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Foreword

In 2011 the 6th International Federated Conferences on Distributed Comput-
ing Techniques (DisCoTec) took place in Reykjavik, Iceland, during June 6-9.
It was hosted and organized by Reykjavik University. The DisCoTec series of
federated conferences, one of the major events sponsored by the International
Federation for Information processing (IFIP), included three conferences: Coor-
dination, DAIS, and FMOODS/FORTE.

DisCoTec conferences jointly cover the complete spectrum of distributed
computing subjects ranging from theoretical foundations to formal specification
techniques to practical considerations. The 13th International Conference on
Coordination Models and Languages (Coordination) focused on the design and
implementation of models that allow compositional construction of large-scale
concurrent and distributed systems, including both practical and foundational
models, run-time systems, and related verification and analysis techniques. The
11th IFIP International Conference on Distributed Applications and Interopera-
ble Systems (DAIS) elicited contributions on architectures, models, technologies
and platforms for large-scale and complex distributed applications and services
that are related to the latest trends in bridging the physical/virtual worlds based
on flexible and versatile service architectures and platforms. The 13th Formal
Methods for Open Object-Based Distributed Systems and 31st Formal Tech-
niques for Networked and Distributed Systems (FMOODS/FORTE) together
emphasized distributed computing models and formal specification, testing and
verification methods.

Each of the three days of the federated event began with a plenary speaker
nominated by one of the conferences. On the first day, Giuseppe Castagna
(CNRS, Paris 7 University, France) gave a keynote titled “On Global Types
and Multi-Party Sessions.” On the second day, Paulo Verissimo (University of
Lisbon FCUL, Portugal) gave a keynote talk on “Resisting Intrusions Means
More than Byzantine Fault Tolerance.” On the final and third day, Pascal
Costanza (ExaScience Lab, Intel, Belgium) presented a talk that discussed “Ex-
treme Coordination—Challenges and Opportunities from Exascale Computing.”

In addition, there was a poster session, and a session of invited talks from
representatives of Icelandic industries including Ossur, CCP Games, Marorka,
and GreenQloud.

There were five satellite events:

1. The 4th DisCoTec workshop on Context-Aware Adaptation Mechanisms for
Pervasive and Ubiquitous Services (CAMPUS)

2. The Second International Workshop on Interactions Between Computer Sci-
ence and Biology (CS2BIO) with keynote lectures by Jasmin Fisher (Mi-
crosoft Research - Cambridge, UK) and Gordon Plotkin (Laboratory for
Foundations of Computer Science - University of Edinburgh, UK)
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3. The 4th Workshop on Interaction and Concurrency Experience (ICE) with
keynote lectures by Prakash Panangaden (McGill University, Canada), Rocco
de Nicola (University of Florence, Italy), and Simon Gay (University of Glas-
gow, UK)

4. The First Workshop on Process Algebra and Coordination (PACO) with
keynote lectures by Jos Baeten (Eindhoven University of Technology, The
Netherlands), Dave Clarke (Katholieke Universiteit Leuven, Belgium), Rocco
De Nicola (University of Florence, Italy), and Gianluigi Zavattaro (Univer-
sity of Bologna, Italy)

5. The 7th International Workshop on Automated Specification and Verifica-
tion of Web Systems (WWV) with a keynote lecture by Elie Najm (Telecom
Paris, France)

I believe that this rich program offered each participant an interesting and
stimulating event. I would like to thank the Program Committee Chairs of each
conference and workshop for their effort. Moreover, organizing DisCoTec 2011
was only possible thanks to the dedicated work of the Publicity Chair Gwen
Salaun (Grenoble INP - INRIA, France), the Workshop Chairs Marcello Bon-
sangue (University of Leiden, The Netherlands) and Immo Grabe (CWI, The
Netherlands), the Poster Chair Martin Steffen (University of Oslo, Norway), the
Industry Track Chairs Björn Jónsson (Reykjavik University, Iceland), and Oddur
Kjartansson (Reykjavik University, Iceland), and the members of the Organizing
Committee from Reykjavik University: Árni Hermann Reynisson, Steinar Hugi
Sigurðarson, Georgiana Caltais Goriac, Eugen-Ioan Goriac and Ute Schiffel. To
conclude I want to thank the International Federation for Information Processing
(IFIP), Reykjavik University, and CCP Games Iceland for their sponsorship.

June 2011 Marjan Sirjani



Preface

This volume contains the proceedings of the FMOODS/FORTE 2011 confer-
ence, a joint conference combining the 13th IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS) and
the 31st IFIP International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE).

FMOODS/FORTE was hosted together with the 13th International Confer-
ence on Coordination Models and Languages (COORDINATION) and the 11th
IFIP International Conference on Distributed Applications and Interoperable
Systems (DAIS) by the federated conference event DisCoTec 2011, devoted to
distributed computing techniques and sponsored by the International Federation
for Information Processing (IFIP).

FMOODS/FORTE provides a forum for fundamental research on the theory
and applications of distributed systems. Of particular interest are techniques
and tools that advance the state of the art in the development of concurrent
and distributed systems and that are drawn from a wide variety of areas includ-
ing model-based design, component and object technology, type systems, formal
specification and verification and formal approaches to testing. The conference
encourages contributions that combine theory and practice in application areas of
telecommunication services, Internet, embedded and real-time systems, network-
ing and communication security and reliability, sensor networks, service-oriented
architecture, and Web services.

The keynote speaker of FMOODS/FORTE 2011 was Giuseppe Castagna of
CNRS, University Paris Diderot, who is known for his foundational work on
semantic subtyping, contracts for Web services, and efficient and effective lan-
guages for the processing of XML documents. Castagna contributed a paper on
global types for multi-party sessions to these proceedings.

The FMOODS/FORTE 2011 program consisted of the above invited paper
and 21 regular papers which were selected by the Program Committee (PC) out
of 65 submissions received from 29 different countries. Each submitted paper was
evaluated on the basis of at least three detailed reviews from 28 PC members and
76 external reviewers. Additional expert reviews were solicited if the reviews of
a paper had diversified or controversial assessments or if the reviewers indicated
low confidence. The final decision of acceptance was preceeded by a 9-day online
discussion of the PC members. The selected papers constituted a strong pro-
gram of stimulating, timely, and diverse research. Papers presented techniques
from formal verification (using model checking, theorem proving, and rewriting),
formal modeling and specification (using process algebras and calculi, type sys-
tems, and refinement), run-time monitoring, and testing to address challenges in
many different application areas including dynamic and ad hoc networks, mobile



VIII Preface

and adaptive computation, reactive and timed systems, business processes, and
distributed and concurrent systems and algorithms.

We are deeply indebted to the PC members and external reviewers for their
hard and conscientious work in preparing 198 reviews. We thank Marjan Sirjani,
the DisCoTec General Chair, for his support, and the FMOODS/FORTE Steer-
ing Committee for their guidance. Our gratitude goes to the authors for their
support of the conference by submitting their high-quality research works. We
thank the providers of the EasyChair conference tool that was a great help in
organizing the submission and reviewing process.

April 2011 Roberto Bruni
Juergen Dingel
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On Global Types and Multi-party Sessions

Giuseppe Castagna1, Mariangiola Dezani-Ciancaglini2, and Luca Padovani2

1 CNRS, Université Paris Diderot – Paris 7
2 Dipartimento d’Informatica, Università degli Studi di Torino

Abstract. We present a new, streamlined language of global types equipped with
a trace-based semantics and whose features and restrictions are semantically jus-
tified. The multi-party sessions obtained projecting our global types enjoy a live-
ness property in addition to the traditional progress and are shown to be sound and
complete with respect to the set of traces of the originating global type. Our notion
of completeness is less demanding than the classical ones, allowing a multi-party
session to leave out redundant traces from an underspecified global type.

1 Introduction

Relating the global specification of a system of communicating entities with an imple-
mentation (or description) of the single entities is a great classic in many different areas
of computer science. The recent development of session-based computing has renewed
the interest in this problem. In this work we attack it from the behavioral type and
process algebra perspectives and briefly compare the approaches used in other areas.

A (multi-party) session is a place of interaction for a restricted number of participants
that communicate messages. The interaction may involve the exchange of arbitrary se-
quences of messages of possibly different types. Sessions are restricted to a (usually
fixed) number of participants, which makes them suitable as a structuring construct for
systems of communicating entities. In this work we define a language to describe the in-
teractions that may take place among the participants implementing a given session. In
particular, we aim at a definition based on few “essential” assumptions that should not
depend on the way each single participant is implemented. To give an example, a bar-
gaining protocol that includes two participants, “seller” and “buyer”, can be informally
described as follows:

Seller sends buyer a price and a description of the product; then buyer sends
seller acceptance or it quits the conversation.

If we abstract from the value of the price and the content of the description sent by the
seller, this simple protocol describes just two possible executions, according to whether
the buyer accepts or quits. If we consider that the price and the description are in distinct
messages then the possible executions become four, according to which communication
happens first. While the protocol above describes a finite set of possible interactions, it
can be easily modified to accommodate infinitely many possible executions, as well as
additional conversations: for instance the protocol may allow “buyer” to answer “seller”
with a counteroffer, or it may interleave this bargaining with an independent bargaining
with a second seller.

R. Bruni and J. Dingel (Eds.): FMOODS/FORTE 2011, LNCS 6722, pp. 1–28, 2011.
c© IFIP International Federation for Information Processing 2011
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All essential features of protocols are in the example above, which connects some
basic communication actions by the flow control points we underlined in the text. More
generally, a protocol is a possibly infinite set of finite sequences of interactions be-
tween a fixed set of participants. We argue that the set of sequences that characterizes a
protocol—and thus the protocol itself—can be described by a language with one form
of atomic actions and three composition operators.

Atomic actions. The only atomic action is the interaction, which consists of one (or
more) sender(s) (eg, “seller sends”), the content of the communication (eg, “a price”,
“a description”, “acceptance”), and one (or more) receiver(s) (eg, “buyer”).

Compound actions. Actions and, more generally, protocols can be composed in three
different ways. First, two protocols can be composed sequentially (eg, “Seller sends
buyer a price. . . ; then buyer sends. . . ”) thus imposing a precise order between the
actions of the composed protocols. Alternatively, two protocols can be composed
unconstrainedly, without specifying any order (eg, “Seller sends a price and (sends)
a description”) thus specifying that any order between the actions of the composed
protocols is acceptable. Finally, protocols can be composed in alternative (eg, “buyer
sends acceptance or it quits”), thus offering a choice between two or more protocols
only one of which may be chosen.

More formally, we use p
a−→ q to state that participant p sends participant q a mes-

sage whose content is described by a, and we use “;”, “∧”, and “∨” to denote sequential,
unconstrained, and alternative composition, respectively. Our initial example can thus
be rewritten as follows:

(seller descr−→ buyer∧seller price−→ buyer);

(buyer
accept−→ seller∨buyer quit−→ seller)

(1)

The first two actions are composed unconstrainedly, and they are to be followed by one
(and only one) action of the alternative before ending. Interactions of unlimited length
can be defined by resorting to a Kleene star notation. For example to extend the previous
protocol so that the buyer may send a counter-offer and wait for a new price, it suffices
to add a Kleene-starred line:

(seller descr−→ buyer∧seller price−→ buyer);

(buyer
offer−→ seller;seller

price−→ buyer)�;

(buyer
accept−→ seller∨buyer quit−→ seller)

(2)

The description above states that, after having received (in no particular order) the
price and the description from the seller, the buyer can initiate a loop of zero or more
interactions and then decide whether to accept or quit.

Whenever there is an alternative there must be a participant that decides which path
to take. In both examples it is buyer that makes the choice by deciding whether to
send accept or quit. The presence of a participant that decides holds true in loops too,
since it is again buyer that decides whether to enter or repeat the iteration (by send-
ing offer) or to exit it (by sending accept or quit). We will later show that absence of
such decision-makers gives protocols impossible to implement. This last point critically
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depends on the main hypothesis we assume about the systems we are going to the de-
scribe, that is the absence of covert channels. One the one hand, we try to develop a
protocol description language that is as generic as possible; on the other hand, we limit
the power of the system and require all communications between different participants
to be explicitly stated. In doing so we bar out protocols whose implementation essen-
tially relies on the presence of secret/invisible communications between participants: a
protocol description must contain all and only the interactions used to implement it.

Protocol specifications such as the ones presented above are usually called global
types to emphasize the fact that they describe the acceptable behaviours of a system
from a global point of view. In an actual implementation of the system, though, each
participant autonomously implements a different part of the protocol. To understand
whether an implementation satisfies a specification, one has to consider the set of all
possible sequences of synchronizations performed by the implementation and check
whether this set satisfies five basic properties:

1. Sequentiality: if the specification states that two interactions must occur in a given
order (by separating them by a “;”), then this order must be respected by all possible
executions. So an implementation in which buyer may send accept before receiving
price violates the specification.

2. Alternativeness: if the specification states that two interactions are alternative, then
every execution must exhibit one and only one of these two actions. So an imple-
mentation in which buyer emits both accept and quit (or none of them) in the same
execution violates the specification.

3. Shuffling: if the specification composes two sequences of interactions in an uncon-
strained way, then all executions must exhibit some shuffling (in the sense used
in combinatorics and algebra) of these sequences. So an implementation in which
seller emits price without emitting descr violates the specification.

4. Fitness: if the implementation exhibits a sequence of interactions, then this sequence
is expected by (ie, it fits) the specification. So any implementation in which seller
sends buyer any message other than price and descr violates the specification.

5. Exhaustivity: if some sequence of interactions is described by the specification, then
there must exist at least an execution of the implementation that exhibits these ac-
tions (possibly in a different order). So an implementation in which no execution of
buyer emits accept violates the specification.

Checking whether an implemented system satisfies a specification by comparing the
actual and the expected sequences of interactions is non-trivial, for systems are usually
infinite-state. Therefore, on the lines of [9,16], we proceed the other way round: we
extract from a global type the local specification (usually dubbed session type [20,15])
of each participant in the system and we type-check the implementation of each partic-
ipant against the corresponding session type. If the projection operation is done prop-
erly and the global specification satisfies some well-formedness conditions, then we are
guaranteed that the implementation satifies the specification. As an example, the global
type (1) can be projected to the following behaviors for buyer and seller:

seller �→ buyer!descr.buyer!price.(buyer?accept+buyer?quit)
buyer �→ seller?descr.seller?price.(seller!accept⊕seller!quit)
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or to

seller �→ buyer!price.buyer!descr.(buyer?accept+buyer?quit)
buyer �→ seller?price.seller?descr.(seller!accept⊕seller!quit)

where p!a denotes the output of a message a to participant p, p?a the input of a message
a from participant p, p?a.T +q?b.S the (external) choice to continue as T or S according
to whether a is received from p or b is received from q and, finally, p!a.T⊕q!b.S denotes
the (internal) choice between sending a to p and continue as T or sending S to q and
continue as T . We will call session environments the mappings from participants to their
session types. It is easy to see that any two processes implementing buyer and seller
will satisfy the global type (1) if and only if their visible behaviors matches one of the
two session environments above (these session environments thus represent some sort of
minimal typings of processes implementing buyer and seller). In particular, both the
above session environments are fitting and exhaustive with respect to the specification
since they precisely describe what the single participants are expected and bound to do.

We conclude this introduction by observing that there are global types that are intrin-
sically flawed, in the sense that they do not admit any implementation (without covert
channels) satisfying them. We classify flawed global types in three categories, accord-
ing to the seriousness of their flaws.

[No sequentiality] The mildest flaws are those in which the global type specifies some

sequentiality constraint between independent interactions, such as in (p a−→ q;r
b−→

s), since it is impossible to implement r so that it sends b only after that q has re-
ceived a (unless this reception is notified on a covert channel, of course). Therefore,
it is possible to find exhaustive (but not fitting) implementations that include some
unexepected sequences which differ from the expected ones only by a permutation
of interactions done by independent participants. The specification at issue can be
easily patched by replacing some “;” by “∧”.

[No knowledge for choice] A more severe kind of flaw occurs when the global type
requires some participant to behave in different ways in accordance with some choice
it is unaware of. For instance, in the global type

(p a−→ q;q
a−→ r;r

a−→ p) ∨ (p b−→ q;q
a−→ r;r

b−→ p)

participant p chooses the branch to execute, but after having received a from q par-
ticipant r has no way to know whether it has to send a or b. Also in this case it is
possible to find exhaustive (but not fitting) implementations of the global type where
the participant r chooses to send a or b independently of what p decided to do.

[No knowledge, no choice] In the worst case it is not possible to find an exhaustive
implementation of the global type, for it specifies some combination of incompati-
ble behaviors, such as performing and input or an output in mutual exclusion. This
typically is the case of the absence of a decision-maker in the alternatives such as in

p
a−→ q∨q b−→ p

where each participant is required to choose between sending or receiving. There
seems to be no obvious way to patch these global types without reconsidering also
the intended semantics.
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Contributions and outline. A first contribution of this work is to introduce a stream-
lined language of global specifications—that we dub global types (Section 2)—and to
relate it with session environments (Section 3), that is, with sets of independent, sequen-
tial, asynchronous session types to be type-checked against implementations. Global
types are just regular expressions augmented with a shuffling operator and their se-
mantics is defined in terms of finite sequences of interactions. The second contribution,
which is a consequence of the chosen semantics of global types, is to ensure that every
implementation of a global type preserves the possibility to reach a state where every
participant has successfully terminated.

In Section 4 we study the relationship between global types and sessions. We do
so by defining a projection operation that extracts from a global type all the (sets of)
possible session types of its participants. This projection is useful not only to check
the implementability of a global description (and, incidentally, to formally define the
notions of errors informally described so far) but, above all, to relate in a compositional
and modular way a global type with the sets of distributed processes that implement it.
We also identify a class of well-formed global types whose projections need no covert
channels. Interestingly, we are able to effectively characterize well-formed global types
solely in terms of their semantics.

In Section 5 we present a projection algorithm for global types. The effective gen-
eration of all possible projections is impossible. The reason is that the projectability
of a global type may rely on some global knowledge that is no longer available when
working at the level of single session types: while in a global approach we can, say,
add to some participant new synchronization offerts that, thanks to our global knowl-
edge, we know will never be used, this cannot be done when working at the level of
single participant. Therefore in order to work at the projected level we will use stronger
assumptions that ensure a sound implementation in all possible contexts.

In Section 6 we show some limitations deriving from the use of the Kleene star
operator in our language of global types, and we present one possible way to circumvent
them. We conclude with an extended discussion on related work (Section 7) and a few
final considerations (Section 8).

Proofs, more examples and an extended survey of related work were omitted and can
be found in the long version available on the authors’ home pages.

2 Global Types

In this section we define syntax and semantics of global types. We assume a set A of
message types, ranged over by a, b, . . . , and a set Π of roles, ranged over by p, q, . . . ,
which we use to uniquely identify the participants of a session; we let π , . . . range over
non-empty, finite sets of roles.

Global types, ranged over by G , are the terms generated by the grammar in Table 1.
Their syntax was already explained in Section 1 except for two novelties. First, we in-
clude a skip atom which denotes the unit of sequential composition (it plays the same
role as the empty word in regular expressions). This is useful, for instance, to express



6 G. Castagna, M. Dezani-Ciancaglini, and L. Padovani

Table 1. Syntax of global types

G ::= Global Type
skip (skip) | π a−→ p (interaction)

| G ;G (sequence) | G ∧G (both)
| G ∨G (either) | G ∗ (star)

optional interactions. Thus, if in our example we want the buyer to do at most one
counteroffer instead of several ones, we just replace the starred line in (2) by

(buyer
offer−→ seller;seller

price−→ buyer)∨ skip

which, using syntactic sugar of regular expressions, might be rendered as

(buyer
offer−→ seller;seller

price−→ buyer)�

Second, we generalize interactions by allowing a finite set of roles on the l.h.s. of
interactions. Therefore, π a−→ p denotes the fact that (the participant identified by) p
waits for an a message from all of the participants whose tags are in π . We will write
p

a−→ q as a shorthand for {p} a−→ q.
To be as general as possible, one could also consider interactions of the form π a−→

π ′, which could be used to specify broadcast communications between participants. It
turns out that this further generalization is superfluous in our setting since the interac-
tion π a−→ {pi}i∈I can be encoded as

∧
i∈I(π

a−→ pi). The encoding is made possible
by the fact that communication is asynchronous and output actions are not blocking
(see Section 3), therefore the order in which the participants in π send a to the pi’s is
irrelevant. Vice versa, we will see that allowing sets of multiple senders enriches the
expressiveness of the calculus, because π a−→ p can be used to join different activities
involving the participants in π ∪{p}, while

∧
i∈I(p

a−→ qi) represents fork of parallel
activities. For example, we can represent two buyers waiting for both the price from a
seller and the mortgage from a bank before deciding the purchase:

(������
price−→ ��	��
∧��� mortgage−→ ��	���);

({��	��
���	���} accept−→ ������∧{��	��
���	���} accept−→ ���)
(3)

In general we will assume p �∈ π for every interaction π a−→ p occurring in a global
type, that is, we forbid participants to send messages to themselves. For the sake of
readability we adopt the following precedence of global type operators−→ ∗ ; ∧ ∨.

Global types denote languages of legal interactions that can occur in a multi-party
session. These languages are defined over the alphabet of interactions

Σ = {π a−→ p | π ⊂fin Π,p ∈ Π,p �∈ π,a ∈A }
and we use α as short for π a−→ p when possible; we use ϕ , ψ , . . . to range over strings
in Σ∗ and ε to denote the empty string, as usual. To improve readability we will some-
times use “;” to denote string concatenation.
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In order to express the language of a global type having the shape G1∧G2 we need a
standard shuffling operator over languages, which can be defined as follows:

Definition 2.1 (shuffling). The shuffle of L1 and L2, denoted by L1

∃

L2, is the language

defined by: L1

∃

L2
def
= {ϕ1ψ1 · · ·ϕnψn | ϕ1 · · ·ϕn ∈ L1∧ψ1 · · ·ψn ∈ L2}.

Observe that, in L1

∃

L2, the order of interactions coming from one language is pre-
served, but these interactions can be interspersed with other interactions coming from
the other language.

Definition 2.2 (traces of global types). The set of traces of a global type is inductively
defined by the following equations:

tr(skip) = {ε}
tr(π a−→ p) = {π a−→ p}

tr(G1;G2) = tr(G1)tr(G2)
tr(G ∗) = (tr(G ))�

tr(G1∨G2) = tr(G1)∪ tr(G2)
tr(G1∧G2) = tr(G1)

∃

tr(G2)

where juxtaposition denotes concatenation and (·)� is the usual Kleene closure of reg-
ular languages.

Before we move on, it is worth noting that tr(G ) is a regular language (recall that regular
languages are closed under shuffling). Since a regular language is made of finite strings,
we are implicitly making the assumption that a global type specifies interactions of finite
length. This means that we are considering interactions of arbitraty length, but such that
the termination of all the involved participants is always within reach. This is a subtle,
yet radical change from other multi-party session theories, where infinite interactions
are considered legal.

3 Multi-party Sessions

We devote this section to the formal definition of the behavior of the participants of a
multiparty session.

3.1 Session Types

We need an infinite set of recursion variables ranged over by X , . . . . Pre-session types,
ranged over by T , S, . . . , are the terms generated by the grammar in Table 2 such that
all recursion variables are guarded by at least one input or output prefix. We consider
pre-session types modulo associativity, commutativity, and idempotence of internal and
external choices, fold/unfold of recursions and the equalities

π!a.T ⊕π!a.S = π!a.(T ⊕S) π?a.T + π?a.S = π?a.(T + S)

Pre-session types are behavioral descriptions of the participants of a multiparty ses-
sion. Informally, end describes a successfully terminated party that no longer partici-
pates to a session. The pre-session type p!a.T describes a participant that sends an a
message to participant p and afterwards behaves according to T ; the pre-session type
π?a.T describes a participant that waits for an a message from all the participants in π
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Table 2. Syntax of pre-session types

T ::= Pre-Session Type
end (termination) | X (variable)

| p!a.T (output) | π?a.T (input)
| T ⊕T (internal choice) | T +T (external choice)
| rec X .T (recursion)

and, upon arrival of the message, behaves according to T ; we will usually abbreviate
{p}?a.T with p?a.T . Behaviors can be combined by means of behavioral choices⊕ and
+: T ⊕S describes a participant that internally decides whether to behave according to
T or S; T +S describes a participant that offers to the other participants two possible be-
haviors, T and S. The choice as to which behavior is taken depends on the messages sent
by the other participant. In the following, we sometimes use n-ary versions of internal
and external choices and write, for example,

⊕n
i=1pi!ai.Ti for p1!a1.T1⊕·· ·⊕pn!an.Tn

and ∑n
i=1 πi?ai.Ti for π1?a1.T1 + · · ·+πn?an.Tn. As usual, terms X and rec X .T are used

for describing recursive behaviors. As an example, rec X .(p!a.X⊕p!b.end) describes a
participant that sends an arbitrary number of a messages to p and terminates by sending
a b message; dually, rec X .(p?a.X +p?b.end) describes a participant that is capable of
receiving an arbitrary number of a messages from p and terminates as soon a b message
is received.

Session types are the pre-session types where internal choices are used to combine
outputs, external choices are used to combine inputs, and the continuation after every
prefix is uniquely determined by the prefix. Formally:

Definition 3.1 (session types). A pre-session type T is a session type if either:
– T = end, or

– T =
⊕

i∈I pi!ai.Ti and ∀i, j ∈ I we have that pi!ai = p j!a j implies i = j and each Ti

is a session type, or

– T = ∑i∈I πi?ai.Ti and ∀i, j ∈ I we have that πi ⊆ π j and ai = a j imply i = j and each
Ti is a session type.

3.2 Session Environments

A session environment is defined as the set of the session types of its participants, where
each participant is uniquely identified by a role. Formally:

Definition 3.2 (session environment). A session environment (briefly, session) is a fi-
nite map {pi : Ti}i∈I .

In what follows we use Δ to range over sessions and we write Δ�Δ′ to denote the union
of sessions, when their domains are disjoint.

To describe the operational semantics of a session we model an asynchronous form
of communication where the messages sent by the participants of the session are stored
within a buffer associated with the session. Each message has the form p

a−→ q describ-
ing the sender p, the receiver q, and the type a of message. Buffers, ranged over by �,
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. . . , are finite sequences p1
a1−→ q1 :: · · · :: pn

an−→ qn of messages considered modulo the
least congruence� over buffers such that:

p
a−→ q :: p′ b−→ q′ � p′ b−→ q′ :: p a−→ q for p �= p′ or q �= q′

that is, we care about the order of messages in the buffer only when these have both the
same sender and the same receiver. In practice, this corresponds to a form of communi-
cation where each pair of participants of a multiparty session is connected by a distinct
FIFO buffer.

There are two possible reductions of a session:

� �{p :
⊕

i∈I pi!ai.Ti}�Δ −→ (p
ak−→ pk)::� �{p : Tk}�Δ (k∈I)

�::(pi
a−→p)i∈I �{p : ∑ j∈J π j?a j.Tj}�Δ

πk
a−→p−−−−→ � �{p : Tk}�Δ

(
k∈J ak=a

πk={pi|i∈I}

)

The first rule describes the effect of an output operation performed by participant p,
which stores the message p

ak−→ pk in the buffer and leaves participant p with a residual
session type Tk corresponding to the message that has been sent. The second rule de-
scribes the effect of an input operation performed by participant p. If the buffer contains
enough messages of type a coming from all the participants in πk, those messages are
removed from the buffer and the receiver continues as described in Tk. In this rule we
decorate the reduction relation with πk

a−→ p that describes the occurred interaction (as
we have already remarked, we take the point of view that an interaction is completed
when messages are received). This decoration will allow us to relate the behavior of
an implemented session with the traces of a global type (see Definition 2.2). We adopt
some conventional notation: we write =⇒ for the reflexive, transitive closure of−→; we
write

α=⇒ for the composition =⇒ α−→=⇒ and
α1···αn===⇒ for the composition

α1=⇒ ··· αn=⇒.
We can now formally characterize the “correct sessions” as those in which, no matter

how they reduce, it is always possible to reach a state where all of the participants are
successfully terminated and the buffer has been emptied.

Definition 3.3 (live session). We say that Δ is a live session if ε �Δ
ϕ

=⇒ � �Δ′ implies

� �Δ′
ψ

=⇒ ε �{pi : end}i∈I for some ψ .

We adopt the term “live session” to emphasize the fact that Definition 3.3 states a live-

ness property: every finite computation ε,Δ
ϕ

=⇒ � � Δ′ can always be extended to a

successful computation ε �Δ
ϕ

=⇒ � �Δ′
ψ

=⇒ ε � {pi : end}i∈I . This is stronger than the
progress property enforced by other multiparty session type theories, where it is only
required that a session must never get stuck (but it is possible that some participants
starve for messages that are never sent). As an example, the session

Δ1 = {p : rec X .(q!a.X⊕q!b.end) , q : rec Y.(p?a.Y +p?b.end)}

is alive because, no matter how many a messages p sends, q can receive all of them and,
if p chooses to send a b message, the interaction terminates successfully for both p and
q. This example also shows that, despite the fact that session types describe finite-state



10 G. Castagna, M. Dezani-Ciancaglini, and L. Padovani

processes, the session Δ1 is not finite-state, in the sense that the set of configurations

{(� � Δ′) | ∃ϕ,�,Δ′ : ε � Δ1
ϕ

=⇒ � � Δ′} is infinite. This happens because there is no
bound on the size of the buffer and an arbitrary number of a messages sent by p can
accumulate in � before q receives them. As a consequence, the fact that a session is
alive cannot be established in general by means of a brute force algorithm that checks
every reachable configuration. By contrast, the session

Δ2 = {p : rec X .q!a.X , q : rec Y.p?a.Y}

which is normally regarded correct in other session type theories, is not alive because
there is no way for p and q to reach a successfully terminated state. The point is that
hitherto correctness of session was associated to progress (ie, the system is never stuck).
This is a weak notion of correctness since, for instance the session Δ2 �{r : p?c.end}
satisfies progress even though role r starves waiting for its input. While in this example
starvation is clear since no c message is ever sent, determining starvation is in general
more difficult, as for

Δ3 = {p : rec X .q!a.q!b.X , q : rec Y.(p?a.p?b.Y +p?b.r!c.end) , r : q?c.end}

which satisfies progress, where every input corresponds to a compatible output, and
viceversa, but which is not alive.

We can now define the traces of a session as the set of sequences of interactions that
can occur in every possible reduction. It is convenient to define the traces of an incorrect
(ie, non-live) session as the empty set (observe that tr(G ) �= /0 for every G ).

Definition 3.4 (session traces)

tr(Δ)
def
=

{
{ϕ | ε �Δ

ϕ
=⇒ ε �{pi : end}i∈I} if Δ is a live session

/0 otherwise

It is easy to verify that tr(Δ1) = tr((p a−→ q)∗;p b−→ q) while tr(Δ2) = tr(Δ3) = /0 since
neither Δ2 nor Δ3 is a live session.

4 Semantic Projection

In this section we show how to project a global type to the session types of its partic-
ipants —ie, to a session— in such a way that the projection is correct with respect to
the global type. Before we move on, we must be more precise about what we mean by
correctness of a session Δ with respect to a global type G . In our setting, correctness
refers to some relationship between the traces of Δ and those of G . In general, how-
ever, we cannot require that G and Δ have exactly the same traces: when projecting
G1 ∧ G2 we might need to impose a particular order in which the interactions spec-
ified by G1 and G2 must occur (shuffling condition). At the same time, asking only
tr(Δ) ⊆ tr(G ) would lead us to immediately loose the exhaustivity property, since for

instance {p : q!a.end , q : p?a.end} would implement p
a−→ q∨p b−→ q even though
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Table 3. Rules for semantic projection

(SP-SKIP)
Δ � skip � Δ

(SP-ACTION)
{pi : Ti}i∈I �{p : T}�Δ � {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I?a.T}�Δ

(SP-SEQUENCE)
Δ � G2 � Δ′ Δ′ � G1 � Δ′′

Δ � G1;G2 � Δ′′

(SP-ALTERNATIVE)
Δ � G1 � {p : T1}�Δ′ Δ � G2 � {p : T2}�Δ′

Δ � G1∨G2 � {p : T1⊕T2}�Δ′

(SP-ITERATION)
{p : T1⊕T2}�Δ � G � {p : T1}�Δ

{p : T2}�Δ � G ∗ � {p : T1⊕T2}�Δ

(SP-SUBSUMPTION)
Δ � G ′ � Δ′ G ′ � G Δ′′ � Δ′

Δ � G � Δ′′

the implementation systematically exhibits only one (p
a−→ q) of the specified alterna-

tive behaviors. In the end, we say that Δ is a correct implementation of G if: first, every
trace of Δ is a trace of G (soundness); second, every trace of G is the permutation of a
trace of Δ (completeness). Formally:

tr(Δ)⊆ tr(G )⊆ tr(Δ)◦

where L◦ is the closure of L under arbitrary permutations of the strings in L:

L◦ def= {α1 · · ·αn | there exists a permutation σ such that ασ(1) · · ·ασ(n) ∈ L}
Since these relations between languages (of traces) play a crucial role, it is conve-

nient to define a suitable pre-order relation:

Definition 4.1 (implementation pre-order). We let L1 � L2 if L1 ⊆ L2 ⊆ L◦1 and ex-
tend it to global types and sessions in the natural way, by considering the corresponding
sets of traces. Therefore, we write Δ � G if tr(Δ) � tr(G ).

It is easy to see that soundness and completeness respectively formalize the notions of
fitness and exhaustivity that we have outlined in the introduction. For what concerns the
remaining three properties listed in the introduction (ie, sequentiality, alternativeness,
and shuffling), they are entailed by the formalization of the semantics of a global type
in terms of its traces (Definition 2.2). In particular, we have that soundness implies
sequentiality and alternativeness, while completeness implies shuffling. Therefore, in
the formal treatment that follows we will focus on soundness and completeness as to
the only characterizing properties connecting sessions and global types. The relation
Δ � G summarizes the fact that Δ is both sound and complete with respect to G , namely
that Δ is a correct implementation of the specification G .

Table 3 presents our rules to build the projections of global types. Projecting a
global type basically means compiling it to an “equivalent” set of session types. Since
the source language (global types) is equipped with sequential composition while the
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target language (session types) is not, it is convenient to parameterize projection on a
continuation, ie, we consider judgments of the shape:

Δ � G � Δ′

meaning that if Δ is the projection of some G ′, then Δ′ is the projection of G ;G ′. This
immediately gives us the rule (SP-SEQUENCE). We say that Δ′ is a projection of G
with continuation Δ.

The projection of an interaction π a−→ p adds p!a in front of the session type of
all the roles in π , and π?a in front of the session type of p (rule (SP-ACTION)). For
example we have:

{p : end,q : end} � p a−→ q � {p : q!a.end, q : p?a.end}
An alternative G1 ∨ G2 (rule (SP-ALTERNATIVE)) can be projected only if there

is a participant p that actively chooses among different behaviors by sending differ-
ent messages, while all the other participants must exhibit the same behavior in both
branches. The subsumption rule (SP-SUBSUMPTION) can be used to fulfil this require-
ment in many cases. For example we have Δ0 � p a−→ q � {p : q!a.end,q : p?a.end}
and Δ0 � p b−→ q � {p : q!b.end,q : p?b.end}, where Δ0 = {p : end,q : end}. In or-

der to project p
a−→ q∨p b−→ q with continuation Δ0 we derive first by subsumption

Δ0 � p a−→ q � {p : q!a.end , q : T} and Δ0 � p b−→ q � {p : q!b.end , q : T} where
T = p?a.end+p?b.end. Then we obtain

Δ0 � p a−→ q∨p b−→ q � {p : q!a.end⊕q!b.end , q : T}
Notice that rule (SP-ALTERNATIVE) imposes that in alternative branches there must be
one and only one participant that takes the decision. For instance, the global type

{p,q} a−→ r ∨ {p,q} b−→ r

cannot be projected since we would need a covert channel for p to agree with q about
whether to send to r the message a or b.

To project a starred global type we also require that one participant p chooses be-
tween repeating the loop or exiting by sending messages, while the session types of
all other participants are unchanged. If T1 and T2 are the session types describing the
behavior of p when it has respectively decided to perform one more iteration or to ter-
minate the iteration, then T1⊕T2 describes the behavior of p before it takes the decision.
The projection rule requires that one execution of G followed by the choice between
T1 and T2 projects in a session with type T1 for p. This is possible only if T1 is a recur-
sive type, as expected, and it is the premise of rule (SP-ITERATION). For example if
T1 = q!a.rec X .(q!a.X⊕q!b.end), T2 = q!b.end, and S = rec Y.(p?a.Y +p?b.end) we
can derive {p : T1⊕T2,q : S} � p a−→ q � {p : T1,q : S} and then

{p : T2,q : S} � (p a−→ q)∗ � {p : T1⊕T2, q : S}
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Notably there is no rule for “∧”, the both constructor. We deal with this constructor
by observing that all interleavings of the actions in G1 and G2 give global types G such
that G � G1 ∧G2, and therefore we can use the subsumption rule to eliminate every

occurrence of ∧. For example, to project the global type p
a−→ q∧r b−→ s we can use

p
a−→ q;r

b−→ s: since the two actions that compose both global types have disjoint

participants, then the projections of these global types (as well as that of r
b−→ s;p

a−→
q) will have exactly the same set of traces.

Other interesting examples of subsumptions useful for projecting are

r
b−→ p;p

a−→ q � (p a−→ q;r
b−→ p)∨ (r b−→ p;p

a−→ q) (4)

r
b−→ p;(p a−→ q∨p b−→ q) � (r b−→ p;p

a−→ q)∨ (r b−→ p;p
b−→ q) (5)

In (4) the �-larger global type describes the shuffling of two interactions, therefore
we can project one particular ordering still preserving completeness. In (5) we take
advantage of the flat nature of traces to push the∨ construct where the choice is actually
being made.

We are interested in projections without continuations, that is, in judgments of the
shape {pi : end | pi ∈ G } � G � Δ (where p ∈ G means that p occurs in G ) which we
shortly will write as

� G � Δ

The mere existence of a projection does not mean that the projection behaves as
specified in the global type. For example, we have

� p a−→ q;r
a−→ s � {p : q!a.end, q : p?a.end, r : s!a.end, s : r?a.end}

but the projection admits also the trace r
a−→ s;p

a−→ q which is not allowed by the
global type. Clearly the problem resides in the global type, which tries to impose a
temporal ordering between interactions involving disjoint participants. What we want,
in accordance with the traces of a global type G1;G2, is that no interaction in G2 can be
completed before all the interactions in G1 are completed. More in details:

– an action π a−→ p is completed when the participant p has received the message a
from all the participants in π ;

– if ϕ ;π a−→ p;π ′ b−→ p′;ψ is a trace of a global type, then either the action π ′ b−→ p′

cannot be completed before the action π a−→ p is completed, or they can be executed
in any order. The first case requires p to be either p′ or a member of π ′, in the second

case the set of traces must also contain the trace ϕ;π ′ b−→ p′;π a−→ p;ψ .

This leads us to the following definition of well-formed global type.

Definition 4.2 (well-formed global type). We say that a set of traces L is well formed if

ϕ ;π a−→ p;π ′ b−→ p′;ψ ∈ L implies either p∈ π ′ ∪{p′} or ϕ;π ′ b−→ p′;π a−→ p;ψ ∈ L.
We say that a global type G is well formed if so is tr(G ).

It is easy to decide well-formedness of an arbitrary global type G by building in a
standard way the automaton that recognises the language of traces generated by G .
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Projectability and well-formedness must be kept separate because it is sometimes
necessary to project ill-formed global types. For example, the ill-formed global type
p

a−→ q;r
a−→ s above is useful to project p

a−→ q∧r a−→ s which is well formed.
Clearly, if a global type is projectable (ie, �G � Δ is derivable) then well-formedness

of G is a necessary condition for the soundness and completeness of its projection (ie,
for Δ � G ). It turns out that well-formedness is also a sufficient condition for having
soundness and completeness of projections, as stated in the following theorem.

Theorem 4.1. If G is well formed and � G � Δ, then Δ � G .

In summary, if a well-formed global type G is projectable, then its projection is a live
projection (it cannot be empty since tr(G ) ⊆ tr(Δ)◦) which is sound and complete wrt
G and, therefore, satisfies the sequentiality, alternativeness, and shuffling properties
outlined in the introduction.

We conclude this section by formally characterizing the three kinds of problematic
global types we have described earlier. We start from the least severe problem and
move towards the more serious ones. Let L# denote the smallest well-formed set such
that L⊆ L#.

No sequentiality. Assuming that there is no Δ that is both sound and complete for G , it
might be the case that we can find a session whose traces are complete for G and sound
for the global type G ′ obtained from G by turning some « ; »’s into «∧ »’s. This means
that the original global type G is ill formed, namely that it specifies some sequentiality
constraints that are impossible to implement. For instance, {p : q!a.end, q : p?a.end, r :
s!b.end, s : r?b.end} is a complete but not sound session for the ill-formed global type

p
a−→ q;r

b−→ s (while it is a sound and complete session for p
a−→ q∧r b−→ s). We

characterize the global types G that present this error as:

�Δ : Δ � G and ∃Δ : tr(G )⊆ tr(Δ)⊆ tr(G )# .

No knowledge for choice. In this case every session Δ that is complete for G invariably
exhibits some interactions that are not allowed by G despite the fact that G is well
formed. This happens when the global type specifies alternative behaviors, but some
participants do not have enough information to behave consistently. For example, the
global type

(p a−→ q;q
a−→ r;r

a−→ p)∨ (p b−→ q;q
a−→ r;r

b−→ p)

mandates that r should send either a or b in accordance with the message that p sends
to q. Unfortunately, r has no information as to which message q has received, because
q notifies r with an a message in both branches. A complete implementation of this
global type is

{p : q!a.(r?a.end+r?b.end)⊕q!b.(r?a.end+r?b.end),
q : p?a.r!a.end+p?b.r!a.end,r : q?a.(q!a.end⊕q!b.end)}

which also produces the traces p
a−→ q;q

a−→ r;r
b−→ p and p

b−→ q;q
a−→ r;r

a−→ p.
We characterize this error as:

�Δ : tr(G )⊆ tr(Δ)⊆ tr(G )# and ∃Δ : tr(G )⊆ tr(Δ) .
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No knowledge, no choice. In this case we cannot find a complete session Δ for G .
This typically means that G specifies some combination of incompatible behaviors.
For example, the global type p

a−→ q∨ q a−→ p implies an agreement between p and
q for establishing who is entitled to send the a message. In a distributed environment,
however, there can be no agreement without a previous message exchange. Therefore,
we can either have a sound but not complete session that implements just one of the two
branches (for example, {p : q!a.end,q : p?a.end}) or a session like {p : q!a.q?a.end,q :
p?a.p!a.end} where both p and q send their message but which is neither sound nor
complete. We characterize this error as:

�Δ : tr(G )⊆ tr(Δ) .

5 Algorithmic Projection

We now attack the problem of computing the projection of a global type. We are looking
for an algorithm that “implements” the projection rules of Section 4, that is, that given a
session continuation Δ and a global type G , produces a projection Δ′ such that Δ � G :
Δ′. In other terms this algorithm must be sound with respect to the semantic projection
(completeness, that is, returning a projection for every global type that is semantically
projectable, seems out of reach, yet).

The deduction system in Table 3 is not algorithmic because of two rules: the rule
(SP-ITERATION) that does not satisfy the subformula property since the context Δ used
in the premises is the result of the conclusion; the rule (SP-SUBSUMPTION) since it is
neither syntax-directed (it is defined for a generic G ) nor does it satisfy the subformula
property (the G ′ and Δ′′ in the premises are not uniquely determined).1 The latter rule
can be expressed as the composition of the two rules

(SP-SUBSUMPTIONG)
Δ � G ′ � Δ′ G ′ � G

Δ � G � Δ′

(SP-SUBSUMPTIONS)
Δ � G � Δ′ Δ′′ � Δ′

Δ � G � Δ′′

Splitting (SP-SUBSUMPTION) into (SP-SUBSUMPTIONG) and (SP-SUBSUMPTIONS)
is useful to explain the following problems we have to tackle to define an algorithm:

1. How to eliminate (SP-SUBSUMPTIONS), the subsumption rule for sessions.

2. How to define an algorithmic version of (SP-ITERATION), the rule for Kleene star.

3. How to eliminate (SP-SUBSUMPTIONG), the subsumption rule for global types.

We address each problem in order and discuss the related rule in the next sections.

5.1 Session Subsumption

Rule (SP-SUBSUMPTIONS) is needed to project alternative branches and iterations
(a loop is an unbound repetition of alternatives, each one starting with the choice of

1 The rule (SP-ALTERNATIVE) is algorithmic: in fact there is a finite number of participants
in the two sessions of the premises and at most one of them can have different session types
starting with outputs.
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whether to enter the loop or to skip it): each participant different from the one that
actively chooses must behave according to the same session type in both branches.
More precisely, to project G1 ∨G2 the rule (SP-ALTERNATIVE) requires to deduce for
G1 and G2 the same projection: if different projections are deduced, then they must
be previously subsumed to a common lower bound. The algorithmic projection of an
alternative (see the corresponding rule in Table 4) allows premises with two differ-
ent sessions, but then merges them. Of course not every pair of projections is merge-
able. Intuitively, two projections are mergeable if so are the behaviors of each partic-
ipant. This requires participants to respect a precise behavior: as long as a participant
cannot determine in which branch (ie, projection) it is, then it must do the same ac-
tions in all branches (ie, projections). For example, to project G = (p a−→ q;r

c−→
q; . . .)∨ (p b−→ q;r

c−→ q; . . . ) we project each branch separately obtaining Δ1 = {p :
q!a . . . ,q : p?a.r?c . . . ,r : q!c . . .} and Δ2 = {p : q!b . . . ,q : p?b.r?c . . . ,r : q!c . . .}.
Since p performs the choice, in the projection of G we obtain p : q!a . . .⊕ q!b . . . and
we must merge {q : p?a.r?c . . . ,r : q!c . . .} with {q : p?b.r?c . . . ,r : q!c . . .}. Regarding
q, observe that it is the receiver of the message from p, therefore it becomes aware of
the choice and can behave differently right after the first input operation. Merging its
behaviors yields q : p?a.r?c . . .+ p?b.r?c . . . . Regarding r, it has no information as to
which choice has been made by p, therefore it must have the same behavior in both
branches, as is the case. Since merging is idempotent, we obtain r : q!c . . . . In sum-
mary, mergeability of two branches of an “∨” corresponds to the “awareness” of the
choice made when branching (see the discussion in Section 4 about the “No knowledge
for choice” error), and it is possible when, roughly, each participant performs the same
internal choices and disjoint external choices in the two sessions.

Special care must be taken when merging external choices to avoid unexpected inter-
actions that may invalidate the correctness of the projection. To illustrate the problem
consider the session types T = p?a.q?b.end and S = q?b.end describing the behavior of
a participant r. If we let r behave according to the merge of T and S, which intuitively is
the external choice p?a.q?b.end+q?b.end, it may be possible that the message b from
q is read before the message a from p arrives. Therefore, r may mistakenly think that
it should no longer participate to the session, while there is still a message targeted to
r that will never be read. Therefore, T and S are incompatible and it is not possible to
merge them safely. On the contrary, p?a.p?b.end and p?b.end are compatible and can
be merged to p?a.p?b.end+p?b.end. In this case, since the order of messages coming
from the same sender is preserved, it is not possible for r to read the b message coming
from p before the a message, assuming that p sent both. More formally:

Definition 5.1 (compatibility). We say that an input p?a is compatible with a session
type T if either (i) p?a does not occur in T , or (ii) T =

⊕
i∈I pi!ai.Ti and p?a is com-

patible with Ti for all i ∈ I, or (iii) T = ∑i∈I πi?ai.Ti and for all i ∈ I either p ∈ πi and
a �= ai or p �∈ πi and p?a is compatible with Ti.

We say that an input π?a is compatible with a session type T if p?a is compatible
with T for some p ∈ π .

Finally, T = ∑i∈I πi?ai.Ti +∑ j∈J π j?a j.Tj and S = ∑i∈I πi?ai.Si +∑h∈H πh?ah.Sh are
compatible if π j?a j is compatible with S for all j ∈ J and πh?ah is compatible with T
for all h ∈ H.
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Table 4. Rules for algorithmic projection

(AP-SKIP)
Δ �a skip � Δ

(AP-ACTION)
{pi : Ti}i∈I �{p : T}�Δ �a {pi}i∈I

a−→ p � {pi : p!a.Ti}i∈I �{p : {pi}i∈I?a.T}�Δ

(AP-SEQUENCE)
Δ �a G2 � Δ′ Δ′ �a G1 � Δ′′

Δ �a G1;G2 � Δ′′

(AP-ALTERNATIVE)
Δ �a G1 � {p : T1}�Δ1 Δ �a G2 � {p : T2}�Δ2

Δ �a G1∨G2 � {p : T1⊕T2}� (Δ1 �Δ2)

(AP-ITERATION)
{p : X}�{pi : Xi}i∈I �a G � {p : S}�{pi : Si}i∈I

{p : T}�{pi : Ti}i∈I �Δ �a G ∗ � {p : rec X .(T ⊕S)}�{pi : rec Xi.(Ti �Si)}i∈I �Δ

The merge operator just connects sessions with the same output guards by internal
choices and with compatible input guards by external choices:

Definition 5.2 (merge). The merge of T and S, written T �S, is defined coinductively
and by cases on the structure of T and S thus:

– if T = S = end, then T �S = end;

– if T =
⊕

i∈I pi!ai.Ti and S =
⊕

i∈I pi!ai.Si, then T �S =
⊕

i∈I pi!ai.(Ti �Si);
– if T = ∑i∈I πi?ai.Ti +∑ j∈J π j?a j.Tj and S = ∑i∈I πi?ai.Si +∑h∈H πh?ah.Sh are com-

patible, then T �S = ∑i∈I πi?ai.(Ti �Si)+ ∑ j∈J π j?a j.Tj +∑h∈H πh?ah.Sh.

We extend merging to sessions so that Δ�Δ′ = {p : T �S | p : T ∈ Δ & p : S ∈ Δ′}.

Rules (AP-ALTERNATIVE) and (AP-ITERATION) of Table 4 are the algorithmic ver-
sions of (SP-ALTERNATIVE) and (SP-ITERATION), but instead of relying on subsump-
tion they use the merge operator to compute common behaviors.

The merge operation is a sound but incomplete approximation of session subsump-
tion insofar as the merge of two sessions can be undefined even though the two sessions
completed with the participant that makes the decision have a common lower bound ac-
cording to �. This implies that there are global types which can be semantically but not
algorithmically projected. Take for example G1∨G2 where G1 = p

a−→ r;r
a−→ p;p

a−→
q;q

b−→ r and G2 = p
b−→ q;q

b−→ r. The behavior of r in G1 and G2 respectively is
T = p?a.p!a.q?b.end and S = q?b. Then we see that G1∨G2 is semantically projectable,
for instance by inferring the behavior T + S for r. However, T and S are incompatible
and G1 ∨G2 is not algorithmically projectable. The point is that the � relation on pro-
jections has a comprehensive perspective of the whole session and “realizes” that, if p
initially chooses to send a, then r will not receive a b message coming from q until r
has sent a to p. The merge operator, on the other hand, is defined locally on pairs of
session types and ignores that the a message that r sends to p is used to enforce the
arrival of the b message from q to r only afterwards. For this reason it conservatively
declares T and S incompatible, making G1∨G2 impossible to project algorithmically.
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5.2 Projection of Kleene Star

Since an iteration G ∗ is intuitively equivalent to skip∨G ;G ∗ it comes as no surprise that
the algorithmic rule (AP-ITERATION) uses the merge operator. The use of recursion
variables for continuations is also natural: in the premise we project G taking recursion
variables as session types in the continuation; the conclusion projects G ∗ as the choice
between exiting and entering the loop. There is, however, a subtle point in this rule that
may go unnoticed: although in the premises of (AP-ITERATION) the only actions and
roles taken into account are those occurring in G , in its conclusion the projection of G ∗
may require a continuation that includes actions and roles that precede G ∗. The point
can be illustrated by the global type

(p a−→ q;(p b−→ q)∗)∗;p c−→ q

where p initially decides whether to enter the outermost iteration (by sending a) or
not (by sending c). If it enters the iteration, then it eventually decides whether to also
enter the innermost iteration (by sending b), whether to repeat the outermost one (by

sending a), or to exit both (by sending c). Therefore, when we project (p b−→ q)∗,
we must do it in a context in which both p

c−→ q and p
a−→ q are possible, that is a

continuation of the form {p : q!a . . .⊕ q!c.end} even though no a is sent by an action

(syntactically) following (p b−→ q)∗. For the same reason, the projection of (p b−→ q)∗

in (p a−→ q;p
a−→ r;(p b−→ q)∗)∗;p c−→ q;q

c−→ r will need a recursive session type
for r in the continuation.

5.3 Global Type Subsumption

Elimination of global type subsumption is the most difficult problem when defining the
projection algorithm. While in the case of sessions the definition of the merge oper-
ator gives us a sound—though not complete—tool that replaces session subsumption
in very specific places, we do not have such a tool for global type containment. This is
unfortunate since global type subsumption is necessary to project several usage patterns
(see for example the inequations (4) and (5)), but most importantly it is the only way
to eliminate ∧-types (neither the semantic nor the algorithmic deduction systems have
projection rules for ∧). The minimal facility that a projection algorithm should provide
is to feed the algorithmic rules with all the variants of a global type obtained by replac-
ing occurrences of G1∧G2 by either G1;G2 or G2;G1. Unfortunately, this is not enough
to cover all the occurrences in which rule (SP-SUBSUMPTIONG) is necessary. Indeed,
while G1;G2 and G2;G1 are in many cases projectable (for instance, when G1 and G2

have distinct roles and are both projectable), there exist G1 and G2 such that G1∧G2 is
projectable only by considering a clever interleaving of the actions occurring in them.

Consider for instance G1 = (p a−→ q;q
c−→ s;s

e−→ q)∨ (p b−→ r;r
d−→ s;s

f−→ r)

and G2 = r
g−→ s;s

h−→ r;s
i−→ q. The projection of G1 ∧G2 from the environment

{q : p!a.end,r : p!b.end} can be obtained only from the interleaving r
g−→ s;G1;s

h−→
r;s

i−→ q. The reason is that q and r receive messages only in one of the two branches
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of the ∨, so we need to compute the � of their types in these branches with their types
in the continuations. The example shows that to project G1 ∧G2 it may be necessary
to arbitrarily decompose one or both of G1 and G2 to find the particular interleaving of
actions that can be projected. As long as G1 and G2 are finite (no non-trivial iteration
occurs in them), we can use a brute force approach and try to project all the elements
in their shuffle, since there are only finitely many of them. In general —ie, in pres-
ence of iteration— this is not an effective solution. However, we conjecture that even
in the presence of infinitely many traces one may always resort to the finite case by
considering only zero, one, and two unfoldings of starred global types. To give a rough
idea of the intuition supporting this conjecture consider the global type G ∗ ∧ G ′: its
projectability requires the projectability of G ′ (since G can be iterated zero times), of
G ∧G ′ (since G can occur only once) and of G ;G (since the number of occurences of
G is unbounded). It is enough to require also that either G ;(G ∧G ′) or (G ∧G ′);G can
be projected, since then the projectability of either G n;(G ∧G ′) or (G ∧G ′);G n for an
arbitrary n follows (see the appendix in the extended version).

So we can —or, conjecture we can— get rid of all occurences of ∧ operators auto-
matically, without loosing in projectability. However, examples (4) and (5) in Section 4
show that rule (SP-SUBSUMPTIONG) is useful to project also global types in which the
∧-constructor does not occur. A fully automated approach may consider (4) and (5) as
right-to-left rewriting rules that, in conjunction with some other rules, form a rewriting
system generating a set of global types to be fed to the algorithm of Table 4. The choice
of such rewriting rules must rely on a more thorough study to formally characterize the
sensible classes of approximations to be used in the algorithms. An alternative approach
is to consider a global type G as somewhat underspecified, in that it may allow for a
large number of different implementations (exhibiting different sets of traces) that are
sound and complete. Therefore, rule (SP-SUBSUMPTIONG) may be interpreted as a
human-assisted refinement process where the designer of a system proposes one partic-
ular implementation G � G ′ of a system described by G ′. In this respect it is interesting
to observe that checking whether L1 � L2 when L1 and L2 are regular is decidable, since
this is a direct consequence of the decidability of the Parikh equivalence on regular lan-
guages [18].

5.4 Properties of the Algorithmic Rules

Every deduction of the algorithmic system given in Table 4, possibly preceeded by
the elimination of ∧ and other possible sources of failures by applying the rewrit-
ings/heuristics outlined in the previous subsection, induces a similar deduction using
the rules for semantic projection (Table 3).

Theorem 5.1. If �a G � Δ, then � G � Δ.

