSpeak was given by Bordini
and Moreira [24]. However, neither of these formalisations included the fail
ure handling mechanism. A precise operational semantics including failure
handling was given by Winikoff et al [236] for a language (called "CAN")
which is a superset of AgentSpeak.

Since JACK's semantics has not been formalised, JACK programs cannot
be formally verified. However, verification of entire implemented systems
is not currently realistic. Research into model checking of agent programs
is still quite young [19], and is not yet applicable to large agent programs.
Consequently, we believe that presently formal techniques are best applied
to verifying aspects of systems, such as key algorithms or interaction patterns.

7.2.3 Software Engineering Issues

One of JACK'S strengths is its support for modern software engineering
practices. In addition to the features provided by Java (objects, packages),
JACK adds a number of features that can be used to structure an agent sys
tem.

One new feature is that a plan's body can be broken down into a number
of separate reasoning methods, rather than being a single monolithic block of
JACK code. This allows a single plan to be structured internally.

Another feature that was introduced by JACK (and subsequently adopted
by Jadex) is capabilities [39]. A capability is the agent-oriented equivalent
of a module, corresponding to a coherent ability that an agent has. Capa
bilities contain plans and beliefs, and specify which events they handle and
post. In addition, capabilities can also contain sub-capabilities which allow
hierarchical module structures to be specified as appropriate.

Another Software Engineering practice is consistency checking, JACK
checks that the various declarations of which events are posted and handled
by which entities (agents, capabilities and plans) are consistent. Additionally,
the JACK agent programming language is, as an extension of Java, strongly

^http://www.cs.rmit.edu.au7-winikoff/agenttalk
''http: //jason.sourceforge.net/

http://www.cs.rmit.edu.au7-winikoff/agenttalk
http://jason.sourceforge.net/

184 JACK

and statically typed, and the type checking done at compile-time can catch a
range of mistakes made by the programmer.

As JACK is a superset of Java, integrating with existing Java code is
straightforward. An example of this is the work of [55] which integrated
JACK with the JSHOP planner (which is written in Java). JACK can also be
integrated with existing C+ + code using JACOB (see section 7.3.2). JACK
has also been successfully integrated with systems in Fortran, C, and Ada.

7.2.4 Other features of the language

In addition to the features discussed above, the JACK agent language in
cludes a number of other significant features. Perhaps the most significant is
its support for "team-oriented" programming.

JACK'S support for teams is an optional extension which adds two new
concepts (teams and roles) and extends Plans to TeamPlans [121]. A team is
an entity which, like an agent, can contain plans, capabilities, data, etc. but,
unlike agents, a team can also have sub-teams, enabling natural modelling of
hierarchical organisational structures. It is important to realise that a team
is an active entity that can have beliefs and execute (team) plans; it is not
merely a collection of agents. Indeed, when the team extension is enabled,
an individual agent is modelled simply as a team that has no sub-teams!

For each team type, roles are used to specify the interface (in terms of
events received and sent) that must be fulfilled by its sub-teams.

The team extension also extends Plans to TeamPlans by adding the abil
ity to delegate tasks to sub-teams, and to perform steps in parallel. Team
plans also differ from plans in that they have an e s t a b l i s h () reasoning
method which assembles the sub-teams that will be involved in the plan (the
"task team"). Each TeamPlan that is run by a team can have a different as
signment of sub-teams. For example, given a team of soccer-playing robots,
one TeamPlan may require two attackers, whereas another TeamPlan may
require both a defender and a goal keeper.

Figure 7.5 shows a simple example TeamPlan. This TeamPlan specifies
that feeding a baby requires two sub-teams, both playing the role of a parent.
One parent prepares the food at the same time as the other parent calms the
baby. Once this is done, the baby is fed.

JACK'S teams support also includes other features, such as being able to
automatically repair teams, and being able to automatically propagate beliefs
from a team to its sub-teams and vice versa.

JACK'S approach to teamwork is different to standard approaches that
regard teams as a collection of agents having certain patterns of mental at
titudes (e.g.. Joint intentions), existing approaches to teamwork [47,216] do
not consider teams to be entities in their own right, and do not support hi-

Platform 185

teamplan FeedBaby extends TeamPlan {
#handles event BabyHungry pfv;
#uses role Parent parents as pi;
#uses role Parent parents as p2;

//establish the task team.
#reasoning method establish{) { ... }

bodyO {
©parallel(ParallelFSM.ALL,false,null) {

@team_achieve(pi, pi.prepareFood.pf());
@team_achieve(p2, p2.calmBaby.cb());

};
@team_achieve(p2,p2,feedBaby.fb());

} // body
} // FeedBaby team plan

Figure 7,5. A simple TeamPlan

erarchical team structures. Comparisons of JACK's approach to teamwork
with other approaches to teamwork can be found in [109,117].

Another feature of JACK is an event type called In f e r e n c e G o a l .
Whereas other event types are handled by finding an applicable plan and
executing it, with alternative plans being considered (for some event types)
only if plan execution fails, an In f e r e n c e G o a l event is handled by execut
ing all applicable plans in sequence. This behaviour is useful for performing
certain types of reasoning such as emulating rule firing in expert systems.

Finally, the JACK compiler is modular, and the JACK language can be
extended using plugins, but this aspect is not currently well documented,
and extending the JACK language in this way is difficult without extensive
support from Agent Oriented Software.

7.3 Platform

In this section, we briefly discuss features and properties of the JACK
platform including tool support for design, programming and debugging, as
well as support for various forms of communication and integration.

186 JACK

7.3,1 Available tools and documentation

According to a recent survey of agent researchers, the areas that were
seen as most desirable to be supported by third party tools were "Integrated
Development Environments, Debugging tools, and parsers/language tools"
[235]. JACK addresses the first two areas by providing an integrated devel
opment environment, and a range of debugging tools.

The JACK Development Environment (JDE) (see figure 7.6) allows the
developer to create agents, events, plans, beliefsets etc. by dragging and
dropping, rather than typing # declarations. The JACK skeleton code for
the entities is automatically generated. The JDE also provides a Graphical
Plan Editor (on the right side of figure 7.6) which allows the bodies of plans
to be specified using a graphical notation, rather than textual code.

The JDE also includes a Design Tool (middle of figure 7.6) which allows
overview diagrams in the style of Prometheus [164] to be drawn. This can be
used to create the system's structure by placing entities onto the canvas and
linking them together. It can also be used to create an overview of an existing
system by adding entities to a canvas, in which case the links between entities
are automatically added. The JDE maintains consistency between the design
diagrams and the underlying model, and therefore with the generated code.

JACK provides a number of debugging tools. The simplest is a textual
trace of processing steps which is enabled from the command line. This can
be configured to show various types of steps: changes to beliefsets, events
being posted and processed, messages being sent and received, and steps in
plans. Although this information is easy to obtain, it is obtained from a
single run-time instance of the JACK platform, and is therefore less useful
for debugging distributed systems of agents.

For debugging distributed agents interaction diagrams are more useful. An
interaction diagram graphically displays messages sent between agents. A sin
gle interaction diagram can collect and display messages from agents across a
distributed system.

Interaction diagrams depict the messages between agents. However, when
debugging, it is also useful to be able to trace the internal execution of agents.
JACK provides graphical plan tracing, which traces the execution of plans
that have been specified using the Graphical Plan Editor. When a plan begins
executing its graph is shown, and as the plan executes the currently executing
node is highlighted. The graph also shows the values of the plan's variables
and parameters. The execution of the agent can be controlled: it can be run
as normal, single-stepped, or stepped with a delay in between steps.

The newest version of JACK also provides an additional debugging tool:
a browser that allows the state of agents (including their beliefs and active
tasks) to be inspected.

Pl
at

fo
rm

18

7

Fi
gu

re
 7

.6
.

Th
e J

A
CK

 D
ev

elo
pm

en
t E

nv
iro

nm
en

t (
JD

E)

188 JACK

All of these development, design and debugging tools - as well as the
JACK language, and other facilities such as JACK's support for teamwork,
the Webbot interface to JSP, and JACOB (see next section) - have clear and
extensive documentation. Additionally, JACK's documentation package also
includes "practicals": a tutorial sequence introducing JACK.

7,3,2 Standards compliance, interoperability and
portability

There are many approaches to communication and integration, such as
CORBA, HLA, Java RMI and FIPA. Consequently, JACK's approach to
communications is agnostic. While a lightweight communications infra
structure is provided, and can be used out-of-the-box, it is also possible to
extend and/or replace JACK's communications infrastructure.

We begin by discussing JACK's lightweight communications infrastruc
ture including a discussion of JACOB. We then look at an example of ex
tending JACK to make it FIPA-compliant. Note that this extension is not
part of the JACK distribution: JACK is a commercial product, and since
most agent systems today are not open and are not FIPA-compliant, there
is limited demand by customers of Agent Oriented Software to make JACK
FIPA-compliant. Rather, it is more important to be able to integrate JACK
code with existing code in Java and C-i- -H (which is supported by JACOB),
and with existing applications such as databases (supported by JACOB using
JDBC), web servers (supported by Webbot using JSP), and graphical user
interfaces (provided by Java libraries such as AWT or Swing).

JACK'S lightweight communications mechanism supports sending mes
sages between agents. These messages can contain Java objects which are
serialised by the sender and "reconstituted" by the recipient of the message.
JACK provides a number of mechanisms for serialising objects: Java's serial
isation can be used, but this tends to produce large messages, and only sup
ports communication with other Java software. Alternatively, JACOB pro
vides more compact serialisations, and allows objects to be "reconstituted"
by Java or C+ + programs. JACOB provides a number of serialisation for
mats: a plain ASCII format that is compact yet human readable, a binary
format which Is more compact, an XML format, and a JDBC format.

When the recipient of a message is in the same Java process as the sender,
then the message Is addressed simply using the name of recipient agent. How
ever, JACK supports flexible distribution of agents: It Is possible to have
multiple agents per Java process, to have agents distributed in different Java
processes (which can be on different machines), or to flexibly mix these. This
flexible distribution requires a slightly more sophisticated addressing scheme
than simply using agent names, and JACK introduces the concept of 2i portal,

Platform 189

Roughly speaking, a portal can be thought of as a handle on a Java process,
and sending a message to an agent at another portal Is done by addressing the
agent as agentname@portalname. Each portal acts as a name server for other
portals. I.e., each portal keeps track of the addresses of other portals.

Thus, JACK'S provided communication Infrastructure supports commu
nication amongst flexibly distributed agents, as well as between agents and
existing software written In Java or C + +.

We now briefly describe a third-party extension to JACK which supports
building FIPA-complIant JACK agents. The FIPA JACK plugln^ [241] was
developed at RMIT University and was used as the basis for Its AgentCI-
tles platform. The plugin provides FIPA compliant services, specifically an
Agent Management System (AMS), Directory Facilitator (DF) and Message
Transport Service (MTS). The plugin also provides a new agent base class
(FIPAAgent). Agents which extend this class automatically register with
the AMS, and are able to send and receive FIPA-complIant messages. The
FIPA JACK plugin also Includes a GUI for examining the agents that are
registered with the AMS and for sending messages for testing purposes.

7.3.3 Other features of the platform

JACK Is efficient: It allows flexible distribution of agents, with multiple
agents sharing a Java process. It also allows for many agents to run on a single
machine, while still supporting distributed agent systems across machines.
Benchmarking^ on an average PC running Linux shows that over 1000 agents
can be created per second, and that 100,000 messages can be sent per second
(within the same Java process).

These benchmarks are supported by a recent paper [231] which compared
and benchmarked a number of agent platforms. Including JACK (version
3.51), JADE, FIPA-OS and Zeus. It found JACK to be by far the fastest
platform. JACK was also found to have the lowest memory requirement
per-agent when creating 100 agents.

JACK Is compact enough to be run on limited hardware. It has been
demonstrated on a Psion 5mx, and, for a recent demonstration Involving an
Unmanned Aerial Vehicle, JACK was run on a Hewlett-Packard IPAQ PDA.

Âvailable from http: //www. cs . rmit. edu. au/agents/protocols/
^http://www.agent-software.com/shared/products/faq.html

http://www.agent-software.com/shared/products/faq.html

•

•

190 JACK

7A Applications supported by the language and/or the
platform

Application areas for JACK can be loosely categorised as:

Autonomous systems which operate independently (or mostly indepen
dently) from humans. For example. Unmanned Air Vehicles [139] and
Holonic manufacturing [85,90].

Modelling human-like decision making. This takes advantage of the ba
sis of the Belief-Desire-Intention model in human folk psychology [28].
Typically, this application category involves simulation of humans [91,
112,159].

• Decision support applications where the system assists humans in mak
ing decisions. For example the Collection Plan Management System
(CPMS) [140] provides human decision makers with a number of pos
sible plans.

• Architectural ''glue" where a system is structured as a collection of
autonomous agents in order to obtain the reduced coupling and im
proved maintainability associated with this architectural style. For ex
ample, the weather alerting system developed for the Australian Bu
reau of Meteorology [85,149].

These are just some areas where JACK has been used. Other applications
of agents where JACK could be used as an implementation platform include
electronic commerce, business process modelling, and entertainment.

We now describe a number of applications developed in JACK. We have
chosen to describe applications that illustrate different ways in which JACK
has been used, and which have been described in the literature.

Many of JACK's applications are military: usually associated with logis
tics (planning) and simulation, rather than with battlefield use. One such
application is the Collection Plan Management System (CPMS) (see [140]
and [113, Section 6.1]), which assists human in planning the deployment of
surveillance and reconnaissance resources. The system comprises a database
with information on the terrain, the available resources, and the tasks to be
carried out; a visualisation module; and a planning system written in JACK.
The planning system presents a number of possible plans for assessment by
the human experts. The JACK planner is structured as a collection of agents
mirroring the existing command and control (C2) structure, i.e., there is an
agent for each entity (brigade, company, platoon, etc.) that constructs plans
for the resources that it controls. Another application written in JACK,
which concerns planning the deployment of military resources, in this case
aircraft, is described by Marc et al [145].

JACK: A Platform for Research 191

Another area where JACK has been used is as architectural "glue" to con
nect together components of a system. By structuring a system as a collec
tion of agents, one obtains a system that is more loosely coupled, and that
is easier to modify and extend. One example of this application of JACK is
the alerting system developed for the Australian Bureau of Meteorology (see
[149] and [85, Section 5]). The system receives information from a range of
sources including storm predictions, current observations from automated
weather stations, predictions issued for the area around airports and infor
mation about bush fires. Various conditions, such as discrepancies between
forecasts and observations, are checked for and alerts are generated. The sys
tem is structured as a multi-agent system where agents subscribe to informa
tion providers. Experiences with extending this system have been positive,
for example extending the system to deal with a new type of information
source only took a number of days.

A basic property of agents is that they are autonomous, and so a nat
ural application area for JACK is developing software that operates au
tonomously. One example is the recent use of JACK on an Unmanned Aerial
Vehicle (UAV) [139]. The role of JACK is not to control the vehicle directly,
but rather to provide higher-level decision-making about what to do next,
e.g., where should the UAV fly to? JACK's ability to deal with failure and to
flexibly achieve goals is crucial in providing the UAV with a decision making
capability that allows it to be independent and robust. In addition, JACK's
support for teams can be used to allow multiple vehicles to cooperate in
achieving their goals; for example, one UAV might act as a decoy allowing
another UAV with a video camera to approach undetected. A feasibility
demonstration of JACK onboard a UAV has been done^° and development
of team-based UAV control is ongoing, with flight testing scheduled for early
2005.

Finally, Holonic manufacturing is another application area where JACK
has been used to develop autonomous software. In this case, the software
controls a manufacturing cell [85,90]. The challenges in agent-based manu
facturing are to support more flexible manufacturing — for example to allow
custom orders and changes to orders — and to be robust, i.e., to deal ap
propriately with a range of issues such as shortage of parts and failure of
manufacturing equipment.

^°http://www.agent-software.com/shared/resources/pressReleases/
Avatar-JACK-F040706USb.pdf

http://www.agent-software.com/shared/resources/pressReleases/

192 JACK

7.5 JACK: A Platform for Research

In addition to being aimed at industrial application development, JACK
has also been found to be suitable as a basis for research. We describe this here
for two reasons, firstly because one the goals of JACK is to "enable further
applied research" [113], and secondly because this research has, in some cases,
involved extending JACK, and so it shows that JACK can be easily extended.

One area of research concerns making BDI agents more intelligent, or at
the very least more rational. One issue that is shared by BDI platforms is
that although a BDI agent may have multiple goals that are being pursued at
a given time, no reasoning is done about the interaction between the goals.
In a sequence of papers, Thangarajah et al, \1Y)-T11\ described an extended
BDI execution cycle which incorporates reasoning about the interactions,
both negative and positive, between concurrent goals. This extended BDI
cycle was implemented in JACK [218].

Another strand of research that has focused on JACK's execution model
is the work in [157-159] which looks at (i) making the decision making
of JACK agents more "human-like" by adding selection of plans based on
recognition of situations, and learning from mistakes [157]; and (ii) adding
psychologically-plausible variability in decision making by incorporating
factors such as fatigue, time-of-day and human perception processes (how
human vision tracks objects) [158,159]. The latter work is being applied to
simulate changes of behaviour in military personnel [91].

JACK has also been extended with look-ahead planning [55] by integrating
with JSHOP, an HTN (Hierarchical Task Network) planner written in Java.

Finally, work by Poutakidis et al. [173,174] has proposed and imple
mented on top of JACK a debugger that automatically detects errors by mon
itoring messages between agents and raising an alert if the messages do not
conform to the interaction protocol that is meant to be followed.

7.6 Final Remarks

We have presented the JACK language and platform, including the unique
features of the JACK language, such as teamwork, and the tool support that
is provided by JACK.

At RMIT University we have taught an undergraduate course on agent-
oriented programming and design for a few years^^ The course, which
runs in a single 12 week semester, covers an introduction to agents, the
Prometheus agent-oriented software engineering methodology, and JACK^^.
During the course, the students complete a design and implement an agent

^^The course was first taught in 2001, and has been taught subsequently in 2002, 2003 and 2004.
^^JACK is covered in four lectures.

Final Remarks 193

system, working in teams of 1-3 students. Typical projects have included
a group calendar system, a library management system, and a stock trader
simulation. Our experience has been that the vast majority of the students
manage to learn JACK and that the students use JACK effectively by the end
of the course, i.e., that their code is agent-oriented, not Just object-oriented
code wrapped in plans.

Acknowledgments

I would like to thank Leanne Veitch (of Agent Oriented Software) for
proof-reading a draft of this paper, Nick Howden (of Agent Oriented Soft
ware) for comments on a draft of this paper, and Ralph Ronnquist (of Agent
Oriented Software) for writing the summary appendix. I would like to ac
knowledge the support of Agent Oriented Software and of the Australian
Research Council under grant LP0453486 ("Advanced Software Engineering
Support for Intelligent Agent Systems"). Finally, I would like to thank the
people who have taught the course on Agent Oriented Programming and
Design at RMIT: Lin Padgham, Wei Liu, and David Poutakidis.

Ill

INDUSTRIAL-STRENGTH APPLICATIONS

Chapter 8

THE DEFACTO SYSTEM:
COORDINATING HUMAN-AGENT TEAMS
FOR THE FUTURE OF DISASTER RESPONSE*

N. Schurr^ J.Mareckl^ J.P. Lewls\ M. Tambe^ and P. Scerrl^

University of Southern California
Powell Hall of Engineering,
3737 Watt Way, Los Angeles, CA 90089-0781
{schurr, marecki, tambe} @usc.edu, zilla@computer.org

Carnegie Mellon University,
5000 Forbes Avenue
Pittsburgh, PA 15213
pscerri@cs.cmu.edu

Abstract Enabling effective interactions between agent teams and humans for disas
ter response is a critical area of research, with encouraging progress in the
past few years. However, previous work suffers from two key limitations:
(i) limited human situational awareness, reducing human effectiveness in di
recting agent teams and (ii) the agent team's rigid interaction strategies that
limit team performance. This paper presents a software prototype called
DEFACTO (Demonstrating Effective Flexible Agent Coordination of Teams
through Omnipresence). DEFACTO is based on a software proxy architecture
and 3D visualization system, which addresses the two limitations described
above. First, the 3D visualization interface enables human virtual omnipres
ence in the environment, improving human situational awareness and ability
to assist agents. Second, generalizing past work on adjustable autonomy, the
agent team chooses among a variety of "team-level" interaction strategies, even
excluding humans from the loop in extreme circumstances.

*This research was supported by the United States Department of Homeland Security through the Cen
ter for Risk and Economic Analysis of Terrorism Events (CREATE). However, any opinions, findings,
and conclusions or recommendations in this document are those of the author and do not necessarily
reflect views of the U.S. Department of Homeland Security.

http://usc.edu
mailto:zilla@computer.org
mailto:pscerri@cs.cmu.edu

198 The DEFACTO System

Keywords: Multiagent Systems, Adjustable Autonomy, Teamwork, Disaster Response.

8.1 Introduction

We envision future disaster response to be performed with a mixture of
humans performing high level decision-making, Intelligent agents coordi
nating the response and humans and robots performing key physical tasks.
These heterogeneous teams of robots, agents, and people [203] will provide
the safest and most effective means for quickly responding to a disaster, such
as a terrorist attack. A key aspect of such a response will be agent-assisted
vehicles working together. Specifically, agents will assist the vehicles In plan
ning routes, determining resources to use and even determining which fire to
fight. However, despite advances In agent technologies, human Involvement
win be crucial. Allowing humans to make critical decisions within a team
of Intelligent agents or robots Is prerequisite for allowing such teams to be
used In domains where they can cause physical, financial or psychological
harm. These critical decisions Include not only the decisions that, for moral
or political reasons, humans must be allowed to make, but also coordination
decisions that humans are better at making due to access to Important global
knowledge, general Information or support tools.

Already, human Interaction with agent teams Is critical In a large number
of current and future applications [38, 49, 92, 203]. For example, current
efforts emphasize humans collaboration with robot teams In space explo
rations, humans teaming with robots and agents for disaster rescue, as well
as humans collaborating with multiple software agents for training [73, 106].

This paper focuses on the challenge of Improving the effectiveness of ap
plications of human collaboration with agent teams. Previous work has re
ported encouraging progress In this arena, e.g., via proxy-based Integration
archltectures[176], adjustable autonomy[73, 202] and agent-human dialogue
[2]. Despite this encouraging progress, previous work suffers from two key
limitations. First, when Interacting with agent teams acting remotely, hu
man effectiveness Is hampered by Interfaces that limit their ability to apply
decision-making skills In a fast and accurate manner. Techniques that provide
telepresence via video are helpful [92], but cannot provide the global situa
tion awareness. Second, agent teams have been equipped with adjustable
autonomy (AA) [203] but not the flexibility critical In such AA. Indeed, the
appropriate AA method varies from situation to situation. In some cases the
human user should make most of the decisions. However, in other cases hu
man involvement may need to be restricted. Such flexible AA techniques
have been developed in domains where humans Interact with Individual
agents [202], but whether they apply to situations where humans Interact
with agent teams is unknown.

Application Domain 199
DEFACTO

Figure 8.1. DEFACTO system applied to a disaster rescue.

The structure of this chapter is follows: we first intruduce DAFACTO
and its key components followed by the extended characteristics of its agents.
Next we explain the nature of the DEFACTO multi agent coordination plat
form and provide a description of the system execution platform. Finally
we demonstrate the impact of DEFACTO adjustable autonomy strategies
through experiments in the disaster rescue domain.

8.2 Application Domain

We report on a software prototype system, DEFACTO (Demonstrating
Effective Flexible Agent Coordination of Teams through Omnipresence),
that enables agent-human collaboration and addresses the issues of enhanced
user interface and flexible adjustable autonomy outlined in the previous sec
tion. The user interface (which we refer to as Omni-Viewer) and proxy-based
teamwork (called Machinetta) are incorporated in DEFACTO in a way de
picted in Figure 8.1.

The Omni-Viewer is an advanced human interface for interacting with an
agent-assisted response effort. The Omni-Viewer provides for both global
and local views of an unfolding situation, allowing a human decision-maker
to precisely assess the information required for a particular decision. A team
of completely distributed proxies, where each proxy encapsulates advanced
coordination reasoning based on the theory of teamwork, controls and coor-

200 The DEFACTO System

dinates agents in a simulated environment. The use of the proxy-based team
brings realistic coordination complexity to the prototype and allows more
realistic assessment of the interactions between humans and agent-assisted
response. Currently, we have applied DEFACTO to a disaster rescue do
main. The incident commander of the disaster acts as the human user of
DEFACTO. This disaster can either be "man made" (terrorism) or "natural"
(earthquake). We focus on two urban areas: a square block that is densely
covered with buildings (we use one from Kobe, Japan) and the University
of Southern California (USC) campus, which is more sparsely covered with
buildings. In our scenario, several buildings are initially on fire, and these
fires spread to adjacent buildings if they are not quickly contained. The goal
is to have a human interact with the team of fire engines in order to save the
most buildings. While designed for real world situations, DEFACTO can
also be used as a training tool for incident commanders when hooked up to
a simulated disaster scenario.

