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Preface

THE CONTEXT OF PARALLEL PROCESSING

The field of digital computer architecture has grown explosively in the past two decades.
Through a steady stream of experimental research, tool-building efforts, and theoretical
studies, the design of an instruction-set architecture, once considered an art, has been
transformed into one of the most quantitative branches of computer technology. At the same
time, better understanding of various forms of concurrency, from standard pipelining to
massive parallelism, and invention of architectural structures to support a reasonably efficient
and user-friendly programming model for such systems, has allowed hardware performance
to continue its exponential growth. Thistrend is expected to continue in the near future.

This explosive growth, linked with the expectation that performance will continue its
exponential rise with each new generation of hardware and that (in stark contrast to software)
computer hardware will function correctly as soon as it comes off the assembly line, hasits
down side. It has led to unprecedented hardware complexity and almost intolerable devel-
opment costs. The challenge facing current and future computer designers is to institute
simplicity where we now have complexity; to use fundamental theories being developed in
this area to gain performance and ease-of-use benefits from simpler circuits; to understand
the interplay between technological capabilities and limitations, on the one hand, and design
decisions based on user and application requirements on the other.

In computer designers' quest for user-friendliness, compactness, simplicity, high per-
formance, low cost, and low power, parallel processing plays a key role. High-performance
uniprocessors are becoming increasingly complex, expensive, and power-hungry. A basic
trade-off thus exists between the use of one or a small number of such complex processors,
at one extreme, and a moderate to very large number of simpler processors, at the other.
When combined with a high-bandwidth, but logically simple, interprocessor communication
facility, the latter approach leads to significant simplification of the design process. However,
two major roadblocks have thus far prevented the widespread adoption of such moderately
to massively parallel architectures. the interprocessor communication bottleneck and the
difficulty, and thus high cost, of agorithm/software devel opment.

Vil
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The above context is changing because of several factors. First, at very high clock rates,
the link between the processor and memory becomes very critical. CPUs can no longer be
designed and verified in isolation. Rather, an integrated processor/memory design optimiza-
tion is required, which makes the development even more complex and costly. VLS
technology now allows us to put more transistors on a chip than required by even the most
advanced superscalar processor. The bulk of these transistors are now being used to provide
additional on-chip memory. However, they can just as easily be used to build multiple
processors on a single chip. Emergence of multiple-processor microchips, aong with
currently available methods for glueless combination of several chips into a larger system
and maturing standards for parallel machine models, holds the promise for making parallel
processing more practical.

This is the reason parallel processing occupies such a prominent place in computer
architecture education and research. New parallel architectures appear with amazing regu-
larity in technical publications, while older architectures are studied and analyzed in novel
and insightful ways. The wealth of published theoretical and practical results on parallel
architectures and agorithms is truly awe-inspiring. The emergence of standard programming
and communication models has removed some of the concerns with compatibility and
software design issues in parallel processing, thus resulting in new designs and products with
mass-market appeal. Given the computation-intensive nature of many application areas (such
as encryption, physical modeling, and multimedia), parallel processing will continue to
thrive for years to come.

Perhaps, as parallel processing matures further, it will start to become invisible. Packing
many processors in a computer might constitute as much a part of a future computer
architect’s toolbox as pipelining, cache memories, and multiple instruction issue do today.
In this scenario, even though the multiplicity of processors will not affect the end user or
even the professional programmer (other than of course boosting the system performance),
the number might be mentioned in sales literature to lure customers in the same way that
clock frequency and cache size are now used. The challenge will then shift from making
parallel processing work to incorporating alarger number of processors, more economically
and in atruly seamless fashion.

THE GOALS AND STRUCTURE OF THIS BOOK

The field of parallel processing has matured to the point that scores of texts and reference
books have been published. Some of these books that cover parallel processing in genera
(as opposed to some specia aspects of the field or advanced/unconventiona parallel systems)
are listed at the end of this preface. Each of these books has its unique strengths and has
contributed to the formation and fruition of the field. The current text, Introduction to Parallel
Processing: Algorithms and Architectures, is an outgrowth of lecture notes that the author
has developed and refined over many years, beginning in the mid-1980s. Here are the most
important features of this text in comparison to the listed books:

1. Division of material into lecture-size chapters. In my approach to teaching, a lecture
is a more or less self-contained module with links to past lectures and pointers to
what will transpire in the future. Each lecture must have a theme or title and must
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proceed from motivation, to details, to conclusion. There must be smooth transitions
between lectures and a clear enunciation of how each lecture fits into the overall
plan. In designing the text, | have strived to divide the material into chapters, each
of which is suitable for one lecture (I-2 hours). A short lecture can cover the first
few subsections, while a longer lecture might deal with more advanced material
near the end. To make the structure hierarchical, as opposed to flat or linear, chapters
have been grouped into six parts, each composed of four closely related chapters
(see diagram on page xi).

2. Alarge number of meaningful problems. At least 13 problems have been provided
at the end of each of the 24 chapters. These are well-thought-out problems, many
of them class-tested, that complement the materia in the chapter, introduce new
viewing angles, and link the chapter material to topics in other chapters.

3. Emphasis on both the underlying theory and practical designs. The ability to cope
with complexity requires both a deep knowledge of the theoretical underpinnings
of parallel processing and examples of designs that help us understand the theory.
Such designs also provide hints/ideas for synthesis as well as reference points for
cost—performance comparisons. This viewpoint is reflected, e.g., in the coverage of
problem-driven parallel machine designs (Chapter 8) that point to the origins of the
butterfly and binary-tree architectures. Other examples are found in Chapter 16
where avariety of composite and hierarchical architectures are discussed and some
fundamental cost—performance trade-offs in network design are exposed. Fifteen
carefully chosen case studies in Chapters 21-23 provide additional insight and
motivation for the theories discussed.

4. Linking parallel computing to other subfields of computer design. Parallel comput-
ing is nourished by, and in turn feeds, other subfields of computer architecture and
technology. Examples of such links abound. In computer arithmetic, the design of
high-speed adders and multipliers contributes to, and borrows many methods from,
paralel processing. Some of the earliest parallel systems were designed by re-
searchers in the field of fault-tolerant computing in order to alow independent
multichannel computations and/or dynamic replacement of failed subsystems.
These links are pointed out throughout the book.

5. Wide coverage of important topics. The current text covers virtualy all important
architectural and algorithmic topicsin parallel processing, thus offering a balanced
and complete view of the field. Coverage of the circuit model and problem-driven
parallel machines (Chapters 7 and 8), some variants of mesh architectures (Chapter
12), composite and hierarchical systems (Chapter 16), which are becoming increas-
ingly important for overcoming VLSI layout and packaging constraints, and the
topicsin Part V (Chapters 17-20) do not all appear in other textbooks. Similarly,
other books that cover the foundations of parallel processing do not contain
discussions on practical implementation issues and case studies of the type found
in Part VI.

6. Unified and consistent notation/terminology throughout the text. | have tried very
hard to use consistent notation/terminology throughout the text. For example, n
always stands for the number of data elements (problem size) and p for the number
of processors. While other authors have done this in the basic parts of their texts,
there is a tendency to cover more advanced research topics by simply borrowing
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the notation and terminology from the reference source. Such an approach has the
advantage of making the transition between reading the text and the origina
reference source easier, but it is utterly confusing to the majority of the students
who rely on the text and do not consult the original references except, perhaps, to
write a research paper.

SUMMARY OF TOPICS

The six parts of this book, each composed of four chapters, have been written with the
following goals:

e Part | sets the stage, gives a taste of what is to come, and provides the needed
perspective, taxonomy, and analysis tools for the rest of the book.

e Part Il delimits the models of parallel processing from above (the abstract PRAM
model) and from below (the concrete circuit model), preparing the reader for everything
else that fallsin the middle.

e Part Il presents the scalable, and conceptually simple, mesh model of parallel process-
ing, which has become quite important in recent years, and also covers some of its
derivatives.

e Part IV covers low-diameter parallel architectures and their algorithms, including the
hypercube, hypercube derivatives, and a host of other interesting interconnection
topologies.

e Part V includes broad (architecture-independent) topics that are relevant to a wide range
of systems and form the stepping stones to effective and reliable parallel processing.

e Part VI deals with implementation aspects and properties of various classes of parallel
processors, presenting many case studies and projecting a view of the past and future
of the field.

POINTERS ON HOW TO USE THE BOOK

For classroom use, the topics in each chapter of this text can be covered in a lecture
spanning 1-2 hours. In my own teaching, | have used the chapters primarily for 1-1/2-hour
lectures, twice aweek, in a 10-week quarter, omitting or combining some chaptersto fit the
material into 18-20 lectures. But the modular structure of the text lends itself to other lecture
formats, self-study, or review of the field by practitioners. In the latter two cases, the readers
can view each chapter as a study unit (for 1 week, say) rather than as a lecture. 1deally, al
topics in each chapter should be covered before moving to the next chapter. However, if fewer
lecture hours are available, then some of the subsections located at the end of chapters can
be omitted or introduced only in terms of motivations and key resuilts.

Problems of varying complexities, from straightforward numerical examples or exercises
to more demanding studies or miniprojects, have been supplied for each chapter. These problems
form an integral part of the book and have not been added as afterthoughts to make the book
more attractive for use as a text. A total of 358 problems are included (1316 per chapter).
Assuming that two lectures are given per week, either weekly or biweekly homework can
be assigned, with each assignment having the specific coverage of the respective half-part
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Book Book Parts Half-Parts Chapters
Background and 1. Introduction to Parallelistn
PartI: Motivation 2. A Taste of Paralie! Algorithms
Fundamental
Concepts Complexity and 3. Panllel Algorithm Complexity
Models 4. Models of Parallel Processing
Abstract View of 5. PRAM and Basic Algorithms
PartII: Shared Memory - 6. More Shared-Memory Algorithms
Extreme
Models Circuit Model of 7. Sorting and Selection Networks
Parallel Systems 8. Other Circuit-Level Examples
g :g Data Movement 9. Sorting on & 2D Mesh or Torus
é’ X|| Paril: on 2D Armays 10. Routing on 8 2D Mesh or Torus
k Mesh-Based
Architectures Mesh Algorithms 11. Numerical 2D Mesh Algorithms
< || and Varants 12. Other Mesh-Related Architectures
The Hypercube 13. Hypercubes and Their Algorithms
PartIV: Architecture 14. Sorting and Routing on Hypercubes
Low-Diameter
% Architectures Hypercubic and 15. Other Hypercubic Architectures
|| Other Networks 16. A Sampler of Other Networks
8
Coordination and 17. Emulation and Scheduling
. Part V: Data Access 18. Data Stoeage, Input, and Output
Some Broad
g Topics Robustness and 19. Reliable Paralle] Processing
Ease of Use 20. System and Software Issucs
Control-Parallel 21. Shared-Memory MIMD Machines
Part VI: Systems 22, Mcssage-Passing MIMD Machines
Impl ation
Aspects Data Parallelism 23. Data-Paralle] SIMD Machines
and Conclusion 24. Past, Present, and Future

The structure of this book in parts, half-parts, and chapters.

(two chapters) or full part (four chapters) asits “title.” In this format, the half-parts, shown
above, provide a focus for the weekly lecture and/or homework schedule.

An instructor’s manual, with problem solutions and enlarged versions of the diagrams
and tables, suitable for reproduction as transparencies, is planned. The author’s detailed
syllabus for the course ECE 254B at UCSB is available at http://www.ece.ucsh.edu/courses/

syllabi/ece254b.html.

References to important or state-of-the-art research contributions and designs are
provided at the end of each chapter. These references provide good starting points for doing

in-depth studies or for preparing term papers/projects.
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New ideas in the field of parallel processing appear in papers presented at several annual
conferences, known as FMPC, ICPP, IPPS, SPAA, SPDP (now merged with IPPS), and in
archival journals such as | EEE Transactions on Computers [TCom], |EEE Transactions on
Parallel and Distributed Systems [TPDS], Journal of Parallel and Distributed Computing
[JPDC], Parallel Computing [ParC], and Parallel Processing Letters [PPL]. Tutoria and
survey papers of wide scope appear in IEEE Concurrency [Conc] and, occasiondly, in IEEE
Computer [Comp]. The articles in IEEE Computer provide excellent starting points for
research projects and term papers.
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Fundamental
Concepts

The field of parallel processing is concerned with architectural and algorithmic
methods for enhancing the performance or other attributes (e.g., cost-effective-
ness, reliability) of digital computers through various forms of concurrency. Even
though concurrent computation has been around since the early days of digital
computers, only recently has it been applied in a manner, and on a scale, that
leads to better performance, or greater cost-effectiveness, compared with vector
supercomputers. Like any other field of science/technology, the study of parallel
architectures and algorithms requires motivation, a big picture showing the
relationships between problems and the various approaches to solving them,
and models for comparing, connecting, and evaluating new ideas. This part,
which motivates us to study parallel processing, paints the big picture, and
provides some needed background, is composed of four chapters:

e Chapter 1: Introduction to Parallelism

e Chapter 2: A Taste of Parallel Algorithms
» Chapter 3: Parallel Algorithm Complexity
« Chapter 4: Models of Parallel Processing
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Introduction to
Parallelism

This chapter sets the context in which the material in the rest of the book will
be presented and reviews some of the challenges facing the designers and users
of parallel computers. The chapter ends with the introduction of useful metrics
for evaluating the effectiveness of parallel systems. Chapter topics are

e 1.1. Why parallel processing?

e 1.2. A motivating example

e 1.3. Parallel processing ups and downs
o 1.4. Types of parallelism: A taxonomy
« 1.5. Roadblocks to parallel processing
o 1.6. Effectiveness of parallel processing
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1.1. WHY PARALLEL PROCESSING?

The quest for higher-performance digital computers seems unending. In the past two
decades, the performance of microprocessors has enjoyed an exponential growth. The growth
of microprocessor speed/performance by a factor of 2 every 18 months (or about 60% per
year) isknown as Moore' s law. This growth is the result of a combination of two factors:

1. Increasein complexity (related both to higher device density and to larger size) of
VLS| chips, projected to rise to around 10 M transistors per chip for microproces-
sors, and 1B for dynamic random-access memories (DRAMS), by the year 2000
[SIA94]

2. Introduction of, and improvements in, architectural features such as on-chip cache
memories, large instruction buffers, multiple instruction issue per cycle, multi-
threading, deep pipelines, out-of-order instruction execution, and branch prediction

Moore'slaw was originally formulated in 1965 in terms of the doubling of chip complexity
every year (later revised to every 18 months) based only on a small number of data points
[Scha97]. Moore's revised prediction matches almost perfectly the actual increases in the
number of transistors in DRAM and microprocessor chips.

Moore's law seems to hold regardless of how one measures processor performance:
counting the number of executed instructions per second (IPS), counting the number of
floating-point operations per second (FLOPS), or using sophisticated benchmark suites
that attempt to measure the processor's performance on real applications. This is because
all of these measures, though numerically different, tend to rise at roughly the same rate.
Figure 1.1 shows that the performance of actual processors has in fact followed Moore's
law quite closely since 1980 and is on the verge of reaching the GIPS (giga IPS = 10°
IPS) milestone.

Even though it is expected that Moore's law will continue to hold for the near future,
there is alimit that will eventually be reached. That some previous predictions about when
the limit will be reached have proven wrong does not alter the fact that a limit, dictated by
physical laws, does exist. The most easily understood physical limit is that imposed by the
finite speed of signal propagation along a wire. This is sometimes referred to as the
speed-of-light argument (or limit), explained as follows.

The Speed-of-Light Argument. The speed of light is about 30 cm/ns. Signals travel
on awire at a fraction of the speed of light. If the chip diameter is 3 cm, say, any computation
that involves signa transmission from one end of the chip to another cannot be executed
faster than 10'° times per second. Reducing distances by a factor of 10 or even 100 will only
increase the limit by these factors; we still cannot go beyond 10" computations per second.
To relate the above limit to the instruction execution rate (MIPS or FLOPS), we need to
estimate the distance that signals must travel within an instruction cycle. Thisis not easy to
do, given the extensive use of pipelining and memory-latency-hiding techniques in modern
high-performance processors. Despite this difficulty, it should be clear that we are in fact not
very far from limits imposed by the speed of signal propagation and several other physical
laws.
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1980 1990 2000
Calendar Year

Figure 1.1. The exponential growth of microprocessor performance, known as Moore’s law,
shown over the past two decades.

The speed-of-light argument suggests that once the above limit has been reached, the
only path to improved performance is the use of multiple processors. Of course, the same
argument can be invoked to conclude that any parallel processor will also be limited by the
speed at which the various processors can communicate with each other. However, because
such communication does not have to occur for every low-level computation, the limit is less
serious here. In fact, for many applications, a large number of computation steps can be
performed between two successive communication steps, thus amortizing the communica-
tion overhead.

Here is another way to show the need for parallel processing. Figure 1.2 depicts the
improvement in performance for the most advanced high-end supercomputers in the same
20-year period covered by Fig. 1.1. Two classes of computers have been included: (1)
Cray-type pipelined vector supercomputers, represented by the lower straight line, and (2)
massively parallel processors (MPPs) corresponding to the shorter upper lines [Bell92].

We see from Fig. 1.2 that the first class will reach the TFLOPS performance benchmark
around the turn of the century. Even assuming that the performance of such machines will
continue to improve at this rate beyond the year 2000, the next milestone, i.e., PFLOPS (peta
FLOPS = 10" FLOPS) performance, will not be reached until the year 2015. With massively
parallel computers, TFLOPS performance is already at hand, albeit at arelatively high cost.
PFLOPS performance within this class should be achievable in the 2000-2005 time frame,
again assuming continuation of the current trends. In fact, we already know of one serious
roadblock to continued progress at this rate: Research in the area of massively parallel
computing is not being funded at the levelsit enjoyed in the 1980s.

But who needs supercomputers with TFLOPS or PFL OPS performance? Applications
of state-of-the-art high-performance computers in military, space research, and climate
modeling are conventional wisdom. Lesser known are applications in auto crash or engine
combustion simulation, design of pharmaceuticals, design and evaluation of complex ICs,
scientific visualization, and multimedia. In addition to these areas, whose current computa-
tional needs are met by existing supercomputers, there are unmet computational needs in
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......................................................................

Supercomputer Performance

.....................................................................

1880 1990 2000
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Figure 1.2. The exponential growth in supercomputer performance over the past two decades
[Bell9z2].

aerodynamic simulation of an entire aircraft, modeling of global climate over decades, and
investigating the atomic structures of advanced materials.

Let us consider a few specific applications, in the area of numerical simulation for
validating scientific hypotheses or for developing behavioral models, where TFLOPS
performanceis required and PFL OPS performance would be highly desirable [Quin94].

To learn how the southern oceans transport heat to the South Pole, the following model
has been developed at Oregon State University. The ocean is divided into 4096 regions E-W,
1024 regions N—S, and 12 layersin depth (50 M 3D cells). A single iteration of the model
simulates ocean circulation for 10 minutes and involves about 30B floating-point operations.
To carry out the ssmulation for 1 year, about 50,000 iterations are required. Simulation for
6 years would involve 10 floating-point operations.

In the field of fluid dynamics, the volume under study may be modeled by a 103 x 103
x 10° lattice, with about 103 floating-point operations needed per point over 10*time steps.
This too translates to 10 floating-point operations.

Asafina example, in Monte Carlo simulation of anuclear reactor, about 10 particles
must be tracked, as about 1 in 10° particles escape from a nuclear reactor and, for accuracy,
we need at least 10° escapes in the simulation. With 10% floating-point operations needed per
particle tracked, the total computation constitutes about 10° floating-point operations.

From the above, we see that 10"°~10 floating-point operations are required for many
applications. If we consider 102 —10* seconds a reasonable running time for such computa-
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tions, the need for TFLOPS performance is evident. In fact, researchers have aready begun
working toward the next milestone of PFLOPS performance, which would be needed to run
the above models with higher accuracy (e.g., 10 times finer subdivisions in each of three
dimensions) or for longer durations (more steps).

The motivations for parallel processing can be summarized as follows:

1. Higher speed, or solving problems faster. This is important when applications have
“hard” or “soft” deadlines. For example, we have at most a few hours of computation
time to do 24-hour wesather forecasting or to produce timely tornado warnings.

2. Higher throughput, or solving more instances of given problems. Thisisimportant
when many similar tasks must be performed. For example, banks and airlines,
among others, use transaction processing systems that handle large volumes of data.

3. Higher computational power, or solving larger problems. This would alow us to
use very detailed, and thus more accurate, models or to carry out simulation runs
for longer periods of time (e.g., 5-day, as opposed to 24-hour, weather forecasting).

All three aspects above are captured by a figure-of-merit often used in connection with
paralel processors: the computation speed-up factor with respect to a uniprocessor. The
ultimate efficiency in parallel systemsisto achieve a computation speed-up factor of p with
p processors. Although in many cases this ideal cannot be achieved, some speed-up is
generaly possible. The actual gain in speed depends on the architecture used for the system
and the algorithm run on it. Of course, for atask that is (virtually) impossible to perform on
a single processor in view of its excessive running time, the computation speed-up factor can
rightly be taken to be larger than p or even infinite. This situation, which is the analogue of
several men moving a heavy piece of machinery or furniture in afew minutes, whereas one
of them could not moveit at al, is sometimes referred to as parallel synergy.

This book focuses on the interplay of architectural and algorithmic speed-up tech-
niques. More specifically, the problem of algorithm design for general-purpose paralel
systems and its “converse,” the incorporation of architectural features to help improve
algorithm efficiency and, in the extreme, the design of algorithm-based special-purpose
paralel architectures, are considered.

1.2. A MOTIVATING EXAMPLE

A major issue in devising a parallel algorithm for a given problem is the way in which
the computational load is divided between the multiple processors. The most efficient scheme
often depends both on the problem and on the parallel machine's architecture. This section
exposes some of the key issuesin parallel processing through a simple example [Quin94].

Consider the problem of constructing the list of al prime numbers in the interval [1, n]
for a given integer n > 0. A simple agorithm that can be used for this computation is the
sieve of Eratosthenes. Start with the list of numbers 1, 2, 3, 4, .. ., nrepresented as a “mark”
bit-vector initialized to 1000 . . . 00. In each step, the next unmarked number m (associated
with a 0 in element m of the mark bit-vector) is a prime. Find this element m and mark all
multiples of m beginning with m2. When m? > n, the computation stops and all unmarked
elements are prime numbers. The computation steps for n = 30 are shown in Fig. 1.3.
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Figure 1.3. The sieve of Eratosthenes yielding a list of 10 primes for n
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Figure 1.4. Schematic representation of single-processor solution for the sieve of Eratosthenes.

Figure 1.4 shows a single-processor implementation of the algorithm. The variable
“current prime” isinitialized to 2 and, in later stages, holds the latest prime number found.
For each prime found, “index” is initialized to the sguare of this prime and is then
incremented by the current prime in order to mark all of its multiples.

Figure 1.5 shows our first parallel solution using p processors. Thelist of numbers and
the current prime are stored in a shared memory that is accessible to all processors. Anidle
processor simply refers to the shared memory, updates the current prime, and uses its private
index to step through the list and mark the multiples of that prime. Division of work isthus
self-regulated. Figure 1.6 shows the activities of the processors (the prime they are working
on at any given instant) and the termination time for n = 1000 and 1 < p < 3. Note that using
more than three processors would not reduce the computation time in this control-parallel
scheme.

We next examine a data-parallel approach in which the bit-vector representing the n
integers is divided into p equal-length segments, with each segment stored in the private
memory of one processor (Fig. 1.7). Assume that p < Vn, so that al of the primes whose
multiples have to be marked reside in Processor 1, which acts as a coordinator: It finds the
next prime and broadcasts it to all other processors, which then proceed to mark the numbers
in their sublists. The overall solution time now consists of two components: the time spent
on transmitting the selected primes to all processors (communication time) and the time spent
by individual processors marking their sublists (computation time). Typically, communica-
tion time grows with the number of processors, though not necessarily in alinear fashion.
Figure 1.8 shows that because of the abovementioned communication overhead, adding more
processors beyond a certain optimal number does not lead to any improvement in the total
solution time or in attainable speed-up.

i Index i Index | i Index ,
Py i P2 T Fee iPe [ F
R L A S ;

...........................................................

g

2
o
g
<

..........................................................

Figure 1.5. Schematic representation of a control-parallel solution for the sieve of Eratosthenes.
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Figure 1.6. Control-parallel realization or the sieve of Eratosthenes with n = 1000 and 1< p<3.
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Figure 1.7. Data-parallel realization of the sieve of Eratosthenes.

Finally, consider the data-parallel solution, but with data 1/0 time aso included in the
total solution time. Assuming for simplicity that the 1/O time is constant and ignoring
communication time, the 1/O time will constitute a larger fraction of the overall solution time
as the computation part is speeded up by adding more and more processors. If 1/0 takes 100
seconds, say, then there is little difference between doing the computation part in 1 second
or in 0.01 second. We will later see that such “sequentia” or “unparallelizable” portions of
computations severely limit the speed-up that can be achieved with parallel processing.
Figure 1.9 shows the effect of 1/0 on the total solution time and the attainabl e speed-up.

Computation 8 -+ I
time N
6 4 "
\ 44 —
m'n.,h Solution time
Com- LY 2l
munication e
uf},s—-nrn-“--.w«ul” R . ' l l .
0 4 8 12 16 o
Processors P s

Figure 1.8. Trade-off between communication time and computation time in the data-parallel
realization of the sieve of Eratosthenes.
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Figure 1.9. Effect of a constant I/O time on the data-parallel realization of the sieve of
Eratosthenes.

1.3. PARALLEL PROCESSING UPS AND DOWNS

L. F. Richardson, a British meteorologist, was the first person to attempt to forecast the
weather using numerical computations. He started to formulate his method during the First
World War while serving in the army ambulance corps. He estimated that predicting the
weather for a 24-hour period would require 64,000 slow “computers’ (humans + mechanical
calculators) and even then, the forecast would take 12 hours to complete. He had the
following idea or dream:

Imagine alarge hall like atheater. . . . The walls of this chamber are painted to form a
map of the globe. . . . A myriad of computers are at work upon the weather on the part
of the map where each sits, but each computer attends to only one equation or part of an
equation. The work of each region is coordinated by an officia of higher rank. Numerous
little ‘night signs’ display the instantaneous values so that neighbouring computers can
read them. . . . One of [the conductor’s] duties is to maintain a uniform speed of progress
indl parts of theglobe. . . . But instead of waving a baton, he turns a beam of rosy light
upon any region that is running ahead of the rest, and a beam of blue light upon those
that are behindhand. [See Fig. 1.10.]

Parallel processing, in the literal sense of the term, is used in virtually every modern
computer. For example, overlapping I/O with computation is aform of parallel processing,
as is the overlap between instruction preparation and execution in a pipelined processor.
Other forms of parallelism or concurrency that are widely used include the use of multiple
functional units (e.g., separate integer and floating-point ALUs or two floating-point multi-
pliers in one ALU) and multitasking (which allows overlap between computation and
memory load necessitated by a page fault). Horizontal microprogramming, and its higher-
level incarnation in very-long-instruction-word (VLIW) computers, also alows some paral-
Ielism. However, in this book, the term parallel processing is used in arestricted sense of
having multiple (usually identical) processors for the main computation and not for the I/O
or other peripheral activities.

The history of parallel processing has had its ups and downs (read company formations
and bankruptcies!) with what appears to be a 20-year cycle. Serious interest in parallel
processing started in the 1960s. ILLIAC 1V, designed at the University of Illinois and later
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Figure 1.10. Richardson’s circular theater for weather forecasting calculations.

built and operated by Burroughs Corporation, was the first large-scale parallel computer
implemented; its 2D-mesh architecture with a common control unit for all processors was
based on theories developed in the late 1950s. It was to scale to 256 processors (four
quadrants of 64 processors each). Only one 64-processor quadrant was eventually built, but
it clearly demonstrated the feasibility of highly parallel computers and also revealed some
of the difficultiesin their use.

Commercid interest in parallel processing resurfaced in the 1980s. Driven primarily by
contracts from the defense establishment and other federal agencies in the United States,
numerous companies were formed to develop parallel systems. Established computer ven-
dors also initiated or expanded their parallel processing divisions. However, three factors led
to another recess:

1. Government funding in the United States and other countries dried up, in part related
to the end of the cold war between the NATO allies and the Soviet bloc.

2. Commercia usersin banking and other data-intensive industries were either satu-
rated or disappointed by application difficulties.

3. Microprocessors developed so fast in terms of performance/cost ratio that custom-
designed parallel machines always lagged in cost-effectiveness.

Many of the newly formed companies went bankrupt or shifted their focus to developing
software for distributed (workstation cluster) applications.

Driven by the Internet revolution and its associated “information providers,” a third
resurgence of parallel architectures is imminent. Centralized, high-performance machines
may be needed to satisfy the information processing/access needs of some of these providers.
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1.4. TYPES OF PARALLELISM: A TAXONOMY

Parallel computers can be divided into two main categories of control flow and data
flow. Control-flow parallel computers are essentially based on the same principles as the
sequential or von Neumann computer, except that multiple instructions can be executed at
any given time. Data-flow parallel computers, sometimes referred to as “non-von Neumann,”
are completely different in that they have no pointer to active instruction(s) or a locus of
control. The control is totally distributed, with the availability of operands triggering the
activation of instructions. In what follows, we will focus exclusively on control-flow parallel
computers.

In 1966, M. J. Flynn proposed a four-way classification of computer systems based on
the notions of instruction streams and data streams. Flynn's classification has become
standard and is widely used. Flynn coined the abbreviations SISD, SIMD, MISD, and MIMD
(pronounced “sis-dee,” “sim-dee,” and so forth) for the four classes of computers shown in
Fig. 1.11, based on the number of instruction streams (single or multiple) and data streams
(single or multiple) [Flyn96]. The SISD class represents ordinary “uniprocessor” machines.
Computersin the SIMD class, with several processors directed by instructions issued from
a central control unit, are sometimes characterized as “array processors.” Machinesin the
MISD category have not found widespread application, but one can view them as generalized
pipelines in which each stage performs a relatively complex operation (as opposed to
ordinary pipelines found in modern processors where each stage does a very simple
instruction-level operation).

The MIMD category includes a wide class of computers. For this reason, in 1988, E. E.
Johnson proposed a further classification of such machines based on their memory structure
(global or distributed) and the mechanism used for communication/synchronization (shared
variables or message passing). Again, one of the four categories (GMMP) is not widely used.
The GMSV class is what is loosely referred to as (shared-memory) multiprocessors. At the
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Figure 1.11. The Flynn—Johnson classification of computer systems.
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other extreme, the DMMP class is known as (distributed-memory) multicomputers. Finaly,
the DMSV class, which is becoming popular in view of combining the implementation ease
of distributed memory with the programming ease of the shared-variable scheme, is some-
times called distributed shared memory. When all processors in a MIMD-type machine
execute the same program, the result is sometimes referred to as single-program multiple-
data [SPMD (spim-deg)].

Although Fig. 1.11 lumps al SIMD machines together, there are in fact variations
similar to those suggested above for MIMD machines. At least conceptualy, there can be
shared-memory and distributed-memory SIMD machines in which the processors commu-
nicate by means of shared variables or explicit message passing.

Anecdote. The Flynn-Johnson classification of Fig. 1.11 contains eight four-letter
abbreviations. There are many other such abbreviations and acronyms in parallel processing,
examples being CISC, NUMA, PRAM, RISC, and VLIW. Even our journals (JPDC, TPDS)
and conferences (ICPP, IPPS, SPDP, SPAA) have not escaped this fascination with four-letter
abbreviations. The author has a theory that an individual cannot be considered a successful
computer architect until she or he has coined at |least one, and preferably a group of two or
four, such abbreviations! Toward this end, the author coined the acronyms SINC and FINC
(Scant/Full Interaction Network Cell) as the communication network counterparts to the
popular RISC/CISC dichotomy [Parh95]. Alas, the use of these acronyms is not yet as
widespread as that of RISC/CISC. In fact, they are not used at al.

1.5. ROADBLOCKS TO PARALLEL PROCESSING

Over the years, the enthusiasm of parallel computer designers and researchers has been
counteracted by many objections and cautionary statements. The most important of these are
listed in this section [Quin87]. The list begins with the less serious, or obsolete, objections
and ends with Amdahl’s law, which perhaps constitutes the most important challenge facing
paralel computer designers and users.

1. Grosch's law (economy of scale applies, or computing power is proportional to the
square of cost). If thislaw did in fact hold, investing money in p processors would
be foolish as a single computer with the same total cost could offer p? times the
performance of one such processor. Grosch’s law was formulated in the days of
giant mainframes and actually did hold for those machines. In the early days of
paralel processing, it was offered as an argument against the cost-effectiveness of
paralel machines. However, we can now safely retire thislaw, as we can buy more
MFLOPS computing power per dollar by spending on micros rather than on supers.
Note that even if this law did hold, one could counter that there is only one “fastest”
single-processor computer and it has a certain price; you cannot get a more powerful
one by spending more.

2. Minsky's conjecture (speed-up is proportional to the logarithm of the number p of
processors). This conjecture has its roots in an analysis of data access conflicts
assuming random distribution of addresses. These conflicts will slow everything
down to the point that quadrupling the number of processors only doubles the
performance. However, data access patterns in rea applications are far from
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random. Most applications have a pleasant amount of data access regularity and
locality that help improve the performance. One might say that the log p speed-up
rule is one side of the coin that has the perfect speed-up p on the flip side. Depending
on the application, real speed-up can range from log pto p (p/log p being a
reasonable middle ground).

3. The tyranny of IC technology (because hardware becomes about 10 times faster
every 5 years, by the time a parallel machine with 10-fold performance is designed
and implemented, uniprocessors will be just as fast). This objection might be valid
for some special-purpose systems that must be built from scratch with “old”
technology. Recent experience in parallel machine design has shown that off-the-
shelf components can be used in synthesizing massively parallel computers. If the
design of the parallel processor is such that faster microprocessors can simply be
plugged in as they become available, they too benefit from advancements in IC
technology. Besides, why restrict our attention to parallel systems that are designed
to be only 10 times faster rather than 100 or 1000 times?

4. The tyranny of vector supercomputers (vector supercomputers, built by Cray,
Fujitsu, and other companies, are rapidly improving in performance and addition-
ally offer afamiliar programming model and excellent vectorizing compilers; why
bother with parallel processors?). Figure 1.2 contains a possible answer to this
objection. Besides, not al computationally intensive applications deal with vectors
or matrices; some are in fact quite irregular. Note, also, that vector and parallel
processing are complementary approaches. Most current vector supercomputers do
in fact comein multiprocessor configurations for increased performance.

5. The software inertia (billions of dollars worth of existing software makes it hard to
switch to parallel systems; the cost of converting the “dusty decks’ to parallel
programs and retraining the programmersis prohibitive). This objection isvalid in
the short term; however, not all programs needed in the future have already been
written. New applications will be developed and many new problems will become
solvable with increased performance. Students are aready being trained to think
paralel. Additionaly, tools are being developed to transform sequential code into
paralel code automatically. In fact, it has been argued that it might be prudent to
develop programs in parallel languages even if they are to be run on sequential
computers. The added information about concurrency and data dependencies would
allow the sequential computer to improve its performance by instruction prefetch-
ing, data caching, and so forth.

6. Amdahl’'s law (speed-up < 1/[f+ (1 - f)ip] = p/[1 + f(p— 1)]; asmall fraction f of
inherently sequential or unparallelizable computation severely limits the speed-up
that can be achieved with p processors). This is by far the most important of the six
objections/warnings. A unit-time task, for which the fraction f is unparallelizable
(so it takes the same time f on both sequential and parallel machines) and the
remaining 1 — f isfully paralelizable [so it runsin time (1 — f)/p on a p-processor
maching], has a running time of f + (1 — f)/p on the paralel machine, hence
Amdahl’s speed-up formula.

Figure 1.12 plots the speed-up as a function of the number of processors for different values
of the inherently sequential fraction f. The speed-up can never exceed /f, no matter how
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Figure 1.12. The limit on speed-up according to Amdahl’s law.

Figure 1.13. Task graph exhibiting limited inherent parallelism
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many processors are used. Thus, for f = 0.1, speed-up has an upper bound of 10. Fortunately,

there exist applications for which the sequential overhead is very small. Furthermore, the
sequential overhead need not be a constant fraction of the job independent of problem size.
In fact, the existence of applications for which the sequential overhead, as a fraction of the
overall computational work, diminishes has been demonstrated.

Closely related to Amdahl’s law is the observation that some applications lack inherent
parallelism, thus limiting the speed-up that is achievable when multiple processors are used.
Figure 1.13 depicts a task graph characterizing a computation. Each of the numbered nodes
in the graph is a unit-time computation and the arrows represent data dependencies or the
prerequisite structure of the graph. A single processor can execute the 13-node task graph
shown in Fig. 1.13 in 13 time units. Because the critical path from input node 1 to output
node 13 goes through 8 nodes, a parallel processor cannot do much better, as it needs at least
8 time units to execute the task graph. So, the speed-up associated with this particular task
graph can never exceed 1.625, no matter how many processors are used.

1.6. EFFECTIVENESS OF PARALLEL PROCESSING

Throughout the book, we will be using certain measures to compare the effectiveness
of various parallel algorithms or architectures for solving desired problems. The following
definitions and notations are applicable [Lee80]:

p Number of processors
W(p) Total number of unit operations performed by the p processors; this is often
referred to as computational work or energy
T(p) Execution time with p processors; clearly, T(1) = W(1) and T(p) < W(p)

T(1)
Sp)  Speed-up 1)

E(p) Efficiency:%
R(p) Redundancy = XV“%%
U(p)  Utilization :pl"’%
Q(p)  Quality :ﬁ%

The significance of each measure is self-evident from its name and defining equation given
above. It is not difficult to establish the following relationships between these parameters.
The proof isleft as an exercise.

1<8(p)<p
U(p) = R(P)E(p)
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Figure 1.14. Computation graph for finding the sum of 16 numbers.

E(p)=57(”)

S@)
R(p)

%SE(p)SU(p)sl

QW) = E(p)

1
1SRp)s—<
») () p

QPysSp)<p

Example. Finding the sum of 16 numbers can be represented by the binary-tree
computation graph of Fig. 1.14 with T(1) = W(1) = 15. Assume unit-time additions and ignore
al ese. With p = 8 processors, we have

W) = 15 T(@®) =4 E(8) = 15/(8 x 4) = 47%
S(8) = 15/4 = 3.75 R@®)=15/15=1  Q(8) =176

Essentially, the 8 processors perform all of the additions at the same tree level in each time
unit, beginning with the leaf nodes and ending at the root. The relatively low efficiency is
the result of limited parallelism near the root of the tree.

Now, assuming that addition operations that are vertically aligned in Fig. 1.14 are to be
performed by the same processor and that each interprocessor transfer, represented by an
oblique arrow, also requires one unit of work (time), the results for p = 8 processors become
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W(8) = 22 T(®) =7 E(8) = 15/(8 x 7) = 27%
S@® =157=214  R(®)=2215=147 Q(8)=0.39

The efficiency in this latter case is even lower, primarily because the interprocessor transfers
consgtitute overhead rather than useful operations.

PROBLEMS

11. Ocean heat transport modeling
Assume continuation of the trendsin Figs. 1.1 and 1.2:

a. When will a single microprocessor be capable of simulating 10 years of globa ocean
circulation, as described in Section 1.1, overnight (5:00 Pm to 8:00 Am the following day),
assuming a doubling of the number of divisionsin each of the three dimensions? Y ou can
assume that a microprocessor’'s FLOPS rating is roughly half of its MIPS rating.

b. When will avector supercomputer be capable of the computation defined in part (8)?

c. When will a$240M massively parallel computer be capable of the computation of part (2)?

d. When will a$30M massively parallel computer be capable of the computation of part (a)?

12. Micros versus supers
Draw the performance trend line for microprocessors on Fig. 1.2, assuming that a microproc-
essor's FLOPS rating is roughly half of its MIPS rating. Compare and discuss the observed
trends.

13. Sieve of Eratosthenes
Figure 1.6 shows that in the control-parallel implementation of the sieve of Eratosthenes
algorithm, a single processor is aways responsible for sieving the multiples of 2. For n= 1000,
this is roughly 35% of the total work performed. By Amdahl’s law, the maximum possible
speed-up for p=2and f =0.35is1.48. Yet, for p = 2, we note a speed-up of about 2 in Fig.
1.6. What is wrong with the above reasoning?

14. Sieve of Eratosthenes
Consider the data-parallel implementation of the sieve of Eratosthenes agorithm for n = 108
Assume that marking of each cell takes 1 time unit and broadcasting a value to al processors
takes b time units.

a. Plot three speed-up curves similar to Fig. 1.8 for b =1, 10, and 100 and discuss the results.
b. Repeat part (a), thistime assuming that the broadcast timeis alinear function of the number
of processors: b=ap+ B, with (a, B) = (5, 1), (5, 10), (5, 100).

15. Sieve of Eratosthenes
Consider the data-parallel implementation of the sieve of Eratosthenes algorithm for n = 108,
Assume that marking of each cell takes 1 time unit and broadcasting m numbersto all processors
takes b + cmtime units, where b and ¢ are constants. For each of the values 1, 10, and 100 for
the parameter b, determine the range of values for ¢ where it would be more cost-effective for
Processor 1 to send the list of al primes that it is holding to all other processors in a single
message before the actual markings begin.
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Sieve of Eratosthenes

a.  Noting that 2 is the only even prime, propose a modification to the sieve of Eratosthenes
algorithm that requires less storage.

b. Draw adiagram, similar to Fig. 1.6, for the control-parallel implementation of the improved
agorithm. Derive the speed-ups for two and three processors.

c. Compute the speed-up of the data-parallel implementation of the improved agorithm over
the sequential version.

d. Compare the speed-ups of parts (b) and (c) with those obtained for the original agorithm.

Amdahl’s law

Amdahl’s law can be applied in contexts other than parallel processing. Suppose that a
numerical application consists of 20% floating-point and 80% integer/control operations (these
are based on operation counts rather than their execution times). The execution time of a
floating-point operation is three times as long as other operations. We are considering a redesign
of the floating-point unit in a microprocessor to make it faster.

a. Formulate a more general version of Amdahl’s law in terms of selective speed-up of a
portion of a computation rather than in terms of parallel processing.

b. How much faster should the new floating-point unit be for 25% overall speed improve-
ment?

c. What is the maximum speed-up that we can hope to achieve by only modifying the
floating-point unit?

Amdahl’s law

a.  Represent Amdahl’s law in terms of atask or computation graph similar to that in Fig. 1.13.
Hint: Use an input and an output node, each with computation time f/2, where f is the
inherently sequentia fraction.

b. Approximate the task/computation graph of part (a) with one having only unit-time nodes.

Parallel processing effectiveness

Consider two versions of the task graph in Fig. 1.13. Version U corresponds to each node
requiring unit computation time. Version E/O corresponds to each odd-numbered node being
unit-time and each even-numbered node taking twice as long.

Convert the E/O version to an equivalent V version where each node is unit-time.

Find the maximum attainable speed-up for each of the U and V versions.

What is the minimum number of processors needed to achieve the speed-ups of part (b)?
What is the maximum attainable speed-up in each case with three processors?

Which of the U and V versions of the task graph would you say is “more parallel” and
why?

PoepoTe

Parallel processing effectiveness
Prove the relationships between the parameters in Section 1.6.

Parallel processing effectiveness

An image processing application problem is characterized by 12 unit-time tasks: (1) an input
task that must be completed before any other task can start and consumes the entire bandwidth
of the single-input device available, (2) 10 completely independent computational tasks, and
(3) an output task that must follow the completion of all other tasks and consumes the entire
bandwidth of the single-output device available. Assume the availability of one input and one
output device throughout.
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112,

113.

a. Draw thetask graph for this image processing application problem.

b. What is the maximum speed-up that can be achieved for this application with two
processors?

c. What is an upper bound on the speed-up with parallel processing?

d. How many processors are sufficient to achieve the maximum speed-up derived in part (c)?

e. What is the maximum speed-up in solving five independent instances of the problem on
two processors?

f. What isan upper bound on the speed-up in parallel solution of 100 independent instances
of the problem?

g. How many processors are sufficient to achieve the maximum speed-up derived in part (f)?

h. What is an upper bound on the speed-up, given a steady stream of independent problem
instances?

Parallelism in everyday life
Discuss the various forms of parallelism used to speed up the following processes:

a  Student registration at a university.
b. Shopping at a supermarket.
c. Taking an elevator in a high-rise building.

Parallelism for fame or fortune

In 1997, Andrew Bedle, a Dallas banker and amateur mathematician, put up a gradualy
increasing prize of up to U.S. $50,000 for proving or disproving his conjecture that if a9+ b’
= cS (whereall termsareintegersand g, r, s > 2), then a, b, and ¢ have acommon factor. Bea€e's
conjecture is, in effect, a general form of Fermat’s Last Theorem, which asserts that ah+ b" =
c" has no integer solution for n > 2. Discuss how parallel processing can be used to claim the
prize.
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A Taste of Parallel
Algorithms

In this chapter, we examine five simple building-block parallel operations
(defined in Section 2.1) and look at the corresponding algorithms on four simple
parallel architectures: linear array, binary tree, 2D mesh, and a simple shared-
variable computer (see Section 2.2). This exercise will introduce us to the nature
of parallel computations, the interplay between algorithm and architecture, and
the complexity of parallel computations (analyses and bounds). Also, the build-
ing-block computations are important in their own right and will be used
throughout the book. We will study some of these architectures and algorithms
in more depth in subsequent chapters. Chapter topics are

* 2.1. Some simple computations

* 2.2. Some simple architectures

¢ 2.3. Algorithms for a linear array

* 2.4. Algorithms for a binary tree

* 2.5. Algorithms for a 2D mesh

® 2.6. Algorithms with shared variables

25
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2.1. SOME SIMPLE COMPUTATIONS
In this section, we define five fundamental building-block computations:

Semigroup (reduction, fan-in) computation

Parallel prefix computation

Packet routing

Broadcasting, and its more general version, multicasting
Sorting records in ascending/descending order of their keys

ok owdE

Semigroup Computation. Let J be an associative binary operator; i.e, (x O y) O z
=x0 (yO z)fordl x,y,z0O S A semigroup is simply a pair (S, O), where Sis a set of
elements on which [ is defined. Semigroup (also known as reduction or fan-in) computation
is defined as: Given alist of nvaluesxy, X, , . . ., X,_4, compute X, 0 x, O ... O x,_, . Common
examples for the operator O include +, x, 00, O, d, n, O, max, min. The operator 0 may or
may not be commutative, i.e., it may or may not satisfy x 0 y=y 0O x (all of the above
examples are, but the carry computation, e.g., isnot). Thislast point isimportant; while the
parallel agorithm can compute chunks of the expression using any partitioning scheme, the
chunks must eventually be combined in left-to-right order. Figure 2.1 depicts a semigroup
computation on a uniprocessor.

Parallel Prefix Computation. With the same assumptions as in the preceding para-
graph, a parallel prefix computation is defined as simultaneously evaluating al of the prefixes
of the expression xg 0 Xy ... 0 X35 i.€, X Xo O X, % O % O X%, ..., X0 x, 0. ..
0 X,4. Note that the ith prefix expressionis § = %y 0 x, 00 . . . 0 x;. The comment about
commutativity, or lack thereof, of the binary operator O applies here as well. The graph
representing the prefix computation on a uniprocessor is similar to Fig. 2.1, but with the
intermediate values also output.

Packet Routing. A packet of information resides at Processor i and must be sent to
Processor j. The problem is to route the packet through intermediate processors, if needed,

*o
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Figure 2.1. Semigroup computation on a uniprocessor.
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such that it gets to the destination as quickly as possible. The problem becomes more
challenging when multiple packets reside at different processors, each with its own destina-
tion. In this case, the packet routes may interfere with one another as they go through common
intermediate processors. When each processor has at most one packet to send and one packet
to receive, the packet routing problem is called one-to-one communication or 1-1 routing.

Broadcasting. Given avalue a known at a certain processor i, disseminate it to all p
processors as quickly as possible, so that at the end, every processor has access to, or
“knows,” the value. This is sometimes referred to as one-to-all communication. The more
general case of this operation, i.e., one-to-many communication, is known as multicasting.
From a programming viewpoint, we make the assignments x: =afor 1 < j < p (broadcasting)
or for j O G (multicasting), where G is the multicast group and x; is a local variable in
processor j.

Sorting.  Rather than sorting a set of records, each with a key and data elements, we
focus on sorting a set of keys for simplicity. Our sorting problem is thus defined as: Given
alist of nkeys X, X, . .., X, ahd atotal order < on key values, rearrange the n keys as
Xi, X, ..., % ,suchthat x; <x; <...<x; .We consider only sorting the keys in
néndéscending drder. Any algorithni for sortifig values in nondescending order can be
converted, in a straightforward manner, to one for sorting the keys in nonascending order or
for sorting records.

2.2. SOME SIMPLE ARCHITECTURES

In this section, we define four smple parallel architectures:

Linear array of processors

Binary tree of processors
Two-dimensional mesh of processors
Multiple processors with shared variables

Moo

Linear Array. Figure 2.2 shows alinear array of nine processors, numbered 0 to 8. The
diameter of a p-processor linear array, defined as the longest of the shortest distances between
pairs of processors, is D = p — 1. The (maximum) node degree, defined as the largest number
of links or communication channels associated with a processor, is d = 2. The ring variant,
also shown in Fig. 2.2, has the same node degree of 2 but a smaller diameter of D = [p/20]

Binary Tree. Figure 2.3 shows a binary tree of nine processors. This binary tree is
balanced in that the leaf levels differ by at most 1. If all leaf levels are identical and every
nonleaf processor has two children, the binary treeis said to be complete. The diameter of a

Figure 2.2. A linear array of nine processors and its ring variant.
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Figure 2.3. A balanced (but incomplete) binary tree of nine processors.

p-processor complete binary tree is 2 logx(p + 1) — 2. More generally, the diameter of a
p-processor balanced binary tree architecture is 200og, pClor 20og, p0d— 1, depending on the
placement of leaf nodes at the last level. Unlike linear array, several different p-processor
binary tree architectures may exist. Thisis usualy not a problem as we ailmost always deal
with complete binary trees. The (maximum) node degree in abinary treeis d = 3.

2D Mesh. Figure 2.4 shows a square 2D mesh of nine processors. The diameter of a
p-processor square mesh is2Vp — 2. More generally, the mesh does not have to be square.
The diameter of a p-processor r x (p/r) meshisD =r + p/r —2. Again, multiple 2D meshes
may exist for the same number p of processors, e.g., 2 x 8 or 4 x 4. Square meshes are usualy
preferred because they minimize the diameter. The torus variant, also shown in Fig. 2.4, has
end-around or wraparound links for rows and columns. The node degree for both meshes
and tori isd = 4. But a p-processor r x (p/r) torus has a smaller diameter of D = [ /2[+
p/(2r)d

Shared Memory. A shared-memory multiprocessor can be modeled as a complete
graph, in which every node is connected to every other node, as shown in Fig. 2.5 for p=9.
In the 2D mesh of Fig. 2.4, Processor 0 can send/receive data directly to/from P; and P5.
However, it has to go through an intermediary to send/receive data to/from P,, say. In a
shared-memory multiprocessor, every piece of data is directly accessible to every processor
(we assume that each processor can simultaneously send/receive data over all of its p—1
links). The diameter D = 1 of a complete graph is an indicator of this direct access. The node

T

s
£
=k

Figure 2.4. A 2D mesh of nine processors and its torus variant.
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Figure 2.5. A shared-variable architecture modeled as a complete graph.

degree d = p— 1, on the other hand, indicates that such an architecture would be quite costly
to implement if no restriction is placed on data accesses.

2.3. ALGORITHMS FOR A LINEAR ARRAY

Semigroup Computation. Let us consider first a special case of semigroup compu-
tation, namely, that of maximum finding. Each of the p processors holds a value initially and
our goal is for every processor to know the largest of these values. A local variable,
max-thus-far, can be initialized to the processor’'s own data value. In each step, a processor
sends its max-thus-far value to its two neighbors. Each processor, on receiving values from
its left and right neighbors, sets its max-thus-far value to the largest of the three values, i.e.,
max(left, own, right). Figure 2.6 depicts the execution of this agorithm for p = 9 processors.
The dotted lines in Fig. 2.6 show how the maximum value propagates from P, to al other
processors. Had there been two maximum values, say in P, and Py, the propagation would
have been faster. In the worst case, p— 1 communication steps (each involving sending a
processor’ s value to both neighbors), and the same number of three-way comparison steps,
are needed. Thisisthe best one can hope for, given that the diameter of a p-processor linear
array isD = p — 1 (diameter-based lower bound).
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Figure 2.6. Maximum-finding on a linear array of nine processors.
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For a general semigroup computation, the processor at the left end of the array (the one
with no left neighbor) becomes active and sends its data value to the right (initialy, al
processors are dormant or inactive). On receiving a vaue from its left neighbor, a processor
becomes active, applies the semigroup operation 0 to the value received from the left and
its own data value, sends the result to the right, and becomes inactive again. This wave of
activity propagates to the right, until the rightmost processor obtains the desired result. The
computation result is then propagated leftward to all processors. In al, 2p — 2 communication
steps are needed.

Parallel Prefix Computation. Let us assume that we want the ith prefix result to be
obtained at the ith processor, 0 <i < p— 1. The general semigroup algorithm described in
the preceding paragraph in fact performs a semigroup computation first and then does a
broadcast of the final value to all processors. Thus, we aready have an algorithm for parallel
prefix computation that takes p — 1 communication/combining steps. A variant of the parallel
prefix computation, in which Processor i ends up with the prefix result up to the (i — 1)th
value, is sometimes useful. This diminished prefix computation can be performed just as
easily if each processor holds onto the value received from the left rather than the one it sends
to the right. The diminished prefix sum results for the example of Fig. 2.7 would be 0, 5, 7,
15, 21, 24, 31, 40, 41.

Thus far, we have assumed that each processor holds a single data item. Extension of
the semigroup and parallel prefix agorithms to the case where each processor initially holds
severa data items is straightforward. Figure 2.8 shows a parallel prefix sum computation
with each processor initially holding two data items. The algorithm consists of each processor
doing a prefix computation on its own data set of size n/p (this takes n/p — 1 combining
steps), then doing adiminished parallel prefix computation on the linear array as above (p
— 1 communication/combining steps), and finally combining the local prefix result from this
last computation with the locally computed prefixes (n/p combining steps). In dl, 2n/p + p
—2 combining steps and p — 1 communication steps are required.

Packet Routing. To send a packet of information from Processor i to Processor j on
alinear array, we simply attach arouting tag with the valuej —i to it. The sign of arouting
tag determines the direction in which it should move (+ = right, — = left) while its magnitude
indicates the action to be performed (0 = remove the packet, nonzero = forward the packet).
With each forwarding, the magnitude of the routing tag is decremented by 1. Multiple packets

570, 2, 8 6 3 9 1 . %m
5 7 8 6 3 7 9 1 4
5 T 1587 3 3 7 9 1 4
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5 7 15 21 24 31", 9, 1 4
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5 715 21 24 31 40 417ty A, Final
5 7 15 21 24 31 40 41 45" e Lo

Figure 2.7. Computing prefix sums on a linear array of nine processors.
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Figure 2.8. Computing prefix sums on a linear array with two items per processor.

originating at different processors can flow rightward and leftward in lockstep, without ever
interfering with each other.

Broadcasting. If Processor i wants to broadcast a value ato all processors, it sends an
rbcast(a) (read r-broadcast) message to its right neighbor and an Ibcast(a) message to its left
neighbor. Any processor receiving an rbcast(a) message, simply copies the value a and
forwards the message to its right neighbor (if any). Similarly, receiving an Ibcast(a) message
causes a to be copied locally and the message forwarded to the left neighbor. The worst-case
number of communication steps for broadcasting isp — 1.

Sorting. We consider two versions of sorting on alinear array: with and without I/0O.
Figure 2.9 depicts a linear-array sorting algorithm when p keys are input, one a a time, from
the left end. Each processor, on receiving a key value from the left, compares the received
value with the value stored in its local register (initially, al local registers hold the value + o).
The smaller of the two values is kept in the local register and larger value is passed on to the
right. Once al p inputs have been received, we must alow p — 1 additional communication
cycles for the key values that are in transit to settle into their respective positions in the linear
array. If the sorted list is to be output from the left, the output phase can start immediately
after the last key value has been received. In this case, an array half the size of the input list
would be adequate and we effectively have zero-time sorting, i.e., the total sorting time is
equal to the /O time.

If the key values are already in place, one per processor, then an algorithm known as
odd—even transposition can be used for sorting. A total of p steps are required. In an
odd-numbered step, odd-numbered processors compare values with their even-numbered
right neighbors. The two processors exchange their values if they are out of order. Similarly,
in an even-numbered step, even-numbered processors compare—exchange values with their
right neighbors (see Fig. 2.10). In the worst case, the largest key value resides in Processor
0 and must move al the way to the other end of the array. This needs p — 1 right moves. One
step must be added because no movement occurs in the first step. Of course one could use
even—odd transposition, but this will not affect the worst-case time complexity of the
algorithm for our nine-processor linear array.

Note that the odd—even transposition agorithm uses p processors to sort p keysin p
compare—exchange steps. How good is this agorithm? Let us evaluate the odd—even
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transposition algorithm with respect to the various measures introduced in Section 1.6. The
best sequential sorting algorithms take on the order of p log p compare—exchange steps to
sort alist of sizep. Let us assume, for simplicity, that they take exactly p log, p steps. Then,
we have T(1) =W(1) =plog, p, T (p) = p, W(p)=p?/2, S(p) = log, p (Minsky’s conjecture?),
E(p) = (logz p)/p, R(p) = p/(210g, p), U(p) = 12, and Q(p) = 2(log, p)*/ p? .

In most practical situations, the number n of keysto be sorted (the problem size) is greater
than the number p of processors (the machine size). The odd—even transposition sort
algorithm with n/p keys per processor is as follows. First, each processor sortsits|list of size
n/p using any efficient sequential sorting algorithm. Let us say this takes (n/p)log,(n/p)
compare-exchange steps. Next, the odd—even transposition sort is performed as before,
except that each compare—exchange step is replaced by a merge—split step in which the two
communicating processors merge their sublists of size n/p into a single sorted list of size
2n/p and then split the list down the middle, one processor keeping the smaller half and the
other, the larger half. For example, if Py is holding (1, 3, 7, 8) and P, has (2, 4, 5, 9), a
merge-split step will turn thelistsinto (1, 2, 3, 4) and (5, 7, 8, 9), respectively. Because the
sublists are sorted, the merge—split step requires n/p compare—exchange steps. Thus, the total
time of the algorithm is (n/p)log, (n/p) + n. Note that the first term (local sorting) will be
dominant if p<log, n, while the second term (array merging) is dominant for p >log,n . For
p = log, n, the time complexity of the algorithm is linear in n; hence, the algorithm is more
efficient than the one-key-per-processor version.

One final observation about sorting: Sorting is important in its own right, but occasion-
aly it also helps usin data routing. Suppose data values being held by the p processors of a
linear array are to be routed to other processors, such that the destination of each valueis
different from all others. Thisis known as a permutation routing problem. Because the p
distinct destinations must be 0, 1, 2, . . ., p— 1, forming records with the destination address
as the key and sorting these records will cause each record to end up at its correct destination.
Consequently, permutation routing on a linear array requires p compare-exchange steps. So,
effectively, p packets are routed in the same amount of time that is required for routing a
single packet in the worst case.

2.4. ALGORITHMS FOR A BINARY TREE

In agorithms for abinary tree of processors, we will assume that the data elements are
initially held by the leaf processors only. The nonleaf (inner) processors participate in the
computation, but do not hold data elements of their own. This simplifying assumption, which
can be easily relaxed, leads to simpler algorithms. Asroughly half of the tree nodes are | eaf
nodes, the inefficiency resulting from this assumption is not very great.

Semigroup Computation. A binary-tree architecture is ideally suited for this compu-
tation (for this reason, semigroup computation is sometimes referred to as tree computation).
Each inner node receives two values from its children (if each of them has already computed
avaue or is aleaf node), applies the operator to them, and passes the result upward to its
parent. After [og, pOsteps, the root processor will have the computation result. All processors
can then be notified of the result through a broadcasting operation from the root. Tota time:
2[Jog, pOsteps.
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Parallel Prefix Computation. Again, thisis quite smple and can be done optimally
in20og2 p O steps (recall that the diameter of a binary tree is 2og, pOor 2og,p0-1). The
algorithm consists of an upward propagation phase followed by downward data movement.
Asshown in Fig. 2.11, the upward propagation phase isidentical to the upward movement
of datain semigroup computation. At the end of this phase, each node will have the semigroup
computation result for its subtree. The downward phase is as follows. Each processor
remembers the value it received from its left child. On receiving a value from the parent, a
node passes the value received from above to its left child and the combination of this value
and the one that came from the left child to its right child. The root is viewed as receiving
the identity element from above and thus initiates the downward phase by sending the identity
element to the left and the value received from its left child to the right. At the end of the
downward phase, the leaf processors compute their respective results.

It isinstructive to look at some applications of the parallel prefix computation at this
point. Given alist of Os and 1s, the rank of each 1 inthelist (its relative position among the
1s) can be determined by a prefix sum computation:

- XQ8% | ®X28X 3@ X, A
Upward
Propagation
Downward
Propagation
X0®x 1 @x28% 3 - Result:

X0 X8 ] Xp@x 18Xy Xxp@X 1®X8X3®X,

Figure 2.11. Parallel prefix computation on a binary tree of processors.
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Data O 0 1 0 1 0 0 1 1 1 0
Prefix sums: 0 0 1 1 2 2 2 3 4 5 5
Ranks of 1s: 1 2 3 4 5

A priority circuit has alist of Os and 1s as its inputs and picks the first (highest-priority) 1
in the list. The function of a priority circuit can be defined as

Data: 0

Diminished prefix logical ORs: 0
Complement: 1

AND with data: 0
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As afina example, the carry computation in the design of adders can be formulated as a
parallel prefix computation in the following way. Let “g,” “p”, and “& denote the event that
a particular digit position in the adder generates, propagates, or annihilates a carry. For a
decimal adder, e.g., these correspond to the digit sums being greater than 9, equal to 9, and
less than 9, respectively. Therefore, the input data for the carry circuit consists of a vector of

three-valued €l ements such as

p g a g & Db p p g a C(i;} a
N direction of indexing &

Final carries into the various positions can be determined by a parallel prefix computation
using the carry operator “ ¢ " defined as follows (view x O {g, p, a as the incoming carry
into a position):

p ¢ x=x X propagates over p
a ¢ x=a xisannihilated or absorbed by a
g¢ x=g xisimmateria because a carry is generated

In fact, if each node in the two trees of Fig. 2.11 is replaced by a logic circuit corresponding
to the carry operator, afive-digit carry-lookahead circuit would result.

Packet Routing. The algorithm for routing a packet of information from Processor i
to Processor j on a binary tree of processors depends on the processor humbering scheme
used. The processor numbering scheme shown in Fig. 2.3 is not the best one for this purpose
but it will be used here to develop a routing algorithm. The indexing scheme of Fig. 2.3 is
known as “preorder” indexing and has the following recursive definition: Nodes in a subtree
are numbered by first numbering the root node, then its left subtree, and finally the right
subtree. So the index of each node is less than the indices of all of its descendants. We assume
that each node, in addition to being aware of its own index (self) in the tree, which is the
smallest in its subtree, knows the largest node index in its left (maxl) and right (maxr)
subtrees. A packet on its way from node i to node dest, and currently residing in node self,
is routed according to the following algorithm.
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if dest = self
then remove the packet {done}
elseif dest < self or dest > maxr
then route upward
eseif dest < maxl
then route leftward
else route rightward
endif
endif
endif

This algorithm does not make any assumption about the tree except that it is a binary tree.
In particular, the tree need not be complete or even balanced.

Broadcasting. Processor i sends the desired data upwards to the root processor,
which then broadcasts the data downwards to all processors.

Sorting.  We can use an algorithm similar to bubblesort that allows the smaller
elements in the leaves to “bubble up” to the root processor first, thus allowing the root to
“seg” all of the data elements in nondescending order. The root then sends the elements to
leaf nodes in the proper order. Before describing the part of the algorithm dealing with the
upward bubbling of data, let us dea with the simpler downward movement. This downward
movement is easily coordinated if each node knows the number of leaf nodes in its left
subtree. If the rank order of the element received from above (kept in alocal counter) does
not exceed the number of leaf nodes to the | eft, then the dataitem is sent to the left. Otherwise,
it is sent to the right. Note that the above discussion implicitly assumes that data are to be
sorted from l€eft to right in the leaves.

The upward movement of datain the above sorting algorithm can be accomplished as
follows, where the processor action is described from its own viewpoint. Initially, each |eaf
has a single dataitem and all other nodes are empty. Each inner node has storage space for
two values, migrating upward from its left and right subtrees.

if you have 2 items

then do nothing

elseif you have 1 item that came from the left (right)
then get the smaller item from the right (left) child
else get the smaller item from each child
endif

endif

Figure 2.12 shows the first few steps of the upward data movement (up to the point when
the smallest element is in the root node, ready to begin its downward movement). The above
sorting algorithm takes linear time in the number of elements to be sorted. We might be
interested to know if a more efficient sorting algorithm can be developed, given that the
diameter of the tree architecture is logarithmic (i.e., in the worst case, a data item has to move
20og 2 p Osteps to get to its position in sorted order). The answer, unfortunately, is that we
cannot do fundamentally better than the above.
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Figure 2.12. The first few steps of the sorting algorithm on a binary tree.

The reasoning is based on a lower bound argument that is quite useful in many contexts.
All we need to do to partition a tree architecture into two equal or aimost equal halves
(composed of [p/20and [p/200processors) is to cut a single link next to the root processor
(Fig. 2.13). We say that the bisection width of the binary tree architectureis 1. Now, in the
worst case, theinitial data arrangement may be such that all valuesin the left (right) half of
the tree must move to the right (left) half to assume their sorted positions. Hence, all data
elements must pass through the single link. No matter how we organize the data movements,

Bisection Width = 1

s

S
1
:
‘

Figure 2.13. The bisection width of a binary tree architecture.
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it takes linear time for al of the data elements to pass through this bottleneck. Thisis an
example of a bisection-based lower bound.

2.5. ALGORITHMS FOR A 2D MESH

In al of the 2D mesh agorithms presented in this section, we use the linear-array
algorithms of Section 2.3 as building blocks. This leads to simple algorithms, but not
necessarily the most efficient ones. Mesh-based architectures and their algorithms will be
discussed in great detail in Part [11 (Chapters 9-12).

Semigroup Computation. To perform a semigroup computation on a 2D mesh, do
the semigroup computation in each row and then in each column. For example, in finding
the maximum of a set of p values, stored one per processor, the row maximums are computed
first and made available to every processor in the row. Then column maximums are identified.
This takes 4Vp — 4 steps on a p-processor square mesh, per the resultsin Section 2.3. The
same process can be used for computing the sum of p numbers. Note that for a general
semigroup computation with a noncommutative operation, the p numbers must be stored in
row-major order for this algorithm to work correctly.

Parallel Prefix Computation. Again, this is quite simple and can be done in three
phases, assuming that the processors (and their stored values) are indexed in row-major order:
(1) do a parallel prefix computation on each row, (2) do a diminished parallel prefix
computation in the rightmost column, and (3) broadcast the resultsin the rightmost column
to all of the elements in the respective rows and combine with the initially computed row
prefix value. For example, in doing prefix sums, first-row prefix sums are computed from
left to right. At this point, the processors in the rightmost column hold the row sums. A
diminished prefix computation in this last column yields the sum of all of the preceding rows
in each processor. Combining the sum of al of the preceding rows with the row prefix sums
yields the overall prefix sums.