As a corollary of Theorems 4.1 and 5.1, we immediately obtain that the projection Δ of
G obtained through the algorithm is sound and complete with respect to G .
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6 k-Exit Iterations

The syntax of global types (Table 1) includes that of regular expressions and there-
fore is expressive enough for describing any protocol that follows a regular pattern.
Nonetheless, the simple Kleene star prevents us from projecting some useful protocols.
To illustrate the point, suppose we want to describe an interaction where two partici-
pants p and q alternate in a negotiation in which each of them may decide to bail out.
On p’s turn, p sends either a bailout message or a handover message to q; if a bailout
message is sent, the negotiation ends, otherwise it continues with q that behaves in a
symmetric way. The global type

(p handover−→ q;q
handover−→ p)∗;(p bailout−→ q∨p handover−→ q;q

bailout−→ p)

describes this protocol as an arbitrarily long negotiation that may end in two possible
ways, according to the participant that chooses to bail out. This global type cannot be

projected because of the two occurrences of the interaction p
handover−→ q, which make it

ambiguous whether p actually chooses to bail out or to continue the negotiation. In gen-
eral, our projection rules (SP-ITERATION) and (AP-ITERATION) make the assumption
that an iteration can be exited in one way only, while in this case there are two possibil-
ities according to which role bails out. This lack of expressiveness of the simple Kleene
star used in a nondeterministic setting [17] led researchers to seek for alternative itera-
tion constructs. One proposal is the k-exit iteration [2], which is a generalization of the
binary Kleene star and has the form

(G1, . . . ,Gk) k∗ (G ′1, . . . ,G
′
k)

indicating a loop consisting of k subsequent phases G1, . . . ,Gk. The loop can be exited
just before each phase through the corresponding G ′i . Formally, the traces of the k-exit
iteration can be expressed thus:

tr((G1, . . . ,Gk) k∗ (G ′1, . . . ,G
′
k))

def= tr((G1; . . . ;Gk)∗;(G ′1 ∨G1;G ′2∨·· ·∨G1; . . . ;Gk−1;G ′k))

and, for example, the negotiation above can be represented as the global type

(p handover−→ q,q
handover−→ p) 2∗ (p bailout−→ q,q

bailout−→ p) (6)

while the unary Kleene star G ∗ can be encoded as (G ) 1∗ (skip).
In our setting, the advantage of the k-exit iteration over the Kleene star is that it

syntactically identifies the k points in which a decision is made by a participant of
a multi-party session and, in this way, it enables more sophisticated projection rules
such as that in Table 5. Albeit intimidating, rule (SP-k-EXIT ITERATION) is just a
generalization of rule (SP-ITERATION). For each phase i a (distinct) participant pi is
identified: the participant may decide to exit the loop behaving as Si or to continue the
iteration behaving as Ti. While projecting each phase Gi, the participant p(i mod k)+1 that
will decide at the next turn is given the continuation T(i mod k)+1 ⊕ S(i mod k)+1, while
the others must behave according to some Ri that is the same for every phase in which
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Table 5. Semantic projection of k-exit iteration

(SP-k-EXIT ITERATION)
Δ � G ′i � {pi : Si}�{p j : R j} j=1,...,i−1,i+1,...,k �Δ′ (i∈{1,...,k})

{p2 : T2⊕S2}�{pi : Ri}i=1,3,...,k �Δ′ � G1 � {p1 : T1}�{pi : Ri}i=2,...,k �Δ′
{p3 : T3⊕S3}�{pi : Ri}i=1,2,4,...,k �Δ′ � G2 � {p2 : T2}�{pi : Ri}i=1,3,...,k �Δ′

...
{p1 : T1⊕S1}�{pi : Ri}i=2,...,k �Δ′ � Gk � {pk : Tk}�{pi : Ri}i=1,...,k−1 �Δ′

Δ � (G1, . . . ,Gk) k∗ (G ′1, . . . ,G
′
k) � {p1 : T1⊕S1}�{pi : Ri}i=2,...,k �Δ′

they play no active role. Once again, rule (SP-SUBSUMPTION) is required in order to
synthesize these behaviors. For example, the global type (6) is projected to

{p : rec X .(q!handover.(q?handover.X +q?bailout.end)⊕q!bailout.end),
q : rec Y.(p?handover.(p!handover.Y ⊕p!bailout.end)+p?bailout.end)}

as one expects.

7 Related Work

The formalization and analysis of the relation between a global description of a dis-
tributed system and a more machine-oriented description of a set of components that
implements it, is a problem that has been studied in several contexts and by different
communities. In this context, important properties that are consider are the verification
that an implementation satisfies the specification, the implementability of the specifica-
tion by automatically producing an implementation from it, and the study of different
properties on the specification that can then be transposed to every (possibly automat-
ically produced) implementation satisfying it. In this work we concentrated on the im-
plementability problem, and we tackled it from the “Web service coordination” angle
developed by the community that focuses on behavioral types and process algebrae.
We are just the latest to attack this problem. So many other communities have been
considering it before us that even a sketchy survey has no chance to be exhaustive.

In what follows we compare the “behavioral types/process algebra” approach we
adopted, with two alternative approaches studied by important communities with a large
amount of different and important contributions, namely the “automata” and “crypto-
graphic protocols” approaches. In the full version of this article the reader will find a
deeper survey of these two approaches along with a more complete comparison. In a
nutshell, the “automata/model checking” community has probably done the most exten-
sive research on the problem. The paradigmatic global descriptions language they usu-
ally refer to are Message Sequence Charts (MSC, ITU Z.120 standard) enriched with
branching and iteration (which are then called Message Sequence Graphs or, as in the
Z.120 standard, High-Level Message Sequence Charts) and they are usually projected
into Communicating Finite State Machines (CFM) which form the theoretical core of
the Specification and Description Language (SDL ITU Z.100 standard). This commu-
nity has investigated the expressive power of the two formalisms and their properties,
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Fig. 1. Global types and multiparty sessions in a nutshell

studied different notions of implementability (but not the notion we studied here which,
as far as we know, is original to our work), and several variants of these formalisms
especially to deal with the decidability or tractability of the verification of properties,
in particular model-checking. The community that works on the formal verification of
cryptographic protocols uses MSC as global descriptions, as well, though they are of
different nature from the previous ones. In particular, for cryptographic protocols much
less emphasis is put on control (branching and iteration have a secondary role) and ex-
pressivity, while much more effort is devoted to the description of the messages (these
include cryptographic primitives, at least), of properties of the participants, and of lo-
cal treatment of the messages. The global descriptions are then projected into local
descriptions that are more detailed than in the automata approach since they precisely
track single values and the manipulations thereof. The verification of properties is finer
grained and covers execution scenari that fall outside the global description since the
roles described in the global type can be concurrently played by different participants,
messages can be intercepted, read, destroyed, and forged and, generally, the communi-
cation topology may be changed. Furthermore different executions of the protocol may
be not independent as attackers can store and detour information in one execution to
use it in a later execution.

Our work springs from the research done to formally describe and verify composi-
tions of Web services. This research has mainly centered on using process algebras to
describe and verify visible local behavior of services and just recently (all the refer-
ences date of the last five years) has started to consider global choreographic descrip-
tions of multiple services and the problem of their projection. This yielded the three
layered structure depicted in Figure 1 where a global type describing the choreography
is projected into a set of session types that are then used to type-check the processes
that implement it (as well as guide their implementation). The study thus focuses on
defining the relation between the different layers. Implementability is the relation be-
tween the first and second layer. Here the important properties are that projection pro-
duces systems that are sound and complete with respect to the global description (in
the sense stated by Theorem 4.1) and deadlock free (eg, we bar out specifications as
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p
a−→ q∨p a−→ r when it has no continuation, since whatever the choice either q or r

will be stuck). Typeability is the relation between the second and third layer. Here the
important properties are subject reduction (well-typed processes reduce only to well-
typed processes) and progress (which in this context implies deadlock freedom).

Although in this work we disregarded the lower layer of processes, it is neverthe-
less an essential component of this research. In particular, it explains the nature of the
messages that characterize this approach, which are types. One of the principal aims
of this research, thus, is to find the right level of abstraction that must be expressed by
types and session types. Consider again Figure 1. The process layer clearly shows the
relation between the message received by ��� and the one it sends to �����, but this
relation (actually, any relation) is abstracted out both in the session and the global type
layers. The level of abstraction is greater than that of cryptographic protocols since
values are not tracked by global descriptions. Although tracking of values could be
partially recovered by resorting to singleton types, there is a particular class of val-
ues that deserves special care and whose handling is one of the main future challenges
of this research, that is, channels. The goal is to include higher order types in global
specifications thus enabling the transmission of session channels and therefore the reifi-
cation of dynamic reconfiguration of session topology. We thus aim at defining recon-
figuration in the specification itself, as opposed to the case of cryptographic protocols
where the reconfiguration of the communication topology is considered at meta-level
for verification purposes. As a matter of fact, this feature has already been studied in
the literature. For instance, the extension of WS-CDL [1] with channel passing is stud-
ied in [11] (as the automata approach has the MSC as their reference standard, so the
Web service-oriented research refers to the WS-CDL standard whose implementability
has been studied in [19]); the paper that first introduced global descriptions for session
types [9] explicitly mentions channels in messages that can be sent to other participants
to open new sessions on them. In our opinion the existing works on session types are
deeply syntactic in nature and suffer from the fact that their global types are defined in
function of the languages used to define processes and session types. The consequence
is that the design choices done in defining session types are amplified in the passage
to global types yielding a somewhat unnatural syntax for global types and restrictive
conditions devoid of semantic characterizations. Here we preferred to take a step back
and to start by defining global descriptions whose restrictions are semantically justified.
So we favored a less rich language with few semantically justified features and leave
the addition of more advanced features for a later time.

Coming back to the comparison of the three approaches, the Web service-oriented
approach shares several features in common with the other two. As for the automata
approach we (in the sense of the Web service-oriented research) focus on the expres-
siveness of the control, the possibility of branching and iterate, and the effective im-
plementability into deadlock-free local descriptions. However the tendency for Web
services is to impose syntactic restrictions from the beginning rather than study the
general case and then devise appropriate restrictions with the sought properties (in this
respects our work and those of Bravetti, Zavattaro and Lanese [6,7,5] are few exceptions
in the panorama of the Web service approach). Commonalities with the cryptographic
protocol approach are more technical. In particular we share the dynamism of the
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communication topology (with the caveat about whether this dynamism is performed at
the linguistic or meta-linguistic level) and the robustness with respect to reconfiguration
(the projected session types should ensure that well-typed process will be deadlock free
even in the presence of multiple interleaved sessions and session delegation, though
few works actually enforce this property [3,13]). As for cryptographic protocols, this
dynamism is also accounted at level of participants since recent work in session types
studies global descriptions of roles that can then be implemented by several different
agents [12]. Finally, there are some characteristics specific to our approach such as the
exploration of new linguistic features (for instance in this work we introduced actions
with multi-senders and encoded multi-receivers) and a pervasive use of compositional
deduction systems that we inherit from type theory. We conclude this section with a
more in-depth description of the main references in this specific area so as to give a
more detailed comparison with our work.

Multiparty session types. Global types were introduced in [9] for dyadic sessions and
in [16] for multi-party sessions. Channels are present in the global types of both [9]
and [16] while the first also allows messages to have a complex structure. Their pres-
ence, however, requires the definition of syntactic restrictions that ensure projectability:
channels need to be “well-threaded” (to avoid that the use of different channels disrupts
the sequentiality constraints of the specification) and message structures must be used
“coherently” in different threads (to assure that a fixed server offers the same services
to different clients). We did not include such features in our treatment since we wanted
to study the problems of sequentiality (which yielded Definition 4.2 of well-formed
global type) and of coherence (which is embodied by the subsession relation whose
algorithmic counterpart is the � merge operator) in the simplest setting without further
complexity induced by extra features. As a consequence of this choice, our merge be-
tween session types is a generalization of the merge in [21,12] since we allow inputs
from different senders (this is the reason why our compatibility is more demanding than
the corresponding notion in [21]).

Another feature we disregarded in the present work is delegation. This was intro-
duced in [16] for multi-party sessions and is directly inherited from that of dyadic ses-
sions [15]. A participant can delegate another agent to play his role in a session. This
delegation is transparent for all the remaining participant of the session. Delegation is
implemented by exchanging channels, ie, by allowing higher-order channels. In this
way the topology of communications may dynamically evolve.

Our crusade for simplification did not restrict itself to exclude features that seemed
inessential or too syntax dependent, but it also used simpler forms of existing constructs.
In particular an important design choice was to use Kleene star instead of more expres-
sive recursive global types used in [15,9,16,12]. Replacing the star for the recursion
gives us a fair implementation of the projected specification almost for free. Fairness
seems to us an important —though neglected by current literature— requirement for
multi-party sessions. Without it a session in which a part continuously interacts leaving
a second one to starve is perfectly acceptable. This is what happens in all the papers
referred in this subsection. Without Kleene star, fairness would be more difficult to en-
force. Clearly recursion is more expressive than iteration, even though we can partially
bridge this gap using k-exit iterations (Section 6).
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Finally, although we aimed at simplifying as much as possible, we still imposed
few restrictions that seemed unavoidable. Foremost, the sequentiality condition of Sec-
tion 4, that is, that any two actions that are bound by a semicolon must always appear
in the same order in all traces of (sound and complete) implementations. Surprisingly,
in all current literature of multi-party session types we are aware of, just one work [9]
enforces the sequential semantics of “�”. In [9] the sequentiality condition, called con-
nectedness is introduced (albeit in a simplified setting since—as in [15,16]— instead
of the “�” the authors consider the simpler case of prefixed actions) and identified as
one of three basic principles for global descriptions under which a sound and com-
plete implementation can be defined. All others (even later) works admit to project, say,
q

a−→ p;r
a−→ p in implementations in which p reads from r before having read from q.

While the technical interest of relaxing the sequentiality constraint in the interpretation
of the “�” operator is clear —it greatly simplifies projectability— we really cannot see
any semantically plausible reason to do it.

Of course all this effort of simplification is worth only if it brings clear advantages.
First and foremost, our simpler setting allows us to give a semantic justification of the
formalism and of the restrictions and the operators we introduced in it. For these reasons
many restrictions that are present in other formalisms are pointless in our framework.
For instance, two global types whose actions can be interleaved in an arbitrary way
(ie, composed by ∧ in our calculus) can share common participants in our global types,
while in the work of [9] and [16] (which use the parallel operator for∧) this is forbidden.
So these works fail to project (actually, they reject) protocols as simple as the first line
of the example given in the specification (1) in the introduction. Likewise we can have
different receivers in a choice like, for example, the case in which two associated buyers
wait for a price from a given seller:

������
price−→ ��	��
;��	��


price−→ ��	���∨������ price−→ ��	���;��	���
price−→ ��	��


while such a situation is forbidden in [9,16].
Another situation possible in our setting but forbidden in [9,16,12] is to have differ-

ent sets of participants for alternatives, such as in the following case where a buyer is
notified about a price by the broker or directly by the seller, but in both cases gives an
answer to the broker:

(������
agency−→ �����;�����

price−→��	��∨������price−→��	��);��	��answer−→ �����

A similar situation may arise when choosing between repeating or exiting a loop:

������
agency−→ �����;(�����

offer−→ ��	��;��	��
counteroffer−→ �����)∗;

(����� result−→ ������∧����� result−→ ��	��)

which is again forbidden in [9,16,12].
The fact of focusing on a core calculus did not stop us from experimenting. On the

contrary, having core definitions for global and session types allowed us to explore new
linguistic and communication primitives. In particular, an original contribution of our
work is the addition of actions with multiple senders and encoded multiple receivers (as
explained at the beginning of Section 2). This allows us to express both joins and forks
of interactions as shown by the specification (3) given in Section 2.
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Choreographies. Global types can be seen as choreographies [1] describing the in-
teraction of some distributed processes connected through a private multiparty session.
Therefore, there is a close relationship between our work and [6,7,5], which concern the
projection of choreographies into the contracts of their participants. The choreography
language in these works essentially coincides with our language of global types and,
just like in our case, a choreography is correct if it preserves the possibility to reach
a state where all of the involved Web services have successfully terminated. There are
some relevant differences though, starting from choreographic interactions that invari-
ably involve exactly one sender and one receiver, while in the present work we allow for
multiple senders and we show that this strictly improves the expressiveness of the for-
malism, which is thus capable of specifying the join of independent activities. Other dif-
ferences concern the communication model and the projection procedure. In particular,
the communication model is synchronous in [6] and based on FIFO buffers associated
with each participant of a choreography in [7]. In our model (Section 3) we have a single
buffer and we add the possibility for a receiver to specify the participant from which a
message is expected. In [6,7,5] the projection procedure is basically an homomorphism
from choreographies to the behavior of their participants, which is described by a con-
tract language equipped with parallel composition, while our session types are purely
sequential. [6,7] give no conditions to establish which choreographies produce correct
projects. In contrast, [5] defines three connectedness conditions that guarantee correct-
ness of the projection. The interesting aspect is that these conditions are solely stated
on properties of the set of traces of the choreography, while we need the combination
of projectability (Table 3) and well-formedness (Definition 4.2). However, the connect-
edness conditions in [5] impose stricter constraints on alternative choreographies by
requiring that the roles in both branches be the same. This forbids the definition of the
two global types described just above that involve the ����� participant. In addition,
they need a causal dependency between actions involving the same operation which
immediately prevents the projection of recursive behaviors (the choreography language
in [5] lacks iteration and thus can only express finite interactions).

Finally, in discussing MSG in the long version of this work we argue that requir-
ing the specification and its projection produce the same set of traces (called standard
implementation in [14]) seemed overly constraining and advocated a more flexible so-
lution such as the definitions of soundness and completeness introduced here. However
it is interesting that Bravetti and Zavattaro in [5] take the opposite viewpoint, and make
this relation even more constraining by requiring the relation between a choreography
and its projection to be a strong bisimulation.

Other calculi. In this brief overview we focused on works that study the relation be-
tween global specifications and local machine-oriented implementations. However in
the literature there is an important effort to devise new description paradigms for either
global descriptions or local descriptions. In the latter category we want to cite [15,4],
while [10] seems a natural candidate in which to project an eventual higher order ex-
tension of our global types. For what concerns global descriptions, the Conversation
Calculus [8] stands out for the originality of its approach.
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8 Conclusion

We think that the design-by-contract approach advocated in [9,16] and expanded in later
works is a very reasonable way to implement distributed systems that are correct by con-
struction. In this work we have presented a theory of global types in an attempt of better
understanding their properties and their relationship with multi-party session types. We
summarize the results of our investigations in the remaining few lines. First of all, we
have defined a proper algebra of global types whose operators have a clear meaning.
In particular, we distinguish between sequential composition, which models a strictly
sequential execution of interactions, and unconstrained composition, which allows the
designer to underspecify the order of possibly dependent interactions. The semantics
of gobal types is expressed in terms of regular languages. Aside from providing an ac-
cessible intuition on the behavior of the system being specified, the most significant
consequence is to induce a fair theory of multi-party session types where correct ses-
sions preserve the ability to reach a state in which all the participants have successfully
terminated. This property is stronger than the usual progress property within the same
session that is guaranteed in other works. We claim that eventual termination is both de-
sirable in practice and also technically convenient, because it allows us to easily express
the fact that every participant of a session makes progress (this is non-trivial, especially
in an asynchronous setting). We have defined two projection methods from global to
session types, a semantic and an algorithmic one. The former allows us to reason about
which are the global types that can be projected, the latter about how these types are
projected. This allowed us to define three classes of flawed global types and to suggest
if and how they can be amended. Most notably, we have characterized the absence of
sequentiality solely in terms of the traces of global types, while we have not been able
to provide similar trace-based characterizations for the other flaws. Finally, we have de-
fined a notion of completeness relating a global type and its implementation which is
original to the best of our knowledge. In other theories we are aware of, this property
is either completely neglected or it is stricter, by requiring the equivalence between the
traces of the global type and those of the corresponding implementation.
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Abstract. We consider reactive probabilistic labelled transition systems (rplts),
a model where internal choices are refined by probabilistic choices. In this set-
ting, we study the relationship between linear-time and may-testing semantics,
where an angelic view of nondeterminism is taken. Building on the model of d-
trees of Cleaveland et al., we first introduce a clean model of probabilistic may-
testing, based on simple concepts from measure theory. In particular, we define
a probability space where statements of the form “p may pass test o” naturally
correspond to measurable events. We then obtain an observer-independent char-
acterization of the may-testing preorder, based on comparing the probability of
sets of traces, rather than of individual traces. This entails that may-testing is
strictly finer than linear-time semantics. Next, we characterize the may-testing
preorder in terms of the probability of satisfying safety properties, expressed as
languages of infinite trees rather than traces. We then identify a significative sub-
class of rplts where linear and may-testing semantics do coincide: these are the
separated rplts, where actions are partitioned into probabilistic and nondeter-
ministic ones, and at each state only one type is available.

Keywords: probabilistic transition systems, linear time, testing equivalence,
safety.

1 Introduction

In a classical nondeterministic setting, it is well-known that trace equivalence is to-
tally insensitive to points of choice in time. This makes trace equivalence a linear-time
semantics, as opposed to the various branching-time semantics of van Glabbeek’s spec-
trum [13], ranging from bisimilarity to failure equivalence. The insensitiveness to points
of choice makes linear time the ideal framework when one is interested in analyzing
properties that can be expressed as prefix-closed sets of traces, like Safety.

In this context, the testing equivalence approach [9] is conceptually important, for
it provides a clean observational justification of linear time. Indeed, in the setting of
ccs and labelled transition systems, trace equivalence does coincide with may-testing
equivalence, which deems two processes equivalent when no system (observer) running
in parallel may possibly note any difference between them (must-testing, on the other
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hand, gives rise to failure semantics, see [8]). However expected, this coincidence result
should not be taken for granted in other settings. For example, the result breaks down as
soon as one moves from a synchronous to an asynchronous communication mechanism
(see [3]).

In this paper, we study linear time and may-testing in a setting where internal choices
are refined by probabilistic ones, the reactive probabilistic labelled transition systems
(rplts for short, reviewed in Section 3) as described e.g. in [5]. rplts’s are equivalent
to the Markov Decision Processes used in probabilistic verification [2]. The reason for
choosing this model, which only features external nondeterminism, is that the proba-
bilistic version of linear-time semantics would not make sense in the presence of inter-
nal nondeterminism (see Section 3).

The motivation of our study is twofold. First, we are interested in formulating a clean
probabilistic adaption of the original proposal of testing semantics [9]. This will allow
us to check if, or under what assumptions, may-testing still provides an observational
justification for (probabilistic) linear-time semantics. Second, with our model at hand,
we hope to shed some light in some issues raised by existing probabilistic testing theo-
ries, particularly the issue of overestimation of probabilities (see e.g. [11] and references
therein). These motivations are further discussed below.

The need for a clean model of probabilistic testing can be illustrated by the
following example. Consider the two processes s and s′ on the right. The two

s

· ·

· · · ·

· ·· ·

init
1
2

1
2

l r l r

� �� �

s′

·

· · · ·

· ·· ·

1
2

1
2

1
2

1
2

init

l r

� �� �

processes and the environment can synchronize
over the actions init, l, r, � and �. In both s and
s′, after an initial synchronization on init, the envi-
ronment is offered a choice between l and r, then
either � or � may be offered, also depending on the
previous choice (l or r) of the environment. The in-
terpretation of probabilistic choice is that a fair coin
is internally tossed to decide which branch will be
made available to the environment. The probability of any individual trace – that is, the
probability that any given sequence of synchronizations becomes available to the envi-
ronment – is the same for both s and s′. Hence the probabilistic linear-time semantics
deems s and s′ as equivalent. Indeed, following Georgievska and Andova [11], one can
argue that not equating s and s′ would imply overestimating the probability of success
for an external observer, allowing him to observe some points of choice. On the other
hand, consider the case of s and s′ being two candidate implementations of a safety-
critical system; here � represents some catastrophic event, like a system crash. In this
case, one is more interested in the chance that, by resolving the internal choices, the
mere possibility of � is ruled out, whatever the behaviour of the environment and of the
scheduler. In other words, one is interested in the probability that none of the dangerous
traces in the set {init · l · � , init · r · �} becomes available. Now, s assigns to this event
probability 0, while in the case of s′, the choice of the left branch of l and of the right
branch of r, an event that happens with probability 1

4 , will rule out the possibility of �.
In this sense, s′ might be considered as safer than, and not equivalent to, s - despite the
fact that this implies observing a point of choice.
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An assessment of this and similar issues should rest on a conceptually clean model of
testing. Over the years, many models of probabilistic testing have been put forward by a
number of authors [17,21,19], up to and including the recent work by Deng et al. [6,7].
A common paradigm is compose-and-schedule, by which the nondeterminism result-
ing from the synchronized composition of the process and the observer1 is resolved by
employing - implicitly or explicitly - schedulers that make the system fully probabilis-
tic. We see two difficulties with schedulers. First, schedulers can look at the states of
the synchronized system, including “ghost” states that result from purely probabilistic
choices. This may lead to an unrealistic observation power - the issue of overestimation
discussed e.g. by [11]. Some models rectify this by hiding the random choices from the
scheduler [4,11]. But then it may become problematic to decide which points of choice
should remain observable and which should not (see the example above). Second, the
outcome of testing a process with an observer is a range of success probabilities, one
for each possible scheduler. Comparing two systems on the basis of these ranges is in
general awkward. Say one deems system A safer than system B if for each scheduler
of A there is a scheduler of B that will lead to crash with a greater probability (see
e.g. [7]). The relation “A safer than B” thus established may be of no use in a real-world
context, where both the behaviour of the environment and the actual scheduling pol-
icy are unpredictable to a large extent. This is of course a drawback when analyzing
safety-critical systems. To sum up, in these approaches taking schedulers explicitly into
account makes the very concept of passing a test awkward, and somehow spoils the
clarity of the original testing proposal [9].

In this paper we face these issues from a different perspective and put forward a
model that abstracts away from schedulers. The basic idea is that one should first resolve
probabilistic choices, then treat the resulting nondeterministic system angelically (if an
event may happen, it will happen). Informally, resolving the probabilistic choices out
of a process p and of an observer o yields a pair of nondeterministic systems, T and U,
with certain associated probabilities, Pr(T ) and Pr(U). Here, T may or may not satisfy
U in a traditional sense. Approximately, the probability that p may pass test o could
then be expressed as a sum

Pr(p may pass o) =
∑

T ,U:T may pass U Pr(T ) · Pr(U) . (1)

We formalize this intuition building on simple concepts from measure theory (reviewed
in Section 2) and on the model of d-trees of Cleaveland et al. [5] (reviewed in Section 4).
In particular, we introduce a probability space where the statements “p may pass o”
naturally correspond to measurable events. In general, the sum (1) becomes a proper
integral in this space. Going back to the example above, s and s′ are distinguished in
this model by the observer o = init.(l.�.ω + r.�.ω) (here ω is the success action):
indeed, the probability that s may pass o is 1, while it is 3

4 for s′.
With this model at hand, we investigate the relationships existing among may-

testing, linear-time semantics and safety properties. In summary, we offer the following
contributions:

1 Of course, the nondeterminism arising from this composition is always of internal type, despite
the fact that the system and the process alone may only feature external nondeterminism.
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– a clean model of probabilistic may-testing for rplts (Subsection 4.1);
– an observer-independent characterization of the may-testing preorder, based on

comparing the probability of sets of traces, rather than of individual traces (Sub-
section 4.2);

– a comparison of may testing with both linear-time and tree-unfolding semantics
(Subsection 4.3);

– a characterization of the may-testing preorder in terms of safety properties, ex-
pressed as sets of infinite trees rather than traces (Section 5).

– sufficient conditions on rplts’s and observers guaranteeing that linear and may-
testing semantics do coincide. This leads to the class of separated rplts, where
probabilistic and nondeterministic transitions do not mix up (Section 6).

We end the paper with a few considerations on further and related work (Section 7).
For lack of space most proofs are omitted in this short version; they can be found in the
full version available online [1].

2 Background on Measure Theory

We recall some notions from elementary measure theory. A classical reference is [14].
Let X be any nonempty set. A sigma-algebra, or measurable space, on X is a pair
(X,A) such that ∅ � A ⊆ 2X is closed under countable unions and complementation.
A measure over (X,A) is a function μ : A → R+ ∪ {∞} satisfying additivity under
countable disjoint unions and such that μ(∅) = 0. It is a probability measure if μ(X) = 1.
The triple (X,A, μ) is called measure space; if μ is a probability measure, it is also called
a probability space. Let (X,A, μ1) and (Y,B, μ2) be two measure spaces. The product
sigma-algebraA×B is defined to be the sigma-algebra on the cartesian product X × Y
generated by the subsets of the form A × B, with A ∈ A and B ∈ B.

Given two sigma-finite [14] measure spaces (X,A, μ1) and (Y,B, μ2), the product
measure μA×B is defined to be the unique measure on the measurable space (X×Y,A×B)
satisfying the following condition

μA×B(A × B) = μ1(A) · μ2(B) (2)

for all A ∈ A and B ∈ B. If μ1 and μ2 are probability measures, so is their product μA×B,
hence in this case (X × Y,A×B, μA×B) forms a probability space.

3 Reactive Probabilistic Labeled Transition Systems

This section introduces the object of our study, Reactive Probabilistic Labeled Tran-
sition Systems (rplts for short) and the linear-time and tree-unfolding semantics. The
relationship between the linear-time and tree-unfolding preorders and the may-testing
preorder will be investigated in the next section.



Linear-Time and May-Testing in a Probabilistic Reactive Setting 33

3.1 rplts

Let us fix a nonempty set Act of actions, ranged over by a, b, .... We will let w, v, . . .
range over Act∗. A Reactive Probabilistic Labeled Transition System [5,12,18] is basi-
cally a finite-branching probabilistic lts’s over the set Act. Labels on transitions record
the interactions the system may engage in with the environment: at each state, any given
action may or may not be available for interaction. Internal nondeterminism is refined
by probabilistic choices: if available, a given action can lead to different states depend-
ing on probabilities attached to transitions.

Definition 1 (rplts). A reactive probabilistic labeled transition system L is a triple
(S , δ, P), such that:

– S is an at most countable set of states;
– δ ⊆ S × Act × S is a transition relation such that for each s ∈ S there exists a finite

number of transitions of the form (s, ·, ·) in δ (i.e. δ is finitely-branching);
– P : δ → (0, 1] is a transition probability distribution such that for each s ∈ S and

a ∈ Act:
∑

s′:(s,a,s′)∈δ P(s, a, s′) ∈ {0, 1};

s1s0

s2 s3

s4 s5

s9

s6 s7 s8

s10

a

a
0.6 0.4

c

a
d

0.7 0.3

e

e d d

c
d

A rplts can be depicted as a graph, as shown on the
right. Let us now introduce some terminology. Let

L = (S , δ, P) be a rplts. We will often write s
a−→ s′

to mean that (s, a, s′) ∈ δ, if the underlying L is clear
from the context.

A computation of L is any sequence σ of the form
s0a1s1a2 · · · ansn ∈ S · (Act · S )∗, where n ≥ 0 and
for each 0 ≤ i < n it holds that si

ai+1−−→ si+1. We will
denote by fst(σ) and lst(σ), respectively, the initial
and the final state ofσ and by λ(σ) the sequence of labels inσ, that is λ(σ) = a1a2 · · ·an.
We define the weight of σ as wt(σ)


= Πn−1

i=0 P(si, ai+1, si+1). Let us fix a rplts L =
(S , δ, P) and any state s of S . In what follows, we will denote by CL the set of all
computations over L, and by CL

s the set of all computationsσ over L such that fst(σ) = s.
A computation σ′ is said to be a prefix of σ if σ′ is a prefix of σ as a string. A set of

computations D ⊆ CL is said to be prefix-closed if for every σ ∈ D and σ′ prefix of σ,
σ′ ∈ D. A set of computations D ⊆ CL is said to be deterministic if wheneverσ,σ′ ∈ D,
with σ = σ′′as and σ′ = σ′′a′s′, then either a � a′ or s = s′.

Definition 2 (d-trees). Let L be a rplts. Then ∅ � D ⊆ CL is a d-tree if the following
hold:

(1) there is an s ∈ S such that D ⊆ CL
s ; (2) D is prefix-closed; (3) D is

deterministic.

We say that a d-tree D of L is rooted at s if D ⊆ CL
s and let T L and T L

s denote, respec-
tively all d-trees of L and all d-trees of L rooted at s. We will write F L for the set of
all finite d-trees of L and F L

s for the subset of those rooted at s. Finally, we define the
weight of a D ∈ F L

s as

wt(D)

=
∏

σas ∈ D P(lst(σ), a, s) .
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Note that if D is given as the prefix-closure of some computation σ, then wt(D) =

wt(σ). Finally, given any d-tree D ⊆ CL
s , we set λ(D)


= {λ(σ) |σ ∈ D} and use D

w−→
as an abbreviation of w ∈ λ(D).

3.2 Linear-Time Semantics of rplts

Definition 3 (probabilistic linear-time preorder). Let L be a rplts. For any state s,
the function f L

s : Act∗ → [0, 1] is defined thus

for each w ∈ Act∗, f L
s (w)


=
∑

σ∈CL
s : λ(σ)=w wt(σ) . (3)

For any two states s and s′, we write s ≤lin s′ if and only if for each w ∈ Act∗, f L
s (w) ≤

f L
s′ (w).

Note that the sum in (3) is finite, as L is finitely branching. Functions of the type
Act∗ → K are classically known as formal power series in Automata Theory: they
represent a generalization of the set-theoretic notion of language to a setting where
weights of transitions are not just 0/1 (absence/presence), but elements of a semiring,
K (in our case, the reals). In our scenario, a natural interpretation of “ f L

s (w) = p” is
that, starting at s, with probability p a sequence of synchronizations along w will be
available to an observer. Note that when applied to general plts2, also featuring internal
nondeterminism, this definition would not make sense: indeed, one might end up having
f L
s (w) > 1.

3.3 Tree-Unfolding Semantics of rplts

Some terminology on trees is in order. A tree θ over Act is a nonempty, prefix-closed
subset of Act∗. In what follows, we shall call T f the set of finite trees over Act∗ and use
the letter t to range over finite trees.

Definition 4 (probabilistic tree-unfolding preorder). Let L be a rplts. For any state
s, the function ϕL

s : T f → [0, 1] is defined thus

for each t ∈ T f , ϕL
s (t)


=
∑

D⊆CL
s : λ(D)=t wt(D) . (4)

For any two states s and s′, we write s ≤tree s′ if and only if for each t ∈ T f , ϕL
s (t) ≤

ϕL
s′(t).

Note that the sum in (4) is finite, as L is finitely branching and t is finite. Functions of
type T f → K are known as formal tree series in Automata Theory (see e.g. [10]) and
represent a generalization of formal power series to trees.

By Definition 3 and 4 it follows that the tree-unfolding preorder is included in the
linear-time preorder. The example in the Introduction witnesses the fact that this in-
clusion is strict: the linear-time semantics deems s and s′ as equivalent, while the
tree-unfolding semantics does not. Indeed, ϕL

s (t) > ϕL
s′(t) and ϕL

s (t′) < ϕL
s′(t
′), with

t = {ε, init, init·l, init·r, init·l·�, init·r·�} and t′ = {ε, init, init·l, init·r, init·l·�, init·r·�}.
We sum the above discussion in the following:

2 These can be obtained from Definition 1 by replacing the condition of the third item with just∑
s′ :(s,a,s′ )∈δ P(s, a, s′) ∈ N.
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Proposition 1. The preorder ≤tree is strictly included in ≤lin.

4 May Testing for rplts

In the first part, we review the probabilistic model of d-trees introduced by Cleaveland
et al. [5]. In the second part, we introduce the testing scenario and the definition of may-
testing preorder. We then establish a trace-based, observer-independent characterization
of this preorder.

4.1 The Sigma-Algebra of d-trees

The material in this subsection is borrowed from [5]. Some additional terminology is in
order. In what follows, we fix a generic rplts L = (S , δ, P). Given any D,D′ ⊆ CL we
say that D′ is a prefix of D if D′ ⊆ D. A d-tree is said maximal if it is not prefix of any
other d-tree; we writeML andML

s , respectively, for the set of all maximal d-trees of L
and of all maximal d-trees of L rooted at s. In what follows, we let T and U range over
maximal d-trees.

Example 1. Consider the rplts L depicted in Section 3; the d-trees below belong to F L
s0

.
D0

s0

s2

s4 s6

a

d e

D1

s0

s2

s4

a

d

D2

s0

s2

s5

s9

s6

a

d

e

e

D3

s0

s3

s8

s10

a

d

d

In the picture, each path from the root to a node of the tree - either leaf or internal node
- represents a computation in the corresponding d-tree. Notice also that D1 is a prefix
of D0, therefore it does not belong toML

s , while D0 and D2 do.

Following [5], we consider the d-trees inML as the possible “outcomes” of observing
L, and according to this intuition, define a probability space overML

s , for a given state
s of L. The construction of this space is based on the concept of “basic cylindrical sets”
of maximal d-trees: subsets ofML

s containing all d-trees sharing a given finite prefix.
The measure of each cylinder is defined, as expected, as the product of the probabilities
associated to edges of the common prefix. Formal definitions of basic cylindrical sets
and of their measure are given below.

Definition 5 (basic cylindrical set). Let L = (S , δ, P) be a rplts, let s ∈ S and D ∈ F L
s .

The basic cylindrical set (with common prefix D) BD ⊆ ML
s is defined as: BD


= {T ∈

ML
s |D ⊆ T }.

We let Bs be the sigma-algebra generated by the collection of basic cylindrical sets
BD, for D ∈ F L

s . Bs is obviously sigma-finite. We let μL
s : Bs → [0, 1] be the unique

measure satisfying μL
s (BD) = wt(D) for each D ∈ F L

s .
For any s, μL

s is a probability measure overBs, therefore (ML
s ,Bs, μ

L
s ) is a probability

space. In the following, we will omit the superscript L from μL
s when the underlying

rplts is clear from the context.
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4.2 The May-Testing Preorder

Let us fix a generic rplts L. An observer O is a rplts over the set of actions Act ∪ {ω},
where ω � Act is a distinct success action. For any state o of O and H ∈ T O

o , we let

Ω(H)

= {w ∈ Act∗ · {ω} |H w−→ }. The set of all possible sequences of actions leading o

to success is then Ω(o)

=
⋃

H∈TO
o
Ω(H). A state o of O is said to be finite if CO

o is a finite
set. In other words, o is finite if the rplts reachable from o is finite-state and acyclic. In
the following we write W◦ for the set {w |wω ∈ W}.

Definition 6. Let s and o be states of L and of O, respectively. For any D ∈ T L
s and

H ∈ TO
o , we say that D may H if there is w ∈ Act∗ such that D

w−→ and H
wω−−→ . The

set of maximal d-trees of L rooted at s that satisfy o is defined as

sat(s, o)

=
{
(T,U) ∈ ML

s ×MO
o | T may U

}
.

Before introducing the may-testing preorder, we have to fulfill one obligation: proving
that sat(s, o) is measurable in an appropriate sigma-algebra. To this purpose, we first
generalize the concept of maximal d-tree. Informally, a W-maximal d-tree, with W ⊆
Act∗, is a d-tree D such that D

w−→ for at least one w ∈ W. Moreover, D is non
redundant with respect to W, in the sense that it cannot be extended (resp. pruned) to
match more (resp. the same) elements of W. These conditions, plus a requirement of
local maximality on nodes, ensure that distinct W-maximal d-trees generate disjoint
basic cylindrical sets.

Definition 7 (W-maximal d-tree). Let L be a rplts, s a state and let W ⊆ Act∗. D ∈ T L
s

is said to be locally-maximal if whenever σas1 ∈ D and σbs2 ∈ CL
s then there is s3 s.t.

σbs3 ∈ D. D ∈ T L
s is said to be W-maximal if it is locally-maximal and satisfies the

following conditions (the inclusions below are strict):

1. λ(D) ∩W � ∅;
2. for each locally-maximal D′ ∈ T L

s , D ⊂ D′ implies λ(D′) ∩W = λ(D) ∩W;
3. for each locally-maximal D′ ∈ T L

s , D′ ⊂ D implies λ(D′) ∩W ⊂ λ(D) ∩W.

This definition is extended to observers by letting W range over subsets of Act∗ · {ω}.

It is worthwhile to note that the Act∗-maximal d-trees (rooted at s) are exactly the max-
imal d-trees (rooted at s).

Example 2. Consider again the rplts in Section 3 and the d-trees D0,D1,D2 and D3

from Example 1. Let W = {ade, ad}. Then:

– D1 is not locally-maximal, hence not W-maximal: it does not contain the transition

s2
e−→ s6;

– D3 is not W-maximal: the transition s8
d−→ s10 is unnecessary;

– D0 and D2 are W-maximal.

The following key result motivates the introduction of W-maximal d-trees. It follows
from the definition of basic cylindrical set, locally- and W-maximal d-tree.
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Lemma 1. Let D,D′ ∈ T L
s be W-maximal d-trees, for some W ⊆ Act∗. If D � D′ then

BD ∩ BD′ = ∅

We come to show that sat(s, o) is measurable.

Proposition 2. The set sat(s, o) is measurable in the product sigma-algebra Bs × Bo.
Moreover, if o is finite then sat(s, o) =

⊎
(D,H) :

H ∈ F O
o Ω(o)-maximal

D ∈ F L
s Ω(H)◦-maximal

BD × BH.

Consider the probability spaces (ML
s ,Bs, μs) and (MO

o ,Bo, μo) and let μ(s,o) denote the
product probability measure over Bs × Bo. As a corollary of Proposition 2, of the defi-
nition of product sigma-algebras and product measures (2), we get the following.

Corollary 1. For a finite o, μ(s,o)(sat(s, o))=
∑

(D,H):
H ∈ F O

o Ω(o)-maximal
D ∈ F L

s Ω(H)◦-maximal

wt(D) ·wt(H) .

The classical definition of may testing preorder [9] is extended to the present proba-
bilistic setting by taking into account the probability that two states satisfy any given
observer. Note that the preorder thus defined only relates states of the same rplts. In
case one wants to relate states belonging to two different rplts’s, or even relate two
rooted rplts’s, one may work with the disjoint union of the two rplts’s.

Definition 8 (may testing preorder). Let L = (S , δ, P) be a rplts, let s, s′ ∈ S , and O
be a set of observers. We define s �∼

L,Os′ if and only if for any observer O ∈ O and any
state o in O, it holds that μ(s,o)(sat(s, o)) ≤ μ(s′ ,o)(sat(s′, o)).

WhenO is the whole class of observers with actions in Act∪{ω}, we abbreviate s �∼
L,Os′

just as s �∼
Ls′, and call this just the may-testing preorder. The superscript L will be

omitted when clear from the context.
We can now define a trace-based, observer-independent characterization of the may-

testing preorder. Let us fix a generic rplts L = (S , δ, P) and take s ∈ S and any W ⊆
Act∗. We define (s

W
=⇒ )


= {T ∈ ML

s | T
w−→ for some w ∈ W} and let (s

w
=⇒ ) stand for

(s
W
=⇒ ) with W = {w}.

Theorem 1 (observer-independent characterization). For each s and s′ states of L,

s �∼ s′ if and only if for every W ⊆fin Act∗, one has μs(s
W
=⇒ ) ≤ μs′ (s′

W
=⇒ ).

Proof: In the proof we will use the following facts (proofs can be found in [1, Ap-
pendix A]):

(a) The set (s
W
=⇒ ) is measurable in Bs. In particular, if W is finite, one has (s

W
=⇒ ) =⊎

D∈F L
s : D is W-maximal BD.

(b) Let L be a rplts, O be an observer and s, o be states of L and O, respectively. For
each U ∈ MO

o define Es,U

= {T ∈ ML

s | (T,U) ∈ sat(s, o)}. Then μ(s,o)(sat(s, o)) =∫
MO

o
μs(Es,U) dμo(U).
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Assume s �∼ s′. Fix any W ⊆fin Act∗. One can build a deterministic observer OW such
that for some finite state o in OW , one has Ω(o) = W · {ω}. Since OW is deterministic,
one has thatMOW

o consists of a single d-tree, say H, which is also the unique W · {ω}-
maximal d-tree. Moreover, wt(H) = 1 by definition. Now we have

μ(s,o)(sat(s, o))=
∑

D∈F L
s , D W-maximal wt(D) · wt(H) (by Corollary 1)

=
∑

D∈F L
s , D W-maximal wt(D) (by wt(H) = 1)

= μs
(⊎

D∈F L
s , D W-maximal BD

)
(by μs(BD) = wt(D) and additivity)

= μs(s
W
=⇒ ) (by (a)).

Finally, μ(s,o)(sat(s, o)) ≤ μ(s′ ,o)(sat(s′, o)) implies μs(s
W
=⇒ ) ≤ μs′(s′

W
=⇒ ).

Assume now that for every W ⊆fin Act∗ one has μs(s
W
=⇒ ) ≤ μs′(s′

W
=⇒ ). Take

any observer O and any state o of O. For every U ∈ MO
o , let V = Ω(U)◦ ⊆ Act∗.

The – possibly infinite – set V can be written as V =
⋃

i≥0 Vi, where each Vi is the
subset of V containing sequences of length ≤ i. By the properties of measures, for any

r, μr(r
V
=⇒ ) = limi→∞ μr(r

Vi
=⇒ ). Since for each i, μs(s

Vi
=⇒ ) ≤ μs′(s′

Vi
=⇒ ), on the limit

we get μs(Es,U) = μs(
V
=⇒ ) ≤ μs′(s′

V
=⇒ ) = μs′ (Es′,U). Therefore, by integrating the two

functions U �→ μs(Es,U) and U �→ μs′(Es′,U) overMO
o , it follows that

∫
MO

o
μs(Es,U) dμo(U) ≤

∫
MO

o
μs′(Es′,U) dμo(U) .

This is equivalent to μ(s,o)(sat(s, o)) ≤ μ(s′ ,o)(sat(s′, o)), by (b). Since O and o are arbi-
trary, it follows that s �∼ s′. �

4.3 On the Relationship among �∼ , ≤lin and ≤tree

We can finally make precise the relationship between the may-testing preorder �∼ , the
linear and tree-unfolding preorder, ≤lin and ≤tree respectively. In Proposition 1 we have
already shown that ≤tree is strictly included in ≤lin. It remains to establish a relationship
between �∼ and ≤lin and between �∼ and ≤tree. We start by considering the first pair of
preorders and by introducing a simple result that is at the basis of Theorem 2 below.

Lemma 2. For each s ∈ S and w ∈ Act∗, μs(s
w
=⇒ ) = fs(w).

Theorem 2. The preorder �∼ is strictly included in ≤lin.

Remark 1 (on canonical observers). The proof of the above Theorem 1 shows that the
class of finite, deterministic and non-probabilistic observers of the form OW (W ⊆ f in

Act∗) is powerful enough to induce the may testing preorder �∼ .
On the other hand, we also note that “linear” observers, i.e. observers composed by

a single successful sequence, that are sufficient in the classical case, are not sufficient
here. It is quite easy to see that they induce the preorder ≤lin.

Consider now the rplts L depicted in Fig. 1. It witnesses the fact that neither �∼ ⊆
≤tree nor ≤tree ⊆ �∼ . As a matter of fact, Theorem 1 guarantees that s �∼ s′, indeed

μL
s′ (s′

{ab,ac}
====⇒ ) = 0.6 < μL

s (s
{ab,ac}
====⇒ ) = 0.7, while, for what concerns
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s

· · · ·

· · · ·

a

b c b c

0.3 0.3 0.1 0.3

s′

· · · ·

· · · ·

a

b c b c

0.2 0.2 0.2 0.4

Fig. 1. s �∼ s′ and s′ �≤tree s

�∼ ≤tree

≤lin

⊂ ⊂
the tree-unfolding preorder, we get the opposite: s′ �≤tree s. In-
deed, ϕL

s (t) = 0.1 < ϕL
s′ (t) = 0.2, where t is the tree represented by

{ε, a, ab, ac}.
To conclude, we pictorially represent on the right the inclusion

relationships among the three preorders thus established.

5 May-Testing and the Safety Properties of Infinite Trees

A more satisfactory understanding of a behavioural relation can be obtained by looking
at it in terms of the class of properties satisfied by equivalent processes. A famous
example is the Hennessy-Milner theorem [16], asserting that two processes are bisimilar
exactly when they satisfy the same formulae of the HM logic. Another example, in a
probabilistic setting, is the characterization of probabilistic bisimulation in the work of
Larsen and Skou [18]. In our case, the alternative characterization in terms of sets of
traces obtained in the previous section suggests looking at properties of trees. In fact,
we shall characterize the may testing preorder in terms of the probability, for two given
states, of satisfying safety properties of trees.

Some additional terminology on strings and trees is in order. Recall that a (possibly
infinite) tree θ is a prefix-closed subset of Act∗. Let us indicate by ≺ the usual prefix
partial order on strings. The set of leaves of θ, denoted by leaves(θ), is the set of strings
in θ that are ≺-maximal in θ. We say a tree is maximal if leaves(θ) = ∅; note that a
maximal tree is necessarily infinite. We call T the set of maximal trees. In what follows,
we shall use the letter τ to range overT. There is a natural partial ordering on trees given
by the following

θ � θ′ iff θ ⊆ θ′ and whenever w ∈ θ′ \ θ then there is u ∈ leaves(θ) s.t. u ≺ w .

What this means is that θ′ can be obtained from θ by expanding into trees the leaves of
θ. If θ � θ′ we also say θ is a prefix of θ′. Let us call Θ the sigma-algebra of maximal
trees generated by the basic cylindrical sets Ct, where t ranges over all finite trees and

Ct

= {τ | t � τ}.

Let us now fix a rplts L. We shall assume that L has no dead state, that is, for
each state s there is always at least one transition from s. This assumption allows for a
simpler treatment in the following, but is not really restrictive: any rplts can be turned
into one with no dead states by adding, where necessary, dummy self-loops labelled by
a distinct action. For any state s in L, recall that Bs is the sigma-algebra of maximal d-
trees on L rooted at s (Section 4.1). Note that the label-extracting function λ : Bs → Θ
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maps each T ∈ Bs into a maximal tree τ = λ(T ) ∈ Θ. Also note that whenever Ct

and Ct′ are disjoint, so are λ−1(Ct) and λ−1(Ct′). As a consequence, λ−1(
⊎

t∈I Ct) =⊎
t∈I λ

−1(Ct). Moreover, λ−1(Cc
t ) = (λ−1(Ct))c. Another property of λ we shall rely upon

is the following:

Lemma 3. For any t, λ−1(Ct) is measurable in Bs.

The previous properties of λ allow us to define measures on Θ as follows.

Definition 9. Let s be a state of L. The measure νs on Θ is defined by setting for the

basic cylindrical sets νs(Ct)

= μs(λ−1(Ct)).

With the above definitions, (T, Θ, νs) is a probability space, for each s in L. The follow-
ing lemma is a consequence of the additivity of measures μs and νs and of the fact that
λ−1 preserves disjointness.

Lemma 4. Let R =
⊎

t∈I Ct, for some index set I. Then νs(R) = μs(λ−1(R)).

The elements of Θ we are interested in are the safety properties of the form SafeW =

{τ|τ ∩ W = ∅}, where W is any finite or infinite subset of Act∗. For example, if
W = {w ∈ Act∗| action crash occurs in w}, SafeW corresponds to the property that ac-
tion crash is never executed. We have to make sure in the first place that the sets SafeW

are measurable. We need the following lemma.

Lemma 5. For each W ⊆ Act∗, SafeW is measurable in Θ. Moreover, if W is finite,
SafeW can be written as a disjoint union of basic cylindrical sets.

Corollary 2. Let s be a state of L and W ⊆ Act∗. It holds that νs(SafeW) = 1−μs(s
W
=⇒ ).

As a corollary of the previous result, we get the following, which characterize �∼ in
terms of probability of satisfying safety properties.

Theorem 3. Let s, s′ be states of L and suppose L has no dead states. We have s �∼ s′ if
and only if for each W ⊆ Act∗, νs(SafeW) ≥ νs′(SafeW ).

Of course, �∼ can be also characterized in terms of reachability properties of the form
{τ|τ ∩W � ∅}. In this case, the inequality between s and s′ gets reversed.

6 Testing Separated rplts

In a separated system, actions can be partitioned into two sets: a set of actions Σ that are
probabilistically controlled by the system, and a set of nondeterministic actions A that
are under the control of the environment (observer). Accordingly, actions that are prob-
abilistic for processes are nondeterministic for observers, and vice-versa. Importantly,
the two types of actions do not mix up: the set of states as well gets partitioned into
a set of states where only probabilistic choices are possible, and a set of states where
only nondeterministic choices are possible. Nondeterministic actions can be modelled
as actions that, if available, have probability one. These informal considerations lead to
the next definition.
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b b c d

u0

·· ·

·· ·

a
0.5 0.5

e

b c d

Fig. 2. Two separated rplts (left and center) and a non-separated one (right)

Definition 10 (separated processes and observers). Let (Σ, A) form a partition of Act,
that is Σ ∩ A = ∅ and Σ ∪ A = Act. We say a rplts L = (S , δ, P) is a (Σ, A)-separated
process if there is a partition of the sates, S = G ∪ R, such that

– for each s ∈ G and (s, a, s′) ∈ δ one has a ∈ Σ; moreover, if (s, b, s′′) ∈ δ, for some
b and s′′, then a = b;

– for each s ∈ R and (s, a, s′) ∈ δ one has a ∈ A; moreover, if (s, a, s′′) ∈ δ, for some
s′′, then s′ = s′′.

A (Σ, A)-separated observer is a (A ∪ {ω}, Σ)-separated rplts, where ω is the distinct
success action, ω � Act.

Example 3. Let A = {b, c, d} and Σ = {a, e}. An example of (Σ, A)-separated and one of
non (Σ, A)-separated processes are depicted in Fig. 2.

Remark 2. Separated rplts are reminiscent of Hansson
and Jonsson’s alternating model [15], where probabilis-
tic and nondeterministic states are strictly alternated
with one another. In the alternating model, probabilistic
choices are labeled by the silent action τ. In our model we
do not have silent actions; but one can get rid of those τ’s
by absorbing them into incoming edges of probabilistic
states (see picture on the right). Modulo this transforma-
tion, separated rplts can be seen as a proper extension of
the alternating model.
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In what follows we fix a generic (Σ, A)-separated process L and a generic (Σ, A)-
separated observer O. We let s be a state of L and o be a state of O. The proof of the
main result in this section rests on the following crucial lemma.

Lemma 6. Consider T ∈ ML
s and U ∈ MO

o . There is at most one w ∈ Act∗ such that

T
w−→ and U

wω−−→ .

T
s0

· ·

· ·

a b

c c

U
o0

· ·

· ·

· ·

a b

c c

ω ω

It is worthwhile to note that the above lemma fails to hold for non-
separated system. As an example, consider T and U depicted on
the right. Clearly, either T belongs to a ({c}, {a, b})-separated rplts
or U belongs to a ({a, b}, {c})-separated observer (a and b are used
in both as nondeterministic actions) and they violate Lemma 6.

Recall that f L
s : Act∗ → [0, 1] denotes the formal power

series associated with the rplts L at state s. Similarly, f O
o :

(Act ∪ {ω})∗ → [0, 1] is associated with the rplts O at state o.
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Corollary 3. μ(s,o)(sat(s, o)) =
∑

w∈Act∗ f L
s (w) · f O

o (wω).

As a consequence of Theorem 1 and Corollary 3 we get the following result.

Corollary 4 (coincidence of linear-time and separated may-testing semantics). Let
�∼

(Σ,A) be the may preorder on the states of L generated by (Σ, A)-separated observers.
For each s and s′, one has s �∼

(Σ,A)s′ if and only if f L
s ≤ f L

s′ .

Example 4. Consider the rplts composed by the trees depicted in the left and in the
center of Fig. 2. This is a ({a}, {b, c, d})-separated rplts. It is easy to check that s0 ≤lin q0.
From Corollary 4 we get s0

�∼
({a},{b,c,d})q0.

7 Conclusion and Related Works

There exist many formalisms for the specification of probabilistic processes and as
many variants of probabilistic semantics. The conceptual difference between our ap-
proach and other testing theories has been discussed in the Introduction. Concerning
the set-theoretical comparison between behavioural relations, we restrict our attention
to one of the most recent proposals [7], and refer for the other approaches to the papers

s

·

·
1
2 ·

1
2

a

b

c d

s′

·
1
2 ·

1
2

· ·

a

b b

c d

mentioned therein. Consider the pcsp processes P = a.(b.c 1
2
⊕

b.d) and Q = a.b.c 1
2
⊕ a.b.d. The picture on the right is the de-

scription of P and Q’s operational semantics in terms rplts’s
(the operational model of [7] is in fact different from ours,
because transitions lead to probability distributions on states,
rather than states). P and Q are discriminated by the may pre-
order of [7], as witnessed by the test s′ = a.b.c.ω � a.b.d.ω,
which tells us that Q is not smaller than P. On the other hand, P and Q are equated by
our may-preorder, which can be established by resorting to Theorem 1. This example
shows that the presence of internal choice in [7] increases the distinguishing power of
observers. Indeed, several of the axioms usually valid for classical csp (like, e.g., dis-
tributivity of prefixing w.r.t. internal choice) are no longer valid in pcsp. We conjecture
that if the internal choice operator were taken out from csp, the may preorder of [7]
would coincide with ours.

As one would expect, our may-testing equivalence is coarser than probabilistic bisim-
ulation [18]. Indeed, any set W in the alternative characterization (or equivalently, any
canonical observer OW , see Theorem 1) can be characterized by a formula of the Prob-
abilistic Modal Logic, which induces probabilistic bisimulation [18]. That the inclusion
is strict is witnessed by processes s and s′ above, which can be distinguished by proba-
bilistic bisimulation.

As for future work, an obvious next-step is the study of must-testing behavioural
relations. Also, decidability and algorithmic issues for the considered semantics deserve
further investigation. Currently, the only known facts concern the linear-time setting: in
the context of Rabin’s probabilistic finite-state automata, which are equivalent to rplts,
it is known that the preorder is undecidable, while the induced equivalence is decidable
in polynomial time (see [20] and references therein).
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Abstract. We propose a model-checking tool for on-the-fly verification
of properties expressed in a branching-time temporal logic based on a
deontic interpretation of classical modal and temporal operators over
modal transition systems. We apply this tool to the analysis of variability
in behavioural descriptions of families of services.

1 Introduction

We present our ongoing research on an emerging topic in the engineering of
distributed systems, right on the crossroads between (software) product line
engineering and service computing [10, 23, 24]. Our aim is the development of
rigorous modelling techniques as well as analysis and verification support tools
for assisting organisations to plan, optimise, and control the quality of software
service provision. To this aim, we foresee a flexible engineering methodology
according to which software service line organisations can develop novel classes
of service-oriented applications easily adaptable to customer requirements as well
as to changes in the context in which they execute.

Product Line Engineering (PLE) is an approach to develop product families
using a common platform and mass customisation [33]. It aims to lower produc-
tion costs of individual products by letting them share an overall reference model
of a product family, while allowing them to differ w.r.t. particular features in
order to serve, e.g., different markets. As a result, the production process in PLE
is organised so as to maximise commonalities of the products and at the same
time minimise the cost of variations. Product variants can be derived from the
product family, which allows for reuse and differentiation of a family’s products.
Variety of products from a single product platform is achieved by identifying
variation points as places in design artifacts where a specific decision is reduced
to the choice among several features but the feature to be chosen for a particular
product is left open (like optional, mandatory or alternative features). Software
Product Line Engineering (SPLE) is a paradigm for developing a diversity of
software products and software-intensive systems based on the underlying archi-
tecture of an organisation’s product platform [9, 36]. Variability management is
the key aspect differentiating SPLE from ‘conventional’ software engineering.