To provide flexible AA, we generalize the notion of strategies from single-
agent single-human context [202]. In our work, agents may flexibly choose
among team strategies for adjustable autonomy instead of only individual
strategies; thus, depending on the situation, the agent team has the flexibility
to limit human interaction, and may in extreme cases exclude humans from
the loop.

Finally, we present results from detailed experiments with DEFACTO in
Robocup Rescue domain, which reveal two major surprises. First, contrary
to previous results [203], human involvement is not always beneficial to an
agent team— despite their best efforts, humans may sometimes end up hurt
ing an agent team*s performance. Second, increasing the number of agents in
an agent-human team may also degrade the team performance, even though
increasing the number of agents in a pure agent team under identical cir
cumstances improves team performance. Fortunately, in both the surprising
instances above, DEFACTO's flexible AA strategies alleviate such problem
atic situations.

DEFACTO is currently instantiated as a prototype of a future disaster
response system. DEFACTO has been repeatedly demonstrated to key po
lice and fire department personnel in Los Angeles area, with very positive
feedback.

8,2.1 Omni-Viewer

Our goal of allowing fluid human interaction with agents requires a visu
alization system that provides the human with a global view of agent activity
as well as showing the local view of a particular agent when needed. Hence,
we have developed an omnipresent viewer, or Omni-Viewer, which will al-

Application Domain 201

Figure 8.2. Omni-Viewer during a scenario: (a) Multiple fires start across the campus (b) The
Incident Commander uses the Navigation mode to quickly grasp the situation (c) Navigation
mode shows a closer look at one of the fires (d) Allocation mode is used to assign a fire engine
to the fire (e) The fire engine has arrived at the fire (f) The fire has been extinguished.

202 The DEFACTO System

low the human user diverse interaction with remote agent teams. While a
global view is obtainable from a two-dimensional map, a local perspective is
best obtained from a 3D viewer, since the 3D view incorporates the perspec
tive and occlusion effects generated by a particular viewpoint. The literature
on 2D- versus 3D-viewers is ambiguous. For example, spatial learning of en
vironments from virtual navigation has been found to be impaired relative to
studying simple maps of the same environments [184]. On the other hand,
the problem may be that many virtual environments are relatively bland and
featureless. Ruddle points out that navigating virtual environments can be
successful if rich, distinguishable landmarks are present [185].

To address our discrepant goals, the Omni-Viewer incorporates both a
conventional map-like 2D view. Allocation Mode (Figure 8.2-d) and a de
tailed 3D viewer, Navigation Mode (Figure 8.2-a). The Allocation mode
shows the global overview as events are progressing and provides a list of
tasks that the agents have transfered to the human. The Navigation mode
shows the same dynamic world view, but allows for more freedom to move
to desired locations and views. In particular, the user can drop to the vir
tual ground level, thereby obtaining the world view (local perspective) of a
particular agent. At this level, the user can "walk" freely around the scene,
observing the local logistics involved as various entities are performing their
duties. This can be helpful in evaluating the physical ground circumstances
and altering the team's behavior accordingly. It also allows the user to feel
immersed in the scene where various factors (psychological, etc.) may come
into effect.

In order to prevent communication bandwidth issues, we assume that a
high resolution 3D model has already been created and the only data that is
transfered during the disaster are important changes to the world. Generat
ing this suitable 3D model environment for the Navigation mode can require
months or even years of manual modeling effort, as is commonly seen in the
development of commercial video-games. However, to avoid this level of ef
fort we make use of the work of You et. al. [214] in rapid, minimally assisted
construction of polygonal models from LiDAR (Light Detection and Rang
ing) data. Given the raw LiDAR point data, we can automatically segment
buildings from ground and create the high resolution model that the Navi
gation mode utilizes. The construction of the USC campus and surrounding
area required only two days using this approach. LiDAR is an effective way
for any new geographic area to be easily inserted into the Omni-Viewer.

We use the JME game engine to perform the actual rendering due to its
cross-platform capabilities. JME is an extensible library built on LWJGL
(Light Weight Java Game Library), which interfaces with OpenGL and Ope-
nAL. This environment easily provides real-time rendering of the textured
campus environment on mid-range commodity PCs. JME utilizes a scene

Agents 203

graph to order the rendering of geometric entities. It provides some impor
tant features such as OBJ format model loading (which allows us to author
the model and textures in a tool like Maya and load it in JME) and also
various assorted effects such as particle systems for fires.

8.2.2 Proxy-based teamwork

Taking into account the uncertainty and communication problems that
often arise in disaster rescue domains robust multi agent teams are more
likely to perform better that centralized approaches. To this end, DE-
FACTO is build on the state-of-the-art multi agent infrastructure called Ma-
chinetta. The modular structure of Machinetta main components and the
fact that it provides coordiantion algorithms rather than fixed multi-agent
infrastructure ensures its versatility which contributes to the reusability of
DEFACTO for different domains. The robustness of Machinetta is achieved
through decentralized role allocation, communication and coordination al
gorithms which use the concept of moving agents instead of fixed messages.
Details on Machinetta are explained in section 8.4.

A key hypothesis in this work is that intelligent distributed agents will be
a key element of a future disaster response. Taking advantage of emerging
robust, high bandwidth communication infrastructure we believe that a crit
ical role of these intelligent agents will be to manage coordination between
all members of the response team. Specifically, we are using coordination
algorithms inspired by theories of teamwork to manage the distributed re-
sponse[215].

The general coordination algorithms are encapsulated in proxies with each
proxy representing one team member in the team. Machinetta Proxies,
which extend the successful Teamcore proxies [176] are implemented in Java
and are freely available on the web.

Notice that the concept of a reusable proxy differs from many other "mul-
tiagent toolkits" in that it provides the coordination algorithms, e.g., algo
rithms for allocating tasks, as opposed to the infrastructure, e.g., APIs for
reliable communication.

8.3 Agents

Currently, DEFACTO is applied to a Robocup Rescue domain which in
corporates detailed disaster simulator as well as templates for three types of
agents: Fire Engines, Ambulances and Police Cars. At this stage of the sys
tem development we focus on Fire Engines and simulate only the fire spread
and building damage. Thus, agents in our simulation are Fire Engines taking
on new Fight Fire requests and reporting the status of buildings.

Main aspects of these agents are:

204 The DEFACTO System

• Pro-activeness: each agent stores a list of plans it is able to perform
and whenever plan preconditions are met, roles associated with plans
are immediatedy triggered. On the other hand, agents pro-activness
can be varied through adjustable autonomy strategies resulting in the
increased performance of the whole team.

• Reactivness: each agent moves around the environment, scans it for
emerging fires and reports the status of the buildings on fire. In case
of an environment change agent's first task is to comunicate the news
to other team members and consequently establish the basis for a new
Fight Fire plan.

• Mobility: agent movement affects its sensing of the environment and
choice of which fire to fight first; Priority is given to the closest burn
ing building. In addition, agents are sucseptible to road congestion
generated in real time by the traffic simulator.

• Configurability: agents can have flexible level of intelligence depend
ing on the contents of their declarative configuration files which store
agent beliefs, plans, adjustable autonomy strategies etc.

• Flexible architecture: The modular structure of Machinetta Proxies
allows them to be reused for different domains with interchangable
coordination algorithms.

8,3,1 Adjustable Autonomy

In this paper, we focus on a key aspect of the proxy-based coordination:
Adjustable Autonomy. Adjustable autonomy refers to an agent's ability to
dynamically change its own autonomy, possibly to transfer control over a
decision to a human. Previous work on adjustable autonomy could be cat
egorized as either involving a single person interacting with a single agent
(the agent itself may interact with others) or a single person directly interact
ing with a team. In the single-agent single-human category, the concept of
flexible transfer-of-control strategy has shown promise [202]. A transfer-of-
control strategy is a preplanned sequence of actions to transfer control over
a decision among multiple entities, for example, an AH1H2 strategy implies
that an agent (A) attempts a decision and if the agent fails in the decision then
the control over the decision is passed to a human Hi, and then if Hi can
not reach a decision, then the control is passed to H2. Since previous work
focused on single-agent single-human interaction, strategies were individual
agent strategies where only a single agent acted at a time.

An optimal transfer-of-control strategy optimally balances the risks of not
getting a high quality decision against the risk of costs incurred due to a

Multi-Agent System 205

delay in getting that decision. Flexibility in such strategies implies that an
agent dynamically chooses the one that is optimal, based on the situation,
among multiple such strategies (Hi A, AHi, AHiA, etc.) rather than always
rigidly choosing one strategy. The notion of flexible strategies, however,
has not been applied in the context of humans interacting with agent-teams.
Thus, a key question is whether such flexible transfer of control strategies
are relevant in agent-teams, particularly in a large-scale application such as
ours.

DEFACTO aims to answer this question by implementing transfer-of-
control strategies in the context of agent teams. One key advance in DE-
FACTO, however, is that the strategies are not limited to individual agent
strategies, but also enables team-level strategies. For example, rather than
transferring control from a human to a single agent, a team-level strategy
could transfer control from a human to an agent-team. Concretely, each
proxy is provided with all strategy options; the key is to select the right strat
egy given the situation. An example of a team level strategy would combine
AT Strategy and H Strategy in order to make AjH Strategy. The default
team strategy, A7, keeps control over a decision with the agent team for the
entire duration of the decision. The H strategy always immediately trans
fers control to the human. ATH strategy is the conjunction of team level
AT strategy with H strategy. This strategy aims to significantly reduce the
burden on the user by allowing the decision to first pass through all agents
before finally going to the user, if the agent team fails to reach a decision.

8,4 Multi-Agent System

The Machinetta software consists of five main modules, three are domain
independent and two are tailored for specific domains (Figure 8.3. The three
domain independent modules are for coordination reasoning, maintaining
local beliefs (state) and adjustable autonomy. The domain specific mod
ules are for communication between proxies and communication between
a proxy and a team member. The modules interact with each other only
via the local state with a blackboard design and are designed to be "plug and
play", thus, e.g., new adjustable autonomy algorithms can be used with ex
isting coordination algorithms. The coordination reasoning is responsible
for reasoning about interactions with other proxies, thus implementing the
coordination algorithms. The adjustable autonomy algorithms reason about
the interaction with the team member, providing the possibility for the team
member to make any coordination decision instead of the proxy. For exam
ple, the adjustable autonomy module can reason that a decision to accept a
role to rescue a civilian from a burning building should be made by the hu
man who will go into the building rather than the proxy. In practice, the

206 The DEFACTO System

OthPT ^

Proxies
^ ^ . , 1

' ^ ^ ' ^ ' • • • N i * , , , , ^

Coordination

state
f ^

RAP Interface
r

Adjustable

Autonomy

w • RAP

Figure 8.3. Proxy Architecture

overwhelming majority of coordination decisions are made by the proxy,
with only key decisions referred to team members.

Communication: communication with other proxies

Coordination: reasoning about team plans and communication

State: the working memory of the proxy

Adjustable Autonomy: reasoning about whether to act autonomously or
pass control to the team member

RAP Interface: communication with the team member

Description of Machlnetta Proxy components

Teams of proxies Implement team oriented plans (TOPs) which describe
joint activities to be performed In terms of the Individual roles to be per
formed and any constraints between those roles. Typically, TOPs are In
stantiated dynamically from TOP templates at runtime when preconditions
associated with the templates are filled. Typically, a large team will be si
multaneously executing many TOPs. For example, a disaster response team
might be executing multiple fight fire TOPs. Such fight fire TOPs might
specify a breakdown of fighting a fire Into activities such as checking for civil
ians, ensuring power and gas Is turned off and spraying water. Constraints
between these roles will specify Interactions such as required execution order
ing and whether one role can be performed If another Is not currently being
performed. Notice that TOPs do not specify the coordination or commu
nication required to execute a plan, the proxy determines the coordination
that should be performed.

Multi-Agent System 207

8.4,1 Organisation

The proxy based approach to coordination is completely distributed, with
each proxy working closely with the team member it represents in the en
vironment. Since the underlying algorithms are based on an operationaliza-
tion of the theory of teamwork[215], coordination requires that joint inten
tions and mutual beliefs are formed in a distributed manner before the team
begins executing a task. Recent changes to Machinetta have relaxed the re
quirements on mutual beliefs and joint intentions to allow bigger teams to
function effectively without infeasible communication overhead[203] Specif
ically, agents are only required to form joint intentions and mutual beliefs
with other team members with whom they are directly collaborating on a
sub-goal, rather than with the whole team. This leads to the possibility of
the team performing duplicate or conflicting tasks, hence additional conflict
resolution algorithms are required to remove these conflicts.

Underlying the conflict resolution mechanism, and in fact several key al
gorithms in Machinetta, is a static, logical network involving all the mem
bers of the team[203] This network is referred to as the associates network,
As well as maintaining mutual beliefs and joint intentions between direct
collaborators, team members share critical information with their neighbors
in the associates network. By ensuring that the associates network has a small
worlds property [232], there is very high probability that at least one agent
will get to know of any conflict and can initiate a resolution process[137].
Team members collaborating on a sub-plan form a sort of sub-team with
their neighbors in the associates network by virtue of their joint intention
and mutual beliefs. While the associates network remains static the mem
bers of a sub-team, and indeed the sub-plans, can change over time, resulting
in an emergent organizational structure consisting of dynamically changing,
overlapping sub-teams. (If needs be, I have a figure for this.) Notice that no
hierarchy or centralized control of any type is present in Machinetta.

The algorithms in Machinetta are designed to be very scalable, allowing
large teams to be deployed to achieve complex tasks. Fully distributed sim
ulations involving up to 500 team members have been successfully demon
strated and key algorithms have been shown to work efficiently with up to
10,000 team members. While no Machinetta algorithms require the asso
ciates network to be fixed when the team is initiated or for the whole team
to be known, to date all uses of Machinetta have involved domains where
the entire team is known in advance. However, by leveraging the underlying
associates network and some careful algorithm design there is no need for
yellow pages type services, because team members need only interact with
neighbors in the network. Provided new team members can integrate them-

208 The DEFACTO System

selves successfully into the network, maintaining the network's small worlds
property, Machinetta can support dynamic addition of new team members.

8.4.2 Interaction

When developing large teams, protocol and software robustness is criti
cally important. When hundreds or thousands of distributed team members
asynchronously coordinate to simultaneously achieve hundreds of sub-plans
over a period of time, any "bugs" in the interaction code will be inevitable
found^ Since developing completely bug free code is extremely difficult even
for professional software developers, we developed a novel way of imple
menting interaction that is particularly robust and relatively easy to debug.
Rather than sending messages between proxies and, thus, having distributed
state that is prone to difficult to locate bugs, we are exploring the use of mo
bile agents that transfer both coordination state and a message as they move
between proxies.

One hypothesis we are exploring is that the use of mobile agents for coor
dination leads to high degrees of robustness in at least two key ways. First,
it is easier to develop reliable means to know whether messages are "lost",
since the agent itself can ensure its own movement around the team. Second,
coordination algorithms are simpler to implement because they are entirely
encapsulated within the code of a single mobile agent (rather than being
spread across proxies.) Thus, management of interaction state and handling
of coordination failures, etc., is greatly simplified.

The use of mobile agents as a means for implementing coordiation pro
tocols means that the proxies can be thought of as a type of mobile agent
platform. However, unlike traditional mobile agent platforms, the proxies
are active in providing information to the mobile agents and even, when the
adjustable autonomy decides a human should make a decision, making deci
sions on the mobile agents behalf. Since the proxies are connected in a small
worlds network, it is possible to think of the coordination as being imple
mented by mobile agents moving around a small worlds network of active
mobile agent platforms.

8.4.3 MAS Environment

Machinetta is designed to be both domain independant and to work with
highly heterogeneous teams. As such, it has been possible to demonstrate
Machinetta in several simulation environments. In addition to DEFACTO,
Machinetta has also been used for coordination of high fidelity simulations
of search and rescue robots. The most stringent tests of Machinetta's coor-

^ Murphy's Law meets the Law of Large Numbers.

Experiments 209

dination capabilities will come in late 2005 when it is used for an Air Force
flight test involving three simulated unmanned aerial vehicles (UAVs) and
one real UAV. Initial testing has shown Machinetta can effectively coordinate
large numbers of UAVs to efficiently execute a wide area search and destroy
mission with sufficiently low communication bandwidth to be feasible in a
military domain[201].

The domains in which Machinetta have been used, though varied, share
some common traits. Specifically, the domains have typically allowed com
plex tasks to be broken down into smaller subtasks with most of the re
quired coordination being for specific subtasks rather than across subtasks.
Machinetta has been required to deal with dynamics in all the domains in
which it have been used, but, although some domains have contained hostile
forces, explicit adversarial reasoning has not been performed.

8,5 Experiments

We have conducted experiments with the DEFACTO system connected
to the Robocup Rescue simulation environment. All the simulation compo
nents were running on one desktop with two AMD 1.8 GHz processors and
4GB of ram. The following processes were simulated on the desktop:

• All the Machinetta proxies and their communication server

• Robocup rescue kernel including traffic, blocade, fire and building col
lapse simulators

• Allocation viewer.

8,5.1 Evaluation

DEFACTO was evaluated in two key ways, focusing on key individual
components of the system. First, we performed detailed experiments com
paring the effectiveness of Adjustable Autonomy (AA) strategies over mul
tiple users. In order to provide DEFACTO with a dynamic rescue domain
we chose to connect it to a simulator. We chose the previously developed
RoboCup Rescue simulation environment [128]. In this simulator, fire en
gine agents can search the city and attempt to extinguish any fires that have
started in the city. To interface with DEFACTO, each fire engine is con
trolled by a proxy in order to handle the coordination and execution of AA
strategies. Consequently, the proxies can try to allocate fire engines to fires
in a distributed manner, but can also transfer control to the more expert
user. The user can then use the Omni-Viewer in Allocation mode to allocate
engines to the fires that he has control over. In order to focus on the AA
strategies (transferring the control of task allocation) and not have the users

210 The DEFACTO System

Number of Fire Engines '

- A - Q - H - e > A H ^ ATHI

S

300

250

200

Subject B

S>150

1 100

50

0

• : ^

' a

5 7 9
Number of Fire Engines

"A-E>H-g>AH-A- AjHi

11

Number of Fire Engines
--A-D-H-0-AH-T^V ATHI

Figure 8.4. Performance of subjects 1, 2, and 3.

Experiments 211

ability to navigate interfere with results, the Navigation mode was not used
during this first set of experiments.

The results of our experiments are shown in Figure 8.4, which shows the
results of subjects 1, 2, and 3. Each subject was confronted with the task of
aiding fire engines in saving a city hit by a disaster. For each subject, we tested
three strategies, specifically, H, AH and AjH\ their performance was com
pared with the completely autonomous Aj strategy. AH is an individual
agent strategy, tested for comparison with A^H, where agents act individ
ually, and pass those tasks to a human user that they cannot immediately
perform. Each experiment was conducted with the same initial locations of
fires and building damage. For each strategy we tested, varied the number of
fire engines between 4, 6 and 10. Each chart in Figure 8.4 shows the varying
number of fire engines on the x-axis, and the team performance in terms of
numbers of building saved on the y-axis. For instance, strategy Aj saves 50
building with 4 agents. Each data point on the graph is an average of three
runs. Each run itself took 15 minutes, and each user was required to partici
pate in 27 experiments, which together with 2 hours of getting oriented with
the system, equates to about 9 hours of experiments per volunteer.

Figure 8.4 enables us to conclude the following:

• Human involvement with agent teams does not necessarily lead to im
provement in team performance. Contrary to expectations and prior
results, human involvement does not uniformly improve team perfor
mance, as seen by human-involving strategies performing worse than
the Aj strategy in some instances. For instance, for subject 3, human
involving strategies such as AH provide a somewhat higher quality
than Aj for 4 agents, yet at higher numbers of agents, the strategy
performance is lower than Aj.

Providing more agents at a human's command does not necessarily im
prove the agent team performance As seen for subject 2 and subject 3,
increasing agents from 4 to 6 given AH and AjH strategies is seen
to degrade performance. In contrast, for the Aj strategy, the perfor
mance of the fully autonomous agent team continues to improve with
additions of agents, thus indicating that the reduction in AH and AjH
performance is due to human involvement. As the number of agents
increase to 10, the agent team does recover.

No strategy dominates through all the experiments given varying num
bers of agents. For instance, at 4 agents, human-involving strategies
dominate the Aj strategy. However, at 10 agents, the Aj strategy
outperforms all possible strategies for subjects 1 and 3.

212 The DEFACTO System

Strategy
of agents

Subject 1
Subject 2
Subject 3

H
4

\~w 138
117

6

92
129
132

10

154
180
152

AH
4

riis"
146
133

6

128
144
136

10

132
72
97

AjH
4

104
109
116

6

83
120
58

10

64
38
57

Table 8.1. Total amount of allocations given.

3 4 S 6 7 8 9 10 11

Number of Agents

[^Subject f-K>Subject̂ ^̂ ^̂ ^

! 250

^ 2 0 0

SI 190

m 80

0

Number of Agenl .1.
::Subject1 HiiSubjecl2Tfc-Sub]ect3

(a) (b)

Figure 8.5, (a) AGn and (b) H performance

• Complex team-level strategies are helpful in practice: AjH leads to im
provement over H with 4 agents for all subjects, although surprising
domination of AH over AjH in some cases indicates that AH may
also a useful strategy to have available in a team setting.

Note that the phenomena described range over multiple users, multiple
runs, and multiple strategies. The most important conclusion from these
figures is that flexibility is necessary to allow for the optimal AA strategy to
be applied. The key question is then how to select the appropriate strategy
for a team involving a human whose expected decision quality is EQu, In
fact, by estimating the EQu of a subject by checking the "H" strategy for
small number of agents (say 4), and comparing to A strategy, we may begin
to select the appropriate strategy for teams involving more agents. In gen
eral, higher EQH lets us still choose strategies involving humans for a more
numerous team. For large teams however, the number of agents AG^ ef
fectively controlled by the human does not grow linearly thus Aj strategy
becomes dominant.

Unfortunately, the strategies including the humans and agents {AH and
AjH) for 6 agents show a noticeable decrease in performance for subjects
2 and 3 (see Figure 8.4). It would be useful to understand which factors
contributed to this phenomena.

Experiments 213

3

2A .S. _ t>

i
..,^,,.^ 1

3 * %„,Sb.,AA .8._ 9 10 11

l-C-AH-r.- * ^

*T

Nufubsf of AQWito

Figure 8.6. Amount of agents per fire assigned by subjects 1, 2, and 3

Our crucial predictions were that while numbers of agents increase, AGu
steadily increases and EQu remains constant. Thus, the dip at 6 agents is
essentially affected by either AGu or EQu- We first tested AGu in our
domain. The amount of effective agents, AGu, is calculated by dividing
how many total allocations each subject made by how many the Aj strat
egy made per agent, assuming AT strategy effectively uses all agents. Figure
8.5-(a) shows the number of agents on the x-axis and the number of agents
effective used, AGu^ on the y-axis; the Aj strategy, which is using all avail
able agents, is also shown as a reference. However, the amount of effective
agents is actually about the same in 4 and 6 agents. This would not account
for the sharp drop we see in the performance. We then shifted our attention
to the EQii of each subject. One reduction in EQu could be because sub
jects simply did not send as many allocations totally over the course of the
experiments. This, however is not the case as can be seen in Table 8.1 where
for 6 agents, the total amount of allocations given is comparable to that of 4
agents. To investigate further, we checked if the quality of human allocation
had degraded. For our domain, the more fire engines that fight the same
fire, the more likely it is to be extinguished and in less time. For this reason,
the amount of agents that were tasked to each fire is a good indicator of the
quality of allocations that the subject makes 8.5-(b). Figure 8.6 shows the
number agents on the x-axis and the average amount of fire engines allocated
to each fire on the y-axis. AH and A^H for 6 agents result in significantly
less average fire engines per task (fire) and therefore less average EQu-

The second aspect of our evaluation was to explore the benefits of the
Navigation mode (3D) in the Omni-Viewer over solely an Allocation mode
(2D). We performed 2 tests on 20 subjects. All subjects were familiar with
the u s e university campus. Test 1 showed Navigation and Allocation mode
screenshots of the university campus to subjects. Subjects were asked to iden
tify a unique building on campus, while timing each response. The average
time for a subject to find the building in 2D was 29.3 seconds, whereas the

214 The DEFACTO System

3D allowed them to find the same building In an average of 17.1 seconds.
Test 2 again displayed Navigation and Allocation mode screenshots of two
buildings on campus that had just caught fire. In Test 2, subjects were asked
first asked to allocate fire engines to the buildings using only the Allocation
mode. Then subjects were shown the Navigation mode of the same scene. 90
percent of the subjects actually chose to change their Initial allocation, given
the extra Information that the Navigation mode provided.