Packet Routing. To route a data packet from the processor in Row r, Column c, to the
processor in Row r', Column c', we first route it within Row r to Column ¢'. Then, we route
itin Column c' from Row r to Row r'. This algorithm is known as row-first routing. Clearly,
we could do column-first routing, or use a combination of horizontal and vertical steps to
get to the destination node along a shortest path. If the mesh nodes are indexed asin Fig. 2.4,
rather than in terms of row and column numbers, then we simply determine the index of the
intermediate Processor | where the row-first path has to turn. The problem is then decom-
posed into two problems: route horizontally from i tol, then route vertically from [ toj.
When multiple packets must be routed between different source and destination nodes,
the above algorithm can be applied to each packet independently of others. However,
multiple packets might then compete for the same outgoing link on their paths to their
respective destinations. The processors must have sufficient buffer space to store the
packets that must wait at their turning points before being forwarded along the column.
Details will be discussed in Chapter 10.

Broadcasting. Broadcasting is done in two phases: (1) broadcast the packet to every
processor in the source node's row and (2) broadcast in all columns. This takes at most
2\p — 2 steps. If multiple values are to be broadcast by a processor, then the required data
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Figure 2.14. The shearsort algorithm on a 3 x 3 mesh.

movements can be pipelined, such that each additional broadcast requires only one additional
step.

Sorting.  We describe, without proof, the simple version of a sorting algorithm known
as shearsort. Complete proof and more efficient variants will be provided in Chapter 9. The
algorithm consists of Oog,r [+ 1 phasesin a 2D mesh with r rows. In each phase, except for
the last one, all rows are independently sorted in a snakelike order: even-numbered rows 0,
2, ... from left to right, odd-numbered rows 1, 3, . . . from right to left. Then, al columns
are independently sorted from top to bottom. For example, in a 3 x 3 mesh, two such phases
are needed, as shown in Fig. 2.14. In the final phase, rows are independently sorted from left
to right. As we aready know that row-sort and column-sort on a p-processor square mesh
take Vp : compare-exchange steps, the shearsort algorithm needs (2flogzp_|+ 1)Vp compare-
exchange steps for sorting in row-major order.

2.6. ALGORITHMS WITH SHARED VARIABLES

Again, in this section, we focus on developing simple algorithms that are not necessarily
very efficient. Shared-memory architectures and their algorithms will be discussed in more
detail in Chapters 5 and 6.

Semigroup Computation. Each processor obtains the data items from al other
processors and performs the semigroup computation independently. Obviously, all proces-
sors will end up with the same result. This approach is quite wasteful of the complex
architecture of Fig. 2.5 because the linear time complexity of the algorithm is essentially
comparable to that of the semigroup computation algorithm for the much simpler linear-array
architecture and worse than the algorithm for the 2D mesh.

Parallel Prefix Computation. Similar to the semigroup computation, except that each
processor only obtains data items from processors with smaller indices.

Packet Routing. Trivia in view of the direct communication path between any pair
of processors.

Broadcasting. Trivial, as each processor can send a data item to all processors directly.
In fact, because of this direct access, broadcasting is not needed; each processor already has
access to any dataitem when needed.

Sorting. The algorithm to be described for sorting with shared variables consists of
two phases: ranking and data permutation. ranking consists of determining the relative order
of each key in the final sorted list. If each processor holds one key, then once the ranks are
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determined, the jth-ranked key can be sent to Processor j in the data permutation phase,
requiring a single parallel communication step. Processor i is responsible for ranking its own
key x. Thisisdone by comparing x; to al other keys and counting the number of keys that
are smaller than x. In the case of equal key values, processor indices are used to establish
the relative order. For example, if Processors 3 and 9 both hold the key value 23, the key
associated with Processor 3 is deemed smaller for ranking purposes. It should be clear that
each key will end up with aunique rank in the range 0 (no key issmaller) to p—1 (al other
p — 1 keysare smaller).

Again, despite the greater complexity of the shared-variable architecture compared with
the linear-array or binary-tree architectures, the linear time required by the above sorting
algorithm is comparable to the algorithms for these simpler architectures. We will see in
Chapter 6 that logarithmic-time sorting algorithms can in fact be developed for the shared-
variable architecture, leading to linear speed-up over sequential algorithms that need on the
order of nlog n compare—exchange steps to sort n items.

PROBLEMS

2.1. Lower bounds based on bisection width
For each of the following problem/architecture pairs, find alower bound based on the bisection
width. State if the derived bound is useful.

a  Semigroup computation on linear array.

b. Parallel prefix computation on linear array.
c. Semigroup computation on 2D mesh.

d. Sorting on shared-variable architecture.

2.2. Semigroup or parallel prefix computation on alinear array

a. Semigroup computation can be performed on alinear array in a recursive fashion. Assume
that p is a power of 2. First, semigroup computation is performed on the left and right
halves of the array independently. Then the results are combined through two half-broad-
cast operations, i.e., broadcasting from each of the middle two processors to the other side
of the array. Supply the details of the algorithm and analyze its complexity. Compare the
result with that of the algorithm described in Section 2.3.

b. Can an agorithm similar to that in part (a) be devised for parallel prefix computation? If
so, how does its performance compare with the algorithm described in Section 2.3?

2.3. Peardld prefix computation on alinear array
Given n data items, determine the optimal number p of processorsin alinear array such that if
the n data items are distributed to the processors with each holding approximately n/p elements,
the time to perform the parallel prefix computation is minimized.

2.4. Multicasting on alinear array
Suppose processors in a linear array compose messages of the form mcast(x, a, b) with the
meaning that the data value x must be sent (multicast) to all processors with indices in the
interval [a, b]. Packet routing and broadcasting correspond to the special cases mcast(X j , )
and mcast(x, 0, p— 1) of this more general mechanism. Develop the agorithm for handling
such a multicast message by a processor.
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2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

INTRODUCTION TO PARALLEL PROCESSING

Sorting on alinear array
Determine the speed-up, efficiency, and other effectiveness measures defined in Section 1.6
for linear-array sorting with more than one data item per processor.

Parallel prefix computation

a. In determining the ranks of 1s in a list of Os and 1s (Section 2.4), what happens if a
diminished parallel prefix sum computation is performed rather than the regular one?

b. What is the identity element for the carry operator “¢” defined in Section 2.4?

c. Find another example of parallel prefix computation (besides carry computation) involving
a noncommutative binary operation.

Algorithms for alinear array

In Section 2.3, we assumed that the communication links between the processors in the linear
array are full-duplex, meaning that they can carry data in both directions simultaneously (in
one step). How should the algorithms given in Section 2.3 be modified if the communication
links are half-duplex (they can carry data in either directions, but not in the same step)?

Algorithms for aring of processors
Develop efficient algorithms for the five computations discussed in this chapter on a p-proc-
€ssor ring, assuming:

a. Bidirectional, full-duplex links between processors.
b. Bidirectional, haf-duplex links between processors.
c. Unidirectiona links between processors.

Measures of parallel processing effectiveness

Compute the effectiveness measures introduced in Section 1.6 for the parallel prefix compu-
tation algorithm on a linear array, binary tree, 2D mesh, and shared-variable architecture.
Compare and discuss the results.

Parallel prefix computation on a binary tree
Develop an agorithm for parallel prefix computation on a binary tree where the inner tree
nodes also hold dates elements.

Routing on a binary tree of processors

a. Modify the binary tree routing algorithm in Section 2.4 so that the variables maxl and maxr
are not required, assuming that we are dealing with a complete binary tree.

b. Each processor in atree can be given a name or label based on the path that would take us
from the root to that node viaright (R) or left (L) moves. For example, in Fig. 2.3, the root
will be labeled A (the empty string), P; would be labeled LR (left, then right), and P, would
be labeled RRL. Develop a packet routing agorithm from Node A to Node B if node labels
are specified as above.

Sorting on a binary tree of processors

a. Develop a new binary-tree sorting algorithm based on all-to-all broadcasting. Each |eaf
node broadcasts its key to all other leafs, which compare the incoming keys with their own
and determine the rank of their keys. A final parallel routing phase concludes the agorithm.
Compare this new algorithm with the one described in Section 2.4 and discuss.

b. Modify the binary tree sorting algorithm in Section 2.4 so that it works with multiple keys
initially stored in each leaf node.
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2.13. Algorithms on 2D processor arrays
Briefly discuss how the semigroup computation, parallel prefix computation, packet routing,
and broadcasting algorithms can be performed on the following variants of the 2D mesh
architecture.

a.

b.

A 2D torus with wraparound links asin Fig. 2.4 (ssmply ignoring the wraparound links is
not allowed!).

A Manhattan street network, so hamed because the row and column links are unidirectional
and, like the one-way streets of Manhattan, go in opposite directions in adjacent rows or
columns. Unlike the streets, though, each row/column has a wraparound link. Assume that
both dimensions of the processor array are even, with links in even-numbered rows
(columns) going from left to right (bottom to top).

A honeycomb mesh, which is a 2D mesh in which al of the row links are left intact but
every other column link has been removed. Two different drawings of this architecture are
shown below.

2.14.  Shearsort on 2D mesh of processors

a

Write down the number of compare-exchange steps required to perform shearsort on
general (possibly nonsquare) 2D mesh with r rows and p/r columns.

Compuite the effectiveness measures introduced in Section 1.6 for the shearsort algorithm
based on the results of part (a).

Discuss the best aspect ratio for ap-processor mesh in order to minimize the sorting time.
How would shearsort work if each processor initially holds more than one key?
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Parallel Algorithm
Complexity

Having seen several examples of parallel algorithms in Chapter 2, we are ready
to embark on a general discussion of parallel algorithm complexity. This chapter
deals with basic notions of complexity as well as time and time-cost optimality
of parallel algorithms. The ideas and methods covered here lead to tools for
comparing various algorithms or for making given parallel algorithms faster
and/or more efficient. Chapter topics are

e 3.1. Asymptotic complexity

e 3.2. Algorithm optimality and efficiency
e 3.3. Complexity classes

e 3.4. Parallelizable tasks and the NC class
e 3.5. Parallel programming paradigms

e 3.6. Solving recurrences

45
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3.1. ASYMPTOTIC COMPLEXITY

Algorithms can be analyzed in two ways: precise and approximate. In precise analysis,
we typically count the number of operations of various types (e.g., arithmetic, memory
access, data transfer) performed in the worst or average case and use these counts as
indicators of algorithm complexity. If each of these operations takes a constant amount of
time, then aweighted sum of these counts will constitute a numerical measure of algorithm
complexity that can be compared with other algorithms for the same task.

Such a precise analysis is quite tedious and at times impossible to perform. We thus
resort to various approximate analysis methods to compare agorithms, aways keeping in
mind the error margin of the method applied. For example, if such an approximate analysis
indicates that Algorithm A is 1.2 times slower than Algorithm B, we may not be able to
conclude with certainty that Algorithm B is better for the task at hand.

A useful form of approximate analysis, which we will use extensively throughout this
book, is asymptotic analysis. Suppose that a parallel sorting algorithm requires (log, n) 2
compare-exchange steps, another one (log, n)% 2 + 2 log,, n steps, and a third one 500 log,
n steps (assume these are the results of exact analyses). Ignoring lower-order terms and
multiplicative constants, we may say that the first two algorithms take on the order of log?
n steps while the third one takes on the order of log n steps. The logic behind ignoring these
details is that when n becomes very large, eventualy log n will exceed any constant value.
Thus, for such large values of n, an agorithm with running time clog nis asymptotically
better than an algorithm with running time c¢' log? n for any values of the constants cand c'.

Of course, n must indeed be very large for log n to overshadow the constant 500 in the
above example. Thus, in practice, we do not totally ignore the constant factors but rather take
a two-step approach. First, through asymptotic analysis, we determine which algorithm is
likely to be better for large problem sizes: An algorithm of order log nis usually, but not
always, better than an algorithm of order log? n. If we have reason to doubt this conclusion,
then we resort to an exact analysis to determine the constant factors involved.

We will see later that there are practical situations when we use an algorithm of order
log? n even though the existence of algorithms of order log n has been demonstrated (albeit
with very large constant factors that make the algorithm worse for any problem size of
practical interest). However, and this is a key observation, once an asymptotically better
algorithm has been found that happens to have a large constant factor as above, it is often
possible to modify or fine-tune the algorithm to reduce its constant factor; if not in all cases,
at least for some specia cases of common interest.

To make our discussions of asymptotic analysis more precise, we introduce some
notations that are commonly used in the study of computational complexity. Given two
functionsf(n) and g(n) of an independent variable n (usually, the problem size), we define
the relationships “O” (big-oh), “Q” (big-omega), and “©” (theta) between them as follows:

f(n) = O(g(n)) if e, n such that Vn > ny we have f(n) < c g(n)
f(n) = Q(g(m)) if e, ny such that Vr > ny we have f(n) > c g(n)

J(n) =6(g(n)) if Ac, ¢’, ny such that Va > n, we have ¢ g(n) < f(n) < ¢’ g(n)
Thus,
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f(n) = © (g(n) iff f(n) = O (g(m) and f(n) = Q (g(n))

These notations essentially allow us to compare the growth rates of different functions.
For example, f(n) = O(g(n)) means that f(n) grows no faster than g(n), so that for n
sufficiently large (i.e., n>ng) and a suitably chosen constant ¢, f(n) aways remains
below cg(n). This relationship is represented graphicaly in the left panel of Fig. 3.1.
Similarly, f(n) = Q(g(n)) means that f(n) grows at least as fast as g(n), so that eventually
f(n) will exceed c g(n) for al n beyond ny (middle panel of Fig. 3.1).
Finaly, f(n) = ©(g(n)) meansthat f(n) and g(n) grow at about the same rate so that the
value of f(n) is always bounded by ¢ g(n) and ¢’ g(n) for n> n, (right panel of Fig. 3.1).
Loosely speaking, the above notations, and two new ones introduced below, define
ordering relationships between the growth rates of functions. In other words, in the statement

“The rate of growth of f(n) is__ that of g(n).”

we can fill in the blank with the relational symbol (<, < , =, 2, >) to the left of the defined
relations shown below:

f(n) = o(g(n)) lim, _,, f(n)/g(n) = 0 {read little-oh of g(n)}
< f(n) = O(g(n)) {big-oh}
= f(n) = ©(g(n)) or 8(g(n)) { theta}
2 f(n) = Q(g(n)) { big-omega}
> f(n) = w(g(n)) lim, _, f(n)/g(n) = o {little-omega}

Of the above, the big-oh notation will be used most extensively, because it can express an
upper bound on an agorithm’s time or computational complexity and thus helps us establish
whether or not a given algorithm is feasible for a given architecture.

For example, an algorithm with running time O(n log n) or O(n?) might be feasible
today; one that takes O(n3) time might be just beyond the limit of practicality on today’s
hardware and quite practical in 5-10 years, say, when processor speeds have improved by

7
< gn) A A ¢’ g(n)
fn) ‘(’llN
g(n) 1(n) (a)
¢ gln) ¢ g(n)
no >ll no = no =
f(n) = O(g(n)) f(n) = Q(g(n)) f(n) = @(g(n))

Figure 3.1. Graphical representation of the notions of asymptotic complexity.
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Table 3.1. Comparing the Growth Rates of Sublinear and Superlinear Functions (K = 1000,
M = 1,000,000)

Sublinear Linear Superlinear

log? n Yn n nlog? n n3?

9 3 10 90 30
36 10 100 36K 1K
81 31 1K 81K 31K
169 100 10K 1.7M M
256 316 100K 26M 31M
361 1K 1M 361 M 1000 M

one or two orders of magnitude; an algorithm with O(2") running time will likely remain
impractical.

At avery coarse level, we sometimes talk about algorithms with sublinear, linear, and
superlinear running times or complexities. These coarse categories can be further subdivided
or refined as illustrated by the following examples:

Sublinear 0o(1) constant-time
O(loglogn)  double logarithmic
O(log n) logarithmic
O(logk n) polylogarithmic; k is a constant
0(n?) a< lisaconstant; e.g., O(‘fr_fj) fora=1/2

O(n/ logkn)  kisaconstant
Linear o(n)

Superlinear O(nlogk n)

O(n%) polynomial; ¢ > 1 isaconstant; e.g., O(nVn ) for ¢ = 3/2
o(2") exponential
0(2?") double exponential

Table 3.2. Effect of Constants on the Growth Rates of Selected Functions
Involving Constant Factors (K = 1000, M = 1,000,000)

% log? n

n nlog? n 100Vn n?
10 22 90 300 30
100 900 36K 1K 1K

1K 20K 81K 31K 31K
10K 423K 17M 10K iM
100K 6M 26 M 32K 32M

M 90M 361 M 100K 1000M
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Table 3.3. Effect of Constants on the Growth Rates of Selected Functions Using
Larger Time Units and Round Figures

n g-logz n nlog2 n 100Va m?
10 20s 2min .5min 30s
100 15min 1hr 15 min 15min
1K 6hr 1day 1lhr Shr
10K 5 days 20 days 3hr 10 days
100K 2mo 1lyr 1lyr 1yr
M 3yr 1yr 3yr 32yr

Table 3.1 helps you get an idea of the growth rates for two sublinear and two superlinear
functions, as the problem size n increases. Table 3.2 shows the growth rates of a few functions,
including constant multiplicative factors, to give you a fedl for the contribution of such
constants. Table 3.3 presents the same information using larger time units and rounded
figures which make the differences easier to grasp (assuming that the original numbers of
Table 3.2 showed the running time of an algorithm in seconds).

3.2. ALGORITHM OPTIMALITY AND EFFICIENCY

One way in which we use the big-oh and big-omega notations, introduced in Section
3.1, is as follows. Suppose that we have constructed a valid agorithm to solve a given
problem of size nin g(n) time, where g(n) is a known function such as nlog,n or n?, obtained
through exact or asymptotic analysis. A question of interest is whether or not the algorithm
at hand is the best algorithm for solving the problem. Of course, algorithm quality can be
judged in many different ways, with running time, resource requirements, simplicity (which
affects the cost of development, debugging, and maintenance), and portability being some
of the factors in this evaluation. Let us focus on running time for now. The question then
becomes

What is the running timef(n) of the fastest algorithm for solving this problem?

If we areinterested in asymptotic comparison, then because an agorithm with running time
g(n) is already known, f(n) = O(g(n)); i.e., for large n, the running time of the best
algorithm is upper bounded by cg(n) for some constant c. If, subsequently, someone
develops an asymptotically faster algorithm for solving the same problem, say in time
h(n), we conclude that f(n) = O(h(n)). The process of constructing and improving
agorithms thus contributes to the establishment of tighter upper bounds for the com-
plexity of the best algorithm (Fig. 3.2).

Concurrently with the establishment of upper bounds as discussed above, we might work
on determining lower bounds on a problem'’s time complexity. A lower bound is useful as it
tells us how much room for improvement there might be in existing algorithms. Lower
bounds can be established by a variety of methods. Examplesinclude
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1. Showing that, in the worst case, solution of the problem requires data to travel
a certain distance or that a certain volume of data must pass through a limited-
bandwidth interface. An example of the first method is the observation that any
sorting algorithm on a p-processor square mesh needs at least 2Vp —2 commu-
nication steps in the worst case (diameter-based lower bound). The second method
is exemplified by the worst-case linear time required by any sorting algorithm on a
binary tree architecture (bisection-based lower bound).

2. Showing that, in the worst case, solution of the problem requires that a certain
number of elementary operations be performed. This is the method used for
establishing the Q(n log n) lower bound for comparison-based sequential sorting
algorithms. Consider n distinct (unequal) keys. These n keys can be arranged in n!
different ways. The goal of sorting is to identify the one permutation (among n!)
that corresponds to the sorted order. Each comparison has only two possible
outcomes, and thus narrows down our choice by at most a factor of 2. Thus, log2(n!)
=0©(n log n) comparisons are needed in the worst case.

3. Showing that any instance of a previously analyzed problem can be converted to an
instance of the problem under study, so that an algorithm for solving our problem
can also be used, with simple pre- and postprocessing steps, to solve the previous
problem. Any lower bound for the previous problem then becomes alower bound
for our new problem. For example, we saw in Section 2.4 that the carry computation
problem can be converted to a parallel prefix computation. Thus, any lower bound
established for carry computation is also alower bound for general parallel prefix
computation. Also, trivially, any upper bound for the prefix computation problem
is an upper bound for the carry problem.

As shown in Fig. 3.2, a known lower bound can be viewed as a barrier against
algorithmic speed improvements. When a wide gap exists between the best known lower and
upper bounds, further efforts in raising the lower bound, or lowering the upper bound, might
be warranted. The lower bound can be raised by applying the methods in the above list in
novel ways. The upper bound can be lowered by designing new algorithms and showing
them to be faster than the best previously known algorithms.

If and when the known upper bound and lower bound for a given problem converge, we
say that we have an optimal algorithm. At this point, no asymptotic improvement is possible
and the focus changes to improving the constant factors involved (e.g., reducing the
algorithm’s running time from 3vn to 2vn).

—-Lower Bounds—§m -t} Shifting Upper Bounds ————
1988 1994 113996 (13191 §988 1982

2 ana's in's ert's Annc's

R(logn) Oflogn) Optimal Algor.  Algor, Algor. Algor.

Algorithm?
1 [l [l |k i >
logn  log?n n/k')g n on n log'log n o0 l'og n n?
Typical Complexity Classes

Figure 3.2. Upper and lower bounds may tighten over time.
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Now, let us broaden our attention and consider the cost of the machine on which the
agorithm runs in addition to the running time. Unfortunately, a smple, accurate, and
time-invariant cost model for paralel machines does not exist. So, in the interest of
tractability, we often take the number p of processors used for a given algorithm as a very
rough indicator of cost. If we are allowed to vary the number of processors used (either by
choosing/designing our own parallel machine or else by limiting the algorithm's execution
to a subset of processors (a partition) of a larger parallel machine, then the running time will
be afunction of both the problem size n and the number p of processors used.

Now, because of the additional cost factor introduced, different notions of optimality
can be entertained. Let T(n, p) be our algorithm’s running time when solving a problem of
size n on amachine with p processors. The algorithm is said to be

* Timeoptima if T(n, p) = g(n, p), where g(n, p) is an established time lower bound.
* Cost-time optimal (cost-optimal for short) iff p T(n, p) = T(n, 1).

Redundancy = Utilization = 1
* Cost-time efficient (efficient for short) iff p T(n, p) = ©(T(n, 1)).

Redundancy = Utilization = O(1)

Onefinal observationisin order. Just as we took asimplified view of cost by equating
it with the number p of processors, we can simplify our view of time by counting computation
and/or communication steps instead of measuring real time. So, rather than saying that a
parallel matrix multiplication algorithm terminates in so many seconds, we may say that it
executes so many floating-point operations and transmits so many messages between the
processors. With this simplified view, one must be careful in comparing agorithm complexi-
ties across different machines. A speed-up of 5 in terms of step counts may correspond to a
speed-up of 2 or 3, say, when real time is considered (Fig. 3.3).

Solution

Figure 3.3. Five times fewer steps does not necessarily mean five times faster.
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3.3. COMPLEXITY CLASSES

Complexity theory is a branch of computer science that deals with the ease or difficulty
of solving various computational problems of interest. In complexity theory, problems are
divided into severa complexity classes according to their running times on a single-processor
system (or a deterministic Turing machine, to be more exact). Problems whose running times
are upper bounded by polynomialsin n are said to belong to the P class and are generally
considered to be tractable. Even if the polynomial is of a high degree, such that a large
problem requires years of computation on the fastest available supercomputer, there is still
hope that with improvements in the algorithm or in computer performance, a reasonable
running time may be obtained.

On the other hand, problems for which the best known deterministic algorithm runsin
exponential time are intractable. For example, if solving a problem of size n requires the
execution of 2" machine instructions, the running time for n = 100 on a GIPS (giga |PS)
processor will be around 400 hillion centuries! A problem of this kind for which, when given
a solution, the correctness of the solution can be verified in polynomial time, is said to belong
to the NP (nondeterministic polynomial) class.

An example of an NP problem is the subset-sum problem: Given a set of n integers and
atarget sum s, determine if a subset of the integersin the given set add up to s This problem
looks deceptively simple, yet no one knows how to solve it other than by trying practically
all of the 2" subsets of the given set. Even if each of these trias takes only 1 ps, the problem
is virtually unsolvable for n = 100. This does not mean that we cannot solve specific instances
of the subset-sum problem, or even most instances of practical interest, efficiently. What it
impliesisthat an efficient general agorithm for solving this problem is not known. Neither
has anyone been able to prove that an efficient (polynomial-time) algorithm for the subset-
sum problem does not exist.

In fact, the P =? NP question is an open problem of complexity theory. A positive answer
to this question would mean that the subset-sum and a host of other “hard” problems can be
solved efficiently even if we do not yet know how to do it. A negative answer, on the other
hand, would imply that there exist problems for which efficient algorithms can never be
found. Despite alack of proof in either direction, researchers in complexity theory believe
that in fact P # NP. Furthermore, they have defined the class of NP-complete problems,
meaning that any problem in NP can be transformed, by a computationally efficient process,
to any one of these problems. The subset-sum problem is known to be NP-complete. Thus,
if one ever finds an efficient solution to the subset-sum problem, this is tantamount to proving
P = NP. On the other hand, if one can prove that the subset-sum problem is not in P, then
neither is any other NP-complete problem (leading to the conclusion P # NP).

Figure 3.4 depicts the relationships of these classes as we currently understand them.
The details and subclasses shown inside the class P will be explained in Section 3.4. The
class NP-hard is explained below.

Given the large class of problems of practical interest that are in NP and the vast amount
of time and other resources spent over the yearsin trying to find efficient solutions to these
problems, proving that a computational problem is NP-complete virtually removes any hope
of ever finding an efficient algorithm for that problem. Thus, in a sense, NP-complete
problems are the “hardest” problems in the NP class. Besides the subset-sum problem
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NP-hard
(Intractable?)

NP-complete
(e.g. the subset sum problem)

NP
Nondeterministic
Polynomial

P N

Polynomial
(Tractable) ?
P-complete Ll

NC
Nick's Class
"efficiently”

parallelizable

Figure 3.4. A conceptual view of complexity classes and their relationships.

mentioned above, the following problems of practical interest (and many others) are known
to be NP-complete:

1

Determining if there exists an assignment of truth values to the variables in a
Boolean expression, written as the AND of several OR clauses, such that the
resulting value of the expression is"true" (the satisfiability problem). This problem
isin NP even if each OR clause is restricted to have exactly 3 literals (true or
complemented variables).

Determining if there exists an assignment of Os and 1s to the inputs of alogic circuit
that makes the output 1 (the circuit satisfiability problem).

Deciding if a graph contains a cycle or loop with al of the nodes in it (the
Hamiltonian cycle problem).

Finding a lowest-cost or shortest-distance tour of a number of cities, given the travel
cost or distance between all pairs of cities (the traveling salesman problem).

One final bit of terminology: As difficult as NP problems may seem, there exist problems
that are not even in NP, meaning that even verifying that a claimed solution to such a problem
is correct is currently intractable. An NP-hard problem is one that we do not know to bein
NP but do know that any NP problem can be reduced to it by a polynomial-time agorithm.
The name of this class implies that such problems are at least as hard as any NP problem.

Typically, the proof that a problem of interest is NP-compl ete consists of two parts: (1)
proving that it isin NP by showing that a given solution for it can be verified in polynomial
time and (2) proving that it is NP-hard by showing that some NP-complete (and thus any
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NP) problem can be reduced to it. For the latter part of the proof, we have awide array of
NP-complete problems to choose from. But how was this process bootstrapped; i.e.,
where did the first NP-complete problem come from? The first seed was the satisfiability
problem that was established to be NP-complete by Cook in 1971 [Cook71] using a rather
tedious proof.

3.4. PARALLELIZABLE TASKS AND THE NC CLASS

Based on the discussion in Section 3.3, parallel processing is generaly of no avail for
solving NP problems. A problem that takes 400 billion centuries to solve on a uniprocessor,
would still take 400 centuries even if it can be perfectly parallelized over 1 billion processors.
Again, this statement does not refer to specific instances of the problem but to a general
solution for al instances. Thus, paralel processing is primarily useful for speeding up
the execution time of the problems in P. Here, even a factor of 1000 speed-up can mean
the difference between practicality and impracticality (running time of several hours
versus 1 year).

In 1979, Niclaus Pippenger [Pipp79] suggested that efficiently parallelizable problems
in P might be defined as those problems that can be solved in atime period that is at most
polylogarithmic in the problem size n, i.e,, T(p) = O(Iogk n) for some constant k, using no
more than a polynomial number p = O( n') of processors. This class of problems was later
named Nick's Class (NC) in his honor. The class NC has been extensively studied and forms
afoundation for parallel complexity theory.

Pippenger used a parallel machine model known as parallel random-access machine
(PRAM) in formulating his complexity results. We will define PRAM in Chapter 5, but
knowledge of the PRAM model is not essential for understanding the NC class, as the NC
classis closed under virtually al transformations of practical interest.

A weaker form of NC, known as the parallel computation thesis is stated as follows:

Anything that can be computed on a Turing machine using polynomially (polylogarith-
mically) bounded space in unlimited time can be computed on a paralel machine in
polynomial (polylogarithmic) time using an unlimited number of processors, and vice
versa.

The problem with this thesis is that it places no bound on computational resources other than
time. The significance of NC, and its popularity, stems from its establishing simultaneous
bounds on time and hardware resources, while at the same time being relatively insensitive
to architectural and technologica variations in parallel machine implementations.

At present, the question NC = ?P is an open problem of parallel complexity theory. Just
as was the case for the P = 2NP question, no one knows the answer to this question, but there
is strong suspicion that NC # P. The reason behind this suspicion is aso quite similar to that
for P # NP. A P-complete problem in P is a problem such that any other problem in P can be
transformed to it in polylogarithmic time using a polynomial number of processors. So, if a
polylogarithmic-time algorithm with a polynomial number of processors is ever found for
any P-complete problem, then al problems in P are efficiently parallelizable and NC = P.
Some of these problems have been around for years and studied extensively by numerous
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researchers. Thus, the lack of efficient algorithms for these problems strongly supports the
conclusion that NC # P.

Sorting is a good example of an NC problem. In Chapter 7, we will see that several
techniques are available for building an n-input sorting network from O(n Iog2 n) two-input
compare—exchange circuit blocks, with the critical path across the network going through
O(log?n) comparison—exchange levels. Hence, polylogarithmic time is achieved for sorting
using a number of circuit blocks (processors) that is upper bounded by O(n'*¢) for any € > 0.

An example of a P-complete problem is the circuit-value problem: Given a logic circuit
with known inputs, determine its output. The fact that the circuit-value problem isin P should
be obvious. It is a simple problem that we routinely solve in logic simulation packages. Y et
no general agorithm exists for the efficient parallel evaluation of a circuit’s output. This
rather surprising fact limits the speed-ups that can be achieved in parallel logic simulation.

3.5. PARALLEL PROGRAMMING PARADIGMS

Several methods are used extensively in devising efficient parallel agorithms for solving
problems of interest. A brief review of these methods (divide and conquer, randomization,
approximation) is appropriate at this point as they are important to complexity anaysis
efforts.

Divide and Conquer. Some problems in P can be solved in parallel as follows.
Decompose the problem of size ninto two or more “smaller” subproblems. Suppose that the
required decomposition, when done in parallel, takes Ty(n) time. Solve the subproblems
independently and obtain the corresponding results. As the subproblems are smaller than the
origina one, the time T to solve them will likely be less than T(n). Finally, combine the
results of the subproblems to compute the answer to the original problem. If the combining
phase can be done in time T.(n), the tota computation time is given by
T(n)=Ty(n)+ To+ Te(n).

For example, in the case of sorting alist of n keys, we can decompose the list into two
halves, sort the two sublists independently in parallel, and merge the two sorted sublists into
asingle sorted list. If we can perform each of the decomposition and merging operationsin
log., n steps on some parallel computer, and if the solution of the two sorting problems of
size n/2 can be completely overlapped in time, then the running time of the parallel agorithm
is characterized by the recurrence T(n) = T(/2) + 2log, n. We will discuss the solution of
such recurrences in Section 3.6. The divide-and-conquer paradigm is perhaps the most
important tool for devising parallel agorithms and is used extensively in the rest of this book.

Randomization. Often it isimpossible, or computationally difficult, to decompose a
large problem into smaller problems in such a way that the solution times of the subproblems
areroughly equal. Large decomposition and combining overheads, or wide variationsin the
solution times of the subproblems, may reduce the effective speed-up achievable by the
divide-and-conquer method. In these cases, it might be possible to use random decisions that
lead to good results with very high probability. The field of randomized parallel algorithms
has grown significantly over the past few years and has led to the solution of many otherwise
unsolvable problems.

Again, sorting provides a good example. Suppose that each of p processors beginswith
a sublist of size n/p. First each processor selects a random sample of size k from its local
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sublist. The kp samples from all processors form a smaller list that can be readily sorted,
perhaps on a single processor or using a parallel algorithm that is known to be efficient for
small lists. If this sorted list of samples is now divided into p equal segments and the
beginning values in the p segments used as thresholds to divide the original list of n keys
into p sublists, the lengths of these latter sublists will be approximately balanced with high
probability. The n-input sorting problem has thus been transformed into an initial random
sampling, a small sorting problem for the kp samples, broadcasting of the p threshold values
to all processors, permutation of the elements among the processors according to the p
threshold values, and p independent sorting problems of approximate size n/p. The average
case running time of such an agorithm can be quite good. However, there is no useful
worst-case guarantee on its running time.

Besides the random sampling method used in the above example, randomization can be
applied in severa other ways [Gupt94]. Input randomization is used to avoid bad data
patterns for which a particular algorithm, known to be efficient on the average, might have
close to worst-case performance. For example, if a routing algorithm is known to have good
performance when the source/destination nodes are randomly distributed but suffers from
excessive resource contentions, and thus degraded performance, for certain regular data
movement patterns, it might be possible to handle the problematic routing patterns by using
arandomly selected intermediate node for each source—destination pair.

To complete the picture, we briefly review the three other classes of randomization
methods that have been found useful in practice:

1. Random search. When alarge space must be searched for an element with certain
desired properties, and it is known that such elements are abundant, random search
can lead to very good average-case performance. A deterministic linear search, on
the other hand, can lead to poor performance if al of the desired elements are
clustered together.

2. Control randomization. To avoid consistently experiencing close to worst-case
performance with one agorithm, related to some unfortunate distribution of inputs,
the algorithm to be applied for solving a problem, or an algorithm parameter, can
be chosen at random.

3. Symmetry breaking. Interacting deterministic processes may exhibit a cyclic behav-
ior that leads to deadlock (akin to two people colliding when they try to exit aroom
through a narrow door, backing up, and then colliding again). Randomization can
be used to break the symmetry and thus the deadl ock.

Approximation. Iterative numerical methods often use approximation to arrive at the
solution(s). For example, to solve a system of n linear equations, one can begin with some
rough estimates for the answers and then successively refine these estimates using parallel
numerical calculations. Jacobi relaxation, to be covered in Section 11.4, is an example of
such approximation methods. Under proper conditions, the iterations converge to the correct
solutions; the larger the number of iterations, the more accurate the solutions.

The strength of such approximation methods lies in the fact that fairly precise results
can be obtained rather quickly, with additional iterations used to increase the precision if
desired. Provided that the required computations for each iteration can be easily parallelized
over any number p of processors, we have at our disposal a powerful method for time/cost/ac-



58 INTRODUCTION TO PARALLEL PROCESSING

curacy trade-offs. If time and hardware resources are limited by deadlines or concurrent
running of more urgent tasks, the computation can still be performed, albeit at lower
precision. The analysis of complexity is somewhat more difficult here as the number of
iterations required often cannot be expressed as a simple function of the desired accuracy
and/or the problem size. Typically, an upper bound on the number of iterations is established
and used in determining the algorithm’s worst-case running time.

3.6. SOLVING RECURRENCES

In our discussion of the divide-and-conquer method in Section 3.5, we presented the
recurrence T(n) = T(n/2) + 2 log, n as an example of what might transpire in analyzing
algorithm complexity. Because such recurrences arise quite frequently in the analysis of
(parallel) algorithms, it is instructive to discuss methods for their solution. As no general
method exists for solving recurrences, we will review several methods along with examples.

The simplest method for solving recurrences is through unrolling. The method is best
illustrated through a sequence of examples. In al examples below, f(1) = O is assumed.

1. fW=fn-1+n {rewritef(n-Nasf((n-1)~-1)+n-1}
=f(n-2)+n-1t+n
=fn-3)+n-2+n~1+n

=f()+2+3++n-14+n

=nn+1)y2-1
=0(n?)

2. f(my=fm/2)+1 {rewrite f(n/2) as f((n/2)/2) + 1}
=f(n/4)+1+1

=f(n8)+1+1+1

=f(ny+1+1+1+-+1
--- log, n times ---
=log, n
= O(log n)
3. f(m)y=2f(n/))+1
=4f(nldy+2+1
=8f(n/8)+4+2+1

=nf(n/n)+nf2++4+2+1
=n-1
=0(n)

4. f(n)=f(n2)+n
=f(n/4) +n/2 +n
=f(n/8)+n/4+n/2 +n

=f(n/n)+2+4+ - +n/4+n2+n
=2n-2
=0(n)
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5. f(n) =2f(W2)+n
=4f(nfdy+n+n
=8f(n/8)Y+n+n+n

=nf(n/ny+n+n+n+ - +n
--- log, n times ---
=nlog,n
=0B(nlog n)
Alternate solution for the recurrence f(N)=2f (n/2) + n:
Rewrite the recurrence as

finy _fwr2)
T/

and denote f(n)/n by h(n) to get
h(n) = h(n/2) + 1

Thisisthe same as Example 2 above and leads to

h(n)y=log,n=sf(n)=nlog, n

6. f(n) =f(nl2)+log, n
=f(n/4) + log,(n/2) + log, n
= f(n/8) + log,(n/4) + log,(n/2) + log, n

=f(n/n) + log, 2 + log, 4 + -+ + log,(n/2) + log, n
=14+2+3+ - +log,n

=log, n (log, n + 1)/2

= B8(log? n)

Another method that we will find useful, particularly for recurrences that cannot be
easily unrolled, is guessing the answer to the recurrence and then verifying the guess by
substitution. In fact, the method of substitution can be used to determine the constant
multiplicative factors and lower-order terms once the asymptotic complexity has been
established by other methods.

Asan example, let us say that we know that the solution to Example 1 aboveis f (n) =
O(n?). We write f(n) = an? + g (n), where g(n) = o(n?) represents the lower-order terms.
Substituting in the recurrence equation, we get

an® +g(n)=a@n - 1)? +gn-1D+n
This equation simplifiesto
gn)=gn-H+(1-2ay+a

Choose a = 1/2 in order to make g(n) = o(n?) possible. Then, the solution to the recurrence
g(n)=g(n-1) + Y2is g(n) =n/2 — 1, assuming g(1) = 0. The solution to the original
recurrence then becomes f(n) =n%2+n/2 — 1, which matches our earlier result based
on unrolling.



60 INTRODUCTION TO PARALLEL PROCESSING

Unrolling recurrences can be tedious and error-prone in some cases. The following
general theorem helps us establish the order of the solution to some recurrences without
unrolling [Bent80].

THEOREM 3.1 (basic theorem for recurrences). Given the recurrence f(n) =af (n/b) +
h(n), where a and b are constants and h is an arbitrary function, the asymptotic solution to
therecurrenceis

f(n) = ©(n%) if h(n) = O(n'°%°~®) for some € > 0
f(n) =©n'8°logn)  if h(n) = B(n'°8*)

f(n) = Oh(n)) if h(n) = Q(n'°%4*2) for some € >0

The recurrence given in the statement of Theorem 3.1 arises, for example, if we decompose
a given problem of size ninto b problems of size n/b, with these smaller problems solved in
a batches (e.g., because the available resources, typically processors, are inadequate for
solving all subproblems concurrently).

The function h(n) represents the time needed to decompose the problem and for
obtaining the overall solution from the solutions to the subproblems. Therefore, a=1
typically means that we have enough processors to solve al b subproblems concurrently,
a = b means we have just one processor, so the subproblems are solved sequentially, and
1 < a < b means we can solve some of the problems concurrently but that the number of
processors is inadequate to deal with all of them concurrently. An example of this last
situation might be when the number of processors required is sublinear in problem size
(problems with 1/b = 1/4 the size require half as many processors, say, when p = size thus
dictating a = 2 passes for solving the four subproblems).

Note that the first and third cases in the statement of Theorem 3.1 are separated from
the middle case by ¢ in the exponent of n. Let us consider the middle case first. Unrolling
the recurrence in this case will be done log,, n times before getting to f (1). As4'%%* = a, each
of the logy, n terms resulting from the unrolling is on the order of @(h()) = 6(n‘°3a“); SO, one
can say that the decomposition/merging overhead is more or less constant across the recursive
iterations. In the third case, the overhead decreases geometrically, so the first term in the
unrolling, i.e., h(n), dictates the complexity. Finally, in the first case, the unrolled terms form
an increasing geometric progression, making the last term in the unrolling dominant. This
last term can be obtained as follows:

f(n) =af(n/b)+ h(n)

=af(nlb?) + ...
=d%" f(1)+ ... Uselog, n=log,n/log, b
=gl lor by 4 Use g = 21°8°

= 2logzalogzn/log2bf(1) +. .. Use 2103211 =n
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— nlogzu/log2 bf(l) +...

- e(nlogba)

Theorem 3.1 only provides an asymptotic solution in cases where the theorem’ s conditions
are met. However, as noted earlier, once the order of the solution is known, substitution in
the recurrence can be used to determine the constant factors and lower-order terms if desired.

PROBLEMS

3.1.

3.2

3.3.

3.4.

3.5.

Asymptotic complexity
For each of the following pairs of functions f (n) and g(n), determine which of the relationships
f(n)=o(g(n)), f(n) = O(g(n)), f(n) = O(g(n)), f(n) = Qg(n)), or f{n} = w(g(n)), if any, holds.
Explain your reasoning.

a. f(n)=10n2, g(n) = n®+ 100.
b, finy=n"2 gn) = o2,

. f(n) =n, g(n) = 20een /3,
d. f(n)=25Isinnl", g(n) =n.
e. f(n)=nlsinnl, gn) = n/100.
£ f(n)=20080""2 oty =,

(g}

Asymptotic complexity

Order the following functions with respect to their growth rates, from the slowest growing to
the fastest growing. Explain your reasoning.

2‘Jlogn

n

(V2)os"

(logn)*?

log logn

(log log n)log logn

™e Qe o

Computational complexity

Assume that the pairs of functions f (n) and g(n) of Problem 3.1 correspond to the running times
of two different algorithms A and B, respectively, for solving a given problem when the input
sizeisn (do not worry about the fact that some of the instances do not represent real problems).
Determine, for each pair of functions, the problem sizes for which Algorithm A is better than
Algorithm B.

Computational complexity

With reference to the datain Table 3.2, suppose that arunning time of 3 hours or lessistolerable
in a given application context. Assuming that Moore's law holds (see Section 1.1), for each of
the five functions shown in Table 3.2, determine the factor by which the problem size can
increase in 10 years.

Comparing agorithms
Suppose two different parallel agorithms for solving a given problem lead to the following
recurrences for the computation time. Which agorithm is asymptotically faster and why?

a. T(n)=2T(n/2) +n.
b. T(r)=T(n/2) +n2.
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3.6.

3.7.

3.8.

3.9.

3.10.
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3.12.

3.13.

3.14.
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Solving recurrences

a. Derive an exact solution to the recurrence T(n) = T(n/2) + cn assuming that n is a power
of 2, cisaconstant, and T (1) =0.

b. More generally, the problem size (initidly or in intermediate steps) is not necessarily even.
Consider the recurrence T(n) = T( n/27) + cn and useit to derive an upper bound for T(n) .
Hint: The worst case occurs when nis 1 more than a power of 2.

c. Repeat part (b) for the more general recurrenceT(n) = aT( n/b ) + cn.

System of two recurrences

a. Find exact solutions for A(n) and B(n) if A(n) = B(n/2) + gn and B(n) = A(n/2) + hn, assuming
n to be a power of 2, g and h known constants, and A(1) = B(1) = 0.
b. Repeat part (8) with A(n) = 2B(n/2) + gnand B(n) = A(n/2) + hn.
Repeat part (8) with A(n) = 2B(n/2) + gn and B(n) = 2A(n/2) + hn.
. Formulate a general theorem for the asymptotic solution of system of two recurrences of
the form A(n) = cB(n/a) + gn and B(n) = dA(n/b) + hn, wherea, b, ¢, and d are constants.

o 0O

Solving recurrences
Apply the method of Theorem 3.1 to the solution of Examples 1 through 6 that precede it,
where applicable.

Solving recurrences

Apply the method of Theorem 3.1 to the solution of the recurrence f (n) = 2f(n/4) + cn, where
cis aknown constant. Then, find the constant factor and the order of residua terms through
substitution.

Basic theorem for recurrences
In the proof of the first case of Theorem 3.1, we implicitly assumed that f(1) is a nonzero
constant. Would the proof fall apart if (1) = 0?

Solving recurrences
Solve the recurrence f(n) = f(3n/4) + f(nl—b) + cn?, where b and c are constants and 0 < b < 1.

Asymptotic complexity

A rough set Sis characterized by alower bound set S;,) consisting of elements that are certain
to be members of Sand an upper bound set S, which aso contains a boundary region consisting
of possible elements of S(the possibility is not quantified) [Paw197]. Define the basic set
operations on rough sets and determine if they are asymptotically more complex than ordinary
set operations in sequential and parallel implementations.

Computational complexity

Consider the following results from number theory [Stew97]: (a) xis not prime iff some number
in [2,L\x ] dividesit. (b) xis primeiff it divides (x— 1) ! + 1. (c) If xis prime, then it divides
2X — 2 (the converse is not true). A large number x, with hundreds of digits, is given and we
would like to prove that it is not a prime. We do not need the factors; just a confirmation that
it is not a prime. Which of the above three methods would lead to a more efficient parallel
implementation and why? Note that in computing a large number whose divisibility by xisto
be tested, we can do all of the calculations modulo x.

NP-completeness
In our discussion of NP-completeness, we stated that the satisfiability problem for OR-AND
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Boolean expressions is NP-complete and that even the special case where each of the ORed
terms consists of exactly 3 literals (known as the 3-satisfiability problem) is not any easier.

a. Show that the AND-OR version of the satisfiability problem, i.e,, when the Boolean
expression in question consists of the OR of AND terms, isin P.

b. Show that 2-satisfiability is in P. Hint: Use the equivalence of x OR y with (NOT x)
IMPLIES y to reduce the 2-satisfiability problem to a problem on a directed graph.

3.15.  NP-completeness
Consider a set Sof integers. The set partition problem is that of determining if the set Scan be
partitioned into two disjoint subsets such that the sum of the integers in each subset is the same.
Show that the set partition problem is NP-complete.
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Models of Parallel
Processing

Parallel processors come in many different varieties. It would not be possible to
discuss all of these varieties, including their distinguishing features, strong points
within application contexts, and drawbacks, in a single book. Thus, we often
deal with abstract models of real machines. The benefits of using abstract models
include technology-independent theories and algorithmic techniques that are
applicable to a large number of existing and future machines. Disadvantages
include the inability to predict the actual performance accurately and a tendency
to simplify the models too much, so that they no longer represent any real
machine. However, even oversimplified models do offer some benefits. The
conceptual simplicity of such models makes the development of algorithms and
the analysis of various trade-offs more manageable. If automatic translation of
these abstract algorithms into efficient programs for real machines is possible
through the use of intelligent or optimizing compilers, then these models can
indeed be enormously helpful. Chapter topics are

e 4.1. Development of early models

e 4.2. SIMD versus MIMD architectures

¢ 4.3. Global versus distributed memory

e 4.4. The PRAM shared-memory model

e 4.5, Distributed-memory or graph models
® 4.6. Circuit model and physical realizations

65
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4.1. DEVELOPMENT OF EARLY MODELS

Associative processing (AP) was perhaps the earliest form of parallel processing.
Associative or content-addressable memories (AMs, CAMs), which alow memory cellsto
be accessed based on contents rather than their physical locations within the memory array,
came into the forefront in the 1950s when advances in magnetic and cryogenic memory
technologies allowed the construction of, and experimentation with, reasonably sized
prototypes. However, the origins of research on AM/AP technology and applications actualy
go back to the 1943 sketch of a relay-based associative memory by Konrad Zuse and the
1945 visionary assessment of the need for associative access to information by Vannevar
Bush (see Table 4.1).

AM/AP architectures are essentially based on incorporating simple processing logic into
the memory array so as to remove the need for transferring large volumes of data through
the limited-bandwidth interface between the memory and the processor (the von Neumann
bottleneck). Early associative memories provided two basic capabilities: (1) masked search,
or looking for a particular bit pattern in selected fields of all memory words and marking
those for which a match is indicated, and (2) parallel write, or storing a given bit pattern into
selected fields of all memory words that have been previously marked. These two basic
capabilities, along with simple logical operations on mark vectors (e.g., ORing them
together) suffice for the programming of sophisticated searches or even parallel arithmetic
operations [Parh97].

Over the past half-century, the AM/AP model has evolved through the incorporation of
additional capabilities, so that it isin essence converging with SIMD-type array processors.
Early examples of APsincluded the Goodyear STARAN processor, arelatively successful
commercial product of the 1970s, whose design was motivated by the computation-intensive
problem of aircraft conflict detection; O(n?) pairwise checks are required to avoid collisions
and near misses for n aircraft in the vicinity of a busy airport. Modern incarnations of this
model are seen in processor-in-memory (PIM) chips, which are basically standard DRAM
chips with alarge number of very simple processors added on their data access paths, and
intelligent RAM (IRAM) architectures, which have been shown to have advantages in both
performance and power consumption [From97].

Another early model, introduced in the 1950s, dealt with parallel processing for image
understanding applications. In those days, interest in artificial intelligence, and particularly
its subfield of computer vision, was quite high. The development of perceptrons (a neuronlike
device in charge of processing a single pixel in a digital image) was based on the pioneering

Table 4.1. Entering the Second Half-Century of Associative Processing

Decade Events and advances Technology Performance
1940s Formulation of need & concept Relays

1950s Emergence of cell technologies Magnetic, cryogenic Mega-bit-OPS
1960s Introduction of basic architectures Transistors

1970s Commercidization & applications ICs Giga-bit-OPS
1980s Focus on system/software issues VLS| Tera-hit-OPS

1990s Scalable & flexible architectures  ULSI, WS Peta-bit-OPS?
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work of McCulloch and Pittsin the 1940s. The perceptron convergence theorem of Rosen-
blatt, along with Minsky’s work on the limitations of such devices in the 1960s, created a
flurry of research activities that laid the foundation for the modern field of neural networks.
Hopfield's energy approach and the introduction of the back propagation learning algorithm
put neural networks on the fast track so that today they are used for the solution of complex
decision problems in awide class of applications [Jain96].

The 1960s saw the introduction of a model of fundamental importance. Cellular
automata formed natural extensions of the types of abstract machines that were studied as
theoretical models of von Neumann-type sequential computers. Cellular automata machines
are typically viewed as a collection of identical finite-state automata that are interconnected,
through their input—output links, in a regular fashion, with the state transitions of each
automaton controlled by its own state, the states of the neighbors to which it is connected,
and its primary inputs, if any [Garz95]. Systolic arrays, which form the basis of
high-performance VLSI-based designs in some application areas, can be viewed as
cellular automata. In recent years, we have witnessed a resurgence of interest in cellular
automata as theoretical models of massively parallel systems and as tools for modeling
physical phenomena[PPCA].

In the subsequent sections of this chapter, we will review some of the commonly used
models in the field of parallel processing. Before doing so, it is instructive to revisit the
Flynn-Johnson classification of computer systems. Figure 4.1 depicts the classification
along with the two major dichotomies that we will consider in the next two sections.

The SISD class encompasses standard uniprocessor systems, including those that
employ pipelining, out-of-order execution, multiple instruction issue, and severa functional
units to achieve higher performance. Because the SIMD and MIMD classes will be examined
in detail in the remainder of this book, here we say a few words about the class of MISD
paralel architectures for completeness. As mentioned in Section 1.4, the MISD (miss-
dee) class has not found widespread application. One reason is that most application
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Single Multiple
Of - SISD SIMD
S ig "Uniprocessors” "Annmecuaan"\ S
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MIMD

E OMsv G
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i . memory
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Figure 4.1. The Flynn—Johnson classification of computer systems.
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Figure 4.2. Multiple instruction streams operating on a single data stream (MISD).

problems do not map easily onto a MISD architecture, making it impossible to design a
general-purpose architecture of this type. However, one can quite properly envisage
MISD-type parallel processors for specific applications.

Figure 4.2 shows an example parallel processor with the MISD architecture. A single
data stream enters the machine consisting of five processors. Various transformations are
performed on each data item before it is passed on to the next processor(s). Successive data
items can go through different transformations, either because of data-dependent conditional
statements in the instruction streams (control-driven) or because of specia control tags
carried along with the data (data-driven). The MISD organization can thus be viewed as a
flexible or high-level pipeline with multiple paths and programmable stages.

Even though we often view conventional pipelines as linear structures, pipelines with
multiple paths and the capability to selectively bypass various stages are in fact used in
high-performance CPU design. For example, the block diagram of a floating-point arithmetic
pipeline may resemble Fig. 4.2, where the entry block is used for unpacking of the inputs
and detection of specia operands, the three paralel branches perform various floating-point
arithmetic operations (say add, multiply, and divide), and the exit block normalizes and packs
the results into the standard format. The key difference between the above pipeline and a
MISD architecture is that the floating-point pipeline stages are not programmable.

4.2. SIMD VERSUS MIMD ARCHITECTURES

Most early parallel machines had SIMD designs. The ILLIAC IV computer, briefly
mentioned in Section 1.3, and described in more detail in Section 23.2, is a well-known
example of such early parallel machines. SIMD implies that a central unit fetches and
interprets the instructions and then broadcasts appropriate control signals to a number of
processors operating in lockstep. This initia interest in SIMD resulted both from charac-
teristics of early parallel applications and from economic necessity. Some of the earliest
applications, such as air traffic control and linear-algebra computations, are pleasantly
paralel (at times researchers have characterized these as “embarrassingly parallel,” referring
to the extreme ease with which they can be parallelized). From the user’s perspective, such
applications tend to be much easier to program in SIMD languages and lead to more
cost-effective SIMD hardware. On the economics front, full-fledged processors with reason-
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able speed were quite expensive in those days, thus limiting any highly parallel system to
the SIMD variety.
Within the SIMD category, two fundamental design choices exist:

1. Synchronous versus asynchronous SMD. In a SIMD machine, each processor can
execute or ignore the instruction being broadcast based on its local state or
data-dependent conditions. However, this leads to some inefficiency in executing
conditional computations. For example, an “if-then-else” statement is executed by
first enabling the processors for which the condition is satisfied and then flipping
the “enable” bit before getting into the “else” part. On the average, half of the
processors will be idle for each branch. The situation is even worse for “case”
statements involving multiway branches. A possible cure is to use the asynchronous
version of SIMD, known as SPMD (spim-dee or single-program, multiple data),
where each processor runs its own copy of the common program. The advantage of
SPMD is that in an “if-then-else” computation, each processor will only spend time
on the relevant branch. The disadvantages include the need for occasional synchro-
nization and the higher complexity of each processor, which must now have a
program memory and instruction fetch/decode logic.

2. Custom- versus commodity-chip SSMD. A SIMD machine can be designed based
on commodity (off-the-shelf) components or with custom chips. In the first ap-
proach, components tend to be inexpensive because of mass production. However,
such general-purpose components will likely contain elements that may not be
needed for a particular design. These extra components may complicate the design,
manufacture, and testing of the SIMD machine and may introduce speed penalties
as well. Custom components (including ASICs = application-specific 1Cs, multichip
modules, or WSI = wafer-scale integrated circuits) generally offer better perform-
ance but lead to much higher cost in view of their development costs being borne
by arelatively small number of parallel machine users (as opposed to commodity
microprocessors that are produced in millions). As integrating multiple processors
along with ample memory on a single VLSI chip becomes feasible, a type of
convergence between the two approaches appears imminent.

Judging by what commercial vendors have introduced in the 1990s, the MIMD paradigm
has become more popular recently. The reasons frequently cited for this shift of focus are
the higher flexibility of the MIMD architectures and their ability to take advantage of
commodity microprocessors, thus avoiding lengthy development cycles and getting a free
ride on the speed improvement curve for such microprocessors (see Fig. 1.1). MIMD
machines are most effective for medium- to coarse-grain parallel applications, where the
computation is divided into relatively large subcomputations or tasks whose executions are
assigned to the various processors. Advantages of MIMD machines include flexibility in
exploiting various forms of parallelism, relative ease of partitioning into smaller independent
parallel processors in a multiuser environment (this property also has important implications
for fault tolerance), and less difficult expansion (scalability). Disadvantages include consid-
erable interprocessor communication overhead and more difficult programming.

Within the MIMD class, three fundamental issues or design choices are subjects of
ongoing debates in the research community.
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1. MPP—massively or moderately parallel processor. Is it more cost-effective to build
a paralel processor out of arelatively small number of powerful processors or a
massive number of very simple processors (the “herd of elephants’ or the “army of
ants’ approach)? Referring to Amdahl’s law, the first choice does better on the
inherently sequentia part of a computation while the second approach might allow
a higher speed-up for the parallelizable part. A general answer cannot be given to
this question, as the best choice is both application- and technol ogy-dependent. In
the 1980s, several massively parallel computers were built and marketed (massive
paralelism is generally taken to include 1000 or more processors). In the 1990s,
however, we have witnessed a general shift from massive to moderate parallelism
(tens to hundreds of processors), but the notion of massive parallelism has not been
altogether abandoned, particularly at the highest level of performance required for
Grand Challenge problems.

2. Tightly versus loosely coupled MIMD. Which is a better approach to high-
performance computing, that of using specially designed multiprocessors/
multicomputers or a collection of ordinary workstations that are intercon-
nected by commodity networks (such as Ethernet or ATM) and whose interactions
are coordinated by special system software and distributed file systems? The latter
choice, sometimes referred to as network of workstations (NOW) or cluster com-
puting, has been gaining popularity in recent years. However, many open problems
exist for taking full advantage of such network-based loosely coupled architectures.
The hardware, system software, and applications aspects of NOWSs are being
investigated by numerous research groups. We will cover some aspects of such
systemsin Chapter 22. An intermediate approach isto link tightly coupled clusters
of processors via commodity networks. Thisis essentially a hierarchical approach
that works best when thereis agreat deal of data access|ocality.

3. Explicit message passing versus virtual shared memory. Which scheme is better,
that of forcing the users to explicitly specify al messages that must be sent between
processors or to allow them to program in an abstract higher-level model, with the
required messages automatically generated by the system software? This ques-
tion is essentially very similar to the one asked in the early days of high-level
languages and virtual memory. At some point in the past, programming in
assembly languages and doing explicit transfers between secondary and primary
memories could lead to higher efficiency. However, nowadays, software is so
complex and compilers and operating systems so advanced (not to mention
processing power so cheap) that it no longer makes sense to hand-optimize
the programs, except in limited time-critical instances. However, we are not
yet at that point in parallel processing, and hiding the explicit communication
structure of a parallel machine from the programmer has nontrivia conse-
guences for performance.

4.3. GLOBAL VERSUS DISTRIBUTED MEMORY

Within the MIMD class of parallel processors, memory can be global or distributed.
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Figure 4.3. A parallel processor with global memory.
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Global memory may be visualized as being in a central location where all processors
can access it with equal ease (or with equal difficulty, if you are a half-empty-glass type of
person). Figure 4.3 shows a possible hardware organization for a global-memory parallel
processor. Processors can access memory through a special processor-to-memory network.
As access to memory is quite frequent, the interconnection network must have very low
latency (quite a difficult design challenge for more than a few processors) or €lse memory-
latency-hiding techniques must be employed. An example of such methods is the use of
multithreading in the processors so that they continue with useful processing functions while
they wait for pending memory access requests to be serviced. In either case, very high
network bandwidth isamust. An optional processor-to-processor network may be used for
coordination and synchronization purposes.

A global-memory multiprocessor is characterized by the type and number p of proces-
sors, the capacity and number m of memory modules, and the network architecture. Even
though p and m are independent parameters, achieving high performance typically requires
that they be comparable in magnitude (e.g., too few memory modules will cause contention
among the processors and too many would complicate the network design).

Examples for both the processor-to-memory and processor-to-processor networks in-
clude

1. Crosshar switch; O(pm) complexity, and thus quite costly for highly parallel systems

Single or multiple buses (the latter with complete or partial connectivity)

3. Multistage interconnection network (MIN); cheaper than Example 1, more band-
width than Example 2

o

The type of interconnection network used affects the way in which efficient algorithms are
developed. In order to free the programmers from such tedious considerations, an abstract
model of global-memory computers, known as PRAM, has been defined (see Section 4.4).

One approach to reducing the amount of data that must pass through the processor-to-
memory interconnection network is to use a private cache memory of reasonable size within
each processor (Fig. 4.4). The reason that using cache memories reduces the traffic through
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Figure 4.4. A parallel processor with global memory and processor caches.

the network is the same here as for conventional processors:. locality of data access, repeated
access to the same data, and the greater efficiency of block, as opposed to word-at-a-time,
data transfers. However, the use of multiple caches gives rise to the cache coherence problem:
Multiple copies of data in the main memory and in various caches may become inconsistent.
With a single cache, the write-through policy can keep the two data copies consistent. Here,
we need a more sophisticated approach, examples of which include

1. Do not cache shared data at all or allow only a single cache copy. If the volume of
shared datais small and access to it infrequent, these policies work quite well.

2. Do not cache “writeable” shared data or alow only a single cache copy. Read-only
shared data can be placed in multiple caches with no complication.

3. Use acache coherence protocol. This approach may introduce a nontrivial consis-
tency enforcement overhead, depending on the coherence protocol used, but re-
moves the above restrictions. Examples include snoopy caches for bus-based
systems (each cache monitors all data transfers on the bus to see if the validity of
the data it is holding will be affected) and directory-based schemes (where writeable
shared data are “owned” by a single processor or cache at any given time, with a
directory used to determine physical data locations). See Sections 18.1 and 18.2 for
more detail.

Distributed-memory architectures can be conceptually viewed asin Fig. 4.5. A collec-
tion of p processors, each with its own private memory, communicates through an intercon-
nection network. Here, the latency of the interconnection network may be less critical, as
each processor is likely to access its own local memory most of the time. However, the
communication bandwidth of the network may or may not be critical, depending on the type
of parallel applications and the extent of task interdependencies. Note that each processor is
usually connected to the network through multiple links or channels (thisis the norm here,
although it can also be the case for shared-memory parallel processors).

In addition to the types of interconnection networks enumerated for shared-memory
paralel processors, distributed-memory MIMD architectures can also be interconnected by
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Figure 4.5. A parallel processor with distributed memory.

avariety of direct networks, so called because the processor channels are directly connected
to their counterparts in other processors according to some interconnection pattern or
topology. Examples of direct networks will be introduced in Section 4.5.

Because access to data stored in remote memory modul es (those associated with other
processors) involves considerably more latency than access to the processor’s local memory,
distributed-memory MIMD machines are sometimes described as nonuniform memory
access (NUMA) architectures. Contrast this with the uniform memory access (UMA)
property of global-memory machines. In a UMA architecture, distribution of data in memory
isrelevant only to the extent that it affects the ability to access the required data in paralldl,
whereas in NUMA architectures, inattention to data and task partitioning among the
processors may have dire consequences. When coarse-grained tasks are alocated to the
various processors, load-balancing (in the initial assignment or dynamically as the compu-
tations unfold) is also of some importance.

Itispossible to view Fig. 4.5 as a special case of Fig. 4.4 in which the global-memory
modules have been removed altogether; the fact that processors and (cache) memories appear
in different ordersisimmaterial. This has led to the name all-cache or cache-only memory
architecture (COMA) for such machines.

4.4. THE PRAM SHARED-MEMORY MODEL

The theoretical model used for conventional or sequential computers (SISD class) is
known as the random-access machine (RAM) (not to be confused with random-access
memory, which has the same acronym). The parallel version of RAM [PRAM (pea-ram)],
congtitutes an abstract model of the class of global-memory parallel processors. The
abstraction consists of ignoring the details of the processor-to-memory interconnection
network and taking the view that each processor can access any memory location in each
machine cycle, independent of what other processors are doing.

Thus, for example, PRAM algorithms might involve statements like “for 0 <i <p,
Processor i adds the contents of memory location 2i + 1 to the memory location 2i” (different
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Figure 4.6. Conceptual view of a parallel random-access machine (PRAM).

locations accessed by the various processors) or “each processor loads the contents of
memory location x into its Register 2" (the same location accessed by all processors).
Obvioudly, the problem of multiple processors attempting to write into a common memory
location must be resolved in some way. A detailed discussion of thisissue is postponed to
Chapter 5. Suffice it to say at this point that various inhibition, priority, or combining schemes
can be employed when concurrent write operations to a common location are attempted.

In the formal PRAM model, a single processor is assumed to be active initialy. In each
computation step, each active processor can read from and write into the shared memory and
can also activate another processor. Using a recursive doubling scheme, og, plisteps are
necessary and sufficient to activate all p processors. In our discussions, the set of active
processors is usually implied. We do not explicitly activate the processors.

Even though the global-memory architecture was introduced as a subclass of the MIMD
class, the abstract PRAM model depicted in Fig. 4.6 can be SIMD or MIMD. In the SIMD
variant, all processors obey the same instruction in each machine cycle; however, because
of indexed and indirect (register-based) addressing, they often execute the operation that is
broadcast to them on different data. In fact, the shared-memory algorithms that we will study
in Chapters 5 and 6 are primarily of the SIMD variety, as such agorithms are conceptually
much simpler to develop, describe, and analyze.

In view of the direct and independent access to every memory location allowed for each
processor, the PRAM model depicted in Fig. 4.6 is highly theoretical. If one were to build a
physical PRAM, the processor-to-memory connectivity would have to be realized by an
interconnection network. Because memory locations are too numerous to be assigned
individual ports on an interconnection network, blocks of memory locations (or modules)
would have to share a single network port. Let us ignore this practical consideration for now
in order to make a fundamental point. Suppose we do in fact design a network connecting
the processors to individual memory locations, as shown in Fig. 4.7. If this network is built
from elements with constant fan-in and fan-out, then the depth of the network, and thus its
latency, will be at least logarithmic in mp. This implies that each instruction cycle would
have to consume Q(log p) real time.

The above point is important when we try to compare PRAM algorithms with those for
distributed-memory models. An O(log p)-step PRAM agorithm may not be faster than an
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Figure 4.7. PRAM with some hardware details shown.

O(log?p)-step algorithm for a hypercube architecture, say. We should always have Fig. 3.3
in mind when making such comparisons.

It isinteresting to note that the above logarithmic latency is of no consequence in most
theoretical studies of parallel agorithms. Recal that the class NC of efficiently parallelizable
problems was defined as those that would require polylogarithmic running times. The formal
definition of NC isin fact in terms of PRAM steps rather than real time. However, if an
algorithm is executed in a polylogarithmic number of PRAM steps and if each step is realized
in logarithmic real time, the actual running time is still polylogarithmic.