Service-Oriented Computing (SOC) is a distributed computing paradigm [35].
Services are autonomous, distributed, and platform-independent computational

R. Bruni and J. Dingel (Eds.): FMOODS/FORTE 2011, LNCS 6722, pp. 44–58, 2011.
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elements capable of solving specific tasks, which all need to be described, pub-
lished, categorised, discovered, and then dynamically and loosely coupled in novel
ways (orchestrated). They can be used to create distributed, interoperable, and
dynamic applications and business processes which span organisational bound-
aries as well as computing platforms. In the end, SOC systems deliver application
functionalities as services to either end-user applications or other services. Their
underlying infrastructures are called Service-Oriented Architectures (SOAs).

We recently launched a research effort to, on the one hand, investigate the
most promising existing modelling structures that allow (behavioural) variability
to be described and product derivation to be defined, and, on the other hand,
develop a proper temporal logic that can be interpreted over such structures and
which can express interesting properties over families and products alike. In [3],
we defined such a temporal logic and an efficient model-checking algorithm.

This paper is a first step towards extending our results to service families. We
present a model checker based on a formal framework of vaCTL (a variability
and action-based branching-time temporal logic) with its natural interpretation
structure (MTS, Modal Transition System). Product derivation is defined in our
framework and logical formulae are used as variability constraints as well as
behavioural properties to be verified for families and products alike. We apply
our tool to analyse variability in behavioural descriptions of service families.

After presenting a simple running example in Sect. 2, we formally define MTSs
in Sect. 3. In Sect. 4, we introduce vaCTL and show how we can manage ad-
vanced variability in Sect. 5. In Sect. 6, we describe our tool and apply it to the
running example. Related work is discussed in Sect. 7, before Sect. 8 concludes.

2 Running Example: Travel Agency

As motivating example, consider a software company developed a package on sale
for those interested in starting a travel agency service (e.g. on the web). This
company provides a choice among products of a family with different prices and
features. All products provide the features hotel , flight , and train reservation:
the coordination component uses predefined external services (one per business
sector) to retrieve a list of quotes. These products can be enhanced in two ways:

1. By adding as alternative feature the possibility to choose, only for flights and
hotels, from multiple external services in order to retrieve the best quotes
through more than one service. This means that proper coordination ad-
dresses more hotel and flight services, and proper data fusion is done with
the data received by the contacted external services.

2. By adding as optional feature the possibility for a customer to book a leisure
tour during his/her stay at a hotel. This is achieved through an additional
component that interacts with an external leisure tour service. However, as
the provided tour packages may include a hotel in a different location for a
subset of nights, a tour reservation requires interaction with the hotel service
to offer a feature that allows to cancel part of the room reservations at the
main hotel location for such nights. A coordination model variant can do so.
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When combined, this choice of features leads to the following 8 different products.

products
features variability 1 2 3 4 5 6 7 8

train reservation predefined services mandatory
√ √ √ √ √ √ √ √

hotel reservation predefined services alternative
√ √ √ √

multiple services
√ √ √ √

flight reservation predefined services alternative
√ √ √ √

multiple services
√ √ √ √

leisure tour reservation optional
-�

√ √ √ √
cancel part reservation required

√ √ √ √

3 A Behavioural Model for Product Families

Modal Transition Systems (MTSs) [28] and variants are now an accepted formal
model for defining behavioural aspects of product families [14, 27, 12, 29, 3]. An
MTS is a Labelled Transition System (LTS) with a distinction between may and
must transitions, seen as optional or mandatory features for a family’s products.
For a given product family, an MTS can model

– its underlying behaviour , shared among all products, and
– its variation points, differentiating between products.

An MTS cannot model advanced variability constraints regarding alternative
features (only one of them may be present) nor those regarding inter-feature
relations (a feature’s presence requires or excludes that of another feature) [3].
We will formalise such advanced variability constraints by means of an associated
set of logical formulae expressed in the variability and action-based branching-
time temporal logic vaCTL that we will define in Sect. 4.

We now formally define MTSs and — to begin with — their underlying LTSs.

Definition 1. A Labelled Transition System (LTS) is a quadruple (Q, A, q, δ),
with set Q of states, set A of actions, initial state q ∈ Q, and transition relation
δ ⊆ Q× A×Q. We also write q

a−→ q′ for (q, a, q′) ∈ δ. ��

To model behaviour of product families, we must define the evolution of time.

Definition 2. Let (Q, A, q, δ) be an LTS and q ∈ Q. Then σ is a path from q if
σ = q (an empty path) or σ is a (possibly infinite) sequence q1a1q2a2q3 · · · such
that q1 = q and qi

ai−→ qi+1, for all i > 0. A full path is a path that cannot be
extended further, i.e., it is infinite or ends in a state with no outgoing transitions.
The set of all full paths from q is denoted by path(q).

If σ = q1a1q2a2q3 · · · , then its i-th state qi is denoted by σ(i) and its i-th
action ai is denoted by σ{i}. ��

In an MTS, transitions are defined to be possible (may) or mandatory (must).
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Definition 3. AModal Transition System (MTS) is a quintuple (Q, A, q, δ�, δ♦)
such that the quadruple (Q, A, q, δ� ∪ δ♦) is an LTS, called its underlying LTS.

An MTS has two transition relations: δ♦ ⊆ Q×A ×Q is the may transition
relation, expressing possible transitions, while δ� ⊆ Q × A × Q is the must
transition relation, expressing mandatory transitions. By definition, δ� ⊆ δ♦.

We also write q
a−→� q′ for (q, a, q′)∈δ� and q

a−→♦ q′ for (q, a, q′)∈δ♦. ��
The inclusion δ� ⊆ δ♦ formalises that mandatory transitions must also be pos-
sible. Reasoning on the existence of transitions is thus like reasoning with a
3-valued logic with the truth values true, false, and unknown: mandatory tran-
sitions (δ�) are true, possible but not mandatory transitions (δ♦ \ δ�) are un-
known, and impossible transitions ((q, a, q′) /∈ δ� ∪ δ♦) are false [18].

The transition relations of MTSs allow the distinction of special type of paths.

Definition 4. Let F be an MTS and σ = q1a1q2a2q3 · · · a full path in its under-
lying LTS. Then σ is a must path (from q1) in F , denoted by σ�, if qi

ai−→� qi+1,
for all i > 0. The set of all must paths from q1 is denoted by �-path(q1). ��
Recall that features are often used for compact representations of a family’s
products. To model such product family representations as MTSs one thus needs
a ‘translation’ from features to actions (not necessarily a one-to-one mapping)
and the introduction of a behavioural relation (temporal ordering) among them.
A family’s products are then considered to differ w.r.t. the actions they are
able to perform in any given state of the MTS. This means that the MTS of a
product family has to accommodate all the possibilities desired for each derivable
product, predicating on the choices that make a product belong to that family.

The MTS in Fig. 1 models the Travel Agency product family of Sect. 2:
edges labelled may(·) are possible but not mandatory transitions, whereas those
labelled must(·) are mandatory.

Given an MTS description of a product family, an MTS describing a subfamily
is obtained by preserving at least all must transitions and turning some of the
may transitions (that are not must transitions) into must transitions as well as
removing some of the remaining may transitions.

Definition 5. Let F = (Q, A, q, δ�, δ♦) be an MTS specifying a product family.
A subfamily specified as an MTS Fs = (Qs, A, q, δ�

s , δ♦
s ) is derived by considering

δ�
s = δ� ∪ R, with R ⊆ δ♦, and δ♦

s ⊆ δ♦, defined over a set Qs ⊆ Q of states, so
that q ∈ Qs, and every q ∈ Qs is reachable from q via transitions from δ�

s ∪ δ♦
s .

More precisely, we say that Fs is a subfamily of F , denoted by Fs 	 F , iff
qs 	 q, where qs 	 q holds, for some qs ∈ Qs and q ∈ Q, iff:

– whenever q
a−→� q′, for some q′∈Q, then ∃ q′s∈Qs : qs

a−→� q′s and q′s 	 q′, and
– whenever qs

a−→♦ q′s, for some q′s∈Qs, then ∃ q′∈Q : q
a−→♦ q′ and q′s 	 q′. ��

An LTS describing a product can be seen (i.e., obtained from an MTS description
of a product family) as a subfamily containing only must transitions. Formally:
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{must(login)}

{must(trainreserve)}{must(flightreserve)}

{must(hotelreserve)}

{may(tourreserve)}

{must(datainput)}{must(datainput)}

{must(datainput)}

{must(possibletourserv)}

{must(timetableserv)}{may(flightAserv)}{may(defaultflightserv)}

{may(hotelAserv)}{may(defaulthotelserv)}

{must(result)}

{must(result)}{must(result)}{must(result)}

{must(result)}{must(result)}

{must(showquotes)}

{must(showquotes)}{must(flightBserv)}{must(showquotes)}

{must(hotelBserv)}{must(showquotes)}

{must(choose)} {must(reject)}

{must(choose)}

{must(reject)}{must(result)}

{must(choose)}

{must(reject)}

{must(result)}

{must(choose)}

{must(reject)}

{must(payserv)}

{must(flightCserv)}

{must(hotelCserv)}

{must(paymentOK)} {must(denied)}

{must(result)}

{must(result)}

{must(showbestquotes)}

{must(showbestquotes)}

{must(choose)}

{must(reject)}

{must(choose)} {must(reject)}

Fig. 1. MTS of the Travel Agency product family as produced by FMC

Definition 6. Let F = (Q, A, q, δ�, δ♦) be an MTS specifying a product family.
A set of products specified as a set of LTSs {Pi = (Qi, A, q, δi) | i > 0 } is

derived by considering each transition relation δi to be δ� ∪ R, with R ⊆ δ♦,
defined over a set of states Qi ⊆ Q, so that q ∈ Qi, and every q ∈ Qi is reachable
from q via transitions from δi.

More precisely, we say that Pi is a product of F , denoted by Pi 	 F , iff qi 	 q,
where qi 	 q holds, for some qi ∈ Qi and q ∈ Q, iff:
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– whenever q
a−→� q′, for some q′∈Q, then ∃ q′i∈Qi : qi

a−→i q
′
i and q′i 	 q′, and

– whenever qi
a−→i q′i, for some q′i ∈ Qi, then ∃ q′ ∈ Q : q

a−→♦ q′ and q′i 	 q′. ��

The subfamilies and products derived by Def. 5 and Def. 6 obviously might not
satisfy the aforementioned advanced variability constraints that MTSs cannot
model. However, as said before, we will show in Sect. 5 how to use the variability
and action-based branching-time temporal logic vaCTL that we will define in
Sect. 4 to express those constraints. Moreover, in [3] we outlined an algorithm
to derive from an MTS all products that are valid w.r.t. constraints expressed
in a temporal logic and we recently adapted this algorithm to vaCTL.

4 Logics for MTSs

In this section, we first introduce a minor extension of a well-known logic from the
literature, after which we thoroughly extend the resulting logic into an action-
based branching-time temporal logic with a semantics that is specifically well
suited for capturing the aforementioned advanced variability constraints.

4.1 HML+UNTIL

HML+UNTIL extends the classical Hennessy–Milner logic with Until by incor-
porating existential and universal state operators (quantifying over paths) from
CTL [5]. As such, HML+UNTIL is derived from the logics defined in [18,25,26].1

HML+UNTIL is a logic of state formulae (denoted by φ) and path formulae
(denoted by π) defined over a set of atomic actions A = {a, b, . . .}.
Definition 7. The syntax of HML+UNTIL is:

φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a]φ | E π | Aπ
π ::= φ U φ′ ��

While formally interpreted over MTSs, the semantics of HML+UNTIL does not
actually consider the different type of transitions typical of MTSs. In fact, the
informal meaning of the nonstandard operators of HML+UNTIL is the following.

– 〈a〉φ: a next state exists, reachable by a may transition executing action a,
in which φ holds

– [a]φ: in all next states, reachable by a may transition executing a, φ holds
– E π: there exists a full path on which π holds
– Aπ: on all possible full paths, π holds
– φ U φ′: in a state of a path, φ′ holds, whereas φ holds in all preceding states

The HML+UNTIL semantics is thus interpreted over MTSs as if they were LTSs.
1 These logics use recursion defined by fixed points to extend HML into a temporal

logic; we prefer to directly include the Until operator.
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Definition 8. Let (Q, A, q, δ�, δ♦) be an MTS, with q ∈ Q and σ a full path.
The satisfaction relation |= of HML +UNTIL over MTSs is defined as follows:

– q |= true always holds
– q |= ¬φ iff not q |= φ
– q |= φ ∧ φ′ iff q |= φ and q |= φ′

– q |= 〈a〉φ iff ∃ q′ ∈ Q such that q
a−→♦ q′, and q′ |= φ

– q |= [a]φ iff ∀ q′ ∈ Q such that q
a−→♦ q′, we have q′ |= φ

– q |= E π iff ∃σ′ ∈ path(q) such that σ′ |= π
– q |= Aπ iff ∀σ′ ∈ path(q) such that σ′ |= π
– σ |= φ U φ′ iff ∃ j ≥ 1: σ(j) |= φ′ and ∀ 1 ≤ i < j : σ(i) |= φ ��

A number of further operators can now be derived in the usual way: false ab-
breviates ¬ true, φ ∨ φ′ abbreviates ¬(¬φ ∧ ¬φ′), φ =⇒ φ′ abbreviates ¬φ ∨ φ′.
Moreover, F φ abbreviates (true U φ): there exists a future state in which φ
holds. Finally, AGφ abbreviates ¬EF ¬φ: in every state on every path, φ holds.

4.2 Variability and Action-Based CTL: vaCTL

We now introduce the variability and action-based logic vaCTL. It extends
HML+UNTIL by implicitly incorporating two of the most classical deontic [2]
modalities, namely O (it is obligatory that) and P (it is permitted that), as well as
an action-based Until operator, both with and without a deontic interpretation.

vaCTL defines state formulae (denoted by φ) and path formulae (denoted by
π), but also action formulae (boolean compositions of actions, denoted by ϕ, with
the usual semantics, taken from [11]) over a set of atomic actions A = {a, b, . . .}.
Definition 9. The syntax of vaCTL is:

φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a]φ | 〈a〉� φ | [a]� φ | E π | Aπ
π ::= φ {ϕ}U {ϕ′} φ′ | φ {ϕ}U� {ϕ′} φ′ ��

The informal meaning of the operators we added to HML+UNTIL is as follows.2

– 〈a〉� φ: a next state exists, reachable by a must transition executing a, in
which φ holds

– [a]� φ: in all next states, reachable by a must transition executing a, φ holds
– φ {ϕ}U {ϕ′} φ′: in a state of a path reached by an action satisfying ϕ′, φ′

holds, whereas φ holds in all preceding states and all actions executed mean-
while along the path satisfy ϕ

– φ {ϕ}U� {ϕ′} φ′: in a state of a path reached by an action satisfying ϕ′, φ′

holds, whereas φ holds in all preceding states and the path leading to that
state is a must path along which all actions executed meanwhile satisfy ϕ

Also the formal semantics of vaCTL is given over MTSs, but in a deontic way
by taking into account an MTS’s different type of transitions.
2 The operators 〈a〉� and [a]� represent the classical deontic modalities O and P , resp.
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Definition 10. Let (Q, A, q, δ�, δ♦) be an MTS, with q ∈ Q and σ a full path.
Then the satisfaction relation |= of vaCTL over MTSs is defined as follows:
– q |= true always holds
– q |= ¬φ iff not q |= φ
– q |= φ ∧ φ′ iff q |= φ and q |= φ′

– q |= 〈a〉φ iff ∃ q′ ∈ Q such that q
a−→♦ q′, and q′ |= φ

– q |= [a]φ iff ∀ q′ ∈ Q such that q
a−→♦ q′, we have q′ |= φ

– q |= 〈a〉� φ iff ∃ q′ ∈ Q such that q
a−→� q′, and q′ |= φ

– q |= [a]� φ iff ∀ q′ ∈ Q such that q
a−→� q′, we have q′ |= φ

– q |= E π iff ∃σ′ ∈ path(q) such that σ′ |= π
– q |= Aπ iff ∀σ′ ∈ path(q) such that σ′ |= π
– σ |= φ {ϕ}U {ϕ′} φ′ iff ∃ j ≥ 1: σ(j) |= φ′, σ{j} |= ϕ′, and σ(j + 1) |= φ′,

and ∀1 ≤ i < j : σ(i) |= φ and σ{i} |= ϕ
– σ |= φ {ϕ}U� {ϕ′} φ′ iff σ is a must path σ� and σ� |= φ {ϕ}U {ϕ′} φ′ ��

Again, further operators can be derived in the usual way. Fφ abbreviates
(true {true}U {true} φ): there exists a future state in which φ holds; AGφ
abbreviates ¬EF ¬φ: in all states on all paths, φ holds. F {ϕ} true abbrevi-
ates true {true}U {ϕ} true: there exists a future state reached by an action
satisfying ϕ; F �{ϕ} true abbreviates true {true}U� {ϕ} true: there exists a fu-
ture state of a must path reached by an action satisfying ϕ; F �φ abbreviates
true {true}U� {true}φ: there exists a future state of a must path in which φ
holds; AG� φ abbreviates ¬EF � ¬φ: in all states on all must paths, φ holds.

5 Advanced Variability Management

vaCTL can complement the behavioural description of an MTS by expressing
the constraints over possible products of a family that an MTS cannot model, i.e.
regarding alternative features and requires and excludes inter-feature relations.

We formalise these three types of constraints as follows as vaCTL templates.
Template ALT: Features F1 and F2 are alternative:

(EF � {F1} true ∨ EF � {F2} true) ∧ ¬(EF {F1} true ∧EF {F2} true)
Template EXC: Feature F1 excludes feature F2:

((EF {F1} true) =⇒ (AG¬〈F2 〉 true))∧ ((EF {F2} true) =⇒ (AG¬〈F1 〉 true))
Both these vaCTL templates combine constraints represented by a deontic inter-
pretation with behavioural relations among actions expressed by a temporal part.
Template REQ: Feature F1 requires feature F2:

(EF {F1} true) =⇒ (EF � {F2} true)
Note that this vaCTL template does not imply any ordering among the related
features: a product allowing F1 to be performed before F2 cannot be excluded
as member of the product family on the basis of this formula (expressing a
static relation among features). It is the duty of the behavioural LTS (MTS)
description of a product (family) to impose orderings, which can consequently
be verified by vaCTL formulae such as the ones we present in the next section.
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6 Model Checking a Family of Services

In [3], we defined a global model-checking algorithm for a deontic extension of
HML+UNTIL by extending classical algorithms for HML and (A)CTL [5,6,34,
11]. Recently, we actually implemented an on-the-fly model-checking algorithm of
linear complexity for vaCTL as a particularization of the FMC model checker [31]
for ACTL [11] over networks of automata, specified in a CCS-like language [17].

The MTS of Fig. 1 was automatically generated by FMC from the following
CCS-like specification of the Travel Agency product family described in Sect. 2:

TravAgFam = must(login).Menu

Menu = must(trainreserve).TrainRes + must(flightreserve).FlightRes
+ must(hotelreserve).HotelRes + may(tourreserve).TourRes

TrainRes = must(datainput).must(timetableserv).must(result).
must(showquotes).(must(choose).Pay + must(reject).Menu)

FlightRes = must(datainput).
( may(flightAserv).must(result).must(flightBserv).must(result).
must(flightCserv).must(result).must(showbestquotes).
(must(choose).Pay + must(reject).Menu)

+ may(defaultflightserv).must(result).must(showquotes).
(must(choose).Pay + must(reject).Menu) )

HotelRes = must(datainput).
( may(hotelAserv).must(result).must(hotelBserv).must(result).
must(hotelCserv).must(result).must(showbestquotes).
(must(choose).Pay + must(reject).Menu)

+ may(defaulthotelserv).must(result).must(showquotes).
(must(choose).Pay + must(reject).Menu) )

TourRes = must(possibletourserv).must(result).must(showquotes).
(must(choose).HotelRes + must(reject).Menu)

Pay = must(payserv).(must(paymentOK).TravAgFam + must(denied).Menu)

In this TravAgFam specification of the Travel Agency family we actually use
typed actions to implement the distinction between may and must transitions.

The above specification is extracted from the requirements of Sect. 2, based
on the following assumptions on constraints and behaviour:

1. Only service orchestration is modelled, ignoring data exchange (for instance,
a cart maintaining unpaid reservations could be used);

2. Services are invoked by a simple request-response interaction interface: re-
quests are modelled by actions suffixed with ‘serv’, responses by correlated
actions like ‘result’, ‘paymentOK’, and ‘denied’ actions;

3. All remaining actions model interaction with the client;
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4. The alternative of contacting multiple reservation services is modelled by a
sequential invocation of three services. A parallel invocation would be more
realistic: while our framework allows this, it would only make our example
more complex with no added information concerning family-related aspects.

The rest of this section illustrates the use of FMC. The property “A travel agency
service always provides a selection of best quotes” can be formalised in vaCTL as

AF 〈must(showbestquotes)〉 true

This property clearly does not hold for TravAgFam, as contacting multiple ser-
vices for best quotes is an alternative. Moreover, it is only available for flight
and hotel reservations. Indeed, upon verifying this property FMC produces the
result shown in the screenshot in Fig 2: the formula is false and a path through
the MTS is given as counterexample (a successfully completed train reservation).

Fig. 2. FMC screenshot of result of model checking AF 〈must(showbestquotes )〉 true

Since this alternative is not available for train reservations, which is a service
that is mandatory, the above formula is also false for any product of the family.
If we were to change it into the following existential path formula (expressing
the property “A travel agency service may provide a selection of best quotes”)

EF 〈must(showbestquotes)〉 true

then this formula would hold for the family. However, due to the distinction
between may and must transitions in MTSs and in Def. 6 in particular, not
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all properties (expressed as vaCTL formulae) that hold for a product family
(modelled as an MTS) continue to hold for all its products (modelled as LTSs).

We can experiment also this in FMC. Consider for instance the product that is
obtained by removing the alternative of contacting multiple services from flight
and hotel reservations. Recall from Def. 6 that a product can be obtained from
a family by preserving at least all must transitions and turning some of the
may transitions that are not must transitions into must transitions as well as
removing all of the remaining may transitions. Doing so, we obtain the product
shown in the FMC screenshot in Fig. 3. If we now verify the latter formula, FMC
produces the result shown in the screenshot in Fig 4: the formula is false as there
is no path through the MTS on which must(showbestquotes) is executed.

Fig. 3. FMC screenshot of a product obtained from TravAgFam

Now consider the property “A travel agency service must always provide the
possibility to reject a proposal (of quotes)”. In vaCTL this can be formalised as

AG [must(result)] AF � {must(reject)} true

FMC can show it holds for the family. Moreover, universal formulae of this form
dictate the existence of a must path with certain characteristics, which by Def. 6
are necessarily found in all products. This property thus holds for all products.

Finally, consider the variability constraint that contacting multiple reservation
services and contacting a single reservation service are alternative features. This
can be formalised in vaCTL by instantiating the Template ALT of Sect. 5:

(EF � {may(hotelAserv )} true ∨ EF � {may(defaulthotelserv )} true) ∧
¬(EF {may(hotelAserv )} true ∧ EF {may(defaulthotelserv )} true)
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Fig. 4. FMC screenshot of result of model checking EF 〈must(showbestquotes )〉 true

As expected, FMC can show this formula is false for the family, but true for the
product shown in the FMC screenshot in Fig. 3 (i.e., this product satisfies the
above alternative constraint and might hence be a valid product of the family).

FMC can thus be used to experiment with products, using vaCTL to guide
the derivation of valid products that satisfy the advanced variability constraints
by construction. As said before, we recently adapted the algorithm designed in [3]
to vaCTL, thus allowing us to automatically derive, from an MTS description
of a product family and an associated set of vaCTL formulae expressing further
constraints for this family, all valid products (a set of LTS descriptions of prod-
ucts, each correct w.r.t. all vaCTL constraints). The algorithm’s complexity is
bounded by O(n×m×w), with n the number of transitions of the MTS (family),
m the number of LTSs (products) returned, and w the maximum width of may
transitions with labels actually referred to in the vaCTL formulae (constraints).
The actual implementation of this algorithm is ongoing work.

7 Related Work

In [14,27,12,29,3], MTS variants are used to model and analyse product families.
Part of our recent work was described previously (cf. also [3] and its references).
In [12], we extended MTSs to model advanced variability constraints regarding
alternative features. In [27], modal I/O automata were defined as one of the first
attempts at behavioural modelling in SPLE. In [19,20], an algebraic approach to
behavioural modelling and analysis of product families was developed. In [32],
Feature Petri Nets were defined to model the behaviour of product families with
a high degree of variability. We discuss some approaches close to ours in detail.
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In [14], the authors present an algorithm for checking conformance of LTSs
against MTSs according to a given branching relation, i.e. checking conformance
of the behaviour of a product against that of its product family. It is a fixed-point
algorithm that starts with the Cartesian product of the states and iteratively
eliminates pairs that are invalid according to the given relation. The algorithm
is implemented in a tool that allows one to check whether or not a given LTS
conforms to a given MTS according to a number of different branching relations.

In [29], variable I/O automata are introduced to model product families,
together with a model-checking approach to verify conformance of products
w.r.t. a family’s variability. This is achieved by using variability information
in the model-checking algorithm (while exploring the state space an associated
variability model is consulted continuously). Properties expressed in CTL [5] are
verified by explicit-state model checking, progressing one state at a time.

In [7], an explicit-state model-checking technique to verify linear-time tempo-
ral properties over Featured Transition Systems (FTSs) is defined. This results
in a means to check that whenever a behavioural property is satisfied by an FTS
modelling a product family, then it is also satisfied by every product of that
family, and whenever a property is violated, then not only a counterexample is
provided but also the products violating the property. In [8], this approach is
improved by using symbolic model checking, examining sets of states at a time,
and a feature-oriented version of CTL.

In business process modelling, configurable process models were introduced to
capture a family of related business process models in a single artifact. Inspired
by methods from SPLE [4,30,22,21], alternatives are defined as variation points
(cf. [38, 37, 1] and their references). Tool support allows the selection of valid
configurations. Such correctness is related only to the static definition of a family.
Our research goes beyond this static view: we adopt a specific logic interpreted
over MTSs and use it to model check behavioural aspects of families of services.

8 Conclusions and Future Work

We addressed model checking families of services, starting from the addition of
variability to a simple action-based branching-time temporal logic interpreted
over a basic form of variable transition systems. Services are traditionally mod-
elled with richer transition systems, which need to be addressed in future work.
In particular, FMC is closely related to the CMC model checker for SocL (a
service-oriented logic) formulae over the process algebra COWS (Calculus for
Orchestration of Web Services) [13]. Adding variability management to this tool
will allow us to handle families of services that use more complex mechanisms
typical of SOC, like asynchronous communication, compensation and correlation.
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Arnd Hartmanns, and Holger Hermanns

Saarland University – Computer Science, Saarbrücken, Germany

Abstract. Statistical model checking has become a promising technique
to circumvent the state space explosion problem in model-based verifica-
tion. It trades time for memory, via a probabilistic simulation and explo-
ration of the model behaviour—often combined with effective a posteriori
hypothesis testing. However, as a simulation-based approach, it can only
provide sound verification results if the underlying model is a stochas-
tic process. This drastically limits its applicability in verification, where
most models are indeed variations of nondeterministic transition systems.
In this paper, we describe a sound extension of statistical model checking
to scenarios where nondeterminism is present. We focus on probabilis-
tic automata, and discuss how partial order reduction can be twisted
such as to apply statistical model checking to models with spurious non-
determinism. We report on an implementation of this technique and on
promising results in the context of verification and dependability analysis
of distributed systems.

1 Introduction

Model checking and simulation are complementary techniques in model-based
system design. In broad terms, model checkers aim at finding bugs or inconsisten-
cies in a design, and do so by an exhaustive analysis of the system under study.
That system is usually modelled as a nondeterministic transition system, which
is derived from some program notation. Nondeterminism may be present as a
result of concurrent interleaving, or to represent incomplete knowledge about
certain implementation decisions at design time, or to reflect the openness of
the system to environmental stimuli. When complex designs are modelled by
abstract transition systems, nondeterminism is a means to let a small abstract
transition system overapproximate the behaviour of the larger concrete design.

Simulation also starts from a model, which is explored in a random manner
to get insights into the behaviour of the system. There are many successful sim-
ulation environments based on this approach. In artificial intelligence, especially
in the planning community, simulation is used on nondeterministic systems with
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success: Markov chain Monte Carlo techniques just walk through a huge state
space in a randomised manner, and find solutions for planning problems, such as
games like Go [14], often in the form of a tree or trace through the state space.
However, while probabilities are used in the analysis, they are meaningless for
the model, and no attempt is made to deduce that a trace or tree has a certain
probability to appear.

This is different in discrete-event simulation, where the model is a stochastic
process, so the future behaviour at each particular state is determined probabilis-
tically. This makes it possible to perform statistical analysis on many simulation
runs to arrive at quantitative insights about the system behaviour [15]. This way
of analysing a system model is routinely applied in the systems world, but some-
times the rigidity of the modelling is questionable, and comes with notorious
suspicions about hidden assumptions that affect the simulation studies [2,8].

In the probabilistic verification world, discrete-event simulation is more and
more applied as a vehicle in statistical model checking [5,24,25]. While conven-
tional probabilistic model checkers solve numerical problems in the size of the
entirety of the state space, statistical model checkers perform random sampling
to walk through the state space, and perform a statistical analysis of the results
to provide an estimate for the property under study. This analysis either uses
classical estimates such as confidence intervals, or works with hypothesis testing
to validate or refute a probabilistic property. Hypothesis testing can be very fast
if the actual probability in the system is very far from the required bound, but
it is slow if the two values are close. The basic algorithmic machinery is the
same for both simulation approaches however. In this paper, we are discussing
this basic machinery, and therefore use the terms statistical model checking and
simulation interchangeably.

While some studies [23,13] have made efforts to compare the effectiveness
of simulation vs. model checking empirically, such a comparison—which we do
not focus on in this paper—is inherently problematic. Superficially, the choice
between the two seems to be mainly a tradeoff between memory consumption
and time: Model checkers generally need to represent the entirety of a state space
in memory (or an encoding thereof, e.g. up to a limited depth), but give highly
accurate and precise (or at least safe) answers, while simulation walks through
the state space, needing only constant memory, and even applies to infinite-size
models. But the accuracy and precision of the simulation results depends on
the system parameters and especially (that is, logarithmically) on the number
of paths explored. Here, theoretical complexity is practical complexity, and as a
result, simulation is most competitive time-wise for low accuracy analysis.

Unfortunately, discrete-event simulation faces the additional problem of re-
quiring the model to be a stochastic process, thus free of nondeterminism. This
makes it quite far-fetched to assume that it can be applied inside the ordinary
verification trajectory, where nondeterminism is not a bug, but a feature, e.g.
resulting from the asynchronous, interleaved execution of components in a dis-
tributed system. There is no way to resolve nondeterministic choices without
introducing additional assumptions. As it is, simulation can thus far only be
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used for deterministic models. While this is an inherent limitation of the ap-
proach, this paper aims to show ways of mitigating the problem for a practically
relevant class of models. The main contribution is an adaptation of partial order
reduction methods [3,10,19,22] that enables statistical model checking of prob-
abilistic automata [20,21] while preserving the low memory demands typical for
simulation. We investigate how to apply partial order techniques symbolically
and find that ignoring variable valuations renders the method impractical. We
therefore adapt the existing techniques to work on-the-fly during simulation, and
show the correctness of these modifications.

We report on a selection of case studies that provide empirical evidence con-
cerning the potential of the method and our implementation. The case studies
also look at continuous timed probabilistic models from the area of architectural
dependability evaluation. In fact, the original motivation for our work stems
from the observation that the compositional semantics of the architectural de-
sign notation Arcade [7,16] gives rise to nondeterminism which is spurious (i.e.,
irrelevant) by construction. Still, simulative approaches were not applicable to
it, because of nondeterminism. The present paper overcomes this deficiency, and
as such enables—for the first time—a memory-efficient analysis.

2 Preliminaries

We will use networks of probabilistic automata (PA) with variables as the model
on which to explain our techniques in this paper. We will later sketch how to
extend our techniques to stochastic timed automata (STA) [6], but the additional
features of STA—continuous probability distributions and real time—are largely
orthogonal to the issues and techniques we focus on.

2.1 Probabilistic Automata

The model of PA [20,21]—which is akin to Markov decision processes (MDPs)—
combines nondeterministic and probabilistic choices. Informally, a PA consists
of states from which action-labelled transitions lead to distributions over target
states. In every state, there is thus a nondeterministic choice over transitions
followed by a probabilistic choice over target states.

Formally, a PA is a 4-tuple P = (S, s0, Σ,→) where S is a countable set of
states, s0 is the initial state, Σ is a finite set of actions, → ⊆ S ×Σ × Distr(S)
is the transition relation and for a set X , Distr(X) is the set of probability
distributions, i.e. functions X → [0, 1] such that the sum of the probabilities of
all elements of X is 1. T (s) denotes the set of outgoing transitions of a state. We
say that P is finite if S and→ are finite, and P is deterministic if |T (s)| ≤ 1 for
all states s (i.e., the only choices are probabilistic ones).

2.2 Networks of PA

It is often useful to describe complex and, in particular, distributed systems as the
parallel composition of several independently specified interacting components.
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PA are closed under the interleaving semantics of parallel composition. Using
a CSP-style mandatory synchronisation on the actions of the shared alphabet,
we define the parallel composition of PA as follows [21]: Given two PA Pi =
(Si, s0i , Σi,→i) for i ∈ {1, 2}, the parallel composition P1 ‖ P2 is

P1 ‖ P2 = (S1 × S2, (s01 , s02), Σ1 ∪Σ2,→)

where ((s1, s2), a, μ) ∈ → if and only if

a ∈ Σ1\Σ2 ∧ ∃ (s1, a, μ1) ∈ →1 : μ = μ1 · {(s2, 1)}
or a ∈ Σ2\Σ1 ∧ ∃ (s2, a, μ2) ∈ →2 : μ = μ2 · {(s1, 1)}
or a ∈ Σ1 ∩Σ2 ∧ ∃ (si, a, μi) ∈ →i for i = 1, 2: μ = μ1 · μ2.

(1)

and · is defined as (μ1 · μ2)((s1, s2)) = μ1(s1) · μ2(s2). A special silent action
τ is often assumed to be part of all alphabets, but τ -labelled transitions never
synchronise. This binary parallel composition operator is associative and com-
mutative; its extension to sets of PA is thus straightforward. We use the term
network of PA to refer to both a set of PA and its parallel composition.

In Section 4, we will need to identify transitions that appear, in some way, to
be the same. For this purpose, we define an equivalence relation ≡ on transitions
and denote the equivalence class of t under ≡ by [t]≡; this notation can naturally
be lifted to sets of transitions. In our setting of a network of PA, it is natural to
identify those transitions in the product automaton that result from the same
(set of) transitions in the component automata.

2.3 PA with Variables

It is common to extend transition systems with variables that take values in
some discrete domain D (see e.g. [4, Chapter 2] for the general recipe), and this
can be lifted to PA. We call this class of variable decorated automata VPA. In
a VPA PV with a set of variables V , the transition relation is extended with
a guard g—a Boolean expression over the variables that determines whether
the transition is enabled—and a transition’s target becomes a distribution in
Distr(S×Assgn(V )) where Assgn(V ) = Val(V )→ Val(V ) is the set of assignment
functions and Val(V ) = V → D the set of valuations for the variables. Let V (A)
for A ∈ Assgn(V ) denote the set of variables that are modified by A in some
valuation. For a function f and S ⊆ Dom(f), we write f |S to denote f with
domain restricted to S.

A VPA PV can be transformed into a concrete PA P by unrolling the variables’
values into the states: Every state s ∈ S of PV is replaced by a state (s, v) ∈
S × Val(V ), the guards are precomputed according to the states’ valuations,
and assignments to discrete variables redirect edges to states with matching
valuations. Note that P is finite iff PV is finite and the ranges of all discrete
variables used are finite. In this case, we say that the VPA is finitary.

Extending parallel composition to VPA is straightforward. Guards of syn-
chronising transitions are the conjunctions of the original transitions’ guards,
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while the assignments are the union of the original assignments. We allow global
variables, which can be used in all component automata. With global variables
and synchronising transitions, it is possible to obtain inconsistent assignments
(that assign different values to the same variable at the same instant). Such an
assignment is no longer a function, and we consider this to be a modelling error.

By using networks of PA with variables, we choose a model that is composi-
tional, but whose semantics is still a PA—so all results for PA (and MDPs)
from the literature apply—and which features a distinction between control
(via states) and data (via variables). It is the model underlying, among oth-
ers, PRISM [18], Modest [6], and prCRL [12].

2.4 Paths, Schedulers and Probabilities

The behaviour of a PA is characterised by its paths or traces. Paths are words
from →ω ∪ →∗ where the start state of every transition must occur with posi-
tive probability in the preceding transition’s distribution (or be s0 for the first
one), and finite paths end in deadlock states. In a state-based verification set-
ting, where states are labelled with atomic propositions, a visible transition is a
transition whose execution changes the set of valid atomic propositions.

In order to be able to reason about probabilities for sets of paths, nonde-
terminism has to be resolved first by a scheduler (or adversary). This yields a
Markov chain for which a probability measure on paths is induced. Since differ-
ent schedulers lead to different chains, the answer to questions such as “What
is the probability of reaching an error state?” is actually a set of probabilities,
which always is a singleton for deterministic models. For nondeterministic mod-
els, one is typically interested in maximum and minimum probabilities over all
possible resolutions of nondeterminism.

For Markov chains, there exists the notion of terminal strongly connected
components. The corresponding notion for PA is that of end components: pairs
(Se, Te) where Se ⊆ S and Te : S → (→) with Te(s) ⊆ T (s), such that for all
s ∈ Se and transitions (s, a, μ) ∈ Te(s), we have μ(s′) > 0 ⇒ s′ ∈ Se and the
underlying directed graph of (Se, Te) is strongly connected.

3 Nondeterminism in Models for Simulation

Probabilistic model checkers such as PRISM [18] derive probabilistic quantities
by first exploring the complete (reachable) state space of the model and after-
wards using numerical techniques such as solvers for systems of linear equations
or value iteration to compute minimum and maximum probabilities.

If no nondeterminism is present in the model, it is also possible to perform
simulation. In this approach, a large number of concrete, finite paths of the
model are explored, using random-number generators to resolve probabilistic
choices. Only one state of the model is in memory at any time, and for every
path explored, we only need to postprocess which of the properties of interest
were satisfied and which were not, and this is evaluated with statistical means.



64 J. Bogdoll et al.

P1:
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P2:

b
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τ
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(as PA)

a b c

Fig. 1. Nondeterminism and parallel composition

The simulation approach fails in the presence of nondeterminism, because
of the absence of a well-defined probability measure. However, the interleaving
semantics employed for networks of VPA may result in nondeterminism that is
spurious in the sense that the Markov chains induced by arbitrary schedulers all
result in the same probability for the property under study to hold. The effects
of parallel composition are manifold, as can be seen in the following example.

Example 1. The examples in Figure 1 illustrate possible effects of parallel com-
position on (non)determinism. i is a global variable that is initially 0. P1 through
P4 are deterministic VPA, but the parallel composition P1 ‖ P2 contains a non-
deterministic choice. If we ask for the probability of eventually seeing action c,
the minimum and maximum values w.r.t. nondeterminism will be different. If we
add P3 to the composition, the result is still nondeterministic, but the minimum
and the maximum probabilities are now 1. If we use P4 instead of P3 (where
P4 just omits the internal preprocessing step of P3), the probabilities remain
the same, but the final model is fully deterministic. In this case, the parallel
composition with P4 has removed the nondeterminism present in P1 ‖ P2.

We discuss ways to safely deal with the problem of simulating models with
nondeterminism that is introduced by parallel composition in the next section.

4 Partial Order Techniques for Simulation

When simulating nondeterministic models, we need to be sure that the results
obtained from a batch of simulation runs, i.e. a set of paths through the PA under
study, were not affected by any nondeterministic choices. A sufficient condition
for this would be that the model is equivalent—according to some equivalence
notion that preserves the properties of interest—to a deterministic one. However,
since only a part of the model is explored during the simulation runs, we use the
following conditions:
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Given a PA P = (S, s0, Σ,→) and the set of finite paths Π = {π1, . . . , πn},
all starting in s0, encountered during a number of simulation runs, let

P |Π = (SΠ , s0, Σ,∪ni=1πi)

where SΠ = {s0} ∪ {s | ∃π ∈ Π : (s′, a, μ) ∈ π ∧ μ(s) > 0} denote the sub-PA
of P explored by the simulation runs. For brevity, we identify a path π ∈ →∗

with the set of transitions it contains, i.e. implicitly project to π ⊆ →. Let

PΠ = (S, s0, Σ,→Π)

where t = (s, a, μ) ∈ →Π iff (s /∈ S′
Π ∧ t ∈ →) ∨ (s ∈ S′

Π ∧ ∃π ∈ Π : t ∈ π)
and S′

Π = {s | ∃π ∈ Π : (s, a, μ) ∈ π} denote P restricted to the decisions taken
during the simulation runs. Note that PΠ ’s behaviour is not restricted for states
that were not encountered during simulation.

In order to be sure that the result computed from a number of simulation
runs was not influenced by nondeterminism, we require that

C1: P |Π is deterministic, and
C2: P ∼ PΠ for a relation ∼ that preserves the properties we consider.

Useful candidates for ∼ would be trace equivalence, simulation or bisimulation
relations. In the proofs later in this section, ∼ will be stutter equivalence, which
preserves quantitative (i.e., the probabilities of) LTL\X properties [3].

The central practical question we face is how these conditions can be ensured
before or during simulation without negating the memory advantages of the
simulation approach. In the area of model checking, an efficient method already
exists to reduce a model containing spurious nondeterminism resulting from
the interleaving of parallel processes to smaller models that contain only those
paths of interleavings necessary to not affect the end result, namely partial order
reduction [3,10,19,22]. In the remainder of this section, we will first recall how
partial order reduction for PA works, and then present approaches to harvest
partial order reduction to ensure conditions C1 and C2 for simulation.

4.1 Partial Order Reduction for PA

The aim of partial order techniques for model checking is to avoid building
the full state space corresponding to a model. Instead, a smaller state space is
constructed and analysed where the spurious nondeterministic choices resulting
from the interleaving of independent actions are resolved deterministically. The
reduced system is not necessarily deterministic, but smaller, which increases
the performance and reduces the memory demands of model checking (if the
reduction procedure is less expensive than analysing the full model right away).

Partial order reduction techniques for PA [3] are extensions of the ample set
method [19] for nonprobabilistic systems. The essence is to identify an ample
set of transitions ample(s) for every state s ∈ S of the PA P = (S, s0, Σ,→),
yielding a reduced PA P̂ = (Ŝ, s0, Σ, →̂)—where Ŝ is the smallest set that
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Table 1. Conditions for the ample sets

A0 For all states s ∈ S, ample(s) ⊆ T (s).

A1 If s ∈ Ŝ and ample(s) �= T (s), then no transition in ample(s) is visible.

A2 For every path (t1 = (s, a, µ), . . . , tn, t, tn+1, . . . ) in P where s ∈ Ŝ and t is
dependent on some transition in ample(s), there exists an index i ∈ {1, . . . , n}
such that ti ∈ [ample(s)]≡.

A3 In each end component (Se, Te) of P̂ , there exists a state s ∈ Se that is fully
expanded, i.e. ample(s) = T (s).

A4 If ample(s) �= T (s), then |ample(s)| = 1.

satisfies s0 ∈ Ŝ and (∃s ∈ Ŝ : (s, a, μ) ∈ ample(s) ∧ μ(s′) > 0) ⇒ s′ ∈ Ŝ, and
→̂ = ∪s∈Ŝ(ample(s))—such that conditions A0-A4 (Table 1) are satisfied.

For partial order reduction, the notion of (in)dependent transitions1 (rule A2)
is crucial. Intuitively, the order in which two independent transitions are executed
is irrelevant in the sense that they do not disable each other (forward stability)
and that executing them in a different order from a given state still leads to the
same states with the same probability distribution (commutativity). Formally,
two equivalence classes [t′1]≡ �= [t′2]≡ of transitions of P are independent iff for
all states s ∈ S with t1, t2 ∈ T (s), t1 = (s, a1, μ1) ∈ [t′1]≡, t2 = (s, a2, μ2) ∈ [t′2]≡,

I1: μ1(s′) > 0⇒ t2 ∈ [T (s′)]≡ and vice-versa (forward stability), and then also
I2: ∀s′ ∈ S :

∑
s′′∈S μ1(s′′) · μs′′2 (s′) =

∑
s′′∈S μ2(s′′) · μs′′1 (s′) (commutativity),

where μs
′′
i is the single element of {μ | (s′′, ai, μ) ∈ T (s′′) ∩ [ti]≡}. Checking de-

pendence by testing these conditions on all pairs of transitions for all states of
the product automaton is impractical. Instead, sufficient and easy-to-check con-
ditions on the VPA level that rely on the fact that the automaton under study
results from a network of VPA are typically used, such as the following (where
the gi are the guards and μi ∈ Distr(S × Assgn(V ))):

J1: The sets of VPA that t1 and t2 originate from (according to the rules of (1),
Section 2.2) must be disjoint, and

J2: ∀v : μ1(s′, A1) > 0 ∧ μ2(s′′, A2) > 0 ⇒ (g2(v) ⇒ g2(A1(v)) ∧ A2(v)|V(A2) =
A2(A1(v))|V(A2)) and vice-versa.

J1 ensures that the only way for the two transitions to influence each other is
via global variables, and J2 makes sure that this does actually not happen, i.e.,
each transition modifies variables only in ways that do not change the other’s
assignments or disable its guard. This check can be implemented on a syntactical
level for the guards and the expressions occurring in assignments.

Using the ample set method with conditions A0-A4 and I1-I2 (or J1-J2) gives
the following result:

1 By abuse of language, we use the word “transition” when we actually mean “equiv-
alence class of transitions under ≡”.
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Fig. 2. Spuriousness that can be detected on the VPA level

Theorem 1 ([3]). If a PA P is reduced to a PA P̂ using the ample set method,
then P ∼ P̂ where ∼ is stutter equivalence [3].

For simulation, we are not particularly interested in smaller state spaces, but
we can use partial order reduction to distinguish between spurious and actual
nondeterminism. A first, näıve approach would be to expand the model given
as a network of VPA into a product PA, use partial order reduction to reduce
it, and check the result for nondeterminism. However, this neither preserves the
low (constant) memory demand typical of simulation nor its general ability to
deal with infinite-state systems.

4.2 Deciding Spuriousness on VPA Symbolically

We first investigate the practicality of applying partial order reduction to identify
nondeterminism ‘symbolically’, that is, on the VPA level. By treating data in
an abstract manner (as in conditions J1-J2, or using more advanced checks for
the independence of operations à la Godefroid [10]), we could hope to avoid the
blowup introduced by unrolling the variable valuations. Because synchronisation
over shared actions becomes explicit and may remove actual nondeterminism,
all nondeterminism that remains may already be spurious.

Example 2. Figure 2 shows an example similar to the ones presented in Figure 1
where this approach works. P ′

1 ‖ P ′
2 is shown as a VPA. According to J1-J2, the

only (nontrivially) dependent transitions are those labelled a and c. Choosing
any singleton ample set for the initial state of P ′

1 ‖ P ′
2 satisfies conditions A0 to

A4, so the reduced system is deterministic, thus the nondeterminism is spurious.

The advantage of this approach is that it is a preprocessing step that will not in-
duce a performance penalty in the simulation itself. It can also deal with infinite-
data systems, but not infinite control. Yet, whenever an intricate but clever use
of variables and guards is responsible for the removal of actual nondeterminism,
this method will usually fail.

Unfortunately, such models are not uncommon in practice. They appear e.g.
as the PA underlying specifications given in a guarded command language—such
as that of PRISM—where the state information is entirely encoded in variables.

Example 3. In the two parallel compositions from Figure 1 that did not exhibit
actual nondeterminism, the spuriousness cannot be detected by the symbolic
approach because of the dependency between the assignment i := i + 1 and the
guard i = 1. In both cases, the problematic transitions would go away once we
look at the actually possible variable valuations.
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Table 2. On-the-fly conditions for every state s encountered during simulation

A0 For all states s ∈ S, ample(s) ⊆ T (s).

A1 If s ∈ Ŝ and ample(s) �= T (s), then no transition in ample(s) is visible.

A2’ Every path in P starting in s has a finite prefix (t1, . . . , tn) of length at most
k (i.e. n ≤ k) such that tn ∈ [ample(s)]≡ and for all i ∈ {1, . . . , n− 1}, ti is
independent of all transitions in ample(s).

A3’ If more than l states have been explored, one of the last l states was fully ex-
panded.

A4’ For all states s ∈ Ŝ, either |ample(s)| = 1 or T (s) = ∅.

4.3 Bounded On-the-Fly Partial Order Checking

The examples above show that in order to detect more nondeterminism as spu-
rious, we have to move from the (symbolic) VPA to the (concrete) PA level.
However, we do not want to build the concrete model in its entirety before
simulation. The goal of our second approach is thus to keep the general advan-
tage of simulation in terms of memory demand, but trade in some simulation
performance to obtain a spuriousness check that will work better in practice.

The idea is as follows: We simulate the model as usual on the PA level and
without any preprocessing. For every state we encounter, we try to identify a
valid singleton ample set. If successful, we can use that transition as the next
simulation step. If there is more than one singleton ample set, we determinis-
tically select the first set according to a total order on transitions. If all valid
ample sets contain more than one transition, we cannot conclude that the non-
determinism between these is spurious, and simulation is aborted with an error
message. To keep memory usage constant, the ample sets are not stored.

The ample set construction relies on conditions A0 through A4, but looking at
their formulation in Table 1, conditions A2 and A3 cannot be checked on-the-fly
without possibly exploring and storing lots of states—potentially the entire PA.
To bound this number of states and ensure termination for infinite-state systems,
we instead use the conditions shown in Table 2, which are parametric in k and l.
Condition A2 is replaced by A2’, which bounds the lookahead inherent in A2 to
paths of length at most k. Notably, choosing k = 1 is equivalent to not checking
for spuriousness at all but aborting on the first nondeterministic choice. Instead
of checking for end components as in Condition A3, we use A3’ that replaces the
notion of an end component with the notion of a set of at least l states.

Conditions A0, A1, A2’, A3’ and A4’ enable us to construct ample sets ‘on-
the-fly’ during simulation. This can be proven correct, i.e. conditions C1 and C2
hold whenever the procedure terminates without raising an error:

Lemma 1. If simulation with on-the-fly partial order checking applied to a PA P
encounters the set of paths Π without aborting, then P |Π is deterministic (C1).
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Lemma 2. If simulation with on-the-fly partial order checking applied to a PA
P encounters the set of paths Π without aborting and all π ∈ Π end in a fully
expanded state, then P ∼ PΠ where ∼ is stutter equivalence (C2).

Example 4. For the parallel composition (P1 ‖ P2) ‖ P3 in Figure 1, all nonde-
terminism will correctly be identified as spurious for k ≥ 2 and l ≥ 2.

Requiring all runs to end in a fully expanded state is a technical requirement
that can always be satisfied if all nondeterminism is spurious, and is satisfied by
construction for typical simulation run termination criteria.

For finite systems and large enough k and l, this on-the-fly approach will al-
ways be superior to the symbolic approach discussed in Section 4.2 in terms of
detecting spuriousness—but if k needs to be increased to detect all spurious non-
determinism as such, the performance in terms of runtime and memory demand
will degrade. Note, though, that it is not the actual user-chosen value of k that
is relevant for the performance penalty, but what we denote kmin , the smallest
value of k necessary for condition A2’ to succeed in the model at hand—if a
larger value is chosen for k, A2’ will still only cause paths of length kmin to be
explored2. The size of l actually has no performance impact since A3’ can be
implemented by just counting the distance to the last fully expanded state.

More precisely, the memory usage of this approach is bounded by b · kmin

where b is the maximum fan-out of the PA; for a given model (i.e., a fixed b)
and small kmin , we can consider this as constant, thus the approach still has the
same flavour as standard simulation with respect to memory demand. Regarding
runtime, exploring parts of the state space that are not part of the path currently
being explored (up to bkmin states per invocation of A2’) induces a performance
penalty. The magnitude of this penalty is highly dependent on the structure of
the model. In practice, however, we expect small values for kmin , which limits
the penalty, and this is evidenced in our case studies.

The on-the-fly approach also naturally extends to infinite-state systems, both
in terms of control and data. In particular, the kind of behaviour that condition
A3 is designed to detect—the case of a certain choice being continuously avail-
able, but also continuously discarded—can, in an infinite system, also come in
via infinite-state “end components”, but since A3’ strengthens the notion of end
components by the notion of sufficiently large sets of states, this is no problem.

To summarise: For large enough k and l, this approach will allow us to use
simulation for any network of VPA where the nondeterminism introduced by the
parallel composition is spurious. Nevertheless, if conditions J1 and J2 are used to
check for independence instead of I1 and I2, nondeterministic choices internal to
the component VPA, if present, must be removed by synchronization (via shared
variables or actions). While avoiding internal nondeterminism is manageable
during the modelling phase, parallel composition and the nondeterminism it
creates naturally occur in models of distributed or component-based systems.
2 Our implementation therefore uses large defaults for k and l so the user usually need

not worry about these parameters. If simulation aborts, the cause and its location
is reported, including how it was detected, which may be that k or l was exceeded.
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5 Implementation

A prototype of the on-the-fly approach presented above has been implemented
in version 1.3 of modes, a discrete-event simulator for the Modest language
with a sound treatment of nondeterminism in simulation. Modest is a high-
level compositional modelling formalism for stochastic timed systems [6]. modes
can be downloaded at www.modestchecker.net.

The full semantic model underlying Modest is that of stochastic timed au-
tomata (STA), which generalise VPA by adding time via clock variables as in
timed automata (TA, [1]) as well as infinite and continuous probability distri-
butions, and some of the cases we consider later use this expressiveness. There
are, to our knowledge, no results on partial order reduction techniques that deal
with real time or continuous probabilistic choices3. However, we can treat the
additional features of STA in an orthogonal way: The passage of time intro-
duces an implicit synchronisation over all component automata by incrementing
the values of all clocks. modes thus provides a separate choice of scheduler for
time and treats resulting non-zero deterministic delay steps like visible transi-
tions. Nondeterminism can thus be detected as spurious only if the interleaving
happens in zero time. In order to correctly detect the spuriousness of nonde-
terminism in presence of assignments with continuous probability distributions
(like x := Exponential(2 · y)), modes overapproximates by treating them like a
nondeterministic assignment to some value from the distribution’s support.

6 Case Studies

This section reports on experimental studies with modes on some practically
relevant cases. As mentioned in the introduction, we do not aim for a comparison
of simulative and numerical model checking approaches in this paper, but instead
focus on a comparative study of standard simulation vs. the on-the-fly approach;
the existing results (e.g., [23]) then still apply to this new approach modulo its
overhead, which we investigate in this section.

Strictly speaking, though, such a comparison is impossible: Standard simula-
tion cannot be applied if the model is nondeterministic. If instead it is determin-
istic, the on-the-fly approach will have virtually no overhead, because kmin = 1.
To get a meaningful comparison, we use models that are provably equivalent to
Markov chains, but contain manifold spurious nondeterminism. We then adjust
standard simulation to use uniform distributions to resolve any nondeterminis-
tic choices as the zero-overhead baseline for comparison. Due to spuriousness,
any resolution would do, and would lead to the same statistical results. For all
experiments, modes was run on a 64-bit Core 2 Duo T9300 system; the values
for time are for 1000 actual simulation runs, while for memory, the bytes after
garbage collections during simulation were measured.
3 All approaches for TA (see e.g. Minea [17] for one approach and an overview of

related work) rely on modified semantics or more restricted models or properties.
We are not aware of any approaches for models with continuous distributions.
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Table 3. Results for PRISM and modes on the IEEE 802.3 BEB protocol

state space gen. m.-check model uniform sim. partial order sim.

states time memory K N H time memory time memory l kmin

5 371 0 s 1 MB 4 3 3 1 s 1.5 MB 1 s 1.8 MB 16 4

3.3 · 107 7 s 856 MB 8 7 4 1 s 1.5 MB 2 s 1.4 MB 16 5

3.8 · 1012 1052 s > 100 GB 16 15 5 1 s 1.5 MB 7 s 1.8 MB 16 6

8.8 · 1014 4592 s > 100 GB 16 15 6 1 s 1.6 MB 94 s 3.2 MB 16 7

6.1 Binary Exponential Backoff

We first deal with a model of the IEEE 802.3 Binary Exponential Backoff (BEB)
protocol for a set of hosts on a network, adapted from the PRISM model used
in [9]. It gives rise to a network of PA, and this makes it possible to use model
checking for Modest [11] in conjunction with PRISM (on a 100 GB RAM sys-
tem). We report the total number of states, the time it took to generate the
state space, and the memory necessary to model check a simple property with
PRISM4 using the default “hybrid” engine in Table 3 (left three columns). The
model under study is determined by K, the maximum backoff counter value, i.e.
the maximum number of slots to wait, by N , the number of times each host tries
to seize the channel, and by H, the number of hosts. The remaining columns
give results for uniformly resolved nondeterminism and our on-the-fly approach
with parameters l and k = kmin . The number of component VPA is H + 1: the
hosts plus a global timer process.

We observe that for larger models, model checking with PRISM is hopeless,
while simulation scales smoothly. Simulation runs ended when a host seized
the channel. In all cases the nondeterminism is identified as spurious for small
values of k and l. The values for uniform resolution show that these models are
extremely simple to simulate, while the on-the-fly partial order approach induces
a time overhead. We see a clear dependence between the number of components
and kmin , with kmin = H + 1. In line with our expectations concerning the
performance impact from Section 4.3, we see a moderate increase of memory
usage, while runtime is affected more drastically by increasing H.