8,6 Related Work and Summary

We have discussed related work throughout this paper, however, we now
provide comparisons with key previous agent software prototypes and re
search. Among the current tools aimed at simulating rescue environments It
Is Important to mention products like TerraSIm, JCATS and EPICS. Terra-
Tools Is a complete simulation database construction system for automated
and rapid generation of high-fidelity 3D simulation databases from carto
graphic source materials. Developed by TerraSIm, Inc. TerraTools provides
the set of Integrated tools aimed at generating various terrains, however,
It cannot simulate rescue operations not It has any notion of Intelligence.
JCATS represents a self-contained, high-resolution joint simulation In use
for entity-level training In open, urban and subterranean environments. De
veloped by Lawrence LIvermore National Laboratory, JCATS gives users the
capability to detail the replication of small group and Individual activities
during a simulated operation. Although It provides a great human training
environment, JCATS does not allow to simulate Intelligent agents. Finally,
EPICS Is a computer-based, scenario-driven, high-resolution simulation. It
Is used by emergency response agencies to train for emergency situations
that require multi-echelon and/or Inter-agency communication and coor
dination. Developed by the U.S. Army Training and Doctrine Command
Analysis Center, EPICS Is also used for exercising communications and com
mand and control procedures at multiple levels. Similar to JCATS however,
Intelligent agents and agent-human Interaction cannot be simulated.

Given our application domains, work of ScerrI et. al. on robot-agent-
person (RAP) teams for disaster rescue Is likely the most closely related to
DEFACTO [203]. Our work takes a significant step forward In comparison.
First, the omnl-vlewer enables navigational capabilities Improving human sit
uational awareness not present In previous work. Second, we provide team-
level strategies, which we experimentally verify, absent In that work. Third,
we provide extensive experimentation, and Illustrate that some of the con
clusions reached In [203] were Indeed preliminary, e.g., they conclude that
human Involvement Is always beneficial to agent team performance, while
our more extensive results Indicate that sometimes agent teams are better

Related Work and Summary 215

off excluding humans from the loop. Human interactions in agent teams is
also investigated in [38, 214], and there is significant research on human in
teractions with robot-teams [92, 49]. However they do not use flexible AA
strategies and/or team-level AA strategies. Furthermore, our experimental
results may assist these researchers in recognizing the potential for harm that
humans may cause to agent or robot team performance. Significant attention
has been paid in the context of adjustable autonomy and mixed-initiative in
single-agent single-human interactions [111, 2]. However, this paper focuses
on new phenomena that arise in human interactions with agent teams.

This paper presents a large-scale prototype, DEFACTO, that is based on
a software proxy architecture and 3D visualization system and provides two
key advances over previous work. First, DEFACTO's Omni-Viewer enables
the human to both improve situational awareness and assist agents, by pro
viding a navigable 3D view along with a 2D global allocation view. Second,
DEFACTO incorporates flexible AA strategies, even excluding humans from
the loop in extreme circumstances. We performed detailed experiments us
ing DEFACTO, leading to some surprising results. These results illustrate
that an agent team must be equipped with flexible strategies for adjustable
autonomy so that the appropriate strategy can be selected. Exciting feedback
from DEFACTO's ultimate consumers illustrates its promise and potential
for real-world application.

Chapter 9

ARTIMIS RATIONAL DIALOGUE AGENT
TECHNOLOGY: AN OVERVIEW

David Sadek

France Telecom • Division R&D
2, avenue Pierre-Marzin
22307 Lannion Cedex • France
david.sadek@francetelecom.com

Abstract ARTIMIS is an effective intelligent agent technology designed and developed
by France Telecom. It provides a generic framework to instantiate dialogue
agents that are able to engage in rich interactions with human users (with
no restriction on the communication media) as well as with other software
agents. Several operational ARTIMIS-based applications have been developed,
and commercial services have begun to be deployed. ARTIMIS relies on the
principle that a system's ability to carry on a natural dialogue with a human
user must result from the system's inherent intelligence. Consequently, an
intelligent dialogue system needs to be first conceived and designed as an intel
ligent system. ARTIMIS provides a generic framework for the development of
intelligent agents whose behaviour is wholly driven by explicit cognitive prin
ciples, such as rationality, communication and cooperation. ARTIMIS agents
can also be components of multi-agent systems. In this case, to interact with
other agents, they use the FIPA ACL standard (Agent Communication Lan
guage), whose formalism and semantics come from ARCOL, the ARTIMIS
Communication Language.

Keywords: Rational agent technology, natural human-computer dialogue, multi-agent
context, inter-agent communication language, effective applications.

9,1 Introduction

ARTIMIS is a rational agent technology designed and developed by France
Telecom [195]. It provides a generic framework to instantiate dialogue agents

mailto:david.sadek@francetelecom.com

218 ARTIMIS

that are able to engage In rich interactions with human users (with no restric
tion on the communication media) as well as with other software agents.

The foundational work underlying ARTIMIS technology handles com
munication as a special case of Intelligent behaviour: an Intelligent dialogue
system has to be first an Intelligent system. The necessity of machine in
telligence obviously appears In contexts that require, at the same time, a
complex and user-friendly interaction with a human being. This Is overtly
illustrated In natural human-computer dialogue. It is not anodyne that the
Turing test requires a dialogue situation. The capabilities underlying dia
logue phenomenon (perception, reasoning, learning, etc.) are required by
other so-called intelligent behaviours, namely behaviours that display prob
lem solving capacities. Therefore, the ability to engage Into a dialogue re
lies on a common ground that endows it with a non-primitive character.
Rational behaviour appears as the most consensual manifestation of Intelli
gence [156, 186]^ Roughly speaking, to behave rationally is to be driven by
principles that select in an optimal way the actions leading to futures com
pliant with a given set of motivations and goals.

The approach underlying ARTIMIS technology right away targets real
systems. It has therefore the ambition to cover at the theoretical level the
different components of rational, communicative, and social behaviours of
an agent. In an original way. It unifies under the same point of view the prob
lem of designing dialogue systems and that of designing intelligent artificial
agents. This approach points out the paradigm of rational dialogue agent as
the one that has to ground the construction of intelligent systems. More
over, by virtue of the genericity of Its principles. It Is intended to provide
the robustness required from an intelligent system, namely to adequately re
act to complex situations or incompletely specified ones when the system is
designed.

In section 9.2, the range of ARTIMIS technology applications Is briefly
overviewed. In section 9.3, the formal theory that underlies ARTIMIS Is
introduced and the agent architecture is presented, along with a description
of the different components of the technology. Section 9.4 focuses on one of
the multi-agent capabilities of ARTIMIS, namely the Inter-agent communica
tion language. Concrete application cases are then exemplified In section 9.5.
Some remarks conclude the chapter.

9.2 Application domain

Primarily designed to support advanced Interactive services and to of
fer user-friendly cooperative intelligent Interfaces to information bases, AR-

^See also [75] for different considerations on economic rationality.

Application domain 219

TIMIS intelligent agent technology de facto strongly relates to end-user ap
plications.

When instantiated in a human-agent interaction context, ARTIMIS allows
for implementing interactive services that enable natural dialogue with hu
man users, whatever the communication media is. The resulting dialogue
agents display advanced functionalities, such as natural language, mixed-
initiative interaction, request and response negotiation, cooperative reac
tions, etc. [192, 199].

ARTIMIS can also be used in multi-agent environments, namely con
texts involving several interacting software agents (but also web services,
databases, etc.). Along these lines, its use field is extended to mediation
applications, in which an ARTIMIS agent can manage, in a unified and
cooperative way, the relationship between a user and regular information
sources [148]. In this context, the main offered functionalities are: identifi
cation of proposals that best fit the user's request, construction of proposals
possibly combining information coming from different sources (e.g. travels
combining trains and flights, obtained from web sites providing information
about a single transportation mode), suggestion of alternative solutions, etc.

Oheragafeand

Figure 9.1. ARTIMIS: a wide range of applications

220 ARTIMIS

Thanks to its genericity, ARTIMIS range of potential applications is very
wide^. It encompasses various application domains: personal or public as
sistants, information and transaction services, telecommunication services
(hotlines, portals,...), directories (yellow pages, tourist guides,...), bank
ing and financial services (stocks, account management,...), e-commerce,
e-learning and education, intelligent interfaces for Internet search engines,
games (intelligent communicating clones and avatars), etc.

9.3 ARTIMIS as an autonomous agent

9.3.1 Formal rational interaction theory

The ARTIMIS approach of rational interaction is governed by two main
ideas. The first one is that, for an agent, engaging and following up a dialogue
with a human interlocutor or with another agent can be totally justified by
rational behaviour principles. Therefore, it is not necessary for an agent to
have a structural dialogue model or a communication protocol, since the
instances of such a model or a protocol are dynamically retrieved by rational
behaviour. The second idea is that a single formal theory can account for the
different aspects of an agent's cognitive and communicative behaviour.

The early theoretical work that formally investigated the idea of rational
ity as the basis of communication is that of [45, 46]-̂ . This pioneer work
introduced a robust, fine-grained, methodological framework to express for
mal theories of intention and to study intentional action and certain aspects
of communication. However, strictly speaking, it did not directly formalise
"operational" principles of rational behaviour, neither the mechanisms that
underlie cooperation. In other respects, its theoretical aim did not disclose a
direct implementation into real systems.

The ARTIMIS model is a formal theory of rational interaction expressed
in a homogeneous logical framework [188]"̂ . The basic concepts of this
framework are mental attitudes and actions. The theory shows how ad
vanced behaviours result from the application of primitive principles and
from their combination. It is expressed within a unique formal model (a
quantified modal logic, with a well-defined semantics) and modularly con
structed in different components, as briefly presented below.

^Examples of ARTIMIS-based applications are presented In section 9.5.
•^Other works come within a similar approach. See, e.g., [179, 240, 237].
'̂ See also [34, 138] for presentations and analysis of different aspects of the theory, and for extensions.

ARTIMIS as an autonomous agent 221

Basic formal concepts

The first component of the theoretical framework corresponds to the for-
malisation of the basic concepts that enable to express the notions of men
tal state and behaviour. The formal account is expressed in a first order
modal language with identity. For the sake of brevity, only the aspects of
the formalism used in this chapter are introduced in the following. Symbols
-1, A, V, =>, and <^ represent classical connectives of negation, conjunction,
disjunction, logical implication and equivalence. V and 3 are respectively the
universal and existential quantifiers, x, y, and z are symbols for individual
variables, a, ai, and ^2 ^re variable schemata denoting action expressions (see
below), p and p' are taken to be closed formulae (denoting propositions), 0,
\l) and (5 formula schemata, and i, j and h variable schemata denoting agents.
Notation |= (j) means that formula (p is valid.

The concept of action (or event) and the basic mental attitudes of belief,
uncertainty and choice (or, to some extent, goal) are modelled. These men
tal attitudes are respectively formalised by the modal operators B, U and C.
Formulae as B/p, Ujp and Qp can be respectively read "z (implicitly) believes
(that) p'\ "/ thinks that p is more likely than -ip", and "/ desires that p cur
rently holds". The logical rules that express their inherent properties and
relationships are formalised. The resulting agents are fully introspective and
have consistent beliefs .̂ An agent's uncertainties are not closed under log
ical consequence. Intention is defined as a complex combination of belief
and choice [189] in a relatively similar way as [45], although with some fun
damental differences. It is formalised by the modal operator I, Formula as
liP can be read "f brings about p". The definition of intention entails that it
necessarily generates a planning process. It also imposes that an agent cannot
bring about a situation if the agent believes that the situation already holds:

As far as action is concerned, complex action expressions are recursively
built over the set of primitive actions (or events) using a sequence operator
(ai; ^2), a nondeterministic choice operator (ai \ ^2)) and an iteration opera
tor (fl*). A sequence can be formed with a single agent that may be the void
event. The introspection action, noted {i,cj)?), is a particular event that can
be performed if and only if agent / explicitly believes (p. It enables the agent
to handle conditional steps within plans. In order to reason about action,

^For an agent z, the logical model for operator B,- is a KD45 possible-worlds-semantics Kripke structure
(see, e.g., [103]) with the fixed domain principle (see, e.g., [94]). This structure is also the framework for
the interpretation of uncertainty, the set of possible worlds being viewed as a probability space. The
concept of choice is also interpreted in terms of possible worlds, characterised by a specific accessibility
relation.

222 ARTIMIS

two modal operators are introduced, a being an action expression and (p a
formula: Feasihle{a,(p) means that a can take place and if it does, (p will
be true after that, and Done {a, (p) means that a has just taken place and (p
was true before that. Agent{i, a) means that / denotes the only agent of the
events (or actions) appearing in a^,

The following abbreviations are used. True being the propositional
constant always true:

Feasible{a)
Done{a)
Bificp
Brefi6{x)
Uificp
Urefi5(x)
ABn4j(p

= Feasible{a, True)
= Done[a, True)
= Bi(p\/Bi^^
= {3y)Bi{ix6(x) = y)
= Ui(pyUn(\)
= (3y)Ui(ix5ix) ^ y)
= BiBjBi.,.4)

In the forth and sixth abbreviations, t is the operator for definite description,
defined as a term producer as follows:

^{ix5{x)) = 3y(P{y) A 5{y) A V2((5(2) => z = y)

ix5{x) is read "the (x which is) 5'\ BrefiS{x) means that agent i (thinks
that she/he/it) knows the (x which is) 5^, Uifi(p means that either agent / is
uncertain about (p (in the sense defined above) or that he is uncertain about
-10. Urefi6{x) has the same meaning as Brefi6{x)^ except that agent / has
an uncertainty attitude with respect to 5{x) instead of a belief attitude. In
the last abbreviation, which introduces the concept of alternate beliefs, n is a
positive integer representing the number of B operators alternating between
/ and /.

There is no restriction on the possibility of embedding mental attitude
or action operators. For example, formula UiBjljDone{a, Bfp) informally
means that agent / believes that, probably, agent / thinks that / has the inten
tion that action a be done before which / has to believe p.

A fundamental property of the proposed logic is that the modelled agents
are perfectly in agreement with their own mental attitudes. Formally, the
following property holds:

h cp{i) <^ Bi(P

^The semantics of operators Feasible and Done is defined in terms of accessibility relations on possible
worlds, specifying a model with a branching future and a linear past. For the detailed semantics, see [188,
189].
''Formula Brefi5(x) can be used for {3x)Bi5(x)). In such a case, the operator i produces an indefinite
description, meaning that the uniqueness constraint, corresponding to the component Vz(<5(z) =^ z = y)
in the definition of (p{Lx5{x)))y is abandoned.

ARTIMIS as an autonomous agent 223

where 0(z) is a formula governed by a modal operator formalising a mental
attitude of agent /.

Rationality principles

The second component of the theory deals with the properties that relate
an agent's intentions with the actions enabling it to achieve them [190]. It
formally establishes the axioms that ground an agent's rational behaviour,
namely the rationality principles. These principles enable an agent to gener
ate intentional action.

The components of an action model, in particular, of a communicative
act (CA) model that are involved in a planning process characterise both the
reason for which the action is selected and the conditions that have to be sat
isfied for the action to be planned. For a given action, the former is referred
to as the rational effect (RE)^, and the latter as the feasibility preconditions
(FP), or the qualifications of the action.

Two rationality principles relate an agent's intention to its plans and ac
tions. The planning process is driven by their alternate use. The first prin
ciple gives an agent the capability of planning an act whenever the agent
intends to achieve its RE. It states that an agent's intention to achieve a given
goal generates its intention that be done one of the acts (1) known to the
agent, (2) whose RE corresponds to the agent's goal, and (3) that the agent
has no reason for not doing them. The second principle imposes on an agent,
whenever it selects an action (by virtue of the first rationality principle), to
seek the satisfiability of its FPs^. It states that an agent having the intention
that some action be done, adopts the intention that the action be feasible,
unless it believes that it is already feasible. Formally, the two rationality
principles are stated as follows:

\= lip => IiDone{ai \ ... | Un)

where a^ {k ranging form 1 to n) are all the actions such that: (1) agent /
knows action Uj^, (2) p is the rational effect of aj^ (i.e., the reason for which aj^
is planned), and (3) -^li-^Done{a]^)

\= IiDone{a) => BiFeasible{a) V IiBiFeasible{a)

Importantly, unlike in classical plan-based approach, in this framework, the
rationality principles just introduced intrinsically specify a planning algo
rithm — with no need for any external plan calculus mechanisms — that

^This effect is also referred to as the perlocutionary effect in some of our previous work [192, 193], in
analogy with the use of the term in Speech Acts Theory, yet with the same meaning as the rational effect
used here.
^See [193] for a generalised version of this property.

224 ARTIMIS

deductively generates action plans, through the Inference of causal chains of
Intentions.

Communicative act models

The third component of the theory underlying ARTIMIS gives a fine
grained account of a set of primitive communicative acts^°, by precisely de
termining the preconditions and effects that characterise each one of them
and endow It with Its semantlcs^^ In this approach, communicative acts are
viewed as ordinary actions, handled by the rationality principles In a regular
way.

A model of rational action should specify the feasibility preconditions
and the rationale of the action. The expression of such a model Is, In general,
complex for two main reasons. The first one Is that the set of action qualifi
cations Is potentially Infinite (see [193] for the case of communicative acts).
The second reason Is that the effect of an action on the world Is strongly
context-dependent and cannot be formulated In general terms [168]; further
more, "summarising" what an action should leave unchanged Is a difficult
problem.

A solution that goes round the problem of effect specification Is directly
related to the expression of the rationality principles. In fact. If It Is not pos
sible to specify the actual effects of an action. It Is yet possible to state (In a
logically valid way) what Is expected from an action, that Is, what are the rea
sons for which the action has been selected. This Is exactly what Is expressed
by the first rationality principle. This semantics for action effect, within the
framework of a model of rational behaviour, allows one to overcome the
problem of effect unpredictability.

The set of feasibility preconditions for a CA can be split Into two subsets:
the ability preconditions and the context-relevance preconditions. The ability
preconditions characterise the Intrinsic ability of an agent to perform a given
CA. For Instance, to sincerely assert some proposition p, an agent has to be
lieve that p. The context-relevance preconditions characterise the relevance
of the act with respect to the context In which It Is to be performed. For In
stance, an agent can be Intrinsically able to make a promise while believing
that the promised action Is not needed by the addressee.

The specification of an actlon^s feasibility preconditions and rational effect
Is axlomatlsed within the logical theory through the two following proper
ties:

^°See [7, 205] for the foundational work on Speech Act theory and the concept of performatives, which
underUes the notion of communicative acts used in our framework.
^^This specification is at the basis of the FIPA ACL standard.

ARTIMIS as an autonomous agent 225

Bi{Feasible{a) <=̂ FP{a))
Bi{Done{a) =^ RE{a))

As an example, below is a simplified model (as far as the expression of the
preconditions is concerned) of the communicative act of informing about the
truth of a proposition^^:

{i,Inform{j,(p))
FP : Bfct) A -iB/By0
RE : Bjcj)

This model is directly axiomatised within the logical theory through the
above mentioned rationality principles and the following schema:

Bh{Feasible({iJnforni{j,(p))) ^ B/c/) A-iB/By0)
Bh{Done{{iJnform{j,(p))) =^ Bjcj))

It is worth noting that, unlike in classical plan-based approaches, actions are
not handled as data structures by a planning process, but have a logical se
mantics within the theory itself.

Belief reconstruction

The fourth component of the theory deals with the evolution of agent's
beliefs, in particular as a consequence of observing communicative actions.
It formalises the belief reconstruction process (after each event or action) and
mainly deals with the converse process of CA planning, namely the CA
consummation process. Our approach of belief reconstruction relies on a so-
called observation principle, which accounts for a distinction between what
an agent observes (from the actions of other agents or, more generally, from
what is occurring in the world) and the actions (or the events) that actually
take place (such as the actions that are really performed by other agents).
On this basis, importantly, an agent comes to the conclusion that an action
(or an event) it has just observed has really occurred, only under certain ad
mission conditions. Roughly speaking, an agent considers that an action a
realised by what it has just observed has occurred, only if what the agent
believed before the occurrence of a is consistent with the fact that a was fea
sible, otherwise the agent rejects a or puts into question the admissibility of

^^In fact, this version of the Inform act model is the operationaUsed version. The complete theoretical
version (regarding the FPs, yet not including the components due to mutual exclusiveness with acts
Confirm and Disconfirm; see section 9.4) is the following:

{i,Inform{j,(p))
FP : B,(/) A A„>i -^ABn,i,rBi(P A --BiBjcP A A„>2 ^ABnj,jBj4>
RE : BjCp

where AB^j^jCp is an abbreviation for BiBjBi... ,n being a positive integer representing the number of
B operators alternated between / and /.

226 ARTIMIS

the previous event(s) that make(s) a unfeasible. In addition to the proper
ties underlying action admission and consummation, our specification of the
belief reconstruction process also involves an account on how a memory of
beliefs is formed after the occurrence of an action (or an event), and also on
hdid persistence (and revision related to action consummation). We will not
go into the details of such a process here (one can see [191, 188] for a detailed
presentation of belief reconstruction in our theory). Let us just mention two
basic properties.
After an observation, whenever an agent admits an action (or an event) corre
sponding to the observation^ and only in this case, it is necessarily committed
to believe that its effects and persistent qualifications hold.

As far as CAs are concerned, the agent has to come to believe that the act's
performer has the intention (to make public her/his/its intention) to achieve
the rational effect of the act^ .̂ This is captured by the following property:

Bi{Done{a) AAgent{j,a) => IjBiIjRE{a))

The persistent FPs of a CA are those that do not refer to time (more specif
ically to action sequencing). Let us call them PFPs. The following property
holds:

Bi{Done{a) => PFP{a))

Social context

The last component of the theory is relative to the properties enabling an
agent to evolve in a social environment, typically a multi-agent context. It de
termines and formalises the basic principles of belief and intention transfer,
and those of cooperative behaviour, together with a set of cognitive prop
erties endowing an agent with the motivations to harmoniously react to its
environment solicitations. Such properties are optional in the sense that they
may be adopted or not adopted depending on the intended behaviour of the
modelled agent (see [188, 34, 199] for more details).

A minimal cooperation is required for communication to be possible. For
example, suppose that an agent / asks an agent ; if proposition p is true; if
both agents respect the semantics of the communication language, / knows
that i intends to know if p is true. But, without a minimal cooperation, / is
in no way constrained to react to f's request.

Informally, the minimal principle of cooperation states that agents must not
only react when they are addressed but, more than that, they must adopt
the interlocutor's intention whenever they recognise it, and if they have no
objection to adopt it. In other words, if an agent i believes that an agent j

^^This kind of act effect is called the intentional effect.

ARTIMIS as an autonomous agent 227

intends to achieve property p, and that itself does not have an opposite intention^
then i will adopt the intention thatj will (eventually) come to believe p. Such a
principle Is formalised by the validity of the following property:

In particular, If an agent i thinks that an agent ; Is expecting something from
It (and / has no objections for doing It), then / adopts the Intention that / will
come to believe that i has done what was expected. Thus, from ;'s point of
view, agent i Is cooperating.

It Is worth noting that the minimal principle of cooperation has a far
range In application: It may lead to cooperative behaviours that are much
more complex than merely answering questions, such as making an agent
forward a request to a competent agent If It cannot answer the request by
Itself.

The previous property does not ensure that agent / really believes what
It win make ; believe. Sincerity Is an Integral part of cooperation commit
ments, yet still optional In the specification of an agent In general. In terms
of mental attitudes, sincerity can be expressed as follows: An agent i cannot
have the intention that an agent j comes to believe that a proposition p is true
without itself believing p or without having the intention to come to believe p.
This property translates Into the validity of the following schema:

liBjci) => BiCp V liBiCp

This property taken together with the previous one ensures that an agent
will act sincerely, and therefore will cooperate. They account for the fact
that whenever an agent / Is aware of the objectives of an agent /, then, as far
as possible, i will help / to achieve them.