There is away in which the log-factor slowdown implied by the above discussion can
be hidden, leading to higher algorithm efficiency. Suppose that the memory access latency
isexactly log, p clock cycles. A p-processor physical machine of the type shown in Fig. 4.7
can be used to emulate a (p log, p)-processor “logical PRAM.” A PRAM instruction cycle
begins by issuing amemory access request, followed by some computation in the processor
(e.g., an arithmetic operation), and ends by storing the result in memory. Suppose that the
physical Processor O, emulating logical Processors O through log, p—1,issuesthelog, p
memory access requests in turn, one per clock cycle, with these requests pipelined through
the network. When the last access request has been issued, the data for the first request arrive
at the processor, followed, in consecutive clock cycles, by those for the other requests. In
this way, the processor will be busy at al times and the log, p memory latency does not slow
it down, provided that the memory access network possesses the aggregate bandwidth
required by all of the plog, p in-transit memory requests.

Recall the graph representation of a shared-variable architecture introduced in Fig. 2.5,
where each node of the p-node complete graph K, contains one of the p processors plus m/p
of the m memory locations. This would be an accurate model of the abstract PRAM if each
node can honor p simultaneous memory access requests (one from the local processor and
p— 1 coming from the node’'s communication ports), with multiple requests potentially
addressing the same memory location. If only one or a small constant number of memory
access requests can be processed in each cycle, then PRAM is not accurately represented.
However, with additional effort, it is sometimes possible to structure a PRAM algorithm
such that simultaneous accesses to the same block of memory locations are never
attempted.
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4.5. DISTRIBUTED-MEMORY OR GRAPH MODELS

Given the internal processor and memory structures in each node, a distributed-memory
architecture is characterized primarily by the network used to interconnect the nodes (Fig. 4.5).
This network is usually represented as a graph, with vertices corresponding to processor—memory
nodes and edges corresponding to communication links. If communication links are unidirec-
tional, then directed edges are used. Undirected edges imply bidirectional communication,
although not necessarily in both directions at once. Important parameters of an interconnec-
tion network include

1. Network diameter: the longest of the shortest paths between various pairs of nodes,
which should be relatively small if network latency isto be minimized. The network
diameter is more important with store-and-forward routing (when a message is
stored in its entirety and retransmitted by intermediate nodes) than with wormhole
routing (when amessage is quickly relayed through anode in small pieces).

2. Bisection (band)width: the smallest number (total capacity) of links that need to be
cut in order to divide the network into two subnetworks of haf the size. Thisis
important when nodes communicate with each other in arandom fashion. A small
bisection (band)width limits the rate of data transfer between the two halves of the
network, thus affecting the performance of communication-intensive algorithms.

3. Vertex or node degree: the number of communication ports required of each node,
which should be a constant independent of network size if the architecture isto be
readily scalable to larger sizes. The node degree has a direct effect on the cost of
each node, with the effect being more significant for parallel ports containing several
wires or when the node is required to communicate over all of its ports at once.

Table 4.2 lists these three parameters for some of the commonly used interconnection
networks. Do not worry if you know little about the networks listed in Table 4.2. They are
there to give you an idea of the variability of these parameters across different networks
(examples for some of these networks appear in Fig. 4.8).

Thelist in Table 4.2 is by no means exhaustive. In fact, the multitude of interconnection
networks, and claims with regard to their advantages over competing ones, have become
quite confusing. The situation can be likened to a sea (Fig. 4.8). Once in a while (almost
monthly over the past few years), a new network is dropped into the sea. Most of these make
small waves and sink. Some produce bigger waves that tend to make people seasick! Hence,
there have been suggestions that we should stop introducing new networks and instead focus
on analyzing and better understanding the existing ones. A few have remained afloat and
have been studied/analyzed to death (e.g., the hypercube).

Even though the distributed-memory architecture was introduced as a subclass of the
MIMD class, machines based on networks of the type shown in Fig. 4.8 can be SIMD- or
MIMD-type. In the SIMD variant, al processors obey the same instruction in each machine
cycle, executing the operation that is broadcast to them on local data. For example, all
processorsin a 2D SIMD mesh might be directed to send data to their right neighbors and
receive data from the left. In fact, the distributed-memory agorithms that we will study in
Chapters 9-14 are primarily of the SIMD variety, as such algorithms are conceptually much
simpler to develop, describe, and analyze.
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Table 4.2. Topological Parameters of Selected Interconnection Networks

Network

Network name(s) No. of nodes diameter  Bisection width Nodedegree Local links?
1D mesh (linear array) k k-1 1 2 Yes
1D tours (ring, loop) k k/2 2 2 Yes
2D mesh K? 2k-2 k 4 Yes
2D torus (k-ary 2-cube) K k 2k 4 Yes'
3D mesh K 3k- 3 K 6 Yes
3D torus (k-ary 3-cube) K 3K2 2K 6 Yes'
Pyramid (4 — 13 2log, k 2k 9 No
Binary tree 2 -1 2 -2 1 3 No
4-ary hypertree 2@ ) 2l s 6 No
Butterfly 2(+1) 2| 2' 4 No
Hypercube 2 I 2t I No
Cube-connected cycles 21 2l 2t 3 No
Shuffle—exchange 2 20—1 >2"11 4 unidir. No
De Bruijn 2 I 21 4 unidir. No

1with folded layout.

The development of efficient paralel algorithms suffers from the proliferation of
available interconnection networks, for algorithm design must be done virtually from scratch
for each new architecture. It would be nice if we could abstract away the effects of the
interconnection topology (just as we did with PRAM for global-memory machines) in order
to free the algorithm designer from a lot of machine-specific details. Even though this is not

Figure 4.8. The sea of interconnection networks.
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completely possible, models that replace the topological information reflected in the inter-
connection graph with a small number of parameters do exist and have been shown to capture
the effect of interconnection topology fairly accurately.

Asan example of such abstract models, we briefly review the LogP model [Cull96]. In
LogP, the communication architecture of a parallel computer is captured in four parameters:

L Latency upper bound when a small message (of afew words) is sent from
an arbitrary source node to an arbitrary destination node

0  Theoverhead, defined as the length of time when a processor is dedicated
to the transmission or reception of a message, thus not being able to do any
other computation

g  Thegap, defined as the minimum time that must elapse between consecu-
tive message transmissions or receptions by a single processor (1/gis the
available per-processor communication bandwidth)

P Processor multiplicity (pin our notation)

If LogP isin fact an accurate model for capturing the effects of communication in parallel
processors, then the details of interconnection network do not matter. All that is required,
when each new network is developed or proposed, is to determine its four LogP parameters.
Software simulation can then be used to predict the performance of an actual machine that
is based on the new architecture for a given application. On most early, and some currently
used, parallel machines, the system software overhead (0) for message initiation or reception
isso large that it dwarfs the hop-to-hop and transmission latencies by comparison. For such
machines, not only the topology, but also the parameters L and g of the LogP model may be
irrelevant to accurate performance prediction.

Even simpler is the bulk-synchronous parallel (BSP) model which attempts to hide the
communication latency altogether through a specific paralel programming style, thus
making the network topology irrelevant [Vali90]. Synchronization of processors occurs once
every L time steps, where L is a periodicity parameter. A parallel computation consists of a
seguence of supersteps. In a given superstep, each processor performs a task consisting of
local computation steps, message transmissions, and message receptions from other proces-
sors. Data received in messages will not be used in the current superstep but rather beginning
with the next superstep. After each period of L time units, a global check is made to see if
the current superstep has been completed. If so, then the processors move on to executing
the next superstep. Otherwise, the next period of L time unitsis allocated to the unfinished
superstep.

A final observation: Whereas direct interconnection networks of the types shown in
Table 4.2 or Fig. 4.8 have led to many important classes of parallel processors, bus-based
architectures still dominate the small-scale-parallel machines. Because a single bus can
quickly become a performance bottleneck as the number of processors increases, a variety
of multiple-bus architectures and hierarchical schemes (Fig. 4.9) are available for reducing
bus traffic by taking advantage of the locality of communication within small clusters of
processors.



80 INTRODUCTION TO PARALLEL PROCESSING

dobogs

Bus switch
(Gateway)

s

Figure 4.9. Example of a hierarchical interconnection architecture.

Low-level
cluster

4.6. CIRCUIT MODEL AND PHYSICAL REALIZATIONS

In a sense, the only sure way to predict the performance of a parallel architecture on a
given set of problemsisto actually build the machine and run the programs on it. Because
this is often impossible or very costly, the next best thing is to model the machine at the
circuit level, so that all computational and signal propagation delays can be taken into
account. Unfortunately, thisis also impossible for a complex supercomputer, both because
generating and debugging detailed circuit specifications are not much easier than a full-
blown implementation and because a circuit simulator would take eons to run the simulation.

Despite the above observations, we can produce and evaluate circuit-level designs for
specific applications. The example of sorting networks will be covered in Chapter 7, where
we take the number of two-input compare—exchange circuits as a measure of cost and the
depth of the circuit as being indicative of delay. Additional examples, covering the fast
Fourier transform, parallel prefix computations, and dictionary operations, will be provided
in Chapter 8 where similar cost and delay criteria are used.
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Figure 4.10. Intrachip wire delay as a function of wire length.
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A more precise model, particularly if the circuit is to be implemented on adense VLSI
chip, would include the effect of wires, in terms of both the chip area they consume (cost)
and the signal propagation delay between and within the interconnected blocks (time). In
fact, in modern VLSI design, wire delays and area are beginning to overshadow switching
or gate delays and the area occupied by devices, respectively.

The rightmost column in Table 4.2 indicates which network topologies have local or
short links, thus being less likely to suffer from long interprocessor signal propagation delays.
Figure 4.10 depicts the expected wire delays on a 1B-transistor chip of the future as a function
of wire length, assuming the use of copper wires that are less resistive, and thus faster, than
today’s aluminum wires [Parh98]. The circles designate the estimated wire lengths, and thus
interprocessor propagation delays, for a 256-processor chip with three different architec-
tures. It is seen that for the hypercube architecture, which has nonlocal links, the interproc-
essor wire delays can dominate the intraprocessor delays, thus making the communication
step time much larger than that of the mesh- and torus-based architectures.

Determining the area requirements and maximum wire lengths for various interconnec-
tion topologies has been a very active research area in the past two decades. At times, we
can determine bounds on area and wire-length parameters based on network properties,
without having to resort to detailed specification and layout with VLS design tools. For
example, in 2D VLS| implementation, the bisection width of a network yields a lower bound
on its layout area in an asymptotic sense. If the bisection width is B, the smallest dimension
of the chip should be at least Bw, where w is the minimum wire width (including the
mandatory interwire spacing). The area of the chip isthus Q(B?). If the bisection width is
O(\/;T), as in 2D meshes, then the area lower bound will be linear in the number p of
processors. Such an architecture is said to be scalable in the VLSI layout sense. On the other
hand, if the bisection width is ©(p), as in the hypercube, then the area required is a quadratic
function of p and the architecture is not scalable.

The following analogy is intended to reinforce the importance of the above discussion
of physical realizations and scalability [Hart86]. You have all read science-fiction stories, or
seen sci-fi movies, in which scaled up ants or other beasts destroy entire towns (top panel of
Fig. 4.11). Let us say that a 0.5-cm ant has been scaled up by a factor of 10*so that its new
length is 50 m. Assuming linear scaling, so that the enlarged ant looks exactly like an ordinary
ant, the ants leg has thickened by the same factor (say from 0.01 cm to 1 m). The weight of
the ant, meanwhile, has increased by a factor of 107, say from 1 gto 1 M tons! Assuming
that the original ant legs were just strong enough to bear its weight, the leg thickness must
in fact increase by a factor of V10™2 = 106, from 0.01 cm to 100 m, if the ant is not to collapse
under its own weight. Now, a 50-m-long ant with legs that are 100 m thick looks nothing
like the original ant!

Power consumption of digital circuits is another limiting factor. Power dissipation in
modern microprocessors grows amost linearly with the product of die area and clock
frequency (both steadily rising) and today stands at afew tens of wattsin high-performance
designs. Even if modern low-power design methods succeed in reducing this power by an
order of magnitude, disposing of the heat generated by 1 M such processors is indeed a great
challenge.
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Figure 4.11. Pitfalls of scaling up.

PROBLEMS

4.1. Associative processing

A bit-seria associative memory is capable of searching, in one memory access cycle, a single
bit dlice of all active memory words for 0 or 1 and provides the number of responding words
in the form of an unsigned integer. For example, the instruction Search(0, i) will yield the
number of active memory words that store the value 0 in bit position i. It also has instructions
for activating or deactivating memory words based on the results of the latest search (i.e., keep
only the responders active or deactivate the responders). Suppose that initialy, al words are
active and the memory stores munsigned integers.

a. Devise an AM agorithm to find the largest number stored in the memory.

b. Devisean AM agorithm for finding the kth largest unsigned integer among the m stored
values.

c. Extend the agorithm of part (b) to deal with signed integers in signed-magnitude format.

d. Extend the algorithm of part (b) to dea with signed integers in 2’'s-complement format.
Hint: In a 2's-complement number, the sign bit carries a negative weight so that 1010
represents -8 + 2 = —6.
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4.2.

4.3.

4.4,

4.5.

4.6.

Associative processing
With the same assumptions as in Problem 4.1:

a. Devisean AM agorithm to find the exclusive-OR (checksum) of the values in al memory
words.

b. Devise an AM agorithm for finding the arithmetic sum of the values stored in all memory
words. Assume unsigned or 2's-complement numbers, with all results representable in a
single word.

c. Repeat part (b), this time assuming that some results may not be representable in asingle
word.

Cellular automata synchronization

Cellular automata form abstract models of homogeneous massively parallel computers. Con-
sider the special case of alinear array of finite automata viewed as modeling a firing squad.
All cellsareidentical and the length of the linear array is unknown and unbounded. We would
like to synchronize this firing squad so that all cells enter the special “fire” state at exactly the
same time. The synchronization process begins with a special input to the leftmost cell of the
array (the general). Cells (soldiers) can only communicate with their left and right neighbor in
a synchronous fashion and the only global signal is the clock signal, which is distributed to all
cells. Hint: Try to identify the middie cell, or the middle two cells, of the array, thus dividing
the problem into two smaller problems of exactly the same size.

Image-processing computer

Two types of operations are commonly used in image processing. Assume that an image is
represented by a 2D matrix of Os and 1s corresponding to dark and light pixels, respectively.
Noise removal has the goal of removing isolated Os and 1s (say those that have at most one
pixel of the same type among their eight horizontally, vertically, or diagonally adjacent
neighbors). Smoothing is done by replacing each pixel value with the median of nine values
consisting of the pixel itself and its eight neighbors.

a . Discussthe design of a 2D array of simple cells capable of noise remova or smoothing.

b . Propose suitable generalizations for noise removal and smoothing if each pixel valueisa
binary integer (say 4 bits wide) representing a gray level.

c . Sketch the modifications required to the cells of part (a) if part (b) isto be implemented.

MISD architecture

In the MISD architecture depicted in Fig. 4.2, the rate of data flow or throughput in a
synchronous mode of operation is dictated by the execution time of the slowest of the five
blocks. Suppose that the execution times for the five blocks are not fixed but rather have uniform
distributions in the interval from a lower bound I; to an upper bound u;, 1 <i <5, where|; and
u; are known constants. Discuss methods for improving the throughput beyond the throughput
1/max (y) of a synchronous design.

Cache coherence protocols
Study the snooping and directory-based cache coherence protocols (see, e.g., [Patt96], pp.
655-666 and 679-685). Then pick one example of each and do the following exercises:

a. Present one advantage for each protocol over the other.

b . Discuss an application, or a class of applications, for which the chosen snooping cache
coherence protocol would perform very poorly.

c . Repeat part (b) for the chosen directory-based protocol.
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4.7.

4.8.

4.9.

4.10.

4.11.
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Topological parameters of interconnection networks
Add entries corresponding to the following topologies to Table 4.2.

a. An X-tree; acomplete binary tree with nodes on the same level connected as a linear array.

b. A hierarchical bus architecture with a maximum branching factor b (b =4 in Fig. 4.9).

c. A degree-4 chordal ring with skip distance s; i.e., ap-node ring in which Processor i isaso
connected to Processorsi = smod p, in addition to Processorsi + 1 mod p.

Hierarchical-bus architectures

Consider the hierarchical multilevel bus architecture shown in Fig. 4.9, except that each of the
low-level clusters consists of four processors. Suppose that we want to emulatea4 x 6or 6 x 4
mesh architecture on this bus-based system. Consider the shearsort algorithm described in
Section 2.5 and assume that each transfer over a shared bus to another processor or to a switch
node takes unit time. Ignore computation time as well as any control overhead, focusing only
on communication steps.

a. How long does this system take to emulate shearsort on a4 x 6 mesh if each processor holds
asingle data item and each cluster emulates a column of the mesh?

b. How long does this system take to emulate shearsort on a6 x 4 mesh (cluster = row)?

c. Devise amethod for performing a parallel prefix computation on this architecture.

The LogP model

Using the LogP model, write an equation in terms of the four parameters of the model for the
total time needed to do a “complete exchange,” defined as each processor sending p-— 1 distinct
messages, one to each of the other p — 1 processors.

The BSP and LogP models

A k\f; xk\fp_ array holds the initial data for an iterative computation. One iteration involves
computing a new value for each array element based on its current value and the current values
of its eight horizontally, vertically, and diagonally adjacent array elements. Each of the p
processors storesak x k block of the array at the center of a(k + 2) x (k+ 2) local matrix, where
the top/bottom rows and leftmost/rightmost columns represent data acquired from neighboring
blocks and available at the beginning of an iteration. Processors dealing with blocks at the edge
of the large array simply copy values from edge rows/columnsin lieu of receiving them from
a neighboring block.

a. Formulate the above as a BSP computation.

b. If you could choose the BSP parameter L at will, how would you go about the selection
process for the above computation?

c. Estimate the running time for miterations, assuming the BSP model.

d. Repeat Part (c) for the LogP model.

Physica redlizations
Consider the column labeled “Local Links?’ in Table 4.2. It is obvious how a 2D mesh can be
laid out so that al links are local or short.

a. Describea?2D layout for a 2D torus that has short local links. Hint: Use folding.

b. The 3D mesh and torus networks have also been characterized as having short local links.
However, thisisonly true if a 3D realization is possible. Show that a 3D mesh (and thus
torus) cannot be laid out with short local links in two dimensions.

c. Show that any network whose diameter is alogarithmic function of the number of nodes
cannot be laid out in two or three dimensions using only short local links.
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412. Physicd redizations
a Describe the network diameter, bisection width, and node degree of each of the networks

listed in Table 4.2 as an asymptotic function of the number p of nodes (e.g., the 1D mesh
has diameter, bisection, and degree of ©(p), ©(1), and ©(1), respectively).

Using the results of part (&), compare the architectures listed in terms of the composite
figure of merit “degree x diameter,” in an asymptotic way.

Obtain an asymptotic lower bound for the VLSI layout area of each architecture based on
its bisection width.

The area—time product is sometimes regarded as a good composite figure of merit because
it incorporates both cost and performance factors. Assuming that delay is proportional to
network diameter, compute the asymptotic area-time figure of merit for each of the
architectures, assuming that the area lower bounds of part (c) are in fact achievable.

4.13. Physical redlizations
The average internode distance of an interconnection network is perhaps a more appropriate
indicator of its communication latency than its diameter. For example, if the network nodes are
message routers, some of which are randomly connected to processors or memory modulesin
a distributed shared-memory architecture, then the average internode distance is a good
indicator of memory access latency.

a Compute the average internode distance d 44 for as many of the interconnection networks

b.

listed in Table 4.2 as you can.

If a processor issues a memory access request in every clock cycle, there is no routing or
memory access conflict, and the memory access time isty, cycles, then, on the average,
each processor will have Zda\,g +tna  outstanding memory access requests at any given time.
Discuss the implications of the above on the scalability of the architecturesin part (a).
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Extreme Models

The models of parallel computation range from very abstract to very concrete,
with real parallel machine implementations and user models falling somewhere
between these two extremes. At one extreme lies the abstract shared-memory
PRAM model, briefly introduced in Section 4.4, which offers a simple and
familiar programming model but is quite removed from what transpires at the
hardware level as a parallel computation unfolds. At the other extreme is the
circuit model of parallel processing where a computational task is considered
in terms of what happens to individual bits, in order to gain an appreciation for
actual hardware complexities (e.g., circuit depth or VLSI chip layout area). After
covering the two extremes of very abstract (the PRAM model) and very concrete
(the circuit model), we proceed to explore various intermediate models in the
rest of the book. This part consists of the following four chapters:

® Chapter 5: PRAM and Basic Algorithms

® Chapter 6: More Shared-Memory Algorithms
® Chapter 7: Sorting and Selection Networks
e Chapter 8: Other Circuit-Level Examples
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PRAM and Basic
Algorithms

In this chapter, following basic definitions and a brief discussion of the relative
computational powers of several PRAM submodels, we deal with five key
building-block algorithms that lay the foundations for solving various computa-
tional problems on the abstract PRAM model of shared-memory parallel proc-
essors. We will continue with more algorithms and implementation
considerations in Chapter 6. The example algorithms provided should be
sufficient to convince the reader that the PRAM’s programming model is a natural
extension of the familiar sequential computer (RAM) and that it facilitates the
development of efficient parallel algorithms using a variety of programming
paradigms. Chapter topics are

5.1. PRAM submodels and assumptions
5.2. Data broadcasting

5.3. Semigroup or fan-in computation
5.4. Parallel prefix computation

5.5. Ranking the elements of a linked list
5.6. Matrix multiplication
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5.1. PRAM SUBMODELS AND ASSUMPTIONS

As mentioned in Section 4.4, the PRAM model prescribes the concurrent operation of
p processors (in SIMD or MIMD mode) on data that are accessible to al of them in an m-word
shared memory. In the synchronous SIMD or SPMD version of PRAM, which is of primary
interest in our subsequent discussions, Processor i can do the following in the three phases
of onecycle:

1. Fetch an operand from the source address s in the shared memory
2. Perform some computations on the data held in local registers
3. Storeavalueinto the destination address d in the shared memory

Not all three phases need to be present in every cycle; a particular cycle may require no new
data from memory, or no computation (just copying from s tod;, say), or no storing in
memory (partial computation result held in alocal register, say).

Because the addresses s; and d; are determined by Processor i, independently of all other
processors, it is possible that several processors may want to read data from the same memory
location or write their values into a common location. Hence, four submodels of the PRAM
model have been defined based on whether concurrent reads (writes) from (to) the same
location are allowed. The four possible combinations, depicted in Fig. 5.1, are

e EREW: Exclusive-read, exclusive-write

e ERCW: Exclusive-read, concurrent-write
e CREW: Concurrent-read, exclusive-write
e CRCW: Concurrent-read, concurrent-write

The classification in Fig. 5.1 is reminiscent of Flynn’s classification (Fig. 1.11 or 4.1) and
offers yet another example of the quest to invent four-letter abbreviations/acronyms in
computer architecture! Note that here, too, one of the categoriesis not very useful, because
if concurrent writes are allowed, there is no logica reason for excluding the less problematic
concurrent reads.

EREW PRAM isthe most realistic of the four submodels (to the extent that thousands
of processors concurrently accessing thousands of memory locations within a shared-
memory address space of millions or even billions of locations can be considered realistic!).
CRCW PRAM s the least restrictive submodel, but has the disadvantage of requiring a
conflict resolution mechanism to define the effect of concurrent writes (more on this below).
The default submodel, which is assumed when nothing is said about the submodel, is CREW
PRAM. For most computations, it is fairly easy to organize the algorithm steps so that
concurrent writes to the same location are never attempted.

CRCW PRAM s further classified according to how concurrent writes are handled.
Here are a few example submodels based on the semantics of concurrent writesin CRCW
PRAM:

* Undefined: In case of multiple writes, the value written is undefined (CRCW-U).
* Detecting: A specia code representing “detected collision” is written (CRCW-D).
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Figure 5.1. Submodels of the PRAM model.

¢ Common: Multiple writes alowed only if al store the same value (CRCW-C). This
is sometimes called the consistent-write submodel.

* Random: The value written is randomly chosen from among those offered (CRCW-
R). Thisis sometimes called the arbitrary-write submodel.

¢ Priority: The processor with the lowest index succeeds in writing its value (CRCW-P).

* Max/Min: The largest/smallest of the multiple values is written (CRCW-M).

* Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), logical XOR
(CRCW:-X), or some other combination of the multiple valuesis written.

These submodels are al different from each other and from EREW and CREW. One way to
order these submodelsis by their computational power. Two PRAM submodels are equally
powerful if each can emulate the other with a constant-factor slowdown. A PRAM submodel
is (strictly) less powerful than another submodel (denoted by the “<” symbol) if there exist
problems for which the former requires significantly more computational steps than the latter.
For example, the CRCW-D PRAM submodel is less powerful than the one that writes the
maximum value, as the latter can find the largest number in avector Aof sizepinasingle
step (Processor i reads A[i] and writes it to an agreed-upon location x, which will then hold
the maximum value for all processors to see), whereas the former needs at least Q(log n)
steps. The “less powerful or equal” relationship “<” between submodels can be similarly
defined.

The following relationships have been established between some of the PRAM sub-
models:

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

Even though all CRCW submodels are strictly more powerful than the EREW submodel,
the latter can simulate the most powerful CRCW submodel listed above with at most
logarithmic slowdown.
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THEOREM 5.1. A p-processor CRCW-P (priority) PRAM can be simulated by a
p-processor EREW PRAM with a slowdown factor of ©(log p).

The proof of Theorem 5.1 is based on the ability of the EREW PRAM to sort or find
the smallest of p valuesin ©(log p) time, as we shall see later. To avoid concurrent writes,
each processor writes an |D-address-value triple into its corresponding element of a scratch
list of size p, with the p processors then cooperating to sort the list by the destination
addresses, partition the list into segments corresponding to common addresses (which are
now adjacent in the sorted list), do a reduction operation within each segment to remove al
writes to the same location except the one with the smallest processor ID, and finally write
the surviving address-value pairs into memory. This final write operation will clearly be of
the exclusive variety.

5.2. DATA BROADCASTING

Because data broadcasting is a fundamental building-block computation in parallel
processing, we devote this section to discussing how it can be accomplished on the various
PRAM submodels. Semigroup computation, parallel prefix computation, list ranking, and
matrix multiplication, four other useful building-block computations, will be discussed in
the next four sections.

Simple, or one-to-all, broadcasting is used when one processor needs to send a data
value to all other processors. In the CREW or CRCW submodels, broadcasting is trivia, as
the sending processor can write the data value into a memory location, with all processors
reading that data value in the following machine cycle. Thus, simple broadcasting is done in
O(1) steps. Multicasting within groups is equally simple if each processor knows its group
membership(s) and only members of each group read the multicast data for that group.
All-to-all broadcasting, where each of the p processors needs to send a data value to all other
processors, can be done through p separate broadcast operations in ©(p) steps, which is
optimal.

The above scheme is clearly inapplicable to broadcasting in the EREW model. The
simplest scheme for EREW broadcasting is to make p copies of the data value, say in a
broadcast vector B of length p, and then let each processor read its own copy by accessing
B[j]. Thus, initially, Processor i writes its data value into B[0]. Next, a method known as
recursive doubling is used to copy B[0] into al elements of B in [og, pOsteps. Finaly,
Processor j, 0<j <p, reads B[j] to get the data value broadcast by Processor i. The recursive
doubling algorithm for copying B[0Q] into all elements of the broadcast vector B is given
below.

Making p copies of B[0] by recursive doubling

for k=0to Oog,p 1 Processor j, 0<j <p, do
Copy BJj] into B[j + 2|
endfor

In the above algorithm, it isimplied that copying will not occur if the destination address
is outside the list (Fig. 5.2). Alternatively, the list B might be assumed to extend beyond
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Figure 5.2. Data broadcasting in EREW PRAM via recursive doubling.

B[p — 1] with dummy elements that are written into but never read. However, it is perhaps
more efficient to explicitly “turn off” the processors that do not perform useful work in a
given step. This approach might allow us to use the idle processors for performing other tasks
in order to speed up algorithm execution, or at the very least, reduce the memory access
traffic through the processor-to-memory interconnection network when the algorithm is
ported to a physical shared-memor&/ machine. Note that in Step k of the above recursive
doubling process, only the first 2" processors need to be active. The complete EREW
broadcast algorithm with this provision is given below.

EREW PRAM algorithm for broadcasting by Processor i

Processor i write the data value into B[0]

s:=1

whiles< p Processor j,0<j <min(s, p—s), do
Copy BJ[j] into B[j + 9]
s:=2s

endwhile

Processor j, 0<j < p, read the datavalue in B[j]

The parameter s can be interpreted as the “span” of elements already modified or the “ step”
for the copying operation (Fig. 5.3).

The following argument shows that the above ©(log p)-step broadcasting agorithm is
optimal for EREW PRAM. Because initialy a single copy of the data value exists, at most
one other processor can get to know the value through a memory accessin the first step. In
the second step, two more processors can become aware of the data value. Continuing in this
manner, at least og, p Oread—write cycles are necessary for p-way broadcasting.

To perform all-to-all broadcasting, so that each processor broadcasts a value that it holds
to each of the other p— 1 processors, we let Processor j write its value into B[j], rather than
into B[0]. Thus, in one memory access step, al of the vaues to be broadcast are written into
the broadcast vector B. Each processor then reads the other p— 1 valuesin p— 1 memory
accesses. To ensure that all reads are exclusive, Processor j begins reading the values starting
with B[j + 1], wrapping around to B[0] after reading B[p — 1].
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Figure 5.3. EREW PRAM data broadcasting without redundant copying.

EREW PRAM algorithm for all-to-all broadcasting

Processor j, 0 < j < p, write own data value into B[j]
fork=1top—1Processor j,0<j<p,do

Read the datavalue in B[ (j + k) mod p]
endfor

Again the above all-to-all broadcasting algorithm is optimal as the shared memory is
the only mechanism for interprocessor communication and each processor can read but one
value from the shared memory in each machine cycle.

Given adata vector Sof length p, a naive sorting algorithm can be designed based on
the above all-to-all broadcasting scheme. We simply let Processor j compute the rank R[j]
of the data element §j] and then store §j] into R[j]]. The rank R[j] of S[j], loosely defined
as the total number of data elements that are smaller than S[j], is computed by each processor
examining al other data elements and counting the number of elements SI] that are smaller
than §Jj]. Because each data element must be given a unique rank, ties are broken by using
the processor ID. In other words, if Processorsi andj (i < j) hold equal data values, the value
in Processor i is deemed smaller for ranking purposes. Following is the complete sorting
algorithm.

Naive EREW PRAM sorting algorithm using all-to-all broadcasting

Processor j, 0<j < p, write 0 into R[j]
fork=1top—1Processor j,0<j<p,do
I:=(j +K) mod p
if §l] < §fj] or §l] = §j] and | <
thenR[j] :=R[j] +1
endif
endfor
Processor j, 0 <j < p, write S[j] into S[R[j]]

Unlike the broadcasting algorithms discussed earlier, the above sorting algorithm is not
optimal in that the O(p?) computational work involved in it is significantly greater than the
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O(p log p) work required for sorting p elements on a single processor. The analysis of this
algorithm with regard to speed-up, efficiency, and so forth isleft as an exercise. Faster and
more efficient PRAM sorting algorithms will be presented in Chapter 6.

5.3. SEMIGROUP OR FAN-IN COMPUTATION

Semigroup computation was defined in Section 2.1 based on associative binary operator
0. This computation is trivial for a CRCW PRAM of the “reduction” variety if the reduction
operator happens to be 0. For example, computing the arithmetic sum (logical AND, logica
XOR) of p values, one per processor, is trivia for the CRCW-S (CRCW-A, CRCW-X)
PRAM; it can be done in a single cycle by each processor writing its corresponding value
into a common location that will then hold the arithmetic sum (logical AND, logical XOR)
of all of the values.

Here too the recursive doubling scheme can be used to do the computation on an EREW
PRAM (much of the computation is in fact the same for all PRAM submodels, with the only
difference appearing in the final broadcasting step). Interestingly, the computation scheme
isvirtually identical to that of Fig. 5.2, with the copying operation replaced by a combining
(O) operation. Figure 5.4 illustrates the process, where the pair of integers u:v shown in each
memory location represents the combination (e.g., sum) of al input values from X[u] to X[v].
Initially, §i] holds the ith input X[i], or i:i according to our notation. After the first parallel
combining step involving adjacent elements, each element Si], except S[0], holds (i — 1):i.
The next step leads to the computation of the sums of 4 adjacent elements, then 8, and
eventually all 10. The final result, which is available in §p — 1], can then be broadcast to
every processor.

EREW PRAM semigroup computation algorithm

Processor j,0< j < p, copy X]j] into §j]
s:=1
while s< p Processor j,0<j<p—s,do
§j +s]:=9j] 0 §[j + ]
S:=2s

S
0 __* 0:0 1 0:0 00 0:0 0:0
1 * 11 0:1 0:1 0 ['H
2y 22 !;." 12 0:2 02 02
3 33 2:3 0:3 0:3 03
4 *. 44 ] (Rl 04 04
5| T g 85 L Y45 1125 05 05
6 * 6:6 56 3:6 06 08
7 7.7 8:7 4:7 0:7 0:7
8 L—'. 88 78 8] (YL s 08
9 9:9 8:9 6:9 2:9 0:

Figure 5.4. Semigroup computation in EREW PRAM.
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endwhile
Broadcast S[p — 1] to all processors

The ©(log p) computation time of the above algorithm is optimal, given that in each machine
cycle, a processor can combine only two values and the semigroup computation requires that
we combine p values to get the result.

When each of the p processors is in charge of n/p elements, rather than just one element,
the semigroup computation is performed by each processor first combining its n/p elements
in n/p steps to get a single value. Then, the algorithm just discussed is used, with the first
step replaced by copying the result of the aboveinto §j].

It isinstructive to evaluate the speed-up and efficiency of the above agorithm for an
n-input semigroup computation using p processors. Because the final broadcasting takes
log, p steps, the algorithm requires n/p + 2 log, p EREW PRAM steps in all, leading to
a speed-up of n/(n/p +2log,p) over the sequential version. If the number of processors
isp = ©(n), asublinear speed-up of @(n/log n) is obtained. The efficiency in this case is
O(n/log n)/6(n) = ©(L/log n). On the other hand, if we limit the number of processors to
p = O(n/log n), we will have

Speed-up(n, p) = n/O(log n) = Q(n/log n) = Q(p)

Hence, linear or ©(p) speed-up and ©(1) efficiency can be achieved by using an appropriately
smaller number p of processors compared with the number n of elements.

The above can be intuitively explained as follows. The semigroup computation is
representable in the form of a binary tree, as shown in Fig. 5.5. When the number of
processors is comparable to the number of leaves in this binary tree, only the first few
computation levels possess enough parallelism to utilize the processors efficiently, with most
of the processors sitting idle, or else doing redundant computations, in all subsequent levels.
On the other hand, when p << n, we achieve perfect speed-up/efficiency near the leaves,
where the bulk of the computation occurs. The inefficiency near the root is not enough to
significantly affect the overall efficiency. The use of parallel dack, i.e.,, having more
processors than items to be processed, is a recurring theme in parallel processing and is often
aprerequisite for efficient parallel computation.

Lowerd
of parallelism
near the root

Higher de
of pamllchgs;e
near the leaves

Figure 5.5. Intuitive justification of why parallel slack helps improve the efficiency.
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5.4. PARALLEL PREFIX COMPUTATION

Just as was the case for a linear array (Section 2.3), parallel prefix computation consists
of the first phase of the semigroup computation. We see in Fig. 5.4 that as we find the
semigroup computation result in S[p — 1], all partial prefixes are also obtained in the previous
elementsof S Figure 5.6 isidentical to Fig. 5.4, except that it includes shading to show that
the number of correct prefix results doublesin each step.

The above algorithm is quite efficient, but there are other ways of performing parallel
prefix computation on the PRAM. In particular, the divide-and-conquer paradigm leads to
two other solutions to this problem. In the following, we deal only with the case of a p-input
problem, where p (the number of inputs or processors) is a power of 2. Asin Section 5.3, the
pair of integers u:v represents the combination (e.g., sum) of all input values from x, tox, .

Figure 5.7 depicts our first divide-and-conquer algorithm. We view the problem as
composed of two subproblems: computing the odd-indexed results s, s;, Sg, . . . and
computing the even-indexed results sy, S, S, .. ..

The first subproblem is solved as follows. Pairs of consecutive elements in the input list
(%o and x4, X, and X, X, and X;, and so on) are combined to obtain a list of half the size.
Performing parallel prefix computation on thislist yields correct values for al odd-indexed
results. The even-indexed results are then found in a single PRAM step by combining each
even-indexed input with the immediately preceding odd-indexed result. Because the initial
combining of pairs and the final computation of the even-indexed results each takes one step,
the total computation time is given by the recurrence

T(p) = T(p/2) +2

whose solution is T(p) = 2 log,, p.

Figure 5.8 depicts a second divide-and-conquer algorithm. We view the input list as
composed of two sublists: the even-indexed inputs X, X,, X,,, . . . and the odd-indexed inputs
X, X3, Xs, . . . . Pardlel prefix computation is performed separately on each sublist, leading
to partial results as shown in Fig. 5.8 (a sequence of digits indicates the combination of
elements with those indices). The fina results are obtained by pairwise combination of
adjacent partia resultsin a single PRAM step. The total computation time is given by the
recurrence

T(p) =T(P/2)+1

V59454,
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Figure 5.6. Parallel prefix computation in EREW PRAM via recursive doubling.
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Figure 5.7. Parallel prefix computation using a divide-and-conquer scheme.

whose solution is T(p) = log, p.
Even though this latter algorithm is more efficient than the first divide-and-conquer
scheme, it is applicable only if the operator [ is commutative (why?).

5.5. RANKING THE ELEMENTS OF A LINKED LIST

Our next example computation is important not only because it is a very useful building
block in many applications, but also in view of the fact that it demonstrates how a problem
that seems hopelessly sequential can be efficiently parallelized.

The problem will be presented in terms of a linear linked list of size p, but in practice it
often arises in the context of graphs of the types found in image processing and computer
vision applications. Many graph-theoretic problems deal with (directed) paths between
various pairs of nodes. Such a path essentially consists of a sequence of nodes, each
“pointing” to the next node on the path; thus, a directed path can be viewed as a linear linked
list.

The problem of list ranking can be defined as follows: Given alinear linked list of the
type shown in Fig. 5.9, rank the list elementsin terms of the distance from each to the terminal

p/2 even-indexed inpuis

0 2 4 6 ... p-2 o
Parallc! prefix computation of size p/2 >
(] 02 024 0246 02 (p-2)

\ /2 odd-indexed inputs

\
1 3 S 7 A p—l
\ \ Parallel prefix compumuon of size \
1 13 35 357 . Ap-3) (P-l)
WO

0:0 O0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:(p-3) O0:(p-2) 0:(p-1)

Figure 5.8. Another divide-and-conquer scheme for parallel prefix computation.
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Figure 5.9. Example linked list and the ranks of its elements.

element. The terminal element is thus ranked 0, the one pointing to it 1, and so forth. In a
list of length p, each element’ s rank will be a unique integer between 0 and p — 1.

A sequentia algorithm for list ranking requires ©(p) time. Basicaly, the list must be
traversed once to determine the distance of each element from the head, storing the results
in the linked list itself or in a separate integer vector. This first pass can aso yield the length
of thelist (six in the example of Fig. 5.9). A second pass, through the list, or the vector of p
intermediate results, then suffices to compute all of the ranks.

The list ranking problem for the example linked list of Fig. 5.9 may be approached with
the PRAM input and output data structures depicted in Fig. 5.10. The info and next vectors
are given, asisthe head pointer (in our example, head = 2). The rank vector must be filled
with the unique element ranks at the termination of the algorithm.

The parallel solution method for this problem is known as pointer jumping: Repeatedly
make each element point to the successor of its successor (i.e., make the pointer jump over
the current successor) until all elements end up pointing to the terminal node, keeping track
of the number of list elements that have been skipped over. If the original list is not to be
modified, a copy can be made in the PRAM’s shared memory in constant time before the
algorithm is applied.

Processor j, 0<j <p, will be responsible for computing rank(j]. The invariant of the list
ranking algorithm given below isthat initially and after each iteration, the partial computed
rank of each element is the difference between its rank and the rank of its successor. With
the difference between the rank of alist element and the rank of its successor available, the
rank of an element can be determined as soon as the rank of its successor becomes known.
Again, a doubling process takes place. Initialy, only the rank of the terminal element (the
only node that pointsto itself) is known. In successive iterations of the algorithm, the ranks

info next rank
0f =a 4.l
1 B 3 A
Mg 2| © 5
S
4 E 1 ¥ ——
5t F 0 [

Figure 5.10. PRAM data structures representing a linked list and the ranking results.
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of two elements, then four elements, then eight elements, and so forth become known until
the ranks of all elements have been determined.

PRAM list ranking algorithm (via pointer jumping)

Processor j, 0 <j <p, do {initialize the partia ranks}

if next[j]=]
then rank[j] := 0
eserank[j] :=1
endif

while rank[next[head]] # O Processor j, 0<j <p, do
rank[j] := rank][j] + rank[next[j]]
next[j] := next[next[j]]

endwhile

Figure 5.11 shows the intermediate values in the vectors rank (numbers within boxes)
and next (arrows) as the above list ranking algorithm is applied to the example list of Fig.
5.9. Because the number of elements that are skipped doubles with each iteration, the number
of iterations, and thus the running time of the algorithm, islogarithmicin p.

List-ranking appears to be hopelessly sequential, as no access to list elements is possible
without traversing all previous elements. However, the list ranking algorithm presented
above shows that we can in fact use a recursive doubling scheme to determine the rank of
each element in optimal time. The problems at the end of the chapter contain other examples
of computations on lists that can be performed just as efficiently. Thisiswhy intuition can
be misleading when it comes to determining which computations are or are not efficiently
parallelizable (formally, whether a computation is or isnot in NC).
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Figure 5.11. Element ranks initially and after each of the three iterations.



102 INTRODUCTION TO PARALLEL PROCESSING

5.6. MATRIX MULTIPLICATION

In this section, we discuss PRAM matrix multiplication algorithms as representative
examples of the class of numerical problems. Matrix multiplication is quite important in its
own right and is also used as a building block in many other parallel algorithms. For example,
we will seein Section 11.5 that matrix multiplication is useful in solving graph problems
when the graphs are represented by their adjacency or weight matrices.

Given m x mmatrices A and B, with elements a; jand bj;, their product C is defined as

m-1

€= 2 reo ayby
The following O(m?)-step sequential algorithm can be used for multiplying m x m matrices:

Sequential matrix multiplication algorithm

fori=0tom-1do
forj=0tom-1do
t:=0
fork=0tom-1do
t=t+a,by
endfor
Cj=t
endfor
endfor

If the PRAM has p = m3 processors, then matrix multiplication can be donein ©(log m) time
by using one processor to compute each product af,; and then allowing groups of m
processors to perform m-input summations (semigroup computation) in @(log m) time.
Because we are usually not interested in parallel processing for matrix multiplication unless
misfairly large, thisisnot a practical solution.

Now assume that the PRAM has p = m2 processors. In this case, matrix multiplication
can be done in ©(m) time by using one processor to compute each element ¢; ;of the product
matrix C. The processor responsible for computing G; reads the elements of Row i in A and
the elements of Column j in B, multiplies their corresponding kth elements, and adds each
of the products thus obtained to a running total t. This amounts to parallelizing the i and j
loops in the sequential agorithm (Fig. 5.12). For simplicity, we label the m2 processors with

s

@
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Figure 5.12. PRAM matrix multiplication by using p = m? processors.
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two indices (i, j), each ranging from 0 to m— 1, rather than with a single index ranging from
Otom?—-1.

PRAM matrix multiplication algorithm using m? processors

Processor (i, j),0<1i,j<m,do
begin

t:=0

fork=0tom-1do

t::t+aikbkj

endfor

G=t
end

Because multiple processors will be reading the same row of A or the same column of B, the
above naive implementation of the algorithm would require the CREW submodel. For
example, in agiven iteration of the kloop, all processors (i, y), 0 <y < m, access the same
element & of Aand all processors (x, j) access the same element b, of B. However, it is
possible to convert the algorithm to an EREW PRAM algorithm by skewing the memory
accesses (how?).

Next, assume that the PRAM has p = m processors. In this case, matrix multiplication
can be done in ©(nM?) time by using Processor i to compute the m elements in Row i of the
product matrix Cin turn. Thus, Processor i will read the elements of Row i in A and the
elements of all columnsin B, multiply their corresponding kth elements, and add each of the
products thus obtained to a running total t. This amounts to parallelizing the i loop in the
sequentia agorithm.

PRAM matrix multiplication algorithm using m processors

forj=0tom-—21Processor i,0<i<m,do
t:=0
fork=0tom-1do
t=t+a,by
endfor
Gj=t
endfor

Because each processor reads a different row of the matrix A, no concurrent reads from A
are ever attempted. For matrix B, however, all m processors access the same element qq. at
the same time. Again, one can skew the memory accesses for B in such a way that the EREW
submodel is applicable. Note that for both p = m2 and p = m processors, we have efficient
algorithms with linear speed-ups.

In many practical situations, the number of processorsis even lessthan m. So we need
to develop an agorithm for this case as well. We can let Processor i compute a set of nv/p
rows in the result matrix C; say Rows i, i +p,i +2p, ...,i+ (mp—-1)p. Again, we are
parallelizing the i loop as this is preferable to parallelizing the k loop (which has data
dependencies) or the j loop (which would imply m synchronizations of the processors, once
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at the end of each i iteration, assuming the SPMD model). On a lightly loaded Sequent
Symmetry shared-memory multiprocessor, this last algorithm exhibits almost linear speed-
up, with the speed-up of about 22 observed for 24 processors when multiplying two 256 x
256 floating-point matrices [Quin94]. This is typical of what can be achieved on UMA
multiprocessors with our simple parallel agorithm. Recall that the UMA (uniform memory
access) property implies that any memory location is accessible with the same amount of
delay.

The drawback of the above algorithm for NUMA (nonuniform memory access) shared-
memory multiprocessors is that each element of B is fetched m/p times, with only two
arithmetic operations (one multiplication and one addition) performed for each such element.
Block matrix multiplication, discussed next, increases the computation to memory access
ratio, thus improving the performance for NUMA multiprocessors.

Let us divide the m x m matrices A, B, and C into p blocks of size g x g, as shown in
Fig. 5.13, whereq = m/Np. We can then multiply the m x m matrices by usi ng\/E x \/p— “matrix
multiplication with(Np)Y =p processors, where the terms in the algorithm statement t :=t +
aikbkj are now g x q matrices and Processor (i, j) computes Block (i, j) of the result matrix
C. Thus, the algorithm is similar to our second algorithm above, with the statement t :=t +
a; by replaced by a sequential q x g matrix multiplication algorithm.

Each multiply—add computation on g x q blocks needs 2g2= 2m?/p memory accesses
to read the blocks and 23 arithmetic operations. So q arithmetic operations are performed
for each memory access and better performance will be achieved as a result of improved
locality. The assumption here is that Processor (i, j) has sufficient local memory to hold Block
(i, j) of the result matrix C (g? elements) and one block-row of the matrix B; say the g elements
in Row kq + c of Block (k, j) of B. Elements of A can be brought in one at atime. For example,
aselement in Row iq + a of Column kg + cin Block (i, k) of Ais brought in, it is multiplied
in turn by the locally stored g elements of B, and the results added to the appropriate q
elements of C (Fig. 5.14).

1 2 b
1
=mAp One processor
k computes these
2 Ll elements of C
q that it holds in
local memory

¥

Figure 5.13. Partitioning the matrices for block matrix multiplication.
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Figure 5.14. How Processor (i, j) operates on an element of A and one block-row of Bto update
one block-row of C.

On the Cm* NUMA-type shared-memory multiprocessor, a research prototype machine
built at Carnegie-Mellon University in the 1980s, this block matrix multiplication agorithm
exhibited good, but sublinear, speed-up. With 16 processors, the speed-up was only 5 in
multiplying 24 x 24 matrices. However, the speed-up improved to about 9 (11) when larger
36 x 36 (48 x 48) matrices were multiplied [Quin94].

It is interesting to note that improved locality of the block matrix multiplication
algorithm can also improve the running time on a uniprocessor, or distributed shared-memory
multiprocessor with caches, in view of higher cache hit rates.

PROBLEMS

5.1. Ordering of CRCW PRAM submodels
Complete the ordering relationships between the various CRCW PRAM submodels briefly
discussed in Section 5.1, i.e., place the remaining submodels in the linear order. If you cannot
provide formal proofs, try to guess where the missing submodels belong and describe the
intuition behind your guess.

5.2. The power of various PRAM submodels
State and prove a result similar to Theorem 5.1 for the CRCW-M (max/min) and CRCW-S
(summation) PRAM submodels (and more generally for the reduction submodel, where the
reduction operation is a semigroup computation).
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5.4.
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5.6.

5.7.

5.8.
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Broadcasting on a PRAM

a. Find the speed-up, efficiency, and the various other measures defined in Section 1.6 for
each of the PRAM broadcasting algorithms presented in Section 5.2.

b. Show how two separate broadcasts, by Processorsip and i1, can be completed in only one
or two extra EREW PRAM steps compared with a single broadcast.

c. Canyou do p-way broadcasting through a broadcast vector B of length p/2?

d. Modify the broadcasting algorithms such that a processor that obtains the value broadcast
by Processor i keeps it in a register and does not have to read it from the memory each
time.

Naive sorting on a PRAM

a.  Find the speed-up, efficiency, and the various other measures defined in Section 1.6 for the
naive PRAM sorting algorithm presented in Section 5.2.

b. Present a more efficient sorting algorithm when the elements of the list to be sorted are
two-valued (e.g., eachisO or 1).

c. Generalize the method proposed in part (b) to the case when the inputs are d-valued and
indicate when the resulting algorithm would be faster than the naive algorithm.

Semigroup computation on a PRAM

In order to avoid the final broadcasting phase, which essentially doubles the execution time of
the semigroup computation algorithm in the EREW PRAM, it has been suggested that we
replace theindicesi + sin the algorithm with i + smod p (i.e., allow the computations to wrap
around). Under what conditions would this method yield correct results in all processors?

Parallel prefix computation on a PRAM
For each of the PRAM parallel prefix algorithms presented in Section 5.4:

a. Determine the speed-up, efficiency, and the various other measures defined in Section 1.6.
b. Extend the algorithm to the case of n inputs, wheren > p.
c. Repeat part (a) for the extended algorithms of part (b).

Parallel prefix on a PRAM
Show that a p-processor PRAM needs at least 2n/(p + 1) steps for an n-input parallel prefix
computation, wheren=mp(p + 1)/2 + 1 and m= 1 [Wang96].

Parallel prefix computation on a PRAM

a  Modify the agorithms given in Section 5.4 so that they perform the diminished parallel
prefix computation; the ith element of the result is obtained from combining all elements
up to i-1.

b. Develop aPRAM algorithm for an incomplete parallel prefix computation involving p or
fewer elements in the input vector X[0:p — 1]. In this variant, some elements of X may be
marked as being invalid and the ith prefix result is defined as the combination of all valid
elements up to the ith entry.

c. Develop a PRAM agorithm for a partitioned parallel prefix computation defined as
follows. The input X consists of p elements. A partition vector Y is also given whose
elements are Boolean values, with Y[i] = 1 indicating that the X[i] is the first element of a
new partition. Parallel prefix computation must be performed independently in each
partition, so that the kth result in a partition is obtained by combining the first k elements
in that partition. Hint: Convert the problem to an ordinary parallel prefix computation by
defining a binary operator for which each operand isapair of valuesfrom X and Y.
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59.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

d. Extend the agorithm of part (c) so that itsinput sizeis n rather than p (n > p).

List-ranking on a PRAM

Modify the list ranking algorithm of Section 5.5 so that it works with a circular list. The head
pointer points to an arbitrary list element and the rank of an element is defined as the distance
from head to that element (so the head element itself has arank of 1, its successor has a rank
of 2, and so on).

List-ranking on a PRAM

a.  Show that the CREW submodel isimplicit in the list ranking algorithm of Section 5.5.

b. Modify the algorithm so that it uses the EREW PRAM submodel.

c. Extendthealgorithm so that it ranksalist of sizen, withn > p.

d. Suppose that the info part of alinked list (see Fig. 5.10) is avalue from a set Son which
an associative binary operator [ has been defined. Develop an algorithm for parallel prefix
computation that fills a value vector with the prefix computation result on all elements of
the list from the head element up to the current element.

M aximum-sum-subsequence problem
Given a vector composed of n signed numbers, we would like to identify the indices u and v
such that the sum of all vector elements from element u to element v is the largest possible.

a. Develop asequential agorithm for this problem that has linear running time.
b. Develop an efficient EREW PRAM algorithm for this problem.

Matrix multiplication

Our first parallel matrix multiplication algorithm in Section 5.6 used p = m3 processors and
achieved © (log m) running time. Show how the same asymptotic running time can be obtained
with afactor of log m fewer processors.

Vector operations on a PRAM
Devise PRAM agorithms for the following operations on m-vectorsusing p (p < m) processors:

a Inner product of two vectors.
b. Convolution of two vectors.

Matrix multiplication
Based on what you learned about matrix—matrix multiplication in Section 5.6, devise efficient
PRAM algorithms for the following:

a. Matrix—vector multiplication.
b. Multiplication of large nonsquare matrices.
¢. Raising asquare matrix to agiven integer power.

The all-pairs-shortest-path problem on a PRAM

An n-node weighted directed graph can be represented by an nx n matrix W, with W[i, j]
denoting the weight associated with the edge connecting Node i to Node j. The matrix element
will be « if no such edge exists. Elements of W can be interpreted as the length of the shortest
path between Nodes i and j, where the number of edges in the path isrestricted to be < 1.

a Show that W2 represents the length of the shortest path with <2 edges, if “matrix

multiplication” is done by using “min” instead of addition and “+” instead of multiplica-
tion.
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b. Using the result of part (a), develop an efficient PRAM agorithm for finding the lengths
of the shortest paths between al node pairs in the graph. Hint: What do wh, w8
represent?

5.16. Maximum-finding on CRCW PRAM

Consider the problem of finding the maximum of p numbers on a p-processor CRCW PRAM.
Show that this can be done in sublogarithmic time using the following scheme. Divide the p
numbers and processors into p'3 groups of size 3. Select the maximum number in each group
in constant time, thus reducing the problem to that of determining the maximum of p/3 numbers
using p processors. Next, use groups of 21 processors to determine the maximum values in
groups of 7 numbers in constant time. Show how the process continues, what rule is used by
a processor to determine the numbers it will process in a given phase, how many phases are
needed, and which CRCW submodel(s) must be assumed.
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More
Shared-Memory
Algorithms

In this chapter, following the same notation and basic methods introduced in
Chapter 5, we develop PRAM algorithms for several additional problems. These
problems are somewhat more complex than the building-block computations of
Chapter 5, to the extent that the reader may not know efficient sequential
algorithms for the problems that would allow one to obtain the PRAM version
by simply parallelizing the sequential algorithm or to deduce the speed-up
achieved by the parallel version. For this reason, some background material is
provided in each case and a separate section (Section 6.1) is devoted to the
sequential version of the first algorithm, complete with its analysis. Chapter
topics are

* 6.1. Sequential rank-based selection

* 6.2. A parallel selection algorithm

* 6.3. A selection-based sorting algorithm
* 6.4. Alternative sorting algorithms

* 6.5. Convex hull of a 2D point set

e 6.6. Some implementation aspects

109
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6.1. SEQUENTIAL RANK-BASED SELECTION

Rank-based selection is the problem of finding a (the) kth smallest element in a sequence
S=Xg, X1, - - -, Xn-1 Whose elements belong to a linear order. Median, maximum, and
minimum finding are special cases of this general problem. Clearly the (rank-based) selection
problem can be solved through sorting: Sort the sequence in nondescending order and output
the kth element (with index k— 1, if O-origin indexing is used) of the sorted list. However,
thisiswasteful in view of the fact that any sorting algorithm requires Q(n log n) time, whereas
O(n)-time selection algorithms are available. The following is an example of a recursive
linear-time selection algorithm.

Sequential rank-based selection agorithm select(S, k)

1 if|S|<Q {gisasmall constant}
then sort Sand return the kth smallest element of S
else divide Sinto |S|/q subseguences of sizeq
Sort each subsequence and find its median
Let the [§/g medians form the sequence T
endif
2. m=sdect(T, |T J/2){find the median m of the |S|/q medians}
3. Create 3 subsequences
L: Elementsof Sthat are<m
E: Elementsof Sthat are=m
G: Elementsof Sthat are>m
4. if|L| =k
then return select(L, k)
dseif |L| + |E| = k
then return m
else return select(G, k — |L| — |E|)
endif

An analysis of the above selection algorithm follows. If Sis small, then its median is
found through sorting in Step 1 (the size threshold constant g will be defined later). This
requires constant time, say c,. Otherwise, we divide the list into a number of subsequences
of length g, sort each subsequence to find its median, and put the medians together into a list
T. These operations require linear time in |3, say ¢, |9 time. Step 2 of the algorithm that finds
the median of the medians constitutes a smaller, |S|/g-input, selection problem. Given the
median m of the medians, Step 3 of the algorithm takes linear timein |S|, say c; |9, as it
involves scanning the entire list, comparing each element to m, and putting it in one of three
output lists according to the comparison result. Finally, Step 4 is another smaller selection
problem. We will show that the size of this selection problem is 3|S|/4 in the worst case.
Assuming that this claim is true, the running time of the above selection agorithm is
characterized by the recurrence

T(n) = T(n/q) + T(3n/4) + cn
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where the term cn represents an amalgamation of all linear-order terms discussed above. This
recurrence has a linear solution for any g > 4. For example, let the linear solution be T(n) =
dn for q = 5. Plugging into the recurrence, we get

dn =dn/5 + 3dn/4 + cn

The above leads to d = 20c and T(n) = 20cn. Choosing a larger value for the threshold
g leads to a multiplicative factor that is smaller than 20 but at the same time increases the
value of ¢, so an optimal choice may exist for g.

All that is left to complete our analysis of the selection algorithm is to justify the term
T(3n/4) in the above recurrence. The reason that the selection problem in Step 4 of the
agorithm involves no more than 3n/4 inputs is as follows. The median m of the n/q medians
isno smaller (no larger) than at least haf, or (n/g)/2, of the medians, each of which isin turn
no smaller (no larger) than g/2 elements of the original input list S. Thus, mis guaranteed to
be no smaler (no larger) than at least ((n/q)/2) x g/2 = n/4 elements of the input list S.

The following example shows the application of the above sequential selection algo-
rithm to an input list of sizen=25using q = 5.

DU n/q sublists of QEleMENtS  vuicemiicie e ie e e mae >
S 6 4 56 7 153 8 2 1 03 465 6 2171 4 5 4 9 5
6 3 3 2 5
m 3
1210211 3 3 6 456 758 45674542975
L E G
IL|=7 |E|=2 |G|=16

To find the 5th smallest element in S, select the 5th smallest element in L (|L| > 5) as follows

S 1 2 1 0 2 1 1

T 1 1

m 1
0 1 1 1 1 2 2
L E G

leading to the answer 1, because in the second iteration, |L| < 5 and |L| + |E| = 5. The 9th
smallest element of Sis3 (L] + |E| = 9). Finaly, the 13th smallest element of Sisfound by
selecting the 4th smallest element in G (4= 13— |L | — [E]):

s 6 4 5 6 7 5 8 4 5 6 7 4 5 4 9 5
T 6 5 5 5
m 5
4 4 4 4 5 5 5 5 5 6 6 7 8 6 7 9
L E G

The preceding leads to the answer 4.
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6.2. A PARALLEL SELECTION ALGORITHM

If a parallel computation model supports fast sorting, then the n-input parallel selection
problem can be solved through sorting. This is the case, e.g., for the CRCW PRAM-S or
“summation” submodel with p = n2 processors as shown below. We will see in Chapter 9
that the more realistic 2D mesh model also supports fast sorting relative to its diameter-based
lower bound.

In the CRCW PRAM-S model, let us number each of the p = n2 processors by an index
pair (i, j), with0 =1, j <n. Processor (i, j) comparesinputs §i] and §Jj] and writesa 1 into
the memory location rank[j] if §[i] < §j] or if §i] = §j] and i <j. Because of the summation
feature on concurrent writes, after this single-cycle operation, rank[j] will hold the rank or
index of g]j] in the sorted list. In the second cycle, Processor (0, j), 0 < j < n, reads §]j] and
writes it into S[rank[j]]. The selection process is completed in a third cycle when all
processors read Sk — 1], the kth smallest element in S

It is difficult to imagine a faster selection algorithm. Unfortunately, however, this fast
three-step algorithm is quite impractical: It uses both a large number of processors and a very
strong PRAM submodel. One might say that this algorithm holds the record for the most
impractical parallel algorithm described in this book!

Now, coming down to earth, the selection algorithm described in Section 6.1 can be
parallelized to obtain a p-processor PRAMselect algorithm for selecting the kth smallest value
inalist Sof sizen. List T of size nisused as working storage, in additionto L, E, and G, as
discussed for the sequential selection algorithm in Section 6.1.

Parallel rank-based selection algorithm PRAMselect(S k, p)

1. if|S|<4
then  sort Sand return the kth smallest element of S
else  broadcast |S| to al p processors
divide Sinto p subsequences St) of size [S|/p
Processor j, 0 < j < p, compute the median T; : = select(SV), [S1)}/2)
endif
2. m=PRAMselect (T, |T|/2, p) {find the median of the medians in parallel}
3. Broadcast mto all processors and create 3 subsegquences
L: Elementsof Sthat are<m
E: Elementsof Sthatare=m
G: Elementsof Sthat are>m
4. if|lL|=k
then return PRAMselect (L, k, p)
ese if|L|+|E|=k
then return m
else return PRAMselect (G, k — |L | — |E|, p)
endif

Note that the parallel algorithm PRAMselect is quite similar in appearance, and underlying
concepts, to the sequential algorithm select presented in Section 6.1. This familiarity of the
shared-memory programming model is one of its key advantages. Figuring out the reason
behind the choice of the constant 4 in Step 1 of PRAMselect is | eft as an exercise.
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To analyze the PRAMselect algorithm, we assume that the number p of processors is
sublinear in the number n of elements in the input list; namely, p=n~%, where xis a parameter
that is known a priori. For example, x = 1/2 correspondsto p = Y processors being applied
to the solution of an n-input problem.

Step 1 of the algorithm involves broadcasting, which needs O(log p) = O(log n) time,
dividing into sublists, which is done in constant time by each processor independently
computing the beginning and end of its associated sublist based on | and x, and sequential
selection on each sublist of length n/p, which needs O(n/p) = O(n*) time. Step 3 can be done
as follows. First, each processor counts the number of elements that it should place in each
of the lists L, E, and G in O(n/p) = O(nx) time. Then, three diminished parallel prefix
computations are performed to determine the number of elements to be placed on each list
by all processors with indices that are smaller than i. Finaly, the actua placement takes O(n*)
time, with each processor independently writing into the lists L, E, and G using the
diminished prefix computation result as the starting address. Noting that |ogarithmic terms
are negligible compared with O(nx) terms and using the knowledge that the parallel selection
agorithm in Step 4 will have no more than 3n/4 inputs, the running time of PRAMselect
algorithm for p=n1* can be characterized by the following recurrence, which is easily
verified to have the solution T(n, p) = O(n*);

T(n, p) = T(N*™>, p) + T(3n/4, p) + cn*
The PRAMselect agorithm is quite efficient:

Speed-up (n, p) = O (N)/O(n*) = Q(n**) = Q(p)
Efficiency = Speed-up / p=Q(1

Work (n, p) =pT(n, p) = ©(n* *)O(n*) = O(n)

The above asymptotic anadysisisvalid for any x> 0. What if x=0, i.e., we use p = n processors
for an n-input selection problem? Does the above analysis imply that in this case, we have
a constant-time selection algorithm? The answer is negative. Recall that in the asymptotic
analysis, we ignored several O(log n) terms in comparison with O(nX) terms. If O(n*) = O(1),
then the logarithmic terms dominate and the recurrence would have an O(log n) solution.

One positive property of PRAMselect is that it is adaptable to any number of processors
and yields linear speed-up in each case, provided that p < n. Thisis a desirable property in
a paralel algorithm, as we do not have to adjust the algorithm for running it on different
hardware configurations. It is self-adjusting. Even if the number of processorsin the target
machine is known a priori, it is still the case that the number available to the algorithm may
vary, either because the algorithm must share the machine with other running programs (a
machine partition is assigned to it) or because of dynamic variations caused by processor
failures.

6.3. A SELECTION-BASED SORTING ALGORITHM

Here is one way to sort alist of size n via divide and conquer. First identify the k— 1
elements that would occupy positions n/k, 2n/k, 3n/k, . . ., (k—1)n/kin the sorted list, for
asuitably chosen small constant k. Call the values of these elementsmy, m,, ms, ..., My,
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Figure 6.1. Partitioning of the sorted list for selection-based sorting.

and define mp = —c0 @and my = +oo for convenience (see Fig. 6.1). Now, if the above k—1
elements are put in their proper places in the sorted list and all other elements are moved so
that any element that is physically located between mi and mj.; inthelist hasavaluein the
interval [mj , m+1], the sorting task can be completed by independently sorting each of the k
sublists of size n/k.

The assumptions here are quite similar to those for the parallel selection algorithm in
Section 6.2. We have p < n processors for sorting alist of sizen, with p = n* ™. Because x is
known a priori, we can choose k = 21 /¥ as our partitioning constant. The algorithm thus begins
by finding m;, the (in/k)th smallest element in the sorted list, O < i <k, and proceeds as
discussed above.

Parallel selection-based sorting algorithm PRAMselectionsort(S, p)

1. if |§ <kthen return quicksort (S)
2. fori=1ltok—1do
mi := PRAMselect(S i [S/k, p)
{for notational convenience, let m, := —o; My :=+oo}
endfor
3. fori=0tok—1do
make the sublist T® from elements of Sthat are between m; and m;,;
endfor
4. for i = 1to k/2 doin paralel
PRAMselectionsort (T ®,  2p/k)
{pl(k/2) processors are used for each of the k/2 subproblems}
endfor
5. fori=k/2+1tokdoin paralel
PRAMselectionsort(T (),  2p/k)
endfor

The analysis of complexity for the PRAMselectionsort algorithm is as follows. Step 1
takes constant time. Step 2 consists of k separate and sequentially solved parallel selection
problems with n inputs using n 1-* processors. From the analysis of Section 6.2, because kis
aconstant, the total timefor Step 2isO(n*). In Step 3, each processor compares its nx values
with the k — 1 threshold values and counts how many elements it will contribute to each of
the k partitions. Then, k diminished parallel prefix computations, each taking O(log p) =
O(log n) time, are performed to obtain the starting index for each processor to store the
elements that it contributes to each partition. The last part of Step 3 involves a processor
writingitsnx elements to the various partitions. Thus, Step 3 takes atotal of O(n*) time.
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In Steps 4 and 5, the PRAMselectionsort algorithm is recursively called. The running
time of the algorithm is thus characterized by the recurrence

T(n, p) = 2T(n/k, 2p/k) + cn*

which has the solution T(n, p) = O(n* log n). The above recurrence aso gives us a clue as to
why all of the k subproblems cannot be handled in Step 4 at once: Our agorithm assumes
the availability of p=n1-x processorsfor ninputs. Thus, to solve each of the subproblems
with n/k = n/21 inputs, the number of processors needed is

(number of inputs)l—* = (nf21 %) 1 % = X211 = p/(k/2)

Thus, the number p of processors is adequate for solving k/2 of the subproblems concurrently,
giving rise to the need for two recursive stepsto solve al k subproblems.