6.2 Arcade Dependability Models

As a second case study, we focus on Arcade models and their translation into
Modest [16]. Arcade is a compositional dependability framework based on a
semantics in terms of I/O-IMCs [7]. The Arcade models under study are known
to be weakly bisimilar to Markov chains; yet they exhibit nondeterminism. We
studied two simple examples and two very large case studies from the literature:

1bc-1ruded: One basic component with a dedicated repair unit.
2bc-1rufcfs: Two basic components with one first-come-first-serve repair unit.
4 PRISM needs more memory for model checking than just for state space generation.
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Table 4. Results for modes on Arcade models

model ‖ t uniform partial order l kmin

1bc-1ruded 3 100 1 s / 1.3 MB 1 s / 1.5 MB 16 2

2bc-1rufcfs 4 100 2 s / 1.1 MB 4 s / 1.1 MB 16 3

dda-scaled 41 15 41 s / 1.5 MB 379 s / 2.6 MB 16 6

rcs-scaled 36 15 24 s / 1.6 MB 132 s / 2.0 MB 16 4

dda-scaled: A distributed disk architecture: 24 disks in 6 clusters, 4 controllers,
and 2 processors; repairs are performed in a first-come-first-serve manner.

rcs-scaled: The model of a reactor cooling system with a heat exchanger, two
pump lines and a bypass system.

The rates in the last two models are scaled to obtain more frequent events, in a
variation of importance sampling. Table 4 shows the results; column ‖ indicates
the number of concurrently running component automata of the respective model
and t is the simulation time bound (model time). We see that the value of kmin

varies, but again stays relatively small, even for the models consisting of many
components. The impact of enabling the on-the-fly approach is again in line
with Section 4.3: Memory usage increases moderately, but the time necessary
to complete all runs does increase significantly, though not as drastically as in
the previous case study. Overall, these are encouraging results. Improving the
performance of the lookahead procedure is the first point on our future work
agenda for this currently prototypical implementation.

7 Conclusion

This paper has presented an on-the-fly, partial order reduction-based approach
that enables statistical model checking and simulation of probabilistic automata
with spurious nondeterminism arising from the parallel composition of largely
independent, distributed, and intermittently synchronising components. The tool
modes has been shown to be able to apply this technique successfully to two very
different case studies. In fact, the work on connecting Arcade to a simulation
engine was the nucleus for the work presented here: a method was looked for
to certify that simulation results obtained on these models were not affected by
any actual nondeterminism.

Acknowledgments. We are grateful to Christel Baier (TU Dresden) for the
initial inspiration to combine partial order methods with simulation and to Pedro
R. D’Argenio (UNC Cordoba) for fruitful discussions and insights.
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Abstract. Generation of counterexamples is a highly important task in
the model checking process. In contrast to, e. g., digital circuits where
counterexamples typically consist of a single path leading to a critical
state of the system, in the probabilistic setting counterexamples may
consist of a large number of paths. In order to be able to handle large
systems and to use the capabilities of modern SAT-solvers, bounded
model checking (BMC) for discrete-time Markov chains was established.

In this paper we introduce the usage of SMT-solving over linear real
arithmetic for the BMC procedure. SMT-solving, extending SAT with
theories in this context on the one hand leads to a convenient way to
express conditions on the probability of certain paths and on the other
hand allows to handle Markov reward models. We use the former to find
paths with high probability first. This leads to more compact counterex-
amples. We report on some experiments, which show promising results.

1 Introduction

The verification of formal systems has gained great importance both in research
and industry. Model checking proves or refutes automatically (i. e. without user
interaction) that a system exhibits a given set of properties (see, e. g., [1]). In
many cases model checking also provides helpful diagnostic information; in case
of a defective system a counterexample in form of a witnessing run is returned.
The usage of symbolic representations like ordered binary decision diagrams
(OBDDs) [2] assures the usability of model checking for many kinds of large
systems. However, there are classes of practically relevant systems for which even
these OBDD-based methods fail. To fill this gap, bounded model checking (BMC)
was developed [3]. Thereby the existence of a path of fixed length that refutes
the property under consideration is formulated as a satisfiability (SAT) problem.
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As the size of the corresponding formula is relatively small and as modern SAT-
solvers have strongly evolved over the last 15 years, it is not surprising that this
approach is very successful.

To model real-life scenarios it is often necessary to cope with specific uncer-
tainties using probabilities. For instance, properties can be formulated in proba-
bilistic computation tree logic (PCTL) [4] for models called discrete-time Markov
chains (DTMCs). The classical model checking approach for this setting is based
on the solution of a linear equation system [4]. However, it lacks the generation
of counterexamples, since the solution of the equation system yields only the
mere probabilities without further information.

To provide a user with such diagnostic information for probabilistic systems,
there have been some recent developments during the last few years [5,6,7,8,9].
Contrary to, e. g., LTL model checking for digital systems, counterexamples for a
PCTL property may consist of a large number of paths to reach certain probabil-
ity bounds. Various techniques have been proposed to obtain compact representa-
tions : incrementally adding the paths with the highest probability [6,8], reducing
the strongly connected components of the underlying digraph of a DTMC [5,9],
and using regular expressions to describe whole sets of counterexamples [6]. All
these techniques rely on an explicit representation of the state space.

Bounded model checking for probabilistic systems in the context of counterex-
ample generation was introduced in [7], which represents the state space symbol-
ically. This procedure can be used to refute probabilistic reachability problems.
They can be formulated in PCTL [4] as P≤p(aU b) with atomic propositions a
and b. The meaning of this formula is that the probability to reach a b-state,
passing only a-states, may be at most p. The refutation is shown by using a
SAT-solver to find paths satisfying the property whose joint probability mea-
sure exceeds the bound p. The input of the solver are propositional formulae
that are satisfied iff the assignment of the variables corresponds to a sequence
of states of the DTMC that represents a path to a target state. This process is
significantly accelerated by a loop-detection mechanism, which is used to handle
sets of paths which differ only in the number of unfoldings of the same loops.

A drawback of the state-of-the-art BMC procedure for DTMCs is that paths
are found in an arbitrary order while for the size of counterexamples it is often
advantageous to start with paths of high probability. Moreover, it is desirable to
use this procedure for Markov reward models (MRMs), which extend DTMCs
by the possibility to model costs (or dually rewards) of operations. MRMs allow
to verify properties like “The probability to finish the computation with costs
larger than c is at most 10−3.”

In this paper we therefore extend stochastic BMC in order to handle these
problems. Instead of using a SAT-solver, we use the more powerful approach of
SMT-solving. SMT stands for satisfiability modulo theories and is a generaliza-
tion of SAT [10]. It allows to express propositional formulae representing paths
to target states together with conditions on the probability of such paths. Fur-
thermore, real numbers that are allocated to the states by a cost-function can
be added up and restrictions on the accumulated costs of paths can be imposed.
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We will also show how this counterexample generation can be combined with
minimization techniques for Markov chains in order not only to speed up the
counterexample generation but also to obtain more abstract counterexamples.

Organization of the paper. At first, we give a brief introduction to the foun-
dations of DTMCs, counterexamples, Markov reward models, and bisimulation
minimization. Section 3 then explains the concept of SMT-solving for this con-
text. In Sect. 4 we describe the results of some experiments we did on well-known
test cases. In Sect. 5 we draw a short conclusion and give an outlook to future
work on this approach.

2 Foundations

In this section we take a brief look at the basics of discrete-time Markov chains,
Markov reward models, and bisimulation minimization.

2.1 Stochastic Models

Definition 1. Let AP be a set of atomic propositions. A discrete-time Markov
chain (DTMC) is a tuple M = (S, sI , P, L) such that S is a finite, non-empty
set of states; sI ∈ S, the initial state; P : S × S → [0, 1], the matrix of the one-
step transition probabilities; and L : S → 2AP a labeling function that assigns
each state the set of atomic propositions which hold in that state.

P has to be a stochastic matrix that satisfies
∑
s′∈S P (s, s′) = 1 for all s ∈ S. A

(finite or infinite) path π is a (finite or infinite) sequence π = s0s1 . . . of states
such that P (si, si+1) > 0 for all i ≥ 0. A finite path π = s0s1 . . . sn has length
|π| = n; for infinite paths we set |π| = ∞. For i ≤ |π|, πi denotes the ith state
of π, i. e., πi = si. The ith prefix of a path π is denoted by π↑i= s0s1 . . . si. The
set of finite (infinite) paths starting in state s is called Pathfin

s (Pathinf
s ).

In order to obtain a probability measure for sets of infinite paths we first need
to define a probability space for DTMCs:

Definition 2. Let M = (S, sI , P, L) be a DTMC and s ∈ S. We define a prob-
ability space Ψs = (Pathinf

s , Δs, Prs) such that

– Δs is the smallest σ-algebra generated by Pathinf
s and the set of basic cylin-

ders of the paths from Pathfin
s . Thereby, for a finite path π ∈ Pathfin

s , the
basic cylinder over π is defined as Δ(π) = {λ ∈ Pathinf

s |λ↑|π|= π}.
– Prs is the uniquely defined probability measure that satisfies the equation

Prs(Δ(ss1s2 . . . sn)) = P (s, s1) · P (s1, s2) · · · · · P (sn−1, sn) for all basic
cylinders Δ(ss1s2 . . . sn).

The properties we want to consider are formulated in PCTL [4] and are of the
form P≤p(aU b) with a, b ∈ AP. This means that the probability to walk along
a path from the initial state to a state in which b holds, with all intermediate
states satisfying a, is less than or equal to p. More formally: A path π satisfies
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aU b, written π � aU b, iff ∃i ≥ 0 :
(
b ∈ L(πi) ∧ ∀ 0 ≤ j < i : a ∈ L(πj)

)
. A

state s ∈ S satisfies the formula P≤p(aU b) (written s � P≤p(aU b)) iff Prs
({π ∈

Pathinf
s |π � aU b}) ≤ p.

Let us assume that such a formula P≤p(aU b) is violated by a DTMC M .
That means PrsI

({π ∈ Pathinf
s |π � aU b}) > p. In this case we want to compute

a counterexample which certifies that the formula is indeed violated. Hence a
counterexample is a set of paths that satisfy aU b and whose joint probability
measure exceeds the bound p.

Definition 3. Let M = (S, sI , P, L) be a discrete-time Markov chain for which
the property ϕ = P≤p(aU b) is violated in state sI . An evidence for ϕ is a
finite path π ∈ Pathfin

sI
such that π � aU b, but no proper prefix of π satisfies

this formula. A counterexample is a set C ⊆ Pathfin
sI

of evidences such that
PrsI (C) > p.

Han and Katoen have shown that there is always a finite counterexample if
P≤p(aU b) is violated [11].

In order to be able to express properties like “The probability to reach a target
state with costs larger than c is at most p”, Markov chains have to be extended
by so-called reward functions.

Definition 4. A Markov reward model (MRM) is a pair (M,R) where M =
(S, sI , P, L) is a DTMC and R : S → R a real-valued reward function.

Rewards can be used to model costs of certain operations, to count steps or
to measure given gratifications. The variant of rewards we use here are state
rewards. One could also assign reward values to transitions instead of states (so-
called transition rewards). We restrict ourselves to state rewards; all techniques
that are developed in this paper can also be applied to transition rewards.

Let π ∈ Pathfin
s be a finite path and R a reward function. The accumulated

reward of π is given by R(π) =
∑|π|−1
i=0 R(πi). Note that the reward is granted

when leaving a state.
We extend the PCTL-properties from above to Markov reward models. For

a (possibly unbounded) interval I ⊆ R, a path π satisfies the property aUI b,
written π � aUI b, if there is 0 ≤ i ≤ |π| such that b ∈ L(πi), R(π↑i) ∈ I,
and a ∈ L(πj) for all 0 ≤ j < i. A state s ∈ S satisfies P≤p(aUI b) if Prs

({π ∈
Pathinf

s |π � aUI b}) ≤ p. Our techniques can be extended in a straightforward
way to I being the union of a finite set of intervals. Please note that the bounded
until operator of PCTL is a special case of a reward condition.

Our goal is to compute counterexamples to refute such reward properties using
bounded model checking (BMC).

2.2 Bisimulation Minimization

For the generation of counterexamples we work with a symbolic representation
of the DTMC and the reward function. Symbolic representations have the ad-
vantage that the size of the representation is not directly correlated with the
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size of the represented system. The representation can be smaller by orders of
magnitude. By using algorithms whose running time only depends on the size of
the representation, very large state spaces can be handled.

But even if the symbolic representation of a system is small, the number of
paths that are needed for a counterexample can be very large. In order to reduce
the number of paths, we first compute the smallest system that has the same
behavior w. r. t. probabilities and rewards as the original one. This in general
not only reduces the number of states, but also the number of paths, because all
paths that stepwise consist of equivalent states are mapped onto a single path
in the minimized system.

The methods for computing such minimal systems are based on bisimulation
relations. A bisimulation groups states whose behavior is indistinguishable into
equivalence classes [12]:

Definition 5. Let M = (S, sI , P, L) be a DTMC and R : S → R a reward
function for M . A partition P of S is a bisimulation if the following holds for
all equivalence classes C of P and for all s, t ∈ S such that s and t are contained
in the same block of P:

L(s) = L(t), R(s) = R(t), and P (s, C) = P (t, C),

where P (s, C) =
∑

s′∈C P (s, s′). Two states s, t ∈ S are bisimilar (s ∼ t) if
there exists a bisimulation P such that s and t are contained in the same block
of P.

The equivalence classes of bisimilarity and the coarsest bisimulation partition
coincide. The equivalence class of a state s ∈ S w. r. t. a bisimulation P is
denoted by [s]P . The classes of the bisimulation now become the states of a new
DTMC.

Definition 6. Let M = (S, sI , P, L) be a DTMC, R a reward function for
M , and P be a bisimulation. The bisimulation quotient is the DTMC (P, CI ,
P ′, L′) with reward function R′ such that

– For all C, C′ ∈ P: P ′(C, C′) = P (s, C′) for an arbitrary s ∈ C,
– CI is the block that contains the initial state sI of M ,
– ∀C ∈ P : L′(C) = L(s) for an arbitrary state s ∈ C, and
– ∀C ∈ P : R′(C) = R(s) for an arbitrary state s ∈ C.

The quotient can be considerably smaller than the original system. At the same
time it still satisfies the same PCTL and reward properties. All analyses can
therefore be carried out on the quotient system instead of the larger original
Markov model. For symbolic algorithms to compute the bisimulation quotient
of a DTMC or MRM, we refer the reader to, e. g., [13,14].

3 SMT-Based Bounded Model Checking for
Counterexample Generation

In this section we show how counterexamples can be computed using an SMT-
based formulation of bounded model checking (BMC). BMC has already been
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applied in [7] for this purpose but in a purely propositional variant. The main
drawback of the existing approach is that the propositional BMC formula only
contains information about the mere existence of a path, but not about its
probability measure. Hence there is no direct possibility to control the SAT-
solver such that paths with high probability measure are preferred.

Here we propose the usage of a more powerful formulation than purely proposi-
tional logic. The satisfiability modulo theories (SMT) problem is a generalization
of the propositional satisfiability (SAT) problem. It combines propositional logic
with arithmetic reasoning. Using SMT we can create a formula that is only satis-
fied by paths with a certain minimal probability. This enables us to apply binary
search to find paths first whose probability measures differ from the probability
of the most probable path of the current unrolling depth by at most a constant
ε > 0. Furthermore, this formulation allows us to compute counterexamples for
Markov reward models.

Since often even counterexamples of minimal size are too large to be useful,
we minimize the DTMC or MRM before determining a counterexample. The
counterexample obtained for the minimized system is much more compact since
all equivalent evidences of the original system are merged into a single path of
the minimized system. Given a counterexample of the minimized system, it can
easily be translated back to the original system – either resulting in an ordinary
counterexample or in one representative evidence per equivalence class.

We first describe the SMT-based BMC formula and compare it to the SAT-
based approach of [7]. Then we show how to handle Markov reward models with
an arbitrary number of reward functions. Finally we demonstrate how minimiza-
tion can be applied to make the counterexample generation more efficient.

3.1 SMT-Based and SAT-Based SBMC

Stochastic bounded model checking (SBMC) as proposed in [7] is based on the
formulation as a (propositional) satisfiability problem that a path of a certain
length exists which exhibits a given property. To handle formulae of the form
P≤p(aU b), states that satisfy either ¬a or b are made absorbing by removing
all out-going edges. This reduces the problem to reaching a b-state.

After this preprocessing step, SBMC uses a SAT-solver to determine satisfying
solutions for the BMC formula, which has the following structure:

SBMC(k) := I(s0) ∧
k−1∧

i=0

TSAT(si, si+1) ∧ Lb(sk). (1)

I(s0) is a formula that is satisfied iff the assignment of s0 corresponds to the
initial state sI . Accordingly, TSAT(si, si+1) represents the transition from a state
si to a successor si+1, such that TSAT(si, si+1) is satisfied iff P (si, si+1) > 0,
and Lb(sk) is the property which holds for sk iff b ∈ L(sk). Each satisfying
assignment of formula (1) corresponds to a path of length k that is an evidence for
aU b. The authors of [7] describe how this formula can efficiently be constructed
from a BDD-based representation of the Markov chain. First they construct an
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OBDD for the underlying directed graph by mapping positive probabilities in
the MTBDD representation of the probability matrix to 1. Then they apply
Tseitin-transformation [15] to the OBDDs to construct the different parts of the
BMC formula. Fig. 1 gives a rough overview of the BMC procedure for a DTMC
M = (S, sI , P, L) and a formula ϕ = P≤p(aU b).

The probability measure of a path, however, is not considered within this
formula. The probability measure has to be computed after the path has been
found. Using an SMT-based formulation we can create a modified version of the
BMC formula that allows us to put restrictions on the probability measure of
evidences.

procedure Counterexample
preprocess(M, ϕ);
C ← ∅;
k ← 0;
Pr(C)← 0;
ϕ← BMCformula(k, M, ϕ);
while Pr(C) ≤ p do

solution← solve(ϕ)
if solution = UNSAT then

k ← k + 1;
ϕ← BMCformula(k, M, ϕ);

else
π ← CreatePath(solution);
C ← C ∪̇ {π};
Pr(C)← Pr(C) + Pr(π);
ϕ← ϕ ∧ ExcludePath(π);

end if
end while
return C

end procedure

Fig. 1. Counterexample generation

We define an extended transition
formula TSMT(si, si+1, p̂i) that is sat-
isfied iff P (si, si+1) > 0 and the
variable p̂i is assigned the logarithm
of this probability. Following [6], the
logarithm is used in order to turn
the multiplication of the probabil-
ities along a path into a summa-
tion. This leads to SMT formulae
over linear real arithmetic that can
be decided efficiently. This variant
of the transition predicate can also
be generated from an MTBDD rep-
resentation of the matrix P (s, s′) of
transition probabilities using Tseitin-
transformation. In contrast to the
propositional case, where ‘true’ and
‘false’ are used as atomic formulae for
the terminal nodes, we use ‘p̂ = log v’
for leaves with value v > 0 and ‘false’
for the leaf 0.

To let the solver find only evi-
dences with a probability measure of
at least pt ∈ [0, 1], we add the condition

∑k−1
i=0 p̂i > log pt to the BMC formula:

SSBMC(k) := I(s0) ∧
k−1∧

i=0

TSMT(si, si+1, p̂i) ∧ Lb(sk) ∧
(
k−1∑

i=0

p̂i ≥ log pt

)

. (2)

This formula is given to an SMT-solver. If the solver returns SAT, the satisfying
assignment represents an evidence with a probability measure of at least pt. If
we get UNSAT, there is no such path of the current length.

This enables us to do a binary search for evidences with a high probability
measure in Pathfin

sI
. In principle we could determine the most probable path of the

current unrolling depth first, then the one with the second highest probability,
and so on. For efficiency reasons we apply a different strategy: First, we look for
paths which already exceed our probability threshold p. If this fails, we search
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for paths with a probability greater or equal to p/2. If we have found all existing
paths with such a probability and the accumulated probability mass is still less
than p, we start looking for paths with a probability greater or equal p/4, and
so on. The value pt is decreased, until either all paths with length k have been
found or the accumulated probability of the set of evidences is high enough. If
the latter is not the case, we proceed to depth k + 1.

The optimizations for SBMC – exploiting loops and improvements of the
clauses to exclude paths from the search space –, which are proposed in [7],
work for SSBMC as well and without further modification.

3.2 Counterexamples for MRMs

With the proposed method, we are not only able to handle DTMCs, but to
handle MRMs as well. To consider the reward structure of an MRM during the
search for paths, we need to integrate the rewards into the transition relation.
In the preprocessing step, which is needed to turn the PCTL-Until property
P≤p(aUI b) into a reachability property, we must not cut the transitions from
all b-states. There must be the possibility to extend a path if its accumulated
reward is not within I. Thus we cut the transitions only from states s with
a �∈ L(s).

After that we extend the transition formula by a formula for the rewards in a
similar way as we have done for the probabilities. For each time frame 0 ≤ i < k
we introduce a variable r̂i such that the formula R(si, r̂i) is satisfied iff r̂i carries
the value R(si). This formula can be created from an MTBDD representation of
the reward function using Tseitin-transformation. The resulting SMT-formula,
which takes rewards into account, has the following structure:

R-SSBMC(k) := SSBMC(k)

∧
k−1∧

i=0

R(si, r̂i) ∧
[

min(I) ≤
(
k−1∑

i=0

r̂i

)

≤ max(I)

]

.
(3)

Since b-states are no longer absorbing when using this formula, we have to make
sure that we do not find paths of which we have already found a proper prefix.
This can be guaranteed by adding clauses to the formula that exclude all paths
that were found in previous iterations.

Using this technique it is possible to handle an arbitrary number of reward
functions at the same time. We just add distinct variables for each reward func-
tion and build several reward sums which are checked against the corresponding
intervals.

3.3 Bisimulation Minimization

We can use bisimulation minimization (cf. Sec. 2.2) as a further preprocessing
step after cutting unnecessary transitions, but before constructing a counterex-
ample. Since in many cases the quotient system is considerably smaller than the
original system, fewer paths are needed for a counterexample.
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Every path in the bisimulation quotient represents a set of paths in the original
system. To be more precise, let π, π′ ∈ Pathfin(s) be two evidences in a DTMC
M = (S, sI , P, L). They are equivalent if |π| = |π′| and for all 0 ≤ i ≤ |π|:
πi ∼ π′ i. All equivalent paths correspond to the same path in the quotient
system, namely to the path πQ = [π0]∼[π1]∼ . . . [π|π|]∼. The probability of πQ
is the sum of the probabilities of the represented original paths that start in
sI . Therefore in general fewer paths are needed in the quotient system for a
counterexample.

Once a counterexample has been determined for the quotient DTMC, its paths
can be translated back to the original system. The result is a tree that contains
all evidences that are stepwise equivalent to the given path. Let us assume that
πQ = C0C1 . . . Cn with C0 = [sI ]∼ is such a path in the quotient system. We set
succ(s) = {s′ ∈ S |P (s, s′) > 0}. The root of the tree is the initial state sI that
corresponds to C0 on πQ. If si is a node of the tree that corresponds to Ci on
πQ, its successor nodes in the tree are succ(s)∩Ci+1. They correspond to Ci+1.
The probability measures of the resulting tree and of πQ coincide.

In the next section we show the effectiveness of SMT-based counterexample
generation and of this optimization on a set of example benchmarks.

4 Experimental Results

We have implemented the SSBMC-tool in C++ with the refinements we presented
above, including the optimizations from [7]. We used Yices [16] as the underlying
SMT-solver.

Our benchmarks are instances of the following four case studies:

(1) The contract signing protocol [17,18] (contract) provides a fair exchange
of signatures between two parties A and B over a network. If B has obtained
the signature of A, the protocol ensures that A will receive the signature of B
as well. In our experiments we examine the violation of this property.

(2) The task of the crowds protocol [19] (crowds) is to provide a method
for anonymous web browsing. The communication of a single user is hidden by
routing it randomly within a group of similar users. The model contains corrupt
group members who try to discern the source of a message. We explore the
probability that these corrupt members succeed.

(3) The leader election protocol [20] (leader) consists of N processors in a
synchronous ring. Every processor chooses a random number from {0, . . . , M}.
The numbers are passed around the ring, the processor with the highest number
becomes the leader if this number is unique. If this fails, a new round starts. We
provide a certificate that the probability to eventually elect a leader exceeds a
given bound.

(4) The self-stabilizing minimal spanning tree algorithm [21] (mst) computes a
minimal spanning tree in a network with N nodes. Due to, e. g., communication
failures the system may leave the state where a result has been computed, and
recover after some time. For our experiments we explore the probability that
the algorithm does not recover within a given number of k steps. This model
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is of particular interest to us, because it has a large number of paths, but only
a few have a notable probability mass. Because SAT-based BMC does not find
paths with high probability first, the hope is that the SMT approach finds much
smaller counterexamples in less time.

We used the probabilistic model checker PRISM [22] to generate symbolic
representations of these case studies. All experiments were run on a Dual Core
AMD Opteron processor with 2.4 GHz per core and 4 GB of main memory. Any
computation which took more than two hours (“– TO –”) or needed more than
2 GB of memory (“– MO –”) was aborted.

In order to compare the results we ran the same benchmarks under the same
conditions also with the SBMC-tool from [7].

4.1 Counterexamples for DTMCs

In this section we present the results for the SSBMC procedure. The evaluation of
bisimulation minimization and counterexamples for MRMs follows in subsequent
sections.

Table 1 contains the results for counterexample generation for DTMCs using
the SMT- and the SAT-approach. The first and the second column contain the
names of the model and the probability threshold p. In the third column the max-
imal unrolling depth kmax is listed. The blocks titled “SSBMC” and “SBMC”
present the results for SMT-based approach and the SAT-based approach, re-
spectively. The columns “#paths”, “time”, and “memory” contain the number
of paths in the counterexample, the needed computation time in seconds, and
the memory consumption in megabytes.

Both tools are able to solve a subset of the instances within the given lim-
its. The SSBMC-tool was aborted due to the memory limit for one instance of
the contract benchmark, most instances of the crowds benchmark, and some
instances of the leader protocol. The reason is the high memory consumption
of the SMT-solver Yices compared to the SAT-solver MiniSAT, which is used
in SBMC. The contract and leader benchmarks exhibit the property that all
evidences of the same length have the same probability. Therefore the number
of paths coincide for both tools. The running time of SSBMC for these instances
is slightly higher due to the modified binary search (cf. Sec. 3.1) which increases
the number of calls to the solver. The search strategy is also the reason why
SSBMC may need slightly more evidences than SBMC, which is the case here
for crowds02 07, where the probabilities of the different evidences differ only by
a small amount.

Notable are the mst instances. They contain a large number of evidences with
very different probabilities. SBMC is not able to compute a counterexample
within the given time limit, while SSBMC returns less than 5000 paths in under
3 minutes. A more detailed look showed that SBMC had computed 633 729 paths
for mst-14 before the timeout occurred. This is because the SMT-approach is
able to compute the more probable evidences first, only few of which are needed
for a counterexample.
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Table 1. Counterexample generation for DTMCs using SMT- and SAT-based BMC

SSBMC SBMC
Name p kmax #paths time mem. #paths time mem.

contract05 03 0.500 37 513 14.85 124.72 513 25.04 74.84
contract05 08 0.500 87 513 134.92 889.32 513 399.08 694.71
contract06 03 0.500 44 2049 70.21 388.81 2049 140.36 124.79
contract06 08 0.500 92 – MO – 2049 2620.12 1181.76
contract07 03 0.500 51 8193 474.59 1510.28 8193 627.56 198.27
crowds02 07 0.100 39 21306 1006.05 1394.26 21116 417.89 96.11
crowds04 06 0.050 34 – MO – 80912 1468.94 278.17
crowds04 07 0.050 34 – MO – 80926 1773.83 286.38
crowds05 05 0.050 36 – MO – – MO –
crowds10 05 0.025 27 – MO – 52795 1654.83 188.51
leader03 04 0.990 8 276 0.70 27.45 276 0.76 14.55
leader03 08 0.990 8 1979 28.21 101.41 1979 25.76 66.48
leader04 03 0.990 20 – MO – 347454 3959.88 720.56
leader05 02 0.900 42 – MO – – MO –
leader06 02 0.900 84 – MO – – TO –
mst14 0.990 14 426 11.64 42.99 – TO –
mst15 0.049 15 4531 98.58 148.82 – TO –
mst16 0.047 16 4648 107.27 158.25 – TO –
mst18 0.036 18 4073 109.26 164.24 – TO –
mst20 0.034 20 452 19.57 58.21 – TO –

4.2 Bisimulation

In Table 2 we evaluate the impact of bisimulation minimization on running time
and memory consumption for SSBMC and SBMC. In Table 3 we show the results
of bisimulation with subsequent back-translation of the abstract evidences. In
the latter case, we converted the minimized paths completely, i. e., we obtained
all original paths which were represented by an abstract path. The running time
listed in Table 2 and Table 3 include the time for bisimulation minimization,
counterexample generation, and, in Table 3, path conversion. Again, the block
titled “SSBMC” (“SBMC”) contains the result for the SMT-based (SAT-based)
approach.

As we can see, bisimulation minimization causes in most cases a significant
decrease in computation time and required memory of SSBMC and SBMC. This
effect is somewhat alleviated when the paths are translated back to the origi-
nal system, although not dramatically. Some instances of the contract and the
crowds protocol which could not be solved by SSBMC within the given time
and memory bounds become actually solvable, even with path conversion.

However, there is also an exception to this trend: The path conversion for
the minimal spanning tree benchmark cannot be done within the given memory
bounds. This is due to the fact that one abstract path in these benchmarks rep-
resents a great number of original paths, too many to convert them all. While
the SMT-based approach without bisimulation minimization can pick the paths
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Table 2. Counterexample generation with bisimulation minimization

SSBMC SBMC
Name p kmax #paths time mem. #paths time mem.

contract05 03 0.500 37 7 23.41 61.42 7 48.50 54.55
contract05 08 0.500 87 7 467.88 179.29 7 829.43 94.72
contract06 03 0.500 44 8 57.75 84.94 8 144.06 64.56
contract06 08 0.500 97 8 1205.37 209.47 8 2213.94 120.83
contract07 03 0.500 51 9 169.37 123.93 9 407.63 79.13
crowds02 07 0.100 39 21069 629.24 633.34 21279 191.31 101.34
crowds04 06 0.050 34 3459 106.17 164.95 3624 44.19 48.76
crowds04 07 0.050 34 3459 123.32 167.61 3555 46.97 50.67
crowds05 05 0.050 36 6347 184.06 251.70 8435 55.20 50.47
crowds10 05 0.025 27 251 12.74 71.20 347 10.22 47.84
leader03 04 0.990 8 2 0.12 21.68 2 0.10 12.06
leader03 08 0.990 8 2 0.64 33.93 2 0.68 24.31
leader04 03 0.990 20 4 0.31 25.12 4 0.32 15.50
leader05 02 0.900 42 7 0.24 22.94 7 0.24 12.05
leader06 02 0.900 84 12 0.79 26.19 12 0.89 14.09
mst14 0.990 14 9 2.28 38.10 396 0.78 16.85
mst15 0.049 15 13 1.85 39.36 1648 1.40 17.92
mst16 0.047 16 13 2.19 39.73 5632 4.00 25.99
mst18 0.036 18 9 3.57 43.64 27475 30.82 69.69
mst20 0.034 20 7 5.02 44.91 20290 25.83 56.63

with the highest probability, leading to a small counterexample, this is not pos-
sible after bisimulation minimization. If we compute the most probable paths
in the minimized system, they can correspond to huge numbers of paths in the
original system each of which has only negligible probability.

4.3 Rewards

For the reward model checking we integrated rewards into the leader election
protocol. A reward of 1 is granted whenever a new round starts, i. e., when each
processor chooses a new ID. We want to analyze how high the probability mea-
sure is that at least three rounds are needed until a leader has been elected. For
the experiments we restricted our search to a maximal path length of depthmax.
We computed all paths with the given property up to this length.

The results are shown in Table 4. The first column contains the name of
the model, the second the maximal depth depthmax. The subsequent columns
contain the accumulated probability measure p, the number of found paths, the
computation time (in seconds) and the required memory (in megabytes).

Compared to the results in Section 4.1 we need more and longer paths to get
a noteworthy probability measure. The computation time and the amount of
consumed memory are higher accordingly.

We also integrated bisimulation minimization for Markov reward models with
state rewards. In this case only an appropriate initial partition has to be provided
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Table 3. Counterexample generation with bisimulation and path conversion

SSBMC SBMC
Name p kmax #paths time mem. #paths time mem.

contract05 03 0.500 37 520 27.87 72.87 520 50.86 54.36
contract05 08 0.500 87 520 859.34 182.64 520 1259.94 98.06
contract06 03 0.500 44 2064 72.27 91.44 2064 168.28 75.50
contract06 08 0.500 97 2064 4181.45 224.31 2064 5927.5 131.68
contract07 03 0.500 51 8224 230.69 149.60 8224 450.20 103.13
crowds02 07 0.100 39 21069 812.51 699.80 21279 313.99 168.42
crowds04 06 0.050 34 81227 408.69 406.16 81138 218.81 289.62
crowds04 07 0.050 34 81227 426.69 409.29 80705 221.80 290.00
crowds05 05 0.050 36 – MO – – MO –
crowds10 05 0.025 27 54323 198.30 194.38 53507 119.83 168.93
leader03 04 0.990 8 300 0.21 21.68 300 0.16 12.06
leader03 08 0.990 8 4536 4.12 33.93 4536 3.67 24.31
leader04 03 0.990 20 583440 483.99 1123.74 583440 300.24 1108.83
leader05 02 0.900 42 – MO – – MO –
leader06 02 0.900 84 – MO – – MO –
mst14 0.990 14 – MO – – MO –
mst15 0.049 15 – MO – – MO –
mst16 0.047 16 – MO – – MO –
mst18 0.036 18 – MO – – MO –
mst20 0.034 20 – MO – – MO –

Table 4. Counterexample generation for MRMs using SMT-based BMC

Model depthmax p #paths time mem.

leader03 04 23 0.00391 20160 290.62 434.45
leader03 05 19 0.00160 18000 290.16 379.25
leader03 06 19 0.00077 52920 2134.05 1147.73
leader03 08 15 0.00024 32256 1050.96 709.98
leader04 02 25 0.21875 37376 912.11 1110.54
leader04 03 19 0.04979 26460 589.94 761.34
leader05 02 23 0.14771 4840 40.16 163.06
leader06 02 25 0.12378 32448 907.33 1360.11
leader08 02 28 – MO –

for bisimulation computation. The results are shown in Table 5. For the leader
benchmarks bisimulation minimization results in a enormous compression of
the state space and a respective reduction of the number of evidences. Since the
back-translation can be done efficiently and yields for the leader benchmark the
same counterexample as the version without minimization, using bisimulation
minimization as a preprocessing and back-translation as a postprocessing step
reduces the overall computation time and memory consumption.
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Table 5. Counterexample generation for MRMs with bisimulation minimization

without conv. with conv.
Model depthmax p #paths time mem. p #paths time mem.

leader03 04 23 0.00391 3 0.15 21.70 0.00391 20160 9.37 59.36
leader03 05 19 0.00160 2 0.25 24.84 0.00160 18000 10.68 54.93
leader03 06 19 0.00077 2 0.38 26.96 0.00077 52920 34.30 119.10
leader03 08 15 0.00024 1 0.66 33.96 0.00024 32256 25.95 69.56
leader04 02 25 0.21875 3 0.11 21.29 0.21875 37376 20.43 92.57
leader04 03 19 0.04979 1 0.29 25.15 0.04979 26460 18.55 72.67
leader05 02 23 0.14771 1 0.18 22.12 0.14771 4840 3.23 31.45
leader06 02 25 0.12378 1 0.30 23.74 0.12378 32448 31.71 87.96
leader08 02 28 0.05493 1 0.98 31.33 – MO –

5 Conclusion

In our paper we showed how SMT and BMC can be combined to efficiently
generate counterexamples for DTMCs. Our SSBMC method can handle sys-
tems which could not be handled with the previously presented SAT-based ap-
proach [7]. With SSBMC it is also possible to analyze Markov reward models
with an arbitrary number of reward functions. This enables us to refute reacha-
bility properties which impose restrictions on the accumulated reward of paths.

Furthermore we presented bisimulation minimization as a preprocessing step
for SSBMC. It reduces the number of evidences needed for a counterexample by
merging equivalent paths. This way the counterexample generation is accelerated
and the memory consumption is reduced. We are able to convert these minimized
paths back to the original ones.

As future work we will carry out a more detailed experimental evaluation of
our methods on appropriate models. Furthermore, there are still many possi-
ble optimizations for our tool. So far, reward model checking and bisimulation
minimization only work without the loop detection optimization from [7]. These
combinations have to be implemented.

We plan to optimize the search for paths with higher probabilities. We want
to include the BDD-based method from [23], which applies Dijkstra’s shortest
path algorithm to compute the most probable evidences, into our tool as another
preprocessing step. The advantage of this method is that it yields counterexam-
ples of minimal size. Preliminary experiments have shown that this method is
efficient as long as the number of paths is small. Since the BDD sizes grow with
each path that has been found, memory consumption and running time grow ac-
cordingly. We want to combine this approach with the SMT-approach by using
the BDD-based method as long as it is efficient and switch to the SMT-approach
when the BDD-approach becomes too expensive.
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Abstract. We propose the concept of adaptable processes as a way of overcom-
ing the limitations that process calculi have for describing patterns of dynamic
process evolution. Such patterns rely on direct ways of controlling the behavior
and location of running processes, and so they are at the heart of the adaptation
capabilities present in many modern concurrent systems. Adaptable processes
have a location and are sensible to actions of dynamic update at runtime. This al-
lows to express a wide range of evolvability patterns for processes. We introduce
a core calculus of adaptable processes and propose two verification problems for
them: bounded and eventual adaptation. While the former ensures that at most k
consecutive errors will arise in future states, the latter ensures that if the system
enters into an error state then it will eventually reach a correct state. We study
the (un)decidability of these two problems in different fragments of the calculus.
Rather than a specification language, our calculus intends to be a basis for in-
vestigating the fundamental properties of evolvable processes and for developing
richer languages with evolvability capabilities.

1 Introduction

Process calculi aim at describing formally the behavior of concurrent systems. A lead-
ing motivation in the development of process calculi has been properly capturing the dy-
namic character of concurrent behavior. In fact, much of the success of the π-calculus
can be fairly attributed to the way it departs from CCS [16] so as to describe mo-
bile systems in which communication topologies can change dynamically. Subsequent
developments can be explained similarly. For instance, the introduction of the Ambi-
ent calculus can be justified by the need of describing mobility with considerations of
space/context awareness, frequent in distributed systems. A commonality to these de-
velopments is that dynamic behavior in a system is realized through a number of local
changes in its topology: mobility in the π-calculus arises from local changes in single
linkages, while spatial mobility in the Ambient calculus arises from local changes in
the containment relations in the hierarchy of ambients. This way, the combined effect
of local changes suffices to explain dynamic behavior at the global (system) level.

There are, however, interesting forms of dynamic behavior that cannot be satisfacto-
rily described as a combination of local changes, in the sense just discussed. These are
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behavioral patterns which concern change at the process level, and thus describe pro-
cess evolution along time. In general, forms of process evolvability are characterized
by an enhanced control/awareness over the current behavior and location of running
processes. Remarkably, this increased control is central to the adaptation capabilities
by which processes modify their behavior in response to exceptional circumstances in
their environment. As a simple example, consider the behavior of a process scheduler
in an operating system, which executes, suspends, and resumes a given set of threads.
In order to model the scheduler, the threads, and their evolution, we would need mech-
anisms for direct process manipulation, which appear quite difficult to represent by
means of link mobility only. More precisely, it is not clear at all how to represent the
intermittent evolution of a thread under the scheduler’s control: that is, precise ways of
describing that its behavior “disappears” (when the scheduler suspends the thread) and
“appears” (when the scheduler resumes the thread). Emerging applications and pro-
gramming paradigms provide challenging examples of evolvable processes. In work-
flow applications, we would like to be able to replace or update a running activity,
without affecting the rest of the workflow. We might also like to suspend the execution
of a set of activities, or even suspend and relocate the whole workflow. Similarly, in
component-based systems we would like to reconfigure parts of a component, a whole
component, or even groups of components. Also, in cloud computing scenarios, appli-
cations rely on scaling policies that remove and add instances of computational power
at runtime. These are context-aware policies that dynamically adapt the application to
the user’s demand. (We discuss these examples in detail in Section 3.) At the heart of
these applications are patterns of process evolution and adaptation which we find very
difficult (if not impossible) to represent in existing process calculi.

In an attempt to address these shortcomings, in this paper we introduce the concept
of adaptable processes. Adaptable processes have a location and are sensible to actions
of dynamic update at runtime. While locations are useful to designate and structure
processes into hierarchies, dynamic update actions implement a sort of built-in adapta-
tion mechanism. We illustrate this novel concept by introducing E , a process calculus
of adaptable processes (Section 2). The E calculus arises as a variant of CCS without
restriction and relabeling, and extended with primitive notions of location and dynamic
update. In E , a[P ] denotes the adaptable process P located at a. Name a acts as a trans-
parent locality: P can evolve on its own as well as interact freely with its surrounding
environment. Localities can be nested, and are sensible to interactions with update ac-
tions. An update action ã{U} decrees the update of the adaptable process at a with the
behavior defined by U , a context with zero or more holes, denoted by •. The evolu-
tion of a[P ] is realized by its interaction with the update action ã{U}, which leads to
process U{P/•}, i.e., the process obtained by replacing every hole in U by P .

Rather than a specification language, the E calculus intends to be a basis for in-
vestigating the fundamental properties of evolvable processes. In this presentation, we
focus on two verification problems associated to E processes and their (un)decidability.
The first one, k-bounded adaptation (abbreviated BA) ensures that, given a finite k,
at most k consecutive error states can arise in computations of the system—including
those reachable as a result of dynamic updates. The second problem, eventual adapta-
tion (abbreviated EA), is similar but weaker: it ensures that if the system enters into an
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error state then it will eventually reach a correct state. In addition to error occurrence,
the correctness of adaptable processes must consider the fact that the number of mod-
ifications (i.e. update actions) that can be applied to the system is typically unknown.
For this reason, we consider BA and EA in conjunction with the notion of cluster of
adaptable processes. Given a system P and a set M of possible updates that can be
applied to it at runtime, its associated cluster considers P together with an arbitrary
number of instances of the updates in M . This way, a cluster formalizes adaptation and
correctness properties of an initial system configuration (represented by an aggregation
of adaptable processes) in the presence of arbitrarily many sources of update actions.

A summary of our main results follows. E is shown to be Turing complete, and both
BA and EA are shown to be undecidable for E processes (Section 4). Turing complete-
ness of E says much on the expressive power of update actions. In fact, it is known
that fragments of CCS without restriction can be translated into finite Petri nets (see
for instance the discussion in [7]), and so they are not Turing complete. Update actions
in E thus allow to “jump” from finite Petri nets to a Turing complete model. We then
move to E−, the fragment of E in which update patterns—the context U in ã{U}—are
restricted in such a way that holes • cannot appear behind prefixes. In E−, BA turns out
to be decidable (Section 5), while EA remains undecidable (Section 6). Interestingly,
EA is already undecidable in two fragments of E−: one fragment in which adaptable
processes cannot be neither removed nor created by update actions—thus characteriz-
ing systems in which the topology of nested adaptable processes is static—and another
fragment in which update patterns are required to have exactly one hole—thus charac-
terizing systems in which running processes cannot be neither deleted nor replicated.

The undecidability results are obtained via encodings of Minsky machines [17].
While the encoding in E faithfully simulates the behavior of the Minsky machine, this
is not the case for the encoding in E−, in which only finitely many steps are wrongly
simulated. The decidability of BA in E− is proved by resorting to the theory of well-
structured transition systems [1,13] and its associated results. In our case, such a theory
must be coupled with Kruskal’s theorem [15] (so as to deal with terms whose syntacti-
cal tree structure has an unbounded depth), and with the calculation of the predecessors
of target terms in the context of trees with unbounded depth (so as to deal with arbitrary
aggregations and dynamic updates that may generate new nested adaptable processes).
This combination of techniques and results proved to be very challenging.

In Section 7 we give some concluding remarks and review related work. Detailed
definitions and proofs can be found in [5].

2 The E Calculus: Syntax, Semantics, Adaptation Problems

The E calculus extends the fragment of CCS without restriction and relabeling (and
with replication instead of recursion) with update prefixes ã{U} and a primitive notion
of adaptable processes a[P ]. As in CCS, in E processes can perform actions or syn-
chronize on them. We presuppose a countable set N of names, ranged over by a, b . . . ,
possibly decorated as a, b . . . and ã, b̃ . . . . As customary, we use a and a to denote
atomic input and output actions, respectively.
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COMP a[P ]
a[P ]−−−→ � SUM

∑
i∈I αi.Pi

αi−−→ Pi REPL !α.P
α−−→ P ‖ !α.P

ACT1
P1

α−−→ P ′
1

P1 ‖ P2
α−−→ P ′

1 ‖ P2

TAU1
P1

a−−→ P ′
1 P2

a−−→ P ′
2

P1 ‖ P2
τ−−→ P ′

1 ‖ P ′
2

LOC
P

α−−→ P ′

a[P ]
α−−→ a[P ′]

TAU3
P1

a[Q]−−−→ P ′
1 P2

ã{U}−−−−→ P ′
2

P1 ‖ P2
τ−−→ P ′

1{U{Q/•}/�} ‖ P ′
2

Fig. 1. LTS for E . Symmetric counterparts of ACT1, TAU1, and TAU3 have been omitted

Definition 1. The class of E processes, is described by the following grammar:

P ::= a[P ] | P ‖ P |
∑

i∈I
πi. Pi | !π.P π ::= a | a | ã{U}

where the U in ã{U} represents a context, i.e., a process with zero or more holes •.
In E , a[P ] denotes the adaptable process P located at a. Notice that a acts as a transpar-
ent locality: process P can evolve on its own, and interact freely with external processes.
Given a[P ], we often refer to P as the process residing at a. Adaptable processes can
be updated: when an update prefix ã{U} is able to interact with the adaptable process
a[P ], the current state of the adaptable process at a is used to fill the holes in context U
(see below). The rest of the syntax follows standard lines. Parallel composition P ‖ Q
decrees the concurrent execution of P and Q. A process π. P performs prefix π and then
behaves as P . Given an index set I = {1, . . , n}, the guarded sum

∑
i∈I πi. Pi repre-

sents an exclusive choice over π1.P1, . . . , πn.Pn. As usual, we write π1.P1 + π2.P2

if |I| = 2, π1. P1 if |I| = 1, and 0 if I is empty. Process !π. P defines (guarded)
replication, by which infinitely many copies of P are triggered by prefix π.

The operational semantics of E is given in terms of a Labeled Transition System
(LTS). It is denoted

α−→, and defined by the rules in Figure 1. There are five kinds of
actions; we use α to range over them. In addition to the standard input, output, and τ
actions, we consider two complementary actions for process update: ã{U} and a[P ].
The former represents the offering of an update U for the adaptable process at a; the
latter expresses the fact that the adaptable process at a, with current state P , is ready to
update. We often use −→ to denote

τ−−→. Intuitions for some rules of the LTS follow.
Rule COMP represents the contribution of a process at a in an update operation; we use �
to denote a unique placeholder. Rule LOC formalizes the above mentioned transparency
of localities. Process evolvability is formalized by rule TAU3 and its symmetric. The
update action offers a process U for updating the process at a which, by virtue of rule
COMP, is represented in P ′

1 by �. Process Q—the current state of a— is then used to fill
the holes in U that do not appear inside other update prefixes: we use U{Q/•} to denote
the process U in which every occurrence of • has been replaced by Q in this way. The
update action is completed by replacing all occurrences of � in P ′

1 with U{Q/•}.
Notice that nested update prefixes are allowed in our language and treated consis-

tently by the semantics. This way, for instance ã{• ‖ b̃{•}} is an allowed update prefix,
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and the holes at a and at b are actually different. In fact, and as detailed above, the hole
inside b is not instantiated in case of an update operation at a.

We move on to formally define the adaptation problems that we shall consider for E
processes. They formalize the problem of reaching error states in a system with adapt-
able processes. Both problems are stated in terms of observability predicates, or barbs.
Our definition of barbs is parameterized on the number of repetitions of a given signal.

Definition 2 (Barbs). Let P be an E process, and let α be an action in {a, a | a ∈ N}.
We write P ↓α if there exists a P ′ such that P

α−−→ P ′. Moreover:

– Given k > 0, we write P ⇓kα iff there exist Q1, . . . , Qk such that P −→∗ Q1 −→
. . . −→ Qk with Qi ↓α, for every i ∈ {1, . . . , k}.

– We write P ⇓ωα iff there exists an infinite computation P −→∗ Q1 −→ Q2 −→ . . .
with Qi ↓α for every i ∈ N.

We use

� k
α

and

� ω
α

to denote the negation of⇓kα and⇓ωα, with the expected meaning.

We consider two instances of the problem of reaching an error in an aggregation of
terms, or cluster. A cluster is a process obtained as the parallel composition of an initial
process P with an arbitrary set of processes M representing its possible subsequent
modifications. That is, processes in M may contain update actions for the adaptable
processes in P , and therefore may potentially lead to its modification (evolution).

Definition 3 (Cluster). Let P be an E process and M = {P1, . . . , Pn}. The set of
clusters is defined as: CSMP = {P ‖∏m1 P1 ‖ · · · ‖

∏mn Pn | m1, . . . , mn ∈ N}.
The adaptation problems below formalize correctness of clusters with respect to their
ability for recovering from errors by means of update actions. More precisely, given
a set of clusters CSMP and a barb e (signaling an error), we would like to know if all
computations of processes in CSMP (1) have at most k consecutive states exhibiting e,
or (2) eventually reach a state in which the barb on e is no longer observable.

Definition 4 (Adaptation Problems). The bounded adaptation problem (BA) consists
in checking whether given an initial process P , a set of processes M , a barb e, and
k > 0, for all R ∈ CSMP , R

� k
e

holds.
Similarly, the eventual adaptation problem (EA) consists in checking whether given

an initial process P , a set of processes M and a barb e, for all R ∈ CSMP , R

� ω
e

holds.

3 Adaptable Processes, by Examples

Next we discuss concrete instances of adaptable processes in several settings.

Mode Transfer Operators. In [3], dynamic behavior at the process level is defined by
means of two so-called mode transfer operators. Given processes P and Q, the disrupt
operator starts executing P but at any moment it may abandon P and execute Q. The
interrupt operator is similar, but it returns to execute P once Q emits a termination
signal. We can represent similar mechanisms in E as follows:

disrupta(P, Q) def= a[P ] ‖ ã{Q} interrupta(P, Q) def= a[P ] ‖ ã{Q ‖ tQ. •}
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Assuming that P evolves on its own to P ′, the semantics of E decrees that disrupta(P, Q)
may evolve either to a[P ′] ‖ ã{Q} (as locality a is transparent) or to Q (which repre-
sents disruption at a). By assuming that P was able to evolve into P ′′ just before being
interrupted, process interrupta(P, Q) evolves to Q ‖ tQ. P ′′. Notice how defining P
as an adaptable process at a is enough to formalize its potential disruption/interruption.
Above, we assume that a is not used in P and Q, and that termination of Q is signaled
at the designated name tQ.

Dynamic Update in Workflow Applications. Designing business/enterprise applica-
tions in terms of workflows is a common practice nowadays. A workflow is a conceptual
unit that describes how a number of activities coordinate to achieve a particular task.
A workflow can be seen as a container of activities; such activities are usually defined
in terms of simpler ones, and may be software-based (such as, e.g., “retrieve credit
information from the database”) or may depend on human intervention (such as, e.g.,
“obtain the signed authorization from the credit supervisor”). As such, workflows are
typically long-running and have a transactional character. A workflow-based applica-
tion usually consists of a workflow runtime engine that contains a number of workflows
running concurrently on top of it; a workflow base library on which activities may rely
on; and of a number of runtime services, which are application dependent and imple-
ment things such as transaction handling and communication with other applications.
A simple abstraction of a workflow application is the following E process:

App
def= wfa

[

we
[
WE ‖W1 ‖ · · · ‖ Wk ‖ wbl[BL]

] ‖ S1 ‖ · · · ‖ Sj
]

where the application is modeled as an adaptable process wfa which contains a work-
flow engine we and a number of runtime services S1, . . . , Sj . In turn, the workflow
engine contains a number of workflows W1, . . . , Wk, a process WE (which represents
the engine’s behavior and is left unspecified), and an adaptable process wbl representing
the base library (also left unspecified). As described before, each workflow is composed
of a number of activities. We model each Wi as an adaptable process wi containing a
process WLi —which specifies the workflow’s logic—, and n activities. Each of them is
formalized as an adaptable process aj and an execution environment envj :

Wi = wi

[

WLi ‖
n∏

j=1

(
envj [Pj ] ‖ aj

[
!uj. ẽnvj{envj [• ‖ Aj ]}

])
]

The current state of the activity j is represented by process Pj running in envj . Locality
aj contains an update action for envj , which is guarded by uj and always available. As
defined above, such an update action allows to add process Aj to the current state of the
execution environment of j. It can also be seen as a procedure that is yet not active, and
that becomes active only upon reception of an output at uj from, e.g., WLi. Notice that
by defining update actions on aj (inside WLi, for instance) we can describe the evolution
of the execution environment. An example of this added flexibility is the process

U1 = ! replacej . ãj
{
aj [!uj . ẽnvj{envj [• ‖ A2

j ]}]
}

Hence, given an output at replacej , process aj [!uj. ẽnvj{envj [• ‖ Aj ]}] ‖ U1 evolves to
aj [!uj. ẽnvj{envj [• ‖ A2

j ]}] thus discarding Aj in a future evolution of envj . This kind
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of dynamic update is available in commercial workflow engines, such as the Windows
Workflow Foundation (WWF). Above, for simplicity, we have abstracted from lock
mechanisms that keep consistency between concurrent updates on envj and aj .

In the WWF, dynamic update can also take place at the level of the workflow en-
gine. This way, e.g., the engine may suspend those workflows which have been inactive
for a certain amount of time. This optimizes resources at runtime, and favors active
workflows. We can implement this policy as part of the process WE as follows:

U2 = ! suspendi. w̃i
{
! resumei.wi[•]

}

This way, given an output signal at suspendi, process wi[Wi] ‖ U3 evolves to the persis-
tent process ! resumei.wi[Wi] which can be reactivated at a later time.

Scaling in Cloud Computing Applications. In the cloud computing paradigm, Web
applications are deployed in the infrastructure offered by external providers. Developers
only pay for the resources they consume (usually measured as the processor time in
remote instances) and for additional services (e.g., services that provide performance
metrics). Central to this paradigm is the goal of optimizing resources for both clients
and provider. An essential feature towards that goal is scaling: the capability that cloud
applications have for expanding themselves in times of high demand, and for reducing
themselves when the demand is low. Scaling can be appreciated in, e.g., the number of
running instances supporting the web application. Tools and services for autoscaling
are provided by cloud providers such as Amazon’s Elastic Cloud Computing (EC2) and
by vendors who build on the public APIs cloud providers offer.

Here we draw inspiration from the autoscaling library provided by EC2. For scaling
purposes, applications in EC2 are divided into groups, each defining different scaling
policies for different parts of the application. This way, e.g., the part of the application
deployed in Europe can have different scaling policies from the part deployed in the US.
Each group is then composed of a number of identical instances implementing the web
application, and of active processes implementing the scaling policies. This scenario

can be abstracted in E as the process App
def= G1 ‖ · · · ‖ Gn, with

Gi = gi
[
I ‖ · · · ‖ I ‖ Sdw ‖ Sup ‖ CTRLi

]

where each group Gi contains a fixed number of running instances, each represented
by I = mid[A], a process that abstracts an instance as an adaptable process with unique
identification mid and state A. Also, Sdw and Sup stand for the processes implement-
ing scaling down and scaling up policies, respectively. Process CTRLi abstracts the part
of the system which controls scaling policies for group i. In practice, this control re-
lies on external services (such as, e.g., services that monitor cloud usage and produce
appropriate alerts). A simple way of abstracting scaling policies is the following:

Sdw = sd
[
! alertd.

j∏
m̃id{0} ]

Sup = su
[
! alertu.

k∏
m̃id

{
mid[•] ‖ mid[•]} ]

Given proper alerts from CTRLi, the above processes modify the number of running
instances. In fact, given an output at alertd process Sdw destroys j instances. This is
achieved by leaving the inactive process as the new state of locality mid. Similarly, an
output at alertu process Sup spawns k update actions, each creating a new instance.
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Autoscaling in EC2 also includes the possibility of suspending and resuming the
scaling policies themselves. To represent this, we proceed as we did for process U2

above. This way, for the scale down policy, one can assume that CTRLi includes a
process Udw = ! suspdown. s̃d{! resumedw. sd[•]} which, provided an output signal on
suspdown, captures the current policy, and evolves into a process that allows to resume
it at a later stage. This idea can be used to enforce other modifications to the policies
(such as, e.g., changing the number of instances involved).

4 Bounded and Eventual Adaptation Are Undecidable in E
We prove that BA and EA are undecidable in E by defining an encoding of Minsky
machines (MMs) into E which satisfies the following: a MM terminates if and only if
its encoding into E evolves into at least k > 0 processes that can perform a barb e.

A MM [17] is a Turing complete model composed of a set of sequential, labeled in-
structions, and two registers. Registers rj (j ∈ {0, 1}) can hold arbitrarily large natural
numbers. Instructions (1 : I1), . . . , (n : In) can be of three kinds: INC(rj) adds 1 to
register rj and proceeds to the next instruction; DECJ(rj , s) jumps to instruction s if
rj is zero, otherwise it decreases register rj by 1 and proceeds to the next instruction;
HALT stops the machine. A MM includes a program counter p indicating the label of the
instruction to be executed. In its initial state, the MM has both registers set to 0 and the
program counter p set to the first instruction.