A corrective answer Is produced with the Intention of correcting a belief
that Is considered wrong. Such a belief Is usually a presupposition Inferred
(by Impllcature [102]) from the recognised communicative act. A corrective
Intention arises In an agent when Its belief of a proposition, about which It
Is competent Is In contradiction with that of Its Interlocutor. Formally, this
property Is expressed by the validity of the following schema:

B/(0 A Bj-^cp A Comp{i, 0)) ^ liBjCp

where competence Is defined as follows:
Comp(i,(l)) = (Bicj) =^ (f?) A (B/-i0 ^ -n0)

228 ARTIMIS

9.3.2 ARTIMIS agent architecture and implementation

Global functional architecture

ARTIMIS agents are driven by rationality, communication and coopera
tion principles formalised in a rational interaction theory, and directly coded
into the technology kernel. An ARTIMIS agent involves a set of generic
properties, which embodies its innate potential. This potential is indepen
dent of its specific use in a given application domain.

The technology kernel relies on a central module called the rational unit,
which implements the cognitive capacities of a rational agent through infer
ence procedures automating the axiomatic theory. The kernel also involves a
knowledge management component, and a language processing compo
nent (understanding and generation of "high level" languages, such as natural
language) that enable an ARTIMIS agent to interact with humans. Moreover,
the technology comprises a media processing layer that allows for easily
connecting it to external interfaces, such as speech processing systems, ani
mated faces, graphic avatars (to build embodied conversational agents), etc.,
or enabling it to use language FIPA ACL [89] when interacting with other
agents.

ARTIMIS

I

Language
Processing

Unit

lnt*rprftation

G«ner3bon

General
Linguistic i

Model

Rational Unit

Knowledge Managen^ent

lnt«llig«m Gtnirril
DatiAcc«t(S*numic

Figure 9.2. ARTIMIS functional architecture

ARTIMIS as an autonomous agent 229

Rational unit

The rational unit is the decision kernel of the agent. It endows the agent
with the capability to reason about knowledge and action. It performs coop
erative rational reaction calculus producing motivated plans of actions, such
as plans of (or including) communicative acts. The communication "proto
cols" are dynamic and flexible: there are no pre-defined inter-agent dialogue
patterns.

By itself the rational unit is an intelligent communicating agent. It can
be used as a regular communicating agent in a multi-agent infrastructure. In
the context of human-agent interaction, the user is viewed as a particular
agent; no assumption is made about the interlocutor's type. To be used in
such a context, the rational unit requires natural language processing com
ponents [198, 165] that bridge the gap between the human language and the
internal semantic knowledge representation in terms of communicative acts
with semantic contents expressed in a powerful language (a first-order modal
language): ARCOL (see section 9.4).

From the dialogue management point of view, the rational unit can be
viewed as a "dialogue manager". Using its generic reasoning capabilities,
it calculates the system's reaction to the user's requests and responses. To
produce its reactions, it may also require the Knowledge Management com
ponent (see below).

The rational unit faithfully implements the kernel of the rational interac
tion theory. It is operated by an inference engine [34, 35] based on a "syn
tactic" approach of deductive reasoning in first order modal logic (namely,
extended modal resolution with schema instantiation and sub-formula unifi
cation)^" .̂ The axiom schemata, of a very general scope, already pre-defined
by the interaction theory, are part of an ARTIMIS agent's rational unit.
However, the "programmer" can define specialised schemata for a given ap
plication. The set of schemata drives the rational unit reasoning process and,
therefore, its reaction to its environment solicitations.

Environment solicitations such as requests from the user or from other
software agents are conveyed to the rational unit as logical sentences of the
rational interaction theory. The inference engine calculates the consequences
of these sentences and, in particular, responses or requests for precision to
send to the interlocutor (a human user or a software agent), as well as non-
communicative actions.

Concretely, for a given formula, the inference engine looks up if there
is any behaviour principle that applies to this formula in order to deduce
logical consequences. This procedure is then applied to the new derived con-

'̂̂ One can see [86, 130] for related aspects to this automated inference method.

230 ARTIMIS

sequences, until ending all the possibilities: such a procedure is a so-called
saturation-based inference algorithm. Among all the consequences, the infer
ence engine selects those referring to the actions (including communicative
acts) to be performed by the agent, which form the agent's reactions.

EXAMPLE 9.1 Assume that after utterance analysis/interpretation the recog
nised communicative act is that the user or another agent wants to inform AR
TIMIS that she/he/it wants to know ifp (e,g., if there is any agent technology
researcher at Lannion), On the basis of the rationality principles, the system in
fers the intention of the user to know ifp. The cooperation principles allow the
system to adopt the intention that the user eventually comes to know ifp. Again,
based on the rationality principles, the system adopts the intention of informing
the user thatp or informing her/him/it that not p. The system then selects the one
of these two actions that is currently feasible (for example, if the system believes
p, the action selected is that of informing the user that p) and transmits it (i.e.,
communicative act) to the natural language generator. Note that in the case of a
negative answer, ARTIMIS will produce, as far as possible, a suggestive response,
such as names of information technology researchers at Lannion.

Knowledge management unit

This component supplies two main functionalities:

• Constraint restriction and relaxation calculus mechanisms.

• Standard interfaces (ODBC, Oracle, XML, etc.) to external informa
tion systems (for example, to get information in real time).

The reasoning process carried out by the rational unit partially relies on
specific application data. For example, if an ARTIMIS Agent is intended
to provide a train schedule, it needs to have data about the train stations,
the connections between them and about temporal notions. Theses data are
organised in a KL-One-like semantic network implemented as a set of facts.

The semantic network allows for expressing notions of class, sub-class, and
instances. It also defines a notion of relation between classes, which applies
to the different class instances. For example, for a Directory application the
semantic network involves the following classes: People (whose instances are
the set of people known in the directory) and Job (whose instances are the
people Jobs). These two classes are related by the relation/o^O/ To indicate
that John is a lawyer, the semantic network involves the fact]obOf(]ohn,
Lawyer).

The rational unit can access the semantic network at any time of its infer
ence procedure when the derived consequences depend on the nature of the
data. In the Directory application, if the user asks for the job of John, the
answer of ARTIMIS will depend on its query to the semantic network.

ARTIMIS as an autonomous agent 231

The semantic network also involves semantic proximity notions, which
are particularly useful to produce the cooperative reactions of an ARTIMIS
agent. For example, Lawyer will be considered as semantically closer (accord
ing to a certain metrics) to Attorney than to Medical Doctor, This construc
tion enables to achieve two symmetric operations: constraint relaxation and
constraint restriction.

Constraint relaxation consists in providing a close answer to what has
been requested when the "exact" response does not exist. The rational unit
has access to the database through a procedural attachment engine that seeks
satisfactory "approximate" solutions when no "exact" solution to the user's
request is found. This is implemented by "compiling" the semantic network
into a product metric space where the dimensions are the application rela
tions (such as the relation JobOf introduced in the example above). A dis
tance function d{a,h) is assigned to each dimension in order to quantify the
approximation made when relaxing a into h. Constraint relaxation is viewed
as the operation of finding the nearest neighbours in the metric space.

EXAMPLE 9.2 If we ask the Directory application to provide the list of the prod
uct managers, and it does not exist any, the inference procedure can trigger a
constraint relaxation process in order to suggest, for example, the list of project
managers,

Conversely, the restriction process consists in finding a way to reduce a too
wide set of solutions, by introducing additional constraints when the re
quest is too "weak". According to the current context, the constraint to be
instantiated (by the user) could be, for example, the one corresponding to
the dimension with the longest diameter.

EXAMPLE 9.3 If there are fifty project managers in the Directory, restriction
will provide the most discriminating dimension (for example, the department
they work for), in order to pose a relevant question to better qualify the user's
request,

Language processing unit

At the input side, this component relies on semantic and linguistic mod
els to contextually interpret the user's (spoken or written) natural language
utterances, possibly combined with other communication media (such as di
rect manipulation), and builds up a logical representation directly usable by
the rational unit. At the output side, it achieves the converse function, that
of generation, in order to express in a "high level language" (e.g., multimodal
natural language) the system responses.

232 ARTIMIS

Language understanding

The goal of the understanding process Is to reconstruct, as far as possible,
In a logical form, the dialogue acts realised by the Input utterances. The
utterance analysis Is based on detecting "small" syntactic structures (typically
words) that are going to activate one or more notions mainly coming from
the semantic network.

The relation between the user's Input vocabulary and the semantic net
work Is therefore done by means of a concept activation mechanism. The
concepts correspond to the semantic notions conveyed by the word se
quences of the vocabulary. These activated notions partially depend on the
application, but they also represent more general concepts such as user's In
tentions and beliefs, negation, existential and universal quantification, cardi
nalities, etc.

Therefore, the Interpretation module has at Its disposal a set of activated
concepts (which can be a list of possibilities In the case of non-determlnism
due to syntactic overlapping). It transforms them, through a semantic com
pletion process. Into a well-formed logical sentence that represents the se
mantic content of the dialogue act. This process relies on the assumption
of semantic connectivity of user's utterance, that Is to say that the concepts
mentioned by the user have necessarily something to do with each others. It
assumes that the utterance corresponds to a path In the semantic network.
The semantic completion process alms at connecting to each others activated
concepts through relations existing In the semantic network, even by adding,
If necessary, concepts that were not explicitly mentioned. In some sense, this
process determines the understood notions In the utterance.

The Interpretation module has also to take Into account the context of the
user's utterance. To do that. It disposes of the concepts previously evoked
both by the user and the ARTIMIS agent. Thus, a part of theses concepts
can be used by the completion process.

It Is worth noting that the analysis method (namely a semantic-island
driven analysis) and the semantic completion ensure certain robustness to the
analysis/Interpretation process, particularly required in the context of spon
taneous speech. In other respects, note also that the only part that depends
on user's language is the link between the used vocabulary and the seman
tic network concepts. Indeed, the semantic data of the network represent
language-Independent notions. This makes particularly easy the application
transfer from a (natural) language to another one.

EXAMPLE 9.4 Consider utterance: "Fd like to know the phone number of
a project manager in agent technology located at Lannion", recognised by the
speech recognition system as 'Td like Xproject manager agent technology X Lan-
nion'% which in turn, activates the concepts of user's intention, project manager,

ARTIMIS as an autonomous agent 233

and Lannion, The inferred semantic complements are that the request deals with
a telephone number of an individual, whose position is project manager, on a
topic that is agent technology, and whose location is Lannion. Formally, this
leads to the construction of the following dialogue act:

{u, lnform{s, IuBrefuix{phone — number{x) A 3y individual{y)
Aposition{y, project — manager) A topic{y, agent - technology)

/\location{y, lannion) A phone — number{x, y)))

meaning that the user (u) informs the system (s) that she/he wants (lu .. .Jto know
(Brefu •.') the telephone number of a project manager in agent technology at
Lannion.

Language generation

The generation module achieves the converse task of the interpretation
one. It must transcribe a sequence of communicative acts produced by the
rational unit into an output (such as a natural language utterance) under
standable by the user.

The generation process proceeds in two phases [165]. The first one deter
mines the surface acts (specifying, in particular, the utterances modes: declar
ative, imperative, interrogative) and reference acts (specifying, in particular,
the designation modes: nominal groups, pronouns, proper nouns, etc.), that
achieve the dialogue act(s) to be sent to the user. In the second phase, the
best formulation of the acts specified in the first phase is found, depending
on the linguistic resources actually available {e.g., language, lexicon, gram
matical structures) and on the current linguistic context (dialogue history,
vocabulary and syntax used by the user in the previous dialogue turn, pref
erences of the user, etc.).

As for the language understanding process, using intermediary represen
tation levels for the information to verbalise makes easier the portability to
a new application and language.

EXAMPLE 9.5 If the system wants to inform the user that there is a relation of
type ''department" between ''the agent technology project manager" and "infor
mation technology", it would send the following message to the generator:

{s,lnform{u,department{iy{individual{y)
f\position{y, project — manager) A topic{y, agent — technology)

Alocation{y, lannion) .information — technology))

According to the dialogue context, the generator will produce a declarative sen
tence with a proper noun and a nominal group, or a positive answer with a
pronoun and a proper noun, or an elliptic sentence with a proper noun, etc.:

"The department of the project manager on agent technology located at Lan-

234 ARTIMIS

nion is information technology''.
"YeSy she/he belongs to the information technology department",
''information technology department".
etc.

Media processing layer

This component allows for Input and output formatting according to the
targeted media. Thus, It Is possible to connect an ARTIMIS-based appli
cation to any Interface type, with almost no new code development. AR
TIMIS agents already have Interfaces to handle VXML and SSML (for voice
platforms), HTML (to be operated behind an HTTP server), ACL (to Inter-
operate with other FIPA compliant agents), XML, and also the possibility of
direct TCP/IP connection.

For example. In an end-user application over the telephone. In order to
have a voice Interaction with an ARTIMIS agent. It Is required to connect It
to speech recognition and synthesis systems.

Some implementation features

ARTIMIS Is based on an explicit first-order modal reasoning process. Its
communicative and cooperative behaviour Is specified declaratlvely, In terms
of logical properties, which are Implemented as such. To change Its be
haviour only requires modifying this set of logical properties. No translation
from logics to another language Is needed.

ARTIMIS technology Is available on Solaris, Windows, and Linux plat
forms. A classical machine configuration (PC, 1 GHz, 256 MO Ram) Is suf
ficient to simultaneously run about 30 ARTIMIS agents In real time. Also,
the ARTIMIS operational platform Is compliant with Patrol-like supervising
software.

9.4 ARTIMIS agents in multi-agent systems

As constituents of ARTIMIS technology, communicative acts and cooper
ation principles (see section 9.3) enable ARTIMIS agents to be naturally part
of multi-agent systems.

To Interact with other agents, ARTIMIS uses the FIPA ACL (Agent Com
munication Language) standard, and Its associated content language, SL (Se
mantic Language). In fact, both of these languages come from ARCOL, the
ARTIMIS communication language [196],

ARCOL Is a performative-based language, with a non-ambiguous, fine
grained semantics. Basically, an ARCOL message Is specified as a CA type

ARTIMIS agents in multi-agent systems 235

applied to a semantic content. The semantic contents of CAs may be of three
different types: propositions, individuals, and actions (including CAs).

ARCOL introduces a set of primitive CAs and provides the formal mech
anisms (namely, rationality principles and combination operators with their
semantics specified in terms of feasibility preconditions and rational effects)
that enable to build macro-acts and complex interaction protocols.

Below are the definitions of simplified models of ARCOL primitive acts^^:

{i,lNFORM{j,(i)))
meaning: agent / informs agent / that proposition (p is true

FF : B/0 A --Bi{Bifj(t) V UifjCp)
RE : Bj(p

{i,REQUEST{j,a))
meaning: agent i requests agent / to perform action (e.g., CA) a

FP : FP{a)[i \ j] A BiAgent{j,a) A -^BiIjDone{a)
RE : Done{a)

FP{a) being the feasibility preconditions of a, and FP{a)[i \ j] the part of
the FPs of a that are mental attitudes of /.

{iXONFIRM{j,(p))
meaning: agent i confirms to agent / that proposition (j) is true

FP ; BiCp A BiUjCJ)
RE : Bj(p

{i,DISCONFIRM{j,cl)))
meaning: agent i disconfirms to agent / that proposition cp is true

FP: Bi-^(pABi{Uj(pVBj(p)
RE : By-10

Some macro-acts result from the planning of a nondeterministic choice.
They are selected by an agent when it intends to achieve the rational effect of
one of the acts composing the choice, no matter which one it is. To do that,
one of the feasibility preconditions of the acts must be satisfied, no matter
which one it is. Macro-acts cannot be achieved as such but are required to
abstract, for example, an Inform within the scope of a Request, to form a
yn-question or a wh-question. In the case of Inform acts, such macro-acts
are defined as follows:

{iJNFORMIFij^cp))
= {iJNFORM{j,(p)) I {iJNFORM{j,--(p))

^̂ The preconditions of act Inform are revisited according to the models of acts Confirm and
Disconfirm, introduced below, in such a way that only one act be context-relevant at a given time
{i.e., in such a way that the preconditions of the three act models be mutually exclusive).

236 ARTIMIS

meaning: agent / informs agent ; that proposition 0 is
true or that it is false

FP : Bificp A -^BiiBifjCJ) V Uifjcj))
RE : Bifjct)

(z, INFORMREF{], ix6{x)))
= {iJNF0RMREF{j,ix6{x) = ri)) | . . . |

{iJNF0RMREF{j,ix6{x) = r^))
meaning: agent / informs agent / of the value of the
referent x denoted by 5(x)

FF : Brefi5{x)) A --Bi{Brefj6{x) V Urefj6{x))
RE : Brefj6{x)

where ix6{x) is a definite description and rj^ identifying referring expressions
{e.g., standard names or definite descriptions) [187].

On this basis, using the rationality principles, a set of dialogue acts, that are,
in fact, inter-agent communicative plans (such as FIPA ACL Query-ref and
Query-if), are specified. For example, the following model for a direct strict
yes-no-question plan can be build up:

{i,YN - QUESTlON{j,(i)))
FF : BiBifj(p A -iBz//0 A -^UifiCp A Bi-^Bj{Bifi(j) V UiffCp)
RE : BifiCf)

Actually, such an act encapsulates (in terms of feasibility preconditions and
rational effect) the following two-act plan:

(z, REQUESTij, (;, INFORMIF{i, 0)))) ; (/, INFORMIF{i, 0))

Along these lines, FIPA ACL perfomatives and complex interaction proto
cols have been defined, using ARCOUs formalism and semantics.

Let us call SL the first-order modal language in which the rational interac
tion theory underlying ARTIMIS is couched, and SCL the semantic content
language of communicative acts. If it is taken to be SL itself, SCL happens
to be a very expressive language but may turn out to be complex to use as
such if an ARTIMIS-like agent technology is not available to process it. For
"simpler" agents and for implementation reasons, the content language may
be taken to be a less-expressive formalism, e.g., a subset of SL.

Suppose that one want to simplify SCL, for example by restricting it to a
first-order predicate logic language. Let us call this simplified version SCLL
In this case, ARCOL is accordingly restricted to a language ARCOLL Yet,
we would like to enable the agents to communicate their mental attitudes
(beliefs, intentions, etc.). One solution is to augment the set of ARCOLTs
communicative acts with complex acts (typically, macro-acts) that intrinsi
cally integrate in their semantics relevant mental attitudes. For example, the

Cases of ARTIMIS-based applications 237

act of agent i informing agent ; that it (i.e., i) has a given intention, has the
following semantics in ARCOL:

{i,imoRM{j,iip)y.
FP:IipA-^Bi{BifjIipVUifjIip)
ER : Bjlip

This act can be defined in ARCOL 1 as follows^^:

(/,INFORM-I(;,pO):
FP : lip' A -nBi{BifjIip' V Uifjlip')
ER : BjIip'

Of course, this ARCOLl's new act (z, INFORM-I(/, p')) is only an abbrevi
ated form of (z, INFORM{j, Iip)) from ARCOL since propositions p and
p' are expressed in SCL and SCLl, respectively.

The major downside of this solution is that it requires the definition of
an additional communicative act each time the semantic content cannot be
expressed in the first-order modal language.

In any case, since agents are intended to express communicative acts that
refer to mental attitudes, the corresponding technology must enable the ma
nipulation of such notions. Subsequently, if agents have these notions ex
plicitly represented in their own kernels, there is no a priori reason not to
include them into the agent communication language.

For more details about ARCOL (and about cooperation protocols
adopted by FIPA with an informative status), see [196]. One can also
see [193] for comprehensive details about ARCOL basis and semantics.

9.5 Cases of ARTIMIS-based applications

9.5A ARTIMIS as a natural human-computer dialogue
agent

ARTIMIS has been demonstrated on several service prototypes displaying
a natural dialogue with a human user, and on different interaction media (in
cluding multimodal devices) and languages. It has also been experimented
in the context of different field trials in various application domains: direc
tories, tourist guides, banking and stock exchange, travel, Internet portals,
etc.

More recently, ARTIMIS has been commercially deployed by France Tele
com in a FAQ-like application, namely the help of Wanadoo instant messag-

^^Note that, while the ARCOL's act {/, INFORM{j, lip)) is (by construction) an assertive (of an inten
tion that intrinsically includes a commitment), the ARCOLl's act (/, INFORM-I(;', J/p)) can be viewed
as a commissive.

238 ARTIMIS

ing service, Le Messager, This application, called Assistant Messager, consists
in a conversational buddy that assists the user in using the instant messaging.

In such applications, ARTIMIS is able to manage an intelligent cooper
ative dialogue in natural language. As examples, here are sample dialogues
from some of the applications just mentioned (S standing for the system and
U for the user).

ARTIMIS Plan Resto : Paris restaurant guide

ARTIMIS Plan Resto has been experimented by end-users on different
communication media: speech over the telephone, typed natural language
on Internet, multimodal interaction combining speech and direct manipula
tion on a PDA. The following example presents a sample spoken dialogue
collected over the telephone:

S: Welcome to PlanResto, Paris restaurant guide with direct connection. The gen
eral user guide can be activated at any time by saying general user guide. If you
are not a regular user please say I am not a regular user. May I help you?
U: Fm not a regular user
S: PlanResto is a Paris restaurant guide. As with a human operator, converse
with it in a natural way. Do not hesitate to correct it in case of misunderstand
ing, Feel free to interrupt it. Speak loud enough and distinctly, with no pausing
and no excessive articulating. Avoid noisy surrounding. Can I help you formu
lating your request?
U: Fd like a vegetarian restaurant close to the Picasso Museum,
S: There isn't any vegetarian restaurant close to the Musee Picasso. However,
there are vegetarian restaurants close to the Musee Cognacq-Jay, close to Filles du
Calvaire and close to Llotel Carnavelet. Which suggestion are you interested in?
U: Fd like the last solution,
S: I found two vegetarian restaurants close to the Hotel Carnavalet. The first
reference is the restaurant Le Loir dans la Theiere. Do you want to have more
information, hear about the next restaurant or make a new request?
U: What's its address?
S: The restaurant Le Loir dans la Theiere is located 3 rue des Rosiers, Do you
want more information, to be connected to this restaurant or make a new re
quest?
U: Finally, I would prefer a Canadian restaurant,
S: There isn't any Canadian restaurant close to Hotel Carnavalet. However,
there are Canadian restaurants close to the Cloitre des Billettes. Does this sugges
tion suit you?
U: Yes please,
S: You want a Canadian restaurant close to the Cloitre des Billettes, Fve found
one called Equinox, Do you want more information, to be connected with this

Cases of ARTIMIS-based applications 239

restaurant or make another request^
U: Could you give me the phone number of this restaurant?
S: The phone number of Equinox restaurant is 01 42 71 92 41,
U: It's OK Goodbye,
S: Do you really want to leave Plan Resto?
U: Yes,
S: Thanks for calling Plan Resto, Goodbye for now!

ARTIMIS help buddy for the Wanadoo instant messaging: L'Assistant
Messager

J2? dO«1
^ W JD'sponible Ji
^ ' Pas de messege en attente

1

Human; ni

At»U«nl: vMluelt |1)

CoMtNjnution

f ^ J i Aiouteri*)cort»ci

^ J J Envoy«ririfnett«9e

a: A*, nil art Meuaflw (DnpontJel D«fn«t tfiejiage tê u 4 Z^ 14 11
|Astiil«f>t Hest«gef , Tu «i c*jt*e de f«w dwMfxter Quelque chot* ? t>e qua At-tu i ,
besoo '
dOtI : Je ne tun p«i encor* trte douA. t**um (ftnoJtv unnouv««ucoriAd man |t nV
Idtiive pM. pouK-tu m'eMpiqiNt comrwnt t«r« t?
UUciclanl MM»agM : 9 C*ci d»w«t i4pon*» i u qiiMlion
JAtaiflinI M t n g w : P I M itour« 4wcton«rt in cont4ci
Oepi^ ta FanAtte Piincifjte ch*i(.'j« "A|oU« un contact" tWn le manu 'ttnacu'* d

IpwwMKIIiaCL--

1 jfl

La

- ^ . ^ . i *

AffK>Ml̂ prc4J

M«fci pow Trio. •*« timu W ^mtiritnti* n H
vouc^M envoyw uw ptwto. et4-c« c'ett POSMUB at
tt oui pobw-hj me dre comnen S T P ^

09

Figure 9.3. Chat with a virtual contact: Wanadoo "Assistant Messager"

Example translated from French.