It is straightforward to establish the asymptotic optimality of PRAMselectionsort among
comparison-based sorting algorithms, keeping in mind that any sequential sorting algorithm
requires Q(nlog n) comparisons:

Speed-up(n, p)  =Q(nlogn) / O(n* log n) = Q(nt*)=Q(p)
Efficiency = Speed-up / p=Q(1)

Work(n, p) =pT(n, p) = ©(n1*) O(n* logn)=0O(nlogn)

Asin the case of our PRAMselect algorithm in Section 6.2, the above asymptotic analysisis
valid for any x> 0 but not for x= 0, i.e., PRAMselectionsort does not allow us to sort p keys
using p processors in optimal O(log p) time. Furthermore, even in the case of p <n, the time
complexity may involve large constant multiplicative factors. In most cases, the agorithms
discussed in Section 6.4 might prove more practical.

Consider the following example of how PRAMselectionsort works on an input list with
|S| = 25 elements, using p = 5 processors (thus, x= 1/2 and k=2 1/* = 4),

S:6456715382103456217045495

The threshold values needed for partitioning the list into k = 4 sublists are determined as
follows:

My = —o0
nk=25/4=6 my = PRAMsdlect (S 6, 5) = 2
2n/k = 50/4= 13 m, = PRAMselect(S, 13, 5) = 4
3n/k = 75/4=19 m; = PRAMsdlect(S, 19, 5) = 6
my = +oo

After these elements are placed in their respective positions, the working list T looks as
follows, with the partition boundaries also shown for clarity:
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Once al other 22 elements are placed in their respective partitions and the four partitions
independently sorted, the sorted list T results:

T:0011122334444555556/667789

Note that for elements that are equal to one of the comparison thresholds, the proper place
may be to the left or right of that value. The algorithm as described above, may not work
properly if the input list contains repeated values. It is possible to modify the algorithm so
that such repeated values are handled properly, but this would lead to higher algorithm
complexity.

6.4. ALTERNATIVE SORTING ALGORITHMS

Much of the complexity of the parallel sorting algorithm described in Section 6.3 is
related to our insistence that the k subproblems resulting at the end be exactly of the same
size, thus allowing us to establish an optimal upper bound on the worst-case running time.
There exist many useful algorithms that are quite efficient on the average but that exhibit
poor worst-case behavior. Sequential quicksort is a prime example that runs in order nlog n
time in most cases but can take on the order of n2 time for worst-case input patterns.

In the case of our selection-based sorting agorithm, if the comparison thresholds are
picked such that their ranks in the sorted list are approximately, rather than exactly, equal to
in/k, the same process can be applied for the rest of the algorithm, the only difference being
that the resulting k subproblems will be of roughly the same size (in a probabilistic sense).

Given alargelist Sof inputs, arandom sample of the elements can be used to establish
the k comparison thresholds. In fact, it would be easier if we pick k= p, so that each of the
resulting subproblems is handled by a single processor. Recall that this sorting algorithm
was used as an example in our discussion of randomization methods in Section 3.5. Below
is the resulting algorithm assuming p << Vn.

Parallel randomized sorting algorithm PRAMrandomsort(S, p)

1. Processorj, 0<j<p, pick 0SlI/p? random samples of its [5/p elements
and store them in its corresponding section of alist T of length 0S/p

2. Processor O sort thelist T
{the comparison threshold m, is the (i1S/p?)th element of T}

3. Pr(gcr j,0<j <p, store its elements that are between m  and m, ,, into the sublist
T

4, Processor j,0<j <p, sort the sublist T

The analysis of complexity for the above algorithm (in the average case) is left as an exercise.

The next sorting algorithm that we will discussis parallel radixsort. In the binary version
of radixsort, we examine every bit of the k-bit keys in turn, starting from the least-significant
bit (LSB). In Step i, biti isexamined, 0 <i <k. All records with keys having a0 in bit position
i are shifted toward the beginning and keys with 1 toward the end of the list, keeping the
relative order of records with the same bit value in the current position unchanged (thisis
sometimes referred to as stable sorting). Here is an example of how radixsort works (key
values are followed by their binary representations in parentheses):
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Input list Sort by LSB Sort by middle bit ~ Sort by MSB
5 (101) 4 (100) 4 (100) 1(001)
7 (112) 2 (010) 5 (101) 2 (010)
3 (011) 2 (010 1 (001 2 (010)
1 (001) 5(101) 2 (010) 3(011)
4 (100) 7 (111) 2 (010) 4(100)
2 (010) 3(011) 7 (111) 5 (101)
7 (111) 1 (o01) 3 (011) 7(111)
2 (010) 7 (111) 7 (111) 7(111)

It remains to be shown that the required data movements (upward and downward shifting)
in each of the k steps can be done efficiently in parallel. Let us focus on the data movements
associated with Bit 0. The new position of each record in the shifted list can be established
by two prefix sum computations: a diminished prefix sum computation on the complement
of Bit O to establish the new locations of records with O in bit position 0 and a normal prefix
sum computation on Bit O to determine the location for each record with 1 in bit position 0
relative to the last record of the first category (2 in the following example).

Diminished Prefix sums

Input list Compl't of Bit0  prefixsums Bit 0 plus 2 Shifted list
5 (101) 0 — 1 1+2=3 4 (100)
7 (111) 0 — 1 2+2=4 2 (010)
3 (011) 0 - 1 3+2=5 2 (010)
1 (001) 0 - 1 4+2=6 5 (101)

4 (100) 1 0 0 — 7 (111)
2 (010) 1 1 0 — 3 (011)
7 (112) 0 - 1 5+2=7 1 (001)
2 (010) 1 2 0 — 7 (111)

Thus, the running time of the parallel radixsort agorithm consists mainly of the time needed
to perform 2k parallel prefix computations, where kis the key length in bits. For k a constant,
the running time is asymptotically O(log p) for sorting alist of size p using p processors.

6.5. CONVEX HULL OF A 2D POINT SET

The 2D convex hull algorithm presented in this section is a representative example of
geometric problems that are encountered in image processing and computer vision applica-
tions. It is aso an excellent case study of multiway divide and conquer. The convex hull
problem for a 2D point set is defined as follows: Given apoint set Q of size n on the Euclidean
plane, with the points specified by their (x, y) coordinates, find the smallest convex polygon
that encloses al n points. The inputs can be assumed to be in the form of two n-vectors X
and Y. The desired output is a list of points belonging to the convex hall starting from an
arbitrary point and proceeding, say, in clockwise order. The output list has a size of at most
n. As an example, for the point set shown in Fig. 6.2, the convex hull may be represented by
thelist O, 1, 7, 11, 15, 14, 8, 2.
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Figure 6.2. Defining the convex hull problem.

The following properties of the convex hull allow us to construct an efficient PRAM
parallel agorithm ([Ak193], p. 28):

Property 1. Let g j and g; be consecutive points of CH(Q). View g as the origin of
coordinates. The line from ¢ to g; forms a smaller angle with the positive (or negative) x axis
than the line from gj to any other g, in the point set Q. Figure 6.3 illustrates this property.

Property 2. A segment (q; qj) is an edge of CH(Q) iff all of the remaining n— 2 points
fall to the same side of it. Again, Fig. 6.3 illustrates this property.

The following agorithm finds the convex hull CH(Q) of a 2D point set of size pon a
p-processor CRCW PRAM.

Parallel convex hull algorithm PRAMconvexhull(S, p)

Sort the point set by the x coordinates

Divide the sorted list into Vp subsets Q) of sizeVp,0<i<p

Find the convex hull of each subset Q¥ by assigning Vp processors to it
Merge theVp convex hulls CH(Q(')) into the overall hull CH(Q)

ER SR o

Figure 6.4 shows an example with a 16-element sorted point set (p = 16), the four subsets,
and the four partial convex hulls. Step 4 is the heart of the algorithm and is described next.

Note that the convex hull of Q can be divided into the upper hull, which goes from the
point with the smallest x coordinate to the one with the largest x coordinate, and the lower

y

1L k::’& Angle x'
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e 0 ° L] s
Allpoints fallon  ® L
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Fig. 6.3. lllustrating the properties of the convex hull.
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Figure 6.4. Multiway divide and conquer for the convex hull problem.

hull, which returns from the latter to the former. We will only show how the upper hull of Q
is derived (the part from qoto\/g‘L5 in the example of Fig. 6.2).

Each point subset of sizevp . is assignedV¥p processors to determine the upper tangent
line between its hull and each of the other ¥p — 1 hulls. One processor finds each tangent in
O(log p) steps using an algorithm of Overmars and van Leeuwen [Over81]. The algorithm
resembles binary search. To determine the upper tangent from CH(Q“)) to CH (Q(k’), the
midpoint of the upper part of CH(Q™®) is taken and the slopes for its adjacent points compared
with its own slope. If the slope is minimum, then we have found the tangent point. Otherwise,
the search isrestricted to one or the other half. Because multiple processors associated with
various partia convex hulls read data from all hulls, the CREW model must be assumed.

Once all of the upper tangents from each hull to all other hulls are known, a pair of
candidates are selected by finding the min/max slopes. Finally, depending on the angle
between the two candidates being less than or greater than 180 degrees (Fig. 6.5), no point
or a subset of points from CH( Q") belongs to CH(Q).

-~n~m- T Li o
angent Lines ..
wmmmmmmm“ S e
i CHIO®
o “N‘““‘w

CH(@D) No point of cRigii))
is on CH(Q)

cHQY) p—

points of CH(Q!L)) between
a and b are on CH{Q)

Figure 6.5. Finding points in a partial hull that belong to the combined hull.
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The final step is to renumber the points in proper order for CH(Q). A parallel prefix
computation on the list containing the number of points from each CH(Q“)) that have been
identified as belonging to the combined hull yields the rank or index of each node on CH(Q) .

The complexity of the above parallel convex hull algorithm (excluding the initial sorting
of the point set) is characterized by the following recurrence:

T(p, p) = T(p'%, p') + c log p

which has the solution T(p, p) = 2c log p. Given that sorting a list of size p can be performed
in O(log p) time as well, the overall time complexity is O(log p) .

Because the best sequential algorithm for a p-point convex hull problem requires Q(p
log p) computation steps, the above parallel convex hull agorithm is asymptotically optimal.

6.6. SOME IMPLEMENTATION ASPECTS

In this section, we discuss a number of practical considerations that are important in
transforming a PRAM algorithm into an efficient program for an actual shared-memory
paralel computer. The most important of these relates to data layout in the shared memory.
To discuss these issues, we need to look at hardware implementation aspects of shared
memory.

In any physical implementation of shared memory, the m memory locations will bein
B memory banks (modules), each bank holding m/B addresses. Typically, a memory bank
can provide access to a single memory word in a given memory cycle. Even though memory
units can be, and have been, designed to allow access to a few independently addressed words
in asingle cycle, such multiport memories tend to be quite expensive. Besides, if the number
of memory ports is less than m/B (which is certainly the case in practice), these multiport
memories still do not allow us the same type of access that is permitted even in the weakest
PRAM submodel.

So, even if the PRAM algorithm assumes the EREW submodel where no two processors
access the same memory location in the same cycle, memory bank conflicts may still arise.
Depending on how such conflicts are resolved, moderate to serious loss of performance may
result. An obvious solution is to try to lay out the data in the shared memory and organize
the computational steps of the algorithm so that a memory bank is accessed at most oncein
each cycle. Thisis quite a challenging problem that has received significant attention from
the research community and parallel computer designers.

The main ideas relating to data layout methods are best explained in connection with
the matrix multiplication problem of Section 5.6. Let us take the m x mmatrix multiplication
algorithm in which p = m2 processors are used. We identify each processor by an index pair
(i,1). Then, Processor P;; will be responsible for computing the element g ; of the result matrix
C. The m processors P, ,, 0 <y <m, would need to read Row i of the matrix A for their
computation. In order to avoid multiple accesses to the same matrix element, we skew the
accesses so that Ry, reads the elements of Row i beginning with Ay In this way, the entire
Row i of Aisread out in every cycle, albeit with the elements distributed differently to the
processors in each cycle.

To ensure that conflict-free parallel accessto all elements of each row of Ais possible
in every memory cycle, the data layout must assign different columns of Ato different
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Column 2
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Figure 6.6. Matrix storage in column-major order to allow concurrent accesses to rows.

memory banks. Thisis possible if we have at |east m memory banks and corresponds to the
data storage in column-major order, as shown in Fig. 6.6, where the matrix element (, j) is
found in location i of memory bank j. If fewer than m memory modules are available, then
the matrix element (i, j) can be stored in location i + my/BOof memory bank j mod B. This
would ensure that the row elements can be read out with maximum parallelism.

However, also note that Processors Pyj, 0 < x <m, all access the jth column of B.
Therefore, the column-major storage scheme of Fig. 6.6 will lead to memory bank conflicts
for all such accesses to the columns of B. We can store B in row-major order to avoid such
conflicts. However, if Bis later to be used in a different matrix multiplication, say Bx D,
then either the layout of B must be changed by physically rearranging it in memory or the
algorithm must be modified, neither of which is desirable.

. N
0,0]0,9.0,2 ~Q\3 0,4 0,5
S,

1,5]1,0}1,11.2 \3 1,4 )] Row 1

N
2,4]2,5]2,0 2\1<\<

3,43,5[3,0]3,1\a,2
\/>Column2

q€4,2 \QQ,! 4,5]14,0 14,1

As,}»s,a 5,4]5,5]s.0

Module 0 1 2 3 4 S

Figure 6.7. Skewed matrix storage for conflict-free accesses to rows and columns.
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Fortunately, a matrix can be laid out in memory in such away that both columns and
rows are accessible in parallel without memory bank conflicts. Figure 6.7 shows a well-
known skewed storage scheme that allows conflict-free access to both rows and columns of
amatrix. In this scheme, the matrix element (i ,j) is found in location i of module (i + j) mod
B. It is clear from this formulation that &l elements (i, y), 0<y<m, will be found in different
modules, as are all elements (X, j), 0 < x<m, provided that B> m. It is also clear that if all
of the m diagonal elements (X, x) of the matrix were to be accessed in parallel, conflicts could
arise, unlessB = 2mor else B is an odd number in the range m<B<2m.

To generalize the above discussion and lay a foundation for a theoretical treatment of
the memory layout problem for conflict-free parallel access, it is more convenient to dea
with vectors rather than matrices. The 6 x 6 matrix of Figs. 6.6 and 6.7 can be viewed as a
36-element vector, as shown in Fig. 6.8, that may have to be accessed in some or al of the
following ways:

Column; k,k+1, k+2 k+3, k+4,k+5 Stride of 1
Row: k,k+m,k+2m,k+3m,k+4m, k+5m Stride of m
Diagonal: Kk, ktm +1, k+2(m+ 1), k+ 3(m+ 1), k+ 4(m+ 1), k+5(m+ 1) Stride of m+1
Antidiagonal: k,k+m-1,k+2(m-1), k+3(m-1),k+4(m-1), k+5(m-1) Stride of m—1

where index calculations are assumed to be modulo m2 (or, more generally, modulo the length
| of the vector at hand). In this context, it does not matter whether we number the matrix
elements in column-major or row-major order, as the latter will only interchange the first
two strides.

Thus, the memory data layout problem is reduced to the following: Given a vector of
length |, store it in B memory banks in such a way that accesses with strides g,, s, . . . ,
Sy, are conflict-free (ideal) or involve the minimum possible amount of conflict.

A linear skewing scheme is one that stores the kth vector element in the bank a + kb mod
B. The address within the bank is irrelevant to conflict-free parallel access, though it does
affect the ease with which memory addresses are computed by the processors. In fact, the
constant a above is also irrelevant and can be safely ignored. Thus, we can limit our attention
to linear skewing schemes that assign Vj to memory module My, .4 -

With alinear skewing scheme, the vector elements k, k+s,k+2s, ..., k+ (B—1)swill
be assigned to different memory modules iff sbis relatively prime with respect to the number
B of memory banks. A simple way to guarantee conflict-free paralel access for all strides is
to choose B to be a prime number, in which case b = 1 can be used for simplicity. But having

Vector 10 |6 [12|18]24]30] Ax is
ndices 1117 1319125131 Gidveq
\*2 8 [14]20126{32] as vector
319 (15[21[27{33] element
4 hohsl2ohslzel 1+im
S5 11117{23]29135

Figure 6.8. A 6 x 6 matrix viewed, in column-major order, as a 36-element vector.
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a prime number of banks may be inconvenient for other reasons. Thus, many alternative
methods have been proposed.

Now, even assuming conflict-free access to memory banks, it is still the case that the
multiple memory access reguests must be directed from the processors to the associated
memory banks. With alarge number of processors and memory banks, thisis a nontrivial
problem. Ideally, the memory access network should be a permutation network that can
connect each processor to any memory bank as long as the connection is a permutation.
However, permutation networks are quite expensive to implement and difficult to control
(set up). Thus, we usualy settle for networks that do not possess full permutation capability.

Figure 6.9 shows a multistage interconnection network as an example of a compromise
solution. This is a butterfly network that we will encounter again in Chapter 8 where we
devise a circuit for computing the fast Fourier transform (FFT) and again in Chapter 15,
where it is shown to be related to the hypercube architecture. For our discussion here, we
only note that memory accesses can be self-routed through this network by letting the ith bit
of the memory bank address determine the switch setting in Column i —1 (1 <i < 3), with
0 indicating the upper path and 1 the lower path. For example, independent of the source
processor, any request going to memory bank 3 (0011) will be routed to the “lower,” “upper,”
“upper,” “lower” output line by the switches that forward it in Columns 0-3. A self-routing
interconnection network is highly desirable as the ease of routing trandates directly into
simpler hardware, lower delay, and higher throughput.

The switches in the memory access network of Fig. 6.9 can be designed to dea with
access conflicts by smply dropping duplicate requests (in which case the processors must
rely on a positive acknowledgment from memory to ensure that their requests have been
honored), buffering one of the two conflicting requests (which introduces hondeterminacy
in the memory access time), or combining access requests to the same memory location.

When buffers are used to hold duplicate requests, determining the size of the buffers
needed is a challenging problem. Large buffers increase the probability that no request has
to be dropped because of buffer overflow, but lead to complex switches with attendant cost
and speed penalties. Experience has shown that conflicts can usually be resolved in afew

Figure 6.9. Example of a multistage memory access network.
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rounds or handled with relatively small buffers. In other words, the worst case does not
usualy occur.

However, there are occasionally “hot spots’ in memory that many processors may try
to access simultaneously. If the hot spots are related to control mechanisms, such as locks
and semaphores, that are typically accessed by many processors, then the use of switches
with combining capability may help. For example, multiple read requests from the same
location may be buffered in the switch, with only one forwarded to the next level. When the
read result for such duplicate requests comes back to the switch from its memory side, the
datawill be broadcast to both processor-side ports. With combining switches, the powerful
PRAM CRCW reduction submodels (e.g., maximum or summation) can be implemented
with little additional cost in the memory access network relative to the EREW, provided that
multiple accesses to a given memory bank are guaranteed to be to the same memory location.

PROBLEMS

6.1. Peralel sorting on CRCW-S PRAM
For the impractical sorting algorithm discussed at the beginning of Section 6.2, compute the
speed-up, efficiency, and the other figures of merit introduced in Section 1.6.

6.2. Pearallel rank-based selection
Develop aparallel selection algorithm by applying the ideas used in the radixsort algorithm of
Section 6.4. Compare the performance of your algorithm to that of parallel radixsort and to the
parallel selection algorithm of Section 6.2 and discuss.

6.3. Parallel rank-based selection
In the parallel selection algorithm of Section 6.2:

a. Why isthe constant 4 used on thefirst line of the algorithm (e.g., why not “if [S| < 3"?)?
b. How would the algorithm complexity be affected if the constant 4 is increased to 6, say?
c. What if instead of a constant we use avalue such as p/log, p or n/log, n?

6.4. Parallel selection-based sorting
In the selection-based sorting algorithm of Section 6.3, the decomposition parameter k was
chosen to be 21/% in order to allow us to solve the k subproblems in two passes (Steps 4 and 5
of the algorithm).

a. Justify the solution given for the recurrence characterizing the running time of the algorithm
with the above choice for k.

b. What isthe appropriate choice for kif the k subproblems are to be solved in no more than
I passes?

c. How istherunning time of the algorithm affected if r = 4 in part (b)?

6.5. Parallel selection-based sorting
At the end of Section 6.3, it was mentioned that rank-based selection algorithm becomes more
complex if the input list contains repeated elements. Make the required modifications in the
algorithm for this case.

6.6. Parallel randomized sorting
Analyze the average-case complexity of the parallel randomized sorting algorithm presented
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6.7.

6.8.

6.9.

6.10.

6.11.
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in Section 6.4. Using your andlysis, justify the choice of [S|/p? random samples in the first
agorithm step.

Parallel radixsort agorithm

a. Extend the parallel radixsort algorithm given in Section 6.4 to the case where the number
n of elements to be sorted is larger than the number p of processors.

b. Radixsort can be done in higher radices (e.g., radix 4 rather than 2). Describe a parallel
radixsort algorithm using the radix of 4 and compare its running time with the radix-2
version.

c. Based on theresults of part (b), would it be advantageous to use even higher radices?

Parallel convex hull agorithm

a. On Fig. 6.4, show how the next level of recursion would subdivide the four smaller
problems.

b. In general, when does the recursion stop?

c. Expressthe number of recursion levelsin terms of the problem size p.

d. Extend the agorithm to the general case of n data points and p processors, with n > p.

Other geometric problems on point sets

The convex hull problem is only one example of a rich collection of practical problems that
involve point sets in the Cartesian coordinates. Propose algorithms for solving each of the
following problems on point sets.

a. Determining the center of gravity of a 2D set of points, each having a positive weight.

b. Determining the subset of points that are not dominated by any other point, where a point
(X1 ,y2) dominates another point (X, o) iff x1= xpand y; 2 y,. As an example, the answer
in the case of the point set in Fig. 6.2 should be 7, 11, 12, 15.

c. Dynamically updating the convex hull of a 2D point set as each point is added to, or removed
from, the set.

d. Determining the largest circle centered at each point that does not have any other point
inside it.

e. Determining the diameter of a 2D point set, defined as the diameter of the smallest circle
that can enclose al of the points.

f. Determining a pair of points that are closest to, or farthest from, each other.

Geometric problems on sets of line segments
Given a set of straight line segments on a plane, each specified by the coordinates of its two
endpoints, propose agorithms for solving each of the following problems.

a. Yesor no answer to the question of whether any pair of line segments intersect.

b. Determining all intersection points between pairs of line segments.

c. Detecting the existence of parallel line segments.

d. Determining which portion of each line segment would be visible to an observer located
at the point (x y) = (0, ), where line segments are assumed to obstruct the visibility of
line segments that are “behind” them.

Polynomial interpolation

We are given n points (x;, ¥;), 0<i <n, and asked to find an (h—1)th-degree polynomial y = f (x)
such that f(xj) =y; for the given n data points. By Newton's interpolation method, the
polynomial can be written asf(x) = cg + ¢1(x — xp) + c2(x — x0)(x — x1) + c3(x — x)(x — x )(x —

x2) + o+ oplx — xg)x — x1) . L {x ~ xp9).
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6.12.

6.13.

6.14.

6.15.

a.  Show that c; can be computed as the sum of i + 1 terms, the jth of which (0 <j <i) constitutes
afraction with y; in the numerator and a prefix product of length i in the denominator.

b. Based on the result of part (a), devise a PRAM algorithm that computes the coefficients
cjusing n parallel prefix computations and additional arithmetic operations as needed.

c. Devise a PRAM agorithm to compute f(x), given x and the coefficientsc, 0<i<n.

Numerical integration

To compute the integral of f(x)dx over theinterval [a, b] using the trapezoidal rule, the interval
[a, b] isdivided into n subintervals of equa length h = (b —a)/n. The definite integral is then
approximated by h(f(a)/2 + f(a + h) + f(a + 2h) + - + f(b - h) + f(5)/2).

a. Develop a PRAM agorithm implementing the trapezoidal rule.

b. To minimize the number of function evaluations, the following adaptive version of the
trapezoidal rule, known as adaptive quadrature, can be used. Given a desired accuracy ¢,
the definite integral is evaluated using the trapezoidal rule with n=1 and n= 2. Call the
results I and I,. If I;— |1 <€, then | »is taken to be the desired result. Otherwise, the same
method is applied to each of the subintervals [a, (a + b)/2] and [(a + b)/2, b] with the
accuracy €/2. Discuss the parallel implementation of adaptive quadrature.

Linear skewing schemes for matrices
Consider the linear skewing scheme s(i, j) = ai + bj mod B that yields the index of the memory
bank where the element (i, j) of an m x m matrix is stored. Prove each of the following results.

a. Inorder to have conflict-free parallel accessto rows, columns, diagonals, and antidiagonals,
it is sufficient to choose B to be the smallest prime number that is no less than max(m, 5).

b. Inorder to have conflict-free parallel access to rows, columns, diagonals, and antidiagonals,
the smallest number of memory banks required ismif gcd(m, 2) =gcd(m, 3) =1, m+ 1 if
misevenand m=0mod 3 or 1 mod 3, m+ 2 if misodd and amultiple of 3, and m + 3 if
misevenand m=2mod 3.

c. If it is possible to have conflict-free paralel access to rows, columns, diagonas, and
antidiagonals using a linear skewing scheme, then it is possible to achieve this using the
scheme s(i,j) =i+ 2j mod B.

Memory access networks
For the butterfly memory access network depicted in Fig. 6.9:

a.  Show that there exist permutations that are not realizable.
b. Show that the shift permutation, where Processor i accesses memory bank i + k mod p, for
some constant k, is realizable.

PRAM sorting by merging

Develop a parallel algorithm for sorting on the PRAM model of parallel computation that is
based on merging the sublists held by the various processors into successively larger sublists
until a sorted list containing all itemsis formed. Analyze your algorithm and compare its time
complexity with those of the algorithms presented in this chapter.
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Sorting and
Selection Networks

Circuit-level designs for parallel processing are necessarily problem-specific or
special-purpose. This arises in part from the relatively inflexible structure of a
circuit (as compared with a stored program that can be easily modified or
adapted to varying numbers of inputs) and in part from our limited ability to deal
with complexity, making it virtually impossible to develop a complete circuit-
level design individually and in a reasonable amount of time unless the problem
at hand is simple and well-defined. The problem of sorting, which is the focus
of this chapter, is an ideal example. Discussion of sorting networks or circuits
touches on many of the important design methods and speed-cost trade-offs that
are recurring themes in the field of parallel processing. A sampler of other
interesting problems will be covered in Chapter 8. Chapter topics are

7.1. What is a sorting network?

7.2. Figures of merit for sorting networks
7.3. Design of sorting networks

7.4. Batcher sorting networks

7.5. Other classes of sorting networks
7.6. Selection networks
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7.1. WHAT IS A SORTING NETWORK

A sorting network is a circuit that receives ninputs, xg, x;, x,, . . , X,_;, and permutes
them to produce n outputs, Yo, ¥, ¥ - - .+ Y,, SUch that the outputs satisfy yg<y; <
Y, <. ..Yn. For brevity, we often refer to such an n-input n-output sorting network as an
n-sorter (Fig. 7.1). Just as many sorting algorithms are based on comparing and exchanging
pairs of keys, we can build an n-sorter out of 2-sorter building blocks. A 2-sorter compares
its two inputs (call them input, and input,) and orders them at the output, by switching their
order if needed, putting the smaller value, min(input,, input,), before the larger value,
max(input,, input,).

Figure 7.2 shows the block diagram of a 2-sorter that always directs the smaller of the
two input values to the top output. It also depicts simpler representations of the 2-sorter,
where the rectangular box is replaced by a vertical line segment and the input-to-output
direction is implied to be from left to right. Because, in some situations, we may want to
place the smaller of the two inputs on the bottom, rather than top, output, we can replace the
vertical line segment representing the 2-sorter by an arrow pointing in the direction of the
larger output value. These schematic representations make it quite easy to draw large sorting
networks. In particular, note that the heavy dots representing the 1/0 connections of a 2-sorter
can be removed when there is no ambiguity. The schematic representations can be easily
extended to larger building blocks. For example, a 3-sorter can be represented by a vertical
line segment (or arrow) with three connecting dots.

The hardware redlization of a 2-sorter is quite straightforward. If we view the inputs as
unsigned integers that are supplied to the 2-sorter in bit-parallel form, then the 2-sorter can
be implemented using a comparator and two 2-to-1 multiplexers, as shown in Fig. 7.3 (left
panel). When the keys are long, or when we need to implement a sorting network with many
inputs on a single VLSI chip, bit-parallel input becomes impractical in view of pin limita-
tions. Figure 7.3 (right panel) also depicts a bit-serial hardware realization of the 2-sorter
using two state flip-flops. The flip-flops are reset to O at the outset. This state represents the
two inputs being equal thus far. The other two states are 01 (the upper input isless) and 10
(the lower input is less). While the 2-sorter isin state 00 or 01, the inputs are passed to the
outputs straight through. When the state changes to 10, the inputs are interchanged, with the
top input routed to the lower output and vice versa.

Figure 7.4 depicts a 4-sorter built of 2-sorter building blocks. For thisinitial example,
we have shown both the block diagram and the schematic representation. In subsequent

Xo —> —’Yo
Xy —P < Y1 The outputs are a
__’ '_’ permutation of the
X2 y2 inputs satisfyin
, n-sorter . P ying
oS %S ... S¥p
. (nondescending)
Xp 1—> — Vo1

Figure 7.1. An n-input sorting network or an n-sorter.
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input, min I out
2-sorter
—P I I out
input, max
Block Diagram Alternate Representations

Figure 7.2. Block diagram and four different schematic representations for a 2-sorter.

examples, we will use only schematic diagrams. The schematic representation of the 4-sorter
in Fig. 7.4 shows the data values carried on al lines when the input sequence 3, 2, 5, 1 is
applied.

How do we verify that the circuit shown in Fig. 7.4 isin fact avalid 4-sorter? The answer
iseasy in this case. After the first two circuit levels, the top line carries the smallest and the
bottom line the largest of the four input values. The final 2-sorter orders the middle two
values. More generally, we need to verify the correctness of an n-sorter through tedious
formal proofs or by time-consuming exhaustive testing. Neither approach is attractive.
Fortunately, the zero—one principle allows us to do this with much less work.

The Zero—One Principle. Ann-sorter is valid if it correctly sorts al 0/1 sequences

of length n.
Proof. Clearly any n-sorter must also sort Os and 1s correctly (necessity). Suppose that
an n-sorter does not sort the input sequence x;, X,, . . ., %, properly, i.e., there exist outputs

y; andy; . Withy; > y;,,. We show that there is a 0/1 sequence that is not sorted properly also.
Replace al inputs that are strictly less than y; with Os and al other inputs with 1s. The relative
positions of the input values will not change at the output. Therefore, at the output we will
havey,= 1 and y;,, = 0.

k ux
- 0 k
input, 1 eyl
a min
Com- | b<a?
pare
k b > X
inputy 1 Pyl
Mux | max
reset

Figure 7.3. Parallel and bit-serial hardware realizations of a 2-sorter.
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3 2 1 1
X4 Yo r

2 3 3 2
Xy yi

5, 1 2 l 3
Xz Y2

1 l 3 5 5
X3 | - Y3

Figure 7.4. Block diagram and schematic representation of a 4-sorter.

Using the zero—one principle, the correctness of the 4-sorter in Fig. 7.4 can be verified
by testing it for the 16 possible 0/1 sequences of length 4. The network clearly sorts 0000
and 1111. It sorts all sequences with a single 0 because the 0 “bubbles up” to the top line.
Similarly, asingle 1 would “sink down” to the bottom line. The remaining part of the proof
deals with the sequences 0011, 0101, 0110, 1001, 1010, 1100, all of which lead to the correct
output 0011.

7.2. FIGURES OF MERIT FOR SORTING NETWORKS

Is the sorting network shown in Fig. 7.4 the best possible 4-sorter? To answer this
question, we need to specify what we mean by “the best n-sorter.” Two figures of merit
immediately suggest themselves:

¢ Cost: thetotal number of 2-sorter blocks used in the design
* Delay: the number of 2-sorters on the critical path from input to output

Of course, for VLS| implementation of an n-sorter, the wiring pattern between the 2-sorters
is also important because it determines the layout area, which has an impact on cost.
However, for simplicity, we will ignore this aspect of cost/complexity and use the number
of 2-sorters as an approximate cost indicator. Each 2-sorter will thus be assumed to have unit
cost, independent of itslocation in the network or its connectivity.

Similar observations apply to the delay of a sorting network. We will again assume that
a 2-sorter has unit delay independent of its location or connectivity. In VLSI circuits, signal
propagation delay on wires is becoming increasingly important. Longer wires, going from
one chip to another or even from one side to the other side of the same chip, contribute
nonnegligible delays, to the extent that signal propagation delays sometimes overshadow the
device switching or computation delays. Therefore, our delay measure is also approximate.

We can aso use composite figures of merit involving both cost and delay. For example,
if we expect linear speed-up from more investment in the circuit, then minimizing cost x
delay would be appropriate. According to the cost x delay measure, if we can redesign a
sorting network so that it is 10% faster but only 5% more complex, the redesign is deemed
to be cost-effective and the resulting circuit is said to be time-cost-efficient (or at least more
so than the original one).

Figure 7.5 shows examples of low-cost sorting networks ([Knut73], p. 228) that have
been discovered over the years by different researchers. Unfortunately, lowest-cost designs
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Figure 7.5. Some low-cost sorting networks.

are known only for small n and as yet there is no general method for systematically deriving

low-cost designs.

Figure 7.6 depicts examples of fast sorting networks ([Knut73], p. 231). The fastest
possible designs are also known only for small n.
Time-cost-efficient sorting networks are even harder to come by. For the 10-input
examplesin Figs. 7.5 and 7.6, the cost x delay products are

oA |
1 T . |
1 | 1
117 | T
1 1 T | I | i 11 1 1
1 I T 1 1 I
| T 1 1 1 11
T 1 1 1T 1
1 I 11
n =6, 12 modules, 5 levels n =9, 25 modules, § levels n= 10, 31 modules, 7 levels
T
il 1
T T
1l 1
| S | 1
i 1T I
L1 | 11 1
- 1T I
T 1 I IT T
L 1 1 1T |
11 I 1 I
1 - 1T I
1.1 | S A1 1
11 1 1T 1
1 1
n = 12, 40 modules, 8 levels n = 16, 61 modules, 9 levels

Fig. 7.6. Some fast sorting networks.
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29 modules, 9 delay units  cost x delay = 261

31 modules, 7 delay units  cost x delay = 217

Thus, the 10-sorter in Fig. 7.6 has higher time-cost efficiency than its counterpart in Fig. 7.5.
However, in general, the most time-cost-efficient design may be neither the fastest nor the
least complex n-sorter.

7.3. DESIGN OF SORTING NETWORKS

There are many ways to design sorting networks, leading to different results with respect
to the figures of merit defined in Section 7.2. For example, Fig. 7.7 shows a 6-sorter whose
design is based on the odd—even transposition sorting algorithm discussed in connection
with sorting on alinear array of processorsin Section 2.3 (rotate Fig. 7.7 clockwise by 90
degrees and compare the result with the compare-exchange pattern of Fig. 2.10). This “brick
wall” design offers advantages in terms of wiring ease (because wires are short and do not
cross over). However, it is quite inefficient as it uses nCh/20modules and has n units of delay.
Its cost x delay product is ©(n3). So, anatural question is how one might design more efficient
sorting networks.

Let ustry acouple of other ideas. One way to sort n inputsisto sort the first n— 1 inputs,
say, and then insert the last input in its proper place. This recursive solution based on insertion
sort is depicted in the top left panel of Fig. 7.8. Another way is to select the largest value
among the n inputs, output it on the bottom line, and then sort the remaining n— 1 values.
Thisaso is arecursive solution, as shown in the top right panel of Fig. 7.8. Both solutions
are characterized by the following recurrences for delay and cost. In fact, both lead to the
same design, whichisin effect based on the parallel version of bubblesort.

Cm)=Cn-D+n-l=(n-D+n-2D+-+2+1=n(n-1)2
Din)=D(n-1D)+2=242++241=2n-2)+1=2n-3
Cost x Delay = n(n — 1)(2n - 3)/2 = 8(n°)

All three designs presented thus far in this section are quite inefficient. Lower bounds
on the cost and delay of an n-sorter are Q(n log n) and Q (log n), respectively. These are
established by the fan-in argument and the minimum number of comparisons needed for

Figure 7.7. Brick-wall 6-sorter based on odd—even transposition.
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Xy = Y2 X3 Y2
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Parallel insertion sort = Paralle! selection sort = Parallel bubble sort!
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Figure 7.8. Sorting network based on insertion sort or selection sort.

sorting n values. Can we achieve these lower bounds? Note that even if both bounds are
achieved simultaneously, the resulting cost x delay product will be ©(n log? n) which is more
than the sequential lower bound on work, but thisis the best we can hope for.

In 1983, Ajtai, Komlos, and Szemeredi [Ajta83] showed how O(n log n)-cost, O(log
n)-delay sorting networks can be constructed. Their proposed design, which uses a sorting-
by-splitting approach based on the notion of expander graphs, is known asthe AKS sorting
network. However, the AKS design is of theoretical interest only, as the asymptotic notation
hides huge four-digit constants! The constants remain large despite further improvements
and refinements by other researchers since 1983. A good exposition of the asymptotically
optimal AK'S sorting circuit was given by Akl ([Ak197], pp. 125-137).

Even though researchers have not given up hope on the prospects of practical, O(n log
n)-cost, O(log n)-delay, sorting networks, work has diversified on several other fronts. One
isthe design of more efficient sorting networks with specia inputs or outputs; for example,
when inputs are only Os and 1s, or they are already partially sorted, or we require only
partially sorted outputs. Another is the design of networks that sort the input sequence with
high probability but do not guarantee sorted order for all possible inputs [Leig97].

Practical sorting networks are based on designs by Batcher and others that have O(n
log? n) cost and O(log? n) delay. These designs are a factor of log n away from being
asymptotically optimal in cost or delay, but because log, n is only 20 when n is as large as
1 million, such networks are more practical than the asymptotically optimal designs men-
tioned above. Some of these designswill be discussed in Sections 7.4 and 7.5.

7.4. BATCHER SORTING NETWORKS

Batcher’s ingenious constructions date back to the early 1960s (published a few years
later) and constitute some of the earliest examples of parallel algorithms. It is remarkable
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that in more than three decades, only small improvements to his constructions have been
made.

One type of sorting network proposed by Batcher is based on the idea of an (m,
m')-merger and uses a technique known as even—odd merge or odd-even merge. An (m,
m')-merger is a circuit that merges two sorted sequences of lengths mand m' into a single
sorted sequence of length m+ m'. Let the two sorted sequences be

XpSx ... 8%,

YoS¥S.. .Sy
If m=0or m =0, then nothing needs to be done. For m=m' = 1, a single comparator can
do the merging. Thus, we assume mm' > 1 in what follows. The odd—even merge is done by
merging the even- and odd-indexed elements of the two lists separately:

Xop X0+« o0 Xl 22 and

Yor Y2 - - + 2 Yafp /212 &€ Merged to get

Vor Vo oo o Vim/214Tm 7211

Xy Xgs - - 2 Xl pyyy|y AN
Yo Y3+ o o s Yalmesa)—1 A€ Merged to get

Wor Wis - s W2 el /21

If we now compare-exchange the pairs of elementswy:v,, w,iv,, wyivs, . . ., the resulting
sequencevy wy vy wy v, w, ... Will be completely sorted. Note that v, which is known to be
the smallest element overal, is excluded from the final compare—-exchange operations.

An example circuit for merging two sorted lists of sizes 4 and 7 using the odd—even
merge technique is shown in Fig. 7.9. The three circuit segments, separated by vertical dotted
lines, correspond to a (2, 4)-merger for even-indexed inputs, a (2, 3)-merger for odd-indexed
inputs, and the final parallel compare—exchange operations prescribed above. Each of the
smaller mergers can be designed recursively in the same way. For example, a (2, 4)-merger
consists of two (1, 2)-mergers for even- and odd-indexed inputs, followed by two parallel
compare-exchange operations. A (1, 2)-merger isin turn built from a (1, 1)-merger, or a
single comparator, for the even-indexed inputs, followed by a single compare-exchange
operation. The final (4, 7)-merger in Fig. 7.9 uses 16 modules and has a delay of 4 units.

It would have been quite difficult to prove the correctness of Batcher's even—odd merger
were it not for the zero—one principle that allows us to limit the proof of correctness to only
0 and 1 inputs. Suppose that the sorted x sequence has k Os and m—k 1s. Similarly, let there
be k' Osand m' — K 1sin the sorted y sequence. When we merge the even-indexed terms, the
v sequence will have kg, = R/ 2 T+ Ok'/ 200s. Likewise, the w sequence resulting from the
merging of odd-indexed terms will have k, = [k/2[H [k /2000s. Only three cases are
possible:

Case a Kegyen = Kogg The sequencevy wy v, w; v, w, . . . is dready sorted

Case b: Keyen = Kogq + 1 The sequencev, wy vy wy v, w, . . .is already sorted
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Figure 7.9. Batcher's even—odd merging network for 4 + 7 inputs.

CaseC: Kgyen = Kogg T 2

In the last case, the sequencev, w, v, w; v, W, .. . hasonly apair of elements that are not in
sorted order, as shown in the example below (the out-of-order pair is underlined).

Vo Vi V2 V3 V4 Vs Vg V7 Vg Vg Vig Yy
000O0O0O0OO0OCQT1 11 1

00000011111
Wo W) WaW3 WyWs We Wy Wg Wy Wig

The problem will be fixed by the compare—exchange operations between w and Vv, ;.
Batcher's (m, m) even—odd merger, when mis a power of 2, is characterized by the
following delay and cost recurrences:

C(m) =2Cm/2) +m—1=(m— 1) +2(m/2 ~ 1) + 4(ml4 - 1) + - =mlog, m+ 1
D(m) =D(m/2) + 1 =log,m + 1

Cost X Delay = O(m log2 m)

Armed with an efficient merging circuit, we can design an n-sorter recursively from two
n/2-sorters and an (n/2, n/2)-merger, as shown in Fig. 7.10. The 4-sorter of Fig. 7.4 isan
instance of this design: It consists of two 2-sorters followed by a (2, 2)-merger in turn built
from two (1, 1)-mergers and a single compare-exchange step. A larger example, correspond-
ing to an 8-sorter, is depicted in Fig. 7.11. Here, 4-sorters are used to sort the first and second
halves of the inputs separately, with the sorted lists then merged by a (4, 4)-merger composed
of an even (2, 2)-merger, an odd (2, 2)-merger, and a final stage of three comparators.

Batcher sorting networks based on the even—odd merge technique are characterized by
the following delay and cost recurrences:

C(n) = 2C(n/2) + (n/2)(log,(n/2)) + 1 = n(log, n )2/ 2
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Figure 7.10. The recursive structure of Batcher's even—odd merge sorting network.

D(n) = D(n/2) + log,y(n/2) + 1 = D(n/2) + log, n = log, n (log, n + 1)/2
Cost x Delay = © (n log* n)

A second type of sorting network proposed by Batcher is based on the notion of bitonic
sequences. A bitonic sequence is defined as one that “rises then falls’ (xy < x; €. . . <x, 2
X 2 X 2. .. 2x, ), “fdlsthenrises’ (xg=x, 2...2x<x,,<x,,S...Sx,),00is
obtained from the first two categories through cyclic shifts or rotations. Examples include

133466622100 Risesthen fals
877666546889  Fals then rises
898776665468  The previous sequence, right-rotated by 2

Batcher observed that if we sort the first half and second half of a sequence in opposite
directions, as indicated by the vertical arrows in Fig. 7.12, the resulting sequence will be
bitonic and can thus be sorted by a specia bitonic-sequence sorter. It turns out that a

rvvererrrrcrrrrre  gevervvrvvers  pevecveeeces

(22)-merger  (2,2)-merger

Figure 7.11. Batcher's even—odd merge sorting network for eight inputs.
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Figure 7.12. The recursive structure of Batcher's bitonic sorting network.

bitonic-sequence sorter with ninputs has the same delay and cost as an even—odd (n/2,
n/2)-merger. Therefore, sorters based on the notion of bitonic sequences (bitonic sorters)
have the same delay and cost as those based on even—odd merging.

A bitonic-segquence sorter can be designed based on the assertion that if in a bitonic
sequence, we compare—exchange the elementsin the first half with those in the second half,
asindicated by the dotted comparatorsin Fig. 7.12, each half of the resulting sequence will
be a bitonic sequence and each element in the first half will be no larger than any element in
the second half. Thus, the two halves can be independently sorted by smaller bitonic-se-
quence sorters to complete the sorting process. Note that we can reverse the direction of
sorting in the lower n-sorter if we suitably adjust the connections of the dotted comparators
inFig. 7.12. A complete eight-input bitonic sorting network is shown in Fig. 7.13.

While asymptotically suboptimal, Batcher sorting networks are quite efficient. Attempts
at designing faster or less complex networks for specific values of n have yielded only
margina improvements over Batcher’'s construction when nis large.

2-input  4-input bitonic- §-input bitonic-
sorters  sequence sorters sequence sorter

Figure 7.13. Batcher's bitonic sorting network for eight inputs.
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7.5. OTHER CLASSES OF SORTING NETWORKS

A class of sorting networks that possess the same asymptotic ©(log? n) delay and ©(n
log? n) cost as Batcher sorting networks, but that offer some advantages, are the periodic
balanced sorting networks [Dowd89]. An n-sorter of this type consists of log, n identical
stages, each of which is a (log, n)-stage n-input bitonic-sequence sorter. Thus, the delay and
cost of an n-sorter of this type are (log, n)? and n(log, n)%/2, respectively. Figure 7.14 shows
an eight-input example. The 8-sorter of Fig. 7.14 has alarger delay (9 versus 6) and higher
cost (36 versus 19) compared with a Batcher 8-sorter but offers the following advantages:

1. Thestructureisregular and modular (easier VLSI layout).

2. Slower, but more economical, implementations are possible by reusing the blocks.

In the extreme, log, n passes through a single block can be used for cost-efficient

sorting.

Using an extrablock provides tolerance to some faults (missed exchanges).

4. Using two extra blocks provides tolerance to any single fault (a missed or incorrect
exchange).

5. Multiple passes through a faulty network can lead to correct sorting (graceful
degradation).

6. Single-block design can be made fault-tolerant by adding an extra stage to the block.

w

Just as we were able to obtain a sorting network based on odd—even transposition sort on a
linear array, we can base a sorting network on a sorting algorithm for a 2D array. For example,
the two 8-sorters shown in Figs. 7.15 and 7.16 are based on shearsort (defined in Section
2.5) with snakelike order on 2 x 4 and 4 x 2 arrays, respectively. Compared with Batcher
8-sorters, these are again slower (7 or 9 versus 6 levels) and more complex (24 or 32 versus
19 modules). However, they offer some of the same advantages enumerated for periodic
balanced sorting networks.

In general, an rc-sorter can be designed based on shearsort on an r x ¢ mesh. It will have
log, r identical blocks, each consisting of r parallel c-sorters followed by c parallel r-sorters,
followed at the end by a special block composed of r parallel c-sorters. However, such
networks are usually not competitive when r islarge.

Figure 7.14. Periodic balanced sorting network for eight inputs.
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Figure 7.16. Design of an 8-sorter based on shearsort on 4 x 2 mesh.

7.6. SELECTION NETWORKS

If we need the kth smallest value among n inputs, then using a sorting network would
be an overkill in that an n-sorter does more than what is required to solve our (n, k) selection
problem. For example, the 8-sorter of Fig. 7.15 can still give us the third or fourth smallest
element among its eight inputs if we remove the five comparators constituting the lower-right
4-sorter. A natural question is whether we can design selection networks that are significantly
simpler than sorting networks. This is an interesting problem and we deal only with some
aspects of it in this section.

Let us broaden our view a bit and define three selection problems [Knut73]:

I.  Select the k smallest values and present them on k outputs in sorted order.
1. Select the kth smallest value and present it on one of the outputs.
1. Select the k smallest values and present them on k outputs in any order.
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The above are listed in decreasing order of circuit and time complexity, i.e., (1) is the hardest
and (I11) the easiest. For example, the 8-sorter of Fig. 7.15 solves the first problem after
removing the five comparators constituting the lower-right 4-sorter. If, additionally, we
replace the upper-right 4-sorter in Fig. 7.15 with three comparators to choose the maximum
value on the upper four lines, atype Il (8, 4)-selector would result. Finaly, if we remove the
upper-right 4-sorter altogether, we obtain atype 11 (8, 4)-selector.

It can be proven ([Knut73], pp. 234-235) that the number of comparators needed for
solving the third selection problem (and hence the second one) satisfies the following lower
bound which istight for k=1 and k= 2:

Cy(m, k) 2 (n — k) [ogy(k + 1) ]

Figure 7.17 depicts atype Il (8, 4)-selector. The pairs of integers shown on each line
in Fig. 7.17 denote the minimum and maximum rank that is possible for the value carried by
that line. Initially, each input value can have any rank in [0, 7]. When two inputs are
compared, and possibly exchanged, the upper one will have arank in [0, 6] and the lower
onein[1, 7]. Itiseasily proven that if the two inputs of acomparator have ranksin [1;, u]
and [I;, u], then the output rank intervals [4) and (7], )] sansfy I{ =min(l, 1) and
l 2 l;+ 1. Similar results can be proven for the upper boundsu, and ;. The correctness of
the type III (8, 4)-selector in Fig. 7.17 is evident from the output rank intervals.

Classifiers constitute a class of selection networks that can divide a set of n valuesinto
n/2 largest and n/2 smallest values, with possible overlap in case of repeated values at the
input. The selection network of Fig. 7.17 isin fact an 8-input classifier. Generalizing the
construction of Fig. 7.17, an n-input classifier can be built from two (v2)-sorters followed
by n/2 comparators. Using Batcher's designs for the (n/2)-sorters leads to a depth of O(log?
n) and size of O(nlog? n) for an n-input classifier. Of course, O(log n)-depth, O(n log n)-cost
classifiers can be derived from AKS sorting networks, but the resulting designs are not
practical. It has been shown that classifiers of depth O(log n) and size Cn log, n + O(n),
where C is any number exceeding 3/log, 3 = 1.8927, can be constructed [Jimb96].

0.n 10.61 [0.4] (0.4} {0.3)
.71 l [L7 (1,6) 11.5] [1.31
(0.7} {0.61 [1,6] l (2,61 1.3 %
©.7] ] L7 3.7 13.7) [0.3]
(0.7 [0,6) {0.4] (0.4} I (471
.71 J _un [1,6] 1.5 [4,6]
0,7 [0.6} [1,6] l 12,61 [4,6]
[0,71 [ 1,7] (3,71 3.7 47

Figure 7.17. A type Il (8, 4)-selector.
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PROBLEMS

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

Design of 2-sorter and 3-sorter building blocks

a. How should the 2-sorter designs shown in Fig. 7.3 be modified if they are to deal with
signed, rather than unsigned, integer inputs?

b. Design a 3-sorter building block with unsigned bit-seria inputs. Try to make the 3-sorter
as fast as possible, e.g., do not use three 2-sorters inside the module.

The zero—one principle

Using the zero—one principle, prove the validity of each of the following sorting networks.
Hint: Noting that the designs begin with a set of smaller sorters reduces the amount of work
needed for your proof.

a. The6-sorter in Fig. 7.6.
b. The 9-sorter in Fig. 7.5.
c. The9-sorter in Fig. 7.6.
d. The 12-sorter in Fig. 7.5.

Programmabl e sorters

Consider the design of a sorting network that can sort in ascending or descending order, as
dictated by asingle control signal. Compare the following two design methods with respect to
cost and delay.

a. Sort in ascending order, then reverse the sequence if descending order is desired.
b. Modify the building blocks of Fig. 7.3 so that the output order is switched by the control
signal.

Bitonic-sequence sorters

Show how an n-input bitonic-sequence sorter can be used to merge two sorted sequences with
unequal lengths that add up to at most n; one sequence is of length mand the other is no longer
than n—m.

Figures of merit for sorting networks
Calculate the speed-up, efficiency, and other figures of merit introduced in Section 1.6 for each
of the following sorting network designs.

Sorting networks based on insertion or selection sort.
Batcher sorting networks.

Periodic balanced sorting networks.

Sorting network based on shearsort on a2 x (n/2) mesh.
Sorting network based on shearsort on an (n/2) x 2 mesh.

®caose

Pruning of sorting networks

a. Show that removing the top or bottom line, aong with all of the comparators connected to
it, converts an n-sorter to avalid (n — 1)-sorter.

b. Experiment with the transformation given in part (a) to derive new sorting networks from
the n-sorters in Figs. 7.5 and 7.6. For example, derive 6-sorters from the given 9-sorters
and compare the results to the 6-sorters given.

c. Show that the statement of part (a) isin general not valid for other linesin a sorting network.

Sorting networks
a. Use the zero—one principle to prove that the following circuit is not a valid 6-sorter.



SORTING AND SELECTION NETWORKS 145

=co

Tehhalf ¢ Righthalf

b. Based on the observationsin part (a), show how a single comparator can be added to the

circuit to turn it into avalid 6-sorter.

c. UseBatcher's odd—even merge method to redesign the right half of the sorter of part (b).
d. Compare the designs of parts (b) and (c) with respect to cost and delay.

7.8. Periodic balanced sorting networks

7.9.

7.10.

7.11.

a.  Give an example of an input sequence that is sorted after passing through the first two

stages of the 8-sorter in Fig. 7.14 but that is still unsorted at the output of the first stage.

b. Givean example of an input sequence whose sorting requires all three stages of the 8-sorter

inFig. 7.14 (i.e,, it is still unsorted at the output of the second stage).

c. Provethe correctness of the periodic balanced 8-sorter in Fig. 7.14.
d. Using the zero—one principle, prove the correctness of periodic balanced n-sorters in

general.

Merging networks
Consider the merging of asingle input value x with asorted list of nvaluesy(i),0<i<n-1.

X—?— X
¥{0, y(0) _]
y(1 y(
n2-1)
¥( e
- y(n/2+1)
y(nv2+2)
y(n-1) y{n-1)

Let such a (1, n)-merger be depicted as in the left diagram above.

a. Provethat the diagram on the right above represents avalid way to construct a (1, n)-merger.
b. Find the delay and cost of a (1, n)-merger recursively constructed asin part (a).
c. Provethat the (1, n)-merger resulting from the construction suggested in Part (a) is optimal.

Sorting networks based on shearsort
Design 16-sorters based on shearsort on 2 x 8, 4 x 4, and 8 x 2 meshes and compare the resulting
designs with respect to various figures of merit.

a. Design each smaller sorter that is needed by using the same shearsort-based approach.
b. Feel freeto use the best 4-sorter and 8-sorter designs that you can get as building blocks.

Vdlidity of sorting networks
Show that the following circuit built of 4-sortersisavalid 16-sorter.
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7.12.

7.13.

7.14.

7.15.
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Synthesis of sorting networks

Define a pairwise 2n-sorter as follows. There are 2n inputs and 2n outputs yo to yon-1. The
outputs form n pairs o ¥1)s 720 ¥3)s + « « s (Y22 Y2n~1)- The pairwise 2n-sorter guarantees that
maX Y2k Y2k+1) S Min(yape2, Yars3) for al k. Prove or disprove the following assertion: The
pairwise 2n-sorter defined above is aways a 2n-sorter.

Merging networks

a. Prove or disprove: One can construct a (2m, m) merging network from two (m, m)-mergers
and no other component.

b. How many (m, m)-mergers are needed to build a (3m, m)-merger and why?

c. How many (m, m)-mergers are needed to build a (2m, 2m)-merger and why?

Synthesis of sorting networks

An n-sorter design can be converted to a kn-sorter design by replacing each line with k lines,
replacing each 2-sorter by a (k, k)-merger, and preceding al of the above with n parallel
k-sorters. The above procedure can be used, e.g., to construct a 3n-sorter, given the design for
an n-sorter. A 3n-sorter can aso be designed from three n-sorters, one (n, n)-merger, and one
(n, 2n)-merger in the obvious way.

a Design a6-sorter, a 9-sorter, and a 12-sorter based on the first approach.

b. Repeat part (a) for the second approach.

c. Compare the results in parts (a) and (b) with each other and with the sorter designs
appearing in this chapter and discuss.

d. For k=n, the first construction above yields an n?-sorter based on a Batcher n-sorter. How
does the resulting design compare with an n2-sorter built directly based on Batcher's
method?

Selection networks

a Justify the labels assigned to various lines in Fig. 7.17.

b. A typelll (n,n/2)-selector can be converted to an n-sorter by attaching two (n/2)-sorters
to its upper-half and lower-half outputs. For example, applying this method to the
(8,4)-selector of Fig. 7.17 yields the 8-sorter of Fig. 7.15. Using the information provided
by the line labels in Fig. 7.17, show that the two additional 4-sorters can be somewhat
smplified.

c. Prove the bound Cpy(n, k) 2 (n - k) l'logz(k +1)]given in Section 7.6 for the cost of a type
Il selection network. Hint: Label the lines in the selection network as follows. Label al
inputs with 0. The upper output of each comparator is labeled by the smaller of its two



SORTING AND SELECTION NETWORKS 147

d.

input labels and the lower output by the larger input label plus 1. Show that the sum of the

labels at the outputs of the selection network equals the total number of comparators in the
network and that n — k of the outputs have labels that are greater than or equal to Oogak
+1)0.

Show that the bound of part (a) istight for k=1 and k= 2.

7.16. Classifier networks

a

Prove that an n-input classifier (defined at the end of Section 7.6) hasadelay of Q (log n)
and a cost of Q (nlog n). Hint: A classifier isatype Il selection network.

Show how an n-sorter can be synthesized using classifier networks of various sizes as the
only building blocks.

Find the asymptotic delay and cost of the sorting networks derived in part (b) and compare
the results with those of Batcher sorting networks.

Show how an (n, k)-selector, where k is an arbitrary given number, can be synthesized using
classifier networks of various sizes as the only building blocks.

Determine the worst-case asymptotic delay and cost of the (n,k)-selector derived in part
(d).

REFERENCES AND SUGGESTED READING

[Ajta83]

[Ak197]
[Batcss]

[Dowdgg]
[Jimb6]
[Knut73]
[Leiga7]

[Pipp91]
[Sun94]

Ajtai, M., J. Komlos, and E. Szemeredi, “Sorting in c log n Parallel Steps,” Combinatorica, Vol. 3,
pp. 1-19, 1983.

Akl, S G., Parallel Computation: Models and Methods, Prentice-Hall, 1997.

Batcher, K., “Sorting Networks and Their Applications,” Proc. AFIPS Spring Joint Computer Conf.,
Vol. 32, pp. 307-314, 1968.

Dowd, M., Y. Perl, L. Rudolph, and M. Saks, “The Periodic Balanced Sorting Network,” J. ACM,
Val. 36, No. 4, pp. 738-757, October 1989.

Jimbo, S. and A. Maruoka, “A Method of Constructing Selection Networks with O(log n) Depth,”
SAM J. Computing, Vol. 25, No. 4, pp. 709-739, August 1996.

Knuth, D.E., The Art of Computer Programming: Vol. 3—Sorting and Searching, Addison-Wesley,
1973.

Leighton, T., Y. Ma, and T. Suel, “On Probabilistic Networks for Selection, Merging, and Sorting,”
Theory of Computing Systems, Vol. 30, pp. 559-582, 1997.

Pippenger, N., “Selection Networks,” SAIM J. Computing, Vol. 20, pp. 878-887, 1991.

Sun, J., E. Cerny, and J. Gecsel, “Fault Tolerance in a Class of Sorting Networks,” 1EEE Trans.
Computers, Vol. 43, No. 7, pp. 827-837, July 1994.



This page intentionally left blank.



Other Circuit-Level
Examples

In this chapter, we study three application areas along with parallel architectures
that were developed to address their specific needs. The application areas are
dictionary operations, parallel prefix computation, and fast Fourier transform.
The resulting hardware structures (tree machine, parallel prefix networks, and
butterfly network) are highly specialized to the application at hand and might
be inappropriate for dealing with other problems. The common thread through
this chapter is that, like sorting networks in Chapter 7, the architectures are fully
specified at the circuit level; i.e., the internal structure of each processor can be
drawn as a digital circuit, given the simplicity of its control functions and data
manipulations. Similarly, the interprocessor links are fully defined and easily
realizable with modest area overhead and delay. Chapter topics are

e 8.1. Searching and dictionary operations
e 8.2. A tree-structured dictionary machine
8.3. Parallel prefix computation

e 8.4. Parallel prefix networks

8.5. The discrete Fourier transform

e 8.6. Parallel architectures for FFT

149
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8.1. SEARCHING AND DICTIONARY OPERATIONS

Searching is one of the most important operations on digital computers and consumes
agreat deal of resources. A primary reason for sorting, an activity that has been estimated to
use up more than one-fourth of the running time on most computers, is to facilitate searching.
Thus, it is safe to say that searching consumes at least 25% of the running time on most
computers, directly or indirectly. Obvioudly, it would be desirable to speed up this operation
through the application of parallelism.

Let us first see how searching for yin alist of n keys can be speeded up on a p-processor
PRAM. Assume that the input list X is sorted in ascending order. Recall that a single processor
uses the binary search algorithm to search a sorted list efficiently in log, (n+1) Ccomparison
steps. The given key y is compared with the key X, - at or near the middle of the list. If
Y =Xgy 20 then the search is over. Two other outcomes are possible:

Y < X/ 20 Restrict the search to xgthrough X /o0

Y> X2 Restrict the search to X, /2.4 through x,,_;

In either case above, the problem size isreduced to n/2, leading to a logarithmic number of
steps. The extension of the binary search algorithm to (p + 1)-ary search on a p-processor
PRAM is straightforward and leads to a running time of k= Cog,(n+ 1)/log,(p + 1) Osteps.
The proof is by induction. Let n= (p + 1)¥ —1 for some k; otherwise find the smallest k such
that n< (p+ 1)~ 1. The claimed running time can clearly be achieved for k= 1 (p processors
search a p-element list in one step). Assume that k — 1 steps are sufficient for any list of size
not exceeding (p+ 1)* — 1. In Step 1, Processor i compares y with the i(p + 1)¥"'th element
in x. Either one of the processors finds y or the search is restricted to a segment of the list of
asizeno larger than (p + 1) k1 _ 1. Hence, k steps are needed overall.

The above algorithm is optimal in that no comparison-based searching algorithm can
be faster. We use induction on k to show that after k parallel comparisons, there must be one
or more contiguous unexamined segments of the list x containing at least (n + 1)/(p + 1)k -1
keys. Equating this expression with 0 yields alower bound on the number k of steps. The
speed-up achieved by the above parallel search algorithmis

Oog(n + 1) L) Dog, (N + 1) /log,(p + )= log o(p + 1)

which is quite disappointing, given the optimality of the algorithm.

Even though single searches in a sorted list of keys cannot be significantly speeded up
by parallel processing, all hope is not lost and parallel searching is still important. First, in
applications where the list of keys changes quite frequently, the requirement of a sorted list
is unrealistic and leads to significant overhead that must be accounted for in analyzing the
overall application. Associative memories and processors can be quite efficient in searching
unsorted lists and usualy offer linear speed-up in this context (see Section 4.1). Second, and
thisis our primary focus here, when m different searches are to be performed in the same
list of n keys, parallel searching might be quite efficient and can lead to much better speed-up.
This problem, which is exemplified by a word processor’s spelling checker having to verify
that alist of document words appear in a standard dictionary, isknown as batch searching.
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To put the need for searching in a realistic application context, we define a set of
dictionary operations on a given list of n records with keys xo, X1, . . . , X,,;. Wewant to be
able to perform the following three basic operations efficiently. In most of what follows, “the
record” can be replaced with “arecord” or “all records’ if multiple records with the same
key value can exist among the stored records.

search(y) Find the record with key y and return its associated data.
insert(y,2 Augment the list with arecord having the key y and the data part z
delete(y) Remove the record with key y [and, optionally, return the associated data).

The operation delete(y) is said to be redundant if no record with the key value yisfound. In
such a case, the operation can be simply ignored or it might signal an exception. Similarly,
the operation insert(y, z) is said to be redundant if a record with the key value y is already
stored and the list of recordsiis restricted to hold only one record with agiven key value. In
this case, we often take “insert” to mean “update or change the data part of the record with
the key valuey to z,” athough ignoring the redundant insertion is also an option.
Additionally, some or al of the following operations might be of interest:

findmin Find the record with the smallest key value and return its associated data.
findmax Find the record with the largest key value and return its associated data.
findmed Find the record with the median key value and return its associated data.
findbest (y) Find the record with the best or nearest match to the key valuey.
findnext (y) Find the record whose key is the successor of the key valuey.
findprev(y) Find the record whose key is the predecessor of the key value'y.
extractmin Remove the record(s) with the smallest key value [return the record data).
extractmax Remove the record(s) with the largest key value [return the record data).
extractmed Remove the record(s) with the median key value [return the record data].

The findmin and extractmin (or findmax and extractmax) operations are sometimes referred
to as priority queue operations. For example, the minimum key value might correspond to
the highest-priority task in a queue of tasks that are ready for execution. Finding the priority
level of the highest-priority task in the queue might be of interest when we want to decide
if a currently running task can continue or must be preempted. Extracting the highest-priority
task from the priority queue is required when we want to schedule the task to run on aniidle
processor.

8.2. A TREE-STRUCTURED DICTIONARY MACHINE

In dealing with circuit-level designs, we essentially proceed in a direction that is the
reverse of what is done in the rest of the book: Rather than defining a “general -purpose”
parallel architecture (e.g., PRAM, 2D mesh, hypercube) and developing agorithms for
solving various problems of interest on it, we take a problem and deal with one or more
circuit realizations or architectures that can solve it efficiently in parallel.

Tree-structured dictionary machines, an example of which is described in this section,
were proposed by Bentley and Kung [Bent79], among others, and later expanded and refined
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by many other researchers. Others have proposed dictionary machines based on meshes,
hypercubes, and so forth (see, e.g., [Parh90] and [Nara96] for references and latest develop-
ments in dictionary machines).

The tree machine consists of two back-to-back complete binary trees whose leaves have
been merged (Fig. 8.1). The “circle” tree is responsible for broadcasting the dictionary
operations that enter viathe “input root” to all of the leaf nodes that hold the records. The
“triangle” tree combines the results of individual operations by the leaf nodes into an overall
result that emerges from the “output root.” In an actual hardware implementation, the double
tree might be folded, with circular and triangular nodes merged just like the leaf nodes.
However, even with folding, two separate functions of broadcasting and combining will have
to be performed, making the representation of Fig. 8.1 more appropriate than a simple binary
tree.

Searches can be easily pipelined through the levels of the two treesin Fig. 8.1. Asthe
first instruction, search(y o), is passed from the input root to its two children, the next one,
search(y1), can be accepted. The two instructions are pipelined in lockstep, eventually
reaching the leaf nodes in successive cycles. Each leaf processor then responds to the search
instruction, with the search response (e.g., yes/no, leaf node ID, key value, data, or a
match-degree indicator in the case of best-match search) combined, in the same pipelined
fashion, in the lower tree.