The encoding, denoted [[·]]1, is given in Table 1. A register j with value m is repre-
sented by an adaptable process at rj that contains the encoding of number m, denoted
(| m |)j . In turn, (| m |)j consists of a sequence of m output prefixes on name uj ending
with an output action on zj (the encoding of zero). Instructions are encoded as repli-
cated processes guarded by pi, which represents the MM when the program counter
p = i. Once pi is consumed, each instruction is ready to interact with the registers.
To encode the increment of register rj , we enlarge the sequence of output prefixes it
contains. The adaptable process at rj is updated with the encoding of the incremented
value (which results from putting the value of the register behind some prefixes) and
then the next instruction is invoked. The encoding of a decrement of register j consists
of an exclusive choice: the left side implements the decrement of the value of a reg-
ister, while the right one implements the jump to some given instruction. This choice
is indeed exclusive: the encoding of numbers as a chain of output prefixes ensures that
both an input prefix on uj and one on zj are never available at the same time. When the
MM reaches the HALT instruction the encoding can either exhibit a barb on e, or set the
program counter again to the HALT instruction so as to pass through a state that exhibits
e at least k > 0 times. The encoding of a MM into E is defined as follows:

Definition 5. Let N be a MM, with registers r0 = 0, r1 = 0 and instructions (1 :
I1) . . . (n : In). Given the encodings in Table 1, the encoding of N in E (written [[N ]]1)
is defined as [[r0 = 0]]1 ‖ [[r1 = 0]]1 ‖

∏n
i=1[[(i : Ii)]]1 ‖ p1 .

It can be shown that a MM N terminates iff its encoding has at least k consecutive
barbs on the distinguished action e, for every k ≥ 1, i.e. [[N ]]1 ⇓ke . By considering the
cluster CS∅[[N ]]1

= {[[N ]]1}, we can conclude that BA is undecidable for E processes.
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Table 1. Encoding of MMs into E

REGISTER rj [[rj = n]]1 = rj [(| n |)j ] where (| n |)j =

{
zj if n = 0
uj . (| n− 1 |)j if n > 0.

INSTRUCTIONS (i : Ii)
[[(i : INC(rj))]]1 = !pi. r̃j{rj [uj . •]}. pi+1

[[(i : DECJ(rj , s))]]1 = !pi. (uj . pi+1 + zj. r̃j{rj [zj]}. ps)
[[(i : HALT)]]1 = !pi. (e+ pi)

Moreover, since the number of consecutive barbs on e can be unbounded (i.e., there
exists a computation where [[N ]]1⇓ωe ), we can also conclude that EA is undecidable.

Theorem 1. BA and EA are undecidable in E .

5 The Subcalculus E− and Decidability of Bounded Adaptation

Theorem 1 raises the question as whether there are fragments of E in which the prob-
lems are decidable. A natural way of restricting the language is by imposing limitations
on update patterns, the behavior of running processes as a result of update actions. We
now consider E−, the fragment of E in which update prefixes are restricted in such a
way that the hole • cannot occur in the scope of prefixes. More precisely, E− processes
are those E processes in which the context U in ã{U} respects the following grammar:

U ::= P | a[U ] | U ‖ U | •
In [5], we have shown that there exists an algorithm to determine whether there exists
R ∈ CSMP such that R⇓kα holds. We therefore have the following result.

Theorem 2. BA is decidable in E−.

We now provide intuitions on the proof of Theorem 2; see [5] for details. The algorithm
checks whether one of such R appears in the (possibly infinite) set of processes from
which it is possible to reach a process that can perform α at least k consecutive times.
The idea is to introduce a preorder (or, equivalently, quasi-order)� on processes so as
to characterize such a set by means of a so-called finite basis: finitely many processes
that generate the set by upward closure, i.e., by taking all processes which are greater
or equal to some process (wrt �) in the finite basis.

The proof appeals to the theory of well-structured transition systems [1,13]. We de-
fine the preorder � by resorting to a tree representation, in such a way that: (i) � is a
well-quasi-order: given any infinite sequence xi, i ∈ N, of elements there exist j < k
such that xj � xk; (ii) � is strongly compatible wrt reduction in E : for all x1 � y1 and
all reductions x1 −→ x2, there exists y2 such that y1 −→ y2 and x2 � y2; (iii) � is
decidable; and (iv)� has an effective pred-basis, i.e., for any x it is possible to compute
a basis of the set of states y such that there exists y′ −→ x′ with y′ � y and x � x′. It
is known [1,13] that given any target set I which is characterizable by a finite basis, an
algorithm exists to compute a finite basis FB for the set of processes from which it is
possible to reach a process belonging to I .
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The algorithm to determine if there exists R ∈ CSMP such that R ⇓kα consists of
three steps: (1) We restrict the set of terms that we consider to those reachable by any
R ∈ CSMP . We characterize this set by (a) considering the sequential subterms in CSMP ,
i.e., terms not having parallel or locations as their topmost operator, included in the term
P or in the terms in M and (b) introducing� over terms with the above properties. (2)
We then show that it is possible to compute I (i.e. the finite basis of the set mentioned
before) such that it includes all processes that expose α at least k consecutive times.
(3) Finally, we show that it is possible to determine whether or not some R ∈ CSMP is
included in the set generated by the finite basis FB.

Intuitions on these three steps follow. As for (1), we exploit Kruskal’s theorem on
well-quasi-orderings on trees [15]. Unlike other works appealing to well-structured
transition systems for obtaining decidability results (e.g. [9]), in the case of E− it is
not possible to find a bound on the “depth” of processes. Consider, for instance, pro-
cess R = a[P ] ‖ !ã{a[a[•]]}. One possible evolution of R is when it is always the
innermost adaptable process which is updated; as a result, one obtains a process with an
unbounded number of nested adaptable processes: a[a[. . . a[P ]]]. Nevertheless, some
regularity can be found also in the case of E−, by mapping processes into trees labeled
over location names and sequential subterms in CSMP . The tree of a process P is built
as follows. We set a root node labeled with the special symbol ε, and which has as
many children nodes as parallel subterms in P . For those subterms different from an
adaptable process, we obtain leaf nodes labeled with the subterms. For each subterm
a[P ′], we obtain a node which is labeled with a and has as many children nodes as
parallel subterms in P ′; tree construction then proceeds recursively on each of these
parallel subterms. By mapping processes into this kind of trees, and by using Kruskal’s
ordering over them, it can be shown that our preorder � is a well-quasi-ordering with
strong compatibility, and has an effective pred-basis. The pred-basis of a process P is
computed by taking all the minimal terms that reduce to P in a single reduction. These
terms are obtained by extending the tree of P with at most two additional subtrees,
which represent the subprocess(es) involved in a reduction.

As for (2), we proceed backwards. We first determine the finite basis FB′ of the set
of processes that can immediately perform α. This corresponds to the set of sequential
subterms of CSMP that can immediately perform α. If k > 1 (otherwise we are done)
we do a backward step by applying the effective pred-basis procedure described above
to each term of FB′, with a simple modification: if an element Q of the obtained basis
cannot immediately perform α, we replace it with all the terms Q ‖ Q′, where Q′ is a
sequential subterm of CSMP that can immediately perform α. To ensure minimality of
the finite basis FB′, we remove from it all R′ such that R � R′, for some R already in
FB′. We repeat this procedure k − 1 times to obtain FB—the finite basis of I .

As for (3), we verify if there exists a Q ∈ FB for which the following check suc-
ceeds. Let Par(Q) be the multiset of terms Qi such that Q is obtained as the parallel
composition of such Qi (notice that it could occur that Par(Q) = {Q}). We first re-
move from Par(Q) all those Qi such that there exists T ∈ M with Qi � T , thus
obtaining the multiset Par′(Q). Let S be the parallel composition of the processes in
Par′(Q). Then, we just have to check whether S � P or not.
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Table 2. Encoding of MMs into E− - Static case

CONTROL = !a. (f ‖ b ‖ a) ‖ a. a. (p1 ‖ e) ‖ !h. (g. f ‖ h)
REGISTER rj

[[rj = m]]2 =

{
rj[!incj .uj ‖ zj] if m = 0
rj[!incj .uj ‖ ∏m

1 uj ‖ zj ] if m > 0.
INSTRUCTIONS (i : Ii)
[[(i : INC(rj))]]2 = !pi. f . (g ‖ b. incj . pi+1)

[[(i : DECJ(rj , s))]]2 = !pi. f .
(
g ‖ (uj . (b ‖ pi+1) + zj. r̃j{rj [!incj .uj ‖ zj ]}. ps)

)

[[(i : HALT)]]2 = !pi.h.h. r̃0{r0[!inc0.u0 ‖ z0]}. r̃1{r1[!inc1.u1 ‖ z1]}. p1

6 Eventual Adaptation Is Undecidable in E−

We show that EA is undecidable in E− by relating it to termination in MMs. In contrast
to the encoding given in Section 4, the encodings presented here are non faithful: when
mimicking a test for zero, the encoding may perform a jump even if the tested register
is not zero. Nevertheless, we are able to define encodings that repeatedly simulate finite
computations of the MM, and if the repeated simulation is infinite, then we have the
guarantee that the number of erroneous steps is finite. This way, the MM terminates iff
its encoding has a non terminating computation. As during its execution the encoding
continuously exhibits a barb on e, it then follows that EA is undecidable in E−.

We show that EA is already undecidable in two fragments of E−. While in the static
fragment we assume that the topology of nested adaptable processes is fixed and cannot
change during the computation, in the dynamic fragment we assume that such a topol-
ogy can change, but that processes cannot be neither removed nor replicated.

Undecidability in the Static Case. The encoding relies on finitely many output pre-
fixes acting as resources on which instructions of the MM depend in order to be
executed. To repeatedly simulate finite runs of the MM, at the beginning of the sim-
ulation the encoding produces finitely many instances of these resources. When HALT
is reached, the registers are reset, some of the consumed resources are restored, and a
new simulation is restarted from the first instruction. In order to guarantee that an infi-
nite computation of the encoding contains only finitely many erroneous jumps, finitely
many instances of a second kind of resource (different from that required to execute
instructions) are produced. Such a resource is consumed by increment instructions and
restored by decrement instructions. When the simulation performs a jump, the tested
register is reset: if it was not empty (i.e., an erroneous test) then some resources are per-
manently lost. When the encoding runs out of resources, the simulation will eventually
block as increment instructions can no longer be simulated. We make two non restrictive
assumptions. First, we assume that a MM computation contains at least one increment
instruction. Second, in order to avoid resource loss at the end of a correct simulation
run, we assume that MM computations terminate with both the registers empty.

We now discuss the encoding defined in Table 2. We first comment on CONTROL, the
process that manages the resources. It is composed of three processes in parallel. The
first replicated process produces an unbounded amount of processes f and b, which
represent the two kinds of resources described above. The second process starts and
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stops a resource production phase by performing a and a, respectively. Then, it starts
the MM simulation by emitting the program counter p1. The third process is used at the
end of the simulation to restore some of the consumed resources f (see below).

A register rj that stores number m is encoded as an adaptable process at rj contain-
ing m copies of the unit process uj . It also contains process !incj.uj which allows to
create further copies of uj when an increment instruction is executed. Instructions are
encoded as replicated processes guarded by pi. Once pi is consumed, increment and
decrement instructions consume one of the resources f . If such a resource is available
then it is renamed as g, otherwise the simulation blocks. The simulation of an increment
instruction also consumes an instance of resource b.

The encoding of a decrement-and-jump instruction is slightly more involved. It is
implemented as a choice: the process can either perform a decrement and proceed with
the next instruction, or to jump. In case the decrement can be executed (the input uj
is performed) then a resource b is restored. The jump branch can be taken even if the
register is not empty. In this case, the register is reset via an update that restores the
initial state of the adaptable process at rj . Note that if the register was not empty, then
some processes uj are lost. Crucially, this causes a permanent loss of a corresponding
amount of resources b, as these are only restored when process uj are present.

The simulation of the HALT instruction performs two tasks before restarting the exe-
cution of the encoding by reproducing the program counter p1. The first one is to restore
some of the consumed resources f : this is achieved by the third process of CONTROL,
which repeatedly consumes one instance of g and produces one instance of f . This pro-
cess is started/stopped by executing the two prefixes h.h. The second task is to reset
the registers by updating the adaptable processes at rj with their initial state.

The full definition of the encoding is as follows.

Definition 6. Let N be a MM, with registers r0, r1 and instructions (1 : I1) . . . (n :
In). Given the CONTROL process and the encodings in Table 2, the encoding of N in
E− (written [[N ]]2) is defined as [[r0 = 0]]2 ‖ [[r1 = 0]]2 ‖

∏n
i=1[[(i : Ii)]]2 ‖ CONTROL.

The encoding has an infinite sequence of simulation runs if and only if the correspond-
ing MM terminates. As the barb e is continuously exposed during the computation
(the process e is spawn with the initial program counter and is never consumed), we
can conclude that a MM terminates if and only if its encoding does not eventually
terminate.

Lemma 1. Let N be a MM. N terminates iff [[N ]]2⇓ωe .

Exploiting Lemma 1, we can state the following:

Theorem 3. EA is undecidable in E−.

Note that the encoding [[·]]2 uses processes that do not modify the topology of nested
adaptable processes; update prefixes do not remove nor create adaptable processes: they
simply remove the processes currently in the updated locations and replace them with
the predefined initial content. One could wonder whether the ability to remove processes
is necessary for the undecidability result: next we show that this is not the case.

Undecidability in the Dynamic Case. We now show that EA is still undecidable in E−
even if we consider updates that do not remove running processes. The proof relies
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Table 3. Encoding of MMs into E− - Dynamic case

REGISTER rj
[[rj = 0]]3 = rj [Regj ‖ cj [0]] with Regj = !incj . c̃j{cj [•]}. ack.uj . c̃j{cj [•]}. ack
INSTRUCTIONS (i : Ii)
[[(i : INC(rj))]]3 = !pi. f . (g ‖ b. incj . ack. pi+1)

[[(i : DECJ(rj, s))]]3 = !pi. f .
(
g ‖ (uj. ack. (b ‖ pi+1) + c̃j{•}. r̃j{rj [Regj ‖ cj [•]]}. ps)

)

[[(i : HALT)]]3 = !pi.h.h. c̃0{•}. r̃0{r0[Reg0‖c0[•]]}. c̃1{•}. r̃1{r1[Reg1 ‖c1[•]]}. p1

on a nondeterministic encoding of MMs, similar to the one presented before. In that
encoding, process deletion was used to restore the initial state inside the adaptable pro-
cesses representing the registers. In the absence of process deletion, we use a more
involved technique based on the possibility of moving processes to a different context:
processes to be removed are guarded by an update prefix c̃j{cj [•]} that simply tests for
the presence of a parallel adaptable process at cj ; when a process must be deleted, it is
“collected” inside cj , thus disallowing the possibility to execute such an update prefix.

The encoding is as in Definition 6, with registers and instructions encoded as in
Table 3. A register rj that stores number m is encoded as an adaptable process at rj
that contains m copies of the unit process uj . c̃j{cj[•]}. ack. It also contains process
Regj , which creates further copies of the unit process when an increment instruction is
invoked, as well as the collector cj , which is used to store the processes to be removed.

An increment instruction adds an occurrence of uj. c̃j{cj [•]}. ack. Note that an out-
put inc could synchronize with the corresponding input inside a collected process. This
immediately leads to deadlock as the containment induced by cj prevents further inter-
actions. The encoding of a decrement-and-jump instruction is implemented as a choice,
following the idea discussed for the static case. If the process guesses that the register
is zero then, before jumping to the given instruction, it proceeds at disabling its current
content: this is done by (i) removing the boundary of the collector cj leaving its content
at the top-level, and (ii) updating the register placing its previous state in the collector.
A decrement simply consumes one occurrence of uj. c̃j{cj [•]}. ack. Note that as be-
fore the output uj could synchronize with the corresponding input inside a collected
process. Again, this immediately leads to deadlock. The encoding of HALT exploits the
same mechanism of collecting processes to simulate the reset of the registers.

This encoding has the same properties of the one discussed for the static case. In
fact, in an infinite simulation the collected processes are never involved, otherwise the
computation would block. We can conclude that process deletion is not necessary for
the undecidability of EA in E−. Nevertheless, in the encoding in Table 3 we need to use
the possibility to remove and create adaptable processes (namely, the collectors cj are
removed and then reproduced when the registers must be reset). One could therefore
wonder whether EA is still undecidable if we remove from E− both the possibility to
remove processes and to create/destroy adaptable processes. In the extended version of
this paper [5] we have defined a fragment of E− obtained by (i) disallowing creation
and destruction of adaptable processes and (ii) eliminating the possibility of removing
or relocating a running process to a different adaptable process. By resorting to the
theory of Petri nets, we have proved that EA for processes in this fragment is decidable.
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7 Concluding Remarks

We have proposed the concept of adaptable process as a way of describing concurrent
systems that exhibit complex evolvability patterns at runtime. We have introduced E ,
a calculus of adaptable processes in which processes can be updated/relocated at run-
time. We also proposed the bounded and eventual adaptation problems, and provided a
complete study of their (un)decidability for E processes. Our results shed light on the
expressive power of E and on the verification of concurrent processes that may evolve
at runtime. As for future work, it would be interesting to develop variants of E tailored
to concrete application settings, to determine how the proposed adaptation problems fit
in such scenarios, and to study how to transfer our decidability results to such variants.

Related Work. As argued before, the combination of techniques required to prove de-
cidability of BA in E− is non trivial. In particular, the technique is more complex than
that in [2], which relies on a bound on the depth of trees, or that in [23], where only
topologies with bounded paths are taken into account. Kruskal’s theorem is also used
in [7] for studying the decidability properties of calculi with exceptions and compen-
sations. The calculi considered in [7] are first-order; in contrast, E is a higher-order
calculus (see below). We showed the undecidability of EA in E− by means of an en-
coding of MMs that does not reproduce faithfully the corresponding machine. Similar
techniques have been used to prove the undecidability of repeated coverability in reset
Petri nets [11], but in our case their application revealed much more complex. Notice
that since in a cluster there is no a-priori knowledge on the number of modifications that
will be applied to the system, the analysis needs to be parametric. Parametric verifica-
tion has been studied, e.g., in the context of broadcast protocols in fully connected [12]
and ad-hoc networks [10]. Differently from [12,10], in which the number of nodes (or
the topology) of the network is unknown, we consider systems in which there is a known
part (the initial system P ), and there is another part composed of an unknown number
of instances of processes (taken from the set of possible modifications M ).
E is related to higher-order process calculi such as, e.g., the higher-order π-calculus

[21], Kell [22], and Homer [8]. In such calculi, processes can be passed around, and
so communication involves term instantiation, as in the λ-calculus. Update actions in E
are a form of term instantiation: as we elaborate in [6], they can be seen as a streamlined
version of the passivation operator of Kell and Homer, which allows to suspend a run-
ning process. The encoding given in Section 4 is inspired in the encoding of MMs into
a core higher-order calculus with passivation presented in [19, Ch 5]. In [19], however,
no adaptation concerns are studied. Also related to E are process calculi for distributed
algorithms/systems (e.g., [4,20,18,14]) which feature located processes and notions of
failure. In [4], a higher-order operation that defines savepoints is proposed: process
save〈P 〉. Q defines the savepoint P for the current location; if the location crashes,
then it will be restarted with state P . The calculus in [20] includes constructs for killing
a located process, spawning a new located process, and checking the status of a lo-
cation. In [18,14], the language includes a failure detector construct S(k). P which
executes P if location k is suspected to have failed. Crucially, while in the languages
in [4,20,18,14] the post-failure behavior is defined statically, in E it can be defined



104 M. Bravetti et al.

dynamically, exploiting running processes. Moreover, differently from our work, nei-
ther of [4,20,18,14] addresses expressiveness/decidability issues, as we do here.
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Abstract. Data centric languages, such as recursive rule based lan-
guages, have been proposed to program distributed applications over
networks. They simplify greatly the code, while still admitting efficient
distributed execution. We show that they also provide a promising ap-
proach to the verification of distributed protocols, thanks to their data
centric orientation, which allows us to explicitly handle global structures
such as the topology of the network. We consider a framework using an
original formalization in the Coq proof assistant of a distributed com-
putation model based on message passing with either synchronous or
asynchronous behavior. The declarative rules of the Netlog language for
specifying distributed protocols and the virtual machines for evaluating
these rules are encoded in Coq as well. We consider as a case study tree
protocols, and show how this framework enables us to formally verify
them in both the asynchronous and synchronous setting.

1 Introduction

Up to now, most efforts to formalize protocols or distributed algorithms and
automate their verification relied on control-oriented paradigms. It is the case
for instance of the “Formal Description Techniques” developed by telecom labs
at the beginning of the 1980s in order to specify and verify protocols to be
standardized at ITU and ISO. Two of the languages developed, Estelle and
SDL, are based on asynchronous communicating automata, while LOTOS is a
process algebra based on CCS and CSP extended with algebraic data types [36].
Several verification tools, ranging from simulation to model checking, have been
developed and applied to different case studies [39,19,35,40,32,34,18,10,13].

For the verification of communication protocols based on process algebras,
the idea has been to model both the implementation and the specification of a
protocol as processes in a process algebra, and then to use automatic tools to
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check whether the former is a refinement of the latter or if they are behaviorally
equivalent [6,33]. Examples include the Concurrency Workbench [6], which is a
verification tool based on CCS, FDR [33] which is based on CSP [17], ProVerif
[2] which is based on the applied pi calculus [1]. Other approaches include in-
put/output automata [27], or Unity and TLA, which combine temporal logic
and transition-based specification [4,20], and may rely as well on proof assistant
technology [31,16,5,21].

The common feature of all these approaches is their focus on control, in par-
ticular on how to deal with behaviors in a distributed framework. Typical issues
include non-determinism, deadlock freedom, stuttering, fairness, distributed con-
sensus and, more recently, mobility. Data is generally considered as an abstract
object not really related to the behavior. If this is relevant for many low-level
protocols, such as transport protocols, it does not suit the needs of applications
which aim at building up distributed global information, such as topological in-
formation on the network (in a physical or a virtual sense), e.g. routing tables.
Such protocols are qualified as data-centric in the sequel. Correctness proofs
of data-centric protocols are even more complex than those for control-centric
protocols.

Data-centric rule-based languages have been recently proposed to program
network protocols and distributed applications [25,24,23]. This approach benefits
from reasonably efficient implementations, by using methods developed in the
field of databases for recursive languages à la Datalog. Programs are expressed
at a very high level, typically two orders of magnitude shorter than code written
in usual imperative languages.

Our claim is that this framework is promising not only for the design of dis-
tributed algorithms, but for their verification as well. Up to now, only a few
partial results have been demonstrated. In [37], a declarative network verifier
(DNV) was presented. Specifications written in the Network Datalog query lan-
guage are mapped into logical axioms, which can be used in theorem provers
like PVS to validate protocol correctness. The reasoning based on DNV is for
Datalog specifications of (eventually distributed) algorithms, but not for dis-
tributed versions of Datalog such as the one proposed in this paper. In other
words, only the highly abstract centralized behaviour of a network is considered.
Therefore, deep subtleties on message passing, derivation of local facts and their
relationship with the intended global behaviour are absent in [37].

In the present paper, we go one essential step further. We show that it is
indeed feasible to reason about the distributed behaviour of individual nodes
which together yield some expected global behaviour of the whole network. We
consider the Netlog language [14], which relies on deductive rules of the form
head ← body, which are installed on each node of the distributed system. The
rules allow to derive new facts of the form “head”, if their body is satisfied locally
on the node. The facts derived might then be stored locally on the node or sent
to other nodes in the network depending upon the rule.

Netlog admits a fixpoint semantics which interleaves local computation on
the nodes and communication between neighboring nodes. On each node, a local
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round consists of a computation phase followed by a communication phase. Dur-
ing the computation phase, the program updates the local data and produces
messages to be sent. During the communication phase, messages are transmitted
and become available to the destination node.

Our objective is to develop a framework to formally verify properties of Netlog
programs. As to formal verification, there are roughly two kinds of approaches:
model checking and theorem proving. Model checking explores the state space of
a system model exhaustively to see if a desirable property is satisfied. It is largely
automated and generates a counterexample if the property does not hold. The
state explosion problem limits the potential of model checkers for large systems.
The basic idea of theorem proving is to translate a system’s specification into a
mathematical theory and then construct a proof of a theorem by generating the
intermediate proof steps. Theorem proving can deal with large or even infinite
state spaces by using proof principles such as induction and co-induction.

We use the proof assistant, Coq, which is an interactive theorem prover, in
which high level proof search commands construct formal proofs behind the
scene, which are then mechanically verified. Coq has been successfully applied
to ensure reliability of hardware and software systems in various fields, such as
multiplier circuits [30], concurrent communication protocols [12], self-stabilizing
population protocols [9], devices for broadband protocols [28], local computation
systems [3] and compilers [22], to name a few.

We develop a Coq library necessary for our purposes, including (i) the for-
malization of the distributed system; (ii) the modeling of the embedded machine
evaluating the Netlog programs; (iii) the translation of the Netlog programs; as
well as (iv) a formalization of graphs and trees suitable to our needs.

As a proof of concept, we experimented the proposed framework on concrete
protocols for constructing spanning trees over connected graphs. Such protocols
have been shown to be correct on theoretical models. This is the case for instance
of the well-known distributed algorithm for computing a minimum-weight span-
ning tree due to Gallager, Humblet and Spira [11]. The rigorous proofs made
between 1987 and 2006 [38,15,29] are all intricate and very long (100 to 170
pages). Only [15] has been mechanically proof-checked.

Our objective is to carry on proofs for protocols written in a programming lan-
guage (Netlog) which is implemented and runs on real distributed systems, and
not only in theoretical models, and to concentrate on a data-centric approach.
The protocols proceed in rounds, where one node (in the asynchronous model)
or all nodes (in the synchronous model) perform some local computation, update
their local data and then exchange data with their neighbors before entering the
next round.

We have proved an initial simple protocol for defining spanning trees. Fur-
thermore, in the synchronous message passing model, we show that we obtain
a distributed version of the classical breadth-first search (BFS) algorithm. To
show its correctness, the crucial ingredient is to formally prove the validity of
the invariant that states the relationship between the centralized and the dis-
tributed version of the protocol, as well as the propagation of information on the
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distributed version. This is non trivial and requires modeling how distributed
tasks cooperate together to form the invariant. We claim that the proposed
techniques establish foundations for proving more complex tree protocols such
as GHS [11].

The paper is organized as follows. In Section 2, the distributed computation
as formalized in Coq is presented. Section 3 is devoted to the presentation of the
Netlog language. Section 4 contains the sketches of the proofs of the correctness
of the tree protocol (a complete Coq script is available in [7]).

2 Distributed Computation Model of Netlog

In this section we introduce a distributed computation model based on the
message passing mechanism, which is suitable both for synchronous and asyn-
chronous execution. Corresponding formal definitions in Coq can be found in
[7,8]. The distributed computation model described below does not depend on
Netlog. In our formalization, we just assume that the states at nodes have a type
local data which can evolve using simple set-theoretic operations such as union.

A distributed system relies on a communication network whose topology is
given by a directed connected graph G = (VG , G), where VG is the set of nodes, and
G denotes the set of communication links between nodes. For many applications,
we can also assume that the graph is symmetric, that is G(α, β)⇔ G(β, α).

Each node has a unique identifier, Id, taken from 1, 2, · · · , n, where n is the
number of nodes, and distinct local ports for distinct links incident to it. The
control is fully distributed in the network, and there is no shared memory. In
this high-level computation model, we abstract away detailed factors like node
failures and lossy channels; if we were to formalize a more precise model, most
of the data structures defined below would have to be refined.

All the nodes have the same architecture and the same behavior. Each node
consists of three main components: (i) a router, handling the communication
with the network; (ii) an engine, executing the local programs; and (iii) a local
data store to maintain the information (data and programs) local to the node. It
contains in particular the fragment of G, which relates a node to its neighbors.
The router queues the incoming messages on the reception queue and the message
to push produced by the engine on the emission queue.

We distinguish between computation events, performed in a node, and commu-
nication events, performed by nodes which cast their messages to their neighbors.
On one node, a computation phase followed by a communication phase is called
a local round of the distributed computation.

An execution is a sequence of alternating global configurations and rounds
occurring on one node, in the case of an asynchronous system, or a sequence of
alternating global configurations and rounds occurring simultaneously on each
node, in the case of a synchronous system. In the latter case, the computation
phase runs in parallel on all nodes, immediately followed by a parallel execution
on all nodes of the corresponding communication phase.
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The contents of node loc (the database of facts stored at loc) for a config-
uration cnf is denoted by |loc|cnf , or just |loc| when the configuration is clear
from the context. Similarly, the set of messages arriving a node y from node x
is denoted by |x→y|cnf or |x→y|.

A local round at node loc relates an actual configuration pre to a new config-
uration mid and a list out of messages emitted from loc. Furthermore, incoming
edges are cleared – intuitively, this represents the consumption of messages, once
their contents has been used to elaborate mid and out . The new data d to be
stored on loc is defined by a relation new stores given as a parameter, and we
assume that d depends only on the data available at loc in pre , that is, |loc|pre
and all the |x→loc|pre such that there is an edge from x to loc. Intuitively, the
relation new stores expresses that d consists of new facts derived from facts avail-
able at loc. Similarly, out is defined by a relation new push and satisfies similar
requirements. Formally, a local round is defined by the following conjunction.

local round(loc, pre, mid , out) def==⎧
⎨

⎩

∃d,new stores(pre, loc, d) ∧ |loc|mid = |loc|pre ∪ d
new push(pre, loc, out)
∀ x ∈ neighbors(loc), |x→loc|mid = ∅

For modeling asynchronous behaviors, we also need the notion of a trivial
local round at loc, where the local data does not change and moreover incoming
edges are not cleared either.

no change at(loc, pre, mid) def=={
|loc|mid = |loc|pre
∀ x ∈ neighbors(loc), |x→loc|mid = |x→loc|pre

A communication event at node loc specifies that the local data at loc does
not change and that facts from out are appended on edges according to their
destinations.
communication(loc, mid , post , out) def=={

|loc|post = |loc|mid

∀ y ∈ neighbors(loc), |loc→y|post = find(y, out) ∪ |loc→y|mid

The function find returns the fact in out whose destination is y . Note that
none of the previous three definitions specifies completely the next configuration
in function of the previous one. They rather constrain a relation between two
consecutive configurations by specifying what should happen at a given loca-
tion. Combining these definitions in various ways allows us to define a complete
transition relation between two configurations, with either a synchronous or an
asynchronous behavior.

async round(pre , post) def==

∃ loc mid out

⎧
⎪⎪⎨

⎪⎪⎩

local round(loc, pre, mid , out)
∀ loc′, loc �= loc′ ⇒ no change at(loc ′, pre ,mid)
communication(loc,mid , post , out)
∀ loc′, loc �= loc′ ⇒ communication(loc′,mid , post , ∅)
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An asynchronous round between two configurations pre and post is given by
a node Id loc, an intermediate configuration mid and a list of messages out such
that there is a local round relating pre, mid and out on loc while no change
occurs on loc′ different from loc, and a communication relates mid and out to
post on loc while nothing is communicated on loc′ different from loc.

sync round(pre, post) def==
∃mid , ∀ loc, ∃ out

{
local round(loc, pre, mid , out)
communication(loc,mid , post , out)

A synchronous round between two configurations pre and post is given by an
intermediate configuration mid such that for all node Id loc, there exists a list
of messages out such that there is a local round relating pre, mid and out on
loc and a communication relating mid and out to post on loc.

Now, given an arbitrary trans relation, which can be of the form sync round ,
or async round , or even of some alternative form, we can co-inductively define a
run starting from a configuration. We have two cases: either there is a transition
from configuration pre to configuration post , then any run from post yields a run
from pre; or, in the opposite case, we have an empty run from pre. Altogether, a
run from pre is either a finite sequence of transitions ended up with a configura-
tion where no transition is available, or an infinite sequence of transitions, where
consecutive configurations are related using trans. In order to prove properties
on run, we define some temporal logic operators. In the examples considered
below we need a very simple version of always, which is parametrized by a
property P of configurations. In a more general setting, the parameter would be
a property of runs. It is well known that a property which holds initially and
is invariant is always satisfied on a run. This fact is easily proved in the very
general setting provided by Coq.

3 Data Centric Protocols

In this section, we introduce the Netlog language through examples of simple
protocols for defining trees. Only the main constructs of the language are pre-
sented. A more thorough presentation can be found in [14]. Netlog relies on
Datalog-like recursive rules, of the form head← body, which allow to derive the
fact “head” whenever the “body” is satisfied.

We first recall classical Datalog, whose programs run in a centralized setting
over relational structures, and which allow to define invariants that will be used
as well in the proofs in the distributed setting. We assume that the language
contains negation as well as aggregation functions, which can be used in the
head of rules to aggregate over all values satisfying the body of the rule. For
instance, the function min will be used in the next example.

Let us start with the program, BFS-seq, which computes BFS trees. It runs
on an instance of a graph represented by a binary relation E, and a unique node
satisfying root(x). The derived relations onST , and ST , are such that onST (α)
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holds for a node α already on the tree, and ST (α, β) holds for an edge (α, β)
already in the BFS tree.

BFS-seq in Datalog

onST (x)← Root(x). (1)

ST (min(x), y)
onST (y)

}
← E(x, y); onST (x);¬onST (y). (2)

The evaluation of the program is iterated in a inflationary manner, by accu-
mulating the results till a fixpoint, which defines its semantics, is reached. At
the first step, the root node is included in the relation onST using the first rule.
At the nth step, nodes at distance n− 1 from the root are added in onST , and
an arc of the tree is added in ST for each of them, by choosing the parent with
minimal Id. The fixpoint is reached when all nodes are on the tree.

Minimum spanning trees can be defined in Datalog with arithmetic. Let us
consider first the definition corresponding to Prim’s algorithm [26]. We assume
weighted graphs, G = (V, E, ω), where the weight ω : E → R

+, satisfies ω(u, v) =
ω(v, u) for every edge (u, v) ∈ E. As usual, to simplify the algorithm, we assume
that ω is a 1-1 mapping, so the weights of any pair of edges are distinct. Prim’s
algorithm starts from a (root) node, and construct successive fragments of the
MST, by adding the minimal outgoing edge to the fragment at each step.

The sequential Datalog program can be written with three rules as follows.
The symbol ”!” denotes the consumption of the fact used in the body of the rule,
which is deleted after the application of the rule.

MST-Prim-seq in Datalog

onST (x)
MWOE(min(m))

}
← Root(x); E(x, y, m). (3)

ST (x, y)
onST (y)

}
← onST (x);¬onST (y); E(x, y, m); !MWOE(m). (4)

MWOE(min(m))← onST (x);¬onST (y); E(x, y, m);¬MWOE(m). (5)

The evaluation of this program alternates two phases, (i) computation of the
minimal outgoing edge’s weight, MWOE, and when it is obtained, (ii) addition
of the corresponding unique edge.

Let us consider now, Netlog programs, which are installed on each node, where
they run concurrently. The rules of a program are applied in parallel, and the
results are computed by iterating the rules over the local instance of the node,
using facts either stored on the node or pushed by a neighbor. In contrast with
other approaches to concurrency, the focus is not primarily on monitoring events,
but data (i.e. Datalog facts) contained in nodes.

The facts deduced from rules can be stored on the node, on which the rules
run, or sent to other nodes. The symbol in the head of the rules means that the
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result has to be either stored on the local data store (↓), sent to neighbor nodes
(↑), or both (�). The facts received on a node are used to trigger the rules, but
do not get stored on that node.

The evaluation of the body of a rule is always performed on a given node. A
fact is then considered to hold if and only if it occurs on this node. The negation
of a fact holds if the fact does not occur on the node where the computation is
performed.

The following program, which constructs a spanning tree over a distributed
system, relies as above on three relation symbols: E, onST , and ST ; E represents
the edge relation; and at any stage of the computation, onST (α) (respectively
ST (α, β)) hold iff the node α (respectively the edge (α, β)) is already on the
intended tree.

Spanning Tree Protocol in Netlog

� onST (x) ← @x = 0. (6)

� onST (y)
↓ ST (min(x), y)

}
← E(x, @y); onST (x);¬onST (y). (7)

Rule (6) runs on the unique (rrot) node, say ρ, which satisfies the relation ρ = 0.
It derives a fact onST (ρ), which is stored on ρ and sent to its neighbors. Rule (7)
runs on the nodes (@y) at the border of the already computed tree. It chooses one
parent (the one with minimal Id) to join the tree. Two facts are derived, which
are both locally stored. The fact onST (y) is pushed to all neighbors. Each fact
E(x, y) is assumed to be initially stored on node y. As no new fact E(x, y) can
be derived from Rules (6) and (7), the consistency of E with the physical edge
relation holds forever. This algorithm aims at constructing suitable distributed
relations onST and ST . In Section 4, we will prove that they actually define a
tree; moreover, in the synchronous setting they define a BFS tree.

The translation of the sequential Datalog program defining a spanning tree, to
a distributed program is almost trivial. It suffices to add communication instruc-
tions since the program runs locally. The translation to a distributed program
is more complex for the Minimal Spanning tree protocol. Indeed, rules (4)
and (5) are not local, and require communication between remote nodes. In a
network, the root can orchestrate the distributed computation, by alternating
phases of (i) computation of the MWOE by a convergecast into the current
spanning tree, and (ii) addition of the new edge with minimal weight to the tree.

The next program (together with two simple rule modules for the convergecast
and the edge addition) defines the minimal spanning tree in Netlog. The facts
AddEdge(x, m) and GetMWOE(x) are triggering rule modules (of half a dozen
rules) that perform respectively a traversal of the tree to add the edge with
minimal outgoing weight, and a convergecast to obtain the new minimal outgoing
weight. These rule modules (omitted for space reason) can be used in other
protocols requiring non local actions. We have tested them in particular in a
concurrent version of the Minimal Spanning Tree, the GHS, where there is no
initial root and all nodes concurrently start building MST fragments.
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Minimum Spanning Tree Protocol in Netlog

onST (x)
UpMWOE(x,min(m))

GetMWOE(x)

}

← Root(x); E(x, y, m). (8)

↓ AddEdge(x,m)← Root(x); !GetMWOE(x); !UpMWOE(x, m). (9)

↓ GetMWOE(x)← Root(x); !AddEdge(x,m); !UpEdge(x,m). (10)

4 Verifying Tree Protocols

We conduct the verification in two settings. In the asynchronous case, we prove
that the previous protocol for spanning tree eventually constructs a spanning
tree, while in the synchronous case, we prove that this protocol constructs actu-
ally a spanning tree by doing a breadth-first search in the network. We briefly
sketch the first case study and then give a more detailed discussion for the second
one which involves a much more difficult proof.

In both cases we expect to show that the relation ST determines a spanning
tree. However, this relation is distributed on the nodes and the Netlog protocol
reacts only to a locally visible part of relations ST , onST and E. The expected
property is then stated in terms of the union of all ST facts available on the
network.

4.1 Spanning Tree in the Asynchronous Case

We have to check that when adding a new fact ST (x, y) at some node loc then
x is already on the tree while y is not yet. This is basically entailed by the body
of the last rule, but additional properties are needed in order to ensure this
rigorously. We use the following ones:

1. The E relation corresponds exactly to the edges.
2. An onST (z) fact arriving at a node y is already stored on the sender x.
3. If an onST (x) fact is stored on a node loc, then x = loc.
4. The onST relation grows consistently with ST (onST is actually the engine

of the algorithm), and these two relations define a tree.

The first three properties are separately proved to be invariant. The last property
is included in a predicate is tree(o, s), which intuitively means that the union
of all onST facts o and the union of all ST facts s are consistent and they define
a tree. We prove that if at the beginning of a round the first three properties
together with is tree(o, s) hold, then at the end of the round is tree(o, s) still
holds. The conjunction of all the four properties then constitutes an invariant of
the protocol.

We check that the initial configuration generates a tree, then we have that in
all configurations of any asynchronous run starting from the initial configuration,
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ST has the shape of a tree. This safety property is formalized in Coq (the script
is available online [7]).

Liveness, i.e. each node is eventually a member of onST , can be easily proved,
provided the graph is finite and connected, and a fairness property is assumed in
order to discard uninteresting runs where an inactive node is continuously chosen
for each local round, instead of another node having an enabled rule. The proof
is by induction on the finite cardinality of the set onST of nodes which do not
satisfy onST . If at some point of a run this set is non-empty, then at least one of
its members is a neighbor of the current tree due to connectivity. By fairness, this
node eventually performs a local round and is no longer in onST . Formalizing
such arguments involving liveness and fairness properties of infinite behaviors of
distributed systems has already been done in Coq [9]. The issue of termination
is simpler in the synchronous setting, since fairness is no more needed to remove
fake stuttering steps.

4.2 BFS in the Synchronous Case

For our second case study, the correctness proof of the BFS protocol, we prove
that in the synchronous setting, the union of ST facts is the same as the one
which would be computed by a centralized algorithm O (the oracle) running
rules (1) and (2) on a reference version of the global relations onST and ST .
This is subtler than one may expect at first sight, because decisions taken on
a given node do not depend on the global relations onST and ST , but only on
the visible part, which is made of the locally stored facts and of the arriving
messages. Moreover, the information contained in an arriving onST (x) fact is
ephemeral: this fact is not itself stored locally (only its consequences onST (y)
and ST (m, y) are stored) and it will never be sent again. Indeed this information
is available exactly at the right time. We therefore make a precise reasoning on
the consistency of stored and transmitted facts with the computation that would
be performed by the oracle O.

We denote by C the database of facts managed by O. Our main theorem states
that a synchronous round in the distributed synchronous version corresponds to
a step of computation performed by O on C. The proof relies necessarily on a
suitable characterization of the body of rule (7), which depends on the presence
and the absence of facts onST . Therefore we need first to prove that facts onST ,
as computed by distributed rules (6) and (7), are the ones computed by O and
conversely – this is respectively called correctness and completeness of onST
(definitions 2 and 3).

The first direction is not very hard (proposition 3). Completeness requires
more attention. The issue is to ensure that, given an edge from x to y, such
that onST (x) ∈ C but onST (y) �∈ C, the body of rule (7) holds at y in order to
ensure that rule (7) will derive onST (y) as expected by rule (2) at the next step.
If we just assume correctness and completeness of onST , we get onST (x) only
on x, while we need it on y. Therefore a stronger invariant is needed. The key
is the introduction of the notion of a good edge (definition 4) which says that
if onST (x) is stored at x, then onST (y) is stored at y or onST (x) is arriving
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at y (both things can happen simultaneously as well). Here are the main steps.
Additional properties, such as the establishment of the invariant in the initial
configuration (actually: after one synchronous round) are available in [8,7].

Notation. Let ϕ be a fact; here ϕ can have the shape E(x, y) or onST (x)
or ST (x, y). The presence of a fact ϕ in a database d is denoted by ϕ ∈ d.
The set of facts ST (x, y) in d is denoted by dST , and use a similar convention
for onST end E. The database of facts stored at node loc is denoted by |loc|.
Similarly, the database of facts arriving a node y from node x is denoted by
|x→y|. Statements such as onST (z) ∈ |loc| are about a given configuration
cnf or even an extended configuration 〈cnf , C〉, and should be written cnf , C �
onST (z) ∈ |loc|. In general cnf is clear from the context and we just write P
instead of cnf , C � P . When we consider a synchronous round, i.e., a transition
between two consecutive configurations pre and post, we write P

sr−−−→ Q for
pre � P ⇒ post � Q. Similarly, for oracle transitions and transitions between
extended configurations, we write respectively P

o−−→ Q for C � P ⇒ C′ � Q
and P

sro−−−→ Q for pre, C � P ⇒ post, C′ � Q.

Definition 1. A configuration satisfies received-onST-already-stored if and
only if for all edges x→y, if onST (z) ∈ |x→y|, then z = x and onST (z) ∈ |x|.
Proposition 1. After a transition, a configuration always satisfies received-
onST-already-stored.

Proof. By inspection of store and push rules (6) and (7). ��

Correctness of onST .

Definition 2. An extended configuration 〈cnf , C〉 satisfies correct-onST if and
only if for all location loc of cnf , if some fact onST (z) is visible at loc, then
onST (z) ∈ C.

Proposition 2. We have: onST (0) ∈ C o−−−→ onST (0) ∈ C.
Proof. By inspection of oracle rules (1) and (2). ��

Proposition 3. We have: onST (0) ∈ C, correct-onST sro−−−→ correct-onST.

Proof. By inspection of the consequences of rule (7) and using proposition 1. ��

Completeness of onST . The notion of completeness needed is much more
precise than the converse of correct-onST: the location where onST (z) is stored
has to be known. This is especially clear in the proof of lemma 1.

Definition 3. An extended configuration 〈cnf , C〉 satisfies complete-onST-node
if and only if for all x, if onST (x) ∈ C, then onST (x) is stored at x.
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Definition 4. An edge x→y is good in a given configuration if and only if,
if onST (x) ∈ |x|, then onST (y) ∈ |y| or onST (x) ∈ |x→y|. A configuration
satisfies all-good if and only if all its edges are good.

The following proposition is about non-extended configurations, i.e. it is purely
about the distributed aspect of the BFS algorithm.

Proposition 4. We have: received-onST-already-stored, all-good sr−−−→ all-good.

The main use of goodness is the completeness of the evaluation of the body of
rule (7).

Definition 5. We say that an extended configuration 〈cnf , C〉 is ready if and
only if (i) it satisfies correct-onST, complete-onST-node and (ii) cnf satisfies
all-good.

Lemma 1. Given an extended configuration satisfying ready, and an edge x→y
such that onST (x) ∈ C but onST (y) �∈ C, the body of rule (7) holds at y.

The propagation of the completeness of onST follows.

Proposition 5. We have: ready sro−−−→ complete-onST-node.

Correctness and Completeness of ST .

Definition 6. Let cnf be a given configuration. We say that 〈cnf , C〉 satisfies
same-ST if and only if the union of all ST facts contained in some node of cnf
is the same as set of facts ST in C.
Proposition 6. We have: ready, same-ST sro−−−→ same-ST.

Main Theorem. Our invariant is the following conjunction.

Definition 7. An extended configuration 〈cnf , C〉 satisfies invar if and only if
it satisfies onST (0) ∈ C, received-onST-already-stored, ready and same-ST.

Theorem 1. We have: invar
sro−−−→ invar.

Proof. Immediate use of propositions 1, 2, 3, 5 and 6. ��
Finally, we observe that invar is established after one synchronous round from
the initial configuration, and that same-ST holds in the initial configuration. As
a consequence, same-ST holds forever, as expected.

Besides this global property, one may wonder whether ST (x, y) facts are lo-
cated on relevant nodes, i.e. child nodes y in our case, so that this information
could be used by a higher layer protocol for transmitting data towards the root.
This is actually a simple consequence of Rules (6) and (7), since they ensure
that ST (x, y) can only be stored on y. This is formally proved in our framework.
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5 Conclusion

We developed a framework for verifying data-centric protocols expressed in a
rule-based language. We have shown that both the synchronous and the asyn-
chronous models of communication can be formalized in very similar ways from
common building blocks, that can be easily adapted to other communication
models. Our framework includes a Coq library, which contains the formalization
of the distributed computation environment with the communication network,
as well as the embedded machine which evaluates the Netlog programs on each
node. The Netlog programs are translated into straightforward Coq definitions.
This framework allows us to state and prove formally expected properties of
data-centric protocols expressed in Netlog. This is examplified on a topological
property of a distributed data structure – a tree – constructed by a simple but
subtle program: the proofs, sketched in the paper have been fully designed and
formalized in Coq [8].

Figures on the size of our current Coq development are given in Table 1. The
detail of justifications such as “by inspection of rules (6) and (7)” requires in
general many bureaucratic proof steps. From previous experience with Coq, we
know that most of them can be automated using dedicated tactics, so that the
user can focus entirely on the interesting part of the proof. The representation
of Netlog rules was obtained in a systematical way and could be automated as
well, using a deep embedding.

The distributed algorithm considered here as a case study was not as trivial as
it may appear at first sight, though it can be expressed in a few lines of Netlog.
It was sufficient to cover essential issues of a data-centric distributed algorithm,
in particular the relationship between local transformations and global proper-
ties. Such properties are difficult to handle and even to state in event-centric
approaches to the verification of distributed programs.

The advantage of the techniques we have developed is that they constitute a
natural and promising open framework to handle other distributed data-centric
algorithms. We are currently working on proofs for minimum spanning trees,
and plan to further verify protocols for routing, election, naming, and other
fundamental distributed problems.

Table 1. Size of Coq scripts (in number of lines)

Distributed computation model 180
Netlog 1300
Tree definitions and properties 80
Translation of rules 50
Proofs on centralized ST algorithm (Rules (1) and (2)) 360
Proofs on (asynchronous) ST (Rules (6) and (7)) 1100
Proofs on (synchronous) BFS (Rules (6) and (7)) 1300
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Abstract. Data refinement in a state-based language such as Z is de-
fined using a relational model in terms of the behaviour of abstract
programs. Downward and upward simulation conditions form a sound
and jointly complete methodology to verify relational data refinements,
which can be checked on an event-by-event basis rather than per trace.
In models of concurrency, refinement is often defined in terms of sets of
observations, which can include the events a system is prepared to ac-
cept or refuse, or depend on explicit properties of states and transitions.
By embedding such concurrent semantics into a relational one, eventwise
verification methods for such refinement relations can be derived. In this
paper we continue our program of deriving simulation conditions for pro-
cess algebraic refinement by considering how notions of time should be
embedded into a relational model, and thereby deriving relational no-
tions of timed refinement.

Keywords: Data refinement, Z, simulations, timed-refinement.

1 Introduction

The modelling and understanding of time is important in computer science. It
plays an especially important role in refinement, where how time is modelled
and how it is treated in a development step lead to important differences and
subtleties in notions of refinement. These distinctions are more prominent in a
process algebra or behavioural setting where many refinement preorders have
been defined, reflecting different choices of what is taken to be observable and
different choices of how time is modelled.

In a process algebra such as CSP [11] a system is defined in terms of actions (or
events) which represent the interactions between a system and its environment.
The exact way in which the environment is allowed to interact with the system
varies between different semantics. Typical semantics are set-based, associating
one or more sets with each process, for example traces, refusals, divergences.
Refinement is then defined in terms of set inclusions and equalities between the
corresponding sets for different processes. A survey of many prominent untimed
process algebraic refinement relations is given in [24,25]. The addition of time
adds further complications, and there are important choices as to how time is
modelled, and the assumptions one makes. These choices all affect any associated
refinement relations.
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In a state-based system, e.g., one specified in Z, specifications are considered
to define abstract data types (ADTs), consisting of an initialisation, a collec-
tion of operations and a finalisation. A program over an ADT is a sequential
composition of these elements. Refinement is defined to be the subset relation
over program behaviours for all possible programs, where what is deemed vis-
ible is the input/output relation. The accepted approach to make verification
of refinements tractable is through downward and upward simulations which
are sound and jointly complete [4]. Although there has been some work on mod-
elling time relationally (eg see work on duration calculus and its integration with
state-based languages [27]), there has been less work on associated refinement
relations, and none on how to model the various choices that arise in a process
algebraic setting.

In integrated notations, for both practical and theoretical reasons, it is im-
portant to understand how time is modelled, whether from the process algebraic
or state-based angle, and how this impacts on refinement. Our ongoing research
on relational concurrent refinement [6,3,7,2,8] contributes to this agenda, by ex-
plicitly recording in a relational setting the observations characterising process
algebraic models. This allows the verification of concurrent refinement through
the standard relational method of simulations, and to interpret relational for-
malisms like Z in a concurrency model.

We derived simulation rules for process algebraic refinement (such as trace,
failures-divergences, readiness [6] etc), including also outputs and internal op-
erations [3], for different models of divergence [2], as well as automaton-based
refinements [8]. The current paper extends this by considering how time can be
modelled in a relational context, and thus we derive simulation rules for some of
the timed refinement preorders. In Section 2 we provide the basic definitions and
background. In Section 3 we provide the simulation rules for a number of process
algebraic preorders. In Section 4 we introduce time and timed refinements, and
derive their relational simulation rules. We conclude in Section 5.

2 Background

The standard refinement theory of Z [26,5] is based on a relational model of data
refinement where all operations are total, as described in [10]. However, the re-
striction to total relations can be dropped, see [9], and soundness and joint com-
pleteness of the same set of simulation rules in the more general case can be shown.

2.1 A Partial Relational Model

A program (defined here as a sequence of operations) is given as a relation over
a global state G, implemented using a local state State. The initialisation of the
program takes a global state to a local state, on which the operations act, a
finalisation translates back from local to global. In order to distinguish between
relational formulations (which use Z as a meta-language) and expressions in
terms of Z schemas etc., we use the convention that expressions in the relational
data types are typeset in a sans serif font.
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Definition 1 (Data type)
A (partial) data type is a quadruple (State, Init, {Opi}i∈J , Fin). The operations
{Opi}, indexed by i ∈ J , are relations on the set State; Init is a total relation
from G to State; Fin is a total relation from State to G. If the operations are all
total relations, we call it a total data type. �

Insisting that Init and Fin be total merely records the facts that we can always
start a program sequence and that we can always make an observation.

Definition 2 (Program)
For a data type D = (State, Init, {Opi}i∈J , Fin) a program is a sequence over J.
The meaning of a program p over D is denoted by pD, and defined as follows. If
p=〈p1, ..., pn〉 then pD = Init o

9 Opp1
o
9 ... o

9 Oppn
o
9 Fin. �

Definition 3 (Data refinement)
For data types A and C, C refines A, denoted A �data C (dropping the subscript
if the context is clear), iff for each program p over J , pC ⊆ pA. �

Downward and upward simulations form a sound and jointly complete [10,4] proof
method for verifying refinements. In a simulation a step-by-step comparison is
made of each operation in the data types, and to do so the concrete and abstract
states are related by a retrieve relation.

Definition 4 (Downward and upward simulations)
Let A=(AState, AInit, {AOpi}i∈J , AFin) and C=(CState, CInit, {COpi}i∈J , CFin).
A downward simulation is a relation R from AState to CState satisfying

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin
∀ i : J • R o

9 COpi ⊆ AOpi o
9 R

An upward simulation is a relation T from CState to AState such that

CInit o
9 T ⊆ AInit

CFin ⊆ T o
9 AFin

∀ i : J • COpi o
9 T ⊆ T o

9 AOpi

2.2 Refinement in Z

The definition of refinement in a specification language such as Z is usually based
on the relational framework described above, using an additional intermediate
step (not used in the rest of this paper) where partial relations are embedded into
total relations (“totalisation”, see [26,5] for details). Specifically, a Z specification
can be thought of as a data type, defined as a tuple (State, Init , {Opi}i∈J ). The
operations Opi are defined in terms of (the variables of) State (its before-state)
and State′ (its after-state). The initialisation is also expressed in terms of an
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after-state State ′. In addition to this, operations can also consume inputs and
produce outputs. As finalisation is implicit in these data types, it only has an
occasional impact on specific refinement notions. If specifications have inputs and
outputs, these are included in both the global and local state of the relational
embedding of a Z specification. See [5] for the full details on this – in this paper we
only consider data types without inputs and outputs. In concurrent refinement
relations, inputs add little complication; outputs particularly complicate refusals
as described in [3].

In a context where there is no input or output, the global state contains no
information and is a one point domain, i.e., G == {∗}, and the local state is
State == State. In such a context the other components of the embedding are
as given below.

Definition 5 (Basic embedding of Z data types). The Z data type
(State, Init , {Opi}i∈J ) is interpreted relationally as (State, Init, {Opi}i∈J , Fin)
where

Init == {Init • ∗ 	→ θState ′}
Op == {Op • θState 	→ θState ′}
Fin == {State • θState 	→ ∗}

Given these embeddings, we can translate the relational refinement conditions
of downward simulations for totalised relations into the following refinement
conditions for Z ADTs.

Definition 6 (Standard downward simulation in Z)
Given Z data types A = (AState,AInit ,{AOpi}i∈J ) and C = (CState,CInit ,
{COpi}i∈J ). The relation R on AState ∧CState is a downward simulation from
A to C in the non-blocking model if

∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i : J ; AState; CState • pre AOpi ∧ R ⇒ pre COpi

∀ i : J ; AState; CState; CState ′ • pre AOpi ∧ R ∧ COpi ⇒ ∃AState ′ • R′ ∧AOpi

In the blocking model, the correctness (last) condition becomes

∀ i : J ; AState; CState; CState′ • R ∧ COpi ⇒ ∃AState′ • R′ ∧ AOpi �

The translation of the upward simulation conditions is similar, however this time
the finalisation produces a condition that the simulation is total on the concrete
state.

Definition 7 (Standard upward simulation in Z)
For Z data types A and C, the relation T on AState ∧ CState is an upward
simulation from A to C in the non-blocking model if

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : J ; CState • ∃AState • T ∧ (preAOpi ⇒ preCOpi)
∀ i : J ; AState′; CState; CState′ •

(COpi ∧ T ′)⇒ (∃AState • T ∧ (pre AOpi ⇒ AOpi))
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In the blocking model, the correctness condition becomes

∀ i : J ; AState ′; CState; CState′ • (COpi ∧ T ′)⇒ ∃AState • T ∧ AOpi �

3 Process Algebraic Based Refinement

The semantics of a process algebra [11,14,1] is often given by associating a la-
belled transition system (LTS) to each term. Equivalence, and preorders, can be
defined over the semantics where two terms are identified whenever no observer
can notice any difference between their external behaviours. Varying how the en-
vironment interacts with a process leads to differing observations and therefore
different preorders (i.e., refinement relations) – an overview and comprehensive
treatment is provided by van Glabbeek in [24,25]. We will need the usual notation
for labelled transition systems:

Definition 8 (Labelled Transition Systems (LTSs))
A labelled transition system is a tuple L = (States ,Act ,T , Init) where States is
a non-empty set of states, Init ⊆ States is the set of initial states, Act is a set of
actions, and T ⊆ States ×Act ×States is a transition relation. The components
of L are also accessed as states(L) = States and init(L) = Init . �

Every state in the LTS itself represents a process – namely the one representing
all possible behaviour from that point onwards. Specific notation needed includes
the usual notation for writing transitions as p a−→ q for (p, a, q) ∈ T and the
extension of this to traces (written p tr−→ q) and the set of enabled actions of a
process which is defined as: next(p) = {a ∈ Act | ∃ q • p a−→ q}.