5; Welcome Droopy! I hope you're well, Pm UAssistant-Messager, Pm here to
explain to you how to use Le-Messager-Wanadoo. You can converse with me, Pll
try to help you. What can I do for you?
U: Hi, it's the first time I am using Le-Messager, Could you tell me what is it and
what availability means?
S: Ok, so you want information about "instant messaging" and "availability". I

240 ARTIMIS

need more precisions. I can suggest some help:
1) to discover Le-Messager-Wanadoo
2) to know what an availability state is
Which suggestion are you interested in?
U: Give me 1.
S: Here is the answer I found:
Le-Messager Wanadoo is an Internet real time communication tool. The connec
tion state of each subscriber is memorised in a central server ThuSy at any time, it
is possible to know if your contacts are connected and available to communicate.
To use it, you need an email address and a password. The pseudo can only be
created on the Wanadoo portal.
lean give you additional information, if this answer is not sufficient for you. Do
you want it?
U: No thank you, it's ok for now.

[Later..]

S: So, you're back! Do you realise that it's more than 1 day that we haven't talked.
Do you have any new question on Le-Messager-Wanadoo? I'm always available
to help you. What can I do for you?
U: Could you tell me how to delete a contact?
S: I've got the answer to your question: To take off a person from your contacts,
select your addressee list, then you have two ways to delete the contact:
• Using the contextual menu: right-click and choose "Delete".
- Using the menu "Contacts": choose entry "Contacts" then select entry "Delete
a contact or a file".
What can I do for you now?
U: What's your name?
S: My name is HelpWare, L'Assistant-Messager. I'm just here to give you any in
formation you need about Le-Messager-Wanadoo. What do you want to know?
U: Do you know any joke?
S: I've 3 heads, 3 legs, 1 arm and 6 fingers, who am I?
A liar!
U: Very funny, how old are you? :•)
S: Right now lam precisely 10 months, 25 days, 8 hours, 29 minutes and 40 sec
onds!
U'Are you a genius or a machine!?
S: A human or a machine, no matter what I am :-) I'm here to help you use Le-
Messager-Wanadoo. How can I help you?
U: It's ok, thanks! See you.
S: If you don't need me anymore, you can just close my dialogue window!

Cases of ARTIMIS-based applications 241

9,5.2 ARTIMIS as mediation agent

In this class of applications, ARTIMIS Is virtually located between a hu
man user and domain-specific agents. By Interacting with such agents. It
acquires from them pieces of Information that It aggregates and organises be
fore delivering them as a global solution to the user In a high level language
and a user-friendly and cooperative format.

For Instance, ARTIMIS has played this role as a Travel Assistant, In par
ticular In the context of the Agent cities 1ST European project [1, 148]. In
this application. It delivers to the user Information on travelling between the
main European cities. It gets such Information by Interacting with train and
flight schedule Information agents {i.e., FIPA-agentlfied web sites). In this
context, ARTIMIS displays an added-value as a mediation agent on several
aspects:

• Offering a global trip by aggregating the different responses from the
Information agents.

• Suggesting the most Interesting journey according to different criteria
(duration, earliest arrival, latest departure, etc.).

• Suggesting alternative travels when the one targeted by the user does
not exist.

• Interacting with the user In natural dialogue.

• etc.

In the Travel Assistant application, ARTIMIS uses a FIPA-Query standard
protocol to Interact with the domain-specific agents. In this protocol, the
first communicative act sent by ARTIMIS to the Information agents Is a
Query-ref or a Query-if. Each addressee responds either by sending a Refuse,
or by sending an Inform conveying the Information found out '̂̂ . The medi
ation agent then organises the obtained Information according to the user*s
request.

It Is worth noting that although ARTIMIS can use a FIPA standard pro
tocol to Interact with simpler agents. It Is also able to process "free-style"
requests coming from the user or from another agent, which do not fit a
specific protocol. For instance, to Identify flights according to some crite
ria, the Interlocutor could ask ARTIMIS for the sought Information using a
Query-ref act ("What are the flights that are so and so?"), or an Inform act
of the Intention to know such flights ("I want to know the flights that are

'̂'The Inform may be optionally preceded by an Agree.

242 ARTIMIS

so and so."). In the second case, the semantic content of the act expresses
an Intention of the interlocutor. ARTIMIS handles such a content and, on
the basis of its cooperation principles comes to the same behaviour as for a
regular Query-ref

Below is a sample dialogue with ARTIMIS as a Travel Assistant:

S: Welcome on ARTIMIS-Voyage. How can I help you?
U: rd like to go to Nice on tomorrow.
S: A trip to Nice on Friday, April 1st, 2005. What's your departure city?
U: rd like to leave from Brest in the afternoon and arrive before 6pm.
S: A trip from Brest to Nice on Friday, April 1st, 2005, leaving after 12am and
arriving before 6pm. How do you want to travel, by train or by plane?
U: I don't care.
S: A trip by train or by plane from Brest to Nice on Friday, April 1st, 2005 leav
ing after 12am and arriving before 6pm. Do you want to wait for the response,
to receive it by email, or to be called back?
U: lam waiting.
S: Thank you for waiting. I am going to consult the travel sites.

There is a flight leaving from Brest on Friday, April 1st, 2005 at 2:15pm and
arriving at Nice at 5:35pm. Would you like the details of this journey, the alter
native solutions, or any other information?
U: Give me the details.
S: There are two steps. First step: departure from Brest by plane on Friday, April
1st, 2005 at 2:15pm; arrival at Paris Orly-West at 3:30pm. Second step: depar
ture from Paris Orly-West by plane at 4:10pm; arrival at Nice at 5:35pm. Would
you like the alternative solutions?
U: Yes, the alternatives please.
S: The quickest trip by plane is: departure from Brest on Friday, April 1st, 2005
at 5:40pm, arrival at Nice at 8:50pm. Would you like to know the steps of this
journey?
U: And by train?
S: I don't know any trip by train from Brest to Nice on Friday, April 1st, 2005
leaving after 12pm and arriving before 6pm. However, there is a train depart
ing from Brest on Friday the 1st of April 2005 at 8:49am, and arriving at Nice
at 10:51pm. Would you like to know the steps of this journey or an alternative
solution?
U: rd like to have the details.
S: There are 3 steps. First step: Departure from Brest by train on Friday, April 1st,
2005 at 8:49am; arrival at Paris Montparnasse at 1:30pm. Second step: depar
ture from Paris Gare de Lyon by train at 2:21pm; arrival at Toulon at 7:34pm.
Third step: departure from Toulon at 9:11pm; arrival at Nice on at 10:51pm.

Conclusion 243

Would yOH like any other information^
U: No, thank you.
S: Do you really want to leave ARTIMIS-Voyage?
U: Yes please,
S: Thanks for calling ARTIMIS-Voyage. Goodbye for now!

9,6 Conclusion

The agent paradigm alms at Introducing the required Intelligence both
Into automatic handling of knowledge and Into human-machine Interaction.
One of the objectives Is to produce a changeover from software providing
functions to software offering Interoperating services [197]. In other re
spects, multi-agent technology constitutes a relevant framework to Instan
tiate the concept of semantic web services,

ARTIMIS technology bridges the gap, In a "clean" way, between basic
research and real (end-user) applications. It also opens new scientific and
technological perspectives for the study and development of effective "Intel
ligent" Interactive agents. So far. It appears as the unique operational Im
plementation of a generic cognitive agent technology that allows both for
natural dialogue with a human user (whatever the communication media Is)
and advanced Interactions with other software agents.

ARTIMIS offers several advantages. Its specifications, i.e., the theory of ra
tional interaction, are semantically well-defined. Interestingly, It can be guar
anteed that ARTIMISyb//o'3ê 5 its specifications soundly (e.g., keeps its commit
ments). ARTIMIS can be easily maintained, adapted, and customised.

ARTIMIS technology Is customer-oriented. It has been developed to
support advanced services, mainly those requiring cooperative dialogue
with human users. There are tremendous obvious commercial Interests
In ARTIMIS-lIke technology, in particular for specifically designed "high-
quality" user-friendly Interactive services [194], and for Intelligent applica
tion development tools.

More generally, associated with a permanent multimedia connectivity, "se
mantics technology" will, in the coming years, contribute to offer a seamless
and coherent inter-service and inter-media continuum. As soon as the market
begins to witness generic agent technologies along with standards for widely
shared communication languages, ontologies and knowledge representation,
this will mark the real technological leap forward Introducing a deep change,
notably In telecommunication use and market. The present scientific, tech
nical and Industrial landscape holds every indication that these fundamental
changes will take place progressively over the very next years.

SUMMARIES FOR QUICK REFERENCE AND
COMPARISON

The appendices of this book provide summaries of the main features of the
programming languages presented in the book. Appendix A shows a list of
questions that the editors posed to the contributing authors about their lan
guage and its platform. The following seven appendices provide the answers
given by the authors of the respective chapters.

Appendix A: Comparison Criteria

1. Agent-Oriented Programming Language

(a) Functionality
Does the language support various agent concepts such as, mental
attitudes, deliberation, adaptation, social abilities, and reactive as
well as cognitive-based behaviour?

(b) Communication
Does the language provide high-level (i.e., speech-act based) prim
itives for communication (as well as general addressing mecha
nism such as broadcast and multi-cast)?

(c) Underlying Computational Model
Does the language support the design of mobile agents, and if so,
which kind of mobility (weak and/or strong)?

(d) Simplicity
How easy it is to use and understand the language?

(e) Preciseness
Does the language have clear and precise semantics? How has it
been formalised?

(f) Expressiveness
Is the language suitable for the implementation of a variety
of agent-oriented programs and applications or is it purpose-
specific?

(g) Extensiveness
Does the language allow the definition of new language compo
nents from the basic constructs in a systematic way?

(h) Verification
Does your approach provide a clear path for the (formal) verifi
cation of programs written in this language?

(i) Software Engineering Principles
Have Software Engineering and Programming Language princi
ples, such as abstraction, inheritance, modularity, overloading,
information hiding, error handling, generic programming, etc.,
been considered or adopted within design of this language?

(J) Language Integration

i. Does your approach deal with the possibility of integrating
the language with existing (well-known) programming lan
guage (e.g., Java)?

248 APPENDIX A

ii. Can the language be interfaced with other programming lan
guages, or does it allow the invocation of methods/programs
built using other (classical) programming languages?

2. Platform

(a) Deployment and Portability

i. Does the platform provide material, such as documentation,
tutorials or training of any kind, installation and deploy
ment guidelines, to help users in deploying their systems?

ii. Does the platform require a specific computing environment
(computer architecture, operating system, libraries, etc.) to
be used / deployed?

(b) Standards Compliance
To what extent does the platform adhere to the standards (FIPA,
MASIF, etc.) with respects to: general architecture, naming ser
vice, white- and yellow-page services, mobility services, agent-life
cycle management, etc.?

(c) Platform Extensibility
Can the platform be extended with additional functionality, for
example through Open Source collaboration?

(d) Available Tools

i. What tools are provided by the platform for the manage
ment, monitoring, logging and debugging of applications?

ii. What documentation for on-line help, and manuals for the
platform's installation, use, and maintenance are available?

iii. Are there tools for administration, management, and config
uration of the platform? Is an IDE provided?

(e) Tool Integration
In existing applications, what tools (e.g., JESS, web services, JSP)
have been integrated or are known to work well with applications
running on this platform ?

(f) Technical Interoperability
Is an application aimed at running on this platform tied to a spe
cific programming language, specific architectures (e.g., .NET,
J2EE), or are there special operating system requirements?

(g) Performance Issues

i. What number of agents can be expected to run efficiently
within a single instance of the platform, what scale of num
ber of messages can be handled by the platform, etc.?

APPENDIX A 249

ii. What is the current state of the platform (simple prototype,
available as a commercial product, stable Open Source dis
tribution, etc.)?

(h) Multi-Agent Systems Features

i. Does the platform support open multi-agent systems and
heterogeneous agents?

ii. Does the platform provide centralised or distributed control,
and hierarchical structure of agents?

iii. Does the platform offer libraries for programming multi-
agent systems (libraries of interaction protocols, agent or
group templates, reusable agent or organisation components,
etc.)?

3. Applications Supported by the Language and Platform

(a) Typical Examples
What types of application have already been developed with this
platform (toy problems, real-world applications, industrial appli
cations)? What are the most prominent examples?

(b) Targeted Domains
Is any particular domain of application (e.g., simulation, resource
allocation, mobile computation) targeted by your approach?

Appendix B: Jason Summary

1(a) Jason Is based on a BDI logic-programming language and therefore fully
supports all these concepts; It does not as yet support agent organisa
tions, but there Is ongoing work to support that In the future.

1(b) Speech-act based communication Is available m Jason, based on KQML
performatives and some extra ones that are used for exchanging plans
(rather than beliefs).

1(c) SACI supports strong mobility, but we have not as yet provided mobil
ity within Jason; however, given that this Is already available through
SACI, It Is straightforward to provide a standard Internal action allow
ing AgentSpeak programmers to use mobility (this should be available
m Jason's next release).

l(d)^ The core oi Jason Is an AgentSpeak Interpreter, which Is, In our opin
ion, the most simple and elegant, yet quite expressive, agent-oriented
programming language that appears In the literature.

1(e) There Is formal semantics for AgentSpeak with the main extensions
available In Jason; the semantics was given using Plotkln's structural
approach to operational semantics.

1(f) Jason should be suitable for any application for which BDI agents are
suitable (varied applications of such agents have appeared In the litera
ture).

1(g) The "Internal action" construct allows for some form of extensibility,
and there are various customisation mechanisms available m Jason.

1(h) Model checking techniques that apply directly on (a restricted version
of) AgentSpeak are being developed by Bordlnl, Fisher, WIsser, and
Wooldrldge. To our knowledge, this Is the only agent programming
language for which work on model checking techniques has been pub
lished.

l(i) Very little has been considered In this area as yet; however, methodolo
gies suitable for BDI-lIke agents, such as Prometheus (by Padgham and
WInlkoff), should be suitable for Implementation W\\h Jason,

l(j).i The same "Internal action" construct mentioned above allows for a
high-level approach to Integration with Java (the agent code Itself re
mains a clear logical description of the agent's reasoning, as Java or
legacy code Is simply referenced In the high-level Internal actions).

APPENDIX B 251

l(j).ii This can be achieved by the use of JNI (Java Native Interface) and the
Internal action mechanism mentioned above.

2(a).i Jason has sufficient documentation, and further tutorials are under
preparation; when agents are not situated In some real-world environ
ment, deployment In a networked system Is trivial w\xh Jason (through
the use of SACI).

2(a).ii No, It runs on any platform for which Java Is available.

2(b) Jason provides these services through SACI, which Is KQML compli
ant; however, the distribution Infrastructure can be customised, so a
different Infrastructure (e.g., one that Is FIPA compliant) can be used
If necessary.

2(c) Jason Is available Open Source and In most extensions attempted so far
It has proven very easy to extend (because of the customisation mech
anisms, this often means that not change In the Interpreter Itself Is
required); there are a number of extensions planned for the near fu
ture.

2(d).i Jason has a debugging mode In which the system can be run step by
step and a "mind Inspector" which allows the user to check the mental
attitudes of agents running across a network.

2(d).II There Is documentation which Is partly a tutorial on AgentSpeak and
partly a manual for using the platform; Improvements on this docu
mentation and further tutorials are expected.

2(d).iii Jason comes with an IDE which Is very simple to use.

2(e) Applications developed with Jason have not made use of Integrated
tools, but In principle any tool that Integrates satisfactorily with Java
should Integrate with/^sow as well.

2(f) Applications require a Java Virtual Machine to run, but there are no
operating system requirements.

2(g).i Jason has changed significantly In the last year, and we have not yet
updated such statistics, but we plan to Include such figures In the man
ual In future releases.

2(g).ii We have recently released version 0.6 (open source, as usual); al
though there are stable versions, various significant changes have been
made from each version to the next {Jason Is very much work on
progress).

252 APPENDIX B

2(h).i Again through the use of SACI, open multi-agent systems are easily
supported; although heterogeneity is in principle possible, various fea
tures (e.g., plan exchange) still consider that the all agents are developed
in AgentSpeak.

2(h).ii Both centralised and distributed execution is available; social struc
tures are still not currently supported, but this is ongoing work.

2(h),ili This is not as yet available, but certainly planned for the future.

3(a) So far, apart from academic coursework, Jason has only been used for
social simulation and autonomous characters for computer animation.

3(b) BDI agents are suitable for a variety of domains; we are particularly
interested in Semantic Web and Grid-based applications; specifically,
we plan to develop Grid-based social simulations in the near future.

Appendix C: 3APL Summary
1(a) The language supports the implementation of mental attitudes (beliefs,

goals, plans, and reasoning rules), the implementation of a deliberation
cycle, and reactive as well as deliberative behavior,

1(b) The language provides a speech-act based programming construct (the
Send operator) for communication.

1(c) The language does not support the design of mobile agents.

1(d) The general ideas of the language can be understood relatively easily,
especially for someone familiar with the idea of cognitive agents, as a
limited number of language constructs is available. The details of the
formal semantics will take some more time to comprehend.

1(e) The language has a clear and formal semantics, for the most part defined
by means of a transition system.

1(f) The applications that can be developed using the 3APL platform and
the 3APL programming language are those that are best understood in
terms of cognitive and social concepts like beliefs, goals, plans, actions,
norms, organizational structures, resources and services that are part
of the multi-agent environment.

1(g) The mental and external actions enable two forms of extensibility.
Also, the possibility to program the deliberation process in Java allows
the programmer to define new language components.

1(h) The formal semantics of the language provides the basis for the formal
verification of 3APL programs, both for theorem proving and model-
checking approaches.

l(i) Limited forms of abstraction, modularity and reusability are supported.
Also, since the deliberation cycle and the shared environment are pro
grammable as separate modules, the principle of separation of concern
is respected.

1(J) The 3APL platform and interpreter are programmed in Java. By means
of external actions, Java can be called from the 3APL program. Fur
ther, a Java implementation of Prolog is used to implement the belief
base of agents.

2(a).i There is a user guide that explains the use of the 3APL platform and
the 3APL programming language through examples that are also avail
able with the distribution. This user guide is under constant develop
ment.

254 APPENDIX C

2(a).ii The 3APL platform can be run on Windows, Linux and Unix (So
laris) machines on which Java 2 SDK 1.4 is installed.

2(b) The 3APL platform supports limited naming and yellow page services.

2(c) The 3APL platform is not open source yet, but the source is available
on request.

2(d).i The platform provides a simple editor to write and modify individ
ual agent programs. It also provide different execution modes such as
single and multi-agent systems, either in a step-by-step or continuous
fashion. Finally, it provides debugging tools such as different windows
to observe the internal state of individual agents and a sniffer tool that
visualizes the communication between agents.

2(d).ii The only available documentation is the user guide. An online tuto
rial will be available soon.

2(d)aii The 3APL platform provides a simple form of an IDE.

2(e) Since the 3APL platform is written in Java, any tools that can be inte
grated with Java can be integrated with the 3 APL platform as well.

2(f) The applications run on the 3APL platform should be programmed in
terms of individual agents that are programmed in the 3APL language.

2(g).I Applications with a maximum of 5 agents can be run efficiently
within a single instance of the platform.

2(g).ii The 3APL platform is an advanced prototype platform.

2(h).i The current platform does not support open and heterogeneous
multi-agent systems.

2(h).ii The platform provides only distributed control of agents.

2(h)aii The 3APL platform does not offer libraries yet.

3(a) Typical implemented examples are auctions, applications using
Contract-Net protocols, cooperative systems, Axelrod's tournament
and simple logistic applications.

3(b) Resource allocation, social simulation and all kinds of applications that
can be described by BDI agents are target applications.

Appendix D: IMPACT Summary
1(a) Yes, our language supports reasoning with beliefs, time, probabilities

and various other concepts (not all of them are yet implemented). De
liberation is realised through computing (feasible) status sets and is re
lated to computing stable models.

1(b) Yes, speech-act primitives are available, although only very basic mes
sage passing capabilities are realised in the base language.

1(c) Yes, IMPACT supports weak mobility.

1(d) We have run several classroom labs with students. They did not have
to go through the technical semantics, but were given several examples
and learned by analogy. They were able to implement a non-trivial
application involving 6 agents (each of them developed independently)
and successfully putting them together (Gofishpost office, [62]).

1(e) Yes, the semantics is clearly defined and uses technical machinery devel
oped in the last three decades in logic programming.

1(f) The language is suitable for arbitrary agent applications. It is not spe
cific for a restricted class of applications.

1(g) Yes, the language allows not only the definition of macros of basic con
structs, but also the introduction of completely new features. This is
due to annotations of programs, an area which has been well investi
gated in the last two decades.

1(h) Yes, as our semantics is based on rigourous formal methods and first
attempts to verify IMPACT agents are on their way.

l(j).I The Code Call Condition mechanism provides a way to integrate any
software program written in any programming languages.

l(J).ii This can be achieved by the IMPACT implementation and the Code
Call Condition mechanism.

2(a).i The IMPACT project homepage (h t t p : / / w w w . c s . u m d . e d u /
p r o j e c t s / i m p a c t /) provides extensive documentations to help
users develop and deploy systems.

2(a).ii No, it runs on any platform where Java is available.

2(b) While IMPACT is not FIPA compliant, it should not be too difficult
to achieve this. We concentrated on extending our framework and not
on compliance to certain standards.

http://www.cs.umd.edu/

256 APPENDIX D

2(c) IMPACT can be easily extended by new functionalities. Although it is
not open source yet, any collaboration is welcome.

2(d).I It is provided by IMPACT AgentDE, IMPACT Server, Agent Roost,
and Agent Log.

2(d).il The software user documentation is available at h t t p : / /www. c s .
u m d . e d u / p r o j e c t s / i m p a c t / D o c s .

2(d).iii IMPACT provides a network accessible, easy-to-use IDE.

2(e) We have shown that the IMPACT project has built a lot of applications
integrating many tools.

2(f) Applications require loading Java runtime library on the target plat
form, but no specific operating system is required.

2(g).i We have not undertaken such statistics yet. In our experiments there
were around 10-15 agents with quite a number of messages sent among
them.

2(g).ii The current version is stable and available for academic purposes
only. It is licensed by the University of Maryland.

2(h).i Yes, IMPACT supports open multi-agent systems and heterogeneous
agents.

2(h).ii IMPACT provides both centralised and distributed control. The hi
erarchical structuring of agents has not yet been supported within IM
PACT,

2(h).iii Yes, they are provided in IMPACT AgentDE during the develop
ment and deployment of agents.

3(a) Besides smaller classroom examples (6 agents developed by 4-7 students)
several real applications such as Aerospace applications, US Army
Logistics Integration Agency's "Virtual Operations Centre", and US
Army STRICOM's JANUS project where IMPACT technology is
used to analyse massive amounts of simulation data.

3(b) There is no specific targeted domain for IMPACT. It is a general sys
tem dealing with heterogenous, distributed information sources and
available legacy code.

Appendix E: CLAIM Summary

1(a) The CLAIM language is suitable to design stationary or mobile in
telligent agents, having a powerful mental state containing knowl
edge, goals and capabilities, allowing an autonomous, reactive or goal-
oriented behavior.

1(b) CLAIM supports unicast, multicast or broadcast communication be
tween agents. It offers a set of predefined messages inspired from the
speech-acts theory but also leaves the possibility to the designer to de
fine his own messages.

1(c) The CLAIM language offers support for the agents' migration as a main
feature. The CLAIM agents are both intelligent and mobile. There is
a strong mobility at the agents' processes level and a week mobility for
the invoked Java methods (see section 1.3.1).

1(d) The facility in developing several simple or complex applications
proved that CLAIM is easy to use.

1(e) CLAIM has a formal operational semantics consisting in a set of reduc
tion rules between states of programs.

1(f) The variety of implemented applications proved the expressiveness of
CLAIM.

1(g) The language offers to the developer the possibility to define his own
ontology for agents' knowledge and his own messages and goals for
agents.

1(h) The language's operational semantics is a first important step towards
the programs' verifications. Our current work tackles this aspect.

l(i) The notion of generic class is central in CLAIM.

l(j).i The agents in CLAIM can invoke Java methods or Web Services for
computational purposes. We intend to give the agents the possibility
to invoke methods implemented in other programming languages.

l(j).ii See l(j).i

2(a).I The platform contains installation and deployment guidelines. The
documentation is represented by several published articles, concerning
the language as well as the platform. A tutorial and a documentation
of the API will be soon available.

2(a)ai The platform is implemented in Java, is portable and can be installed
on every computer supporting Java Virtual Machine, So the platform

258 APPENDIX E

is platform-independent. We have already tested it on Windows, Unix-
based and Macintosh systems.

2(b) SyMPA is compliant with the specifications of the MASIF standard
from the OMG.

2(c) The platform is extensible.