The combining function of the triangular nodes depends on the search type. In the
following operations, it is possible to pass aleaf node ID (indicating the location of the |eaf
node where a match was found), along with the control information and data, as part of the
search result.

"Circle”
Tree

xQ b3} X2 X3 X4 Xs X6 x7

“Triangle"
Tree

Output Root

Figure 8.1. A tree-structured dictionary machine.
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search(y) Passthelogical OR of the “yes’ signas, aong with data from the “yes’
side, or from one of the two sides if both indicate “yes’ (the choice being
arbitrary or by priority).
findmin  Passthe smaller of the two key values and its associated data.
findmax  Similar to findmin.
findmed The median-finding operation is not supported by this particular design.
findbest (y) Passthelarger of the two match-degree indicators along with the record.
findnext(y) Leaf nodes generate a“larger” bit; findmin is done among the larger values.
findprev(y)  Similar to findnext.

If there are n leaf nodes, a search instruction reaches the leaves in [log,n] steps after it enters
the input root node and its result will emerge from the output root node after [log , ]
additional steps. The total latency is thus 2[log , n]+1 steps, with one search result emerging
in each subsequent cycle. Thus, the throughput can approach one search per cycle with a
suitably large batch of searches. If searches were the only operations of interest and the list
of records were stetic, the speed-up relative to sequential binary search would not be
impressive. We are in effect using 3n — 2 nodes or simple processors (circles, squares, and
triangles) to reduce the running time per search from log, nto 1.

There are two redeeming factors, however. First, because the list of records does not
have to be sorted, both insertion and deletion (extraction) are almost as simple as searching,
as we shall see shortly. Second, each of our nodes is much simpler, and thus significantly
faster, than a sequential processor with the need to calculate the address of the next
comparison location, read data from memory, and then set new search-boundary addresses
for every comparison.

Deleting arecord is straightforward when there are no duplicate keys or the deletion is
intended to remove all records with the given key y. The delete(y) instruction is broadcast to
all leaf nodes, with those leaf nodes whose key values are equal to y marking their records
as “deleted.” Reclaiming the space occupied by such records will be discussed along with
insertion. New searches can enter the tree immediately following a delete instruction,
because by the time these search instructions reach the leaf nodes, the deletion will have
already taken place.

Both extractmin and extractmax must be performed in two phases. First, the location of
the leaf node holding the minimum or maximum key value is identified. Once this result has
emerged from the output root node, an instruction is inserted for extracting the record. Thus,
the latency of these instructionsis twice as large. Furthermore, no search instruction should
be allowed to enter the tree before the second phase has begun.

Insertion of arecord is aso straightforward. If duplicate keys are not allowed and we
are not certain that arecord with the key value y does not already exist, we may precede the
insert(y, 2) instruction with a delete(y) instruction. The main difference between the insert
instruction and the previous ones is that the instruction is not broadcast to all leaf nodes, as
we do not want every empty leaf node to insert the new record. Rather, a mechanism is needed
to selectively route an insert instruction to one, and only one, empty leaf node.

A simple mechanism for routing an insert instruction is as follows. Suppose that each
nonleaf node maintains two counters indicating the number of empty leaf nodes in its | eft
and right subtrees, respectively. When an insert instruction is received by a nonleaf node, it
is sent to one of the subtrees with a nonzero free-space count (perhaps to the one with the
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larger count if both are nonzero or always to the left subtree if possible). The corresponding
subtree counter is then decremented by 1. Figure 8.2 shows an example eight-leaf tree
machine with three empty leaves and the free-space counter values associated with each
circular node. We see in Fig. 8.2 that as the insert instruction is passed to the left child of the
root node, the left counter of the root node is decremented from 1 to 0.

The only remaining problem is to show how the counter values are updated on deleting
arecord. When a delete instruction is being sent down the upper tree, it is not yet known
which leaf node will perform the deletion and, thus, which counters must be incremented.
However, if we require that the deleting leaf’s ID be provided to us at the output root, a
second instruction can be inserted into the machine for the sole purpose of updating the
free-space counters. The dlight delay between a record being deleted and its space becoming
usable again is not a serious problem unless the tree machine is amost full. Even in this latter
case, the speed penalty is not paid unless an insertion is required shortly after a delete
instruction.

An interesting variant of the tree machine for dictionary operations uses a systolic
binary-tree data structure in which the root of each subtree contains the smallest, median
value, and largest of the key values in that subtree (Fig. 8.3). When a subtree holds an odd
number of keys, its root contains three values and its two subtrees contain the same number
of keys. Otherwise, by convention, the left subtree contains one fewer key. This information
is held in the root in the form of a single-bit flag, so that the next element inserted will be
forwarded to the left subtree and the it is flipped to indicate complete balance. With this
data structure, the smallest, largest, and median of the stored values is readily accessiblein
one clock cycle via the root node. Specifying the details of the algorithms is left as an
exercise.

inseri(y.z)

QOutput Root

Figure 8.2. Tree machine storing five records and containing three free slots.
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Figure 8.3. Systolic data structure for minimum, maximum, and median finding.

8.3. PARALLEL PREFIX COMPUTATION

Parallel prefix computation was defined in Section 2.1, with several algorithms provided
subsequently in Sections 2.3 (linear array), 2.4 (binary tree), 2.5 (2D mesh), and 5.4 (PRAM).
Here, we use an alternative formulation in terms of linear recurrences. Let 0 be an associative
binary operator over S i.e, (xOy) O z=x 0 (yOz)foralxy,zU S Given asequence of
ninput values x4, X,, . . ., X, solve the linear recurrence

5i=5_,®x;

where sy istheidentity element of the operator O (e.g., O for addition, 1 for multiplication).
Note that the ith output value is s; =% O xo0 - O X;.

The linear recurrence formulation of the prefix computation immediately suggests a
sequential circuit implementation shown in Fig. 8.4 (left). Oneinput is provided to the circuit,
and one output is produced, in every clock cycle. Obviously, the clock period must be long
enough to accommodate the worst-case signal propagation delay in the circuit computing O
plus the latch hold and setup times. Figure 2.1 represents a computation dependence graph
or asignal flow graph for this scheme, if we take the clock period as a unit of time.

L> ‘ — s, - 3

x; —» x; —P>

o

Lau!hu Laxches

Figure 8.4. Prefix computation using a latched or pipelined function unit.
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Figure 8.5. High-throughput prefix computation using a pipelined function unit.

A g-stege pipelined function unit does not help in speeding up the prefix computation,
for even though the clock period is now much shorter, one input can be supplied after every
g clock ticks. In fact, because of the added overhead for latching of the intermediate results,
the pipelined function unit shown in Fig. 8.4 (right) actually slows the computation down.

Figure 8.5 shows how parallelism can be applied to improve the throughput to one input
or result per clock tick. It is easy to generalize this scheme to use a pipelined function unit
with more stages, leading to a correspondingly higher throughput with a greater investment
in hardware. However, there is alimit beyond which throughput cannot be improved using
this scheme. Namely, if the latching overhead per pipeline stage is c, then the throughput can
never exceed 1/c no matter how many pipelined units are used or how they are arranged.

In Section 8.4, we will review some of the methods for designing faster prefix compu-
tation circuits. The prefix computation is quite important. We discussed some of its applica-
tions in Section 2.4. Many other interesting applications are reviewed by Lakshmivarahan
and Dhall ([Laks94], pp. 5-35).

8.4. PARALLEL PREFIX NETWORKS

For the sake of brevity and concreteness, we will discuss the design of circuits for
computing parallel prefix sums with unsigned integer inputs, i.e., the operator [ istaken to
be unsigned integer addition. The resulting circuits, which are built of two-input adders, will
be referred to as (parallel) prefix sum networks. Replacing the two-input adders in these
networks with blocks that compute the operator [0 will yield a general parallel prefix
network.

There are many similarities between prefix sum networks and sorting networks that we
discussed in Chapter 7. A two-input binary adder is roughly of the same complexity as a
two-input comparator. Like comparators, these adders can be implemented with parallel
inputs or with bit-serial inputs. In the latter case, the input order should be LSB-first, as
opposed to MSB-first for two-input comparators. Note that if parallel inputs are used, the
adders need not be of the fast variety (e.g., carry-lookahead). In most cases, a simple
ripple-carry adder will do, because the rippling delays in a set of cascaded adders do not add
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up; the rippling in the next adder downstream can begin as soon as the LSB of the sum from
the previous adder becomes available.

Several strategies can be used to synthesize a prefix sum network. The two divide-and-
conguer methods discussed in connection with PRAM in Section 5.4, and depicted in Figs.
5.7 and 5.8, can form the basis for hardware prefix sum networks. Figures 8.6 and 8.7 depict
the resulting networks. The analyses of Section 5.4 can be used to deduce the delays of
T(n)=2log,n-1 and T(n) = log, n for these circuits, where the unit of time is the delay of
a two-input adder. The cost recurrences for the networks of Figs. 8.6 and 8.7 areC (n) =
C(n/2)+n—1=2n-2-log,nand C(n) =2C(n/2) + n /2= (n /2) log, n, respectively.

The two designsin Figs. 8.6 and 8.7 offer a clear speed—cost trade-off. The second design
is faster (log, n as opposed to 2 log, n— 1 levels) but also much more expensive [(n/2) log,
n adders as opposed to 2n -2 —log, n adder blocks]. Another problem with the second design
is that it leads to large fan-out requirements if implemented directly. We will see shortly that
intermediate designs, with costs and delays that fall between the above two extremes, are
also possible.

The design shown in Fig. 8.6 is known as the Brent—Kung parallel prefix graph. The
16-input instance of this graph is depicted in Fig. 8.8. Note that even though the graph of
Fig. 8.8 appears to have seven levels, levels 4 and 5 from the top have no data dependency
and thus imply a single level of signal delay. In general, an n-input Brent—-Kung parallel
prefix graph has adelay of 21og, n — 2 levels and acost of 2n—2 —log, n blocks.

Figure 8.9 depicts a Kogge-Stone parallel prefix graph that has the same delay as the
design shown in Fig. 8.7 but avoids its fan-out problem by distributing the required
computations. An n-input Kogge-Stone parallel prefix graph has a delay of log, n levels and
acost of nlog,n—n+ 1 blocks. The Kogge-Stone parallel prefix graph represents the fastest
possible implementation of a parallel prefix computation if only two-input blocks are
allowed. However, its cost can be prohibitive for large n, in terms of both blocks and the
dense wiring between blocks.

Other parallel prefix network designs are also possible. For example, it has been
suggested that the Brent—Kung and Kogge-Stone approaches of Figs. 8.8 and 8.9 can be
combined to form hybrid designs [Sugl90]. Figure 8.10 shows an example where the middle

Xp1 Xp-2 e X3 X9 X3 Xp

&

Prefix Sum n/2

?/

8pnt Sp2 83 82 81 8

Figure 8.6.Prefix sum network built of one n/2-input network and n— 1 adders.
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Figure 8.7. Prefix sum network built of two n/2-input networks and n/2 adders.

four of the six levelsin the design of Fig. 8.8 (essentially doing an eight-input parallel prefix
computation) have been replaced by an eight-input Kogge-Stone network. The resulting
design has five levels and 32 blocks, placing it between the pure Brent-Kung (6, 26) and
pure Kogge-Stone (4, 49) designs.

More generally, if asingle Brent—Kung level is used along with an n/2-input Kogge—
Stone design, the delay and cost of the hybrid network become log, n+ 1 and (n/2)log, n,
respectively. The resulting design is close to the minimum in terms of delay (only one more
than Kogge-Stone) but costs roughly half as much.

The theory of parallel prefix graphs is quite well developed. There exist numerous
theoretical bounds and actual designs with different restrictions on fan-in/fan-out and with

s XXy X X Ko B X X X5 X X X X X

\

D1
1511 | &

AN
AN

815 514513 512 8y 51989 S3 S; S Sg 8, 8, 8, 8 &

Figure 8.8. Brent-Kung parallel prefix graph for 16 inputs.
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Figure 8.9. Kogge-Stone parallel prefix graph for 16 inputs.

s Ka X X2 Xy X% X X XK X XK KX X

S15 514513 $12 811 1089 S5 87 Sg S5 8, 83 8, 8; 5

Figure 8.10. A hybrid Brent-Kung/Kogge—Stone parallel prefix graph for 16 inputs.
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various optimality criteriain terms of network cost and delay. For a more detailed discussion,
see Lakshmivarahan and Dhall ([Laks94], pp. 133-211).

8.5. THE DISCRETE FOURIER TRANSFORM

The discrete Fourier transform (DFT) is defined as follows. Given the sequence
Xgo Xy, - -+ 4 X,_1, COMpUte the sequence yg, ¥y, - - . » ¥,y according to

n-1
= [}
y; = z wyx;

The DFT is expressed in matrix form as y = F X, which is shorthand for

1 1 1 o1
Yo %o
will o o ..

y';-l -1 2n-1 | [

1 of! 0 el

In the above expressions, w, is the nth primitive root of unity, i.e., @} = 1and m{, #1For 1
< j < n. For example, @, = -1/2+i¥372and o, = i, where i = v=1. The following are easily
derived:

— g2ni/n
W, =¢e

ol = W'/ = cos(2mj/n) + isin(27j/n)

The inverse DFT can be used to recover the x sequence, given the y sequence. It can be shown
that the inverse DFT is essentially the same computation as the DFT. That is,

1 n-1 i
i=q Z,-.,om” Y

Note that n processors can compute the DFT in O(n) time steps, without any communication,
if the jth processor computes y;. Also, given the matrix formulation of the DFT, any
matrix—vector multiplication a gorithm can be used to compute DFTs. However, the special
structure of F, can be exploited to devise a much faster algorithm based on the divide-and-
conguer paradigm. The resulting algorithm, described below, is known as the fast Fourier
transform (FFT) agorithm.

Let us partition the DFT summation into odd- and even-indexed terms:

n-1
" ' i
y‘.=2. whx; = Z (o,{xj + Z olx;
70 jeven{(2r) Jodd (2r+1)

n/2-1 ; n/2-1

— ir r

- 2 W, /2%, T @, Z O /7%2m1
r=0 r=0



162 INTRODUCTION TO PARALLEL PROCESSING

where we have used the identity w,;, = w? in rewriting the two summation terms. The two
termsin the last expression are n/2-point DFTs that can be written as

Xo *y
u=F, ., x;2 v=F,, ng
Xp-2 Xp-1
Then:
u+ oly, 0<i<n/2
Nn= Uy + O, p B/2SE<R O Yy n =t + 00"y,

Hence, the n-point FFT algorithm consists of performing two independent n/2-point FFTs
and then combining their results using n multiply—add operations. The sequential time
complexity of FFT is thus characterized by the recurrence

T(n) = 2T(n/2) + n=nlog, n

If the two n/2-point subproblems can be solved in parallel and the nmultiply—add operations
are aso concurrent, with their required inputs transferred to the computing nodes instantly,
then the recurrence for parallel time complexity becomes

T(n)=T(n/2) + 1=log, n

In both cases, the unit of timeis the delay of performing one multiply—add operation.

Before discussing hardware circuits to implement the FFT algorithm, it isinstructive to
examine some applications of DFT to polynomia arithmetic. First, note that the DFT can
be viewed as polynomial evaluation:

Giventhe polynomia  f(x)=c, X" +... +cx+c,

Compute @9, f@), ..., fler™
In matrix form,
F@?) ¢
f (C.O,ll) -F, C:l
sy Lo
In asimilar way, the inverse DFT can be used for polynomial interpolation:
& F@)
e rt ] TOD L it i = 2 0 = L (i
-t F@

The problem of multiplying two polynomials f and g to obtain their product h, where
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gx) = an,_lf"_' + e agx +ag
R(x) = b, X"+ + bix + by

f)=gx)xhx)=c,_ @'+~ +eox+c, with n=n"+n"-1

that is, computing the gs given the gsand bys, can be converted to three n-point DFTs and
n=n"'+n" -1 complex multiplications as follows:

1. Evaluate g(x) and h(x) at the n nth roots of unity (two n-point DFTSs).

2. Evauatef(w!) = g(w’) x h(w!) for al j (n complex multiplications).

3. Interpolate to find the gs(an n-point inverse DFT).

Thus, Tpoly- mut = 3Tper T 1. If we use an O(log n)-time FFT algorithm, the overall time for
polynomial multiplication will be O(log n).

Convolution of two n'-element sequences a and b, defined as computing the n-element
sequence CWith ¢; = ab, + a; b, + - + agb;, for 0<j<2n’ -2, is identical to polynomial
multiplication.

Finally, integer multiplication is intimately related to polynomia multiplication, and
thus to DFT. Straightforward k-bit integer multiplication circuits require O(log k) delay and
O(k3) cost (k2 bit multipliers or AND gates, followed by a carry-save adder tree and a
logarithmic-time fast adder). An O(log k)-time integer multiplication algorithm for k-bit
numbers, using O(k log? k log log k) bit-level processors, is presented by Leighton ([Leig92],
pp. 722—729). The resulting multiplication circuit can be used to multiply O(log k) pairs of
k-bit integersin O(log k) time through pipelining, thus leading to O(k log k log log k) cost
per multiplication, which is nearly optimal.

8.6. PARALLEL ARCHITECTURES FOR FFT

Figure 8.11 (left) shows an eight-point FFT network that is derived directly from the
divide-and-conquer computation scheme of Section 8.5. Each circular node performs a
multiply—add computation. An inductive proof that this network does indeed compute the
FFT can be easily constructed. Assume that the y; and v; values, the results of n/2-point FFTs
with even- and odd-indexed inputs, are obtained in the upper and lower parts of the circuit,
asshowninFig. 8.11. Then, it is easy to see that the last stage of the circuit hasjust the right
connectivity to finish the computation by performing the required n multiply—adds.

By rearranging the nodes of our FFT circuit, which is known as the butterfly network,
we obtain an equivalent representation, as shown in Fig. 8.11 (right). This representation is
known as the shuffle—exchange network. This network, and the reason for its name, will be
discussed in Section 15.5. For now, we view it as simply an equivalent representation of the
FFT network that offers the advantage of identical connectivities between the various stages
of nodes. In the original FFT network, the inputs are separated into even- and odd-indexed
and provided to the top and bottom half of the circuit, respectively, with the outputs obtained
in ascending index order. In the equivalent shuffle-exchange version, the inputs are in
ascending index order from top to bottom, with the outputs obtained in bit-reversal order.
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Figure 8.11. Butterfly network for computing an eight-point FFT.

This means that the order of the indices of the output elements is sorted by the reverse of
their binary representations. For example, the binary representation of 4 is 100, with its
reverse being 001. Thus, y, is the second output from the top.

More efficient FFT networks are possible. For example, Yeh and Parhami [Y eh96]
present a class of FFT networks that are more modular than those in Fig. 8.11 and thus less
costly in VLS| implementation. The shuffle-exchange circuit of Fig. 8.11 (right) can be
somewhat simplified by removing half of the links, as shown in Fig. 8.12 (l&ft). The arrows
in Fig. 8.12 show the path of data movements (through an intermediate node) in lieu of the
missing links.

The butterfly network, and its variants discussed above, can become quite complex for
large n. In this case, more economical implementations may be sought. One way is to project
the circuit of Fig. 8.12 (left) in the horizontal direction, so that a single multiply—add node

Figure 8.12. FFT network variant and its shared-hardware realization.
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Figure 8.13. Linear array of logz n cells for n-point FFT computation.

performs, in successive time steps, the function of all of the nodes located in one row. The
resulting circuit is shown in Fig. 8.12 (right). Here, the single column of multiply—add nodes
alternately acts as the various columns of nodes in the diagram on the |eft, with the partial
computation results that would be passed from one column to the next saved in registers or
latches for use in the following time step. This approach reduces the cost of the network from
O(n log n) to O(n), without significantly increasing its delay.

An even more economical implementation results if the diagram is projected vertically
instead of horizontally. Figure 8.13 shows the resulting linear-array circuit, with feedback
shift registers inserted to maintain the proper timing of the various node inputs [Kwai96].
Discovering the details of how this design worksis |eft as an exercise.

PROBLEMS

8.1. Pardlel searching
In Section 8.1, a lower bound for parallel searching of a sorted input list using comparison
operations was obtained and an algorithm was given that matched the lower bound.

a. Obtain alower bound for parallel searching of an unsorted input list.

b. Provide aparallel search agorithm that matches the lower bound of part (a).

c. Canoneimprove the lower bound of part (a) or the algorithm of part (b) if theinput listis
known to be partially sorted in the sense that no element is more than mlocations away
from its correct position in a sorted input list, where m< < n?

8.2. Tree machine
This problem relates to the tree-structured dictionary machine of Section 8.2.

a.  We noted that both extractmin and extractmax must be performed in two phases, with no
search instruction allowed to enter the tree before the second phase has begun. Can any
instruction be entered immediately after the above instructions? Why (not)?

b. Design bit-serial processors for a tree machine that performs only the three basic dictionary
operations of search, insert, and delete.

8.3. Modified tree machine
Consider avariant of the tree-structured dictionary machine of Section 8.2 in which the leaves
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8.4.

8.5.

8.6.

8.7.

8.8.
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are interconnected as a linear array. Records are stored at the left end of the array; empty slots
are at the right.

a. Discuss how this change affects the operation of the leaf nodes and the execution of the
insert instruction.

b. Suppose that in the modified tree machine, the leaves are to hold the records in ascending
order of the key values from left to right. Propose a method for executing the insert
instruction that maintains the sorted order. Does the sorted order lead to any advantage?

Systolic priority queue

The systolic binary tree data structure, described at the end of Section 8.2 and depicted in Fig.
8.3, can perform insert, extractmin, extractmax, and extractmed operations at the rate of one
per clock cycle.

a. Describe the insertion agorithm in detail.

b. Describe algorithms for the three extract operations in detail. Make sure that extractmin
and extractmax lead to equal elements being output in FIFO order.

c. Describe asimplified version of the data structure, and its associated a gorithms, if we only
need to extract the smallest or largest value (median extraction is not needed).

d. A simple priority queue only needs the insert and extractmin operations. Can we further
simplify the data structure and agorithms of part (c) in this case?

Solving linear recurrences

Show that alinear recurrence of the form y; = a;1y;-1 + @i2yi—3 + ** + @jYi—m + X; Can be solved
by a parallel prefix computation involving vectors and matrices. Hint: Look ahead to the end
of Section 11.3 where it is shown that the solution of atridiagonal system of linear equations
can be converted to a parallel prefix computation.

Pipelined prefix computation
Consider the prefix computation scheme of Fig. 8.4 (right) and its parallel version in Fig.
8.5.

a. Ignoring pipelining overhead and start-up time, the latter is 4 times faster than the former.
Is this inconsistent with the assertion that we cannot achieve a speed-up of more than 3
with three processors?

b. Draw asimilar diagram assuming a function unit pipeline that has eight stages.

Repeat part (b) for a three-stage pipeline.

d. Present ageneral method of implementation for any ¢rstage pipeline.

o

Parallel prefix networks

a. Determine the depth and cost of a 64-input hybrid parallel prefix network with two levels
of the Brent—Kung scheme at each end and the rest built by the K ogge-Stone construction.

b. Compare the design of part (a) with pure Brent—-Kung and Kogge-Stone schemes and
discuss.

Parallel prefix networks

a. Obtain delay and cost formulas for a hybrid paralel prefix network that has | levels of
Brent—Kung design at the top and bottom and an n/2'-input Kogge-Stone network in the
middle.

b. Use the delay—cost product figure of merit to find the best combination of the two
approaches for the number n of inputs ranging from 8 to 64 (powers of 2 only).
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8.9.

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

Parallel prefix networks

a. Find delay and cost formulas for the Brent-Kung and Kogge-Stone parallel prefix
networks when the number n of inputsis not a power of 2.

b. Draw Brent—Kung, Kogge-Stone, and hybrid parallel prefix graphs for 24 inputs.

c. Using theresults of part (b), plot the cost, delay, and cost—delay product for the three types
of networks for n = 16, 24, 32 inputs and discuss,

Parallel prefix networks
The large fan-out of s, /2-1 in Fig. 8.7 can be replaced by a tree of constant fan-out logic
elements. Show how this might be done to minimize the speed penalty.

Discrete Fourier transform

a. Write down the Fourier and inverse Fourier matrices, Fsand F3?! , in terms of a = wg.

b. Use DFT to multiply the polynomials g(x) = x® + 2x2 —3x + 1 and h(x) = —xa + 5% — x +
4.

c. Describe the computation of part (b) as convolution of two sequences.

d. Canthe computation of part (b) be interpreted as multiplying two integers ? If so, what are
the operands and what is the number representation base?

Butterfly FFT network
Consider the butterfly FFT computation network.

a.  Write down the complete expression for the partial result evaluated at each node in both
versions of the network shownin Fig. 8.11.

b. Consider the butterfly network in reverse order, i.e., with inputs entering at the rightmost
column and outputs produced at the left Show the ordering of the inputs and outputs in
both versions of the network shown in Fig. 8.11.

Butterfly FFT network
Consider the butterfly FIT computation network of Fig. 8.11.

a Draw both versions of the network for n = 16 inputs.
b. Repeat part (a) for n= 12 inputs.

Shuffle-exchange FFT network
Consider the FFT network variant depicted in Fig. 8.12. Each pair of circular nodes intercon-
nected in the same column constitute a butterfly processor.

a. Redraw the left diagram in Fig. 8.12, showing the three columns of butterfly processors,
the eight inputs, and the eight outputs.

b. Redraw the right diagram in Fig, 8.12, including the registers in the butterfly processors.

c. Present the complete design of a butterfly processor,

FFT on a line array
This problem relates to the linear array of log, n cells for computing the n-point FFT (Fig.
8.13).

a. Explain how the three-cell linear array computes the eight-point FFT. Hint; In cycles 0-3,
the inputs X, X, X, , and X5 are simply placed in the four-element feedback shift register
and are subsequently combined with X4, X5, X6, and X in cycles 4-7.

b. How much time is needed to compute an n-point FFT on the (log2 n)-cell linear array*?

c. Discuss the control scheme for setting the cell multiplexers in the proper state as required
by your explanation for part (a).
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d.  Show that the control settings of part (c) can be implemented by attaching a control tag to

each input [Kwai96].
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Mesh-Based
Architectures

The bulk of this part is devoted to the study of 2D meshes and tori, a class of
parallel architectures that can be built quite easily in VLSI and that are readily
scalable to very large configurations. One might say that 2D meshes and tori
occupy one end of the spectrum that has the physically unrealistic PRAM model
at the other end. If the processors in a 2D mesh have simple circuit-level
realizations and are driven by an external control unit in SIMD mode, then the
mesh can be viewed as just another circuit-level model of parallel processing
with the additional benefits of localized connectivity and regularity; properties
that can lead to compact layout and high performance. However, we do not
view meshes or tori in this way. Rather, we use more complex processors, or
processing elements, to make our mesh-based parallel processors flexible and
easier to use for a variety of computational problems. Sorting on 2D meshes is
covered first, followed by data routing and numerical algorithms. We conclude
with variations and extensions of the simple 2D mesh or torus, as well as certain
related architectures. This part consists of the following four chapters:

e Chapter 9:  Sorting on 2D Mesh or Torus

¢ Chapter 10: Routing on 2D Mesh or Torus

e Chapter 11: Numerical 2D Mesh Algorithms

e Chapter 12: Other Mesh-Related Architectures
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Sorting on a 2D
Mesh or Torus

There are good reasons for beginning our discussion of 2D mesh and torus
architectures through algorithms for the seemingly difficult sorting problem. First,
sorting on the 2D mesh is nothing like its counterpart on the PRAM,; it is easy to
build fairly efficient sorting algorithms for the 2D mesh and the process of refining
these algorithms into more efficient ones is also quite intuitive. Second, the
discussion of sorting networks in Chapter 7 has given us all the background that
we need for building, verifying, and evaluating mesh sorting algorithms. So we
can delve right into the algorithms, and the fascinating methods and observations
used in their designs, following a short introductory discussion of the machine
model(s) assumed. Third, sorting is an ideal vehicle for exposing the strengths
and weaknesses of mesh-based architectures in communication-intensive appli-
cations. Chapter topics are

* 9.1. Mesh-connected computers
* 9.2. The shearsort algorithm

* 9.3. Variants of simple shearsort

* 9.4. Recursive sorting algorithms
¢ 9.5. A nontrivial lower bound

* 9.6. Achieving the lower bound
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9.1. MESH-CONNECTED COMPUTERS

A 2D mesh of processors was defined in Section 2.2 and some simple algorithms for it
were presented in Section 2.5. This section covers a complete definition for the simple 2D
mesh, including variations in control, interprocessor communication, input/output, and
processor indexing. Extensions such as higher dimensions, stronger and wesaker connectivi-
ties, inclusion of buses, addition of express channels, triangular or hexagonal shapes,
variations in the wraparound links, and reconfigurable connectivity will be covered in
Chapter 12.

Figure 9.1 shows the basic 2D mesh architecture. Each processor, other than the ones
located on the boundary, has degree 4. The free links of the boundary processors can be used
for input/output or to establish row and column wraparound connections to form a 2D torus.
Variations in the wraparound links (such as connecting to the next row/column, rather than
to the same row/column) will not be discussed here. A kx k mesh has diameter 2k — 2 and
bisection width k or k+ 1. A k x k torus has diameter k or k— 1 and bisection width 2k or
2k + 2.

A k x ktorus is sometimes referred to as a k-ary 2-cube (or 2D “cube” of sizek). The
genera form of this architecture is known as k-ary g-cube (g-D cube of size k). In particular,
for k= 2, we get the class of 2-ary (or binary) g-cubes, aso known as (binary) hypercubes.
Thus, 2D torus and binary hypercube represent the two extremes of the k-ary g-cube
architecture; fixing g at 2 gives us the 2D torus architecture with fixed node degree and
©(Vp) diameter, while fixing k at 2 gives us the binary hypercube with logarithmic node
degree and ©(log p) diameter.

A 2D mesh can be laid out on aVVLSI chip in an area that increases linearly with the
number of processors. Because of the short, local connections between processors, the area
consumed by the wires is negligible and it would be quite realistic and fair to equate the
complexity or implementation cost of a 2D mesh computer with the number p of processors
that it contains. Furthermore, the signal propagation delay between adjacent processors is
quite small, making it possible to perform communications at very high speed. A 2D torus,
on the other hand, has long wraparound links that can slow down interprocessor communi-
cation. However, it is possible to lay out a 2D torus in such a way that it too uses only short,
local links. Figure 9.2 depicts the method of folding that can be used for this purpose.
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Figure 9.1. Two-dimensional mesh-connected computer.
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Figure 9.2. A 5x5 torus folded along its columns. Folding this diagram along the rows will
produce a layout with only short links.

Unless otherwise stated, the links between processors in 2D meshes and tori are assumed
to be bidirectional and capable of carrying data in both directions at the same time (full
duplex). The four neighbors of a node are sometimes referred to as north, east, west, and
south, leading to the name NEWS mesh. Alternatively, the neighbors may be identified as
“top/up/above,” “right,” “left,” and “bottom/down/below.” For example, a communication
action may be specified for a processor as “send xto north/south neighbor,” “send x
up/down,” “receive x from south/north neighbor,” or “receive x from below/above.”

Various control schemes are possible. In a MIMD mesh, the processors run independent
programs and communicate asynchronously with their four neighbors. A SPMD mesh is
similar, except that the node programs are identical. In a SIMD mesh, all processor actions
are dictated by a shared central control unit. SIMD mesh is the default model assumed in
this book.

Various submodels of the SIMD mesh can be defined with respect to interprocessor
communication. In the weakest submodel, all processors must communicate with a neighbor
in the same direction, e.g., all send datato their “north” neighbor or “upward.” In this weak
SIMD submodel, there is never contention for the use of a link; thus, even half-duplex links
will do. Next in terms of power is a mesh in which each processor can send a message
to only one neighbor in each step, but the neighbor is determined locally based on
data-dependent conditions. Of course, in this case, a processor must be able to receive data
from all neighbors at once. The most powerful submodel alows transmission and reception
to/from al neighbors at once, leading to what is known as the all-port communication model.

Processorsin a2D mesh can be indexed (numbered) in avariety of ways. The simplest
and most natural isto identify or label each processor by its row and column indices, using
either 0-origin or I-origin indexing (we use O-origin throughout this book). Thus, Processor
(0, 0) is at the upper left corner, Processor (0, Vp — 1) is at the upper right corner, and
Processor(¥p — 1, Vp - 1) is at the lower right corner of a p-processor square mesh.

It is at times more convenient to number the processors from O to p — 1. This puts the
processors into a linear order that can be used to assign priorities or to define the order of
data elements in processors when we sort them. Figure 9.3 shows some of the possible
indexing schemes. You are aready familiar with the row-major and snakelike row-major
orders. Column-major and snakelike column-major orders can be defined similarly. The
shuffled row-major order is a recursive indexing scheme where the mesh is divided into four
quadrants and the quadrants are indexed in row-major order; numbering within each quadrant
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Figure 9.3. Some linear indexing schemes for the processors in a 2D mesh.

is done using the same scheme recursively. Finaly, proximity order is also recursive but has
the additional property that processors whose indices differ by 1 are neighbors.

A few words about interprocessor communication in a 2D mesh are in order. Each
processor can communicate with its NEWS neighbors. The actual data transfer mechanism
will be different depending on the communication style. We will take the simple view
depicted in Fig. 9.4 where one or more registersin each processor are viewed as part of the
register space of each of its NEWS neighbors. Hence, access to any of the Registers R,
through R, in aprocessor is viewed as reading an element from a neighbor’ s register. Even
this simple scheme can be implemented in a variety of ways. The left diagram in Fig. 9.4
depicts a scheme in which asingle value placed in Register R of a processor is made available
to its NEWS neighbors. The right diagram in Fig. 9.4 allows more flexibility in that different
values can be sent to the four neighbors. Thisis particularly helpful in routing of multiple
independent messages through a node. To forward a message eastward, for example, a
processor simply copies its Register R; into R5.

Figure 9.4. Reading data from NEWS neighbors via virtual local registers.
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9.2. THE SHEARSORT ALGORITHM

The shearsort algorithm was described without proof, in Section 2.5. Here, we look at
the algorithm in more detail and provide a proof of its convergence and correctness. As an
agorithm, shearsort is not very efficient and we will see more efficient 2D mesh sorting
agorithms later. However, shearsort is very easy to describe, prove, and analyze. Further-
more, it can be used as a building block in the synthesis of more efficient sorting algorithms.
Thus, shearsort isimportant, both as a pedagogical tool and as a practical one.

We begin by assuming that each processor holds a single data item (key) and that the
data should be arranged in nondescending order according to row-major or snakelike
row-major order. Thus, there are p data items and p processors that form an r x(p/r) mesh
(with r rows and p/r columns). In its simplest form, the shearsort algorithm consists of rlog2
r 1+ 1phases (Fig. 9.5). In each phase, except for the last one, all rows are independently
sorted in snakelike order: even-numbered rows 0, 2, . . . from left to right, odd-numbered
rows 1, 3, ... from right to left. Then, al columns are independently sorted from top to
bottom. In the final phase, rows are independently sorted in snakelike order, or from left to
right, depending on the final sorted order desired.

The time complexity of shearsort is easily derived by noting that each row (column) sort
takes p/r (r) compare—exchange steps, because rows (columns) are linear arrays for which
the odd—even transposition sort is applicable (see Section 2.3):

T enrsont = [_log2 r_kp/r +r)+plr

On a squarevp xVp mesh, the time complexity of simple shearsort becomes (approximately)
\p(iog, p + 1).

To prove the convergence and correctness of shearsort, it suffices to show that any 0/1
pattern is properly sorted by the algorithm (the zero—one principle). Consider an arbitrary
pattern of Os and 1s and focus on the first column sort following the initial snakelike row
sort. The end result of this column sort will not change if we precede it with a redundant

repeat( log 11 dmes

__’
- then
Sort the > sort the

z::’a:(c- 4_— columns

: (top-to-
like) . p'm)
endre
Sort the rows
— =
. .

Snakelike or Row-Major
(depending on the desired final sorted order)

Figure 9.5. Description of the shearsort algorithm on an r-row 2D mesh.
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compare—exchange between each even-indexed element and the odd-indexed element di-
rectly below it (0&1, 2& 3, 4&5, . . .). A pair of rows affected by such exchanges can bein
one of three classes:

a They contain more Os than 1s.
b. They contain more 1s than Os.
c. They contain the same number of Os and 1s.

In each case, the redundant exchange creates at least one “clean” row (containing only Os or
only 1s) and no more than one “dirty” row (containing both Os and 1s), as shown in Fig. 9.6.
In sorting the columns, such clean rows “bubble up” or “sink down” and lead to a total of at
least Lr/2] rows of the array being in their final sorted order. This reduction of the number
of dirty rows by afactor of 2, fromr to [727t0 11727727 and soon (Fig. 9.7), continues
until, after ﬁog2 r| iterations, we have & most one dirty row remaining. This last dirty row
will be put in its proper sorted order by the final phase of the algorithm.

Figure 9.8 shows a complete example for the application of shearsort to sorting 16 keys
on a4 x 4 mesh. The initial data distribution is given at the top. Then we have two iterations
of snakelike row sorts followed by column sorts. Finally, we end with row-major or snakelike
row sorts, depending on the desired sorted order. Note, in particular, that with arbitrary keys,
“clean” and “dirty” rows do not exist and thus the notions of clean and dirty rows cannot be
used to measure the progress toward the eventual sorted order. In fact, we see in the example
of Fig. 9.8 that none of the rows assumes its final sorted state until the very last step in the
algorithm.

Note that sorting the rows in snakelike order is the key to being able to sort the array by
independent row and column sorts. Take the example of a4 x 4 mesh with each of its four
rows initially containing the bit pattern 0111. Clearly, no amount of row/column sorting,
with row-mgjor order for row sorts, will sort this array.

Row 2i 000 —p 11 Bubbles up in the
Row2i+1 |11 1 «4—— 00 next column sort
Case (a): 00000011 || o-0-0-0le—o-0-0
More Os 11100000 11100011
Case (b): 00111111 00111000
More 1s 11111000 =l 11111111
Case(;): 00011111 |[_] 00000000
Equal 11100000 L dep R
Os & 13

Sinks down in the
next column sort

Figure 9.6. A pair of dirty rows create at least one clean row in each shearsort iteration.
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0 = 0
Dirty ;:zw Dinty ::;:::Eﬂ]
1 1

Figure 9.7. The number of dirty rows halves with each shearsort iteration.

1 12 21 4
15 20 13 2
Keys
5 9 18 7
22 3 14 17
1 4 12 21 1 4 9 2
Row ] 20 15 13 2 Corumn| 8 7 12 3
sort | 5 7 9 18 sort |20 15 13 18
22 17 14 3 22 17 14 21
1 2 4 9 1 2 4 3
12 7 3 12 71 5
Row 5 Column 2 S
t
%ort 113 15 18 20 sort {313 15 17 14
22 21 17 14 22 21 18 20
1 2 3 4 1 2 3 4
Finaltl12 9 17 s 5 7 9 12
row Snake- Row-
sort |13 14 15 17 |like 13 14 15 17 |majer
22 21 20 18 18 20 21 22

Figure 9.8. Example of shearsort on a 4 x 4 mesh.



SORTING ON A 2D MESH OR TORUS 179

9.3. VARIANTS OF SIMPLE SHEARSORT

Shearsort can be terminated earlier in some cases because sorting is complete when no
exchange occurs during arow sort or a column sort. In practice, one cannot take advantage
of this early termination feature unless some form of fast global combine operation is
implemented in hardware.

It is, however, possible to speed up shearsort by a constant factor by taking advantage
of the reduction of the number of dirty rows in each iteration. Note that in sorting a sequence
of Osand 1son alinear array, the number of odd—even transposition steps can be limited to
the number of dirty elements that are not already in their proper places (O s at the left/top,1s
at the right/bottom). For example, sorting the sequence 000001011111 requires no more than
two odd—even transposition steps. Therefore, we can replace the complete column sorts
within the shearsort algorithm with successively fewer odd—even transposition steps; r in the
initial step, [1/20in the next step, and so forth. The time complexity of this optimized
shearsort then becomes

Topuseasson = /D) logy r b D+ e T2 b [ T2 V214 o 2

When r is a power of 2, the above simplifies to (p/r)(log,r + 1) + 2r — 2. For a square
Vp x v¥p mesh, time complexity of the optimized version of shearsort is approximately
Vp(Qlog,p +3) - 2.

16 1%6 2%5 ‘10
15 20 13 2 x Two keys held
Y | by one processor
xeys| 31 32 16 30 y one p
5 9 18 7
11 19 27 8
22 3 14 17
28 23 29 24
1 6 12 25 1 6 11 2
4 10 21 26 4 B8 12 3
31 20 15 2 5 9 15 13
Row | 32 30 16 13 Column 7 10 16 14
sort| 5 g 11 19 sort }28 20 17 19
7 9 18 27 29 23 18 25
28 23 17 3 31 24 21 26
29 24 22 ia 32 30 22 27
1 3 6 11 1 3 6 5
2 4 8 12 2 4 8 7
15 13 9 5 15 13 9 11
Row | 16 14 10 7 Column | 16 14 10 12
sort|17 19 23 28 sort 17 19 23 21
18 20 25 29 18 20 24 22
31 27 24 21 31 27 25 28
32 30 26 22 32 30 26 29

The final row sort (snakelike or row-major) is not shown.

Figure 9.9. Example of shearsort on a 4 x 4 mesh with two keys stored per processor.
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Simple shearsort can be easily extended to the case where multiple keys are stored in
each processor. The algorithm begins by presorting the sublists of size n/p within the
processors, using any sequential sorting algorithm. It then proceeds with row and column
sorts as in simple (p-input) shearsort, except that each compare-exchange step of the latter
is replaced by a “merge—split” step involving lists of size n/p. For example, if n/p =4 and
the two processors doing the compare—exchange step in simple shearsort now hold the
sublists {1, 5, 8, 8} and {2, 3, 5, 7}, the merge—split step will result in the two processors
holding, in the sorting order, the sublists {1, 2, 3, 5} and {5, 7, 8, 8}. Performing a merge-split
operation on two sorted lists of length n/p requires n/p compare—exchange steps in the worst
case.

Figure 9.9 shows an exampl e of shearsort with two keys stored per processor. Thetime
complexity of the shearsort algorithm with n/p keys per processors is easily obtained from
the © ((n/p) log (n/p)) complexity of the presort phase and the ©(n/p) complexity of each
merge-split operation.

9.4. RECURSIVE SORTING ALGORITHMS

A recursive algorithm for sorting on a square vp x¥p mesh, based on four-way divide-
and-conquer strategy, is shown in Fig. 9.10. The agorithm consists of four phases.

First recursive sorting algorithm on a 2D mesh

1. Sort each of the four quadrantsin snakelike order.
2. Sort the rows independently, in snakelike order.

=8 =
==

1. Sort quadrants 2. Sortrows
3. Sort columns 4. Apply 4Vp steps of odd-even
trangposition along the snake

Figure 9.10. Graphical depiction of the first recursive algorithm for sorting on a 2D mesh based
on four-way divide and conquer.
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3. Sort the columns independently, from top to bottom.
4. Apply 4vp steps of odd-even transposition along the overall snake.

In the last phase, the mesh is viewed as a snakelike p-processor linear array for the application
of the 4vp steps of odd—even transposition.

If the above algorithm is in fact correct, as we will show shortly, its running time is
characterized by the following recurrence:

Tp) =T(Np/2) +55Vp = L 1INp

where 5.5Vp isthe sum of 0.5vp for row sort (with each half being already sorted, Vp/2 steps
of odd—even transposition suffice for row sort), ¥p for column sort, and aVp for the last
phase.

As usual, we prove the algorithm correct by using the zero—one principle. Figure 9.11
(Ieft side) shows the state of the array after sorting the four quadrants in Phase 1, with various
numbers of clean 0 and 1 rows as indicated. The snakelike row sort in Phase 2 will spread
the elements of these clean rows roughly evenly in the left and right halves of the array. After
Phase 3, we end up with x clean 0 rows on the top and x' clean 1 rows at the bottom. Because
at most one dirty row remainsin each quadrant after sorting it, each of thesums a+ a', b +
b, c+c, ord+d is either Vp/2 or \[;,_/2 _1.Leta>bandc<d, asshownin Fig. 9.11
(other cases are similar). Then, the row sorts of Phase 2 produce b + ¢ clean 0 rows outright
and |(a - b)2) +(d - c)/2] clean 0 rows as aresult of the extra 0 half-rows being divided
equally among the left and right halves of the array by the snakelike row sorts. Thus, the
number of clean O rows at the end of Phase 3 of the algorithm satisfies

x2b+c+i(a-m)+l@d-orl
A similar inequality for X' leads to
x+¥2bte+ la-blsld-—onlra +ad+ Ly -av2 1+ L - a)2)

2htc+d +d+@-HR+(d-2+ B -a W2 +( -d)2-4x1/2

' 0 | 0 X tows
1 ,
¥ 1 b Dirty Vp-x-x
rows

1 x' Tows
¢ 1
1 d
1__ Numbers of clean rows in M’ State of the array
cach of the four quadrants after Phase 3

Figure 9.11. The proof of the first recursive sorting algorithm for 2D meshes.



182 INTRODUCTION TO PARALLEL PROCESSING

=@+d)2+@G+V2+(c+ V2 +(d+d)2 -2
2Vp -4

Hence, the number Vp — x — x* of dirty rows after Phase 3 is at most 4. Now, viewing the
aray as a p-processor snakelike linear array and applying 4Vp steps of odd—even transpo-
sition will put the 4vp potentially out-of-position elements in their proper places.

A second, somewhat more efficient, recursive algorithm for sorting on a square Vp x
Vp mesh is again based on four-way divide-and-conquer strategy. The algorithm consists of
four phases.

Second recursive sorting algorithm on a 2D mesh

1. Sort each of the four quadrants in snakelike order.

2. Shuffle the columns, i.e., interlace the left- and right-half elementsin each row.
3. Sort pairsof columns, 0& 1,2 & 3, etc., in snakelike row-major order.

4. Apply 2Vp steps of odd-even transposition along the overall snake.

Figure 9.12 shows the four algorithm phases graphically. In the last phase, the mesh is viewed
as a snakelike p-processor linear array for the application of thezxfE steps of odd—even
transposition.

Again, assuming that the algorithm is in fact correct, its running time is characterized
by the following recurrence:

Distribute
these p2
columns

==
e = = ™

1. Sort quadrants 2. Shuffle row elements

0123

3. Sort double columns 4. Apply 2Vp steps of
in snakelike order odd-even trangposition
along the overall snake

Figure 9.12. Graphical depiction of the second recursive algorithm for sorting on a 2D mesh
based on four-way divide and conquer.
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Figure 9.13. The proof of the second recursive sorting algorithm for 2D meshes.

T(Np)=T(Np/2) + 4.5Vp = op

where the term 4.5Vp isthe sum of 0.5vp for row shuffling (this is the maximum distance
that an element needs to move to the right or to the left), 2\,(17 for double-column sorts, and
2Vp for the last phase.

By now you can probably guess that we need to use the zero—one principle in order to
prove the above agorithm correct. The structure of the proof is depicted in Fig. 9.13. Asin
Fig. 9.11, representing the proof of the first recursive sorting algorithm, the numbers of clean
0 rows in the four quadrants have been indicated in Fig. 9.13. Filling in the remaining details
of the correctness proof is left as an exercise.

9.5. A NONTRIVIAL LOWER BOUND

Because the diameter of asquareVp x Vp mesh is2vVp —2,a ©(vp)-time agorithm is
the best that we can hope for. However, our best ©(¥p )-time algorithm thus far is about 4.5
times slower that the diameter-based lower bound. Two natural questions at this point are

1. Canweraisethe 2vp — 2 lower bound?
2. Canwe design asorting algorithm with alower execution time than Hp ?
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Figure 9.14. The proof of the 3¥p — o(Np} lower bound for sorting in snakelike row-major order.

In this section, we show that for sorting in snakelike row-major order, the lower bound can
be raised to 3Vp — o(Vp). Then, in Section 9.6, we present an agorithm that matches this
lower bound asymptotically in that its execution time is 3Vp + o(Np).

Consider the square Vp x Vp mesh depicted in Fig. 9.14. The shaded triangular region
at the upper left corner of this mesh contains 2vp processors and keys. Let the keys held by
the p—2+vp processors in the unshaded region be the numbers 1 through p—2Vp . Each of
the keys in the shaded part is 0 or p—2Jp + 1 (i.e., all are smaller or larger than those in the
unshaded region), with the number of Os being z, 0< z < 2vp . We denote by X[t] the key held
by the processor at the lower right corner of the mesh at time step t, as the sorting algorithm
is executed.

We now take an arbitrary sorting algorithm and show that it needs at least 3\/;7 - o(\fp_)
steps to sort the above keys in snakelike row-major order. Consider the state of the mesh
after the algorithm has run for 2vp - 2 ¥p — 3 steps and, in particular, the value X[{2vp —
23 - 3] held by the processor at the lower right corner of the mesh. Because the shortest
path from any processor in the shaded region to the corner processor contains at least
2p - (&7 — 2 hops, this corner value can in no way depend on the number z of Osin the
shaded region. If we vary zfrom O to its maximum of 2\p, the correct final position of the
vauex[2vp -2 5/;-3] in the sorted order can be made to be in any of the columns, and in
particular in Column 0. Thus, in the worst case, the algorithm needs at least Vp — 1 additional
steps to complete the sorting. The total running time of the algorithm is thus lower bounded

by
T 22¥p -2 3p -3 +\p - 1=3vp - ©(p)

Consider, for example, a 9 x 9 square mesh (p = 81). By the above construction, each of the
18 processors in the shaded region holds a key value 0 or 64, while the remaining processors
hold the key values 1 through 63. If z= 18, theinitia state and final sorted order are as shown
on the left side of Fig. 9.15. The other extreme of z= 0 is depicted on the right side of Fig.
9.15. It is clear from this example that as zgradually changes from 0 to 18, the final location
of each of the key values 1-63 shifts through every column in the mesh.
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Figure 9.15. lllustrating the effect of fewer or more Os in the shaded area.

If we run any given sorting algorithm for 10 steps, the key value that appears at the lower
right corner will be independent of z If after these 10 steps, the lower right valueis 55, say,
then choosing any of thevalues 0, 9, or 18 for zwill force the algorithm to work for at least
8 more steps just to shift the key value 55 to column 0 where it belongs. So, the algorithm
needs at least 10 + 8 = 18 steps for this particular example (it will likely need more).

Note that the above proof only applies to the snakelike final order and is based on the
implicit assumption that each processor holds one key initially and at each step of the
agorithm. Nigam and Sahni [Niga95] have shown that by “folding” the keys into half of the
columns, so that each processor in the central half of the mesh holds two keys, the above
lower bound can be overcome and sorting done in roughly 2.5+, communication steps. More
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generaly, folding the keys intovp /k columns reduces the sorting time even further for k>
2. A different approach to obtaining a sorting agorithm that requires 2.5vp + o(¥p)
communication steps on a p-processor sguare 2D mesh is provided by Kunde [Kund91].

9.6. ACHIEVING THE LOWER BOUND

In this section, we describe a sorting algorithm, reported by Schnorr and Shamir
[Schn86], that comes very close to the 3Vp lower bound of Section 9.5 in terms of its running
time. However, the mesh has to be quite large for the algorithm to be significantly faster than
the ssimpler algorithms presented earlier in this chapter. Thisis so because in the anaysis of
the algorithm, several terms on the order of p*®or p¥8log, p are ignored in comparison with
pY2. For p=2% or approximately 4 billion processors, we have p38log, p= 2'2x32 = 128K
compared with p%2 = 21® = 64K .. Once the algorithm is described, the reader will see that the
lower-order terms ignored in the analysis in fact constitute a significant portion of the running
time even when the number of processorsisin the billions. Hence, presently, this algorithm
cannot be considered practical.

Figure 9.16 depicts the divide-and-conquer strategy, and some relevant notation, for
presenting this asymptotically optimal sorting a gorithm.

The eight-phase Schnorr—Shamir agorithm for snakelike sorting on a 2D mesh is based
on dividing the pY2 x p¥2 mesh into smaller p¥® x p¥8submeshes (blocks), sorting the blocks
independently in Phase 1, and then merging the results through various data movement and
sorting operations in the remaining seven phases.

The Schnorr—Shamir algorithm for snakelike sorting on a 2D mesh

1. Sort al of the blocks in snakelike order, independently and in parallel.

O3 XX
A .,..\)'\\,._,A_’.'
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DAY - RY e
L\.'.-:’ 7 ;. I 3 .L.-':\:;“‘.:.','{ .-:-:.
pllz N NINANRONL SR
.
Proc's : . Hprimmal
. o . slice
.

L Vertical slice

Figure 9.16. Notation for the asymptotically optimal sorting algorithm.
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2. Permute the columns such that the columns of each vertical slice are evenly
distributed among al vertical dlices.

3. Sort each block in snakelike order.

4. Sort the columns independently from top to bottom.

5. Sort Blocks 0&1, 2&3, . . . of all vertical dlices together in snakelike order, i.e., sort
within 2p¥® x p38 submeshes.

6. Sort Blocks 1&2, 3&4, . . . of all vertical slices together in snakelike order again
sorting is done within 2p¥8 x p¥8 submeshes,

7. Sort the rows independently in snakelike order.

8. Apply 2p*® steps of odd-even transposition to the overall snake.

The proof of correctness for this algorithm is somewhat involved and is thus not presented
here (like all other proofsin this chapter, it is based on the zero—one principle).

Each of Phases 1, 3, 5, and 6 of the algorithm can be executed in O(p*Clog p)
compare—exchange steps, say by using the shearsort algorithm. Each of Phases 2, 4, and 7
requires at most pY/2 steps. Phase 8 obviously needs 2p® steps. The total running time is thus
upper bounded by 3pY? + o(p"? ), where the second term can be replaced by ©(p*®log p).

PROBLEMS

9.1. Topologica properties of meshes and tori

a  Write an expression for the diameter of anr ™ (p/r) mesh and show that it is minimized
when the mesh is square.

b. Repeat part (a) foranr ” (p/r) torus.

c. Write an expression for the bisection width of an r “ (p/r) mesh and show that it is
maximized when the mesh is square.

d. Repeat part (c) foranr " (p/r) torus.

9.2. Topological properties of meshes and tori

9.3.

Diameter or worst-case distance is not the only indicator of communication delay. Average or
expected distance is often of greater importance.

a.  What isthe average distance from a given node to arandom destination node in a p-node

linear array?

Repesat part (a) for ap-node ring.

What is the average distance between two randomly selected nodesin ap-node linear array?

Repeat part (c) for a p-node ring.

Using the result of part (&), find the average distance from a given node to a random

destination nodeinanr ”~ (p/r) mesh.

f. Repeat part (€) foranr” (p/r) torus, using the result of part (b).

g. Using the result of part (c), find the average distance between two randomly selected nodes
inanr” (p/r) mesh.

h. Repeat part (g) for anr” (p/r) torus, using the result of part (d).

© 20 T

VLSI layout of a2D mesh or torus

Consider the problem of laying out a mesh or torus on a grid with unit distance between
horizontal and vertical lines. Nodes or processors occupy no area (they are shown as dots) and
wires are restricted to be nonoverlapping and routed on grid lines (intersecting wires are
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acceptable). Let the number p of processors be an even power of 2. Clearly, a p-processor 2D
mesh can be laid out in p units of area.

a What isthe area needed for laying out a p-processor 2D torus with long wraparound links?
b.  What isthe area needed for laying out a p-processor torusif it isfolded aong the rows and
columns to make al interprocessor connections short?

Interprocessor communication
Using the communication convention shown in the left side of Fig. 9.4 and assuming that each
processor knows the number r of rows in the mesh, the total number p of processors, and its
own row/columnindices(i, j), write a complete program at the level of an assembly language
to sort the elements of each row in snakelike order; i.e., even rows sorted from left to right, odd
rows from right to left.

Row and column sorts

a  Show that if we sort the rows of amatrix from left to right and then sort the columns from
top to bottom, the rows will remain in sorted order.

b.  Show that sorted rows and columns are necessary but not sufficient for a matrix being
sorted in row-major order, while the condition is necessary and sufficient with snakelike
ordering.

The shearsort algorithm
Provethat if an array of integer keysis sorted by applying the shearsort algorithm, the state of
the array just before the final row sort is such that if we pick an arbitrary threshold value t,
replacing all keysthat are lessthant with 0 and al those that are greater than or equal tot with
1, theresulting array of Os and 1s will have at most one dirty row.

Optimized shearsort on a 2D mesh

a. Considering the analysis of optimized shearsort, find a closed-form tight bound on the
complexity when r is not a power of 2. Hint: The worst case occurs for r = 22 + 1.

b. Prove that your bound is tight by providing one example when the bound is actualy
reached.

c. Can optimized shearsort be extended to the case when n/p keys are stored per processor?
If it can, provide algorithm details and its time complexity. If not, state why.

Recursive sorting on a 2D mesh

Show that in the first recursive sorting algorithm presented in Section 9.4, replacing Phase 4
(the one saying “apply 4Vp steps of odd—even transposition along the overall snake”) by row
sorts and partial column sorts, as in optimized shearsort, would lead to a more efficient
agorithm. Provide complexity analysis for the improved version of the algorithm.

The shearsort algorithm
Show that on an r x 2 mesh, shearsort requires only 3r/2 + 3 steps. Then use this result to
improve the performance of the second recursive sorting agorithm described in Section 9.4,
providing the complexity analysis for the improved version.

The columnsort algorithm
Consider a seven-phase algorithm that sorts the p elementsin an r x (p/r) matrix in column-
major order. During Phases 1, 3, and 7, the columns are independently sorted from top to
bottom. During Phase 5, the columns are sorted in snakelike column-major order. During Phase
2, we “transpose” the matrix by picking up the items in column-major order and setting them
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9.11.

9.12.

down in row-major order, while preserving the r x (p/r) shape of the matrix. During Phase 4,
we reverse the permutation applied in Phase 2, picking up items in row-major order and setting
them down in column-major order. During Phase 6, we apply two odd—even transposition steps
to each row.

a  Show that the above algorithm, known as columnsort, sorts the matrix into column-major
order provided that r3=> p2.
Find the time complexity of columnsort when performed on an r x (p/r) mesh.
Find the time complexity of columnsort when the r x (p/r) matrix is mapped onto avp x
p mesh, with each matrix column occupying r/¥p (an integer) consecutive mesh columns.

Sorting on aring of processors

Using a method similar to that used in Section 9.5, prove that a p-processor ring requires at
least 3p/4 — O( 1) stepsto sort p items if each processor is restricted to holding exactly one key
in each step. The sorted order is defined as Processor 0 holding the smallest key and the keys
appearing in nondescending order in clockwise direction. Hint: Consider the p/2 processors
that are farthest away from Processor 0 and assume that the key values held by these processors
are smaller or larger than the keys held by the other p/2 processors.

Optimal snakelike sorting algorithm
Using the zero—one principle, prove the correctness of the (3p™ < + o(p™ 7))-step  Schnorr—
Shamir sorting algorithm described in Section 9.6 (see [Schn86] or [Leig92], pp. 148-151).

1/2 1/2,

9.13. Bounds for sorting

9.14.

9.15.

9.16.

The bisection bound on sorting on a square 2D mesh isVp /2 steps.

a  Show that if interprocessor communication is restricted to be in one direction in each step,
then a corresponding multisection lower bound of \p applies [Kund9l].

b. Derivesimilar bound for k—k sorting, where each processor begins and ends with k records.

¢.  Modify the above lower bounds for a p-processor 2D square torus.

Mesh sorting by interleaved row/column sorts

Consider a 2D mesh sorting algorithm based on row sorts and columns sorts, except that the
row sorting and column sorting steps are interleaved (i.e., we perform one odd—even transpo-
sition step along the rows, then one along the columns, again one aong the rows, and so on).
Asin shearsort, the row sort steps are done in opposite directions for adjacent rows. Analyze
this algorithm and derive its worst-case performance.

Average-case performance of sorting algorithms

Our analyses of sorting agorithms in this chapter focused on worst-case performance. Mesh
sorting algorithms that are asymptotically optimal in terms of their worst-case performance are
clearly also optimal in terms of their average-case performance when applied to randomly
ordered key values. Show that the average-case performance of shearsort is also asymptotically
the same as its worst-case performance. Hint: Consider what happens to the k smallest keys as
shearsort runs on ak x k mesh.

The revsort sorting algorithm
Consider ak x k torus sorting algorithm that is based on aternately sorting rows and columns.
Theith row iscyclically sorted from left to right beginning at Processor rev(i), where rev(i) is
the integer whose binary representation is the reverse of i; e.g., in an 8 x 8 torus, rev(l) =
rev((001) y,0) = (100, = 4.

two
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Prove that all numbers are close to their final row positions after O(log log k) iterations of
arow sort followed by a column sort.

Show that the time complexity of the revsort algorithmis O(k log log k) .

Show that the wraparound links of the torus are not needed and that a 2D mesh can achieve
the same time complexity asin part (b).
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Routing on a 2D
Mesh or Torus

Data routing is needed to make a data item present or computed in one processor
available to other processors. In PRAM, all memory words are directly accessible
to all processors, so the data routing problem is nonexistent. In the circuit model
(e.g., sorting networks), one directly connects the producer of each data word
to all of its consumers, so data routing is hardwired into the design. For meshes
and other network-based architectures, access to a nonlocal data item requires
explicit routing of the access request to the processor where the data item resides
and, in the case of reading, explicit routing of the accessed value back to the
requesting processor. In this chapter we review methods for data routing on 2D
meshes and analyze these methods with regard to their routing delays and
resource requirements. Chapter topics are:

e 10.1. Types of data routing operations

e 10.2. Useful elementary operations

e 10.3. Data routing on a 2D array

e 10.4. Greedy routing algorithms

e 10.5. Other classes of routing algorithms
e 10.6. Wormhole routing

191
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10.1. TYPES OF DATA ROUTING OPERATIONS

Most of our discussion will focus on packet data routing or packet switching where a
packet is an atomic unit of data transfer. A packet may be a complete message, containing
one or more data values, or a part of alonger message. In the latter case, the packet will have
a sequence number indicating that it is the ith packet (out of j packets). Because we often
deal with data transfers involving a single data element, we use packet and message
interchangeably. A packet or message typically has a header that holds the destination
address, plus possibly some routing information supplied by its sender, and a message body
(sometimes called payload) that carries the actual data. Depending on the routing algorithm
used, the routing information in the header may be modified by intermediate nodes. A
message may also have various other control and error detection or correction information,
which we will ignore for simplicity.

Depending on the multiplicity of data sources and destinations, data routing or commu-
nication can be divided into two classes. one-to-one (one source, one destination) and
collective (multiple sources and/or multiple destinations).

A processor sending a message to another processor, independent of all other processors,
constitutes a one-to-one data routing operation. Such a data routing operation may be
physically accomplished by composing and sending a point-to-point message. Typically,
multiple independent point-to-point messages coexist in a paralel machine and compete for
the use of communication resources. Thus, we are often interested in the amount of time
required for completing the routing operation for up to p such messages, each being sent by
adifferent processor. We refer to a batch of up to p independent point-to-point messages,
residing one per processor, as a data routing problem instance. If exactly p messages are sent
by the p processors and al of the destinations are distinct, we have a permutation routing
problem.

Collective data routing, as defined in the Message Passing Interface (MPI) Standard
[MPIF94], may be of three types:

1. Oneto many. When a processor sends the same message to many destinations, we
call the operation multicasting. Multicasting to all processors (oneto all) is called
broadcasting. When different messages are sent from one source to many destina-
tions, a scatter operation is performed. The multiple destination nodes may be
dynamically determined by problem- and data-dependent conditions or be a
topologically defined subset of the processors (e.g., arow of a2D mesh).

2. Many to one. When multiple messages can be merged as they meet at intermediate
nodes on their way to their final common destination, we have a combine or fan-in
operation (e.g., finding the sum of, or the maximum among, a set of values).
Combining values from all processors (all to one) is called global combine. If the
messages reach the destination intact and in their original forms, we have a gather
operation. Combining saves communication bandwidth but is lossy in the sense that,
in general, the original messages cannot be recovered from the combined version.

3. Many to many. When the same message is sent by each of several processors to
many destinations, we call the operation many-to-many multicasting. If al proces-
sors are involved as senders and receivers, we have all-to-all broadcasting. When
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different messages are sent from each source to many (all) nodes, the operation
performed is (all-to-all) scatter-gather (sometimes referred to as gossiping ).

For 2D meshes and tori, we are particularly interested in the following three data routing
operations:

1

Data compaction or packing. Many problems are solved by starting with a set of
elements, as the parameters on which the final computation results depend, and
successively removing some of the elements that are no longer useful or relevant.
Rather than leave these elements in their original locations and pay the worst-case
Q(Vp) communication delay in all subsequent computations, we may want to
compact or pack the useful or relevant data into the smallest possible submesh in
order to speed up the rest of the process. Figure 10.1 shows an example where eight

remaining element in a4 x 4 mesh are compacted or packed into 3 x 3 submesh.

Randomaccess write (RAW). This operation can be viewed as emulating one
memory write step of a PRAM having p processors and m memory locations on a
distributed-memory machine that has p processors and m/p memory locations per
processor. Each processor may have an address (consisting of destination processor
ID and memory location within the processor) into which it wants to write its value.

Thus, up to p write operations may be required that must be performed viarouting
of the destination/address/value messages to their destinations. Once there, the
address/value part of the message is used for performing the write operation. Unique
destination/address pairs correspond to the EREW submodel. Unique destinations
correspond to afurther restriction of EREW to a single access per memory block,

as discussed in Section 6.6.

Random-access read (RAR). This operation is similar to RAW and all of the
considerations discussed above apply to it. A RAR operation can be decomposed
into two RAW operations as follows. In the first RAW operation, the requesting
processors write their read access requests, including their own IDS, into the target
processors. In the second RAW operation, which is somewhat more complex than
the simple version discussed in the preceding paragraph if concurrent reads from
the same location/module are to be allowed, the target processors write the results
of the read requestsinto the requesting processors.

We will discuss the implementation of these operations in Section 10.3 after dealing with
some useful elementary or building-block computationsin Section 10.2.

alb alb|c
¢ : dle|f
dleif glh
g h

Figure 10.1. Example of data compaction or packing in a 2D mesh.
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Processor addresses (also known as node labels or node IDs) can be specified by
row—column numbers or according to their rank in a specified linear order such as those
shown in Fig. 9.3. Such addresses are easily convertible to one another with a small, constant
amount of computation. For example, a processor’s rank kin row-major order can be obtained
from its row number i and column number j based on the equation k= iVp + j. Conversely,
the row and column numbers can be obtained from the processor’s rank kin row-major order
using i = CkWp Dand j = k mod Jp .Other ordering schemes are similar. For these reasons,
in the remainder of our discussion of 2D mesh routing and various other algorithms, we
switch freely between different addressing schemes, using each where it is most convenient.

10.2. USEFUL ELEMENTARY OPERATIONS

In performing data routing and many other operations on a 2D mesh, certain elementary
operations arise quite frequently. It is convenient to review these operations before discussing
routing algorithms.

Row or Column Rotation (all-to-all broadcast within rows or columns). In
\/; —1 steps, datain one mesh row or column can be rotated once, such that each processor
“sees’ every data item. If each processor can send/receive data only to/from one neighbor at
atime, 2Vp — 2 steps are needed, as right-moving and |eft-moving messages will be forced
to alternate.

Sorting Records by a Key Field. We presented and analyzed several sorting algo-
rithms for 2D meshes in Chapter 9. In a permutation routing problem, routing the packets is
equivaent to sorting them by the destination node address. In other situations, sorting is often
used as one of several stepsin designing the required routing algorithm.