To relate refinements in process algebras to those in a relational model, the
methodology (as described in earlier papers [6,3,7,8]) is as illustrated in the fol-
lowing subsection. As an example in an untimed context we give the embedding
of the trace semantics and trace preorder as follows.

3.1 Trace Preorder

We first define the trace refinement relation.

Definition 9. σ ∈ Act∗ is a trace of a process p if ∃ q • p σ−→ q. T (p) denotes
the set of traces of p. The trace preorder is defined by p �tr q iff T (q) ⊆
T (p). �

We then define a relational embedding of the Z data type, that is, define a data
type (specifically define the finalisation operation) so as to facilitate the proof
that data refinement equals the event based semantics. The choice of finalisation
is taken so that we observe the characteristics of interest. Thus in the context
of trace refinement we are interested in observing traces, but in that of failures
refinement we need to observe more. So here possible traces lead to the single
global value; impossible traces have no relational image.
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Definition 10 (Trace embedding)
A Z data type (State, Init , {Opi}i∈J) has the following trace embedding into the
relational model.

G == {∗}
State == State
Init == {Init • ∗ 	→ θState ′}
Op == {Op • θState 	→ θState ′}
Fin == {State • (θState, ∗)}

To distinguish between the different embeddings we denote the trace embedding
of a data type A as A |tr . We drop the |

tr
if the context is clear. �

We then describe how to calculate the relevant LTS aspect from the Z data type.
For example, for trace refinement what denotes traces (as in Definition 9) in the
Z data type.

Definition 11. The traces of a Z data type (State, Init , {Opi}i∈J ) are all se-
quences 〈i1, . . . , in〉 such that

∃State ′ • Init o
9 Opi1

o
9 . . . o

9 Opin

We denote the traces of an ADT A by T (A). �

We now prove that data refinement equals the relevant event based definition of
refinement:

Theorem 1. With the trace embedding, data refinement corresponds to trace
preorder. That is, when Z data types A and C are embedded as A and C,

A |tr�data C |tr iff T (C ) ⊆ T (A)

Finally, we extract a characterisation of refinement as simulation rules on the
operations of the Z data type. These are of course the rules for standard Z refine-
ment but omitting applicability of operations, as used also e.g., in
Event-B.

CInit ⊆ AInit o
9 R

R o
9 CFin ⊆ AFin
∀ i : I • R o

9 COpi ⊆ AOpi o
9 R

We thus have the following conditions for the trace embedding.

Definition 12 (Trace simulations in Z)
A relation R on AState ∧ CState is a trace downward simulation from
A to C if

∀CState′ • CInit ⇒ ∃AState ′ • AInit ∧ R′

∀ i ∈ J • ∀AState; CState; CState′ • R ∧ COpi ⇒ ∃AState′ • R′ ∧ AOpi
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The relation T on AState ∧ CState is a trace upward simulation from A to C
if it is total on CState and

∀AState ′; CState ′ • CInit ∧ T ′ ⇒ AInit
∀ i : J • ∀AState ′; CState; CState′ • (COpi ∧ T ′)⇒ (∃AState • T ∧ AOpi) �

4 Timed Models

We now add in the consideration of time into our framework. We adapt our
definitions of data type, refinement and simulations given above for the un-
timed case, and again consider different refinement relations based upon differing
semantics.

4.1 A Timed Relational Model

We do not consider internal or silent actions, as their consideration complicates
some of the timing based issues and these are discussed below. The model we
define is essentially that of timed automaton [13], and we make the following
assumptions:

– We use a continuous time domain R+, although we could parameterize the
theory by a time domain T .

– We have a single global clock.
– We impose no constraints about Zeno behaviour or its absence.
– We have no internal events.
– We have no timelocks, time can always progress.
– Time additivity: If time can advance by a particular amount d in two steps,

then it can also advance by d in a single step. This corresponds to the axiom
S1 in [13].

– Time interpolation: which is the converse of time additivity, that is, for any
time progression there is an intermediate state at any instant during that
progression. This corresponds to the axiom S2 in [13].

Additional constraints can be placed as is done in many models. For example,
constancy of offers [23] states that the progression of time does not introduce
any new events as possibilities, nor allows the withdrawal of any offers. Another
axiom which is commonly included is that of time determinism, that is, that
if time evolves but no internal or other visible action takes place then the new
state is uniquely determined.

Our relational model will then be constructed with the following in mind:

– We assume the specifications contain a reserved variable t (of type R+)
representing the current time which is part of the local state State, which
also serves as the relational local state State.

– Atomic operations can refer to t but not change it, that is, they are instan-
taneous.
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– The time passing operation Opτ advances t by τ as well as possibly having
other effects.

– A variable t representing time is also added to the global state G. Since time
can always progress, these time passing operations are total.

– The finalisation Fin maps t in State to t in G, that is, it makes time visible
at the end of a computation.

– Programs are then, as before, finite sequences of time passing or atomic
operations.

With this construction (which is just an embedding of time into our rela-
tional model) Definitions 1 and 2 define notions of data type and program, and
Definitions 3 and 4 give us definitions of refinement and simulations for use on
the timed relational model. Furthermore, the assumption of a global clock holds
for both abstract and concrete systems, and simulation conditions on the given
finalisation imply that the retrieve relation has to be the identity as far as time
t is concerned.

4.2 A Timed Behavioural Model

To relate the simulations with differing refinement preorders we need a timed
semantics such as provided by timed automaton, e.g., [13], or the semantics
for a timed process algebra, e.g., [20,23]. To do so we will augment our LTSs
with visible time passing actions, and will not make a fundamental distinction
between a transition due to time and one due to another atomic action as is done
in some process algebraic semantics (i.e., we do not have two types of transitions).
Similarly we do not, at this stage, make a distinction between visible time actions
and other external actions as is done in, say, [23] (i.e., we do not have two types
of actions or events), c.f. pp3 of [13].

Example 1. The automaton A in Figure 1 represents a system that places no
timing constraints on the sequential ordering of the events a then b then stop. In
this, and subsequent figures, we denote arbitrary time passing by the transition
d−→.

In Figure 1 B adapts the above to introduce a specific time delay of at least 1
time units (assumed here to be secs) between a and b. This system corresponds

Fig. 1. Simple timed specifications
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to the timed CSP behaviour of a 1→ b → stop. A timeout can be modelled by
allowing a state-change to occur at a certain point in time. Figure 2 corresponds
to the timed CSP expression (a → stop)

10
� (c → stop). Note that in the presence

of the requirement of constancy of offers it would be necessary to use an internal
event to model the timeout at 10 secs; without such a requirement we can use a
transition of 0 secs which represents a state change at that moment in time. �

Timed traces, which consist of a trace of action-time pairs (the time component
recording the time of occurrence of the action), are often used as the represen-
tation of visible executions in a timed model (e.g., as in [13,20,23]). However,
in order that we can reuse results from Section 3 we take timed traces to be
simply traces over the visible actions, which here includes time and other atomic
actions. Thus a timed trace here will be of the form 〈t1, a1, t2, a2, . . .〉, where the
strict alternation can be assumed without loss of generality. In[13] a mapping is
defined between the set of traces given as action-time pairs and those consisting
of traces over time and other atomic actions, thus there is no loss of generality
in our assumption of the form of timed traces.

Fig. 2. A timeout

Example 2. The timed traces ofA in Figure 1 include 〈4, a, 6.2, b〉 and 〈0, 1, a, b, 4〉,
those of B include 〈4, a, 1, b〉, 〈3, a, 1, b, 7〉 etc. The relational model of B can be
written as, where ta is the time of occurrence of the action a:

G == R+

State == [t : R; x : {0, 1, 2}; ta : R]
Init == {t0 : R+ • t0 	→ 〈〈t = t0, x = 0, ta = 0〉〉}
Opτ == [ΔState | x ′ = x ∧ t ′a = ta ∧ t ′ = t + τ ]
a == [ΔState | x = 0 ∧ x ′ = 1 ∧ t ′a = t ∧ t ′ = t ]
b == [ΔState | x = 1 ∧ x ′ = 2 ∧ t ≥ ta + 1 ∧ t ′ = t ]
Fin == λ s : State • s .t
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Timed trace preorder. We now consider the first preorder: the timed trace
preorder.

Definition 13. Let Act be the atomic (non-time passing) actions, and t–Act =
Act ∪ {Opτ | τ ∈ R+}. Let us denote the set of timed traces of p by Tt(p) ⊆
(t–Act)∗. The timed trace preorder, �t–tr , is defined by p �t–tr q iff Tt (q) ⊆
Tt (p). �

Example 3. Figure 1 defines A and B with A �t–tr B but B ��t–tr A. However, A
and B have the same underlying untimed behaviour even though
A �=t–tr B . �

Because of the construction of our timed relational model, and in particular,
the consideration of timed actions as visible actions, the embeddings and corre-
spondence given in Definitions 10 and 11 and Theorem 1 carry over directly to
the timed case. Thus all that remains to be done is to derive the consequences
for the simulation rules. In fact, the derivations given in Definition 12 still hold
providedt the quantification ∀ i : I includes quantification over the time passing
events. All that remains is thus to articulate the precise consequences of this
with regards to time. We consider these in turn.

Initialisation: the consequence here is, since the retrieve relation is the identity
on time, the times at initialisation must be the same.

Non-time passing actions: the correctness condition falls apart into two parts:
the usual correctness condition as in Definition 12 for the untimed aspects of the
behaviour, with the additional consequence that

R ∧ preCOpi ⇒ preAOpi

where the preconditions include reference to t – this in particular implies that
in linked states, at the same time t , COpi can only be enabled if AOpi is.

Time passing actions: Since by assumption the time passing actions are total,
the correctness condition in the blocking model thus becomes (for a downward
simulation):

∀ τ ∈ R+ • ∀AState; CState; CState ′ • R ∧ COpτ ⇒ ∃AState′ • R′ ∧ AOpτ

if the time passing actions do not change the rest of the state space (i.e., we
have time determinism), then this is vacuously satisfied.

Example 4. Figure 3 augments Figure 1 by the representation of the retrieve
relation between the states of the two systems. With this retrieve relation it is
easy to see that B is a timed-trace downward simulation of A. However, the
reverse implication would not hold since

preAOpi ⇒ preBOpi

fails to hold at the state right after a in B . In a similar fashion the timed
automaton corresponding to P = (a → stop) and Q = (WAIT 2; a → stop)
have the same untimed behaviour and P �t–tr Q but Q ��t–tr P since 〈1, a〉 is
a timed trace of P but not of Q . �
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Fig. 3. A retrieve relation between timed specifications

The above simulations agrees with those presented in [13], where Lynch and
Vaandrager derive simulations for timed automata in a fashion similar to those
presented in [12] for untimed automata (see also results in [8]). Specifically, they
present a notion of timed refinement and the corresponding timed forward sim-
ulation and timed backward simulation. As in the untimed case, their notion of
timed refinement corresponds to timed trace preorder, and their timed simula-
tions to those given by the simulations defined here.

Many of the results in [13] are derived via their untimed counterpart using
the idea of a closure automaton which embeds a timed automaton into one
with explicit time passing steps. Definitions and results on the closure automata
can be translated directly to definitions and results on the underlying timed
automata. In terms of our relational construction, such a closure corresponds to
our basic definition since we consider time passing to be visible (in order that
our results concerning simulations carry over to the timed case).

Our motivation for considering time passing to be a visible action here, though
is twofold. Not only does it allow one to use the results of the preceding sections
concerning simulations, but moreover, the view that time passing is indeed visi-
ble. Since we are less concerned with the parallel composition of two components
in our relational framework, we do not need to stress the component-environment
boundary and interface in a way that comes to the fore in, say, a process algebra.
Thus we can either consider time to be visible, yet not under the control of the
environment or even to be visible and under the control of an environment that
will always offer time passing as one of its behaviours.

Completed timed trace preorder. In an untimed setting, σ ∈ Act∗ is a
completed trace of a process p if ∃ q • p σ−→ q and next(q) = ∅. CT (p) denotes
the set of completed traces of p. The completed trace preorder, �ctr , is defined
by p �ctr q iff T (q) ⊆ T (p) and CT (q) ⊆ CT (p).

To adapt the notion of the completed trace preorder we need to take completed
traces as those that can do no more non-time passing actions (since time can
always pass, we’d otherwise have no completed traces). Hence we define:

Definition 14. σ is a completed timed trace of a process p if ∃ q • p σ−→ q
and q tr−→ implies tr ∈ {Opτ}∗. CT t(p) denotes the set of completed timed
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traces of p. The completed timed trace preorder, �t–ctr , is defined by p �t–ctr q
iff Tt (q) ⊆ Tt (p) and CT t(q) ⊆ CT t (p). �

The basic relational embedding without time uses a global state that has been
augmented with an additional element

√
, which denotes that the given trace is

complete (i.e., no operation is applicable). Thus it uses the finalisation:

Fin == {State • θState 	→ ∗} ∪ {State | (∀ i : J • ¬pre Opi) • θState 	→ √}

We have to adapt in a similar fashion in the presence of time, in particular,
amend the finalisation so that we correctly record our completed timed traces.
We thus change the global state to R+ × {∗,√} and set

Fin == {s : State • s �→ (s.t , ∗)}
∪{State | (∀ i : I ; τ : R+ • ¬pre(Opτ o

9 Opi )) • θState �→ (θState.t ,
√

)}

The effect on the downward simulation finalisation condition is that it becomes:

∀AState; CState • R ∧ ∀ i : I ; lτ : R+ • ¬pre(COpτ o
9 COpi)⇒

∀ i : I ; τ : R+ • ¬pre(AOpτ o
9 AOpi)

For an upward simulation, CFin ⊆ T o
9 AFin becomes

∀CState • (∀ i : I ; τ : R+ • ¬pre(COpτ o
9 COpi))⇒

∃AState • T ∧ ∀ i : I ;
tau : R+ • ¬pre(AOpτ o

9 AOpi)

Furthermore, if one makes the additional assumption of constancy of offers, then
these reduce to the untimed conditions [8], namely:

Downward simulations: R o
9 CFin ⊆ AFin is equivalent to

∀AState; CState • R ∧ ∀ i : J • ¬pre COpi ⇒ ∀ i : J • ¬pre AOpi

Upward simulations: CFin ⊆ T o
9 AFin is equivalent to

∀CState • ∀ i : J • ¬preCOpi ⇒ ∃AState • T ∧ ∀ i : J • ¬pre AOpi

Those conditions, together with the above for non-time passing actions:

R ∧ preCOpi ⇒ preAOpi

then give the required timed simulations for completed timed trace preorder.

Timed failure preorder. Timed traces, as defined above, consist of traces
where elements are either atomic or time passing actions. Our timed failures will
be timed trace-refusals pairs, where refusals will be sets of actions which can be
refused at the end of a trace. We thus use the following definition.
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Definition 15. (σ,X ) ∈ (t–Act)∗ × P(Act) is a timed failure of a process p if
there is a process q such that p σ−→ q, and next(q) ∩ X = ∅. Ft(p) denotes
the set of timed failures of p. The timed failures preorder, �t–f , is defined by
p �t–f q iff Ft(q) ⊆ Ft (p).

Example 5. The timed automata corresponding to Q = (WAIT 2; a → stop) is
a timed trace refinement, but not a timed failure refinement, of that correspond-
ing to P = (a → stop). That is, P �t–tr Q but P ��t–f Q .

The timed failures of P include (〈d〉, ∅) for any time d , (〈d1, a, d2〉, {a}) for
any times d1, d2. Those of Q include (〈1〉, {a}) and (〈d1, a, d2〉, {a}) for any d2

and any d1 ≥ 2. Thus (〈1〉, {a}) ∈ Ft(Q) but this is not a failure of P . For
the converse since we do not have timed trace refinement we cannot have timed
failure refinement, for example, (〈0.5, a〉, ∅) ∈ Ft(P) but this is not a failure
of Q . �

Since we have no timelocks, we have defined the timed refusals to be a subset
of P(Act). We can adapt the relational embedding in the obvious way, and ex-
tracting the simulations we get those of the timed trace preorder (see Section
4.2 above) plus those due to the finalisation conditions:

Downward simulations: R o
9 CFin ⊆ AFin is equivalent to

∀ i : I • ∀AState; CState • R ∧ preAOpi ⇒ preCOpi

Upward simulations: CFin ⊆ T o
9 AFin is equivalent to

∀CState • ∃AState • ∀ i : I • T ∧ (pre AOpi ⇒ preCOpi )

However, note that the quantification over the state includes quantification over
t , the variable representing time.

Fig. 4. A retrieve relation verifying a timed failure refinement
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Example 6. Figure 4 represents (the principle parts of) a retrieve relation be-
tween the states of two systems. With this retrieve relation it is easy to see that
B is a timed-failure downward simulation of A. �

5 Discussion

In this paper we have discussed how time might be modelled relationally, and
thus derived simulations for relational embeddings of a number of refinement
preorders found in timed process algebras. Following the basic methodology de-
fined above one can define further embeddings and preorders. For example, we
can define a timed failure trace preorder which considers refusal sets not only
at the end of a timed trace, but also between each action in a timed trace, and
adapting the appropriate definitions is straightforward.

The timed failure preorder defined above determines the refusals at the end
of a trace, in a fashion similar to the definition of refusal sets for an untimed
automata or the failures preorder in CSP. This is in contrast to a number of
failures models given for timed CSP, where refusals are determined throughout
the trace rather than simply at the end. Thus these models are closer to a timed
failure trace semantics as opposed to a timed failure semantics. The need to do
this arises largely due to the treatment of internal events and, specifically, their
urgency due to maximal progress under hiding.

There are a number of variants of these models, perhaps reflecting the fact that
the presence of time has some subtle interactions with the underlying process
algebra. They include the infinite timed failures model discussed in [23,15], which
as the name suggests includes infinite traces in its semantics, as well as the timed
failures-stability model of Reed and Roscoe [20]. A number of different models
are developed in [18,19,20], and a hierarchy described in [17].

The common aspect of these models is that refusals are recorded throughout
the trace rather than just at the end. Thus, for example, considering P , Q and
R defined by:

P = a → stop Q = b → stop R = c → stop

In untimed CSP we have

P � (Q�R) = (P �Q)�(P � R)

Furthermore, in a timed setting using the timed failure preorder defined in
Section 4.2 this equivalence still holds. For example, the timed failures of both
sides of this equivalence include (〈1, b〉, {a, b, c}), reflecting an execution where
1 time unit passes followed by the occurrence of b, and afterwards all events are
refused. However, if refusals are recorded throughout the trace, then these for
the RHS include (〈1, b〉, [0, 1) × {c}), whereas those of the process on the LHS
do not - this refusal representing an execution where c was refused over the time
interval [0, 1) and b occurred at time 1.

Indeed, using the timed failure preorder defined in Section 4.2, the above
law of untimed CSP still remains valid, but this does not hold in any of the
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timed failures-stability models nor the infinite timed failures model [23,15]. The
infinite timed failures model of Schneider et al [23,15] differs in two respects
from the model in Section 4.2, namely the inclusion of infinite traces and the
refusal information throughout the trace. The inclusion of infinite traces means
that a better treatment can be given to divergence. Specifically, in a timed
analysis a more precise treatment of an infinite sequence of internal events can be
given, since an such an infinite sequence of internal events can now be classified
as either: a timed divergence if they all occur at one instant in time; a Zeno
divergence if they approach some finite time; or as a well-timed sequence if they
take for ever for the whole sequence to occur [23]. Further, in timed CSP the
first two possibilities are excluded from their notion of a well-timed process,
thus nothing in timed CSP requires a treatment of divergence in the way that
is necessary in untimed CSP.

The understanding of a failure (tr ,X ) in the infinite timed failures model is
that after the trace tr the execution will eventually reach a point after which
all events can be refused for the remainder of the execution. Even without con-
sideration of refusals throughout the trace, this differs slightly from the model
in Section 4.2, because there our traces observed the passing of time, and we
do not need to say that the execution will eventually reach a point . . ., since
the quantification of ’eventually’ is part of our timed traces. This model thus
embeds the notion of constancy of offers since it requires that it will be possible
to associate a timed refusal set of the form [t ,∞)×X with the execution. This
restriction is not present in the model of Section 4.2 allowing time to change the
events on offer.

It is argued in [23] that the inclusion of infinite traces in a timed failures
model provides a more uniform treatment of unstable processes in the context
of relating untimed and timed models of CSP, and indeed it allows a refinement
theory (called timewise refinement [21,22]) to formally link the two models.

The alternative approaches use stability values, which denote the time by
which any internal activity (including time) following the end of a trace must
have ceased. Thus, the timed failures-stability model of Reed and Roscoe consists
of triples (tr ,X , α), where α is the stability. The use of stability can be seen in
the following three processes:

P = a → stop Q = b 3→ stop R = c → loop where loop = wait1; loop

Here 3→ denotes a delay of 3 time units before control passing to the subsequent
process, and wait 1 delays 1 time unit before terminating successfully. Then (see
[23]) these three processes have identical timed failures but can be distinguished
by different stability values. For example, P has (〈(1, a)〉, [0, 3) × {b}, 1) as a
behaviour, whereas Q has (〈(1, a)〉, [0, 3)×{b}, 4) and R (〈(1, a)〉, [0, 3)×{b},∞).
Further details of stability values and how they are calculated are given in [20].

The need for refusals to be recorded during a trace in the above models
arises from the urgency of internal events upon hiding in timed CSP. That arises
ultimately from the consideration of the system/environment interface and the
subsequent notion of maximal progress: that events occur when all participants
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are willing to engage in it. In the case of internal events, since the environment
does not participate in them, they must occur when they become available. Now
when an internal event occurs due to hiding, for example, as in the CSP process
P = (a → stop) \ {a}, the maximal progress condition implies such an internal
event is urgent, that is, it occurs at the instance it becomes enabled.

One consequence of this urgency is that it forces negative premises in the
transition rules for the hiding operator in timed CSP, specifically, time can only
pass in P \ A if no event from A is enabled in P .

This urgency also means we need more refusal information in order to main-
tain a compositional semantics. Reed and Roscoe give a number of examples
of why hiding, urgency and a compositional semantics needs refusal information
throughout the trace. One such example is the process ((a → stop)�(wait 1; b →
stop)) \ {a}. The urgency of the internal event upon hiding a means the non-
deterministic choice is resolved in favour of a → stop and thus b cannot occur in
a trace of this process. However, 〈(1, b)〉 is a trace of the process before hiding,
meaning that more information is needed to regain compositionality. Further
examples and discussion are given in [20].

However, in the context in which we began this discussion, namely a timed
automata model, these issues are less relevant. Specifically, although a timed
automata model can have internal events, a hiding operator is not defined, and
therefore internal events do not have to be urgent. Furthermore, not all process
algebraic models include urgency or maximal progress (see discussion in [16]). Ad-
ditionally, one could argue that the urgency of internal events upon hiding is not
entirely consistent with the informal semantics of untimed CSP. In particular, in
untimed CSP the emphasis is on hidden events eventually occurring instantly: ”a
process exercises complete control over its internal events. ... [they] should not be
delayed indefinitely once they are enabled” [23].
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Abstract. We generalise Galois connections from complete lattices to
flow algebras. Flow algebras are algebraic structures that are less re-
strictive than idempotent semirings in that they replace distributivity
with monotonicity and dispense with the annihilation property; there-
fore they are closer to the approach taken by Monotone Frameworks and
other classical analyses. We present a generic framework for static analy-
sis based on flow algebras and program graphs. Program graphs are often
used in Model Checking to model concurrent and distributed systems.
The framework allows to induce new flow algebras using Galois connec-
tions such that correctness of the analyses is preserved. The approach is
illustrated for a mutual exclusion algorithm.

1 Introduction

In the classical approach to static analysis we usually use the notion of Mono-
tone Frameworks [9,1] that work over flow graphs as an abstract representation
of a program. A Monotone Framework, primarily used for data-flow analysis
[10], consists of a complete lattice describing the properties of the system (with-
out infinite ascending chains) and transfer functions over that lattice (that are
monotone). When working with complete lattices, one can take advantage of
Galois connections to induce new analysis or over-approximate them [6]. Recall
that a Galois connection is a correspondence between two complete lattices that
consists of an abstraction and concretisation functions. It is often used to move
an analysis from a computationally expensive lattice to a less costly one and
plays a crucial role in abstract interpretation [5].

In this paper we introduce a similar framework that uses flow algebras to
define analyses. Flow algebras are algebraic structures consisting of two monoids
[15] quite similar to idempotent semirings [7], which have already been used in
software analysis [3,14]. However, flow algebras are less restrictive and allow
to directly express some of the classical analysis, which is simply not possible
with idempotent semirings. Furthermore as representation of the system under
consideration we use program graphs, in which actions label the edges rather
than the nodes. The main benefit of using program graphs is that we can model
concurrent systems in a straightforward manner. Moreover since a model of a
concurrent system is also a program graph, all the results are applicable both in
the sequential as well as in the concurrent setting.
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We also define both the Meet Over all Paths (MOP) solution of the analysis as
well as a set of constraints that can be used to obtain the Maximal Fixed Point
(MFP) solution. By establishing that the solutions of the constraints constitute a
Moore family, we know that there always is a least (i.e. best) solution. Intuitively
the main difference between MOP and MFP is that the former expresses what
we would like to compute, whereas the latter is sometimes less accurate but
computable in some cases where MOP is not. Finally we establish that they
coincide in case of distributive analyses.

We also extend the notion of Galois connections to flow algebras and program
graphs. This allows us to easily create new analyses based on existing ones. In
particular we can create Galois connections between the collecting semantics
(defined in terms of our framework) and various analyses, which ensures their
semantic correctness.

Finally we apply our results to a variant of the Bakery mutual exclusion
algorithm [11]. By inducing an analysis from the collecting semantics and a
Galois insertion, we are able to prove the correctness of the algorithm. Thanks
to our previous developments we know that the analysis is semantically correct.

The structure of the paper is as follows. In Section 2 we introduce the flow
algebras and then we show how Galois connections are defined for them in Section
3. We perform a similar development for program graphs by defining them in
Section 4, presenting how to express analysis using them in Section 5 and then
describing Galois connections for program graphs in Section 6. Finally we present
a motivating example of our approach in Section 7 and conclude in Section 8.

2 Flow Algebra

In this section we introduce the notion of a flow algebra. As already mentioned,
it is an algebraic structure that is less restrictive than an idempotent semiring.
Recall that an idempotent semiring is a structure of the form (S,⊕,⊗, 0, 1), such
that (S,⊕, 0) is an idempotent commutative monoid, (S,⊗, 1) is a monoid, where
⊗ distributes over ⊕ and 0 is an annihilator with respect to multiplication. In
contrast to idempotent semirings flow algebras do not require the distributivity
and annihilation properties. Instead we replace the first one with a monotonicity
requirement and dispense with the second one. A flow algebra is formally defined
as follows.

Definition 1. A flow algebra is a structure of the form (F,⊕,⊗, 0, 1) such that:

– (F,⊕, 0) is an idempotent commutative monoid:
• (f1 ⊕ f2)⊕ f3 = f1 ⊕ (f2 ⊕ f3)
• 0⊕ f = f ⊕ 0 = f
• f1 ⊕ f2 = f2 ⊕ f1

• f ⊕ f = f
– (F,⊗, 1) is a monoid:
• (f1 ⊗ f2)⊗ f3 = f1 ⊗ (f2 ⊗ f3)
• 1⊗ f = f ⊗ 1 = f
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– ⊗ is monotonic in both arguments:
• f1 ≤ f2 ⇒ f1 ⊗ f ≤ f2 ⊗ f

• f1 ≤ f2 ⇒ f ⊗ f1 ≤ f ⊗ f2

where f1 ≤ f2 if and only if f1 ⊕ f2 = f2.

In a flow algebra all finite subsets {f1, · · · , fn} have a least upper bound; it is
given by 0⊕ f1 ⊕ · · · ⊕ fn.

Definition 2. A distributive flow algebra is a flow algebra (F,⊕,⊗, 0, 1), where
⊗ distributes over ⊕ on both sides, i.e.

f1 ⊗ (f2 ⊕ f3) = (f1 ⊗ f2)⊕ (f1 ⊗ f3)
(f1 ⊕ f2)⊗ f3 = (f1 ⊗ f3)⊕ (f2 ⊗ f3)

We also say that a flow algebra is strict if 0⊗ f = 0 = f ⊗ 0.

Fact 1. Every idempotent semiring is a strict and distributive flow algebra.

We consider flow algebras because they are closer to Monotone Frameworks,
and other classical static analyses. Restricting our attention to semirings rather
than flow algebras would mean restricting attention to strict and distributive
frameworks. Note that the classical bit-vector frameworks [12] are distributive,
but not strict; hence they are not directly expressible using idempotent semirings.

Definition 3. A complete flow algebra is a flow algebra (F,⊕,⊗, 0, 1), where F
is a complete lattice; we write

⊕
for the least upper bound. It is affine [12] if

for all non-empty subsets F ′ �= ∅ of F

f ⊗
⊕

F ′ =
⊕
{f ⊗ f ′ | f ′ ∈ F ′}

⊕
F ′ ⊗ f =

⊕
{f ′ ⊗ f | f ′ ∈ F ′}

Furthermore, it is completely distributive if it is affine and strict.

If the complete flow algebra satisfies the Ascending Chain Condition [12] then
it is affine if and only if it is distributive. The proof is analogous to the one
presented in Appendix A of [12].

Example 1. As an example let us consider a complete lattice L→ L of monotone
functions over the complete lattice L. Then we can easily define a flow algebra
for forward analyses, by taking (L → L,
, �, λf.⊥, λf.f) where (f1 � f2)(l) =
f2(f1(l)) for all l ∈ L. It is easy to see that all the laws of a complete flow
algebra are satisfied. If we restrict the functions in L → L to be distributive,
we obtain a distributive and complete flow algebra. Note that it can be used to
define forward data-flow analyses such as reaching definitions [1,12].
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3 Galois Connections for Flow Algebras

Let us recall that Galois connection is a tuple (L, α, γ, M) such that L and M
are complete lattices and α, γ are monotone functions (called abstraction and
concretisation functions) that satisfy α ◦ γ  λm.m and γ ◦ α � λl.l. A Galois
insertion is a Galois connection such that α ◦ γ = λm.m. In this section we will
present them in the setting of flow algebras.

In order to extend the Galois connections for flow algebras, we need to define
what it means for a flow algebra to be an upper-approximation of another flow
algebra. In other words we need to impose certain conditions on ⊗ operator and
1 element of the less precise flow algebra. The requirements are presented in the
following definition.

Definition 4. For a Galois connection (L, α, γ, M) we say that the flow algebra
(M,⊕M ,⊗M , 0M , 1M ) is an upper-approximation of (L,⊕L,⊗L, 0L, 1L) if

α(γ(m1)⊗L γ(m2)) M m1 ⊗M m2

α(1L) M 1M

If we have equalities in the above definition, then we say that the flow algebra
(M,⊕M ,⊗M , 0M , 1M ) is induced from (L,⊕L,⊗L, 0L, 1L).

Example 2. Assume that we have a Galois connection (L, α, γ, M) between com-
plete lattices L and M . We can easily construct (L→ L, α′, γ′, M →M) which
is a Galois connection between monotone function spaces on those lattices (for
more details about this construction please consult Section 4.4 of [12]), where
α′, γ′ are defined as

α′(f) = α ◦ f ◦ γ

γ′(g) = γ ◦ g ◦ α

When both (M → M,⊕M ,⊗M , 0M , 1M ) and (L → L,⊕L,⊗L, 0L, 1L) are for-
ward analyses as in Example 1, we have

α′(γ′(g1)⊗L γ′(g2)) = α′((γ ◦ g1 ◦ α) � (γ ◦ g2 ◦ α))
= α′(γ ◦ g2 ◦ α ◦ γ ◦ g1 ◦ α)
 α′(γ ◦ g2 ◦ g1 ◦ α)
= α ◦ γ ◦ g2 ◦ g1 ◦ α ◦ γ

 g2 ◦ g1

= g1 ⊗M g2

α′(1L) = α ◦ λl.l ◦ γ = α ◦ γ  λm.m = 1M

Hence a flow algebra over M →M is a upper-approximation of the flow algebra
over L→ L. Note that in case of a Galois insertion the flow algebra over M →M
is induced.
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Definition 4 requires a bit of care. Given a flow algebra (L,⊕L,⊗L, 0L, 1L) and
a Galois connection (L, α, γ, M) it is tempting to define ⊗M by m1 ⊗M m2 =
α(γ(m1)⊗Lγ(m2)) and 1M by 1M = α(1L). However, it is not generally the case
that (M,⊕M ,⊗M , 0M , 1M ) will be a flow algebra. This motivates the following
development.

Lemma 1. Let (L,⊕L,⊗L, 0L, 1L) be a flow algebra, (L, α, γ, M) be a Galois
insertion, define ⊗M by m1⊗Mm2 = α(γ(m1)⊗Lγ(m2)) and 1M by 1M = α(1L).
If

1L ∈ γ(M) and ⊗L : γ(M)× γ(M)→ γ(M)

for all m1, m2 then (M,⊕M ,⊗M , 0M , 1M ) is a flow algebra (where ⊕M is 
M
and 0M is ⊥M).

Proof. We need to ensure that ⊗M is associative

(m1 ⊗M m2)⊗M m3 = α(γ(α(γ(m1)⊗L γ(m2)))⊗L γ(m3))
= α(γ(α(γ(m′))) ⊗L γ(m3))
= α(γ(m1)⊗L γ(m2)⊗L γ(m3))

m1 ⊗M (m2 ⊗M m3) = α(γ(m1)⊗L γ(α(γ(m2)⊗L γ(m3))))
= α(γ(m1)⊗L γ(α(γ(m′))))
= α(γ(m1)⊗L γ(m2)⊗L γ(m3))

and similarly we need to show that 1M is a neutral element for ⊗M
1M ⊗m = α(1L)⊗M m

= α(γ(α(1L))⊗L γ(m))
= α(γ(α(γ(m′)))⊗L γ(m))
= α((γ(m′)⊗L γ(m))
= α((1L ⊗L γ(m))
= α(γ(m))
= m

where 1L = γ(m′) for some m′. The remaining properties of flow algebra hold
trivially. �

The above requirements can be expressed in a slightly different way. This is
presented by the following two lemmas.

Lemma 2. For flow algebras (L,⊕L,⊗L, 0L, 1L), (M,⊕M ,⊗M , 0M , 1M ) and a
Galois insertion (L, α, γ, M), the following are equivalent:

1. 1L = γ(1M )
2. α(1L) = 1M and 1L ∈ γ(M)

Lemma 3. For flow algebras (L,⊕L,⊗L, 0L, 1L), (M,⊕M ,⊗M , 0M , 1M ) and a
Galois insertion (L, α, γ, M), the following are equivalent:

1. ∀m1, m2 : γ(m1)⊗L γ(m2) = γ(m1 ⊗M m2)
2. ∀m1, m2 : α(γ(m1)⊗L γ(m2)) = m1⊗M m2 and ⊗L : γ(M)×γ(M)→ γ(M)
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4 Program Graphs

This section introduces program graphs, a representation of software (hardware)
systems that is often used in model checking [2] to model concurrent and dis-
tributed systems. Compared to the classical flow graphs [10,12], the main differ-
ence is that in the program graphs the actions label the edges rather than the
nodes.

Definition 5. A program graph over a space S has the form

(Q, Σ,→, QI , QF ,A, S)

where

– Q is a finite set of states;
– Σ is a finite set of actions;
– → ⊆ Q×Σ × Q is a transition relation;
– QI ⊆ Q is a set of initial states;
– QF ⊆ Q is a set of final states; and
– A : Σ → S specifies the meaning of the actions.

A concrete program graph is a program graph where S = Dom ↪→ Dom, where
Dom is the set of all configurations of a program, and A = T where T is the
semantic function. An abstract program graph is a program graph where S is a
complete flow algebra.

Now we can define the collecting semantics [5,12] of a concrete program graph in
terms of a flow algebra. This can be used to establish the semantic correctness
of an analysis by defining a Galois connection between the collecting semantics
and the analysis.

Definition 6. We define the collecting semantics of a program graph using the
flow algebra (P(Dom)→ P(Dom),∪, �, λ.∅, λd.d), by

A�a�(S) = {T �a�(s) | s ∈ S ∧ T �a�(s) is defined}

where Dom is the set of all configurations of a program and T is the semantic
function.

Now let us consider a number of processes each specified as a program graph
PGi = (Qi, Σi,→i, QI i, QF i,Ai, S) that are executed independently of one an-
other except that they can exchange information via shared variables. The com-
bined program graph PG = PG1 ||| · · · ||| PGn expresses the interleaving be-
tween n processes.

Definition 7. The interleaved program graph over S

PG = PG1 ||| · · · ||| PGn
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is defined by (Q, Σ,→,QI ,QF ,A, S) where

– Q = Q1 × · · · ×Qn,
– Σ = Σ1 � · · · �Σn (disjoint union),

– 〈q1, · · · , qi, · · · , qn〉 a−→ 〈q1, · · · , q′i, · · · , qn〉 if qi
a−→i q′i,

– QI = QI1 × · · · × QIn,
– QF = QF 1 × · · · ×QF n, and
– A�a� = Ai�a� if a ∈ Σi.

Note that Ai : Σi → S for all i and hence A : Σ → S.
Analogously to the previous definition, we say that a concrete interleaved pro-

gram graph is an interleaved program graph where S = Dom ↪→ Dom, and
A = T where T is the semantic function. An abstract interleaved program graph
is an interleaved program graph where S is a complete flow algebra.

The application of this definition is presented in the example below, where we
model the Bakery mutual exclusion algorithm. Note that the ability to create
interleaved program graphs allows us to model concurrent systems using the
same methods as in the case of sequential programs. This will be used to analyse
and verify the algorithm in Section 7.

Example 3. As an example we consider a variant of the Bakery algorithm for
two processes. Let P1 and P2 be the two processes, and x1 and x2 be two shared
variables both initialised to 0. The algorithm is as follows

do true ->
x1 := x2 + 1;
do ¬((x2 = 0) ∨ (x1 < x2)) ->

skip
od;
critical section
x1 := 0

od

do true ->
x2 := x1 + 1;
do ¬((x1 = 0) ∨ (x2 < x1)) ->

skip
od;
critical section
x2 := 0

od

The variables x1 and x2 are used to resolve the conflict when both processes
want to enter the critical section. When xi is equal to zero, the process Pi is not
in the critical section and does not attempt to enter it — the other one can safely
proceed to the critical section. Otherwise, if both shared variables are non-zero,
the process with smaller “ticket” (i.e. value of the corresponding variable) can
enter the critical section. This reasoning is captured by the conditions of busy-
waiting loops. When a process wants to enter the critical section, it simply takes
the next “ticket” hence giving priority to the other process.

The program graph corresponding to the first process is quite simple and is
presented below (the program graph for the second process is analogous).
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Now we can use the Definition 7 to obtain the interleaving of the two processes,
which is depicted in Figure 1. Since the result is also a program graph, it can be
analysed in our framework.
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a11 : x1 := x2 + 1
a12 : (x2 = 0) ∨ (x1 < x2)
a13 : ¬((x2 = 0) ∨ (x1 < x2))
a14 : x1 := 0
a21 : x2 := x1 + 1
a22 : (x1 = 0) ∨ (x2 < x1)
a23 : ¬((x1 = 0) ∨ (x2 < x1))
a24 : x2 := 0

Fig. 1. Interleaved program graph

5 Flow Algebras over Program Graphs

Having defined flow algebras and program graphs, it remains to show how to
obtain the analysis results. We shall consider two approaches, namely MOP and
MFP. As already mentioned, these stand for Meet Over all Paths and Maximal
Fixed Point, respectively. However, since we take a join (least upper bound) to
merge information from different paths, in our setting these really mean join over
all paths and least fixed point. However, we use the MOP and MFP acronyms
for historical reasons.

We consider the MOP solution first, since it is more precise and captures what
we would ideally want to compute.

Definition 8. Given an abstract program graph (Q, Σ,→, QI , QF ,A, F ) over a
complete flow algebra (F,⊕,⊗, 0, 1), and two sets Q◦ ⊆ Q and Q• ⊆ Q we are
interested in

MOPF (Q◦,Q•) =
⊕

π∈Path(Q◦,Q•)

A�π�
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where

Path(Q◦, Q•) = {a1a2 · · · ak | ∃q0, q1, · · · qk :
q0

a1−→ q1
a2−→ · · · ak−→ qk,

q0 ∈ Q◦, qk ∈ Q•}
and

A�a1a2 · · ·ak� = 1⊗A�a1�⊗A�a2�⊗ · · · ⊗ A�ak�

Since the MOP solution is not always computable (e.g. for Constant Propaga-
tion), one usually uses the MFP one which only requires that the lattice satisfies
the Ascending Chain Condition and is defined as the least solution to a set of
constraints. Let us first introduce those constraints.

Definition 9. Consider an abstract program graph (Q, Σ,→, QI , QF ,A, F ) over
a complete flow algebra (F,⊕,⊗, 0, 1). This gives rise to a set AnalysisF of
constraints

AnQ◦
F (q) �

{⊕{AnQ◦
F (q′)⊗A�a� | q′ a−→ q} ⊕ 1F , if q ∈ Q◦⊕{AnQ◦
F (q′)⊗A�a� | q′ a−→ q} , if q /∈ Q◦

where q ∈ Q, Q◦ ⊆ Q.

We write AnQ◦
F |= AnalysisF whenever AnQ◦

F : Q → F is a solution to the
constraints AnalysisF . Now we establish that there is always a least (i.e. best)
solution of those constraints.

Lemma 4. The set of solutions to the constraint system from Definition 9 is a
Moore family (i.e. it is closed under

�
), which implies the existence of the least

solution.

Definition 10. We define MFP to be the least solution to the constraint system
from Definition 9.

The following result states the general relationship between MOP and MFP
solutions and shows in which cases the they coincide.

Proposition 1. Consider the MOP and MFP solutions for an abstract program
graph (Q, Σ,→, QI , QF ,A, F ) defined over a complete flow algebra (F,⊕,⊗, 0, 1),
then

MOPF (Q◦, Q•) 
⊕

q∈Q•

MFPQ◦
F (q)

If the flow algebra is affine and either ∀q ∈ Q : Path(Q◦, {q}) �= ∅ or the flow
algebra is strict then

MOPF (Q◦, Q•) =
⊕

q∈Q•

MFPQ◦
F (q)
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This is consistent with the previous results, e.g. for Monotone Frameworks, where
the MOP and MFP coincide in case of distributive frameworks and otherwise
MFP is a safe approximation of MOP [9].

6 Galois Connections for Program Graphs

In the current section we show how the generalisation of Galois connections
to flow algebras can be used to upper-approximate solutions of the analyses.
Namely, consider a flow algebra (L,⊕L,⊗L, 0L, 1L) and a Galois connection
(L, α, γ, M). Moreover, let (M,⊕M ,⊗M , 0M , 1M ) be a flow algebra that is an
upper-approximation of the flow algebra over L. We show that whenever we
have a solution for an analysis in M then, when concretised, it is an upper-
approximation of the solution of an analysis in L. First we state necessary re-
quirements for the analyses. Then we present the results for the MOP and MFP
solutions.

6.1 Upper-Approximation of Program Graphs

Since analyses using abstract program graphs are defined in terms of functions
specifying effects of different actions, we need to impose conditions on these
functions.

Definition 11. Consider a flow algebra (M,⊕M ,⊗M , 0M , 1M ) that is an upper-
approximation of (L,⊕L,⊗L, 0L, 1L) by a Galois connection (L, α, γ, M). A
program graph (Q, Σ,→, QI , QF ,B, M) is an upper-approximation of another
program graph (Q, Σ,→, QI , QF ,A, L) if

∀a ∈ Σ : α(A�a�) M B�a�

It is quite easy to see that this upper-approximation for action implies one for
paths.

Lemma 5. If a program graph (Q, Σ,→, QI , QF ,B, M) is an upper-
approximation of (Q, Σ,→, QI , QF ,A, L) by (L, α, γ, M), then for every
path π we have that

A�π� L γ(B�π�)

Consider a flow algebra (M,⊕M ,⊗M , 0M , 1M ) induced from (L,⊕L,⊗L, 0L, 1L)
by a Galois connection (L, α, γ, M). As in case of flow algebras, we say that a
program graph (Q, Σ,→, QI , QF ,B, M) is induced from (Q, Σ,→, QI , QF ,A, L)
if we change the inequality from Lemma 5 to

∀a ∈ Σ : α(A�a�) = B�a�

6.2 Preservation of the MOP and MFP Solutions

Now we will investigate what is the relationship between the solutions of an
analysis in case of original program graph and its upper-approximation. Again
we will first consider the MOP solution and then MFP one.
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MOP. We want to show that if we calculate the MOP solution of the analysis
B in M and concretise it (using γ), then we will get an upper-approximation of
the MOP solution of A in L.

Lemma 6. If a program graph (Q, Σ,→, QI , QF ,A, M) is an upper-
approximation of (Q, Σ,→, QI , QF ,A, L) by (L, α, γ, M) then

MOPL(Q◦, Q•)  γ(MOPM (Q◦, Q•))

Proof. The result follows from Lemma 5. �


MFP. Let us now consider the MFP solution. We would like to prove that
whenever we have a solution AnM of the constraint system AnalysisM then,
when concretised, it also is a solution to the constraint system AnalysisL. This
is established by the following lemma.

Lemma 7. If a program graph given by (Q, Σ,→, QI , QF ,A, M) is an upper-
approximation of (Q, Σ,→, QI , QF ,A, L) by (L, α, γ, M) then

AnQ◦
M |= AnalysisM =⇒ γ ◦AnQ◦

M |= AnalysisL

and in particular
MFP Q◦

L  γ ◦MFPQ◦
M

Proof. We consider only the case where q ∈ Q◦ (the other case is analogous).
From the assumption we have

γ ◦AnQ◦
M � λq.γ(

⊕
{AnQ◦

M (q′)⊗ B�a� | q′ a−→ q} ⊕ 1M )

� λq.
⊕
{γ(AnQ◦

M (q′)⊗ B�a�) | q′ a−→ q} ⊕ γ(1M )

Now using the definition of upper-approximation of a flow algebra it follows that

λq.
⊕
{γ(AnQ◦

M (q′)⊗ B�a�) | q′ a−→ q} ⊕ γ(1M )

� λq.
⊕
{γ(AnQ◦

M (q′))⊗ γ(B�a�) | q′ a−→ q} ⊕ 1L

� λq.
⊕
{γ(AnQ◦

M (q′))⊗A�a� | q′ a−→ q} ⊕ 1L

We also know that every solution AnQ◦
L to the constraints AnalysisL must satisfy

AnQ◦
L � λq.

⊕
{AnQ◦

L (q′)⊗A�a� | q′ a−→ q} ⊕ 1L

and it is clear that γ ◦AnQ◦
M is also a solution these constraints. �




Galois Connections for Flow Algebras 149

7 Application to the Bakery Algorithm

In this section we use flow algebras and Galois insertions to verify the correctness
of the Bakery mutual exclusion algorithm. Although the Bakery algorithm is
designed for an arbitrary number of processes, we consider the simpler setting
with two processes, as in Example 3. For reader’s convenience we recall the
pseudo-code of the algorithm:

do true ->
x1 := x2 + 1;
do ¬((x2 = 0) ∨ (x1 < x2)) ->

skip
od;
critical section
x1 := 0

od

do true ->
x2 := x1 + 1;
do ¬((x1 = 0) ∨ (x2 < x1)) ->

skip
od;
critical section
x2 := 0

od

We want to verify that the algorithm ensures mutual exclusion, which is equiv-
alent to checking whether the state (3, 3) (corresponding to both processes being
in the critical section at the same time) is unreachable in the interleaved pro-
gram graph. First we define the collecting semantics, which tells us the potential
values of the variables x1 and x2. Since they can never be negative, we take the
complete lattice to be the monotone function space over P(ZZ≥0 × ZZ≥0). This
gives rise to the flow algebra C of the form

(P(ZZ≥0 × ZZ≥0)→ P(ZZ≥0 × ZZ≥0),∪, �, λZZ.∅, λZZ.ZZ)

The semantic function is defined as follows

T �x1 := x2 + 1� = λZZ.{(z2 + 1, z2) | (z1, z2) ∈ ZZ}
T �x2 := x1 + 1� = λZZ.{(z1, z1 + 1) | (z1, z2) ∈ ZZ}
T �x1 := 0� = λZZ.{(0, z2) | (z1, z2) ∈ ZZ}
T �x2 := 0� = λZZ.{(z1, 0) | (z1, z2) ∈ ZZ}
T �e� = λZZ.{(z1, z2) | E�e�(z1, z2) ∧ (z1, z2) ∈ ZZ}

where E : Expr → (ZZ≥0 × ZZ≥0 → {true, false}) is used for evaluating ex-
pressions. Unfortunately, as the values of x1 and x2 may grow unboundedly,
the underlying transition system of the parallel composition of two processes is
infinite. Hence it is not possible to naively use it to verify the algorithm.

Therefore we clearly need to introduce some abstraction. Using our approach
we would like to define an analysis that is an upper-approximation of the col-
lecting semantics. This should allow us to compute the result and at the same
time guarantee that the analysis is semantically correct. The only remaining
challenge is to define a domain that is precise enough to capture the property
of interest and then show that the analysis is an upper-approximation of the
collecting semantics.

For our purposes it is enough to record when the conditions allowing to enter
the critical section (e.g. (x2 = 0) ∨ (x1 < x2)) are true or false. For that we can
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use the Sign Analysis. We take the complete lattice to be the monotone function
space over P(S × S × S), where S = {−, 0 , +}. The three components record
the signs of variables x1, x2 and their difference i.e. x1 − x2, respectively. We
define a Galois connection (P(ZZ≥0×ZZ≥0), α, γ,P(S×S×S)) by the extraction
function

η(z1, z2) = (sign(z1), sign(z2), sign(z1 − z2))

where

sign(z) =

⎧
⎨

⎩

− if z < 0
0 if z = 0
+ if z > 0

Then α and γ are defined by

α(ZZ) = {η(z1, z2) | (z1, z2) ∈ ZZ}
γ(SSS) = {(z1, z2) | η(z1, z2) ∈ SSS}

for ZZ ⊆ ZZ≥0 × ZZ≥0 and SSS ⊆ S× S× S.
However, note that the set P(S×S×S) contains superfluous elements, such as

(0, 0, +). Therefore we reduce the domain of the Sign Analysis to the subset that
contains only meaningful elements. For that purpose we use the already defined
extraction function η. The resulting set P(η[ZZ≥0 × ZZ≥0]) is defined using

η[ZZ≥0 × ZZ≥0] = {η(z1, z2) | (z1, z2) ∈ ZZ≥0 × ZZ≥0}
It is easy to see that

η[ZZ≥0 × ZZ≥0] =
{

(0 , 0 , 0 ), (0 , +,−), (+, 0 , +),
(+, +, 0 ), (+, +, +), (+, +,−)

}

This gives rise to a Galois insertion (recall Example 2)

(P(ZZ≥0×ZZ≥0)→P(ZZ≥0×ZZ≥0), α′, γ′,P(η[ZZ≥0×ZZ≥0])→P(η[ZZ≥0×ZZ≥0]))

where:
α′(f) = α ◦ f ◦ γ

γ′(g) = γ ◦ g ◦ α

We next consider the flow algebra S given by

(P(η[ZZ≥0 × ZZ≥0])→ P(η[ZZ≥0 × ZZ≥0]),∪, �, λSSS.∅, λSSS.SSS)

and note that it is induced from the flow algebra C by the Galois insertion (for
details refer to Example 2). Now we can induce transfer functions for the Sign
Analysis. As an example let us consider the case of x2 := 0 and calculate

A�x2 := 0�(SSS) = α(T �x2 := 0�(γ(SSS)))
= α(T �x2 := 0�({(z1, z2) | η(z1, z2) ∈ SSS}))
= α({(z1, 0) | η(z1, z2) ∈ SSS})
= {(s1, 0, s1) | (s1, s2, s) ∈ SSS}

Other transfer functions are induced in a similar manner and are omitted.
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Clearly the program graph over flow algebra S is an upper-approximation of
the collecting semantics. It follows that the Sign Analysis is semantically correct.
Therefore we can safely use it to verify the correctness of the Bakery algorithm.
For the actual calculations of the least solution for the analysis problem we use
the Succinct Solver [13], in particular its latest version [8] that is based on Binary
Decision Diagrams [4]. The analysis is expressed in ALFP (i.e. the constraint
language of the solver). The result obtained for the node (3, 3) is the empty set,
which means that the node is unreachable. Thus the mutual exclusion property
is guaranteed.

8 Conclusions

In this paper we presented a general framework that uses program graphs and
flow algebras to define analyses. One of our main contributions is the introduction
of flow algebras, which are algebraic structures less restrictive than idempotent
semirings. Their main advantage and our motivation for introducing them is the
ability to directly express the classical analyses, which is clearly not possible
when using idempotent semirings. Moreover the presented approach has certain
advantages over Monotone Frameworks, such as the ability to handle both se-
quential and concurrent systems in the same manner. We also define both MOP
and MFP solutions and establish that the classical result of their coincidence in
case of distributive analyses carries over to our framework.

Furthermore we investigated how to use Galois connections in this setting.
They are a well-known and powerful technique that is often used to “move”
from a costly analysis to a less expensive one. Our contribution is the use of
Galois connections to upper-approximate and induce flow algebras and program
graphs. This allows inducing new analyses such that their semantic correctness
is preserved.

Finally we applied our approach to a variant of the Bakery mutual exclusion
algorithm. We verified its correctness by moving from a precise, but uncom-
putable analysis to the one that is both precise enough for our purposes and
easily computable. Since the analysis is induced from the collecting semantics
by a Galois insertion, we can be sure that the it is semantically correct.
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Abstract. Secure information flow analysis aims to check that the execution of
a program does not reveal information about secret data manipulated by this pro-
gram. In this paper, we consider programs dealing with arrays; unlike most of
existing works, we will not assume that arrays are homogeneous in terms of se-
curity levels. Some part of an array can be declared as secret whereas another
part is public. Based on a pre-computed approximation of integer variables (serv-
ing as indices for arrays), we devise a type system such that typed programs do
not leak unauthorized information. Soundness of our type system is proved by a
non-interference theorem.

1 Introduction

Information flow analysis aims to check that data propagation within applications con-
forms some security requirements; the goal is to avoid that programs leak confidential
information during their executions: observable/public outputs of a program must not
disclose information about secret/confidential values manipulated by this program.

Data are labelled with security levels, usually H for secret/confidential/high security
level values and L for observable/public/low security level variables (or more generally,
by elements of a lattice of security levels [6]). The absence of illicit information flow
is proved by the non-interference property: if two inputs of the program coincide on
their public (observable) part then it is so for the outputs. Information flows arise from
assignments (direct flow) or from the control structure of a program (implicit flow). For
example, the code l = h generates a direct flow from h to l, while if(h) then
l=1 else l=0 generates an implicit flow. If h has security level H and l L, then the
two examples are insecure and generate an illicit information flow, as confidential data
can be deduced by the reader of l. Non-interference can be checked through typing or
static analysis, leading to the automatic rejection of insecure programs. A considerable
part of works on information flow control, based on static analysis, has been achieved
in the last decades, eg [7,8,12,16,15].

Although some tools based on these works have been developed [12,14], it seems that
they are not mature enough to properly address real-world problems. As advocated in
[1], we believe that one of the bottlenecks is the current unability of the proposed works
on information flow to address real-world programming languages, that is, languages
including in particular, built-ins data structures (arrays, hash tables, ..). Another issue is
the ”real-world” programming style that is frequently used, in particular in the area of
embedded software, to save resources (time, space, energy, ..).
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In this paper, we focus on arrays, the most casual built-ins data structure. Two works
[5,17] have already addressed this topic. Both are based on the Volpano, Smith and
Irvine’approach (Volpano, Smith and Irvine proposed in their seminal paper a type
system to guarantee the absence of illicit information flows [16]) and share the same
feature: the security type of an array is uniform for the whole array; an array is either
totally public or totally private. Unfortunately, this may be insufficient for real-world
programs.

Let us consider the file given below on the left and the program next to it:

Doe
John
john.doe@yahoo.fr
Martin
Jean
jean.martin@mail.com

i=0
while (not(eof(f)))

T[i] ::= read(f)
i :=i+1

j :=0
while (j <i)

if ((j mod 3) <> 2) then
print(T[j])

j :=j+1

The structure of the file is simple, one piece of information per line, and one after the
other, a last name, a first name and an email. Suppose a policy security stating that first
and last names are public but emails have to remain confidential. One may argue that
this program is written by a programmer who is unware of security issues and should
be rejected because of its programming style. But on the one hand, similar programs
are rather frequent in embedded systems and on the other hand, this program does not
disclose any confidential information and is thus correct wrt to secure information flows.

This example illustrates that considering access to arrays in fine-grained manner is
crucial to obtain relevant results concerning security issues; this fact has motivated the
work of Amtoft, Hatcliff and Rodrı́guez [1]: the authors proposed there an Hoare-style
logic to reason about information flows, this logic being able to express properties about
single array cells. Our approach is different and composed of two parts: first, an accurate
information about the values of integer variables used as indices of arrays is considered.
We will assume that these informations on integer variables are known (pre-computed
or given by the programmer). Then, based on that, we define a type system such that
typed programs do not leak unauthorized information. We prove the soundness of our
approach by proving a non-interference theorem.

The paper is organized as follows: in Section 2, we describe the small program-
ming language we consider within this paper: this language is a simple imperative lan-
guage allowing to manipulate one-dimensional array. However, array aliases are not
supported. As discussed earlier, accurate typing requires information about values taken
by the integer variables during the execution of the program. These information allow
us to consider arrays not only as a single piece of data but also quite sophisticated parts
of them. Thus, Section 3 aims to described a framework for expressing approximation
of integer variables. We also specify in which sense this framework is sound. As an ex-
ample, we chose Presburger formulas as they form a quite expressive and well-known
theory. Section 4 is devoted to our type system. This type systems relies on the approx-
imation given in the previous section. In that section, we also give some examples of
typed programs. Finally, in Section 5, we prove that the devised type system is cor-
rect: we show first that it satisfies the subject reduction property. As intermediate steps
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to soundness, we prove the ”classical” simple security property of expressions and the
confinement property of commands. Finally, we prove the main result of the paper as
a non-interference theorem: for inputs data that can not be distinguished on the lower
level part, a well-typed program produces outputs coinciding on the lower level part.