2(d).i The platform offers management and monitoring functions at the cen
tral system and at the agent system level. For every running agent
there is a graphical interface for visualizing the agent's behavior, com
munication and migration. Momentary, there are no debugging tools.

2(d).ii See 2(a).i

2(d).iii Each agent system offers an editor for defining agents and classes of
agents, a compiler for verifying the definitions* syntax and an execu
tion engine for deploying agents.

2(e) The CLAIM agents can invoke Web Services. There is also an extension
of SyMPA allowing to heterogeneous agents to interact using the Web
Services features.

2(f) There are no specific operating system requirements. Being imple
mented in Java, the platform only requires the JRE,

2(g).i Until now, we performed tests with up to 30 communicating and mo
bile agents on a computer (including their graphical interfaces) and we
deployed the platform on 10 connected computers. We intend to test
the platform on a larger-scale environment.

2(g).ii The platform is a prototype that served for developing several com
plex applications by different people.

2(h),i The platform supports open multi-agent systems. Agents are dynam
ically created and removed. Without any add-on, the platform sup
ports only CLAIM agents. Nevertheless, we developed an interop
erability environment that allows to heterogenous agents to interact
using a Web Services based approach.

2(h).ii The agents in CLAIM are hierarchically represented. An agent has
a parent and can have several sub-agents. In this version there is a
centralized management but different management solutions will be
available in the future.

2(h).iii Classes of agents can be defined in CLAIM that can be parameterized
and reused later.

APPENDIX E 259

3(a) Our agent-oriented environment has already been used to develop sev
eral applications. One can easily design applications focused on the
reasoning abilities of an agent, but the main purpose of CLAIM is to
develop distributed applications that takes advantage of the agents' mo
bility and adaptability allowed by the language's features. The most
prominent applications were those of electronic commerce and dis
tributed libraries.

3(b) CLAIM can be used to develop a wide area of agent-based applications
(see section 4.4).

Appendix F: JADE Summary
1(a) JADE provides a very general but primitive agent model offering both

reactive and social abilities. This model can serve as a useful basis to
implement more sophisticated agent architectures.

1(b) JADE provides high level communication through FIPA ACL mes
sages. Moreover, it uses different low level communication mecha
nisms to improve performance.

1(c) JADE supports mobile agents through a sort of enhanced weak mobil
ity that allows an agent to move from a node to another node only
when its execution reaches a stable state.

1(d) This criteria is not appropriate, because JADE does not offer an own
language, but software libraries that allow the development of multi-
agent systems through the use of Java.

1(e) This criteria is not appropriate for the same reason expressed in 1(d).

1(f) JADE has been developed and used to realize systems for different ap
plication domains.

1(g) This criteria is not appropriate for the same reason expressed in 1(d).

1(h) The current implementation of JADE does not offer any support for
the formal verification of programs developed by using the JADE soft
ware libraries.

l(i) JADE offers the same software engineering and programming language
principles offered by the programming language used to implement it
(i.e., Java).

l(j).i JADE and the multi-agent systems developed with it are written by
using Java.

l(j).ii The agents of a JADE multi-agent system can interact with software
written in other programming languages by using either special agent
wrappers (in the case of non-agentized software) or messages exchange
(in the case of other FIPA compliant agents).

2(a).i JADE provides a rich set of documents (manuals and tutorials) and
code examples to help the user to install and use it. They are all avail
able from the official JADE Web site (http://jade.tilab.com).

2(a)ai JADE is written in Java. Therefore JADE multi-agent systems may
run on the operating systems for which a Java virtual machine is avail
able. In particular, the JADE run-time can be compiled for different

http://jade.tilab.com

APPENDIX F 261

Java profiles allowing the execution of JADE multi-agent systems on a
wide class of devices ranging from servers to cell phones.

2(b) JADE is FIPA compliant.

2(c) The whole JADE source code is distributed under the LGPL open
source licence. Therefore both the extension of the platform and its
use in commercial products are allowed.

2(d).i JADE users can manage an agent platform through the Remote Man
agement Agent and debug their agents through the Dummy Agent, the
Sniffer Agent, the Introspector Agent and the Log Manager Agent. All
these agents interact with their users through a graphical user interface.

2(d).ii JADE provides a rich documentation to help the user to install and
use it.

2(d).iii JADE users can manage an agent platform through the Remote Man
agement Agent interacting with it through a graphical user interface.

2(e) JADE permits an easy integration of external software and it was done
with success allowing, for example, the integration of JADE with:
rules engines (JESS and DROOLS), Web technologies (servlets, JSP
and applets) and ontology management tools (Protege and Jena).

2(f) JADE multi-agent systems must be written using Java, the only con
straint for the operating system is the availability of a Java virtual ma
chine.

2(g).i Given its architecture and the different communication mechanisms
used, JADE multi-agent systems may contain thousands of agents ex
changing a huge amount of messages.

2(g).ii The different releases of the JADE software (including the last one:
3.2) are stable and used in different research and application projects in
different part of the world. JADE is distributed under the LGPL open
source licence.

2(h).i JADE allows the realization of open systems through the dynamic
federation of agent platforms. Agents of such federations may be het
erogeneous with the only constraint of being FIPA compliant.

2(h).il Following the FIPA standard, JADE multi-agent systems use a cen
tralized control: each agent platform is controlled by the AMS. How
ever, JADE offers a fault tolerance mechanism that allows an agent
platform to survive the failure of its AMS.

262 APPENDIX F

2(h).iii Given that JADE agent system are realized by using Java, all its com
ponents are reusable. Moreover, the JADE framework and its comu-
nity of users made available different software libraries and "add-ons"
that may be useful to realize agent systems in different application sec
tors.

3(a) JADE has been used to realize both real and industrial applications.

3(b) JADE applications cover different domains: collaborative work sup
port, e-learning, e-tourism, network management, entertainment,
knowledge management, manufacturing and supply-chain manage
ment and simulation.

Appendix G: Jadex Summary
1(a) Reactive and deliberative behaviour is supported based on the BDI

model and the corresponding mental attitudes. In addition to the basic
BDI interpreter known from PRS systems, an explicit representation
of goals is provided.

1(b) FIPA-compliant speech-act based communication is provided by the un
derlying JADE platform.

1(c) Weak mobility is provided by the underlying JADE platform. When
developing mobile agents, some features of the system (e.g. thread-
based plans) are not available.

1(d) The language is easy to learn, as it is based on well-known technologies
such as Java and XML. Experiments with students have shown that
new users are quickly able to develop their first agents.

1(e) No formal semantics is available.

1(f) The language is very general and allows creating different kinds of agent
applications.

1(g) The system does not define a new language for programming agent
behaviour, but instead makes BDI-specIfic agent facilities available as
application program interface (API). Hence, the BDI feature set can be
easily extended.

1(h) No path to formal verification Is provided.

l(i) The XML language enforces strong typing. The plan language Inherits
the software engineering and programming language principles of Java.
In addition, reusability Is supported by the definition of agent-modules
called capabilities.

l(j).i Embedding the agent language Into a general-purpose language Is not
necessary, because the system cleanly separates the definition of an
agent's structure and the definition of agent behaviour. The structure
of an agent Is defined in a system specific XML dialect following a BDI-
metamodel, while the agent behavior Is realized as plans coded directly
in the general-purpose programming language Java.

l(j)ai The default plan language is Java and therefore allows accessing any
other application code or third party library written In Java. In addi
tion, it is possible to define wrappers that allow executing plans written
in other (e.g. visual) languages.

264 APPENDIX G

2(a).i The documentation includes an introductory tutorial, a user guide,
which also serves as a reference manual, and a guide to the available
tools. Javadocs of the plan programming API, and a reference to the
metamodel defined in XML Schema are provided, and the distribution
includes several example applications with source.

2(a).il The system is based on Java 1.4, and requires a host agent platform
such as JADE (which is currently supported best). The distribution
includes the third party packages JBind for XML databinding, Apache
Velocity for generating the content of some tool dialogs, and the
TouchGraph GraphLayout component for visualizing traces of agent
execution.

2(b) The system complies with the FIPA-standards as implemented by
JADE.

2(c) The system is Open Source and carefully designed and documented to
allow easy and flexible extension of the provided functionality.

2(d).i In addition to the tools provided by the JADE platform such as Sniffer
and Dummy Agent, the system supplies an introspector tool to inspect
an agent at runtime, and to execute agents step-by-step. A logger agent
allows to collect, filter, and view logging outputs and a tracer agent
visualizes event traces produced by the different agents of a multi-agent
application. The Jadexdoc tool generates documentation for an agent
application.

2(d).il Apart from the documentation material included in the distribution
(e.g. user guide and tutorial), there are publicly available web forums
for discussion and support requests, a database for bug-reports and
feature requests, and a general mailing list with online archives.

2(d).iii No additional tools (apart from those provided by JADE) are yet
available, but a tool for multi-agent system deployment is currently in
development.

2(e) All kinds of tools and libraries with a Java API can be used within
Jadex. For example, in a larger project the Cayenne database-mapping
framework was used to connect agents to a relational database.

2(f) Although its current implementation is targeted to run on top of JADE,
the reasoning engine provides a general integration mechanism, and is
designed to be used on top of any existing middleware. Therefore, it
can be easily ported to other FIPA-compliant agent platforms such as
CAPA or ADK and to other middleware environments such as J2EE
or .NET.

APPENDIX G 265

2(g).i The performance of the system regarding the number of agents and
messages Is bounded by the performance of the underlying platform
(e.g. JADE). The computation cost Induced by the reasoning engine
highly depends on the complexity of the agents.

2(g),ii The system Is available as stable Open Source distribution and has
already been used In several 3rd party projects. Nevertheless, the set of
features Is continuously evolving, and compatibility between releases
Is not guaranteed.

2(h).i The system realizes a specific internal agent architecture, and there
fore itself does not address heterogeneity, but it is possible to run Jadex
agents on the same platform as other JADE agents. Openness is sup
ported in principle through FIPA-compliant communication, but not
especially facilitated by the design of the system.

2(h).ii Jadex agents use the distributed or centralized control structures pro
vided by the underlying platform (e.g. JADE). A hierarchical structure
of agents Is not supported, but agents can be decomposed Into hierar
chically structured modules, which are similar to agents, but do not
have their own reasoning process.

2(h).iii The system includes a ready-to-use module for communication with
a directory facilitator (DF) and for using simple FIPA Interaction pro
tocols (e.g. request).

3(a) The system has been used mainly In research projects and teaching
courses, e.g. to realize a multi-agent application for market-based nego
tiation of patient treatment dates, as well as for the simulation of a hos
pital model. The system has also been applied in mobile environments
and to some well-known AI problem domains such as blocksworld and
cleanerworld.

3(b) The system is general purpose and not bound to a particular application
domain.

Appendix H: JACK Summary
1(a) The JACK language supports BDI style practical reasoning as well as

forward-directed inference reasoning, and allows for various agent con
cepts such as mental attitudes, deliberation, adaptation, reactive and
proactive behaviour. There is a JACK extension towards a Cognitive
Architecture, for inclusion of cognitive parameters and variations to
the reasoning processes, and for modelling of cognitive influences by
behaviour moderators.

1(b) JACK provides high-level primitives for communication between
agents. Communication is peer-to-peer, and does not include broad
cast or multi-cast addressing.

1(c) JACK is not intended for mobile agents.

1(d) JACK is an easy-to-use programming language in the BDI family, and
the tool suite includes graphical programming tools both for program
design and for decision logic.

1(e) The JACK language has clear and precise (but not formal) semantics.

1(f) JACK is a full programming language well suited for a variety of agent
applications.

1(g) JACK allows new program elements to be defined in a systematic way,
through compiler plugins.

1(h) This has not been investigated.

l(i) The JACK language is a full-flavoured programming language that com
bines the logic oriented BDI style with the object-oriented Java style,
and it further includes programming elements providing increased sup
port for abstraction, modularisation, information hiding and generic
programming.

l(j).i JACK is fully integrated with Java, and it also includes integration
mechanisms for combining JACK agents with C-h + programs.

l(j),ii JACK is fully integrated with Java.

2(a).i JACK is well documented through a range of manuals and practicals,
and is easily installed via the downloadable installer.

2(a).ii JACK runs on all Java platforms from 1.1.3, and has been run on
PDAs (Psion 5mx and an HP iPAQ).

APPENDIX H 267

2(b) The JACK platform is itself proprietary, but includes the standard ar
chitectural elements, and there are FIPA wrapper extensions.

2(c) JACK is built to be open, with a range of "hooks" at various levels to
simplify extensions. JACK is not open source.

2(d).i JACK comes with several mechanisms for logging and debugging of
JACK agent execution.

2(d).il The JACK package includes manuals in PDF and HTML format.

2(d).iii JACK includes a development tool.

2(e) JACK is fully integrated with Java and all Java tools can be used.

2(f) JACK is not tied to any specific operation environment.

2(g).i A single process can host thousands of JACK agents.

2(g).ii JACK is a fully supported commercial product.

2(h).i JACK supports open multi-agent systems and heterogeneous agents.

2(h).il JACK includes a language extension for team-oriented programming,
which simplifies coordinated activity and distributed control. The
JACK Teams model includes role declarations and hierarchical, dy
namic teams.

2(h).iii JACK does not include any pre-programmed libraries of JACK code.

3(a) JACK is being used for several real-world, industrial applications.

3(b) The BDI style programming is well suited to strategic robot control, as
used in manufacturing plants, autonomous vehicles, and simulation, as
well as business logic applications, including application of analytical
procedures, compliance processes, and situated decision making.

References

[1] Agentcities Web Site, http://www.agentcities.org.

[2] J. F. Allen. The TRAINS project: A case study in building a con
versational planning agent. Journal of Experimental and Theoretical AI
(JETAI), 7'J-^%, 1995.

[3] J. Alves-Foss, editor. Formal Syntax and Semantics of Java. Springer
LNCS 1523, 1999.

[4] D. Ancona, V. Mascardi, J. F. Hlibner, and R. H. Bordini. Coo-
Agent Speak: Cooperation in AgentSpeak through plan exchange. In
N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors. Pro
ceedings of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-2004), pages 698-705. ACM
Press, 2004.

[5] K. Apt and O. E.-R. Verification of Sequential and Concurent Programs.
Springer Verlag, 1991.

[6] K. Arisha, F. Ozcan, R. Ross, V. Subrahmanian, T. Eiter, and S. Kraus.
IMPACT: A Platform for Collaborating Agents. IEEE Intelligent Sys
tems, 14:64-72, March/April 1999.

[7] J. Austin. How to do things with words. Springer Verlag, 1962.

[8] H. Becker. Realisierung eines metamodellbasierten Entwurf-
swerkzeuges flir BDI-Agentensysteme. Diplomarbeit, Distributed Sys
tems and Information Systems Group, Computer Science Depart
ment, University of Hamburg/Germany, 2005. (in German).

[9] M. Beelen. Personal Intelligent Travelling Assistant: a distributed ap
proach. Master of science thesis. Knowledge Based Systems group,
Delft University of Technology, 2004.

[10] F. Bellifemine. Special Issue on JADE. EXP in Search of Innovation,
3(3), 2003.

http://www.agentcities.org

270

[11] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE - A White
Paper. EXP in Search of Innovation, 3(3):6-19, 2003.

[12] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent sys
tems with a FIPA-compliant agent framework. Software Practice and
Experience, 31(2):103-128, 2001.

[13] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies
and Software Engineering for Agent Systems. Kluwer Academic Publish
ing (New York), 2004.

[14] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, and M. Schlichte.
The Development of the Lightweight Extensible Agent Platform. EXP
in Search of Innovation, 3(3):32-41, 2003.

[15] M. Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda,
and F. Velez. The Object Data Standard: ODMG 3.0, Morgan Kauf-
mann Publishers Inc., 2000.

[16] B. Berney and E. Ferneley. CASMIR - A Community of Software
Agents Collaborating in Order to Retrieve Multimedia Data. In Proc.
of the third annual conference on Autonomous Agents, pages 428-429,
1999.

[17] BlueJADE Web Site, h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s /
b l u e j a d e .

[18] R. H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vi-
cari, and V. R. Lesser. AgentSpeak(XL): Efficient intention selection in
BDI agents via decision-theoretic task scheduling. In C. Castelfranchi
and W. L. Johnson, editors. Proceedings of the First International joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-
2002), pages 1294-1302. ACM Press, 2002.

[19] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking AgentSpeak. In J. S. Rosenschein, T. Sandholm,
M. Wooldridge, and M. Yokoo, editors. Proceedings of the Second Inter
national Joint Conference on Autonomous Agents and Multi-Agent Sys
tems (AAMAS-2003), pages 409-416. ACM Press, 2003.

[20] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model
checking rational agents. IEEE Intelligent Systems, 19(5):46-52, Septem
ber/October 2004.

[21] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. State-space
reduction techniques in agent verification. In N. R. Jennings, C. Sierra,

http://sourceforge.net/projects/

REFERENCES 271

L. Sonenberg, and M. Tambe, editors. Proceedings of the Third Interna
tional Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS-2004), pages 896-903. ACM Press, 2004.

[22] R. H. BordinI, J. F. Hlibner, et al. Jason: A Java-based agentSpeak inter
preter used with saci for multi-agent distribution over the net, manual,
version 0.6 edition, Feb 2005. h t t p : / / j a s o n . s o u r c e f o r g e .
n e t / .

[23] R. H. Bordini and A. F. Moreira. Proving the asymmetry the
sis principles for a BDI agent-oriented programming language. In
J. Dix, J. A. Leite, and K. Satoh, editors. Proceedings of the Third In
ternational Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-02), Electronic Notes in Theoretical Computer Science 70(5).
Elsevier, 2002. h t t p ; / / w w w . e l s e v i e r . n l / l o c a t e / e n t c s /
volumeVO .h tml .

[24] R. H. Bordini and A. F. Moreira. Proving BDI properties of agent-
oriented programming languages: The asymmetry thesis principles in
AgentSpeak (L). Annals of Mathematics and Artificial Intelligence, 42(1-
3): 197-226, Sept. 2004. Special Issue on Computational Logic in Multi-
Agent Systems.

[25] R. H. Bordini, F. Y. Okuyama, D. de Oliveira, G. Drehmer, and R. C.
Krafta. The MAS-SOC approach to multi-agent based simulation. In
G. Lindemann, D. Moldt, and M. Paolucci, editors. Proceedings of the
First International Workshop on Regulated Agent-Based Social Systems:
Theories and Applications (RASTA'02), number 2934 in LNAI, pages
70-91, Berlin, 2004. Springer-Verlag.

[26] R. H. Bordini, W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge.
Model checking multi-agent programs with CASP. In W. A. Hunt Jr.
and F. Somenzi, editors, Proceedgins of the Fifteenth Conference on
Computer-Aided Verification {CAV-2003J, number 2725 in LNCS, pages
110-113. Springer-Verlag, 2003. Tool description.

[27] M. Bratman, D. Israel, and M. Pollack. Plans and resource-bounded
practical reasoning. Computational Intelligence, 4(4):349-355, 1988.

[28] M. E. Bratman. Intention, Plans, and Practical Reason. Harvard Uni
versity Press, Cambridge, MA, 1987.

[29] L. Braubach, A. Pokahr, K.-H. Krempels, and W. Lamersdorf. De
ployment of Distributed Multi-Agent Systems. In Fifth International
Workshop on Engineering Societies in the Agents World (ESAW 2004),
2004.

http://jason
http://elsevier.nl/locate/entcs/

272

[30] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A Short
Overview. In Net.OhjectDays 2004: AgentExpo, 2004.

[31] L. Braubach, A. Pokahr, W. Lamersdorf, K,-H. Krempels, and P.-O.
Woelk. A Generic Simulation Service for Distributed Multi-Agent
Systems. In From Agent Theory to Agent Implementation (AT2Ar04),
2004.

[32] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf. Goal Repre
sentation for BDI Agent Systems. In Proceedings of the Second Work
shop on Programming Multiagent Systems: Languages, frameworks, tech-
niquesy and tools (ProMAS04), 2004.

[33] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
Tropos: An agent-oriented software development methodology. Tech
nical Report DIT-02-0015, University of Trento, Department of Infor
mation and Communication Technology, 2002.

[34] P. Bretier. La communication orale cooperative: contribution a la mod-
elisation logique et a la mise en oeuvre d'un agent rationnel dialoguant.
PhD thesis. University of Paris XIII, 1995.

[35] P. Bretier and D. Sadek. A rational agent as the kernel of a cooperative
spoken dialogue system: Implementing a logical theory of interaction.
In J.P. Miiller, M.J. Wooldridge and N.R. Jennings eds. Lecture Notes
in Artificial Intelligence ''Intelligent Agents IIF Proceedings ofATAU96,
pages 189-203, Budapest, Hungary, 1997.

[36] R. Brooks. How to build complete creatures rather than isolated cog
nitive simulators. In K. VanLehn, editor. Architectures for Intelligence,
pages 225-240. Lawrence Erlbaum Associates, Hillsdale, New Jersey,
1991.

[37] P. Buckle, T. Moore, S. Robertshaw, A. Treadway, S. Tarkoma, and
S. Poslad. Scalability in Multi-agent Systems: The FIPA-OS Perspec
tive. In M. d'Inverno, M. Luck, M. Fisher, and C. Preist, editors, Proc.
Foundations and Applications of Multi-Agent Systems, volume 2403 of
LNCS, pages 110-130. Springer, 2002.

[38] M. H. Burstein, A. M. Mulvehill, and S. Deutsch. An approach to
mixed-initiative management of heterogeneous software agent teams.
In HICSS, page 8055. IEEE Computer Society, 1999.

[39] P. Busetta, N. HowdejQ, R. Ronnquist, and A. Hodgson. Structur
ing BDI agents in functional clusters. In Agent Theories, Architectures,

REFERENCES 273

and Languages (ATAL-99), pages 277-289. Springer-Verlag, 2000. LNCS
1757.

[40] R Busetta, R. Ronnqulst, A. Hodgson, and A. Lucas. JACK Intelligent
Agents - Components for Intelligent Agents in Java. Technical report,
Agent Oriented Software Pty. Ltd, Melbourne, Australia, 1998. Avail
able from h t t p : / /www. a g e n t - s o f t w a r e . com.

[41] L. Cardelli and A. Gordon. Mobile ambients. Foundations of Software
Science and Computational Structures^ LNAI^ 1378:140-155, 1998.

[42] C. Castelfranchi and R. Falcone. Principles of trust for MAS: Cogni
tive anatomy, social importance, and quantification. In Y. Demazeau,
editor. Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS'98), Agents' World, 4-7July, Paris, pages 72-79, Wash
ington, 1998. IEEE Computer Society Press.

[43] Cattell, R. G. G., et al., editor. The Object Database Standard: ODMG-
93, Morgan Kaufmann, 1997.

[44] L. Cernuzzi and G. Rossi. On the evaluation of agent oriented model
ing methods. In Proceedings of the OOPSLA 2002 Workshop on Agent-
Oriented Methodologies, pages 21-30, Seattle, November 2002.

[45] P. Cohen and H. Levesque. Intention is choice with commitment.
Artificial Intelligence, 42(2-3):213-262, 1990.

[46] P. Cohen and H. Levesque. Rational interaction as the basis for com
munication. In P.R. Cohen, J. Morgan and M.E. Pollack eds. Intentions
in Communication. MIT Press, 1990.

[47] R R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4):487-512,
1991.

[48] E. Cortese, F. Quarta, and G. Vitaglione. Scalability and Performance
of JADE Message Transport System. In Proc. ofAAMAS Workshop on
AgentCities, Bologna, Italy, 2002.

[49] J. W. Crandall, C. W. Nielsen, and M. A. Goodrich. Towards predict
ing robot team performance. In SMC, 2003.

[50] K. H. Dam and M. Winikoff. Comparing agent-oriented methodolo
gies. In P. Giorgini, B. Henderson-Sellers, and M. Winikoff, editors,
Agent-Oriented Information Systems (AOIS 2003): Revised Selected Pa
pers, pages 78-93. Springer LNAI 3030, 2004.

274

[51] M. Dastani. 3 APL platform: User guide, h t t p : / /www.cs . u u . n l /
3 a p l / d o w n l o a d . h t m l .

[52] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming
agent deliberation: An approach illustrated using the 3APL language.
In Proceedings of The Second Conference on Autonomous Agents and
Multi-agent Systems (AAMASV3), pages 97-104, Melbourne, 2003.

[53] M. Dastani, J. van der Ham, and F. Dignum. Communication for goal
directed agents. In M.-P. Huget, editor. Communication in Multiagent
Systems - Agent Communication Languages and Conversation Policies^
pages 239-252. Springer, LNCS, 2003.