Semigroup Computation. A semigroup computation, such as summation or maxi-
mum finding, can be accomplished in 2\1?; — 2 steps (optimal time) by using row rotations
followed by column rotations with bidirectional communication. The time complexity
increasesto 4 Np—4 if communication is restricted to one direction at a time. This simple
algorithm was presented in Section 2.5. A recursive agorithm can be used that is particularly
efficient in the second case above, but that requires commutativity as well as associativity.
The mesh is divided into four quadrants and each quadrant recursively performs the
semigroup computation in such a way that every processor in the quadrant knows the
quadrant result. The quadrants then combine their results horizontally (Fig. 10.2); each
processor in the center two columns exchanges values with its neighbor in the horizontally

< > T

———p
Horizoptal combining Vertcal combining
~p/2 steps ~Np/2 steps

Figure 10.2. Recursive semigroup computation in a 2D mesh.
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adjacent quadrant in one or two steps and then initiates a half-row broadcast. This phase thus
requires \/; /2 0rv§/2 + 1 steps. Verticadl  combining in the next phase needs the same
amount of time, leading to the recurrence T(\p) = T(VF/Z) + \/p— +2¢, where gis0or 1. The
solution to the above recurrence isT(Np) = 2¥p - 1 + elog, p.

Parallel Prefix Computation. A (3Vp —3)-step algorithm was given in Section 2.5.
It was based on computing row prefixes, then doing a diminished prefix computation in the
last column, and finally, broadcasting the results obtained in the last column within rows for
final combining. As for semigroup computation, a more efficient recursive algorithm can be
obtained if the binary operation is commutative. Quadrant prefixes are computed in
row-mgjor order, but in opposite directions in the left and right quadrants (Fig. 10.3). Vertica
and horizontal combining take ¥p + O(1)steps if the required data broadcasts, shown in the
middle and right panels of Fig. 10.3, are pipelined. Supplying the details of the algorithm is
left as an exercise.

Routing within a Row or Column. Consider the problem of routing multiple pack-
etson alinear array corresponding to arow or column of our square mesh. If the routing
problem is a permutation, we simply apply ¥p steps of odd—even transposition, using the
destination addresses as the keys. Otherwise, we can proceed as follows (see Section 2.3).
Each packet has an information part and a destination address part. It is more convenient to
convert the destination addresses into a signed relative offset, with positive sign indicating
movement to the right and negative sign corresponding to leftward movement. A processor’s
agorithm for dealing with a received packet is as follows. Figure 10.4 shows an example
where right- and | eft-moving packets alternate.

Datarouting on alinear array

if offset=0

then remove the packet

elseif offset >0
then offset := offset— 1; send to right neighbor
else offset := offset + 1; send to left neighbor
endif

endif

I

Horizontal Combinin
(includes reversal)

Figure 10.3. Recursive parallel prefix computation in a 2D mesh.
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0 1 2 3 4 5 Processor number
d2) 0b.5) (2,0 (c,4) (c,1) | (dat, destination)
(a,-2) (c,-4) Left-moving
(d,+2) (b +4) (e, +1) Right-moving
(a,-2) (c,—4)
(d,+1) (b, +3) Right
(a,-1) {c,=-3) Laft
{d, +1) (b, +3)
{a,-1) (c,-3)
(e, -2) Left
(b, +2)
{c,-2)
(b, +1) Right
(c,-1) Left
{b, +1)
Right
e

Figure 10.4. Example of routing multiple packets on a linear array.
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In fact, the sign of the offset can be removed because each intermediate processor can
recognize the direction in which the packet is moving from the port over which it was

received. For example, in Fig. 9.4, a right-moving packet will enter through the R 3 port.

10.3 DATA ROUTING ON A 2D ARRAY

In this section, we discuss the three routing problems of data compaction (packing),
random-access write (RAW), and random-access read (RAR) introduced in Section 10.1.

To pack a set of avalues residing in active processors into the smallest possible square
submesh in the upper left corner of the original mesh, we proceed as follows. First, each
processor is assumed to hold a binary activity flag: 1 for active, O for inactive. A diminished
parallel prefix sum on these activity flags yields the rank r of each active processor that is
an integer in [0, a— 1]. This computation can be arranged such that, at the end, each active
processor also knows the value of a. The dimension of the smallest square mesh that can
hold a elementsis [ Va |. Thus, if the active processor holding the element with rank r sends
it to the processor located in row Lr/[a 1J, columnr mod [ Va 1, the compaction or packing

will be complete.
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Considering the example shown in Fig. 10.1, the active processors holding the values
“d" through “h” are ranked O through 7 as a result of the diminished paralel prefix
computation (in row-major order), with a = 8 also becoming known to each active processor.
The destination processor for the rank-r element is then determined to be in row [ /30,
column r mod 3. The last step of the compaction or packing agorithm, which sends each
element to its new location, isa RAW routing problem that we will describe next.

For RAW, we first consider the simple case where al destination processors are distinct,
so that at most one write request will end up in each processor. If, in addition to the above
constraint, every processor is required to participate, the routing problem is a permutation
and we can easily solve it by simply sorting the packets by their destination addresses. For
an incomplete, but exclusive RAW, where some processors do not have a write request, the
following three-phase agorithm can be used.

Exclusive random-access write on a 2D mesh: MeshRAW

1. Sort the packets in column-major order by their destination column numbers, using
the destination row numbersto break theties.

2. Shift the packets to the right, so that each item isin the correct column. There will
be no conflict because at most one element in each row is headed for a given column.

3. Route the packets within each column.

Figure 10.5 presents an example. At the left, we see the initial packet positions, with the
destination row and column numbers given. In the second diagram from the left, the packets
have been sorted in column-major order by their destination column numbers, packets
headed for Column 0 appear first, followed by those headed for Column 1, and so forth.
Next, the packets have been shifted to the right, if needed, so that each isin its destination
column. Finaly, the rightmost diagram in Fig. 10.5 depicts the state of the messages after
the completion of routing within the columns.

Note that with the above algorithm, the packets do not necessarily take the shortest paths
to their destinations. For example, in Fig. 10.5, the packet headed to Processor (3, 1) begins
at Processor (2, 2), moves to Processor (0, 1) because of sorting, remains there in the row
routing phase, and finally, moves down to its final location. This packet is forwarded at |least
six times (we cannot say for sure, as the sorting algorithm used is unspecified) to get to a
destination that is only two hops away via a shortest path.

The above observation may lead to the concern that our RAW agorithm is inefficient.
However, this is not the case. After the sorting phase, at most p*2 — 1 row routing steps and

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0102 [1,6 3,200 0(0,0]3,1]3.2 010,013,132 0100 0.2
1 2313 t|rof0.2)13 1{10f lozfiaf 13tofnthalis
213,001,131 2130]1,2]23 2130 1.21231 2 22|23
3 12§22 31122 3 11122 313031132
Initia stats Aftsr column-major-order After row routing Afe colwrn routing

sorting by destn column

Figure 10.5. Example of random-access write on a 2D mesh.
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pY2 — 1 column routing steps are required. Row routing is always from left to right, so its
time complexity does not change even if we alow only unidirectional communication. In
the latter case, the time for the column routing phase may double to 2 p¥?— 2. Assuming the
use of the (3p*? + o(p”z))-step snakelike sorting algorithm of Section 9.6, suitably modified
to do the sorting in column-major order and then reversing the order of odd-numbered
columns, the total running time of the RAW algorithm is 6pY? + o(pY?). With unidirectional
communication, the constant 6 in the above expression will increase to 11 (why?).

In the following sections of this chapter, we will study some methods for, and the
implication of, improving the running time of RAW in order to bring it closer to the absolute
2p¥Y2 - 2 lower bound imposed by the diameter. Before that, however, we need to consider
the problem of concurrent writes into the same processor.

If multiple write requests to the same processor are alowed, then routing can no longer
be assumed to be conflict-free. In the worst case, all p write requests are addressed to the
same processor. As, independent of the routing algorithm used, a processor cannot receive
more than four packets in any one step, the worst-case running time is lower-bounded by p/4
(p, if only one communication is allowed per cycle). Because of this large speed penalty for
concurrent RAWS, hot spots should be avoided to the extent possible. On the positive side,
the processor to which multiple write requests are directed can use any priority or combining
scheme to decide on the value to be written into a given memory location. So, even very
complex selection or combining rules do not slow down the processor further.

An exclusive RAR operation, with each processor reading from a unique processor, can
be implemented as two RAW operations. Concurrent reads can be handled with a slightly
more complicated algorithm, as follows. If Processor i wants to read from Processor |, it
constructs arecord < i, j >. These records are sorted according to the key j. At this point, all
read requests addressed to Processor j will reside in consecutive processors (say, k, k+l, . . .,
k+1—1). One of these processors (say k) will do the reading from j and broadcasts the value
to the others. Finally, each read result is routed back to the requesting processor (i).

10.4. GREEDY ROUTING ALGORITHMS

A greedy routing algorithm is one that tries to reduce the distance of a packet from its
destination with every routing step. The term greedy refers to the fact that such an algorithm
only considers local short-term gains as opposed to the global or long-term effects of each
routing decision. The simplest greedy algorithm is dimension-ordered routing or e-cube
routing. The row-first version of the dimension-ordered routing agorithm is as follows.

Greedy row-first routing on a 2D mesh

if the packet is not in the destination column

then route it along the row toward the destination column
{processors have buffers to hold the incoming messages.}

else route it aong the column toward the destination node
{of the messages that need to use an upward or downward link,
the one that needs to go farthest along the column goes first.}

endif
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If the buffer space in each processor is unlimited, the greedy row-first algorithm is
optimal and terminates in no more than 2p*? — 2 steps for exclusive RAW. Clearly, the row
routing phase needs at most p”z — 1 steps, provided that the processors can accept incoming
messages from left and right simultaneously. If two messages destined for Column j arrive
into the same processor, they can leave in the next step if they need to travel in different
directions along the column. However, if both messages want to go in the same direction
along the column, or if higher-priority messages exist among those waiting in the node’s
buffers, then one or both messages will be delayed for at least an extra cycle. Giving priority
to messages that need to go farther along the column ensures that this phase takes no more
than pY2 —1 steps in all; this is easy to prove by noting that a message delayed by & cycles
does not need to move more than p¥2 — 1 — 3 steps.

Figure 10.6 depicts the use of row-first algorithm for an exclusive RAW operation. In
theinitial state, all packets, except the onein Row 2, Column 0, have to move to a different
column. Thus, they are routed horizontally toward their destination columns. The packet
destined for Processor (0, 0) starts its column routing phase right away, moving to Row 1,
Column 0, in the first step. Similarly, other packets begin their column routing phases as
soon as each arrives into its destination column. In this particular example, no routing conflict
is encountered and each packet gets to its destination in the shortest possible time. The
maximum number of packets residing at any one node at a given time istwo. This situation
(dearth of conflicts and small buffer space requirements) is typical for random routing
problems.

In the worst case, however, greedy routing suffers from degraded performance. Even
assuming distinct destinations, the required node buffer sizeis O(p 1/2) in the worst case. For
example, in Fig. 10.7, Node (i, j) receives two messages per cycle that are headed to nodes
below it in the same column. Because only one message can be sent downward in each cycle,
the node requires up to p¥2 /2 message buffers to keep the rest. In fact, once the messages
arriving from above are also taken into account, the situation becomes worse and the buffer
requirement increases to 2p 2 /3. However, with randomly distributed destinations, both the
buffer requirements and the added delay related to conflicts will be O(1) with high prob-
ability.

Based on our discussions of routing methods for a 2D mesh thus far, we are faced with
atrade-off; i.e., a choice between the fast (2p Y2 —2)-step greedy routing scheme presented
above, which requires fairly expensive buffers in each node to guarantee that buffer overflow
will not occur, or the slower 6p Y2 -step algorithm of Section 10.3, which avoids conflicts
altogether and thus requires a single buffer per node. Ideally, we would like to have the

0 1 2 3 0 12 3 0 1 2 3 0 1 2 3
021 |20l 0120 H 010.011,1 0100 Jo,1
1 22 |10 1{0,0}1,0(22 1 %:(OT &1 tholia
2 10,0 0,1 2 0.1 2 2,2 2120021 2.2
3 3 3 3
Initial state Afier 1 step After 2 steps Alter 3 sieps

Figure 10.6. Example of greedy row-first routing on a 2D mesh.
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Figure 10.7. Demonstrating the worst-case buffer requirement with row-first routing.

highest speed with a constant buffer space per node. This, while possible, leads to a very
complicated algorithm with fairly large buffers. So, from a practical standpoint, it makes
sense to look for intermediate solutions with running times between 2p Y2 and 6pY2 and buffer
requirements between 0 and O(p*/?).

The following algorithm is one such intermediate solution that needs (2 + 4/ q) p¥2  +
o(pY2 /g) routing steps with 2q — 1 buffers per node. For g = 1, this algorithm degenerates
into the one described in Section 10.3, while for very large q, it yields near-optimal speed.
As an example of speed—cost trade-offs, the algorithm turns into a 3p ¥2 -step algorithm
requiring seven message buffers per node if we pick q=4.

The intermediate exclusive RAW routing algorithm is as follows. We view the p-proc-
essor mesh as g2 sguare blocks of size pY/2/q (Fig. 10.8). We sort the packetsin each block
in column-major order according to their destination columns and then use the greedy routing
algorithm discussed above to complete the routing. Using the optimal snakelike sorting
algorithm of Section 9.6 and then reversing the order of elements in aternate columns allows
us to complete the sorting phase in 4p Y2 /q + o(pY2 /q) steps. The greedy routing phase takes
2pY2 -2 steps. So, the correctness of the claimed running time is established. It only remains
to be shown that 2q— 1 message buffers are adequate.

Consider Row i and call the blocks containing it B o, B1, By, ..., Bq_1 . Let r be the number
of packetsin By (0 < k< q) that are headed for Column j. Clearly, ZZ;I,rk <p'”%, because at
most p¥2 packets go to Column j; given the assumption of distinct destinations (exclusive
RAW). After sorting the blocks in column-major order, the packets in each block that are
headed for Column j will be evenly divided between the p”2 /q rows. Thus, the total humber
of packetsin Row i that are headed to Column j will be upper bounded by

q—lf Iy _I g-1
2k=0 p/q <2k—0

v - e
1+ Sqg+(g/pt’? r<2
L g /QJ g+(g/p ZM <29

Note that in the above derivation, we have made use of the strict inequality (X O< 1+ xto
show that the number of message buffers needed is strictly less than 2q or at most 2q — 1.
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Figure 10.8. lllustrating the structure of the intermediate routing algorithm.

The design of a (2pY2 + o(pY2 ))-step routing algorithm with constant queue size per
node has been addressed by many researchers. Initial solutions [Leig89] involved large
constant-size queues (i.e., independent of p). Even though subsequent refinements have
reduced the queue size, these algorithms are still not quite practical. For example, the work
of Gu and Gu [Gu95] has reduced the number of buffers to the constant 28 fora (2 p¥2  +
O(1))-step agorithm and to 12t¢/s for an optimal (2p¥2 — 2)-step algorithm, where ts is the
sorting time on an s x smesh. The design of an asymptotically optimal (2p vz o( p¥2))-step
routing algorithm with a small number of buffers (say 3 or 4) per node is still an open
problem.

10.5. OTHER CLASSES OF ROUTING ALGORITHMS

Our inability to design fast deterministic routing algorithms with small buffers has led
to an interest in randomized or probabilistic algorithms. One can prove that if the destination
nodes are randomly distributed in the 2D array, the probability that a given packet is delayed
by A additional steps because of conflictsin the row-first greedy algorithm is O(e ™). In
view of the exponentialy decreasing probabilities for larger delays, the expected delay
related to conflictsis O(1) and any packet needing to travel d hopsreachesits destinationin
d + O(log p) steps with probability 1 — O(1/p). Furthermore, with a probability very close
to 1, no more than four packets ever wait for transmission over the same link. Proofs of the
above claims and related results have been given by Leighton ([Leig92], pp. 163-173).

In view of the very good average-case performance of the row-first greedy routing
algorithm (on a randomized instance of the routing problem), it may be beneficial to convert
an arbitrary (nonrandom) routing problem into two randomized instances by selecting a
random intermediate destination for each packet and then doing the routing in two phases:
from the source nodes to the randomly selected intermediate nodes and from these nodes to
the desired destinations.
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Independent of the routing algorithm used, concurrent writes can degrade the time
complexity to ©(p). However, it might be possible to reduce this time complexity to O(p¥/2 )
by alowing intermediate nodes to combine multiple write requests that are headed to the
same destination node. Combining means applying the concurrent write rules to multiple
writes destined for the same processor. This is possible if each processor has but one memory
location (or a single location that may be accessed concurrently by multiple processors).
Figure 10.9 shows an example where five write requests headed to the same destination node
are combined into two requests by intermediate nodes.

The routing algorithms discussed thus far belong to the class of oblivious routing
algorithms. A routing algorithm is oblivious if the path selected for the message going from
Processor i to Processor j is dependent only on i and j and is in no way affected by other
messages that may exist in the system. A nonoblivious or adaptive routing agorithm, on the
other hand, allows the path to change as a result of link/processor congestion or failure.

Consider, for example, an algorithm that allows a packet to interlace horizontal and
vertical movements, without any restriction, until it gets to the destination row or column,
at which point it is restricted to move only aong the row or column on its way to the
destination node. Such a packet will still travel along a shortest path, but can avoid congested
paths by taking alternate routes. A packet on its way from node (0O, 0) to node (3, 2), on
entering node (0, 1), can exit vertically to node (1, 1) if the vertical link is available but the
horizontal link to node (0,2) is not. Of course, there is no guarantee that the packet will get
to its destination faster via this aternate path, as it may encounter congestion or faulty
links/nodes farther ahead. But probabilistically, the availability of alternate paths helps
reduce the routing time and provides some degree of resilience to permanent and/or transient
node/link malfunctions.

As a second example of adaptive algorithms, consider the class of algorithms that
provide one buffer per port in each processor and always send out the received messages (up
to four) to neighboring processors if they are not addressed to the local processor. This class
of algorithms is sometimes referred to as hot-potato routing because each processor imme-
diately gets rid of any incoming message. As messages may be deflected away from the
shortest path to their destinations, a control mechanism is needed to ensure that they do not
wander about in the mesh without ever reaching their destinations. For example, a priority
scheme based on the message age (time steps since its origination) may be used to choose
which of several messages contending for the same outgoing edge should be allowed to use

Figure 10.9. Combining of write requests headed for the same destination.
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it and which are to be deflected to other nodes that may not be on their respective shortest
paths.

Methods to introduce adaptivity into routing algorithms via proper organization of the
information available about the network and the state of packet traffic as well as heuristics
for making the “right” path selection with high probability constitute active areas of research
in parallel processing.

Let us now say a few words about collective communication on 2D meshes using packet
routing. Broadcasting can be simply achieved in two phases: row broadcast followed by
column broadcast, or vice versa. All-to-all broadcasting can be performed in optimal O(p )
time using row and column rotations. Multicasting is very similar to broadcasting, except
that each packet must contain information about its destinations. If the set of destinationsis
a submesh, or one of a previously agreed upon groups of processors, this information can be
encoded compactly within the message. For many-to-many communication, routing can be
performed in rounds. For example, if we have k—k routing where each processor sends exactly
k messages and receives exactly k messages, the problem can be decomposed into k 1-1
routing problems that are then solved one at atime. Of course, all-to-all scatter-gather isa
p—p routing problem that can be solved in p rounds, or O(pVp) steps. This is asymptotically
optimal because of the pZ/4 messages that have to pass through thevp bisection of the 2D
mesh.

Thusfar, we have focused on routing problemsin which all of the packetsto be routed
to their respective destinations initially reside in the mesh. These are known as static routing
problems. In dynamic routing problems, messages are created by the various processors at
regular intervals or at random (perhaps with a known distribution). The performance of
routing algorithms for such dynamically created messages can be analyzed using methods
from queuing theory, via simulation on a software model of the mesh architecture, or through
actual programming and observation of a real machine. Analytical evaluation of routing
algorithms often requires simplifying assumptions that may or may not hold in practice.
Thus, even in such cases, experimental verification of the results maybe required.

As an example of theoretical results for dynamic routing, consider the case of a
synchronous array where, in any given cycle, anew packet is introduced at each node with
a constant probability A, where A < 4/ J; . The reason for restricting A as above is that for
A24/p, the expected number of packets crossing the bisection would be
AMp/2(1/2)y 2 \’; , which can result in unbounded delays. One can prove that with greedy
row-first routing, the probability that any particular packet is delayed by A steps beyond the
length of the shortest path is an exponentially decreasing function of A, provided that the
arriva rate of the packets is below (say at 99% of) the network capacity. Also, in any window
of w steps, the maximum delay incurred by one packet is O(log w + log p) and the maximum
observed queue sizeis O(1 + log w/log p). Thus, simple greedy routing can be expected to
perform reasonably well under dynamic routing with the above conditions. Details have been
given by Leighton ([Leig92], pp. 173-178).

10.6. WORMHOLE ROUTING

We have thus far discussed routing schemes in which a packet moves from node to node
in its entirety. Because each packet is stored in an intermediate node before being forwarded
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to the next node on its path to the destination, this method is referred to as store-and-forward
routing or packet switching. At the other extreme, we can use circuit switching where a
dedicated path is established between the source and destination nodes (e.g., through link
and node reservations) before the message is actually sent. This may be advantageous for
very long messages, which would otherwise experience significant delays because of
multiple storage and forwarding times and conflict-induced waits. However, the path setup
and teardown times nullify some of this gain. Wormhole switching or routing is an interme-
diate solution that has become quite popular.

In wormhole routing, each packet is viewed as consisting of a sequence of flits
(flow-control digits, typically 1-2 bytes). Flits, rather than compl ete packets, are forwarded
between nodes, with all flits of a packet following its head flit like aworm (Fig. 10.10). At
any given time, the flits of a packet occupy a set of nodes on the selected path from the source
to the destination. However, links become available for use by other worms as soon as the
tail of a worm has passed through. Therefore, links are used more efficiently compared with
circuit switching. The down side of not reserving the entire path before transmitting a
message is that deadlocks may arise when multiple worms block each other in a circular
fashion (Fig. 10.10).

Theoretically speaking, any routing algorithm can be used to select the path of a worm.
However, a simple algorithm is preferable as it can minimize the decision time, and thus the
node-to-node delay, alowing the worm to travel faster. If we choose the row-first greedy
algorithm, a possible format for the worm is as follows. The first flit indicates relative
movement in the row direction (0 to 255 with 1 byte, e.g.). Sign or direction of movement
is not needed as it is implicit in the incoming channel. The second flit indicates relative
movement in the column direction (sign is needed here). The worm starts in the horizontal
direction. Each intermediate processor decrements the head flit and forwards the head in the
same direction as received. When the head flit becomes 0, the processor discards it and turns
the worm in the vertical direction. A worm received in the vertical direction with its head flit
containing O is at its destination.

Figure 10.11 shows some of the ways of handling conflicts in wormhole routing. One
option isto buffer or store the worm until its needed outgoing channel becomes available.
This option, which is intermediate between circuit switching and store-and-forward routing,
is sometimes referred to as virtual cut-through routing. Its disadvantage is that it leads to
excessive node complexity if buffer space is to be provided for the worst case. This
complexity adversely affects the cost of the node as well as its speed.

Packet 2
Deadlock!

Figure 10.10. The notions of worms and deadlock in wormhole routing.
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Figure 10.11. Various ways of dealing with conflicts in wormhole routing.

A second option is to block al but one of the conflicting worms, allowing a selected
worm (based on some priority scheme) to advance toward its destination. The blocked worms
will eventually start advancing, provided there is no deadlock.

A third optionisto ssmply discard all but one of the conflicting worms, again based on
some sort of priority. This scheme assumes the use of an acknowledgment mechanism
between the receiver and the sender. For example, if the worms carry memory read requests,
the acknowledgment takes the form of the returned memory value. The requesting processor
can send a duplicate request if it has not received a reply to the original one within a
reasonable amount of time. With this method, the nodes become quite simple because they
do not need to store anything. However, message delay and network load increase as a result
of the retransmissions. Under heavy load, the bulk of network capacity will be taken up by
retransmissions, leading to poor efficiency and excessive delay.

Finally, some of the conflicting worms can be deflected to nodes other than the ones on
the designated path (hot-potato routing). This may take the worm farther away from its
destination but has the advantage of requiring no intermediate storage for the worms and no
dropped worms. Of course, care must be taken to prevent a worm from going in circles, thus
wasting communication bandwidth and never reaching its destination.

Various deadlock avoidance strategies are available. To determine if deadlock is possi-
ble, draw a graph with one node for each link in the original graph and an edge from Node
i to if the routing algorithm allows the use of j immediately after i. A sufficient condition
for deadlock-freedom is that this dependence graph be cycle-free. Thisisin fact too strong a
condition in that there exist routing agorithms that are free from deadlock but that their
corresponding dependence graphs have cycles. Much research has dealt with determining the
minimum restrictions needed for the routing algorithm to guarantee freedom from deadl ock.

An example is shown in Fig. 10.12. A 3 x 3 mesh, with its associated edge labels, is
shown at the top. With unrestricted or adaptive shortest-path routing, the dependence graph
is as shown at the bottom left. In this case, after routing along Edge 7, any of Edges 11, 14,
or 17 can be used. This directed graph has many cycles, thus the corresponding algorithm
can lead to deadlocks. The row-first greedy algorithm, characterized by the dependence
graph on the lower right, has no cycles, leading us to the conclusion that it must be
deadlock-free.
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Figure 10.12. Use of dependence graph to check for the possibility of deadlock.

One way to avoid deadlocks is through the use of virtual channels; i.e., sharing a physical
link by multiple virtual channels, each with its own flit buffer and a chance to be used
according to around-robin schedule. For example, Fig. 10.13 shows the use of two virtual
channels on a northbound link, one each for westward-moving and eastward-moving worms.
Deadlocks can always be avoided through the use of a sufficient number of virtual channels.

We have discussed wormhole routing only in connection with point-to-point messages.
Collective communication can aso be done through wormhole routing. A rich theory for
such data communication problems has emerged in recent years [McKi95].

S | I N
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Figure 10.13. Use of virtual channels for avoiding deadlocks.
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PROBLEMS

10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

Recursive parallel prefix computation
Specify the details of the parallel prefix computation agorithm given in Fig. 10.3. Present an
analysis of your algorithm and determine an exact value for the O(1) term in its performance.

Datarouting on alinear array

a.  Show that any k-to-l routing problem can be solved in p + k— 1 steps on a p-processor
linear array, provided that each processor starts with at most one packet.

b. How does the time complexity of the k-to-1 routing problem change if each processor can
start with up to k packets and there are at most p packets overall?

Sorting-based routing on a 2D mesh
Consider the routing algorithm for 2D meshesin Section 10.3 with the added assumption that
up to k packets can have the same destination.

a  Determine the worst-case running time of the algorithm with unlimited node buffers.
b. Determine the worst-case buffer space requirement per node.

Greedy row-first routing on a2D mesh

a  Show that 2vp /3 message buffers per node are adequate to ensure that the greedy row-first
algorithm can run at full speed on a p-processor square mesh.
b.  Show that the row-first greedy routing algorithm takes ©(p) steps in the worst case if each
node is constrained to have a constant number of message buffers (say 4).

Greedy routing on a2D mesh

If data are to be routed on a nonsquare r x (p/r) mesh, which of the two greedy routing
algorithms, row-first or column-first, would minimize the required buffer space per node? First
assume distinct destinations, then relax this assumption.

Data compaction or packing

a. Analyze the data compaction or packing problem, described in Section 10.3, with regard
to conflicts and buffer requirements when an adaptive packet routing agorithm is used.
b. Repeat part (a) for wormhole routing, focusing on the possibility of deadlock.

Greedy row-first routing on a2D mesh

a For a4 x 4 mesh, determine the relative message load of each of the 24 links if row-first
greedy routing is used and each node sends the same number of messages to every other
node on the average.

b.  How will the distribution change if messages sent by the same processor aternate between
row-first and column-first routing?

c. Repeat part (a) for a4 x 4 torus.

d. Repeat part (b) for a4 x 4 torus.

Greedy row-first routing on a2D mesh

Consider ascenario wherenode (i, j) in asquare 2D mesh beginswith x; packets to be routed,
where the xjj are independent Poisson random variables with mean A, that s,
prob[x;j = k] = ke K. Prove the following results.

a  The greedy row-first algorithm routes each packet with constant expected delay iff A < 1.
b. The expected maximum queue size is constant iff A < 2.
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10.9.

10.10.

10.11.

10.12.

10.13.

10.14.

c. The condition of part (a) becomes “iff A < 2" if the mesh is replaced with a torus.
d. The condition of part (b) becomes “iff A < 4" if the mesh is replaced with atorus.

Greedy routing on a 2D mesh

Analyze the behavior of greedy row-first routing on a2D mesh if it is known that no packet is
more than d hops away from its intended destination, where d is a known constant independent
of p.

Greedy routing on a complete binary tree

Analyze the behavior of a greedy routing algorithm on a complete binary tree with respect to
running time and maximum number of message buffers per node. Specify your protocol for
conflict resolution.

Wormhole routing

Analyze the following a gorithm for broadcasting on a 2D mesh using point-to-point wormhole
routing. The source node sends four messages to the four processors located at the lower left
corner of each of the four quadrants of the mesh. Each of these four processors then uses the
same method to broadcast the message within its own quadrant.

Wormbhole routing
Consider wormhole routing with very short messages consisting of one header flit (holding the
destination row and column offsets) and a single information flit.

a.  Doeswormhole routing still have advantages over packet routing in this case?

b. Isdeadlock possible with such short messages?

C. Suppose that the single information flit holds the ID number of the sending processor. Can
a message that carries only the destination and source addresses serve any useful purpose?

d. Going astep further, does it make sense for a message to hold only the destination address?

The turn model for adaptive wormhole routing

When routing on a 2D mesh, eight types of turns (four clockwise and four counterclockwise)
are possible in switching from row/column movement to column/row movement. Show how
by disallowing two of these turns, one from each set, an adaptive deadlock-free routing
agorithm can be constructed that uses the remaining six turns without any restriction and does
not need virtual channels [Glas92).

Interval routing

Interval routing is a routing scheme in which one or more intervals of nodes are associated with
each outgoing link of a node, with a message sent out over alink if the destination node number
is contained in one of the intervals associated with that link. In the simplest case, exemplified
by the seven-node X-tree architecture shown below, a single interval is associated with each
link and the intervals for different outgoing links do not overlap, leading to unique paths.

3. 6] (2.2] Q) (4.6} (03] &) [6.6] [3.5]
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For the seven-node X-tree architecture shown above, determine the relative message load
on each link if, on the average, each node sends the same number of messages to every
other node.

Draw a link dependence graph and prove that deadlock is impossible with wormhole
routing.

Replacing each bidirectional link with two unidirectional ones, divide the network into two
subnetworks: the down/right subnetwork consisting of links that point downward or to the
right, and the up/left subnetwork with upward and leftward links. Show that any assignment
of intervals (or any routing scheme, for that matter) that causes a path to begin in the first
subnetwork and either end in the same subnetwork or move to the second subnetwork after
0 or more hops and stay there until getting to the destination, is guaranteed to be
deadlock-free.

Devise an interval routing scheme for a 4 x 4 mesh, with one interval attached to each link,
that divides the load as equally as possible between the 24 links and is also deadlock-free.
Y ou are free to choose the node indexing scheme. Hint: The result of part (c) may help.
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Numerical 2D Mesh
Algorithms

In Chapters 9 and 10, we discussed 2D-mesh sorting and routing algorithms that
are important in themselves and also form useful tools for synthesizing other
parallel algorithms of interest. In this chapter, we cover a sample of numerical
and seminumerical algorithms for 2D meshes. Even though the problems
covered here do not exhaust all interesting or practically important algorithms,
they do expose us to a variety of techniques and problems in parallel algorithm
design for 2D mesh-connected computers. We should then be able to handle
other applications with the knowledge gained from this chapter and the previous
two. Chapter topics are

11.1. Matrix multiplication

11.2. Triangular system of equations

11.3. Tridiagonal system of linear equations
11.4. Arbitrary system of linear equations
11.5. Graph algorithms

11.6. Image-processing algorithms
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11 .1. MATRIX MULTIPLICATION

The matrix multiplication problem was defined in Section 5.6, where severa PRAM
algorithms were developed for solving the problem. To facilitate the development of a 2D
mesh algorithm for matrix multiplication, we first consider matrix—vector multiplication on
alinear array. Let Abe an mx mmatrix and x an m-vector. The product y = Ax is an m-vector
such that

Jj=0

Figure 11 .1 shows how the computation for m = 4 (including the presentation of the inputs
A and x and the extraction of the output y) can be organized on a four-processor linear array.
In the first computation step, aypand X, are presented to Processor P, which computes their
product agyXg, keeping the result in an internal register. P, then adds the products a,,X;, ag, X,
and a3, to its running sum in the next three computation cycles, obtaining its final result
Y, é the end of the fourth computation cycle. Similarly, P, computes and adds the terms
ayXy, g1 X, @10X,, and ay3X%s, beginning with the second computation cycle and finishing in
the fifth cycle. The x inputs are shifted from left to right after one cycle of delay in each
processor. The last result, y,, becomes available at the end of the seventh cycle.

With inputs of dimension mand p = m processors, the computation takes 2m—-1=2p -1
cycles, each cycle corresponding to a processor performing a multiplication and an addition.

Because multiplying two m x m matrices can be viewed as m separate matrix—vector
multiplications, the computation structure of Fig. 11.1 can be readily extended to an m x m
processor array multiplying two m x mmatrices (Fig. 11.2). The first row of processorsis
essentially identical to Fig. 11.1, receiving matrix A from above and Column 0 of matrix B
from the left and computing Column 0 of the result matrix C. In general, Row j of the array
will compute Column j of the result matrix, using al elements of A and only Column j of B,
according to the equation

Row 0 of ............. . a33
Matrix A : a a
D oaa a3 232 car oo
: 13 222 231 .. Matrix A
203 412 3z .23y
202 211 .820

201,210

X3 X2 *1 Xp

Figure 11 .1. Matrix—vector multiplication on a linear array.
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Row 0 of ....cociienens . a3z
Matrix A a3 a3 Col 0 of
813 22 431 .. Matrix A

ag3 812 a1 .3ay

a a = -
Col 0 of agg” woC
Matrix B -
TR b3g b2o big boo —P
b3y bpy byy bgy - P
b3z bpp b1z bop - - —pe|0]

b33 bz3 b1z bgz - - -

Figure 11.2. Matrix—matrix multiplication on a 2D mesh.

m-1
Cy= le ayby

Because elements of A are delayed by one cycle for each row of processors, columns of B
must be similarly delayed at input in order for relative timings to be preserved in each row.
The total computation time is 3m — 2 = 3Vp — 2 steps (there are p = m? processors).

Adding awraparound link to Fig. 11.1 converts the architecture into a ring and allows
us to rotate the elements of x, initially stored as shown in the example of Fig. 11.3, among
the processors. Elements of A can be input from above or stored in the local memories of the
processors, with P, holding Row j of A. Figure 11.3 shows a snapshot of the computation
when P, isreading or receiving x, from P, and a,, from above (or reading it from its local
memory). This corresponds exactly to P,’s status in Fig. 11.1. However, whereas all other
processors are idle in the snapshot shown in Fig. 11.1, no idle cycle is ever encountered here.
Elimination of idle processor cycles reduces the computation time to the optimal m = p steps
(p? multiply—add operations done by p processorsin p cycles).

Row 0 of .. .. .... Col 0 of

Matrix A Lot TMatrix A
ag2 a1y A0 833 i
ap1,,..210 a23 aszz

800 213 azz a3y

P

a a a a
x033 xlzz s )(300
T I

Y ¥V v Y

Yo Y3 Yz Y3

Figure 11.3. Matrix—vector multiplication on a ring.
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Figure 11.4. Matrix—matrix multiplication on a torus.

Adding wraparound links to Fig. 11.2 converts the architecture into a torus. Elements
of Aand B can now be stored into the processors as shown in Fig. 11.4. Elements of A are
rotated vertically in the columns, while those of B undergo horizontal rotation in the rows.
In the snapshot shown in Fig. 11.4, Processor P, is reading or receiving a,, from P, and
bgo from Py;. This corresponds exactly to P,,’s status in Fig. 11.2. Again, no processor is ever
idle. The computation time is reduced from 3Vp — 2 steps to the optimal ¥p steps (p*/2
multiply—add operations done by p processors in p¥? cycles).

The arrangement shown in Fig. 11.4 is easily extended to the practical situation when
large m x m matrices must be multiplied on a small p-processor mesh (p << m?). In this case,
the elements &;;and b; ; shown in the figure actually represent (m/pY2) x (m/p*?) blocks of
the two matrices, with regular multiplication/addition operations replaced by matrix multi-
plication/addition. Despite the fact that large matrix blocks cannot be passed between
processors in a single cycle, arrangements can be made such that data transfers and
computations overlap. As a processor works on multiplying its current blocks, the next A
and B blocks needed will be loaded into its memory. In multiplying matrix blocks, the
processor performs (m/p¥?)2 multiply—add operations on 2(m/p¥?)2 data elements. Thus,
there will be ample time for performing the required data transfers when m/p'2 is fairly large.

11.2. TRIANGULAR SYSTEM OF EQUATIONS

A (lower/upper) triangular square matrix is one in which all elements above the main
diagonal or all elements below it are Os, respectively (Fig. 11.5). If, additionaly, all of the
elements on the main diagonal are also Os, the triangular matrix is called strictly lower/upper
triangular. The determinant of an mx mtriangular matrix AisTI7;! a,. We will deal with
lower triangular matrices only, but the techniques discussed can be applied to upper triangular
matrices as well.

A triangular system of linear equations, written in matrix form as Ax = b, isone in which
the matrix Ais (lower) triangular. The Ax = b matrix form is shorthand for

Ayt =b,

g% + anty =b,
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0
0
Lower triangular Upper trangular
(if ay =0, then itis (itay =0, thenitis
strictly lower tiangular) strictly upper triangular)

Figure 11.5. Lower/upper triangular square matrix.

[

Anp¥y + Ay x| + Ay =bh

am—l,Oxo + am—l,lxl .o F am—l,m—lxm—l = bmfl

Such a triangular system of linear equations can be easily solved by back substitution.
Compute x, from the top equation, substitute into the next equation to find %, and so forth.
In the ith step, when Equation i is being dealt with, we need i multiplications to compute the
terms containing the aready known variables, i subtractions to compute the new right-hand
side, and one division by &; ;to compute the value of x. Thus, the total number of arithmetic
operations is

m~1

3 Qi+ 1)=m?

i=0
For comparison purposes, and to demonstrate that the algorithm contains a significant

amount of parallelism, we first implement the back substitution agorithm on PRAM
with p = m processors:

Back substitution on an m-processor PRAM

Processor i, 0<i<m,dot;:=b
forj=0tom-1do
Processor j compute x; : = t;/a; ;
Processor j broadcast x; to all other processors
Processor i, j<i<m,dot; : =t, -3 %
endfor

On a CREW PRAM, the broadcasting step is simply a concurrent memory access operation.
Thus, each iteration of the algorithm involves three arithmetic operations, yielding a total
running time of 3p steps and a speed-up of p/3.

Performing back substitution for m lower-triangular equations on a linear array of m
processors is straightforward. As shown in Fig. 11.6, the lower triangular matrix Aisinput
to the array from above and the b vector from the right (this represents the t vector being
initialized to b). If the computation begins from the initial state depicted in Fig. 11.6, with
ty= by being available to the leftmost processor, then 2m— 1 steps are needed (the first output
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a33
N 432 Column 0 of
a2 - a
< a1 311‘ ‘!30 Matrix A
a5y - .20 -
= a1 i -
-89 = - -

- by - bj

3T X T X
~— "4
N
Place-holders for the
values to ba computed -

Figure 11.6. Solving a triangular system of linear equations on a linear array.

appears immediately, with one output emerging every two cycles afterwards). If the time for
shifting in of bis also included, the time required will be 3m — 2.

Figure 11.7 shows how the problem of inverting an m x mlower triangular matrix A can
be viewed as minstances of solving a system of mlower triangular linear equations. This
method of inverting a lower triangular matrix can be easily mapped onto an m x m mesh
(Fig. 11.8), where each row of the mesh computes one column of A and outputs it from
the right. Because multiplication is usually faster than division, the top left processor in the
mesh can be made to compute 1/a; ;and pass the result downward so that each of the other
processors in Column 0 needs to perform one multiplication.

Inverting an m x mlower triangular matrix using the computation scheme depicted in
Fig. 11.8, with p = m2 processors, takes 3m — 2 steps. If a second m x m lower triangular

] I 1
0 1 ; 0
iné, ) X X = 1 N
3 0
1
1
- A - - AT I
0 ;
A x = Solve m such triangular
i | 1 ] A
12] . systems to invert
A Column i Column {
of X = Al of I

Figure 11.7. Inverting a triangular matrix by solving triangular systems of linear equations.
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233
- a
2 Column 0 of
a22 - 31 e Matrix A
R 5 RO 1)
a1 = e 30 -
Place-holders for the - a1 - -
elements of the inverse a0y - - Identity Matrix

/\
- t29 - t39

matrix to be computed
d N N

30 T %0 TR0 T %

t11 - t21 - t31
*31 T %1 T M T oy T
- t12 - t22 - t32
X32 T %22 T 12 T %oz T
03 - t13 - t23 - t33
¥33 7 %3 T X3 T X3 T

Figure 11.8. Inverting a lower triangular matrix on a 2D mesh.

matrix A’ is supplied to the array in the alternate cycles where no element of A or X is present,
both matrices can be inverted in 3m— 1 steps.

11.3. TRIDIAGONAL SYSTEM OF LINEAR EQUATIONS

A tridiagonal square matrix is one in which all elements, except possibly those on the
main diagonal, and the ones just above or below it, are Os (Fig. 11.9). Instead of the usual
notation a;; for the element in Row i, Column j, of A, we use d; to represent the main diagonal
element a;;, u; for the upper diagona element a;;,,, and |; for the lower diagonal element
& ;_- For the sake of uniformity, we definely=u,, ;= 0.

With the notation defined above, a tridiagonal system of linear equations can be written
asfollows, where x_; = X = 0 are dummy variables that are introduced for uniformity:

19 d up n %0 7 Do |
L, dq 9w 0 X1 by
1 d w X2 b2
13 ' X =
0 o w2
- In-1 dm-1 jom-1 [*m—ll | P

Figure 11.9. A tridiagonal system of linear equations.
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Ly x )+ dyxy + 1y x, =b,
Lixg+d x +ux, =b,
Lixy+dyx, +uyxg =b,
Im—l Kot drrwl Fn-1 + Wy oy = bm—l

One method to solve the above tridiagonal system of linear equations is to use odd—even
reduction. Observe that the ith equation can be rewritten as

x; = (l/d,) (b, - 1[ YT 'ti+l)

Taking the above equation for each odd i and substituting into the even-numbered equations
(the ones with even indices for |, d, u, and b), we obtain for each eveni (0 < i <m) an equation
of the form

R TV A b, 4.

i+ i-1

lialy ( Ly "i1i+1] Miltiyg bbiy  wby,

X, ,+|d - -
N
i1 body dy, diyy

In this way, the m equations are reduced to [im/2[0tridiagona linear equations in the
even-indexed variables. Applying the same method recursively, leads to m/4 equations, then
m/8 equations, and, eventually, asingle equation in x,. Solving this last equation to obtain
the value of x,, and substituting backwards, allows us to compute the value of each of the m
variables. Figure 11 .10 shows the structure of the odd—even reduction method.

Forming each new equation requires six multiplications, six divisions, and four addi-
tions, but these can al be done in parallel using p = m/2 processors. Assuming unit-time
arithmetic operations, we obtain the recurrence T(m) = T(m/2) + 8 = 8 log,m for the total
number of computational steps. The six division operations can be replaced with one
reciprocation per new equation, to find 1/d. for each odd j, plus six multiplications.
Obviously, the above odd—even reduction method is applicable only if none of the dj values
obtained in the course of the computation is 0.

In the above analysis, interprocessor communication time was not taken into account.
The andlysis is thus valid only for the PRAM or for an architecture whose topology matches
the communication structure shown in Fig. 11.10. Figure 11.11 shows a binary X-tree
architecture whose communication structure closely matches the needs of the above com-
putation.

Comparing Figs. 11.10 and 11 .11, we note that each of the required data transfers can
be performed in no more than two steps on the X-tree. In fact, if we remove al of the dotted
“left child” linksin Fig. 11.11, leading to what is known as a 1D multigrid architecture, we
can still perform odd—even reduction quite efficiently.

To perform odd—even reduction on alinear array of p = m processors, we can assume
that each processor initially holds one of the m equations. Direct one-step communication
between neighboring processors leads to the even-numbered processors obtaining the
reduced set of m/2 equations with afew arithmetic operations as discussed above. The next
reduction phase requires two-step communication, then four-step, and eventually (m/2)-step,
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X0
* Find x; in terms of xg and x3 from Eqn. 1;
substitute in Eqns. 0 and 2.
Xg X9

Xo

X1y X12

AOSOBOHOSOBOBODO

X5 Xqy4 X33 X312 X33 X309 X9 Xg X9 Xg Xg Xy X3 Xp; X3 X

Figure 11.10. The structure of odd—even reduction for solving a tridiagonal system of linear
equations.

leading to linear running time (of the same order as sequential time). On an m-processor 2D
mesh, odd—even reduction can be easily organized to require ©(¥p) time. Specifying the
detailsis|eft as an exercise.

It is worth noting that solving a tridiagona system of linear equations can be converted
to aparallel prefix problem as follows. Definethe 3 x 3 matrix G, as

~di/u; —L/u; b/,
G;= 1 0 0
0 0 1

Then, the ith equation can be written in matrix form as

My —d;/u; —l,/u; b/u; X

Vit B
x i=| 1 0 0 (x| % |=G,xG_x- xGyx| 0
0o 0 1 1 1

In particular, we have

xm X

X =G X G, X X Gy X 0
1 1_|
L
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Xis K14 X93 X35 X33 X9 Xg Xg X7 Xg X5 X4 X3 X; Xy, Xg

Figure 11 .11. Binary X-tree (with dotted links) and multigrid architectures.

Solving this last set of three equations provides the value of », which can then be used to
determine the values of al other variables, given the prefix results G x G;_; x - x G for
oddi.

11.4. ARBITRARY SYSTEM OF LINEAR EQUATIONS

Given a set of mlinear equations Ax = b, Gaussian elimination consists of applying a
sequence of row transformation to A and b (multiplying arow by a constant, interchanging
rows, adding a multiple of one row to another). For a nonsingular matrix A, this is done until
Aturnsinto the identity matrix. At that point, x=b. If Ais singular, it is turned into an upper
triangular matrix U (we will not consider this case here). Because the same row transforma-
tions are applied to both Aand b, it is convenient to construct an extended matrix A' that has
Ainitsfirst m columns and b in the last column. The row transformations that convert the
first m columns into the identity matrix will yield the solution in the last column. In fact, k
systems of equations with the same A matrix and different b vectors can be solved
simultaneously by simply appending each of the b vectors as a column of A'.

To illustrate the method, we apply it to the solution of two systems of three linear
equations (sharing the same 3 x 3 matrix of coefficients) as follows:

2xp +dx; - Tx,=3 g+ 4dx, — Tx,=7
3xy + 6x; - 10x, =4 3x,+ 6x; — [0x; =8

—xo+ 3%, - 4x,=6 —xp + 3x; — dx, = -1
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The extended A" matrix for these two sets of equations has m + k=5 columns:

2 4 -7 37
A= 3 6-104 8

L - -
L13 4 6 -1

Divide Row 0 by 2; then, add —3 times Row 0 to Row 1 and add 1 times Row 0 to Row 2 to
get

£ 2 =7/2 372 172
AO=00 32 -1/72 572
05 -15/2 15/2 5/2J

Now exchange Rows 1 and 2 to make the next diagonal element nonzero:

12 =772 372 172
A" =105 -15/2 1572 572
00 1/2 =172 -5/2

Divide Row 1 by 5; then, add —2 times Row 1 to Row 0 and 0 times Row 1 to Row 2 to get

10-1/2 =372 5/2
AW=\0 1 -3/2 3/2 12
00 1/2 -1/2 -5/2

Finally, divide Row 2 by 1/2; then, add 1/2 times Row 2 to Row 0 and 3/2 times Row 2 to
Row 1to get

100-20
A¥=l010 0 -7
001 -1-5

The solutions to the two sets of equations are thus x, = -2, X, = 0, x,= =1, and X, = 0, X, =
—7,x,=-5, which are directly read out from the last two columns of A'?),

A linear array with p = m + k processors can easily perform one phase of Gaussian
elimination. Take the first phase, e.g., that leads from A' to A' ©, The transformation involves
dividing Row 0 by a,, and then subtracting a, , times the new Row O from every Row i for i
> 1. Asdepicted in Fig. 11.12, this can be done by computing the reciprocal of gy, in the
circular node, passing this value to the right so that it can be multiplied by each of the other
elements of Row 0 and the results stored in the corresponding sguare nodes (node variable
2).

In subsequent steps, the circular node simply passes the values it receives from above
to the right with no change. Denoting the left and top inputs to a square node by x and vy,
respectively, a cell must compute and output y —xz = ajj- g, O(aoj la,,) as each subsequent
row passes over it. Elements of A'(© emerge from the bottom of the linear array in the same
staggered format as the inputs coming from above, with Rows 1 through m— 1 appearing in



NUMERICAL 2D MESH ALGORITHMS 223

Termination

symbal ”‘] * b Row 0 of
* azp bl Extended
* as] 512, ..... UO Matrix A’
820 61%,,.-502 -
2109...801 - -
a0 - - - y
X X
y-x2

Figure 11 .12. A linear array performing the first phase of Gaussian elimination.

order, followed by Row 0 which is output when the specia termination symbol * is received
as input.

Figure 11.13 shows a 2D architecture for Gaussian elimination. Circular nodes, on
receiving the first nonzero value from above, reciprocate it (i.e., compute 1/a;;) and pass the
reciprocal value to the right. Processorsin Row i are responsible for computing and storing
theith row of A'", producing at their outputs the rows of A'() in order from i + 1tom—1,
followed by Rows 0 through i. The total computation timeis4m — 1: 2m steps for b,,_; to
arrive into the top row of the array, m— 1 steps for it to move to the bottom row, and m steps
for output.

* b, Row 0 of

* a2 bs ,,. Extended

* azy 512' ”””” bb Matrix A’
a0 211,.202 -~
ajg,.agi - -
,. 200 - - -

Qutputs

Figure 11 .13. Implementation of Gaussian elimination on a 2D array.



224 INTRODUCTION TO PARALLEL PROCESSING

Note that, because the inversion of an m x mmatrix A is equivalent to solving m systems
of linear equations with the same A matrix (one for each column of the unknown inverse
matrix), the scheme of Fig. 11.13 can be easily extended to perform matrix inversion using
Gaussian elimination. Figure 11.14 shows the resulting arrangement where the m x 2m
extended matrix A', with the identity matrix in itslast m columns, isinput at the top and the
inverse matrix X emerges from the bottom of the array.

An alternative to Gaussian elimination for solving systems of linear equations is the use
of Jacobi relaxation. Assuming that each a, ;is nonzero, the ith equation can be solved for
X, yielding m equations from which new better approximations to the answers can be
obtained from already available approximations >§‘) :

D = (17a)[b, - > ap;x® isaninitial approximation for x
JE

On an m-processor linear array, each iteration of Jacobi relaxation takes O(m) steps, because
essentialy the values held by the m processors need to be rotated to allow each processor to
compute its next approximation. The number of iterations needed is O(log m) in most cases,
leading to the overall time complexity O(m log m).

A variant of the above, known as Jacobi overrelaxation, uses the iterative formula

2 = (1= 4 (aplb, - Ty ayx)

* 1 Row 0 of
* 0 0 e Extended
* 0 1 e Matrix A*
. * aszo 0 . o’ -
az1 212,01 - -
a20 213...202 - -
al,Q--'adl - - - -
w20 - - - -
- - Koo Output
- %21 *12
X20  X11 *02
*10  *01

*00

Figure 11.14. Matrix inversion by Gaussian elimination.
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Here, y (0 <y <1) isaparameter of the method. For y = 1, the method is the same as Jacobi
relaxation. For smaller values of y, the overrelaxation method may lead to better performance
because it tends to keep the new values closer to the old values.

11.5. GRAPH ALGORITHMS

An n-node graph can be represented by an n-by-n adjacency matrix A. Nodes are
numbered from 0 to n —1 with & ;= 1if there is an edge from Node i to Node j and 0 otherwise.
This matrix representation is quite suitable for use on a mesh-connected computer, as each
matrix entry can be assigned to a processor on an n-by-n mesh. If there are fewer than n2
processors for dealing with an n-node graph, then blocks of A can be assigned to processors.

In some applications, weights are associated with the edges (representing, e.g., travel
times on roads, road tolls, or pipeline capacities). In these cases, a weight matrix can be used
in lieu of the adjacency matrix. Lack of an edge from Node i to Node j is represented by
assigning a suitable value to the corresponding ij element in the weight matrix. For example,
if minimum-weight paths are to be found, assigning the value “ »” to missing edges ensures
proper selection. Note that weights can be negative in the general case.

To obtain the transitive closure of a graph, defined as a graph with the same number of
nodes but with an edge between two nodes if there is a path of any length between them in
the original graph, we begin with the adjacency matrix A and define

Ad=| Paths of length 0 (the identity matrix)
A=A Paths of length 1

and compute higher “powers’ of A using matrix multiplication, except that in our matrix
multiplication algorithm, AND is used instead of multiplication and OR in lieu of addition.

A2=Ax A Paths of length 2

A3=A2x A Paths of length 3

A"= A%+ AL+ A2+, . (A= 1iff Node j is reachable from Node i)

The matrix A* is the transitive closure of A.

To compute A*, we need only proceed up to the term A", because if there is a path from
i to j, there must be a path of length less than n. Rather than base the derivation of A"on
computing the various powers of the Boolean matrix A, we can use the following simpler
algorithm.

Transitive closure algorithm

Phase 0: Insert the edge (i,]) into the graph if (i, 0) and (0, j) arein the graph.
Phase 1: Insert the edge (i, j) intothegraphif (i, 1) and (1, j) arein the graph.

Phase k: Insert the edge (i, j) into the graph if (i, k) and (k, j) arein the graph.
The graph A at the end of Phase k has an edge (i, j) iff there is a path
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Figure 11.15. Matrix representation of directed graphs.
from i toj that goes only through nodes{1,2, . . ., k} asintermediate hops.

Phase n—1: The graph A(™Y s the required answer A".

A key question is how to proceed so that each phase takes O(1) time for an overall O(n) time
on an n x n mesh. The O(n) running time would be optimal in view of the O(n3) sequential
complexity of the transitive closure problem. Assume for now that each processor located
on the main diagonal can broadcast a value to all processors in its row. Then the input, output,
and computation can be arranged as shown in Fig. 11.16.

Phase 0 of the algorithm is carried out as Rows 1, 2, . .., n—1 of A pass over Row 0 of
Awhich is stored in the Oth row of the mesh. As Row i passes over Row 0, Processor (0,0)
broadcasts the value of a;,to all of the processors in the Oth row. Because the jth processor
has already saved the value of 3, it can set the value of ay that is passing through to 1 if
8, =ay;= 1. By thetime the kth row of A reaches Row k of the mesh, it has been updated to

Row 2
¢ Row 1 Row 2
Row 0 Row 1 Row 2
Row 0 Row 0/1 Row 072 Row 0
Row 1 Row 1/2
Initially

Row 1/0 Row 1

Row 2 Row 20 Row 2/1 Row 2
Row 0 Row 1 Row 2
Row 0 Row 1 ¢
Row 0

Figure 11.16. Transitive closure algorithm on a 2D mesh.
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become the kth row of A1 i.e., it has passed through the first k — 1 phases. Thus, the total
number of steps for computing the transitive closure of an n-node graph, represented by an
n x n adjacency matrix, is 3n steps.

The need for broadcasting can be eliminated through a technique known as systolic
retiming, defined as inserting delays on some of the edges (and perhaps removing delays
from some others) in such a way that each node still receives its input data in the same
order/combination as before. Figure 11.17 shows the application of systolic retiming to the
above transitive closure algorithm. The algorithm before retiming is shown on the left side
of Fig. 11.17, where the 0-delay row edges represent the broadcasting of a, foral k>1, by
Processor P .

In systolic retiming, we can multiply al edge delays by a constant factor (slowing down
the computation by that factor) or add the same delay to the edges in a cut in which dl edges
go in the same direction. Also, for any node, we can add/subtract & to/from each input edge
delay and subtract/add 6 from/to each output edge delay, as delaying/advancing all inputs
by & while advancing/delaying all outputs by & cancel each other out as far as interactions
with other nodes are concerned. Our goal hereis to eliminate the broadcasting (making all
edge delays nonzero).

In the case of Fig. 11.17, we can add 6 (more generally, 2 n — 2) units of delay to all
edges crossing Cut 1. Thisis allowed because all of the edges involved cross the cut in the
same direction. Now, we subtract 6 units of delay from the input to Node (0, 0) and add 6
units to each of its two outputs. Node (0,1) now has its top and side inputs with 7 and 6 units
of delay, respectively. In the next step, we reduce these by 5 (to 2 and 1) and increase the
output delays by 5 (to 6 and 5). Continuing in this manner, we get the retimed version shown

Broad-
casling
nodes

Figure 11.17. Systolic retiming to eliminate broadcasting.
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on the right side of Fig. 11.17, which contains only nonzero edge delays. The retiming
increases the total delay to 5n— 2 steps, which is still asymptotically optimal.

The transitive closure agorithm is useful, e.g., for finding the connected components
of agraph defined as a partitioning of the nodes such that each pair of nodes in a partition
are connected. Clearly, once the transitive closure A" of the adjacency matrix A is found,
information about the graph’s connected components can be easily read out from the rows
of A", Assigning a unique component 1D to each node is straightforward. One can use, e.g.,
the label of the node with the smallest ID to label al nodes in the same component.

Let us now consider briefly another example of graph problems. The all-pairs shortest
path problem is defined as the problem of determining, simultaneously for all node pairs,
the length of the shortest path between them. Taking the weight matrix W shown in Fig. 11.15
as input, the algorithm is quite similar to that for finding the transitive closure of an adjacency
matrix A. There are n phases. In Phase 0, we replace the edge from i to j with the length of
the shortest path that is allowed to pass only through Node 0 as an intermediate node. To do
this, we compare w; ;withw,, +w, and choose the smaller of the two. This leads to wW(0),
Continuing in this way, WX will contain the length of the shortest path from i to j that passes
only through nodes{1, 2, . ., k} asintermediate nodes. With some additional work, we can
also keep track of the shortest path, rather than just itslength, if desired.

11.6. IMAGE-PROCESSING ALGORITHMS

In this section, we deal with example algorithms used in image analysis and computa-
tional geometry applications. Let an image be represented as an array of binary (black/white)
pixels. By labeling the (connected) components of such a binary image (or component
labeling for short), we mean grouping the 1 elements that can be reached from each other
viahorizontal, vertical, or diagonal stepsinto components. Figure 11.18 shows an example
binary image that contains four connected components. Here, row-major indexing of the

Figure 11.18. Connected components in an 8 x 8 binary image.
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Figure 11.19. Finding the connected components via divide and conquer.

elements is assumed and each component is given the index of its lowest pixel asitsunique
identifying number.

Assuming that each pixel of the p-pixel image is assigned to one processor on a
Vn xVn mesh with p = n processors, the following naive algorithm immediately suggests
itself. Initially, the component ID of each processor holding a 1 is set to the processor’s own
ID. So, we designate each pixel as a separate component at the outset and then try to merge
the components that are connected. Each processor holding a 1 reads the pixel values and
component IDs of its eight neighbors (the diagonally adjacent values are read in two steps).
Now, each processor holding a 1 adjusts its component 1D to the lowest ID among the
neighbors holding 1sif any of those IDsis smaller. The problem with this algorithm is that,
in the worst case, it requires @ (n) running time, e.g., when there is a single snakelike
component that winds through even-numbered rows.

A recursive O(¥n) -step algorithm is described next.

Recursive component-labeling algorithm on a 2D mesh

Phase 1: Label the componentsin each quadrant.
Phase 2: Merge components horizontally in the upper and lower halves.
Phase 3: Merge component vertically.

01 11 0 is changed to 1
1fo] o] if N=w=1

0 1 is changed to O
0

0
if N= W= NW=0

Figure 11.20. Transformation or rewriting rules for Lavialdi's algorithm (no other pixel value
changes).
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Figure 11.21. Example of the shrinkage phase of Lavialdi’s algorithm.
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If each of the two merge phases can be done in O(Vr )steps, then the running time of the
algorithm will be T(n) = T(n/4) + O(¥n) = O(Nn ). Take the horizontal merge phase in the
upper half of the mesh. There are at most Vr. /2 components that need to be merged (¥n / 4
on each side). Adjacency information for these components is readily available at the vertical
boundary. A column rotate at this boundary will yield the new label for each merged
component. Because there are no more than i /2 such components, information on their
new labels can be broadcast to all processorsin the quadrant in O(\/E ) steps using pipelined
communication.

Lavialdi’s algorithm for component labeling is somewhat more efficient. Using the
locally applied rules depicted in Fig. 11.20, components are shrunk to single pixels in
2\n — 1 steps (this shrinkage phase does not disconnect components or merge them). Then,
in a (2Vn— 1)-step expansion phase, the process is reversed and the label of the single
remaining pixel of each component becomes the component label for al of its pixels.

To see why components will not merge in the shrinkage phase, consider a 0 that is about
to become 1 in the pattern

X 1y
10
y yz

If any of the y pixels is 1, then the associated component is aready connected to this
component and no new connection will be created. If al of the y pixels are 0s, then even if
the zpixel is 1, it will be converted to 0, again avoiding any new connection. Figure 11.21
shows 9 steps of Laviadi's algorithm applied to an 8 x 8 binary image containing two
components. In this example, complete shrinkage of components to single pixels occursin
10 steps (the worst case would be 15 steps).

PROBLEMS

11.1. Multiplication of nonsguare matrices

a. Explain the effect of a nonsquare matrix on Figs. 11.1 and 11.3.

b. Modify Figs. 11.2 and 11.4 for multiplying an m' x m matrix A by an mx m" matrix B.

c. How isthe block matrix multiplication scheme described at the end of Section 11.1 affected
if the matrices are nonsquare but the mesh is square?

11.2. Matrix multiplication
Figures 11.2 and 11.4 correspond to matrix multiplication with both inputs supplied from
outside the array and both inputs prestored in the array. Show a suitable data organization on
a p-processor array (p = m?) to multiply a fixed prestored matrix A by several B matrices
supplied as inputs.

11.3. Matrix multiplication
Consider the vector—matrix and matrix—matrix multiplication schemes depicted in Figs. 11.3
and 11.4 but assume that the architecture is a linear array or mesh (without the wraparound
links).
a. Discussthe effects of removing the wraparound links on algorithm execution and running
timein Fig. 11.3.
b. Repeat part (a) for the matrix—matrix multiplication algorithm of Fig. 11.4.
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11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

11.10.
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¢ . Would it be helpful if we could store four elements (matrix blocks) in each processor rather
than just two in the course of executing the algorithm?

Back substitution
In the back substitution scheme depicted in Fig. 11.6, half of the processors are idle at any
given time.

a. Show how we can take advantage of the idle processors to overlap the solution of two
separate triangular systems of linear equations.

b. Show how we can merge pairs of adjacent processors into single processors, each less than
twice as complex as the existing processors, without affecting the running time.

¢ . Can similar techniques be applied to the inversion of atriangular matrix (Fig. 11.8)?

Bidiagonal systems of linear equations

Any algorithm for solving tridiagonal systems of linear equations can obviously be applied to
solving a bidiagonal system of linear equations where all of the nonzero elements of A are on
the main and lower (upper) diagonals. Devise a more efficient algorithm for this special case.

Gaussian elimination

For one of the systems of three linear equations at the beginning of Section 11.4, show all of
the intermediate computation steps, including values held by or passed between processors, on
the diagram of Fig. 11.13.

Jacobi relaxation

a. Solve one of the systems of three linear equations given near the beginning of Section 11.4
using Jacobi relaxation, beginning with the initial value of 0 for each variable.

b. Show the computation steps, including values held by or passed between processors, as
the solution of Part () is obtained by a linear array of three processors.

¢ . Repeat part (a) using Jacobi overrelaxation with y = 1/2 and discuss the results.

Systalic retiming

a. InFig. 11.17, what happensif we make the delays associated with all edges leading to the
output host in the retimed version of the graph equal to 1? Discuss the practical implications
of this change.

b. Retime amodified form of Fig. 11.17 (left) in which broadcasting by each diagonal node
proceeds to its right and then wraps around to cover the nodes to the lft.

Transitive closure algorithm

Define the single-node-fault version A*(1) of the transitive closure of A as having q*j(l) = 1iff
Nodesi and j are connected and remain connected if we remove any single node in the graph.
Propose an algorithm for efficiently computing A" . Hint: In each phase of the algorithm, you
need to figure out if a pair of nodes are connected with or without a worst-case single node
fault.

All-pairs shortest path problem

Describe the complete algorithm for the all-pairs shortest path problem (end of Section 11.5)
that provides the shortest paths rather than only their lengths. Hint: When w;, +w,; is less than
W ;, anew shortest path between Nodes i and j has been identified. This path isthe concatenation
of two previously stored paths, one from i to k and the other from kto j.
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11.11. Component labeling on a 2D mesh
Analyze the recursive component-labeling agorithm of Section 11.6 in more detail to find its
exact worst-case step count and compare the result with Lavialdi’s algorithm.

11.12. Component labeling on a 2D mesh
Devise a component labeling algorithm that also yields the number of pixelsin (area of) each
component.

11.13. Laviadi’s component-labeling algorithm

a

Specify the operations that need to be performed in the expansion phase of Laviadi's
algorithm.

Complete the steps of the example depicted in Fig. 11.21 al of the way to the end of
labeling.

How many steps does Lavialdi’s agorithm need to label the componentsin Fig. 11.18?
Construct an 88 binary image such that the shrinkage phase of Lavialdi’s agorithm
requires the worst-case 2Vn — 1 = 17 steps.
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Other Mesh-Related
Architectures

In this chapter, we consider variations in mesh architectures that can lead to
higher performance or greater cost-effectiveness in certain applications. The
variations include higher dimensions, stronger and weaker connectivities, inclu-
sion of buses, introduction of express channels, triangular or hexagonal shapes,
different types of wraparound links, and reconfigurable connectivity. Also,
extensions to pyramid networks, meshes of trees, and certain 2D product
networks will be discussed. Chapter topics are

- 12.1. Three or more dimensions

- 12.2. Stronger and weaker connectivities

- 12.3. Meshes augmented with nonlocal links
- 12.4. Meshes with dynamic links

- 12.5. Pyramid and multigrid systems

- 12.6. Meshes of trees

235
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12.1. THREE OR MORE DIMENSIONS

Our discussions of agorithms in Chapters 9-11 (as well asin Sections 2.3 and 2.5) have
been in terms of 1D and 2D processor arrays. These are the most practical in terms of physical
realization in view of the 2D nature of implementation technologies such as VLS chips and
printed-circuit boards. Recently, 3D mesh and torus architectures have become viable
alternatives for parallel machine design (we will see why shortly), but higher-dimensional
meshes are currently only of theoretical interest. In this section, we briefly review g-D
meshes, focusing on their differences with 1D and 2D arrays in terms of hardware realization
and a gorithm design.