2 Language and Semantics

The language we consider is a simple imperative language with arrays. We assume to be
fixed a finite set of integer identifier I = {x1, . . . , xn}, a finite set of array identifiers
T = {T1, T2, . . .} and a finite set of labels L.

The syntax of programs is the given by the following grammar:

(EXPRESSIONS) e ::= xi | n | T [e] | T.length | e1 + e2 | e1 − e2 | n ∗ e | e/n
e1 ∨ e2 | e1 ∧ e2 | e1 �= e2 | e1 = e2 | . . .

(COMMANDS) c ::= xi :=� e | T [e1] :=� e2 | allocate� T [e] | skip� |
if� e then P1 else P2 | while� e do P

(PROGRAMS) P ::= c | c; P
Here, meta-variables xi range over I, n over integers, T over the set of array identifiers
T and � over the set of labels L. The sequence operator ”;” is implicitly assumed to be
associative. Finally, we assume the labels appearing in a program to be pairwise distinct
and we may write c� to emphasize the fact that the label of the command c is �.

It should be noticed that we address only one dimensional arrays and do not support
array aliases (expressions such as T1 := T2 are not allowed).

A program P is executed under a memory μ, which maps identifiers to values in
the following way: for all xi in I, μ(xi) ∈ Z and for all T ∈ T , μ(T ) is an array of
integers 〈n0, n1, . . . , nk−1〉, where k > 0. Additionally, we assume 〈〉, a special value
for arrays. The length of 〈〉 is 0.

We assume that expressions are evaluated atomically and we denote by μ(e) the
value of the expression e in the memory μ; the semantics of array, addition and division
expressions is given on Fig. 1. The semantics of the others expressions is defined in an
obvious way. Note that, as in C language, the result of the evaluation of an expression is
always an integer. Moreover, following the lenient semantics proposed in [5], accessing
an array with an out-of-bounds index yields 0, as well as division by 0. Hence, the pro-
grams we deal with are all error-free. The semantics of programs is given by a transition
relation→ on configurations. A configuration is either a pair (P, μ) or simply a mem-
ory μ: in the first case, P is the program yet to be executed, whereas in the second one,
the command is terminated yielding the final memory μ. We write →k for the k-fold
self composition of→ and→∗ for the reflexive, transitive closure of→.

The semantics of array commands is defined in Fig. 2 (where μ[U := V ] denotes a
memory identical to μ except for the variable U whose value is V ). Given an expression
e, allocate T [e] allocates a 0-initialized block of memory for the array T , the size
of this array is given by the value of e (when strictly positive). The remaining executions
of programs are given by a standard structural operational semantics (SOS) presented
on Fig. 3. Remark that when a program is executed, the execution either terminates
successfully or loops (it cannot get stuck) : for each configuration of the form (P, μ)
there always exists a rule that may apply.
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(ARR-READ)
μ(T ) = 〈n0, n1, . . . nk−1〉, μ(e) = i, 0 ≤ i < k

μ(T [e]) = ni

μ(T ) = 〈n0, n1, . . . nk−1〉, μ(e) /∈ [0, k − 1]

μ(T [e]) = 0

μ(T ) = 〈〉
μ(T [e]) = 0

(GET-LGTH)
μ(T ) = 〈n0, n1, . . . nk−1〉

μ(T.length) = k

(ADD)
μ(e1) = n1, μ(e2) = n2

μ(e1 + e2) = n1 + n2

(DIV)
μ(e1) = n1, n2 �= 0

μ(e1/n2) = �n1/n2�
μ(e1) = n1, μ(n2) = 0

μ(e1/n2) = 0

Fig. 1. Semantics of array, addition and division expressions

(UPD-ARR)
μ(T ) = 〈n0, . . . nk−1〉, μ(e1) = i ∈ [0, k − 1], μ(e2) = n

(T [e1] :=� e2, μ)→ μ[T := 〈n0, . . . , ni−1, n, ni+1, . . . nk−1〉]

μ(T ) = 〈n0, . . . nk−1〉, μ(e1) /∈ [0, k − 1]

(T [e1] :=� e2, μ)→ μ

μ(T ) = 〈〉
(T [e1] :=� e2, μ)→ μ

(CALLOC)
μ(e) > 0, μ(T ) = 〈〉

(allocate� T [e], μ)→ μ[T := 〈0, 0, . . . , 0
︸ ︷︷ ︸

μ(e)

〉]

μ(e) ≤ 0

(allocate� T [e], μ)→ μ

μ(T ) �= 〈〉
(allocate� T [e], μ)→ μ

Fig. 2. Semantics of array commands

(UPDATE) (x :=� e, μ)→ μ[x := μ(e)] (NO-OP) (skip�, μ)→ μ

(BRANCH)
μ(e) �= 0

(if� e then P1 else P2, μ)→ (P1, μ)

μ(e) = 0

(if� e then P1 else P2, μ)→ (P2, μ)

(LOOP)
μ(e) �= 0

(while� e do P, μ)→ (P ;while� e do P, μ)

μ(e) = 0

(while� e do P, μ)→ μ

(SEQUENCE)
(c1, μ)→ μ′

(c1;P2, μ)→ (P2, μ′)
(c1, μ)→ (P, μ′)

(c1;P2, μ)→ (P ;P2, μ′)

Fig. 3. Part of the SOS for programs
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3 Over-Approximation of the Semantics

Our aim is to address security information for arrays in a non-uniform manner; this
implies that slices/parts of the arrays have to considered on their own. As arrays are
manipulated via indices stored in integer variables, we have to figure out what is the
content of these variables during the execution of the program. Capturing the exact
values taken by some variables during the execution of a program is, of course, an
undecidable problem. Therefore, we require an approximation of the values of those
variables. To do so, we associate with each command label � an approximation α of the
values of integer variables at this program point (just before the execution of the com-
mand labelled with �); α is an approximation in the following sense: in any execution
of the program reaching this program point, if the variable xi has k for value, then α
states that k is an admissible value for xi at that point.

Note that such approximations can be obtained in various ways : tools like FAST [3]
or TReX [2] performing reachability analysis of systems augmented with (unbounded)
integer variables can be used. Indeed, since we do not need to evaluate values in ar-
ray cells but just integer values, our programs can be safely abstracted as counter au-
tomata. Another possibility is to use tools for inferring symbolic loop invariants such as
in [10].

Hence, our aim is not to compute approximations, neither to propose various for-
malisms to represent them. We will mainly present the set of conditions such approxi-
mations must satisfy and prove that this set of conditions is sufficient.

To make our approach more concrete we chose Presburger formulas both to express
the required conditions on the approximation as well as the approximation itself.

We recall that a Presburger formula ψ is given by the following syntax:

ψ := ∃xψ | ∀xψ | x = x1 +x2 | x = n | ψ∧ψ | ψ∨ψ | ¬ψ | n∗x | x/n | x mod n

x, x1, x2 being integer variables and n an integer.
We will use the following conventions. Given two Presburger formulas ψ(x̄) and

ψ′(x̄), we write ψ ⊆ ψ′ if |= ∀x̄,¬ψ(x̄) ∨ ψ′(x̄). Given a Presburger formula ψ(y, x̄)
and an integer n, we write ψ(n, x̄) instead of ψ(y, x̄) ∧ y = n.

For the approximation, we consider here programs labelled by Presburger formulas
whose free variables are essentially x1, . . . , xn, which corresponds to the integer vari-
able identifiers1. A labelling is then a mapping λ associating with each label � ∈ L, a
Presburger formula ψ(x̄).

Given a program P and a labelling λ, we define λ(P ) to be the label of the first
command of P , that is, recursively, λ(c�) = λ(�) and λ(P1;P2) = λ(P1). Intuitively,
λ(P ) = ψ(x̄) means ”enter in P with a memory μ whose integer variables satisfy
ψ(x̄)”, i.e., [x1 → μ(x1), . . . , xn → μ(xn)] |= ψ(x̄).

We start by defining in Fig. 4 for every expression e, the formula V ψ
e (y, x̄) giv-

ing the possible values of e when the integer variables of the memory satisfy a formula

1 In the rest of the paper, we will denote by x̄ the sequence of variables x1, . . . , xn.
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(O-INT) V ψn (y, x̄)
def
= (y = n) ∧ ψ(x̄)

(O-INT-VAR) V ψxi
(y, x̄)

def
= (y = xi) ∧ ψ(x̄)

(O-ARR-READ) V ψT [e](y, x̄)
def
= ψ(x̄)

(O-GET-LGTH) V ψT.length(y, x̄)
def
= ψ(x̄)

(O-ADD) V ψe1+e2
(y, x̄)

def
= ∃y1, ∃y2, V ψe1(y1, x̄) ∧ V ψe2(y2, x̄) ∧ y = y1 + y2

(O-DIV) V ψe/0(y, x̄)
def
= V ψ0 (y, x̄)

if n �= 0 V ψ
e/n

(y, x̄)
def
= [V ψe (0, x̄) ∧ y = 0] ∨ [∃y1, V ψe (y1, x̄) ∧ y = y1/n]

Fig. 4. Definition of V ψe (y, x̄) for relevant expressions e

ψ. V ψ
e (y, x̄) is then a formula fulfilling for all memories μ: [y → n, x̄ → μ(x̄)] |=

V ψ
e (y, x̄) iff [x̄ → μ(x̄)] |= ψ(x̄) and μ(e) = n. Hence, for instance, for x1 + x2 and

ψ = x1 ≤ 3 ∧ x2 = 4, we have that V ψ
x1+x2

(y, x1, x2) is the formula x1 ≤ 3 ∧ x2 =
4∧y = x1 +x2. Note also that for an expression T [e], the resulting formula V ψ

T [e](y, x̄)
imposes no constraints on y and thus, gives no information on the possible value of
such an expression (there is no analysis of array contents). Similarly, let us point out,
because of the programming language we have chosen, that the formulas V ψ

e (x̄) are
always Presburger formulas. It may not be the case if expressions such as e1 ∗ e2 were
allowed: however, as we simply require an approximative computation, we could have
defined V ψ

e1∗e2(y, x̄) as ψ(x̄), leading to coarse but correct approximation.

Definition 1. Let μ be a memory and ψ(x̄) be a Presburger formula. We say that
ψ(x̄) is an over-approximation of μ (denoted ψ(x̄) ≥ μ) if [x1 → μ(x1), . . . , xn →
μ(xn)] |= ψ(x1, . . . , xn).

Lemma 1. Let μ be a memory and ψ(x̄) be a Presburger formula. If ψ(x̄) ≥ μ then
V ψ
e (μ(e), x̄) ≥ μ (that is, |= V ψ

e (μ(e), μ(x1), . . . , μ(xn))).

Given a program P, a labelling λ, and a Presburger formula ψ(x̄) , we write P �λ ψ to
say that if we execute P under a memory μ satisfying λ(P ), then we get a new memory
satisfying ψ. Formally,

Definition 2. A program P is well labelled by λ if there exists a Presburger formula
ψ(x̄) such that P �λ ψ, where �λ is the relation defined inductively in Fig. 5 according
to the possible shape of P .
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(O-UP-ARR)
λ(�) ⊆ ψ

x[e1] :=� e2 �λ ψ (O-CALLOC)
λ(�) ⊆ ψ

allocate� x[e] �λ ψ

(O-UPDATE)
(∃y, [∃xi, V λ(�)

e (y, x1, . . . xi−1, xi, xi+1, . . . , xn, )] ∧ xi = y) ⊆ ψ
xi :=� e �λ ψ

(O-NO-OP)
λ(�) ⊆ ψ

skip� �λ ψ

(O-BRANCH) V λ(�)
e (0, x̄) ⊆ λ(P2), ∃y �= 0.V

λ(�)
e (y, x̄) ⊆ λ(P1)

P2 �λ ψ2, P1 �λ ψ1, ψ2 ∨ ψ1 ⊆ ψ
if� e then P1 else P2 �λ ψ

(O-LOOP)
∃y �= 0.V

λ(�)
e (y, x̄) ⊆ λ(P ), P �λ λ(�), V

λ(�)
e (0, x̄) ⊆ ψ

while� e do P �λ ψ

(O-SEQ)
P1 �λ λ(P2), P2 �λ ψ

P1;P2 �λ ψ

Fig. 5. Definition of P �λ ψ

Let us point out that from rule (O-LOOP), the label λ(P ) in a command
while� e do P has to be an invariant for this loop.

We give an example for the rule (O-UPDATE): if x1 :=� x1 + x2 and λ(�) = x1 ≤
3∧x2 = 4, we have that V ψ

x1+x2
(y, x1, x2) is x1 ≤ 3∧x2 = 4∧ y = x1 +x2 and then

∃y[∃x1, V
ψ
x1+x2

(y, x1, x2)] ∧ x1 = y is equivalent to ∃y, ∃x′
1, x

′
1 ≤ 3 ∧ x2 = 4 ∧ y =

x′
1 + x2 ∧ x1 = y i.e. to x2 = 4 ∧ x1 ≤ 7. Then xi :=� e �λ ψ for all ψ such that

(x2 = 4 ∧ x1 ≤ 7) ⊆ ψ.
Remark that for each line of a program, checking the label costs the test of the va-

lidity of a Presburger formula with at most 2 + k quantifier alternations, where k is the
number of quantifier alternations of the label formula.

Lemma 2. If P �λ ψ and (P, μ)→(P ′, μ′) then there exists ψ′ s.t. P ′ �λ ψ′ and
ψ′ ⊆ ψ.

Proposition 1. If P is well-labelled by λ, (P, μ)→∗(P ′, μ′) and λ(P ) ≥ μ, then
λ(P ′) ≥ μ′.

4 A Type System for Information Flow in Arrays

In this section, we present the type system we devise to guarantee the absence of illicit
information flows in programs manipulating arrays. We exemplify our approach giving
the type of some programs.

The goal of this type system is to guarantee that the execution of the program does
not disclose confidential information that is, the contents of public variables do not
depend on the contents of private ones through explicit and implicit flows.
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4.1 The Type System

Our type system relies on a labelling of the program with approximation of the values
taken by integer variables. This labelling is just supposed to be a well-labelling in the
sens of Definition 2.

Types for arrays are couples (φH , τ), where φH is a Presburger formula, meaning
that for all n ≥ 0, φH(n) holds iff the cell of index n in the array has type H (otherwise
it has type L) and that the length of the array has type τ .

Here are the types used by our type system:

(data types) τ ::= L | H
(phrase types) ρ ::= τ | τ var | τ cmd | (φH , τ)

Intuitively, τ is the security level for integer expressions, τ var is the one of integer
variables and (φH , τ) is the security level for the cells and the length of arrays. For
commands and programs, τ cmd stands for a program that can safely write in storage
(variables, array cells) of level higher than τ .

Moreover, we adopt the following constraint of types : in any array type (φH , τ), we
require that if τ = H then φH is the formula True (Array type constraint). Indeed,
due to the lenient semantics of arrays, reading the content of T[3] after the execution
of allocate T[h]; T[3] := 2; leaks information about h (if T[3] is zero then h
is smaller than 3).

Our type system allows to prove judgments of the form Γ, ψ � e : τ for expressions
and of the form Γ �λ P : τ cmd for programs as well of subtyping judgments of the
form ρ1 ⊆ ρ2. Here Γ denotes an environment, that is an identifier typing, mapping
each integer identifier in I to a phrase type of the form τ var and each array identifier
in T to a phrase type of the form (φH , τ), ψ is a Presburger formula, e is an expression,
P is a program and λ is a labelling.

The subtyping rules are on Figure 6: informally, a low level expression can always be
used in the high level situation (hence, constants can be assigned to high level variables)
whereas high level commands can always be used in a low level context (if only private
variables are affected then only variables greater than L have been affected).

(BASE) L ⊆ H (CMD−)
τ ′ ⊆ τ

τ cmd ⊆ τ ′ cmd

(REFLEX) ρ ⊆ ρ (TRANS)
ρ1 ⊆ ρ2, ρ2 ⊆ ρ3

ρ1 ⊆ ρ3

(SUBSUMP)
Γ,ψ � e : τ1, τ1 ⊆ τ2

Γ, ψ � e : τ2

Γ �λ P : ρ1, ρ1 ⊆ ρ2

Γ �λ P : ρ2

Fig. 6. Subtyping rules

The most relevant typing rules for expressions can be found in Fig. 7. Typing rules
(INT), (R-VAL) and (QUOTIENT) are borrowed from the Volpano-Smith type system:
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(INT) Γ,ψ � n : L (R-VAL)
Γ (xi) = τ var

Γ, ψ � xi : τ

(SUBSCR)
Γ,ψ � e : τ

Γ, ψ � T [e] : H

Γ (T ) = (φH , L), Γ, ψ � e : L, |= ∀y, [(∃x̄, V ψe (y, x̄)) =⇒ ¬φH(y)]

Γ, ψ � T [e] : L

(LENGTH)
Γ (T ) = (φH , τ)

Γ,ψ � T.length : τ
(QUOTIENT)

(Γ,ψ) � e1 : τ, Γ, ψ � n : τ

Γ, ψ � e1/n : τ

Fig. 7. Typing rules for expressions

the rule (INT) states that constants are from level L (and also, from level H thanks
to subtyping). For variables, as usual, the environment Γ fixes the type of identifier.
Finally, for arithmetical operations such as (QUOTIENT), the type of the parameters and
of the result have to be the same. The rule (LENGTH) is simply the direct translation of
the meaning of types for arrays in the spirit of (R-VAL).

The first rule for (SUBSCR) states that any cell of arrays can be typed as H . The sec-
ond rule for (SUBSCR) states that the content of an array cell is L only if the expression
used to address this cell is L and the possible values for this expression according to
the approximation given by λ are set to be not H by the formula φH of the array type.
Note that due to the ”array type constraint”, the fact that some cells being not of high
level H implies that the length of the array is not high (and thus, low).

Typing rules for programs are described in Fig. 8. The types deduced for the com-
mands control mainly the security level of the context in which they are executed; it
aims to treat implicit control flows. The typing rules (ASSIGN), (SKIP),(IF), (WHILE),
(COMPOSE) are borrowed from the Volpano-Smith type system: the last three simply
force the components of a composed program to have the same type. The rule (ASSIGN)
states that the assigned value and the variable must be of the same type. This prevents il-
licit direct flow of information. Finally, because of the rule (SKIP), the command skip
is used in a high security context (but it can also be used in a low security context thanks
to subtyping).

Let us point out that for array cells, just as scalar variables, we distinguish between
the security level associated with a cell from the security level of the content of this cell.

The typing rule for (ALLOCATE) states that the type of an expression used in the
declaration of an array must coincide with the type of the size of this array. Finally,
for (ASSIGN-ARR), the rules aim to guarantee that, as for scalar variables, high level
values can not be assigned to low level array cells (to address explicit flows); moreover,
a command modifying a low level cell has to be a low level command (to address
implicit flows).

In our typing approach, information on the security level for variables is fixed for
the whole program; hence, the type of arrays are not modified during the execution
according to updates.
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(ASSIGN)
Γ (x) = τ var, Γ, λ(�) � e : τ

Γ �λ (x :=� e) : τ cmd
(SKIP) Γ �λ (skip�) : H cmd

(ASSIGN-ARR)

Γ, λ(�) � e1 : L, Γ, λ(�) � e2 : τ, Γ (T ) = (φH , L),

|= ∀y, [(∃x̄, V λ(�)
e1 (y, x̄) =⇒ φH(y)]

Γ �λ (T [e1] :=� e2) : H cmd

Γ, λ(�) � e1 : H, Γ, λ(�) � e2 : τ, Γ (T ) = (φH ,H)

Γ �λ (T [e1] :=� e2) : H cmd

Γ, λ(�) � e1 : L, Γ, λ(�) � e2 : L, Γ (T ) = (φH , L)

Γ �λ (T [e1] :=� e2) : Lcmd

(ALLOCATE)
Γ (T ) = (φH , τ), Γ, λ(�) � e : τ

Γ �λ (allocate� T [e]) : τ cmd

(IF)
Γ, λ(�) � e : τ, Γ �λ P1 : τ cmd, Γ �λ P2 : τ cmd

Γ �λ (if� e then P1 else P2) : τ cmd

(WHILE)
Γ, λ(�) � e : τ, Γ �λ P : τ cmd

Γ �λ (while� e do P ) : τ cmd

(COMPOSE)
Γ �λ c� : τ cmd, Γ �λ P : τ cmd

Γ �λ (c�;P ) : τ cmd

Fig. 8. Typing rules for programs

Remark that for checking a given typing, at each line of the program, we have to test
the validity of a Presburger formula with at most 2+max(k + l) quantifier alternations,
where k is the number of quantifier alternations of the label formula, and l is the number
of quantifier alternations of the formula typing the array occurring in the program line.

In fact, if we infer a typing for the program, we get array formulas containing at
most 1+m quantifier alternations, where m is the maximum of the number of quantifier
alternations of formulas labelling the program.

4.2 Example

To illustrate our approach, let us give now examples obtained with a prototype that
we have developed which, from a program P , a labelling λ and some initial typing,
determines if P is well-labelled and when possible types the program P respecting
the initial typing by giving the minimal type. The first example shows how an array
allocation can force the type of an array to be H :

[true] x1:=T1.length;
[true] x2:=T2.length;
[true] x3:=x1+x2;
[x3=x1+x2] allocate(T0[x3]);
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[x3=x1+x2] x4:=0;
[x3=x1+x2 and x4=0] x5:=0;
[x3=x1+x2 and 0<=x4<=x3+1 and x4=2x0] while (x4 < x3) do
[x3=x1+x2 and 0<=x4<x3 and x4=2x0] T0[x4]:=T1[x0];
[x3=x1+x2 and 0<=x4<x3 and x4=2x0] T0[x4+1]:=T2[x0];
[x3=x1+x2 and 0<=x4<x3 and x4=2x0] x4:=x4+2;
[x3=x1+x2 and 2<=x4<=x3+1 and x4=2x0+2] x0:=x0+1;

If we impose the constaint T2:(True,H), we get in a time less than one second:

T0: (True,High),T1: (False, Low),T2: (True, High)

x0: High, x1: Low, x2: High, x3:High, x4:High.

Indeed, line 2 and rule (ALLOCATE) imply x2:High, then line 3 and rule (ASSIGN)
imply x3:High and then line 4 and rule (ALLOCATE) imply T0:(True,High). If
T0 is allocated with a size typed by Low, then all the even indexes of T0 can have the
type Low, as shown in the following example:

[ True ] allocate(T0[x1]);
[ True ] x2 := 0;
[ x2=0 ] x0 := 0;
[ 0 <= x2 <= 1+x1 and x2=2x0] while ( x2 < x1 ) do
[ 0 <= x2 < x1 and x2=2x0] T0[x2] := T1[x0];
[ 0 <= x2 < x1 and x2=2x0] T0[x2 + 1] := T2[x0];
[ 0 <= x2 < x1 and x2=2x0] x2 := x2 + 2;
[ 2 <= x2<=1+x1 and x2=2+2x0] x0 := x0 + 1;

If we impose the constaint T1:(True,H), our prototype returns:

T0: (Ex x2,x0.(y=x2 and x2=2x0),Low),T1:(True,High),T2:(False,Low)

x0: Low, x1: Low, x2: Low.

Remark that since all labels are quantifier free, the formula obtained for the type of
T0 is existential.

5 Properties of the Type System

We prove that our type system guarantees noninterference for well labelled programs.
The proofs of some lemmas below are complicated somewhat by subtyping. We there-
fore assume, without loss of generality, that all typing derivations end with a single
(perhaps trivial) use of the rule (SUBSUMP).

Lemma 3 (Subject Reduction). If Γ �λ P : τ cmd and (P, μ)→(P ′, μ′) then
Γ �λ P ′ : τ cmd.

Proof. By induction on the structure of P . There are just three kinds of programs that
can take more than one step to terminate:

1. Case if� e then P1 else P2. By our assumption, the typing derivation for
P must end with a use of the rule (IF) followed by a use of (SUBSUMP):

(Γ, λ(�)) � e : τ ′, Γ �λ P1 : τ ′ cmd, Γ �λ P2 : τ ′ cmd
Γ �λ if� e then P1 else P2 : τ ′ cmd, τ ′ cmd ⊆ τcmd

Γ �λ if� e then P1 else P2 : τ cmd
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Hence, by the rule (CMD−), we must have τ ⊆ τ ′. So by (SUBSUMP) we have
Γ �λ P1 : τ cmd and Γ �λ P2 : τ cmd. By the rule (BRANCH), P ′ can be either
P1 or P2, therefore, we have Γ �λ P ′ : τ cmd.

2. Case while� e do P1. By an argument similar to the one used in the previous
case, we have Γ �λ P1 : τ cmd. By the rule (LOOP), P ′ is P1, hence Γ �λ P ′ :
τ cmd by rule (COMPOSE).

3. Case P = c1
�; P2. As above, we get Γ �λ c1

� : τ cmd and Γ �λ P2 : τ cmd. By
the rule (SEQUENCE) P ′ is either P2 (if c1 terminates in one step) or else P1; P ,
where (c1

�, μ)→(P1, μ
′). For the first case, we have then Γ �λ P2 : τ cmd. For the

second case, we have Γ �λ P1 : τ cmd by induction; hence Γ �λ P1; P2 : τ cmd
by rule the (COMPOSE).

We also need an obvious lemma about the execution of a sequential composition.

Lemma 4. If ((c�; P ), μ)→jμ′ then there exist k and μ′′ such that 0 < k < j,
(c�, μ)→kμ”, ((c�; P ), μ)→k(P, μ”) and (P, μ”)→j−kμ′.

Definition 3. Memories μ and ν are equivalent with respect to Γ , written μ ∼Γ ν, if

– μ and ν agree on all L variables,
– for all T ∈ T , if Γ (T ) = (φH , L), then there exists k ≥ 0 such that μ(T ) =
〈n0, . . . , nk−1〉 and ν(T ) = 〈n′

0, . . . , n
′
k−1〉 and for all i ∈ [0, k − 1], |= ¬φH (i)

implies ni = n′
i.

Lemma 5 (Simple Security). If Γ, ψ � e : L and μ ∼Γ ν and ψ ≥ μ, then μ(e)=ν(e).

Proof. By induction on the structure of e:

1. Case n. Obviously, μ(e) = ν(e) = n.
2. Case xi. By the typing rule (r-val), Γ (xi) = L var. Therefore, by memory

equivalence, μ(xi) = ν(xi).
3. Case T [e]. By the typing rule (subscr), we have Γ (T ) = (φH , L), Γ, ψ � e :

L, and |= ∀y[(∃x̄.V ψ
e (y, x̄) =⇒ ¬φH (y)]. Since ψ ≥ μ, from Lemma 1,

|= V ψ
e (μ(e), μ(x̄)), then |= ¬(φH(μ(e))). From Γ, ψ � e : L and induction hy-

pothesis, there exists an integer i such that μ(e) = ν(e) = i. Suppose that μ(T ) =
〈n0, . . . , nk−1〉 and ν(x) = 〈n′

0, . . . , n
′
k−1〉 (μ(T ) and ν(T ) have the same length

by memory equivalence). We consider then two cases:
– case i ∈ [0, k − 1]. Since |= ¬φH (i), by memory equivalence we get ni = n′

i.
Then by the SOS rule (ARR-READ), μ(T [e]) = ν(T [e]).

– case i /∈ [0, k − 1]. By the SOS rule (ARR-READ), μ(T [e]) = ν(T [e]) = 0.
4. Case T.length. Suppose that Γ, ψ � T.length : L, then Γ (T ) = (φH , L)

and from memory equivalence, there exists an integer k ≥ 0 such that μ(T ) =
〈n0, . . . , nk−1〉 and ν(x) = 〈n′

0, . . . , n
′
k−1〉. From the SOS semantics(GET-LGTH),

μ(T.length) = ν(T.length) = k.
5. Case e/n. By the typing rule (QUOTIENT), we have Γ, ψ � e1 : L and Γ, ψ � n :

L. By induction, we have μ(e1) = ν(e1).Then by the SOS rule (DIV), we have
μ(e1/n) = ν(e1/n).
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Lemma 6 (Confinement). If Γ �λ P : H cmd, (P, μ)→(P ′, μ′) (or (P, μ)→μ′) and
λ(P ) ≥ μ then μ ∼Γ μ′.

Proof. By induction on the structure of c:

1. Case xi :=� e. From the SOS rule (UPDATE), μ′ = μ[x := μ(e)], and from the
typing rule (ASSIGN) Γ (x) = H var, so μ ∼Γ μ′.

2. Case T [e1] :=� e2. We consider two cases according to the type of e1.
– Case Γ, λ(�) � e1 : L, then from the typing rule (ASSIGN-ARR), Γ (T ) =

(φH , L) and |= ∀y[(∃x̄, V
λ(�)
e (y, x̄) =⇒ φH(y)]. Since λ(�) ≥ μ, we have

from Lemma 1: |= V
λ(�)
e1 (μ(e1), μ(x̄)), and then |= φH(μ(e1)). Let us suppose

that μ(x) = 〈n0, . . . , nk−1〉, we consider two cases:
• if μ(e1) ∈ [0, k − 1], by the SOS rule (UPD-ARRAY) μ′ = μ[T [μ(e1)] :=

μ(e2)] and since |= φH (i), μ ∼Γ μ′.
• else, by the SOS rule (UPD-ARRAY) μ′ = μ and then μ ∼Γ μ′.

– Case Γ, λ(�) � e1 : H , then Γ (T ) = (φH , L) and μ ∼Γ μ′.
3. Case allocate� T [e]. From the typing rule (ALLOCATE), Γ (T ) = (φH , H) and

from the SOS rule (CALLOC), μ ∼Γ μ′,
4. Cases skip�, if� e then c1 else c2 and while� e do c. These cases are

trivial, because μ = μ′.
5. Case c1

�; P2. From the typing rule (COMPOSE), Γ �λ c1
� : H cmd and from the

SOS rule (SEQUENCE), (c1
�, μ)→μ′ or there exists P1 such that (c1

�, μ)→(P1, μ
′).

Then λ(c1) = λ(P ) ≥ μ and by induction, μ ∼Γ μ′.

Corollary 1. If P is well-labelled by λ, Γ �λ P : H cmd, μ : Γ , (P, μ)→∗μ′ and
λ(P ) ≥ μ then μ ∼Γ μ′.

Proof. By induction on the length of the derivation (P, μ)→∗μ′. The base case is
proved by Confinement (Lemma 6). Let us prove the induction step. We suppose
that (P, μ)→(P1, μ1)→∗μ′. From Confinement, μ ∼Γ μ1, from Subject Reduction,
Γ �λ P1 : H cmd and as P is well-labelled by λ, by Proposition 1, λ(P1) ≥ μ1. From
Lemma 2, P1 is well-labelled by λ, hence, by induction hypothesis, μ1 ∼Γ μ′, and then
μ ∼Γ μ′.

Theorem 1 (Noninterference). Suppose that P is well-labelled by λ, μ ∼Γ ν,
Γ �λ P : τ cmd, λ(P )≥μ and λ(P )≥ν. If (P, μ)→∗μ′ and (P, ν)→∗ν′ then μ′∼Γ ν′.

Proof. By induction on the length of the execution (P, μ)→∗μ′. We consider the dif-
ferent forms of P .

1. Case x :=� e. By the SOS rule (UPDATE), we have μ′ = μ[x := μ(e)] and
ν′ = ν[x := ν(e)]. If Γ (x) = L var, then by the typing rule (ASSIGN), we have
(Γ, �) �λ e : L. So by Simple Security, μ(e) = ν(e), and so μ′ ∼Γ ν′. If instead,
Γ (x) = H var then trivially μ′ ∼Γ ν′.

2. Case T [e1] :=� e2. We consider the possible values of τ .
– If τ = H , then from Corollary 1, μ ∼Γ μ′ and ν ∼Γ ν′. So μ′ ∼Γ ν′.
– If τ = L, then Γ, λ(�) �λ e1 : L and Γ, λ(�) �λ e2 : L and Γ (T ) = (φH , L).

By Simple Security, there exist i, j s.t. μ(e1)=ν(e1)=i and μ(e2)=ν(e2)=j.
Since μ∼Γ ν, there exists k ≥ 0 s.t μ(T )=〈n0, . . . nk−1〉, ν(T )=〈n′

0, . . . n
′
k−1〉.
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• if i ∈ [0, k − 1]. By the SOS rule (UPDATE-ARR), μ′ = μ[T [i] := j] and
ν′ = ν[T [i] := j]. So μ′ ∼Γ ν′.

• else, from the SOS rule (UPDATE-ARR), μ′ = μ and ν′ = ν. So μ′ ∼Γ ν′.
3. Case allocate� T [e]. We consider two cases.

– if τ = H , then by Corollary 1, μ ∼Γ μ′ and ν ∼Γ ν′. So μ′ ∼Γ ν′.
– if τ = L, from the rule (ALLOCATE), Γ, λ(�) � e : L and from Simple Security

μ(e)=ν(e). So, by the SOS rule (CALLOC), μ′(T )=ν′(T ). So, μ′ ∼Γ ν′.
4. Case skip�. From the SOS rule (NO-OP), μ = μ′ and ν = ν′. So, μ′ ∼Γ ν′.
5. Case P = if� e then P1 else P2. If (Γ, �) �λ e : L then μ(e) = ν(e) by

Simple Security. If μ(e) �= 0 then (μ, P )→(μ, P1)→∗μ′ and (ν, P )→(ν, P1)→∗ν′.
From the typing rule (IF), we have then Γ �λ P1 : L cmd. In addition, from Propo-
sition 1 , λ(P1) ≥ μ and λ(P1) ≥ ν and from Lemma 2, P1 is well-labelled by λ,
then by induction, μ′ ∼Γ ν′. The case μ(e) = 0 is similar.
If instead Γ, λ(�) � e : H , then from the typing rule (IF), we have Γ �λ P :
H cmd. Then by Corollary 1, μ ∼Γ μ′ and ν ∼Γ ν′. So μ′ ∼Γ ν′.

6. Case while� e do c′. Similar to the if case.
7. Case P = c1

�; P2. If ((c1
�; P2), μ)→jμ′, then by Lemma 4 there exist k and μ”

such that 0 < k < j, (c1
�, μ)→kμ”, (c1

�; P2, μ)→k(P2, μ”) and (P2, μ”)→j−kμ′.
Similarly, if ((c1

�; P ), ν)→j′ , ν′, then there exist k′ and ν” such that 0 < k′ < j′,
(c1

�, ν)→k′ν”, (c1
�; P2, ν)→k′(P2, ν”) and (ν”, P2)→j′−k′ν′. Since P is well-

labelled by λ, by the rule (O-SEQ), c1 and P2 are well-labelled by λ. In addition,
from Lemma 1, λ(P2) ≥ μ” and λ(P2) ≥ ν”. By induction, μ” ∼Γ ν”. So by
induction again, μ′ ∼Γ ν′.

Corollary 2. Suppose that P is well-labelled, Γ �λ P : τ cmd and μ ∼Γ ν and
lab(P ) = true and (c, μ)→∗μ′ and (c, ν)→∗ν′ then μ′ ∼Γ ν′.

6 Conclusion and Future Work

In this paper, we have proposed a type system for an accurate information flow analysis
of programs with arrays. Our type system is based on a pre-computed approximation
of integer variables manipulated by the program. We believe that our approach can be
extended to array aliases as in [17] as well as multi-dimensional arrays.

We have developed a prototype which, from a program P a labelling λ and some
initial typing, determines if P is well-labelled and when possible types the program
P respecting the initial typing by giving the minimal type. To improve this prototype,
the next step will be the integration of a module for automatic generation of a well-
labelling: the main ingredient for this will be an invariant generator such as in [10].

The approach we presented is flow-insensitive (the relative order of commands is
irrelevant for typing); it is known that flow sensitive approach are more accurate and
allows to consider polymorphic data structures since a specific type is inferred for each
variable at each program point [8,4]. However, our work is fully compatible with the
framework proposed in [11] (as our types can trivially be organised as lattices), allowing
to transform our type system into a flow-sensitive one.

As we explain, we based the well-labelling of programs only on the values of integer
variables ignoring the values contained in array cells. Recent works try to address the
issue of reasonning about array contents [9,13]. It could be interesting to know whether
this kind of works can be combined directly with our type system.
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Abstract. Object groups are collections of objects that perform collective work.
We study a calculus with object groups and develop a technique for the deadlock
analysis of such systems based on abstract descriptions of method’s behaviours.

1 Introduction

Object groups are collections of objects that perform collective work. The group ab-
straction is an encapsulation mechanism that is convenient in distributed programming
in several circumstances. For example, in order to achieve continuous availability or
load balancing through replication, or for retrieval services of distributed data. In these
cases, in order to keep consistencies, the group abstraction must define suitable pro-
tocols to synchronize group members. As usual with synchronization protocols, it is
possible that object groups may manifest deadlocks, which are particularly hard to dis-
cover in this context because of the two encapsulation levels of the systems (the object
and the group levels).

Following the practice to define lightweight fragments of languages that are suffi-
ciently small to ease proofs of basic properties, we define an object-oriented calculus
with group operations and develop a technique for the analysis of deadlocks. Our object-
oriented language, called FJg, is an imperative version of Featherweight Java [9] with
method invocations that are asynchronous and group-oriented primitives that are taken
from Creol [10] (cf. the JCoBoxes [19]).

In FJg, objects always belong to one group that is defined when they are created.
Groups consist of multiple tasks, which are the running methods of the objects therein.
Tasks are cooperatively scheduled, that is there is at most one task active at each time
per group and the active task explicitly returns the control in order to let other tasks
progress. Tasks are created by method invocation that are asynchronous in FJg: the
caller activity continues after the invocation and the called code runs on a different task
that may belong to a different group. The synchronization between the caller and the
called methods is performed when the result is strictly necessary [10,21,3]. Technically,
the decoupling of method invocation and the returned value is realized using future
variables (see [6] and the references in there), which are pointers to values that may be
not available yet. Clearly, the access to values of future variables may require waiting
for the value to be returned.

In a model with object groups and cooperative scheduling, a typical deadlock sit-
uation occurs when two active tasks in different groups are waiting for each other to
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return a value. This circular dependency may involve less or more than two tasks. For
example, a case of circularity of size one is

Int fact(Int n){ if (n=0) then return 1 ;

else return n*(this!fact(n-1).get) }

The above FJg code defines the factorial function (for the sake of the example we
include primitive types Int and conditional into FJg syntax. See Section 2.1). The in-
vocation of this!fact(n) deadlocks on the recursive call this!fact(n-1) because
the caller does not explicitly release the group lock. The operation get is needed in
order to synchronously retrieve the value returned by the invocation.

We develop a technique for the analysis of deadlocks in FJg programs based on
contracts. Contracts are abstract descriptions of behaviours that retain the necessary
informations to detect deadlocks [12,11]. For example, the contract of fact (assuming
it belongs to the class Ops) is G(){ Ops.factg: G() }. This contract declares that,
when fact is invoked on an object of a group G, then it will call recursively fact on
an object of the same group G without releasing the control – a group dependency. With
this contract, any invocation of fact is fated to deadlock because of the circularity
between G and itself (actually this.fact(0) never deadlocks, but the above contract
is not expressive enough to handle such cases).

In particular, we define an inference system for associating a contract to every
method of the program and to the expression to evaluate. Then we define a simple
algorithm – the dla algorithm – returning informations about group dependencies. The
presence of circularities in the result of dla reveals the possible presence of deadlocked
computations. Overall, our results show the possibility and the benefit of applying tech-
niques developed for process calculi to the area of object-oriented programming.

The paper is organized as follows. Section 2 defines FJg by introducing the main
ideas and presenting its syntax and operational semantics. Section 3 discusses few sam-
ple programs in FJg and the deadlocks they manifest. Section 4 defines contracts and
the inference algorithm for deriving contracts of expressions and methods. Section 5
considers the problem of extracting dependencies from contracts, presents the algo-
rithm dla, and discusses its enhancements. Section 6 surveys related works, and we
give conclusions and indications of further work in Section 7.

Due to space limitations, the technical details are omitted. We refer the interested
reader to the full paper in the home-pages of the authors.

2 The Calculus FJg

In FJg a program is a collection of class definitions plus an expression to evaluate. A
simple definition in FJg is the class C in Table 1. This program defines a class C with
a method m. When m is invoked, a new object of class C is created and returned. A
distinctive feature of FJg is that an object belongs to a unique group. In the above case,
the returned object belongs to a new group – created by the operator newg. If the new
object had to belong to the group of the caller method, then we would have used the
standard operation new.
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Table 1. Simple classes in FJg

class C { C m() { return newg C() ;} }
class D extends C { C n(D c) { return (c!m()).get ;} }

Method invocations in FJg are asynchronous. For example, the class D in Table 1
defines an extension of C with method n. In order to emphasize that the semantics of
method invocation is not as usual, we use the exclamation mark (instead of the dot nota-
tion). In FJg, when a method is invoked, the caller continues executing in parallel with
the callee without releasing its own group lock; the callee gets the control by acquir-
ing the lock of its group when it is free. This guarantees that, at each point in time, at
most one task may be active per group. The get operation in the code of n constraints
the method to wait for the return value of the callee before terminating (and therefore
releasing the group lock).

In FJg, it is also possible to wait for a result without keeping the group lock. This is
performed by the operation await that releases the group lock and leaves other tasks the
chance to perform their activities until the value of the called method is produced. That
is, x!m().await.get corresponds to a method invocation in standard object-oriented
languages.

The decoupling of method invocation and the returned value is realized in FJg by
using future types. In particular, if a method is declared to return a value of type C, then
its invocations return values of type Fut(C), rather than values of type C. This means that
the value is not available yet; when it will be, it is going to be of type C. The operation
get takes an expression of type Fut(C) and returns C (as the reader may expect, await
takes an expression of type Fut(C) and returns Fut(C)).

2.1 Syntax

The syntax of FJg uses four disjoint infinite sets of class names, ranged over by A, B,
C, · · · , field names, ranged over by f, g, · · · , method names, ranged over by m, n, · · · ,
and parameter names, ranged over by x, y, · · · , that contains the special name this.
We write C̄ as a shorthand for C1, · · · , Cn and similarly for the other names. Sequences
C1 f1, · · · , Cn fn are abbreviated as with C̄ f̄.

The abstract syntax of class declarations CL, method declarations M, and expressions
e of FJg is the following

CL ::= class C extends C {C̄ f̄; M̄}
M ::= C m (C̄ x̄){return e ; }
e ::= x | this.f | this.f = e | e!m(ē) | new C(ē) | e; e

| newg C(ē) | e.get | e.await

Sequences of field declarations C̄ f̄, method declarations M̄, and parameter declarations
C̄ x̄ are assumed to contain no duplicate names.

A program is a pair (ct, e), where the class table ct is a finite mapping from class
names to class declarations CL and e is an expression. In what follows we always as-
sume a fixed class table ct. According to the syntax, every class has a superclass de-
clared with extends. To avoid circularities, we assume a distinguished class name
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Table 2. Lookup auxiliary functions (• is the empty sequence)

Field lookup:

fields(Object) = •
ct(C) = class C extends D {C̄ f̄; M̄} fields(D) = C̄′ ḡ

fields(C) = C̄ f̄, C̄′ ḡ

Method type lookup:

ct(C) = class C extends D {C̄ f̄; M̄}
C′ m (C̄′ x̄){return e; } ∈ M̄

mtype(m, C) = C̄′ → C′

ct(C) = class C extends D {C̄ f̄; M̄}
m � M̄

mtype(m, C) = mtype(m, D)

Method body lookup:

ct(C) = class C extends D {C̄ f̄; M̄}
C′ m (C̄′ x̄){return e; } ∈ M̄

mbody(m, C) = x̄.e

ct(C) = class C extends D {C̄ f̄; M̄}
m � M̄

mbody(m, C) = mbody(m, D)

Heap lookup functions:

H(o) = (C, G, [f̄ : v̄])

class(H, o) = C group(H, o) = G field(H, o, fi) = vi

Object with no field and method declarations whose definition does not appear in the
class table. As usual, class C {· · · } abbreviates class C extends Object {· · · }.

Let types T be either class names C or futures Fut(C). Let also fields(C), mtype(m, C),
and mbody(m, C) [9] be the standard FJ lookup functions that are reported in Table 2.
The class table satisfies the following well-formed conditions:
(i) Object � dom(ct);

(ii) for every C ∈ dom(ct), ct(C) = class C · · · ;
(iii) every class name occurring in ct belongs to dom(ct);
(iv) the least relation <: , called subtyping relation, over types T, closed by reflexivity

and transitivity and containing

C1 <: C2

Fut(C1) <: Fut(C2)

ct(C1) = class C1 extends C2 {· · · }
C1 <: C2

is antisymmetric;
(v) if ct(C) = class C extends D {· · · } and mtype(m, C) = C̄′ → C′ and mtype(m, D) =
D̄′ → D′ then C′ <: D′ and D̄′ <: C̄′.

It is worth to remark that future types never appear in FJg programs, where types of
fields and of methods are always classes. This restriction excludes either to store future
values in fields or to invoke methods with future values (that later on may be

2.2 Semantics

Below we use an infinite set of object names, ranged over by o, o′, · · · , an infinite set of
group names, ranged over by G, G′, · · · , and an infinite set of task names, ranged over
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by t, t′, · · · . We assume that the set of group names has a distinguished element �,
associated to the expressions irrelevant for the deadlock analysis, such as this.f.
FJg has an operational semantics that is defined in terms of a transition relation −→

between configurations H � S, where H is the heap and S is a set of tasks. The heap
maps (i) objects names o to tuples (C, G, [f̄ : v̄]) that record their class, their group,
and their fields’ values; (ii) group names G to either ⊥ or � that specify whether the
group is unlocked or locked, respectively. We use the standard update operations on
heaps H[o �→ (C, G, [f̄ : v̄])] and H[G �→ l] and on fields [f̄ : v̄][f : v] with the usual
meanings. Tasks are tuples t :lo e, where t is the task name, o is the object of the task,
l is either � (if the task owns the group lock) or ⊥ (if not), and e is the expression to
evaluate. The superscript l is omitted when it is not relevant. In the semantic clauses,
by abuse of the notation, the syntactic category e also addresses values, ranged over
by v, which are either object or task names. The set of object and task names in e is
returned by the function names(e). The same function, when applied to a set of tasks S
returns the object, group, and task names in S. The operational semantics also uses

– the heap lookup functions class(H, o), group(H, o), and field(H, o, fi) that respec-
tively return the class, the group and the values of i-th field of o in H (see Table 2);

– evaluation contexts E whose syntax is:

E ::= [ ] | E!m(ē) | this.f = E | o!m(v̄,E, ē) | new C(v̄,E, ē)
| newg C(v̄,E, ē) | E.get | E.await | E; e

The preliminary notions are all in place for the definition of the transition relation that
is given in Table 3. It is worth to notice that, in every rule, a task moves if it owns
the lock of its group. Apart this detail, the operations of update, object creation, and
sequence are standard. We therefore focus on the operations about groups and futures.
Rule (Invk) defines asynchronous method invocation, therefore the evaluation produces
a future reference t′ to the returned value, which may be retrieved by a get operation
if needed. Rule (Newg) defines newg C(v̄), which creates a new group G′ and a new
object o′ of that group with fields initialized to v̄. This object is returned and the group
G′ is unlocked – no task of its is running. It will be locked as soon as a method of o′

is invoked – see (Lock). Rule (Release) models method termination that amounts to
store the returned value in the configuration and releasing the group lock. Rule (Get)
allows one to retrieve the value returned by a method. Rules (AwaitT) and (AwaitF)
model the await operation: if the task t′ is terminated – it is paired to a value in the
configuration – then await is unblocking; otherwise the group lock is released and the
task t is blocked. Rule (Config) has standard premises for avoiding unwanted name
matches when lifting local reductions to complete configurations.

The initial configuration of a program (ct, e) is H � t :�o e[o/this] where H = o �→
(Object, G, [ ]), G �→ � (following our previous agreement, the class table is implicit).

Example 1. As an example, we detail the evaluation of the expression (newg
D())!n(newg D()).get, where the class D is defined in Table 1.

H � t :�o (newg D())!n(newg D()).get
−→ H1 � t :�o o1!n(newg D()).get (1)
−→ H2 � t :�o o1!n(o2).get (2)
−→ H2 � t :�o t1.get, t1 :⊥o1 o2!m().get (3)
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Table 3. The transition relation of FJg

(Update)

H(o′) = (C, G, [f̄ : v̄])

H � t :�o E[o′.f = v] −→ H[o′ �→ (C, G, [f̄ : v̄][f : v])] � t :�o E[v]
(Invk)

class(H, o′) = C mbody(m, C) = x̄.e t′ � t

H � t :�o E[o′!m(v̄)] −→ H � t :�o E[t′], t′ :⊥
o′ e[o

′
/this][v̄/x̄]

(New)

group(H, o) = G fields(C) = T̄ f̄
o′ � dom(H)

H′ = H[o′ �→ (C, G, [f̄ : v̄])]

H � t :�o E[new C(v̄)] −→ H′ � t :�o E[o′]

(Newg)

fields(C) = T̄ f̄ o′, G′ � dom(H)
H′ = H[o′ �→ (C, G′, [f̄ : v̄])][G′ �→ ⊥]

H � t :�o E[newg C(v̄)] −→ H′ � t :�o E[o′]

(Get)

H � t :�o E[t′.get], t′ :
o′ v −→ H � t :�o E[v], t′ :

o′ v

(AwaitT)

H � t :�o E[t′.await], t′ :
o′ v −→ H � t :�o E[t′], t′ :

o′ v

(AwaitF)
group(H, o) = G

H[G �→ �] � t :�o E[t′.await] −→ H[G �→ ⊥] � t :⊥o E[t′.await]

(Lock)
group(H, o) = G e � v

H[G �→ ⊥] � t :⊥o e −→ H[G �→ �] � t :�o e

(Release)
group(H, o) = G

H[G �→ �] � t :�o v −→ H[G �→ ⊥] � t :⊥o v

(Seq)

H � t :�o v; e −→ H � t :�o e

(Config)

H � S −→ H′ � S′

(names(S′) \ names(S)) ∩ names(S′′) = ∅
H � S,S′′ −→ H′ � S′,S′′

−→ H2[G1 �→ �] � t :�o t1.get, t1 :�o1 o2!m().get (4)
−→ H2[G1 �→ �] � t :�o t1.get, t1 :�o1 t2.get, t2 :⊥o2 newg C() (5)
−→ H3 � t :�o t1.get, t1 :�o1 t2.get , t2 :�o2 newg C() (6)
−→ H4 � t :�o t1.get, t1 :�o1 t2.get , t2 :�o2 o3 (7)
−→ H4 � t :�o t1.get, t1 :�o1 o3 , t2 :�o2 o3 (8)

where H = o �→ (Object, G, [ ]), G �→ � H1 = H[o1 �→ (D, G1, [ ]), G1 �→ ⊥]
H2 = H1[o2 �→ (D, G2, [ ]), G2 �→ ⊥] H3 = H2[G1 �→ �, G2 �→ �]
H4 = H3[o3 �→ (C, G3, [ ]), G3 �→ ⊥]

The reader may notice that, in the final configuration, the tasks t1 and t2 will terminate
one after the other by releasing all the group locks.

3 Deadlocks

We introduce our formal developments about deadlock analysis by discussing a couple
of expressions that manifest deadlocks. Let D be the class of Table 1 and consider the
expression (newg D())!n(new D()).get. This expression differs from the one of
Example 1 for the argument of the method (now it is new D(), before it was newg
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D()). The computation of (newg D())!n(new D()).get is the same of the one in
Example 1 till step (5), replacing the value of H2 with H1[o2 �→ (D, G1, [ ])] (o1 and o2
belong to the same group G1). At step (5), the task t2 will indefinitely wait for getting
the lock of G1 since t1 will never release it.

Deadlocks may be difficult to discover when they are caused by schedulers’ choices.
For example, let D′ be the following extension of the class C in Table 1:

class D′ extends C { D′ n(D′ b, D′ c){ return b!p(c);c!p(b);this ;}
C p(D′ c){ return (c!m()).get ;} }

and consider the expression (newg D′())!n(newg D′(),new D′()).get. The evalu-
ation of this expression yields the tasks t :⊥o o1, t1 :⊥o1 o1, t2 :⊥o2 o3!m().get, t3 :⊥o3
o2!m().get with o ∈ G, o1, o3 ∈ G1 and o2 ∈ G2. If t2 is completed before t3
grabs the lock (or conversely) then no deadlock will be manifested. On the contrary, the
above tasks may evolve into t :⊥o o1, t1 :⊥o1 o1, t2 :�o2 t4.get, t3 :�o3 t5.get, t4 :⊥o3
newg C(), t5 :⊥o2 newg C() that is a deadlock because neither t4 nor t5 will have any
chance to progress.

4 Contracts in FJg

In the following we will consider plain FJg programs where methods never return fields
nor it is possible to invoke methods with fields in the subject part or in the object part.
For example, the expressions (this.f)!m() and x!n(this.f) are not admitted, as
well as a method declaration like C p(){ return this.f ; }. (The contract system
in Table 4 and 5 will ban not-plain programs.) This restriction simplifies the forego-
ing formal developments about deadlock analysis; the impact of the restriction on the
analysis of deadlocks is discussed in Section 7.

The analysis of deadlocks in FJg uses abstract descriptions of behaviours, called con-
tracts, and an inference system for associating contracts to expressions (and methods).
(The algorithm taking contracts and returning details about deadlocks is postponed to
the next section.) Formally, contracts γ, γ′, · · · are terms defined by the rules:

γ ::= ε | C.m : G(Ḡ); γ | C.mg : G(Ḡ); γ | C.ma : G(Ḡ); γ

As usual, γ; ε = γ = ε; γ. When γ̄ is a tuple of contracts (γ1, · · · , γn), seq(γ̄) is a short-
ening for the sequential composition γ1; · · · ; γn. The sequence γ collects the method
invocations inside expressions. In particular, the items of the sequence may be empty,
noted ε; or C.m : G(Ḡ), specifying that the method m of class C is going to be invoked on
an object of group G and with arguments of group Ḡ; or C.mg : G(Ḡ), a method invoca-
tion followed by a get operation; or C.ma : G(Ḡ), a method invocation followed by an
await operation. For example, the contract C.m:G(); D.n:G′() defines two method
invocations on groups G and G′, respectively (methods carry no arguments). The con-
tract C.m:G(); D.ng:G′(); E.pa:G′′() defines three method invocations on different
groups; the second invocation is followed by a get and the third one by an await.

Method contracts, ranged over by G, G′, · · · , are G(Ḡ){γ} G′, where G, Ḡ are pairwise
different group names – G(Ḡ) is the header –, G′ is the returned group, and γ is a contract.
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A contract G(Ḡ){γ} G′ binds the group of the object this and the group of the arguments
of the method invocation in the sequence γ. The returned group G′ may belong to G, Ḡ
or not, that is it may be a new group created by the method. For example, let γ =
C.m:G(); D.ng:G′(); E.pa:G′′() in (i) G(G′, G′′){γ} G′′ and (ii) G(G′){γ} G′′. In case
(i) every group name in γ is bound by names in the header. This means that method
invocations are bound to either the group name of the caller or to group names of the
arguments. This is not the case for (ii), where the third method invocation in its body
and the returned group address a group name that is unbound by the header. This means
that the method with contract (ii) is creating an object of class E belonging to a new
group – called G′′ in the body – and is performing the third invocation to a method of
this object.

Method contracts are quotiented by the least equivalence =α identifying two con-
tracts that are equivalent after an injective renaming of (free and bound) group names.
For example G(G′){C.m:G(); D.ng:G′(); E.pa:G′′()} G′ =α G1(G2){C.m:G1();

D.ng:G2(); E.p
a:G′′()} G2. Additionally, since the occurrence of G′′ represents

an unbound group, writing G′′ or any other free group name is the same. That
is G(G′){C.m:G(); D.ng:G′(); E.pa:G′′()} G′ =α G1(G2){C.m:G1(); D.n

g:G2();

E.pa:G3()} G2.
Let Γ, called environment, be a map from either names to pairs (T, G) or class and

method names, i.e. C.m, to terms G(Ḡ) → G′, called group types, where G, Ḡ, G′ are all
different from �. The contract judgement for expressions has the following form and
meaning: Γ � e : (T, G), γ means that the expression e has type T and group G and has
contract γ in the environment Γ.

Contract rules for expressions are presented in Tables 4 where,
– in rule (T-Invk) we use the operator fresh(Ḡ, G) that returns G if G ∈ Ḡ or a fresh

group name otherwise;
– in rules (T-Get) and (T-Await), we use the operator � defined as follows:

ε � await = ε
(γ; C.m G(Ḡ)) � await = γ; C.ma G(Ḡ) (γ; C.ma G(Ḡ)) � await = γ; C.ma G(Ḡ)

(γ; C.m G(Ḡ)) � get = γ; C.mg G(Ḡ) (γ; C.ma G(Ḡ)) � get = γ; C.ma G(Ḡ)

(the other combinations of get and await are forbidden by the contract system).
The rule (T-Field) associates the group� to the expression this.f, provided the field f
exists. This judgment, together with the premises of (T-Invk) and the assumption that�
does not appear in Γ(C.m), imply that subjects and objects of method invocations cannot
be expressions as this.f. Apart these constraint, the contract of e!m(ē) is as expected,
i.e. the sequence of the contract of e, plus the one of ē, with a tailing item C.m G(Ḡ).
Rules (T-New) and (T-NewG) are almost the same, except the fact that the latter one
returns a fresh group name while the former one return the group of this. The other
rules are standard.