[54] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. Ch. Meyer.
A programming language for cognitive agents: goal directed 3APL.
In Programming multiagent systems^ first international workshop (Pro-
MAS'03), volume 3067 oiLNAI, pages 111-130. Springer, Berlin, 2004.

[55] L. P. de Silva and L. Padgham. A comparison of BDI based real-time
reasoning and HTN based planning. In 17th Australian Joint Confer
ence on Artificial Intelligence, 2004.

[56] K. Decker and K. P. Sycara. Intelligent adaptive information agents.
Journal on Intellent Information Systems, 9(3):239-260, 1997.

[57] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent sys
tems engineering. International Journal of Software Engineering and
Knowledge Engineering, 11 (3):231-258, 2001.

[58] D. C. Dennet. The Intentional Stance, The MIT Press, Cambridge,
MA, 1987.

[59] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge. A formal
specification of dMARS. In M. Singh, A. Rao, and M. Wooldridge,
editors. Intelligent Agents IV: Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages, pages 155-
176. Springer-Verlag LNAI1365, 1998.

[60] M. d'Inverno and M. Luck. Understanding Agent Systems. Springer-
Verlag, 2001.

[61] J. Dix. A Computational Logic Approach to Heterogenous Agent
Systems. In T. Liter, M. Truszczynski, and W. Faber, editors, Logic
Programming and Non-Monotonic Reasoning, Proceedings of the Sixth
International Conference, LNCS 2173, pages 1-21, Berlin, September
2001. Springer.

http://www.cs
http://uu.nl/

REFERENCES 275

[62] J. Dix and T. Eiter. Theoretical foundations and practical applications
of heterogenous agent systems. Technical report, Working Notes of
the 14th annual European Summer School in Logic, Language and Infor
mation, Trento 2002, 2002.

[63] J. Dix, S. Kraus, and V. Subrahmanlan. Temporal agent reasoning.
Artificial Intelligence, 127(1):87-135, 2001.

[64] J. Dix, S. Kraus, and V. Subrahmanlan. Agents dealing with time and
uncertainty. In C. Castelfranchi and W. L. Johnson, editors. Proceed
ings of the First International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 912-919. New York: ACM Press, July
2002.

[65] J. Dix, S. Kraus, and V. Subrahmanlan. Heterogenous temporal prob
abilistic agents. ACM Transactions of Computational Intelligence, 2005.
to appear.

[66] J. Dix, U. Kuter, and D. Nau. Planning in answer set programming us
ing ordered task decomposition. In R. Kruse, editor. Proceedings of the
27th German Annual Conference on Artificial Intelligence (KI '03), Ham
burg, Germany, LNAI 2821, pages 490-504, Berlin, 2003. Springer.

[67] J. Dix, H. Munoz-Avila, and D. N. an Lingling Zhang. Theoretical
and Empirical Aspects of a Planner in a Multi-Agent Environment. In
G. lanni and S. Flesca, editors. Proceedings ofjournees Europeens de la
Logique en Intelligence artificielle (JELIA '02), LNCS 2424, pages 173-
185. Springer, 2002.

[68] J. Dix, H. Munoz-Avila, D. Nau, and L. Zhang. Planning in a multi-
agent environment: Theory and practice. In C. Castelfranchi and
W. L. Johnson, editors. Proceedings of the First International Joint Con
ference on Autonomous Agents and Multi-Agent Systems, pages 944-945.
New York: ACM Press, July 2002.

[69] J. Dix, H. Munoz-Avila, D. Nau, and L. Zhang. IMPACTing SHOP:
Putting an AI planner into a Multi-Agent Environment. Annals of
Mathematics and AI, 37(4):381-407, 2003.

[70] J. Dix, M. Nanni, and V. S. Subrahmanlan. Probabilistic agent reason
ing. ACM Transactions of Computational Logic, l(2):201-245, 2000.

[71] J. Dix, F. Oczan, and V. Subrahmanlan. Improving performance of
heavily loaded agents. Annals of Math andAI, 41(2-4):339-395, 2004.

[72] J. Dix, V. Subrahmanlan, and G. Pick. Meta Agent Programs. Journal
of Logic Programming, 46(1-2): 1-60, 2000.

276

[73] G. Dorais, R. Bonasso, D. Kortenkamp, P. Pell, and D. Schreck-
enghost. Adjustable autonomy for human-centered autonomous sys
tems on mars. In Mars, 1998.

[74] J. Doran and N. Gilbert. Simulating societies: An introduction. In
N. Gilbert and J. Doran, editors, Simulating Society: The Computer
Simulation of Social Phenomena, chapter 1, pages 1-18. UCL Press,
London, 1994.

[75] J. Doyle. Rationality and its role in reasoning. In Proceedings of
AAAr90, Boston, MA, 1990.

[76] M. Duvigneau, D. Moldt, and H. Rolke. Concurrent Architecture
for a Multi-agent Platform. In F. Giunchiglia, J. Odell, and G. Wei,
editors, Agent-Oriented Software Engineering III Third International
Workshop, AOSE 2002, Bologna, Italy, July 2002, Revised Papers and In
vited Contributions, volume 2585 of LNCS, pages 59-72, Berlin Hei
delberg New York, 2003. Springer.

[77] T. Eiter and V. Subrahmanian. Heterogeneous Active Agents, II: Algo
rithms and Complexity. Artificial Intelligence, 108(l-2):257-307, 1999.

[78] T. Eiter, V. Subrahmanian, and G. Pick. Heterogeneous Active Agents,
I: Semantics. Artificial Intelligence, 108(1-2): 179-255, 1999.

[79] T. Eiter, V. Subrahmanian, and T. Rogers. Heterogeneous Active
Agents, III: Polynomially Implementable Agents. Artificial Intelli
gence, 117(1): 107-167, 2000.

[80] A. El Fallah Seghrouchni, S. Haddad, T. Melitti, and A. Suna. In-
teroperabilite des systemes multi-agents a Taide des services web (in
french). In Proceedings ofJFSMA'04, Paris, 2004.

[81] A. El Fallah Seghrouchni and A. Suna. Claim: A computational lan
guage for autonomous, intelligent and mobile agents. Proceedings of
ProMASW Workshop ofAAMAS, LNAI, 3067:90-110, 2003.

[82] A. El Fallah Seghrouchni and A. Suna. An unified framework for
programming autonomous, intelligent and mobile agents. Proceedings
ofCEEMASVJ, LNAI, 2691:353-362, 2003.

[83] A. El Fallah Seghrouchni and A. Suna. Programming mobile intelli
gent agents: an operational semantics. In Proceedings ofIAV04, Beijing,
China, 2004. IEEE Press.

[84] O. Enseling. Build your own languages with JavaCC. World Wide
Web page.

REFERENCES 277

[85] R. Evertsz, M. Fletcher, R. Jones, J. Jarvis, J. Brusey, and S. Dance. Im
plementing industrial multi-agent systems using JACK^^. In M. Das-
tani, J. Dix, and A. E. Fallah-Seghrouchni, editors. First International
Workshop, PROMAS 2003, Melbourne, Australia July 15, 2003, Selected
Revised and Invited Papers^ pages 18-48. Springer LNAI 3067, 2004.

[86] L. Farinas del Cerro. Resolution modal logic. Logique et Analyse: Spe
cial issue on Automated reasoning in Nonclassical Logics^ 110-111:152-
172, 1985.

[87] D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker in
a Nutshell. In Proc, of the European Conference on Digital Libraries,
pages 663-664, 1998.

[88] D. Fensel and R. Studer, editors. Knowledge Acquisition, Modeling and
Management, 11thEuropean Workshop, EFCAW'99, Dagstuhl Castle, Ger
many, May 26-29, 1999, Proceedings, volume 1621 of LNCS. Springer,
1999.

[89] FIPA Specifications, http://www.fipa.org.

[90] M. Fletcher and J. Brusey. The story of the Holonic packing cell. In
Agents at Work: Deployed Applications of Autonomous Agents and Multi-
Agent Systems, July 2003.

[91] M. Fletcher, R. Ronnquist, N. Howden, and A. Lucas. Enigma varia
tions - simulating changes in behaviour of British military personnel.
In SimTecT, pages 21-26, May 2004.

[92] T. Fong, C. Thorpe, and C. Baur. Multi-robot remote driving with
collaborative control. IEEE Transactions on Industrial Electronics, 2002.

[93] F. Gandon, A. Poggi, G. Rimassa, and P. Turci. Multi-Agent Cor
porate Memory Management System. Applied Artificial Intelligence,
16(9-10):699-720, 2002.

[94] G. Garson. Quantification in modal logic. In D. Gabbay and F. Guet-
ner eds. Handbook of philosophical logic. Volume II: Extensions of classi
cal Logic, pages 249-307. D. Reidel PubHshing Company, 1984.

[95] M. R. Genesereth and S. P. Ketchpel. Software Agents. Communica
tions of the ACM, 37(7):49-53, 1994.

[96] M. Georgeff, B. Pell, M. Pollack, M. Tambe, and M. Wooldridge. The
Belief-Desire-Intention Model of Agency. In J. Mliller, M. Singh, and

http://www.fipa.org

278

A. Rao, editors. Proceedings of the 5th International Workshop on Intel
ligent Agents V: Agent Theories, Architectures, and Languages (ATAL-98),
pages 1-10. Springer-Verlag: Heidelberg, Germany, 1999.

[97] M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings
of the IEEE Special Issue on Knowledge Representation, 74:1383-1398,
1986.

[98] M. P. Georgeff and A. L. Lansky. Reactive reasoning and planning: An
experiment with a mobile robot. In Proceedings of the Sixth National
Conference on Artificial Intelligence (AAAF87), 13-17July, 1987, Seattle,
WA, pages 677-682, Manlo Park, CA, 1987. AAAI Press / MIT Press.

[99] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifi
cation. Addison-Wesley, second edition, 2000.

[100] G. Gottlob and T. Walsh, editors. Proceedings of the Eighteenth Inter
national Joint Conference on Artificial Intelligence (IJCAI-03), Morgan
Kaufmann, 2003.

[101] M. Greenberg, J. Buyington, and D. Harper. Mobile agents and secu
rity. IEEE Comunications Magazine, 36(7):76-85, 1998.

[102] H. Grice. Logic and conversation. In P. Cole and J. Morgan eds. Syntax
and semantics 3/Speech acts, pages 41-58. Academic Press, 1975.

[103] J. Halpern and Y. Moses. A guide to the modal logics of know-ledge
and belief: a preliminary draft. In Proceedings ofIJCAr85, Los Angeles,
CA, 1985.

[104] M. Harbeck, BDI-Agentensysteme auf mobilen Geraten. Diplomar-
beit. Distributed Systems and Information Systems Group, Computer
Science Department, University of Hamburg/Germany, 2004. (in Ger
man).

[105] B. Henderson-Sellers and P. Giorgini, editors. Agent-Oriented Method
ologies, Idea Group, 2005 (to appear),

[106] R. Hill, J. Cratch, S. Marsella, J. Rickel, W. Swartout, and D. Traum.
Virtual humans in the mission rehearsal exercise system. In KIEmbod
ied Conversational Agents, 2003.

[107] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in 3APL. Int, J, of Autonomous Agents and Multi-Agent
Systems, 2(4):357-401, 1999.

REFERENCES 279

[108] K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming with declarative goals. In N. Jennings and Y. Lesper-
ance, editors. Intelligent Agents VI - Proceedings ofATAL'2000, LNAI-
1757. Springer, Berlin, 2001.

[109] D. C. Ho Mok Cheong. An empirical investigation of teamwork in
frastructure for autonomous agents, October 2003. Honours Thesis,
available as RMIT Computer Science technical report TR-03-2.

[110] G. Holzmann. The SPIN model checker. IEEE Transactions on Soft
ware Engineering, 23(5):279-295, 1997.

[I l l] E. Horvitz. Principles of mixed-initiative user interfaces. In Proceed
ings of ACM SIGCHI Conference on Human Factors in Computing Sys
tems (CHr99), pages 159-166, Pittsburgh, PA, May 1999.

[112] N. Howden, J. Curmi, C. Heinze, S. Goss, and G. Murphy. Oper
ational knowledge representation- behaviour capture, modelling and
verification. In SimTecT, May 2003.

[113] N. Howden, R. R5nnquist, A. Hodgson, and A. Lucas. JACK intel
ligent agents: Summary of an agent infrastructure. In Workshop on
Infrastructure for Agents, MAS, and scalable MAS, 2001.

[114] M. J. Huber. JAM: A BDI-Theoretic Mobile Agent Architecture. In
O. Etzioni, J. Mliller, and J. Bradshaw, editors. Proceedings of the Third
International Conference on Autonomous Agents (AGENTS-99), pages
236-243, New York, May 1-5 1999. ACM Press.

[115] J. F. Hlibner. Um Modelo de Reorganizagdo de Sistemas Multiagentes,
PhD thesis, Universidade de Sao Paulo, Escola Politecnica, 2003.

[116] U. Hustadt, C. Dixon, R. Schmidt, M. Fisher, J.-J. Ch. Meyer, and
W. van der Hoek. Verification within the KARO agent theory. In Pro
ceedings of the First Goddard Workshop on Formal Approaches to Agent-
Based Systems (FA ABSW), LNAI, pages 33-47. Springer, Berlin, 2001.

[117] J. Hutchison. Agent team programming: An evaluation of JACK
teams, October 2002. Honours Thesis, available as RMIT Computer
Science technical report TR-02-7.

[118] F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for
Real-Time Reasoning and System Control. IEEE Expert, 7(6):34-44,
1992.

[119] JADE Web Site, h t t p : / / j a d e . t i l a b . c o m .

http://jade.tilab.com

280

[120] JADEX Web Site. H t t p : / / v s i s - w w w . i n f o r m a t i k .
u n i - h a m b u r g . d e / p r o j e c t s / j a d e x .

[121] J. Jarvls. JACK Intelligent Agents JACK Teams Manual, March 2004.
Available with the JACK distribution.

[122] N. Jennings and M. Wooldridge. Applications of Intelligent agents. In
Jennings and Wooldridge [124], chapter 1, pages 3-28.

[123] N. R. Jennings. An agent-based approach for building complex soft
ware systems. Communications of the ACM, 44(4):35-41, 2001.

[124] N. R. Jennings and M. J. Wooldridge, editors. Agent Technology: Foun
dations, Applications ̂ and Markets. Springer, 1998.

[125] T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the Gala
methodology for complex open systems. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2002), pages 3-10. ACM Press, 2002.

[126] D. KInny. The distributed multi-agent reasoning system architecture
and language specification. Technical report, Australian Artificial In
telligence Institute, Melbourne, Australia, 1993.

[127] D. KInny and R. Phillip. Building Composite Applications with Goal-
DIrected(TM) Agent Technology. AgentLink News, 16:6-8, December
2004.

[128] H. KItano, S. Tadokoro, I. Noda, H. Matsubara, T. TakahashI, A. Shln-
joh, and S. Shimada. Robocup rescue: Search and rescue In large-scale
disasters as a domain for autonomous agents research. In IEEE SMC,
volume VI, pages 739-743, Tokyo, October 1999.

[129] G. Klein, A. Suna, and A. El Fallah Seghrouchnl. A methodology for
building mobile multi-agent systems. In Proceedings of SYNACS'04,
TImlsoara, Romania, 2004.

[130] K. Konollge. A deduction model of belief Pitman, Morgan Kaufman
Publisher, London, 1986.

[131] R. Krafta, D. de Ollveira, and R. H. Bordlnl. The city as object of
human agency. In Fourth International Space Syntax Symposium (SSS4),
London, 17-19 June, pages 33.1-33.18, 2003.

[132] D. Lam and S. Barber. Debugging agent behavior In an Implemented
agent system. In Second International Workshop on Programming

Http://vsis-www
http://uni-hamburg.de/projects/jadex

REFERENCES 281

Multi-Agent Systems at the Third International Joint Conference on Au
tonomous Agents and Multi-Agent Systems, pages 45-56, 2004.

[133] LEAP Web Site, http://leap.crm-paris.com.

[134] J. Lee, M. J. Ruber, R G. Kenny, and E. H. Durfee. UM-PRS: An im
plementation of the procedural reasoning system for multirobot appli
cations. In Proceedings of the Conference on Intelligent Robotics in Field,
Factory, Service, and Space (CIRFFSS'94), pages 842-849, 1994.

[135] J. A. Leite. Evolving Knowledge Bases: Specification and Semantics, vol
ume 81 of Frontiers in Artificial Intelligence and Applications, Disserta
tions in Artificial Intelligence, lOS Press/Ohmsha, Amsterdam, 2003.

[136] F. Levi and D. Sangiori. Controlling interference in ambients. In Pro
ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 352-364. ACM Press, 2000.

[137] E. Liao, P. Scerri, and K. Sycara. A framework for very large teams.
In AAMASW Workshop on Coalitions and Teams, 2004.

[138] V. Louis. Conception et mise en oeuvre de modeles formels du calcul de
plans d'action complexes par un agent rationnel dialoguant. PhD thesis,
University of Caen, 2002.

[139] A. Lucas, P. Corke, R. Ronnquist, P. Sikka, M. LJungberg, and
N. Howden. Teamed UAVs - A new approach with intelligent agents.
In^lM^ Unmanned Unlimited, 2003.

[140] A. Lucas, R. Ronnquist, N. Howden, P. Gaertner, and J. Haub. Intelli
gent battlespace awareness and information dissemination through the
application of BDI intelligent agent technologies. In SPIE - The Inter
national Society for Optical Engineering: Digitization of the Battlespace
Vand Battlefield Biomedical Technologies II, April 2000.

[141] M. Luck, P. McBurney, and C. Preist. Agent technology: En
abling next generation computing: A roadmap for agent-based com
puting. AgentLink report, available from www. a g e n t l i n k , o r g /
roadmap, 2003. ISBN 0854 327886.

[142] M. Luck, P. McBurney, and C. Preist. A manifesto for agent tech
nology: Towards next generation computing. Autonomous Agents and
Multi-Agent Systems, 9(3):203-252, November 2004.

[143] R. Machado and R. H. Bordini. Running AgentSpeak(L) agents on
SIM_AGENT. In J.-J. Meyer and M. Tambe, editors. Intelligent Agents

http://leap.crm-paris.com

282

VIII - Proceedings of the Eighth International Workshop on Agent Theo
ries, Architectures, and Languages (ATAL-lOOl), number 2333 In LNAI,
pages 158-174. Sprlnger-Verlag, 2002.

[144] E. Manglna. Review of Software Products for Multl-Agent
Systems. h t t p : //www. a g e n t l i n k . o r g / r e s o u r c e s /
s o f t w a r e - r e p o r t . h t m l , 2002.

[145] F. Marc, A. E. Fallah-SeghrouchnI, and I. Deglrmenclyan-Cartault.
Coordination of complex systems based on multi-agent planning: Ap
plication to the aircraft simulation domain. In R. H. Bordlnl, M. Das-
tanl, J. DIx, and A. E. Fallah-SeghrouchnI, editors. Second Interna
tional Workshop on Programming Multi-Agent Systems: Languages and
Tools (ProMAS 2004), pages 115-128, July 2004.

[146] M. Marl, A. Negri, A. PoggI, and P. Turd. Agent-Based Remote Assis
tance for Software Programming Activities. In Proc, AP'LA Workshop
on Artificial Intelligence & E-Learning, Perugia, Italy, 2004.

[147] P. Marrow. The DIET project: building a lightweight, decentralised
and adaptable agent platform. AgentLink News, 12:3-6, April 2003.

[148] T. Martinez, P. Bretler, and V. Louis. Artlmis : assistant de voyage et
medlateur Intelligent dans un systeme multi-agent. In Proceedings of
JFSMAW, Hammamet, Tunisia, 2003.

[149] I. Mathleson, S. Dance, L. Padgham, M. Gorman, and M. WInlkoff.
An open meteorological alerting system: Issues and solutions. In
V. EstlvUl-Castro, editor. Proceedings of the 27th Australasian Computer
Science Conference, pages 351-358, Dunedin, New Zealand, 2004.

[150] J.-J. Ch. Meyer. Agent-oriented programming: Where do we stand?
(Invited talk). In C. Rattray, S. Maharaj, and C. Shankland, editors,
Proceedings of the 10th International Conference on Algebraic Methodol
ogy And Software Technology (AMAST04), volume 3116 oiLNCS, pages
23-26. Sprlnger-Verlag, 2004.

[151] D. Mllojlclc, M. Breugst, I. Busse, J. Campbell, S. Covad, B. Fried
man, K. Kosaka, D. Lange, K. Ono, M. Oshlma, C. Tham, S. Vlrdha-
grlswaran, and J. White. MASIF, the OMG mobile agent system Inter
operability facility. In Proceedings of the Second International Workshop
on Mobile Agents, number 1477 In LNAI, pages 50-67. Sprlnger-Verlag,
1998.

[152] A. F. Moreira and R. H. Bordlnl. An operational semantics for a BDI
agent-oriented programming language. In J.-J. C. Meyer and M. J.

http://agentlink.org/resources/

REFERENCES 283

Wooldridge, editors, Proceedings of the Workshop on Logics for Agent-
Based Systems (LABS-Ol), held with KR2002, April 22-25, Toulouse,
France, pages 45-59, 2002.

[153] A. F. Moreira, R. Vieira, and R. H. Bordini. Extending the opera
tional semantics of a BDI agent-oriented programming language for
introducing speech-act based communication. In J. Leite, A. Omicini,
L, Sterling, and R Torroni, editors. Declarative Agent Languages and
Technologies, Proceedings of the First International Workshop (DALT03),
number 2990 in LNAI, pages 135-154, Berlin, 2004. Springer-Verlag.

[154] H. Munoz-Avila, D. Aha, D. Nau, R. Weber, L. Breslow, and F. Ya-
man. SiN: Integrating case-based reasoning with task decomposition.
In IJCAL2001, August 2001.

[155] D. Nau, Y. Cao, A. Lotem, and H. Munoz-Avila. Shop: Simple hier
archical ordered planner. In Proceedings ofIJCAL99, 1999.

[156] A. Newell. The knowledge level. Artificial Intelligence, 18:87-128,
1982.

[157] E. Norling. Folk psychology for human modelling: Extending the BDI
paradigm. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 202-
209, New York, July 2004.

[158] E. Norling and F. E. Ritter. Embodying the JACK agent architec
ture. In M. Stumptner, D. Corbett, and M. Brooks, editors, AI2001:
Advances in Artificial Intelligence. 14th Australian Joint Conference on
Artificial Intelligence, pages 368-377. Springer LNAI 2256, December
2001.

[159] E. Norling and F. E. Ritter. Towards supporting psychologically plau
sible variability in agent-based human modelling. In Proceedings of the
Third International Joint Conference on Autonomous Agents and Multi-
agent Systems, pages 758-765, New York, July 2004.

[160] H. S. Nwana, D. T. Ndumu, L. C. Lee, and J. C. CoUis. ZEUS: a
toolkit for building distributed multiagent systems. Applied Artificial
Intelligence, 13(1-2): 129-185, 1999.

[161] J. J. Odell. Objects and agents compared. Journal of Object Technology,
l(l):41-53, May-June 2002.

[162] F. Y. Okuyama, R. H. Bordini, and A. C. da Rocha Costa. ELMS:
an environment description language for multi-agent simulations. In

284

D. Weyns et al., editors, Proceedings of the First International Work
shop on Environments for Multiagent Systems (E4MAS), number 3374 in
LNAI, pages 91-108. Springer-Verlag, 2005.

[163] L. Padgham and M. Winikoff. Prometheus: A methodology for de
veloping intelligent agents. In Agent-Oriented Software Engineering III:
Third International Workshop (AOSE'02). Springer, LNAI 2585, 2003.

[164] L. Padgham and M. Winikoff. Developing Intelligent Agent Systems: A
Practical Guide. John Wiley and Sons, 2004. ISBN 0-470-86120-7.

[165] F. Panaget. D'un systeme generique de generation d'enonces en contexte
de dialogue oral a la formalisation logique des capacites linguistiques d'un
agent rationnel dialoguant. PhD thesis. University of Rennes I, 1996.

[166] T. O. Paulussen, N. R. Jennings, K. S. Decker, and A. Heinzl. Dis
tributed Patient Scheduling in Hospitals. In Gottlob and Walsh [100].

[167] T. O. Paulussen, A. Zoller, A. Heinzl, A. Pokahr, L. Braubach, and
W. Lamersdorf. Dynamic Patient Scheduling in Hospitals. In M. Bich-
ler, C. Holtmann, S. Kirn, J. Miiller, and C. Weinhardt, editors. Coor
dination and Agent Technology in Value Networks. GITO, Berlin, 2004.