Theoreticaly, it should be possible to implement a 3D mesh or torus in the 3D physical
space. The processors can be visualized as occupying grid points on a3D grid (Fig. 12.1),
with al six communication ports of each processor connected to neighboring processors by
short local wires. Even though such 3D structures have been and are being considered by
parallel processing researchers, numerous practical hurdles must be overcome before large-
scal e implementations become cost-effective or even feasible.

The prevailing hardware implementation technology for digital systems that do not fit
on asingle printed-circuit (PC) board is to mount multiple PC boards on a backplane that
supports the boards mechanically and also provides the needed electrical connectivity
between them (Fig. 12.1). This alows the boards to be easily replaced for repair or upgrade
and the system to be expanded by inserting extra boards, up to the maximum capacity offered
by the backplane. This method can be viewed as a 2.5D arrangement, with full 2D
connectivity on the circuit boards and limited connectivity along the third dimension via the
backplane.

Consider the example of implementing an 8 x 8 x 8 mesh on eight boards, each holding
an 8 x 8 mesh. Implementing an 8 x 8 2D mesh on a PC board is straightforward and can be
done with only short local links. However, at least some of the 64 links that need to go from
one PC board to the next involve long wires (from one processor to the backplane, a short
distance on the backplane, and from the backplane to the other processor on the next board).
With multiple lines per communication channel, a significant area on each PC board must
be devoted to routing these interboard links. This nullifies some of the advantages of a mesh
in terms of regularity and locality of connections. What we gain in return for the higher
complexity/cost are a smaller network diameter (3p”®— 3 instead of 2p”? — 2) and wider

g\
NR

Figure 12.1. 3D and 2.5D physical realizations of a 3D mesh.
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bisection (p2’3 rather than pY?). Our example mesh above has a diameter of 21 and bisection
width of 64. A comparably sized 22 x 23 2D mesh has adiameter of 43 and bisection width
of 23.

You can now imagine how much harder the implementation of a 4D or 5D mesh would
be with current technology. There is some speculation that using optical communication links
may solve these problems for 3D, and perhaps even higher-dimensional, meshes. However,
optical interconnections are not yet cost-effective, because of both technological factors and
the added delay/cost of electronic/optical conversions.

Regardless of how 3D and higher-dimensional meshes are physically realized, their
algorithms are quite similar to, or easily derivable from, those for 2D meshes discussed in
the preceding chapters. The following paragraphs contain brief discussions of 3D mesh
algorithms, with hints on how a 3D torus architecture, or higher-dimensional meshes/tori,
can be handled. A g-D mesh with m processors along each of its g dimensions (p =m% has
anode degree of d = 2q, adiameter of D =q(m-1) = q(pl fa_ 1), and a bisection width of
p'~19 when p'9is even. A g-D torus with m processors along each of its q dimensions is
sometimes referred to as an m-ary g-cube.

Sorting. One may guessthat just as it was possible to sort a 2D array using aternating
row and column sorts (shearsort), it might be possible to sort a 3D array by suitably
aternating between sorts along the various dimensions. Such a generalized form of shearsort
for three and higher dimensions is indeed feasible [Corb92]. However, the following
algorithm for sorting a 3D array is both faster and simpler (a rarity in algorithm design!);
the algorithm is even simpler to describe than its 2D counterparts. Let Processor (i, j, k) in
an m x m x m mesh be in Row i (xdimension), Column j (y dimension), and Layer k (z
dimension). Define the sorted order to correspond to the lexicographic ordering of reversed
node indices: (0,0,0), (1,0,0), ..., (m-1,0,0), (0,1,0), (1,1,0), .. ., (m-1,1,0), (0,2,0), and so
on. In this zyx order, the smallest m? elements end up on Layer 0 in column-major order, the
next smallest m2 elements on Layer 1, and so on (the yx order on a dice is the same as
column-major order and the xy order corresponds to row-major order). The following
five-phase a gorithm sorts the elements of the 3D array into the zyx order [Kund86].

Sorting on a 3D mesh

Phase 1: Sort the elements on each zx plane into zx order.

Phase 2: Sort the elements on each yz planeinto zy order.

Phase 3: Sort the elements on each xy layer into yx order (odd layers in reverse order).
Phase 4: Apply two steps of odd—even transposition along the z direction.

Phase 5: Sort the elements on each xy layer into yx order.

In Phase 4 of the algorithm, the m® processors are viewed as m? Linear arrays of length m,
aligned along the zdirection, and two steps of odd—even transposition are applied to each of
these arrays. The 2D sorts can be performed using any 2D sorting agorithm. If the 2D sorting
agorithm needs T(m x m) time, the time for our 3D agorithm will be T(m x m x m) =
4T(m x m) + 2. In particular, any O(m)-time 2D sorting algorithm will lead to a running time
of O(m) = O(pY3) for the 3D algorithm. As usual, the proof is done using the zero—one
principle.
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Data Routing. A greedy zyx (layer-first) routing algorithm would route the packets
along the z dimension until they are in the destination layers and then use a greedy yx
(row-first) algorithm in each xy layer. Considerations with regard to buffer space in interme-
diate nodes and the delays introduced by conflicts are quite similar to those of 2D mesh
algorithms. To reduce the node storage requirement to a single message buffer, a sorting-
based routing algorithm can be used.

Datarouting on a 3D mesh

Phase 1: Sort the packets by their destination addressesinto zyx order.
Phase 2: Route each packet along the z dimension to the correct xy layer.
Phase 3: Route each packet along the y dimension to the correct column.
Phase 4: Route each packet along the x dimension to the correct row.

Each of the Phases 24 takes m— 1 routing steps, with no conflict ever arising ([Leig92],
pp. 232-233). Thus, given that sorting in Phase 1 also takes O('m) compare—exchange steps,
the overall running time is O(m). Adaptive and wormhole routing schemes can similarly be
generalized to 3D and higher-dimensional meshes.

Matrix Multiplication. In Section 11.1, we saw that two m x m matrices can be
multiplied on an m x mtorusin m multiply—add steps. A 2D mesh requires longer, but still
O(my, running time, which is optimal. To devise a faster matrix multiplication algorithm
on a 3D mesh, we divide each m x mmatrix into an m¥*x m¥*array of m¥*x m¥*blocks.
A total of (mY*)® = m3 block multiplications are needed. Let us assume that the
algorithm is to be performed on an m** x m¥*x m?* mesh with p = m¥* processors. Then
each m¥*x m3* |ayer of the mesh can be assigned to one of the m¥*x m¥* matrix
multiplications, performing its computation in n* multiply—add steps. Finally, the addition
of m¥ blocks to form each block of the product matrix can be accomplished in m¥* addition
steps with proper distribution of elements to processors. The total running time is thus
o(m*¥% = O(p*®) steps, which is optimal from the point of view of both the computational
work and network diameter. A more detailed description of the algorithm and its required
data distribution is given by Leighton ([Leig92], pp. 226-228).

Physical Systems. Intuitively, a 3D mesh seems to be the ideal architecture for
performing simulations of 3D physical systems. The ocean modeling and similar applica-
tions described in Section 1.1, e.g., map nicely onto a 3D mesh, with each processor holding
a 3D block of the large model. Because in each update stage only adjacent data points interact,
the 3D mesh is well equipped to perform the required interprocessor transfers rapidly and
efficiently. In image processing, a 3D mesh can dedl with 3D images in much the same way
that a 2D mesh accommodates 2D digital images.

Low-versus High-Dimensional Meshes. A low-dimensional mesh, which can be
implemented at much lower cost compared with a high-dimensional mesh with the same
number of processors, can simulate the latter quite efficiently ([Leig92], pp. 234-236). Itis
thus natural to ask the following question: Is it more cost-effective, e.g., to have four-port
processors in a 2D mesh architecture or six-port processors in a 3D mesh, given the fact that
for the four-port processors, the economy in number of ports and ease of layout allows us to
make each channel wider? This and similar questions have been studied by several re-
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searchers ([Agar91], [Ande97], [Dalloq]). Despite a lack of consensus, there are indications
that lower-dimensional arrays may be more cost-effective.

12.2. STRONGER AND WEAKER CONNECTIVITIES

One problem with a 2D mesh is its relatively large diameter. Higher-dimensional
meshes, on the other hand, present difficult implementation problems. These considerations
have resulted in a wide variety of architectures that are obtained by considering different
(nonrectangular) grids or by inserting/removing links into/from an ordinary mesh. These and
other variations are discussed in this section.

Figure 12.2 shows eight-neighbor and hexagonal meshes as examples of 2D meshes
with stronger connectivities than standard 2D meshes. The eight-neighbor mesh allows direct
communication between diagonally adjacent processors, which may be helpful for some
image-processing applications (e.g., see Section 11.6). An eight-neighbor mesh has smaller
diameter and wider bisection than an ordinary 2D mesh. However, these advantages are offset
by its higher implementation cost. The node degree of 6 in a hex mesh is intermediate
between those of ordinary 2D meshes/tori and the eight-neighbor mesh. However, the
nonrectangular shape of a hex mesh makes it difficult to implement applications involving
regular data structures such as matrices. Both eight-neighbor and hex meshes can have
wraparound links. Such links can be defined in a variety of ways, some of which will be
explored in the end-of-chapter problems.

Removing links from meshes and tori can result in simpler networks with correspond-
ingly lower performance, offering interesting design trade-offs. For example, if an interproc-
essor link in a 2D torusis viewed as two unidirectional links, with links going in one direction
removed in aternating rows/columns, a Manhattan street network results (the unidirectional
links going in opposite directions in odd- and even-numbered rows/columns resemble the
one-way streets of Manhattan in New York). Figure 12.3 shows a 4 x 4 example. Manhattan
street networks offer the advantages of low diameter and simple node structure. Each node
only has two input and two output ports. The down side is that routing and other a gorithms
become more complicated.

Figure 12.2. Eight-neighbor and hexagonal (hex) meshes.
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Figure 12.3. A 4 x 4 Manhattan street network.
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Figure 12.4. A pruned 4 x 4 x 4 torus with nodes of degree 4 [Kwai97].
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Figure 12.5. Eight-neighbor mesh with shared links and example data paths.

Another strategy that allows us to combine the advantages of low diameter and simple
nodes isto prune a high-dimensional mesh/torus by selectively removing some of its links.
Figure 12.4 shows a pruned 3D torusin which al of the zlinks have been kept, while the x
or y links areremoved in aternate layers [Kwai97].

Y et another way to reduce the node degree of a mesh is to share the links that are
never/seldom used at the same time. Many mesh algorithms utilize communications along
the same direction in each step (weak SIMD model) or can be easily modified to honor this
constraint without a significant performance penalty. Algorithms of this type allow us to use
the 2D mesh depicted in Fig. 12.5, which combines the advantages of the eight-neighbor
mesh with the low node degree of a standard mesh. Using the natural designations NE, NW,
SE, and SW for the four ports of each processor, the instruction “send to NE, receive from
SE” corresponds to northward data movement as shown on the right side of Fig. 12.5.
Similarly, “send to NE, receive from SW” would implement a diagonal data transfer
operation.

12.3. MESHES AUGMENTED WITH NONLOCAL LINKS

Because one of the mgjor drawbacks of low-dimensional meshes and tori is their rapidly
increasing diameters when the number of processors becomes large, it has been suggested
that mechanisms be provided in order to speed up long-distance communications among
nodes. One example is the provision of bypass links or express channels, as shown in Fig.
12.6 for one row of a 2D mesh. In the top example, the worst-case distance along the
nine-processor row has been reduced from 8 to 4. Such bypass links destroy the locality and
regularity of connections, leading to both algorithmic complexity and hardware implemen-
tation problems. For example, routing becomes more difficult, particularly if a deadlock-free
wormhole routing algorithm is to be devised that takes advantage of the shorter graph-
theoretic distances for faster data transfers. However, they may prove worthwhile in some
applications.

A wide variety of mesh architectures have been proposed in which the local links have
been augmented with one or more shared buses to facilitate occasional long-distance
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Figure 12.6. Three examples of bypass links along the rows of a 2D mesh.

communications. Figure 12.7 shows a 2D mesh augmented with a single globa bus to which
all processors are connected. For a large number p of processors, this organization is of
theoretical interest only because buses cannot connect thousands of processors. Adding the
global bus increases the node degree from 4 to 5 but has a significant effect on the speed of
some computations. The bus does not help much in computations (such as sorting) that
involve a large amount of data movements as it only increases the bisection width of the
network by 1. However, in other applications, with sparse long-distance communications,
the performance effect of the global bus might become significant.

Consider a semigroup computation such as max-finding, with one item per processor
in asquarevp x Y¥p mesh. With asingle global bus, this computation can be performed in
O( p*®) rather than O(p'’?) steps as follows. We assume that the semigroup operation [ is
commutétive.

Semigroup computation on 2D mesh with aglobal bus

Phase 1: Find the partial results in p*®xp"® submeshes in O(p“®) steps, with the
results stored in the upper left corner processor of each submesh (Fig. 12.7).

Figure 12.7. Mesh with a global bus and semigroup computation on it.
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Phase 2. Combinethe pY/3 partial resultsin O(p ¥3) steps, using a sequential algorithm
in one processor and the globa bus for data transfers.
Phase 3: Broadcast the final result to all processorsin one step.

In part because of the impracticality of connecting a large number of processors to asingle
global bus and partly to allow alarger number of long-distance data transfers to take place
concurrently, meshes with row and column buses have been proposed. As shown in Fig. 12.8,
each row/column has a separate bus that allows single-step data transfers from any processor
to another processor in the same row/column (but only one such transfer per row or column
in a given cycle). Any processor can be reached from any other in a most two steps. Again,
algorithms like sorting are not significantly affected by the added buses as the bisection width
has only doubled. However, semigroup computation now becomes much faster, requiring
O(pY®) steps.

Semigroup computation on 2D mesh with row and column buses

Phase 1: Find the partial resultsin pl/¢xpl/6 submeshes in O(pX/6) steps, with the
results stored in the upper left corner of each submesh (Fig. 12.8).

Phase 2: Distributethe p*/3 values left on some of the rows among the pY6 rows in
the same slice so that each row only has pY® values (p® steps).

Phase 3: Use the row buses to combine row valuesin pY® steps; at this stage, there
are p2 values in Column O that must be combined.

Phase 4: Distribute the p1/2 values in Column 0 among pt/2 columns such that each
column has p/6 values; constant time, using the row buses.

Phase 5: Use the column buses to combine column values in pl/6 steps; at this stage,
there are p/3 valuesin Row 0 that must be combined.

Phase 6: Distribute the p*’® values on Row 0 among the pY/® rowsin Row SliceQin
constant time, using the column buses.

Column
i sice
156
p
Row
slice {
Ad# pln ap-

Figure 12.8. Mesh with row/column buses and semigroup computation on it.
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Phase 7. Combinetherow valuesin p¥/6 steps using the row buses.
Phase 8: Broadcast the final result to all processorsin two steps.

Note that when row/column buses are added to a 2D mesh, a square mesh is no longer the
best topology from the viewpoint of the above agorithm. It is relatively easy to show that if
ap”®x p3/ 8 mesh is augmented with row/column buses, the above agorithm can be modified
to run in O(pY® ) steps, compared with O(p ¥ in the square mesh. Supplying the details is

left as an exercise.

12.4. MESHES WITH DYNAMIC LINKS

There are various ways of designing meshes so that node connectivities can change
dynamically. For example, if buses are segmented through the insertion of switches that can
be opened and closed under the control of a nearby processor, a powerful architecture results.
When all switches on such a separable bus are closed, it becomes a single bus (e.g., row or
column bus). At the other extreme, when all switches are open, multiple data transfers can
be accommodated by using each bus segment independently. Figure 12.9 shows how a
separable bus can be connected to, and its switches controlled by, the processorsin alinear
array.

A semigroup or fan-in computation can be performed on a p-processor linear array with
a separable bus by first combining pairs of elements in even-numbered and the following
odd-numbered processors and then successively dividing the bus into p/4, p/8, . . ., 2, 1
segments and allowing the processors connected to each segment to exchange their partia
results in two bus transfer steps. This leads to an O(log p)-step algorithm. The 2D mesh
version of the algorithm is similar, with row combining and column combining done using
row and column segmented buses as above.

Meshes with separable row/column buses have been studied in depth (see, e.g., [Serr93]
and the references therein). One problem with such meshes is that the switches add to the
datatransmission delay over the bus, so that the bus cycle will become longer than that of a
simple row/column bus. An advantage is that the buses provide a convenient mechanism for
bypassing faulty processors so that certain fault tolerance schemes can be implemented with
little effort (see, e.g., [Parh93]).

The additional power and flexibility provided by separable buses may allow us to use
fewer buses for the same or higher performance. For example, if one separable row/column
bus is provided for every p/6 rows or columns in a square mesh (say those whose row/column
indices are multiples of p ¥6), then the semigroup computation of Fig. 12.8 can still be
performed in O(p ¥6) steps. Once the submesh results are obtained, they can be combined in
logarithmic time using the separable row buses to yield pY3 values in Column 0. A

Pgt I Fag!
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Figure 12.9. Linear array with a separable bus using reconfiguration switches.
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Figure 12.10. Some processor states in a reconfigurable mesh.

logarithmic time combining phase in Column 0 then yields the final result. In fact, we can
do better than this by using more (but still fewer than 2p 12) row and column buses or by
utilizing an optimal nonsquare topology [Serr93].

It is also possible to provide reconfiguration capability within the processors as opposed
to putting switches on the buses. One popular scheme, which has been investigated in great
depth, is known as the reconfigurable mesh architecture. The processors have four ports and
are connected to the ports of their four nearest neighbors as in a conventional mesh. However,
internally each processor can tie together a subset of its ports to alow data to go through it
and get from one neighbor to one or more other neighbors (Fig. 12.10). By proper setting of
processor states, buses can be established: from a global bus linking all processors to a variety
of complex patterns of connectivity. Row and column buses can also be formed as a special
case if desired. The switch delay is still a problem in such architectures, particularly if a
signal hasto propagate through many switches.

12.5. PYRAMID AND MULTIGRID SYSTEMS

The pyramid architecture combines 2D mesh and tree connectivities in order to gain
advantages from both schemes. Topologically, the pyramid inherits low logarithmic diameter
from the tree and relatively wide bisection from the mesh. Algorithmically, features of each
network can be utilized when convenient (e.g., fast semigroup or prefix computation on the
tree and efficient sorting or data permutation on the mesh).

A pyramid network can be defined recursively. A single node is a one-level pyramid.
The single node doubles as the pyramid's apex and its 1 x1 base. An |-level pyramid consists
of a 2'"tx 2 base mesh, with groups of four nodes, forming 2x 2 submeshes on the base,
connected to each node of the base of an (I-1)-level pyramid (Fig. 12.11). The number of
processors in an I-level pyramid is p = (22' - 1)/3. From this expression, it is evident that
roughly three-fourths of the processors belong to the base. It is thus not very wasteful of
processors if we assume that only the base processors contain data and other processors are
only used for data routing and various combining operations. Thisis similar to our assump-
tion in Section 2.4 that only leaf nodes of a tree architecture hold data elements. The diameter
of an I-level pyramid is 21-2 and its maximum node degree is 9 for | > 4.
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Figure 12.11 Pyramid with three levels and 4x 4 base along with its 2D layout.

A pyramid can perform a semigroup computation in O(log p) steps when each processor
on the base holds a single data item and the items are indexed in shuffled row-major order
(see Fig. 9.3). Each processor combines the values from its four children until the final result
is found at the apex. Then, the result is broadcast to al nodes. Parallel prefix computation is
similarly quite simple with the same assumptions. Semigroup computation under other
indexing schemes on the base is no different, provided that the semigroup operation O i s
commutative. Semigroup computation algorithm with other indexing schemes and a non-
commutative operator becomes more complex, as does parallel prefix computation under
similar conditions.

Sorting on a pyramid cannot be significantly faster than on a 2D mesh. The 2' -link
bisection width of an |-level pyramid (I > 1) establishes an Q(J;",) lower bound on the
worst-case running time of any sorting algorithm. Data routing, on the other hand, can be
speeded up by the added links compared with a 2D mesh. To route from any node to any
other node on the base mesh, one can simply route upward to the apex and then downward
to the destination node. This algorithm works fine as long as the number of messagesis small.
Otherwise, congestion at and near the apex increases the routing delays and buffer require-
ments. The bisection-width argument can again be invoked to show that an arbitrary
O(p)-packet routing problem would take at least Q (‘/;7) steps to solve on a p-processor
pyramid.

The 2D multigrid architecture can be derived from the pyramid by removing all but one
of the downward links of each processor (Fig. 12.12). This reduces the maximum node degree
(from 9 to 6) and thus the processor complexity, but otherwise preserves most of the
properties of the pyramid, including its bisection width and logarithmic diameter. It is easy
to see that the diameter of the I-level 2D multigrid architecture satisfies the recurrence D(1)
< D(I-1) + 6, with D(2) = 2. Actually the diameter of the two-level 2D multigrid is 3, but
for | 2 3, we can take it to be 2 as far as the recurrence is concerned.

The 2D multigrid is to the pyramid what the 1D multigrid is to the binary X-tree (Fig.
11.11). Infact, each of the side views of the pyramid (2D multigrid) isabinary X-tree (1D
multigrid).

Both the pyramid and 2D muiltigrid architectures are suitable for image-processing
applications where the base holds the image data (one pixel or block of pixels per processor)
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Figure 12.12. The relationship between pyramid and 2D multigrid architectures.

and performs low-level image operations that involve communication between nearby pixels.
Processors in the upper layers of the pyramid or multigrid deal with higher-level features
and processes involving successively larger parts of the image.

12.6. MESHES OF TREES

The mesh of trees architecture represents another attempt at combining the advantages
of tree and mesh structures. Like the pyramid, an |-level mesh of trees architecture has a
2'"1 x 2! base whose processors are the leaves of 2!-1 row trees and 2'~* column trees. The
number of processorsin an I-level mesh of treesis p = 2' (3x 222 — 1). From this expression,
it is evident that roughly one-third of the processors belong to the base. The diameter of an
|-level mesh of treesis 4l — 4, its bisection width is 2! '1, and its maximum node degree is 3.

Several variations to the basic mesh of trees architecture of Fig. 12.13 are possible. If
the base processors are connected as a 2D mesh, the maximum node degree increases to 6.
Theith row and ith column root nodes may be merged into a single node (increasing the
node degree to 4) or interconnected by an extralink (preserving the maximum node degree
of 3). Either modification increases the efficiency of some algorithms, One can also construct
treesdiagonally, in lieu of or in addition to row and/or column trees.

The mesh of trees architecture has a recursive structure in the sense that removing the
row and column root nodes, along with their associated links, yields four smaller mesh of
trees networks. This property is useful in the design of recursive agorithms. A mesh of trees
network with an m x m base can be viewed as a switching network between m processors
located at the row roots and m memory modules at the column roots (right side of Fig. 12.14).
Note that P; and M; are connected to one and only one of the switches in the midadle column.
Hence, there is a unique path from each B to each M; and the paths are node-digjoint. Thus,
effectively acrossbar switch with full permutation capability and O(log m) switching delay
is implemented. If row and column root nodes are merged, then a processor-to-processor
interconnection network is obtained.

Semigroup and parallel prefix computations can be performed in 41 — 4 and 61 — 6 steps,
respectively, on an |-level mesh of trees using row/column combining and prefix computa-
tions on the respective trees. The latter can be reduced to 41 —3 steps by doing row semigroup



OTHER MESH-RELATED ARCHITECTURES 249

Row Treo
(one per row)
Column Tree

{one per
column)
Y < I = M« B e
' -
G O (@]
O (@] )
o o =]
m-by-m Base

Figure 12.13. Mesh of trees architecture with three levels and a 4x4 base.

computations concurrently with row prefix computations (pipelining the two will add only
one time step to the running time of one of them).

To route n? packets stored one per processor on themxm base, one can use a variant
of the row-first routing algorithm. Row trees are used to send each packet to its destination
column. Then, column trees are utilized to route the packets to their destination rows.
However, because the m2 packets must all go through the 2m root nodes, the worst-case
running time of this algorithmis €x(m) = (V). If we take the view shown in Fig. 12.14,
with only m packets to be routed from one side of the network to the other, only 2 log, m
routing steps are required, provided that the destination nodes are all distinct.

2D layout for mesh of trees network
with a 4-by-4 base (root nodes are in
the middle row and column)

Figure 12.14. Alternate views of the mesh of trees architecture with a 4x4 base.
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To sort m? keys, stored one per processor on the mxm base, one can devise an agorithm
based on shearsort, where row and column sorts are done on the respective trees rather than
on linear arrays. Supplying the details of the algorithm is left as an exercise. Because an
m-node binary tree can sort mitems in O(m) time, the running time of this algorithm is
asymptotically the same as that of shearsort on a 2D mesh. If we take the view shown in Fig.
12.14, with only m keys to be sorted, then the following algorithm can be used (we assume
that the row and column root nodes have been merged and each holds one of the keys).

Sorting m keys on a mesh of trees with an mxm base

Phase 1. Broadcast the keys to the leaves within both trees (Leaf i, j getsxi and x;)
Phase 2: At a base processor: if ¥ >Xx; or x; =x andj>ithenflag:= 1elseflag:=0
Phase 3: Add the flag values in column trees (Root i obtains the rank of x)

Phase 4: Route % from Root i to Root rank[i]

Matrix—vector multiplication Ax =y can be done quite efficiently if the matrix Ais stored
on the base and the vector x in the column roots, say. Then, the result vector yis obtained in
the row roots as follows.

Multiplying an mxm matrix by an m-vector on a mesh of trees

Phase 1: Broadcast x; through the ith column tree (Leaf i, j hasa;; and ;)
Phase 2: At each base processor compute ajj X;
Phase 3: Sum over row trees (Row root i obtains Z7%¢' a;;x; =)

One can use pipelining to multiply r matrix—vector pairsin 21 — 2 + r steps.

The convolution of two vectors can be easily computed if the mesh of treeswith an m
%(2m— 1) base contains m diagona treesin addition to the row and column trees, as shown
in Fig. 12.15. Assume that the ith element of the vector x isin ith row root and that the jth
element of the vector yisinthe (m—1—j)th diagonal root. The following agorithm yields
the kth element of the convolution z, defined as z, = ayby + a,_; by + ... + ag by, inthekth
column root.

Convolution of two m-vectors on a mesh of trees with an mx(2m-1) base

Phase 1. Broadcast x; from theith row root to all row nodes on the base

Phase 2: Broadcast Y,_; — j from the (m— 1 —j)th diagonal root to the base diagonal
Phase 3: Leaf i, J, which has Xj and Yom_2_j_j, multipliesthem to get Xi Yom_o_i-j

Phase 4: Sum over columnsto get z,,,_, ;= ot X;Yom-2-i~y 1N cOlumN root j

Note that Phases 1 and 2 of this algorithm can be overlapped to speed up the computation.
The final algorithm described in this section deals with the construction of a minimal-
weight spanning tree for an undirected graph with edge weights. A spanning tree of a
connected graph is a subset of its edges that preserves the connectivity of all nodes in the
graph but does not contain any cycle. A minimal-weight spanning tree (MWST) is a subset
of edges that has the minimum total weight among all spanning trees. Thisis a very important
problem. For example, if the graph under consideration represents a communication (trans-
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Figure 12.15. Mesh of trees variant with row, column, and diagonal trees.

portation) network, an MWST tree might correspond to the best way to broadcast a message
to al nodes (deliver products to the branches of a chain store from a central warehouse).

The MWST problem can be solved by a simple greedy algorithm. Assume for simplicity
that all edge weights are unique so that there is always a single minimum-weight edge among
any subset of edges. At each step, we have a set of connected components or “ supernodes”
(initially n single-node components). We connect each component to its “nearest” neighbor,
i.e., we find the minimum-weight edge that connects the component to another component.
Any such minimum-weight outgoing edge from a component must be in the MWST. Assume
that it is not; thus, the component is connected to the rest of the MWST by means of one or
more other edges with larger weights. Remove any of these edges and replace it with the
minimum-weight edge. This yields a spanning tree with smaller total weight than the MWST;
clearly a contradiction.

An example is shown in Fig. 12.16. We begin with nine components and identify the
minimal-weight outgoing edge from each. These are shown as heavy lines in the upper right
diagram. Inclusion of these edgesin the MWST reduces the problem to that of identifying
the MWST of the four-node graph shown at the lower |eft, where each node corresponds to
a subset of two or three nodes in the original nine-node graph. Again, the minimal-weight
outgoing edge from each node is identified (heavy lines) and included in the MWST. This
leaves us with two supernodes and their minimal-weight connecting edge with weight 25
completes the MWST as shown in the lower right diagram.

The proof of convergence for the greedy algorithm is simple. The spanning tree has
n— 1 edges. The first phase of the greedy algorithm selects at least n/2 edges of the tree.
Each subsequent phase cuts in half the number of unidentified edges. Thus, there will be log,
n phases. If the graph’s weight matrix W (see Fig. 11.15) is stored in the leaves of a mesh of
trees architecture, each phase requires O(log? n) steps with a simple algorithm (to be shown)
and O(log n) steps with a more sophisticated algorithm. The total running time is thus O(log?
n) or O(log? n). For comparison purposes, sequential algorithms for this problem have the
following complexities, where n is the number of nodes and e the number of edgesin the

graph:
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Figure 12.16. Example for the minimal-weight spanning tree algorithm.

Kruskal’s algorithm: O(e log €) steps [0 O(n? log n) for dense
graphs with e = O(n?)

Prim’s agorithm with binary heap: O((e + n )logn) O O(n2log n)

Prim’s algorithm with Fibonacci heap: O(e + nlog n) O O(n?)
Thus, our best parallel solution offers a speed-up of O(n%/log? n) which is sublinear in the
number p = O(n?) of processors used.

The key part of the simple parallel version of the greedy algorithm is showing that each
phase can be done in O(log? n) steps. Because weights are assumed to be unique, they can
double as edge IDs. Edge weights are stored in leaves, with Leaf (i, j) holding the weight
w(i, j) of Edge (i, j). The roots of Row i and Column i are merged into a single degree-4 node
representing Node i of the graph. A label L(i) associated with each node i gives its supernode
identity. L(i) isinitialized to 1, i.e., there are n supernodes initialy. If L(i) =i, Node i is the
supernode leader. At the start of each of thelog, n phases, Leaf (i, j) knowsif Edge (i, j) is
in the spanning tree and, if so, to which supernode it belongs. The a gorithm for each phase
consists of two subphases:

a.  Find the minimum-weight edge incident to each supernode.
b. Merge the supernodes for the next phase.
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Figure 12.17. Finding the new supernode ID when several supernodes merge.

Subphase (a) can be donein 4 log, n steps in the following way. Each member node of a
supernode finds its minimum-weight outgoing edge in 2 log, n steps (the minimum value in
Columni). Then, the minimum among these minimums is found in 2 log» n steps. Subphase
(b) can be done in O(log? n) stepsin the following way. Each supernode leader knows the
“closest” supernode with which it must merge. The only remaining problem are to determine
the identity of the new supernode and to disperse this identity to all nodes within the
supernode. If Supernode A is merging with Supernode B, which isin turn merging with
Supernode C, and so forth, a chain reaction occurs that might slow down the identification
process. If we view the merging information in each Supernode X as a pointer to another
supernode Y (Fig. 12.17), then there will always be a pair of supernodes that point to each
other. Of these two nodes, the one with the smaller supernode ID can be designated as the
new leader. Nodes can become aware of the new leader’s ID by a pointer-jumping process
(see Section 5.5) in log, niterations, each requiring O(log n) steps. For details and
improvements, consult Leighton ([Leig92], pp. 325-338).

PROBLEMS

12.1. Sorting on g-dimensional mesh and torus networks

a Justify the bisection-based lower bound p* /2 for sorting on a g-D mesh.

b. Show that if interprocessor communication is restricted to be in one direction in each step,
then a corresponding multisection lower bound of qpll 472 applies.

c.  How arethelower bounds of parts (a) and (b) affected in k—k sorting, where each processor
begins and ends up with k records?

d. Derive lower bounds similar to those of parts (a)—(c) in the case of a g-D torus.

12.2. g-dimensional torus networks
This problem deals with m-ary g-cubes, i.e., g-dimensional torus networks with sides of length
m.

a Show that an m-ary g-cube is node-symmetric in the sense that the network looks exactly
the same when viewed from any of its nodes.

b.  Show that the sum of distances from any node of a 2D torusto all other nodesis m(m?—1)/2
if mis odd and m3/2 if mis even. These lead to simple closed-form expressions for the
average internode distance in the two cases.

¢.  Show that the generalized forms for the expressions of part (b) in the case of an m-ary
g-cubeareq(m?— 1)m’~ /4 and qma*+1/4, respectively.
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12.3. Hexagonal mesh
The node indexing scheme in the hexagonal mesh of Fig. 12.2 is such that each Node i is
connected to Nodesi +1,i+ 7, and i + 8 (mod 19). Even though wraparound links are not
shown in Fig. 12.2, assume that the same rules apply to them as well.

a  Determine the number of nodes in a hex mesh with each outside edge having m processors.
b. Generalize the above node indexing scheme for a hex mesh with sides of length m.

c. Draw the hex mesh of Fig. 12.2, with the connectivity rules given above, as a chordal ring.
d. Show that the general hex mesh, as defined in part (b), consists of three edge-disjoint rings.

12.4. Manhattan street networks
Consider a Manhattan street network with an even number r of rows and an even number p/r
of columns.

a  Find the exact network diameter in terms of p and r and for the special case of r =\p.

b. Devisean efficient routing algorithm for the network and analyzeits delay and buffer needs.

c. Analyze the complexity of the shearsort agorithm on this network. Hint: Let pairs of rows
and columns cooperate on row and column sorts.

d. Describe a matrix multiplication algorithm with its associated data layout for this net work.

12.5. Honeycomb mesh
Extend the hex mesh of Fig. 12.2 by adding two layers of nodes around its periphery. Then
remove the nodes currently numbered 0, 2, 3, 5, 14, 16, 17, and so on (the resulting network
resembles a honeycomb). Show that a honeycomb mesh with a rectangular boundary isin fact
apruned 2D mesh. Use this knowledge to derive its diameter and bisection width.

12.6. Pruned 3D torus
Consider a pruned 3D torus network, similar to that in Fig. 12.4, with an even number | of
layers, r rows, and p/(Ir) columns.

a Find the exact network diameter in terms of p, I, and r and for the special case of
|=r= D.
. Devise an efficient routing algorithm for the network and analyze its delay and buffer needs.
c. Analyze the complexity of the 3D mesh sorting algorithm (Section 12.1) for this network.
Hint: Let pairs of layers cooperate on the 2D sorts.
d. How would you partition an 8 x 8 x 8 pruned torus for implementation on eight circuit
boards each holding 64 processors (see Fig. 12.1)?

12.7. Mesh with row/column buses

a  Show that the optimal aspect ratio (number of rows divided by number of columns) in a
mesh with row/column buses is p ¥4 for the semigroup computation; i.e., the optimal mesh
isp5/8x p3/8  Hint: The running time of the algorithm becomes O(p2/8).

b.  Show that if multiple items can be stored in each processor, then a mesh with row/column
buses can perform a semigroup computation in O(n/9) stepsusing p = n8/9processors in
ann®9xn39 mesh.

12.8. Mesh with separable row/column buses

a InFig. 12.9, why isabus switch provided after every four processors rather than after every
two?

b.  Can we remove the local interprocessor links and use the separable buses for all data
transfers, thereby reducing the node degree to 2? Would thisinvolve a speed penalty?
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12.9. Mesh with fixed segmented row/column buses

Suppose that an r x (p/r) mesh is equipped with fixed segmented buses. In each column (row),
groupsof x (y) processors are connected to the same bus segment, with r/x(p/(ry)) bus segments
in a column (row).

a. Determine the optimal number of bus segments in each row and column, x°Pt and y °Pt, in
order to maximize the speed of semigroup computation.

b. Determine the optimal aspect ratio r/(p/r) for a p-processor mesh performing semigroup
computation.

12.10. Linear array with a separable bus

12.11.

12.12.

Consider alinear array having asingle bus that spans the entire array, with a bus switch inserted
after every g processors. Assume that each switch isimmediately before, and controlled by, a
processor whose index is a multiple of g. Figure 12.9 shows an example with p=16and g =
4.

a. Develop agorithms for semigroup and parallel prefix computation on this architecture.
b. Show how this architecture can efficiently execute the odd—even reduction of Section 11.3 .

Pyramid architecture

a  Derive and prove aformula for the bisection width of an I-level pyramid.

b.  Supply the details of parallel prefix computation on a pyramid and find its exact running
time.

c. Each row on the base of a pyramid can be viewed as forming the leaves of a complete
binary tree rooted at the apex. Can we use this observation to develop afast semigroup or
parallel prefix computation agorithm for data elements stored on the base with row-major
indexing?

Pyramid architecture
Can a pyramid with an mx m base efficiently simulate:

A larger pyramid witha2m x 2m base?

A mesh of trees architecture with an m x m base?
An mx m mesh with asingle global bus?

An m x mmesh with row and column buses?

oo oo

12.13. 2D multigrid architecture

12.14.

a Derive and prove aformulafor the bisection width of an I-level 2D multigrid architecture.

b. Show that the recurrence D(1) = D(I —1) + 6 with D(2) = 2 provides atight bound for the
diameter of a 2D multigrid architecture when | is sufficiently large.

¢. How large does | need to be for the result of part (b) to hold? Find the exact value of the
diameter for al smaller values of I.

d. Describe and analyze a semigroup computation algorithm on a 2D multigrid.

e. Describe and analyze a parallel prefix computation algorithm on a 2D multigrid.

Mesh of trees architecture

a  Show that routing g packets between processors on the base of a mesh of trees networks
requires Q (g routing stepsin the worst case, even if no two destinations are the same.

b. Show how to find the minimum of m numbers, each mbits wide, in O(log? m) steps on an
m x m mesh of trees network.
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12.15. kD meshes

Show that a kD p-processor mesh with equal sides along each of the k dimensions has a bisection
width no smaller than p 1-1/K Notethat it is not adequate to observe that slicing thekD mesh
down the middle along one of the dimensions will cut exactly p1—1/K links pV/K is even and
slightly moreif p 1 /kis odd; this only establishes an upper bound on the bisection width. Hint:
Show how to connect every pair of nodes in the array by a pair of directed paths, onein each
direction, such that no edge of the array is contained in morethan p 1 *1/K/2 such paths, thereby
establishing a correspondence between the kD mesh and a p-node directed complete graph
whose bisection width is known.
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Low-Diameter
Architectures

The bulk of this part deals with the (binary) hypercube architecture and its many
derivatives and variants, collectively referred to as hypercubic networks. How-
ever, we will also consider a variety of other interconnection structures that offer
advantages over hypercubic networks under certain valuation criteria, work
loads, or technological constraints. A common property that links all of these
architectures is that their diameters are (or can be, with proper choice of their
structural parameters) much lower than those of meshes and tori. Specifically,
whereas a g-D p-node mesh or torus has a diameter of © (p/9) with a node
degree of ©(q), these networks offer logarithmic or sublogarithmic diameters
with maximum node degrees ranging from 3 to log ,p. By the end of this part,
which is composed of the following four chapters, we will have a more or less
complete picture of the sea of interconnection networks partially visible in Fig.
4.8.

¢ Chapter 13: Hypercubes and Their Algorithms

* Chapter 14: Sorting and Routing on Hypercubes
* Chapter 15: Other Hypercubic Architectures

* Chapter 16: A Sampler of Other Networks
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Hypercubes and
Their Algorithms

The hypercube architecture has played an important role in the development of
parallel processing and is still quite popular and influential. The logarithmic
diameter, linear bisection, and highly symmetric recursive structure of the
hypercube support a variety of elegant and efficient parallel algorithms that often
serve as starting points for developing, or benchmarks for evaluating, algorithms
on other architectures. The hypercube's symmetry and recursive structure also
lead to rich theoretical underpinnings that bring forth a wide array of theoretical
results about its performance, layout in physical space, and robustness. In this
chapter, we introduce the hypercube, study its topological and embedding
properties, and present a number of simple algorithms. Sorting and routing
algorithms will be covered in Chapter 14. Chapter topics are

e 13.1. Definition and main properties

e 13.2. Embeddings and their usefulness
» 13.3. Embedding of arrays and trees

o 13.4. A few simple algorithms

e 13.5. Matrix multiplication

e 13.6. Inverting a lower triangular matrix
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13.1. DEFINITION AND MAIN PROPERTIES

The origins of the hypercube architecture can be traced back to the early 1960s [Squi63].
Subsequently, both the direct (single-stage) version, discussed in this chapter, and the indirect
or multistage version, to be covered in Sections 14.4 and 15.2, were proposed as intercon-
nection networks for parallel processing [Peas77], [Sull77]. None of these early proposals
led to a hardware implementation, primarily because of high hardware cost [Haye89]. The
development of routing algorithms and application programs for the Cosmic Cube, a
64-processor hypercube system built at the California Institute of Technology in the early
1980s [Seit85], was instrumental in the introduction of several hypercube-based commercial
parallel computersin the late 1980s. One example of such machinesis discussed in Section
22.3.

As special cases of m-ary g-cubes, hypercubes are also called binary g-cubes, or simply
g-cubes, where q indicates the number of dimensions. We will use the term hypercube to
refer to a generic architecture of this type and g-cube (particularly, 3-cube, 4-cube, and so
forth) when the number of dimensionsis relevant to the discussion.

A g-dimensional binary hypercube (g-cube) is defined recursively as follows:

e A 1-cube consists of two nodes, labeled 0 and 1, with alink connecting them.

e A g-cube consists of two (g—1)-cubes, with the nodes labeled by preceding the origina
node |abels of the two subcubes with 0 and 1, respectively, and connecting each node
with the label Ox to the node with the label 1x. The two (q—1)-cubes forming the g-cube
are known as its 0 and 1 subcubes.

Figure 13.1 shows the recursive construction of q-cubes for g =1, 2, 3, and 4. The same
processis used to construct g-cubes for larger values of g, although it becomes increasingly
difficult to represent the resulting structuresin 2D drawings.

Because a 1-cube has two nodes and each recursive step in the above definition doubles
the number of nodes, ag-cube has p = 29 nodes or processors. Similarly, because a 1-cube
has nodes of degree 1 and each recursive step increases the node degree by 1, a ¢-cube consists
of nodes with degree d = q = log, p. The node structure of a hypercube (number of its
interprocessor communication ports) changes as the system expands in size; thus, a hyper-
cube architecture is not scalable.

If the label of anode x (its binary ID) isx; 1%, . . . XX1Xo, then its g neighbors are

X1 X2 - - X% Xo neighbor along Dimension O; denoted by No(X)

Xg_1 Xg-2 - - - XX % neighbor along Dimension 1 or Ny(X)

XgXp2 - - X%%1%0 neighbor along Dimension -1 or N, 4(X)

In other words, the labels of any two neighboring nodes differ in exactly 1 bit. Two nodes
whose labels differ in k bits (have a Hamming distance of k) are connected by a shortest path
of length k. For example, in the 4-cube of Fig. 13.1, a shortest path from Node x = 0010 to
y = 1001 goes through the intermediate nodes N3 (0010) = 1010 and N,(1010) = 1000, and
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Bi{mry l-cube 0 Binary 2cube
built of two 1 built of two

binary O-cubes O """""" O binary 1-cubes
labeled 0 and 1 iabeled O and 1

Three representations of a binary 3-cube

Two representations of a binary 4-cube

0100 " 010~ e 1001101

Figure 13.1. The recursive structure of binary hypercubes.

thus has a length of 3, which is equal to the Hamming distance between x and y. Consequently,
it is easy to see that the diameter of a g-cube is D = q = log, p. The bisection width of a
g-cube is B = p/2 = 291, The logarithmic diameter and the linear bisection width of a
hypercube are two reasons for its ability to perform many computations at high speed.

Hypercubes are both node- and edge-symmetric, meaning that the roles of any two nodes
(edges) can be interchanged with proper relabeling of the nodes. Swapping the leftmost 2
bitsin every node label of a g-cube interchanges the roles of dimensions g— 1 and q—2. As
a result, 0 and 1 subcubes can be defined for each of the g dimensions of a g-cube.
Complementing a particular bit position in al node labels results in a relabeling of the nodes
that switches the roles of the 0 and 1 subcubes associated with that dimension A node label
X can be transformed to a different node label y with k such complementation steps, where
k is the Hamming distance between x and y. Similarly, swapping bit positionsi andj in al
node labels interchanges the roles of Dimension-i and Dimension-j links. Thus, the desig-
nations “Dimension 0,” “Dimension 1,” and so forth are arbitrary and no inherent order exists
among the various dimensions.

Hypercubes have many interesting topological properties, some of which will be
explored in the remainder of this chapter and the end-of-chapter problems. The recursive
structure of hypercubes makes them ideal for running recursive or divide-and-conquer type
algorithms. The results of subproblems solved on the two (q—1)-dimensional subcubes of a
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g-cube can often be merged quickly in view of the one-to-one connectivity (matching)
between the two subcubes. Multiple node-digoint and edge-dioint paths exist between
many pairs of nodes in a hypercube, making it relatively easy to develop routing and other
parallel algorithms that are tolerant of node or edge failures. A large MIMD-type hypercube
machine can be shared by multiple applications, each of which uses a suitably sized subcube
or partition.

13.2. EMBEDDINGS AND THEIR USEFULNESS
Given the architectures A and A" we embed A into A" by specifying

¢ A node mapping (indicating that Node v of A is mapped onto Node V' of A"); the node
mapping can be many-to-one.

e An edge mapping (indicating that Edge uv of A is mapped onto a path from Node u' to
nodeV' in A', where u' and V' are given by the node mapping).

Example embeddings of a seven-node complete binary tree into 3 x 3, 2 x 4, or 2 x 2 meshes
are shown in Fig. 13.2. For the 3 x 3 and 2 x 4 meshes, each tree node is mapped onto a
different mesh node, whereas for the 2 x 2 mesh, pairs of tree nodes are mapped onto all but
one of the mesh nodes. Generally, edges of the tree are mapped onto single-edge paths in the
meshes, the only exceptions being in the 2 x 4 mesh, where Edge d of the tree has been
mapped onto the path between Nodes 1 and 4 that goes through Node 3, and inthe 2 x 2
mesh, where Edges a and e of the tree have been mapped onto paths of length O (from a node
toitself).

Embeddings are useful because they allow us to use an agorithm developed for an
existing architecture on a new or different one by simply letting the new/different architecture
follow the same steps as in the old architecture (we say that the new architecture emulates
the old one). Hence, e.g., the embeddings shown in Fig. 13.2 allow each of the meshes to
run tree-based agorithms, abeit with some slowdown in general. However, algorithms

Figure 13.2. Embedding a seven-node binary tree into 2D meshes of various sizes.
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developed directly for a given architecture tend to be more efficient as they take advantage
of unique features or strengths of that architecture.

In order to gauge the effectiveness of an embedding with regard to algorithm perform-
ance, various measures or parameters have been defined. The most important ones are listed
below. For these measures, the numerical values of the parameters for the three example
embeddings of Fig. 13.2 are aso provided as examples.

Examplesof Fig. 13.2 - 3x3 2x4 2% 2
Dilation Longest path onto which any given edge is mapped 1 2 1
Congestion ~ Maximum number of edges mapped onto one edge 1 2 2
Load factor ~ Maximum number of nodes mapped onto one node 1 1 2
Expansion Ratio of the number of nodes in the two graphs 97 8/7 47

The dilation of an embedding is an indicator of the slowdown in the new architecture
as aresult of indirect data communications. In other words, if congestion is 1, a dilation of
2, e.g., means that one communication step in the old architecture may require two time steps
in the emulating one in the worst case.

The congestion of an embedding represents potential slowdown when certain edgesin
the old architecture must carry messages at the same time. “Potential” is used because we
may be able to schedule the communication steps on the emulating architecture to reduce,
or even totally eliminate, this slowdown. For example, if Node 1 of the tree were to send
messages to Nodes 3 and 4 at the same time over links ¢ and d, the 4 x 2 mesh emulating
these communications can avoid any slowdown related to congestion by pipelining the two
messages between Nodes 1 and 3, with the message going to Node 4 sent first. In view of
the above, one might say that the congestion of the embedding associated with the 2 x 4 mesh
in Fig. 13.2 is 1.5 rather than 2, as there are two different paths of length 2 that can be used
for routing messages between Nodes 1 and 4.

The load factor of an embedding is an indicator of the potential slowdown in the new
architecture as result of one processor having to perform the job of several processors.
Again, the actual slowdown may be smaller if computation and communication are over-
lapped, because a processor may have extra cycles to complete its computations as it waits
for dilated or congested communications to take place.

The expansion of an embedding is related to the other parametersin that, e.g., one can
reduce the expansion by increasing the load factor. Occasionaly, we are interested in
embeddings that keep the dilation and/or congestion and/or load factor at 1, or some other
small constant, in an effort to have an efficient emulation. In such cases, the expansion of
the embedding is an indicator of the cost of achieving the desired efficiency. Often an
expansion factor that is greater than 1 results from the fact that many architectures comein
specific sizes (e.g., perfect square for a square 2D mesh and power of 2 for a binary
hypercube).

13.3. EMBEDDING OF ARRAYS AND TREES

In this section, we show how meshes, tori, and binary trees can be embedded into
hypercubes in such a way as to alow a hypercube to run mesh, torus, and tree algorithms
efficiently, i.e., with very small dilation and congestion. We will see later in this chapter, and
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in Chapter 14, that there exist severa hypercube algorithms that are significantly faster than
their counterparts on meshes/tori and binary trees. These observations together establish the
hypercube architecture as “more powerful” than mesh, torus, or tree architecture.

We begin by showing an embedding of a 29-node ring in a g-cube for g > 1. Any p-node
graph that can embed a p-node ring with dilation and load factor of 1 is said to be
Hamiltonian. Such an embedding defines a ring subgraph containing all of the nodes of the
graph, or a Hamiltonian cycle of the graph. Not al graphs have Hamiltonian cycles. For
example, a3 x 3 mesh is not a Hamiltonian graph, nor is a binary tree (or, more generally, an
acyclic graph) of any size. Possession of a Hamiltonian cycle allows an architecture to
emulate aring or linear-array algorithm efficiently and is viewed as a desirable property.

We now prove that any g-cube is Hamiltonian for q = 2. The proof is by induction,
starting with the basis that a 2-cube is Hamiltonian and proceeding with the induction step
that if the (g—1)-cube is Hamiltonian, then so is the g-cube.

Consider the g-cube as two (q—1)-cubes obtained by removing all Dimension q— 1 links.
Take an arbitrary Hamiltonian path in the 0-subcube. Consider the edge linking a Node x
with its Dimension-k neighbor N, (x) on this path, where 0 < k< q— 2. Now consider a
Hamiltonian path in the 1-subcube that contains the edge linking Nq_l(x) with N q_l(N (X))
= Ni(N4_4(X)). Because of edge symmetry, such a Hamiltonian path must exist. Now an
embedded ring results if the two edges linking x with N,(x) and qul(x) with N (N cH(x))
(dotted lines in Fig. 13.3) are removed from the two rings and instead the two Dimension-
(q—l);jdgeslinking X with qul(x) and N, (x) with Nq_l(Nk(x)) (heavy linesin Fig. 13.3) are
inserted.

Another way to prove that the g-cube is Hamiltonian is to show that a g-bit Gray code
(asequence of g-bit codewords such that any two consecutive codewords, including the last
and the first one, differ in a single bit position) can be constructed. Because of the unit
Hamming distance between the binary labels of neighboring nodes in a g-cube, the g-bit
Gray code defines a Hamiltonian cycle in the g-cube.

A g-bit Gray code can be built by induction. Clearly {0, 1} is a 1-bit Gray code, Given
a(gq-1)-hit Gray code that begins with 0% and ends with 1092 , where the superscripts denote
the number of times that a symbol is repeated, a g-bit Gray code can be constructed as
follows:

Assumed Gray code Assumed Gray code in reverse
(g-1)-bit codes ot 0721 . 1072 1092 . 092 o
g-bit Gray code o? ! e 01072 110%? o 10974 107"
Prefix with 0 Prefix with 1

We next prove a more general result that a2™ x 2™ x ... x 2"h1 h-D mesh/torus is a subgraph
of the g-cube, whereq= my+ m, + ... + m,_,; thisis equivalent to the former being embedded
in the latter with dilation 1, congestion 1, load factor 1, and expansion 1.

The proof is based on the notion of cross-product graphs, which we first define. Given
kgraphs G; = (V;, E), 1<i <Kk, their (cross-) product graph G =G, x G, x ... x G is defined as
the graph G = (V, E), where
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................................

(q-1)cube O {(q~1)cube 1

Figure 13.3. Hamiltonian cycle in the g-cube.

V={(v,vy . ..,vplv,e V,1<isk}
E={[(u),uy .o o), vy, oo vl [ for some J, (uy, v) € Ejand fori #, u; = v;)

In other words, the nodes of the (cross-)product graph G are labeled with k-tuples, where the
ith element of the k-tuple is chosen from the node set of the ith component graph. The edges
of the product graph connect pairs of nodes whose labels are identical in all but the jth
elements, say, and the two nodes corresponding to the jth elements in the jth component
graph are connected by an edge. Figure 13.4 depicts three examples of product graphs. Note
that the product graph G = G, x G, can be viewed as being constructed from V| copies of
G, or |V,| copies of G,. It is easy to see that a 2D mesh is the product of two linear arrays
and that atorusis the product of two rings.

fFG=G,; xG,x..xG, and G =G, xG, x..x G, where G, is a subgraph of
G; (1<i<k), then Gisclearly asubgraph of G'. The proof that a2™ x 2™ x ... x 2™-1h-D
mesh/torus is a subgraph of the (my+m, + ... + m,_, )-cube now becomes easy:

1. The 2™ x2M x ... x2M..1 torus is the product of hrings of sizes (2™, 2™ ,...,
2mn4)

3-by-2
torus

1b

0N -
Al i
.

> W

Figure 13.4. Examples of product graphs.
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2. The(my+m,+...+m _,)-cubeisthe product of an my-cube, an my-cube, . . ., an
m,,_,-cube.
3. The 2M-node ring is a subgraph of the m-cube.

Part (2) above, which is the only part not yet proven, becomes obvious if we note that the
g-cube is the product of q linear arrays of size 2 (see, eg., the middle examplein Fig. 13.4).

It isinteresting to note that a 4-cube can be reduced to a 4 x 4 mesh by removing half of
the Dimension-1 and Dimension-2 links (Fig. 13.5). Note that the links whose removal
converts the 4-cube into a4 x 4 mesh are exactly those that turnthe 4 x 4 meshinto a4 x 4
torus. Thus, the 16-node hypercube (2-ary 4-cube) is isomorphic to the 4 x 4 torus (4-ary
2-cube).

Note that for a mesh to be a subgraph of the hypercube, its sides must be powers of 2.
The 3 x 5 mesh, e.g., is not a subgraph of the 16-node hypercube. However, because the 3 x 5
mesh is a subgraph of the 4 x 8 mesh/torus, it is a subgraph of the 5-cube.

We next examine the possibility of embedding the (2-1)-node complete binary tree in
the g-cube. A simple argument shows that straight one-to-one embedding is impossible.
Divide the hypercube nodes into those with odd and even weights, where the weight of a
node is the number of 1sinits binary label. Exactly half of the nodes, i.e., 24 nodes, fall
into each category. If the node onto which the root of the binary tree is mapped has odd (even)
weight, then the children of the root must be mapped onto even-weight (odd-weight) nodes.
Proceeding in this manner, we see that about three-fourths of the nodes of the binary tree
must be mapped onto hypercube nodes with odd or even weight. This is impossible because
only half of the nodes have each type of weight.

The above negative result can be turned into a positive one by a slight modification in
the graph to be embedded into the g-cube. The 2%-node double-rooted complete binary tree,
which is obtained from the (2%-1)-node complete binary tree by inserting a node between
the root and its right/left child, isin fact a subgraph of the g-cube (Fig. 13.6). Proving this
result is equivalent to showing that the (29-1)-node complete binary tree can be embedded
into a g-cube with dilation 2, congestion 1, load factor 1, and expansion 29/(2% —1).

Column 3
ow 0
Column 2
Column 1
Column 0

Figure 13.5. The 4 x 4 mesh/torus is a subgraph of the 4-cube.
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2%-node double-rooted Double-rooted tree Double-rooted tree
complete binary tree in the (g-1)-cube O in the (g—1)-cube 1

Figure 13.6. The 2%node double-rooted complete binary tree is a subgraph of the g-cube.

The proof is by induction. The 2-node double-rooted complete binary tree (with empty
left and right subtrees) is a subgraph of the 1-cube. This forms our basis. Let the Z+-1-node
double-rooted complete binary tree be a subgraph of the (q—1)-cube. Figure 13.6 shows how
the embedding in the g-cube can be obtained by taking two embedded treesin the 0 and 1
subcubes along Dimension ¢, removing one link from each (dotted lines in Fig. 13.6), and
inserting two new links instead (heavy lines). Note that the roles of the a and b dimensions
are interchanged in the embedded double-rooted complete binary tree within the (g—1)-cube
1 compared with that in the (q—1)-cube 0. But we know that this can be done in view of the
complete symmetry of the hypercube with respect to its dimensions.

Embeddings do not have to be 1-to-1 to be efficient or useful. For example, an
embedding of the 2%leaf, or (29"1-1)-node, complete binary tree in the g-cube is shown in
Fig. 13.7. Here, each node and all of its left descendants (those that can be reached by only
moving leftward) are mapped onto the same hypercube node. This embedding has dilation
1, congestion g, load factor g + 1, and expansion of about 1/2. Even though large congestions
and load factors are generally undesirable, this particular embedding is quite efficient if the
hypercube isto emulate atree algorithm in which only nodes at asingle level of thetree are
active at any given time.

Dimension-2
Link

& .
& Dimension-1
& Links
IS
N ¥

Dimension-0
Links

Figure 13.7. Embedding a 15-node complete binary tree into the 3-cube.
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In Section 2.4, we saw examples of tree algorithms in which activity shifts from one
tree level to the one above or below it. The embedding of Fig. 13.7 isideally suited for
emulating such tree algorithms on a hypercube.

In the semigroup computation algorithm for the binary tree, presented in Section 2.4,
only the leaves were assumed to hold data elements. The nonleaf nodes served to combine
data elements, send the partial results upward, and eventually direct the final result of the
semigroup computation toward the leaves if needed. A hypercube emulating this algorithm
with the embedding shown in Fig. 13.7 will have one node per tree leaf and thus one data
element per node. As activity shifts from the leaves toward the root, successively fewer
hypercube nodes will be doing useful work; the active nodes constitute a smaller and smaller
subcube. In the broadcasting phase of the algorithm, activity shifts back from the root node
toward the leaves, with more and more nodes (larger subcubes) becoming active in each
successive step.

Similarly, for the parallel prefix computation, the activity shifts toward the root and from
there, back toward the leaves. Again, the embedding of Fig. 13.7 leads to efficient emulation
of the algorithm on a hypercube with roughly half as many nodes as the original binary tree.

13.4. A FEW SIMPLE ALGORITHMS

In this section, we present hypercube algorithms for semigroup computation, parallel
prefix computation, and sequence reversal.

The following is an optimal algorithm involving g communication steps for semigroup
computation on the g-cube, assuming that each Processor x holds one value v[x]. Recall that
Ny (X) denotes the neighbor of Node x along Dimension k; i.e., the node whose binary |abel
differs from that of x only in bit position k.

Semigroup computation on the g-cube

Processor x, 0 < x < pdo t[x] := v[x] {initialize subcube “total” to own value}
for k=0to q—1 Processor x, 0 < x<p, do

gety :=t[N (x)]

settix]:=tx] Oy
endfor

The communication steps of the above semigroup computation algorithm for a 3-cube are
depicted in Fig. 13.8. In the first step, pairs of elements are combined across Dimension O,
yielding partial results such as v[0] O v[1] and v[2] O v[3] (these are denoted by 0-1, 2-3,
and so on in Fig. 13.8). Then, pairs of partial results are combined across Dimension 1 to
yield v[0] O v[1] O v[2] O v[3] and v[4] O v[5] O v[6] O v[7]. In general, this doubling of
the scope of the partial results continues until the single final result is simultaneously
obtained in al of the nodes.

The above agorithm is an instance of an ascend algorithm. Each node successively
communicates with its neighbors in dimension order from 0 to g—1. Thus communication
takes place between nodesthat are 1, 2, 4, . . ., 297 apart in terms of numerical node labels.
A descend algorithm is similar, except that the dimension order is g—1 to 0. The structure of
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Figure 13.8. Semigroup computation on a 3-cube.
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the hypercube is ideally suited to this type of ascend/descend algorithms that double the
scope or coverage of the result with each step.
Parallel prefix computation is similar. Each node x performs the following steps.

Parallel prefix computation on the g-cube

Processor x,0< x<p, dot[x] :=u[X] := V[X]

{initialize subcube “total” and partial prefix to own value}
for k=0to q—1 Processor X, 0 < x<p, do

get y := t{IN(X)]

stt[x]:=tx] Oy

if x>N,(x) thenu[x] :=u[x] Oy
endfor

The above parallel prefix computation is also an ascend agorithm. Each node deals with two
variables: asubcube “total” t that corresponds to the result of semigroup computation in the
current subcube and a subcube partial prefix result u that gives the result of parallel prefix
computation in the same subcube. Eventually, t becomes the semigroup computation result
and u the required prefix within the entire g-cube. Figure 13.9 depicts the communication
steps, and the partial results obtained, in a 3-cube. Again i-j stands for the partial combining
result v[i] O v[i + 1] O ... O Vv[j].

Figure 13.10 depicts another algorithm for parallel prefix computation on the hypercube
using a recursive formulation. The hypercube is divided into two halves consisting of the
even- and odd-numbered nodes (across the Oth dimension). Parallel prefix computation is
performed recursively in each half, with the odd subcube doing a diminished version of the
prefix computation in which the processor’s own value is excluded. Then, the results are
combined across Dimension-O links. All that is left to do after this step is for the
odd-numbered nodes to combine their own values with the results thus obtained. The running
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Legend {

t: Subcube "total”
u: Subcube prefix
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Figure 13.9. Parallel prefix computation on a 3-cube.

time of this algorithm on a g-cube is characterized by the recurrence T(q) = T(q— 1) + 2 =

2q=2log, p.
Our final simple algorithm deals with reversing a sequence, stored one element per
processor. By reversing a sequence v[0], v[1], . . . we mean that the element originaly in

Processor x must end up in Processor p— 1 — x; v[0] in Processor p—1, v[1] in Processor
p —2, and so forth.

Reversing a sequence on the g-cube

for k=0to g—1 Processor x,0< x<p, do

Parallel prefixes in even and odd 2 3

subcubes; own value excluded in N Odd procemons combine
the odd subcube computation Exchange values and combine their gwn valucs
0+2+4 1+3 0-4 04 oC_4) 05
0 Tdentit % % 6 ol
L 2
19345 0-6 0-6 O -7
X - 0-3
042 0-2 0-2 0-2

Figure 13.10. A second algorithm for parallel prefix computation on a 3-cube.
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Figure 13.11. Sequence reversal on a 3-cube.

get y := [Nk (X)]
setv[x] =y
endfor

Figure 13.11 shows the steps of the sequence reversal algorithm on a 3-cube. Sequence
reversal isyet another example of an ascend-type algorithm.

13.5. MATRIX MULTIPLICATION

Consider now the problem of multiplying mxm matrices A and B on a q-cube to obtain
the product matrix C, where m= 293 and p=m3 = 2% processors are used. Note that the
number g of dimensions in the hypercube is assumed to be a multiple of 3. Each processor
has three registers Ra, Rg, and Rc. For the sake of algorithm description, it is convenient to
label the hypercube processors by three indices i, j, k, where each index is a (g /3)-bit binary
number. Initialy, Processor (0, j, k) holds Ajx and B ik initsRa and Rpregisters, respectively.
All other processor registers are initialized to 0. At the end of the computation, Register R ¢
of Processor (0, J, k) will hold element C;,, of the product matrix C.

The agorithm performs al m3 multiplications needed for multiplying two mx m
matrices concurrently, one in each of the m3 processors. The remainder of the processisto
ensure that each processor holds the two elements of A and B that it multiplies and to add
the requisite terms that form each element C;,. of the result matrix.

Multiplying mxm matrices on a g-cube, with g = 3 log,m

for I = /3 -1 downto O Processor x =ijk, 0<1i, j, k<m, do
if bitlof iis1
thengety:= RA[Nqum(-‘f)] andz:= RB[N[+24/3(X)]
setRa[X] :=y; Rg[X] =2
endif
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endfor
for | = /3 —1 downto 0 Processor x=ijk, 0<i, j, k<m, do
if bit| of i and k are different
then get y : = Ra [N, (x)]
tRa[X] 1=y
endif
endfor
for | =q/3 -1 downto 0 Processor x=ijk, 0<i, j, k<m, do
if bitl of i and j are different
thengety:= RB[N1+q/3(x)]
st Rg[X]: =y
endif
endfor
Processors x, 0< x<p, do Rc:=RaxRg
p = m3=29 parale multiplications in one step}
for I=0to g/3—1 Processor x=ijk, 0<1i, j, k<m, do
if bitlofiisO
thengety:= RAN,,;, ()]
R [x] 1=Rc[X] +y
endif
endfor

The above matrix multiplication algorithm appears complicated. However, the ideas
behind it are quite simple. The first three “for” loops copy the elements of A and Binto al
other processors that need them to perform the m3 parallel multiplications. Because m = 293
copies of each element must be made, a recursive doubling scheme is used to make the
required copies in O(g) communication steps. The final “for” loop, after the multiplications,
computes the sum of the mterms that form each of the elements of C, again using recursive
doubling within (g/3)-dimensional subcubes of the origina g-cube. It should be clear that
the total running time of this matrix multiplication agorithm is O(q) = O(log p).

An example for multiplying two 2x 2 matrices on a 3-cube is shown in Fig. 13.12. For
this simple example, g/3 = 1, so each of the “for” loops degenerates into a single communi-
cation step. In the first “for” loop, processors with 1 in bit position 2 of their node labels (i.e.,
Processors 4, 5, 6, and 7) receive and store Ry and Rg values from their Dimension-2
neighbors, as shown in the middle top diagram of Fig. 13.12. In the second “for” loop,
Processors 1, 3, 4, and 6, i.e., those with different i and k components in their node labels,
receive and store Ra values from their Dimension-0 neighbors. The third “for” loop updates
the Rg values in those processors whose node labels have different i and j components (i.e.,
Processors 2, 3, 4, and 5). At this point, shown in the bottom left diagram of Fig. 13.12, data
distribution is complete. The eight processors then independently multiply their Ry and Rg
vaues, storing the resultsin R . Thefina “for” loop adds pairs of values across Dimension
2 in order to obtain elements of the result matrix Cin Processors 0, 1, 2, and 3 (bottom right
of Fig. 13.12).

The above algorithm, requiring m3 processors to multiply nx m matrices, is obviously
impractical for large matrices, which are the primary candidates for the application of parallel
processing. However, the standard block matrix multiplication scheme can be used to reduce
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Figure 13.12. Multiplying two 2 x 2 matrices on a 3-cube.

w

the number of processors required. With the block scheme, one can multiply m x m matrices
on a p-processor hypercube by simply viewing each data movement or multiplication in the
above algorithm as being applied to (m/pt/3)x(m/p!/3) matrix blocks rather than to single
matrix elements. When p/3is not an integer or does not divide m, the algorithm becomes
slightly more complex.

An analysis of the above algorithm in the case of block matrix multiplication follows.
Let the m x m matrices be partitioned into p®/3xp2/3 blocks, each of size (m/p > )x(m/p-/3).
Then, each data communication step involves transferring the m2/p?2 elements of a block
and each multiplication corresponds to 2m?3/p arithmetic operations required to multiply two
such blocks. Assuming unit-time data transfers and arithmetic operations, the total running
time becomes

T u(m, py= m2/p*? x O(log p) + 2m*/p

For m= 0O (p¥3 log p) or p = © (m3/log® m), communication and computation times are
asymptotically of the same order and Ty, (M, p) becomes O(log® p) or O(log® m). For smaller
values of m, the communication time m?/p23x O(log p) is dominant. On the other hand,
when very large matrices are multiplied on arelatively small number of processors, the 2ms3/p
term dominates the running time and linear speed-up is obtained.

13.6. INVERTING A LOWER TRIANGULAR MATRIX

A lower triangular matrix Ais a square mx mmatrix in which every element above the
main diagonal is O (see Section 11.2, particularly Fig. 11.5). The inverse of A, denoted by
A1, isanother square mx mmatrix suchthat Ax A™ = A x A=1_ wherel, isthemxm
identity matrix having 1 for each diagonal element and O elsewhere. Inversion of lower
triangular matrices is of practical importance in itself and also forms a building block for
inverting arbitrary matrices.
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A recursive agorithm for inverting m x mlower triangular matrices on a g-cube with 2
= m?3 processors can be developed based on the following result from linear algebra:

BO B! 0
if A :[C D:l then A = 4
-Dlcp! D

where Cisan (m/2) x (m/2) matrix and B and D are (m/2) x (m/2) lower triangular matrices.
This statement can be easily verified through multiplication, noting the simplification
CB™'-DD"'CB-1=CB-1,,, CB™1=0.

BO Bil 0 1m/2 0

D x —DiICB—l Dil :‘: 0 1m/2:‘:]’"
Thus, if B and D can beinverted in parallel within independent subcubes, the running time
of the algorithm is characterized by the recurrence

(m)=T,,,(m/2)+ 2T, (m/2)

mul

T

where the last term represents the time of two matrix multiplications for computing
-D~1 cB ™. Because, using the algorithm of Section 13.5, matrix multiplication can be
performed in logarithmic time, the running time of this matrix inversion agorithm is O(log?
m). The only remaining problem is to show that the two (m/2) x (m/2) matrices B and D can
in fact be inverted in parallel, with each using no more than half of the available processors.
Specifying the detailsis left as an exercise.

PROBLEMS

13.1. Properties of the hypercube
The bisection width of a g-cube is 2° 1= O(p). Let uscall thisthe link bisection width of the
g-cube to distinguish it from the node bisection width defined as the least number of nodes
whose removal would bisect the network. Show that the node bisection width of a g-cube is
much smaller and consists of 8(p/Vlog p ) nodes. Hint: Consider every hypercube node whose
weight, or the number of 1sinitshinary label, is [g/20or [§/200

13.2. Embedding meshesinto hypercubes

a  Show that the 3 x 3 mesh is a subgraph of the 4-cube.

Show that the 3 x 3 torusis not a subgraph of the 4- cube.

Show that the 3 x 5 mesh, and thus the 3 x 5 torus, is not a subgraph of the 4-cube.
Generalize the result of part (b) to any h-D torus with at least one odd side.

Prove or disprove: Any mg X mq x ... X my,_4 torus, with al of its sides even, is a subgraph
of the g-cube, whereq = =ig] [tog,m,].

Poo T

13.3. Embedding meshesinto hypercubes
Show an embedding of the 8 x 8 x 8 torus into the 9-cube. Identify explicitly the hypercube
node onto which the node (i, j, k) of the torus is mapped.

13.4. Embedding meshes into hypercubes
a  Show that any p-node 2D mesh is a subgraph of the([log, p] +1)-cube.
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b. Extend the result of part (a) by showing that any p-node h-D mesh is a subgraph of the
(fog, pCH h—1)-cube.

c.  Show that the result of part (b) isin general the best possible by providing an example of
ap-node h-D mesh that is not a subgraph of the (iog , pI+h-2)-cube.

Embedding trees into hypercubes

a  We have seen that the (29-)-node complete binary tree is not a subgraph of the g-cube.
Show that it is a subgraph of the (q+1)-cube.

b. Show that the (3 x 291-2)-node back-to-back complete binary tree, composed of two
(2%-1)-node complete binary trees whose leaves have been merged, is a subgraph of the
(gH)-cube.

Embedding trees into hypercubes

Show that the “in-order” labeling of the nodes of a (2q —1)-node complete binary tree corre-
sponds to a dilation-2 embedding in the g-cube. The in-order labeling of a binary tree requires
that each node be Labeled after all of itsleft descendants and before any of its right descendants,
with node |abels beginning from 0 and ending with 29— 2,

Embedding trees into hypercubes
Using the embedding of the eight-leaf complete binary tree into the 3-cube depicted in Fig.
13.7

a. Draw a sequence of snapshots showing how the hypercube would emulate the tree
algorithm for semigroup computation with data items stored at the leaves (see Section 2.4).

b. Compare the emulation of part (a) with the direct hypercube algorithm given in Section
13.4.

c. Repeat part (a) for the parallel prefix computation.

d. Repeat part (b) for the parallel prefix computation.

Simple algorithms on hypercubes

a Extend the semigroup computation algorithm given in Section 13.4 and its analysis to the
case where each of the p processors holds n/p data items.

b. Repeat part (a) for the parallel prefix computation.

c. Repeat part (a) for the sequence reversal agorithm.

Unidirectional hypercubes

In Section 12.2, Manhattan street networks were introduced as unidirectional mesh networks.
Show how to construct a undirectional g-cube (g even) with node in-degree and out degree of
g/2 and adiameter of g. Provide the connectivity rule for each Node x.

Pruned hypercubes

Consider a g-cube, with g even, in which each link is replaced by two unidirectional links going
in opposite directions and then outgoing links along odd (even) dimensions have been removed
for nodes with odd (even) weights. This leads to aunidirectional network with node in-degree
and out-degree of g/2.

a  Find the diameter of such a pruned g-cube.

b.  Find the bisection width of such apruned g-cube.

c. Devise an embedding of the complete g-cube into the pruned g-cube such that the dilation
and congestion of the embedding are as small as possible.
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13.12.

13.13.

13.14.

13.15.

Embedding large hypercubes into smaller ones

a Deviseadilation-1 embedding for a (g+c)-cube into a gq-cube, where ¢ > 0.

b.  What are the congestion and load factor of the embedding proposed in part (a)?

c. Isthe proposed embedding useful in performing semigroup computation, parallel prefix
computation, or sequence reversal with n data elements (n > p) through the emulation of
an n-node hypercube on a p-node hypercube?

Matrix multiplication on a hypercube

a. Modify the matrix multiplication algorithm of Section 13.5 such that 2
are multiplied on ag-cube (q even).

b.  Analyze the complexity of the algorithm proposed in part (a).

C. Modify the matrix multiplication algorithm of Section 13.5 such that 2% x 2% matrices are
multiplied on a g-cube.

d.  Analyze the complexity of the algorithm proposed in part (c).

2 2
q/xq/

2 matrices

Solving numerical problems on a hypercube
Develop hypercube algorithms for the following problems:

a  Solving atriangular system of linear equations via back substitution (see Section 11.2).
Solving atridiagonal system of linear equations (see Section 11.3).

Solving an arbitrary system of linear equations by Gaussian elimination (see Section 11.4).
Solving an arbitrary system of linear equations by Jacobi relaxation (see Section 11.4).
Finding the transitive closure of a graph, given its adjacency matrix (see Section 11.5).
Labeling the connected components of a binary image (see Section 11.6).

~o o0 T

Mystery hypercube algorithm

Consider the following hypercube algorithm that deals with an m x m matrix A. Each of thep
= 2q = m? processors has aRegister R 5 that holds some element of A at any giventimeand a
Register Ry used for temporary storage. Initially, a, i is stored in the processor whose ID ismi
+j,i.e, inrow-magjor order.

Mystery algorithm operating on an m x m matrix A on aq-cube, withgq=2log, m

forI=g—1 down to q/2 Processor X, 0 < x< p,do
if X =X . g2 { Comparebits| and| — g/2 of the processor’s binary node label}
then get y:= RA[N, ()] { Get neighbor’s A value}
set Ry [X]:=y {and storeit in the B register}
endif
if X| #X1-gq/2 {Compare bits | and | — g/2 of the processor’s binary node label}
then get y:= RN, /2(0)] { Get neighbor’s B value}
set Ry[X]:=y (and storeit in the A register}
endif
endfor

a  what does the above algorithm accomplish?
b. what is the algorithm’s running time?

Pruned hypercubes

Consider ag-cube that is thinned by removing a fraction 1-f of the 2 91 }inks between the two
(g-1)-cubes, say one-half or three-fourths of them. This s recursively applied from the highest
dimension down to some Dimension ¢ (we cannot do this al the way down to Dimension O,



278

INTRODUCTION TO PARALLEL PROCESSING

because the network will become disconnected). The total number of links, and thus the
network cost, isabout f times that of the original g-cube. Suggest arule for removing haf of
the links such that the resulting network possesses desirable properties [Hsu96].
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Sorting and Routing
on Hypercubes

In Chapters 9 and 10, we discussed the importance of sorting and data routing
problems in parallel processing and presented several algorithms of varying
complexities and efficiencies to solve these problems on 2D meshes and tori.
This chapter is devoted to solving the same problems on the hypercube archi-
tecture. A single chapter is adequate here as we are already familiar with the
fundamental notions and tools used in developing efficient sorting and routing
algorithms. We will see that the smaller diameter and wider bisection of the
hypercube allow us to develop more efficient algorithms, while the recursive
structure of the hypercube makes the solutions easier to develop, describe, and
understand. Chapter topics are

e 14.1. Defining the sorting problem

¢ 14.2. Bitonic sorting on a hypercube

e 14.3. Routing problems on a hypercube
e 14.4. Dimension-order routing

e 14.5. Broadcasting on a hypercube

e 14.6. Adaptive and fault-tolerant routing

279
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14.1. DEFINING THE SORTING PROBLEM

The general problem of sorting on a hypercube is as follows: Given n records distributed
evenly among the p = 29 processors of a g-cube (with each processor holding n/p records),
rearrange the records so that the key values are in the same order as the processor node labels.
Ideally, the product of the number p of processors used and the running time T of the sorting
algorithm will be pT = ©(nlog n), which is optimal. This implies a running time of T=0O((n
log n)/p) and linear speed-up. Currently we cannot achieve this optimal running time for al
values of nand p.

For the special case of n=p, i.e,, each processor holding a single record before and after
sorting, the most practical hypercube sorting algorithms are based on Batcher’s odd—even
merge or bitonic sort, which we will study in the following sections. Batcher’s sorting
algorithms (see Section 7.4) achieve asymptotically suboptimal O(log? n) = O(log? p)
running time. An O(log n)-time deterministic sorting a gorithm, which would be optimal in
view of both the O(n log n) sequential-time lower bound and the O(log p) diameter of the
hypercube, is not currently known. However, slightly relaxing the assumption n = p or the
reguirement for determinism or worst-case bound, makes the problem manageable.

If we have fewer than p records to sort (n < p/4), then a hypercube sorting algorithm
exists that allows us to do the job in O(log p log n/log(p/n)) time [Nass82]. When n = p*¢,
for some € > 0, the above agorithm runsin optimal logarithmic time, asin this case

1—¢

log p log n/log(p/n) = logp= é log n
If we have many more than p records to sort (n >> p), then hypercube algorithms exist that
allow us to do the job in O(n log n/p) time, i.e., with linear speed-up [Plax89].

The best known deterministic sorting algorithm for the case p = n was published in 1990
and requires O(log plog log p) or O(log p (log log p)?) running time in the worst case,
depending on assumptions [Cyph90].

From a practical standpoint, randomized agorithms that sort p records in O(log p) time
on the average, but may have higher complexities in the worst case, are quite satisfactory.
Since the late 1980s, several randomized sorting agorithms have been proposed [Reif87].
The proof of the O(log p) = O(log n) average time complexity of such agorithms is based
on demonstrating that for all but a minute fraction of possible input permutations, sorted
order prevailsin logarithmic time.

In Section 14.2, we will study a sorting algorithm for the hypercube that is based on
Batcher's bitonic sorting method. For this reason, we review the definition of bitonic
sequences and Batcher’ s bitonic sorting method in the remainder of this section.

A bitonic sequenceisonethat “risesthenfals’ (xy<x, < ... <x2x, 25,2 . .2
x, ), ‘falsthenrises’(x;2 x> ... 2 x,<x,, <x,,<...<x,_), Orisobtained from the
above two types of sequences through cyclic shifts or rotations (see the discussion of
Batcher's bitonic sorting network at the end of Section 7.4). Figure 14.1 depicts four
examples of bitonic sequences. The examples on the left are of the “rise-then-fall” and
“fall-then-rise” types. Such sequences “change direction” a most once; contrast this to
monotonic sequences that do not change direction. The examples on the right are obtained
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Figure 14.1. Examples of bitonic sequences.

by cutting a portion of the corresponding sequence and attaching it to the right/left of the
remaining portion. This amounts to left/right rotation or cyclic shift of the sequence.
A bitonic sequence, stored one element per processor on a p-processor linear array, can

be sorted in the following way (see Fig. 14.2). The right half of the sequence is shifted left
by p/2 steps. Then, each processor in the left half of the array compares the two values that

Shifted right half Bitonic saquence

shift right half of
data to left half

Keep smaller value of
each palr and ship the
larger value to right

~—
Each half is a bitonic
sequence that can be

sorted independently

Figure 14.2. Sorting a bitonic sequence on a linear array.
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it holds, keeps the smaller value, and sends the larger value to the right by p/2 steps. Each
half of the array now holds a bitonic sequence. Furthermore, each element in the right half
of the array is no smaller than any element in the left half. Thus, the bitonic sequence sorting
problem has been reduced to solving two smaller problems of the same type independently
on the two halves of the array. Because the shifting of the right half to the left half and shifting
back of the larger values to the right half take a total of p steps, the running time of the above
sorting agorithm for bitonic sequencesis characterized by the recurrence B(p) = B(p/2) + p
=2p -2, given that B(1) = 0.

An arbitrary input sequence on a p-processor linear array can be sorted recursively as
follows. First sort the two halves of the array in the opposite directions so that the resulting
sequence is bitonic (say, rising then falling). Then sort the bitonic sequence using the method
presented above. The running time of this bitonic sorting algorithm is characterized by the
recurrence

T(p) =T(p/2) + B(p)
=T(p2) +2p-2
=4p—-4-2log,p

What actually happens as this bitonic sorting algorithm is executed can be seen in the example
of Fig. 14.3. First, subsequences of length 2 are sorted in opposite directions inB(2) steps.
Then, pairs of such sequences, which form bitonic sequences of length 4, are sorted (merged)
in B(4) steps, and so on. Thus, the following is an alternate formulation for the running time
of the algorithm, proceeding in a bottom-to-top order:

T(p)=B(2) +B(4) + -+ B(p)

=2+6+14+- +(2p -2)
=4p -4-2log,p

5 9 10 15 3 7 14 12 8 1 4 13 16 11 6 2

——m=> Kmmmm mmmo> Kemm= mmem> Kmme=m mmme> Kmeme

3 5 7 9 10 12 14 15 16 13 11 8 6 4 2 1

Figure 14.3. Sorting an arbitrary sequence on a linear array through recursive application of
bitonic sorting.
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For alinear array of processors, the bitonic sorting algorithm is clearly inferior to the simpler
odd—even transposition sort, which requires only p compare-exchange steps or 2p unidirec-
tional communication steps. However, the situation is quite different for a hypercube.

14.2. BITONIC SORTING ON A HYPERCUBE

If we sort the records in the lower (X, = 0) and upper (X4 = 1) subcubes in opposite
directions, the resulting sequence in the entire cube will be bitonic. Now the shifting of the
upper half of the sequence to the lower half and shifting back of the larger values to the upper
half can each be done in a single unidirectional communication step. These two routing steps,
along with the comparison performed between them, constitute a parallel compare-exchange
step. The complexity of the algorithm in terms of the number of compare—exchange stepsis
thus characterized by the recurrence T(q) = T(q — 1) + B(q), where B(q) is the time needed
for sorting a bitonic sequence. B(q) in turn satisfiesB(q) = B(q—1) + 1 = g, leading to

T(q)=T(a-1)+q=q(q+1)/2=log,p (log, p+ 1)/2

Here is the complete algorithm for sorting a bitonic sequence, stored one element per
processor in a g-cube, with the element in Processor x denoted by \[X].

Sorting a bitonic sequence of size n on the g-cube, where g = log, n

for | = q— 1 downto O Processor x, 0 < x< p, do
ifx=0
then get y := v[N,(X)]; keep min(v(X), y); send max(v(X), ¥) to N;(x)
endif

endfor

The above algorithm is yet another instance of the ascend class of algorithms. An example
for the algorithm is depicted in Fig. 14.4. The bitonic sequence 1, 3, 5, 8, 9, 6, 3, 2 isinitialy
stored in the eight nodes of the 3-cube. After the compare—exchange step along Dimension
2, we have two size-4 bitonic sequences:. 1, 3, 3, 2 in the lower cube and 9, 6, 5, 8 in the
upper cube. Another compare—exchange step along Dimension 1 gives us four bitonic
sequences of size 2, which are then sorted by the final compare—exchange step along
Dimension 0.

Batcher's odd—even merge sort is similar to bitonic sort and takes the same amount of
time (see Section 7.4). Details of its implementation are thus left as an exercise.

Batcher's O(log? p)-time bitonic and odd—even merge sorting algorithms for ordering
p elements on a p-processor hypercube are presently the fastest practical deterministic sorting
algorithms available. The more complicated O(log p log log p)-time a gorithms (see, eg.,
[Leig92], pp. 642-657) are not competitive for p < 220, Randomized algorithms, on the other
hand, usually sort in O(log p) steps, so they are quite efficient on the average. However, they
do not provide guaranteed speed-up. This is usually not a problem in practice in the same
sense that the worst-case O(n?) running time of sequential quicksort for sorting a sequence
of length niis not problematic.
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Figure 14.4. Sorting a bitonic sequence of size 8 on the 3-cube.

14.3. ROUTING PROBLEMS ON A HYPERCUBE

Intuitively, hypercubes should perform better in dealing with routing problems than 2D
meshes, because their larger node degree trandates to the availability of more aternate
(shortest) paths between processors, its logarithmic diameter leads to shorter routes, and its
large bisection width allows many concurrent data transfers to take place between distant
nodes. We will see shortly that thisis usualy the case. The improved performance is achieved
for certain classes of routing problems unconditionally and for others on the average; the
worst-case performance for a general one-to-one routing problem, however, is not much
improved compared with 2D meshes. We will use an interesting lower-bound method to
prove this latter result.

The types of routing problems that we will discuss in this and the following sections are
essentially the same as those introduced in Section 10.1 in connection with 2D meshes and
tori. In particular, we deal with one-to-one and one-to-many routing problems, which include
packing and broadcasting as specia cases, respectively. The simplicity of path selection
strategies in most hypercube routing agorithms makes them suitable for both packet and
wormhole routing. As usual, if the routing problem is a permutation, with each of the p
processors having a packet to send and each node being the destination of exactly one packet,
sorting the packets by their destination node address will solve the routing problem.

Recall, a'so, that routing algorithms can be divided into the two classes of oblivious,
with the routing path uniquely determined by source and destination node addresses, and
nonoblivious or adaptive, where the path taken by a message may also depend on other
messages in the network. Finally, based on how the computations needed to determine the
path of a message are performed, we have the following dichotomy.
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* On-line routing algorithms make the routing decisions on the fly in the course of
routing: Route selections are made by a parallel/distributed algorithm that runs on the
same system for which routing is being performed.

¢ Off-line routing algorithms are applied to routing problems that are known a priori:
Route selections are precomputed for each problem of interest and stored, usually in
the form of routing tables, within the nodes.

An on-line routing algorithm is often preferred, not only because routing problems may
develop dynamically and in unpredictable data-dependent ways, but also in view of the
preprocessing overhead and storage requirements of an off-line algorithm.

Frequently, we restrict our routing algorithm to send each message along a shortest (or
close to shortest) path. Because most pairs of nodes in a hypercube are connected via multiple
shortest paths, a shortest-path routing algorithm can maintain a high degree of adaptivity
and flexibility despite the restriction.

Though not an absolute requirement, on-line routing algorithms are often oblivious, or
only locally adaptive, while off-line algorithms take advantage of available information to
find routes that are (close to) globally optimal. Oblivious on-line routing algorithms may
suffer from inefficiencies that lead to poor performance, particularly in the worst case.
Routing decisions in on-line algorithms are necessarily local, potentially leading to heavy
data traffic in some areas of the network, while available aternative paths are being
underutilized.

Consider, for example, the following positive result: Any routing problem with p or
fewer packets, having distinct sources and destinations, can be solved on a p-processor
hypercube in O(log p) steps, using an off-line algorithm to precompute the paths. The off-line
algorithm chooses the routes in such a way that the route taken by one message does not
significantly overlap or conflict with those of other messages, leading to optimal time.

In the remainder of this section, we discuss some negative or lower-bound results whose
scopes extend beyond the hypercube architecture. An oblivious routing algorithm can be
characterized by its dilation, defined as the length of the longest path between a pair of nodes
(which may be larger than the network diameter for some agorithms), and congestion,
defined as the maximum number of paths going through the same link for the worst-case
routing problem when that algorithm is used. It is obvious that such a routing algorithm
requires Q(dilation + congestion) routing steps in the worst case. Randomized routing
algorithms can be devised that asymptotically match the above lower bound in terms of
performance [Leig94].

The effect of signal propagation delays on long wires can be taken into account in the
above lower bound by defining generalized dilation as the sum of edge delays on the longest
path and generalized congestion as the maximum over all edges of the number of packets
that traverse that edge multiplied by the delay of the edge. In this case, efficient randomized
routing algorithms can still be constructed [Gree95], though the performance of such
algorithms does not quite match the above lower bound.

With unit-time edge delays, the network diameter can be used as a lower bound for
maximum dilation. The maximum congestion, however, is harder to characterize. The
following theorem allows us to establish alower bound for maximum congestion, and thus
for worst-case delay, of any oblivious routing algorithm on an arbitrary network. Hence, the
theorem provides insight into the nature and intrinsic limitations of oblivious routing. When
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applied to the p-node hypercube, this genera result implies that any oblivious routing
algorithm requires Q(vp /log p) time in the worst case. Thus, the worst-case performance of
an oblivious routing algorithm for the hypercube is only slightly better than they(\p ) time
required on a much simpler square mesh. However, in most instances, the actual routing
performance is much closer to the logarithmic-time best case than to the above worst case.

THEOREM 14.1. Let G = (V, E) represent a p-node, degree-d network. Any oblivious
routing algorithm for routing p packets in G needs Q(Vp /d) time in the worst case.

PROOF. Thereare p(p — 1) paths P, for routing among all node pairs. These paths are
predetermined and independent of other traffic within the network. Our strategy will be to
find k pairs of Nodes u;, v; (1<i<k) suchthat u # ujand v, #v; fori # j, and Py v, al pass
through the same Edge e. Because at most two packets can go through a bidirectional link
in each step, Q(k) steps will be needed for some 1-1 routing problem. The main part of the
proof consists of showing that k can be as large asVp /d. Consider the p — 1 different paths
P, ending in some Node v and let E(v, k) denote the set of edges such that at least k of these
paths pass through them. Let V(v, k) be the set of nodes that are incident to the edges in

E(v, k). Clearly,

IV(v, k)l < 21E(v, k)l

If k< (p—1)/d, then v O V(v, k), as no more than d edges enter v and at least one of them
should be on (p — 1)/d or more of thep — 1 paths. Let k < (p — 1)/d and consider the [V —
V(v, K)O nodes that are not in V(v, k). Because v [0 V(v, k), a path leading from such a node to
v must, at some point, enter a node in V(v, k). Let (w, w') be the edge leading the path under
consideration to anodein V(v, k); i.e, w O V(v, K), w O V(v, k). Given that w 0 V(v, k), at
most k — 1 such paths can enter V(v, k) via the Edge (w, w'). Additionally, because the degree
of w' isat most d, no more than d — 1 choices for w exist. Thus,

IV~ V(v, I < (k — 1)(d - DIV, k)
In other words, for any k satisfying k< (p — 1)/d, we have
p=IV-Va, b+ 1V, bl
<[+ (k- D(d - D)V, k)
<21+ (k- 1)(d - DJE(, k)
< 2kdE(v, k)l
In particular, for k = p /d, wehave DE(v, k(= p/(2kd). Summing over all nodesv, we get
oy EOv, k)l 2 p?/(2kd) = pNp /2

Because there are no more than pd/2 edgesin G, there must be an Edge e such that e 0 V(v, k)
for at least k = (p\/17/2)/(pd/2) = \/;T/d different choices of v. Selecteand vy, v,, . . ., v
such that e JE(v; , k) for 1 <i<k. It iseasy to see that one can select the knodes u; , uz, . . .,
Uy, such that Fl)"\’vi passes through efor 1 < i < k. Node u; is picked from among the previously
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unselected members of E(v , k); because each such set has k or more members, one can always
find an as yet unselected member. This compl etes the proof of Theorem 14.1. a

14.4. DIMENSION-ORDER ROUTING

Dimension-order routing on the hypercube is essentially a generalized version of the
greedy row-first routing on the 2D mesh. In row-first routing, we “adjust” the column number
or Dimension 1 of the message until it is aigned with the column number of the destination
node. Then we adjust the row number or Dimension 0.

In a hypercube, we can do the adjustment of the g dimensions in any order. However,
adjusting in ascending (descending) order of the dimensions is usualy chosen in view of its
correspondence with ascend (descend) class of algorithms. Hereis an example:

Source node |abel 01011011
Destination node |abel 11010110
Dimensions that differ T

Route 01011011
11011011
11010011
11010111
11010110

Discussion and analysis of routing algorithms on hypercube architecturesis facilitated
if we consider a derivative network that is obtained by “unfolding” the hypercube. An
unfolded g-cube consists of 29(q + 1) nodes arranged into 29 rows, numbered 0 through
29 —1,and g + 1 columns, labeled 0 through g. Nodes in Columns i and i + 1 are connected
by straight or horizontal links aswell as*“cross’ linksthat correspond to Dimension-i links
of the hypercube. The network obtained in this way (Fig. 14.5) is known as an unfolded
hypercube, indirect cube, or butterfly network. Squeezing the network horizontally until all
columns overlap will result in the hypercube network shown on the right side of Pig. 14.5.

Dimension-order routing between Nodes i and j in a hypercube can be viewed as routing
from Node i in Column 0 (qg) to Node j in Column q (0) of the butterfly network. This makes
it easy to derive routing algorithms, visualize message paths, and analyze the delays resulting
from link or node congestion.

Consider, for example, routing a message from Node 3 to Node 6 of a 3-cube. The heavy
linesin Fig. 14.6 show that the message can be routed via a path of length 2 that goes through
the intermediate node 2. The unique path of the message from Node i to Node j can be easily
determined on the fly (on-line routing) if we XOR the labels of the source and destination
nodes and append the result to the head of the message as a routing tag (L SB-first for ascend,
MSB-first for descend). Then, in Column 0O of the butterfly network, the Oth bit of the routing
tag isused to decide if the straight link (tag = 0) or the cross Link (tag = 1) should be taken,
in Column 1 the 1st bit is used, and in Column 2 the 2nd bit controls the path selection.

In the example of routing from Node 3 to Node 6, the routing tag is011 [0 110 = 101.
This indicates the “cross—straight—cross’ path consisting of the heavy solid lines in Fig. 14.6.
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Figure 14.5. Unfolded 3-cube or the 32-node butterfly network.

A second example path is represented by the heavy dotted lines in Fig. 14.6. This path goes
from Node 6 to Node 1 and corresponds to the routing tag 110 [0 001 = 111. This represents
a “cross—cross—cross’ path, which is a diametral path in the original hypercube. It should
be clear that the number of cross links taken, or the number of 1sin the routing tag, equals
the length of path between the source and destination nodes.

The node using a particular bit of the routing tag to make its routing decision can either
discard the bit or cyclically shift the tag by 1 bit. In the former case, the message arrives at
its destination with the routing tag completely removed. With the latter option, the routing

Figure 14.6. Example dimension-order routing paths.
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tag returns to its original form by the time the message arrives at its destination and thus can
be used by the receiving node to identify the sender.

The two messages shown in Fig. 14.6 are routed via digoint nodes and links. Thus, they
do not give rise to delays related to queuing or congestion. We can add still other paths, say
from Node 4 to Node 7, without increasing the routing delay. Multiple messages that use
distinct intermediate nodes and links can be routed simultaneously in g steps on the g-cube.
On the other hand, message paths that “meet” in a particular node of the butterfly, or go
through the same edge, may cause additional delays.

The question, now, is to determine the extent of these additional delays when dimen-
sion-order routing is used in the hypercube. First, observe that the butterfly network cannot
route all permutations without node or edge conflicts. For example, any permutation
involving the routes (1, 7) and (0, 3) leads to a conflict in the dimension-1 edge going from
Row 1 to Row 3. Therefore, the extent of conflicts depends on the particular routing problem.
There exist “good” routing problems for which conflicts are nonexistent or rare. There are
also “bad” routing problems that lead to maximum conflicts and thus the worst-case running
time predicted by Theorem 14.1.

The packing problem is an example of a good routing problem. Here, a subset of k nodes
(k < p) in Column 0 of the butterfly network have messages or values and we want to “pack”
these values into consecutive processors in Column g, beginning with Row 0. The hypercube
counterpart of this problem is to pack a set of values, held by a subset of processors, into the
smallest possible subcube that contains Processor 0. Figure 14.7 shows an instance of this
problem with k= 4 values (A, B, C, D) routed to Rows 0-3 in Column 3. The destination
node address for each value is easily obtained by a diminished parallel prefix computation
yielding the rank of each value (a number between 0 and k — 1). It isfairly easy to show that
such a packing problem always leads to node-disjoint and edge-disjoint paths and, thus, O(q)
routing time, regardless of the number k of the input packets.

dim 0~ dim1 ~ dim2

0 Ao
.on OB 1
2 “ 02
4 CQ 4
5 5
ov.‘ &
7 7

Figure 14.7. Packing is a "good" routing problem on the hypercube.
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The bit-reversal permutation is an example of a bad routing problem for dimension-order
routing. Bit-reversal permutation routing is when each Node X = X 4 4 X4 5. - - X% heeds to
send a value to the node whose binary label is the reverse of that for x, i.e, to Node
X0 X+ - X3 oxq1 It is easy to show that this routing problem requires ©(Np) time in the worst
case. Thisis even worse than what is predicted by Theorem 14.1.

Let g=2a+ 1 and consider the source-destination pairs000 ...00X;. .. X, X,and
Xa X3 ---% 000...00(i.e, source/destination nodes whose labels begin/end witha + 1
zeros, with the rest of the bits being identical but in reverse order). All such packets must go
through node00 0. .. 0 0 when routed in dimension order. The number of packets of this
type is2® = 2(°87"D/2 = /2 This example shows us that there exist permutation routing
problems of practical interest for which &(¥p) routing steps and roughly the same number
of message buffers (per node) are needed.

Figure 14.8 depicts an example of the above worst-case routing problem for a= 1. Our
aim isto route 2%= 2 packets from Node 00x, to Node x,00, X, 0{0, 1}. We see that halfway
through their routes, the two packets converge into Node 000 and then diverge on separate
paths to their respective destinations. In this small example, we have p = 8 and thus only
Vp/2 =2 packets converge into Node 0. However, the problem would be much worse on a
larger hypercube, as suggested by the above analysis.

The final item of concern here is to deal with the message buffer requirements of the
dimension-order routing algorithm. One may think that if we limit each node to a small,
constant number of message buffers, then the above bound still holds, except that messages
will be queued at several levels before reaching Node 0, i.e., a message is not alowed to
advance to the next column of the butterfly until the next node is ready to accept it. However,
gueuing the messages at multiple intermediate nodes may introduce additional delays that
we have not accounted for, so that even thee(\/; } running time can no longer be guaranteed.
In fact, one can prove that if each node of the hypercube is limited to O(1) message buffers,

Y 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Figure 14.8. Bit-reversal permutation is a "bad" routing problem on the hypercube.
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there exist permutation routing problems that require O(p) time, i.e., as bad as on a linear
array!

Despite the poor performance of dimension-order routing in some cases, one should not
be unduly alarmed by the above negative results. First, the performance is usually much
better, i.e., log, p + o(logp) for most permutations. Hence, the average running time of the
dimension-order routing algorithm is very close to its best case and its message buffer
requirements are quite modest.

Second, if we anticipate any (near) worst-case routing pattern to occur in a given
application, two options are available to us. In the first option, the routing paths for these
worst-case patterns are precomputed, using an off-line routing algorithm, and stored within
the nodes. With the second option, the algorithm is made to behave close to its average case
by doing randomized routing: Each packet is first sent to a randomly chosen intermediate
destination and from there to its final destination. In this way, any worst-case routing problem
is converted to two average-case routing problems. The probabilistic analyses required to
show the good average-case performance of dimension-order routing are quite complicated.

For wormhole routing, some of the above results are directly applicable. Obviously, any
good routing problem, yielding node- and edge-disjoint paths, will remain good for worm-
hole routing. As an example, in Fig. 14.7, the four worms corresponding to the messages A,
B, C, D will move in the network with no conflict among them. Each message is thus
delivered to its destination in the shortest possible time, regardless of the length of the worms.
For bad routing problems, on the other hand, wormhole routing aggravates the difficulties,
as each message can now tie up a number of nodes and links.

In the case of wormhole routing, one also needs to be concerned with deadlocks resulting
from circular waiting of messages for one another. Fortunately, dimension-order routing is
guaranteed to be deadlock-free. With hot-potato or deflection routing, which is attractive for
reducing the message buffering requirements within nodes, dimension orders are occasion-
ally modified or more than one routing step along some dimensions may be allowed.
Deadlock considerations in this case are similar to those of other adaptive routing schemes
discussed in Section 14.6.

14.5. BROADCASTING ON A HYPERCUBE

A simple “flooding” scheme can be used for broadcasting a message from one node to
al nodesin ag-cube in g steps, provided that each node can send a message simultaneously
to al q neighbors (the all-port communication model). The source node sends the broadcast
message to all of its neighbors. Each node, on receiving a broadcast message for the first
time, relaysit to al of its neighbors, except the one from which the message was received.
Thus, in a 5-cube, the knowledge about the broadcast message spreads in the following
pattern:

00000 Source node

00001, 00010, 00100, 01000, 10000 Neighbors of source

00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000
Distance-2 nodes



SORTING AND ROUTING ON HYPERCUBES 293

00111, 01011, 10011, 01101, 10101, 11001, 01110, 10110, 11010, 11100
Distance-3 nodes

01111, 10111, 11011, 11101, 11110 Distance-4 nodes

11111 Distance-5 node

The single-port communication model is more reasonable and is the one usually
implemented in practice. In this model, each processor (or actually the router associated with
it) can send or receive only one message in each communication cycle. A simple recursive
agorithm allows us to broadcast a message in the same g steps with this more restricted
model. Suppose that in the first communication cycle, the source node sends the broadcast
message to its Dimension-(g—) neighbor. The source node x and its Dimension-(g-I)
neighbor Ng-1(X) now independently broadcast the message in their respective subcubes.
Broadcasting time is characterized by the recurrence T(q) = 1 + T(q— 1) = g. Figure 14.9
shows the resulting broadcast pattern which is known as abinomial tree.

For long messages consisting of multiple smaller packets, or in wormhole routing,
transmission of packets or flits can be pipelined. The top set of diagrams in Fig. 14.10 show
amessage composed of four parts A, B, C, D being broadcast in the 4-cube using the binomial
tree scheme of Fig. 14.9. The message is sent in its entirety to a neighbor of the source node
before being forwarded to other nodes on the path to various destinations.

The pipelined version of the binomial-tree routing algorithm is depicted in the middle
set of diagrams in Fig. 14.10. Here the flit or packet A is forwarded by the neighbor as soon
as it is received from the source node. Of course, we are assuming that each node can
send/receive messages over al of its ports simultaneously. For example, in the rightmost
snapshot shown for the pipelined binomial-tree scheme in Fig. 14.10, the node that is
receiving D from the source node also has its other three ports active.

The last broadcasting scheme shown in Fig. 14.10, known as Johnsson and Ho’s method
[John89], is faster than the pipelined binomial-tree scheme but involves out-of-sequence
transmission of the messages. For example, the neighbor to the right of the source node in
Fig. 14.10 receives the C part of the message first, followed in turn by B, A, and finally D.
This property creates additional storage and transmission overheads because of the need for
supplying a sequence number on each part of the message.

When used with wormhole routing, all tree-based broadcasting schemes have the
undesirable property that a path blockage in any branch propagates toward the source (root)
node and eventually blocks the entire tree. No further progress can be made until the blocked

Figure 14.9. The binomial broadcast tree for a 5-cube.
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Johnsson & Ho's method

Figure 14.10. Three hypercube broadcasting schemes as performed on a 4-cube.

branch is freed; however, blockage may again occur by some other branch becoming
congested. In the worst case, this may result in indefinite blockage or deadlock.

A variety of path-based broadcasting or multicasting schemes have been proposed to
alleviate the above problems. In path-based multicasting, the destination nodes of a multicast
message are divided into subsets, with the ith subset forming alist or path that begins at the
source node and ends at a destination node D; within the subset. Multicasting is then
accomplished by sending a separate message from the source node to each D, along the
designated path. The message headed for D; is picked up (copied) by al of the intermediate
destination nodes along the path. A detailed discussion of path-based multicasting is given
by Duato et a. ([Duat97], pp. 199-219).

14.6. ADAPTIVE AND FAULT-TOLERANT ROUTING

Because there are up to g node-digjoint and edge-dijoint shortest paths between any
node pairs in a g-cube, it is possible to route messages around congested nodes/links or in
spite of node and/or link faults. Such adaptive routing algorithm have been extensively
studied for hypercube networks and the following discussion should be viewed only as an
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Subnetwork 0 Subnetwork 1

Figure 14.11. Partitioning a 3-cube into subnetworks for deadlock-free routing.

introduction to the issues and methods involved in designing such algorithms. Published
research papers in this area consider one-to-one and collective communications for both
packet and wormhole routing schemes.

A useful notion for designing adaptive wormhole routing algorithms is that of virtual
communication networks. For example, if in a hypercube we replace each bidirectional link
with two unidirectional ones going in opposite directions, we can divide the hypercube’s
communication links into two subsets, defining two subnetworks or virtual networks. Let
Subnetwork 0 (1) consist of al of the links that connect a node to another node with larger
(smaller) node label. Figure 14.11 depicts these subnetworks for a 3-cube.

Because each of the two subnetworks shown in Fig. 14.11 is acyclic, any routing scheme
that begins by using the links in Subnetwork 0, at some point switches the routing path to
Subnetwork 1, and from then on uses the links in Subnetwork 1 exclusively, is guaranteed
to be deadlock-free. Such a routing scheme first adjusts all of the dimensions that need to be
changed from 0to 1, in Phase 0, before dealing with the dimensions that must change from
1to 0, in Phase 1. Within each phase, the dimensions can be handled in any order, thus
providing added flexibility in case a node/link becomes congested or fails.

The above scheme solves the problem of deadlock in adaptive wormhole routing for
hypercubes but it has some drawbacks. A message from Node x to Node y isfirst sent from
x tothenodewhose ID isx O y (logical OR of x and y) and from there to y. Because of this,
some nodes/links may become more congested than others, leading to performance degra-
dation. Such problems can be avoided by more complicated schemes for partitioning the
hypercube network into virtual networks. The methods used may involve dividing each
unidirectional physical channel into multiple virtual channels that time-share the physical link

Fault-tolerant routing on hypercubes and other networks constitutes a fascinating and
active research areain parallel processing. We will revisit this problem in Chapter 19. For
now, it suffices to note that the fault diameter of a hypercube (the diameter of the surviving
part when faulty nodes/links are removed) grows slowly with an increase in the number of
faulty elements. For example, the fault diameter of a g-cube is upper bounded by g + 1 with
at most q— 1 faultsand by g + 2 with 2q— 3 or fewer faults [Lati93].

PROBLEMS

14.1. Bitonic sorting on alinear array
Unfold the four phases of the sorting example depicted in Fig. 14.3, showing al shifting and
compare—exchange steps and verifying that the total number of stepsis T(16) = 4 x 16 — 4 —
21og,16 =52.
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Bitonic sorting on aring
Does changing the linear array into a ring speed up the bitonic sorting algorithm? How or why
not?

Batcher’s odd—even merge sort

a  Describe Batcher's odd—even merge sort (presented in Section 14.2) in the form of an
algorithm for the g-cube.

b. Draw aset of diagrams, similar to thosein Fig. 14.4, that show how the algorithm works.

¢. Analyze the complexity of the algorithm and show that it requires O@@?) running time.

Batcher’s bitonic sorting algorithm

a Analyze the complexity of Batcher’s bitonic sorting algorithm when it is adapted to run
with n/p elementsin each of the p = 29 processors on a g-cube.

b. Using the bitonic sorting algorithm (as depicted in the example of Fig. 14.4), show that
any shift permutation, where the packet in each Node i needs to go to Node i + kmod 29,
can be routed on ag-cube in g steps, i.e., with no conflict.

Sorting by multiway merging

Suppose that you are given an agorithm to merge JE sorted lists, each of size J; ,ona
p-processor hypercube in O(log p log log? p) time. Show how the p-processor hypercube can
sort alist of sizepin O(log p log log?2 p) time.

Alternative sorting algorithms
Show how the sorting algorithms discussed in Section 6.4 in connection with the PRAM
abstract shared-memory model can be implemented on the hypercube.

Lower bounds for routing
Justify Q(generalized dilation + generalized congestion) as alower bound for oblivious routing
on an arbitrary network.

Generalized packing

The generaized packing problem on ag-cube is defined as that of sending k packets, stored
one per processor (k < p), to asequence of k consecutive nodes, beginning with a given Node
b. The packing problem exemplified by Fig. 14.7 corresponds to the special case of b=0in
this generalized version.

a  Show that the generalized packing problem is a good problem for dimension-order routing.

b. Using the result of part (a), show that any shift routing problem, where a packet initially
residing in Node i needs to go to Node i + k mod 29, can be routed on a g-cube in g steps
with no conflict.

c. Can the order of traversing the q dimensions be reversed for packing or generalized
packing?

Matrix transposition

The elements of an m x m matrix are stored, in row-major order, on the p = 24 = m2 processors
of ag-cube. The matrix transposition routing problem is defined as rearranging the elements
into column-major order. Thisrequiresthe element in Row i, Column j to move to the processor
currently holding the element in Row j, Column i.

a  Show the paths needed to transpose a4 x 4 matrix on a 16 x 5 butterfly network.
b. Ismatrix transposition a good or bad problem for dimension-order routing on a g-cube?
c. Develop an efficient hypercube algorithm for matrix transposition as defined above.



SORTING AND ROUTING ON HYPERCUBES 297

14.10. Hypercube with diametral links
Itis possible to augment the hypercube architecture by adding a link between each node and
its dimetrically opposite node. Thisincreases the node degree from qto g + 1. In the augmented
architecture, two nodes are connected iff the Hamming distance between their binary labelsis
either 1 or q.

a  What isthe effect of this change on the diameter of the hypercube?
b.  HOW does the change affect the bisection width of the hypercube?
c. Devise adimension-order routing algorithm for the g-cube augmented with diametral links.

14.11. Broadcasting on a hypercube
Consider the g-cube broadcasting schemes of Fig. 14.10.

a Anayze the communication time of the algorithms assuming long messages of length L
(so that the message transfer time dominates message startup time).

b.  What isthe average number of communication links in use during the algorithm?

¢.  Experimental measurements on a particular hypercube multicomputer reveal a message
latency of 50 ps and a transfer rate of 100 MBY/s. Plot the estimated time needed for the
three algorithms to broadcast k bytes (103< k < 10%) on a 1024-processor system. Use a
log- og scale for your graph. Assume all-port communication where needed.

14.12. Broadcasting on a hypercube
The binomial-tree broadcasting algorithm was derived recursively: send to one node in the
other half-cube, then broadcast in parallel in each half-cube. Discuss the algorithm obtained
by reversing the order of the two steps: broadcast in the 0 half-cube, then send the message
from each node in the 0 half-cube to its neighbor in the 1 half-cube.

14.13. Adaptive routing algorithms
Consider the routing scheme represented by Fig. 14.11 and assume uniform message traffic
between al node pairs.

a. Which hypercube node will be least congested and why?
b. Which hypercube node will be most congested and why?

14.14. Architecture-independent routing models

The hypercube architecture has rich connectivity, short diameter, and wide bisection. In many
hypercube paralel systems utilizing message passing, the message transmission delay is
dominated by the operating system overhead for the initiation or reception of a message, so
that the actual source and destination addresses and the effects of possible congestion on the
routing paths can be ignored for al practical purposes. An abstract model of the above situation
consists of each node being able to send k messages and receive k messages in unit time, where
kisalimit that is imposed by the system’s aggregate communication bandwidth. Suppose that
one processor needsto broadcast m different messagestoall other 29 — 1 processors in a g-cube.
Determine the minimum time needed to perform this task in each of the following cases:

am=1, k=I.
b. Arbitrary m, with k=1.
c.m=1k=2

14.15. The postal communication model
The postal communication model is a topology-independent model that associates an integer
number A of cycles of delay with each message transmission, independent of the source and
destination node addresses. Each node can transmit one message per cycle, but the message
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transmitted in cyclei will not be received at the destination node until cyclei+A. The name
of this model derives from the following analogy. Suppose you are allowed to write one letter
per day and that it takes the letter 2 days to reach its destination. Then the right-hand diagram
below shows that you can broadcast a message to eight people in 5 days whereas the
binomial-tree broadcasting algorithm on the left requires 6 days to complete the task. The
numbers on multiple edges leaving a node correspond to the cycle number (day) in which the
message is sent.

a  Show that the number of nodes that have received a broadcast message after t cyclessatisfies
the recurrence Na(f) = Ny (t—1) + Ny (t— A) for 1 2 A; for t < ), we clearly have N, () = 1, as
none of the messages has reached its destination yet.

b. Discuss the solution to the above recurrence for A = 2.

Many-to-many routing on a hypercube

Consider arouting problem in which each node of a g-cube has up to k messages to send and
no more than k of the messages in the entire g-cube are addressed to the same node. Let us call
this a k—k routing problem. Show that any k—k routing problem can be decomposed into k1-1
routing problems by an off-line algorithm. Given the above decomposition, how much time
does the routing require with the all-port communication model ?
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15

Other Hypercubic
Architectures

In this chapter, we discuss a number of modified and generalized hypercube-
based architectures that can provide certain benefits over standard hypercubes.
More importantly, we study several constant-degree parallel architectures that
are derivable from, or intimately related to, the logarithmic-degree hypercube.
These constant-degree derivatives share many properties of the hypercube and
can emulate it quite efficiently, but are both realizable at lower cost and more
readily scalable. Hence, one can use the rich structure of the hypercube, and
the wide array of algorithms and theoretical results available for it, to develop
efficient algorithms and then resort to the emulation results presented here to
implement those algorithms or prove desired results for practically realizable
parallel systems. Chapter topics are

e 15.1. Modified and generalized hypercubes
e 15.2. Butterfly and permutation networks

e 15.3. Plus-or-minus-2’ network

e 15.4. The cube-connected cycles network

e 15.5. Shuffle and shuffle—exchange networks
e 15.6. That's not all, folks!

301
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15.1. MODIFIED AND GENERALIZED HYPERCUBES

The versatility and rich algorithmic and theoretical properties of the hypercube have led
researchers define modified, augmented, generalized, or hierarchical versions of the
network. We postpone a discussion of hierarchical hypercubic networks to Section 16.5
where a general framework for multilevel or hierarchical interconnection networks is
presented and severa example networks are studied. In this section, we study a few variants
of the standard binary hypercube that are obtained by redirecting some of the links, adding
links/nodes, and changing the basis or “seed” network.

An example of the first category (i.e., redirecting some links) is the twisted hypercube
obtained by redirecting two edges in any 4-cycle, as shown in Fig. 15.1. In general, any
4-cycle uvxy can be chosen in the g-cube, its uv and xy edges removed, and new edges ux,
vy inserted to obtain a twisted g-cube. Let the edges in the 4-cycle be along Dimensions k
and |. Then, each of the Nodes u, v, x, and y of the original 4-cycle will have a neighbor Ny
in the twisted version of the network whose node label differs fromitin both bitskand . It
is easy to show that the diameter of atwisted g-cube is g — 1, i.e,, one less than that of the
g-cube. Additionally, rings of any odd length and the (29—1)-node complete binary tree are
subgraphs of a twisted g-cube; properties that are not possessed by the ordinary g-cube
[Esfa9l].

An example of the second category (i.e., adding some links) is the folded hypercube,
which is obtained from the hypercube by linking all pairs of diametrically opposite nodes.
For example, in the 3-cube depicted in Fig. 15.2, Nodes 0 and 7 are diametrically opposite,
as are three other node pairs (1, 6), (2, 5), and (3, 4). Thus, adding the four links shown in
bold in the right-hand diagram of Fig. 15.2 yields afolded 3-cube. It is easy to see that the
diameter of a folded hypercube is about half that of a regular hypercube. Let us designate
the added diametral links as Dimension-q links. Then, a dimension-order routing algorithm
can be devised that routes each message in [g/200steps. Details of this algorithm, as well as
deriving other topological properties of folded hypercubes are left as an exercise.

An important property of folded hypercubes is their improved robustness or fault
tolerance. If one or several Dimension-i links fail, where 0 < i < g, Dimension- g links can
be used in their stead. Figure 15.3 depicts an example where all Dimension-0 links are
removed from a 3-cube and an intact 3-cube is recovered by conceptually rotating the right
subcube, consisting of Nodes 1, 3, 5, and 7, counterclockwise until Nodes 3 and 5 (also, 1
and 7) switch places. In this way, an intact g-cube can be obtained by simply renaming half

Jcube and a dcyclein it Twisted 3cube

Figure 15.1. Deriving a twisted 3-cube by redirecting two links in a 4-cycle
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A dismetral path in the 3-cube Folded 3-cube

Figure 15.2. Deriving a folded 3-cube by adding four diametral links.

of the nodes. For other interesting properties of folded hypercubes, see EI-Amawy and Latifi:
[EIAmM91].

A hypercube, as defined and analyzed in the previous two chapters, is the gth power of
a two-node linear array. Thus, a hypercube can be viewed as a power network or homogene-
ous product network (a product network formed by “multiplying” identical component
networks).

If we view the two-node linear array as a complete graph of size 2, a generalization of
the hypercube immediately suggests itself. The r-node complete graph, K., is a graph in
which every pair of nodes is directly connected by an edge. The gth power of K, is a
generalized hypercube. Node labels in a generalized hypercube can be viewed as gdigit
radix r numbers, with each node connected to al of the q(r — 1) nodes whose labels differ
from it in a single digit. Actually, as defined by Bhuyan and Agrawal [Bhuy84], a generalized
hypercube is the product of complete graphs which may be of different sizes. The node labels
in this more general case can be viewed as mixed-radix numbers, with each node connected
to Z;’:(;(ri ~ 1) other nodes, wherer; isthe radix in digit positioni.

Another generalization of the hypercube results from using aring of size m (instead of
2) as the basis or “seed” network. The qth power of the m-node ring is known as the m-ary
g-cube interconnection network, which is the same as g-D torus of equal dimensions m. The
hypercube is then a 2-ary (or binary) g-cube according to this terminology. Again multiplying
rings of different sizes yields a more general structure. Note that hypercubes and 2D tori
represent the two extreme of m-ary g-cubes. Fix g at 2 and you get 2D tori with ©(Vp)
diameter; fix mat 2 and you get the hypercube with logarithmic diameter.

4 5
Rotate
0 180
degress
276 3 7
Folded 3-cube with Aﬂcr n:nlming., dla.me(ml
Dim-0 links removed links replace dim-0 links

Figure 15.3. Folded 3-cube viewed as 3-cube with a redundant dimension.



OTHER HYPERCUBIC ARCHITECTURES 305

15.2. BUTTERFLY AND PERMUTATION NETWORKS

In Section 14.4, we defined the butterfly network with 29 nodes and g + 1 columns as
an unfolded g-cube in order to facilitate the discussion, visualization, and analysis of
hypercube routing agorithms. However, a butterfly network can be viewed as a paralel
processing architecture in its own right. A butterfly architecture (Fig. 15.4, left) has p =
29%q+ 1) processors of maximum degree d = 4, adiameter of 2q = ©(log p), and a bisection
width of (V2 — 1)29*1+ 0(29% = ©(p/log p) [Born 98]. A wrapped butterfly architecture is
obtained if we superimpose or merge the nodes in Columns 0 and q of an ordinary butterfly.
The resulting network has p = 29%q processors, a uniform node degree of 4, a diameter of
roughly 1.5q, and a bisection width of 29.

Each node in a (wrapped) butterfly can be identified by its row and column numbers (x ,
y), where 0<x<29—1and 0<y<q(q- 1 for wrapped butterfly). Node (x, y) of a butterfly
is connected to the four nodes (x, y—1), (X, y + 1), (Ny_1(x), y—1), and (Ny (), y + 1), if they
exist. In the case of wrapped butterfly, the expressions y + 1 for the column numbers are
evaluated modulo g.

If you shift the columns of a butterfly network cyclicaly, or permute them in any way,
you can redraw the figure (by exchanging rows) such that it looks exactly the same as before.
Figure 15.5 shows an example in which the connection pattern between Columns 0 and 1
has been interchanged with that between Columns 1 and 2. It is easily seen that if we redraw
the network by interchanging the places of Rows 1 and 2 as well as Rows 5 and 6, the resulting
diagram will ook exactly like the left-hand diagram in Fig. 15.4.

The butterfly network is quite versatile. Many other independently developed networks
are in fact butterfly network in disguise. Take a fat tree, for example. Recall that a major
disadvantage of abinary tree architecture isits small bisection width, making the root node
a bottleneck when alarge number of long-distance communications must be performed. A

Figure 15.4. Butterfly and wrapped butterfly networks.
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Switching these
two row pairs
converts this

to the original
butterfly netwock.
Changing the
order of stages AA
in a butterfly

is thus equivalent .v vd. V‘Y
10 a relabeling of P TAA
the rows {in this O
example, Tow xyz
becomes row xzy).

Figure 15.5. Butterfly network with permuted dimensions.

fat treeis a treelike network specifically designed to remedy this problem. In afat tree, the
link multiplicity or capacity increases as we approach the root node (Fig. 15.6). Of course,
taking advantage of the added links or link capacities would require that the nodes near the
root be different (have higher communication performance). To avoid this heterogeneity, one
might divide each such node into a number of simpler, lower-performance nodes. The
resulting architecture, shown in Fig. 15.7, is a butterfly network. We see that even if each of
the eight leaf nodes wants to send a message to another leaf node, the messages can be routed
through the eight root nodes with little or no conflict.

Anecdote. It has been suggested that because trees in nature are thicker near the root
and thinner near the leaves, we should call the networks shown in Fig. 15.6 trees and refer
to regular binary trees as skinny trees.

The structure of the fat tree, as drawn in Fig. 15.7, is such that the communication
bandwidth between Level-i and Level-(i+1) nodes is the same for all i (16 wires or channels
in our example). This is based on the worst-Case assumption that all messages entering a
node from below must be directed to its parent. Real communication patterns are more local
so that only afraction of the messages entering a node from below must be routed up to the

Figure 15.6. Two representations of a fat tree.
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Figure 15.7. Butterfly network redrawn as a fat tree.

parent; most are addressed to nodes within the same subtree. This locality property alows
us to put the fat tree on a diet, making it skinnier near the root. Such a“plump tree” is the
interconnection network used in the CM-5 parallel computer built by Thinking Machines
Corporation (see Section 22.4).

There are many variations of the butterfly network. First, the butterfly network may be
viewed as a multilevel interconnection network connecting processors on one side to memory
modules on the other side. In this type of usage, a 29 x (g+1) butterfly network built of 2 x 2
routing switches can interconnect 29" modules on each side, when the nodes in Columns 0
and q are provided with two input and two output links, respectively (see Fig. 6.9). Replacing
the memory modules by processors would yield an interprocessor interconnection network.
Alternatively, a29 x 29 interconnection network results if all modules are connected to one
side of the butterfly network, as shownin Fig. 15.8.

If we unfold Fig. 15.8, so that the processors remain on the left but the memory modules
move to the right, and then merge the middle four nodes in each row which perform no useful

log; p + | Columns of 2-by-2 Switches

000 9 A A 2
001

010 A A.

o WAV

100

RIZa\V/
AN

b D 009,
g >N
E o O IAN
= o >N\

Figure 15.8. Butterfly network used to connect modules that are on the same side.
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Processors 2 logyp - 1 Columns of 2-by-2 Switches Memory Banks
000 g A 2 3 A 000
001 001
010 010

101
110

Figure 15.9. Bene$ network formed from two back-to-back butterflies.

routing function, a Bene§ network results. Figure 15.9 shows the resulting network for
connecting eight processors to eight memory modules. In general, the g-dimensional Bene$
network is obtained from two back-to-back g-dimensiona butterflies, with the Column q of
one superimposed on the Column O of the second one. Thus, a g-dimensional Bene3 network
has 29 rows and 2q + 1 columns.

An important property of a Benes network isthat it can route any permutation with no
conflict. Thisisin part related to the availability of multiple edge-disoint paths between any
pair of input and output nodes. For example, in Fig. 15.10, we see Processors 0, 1, 2, 3, 5,
6, and 9 connected to Banks 6, 14, 0, 15, 11, 4, and 3, respectively. With the connections
aready established, Processor 4 can be connected to Bank 7 or 10 but not to other currently
unused memory banks. However, if Processor 4 were to be connected to Bank 8, say, it is
possible to re-route or rearrange the other connections such that the new connection can also
be accommodated. For this reason, the Benes network is caled rearrangeable, meaning that
it can route any permutation if rearranging previously established connectionsis allowed.

©ONONEWN=—-O

5
29*! Inputs 29Rows, 2q+ 1 Columns 2%*! Outputs

Figure 15.10. Another example of a Bene§ network.
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Finally, we note that a butterfly network can be generalized to a high-radix butterfly (or
m-ary butterfly) composed of nodes with degree 2m (or m x m switches). There are md rows
and g + 1 columnsinan m-ary butterfly network.

15.3. PLUS-OR-MINUS-2/ NETWORK

Figure 15.11 shows a plus-or-minus-2' (PM2l) network with eight nodes (p = 29 nodes
in general) in which each Node x is connected to every node whose label is x + 2' mod p for
somei. It is easy to see that the PM 2l network is a supergraph of the hypercube. The heavy
lines in Fig. 15.11 show the hypercube subgraph of the eight-node PM2l network.

Just as an unfolded hypercube is isomorphic to the butterfly network, an unfolded PM2I
network yields auseful (multistage) interconnection network known as an augmented data
manipulator (ADM) network. Here, augmented means that the network is derived from a
data manipulator network which, as originally defined, restricted all switches in the same
column to be in identical states (provide exactly the same connectivity pattern between their
inputs and outputs). The data manipulator network was proposed as a multistage intercon-
nection network and the common state for switches in the same column was needed to
simplify its control structure.

The dangling lines at the top and bottom of Fig. 15.12 represent wraparound links in
view of the 2! mod 29 connectivity rule. So, for example, the lines labeled “a’ and “b” at
the top are connected to the lines with the same designations at the bottom.

Paths from one side to the other side of an ADM network are nonunique. For example,
there are two paths between Node 2 in Column 0 and Node 4 in Column 3 (heavy linesin
Fig. 15.12). Each link selected corresponds to adding or subtracting a power of 2. The paths
highlighted in Fig. 15.12 correspond to obtaining 4 from 2 by adding 2 to it or by subtracting
2 from it and then adding 4. Routing in ADM network corresponds to decomposing the
difference y — x mod 2% of source and destination rows into powers of 2. A binary routing
tag can be used to achieve self-routing, with the ith bit of the tag used to select the straight
output (0) or the lower output (1) in Column i. If the routing tag is represented as a binary
signed-digit number, with digit valuesin {-1, 0, 1 }, then a digit —1 would correspond to
taking the upper output channel. For example, the routing tags corresponding to the two paths
highlighted in Fig. 15.12 are 0 1 0 and 1°1 O, where "1 represents the signed digit or tag
value -1.

O O—=o0O O

CO————Q-O +4
OO0

Figure 15.11. Two representations of the eight-node pIus-or-minus-Z’network.
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Figure 15.12. Augmented data manipulator network.

Having multiple paths is desirable both for improved performance (network bandwidth)
and for fault tolerance. Thus, the ADM network is more resilient to node and link failure
than a butterfly network of the same size. The hardware cost paid for this added resilience
is alarger node degree and denser interconnections. The software cost is a more complex
routing algorithm that is capable of distributing the traffic evenly among the multiple paths
that are available.

15.4. THE CUBE-CONNECTED CYCLES NETWORK

The cube-connected cycles (CCC) network can be derived from a wrapped butterfly as
follows. Remove the pair of cross links that connect a pair of nodes in Column i — 1 to the
same two nodes in Column i and instead connect the two nodes in Column i (Fig. 15.13).
The resulting network has node degree of 3 but is otherwise quite similar to the butterfly
network. In particular, CCC can emulate any algorithm for a butterfly of the same size with
only a constant factor slowdown.

The original definition of CCC was based on a g-cube in which each node has been
replaced with a cycle of length g, with the aim of reducing the node degree without
significantly affecting the diameter. Figure 15.14 shows how a 3-cube is converted to a
24-node CCC. Each node is replaced with a 3-cycle, with the original hypercube links
distributed one per node in the cycle. Each node also has two cycle edges. The three edges
of anodein CCC can be denoted as
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0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
0 1 2
q Columns q Columns/Dimensions

Figure 15.13. A wrapped butterfly (left) converted into cube-connected cycles.

F Forward link in the cycle
B Backward link inthe cycle
C Intercycle or cubelink

Each node can be identified by apair (X, y) of integers, where x is the cycle number (the node
number in the original hypercube) and y is the node number within the cycle. This same
numbering scheme is applicable to the representation of Fig. 15.13 where x and y correspond
to row and column numbers. Two nodes (x;, Yo ) and (X, , y, ) are adjacent iff

Xo =Xy andy, =y, 1oryy =Y, and x, differsfrom x, in bit position y,

The number of processorsin a CCC derived from a g-cubeis p = 29,
A simple argument can be used to establish the following bound on the diameter of
CCcC:

Figure 15.14. Alternate derivation of CCC from a hypercube.
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D <25q =0O(log p)

The argument goes as follows. Simple dimension-order routing leads to a message taking
up to g/2 stepsin the source ring to gain access to a Dimension-(g-1) link, 2q — 1 steps in
intermediate rings (cube edge, ring edge, cube edge, ring edge, . . . , ring edge, cube edge),
and finally up to /2 steps in the destination ring. These add up to 3q — 1 steps. If we route
the dimensionsin arbitrary order, the first g/2 steps can be eliminated; we simply begin the
routing path with whatever dimension that is accessible from the source node.

The CCC network can be somewhat generalized if the number of nodes in each cycle
is specified to be at least q rather than exactly q. If there are k nodes in each cycle, with k>
g, then the first g nodes will have cube links as before and the remaining k — g nodes will
have only F and B linksin the cycle. This allows us, e.g., to make the number of nodesin a
cycle a power of 2 (four nodes per cycle in the example of Fig. 15.14), leading to simpler
and cleaner algorithms. In addition, increasing the parameter k provides a performance—cost
trade-off mechanism in the sense that with larger values of k, the network diameter grows
and its bisection width is reduced. In return, the network becomes less complex (e.g., easier
tolay out in VLS).

The exact diameter of CCC with 2%cycles of size k = g is as follows [Meli93]:

6 ifk=g=3
2q+lgnl-2 ifk=g>3
2q+Lki2]-1  ifg<k<2g-1

q+k ifk>2g~1

CCC can emulate any hypercube algorithm with O(q) = O(log p) slowdown. However, for
a class of hypercube agorithms known as normal algorithms, the slowdown is only a
consgtant. Thus, for this class of agorithms, which includes the ascend/descend class of
algorithms as specia cases, CCC performs amost as well as the hypercube while having a
much lower implementation cost. Recall that in ascend (descend) class of hypercube
agorithms, each node communicates along all possible dimensions in order, beginning with
0 (g~1) and ending with g— 1 (0). More generally, when each communication activity is along
a dimension that differs from the previous one by +| mod g, the hypercube algorithm is
caled normal.

Assume, for clarity, that g = 2™. The number of processorsin our CCC network isthen
p=29q=22"2"=22"" The hypercube to be simulated has2™ + m dimensions. Communi-
cation along the first m dimensions is carried out by data rotation within cycles. The
remaining 2™ dimensions are handled as follows. Suppose communication along Dimension
j hasjust taken place between the values in Nodes (x, j) and (N; (x),j) (see Fig. 15.15). The
next communication is along Dimension j — 1 or j + 1. Assume that it isto be along Dimension
j + 1. Rotating the data values in the nodes in the direction of the arrows will align the values
for Dimension-(j+1) communication, as the value in Node (X, j) goes to Node (X, j+1).
Similarly, rotating in the opposite direction will allow communication along Dimension j—1
to take place. As the data originally in Node (x, j) perform their Dimension-(j+1) communi-
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[ CydelD=x [ProctD=y |

2™ bits m bits

Figure 15.15. CCC emulating a normal hypercube algorithm.

cation through Node (X, j+1), the data originally in Node (x, j—1) are properly aigned for
Dimension-j communication through Node (X, j).

15.5. SHUFFLE AND SHUFFLE-EXCHANGE NETWORKS

A perfect shuffle, or simply shuffle, connectivity is one that interlaces the nodes in a way
that is similar to a perfect shuffle of a deck of cards. That is, Node 0 is connected to 0, Node
1to2, Node2to4, ..., Node29-1 —1t029-2, Node29-1to1,...,Node29-1t029 -1,
as depicted in the leftmost diagram of Fig. 15.16. The reverse connectivity is sometimes
referred to as unshuffle. The “exchange” connectivity, which links each even-numbered node
with the next odd-numbered node, is also shown in Fig. 15.16.

Combining the shuffle and exchange connectivities, we get the connectivity of a
shuffle-exchange network. By combining the two, we either mean that both “shuffle”
connection as well as “shuffle-then-exchange” connections are provided or that both shuffle
and exchange connections are provided as separate links. This latter interpretation corre-
sponds to the rightmost diagram in Fig. 15.16 (throughout this figure, two copies of each
node are drawn to show the connectivity rules more clearly). Figure 15.17 shows the
eight-node shuffle-exchange interconnection network in the standard undirected graph
form.

In a 2%-node shuffle network, Node x = Xq-1Xg2 - - - X2Xq %o IS cOnnected to Xq 5. . .
XX XoXg 1 Ji.e., to the node whose label isthe cyclicaly left-shifted 