[168] C. Perrault. An application of default logic to speech act theory. In
P.R. Cohen, J. Morgan and M.E. Pollack eds. Intentions in Communi
cation. MIT Press, 1990.

[169] G. D. Plotkin. A structural approach to operational semantics. Techni
cal report, DAIMI-FN 19, Department of Computer Science, Aarhus
University, Aarhus, Denmark, 1981.

[170] A. Pokahr and L. Braubach. Jadex User Guide, Release 0.931, 2005.

[171] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a
BDI-Infrastructure for JADE Agents. EXP - in search of innovation,
3(3):76-85, 2003.

[172] S. Poslad and P. Charlton. Standardizing Agent Interoperability:
The FIPA Approach. In M. L. et al., editor, 9th ECCAI Advanced
Course, ACAI2001 and Agent Links 3rd European Agent Systems Sum
mer School, EASSS 2001, Prague, Czech Republic, July 2001, pages 98-
117. Springer-Verlag: Heidelberg, Germany, 2001.

[173] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging multi-agent
systems using design artifacts: The case of interaction protocols. In
Proceedings of the First International Joint Conference on Autonomous

REFERENCES 285

Agents and Multi Agent Systems (AAMAS'02), pages 960-967. ACM
Press, July 2002.

[174] D. Poutakidis, L. Padgham, and M. Winikoff. An exploration of bugs
and debugging in multi-agent systems. In Proceedings of the 14th In
ternational Symposium on Methodologies for Intelligent Systems (ISMISJ,
pages 628-632, Maebashi City, Japan, 2003.

[175] M. Purvis, M. Nowostawski, and S. Cranefield. A multi-level approach
and infrastructure for agent-oriented software development. In Proc,
of the first international joint conference on Autonomous agents and mul-
tiagent systems, pages 88-89, Bologna, Italy, 2002.

[176] D. V. Pynadath and M. Tambe. Automated teamwork among hetero
geneous software agents and humans. Journal of Autonomous Agents
and Multi-Agent Systems (JAAMASJ, 7:71-100, 2003.

[177] A. Rabarijoana, R. Dieng, and O. Corby. Exploitation of XML for
Corporate Knowledge Management. In Fensel and Studer [88], pages
373-378.

[178] T. Rah wan, T. Rah wan, I. Rahwan, and R. Ashri. Agent-based support
for mobile users using AgentSpeak(L). In P. Giorgini, B. Henderson-
Sellers, and M. Winikoff, editors, Agent-Oriented Information Systems
(AOIS 2003): Revised Selected Papers, pages 45-60. Springer LNAI 3030,
2004.

[179] A. Rao and M. Georgeff. An abstract architecture for rational agents.
In Proceedings ofKR'92, Cambridge, MA, 1992.

[180] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical com
putable language. In W. Van de Velde and J. Perram, editors. Pro
ceedings of the Seventh Workshop on Modelling Autonomous Agents in
a Multi-Agent World (MAAMAW96)y 22-25 January^ Eindhoven, The
Netherlands, number 1038 in LNAI, pages 42-55, London, 1996.
Springer-Verlag.

[181] A. S. Rao and M. P. Georgeff. Modeling rational agents within a
BDI-architecture. In J. Allen, R. Pikes, and E. Sandewall, editors. Pro
ceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR'91), pages 473-484, San Mateo, CA,
1991. Morgan Kaufmann.

[182] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In
V. Lesser and L. Gasser, editors, Proceedings of the First International

286

Conference on Multi-Agent Systems (ICMAS'95), 12-14 June, San Fran
cisco, C4, pages 312-319, Menlo Park, CA, 1995. AAA! Press / MIT
Press.

[183] A. S. Rao and M. P. Georgeff. Decision procedures for BDI logics.
Journal of Logic and Computation, 8(3):293-343, 1998.

[184] A. Richardson, D. Montello, and M. Hegarty. Spatial knowledge ac
quisition from maps and from navigation in real and virtual environ
ments. Memory and Cognition, 27(4):741-750, 1999.

[185] R. Ruddle, S. Payne, and D. Jones. Navigating buildings in desktop
virtual environments: Experimental investigations using extended nav
igational experience./. Experimental Psychology - Applied, 3(2): 143-159,
1997.

[186] S. Russel. Rationality and intelligence. In Proceedings of IJCAr95,
Montreal, 1995.

[187] D. Sadek. Logical task modelling for Man-machine dialogue. In Pro
ceedings ofAAAr90, pages 970-975, Boston, MA, 1990.

[188] D. Sadek. Attitudes mentales et interaction rationnelle: vers une theorie
formelle de la communication. PhD thesis. University of Rennes I,
1991.

[189] D. Sadek. A study in the logic of intention. In Proceedings ofKR'92,
pages 462-473, Cambridge, MA, 1992.

[190] D. Sadek. Communication theory = rationality principles + commu
nicative act models. In Proceedings ofAAAr94 Workshop on Planning
for Interagent Communication, Seattle, WA, 1994.

[191] D. Sadek. Towards a theory of belief reconstruction: Application to
communication. Speech Communication Journal, special issue on Spoken
Dialogue, 15:251-263, 1994.

[192] D. Sadek. Design considerations on dialogue systems: from theory to
technology. The case of Artimis (invited talk). In Proceedings ofIDS'99
(ETR Workshop on Interactive dialogue for multimedia systems), pages
173-187, Kloster Irsee, Germany, 1999.

[193] D. Sadek. Dialogue acts are rational plans. In M.M. Taylors, F. Neels
and D.C. Bouhuis eds. The structure of multimodal dialogue (II), John
Benjamins publishing company (From the Venaco II Workshop, Italy,
1991), 2000.

REFERENCES 287

[194] D. Sadek. De nouvelles perspectives pour Pergonomie des interfaces
personne-machine : dialogue naturel et agents intelligents diaioguants
(invited talk). In Proceedings ofERGOIAW, Biarritz, France, 2004.

[195] D. Sadek, P. Bretier, and F. Panaget. Artimis: Natural dialogue meets
rational agency. In Proceedings ofIJCAr97, pages 1030-1035, Nagoya,
Japan, 1997.

[196] D. Sadek, P. Bretier, and F. Panaget. Submission for standardization of
component of France Telecom's Artimis technology - Arcol interagent
communication language, MCP, CAP and SAP agent's cooperativity
protocols, 1997. Response to FIPA call for proposals,

[197] D. Sadek and H. Brouchoud. Intelligent agents. In D. Hardy, G.
Malleus and J.-N. Mereur eds. Networks: Internet, telephony, multime
dia - Convergences and complementarities, De Boeck University, 2002.

[198] D. Sadek, A. Ferrieux, A. Cozannet, P. Bretier, F. Panaget, and J. Si-
monin. Effective human-computer cooperative spoken dialogue: The
AGS demonstrator. In Proceedings ofICSLP'96, Philadelphia, 1996.

[199] D. Sadek and R. D. Mori. Dialogue systems. In Spoken dialogs with
computers^ pages 523-561. Academic Press, London, UK, 1998.

[200] G. Salton. Automatic Text Processing - The Transformation, Analysis,
and Retrieval of Information by Computer, Addison-Wesley, 1989.

[201] P. Scerri, E. Liao, Y. Xu, M. Lewis, G. Lai, and K. Sycara. Theory and
Algorithms for Cooperative Systems, chapter Coordinating very large
groups of wide area search munitions. World Scientific Publishing,
2004.

[202] P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable autonomy
for the real world. Journal of Artificial Intelligence Research, 17:171-
228, 2002.

[203] P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr,
M. Si, and M. Tambe. A prototype infrastructure for distributed
robot-agent-person teams. In AAMAS, 2003.

[204] T. Schubert. Normen zur Uberwachung und Steuerung autonomer
Multi-Agenten Systeme. Diplomarbeit, Institut flir Programmstruk-
turen und Datenorganisation, Fakultat fiir Informatik, Universitat
Karlsruhe (TH), 2004. (in German).

[205] J. Searle. Speech acts. Cambridge University Press, 1969.

288

[206] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60:51-92, 1993,

[207] J. Siegal. CORBA Fundementals and Programming, John Wiley &:
Sons, New York, 1996.

[208] A. Sturm and O. Shehory. A comparative evaluation of agent-oriented
methodologies. In Bergenti et al. [13], chapter 7.

[209] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S, Kraus, F. Ozcan, and
R. Ross. Heterogenous Active Agents, MIT-Press, 2000.

[210] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, Evaluation
of agent-oriented software methodologies: Examination of the gap be
tween modeling and platform. In P. Giorgini, J. Mliller, and J. Odell,
editors. Agent Oriented Software Engineering (AOSE), 2004.

[211] A. Suna and A. El Fallah Seghrouchni. A mobile agents platform:
architecture, mobility and security elements. In Proceedings of Pro-
MAS'04 Workshop of A AM AS, LNAI, volume 3346, pages 126-146,
New-York, 2004.

[212] A. Suna, G. Klein, and A. El Fallah Seghrouchni. Using mobile agents
for resource sharing. In Proceedings ofIAV04, Beijing, China, 2004.
IEEE Press.

[213] A. Suna, C. Lemaitre, and A. El Fallah Seghrouchni. E-commerce us
ing an agent oriented approach. In Proceedings of the Iberagents Work
shop, Puebla, Mexico, 2004.

[214] U. N. Suya You, Jinhui Hu and P. Fox. Urban site modeling from
lidar. In Proc, 2nd Infl Workshop Computer Graphics and Geometric
Modeling (CGGM), pages 579-588, 2003.

[215] M. Tambe. Agent architectures for flexible, practical teamwork. Na
tional Conference on AI(AAAI97), pages 22-28, 1997.

[216] M. Tambe and W. Zhang. Towards flexible teamwork in persistent
teams: Extended report. Journal of Autonomous Agents and Multi-agent
Systems, 3:159-183, 2000. Special issue on "Best of ICMAS 98".

[217] E. ten Hoeve, M. Dastani, F. Dignum, and J.-J. Meyer. 3APL platform.
In Proceedings of the 15 th Belgium-Netherlands Coriference on Artificial
Intelligence, BNAIC03, 2003.

[218] J. Thangarajah and L. Padgham. An empirical evaluation of reasoning
about resource conflicts. In N. R. Jennings, C. Sierra, L. Sonenberg,

REFERENCES 289

and M. Tambe, editors, Proceedings of the Third International Joint Con
ference on Autonomous Agents and Multiagent Systems, pages 1298-1299,
July 2004.

[219] J. Thangarajah, L. Padgham, and J. Harland. Representation and rea
soning for goals in BDI agents. In Australasian Computer Science Con
ference, 2002.

[220] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and avoid
ing interference between goals in intelligent agents. In Proceedings of
the 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), 2003.

[221] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and exploit
ing positive goal interaction in intelligent agents. In Proceedings of
the Second International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2003), Melbourne, Australia, pages 401-408.
ACM Press, 2003.

[222] J. Thangarajah, M. Winikoff, L. Padgham, and K. Fischer. Avoiding
resource conflicts in intelligent agents. In F. van Harmelen, editor. Pro
ceedings of the 15 th European Conference on Artificial Intelligence (ECAI
2002), Lyon, France. lOS Press, 2002.

[223] J. A. Torres, L. P. Nedel, and R. H. Bordini, Autonomous agents
with multiple foci of attention in virtual environments. In Proceed
ings of 17th International Conference on Computer Animation and So
cial Agents (CASA 2004), Geneva, Switzerland, 7-9 July, pages 189-196,
2004.

[224] W. van der Hoek, B. van Linder, and J.-J. Ch. Meyer. An integrated
modal approach to rational agents. In M. Wooldridge and A. Rao,
editors. Foundations of Rational Agency, Applied Logic Series 14, pages
133-168. Kluwer, Dordrecht, 1998.

[225] R. van Eijk, F. de Boer, W. van der Hoek, and J.-J. C. Meyer. Pro
cess algebra for agent communication: A general semantic approach.
In M.-P. Huget, editor. Communication in Multiagent Systems — Agent
Communication Languages and Conversation Policies, number 2650 in
LNCS, pages 113-128. Springer-Verlag, Berlin, 2003.

[226] M. B. van Riemsdijk, F. S. de Boer, and J.-J. Ch. Meyer. Dynamic logic
for plan revision in intelligent agents. In J. A. Leite and P. Torroni,
editors. Proceedings of the fifth international workshop on computational
logic in multi-agent systems (CLIMA'04), pages 196-211, 2004.

290

[227] M. B. van Riemsdijk, J.-J. Ch. Meyer, and F. S. de Boer. Semantics
of plan revision in intelligent agents. In C. Rattray, S. Maharaj, and
C. Shankland, editors, Proceedings of the 10th International Conference
on Algebraic Methodology And Software Technology (AMAST04), volume
3116 oiLNCS, pages 426-442. Springer-Verlag, 2004.

[228] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent
programming in Dribble: from beliefs to goals using plans. In Proceed
ings of the second international joint conference on autonomous agents
and multiagent systems (AAMAS'03), pages 393-400, Melbourne, 2003.

[229] R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the for
mal semantics of speech-act based communication in an agent-oriented
programming language. Submitted article^ to appear^ 2005.

[230] A. S. Vivacqua and H. Lieberman. Agents to assist in finding help.
In Proc, of the Conference on Human factors in computing systems, pages
65-72, The Hague, The Netherlands, 2000.

[231] P. Vrba. JAVA-Based agent platform evaluation. In V. Mank, D. Mc-
Farlane, and P. Valckenaers, editors, Holonic and MultiAgent Systems
for Manufacturing (HoloMAS 2003), pages 47-58. Springer, LNCS 2744,
2004.

[232] D. Watts and S. Strogatz. Collective dynamics of small world net
works. Nature, 393:440-442, 1998.

[233] D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a con
current agent-oriented language. In Intelligent Agents: Theories, Archi
tectures, and Languages, LNAI, volume 890, pages 386-402. Springer,
1995.

[234] G. Weiss. Agent orientation in software engineering. The Knowledge
Engineering Review, 16(4):349-373, 2001.

[235] S. Wilmott, O. Rana, K.-H. Krempels, R McBurney, and G. Weichart.
Networked agents: Towards large-scale deployment of agents in open
networked environments (NET AGENTS). AgentLink News, 16:16-
17, December 2004. Available from h t t p : / / w w w . a g e n t l i n k .
o r g / n e w s l e t t e r / .

[236] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative
6c procedural goals in intelligent agent systems. In Proceedings of the
Eighth International Conference on Principles of Knowledge Representa
tion and Reasoning (KR2002), Toulouse, France, 2002.

http://www

REFERENCES 291

[237] M. Wooldridge. Reasoning about Rational Agents. The MIT Press,
Cambridge, MA, 2000.

[238] M. Wooldridge. An Introduction to MultiAgent Systems, John Wiley &:
Sons, 2002.

[239] M. Wooldridge and N. R. Jennings. Agent Theories, Architectures,
and Languages: A Survey. In ECAI Workshop on Agent Theories, Archi-
tectureSy and Languages, pages 1-39, 1994.

[240] M. Wooldrige and N. Jennings. Towards a theory of cooperative prob
lem solvings. In Proceedings ofMAAMAW'94, Odense, Denmark, 1994.

[241] K. Yoshimura. FIPA JACK: A plugin for JACK Intelligent Agents,
2003. Available f r o m h t t p : / /www.cs . r m i t . e d u . a u / a g e n t s /
p r o t o c o l s / .

[242] F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multia-
gent systems: The Gaia methodology. ACM Transactions on Software
Engineering and Methodology, 12(3):317-370, July 2003.

[243] F. Zambonelli and A. Omicini. Challenges and research directions
in agent-oriented software engineering. Autonomous Agents and Multi-
Agent Systems, 9(3):253-283, November 2004.

[244] L. Zhang. Documentation for ASHOP 1.0. Technical Report CSC-TR
2102, University of Maryland, 2002. Master Thesis.

http://www.cs
http://edu.au/agents/

Index

^ C , 87
achievement goal, 8
ACL, 128
action

of an IMPACT agent, 71, 75, 77, 78, 79,
82, 85, 87

actions, 17
basic, 8
internal, 13

agent log, 91
Agent platform, 176
agent program, 69, 70, 72, 77, 78, 80, 81, 87

temporal, 70, 79
agent roost, 90, 92
agent-oriented programming, 4
Agent-oriented programming language, 176
Agentcities, 140
AgentDE, 87, 92
AgemDE, 81, 82, 84, 87-92, 256
agentisation, 69, 70, 73, 83, 85
AgentSpeak(L), 4, 8, 182
airport security robots, 6
animated characters, 37
annotations, 10, 23
anti-terror technology, 5
API, 74, 87, 92
API function, 74, 87
ApPp,o^(S),80
applicable plans, 16, 18
A-SHOP, 71, 73, 80, 82, 83, 85-87, 91
atom

code call, 75
status, 71, 78, 80

Autonomous, 175

BDI, 3, 4, 149-156, 175, 190
BDI architecture, 4, 13
BDI gap, 182
BDI logics, 4
belief, 15, 151, 152, 158, 163, 175
belief base, 8, 10
belief revision, 15
Belief-Desire-Intention, see BDI
beliefs, 8

Beliefset, 179
boundedness check, 88

C, 70, 71, 74
capability 154, 158, 180, 183
closure, 80

action, 80
deontic, 80

code call, 74, 75, 83-85, 89
evaluable, 77
safe, 77

code call condition, 75, 77, 78, 83-85
CoMMA, 138
communication, see speech-act communication
compile-time check, 85, 88
cone, 70, 71, 87
consistency

action, 80
deontic, 80
state, 80

constraint
action, 78, 87
integrity, 78, 80, 81,87

cooperation, 24
CORBA, 188
CORBA, 74, 89

data type, 74, 75, 87
Debugging Tools, 186

Browser, 186
Graphical plan tracing, 186
Interaction Diagrams, 186
Jason, see Jason: Mind Inspector
Tracing, 186

deontic satisfaction, 88
dependable systems, 20
desire, 13, 151, 152, 175
dMARS, 181
Do(-), 78-80
Dummy Agent, 132

effectors, 13
environment, 8, 13, 14
environment definition language, 37

294 INDEX

evaluability, 83
Event, 179
events, 14, 17

external, 14, 17
internal, 14, 17

F(-), 78-80
J", 70, 71, 74
fault tolerance, 134
finiteness table, 85
FIPA, 126, 149, 169, 170, 177, 188
FIPA JACK, 189
Flexibility, 176
focuses of attention, 14
Folk psychology, 190

Gaia, 176
goal, 152, 159, 165
Goals, 175
goals, 8
Grid-based applications, 37
groundedness

of a status set, 81

HLA, 188

IBM Aglet, 89, 93
XC,78, 80, 81,87
IMPACT

agent log, 91
agent program, 69, 70, 72, 77, 78, 80, 87

temporal, 70, 79
agent roost, 90, 92
AgentDE, 87, 92
agentisation, 70, 73, 83, 85
API function, 74
atom

code call, 75
status, 71, 78, 80

code call, 74, 75
evaluable, 77

code call condition, 75, 77, 78, 83, 84
data type, 74, 75
finiteness table, 85
legacycode, 69-71,77, 83
message box, 72, 91
notion of concurrency, 71, 78, 87
reasoning

probabilistic, 72, 78, 83
temporal, 72, 78, 83

safeness
strong, 85, 86

server, 89, 91
software code, 71, 74

body of, 70, 74
status set, 78, 80

feasible, 80

rational, 81
IMPACT, 69-74, 77, 78, 82, 83, 85, 87-93, 255,

256, 293, 295
intelligent agents, 8
intended means, 16
intention, 13, 14, 17, 19, 151, 175

suspended, 20
Interaction diagrams, 186
internal actions, 21
interpretation cycle, see reasoning cycle
Introspector Agent, 132

J2EE, 171
J2ME, 172
JACK, 21, 151
JACK Development Environment, 186

Design Tool, 186
Graphical Plan Editor, 186

JACOB, 188
JADE, 154, 168, 170
Jadex, 149-265
JAM, 178, 181
Jason, 152, 178, 183
Jason, 4

cooperation mechanism, 25
customisation, 30
defining new internal actions, 32
environments, 28
execution modes, 35
formal semantics, 13, 16
formal verification, 20
IDE, 34
informal semantics of AgentSpeak, 14
interpreter settings, 27
legacy code, 5, 32
main features, 5
Mind Inspector, 35
multi-agent system configuration, 25
operational semantics, 16
percepts, 28
plan exchange, 25
semantic rules, 19
speech-act communication, 13, 21
standard internal actions, 13, 32
syntax, 10

Java, 149, 161, 165, 177
JDBC, 89, 188
JDE, see JACK Development Environment
JSHOP, 184, 192

LEAP, 130
legacy code, 5, 32, 69-71, 77, 83, 84, 256
LGPL, 133
Log Manager Agent, 132
logic-based agent programming, 3

MaSE, 176
message box, 72, 74, 91

INDEX 295

Methodology, 176
middleware, 126, 149, 171
mobility, 129
model checking, 21

notion of concurrency, 71, 78, 87

O(-), 78-80
O, 70, 71, 80, 84, 85
ODBC, 89
ODMG, 74
Open Source, 4, 21
operational semantics, 16
Oracle, 89

P(-), 78-80
•p, 70, 71, 78, 80, 87
perception, 8, 11, 14, 24
percepts, 15, 23
Plan, 175, 180
plan, 8, 154, 161, 165
plan failure, 12
plan labels, 12
plan library, 8
planning

HTN, 73, 85
plans

apphcable, 8, 9
relevant, 8, 9

Portal, 188
Proactive, 175
Prometheus, 21, 176
PRS, 151, 181

RAP, 142
rational agents, 8
Reactive, 175
reasoning

probabilistic, 72, 78, 83
temporal, 72, 78, 83

reasoning cycle, 15, 18, 19
regular agent, 83
Relevance condition, 181
relevant plans, 15, 18
RMA, 131
RMI, 188
ROADMAP, 176
robots, airport security, 6
Robustness, 176
Roles, 184

5 , 70, 71, 74, 75, 80
SACI, 4, 26, 36
safeness, 77, 83

strong, 84-86

safety check, 88
selection functions, 14, 18
Sem, 70, 71
Semantic Web, 37
server, 71, 89, 91

ontology service, 90
registration, 89
thesaurus, 90
type, 90
yellow pages, 90, 92

SHOP, 72, 73, 83, 85
Sniffer Agent, 132
s e e Ace function, 23
Social, 175
Social Simulation, 37
software code, 71, 74

body of, 70, 74
sources of information, 23
sources of information, 10, 23
speech-act communication, 14
speech-act communication, 6
state

of an IMPACT agent, 71, 75, 77, 78, 80,
81,85,87

state-space reduction techniques, 21
status set, 78, 80, 88

feasible, 80
rational, 81

structural operational semantics, 14

r , 70, 71, 74
"tnow) ^9) 80
ta, 79
tai, 79
tap, 79, 80
taps, 79
tasc, 79
task networks

hierarchical, 73
Teams, 176, 184
test goal, 8
TT^, 79
triggering event, 8
Tropos, 176

UM-PRS, 181
urban growth, 37

View, 179

W(-),78, 79

Xnow, 77, 79, 80
XML, 149, 157
XML Schema, 157

	Cover
	Contents
	List of Figures
	Contributing Authors
	Preface
	Foreword
	Chapter 1 JASON AND THE GOLDEN FLEECE OFAGENT-ORIENTED PROGRAMMING
	Chapter 2 PROGRAMMING MULTI-AGENT SYSTEMS IN3APL
	Chapter 3 IMPACT: A MULTI-AGENT FRAMEWORKWITH DECLARATIVE SEMANTICS
	Chapter 4 CLAIM AND SYMPA:A PROGRAMMING ENVIRONMENT FORINTELLIGENT AND MOBILE AGENTS
	Chapter 5 JADE - A JAVA AGENT DEVELOPMENTFRAMEWORK
	Chapter 6 JADEX: A BDI REASONING ENGINE
	Chapter 7 JACRTM INTELLIGENT AGENTS:AN INDUSTRIAL STRENGTH PLATFORM
	Chapter 8 THE DEFACTO SYSTEM:COORDINATING HUMAN-AGENT TEAMSFOR THE FUTURE OF DISASTER RESPONSE*
	Chapter 9 ARTIMIS RATIONAL DIALOGUE AGENTTECHNOLOGY: AN OVERVIEW
	Appendix A: Comparison Criteria
	Appendix B: Jason Summary
	Appendix C: 3APL Summary
	Appendix D: IMPACT Summary
	Appendix E: CLAIM Summary
	Appendix F: JADE Summary
	Appendix G: Jadex Summary
	Appendix H: JACK Summary
	References
	Index