Let G(Ḡ) → G′ =α H(H̄) → H′ if and only if G(Ḡ){ε}G′ =α H(H̄){ε}H′. The contract
judgements for method declarations, class declarations and programs have the following
forms and meanings:

– Γ; C � D′ m (D̄ x̄){return e; } : G(Ḡ){γ} G′ means that the method
D′ m (D̄ x̄){return e; } has method contract G(Ḡ){γ} G′ in the class C and in the
environment Γ;
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Table 4. Contract rules of FJg expressions

(T-Var)

Γ � x : Γ(x), ε

(T-Field)

Γ � this : (C, G), ε D f ∈ fields(C)

Γ � this.f : (D,�), ε
(T-Invk)

Γ � e : (C, G), γ Γ � ē : (D̄, Ḡ), γ̄ � � GḠ
mtype(m, C) = C̄→ C′ D̄ <: C̄

Γ(C.m) = G′(Ḡ′)→ G′′ G′′′ = fresh(GḠ, G′′[GḠ/G′Ḡ′])

Γ � e!m(ē) : (Fut(C′), G′′′), γ; (seq(γ̄));C.m : G(Ḡ)

(T-New)

Γ � this : (C, G), ε Γ � ē : (C̄, Ḡ), γ̄
fields(C′) = C̄′ f̄′ C̄ <: C̄′

Γ � new C′(ē) : (C′, G), (seq(γ̄))

(T-NewG)

Γ � ē : (C̄, Ḡ), γ̄ G fresh
fields(C) = C̄′ f̄′ C̄ <: C̄′

Γ � newg C(ē) : (C, G), (seq(γ̄))

(T-Get)
Γ � e : (Fut(C), G), γ

Γ � e.get : (C, G), γ � get

(T-Await)
Γ � e : (Fut(C), G), γ

Γ � e.await : (Fut(C), G), γ � await

(T-Update)

Γ � this : (C, G), ε Df ∈ fields(C)
Γ � e : (D′, G′), γ D′ <: D

Γ � this.f = e : (D′, G′), γ

(T-Seq)
Γ � e : (T, G), γ Γ � e′ : (T′, G′), γ′

Γ � e ; e′ : (T′, G′), γ; γ′

– Γ � class C extends D {C̄ f̄; M̄} : {m̄ �→ Ḡ} means that the class declaration C
has contract {m̄ �→ Ḡ} in the environment Γ;

– � (ct, e) : cct, (T, G), γ means that the program (ct, e) has contract class table cct
and type/group/contract (T, G), γ, where a contract class table maps class names to
terms {m̄ : Ḡ}.

Table 5 reports the typing judgments for method and class declarations and for pro-
grams. We use the auxiliary function mname(M̄) that returns the sequence of method
names in M̄. We also write m ∈ ct(C) if ct(C) = class C extends D {C̄ f̄; M̄} and
m ∈ mname(M̄). Rule (T-Program) requires that if a subclass overrides a method of a
superclass then the two methods must have equal contract. This constraint is expressed
by the predicate cct is ct consistent defined as follows:

for every ct(C) = class C extends D {· · · } :
m ∈ ct(C) and m ∈ ct(D) implies cct(C)(m) =α cct(D)(m)

This consistency requirement may be definitely weakened: we defer to future works the
issue of studying a sub-contract relation that is correct with respect to class inheritance.

The proof of correctness of the contract system in Tables 4 and 5 requires additional
rules that define the contract correctness of (runtime) configurations. These rules are:

(T-Task)

Γ � this : (C, G), ε Γ � t : (Fut(C), G′), ε

Γ � t.get : (C, G′), (G, G′)

(T-GetR)

Γ � e : (Fut(C), G), ε e � t
Γ � e.get : (C, G), ε
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Table 5. Contract rules for method declarations and class declarations

Contractually correct method declaration and class declaration:

(T-Method)

mtype(m, C) = C̄′ → C′ mbody(m, C) = x̄.e
Ḡ, G fresh Γ + x̄ : (C̄′, Ḡ) + this : (C, G) � e : (T′, G′), γ T′ <: C′

Γ(C.m) =α G(Ḡ)→ G′

Γ; C � C′ m (C̄ x̄){return e; } : G(Ḡ){γ} G′

Contractually correct class and program:

(T-Class)

Γ; C � M̄ : Ḡ
Γ � class C extends D {C̄ f̄; M̄} : {mname(M̄) �→ Ḡ}

(T-Program)

C ∈ dom(ct) implies Γ � ct(C) : cct(C)
cct is ct consistent

G fresh Γ + this : (Object, G) � e : (T, G), γ

� (ct, e) : cct, (T, G), γ

(T-Configuration)

fields(C) = C̄ f̄
H(o) = (C, G, [f̄ : v̄]) implies Γ � o : (C, G), ε and Γ � v̄ : C̄′ and C̄′ <: C̄

t :o e ∈ S implies Γ � t : (Fut(D), G′), ε and Γ � e : (D, G′), γ and o ∈ dom(H)

Γ � (H � S)

Rule (T-Task) define contract correctness of runtime expressions as t.get. The rule
uses contracts extended with terms (G, G′).γ. While rule (T-GetR) deals with the ex-
pression t.await.get. It is worth to notice the absence of rules for the runtime expres-
sion t.await. In fact, the judgment of this expression follows by (T-Await) and the
definition of ε � await.

Theorem 1 (Subject reduction)
1. If � (ct, e) : (cct, γ) then the initial configuration of (ct, e) is contractually cor-

rect. Namely, there is Γ such that Γ � (H � t :�o e[o/this]), where Γ = o �→
(Object, G), t �→ (Fut(C), G) and H = o �→ (Object, G, [ ]), G �→ �.

2. Let Γ � (H � S) and H � S −→ H′ � S′. Then there is Γ′ such that Γ′ � (H′ � S′).

5 Deadlock Analysis in FJg

The contract system in Tables 4 and 5 does not convey any information about dead-
locks: it only associates contracts to expressions (and methods). The point is that con-
tracts retain the necessary informations about deadlocks and the analysis may be safely
reduced to them, overlooking all the other details. We begin with the formal definition
of a deadlock.
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Definition 1. A configuration H � S is deadlocked if there are ti, oi, Ei, and ei, with
1 ≤ i ≤ n + k, such that n ≥ 1 and

– every 1 ≤ i ≤ n is ti :�oi
Ei[t�i .get] with �i ∈ 1..n + k and

– every n + 1 ≤ j ≤ n + k is t j :⊥o j
e j with group(H, o j) ∈

{group(H, o1), · · · , group(H, on)}.

A configuration H � S is deadlock-free if, for every H � S −→∗ H′ � S′, H′ �
S′ is not deadlocked. A program (ct, e) is deadlock-free if its initial configuration is
deadlock-free.

It is easy to verify that the programs discussed in Section 3 are not deadlock-free. We
observe that a configuration may have a blocked task without retaining any deadlock.
This is the case of the process C.mg G(), where C.m : G(){C.mg(G′)} G, that produces
an infinite chain of tasks ti :�oi

ti+1.get. (The following dla algorithm will reject this
contract.)

We say that a configuration H � S has a group-dependency (G, G′) if S contains
either the tasks t :�o E[t′.get], t′ :o′ e, with t′ retaining or not its group lock, or the
tasks t :⊥o e, t

′ :�o′ E[t′′.get] (in both cases e is not a value) and G = group(H, o) and
G′ = group(H, o′). A configuration contains a group-circularity if the transitive closure
of its group-dependencies has a pair (G, G). The following statement asserts that a group-
circularity signals the presence of a sequence of tasks mutually waiting for the release
of the group lock of the other.

Proposition 1. A configuration is deadlocked if and only if it has a group-circularity.

In the following, sets of dependencies will be noted G,G′, · · · . Sequences G1; · · · ; Gn

are also used and shortened into G. Let G ∪ (G1; · · · ; Gn) be G ∪ G1; · · · ; G ∪ Gn. A
set G is not circular, written G : not-circular, if the transitive closure of G does
not contain any pair (G, G). The definition of being not circular is extended to sequences
G1; · · · ; Gn, written G1; · · · ; Gn : not-circular, by constraining every Gi to be not
circular.

Dependencies between group names are extracted from contracts by the algorithm
dla defined in Table 6. This algorithm takes an abstract class contract table Δcct,
a group name G and a contract γ and returns a sequence G. The abstract class contract
table Δcct takes a pair class name C/method name m, written C.m, and returns an abstract
method contract (G, Ḡ)G. The map Δcct is the least one such that

Δcct(C.m) = (G, Ḡ)
⋃

i∈1..n
Gi if and only if

cct(C)(m) = G(Ḡ){γ} G′
and dla(Δcct, G, γ) = G1; · · · ; Gn

We notice that Δcct is well-defined because: (i) group names in cct are finitely many;
(ii) dla never introduces new group names; (iii) for every C.m, the element Δcct(C.m)
is a finite lattice where elements have shape (G, Ḡ)G and where the greatest set G is the
cartesian product of group names in cct. Additionally, in order to augment the precision
of Δcct, we assume that cct satisfies the constraint that, for every C.m and D.n such
that C.m � D.n, cct(C)(m) and cct(D)(n) have no group name in common (both bound
and free). (When this is not the case, sets in the codomain of Δcct are smaller, thus
manifesting more circularities.)
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Table 6. The algorithm dla

dla(Δcct, G, ε) = ∅
Δcct(C.m) = (G′′; Ḡ′′)G dla(Δcct, G, γ′) = G

dla(Δcct, G, C.m G′(Ḡ′); γ′) = G[G
′; Ḡ′/G′′; Ḡ′′] ∪G

Δcct(C.m) = (G′′; Ḡ′′)G dla(Δcct, G, γ′) = G

dla(Δcct, G, C.mg G′(Ḡ′); γ′) = ({(G, G′)} ∪ G[G
′; Ḡ′/G′′; Ḡ′′]); G

Δcct(C.m) = (G′′; Ḡ′′)G dla(Δcct, G, γ′) = G

dla(Δcct, G, C.ma G′(Ḡ′); γ′) = G[G
′; Ḡ′/G′′; Ḡ′′]; G

Let us comment the rules of Table 6. The second rule of dla accounts for method
invocations C.m G′(Ḡ′); γ′. Since the code of C.m will run asynchronously with respect to
the continuation γ′, i.e. it may be executed at any stage of γ′, the rule adds the pairs of
C.m (stored in Δcct(C.m)) to every set of the sequence corresponding to γ′. The third rule
of dla accounts for method invocations followed by get C.mg G′(Ḡ′); γ′. Since the code
of C.m will run before the continuation γ′, the rule prefixes the sequence corresponding
to γ′ with the pairs of C.m extended with (G, G′), where G is the group of the caller and G′

is the group of the called method. The rule for method invocations followed by await
is similar to the previous one, except that no pair is added because the await operation
releases the group lock of the caller.

A program (ct, e) is deadlock free if � (ct, e) : cct, (T, G), γ and dla(Δcct, G, γ) :
not-circular, where G is a fresh group name, that is G does not clash with group
names in cct (group names in γ are either G or fresh as well – see Table 4).

Example 2. Let C and D be the classes of Table 1 and D′ be the class in Section 3. We
derive the following contract class table cct and abstract contract class table Δcct:

C.m �→ G(){ ε } G′
D.n �→ E(E′){D.mg:E′()} E′′
D.m �→ F(){ ε } F′
D′.n �→ H(H′,H′′){D′.p:H′(H′′); D′.p:H′′(H′)} H
D′.p �→ I(I′){ D′.mg: I′() } I′′
D′.m �→ L() { ε } L′

C.m �→ (G)∅
D.n �→ (E,E′){ (E,E′) }
D.m �→ (F)∅
D′.n �→ (H,H′,H′′){(H′,H′′),(H′′,H′)}
D′.p �→ (I,I′){ (I,I′) }
D′.m �→ (L)∅

Now consider the expressions (newg D())!n(newg D()).get and (newg

D())!n(new D()).get of Section 2, which have contracts D.ng:L2(L3)
and D.ng:L2(L1), respectively, with L1 being the group of this. We obtain
dla(Δcct, L1, D.n

g : L2(L3)) = {(L2, L3), (L1, L2)} and dla(Δcct, L1, D.n
g : L2(L′)) =

{(L2, L1), (L1, L2)} where the first set of dependencies has no group-circularity –
therefore (newg D())!n(newg D()).get is deadlock-free – while the second has a
group-circularity – (newg D())!n(new D()).get – may manifest a deadlock, and
indeed it does.

Next consider the expression (newg D′())!n(newg D′(),new D′()).get of Sec-
tion 3, which has contract D’.ng:L′′(L′′′,L′), being L′ the group of this. We obtain

dla(Δcct, L′, (newg D′())!n(newg D′(),new D′()).get) = {(L′′′, L′), (L′, L′′′), (L′, L′′)}
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where the set of dependencies manifests circularities. In fact, in Section 3, we observed
that the above expression may manifest a deadlock.

The dla algorithm is correct, that is, if its result contains a group-circularity, then the
evaluation of the analyzed expression may manifest a deadlock (vice versa, if there is
no group-circularity then no deadlock will be ever manifested).

Theorem 2. If � (ct, e) : (cct, γ) and dla(Δcct, G, γ) is not circular then (ct, e) is
deadlock-free.

The algorithm dla may be strengthened in several ways. Let us discuss this issue with
a couple of examples. Let C′ be the class

class C′ { C′ m(C′ b, C′ c){ return b!n(c).get ; c!n(b).get ;}
C′ n(D′ c){ return (c!p).get ;}
C′ p() { return new C′() ;} }

and let cct be its contract class table:

C′.m �→ G(G′,G′′){C′.ng:G′(G′′) ; C′.ng:G′′(G′)} G′
C′.n �→ F(F′){C′.pg:F′()} F′
C′.p �→ E(){ε} E

The reader may verify that the expression (new C′())!m1(newg C′(), newg
C′()) never deadlocks. However, since Δcct(C′.m) = (G, G′, G′′){(G, G′), (G′, G′′),
(G, G′′), (G′′, G′)}, the algorithm dla wrongly returns a circular set of dependencies.
This problem is due to the fact that Δcct melds the group dependencies of differ-
ent time points into a single set. Had we preserved the temporal separation, that is
{(G, G′), (G′, G′′)}; {(G, G′′), (G′′, G′)}, no group-circularity should have been manifested.

The second problem is due to the fact that free group names in method contracts
should be renamed each time the method is invoked (with fresh group names) be-
cause two invocations of a same method create different group names. On the con-
trary, the algorithm dla always uses the same (free) name. This oversimplification
gives a wrong result in this case. Let C′′ be class C′′ { C′′ m(){ return (newg
C′′())!m().get ;} } (with cct(C′′.m) = G(){C′.mg : G′()}G′) and consider the ex-
pression (newg C′′())!m().get. The evaluation of this expression never manifests
a deadlock, however its contract is C′′.mg : F() and the algorithm dla will return the
set {(G, F), (F, G′), (G′, G′), }, which has a group-circularity. In the conclusions we will
discuss the techniques for reducing these errors.

6 Related Works

The notion of grouping objects dates back at least to the mid 80’es with the works of
Yonezawa on the language ABCL/1 [8,21]. Since then, several languages have a notion
of group for structuring systems, such as Eiffel// [3], Hybrid [17], and ASP [4]. A library
for object groups has also been defined for CORBA [7]. In these proposals, a single task
is responsible for executing the code inside a group. Therefore it is difficult to model
behaviours such as waiting for messages without blocking the group for other activities.
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Our FJg calculus is inspired to the language Creol that proposes object groups, called
JCoBoxes, with multiple cooperatively scheduled tasks [10]. In particular FJg is a sub-
calculus of JCoBoxc in [19], where the emphasis was the definition of the semantics
and the type system of the calculus and the implementation in Java.

The proposals for static analyses of deadlocks are largely based on types (see for in-
stance [11,20] and, for object-oriented programs [1]). In these papers, a type system is
defined that computes a partial order of the locks in a program and a subject reduction
theorem demonstrates that tasks follow this order. On the contrary, our technique does
not computes any ordering of locks, thus being more flexible: a computation may ac-
quire two locks in different order at different stages, thus being correct in our case, but
incorrect with the other techniques. A further difference with the above works is that we
use contracts that are terms in simple (= with finite states) process algebras [12]. The
use of simple process algebras to describe (communication or synchronization) proto-
cols is not new. This is the case of the exchange patterns in ssdl [18], which are based
on CSP [2] and the pi-calculus [14], or of the behavioral types in [16] and [5], which
use CCS [13]. We expect that finite state abstract descriptions of behaviors can support
techniques that are more powerful than the one used in this contribution.

7 Conclusions

We have developed a technique for the deadlock analysis of object groups that is based
on abstract descriptions of methods behaviours.

This study can be extended in several directions. One direction is the total cover-
age of the full language FJg. This is possible by using group records Θ,Θ′ = G[f1 :
Θ1, · · · , fk : Θk] instead of simple group names. Then contracts such as C.m : G(Ḡ)
become C.m : Θ(Θ1, · · · , Θn) and the rule (T-Field) is refined into

(T-Field-ref)

Γ � this : (C, G[f̄ : Θ]), ε D f ∈ fields(C) f : Θ′ ∈ f̄ : Θ

Γ � this.f : (D, Θ′), ε

The overall effect of this extension is to hinder the notation used in the paper, without
conveying any interesting difficulty (for this reason we have restricted our analysis to a
sublanguage). We claim that every statement for plain FJg in this paper also hold for
full FJg.

A different direction of research is the study of techniques for augmenting the ac-
curacy of the algorithm dla, which is imprecise at the moment. The intent is to use
finite state automata with name creation, such as those in [15], and modeling method
contracts in terms of finite automata and study deadlocks in sets of these automata.

Other directions address extensions of the language FJg. One of these extensions is
the removal of the constraint that future types cannot be used by programmers in FJg.
Future types augment the expressivity of the language. For example it is possible to
synchroniza several tasks and define livelocks:

class C { f: Fut(C) ; C m() { return this.f = this!n() ; new C() ;}
C n() { return this.f.get ; new C() ;} }
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Another extension is about re-entrant method invocations (usually used for tail recur-
sions), which are synchronous invocations. Such extension requires revisions of seman-
tics rules, of the contract rules in Table 4, and of the dla algorithm.
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Abstract. In this paper, we use knowledge-based control theory to mon-
itor global properties in a distributed system. We control the system to
enforce that if a given global property is violated, at least one process
knows this fact, and therefore may report it. Our approach uses knowl-
edge properties that are precalculated based on model checking. As local
knowledge is not always sufficient to monitor a global property in a con-
current system, we allow adding temporary synchronizations between
two or more processes to achieve sufficient knowledge. Since synchro-
nizations are expensive, we aim at minimizing their number using the
knowledge analysis.

1 Introduction

The goal of this paper is to transform a distributed system such that it can
detect and report violations of invariants. Such properties can be described by
a predicate ψ on global states in distributed systems. This may express for
example that the overall power in the system is below a certain threshold. When
a violation is detected, some activity to adjust the situation may be triggered.
There is no global observer that can decide whether a global state violating
the given property ψ has been reached. On the other hand, the processes may
not have locally enough information to decide this and thus need sometimes to
communicate with each other to obtain more information.

Our solution for controlling a system to detect global failure is based on
precalculating knowledge properties of the distributed system [5,12]. We first
calculate in which local states a process has enough information to identify that
ψ is violated: in each reachable global state in which ψ becomes false, at least
one process must detect this situation. This process may then react, e.g. by
informing the other processes or by launching some repair action. Furthermore,
we do not want false alarms. Due to the distribute nature of the system, there
can be states where firing a transition t would lead to a state in which no process
knows (alone) whether ψ has been violated. In that case, additional knowledge
is necessary to fire t. We achieve this by adding temporary synchronizations
that allow combining the knowledge of a set of processes. To realize at runtime
the temporary synchronizations needed to achieve such combined knowledge, as
precalculated using the knowledge analysis at compile time, a synchronization
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algorithm (such as α-core [14]) is used. To reduce the communication overhead,
it is desirable to minimize both the number of additional synchronizations and
the number of participants in each synchronization.

This work is related to the knowledge based control method of [2,7]. There,
knowledge obtained by model checking is used to control the system in order to
enforce some property, which may be a state invariant ψ. Here, we want to control
the system to enforce that there is always at least one process with knowledge
to detect a violation of such a property as soon as it happens. Controlling the
system to avoid property violation is a different task from controlling the system
to detect it. In some cases, controlling for avoidance may lead to restricting the
system behavior much more severely than controlling for detection. Note also
that for an application such as runtime verification, prevention is not needed
while detection is required (e.g., it is acceptable that the temperature raises
above its maximal expected level, but whenever this happens, some specific
intervention is required).

Monitoring is a simpler task than controlling as it is nonblocking. Attempting
to enforce a property ψ may result in being blocked in a state where any continu-
ation will violate ψ. This may require strengthening ψ in order not to reach such
states, through an expensive global state search, which may consequently imply
a severe reduction in nondeterministic choice. This situation does not happen in
monitoring; at worst, this may lead to a synchronization between processes.

As an alternative to monitoring one may use snapshot algorithms such as
those of Chandy and Lamport [4] or Apt and Francez [1]. However, snapshot
algorithms only report about some sampled global states. If the property ψ is
not stable, that is, if ψ ⇒ �ψ is not guaranteed, then the fact that ψ has been
true at some global state may go undetected.

2 Preliminaries

We represent distributed systems as Petri nets, but the method and algorithms
developed here can equally apply to other models, e.g., communicating automata
or transition systems.

Definition 1. A (safe) Petri net N is a tuple (P, T, E, s0) where:

– P is a finite set of places. The set of states (markings) is defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T ) ∪ (T × P ) is a bipartite relation between the places and the

transitions.
– s0 ⊆ 2P is the initial state (initial marking).

Definition 2. For a transition t ∈ T , we define the set of input places •t as
{p ∈ P |(p, t) ∈ E}, and the set of output places t• as {p ∈ P |(t, p) ∈ E}.
Definition 3. A transition t is enabled in a state s if •t ⊆ s and (t•\•t)∩s = ∅.
We denote the fact that t is enabled from s by s[t〉.
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A state s is in deadlock if there is no enabled transition from it.

Definition 4. The execution (firing) of a transition t leads from state s to state
s′, which is denoted by s[t〉s′, when t is enabled in s and s′ = (s\•t) ∪ t•.

We use the Petri net of Figure 1 as a running example. As usual, transitions
are represented as blocks, places as circles, and the relation E as arrows from
transitions to places and from places to transitions. The Petri net of Figure 1
has places named p1, p2, . . . , p8 and transitions a, b, . . . , e. We represent a state s
by putting tokens inside the places of s. In the example of Figure 1, the depicted
initial state s0 is {p1, p4}. The transitions enabled in s0 are a and b. Firing a
from s0 means removing the token from p1 and adding one to p3.

� �p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

Fig. 1. A Petri net with initial state {p1, p2}

Definition 5. An execution is a maximal (i.e., it cannot be extended) alternat-
ing sequence of states and transitions s0t1s1t2s2 . . . with s0 the initial state of
the Petri net, such that for each state si in the sequence with i > 0, it holds that
si−1[ti〉si.
We denote the set of executions of a Petri net N by exec(N). The set of prefixes
of the executions in a set X is denoted by pref (X). A state is reachable in N if
it appears in at least one execution of N . We denote the set of reachable states
of N by reach(N).

A Petri net can be seen as a distributed system, consisting of a set of con-
currently executing and temporarily synchronizing processes. There are several
options for defining the notion of process in Petri nets: we choose to consider
transition sets as processes.
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Definition 6. A process π of a Petri net N is a subset of the transitions of N ,
i.e., π ⊆ T .

We assume a given set of processes ΠN that covers all the transitions of N , i.e.,⋃
π∈ΠN

π = T . A transition can belong to several processes, e.g., when it models
a synchronization between processes. The set of processes to which t belongs is
denoted proc(t).

In this section, all the notions and notations related to processes extend nat-
urally to sets of processes. Thus, we usually provide definitions directly for sets
of processes. Then, when a formula refers to a set of processes Π, we will often
replace writing the singleton process set {π} by writing π instead. The neigh-
borhood of a process π describes the places of the system whose state π can
observe.

Definition 7. The neighborhood ngb(π) of a process π is the set of places⋃
t∈π(•t ∪ t•). For a set of processes Π, ngb(Π) =

⋃
π∈Π ngb(π).

Definition 8. The local state of a set of processes Π in a (global) state s ∈ S is
defined as s|Π = s∩ ngb(Π). A local state sΠ of Π is part of a global state s ∈ S
if and only if s|Π = sΠ.

That is, the local state of a process π in a global state s consists of the restriction
of s to the neighborhood of π. It describes what π can see of s based on its limited
view. In particular, according to this definition, any process π can see whether
one of its transitions is enabled. The local state of a set of processes Π containing
more than one process is called a joint local state.

Definition 9. Define an equivalence on states ≡Π⊆ S × S such that s ≡Π s′

when s|Π = s′|Π.

Thus, if t ∈ ⋃
π∈Π π and s ≡Π s′ then s[t〉 if and only if s′[t〉.

Figure 2 represents one possible distribution of our running example. We rep-
resent processes by drawing dashed lines between them. Here, the left process πl
consists of transitions a, c and d while the right process πr consists of transitions
b, c and e. The neighborhood of πl contains all the places of the Petri net except
p2 and p8. The local state s0|πl

, part of the initial state s0 = {p1, p2} is {p1}.
Note that the local state s|πl

, part of s = {p1, p4} is also {p1}, hence s0 ≡πl
s.

We identify properties with the sets of states in which they hold. Formally,
a state property is a Boolean formula in which places in P are used as atomic
predicates. Then, given a state s ∈ S and a place pi ∈ P , we have s |= pi if and
only if pi ∈ s. For a state s, we denote by ϕs the conjunction of the places that
are in s and the negated places that are not in s. Thus, ϕs is satisfied by state s
and by no other state. A set of states Q ⊆ S can be characterized by a property
ϕQ =

∨
s∈Q ϕs or any equivalent Boolean formula. For the Petri net of Figure 2,

the initial state s is characterized by ϕs = p1∧p2∧¬p3∧¬p4∧¬p5∧¬p6∧¬p7∧¬p8.
Our approach for achieving a local or semi-local decision on which transi-

tions may be fired, while preserving observability, is based on the knowledge of
processes [5] or sets of processes.
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Fig. 2. A distributed Petri net with two processes πl and πr

Definition 10. Given a set of processes Π and a property ϕ, we define the
property KΠϕ as the set of global states s such that for each reachable s′ with
s ≡Π s′, s′ |= ϕ. Whenever s |= KΠϕ for some state s, we say that Π (jointly)
knows ϕ in s.

We easily obtain that if s |= KΠϕ and s ≡Π s′, then s′ |= KΠϕ. Hence we
can write s|Π |= KΠϕ rather than s |= KΠϕ to emphasize that this knowledge
property is calculated based on the local state of Π. Given a Petri net and a
property ϕ, one can perform model checking in order to decide whether s |= KΠϕ
for some state s. If Π contains more than one process, we call it joint knowledge.

Note that when a process π needs to know and distinguish whether η or μ
holds, we write Kπη ∨Kπμ. When we do not need to distinguish between these
cases but only need to know whether at least one of them holds, we use the
weaker Kπ(η ∨ μ).

3 Knowledge Properties for Monitoring

Our goal is to control the system, i.e., restrict its possible choice of firing tran-
sitions, in order to enforce that if a given property ψ becomes false, at least
one process knows it. This should interfere minimally with the execution of the
system in order to monitor when ψ is violated. To detect the occurrence of a
failure, we need the following notion of a “weakest precondition”:
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Definition 11. For a given property ϕ, wpt(ϕ) is the property such that for any
state s, s |= wpt(ϕ) if and only if s[t〉 and s′ |= ϕ where s[t〉s′.
Remember that in a Petri net, there is exactly one state s′ such that s[t〉s′ for a
given state s and transition t.

We take into account, with an increasing degree of complication:

– Whether it is allowed to report the same violation of ψ multiple times.
– Whether there exists one or several types of property violation. That is, ¬ψ

may be of the form ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn, where each ϕi represents a certain
kind of failure to satisfy ψ. Then, whenever ψ is violated, we may need to
identify and report which failure occurred.

– Whether a single transition may cause several failures to occur at the same
time (and each one of them needs to be identified).

First, we assume that ψ consists of only one type of failure, and furthermore,
that there is no harm in reporting it several times; it is the responsibility of the
recovery algorithm to take care of resolving the situation and ignore duplicate
reports. For a transition t ∈ T and a set of processes Π ⊆ proc(t), we define a
property δ(Π, t) as follows: if t is fired and ψ is falsified by the execution of t, Π
will jointly know it. Formally:

δ1(Π, t) = KΠwpt(¬ψ) ∨KΠ(¬ψ ∨ wpt(ψ))

In other words, δ1(Π, t) holds if and only if the processes in Π either jointly know
that after firing t property ψ will be violated; or they know that firing t cannot
make ψ become false: either it is already false or it will be true after firing t.
Note that the knowledge operators separate the case where ¬ψ will hold in the
next state from the other two cases. There is no need to distinguish between
the latter two cases, hence we could use the weaker requirement, where both of
them appear inside a single knowledge operator KΠ(¬ψ ∨wpt(ψ)).

Now, suppose that we should not report that ψ is violated again, when it was
already violated before the execution of t, and therefore has already been or will
be reported. This requires strengthening the knowledge:

δ2(Π, t) = KΠ(ψ ∧ wpt(¬ψ)) ∨KΠ(¬ψ ∨ wpt(ψ))

For the case where failure of ψ means one out of several failures ϕ1, . . . , ϕn,
but firing one transition cannot cause more than only one particular failure, we
need to consider stronger knowledge:

δ3(Π, t) =
∨

i≤n
KΠ(¬ϕi ∧wpt(ϕi)) ∨

∧

i≤n
KΠ(ϕi ∨ wpt(¬ϕi))

Finally, if one single transition may cause multiple failures, we need even
stronger knowledge:

δ4(Π, t) =
∧

i≤n
(KΠ(¬ϕi ∧ wpt(ϕi)) ∨KΠ(ϕi ∨ wpt(¬ϕi)))
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Note that in δj(Π, t), for 1 ≤ j ≤ 4, the left disjunct, when holding, is re-
sponsible for identifying the occurrence of the failure, and also for j ∈ {3, 4},
identifying its type. In the following, δ(Π, t) stands for δj(Π, t), where 1 ≤ j ≤ 4.

Definition 12. A knowledgeable step for a set of processes Π ⊆ ΠN is a pair
(s|Π, t) such that s|Π |= δ(Π, t) and there is at least one process π ∈ Π with t ∈ π.

Note that if all processes synchronize at every step, a violation of Ψ can always
be detected as soon as it happens. Of course, the additional synchronizations
required to achieve joint knowledge induce some communication overhead, which
we have to minimize. We explain how we do this in the next section.

4 Building the Knowledge Table

We use model checking to identify knowledgeable steps following a method sim-
ilar to [7]. The basic principle of our monitoring policy is the following: a transi-
tion t may be fired in a state s if and only if, in addition to its original enabledness
condition, (s|π, t) is a knowledgeable step for at least one process π containing
t. However, there may be some state in which no individual process has enough
knowledge to take a knowledgeable step. In that case, we consider knowledgeable
steps for pairs of processes, then triples etc. until we can prove that no deadlock
is introduced by the monitoring policy.

The monitoring policy is based on a knowledge table Δ which indicates, for a
process or a set of processes Π in a given reachable (joint) local state s|Π, whether
there exists a knowledgeable step (s|Π, t), and then which transition t may thus
be safely fired. When building such a table, two issues must be considered: first,
the monitoring policy should not introduce deadlocks with respect to the original
Petri net N . This means that we have to check that for every reachable non-
deadlock global state of N , there is at least one corresponding knowledgeable
step in Δ. Second, achieving joint knowledge requires additional synchronization,
which induces some communication overhead, as will be explained in the next
section. Therefore we must add as few knowledgeable steps involving several
processes as possible.

Definition 13. For a given Petri net N , a knowledge table Δ is a set of knowl-
edgeable steps.

To avoid introduce new deadlocks, we require that the table Δ contains enough
joint local states to cover all reachable global states. This is done by requiring
the following invariant.

Definition 14. A knowledge table Δ is an invariant if for each reachable non-
deadlock state s of N , there is at least one (joint) local state in Δ that is part
of s.

Given a Petri net N and a property ψ, the corresponding knowledge table Δ is
built iteratively as follows:
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The first iteration includes in Δ, for every process π ∈ ΠN , all knowledgeable
steps (s|π, t) where s|π is a reachable local state of π, i.e., it is part of some
reachable global state of N . If Δ is an invariant after the first iteration, then
taking only knowledgeable steps appearing in Δ does not introduce deadlocks.
If Δ is not an invariant, we proceed to a second iteration. Let U be the set of
reachable non-deadlock global states s of N for which there is no (joint) local
state in Δ that is part of s.

In a second iteration, we add to Δ knowledgeable steps (s|{π,ρ}, t) such that
s|{π,ρ} is part of some global state in U . For a given local state s|{π,ρ}, all
corresponding knowledgeable steps are added together to the knowledge table.
The second iteration terminates as soon as Δ becomes an invariant or if all
knowledgeable steps for pairs of processes not strictly including knowledgeable
steps consisting of single processes have been added to the table.

If Δ is still not an invariant, then we perform further iterations where we
consider knowledgeable steps for triples of processes, and so forth. Eventually, Δ
becomes an invariant, in the worst case by adding knowledgeable steps involving
all processes.

5 Monitoring Using a Knowledge Table

As in [7], we use the knowledge table Δ to control (restrict) the executions of
N so as to allow only knowledgeable steps. Formally, this can be represented as
an extended Petri net [6,8] NΔ where processes may have local variables, and
transitions have an enabling condition and a data transformation.

Definition 15. An extended Petri net N ′ consists of (1) a Petri net N (2)
a finite set of variables V with given initial values and (3) for each transition
t ∈ T , an enabling condition ent and a transformation predicate ft on variables
in V . In order to fire t, ent must hold in addition to the usual Petri net enabling
condition on the input and output places of t. When t is executed, in addition to
the usual changes to the tokens, the variables in V are updated according to ft.

A Petri net N ′ extends N if N ′ is an extended Petri net obtained from N
according to Definition 15. The comparison between the original Petri net N
and N ′ extending it is based only on places and transitions. That is, we project
out the additional variables.

Lemma 1. For a given Petri net N and an extension N ′ of N , we have:
exec(N ′) ⊆ pref (exec(N)).

Proof. The extended Petri net N ′ strengthens the enabling conditions, thus it
can only restrict the executions. However, these restrictions may result in new
deadlocks. �

Furthermore, we have the following monotonicity property.
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Theorem 1. Let N be a Petri net and N ′ an extension of N according to Def-
inition 15 and ϕ a state predicate for N . If s |= Kπϕ in N , then s |= Kπϕ also
in N ′.

Proof. The extended Petri net N ′ restricts the set of executions, and possibly
the set of reachable states, of N . Each local state s|π is part of fewer global
states, and thus the knowledge in s|π can only increase. �
The latter lemma and theorem show that the additional variables used to extend
a Petri net N define a controller for N .

Definition 16. Given a Petri net N and a property Ψ , from which a knowledge
table Δ has been precalculated, the extended Petri net NΔ is obtained as follows:

– Encode in a set of Boolean variables enΠ
t for Π ⊆ ΠN and t ∈ T the knowl-

edge properties calculated in Δ such that enΠ
t is true if and only if (s|Π, t) is

a knowledgeable step, where s|Π is the current local state of Π.
– Encode in each ft the update of variables as t is fired and local states modified.
– Define each ent as

∨
Π⊆ΠN

enΠ
t . That is, t can be fired if at least one set of

processes knows that it is part of a knowledgeable step1.

In practice, we obtain joint knowledge by adding synchronizations amongst the
processes involved. Such synchronizations are achieved by using an algorithm
like α-core [14], which allows processes to notify, using asynchronous message
passing, a set of coordinators about their wish to be involved in a joint action.
This is encoded into the extended Petri net. Once a coordinator has been no-
tified by all the participants in the synchronization it is in charge of, it checks
whether some conflicting synchronization is already under way (a process may
have notified several coordinators but may not be part of several synchroniza-
tions at the same time). If this is not the case, the synchronization takes place.
The correctness of the algorithm guarantees the atomic-like behavior of the co-
ordination process, allowing us to reason at a higher level of abstraction where
we treat the synchronizations provided by α-core (or any similar algorithm) as
transitions that are joint between several participating processes.

Specifically, each process π of N is equipped with a local table Δπ contain-
ing the knowledgeable steps (s|π, t) that appear in the knowledge table Δ and
the knowledgeable steps (s|Π, t) such that π ∈ Π. Before firing a transition in
a given local state s|π, process π consults its local table Δπ . It Δπ contains
a knowledgeable step (s|π, t), then π notifies α-core about its wish to initiate
t, so that the coordinator algorithm will handle potential conflicts with other
knowledgeable steps. If Δπ contains a knowledgeable step (s|Π, t) such that s|π
is part of s|Π, then π notifies α-core about its wish to achieve joint knowledge
through synchronization with the other processes in Π. If the synchronization
takes place, then any process in Π and containing t may initiate it. The pro-
cesses in Π remain synchronized until t has been fired or disabled by some other
knowledgeable step.
1 Note that this condition comes in conjunction with the usual Petri net firing rule

based on the places in the neighborhood of t, as in Definition 3.
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6 Implementation and Experimental Results

In this section we apply our approach to a concrete example that was imple-
mented in a modified version of the prototype presented in [7]. We have imple-
mented properties δ1 to δ3 as defined in Section 3. Property δ4 is not relevant
here because a single transition may never cause multiple failures. The prototype
implementation computes the knowledge table Δ based on the local knowledge
of processes, as described in Section 4.

The example presented here is a Petri net representing the following scenario:
trains enter and exit a train station such as the one represented in Figure 3
(trains that are outside the train station are not represented), evolving between
track segments (numbered from 1 to 12). A track segment can accept at most
one train at a time, therefore there must be some mechanism to detect and
resolve conflicts amongst trains trying to access the same track segment. Trains
enter and exit the station on the left, i.e. entry segments are tracks 1 to 4. After
entering the station, a train moves from left to right until it reaches one of the
platforms (tracks 9 to 12); then it starts moving from right to left until it exits
the station on one of the entry segment. A train leaving the station on a given
track segment may reenter the station only on this segment.

We monitor a property Ψ which we call absence of partial gridlock. A partial
gridlock is a situation where some trains are blocking each other at a given
intersection. These trains cannot follow their normal schedule and must inform
a supervisor process that initiates some specific repair action, e.g. requesting
some trains to backtrack. For each intersection where n track segments meet,
a partial gridlock is reached when there is one train on each of these segments
that is moving toward the intersection. A global state satisfies Ψ if and only if
it does not contain any partial gridlock.
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Fig. 3. Train station TS1

Transitions describe how trains can enter, exit and move within the station.
Processes correspond to track segments. That is, the process associated with a
segment σ, denoted πσ, consists of all the transitions involving σ (a train arriving
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on σ or leaving it). In particular, this means that transitions corresponding to a
train moving from one segment σ1 to another segment σ2 belong to πσ1 and πσ2

while transitions representing a train entering or exiting the train station belong
to exactly one process namely the entry segment on which the train is entering
or leaving. Furthermore, according to the definition of neighborhood, a process
πσ knows if there is a train on segment σ and also on the neighbors of σ, i.e.,
the track segments from which a train may reach σ.

Example 1. Let us first focus on train station TS 1 of Figure 3. A train entering
on segment 1 can progress to segment 5 and then segment 7 or 8. From there,
it can reach either platform 9 or 10, or platform 11 or 12, respectively. Then,
it moves from right to left, until it exits the train station through one of the
segments 1 to 4.

Two patterns of partial gridlocks are represented in Figure 4. All possible
partial gridlocks of train station TS 1 can be represented by a set of similar
patterns. If we consider 6 trains, there are 820,368 reachable global states in this
example, of which 11,830 contain a partial gridlock and 48 are global deadlock
states.

(a) (b)

Fig. 4. Two possible partial gridlocks, i.e., violations of Ψ

Interestingly, no additional synchronization is needed to enforce that only
knowledgeable steps are taken in this example, independently of the choice of
the knowledge property δi. The reason for this is twofold. First, partial gridlock
(a) of Figure 4 is always detected by the track segment on the right, which
knows that there is a train on all three segments. Second, partial gridlock (b) of
Figure 4 is not reachable, as we further explain. No additional synchronization is
needed. Intuitively, partial gridlock (b) is not reachable for the following reason:
whenever train station TS 1 reaches a global state similar to that represented in
Figure 3, segment 8 cannot be entered by the train on segment 12. Indeed, this
move is a knowledgeable step neither for process π12 nor for process π8, since
none of them knows whether this move would introduce a partial gridlock or not.
Remember that π8 does not know whether there is a train or not on segment
7. However, moves from the trains on segments 5 and 6 to 8 are knowledgeable
steps for π8, as π8 knows they do not introduce any partial gridlock.

Table 1 presents some results about the influence of our monitoring policy on
the behavior of the system. The notation NR indicates that some information is
irrelevant for the uncontrolled system. A first observation is that the behavior
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Table 1. Results for 1000 executions of 10,000 steps

system controlled according to δ1 δ2 δ3 uncontrolled

states actually reachable 820,096 820,026 820,096 820,368

transitions inhibited 46 99 46 NR (none)

transitions supported 6,856 7,656 6,913 NR (all)

steps to first partial gridlock 117 454 121 56

of the system is not dramatically affected by the monitoring policy: whatever
the knowledge property δj used to define the monitoring policy, very few global
states become unreachable compared to the uncontrolled system. Also, the ratio
of supported transitions to inhibited transitions is around 150:1 for δ1 and δ3,
and 75:1 for δ2. Finally, the fact that a partial gridlock is reached on average
after 56 steps in the uncontrolled system shows that monitoring the system does
not drive it, in this example, into states in which the property under study Ψ is
violated.

Furthermore, note that δ1 and δ3 yield similar results in contrast with δ2.
This is due to the fact that every process knows exactly whether it is creating
a given partial gridlock, but it does not always know whether it is creating the
first partial gridlock in the system. As a result, the ratio of transitions inhibited,
that is, transitions enabled but not part of a knowledgeable step, is higher when
the system is monitored according to δ2 than when it is monitored according to
δ1 and δ3.

Example 2. Figure 5 shows another train station TS 2 and a global reachable
non-deadlock state in which there is no knowledgeable step for a single process.
As a result, an additional synchronization must be added.
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Fig. 5. Train station TS 2
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Our experiments on train station TS 2 consider 7 trains. There are 1,173,822
reachable global states in the corresponding Petri net, among which 9,302 con-
tain a partial gridlock. Besides, there are 27 global deadlock states. However,
there is only one global reachable non-deadlock state for which there is no cor-
responding knowledgeable step for a process alone. This state, which we denote
sdl , is represented in Figure 5. A synchronization between processes π3 and π6

is sufficient to ensure that no deadlock is introduced by the monitoring policy,
as there are three transitions t such that (sdl , t) is a knowledgeable step for
{π3, π6}.

We have also performed some experiments to evaluate the number of synchro-
nizations added by the monitoring policy as well as the number of transitions
inhibited at runtime. All δj yield similar results, so we present them together.
Interestingly, the number of synchronizations due to the monitoring policy is
very low and although the only progress property that we preserve is deadlock-
freedom, few transitions are inhibited in this example. Besides, only 1,972 global
states are not actually reachable in the controlled system. Thus, in this exam-
ple, controlling the system in order to preserve the knowledge about absence of
partial gridlock hardly induces any communication overhead and does not alter
significantly the behavior of the global system.

Table 2. Results for 100 executions of 10,000 steps

system controlled according to δj for j ∈ {1, 2, 3}
states actually reachable 1,171,850

synchronizations 0.01

transitions inhibited 62

transitions supported 18,456

Note that it is sufficient here to add one temporary synchronization between
two processes in order to detect that a partial gridlock occurred, whereas knowl-
edge about absence of a partial gridlock would require an almost global synchro-
nization. Besides, controlling the system in order to enforce absence of partial
gridlocks (instead of monitoring it) would require that processes avoid states in
which every possible move leads (inevitably) to a partial gridlock. That is, it
requires look-ahead.

7 Conclusion

In this paper, we have proposed an alternative approach to distributed runtime
monitoring that guarantees by a combination of monitoring and control (prop-
erty enforcement) that the fact that some property ψ becomes false is always
detected instantaneously when the corresponding transition is fired. Further-
more, there are no “false alarms”, that is whenever ψ is detected, it does hold
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at least in the state reached at that instant. In other words, we use control as
introduced in [2,7,3] to enforce a strong form of local monitorability of ψ, rather
than to enforce ψ itself.

We use synchronizations amongst a set of processes, which are realized by a
coordinator algorithm such as α-core [14], in order to reliably detect that: either
ψ will be false after the transition or the transition does not change the status
of ψ. We use model checking to calculate whether (joint) local states have the
required knowledge to fire a given transition. We control the system by allowing
only such knowledgeable steps and we add as many synchronizations as necessary
to enforce absence of global deadlocks which do not already appear in the original
system.

We have applied this approach to a nontrivial example, showing the interest
of enforcing some knowledge about the property instead of the property itself.
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1 Université Libre de Bruxelles (U.L.B.), Campus de la Plaine, Bruxelles, Belgique
2 CEA LIST, LMeASI, boı̂te 94, 91141 Gif-sur-Yvette, France

3 INRIA, Rennes - Bretagne Atlantique, France

Abstract. We consider distributed systems modeled as communicating finite
state machines with reliable unbounded FIFO channels. As an essential sub-
routine for control, monitoring and diagnosis applications, we provide an algo-
rithm that computes, during the execution of the system, an estimate of the current
global state of the distributed system for each local subsystem. This algorithm
does not change the behavior of the system; each subsystem only computes and
records a symbolic representation of the state estimates, and piggybacks some ex-
tra information to the messages sent to the other subsystems in order to refine their
estimates. Our algorithm relies on the computation of reachable states. Since the
reachability problem is undecidable in our model, we use abstract interpretation
techniques to obtain regular overapproximations of the possible FIFO channel
contents, and hence of the possible current global states. An implementation of
this algorithm provides an empirical evaluation of our method.

1 Introduction

During the execution of a computer system, the knowledge of its global state may be
crucial information, for instance to control which action can or must be done, to moni-
tor its behavior or perform some diagnostic. Distributed systems, are generally divided
into two classes, depending on whether the communication between subsystems is syn-
chronous or not. When the synchrony hypothesis [1] can be made, each local subsystem
can easily know, at each step of the execution, the global state of the system (assuming
that there is no internal action). When considering asynchronous distributed systems,
this knowledge is in general impossible, since the communication delays between the
components of the system must be taken into account. Therefore, each local subsys-
tem can a priori not immediately know either the local state of the other subsystems or
the messages that are currently in transfer. In this paper, we consider the asynchronous
framework where a system is composed of n subsystems that asynchronously commu-
nicate through reliable unbounded FIFO channels and modeled by communicating finite
state machines (CFSM) [3]. This model appears to be essential for concurrent systems
in which components cooperate via asynchronous message passing through unbounded
buffers (they are e.g. widely used to model communication protocols). We thus assume
that the distributed system is already built and the architecture of communication be-
tween the different subsystems is fixed. Our aim is to provide an algorithm that allows

� This work has been done in the MoVES project (P6/39), part of the IAP-Phase VI Interuniver-
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us to compute, in each subsystem of a distributed system T , an estimate of the current
state of T . More precisely, each subsystem or a local associated estimator computes a
set of possible global states, including the contents of the channels, in which the system
T can be; it can be seen as a particular case of monitoring with partial observation.
We assume that the subsystems (or associated estimators) can record their own state
estimate and that some extra information can be piggybacked to the messages normally
exchanged by the subsystems. Without this additional information, since a local subsys-
tem cannot observe the other subsystems nor the FIFO channel contents, the computed
state estimates might be too rough. Our computation is based on the use of the reach-
ability operator, which cannot always be done in the CFSM model for undecidability
reasons. Therefore, we rely on the abstract interpretation techniques we presented pre-
viously in [13]. They ensure the termination of the computations by overapproximating
in a symbolic way the possible FIFO channel contents (and hence the state estimates)
by regular languages. Computing state estimates is useful in many applications. For
example, this information can be used to control the system in order to prevent it from
reaching some given forbidden global states [4], or to perform some diagnosis to detect
some faults in the system [7,19]. For these two potential applications, a more precise
state estimate allows the controller or the diagnoser to take better decisions.

This problem differs from the synthesis problem (see e.g. [15,8,5]) which consists
in synthesizing a distributed system (together with its architecture of communication)
equivalent to a given specification. It also differs from the methodology described in [9]
where the problem is to infer from a distributed observation of a distributed system
(modeled by a High Level Message Sequence Chart) the set of sequences that explains
this observation. It is also different from model checking techniques [2,10] that pro-
ceed to a symbolic exploration of all the possible states of the system, without running
it. We however use the same symbolic representation of queue contents as in [2,10].
In [21], Kumar and Xu propose a distributed algorithm which computes an estimate of
the current state of a system. Local estimators maintain and update local state estimates
from their own observation of the system and information received from the other es-
timators. In their framework, the local estimators communicate between them through
reliable FIFO channels with delays, whereas the system is monolithic and therefore in
their case, a global state is simpler than for our distributed systems composed of sev-
eral subsystems together with communicating FIFO channels. In [20], Tripakis studies
the decidability of the existence of controllers such that a set of responsiveness proper-
ties is satisfied in a decentralized framework with communication delays between the
controllers. This problem is undecidable when there is no communication or when the
communication delays are unbounded. He conjectures that the problem is decidable
when the communication delays are bounded. See [18,14] for other works dealing with
communication (with or without delay) between agents.

Below, in section 2, we define the formalism of communicating finite state machines,
that we use. We formally define, in section 3, the state estimate mechanisms and the no-
tion of state estimators. In section 4, we provide an algorithm to compute an estimate
of the current state of a distributed system and prove its correctness. We explain, in sec-
tion 5, how the termination of this algorithm is ensured by using abstract interpretation
techniques. Section 6 gives some experimental results. Proofs can be found in [11].
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2 Communicating Finite State Machines as a Model of the System

We model a distributed system by communicating finite state machines [3] which use
reliable unbounded FIFO channels (also called queues) to communicate. A global state
in this model is given by the local state of each subsystem together with the content
of each FIFO queue. As no bound is given either in the transmission delay, or on the
length of the queues, the state space of the system is a priori infinite.

Definition 1 (Communicating Finite State Machines). A communicating finite state
machine (CFSM) T is defined as a 6-tuple 〈L, �0, Q, M, Σ, Δ〉, where (i) L is a finite
set of locations, (ii) �0 ∈ L is the initial location, (iii) Q is a set of queues that T
can use, (iv) M is a finite set of messages, (v) Σ ⊆ Q × {!, ?} ×M is a finite set of
actions, that are either an output a!m to specify that the message m ∈M is written on
the queue a ∈ Q or an input a?m to specify that the message m ∈ M is read on the
queue a ∈ Q, (vi) Δ ⊆ L×Σ × L is a finite set of transitions.

A transition 〈�, i!m, �′〉 indicates that when the system moves from the � to �′, a message
m is added at the end of the queue i. 〈�, i?m, �′〉 indicates that, when the system moves
from � to �′, a message m must be present at the beginning of the queue i and is removed
from this queue. Moreover, throughout this paper, we assume that T is deterministic,
meaning that for all � ∈ L and σ ∈ Σ, there exists at most one location �′ ∈ L such that
〈�, σ, �′〉 ∈ Δ. For σ ∈ Σ, Trans(σ) denotes the set of transitions of T labeled by σ.
The occurrence of a transition will be called an event and given an event e, δe denotes
the corresponding transition. The semantics of a CFSM is defined as follows:

Definition 2. The semantics of a CFSM T = 〈L, �0, Q, M, Σ, Δ〉 is given by an infinite

Labeled Transition System (LTS) [[T ]] = 〈X, x0, Σ,→〉, where (i) X
def= L× (M∗)|Q|

is the set of states, (ii) x0
def= 〈�0, ε, . . . , ε〉 is the initial state, (iii) Σ is the set of

actions, and (iv)→def=
⋃
δ∈Δ

δ−→⊆ X ×Σ ×X is the transition relation where
δ−→ is

defined by:

δ = 〈�, i!m, �′〉 ∈ Δ w′
i = wi ·m

〈�, w1, . . . , wi, . . . , w|Q|〉 δ→ 〈�′, w1, . . . , w
′
i, . . . , w|Q|〉

δ = 〈�, i?m, �′〉 ∈ Δ wi = m · w′
i

〈�, w1, . . . , wi, . . . , w|Q|〉 δ→ 〈�′, w1, . . . , w
′
i, . . . , w|Q|〉

A global state of a CFSM T is thus a tuple 〈�, w1, ..., w|Q|〉 ∈ X = L × (M∗)|Q|

where � is the current location of T and w1, ..., w|Q| are finite words on M∗ which give
the content of the queues in Q. At the beginning, all queues are empty, so the initial
state is x0 = 〈�0, ε, · · · , ε〉. Given a CFSM T , two states x,x′ ∈ X and an event e, to

simplify the notations we sometimes denote x
δe→ x′ by x

e→ x′. An execution of T is a
sequence x0

e1−→ x1
e2−→ . . .

em−−→ xm where xi
ei+1−−−→ xi+1 ∈−→ ∀i ∈ [0, m− 1]. Given

a set of states Y ⊆ X , ReachTΔ′(Y ) corresponds to the set of states that are reachable

in [[T ]] from Y only firing transitions of Δ′ ⊆ Δ in T . It is defined by ReachTΔ′(Y ) def=⋃
n≥0(PostTΔ′(Y ))n where (PostTΔ′(Y ))n is the nth functional power of PostTΔ′(Y ),
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defined by: PostTΔ′(Y ) def= {x′ ∈ X |∃x ∈ Y, ∃δ ∈ Δ′ : x
δ→ x′}. Although there is no

general algorithm that can exactly compute the reachability set in our setting [3], there
exist some techniques that allow us to compute an overapproximation of this set (see
section 5). Given a sequence of actions σ = σ1 · · · σm ∈ Σ∗ and two states x, x′ ∈ X ,

x
σ→ x′ denotes that the state x′ is reachable from x by executing σ.

Asynchronous Product. A distributed system T is generally composed of several sub-
systems Ti (∀i ∈ [1, n]) acting in parallel. In fact, T is defined by a CFSM resulting
from the asynchronous (interleaved) product of the n subsystems Ti, also modeled by
CFSMs. This can be defined through the asynchronous product of two subsystems.

Definition 3. Given 2 CFSMs Ti = 〈Li, �0,i, Qi, Mi, Σi, Δi〉 (i = 1, 2), their asyn-
chronous product, denoted by T1||T2, is defined by a CFSM T = 〈L, �0, Q, M, Σ, Δ〉,
where L

def= L1 × L2, �0
def= �0,1 × �0,2, Q

def= Q1 ∪ Q2, M
def= M1 ∪ M2,

Σ
def= Σ1 ∪Σ2, and Δ

def= {〈〈�1, �2〉, σ1, 〈�′1, �2〉〉|(〈�1, σ1, �
′
1〉 ∈ Δ1) ∧ (�2 ∈ L2)} ∪

{〈〈�1, �2〉, σ2, 〈�1, �
′
2〉〉|(〈�2, σ2, �

′
2〉 ∈ Δ2) ∧ (�1 ∈ L1)}.

Note that in the previous definition, Q1 and Q2 are not necessarily disjoint; this allows
the subsystems to communicate between them via common queues. Composing the
various subsystems Ti (∀i ∈ [1, n]) two-by-two in any order gives the global distributed
system T whose semantics (up to state isomorphism) does not depend on the order.

Definition 4 (Distributed system). A distributed system T = 〈L, �0, Q, M, Σ, Δ〉 is
defined by the asynchronous product of n CFSMs Ti = 〈Li, �0,i, Qi, M, Σi, Δi〉 (∀i ∈
[1, n]) acting in parallel and exchanging information through FIFO channels.

Note that a distributed system is also modeled by a CFSM, since the asynchronous
product of several CFSMs is a CFSM. In the sequel, a CFSM Ti always denotes the
model of a single process, and a distributed system T = 〈L, �0, Q, M, Σ, Δ〉 always
denotes the model of the global system, as in Definition 4. Below, unless stated explic-
itly, T = T1|| . . . ||Tn is the considered distributed system.

Communication Architecture of the System. We consider an architecture for the sys-
tem T = T1|| . . . ||Tn defined in Definition 4 with point-to-point communication i.e.,
any subsystem Ti can send messages to any other subsystem Tj through a queue Qi,j .
Thus, only Ti can write a message m on Qi,j (this is denoted by Qi,j !m) and only Tj
can read a message m on this queue (this is denoted by Qi,j?m). Moreover, we sup-
pose that the queues are unbounded, that the message transfers between the subsystems
are reliable and may suffer from arbitrary non-zero delays, and that no global clock
or perfectly synchronized local clocks are available. With this architecture, the set Qi

of Ti (∀i ∈ [1, n]) can be rewritten as Qi = {Qi,j, Qj,i | (1 ≤ j ≤ n) ∧ (j �= i)}
and ∀j �= i ∈ [1, n], Σi ∩ Σj = ∅. Let δi = 〈�i, σi, �′i〉 ∈ Δi be a transition of

Ti, global(δi)
def= {〈〈�1, . . . , �i−1, �i, �i+1, . . . , �n〉, σi, 〈�1, . . . , �i−1, �′i, �i+1, . . . ,

�n〉〉 ∈ Δ |∀j �= i ∈ [1, n] : �j ∈ Lj} is the set of transitions of Δ that can be built
from δi in T . We extend this definition to sets of transitions D ⊆ Δi of the subsys-

tem Ti : global(D) def=
⋃
δi∈D global(δi). We abuse notation and write Δ \ Δi instead

of Δ \ global(Δi) to denote the set of transitions of Δ that are not built from Δi.
Given the set Σi of Ti (∀i ∈ [1, n]) and the set Σ of T , the projection Pi of Σ onto
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Σi is standard: Pi(ε) = ε and ∀w ∈ Σ∗, ∀a ∈ Σ, Pi(wa) = Pi(w)a if a ∈ Σi,
and Pi(w) otherwise. The inverse projection P−1

i is defined, for each L ⊆ Σ∗
i , by

P−1
i (L) = {w ∈ Σ∗ | Pi(w) ∈ L}.

B0

B1

B2

B3

C0 C1

A1 A2

A0 Aer

Q2,1?bQ2,1?b

Q2,1?b

Q2,1!b

T1

T2

T3

Q1,2!c

Q2,1?a

Q3,1?d

Q2,1?a

Q1,2!d

Q2,1?a

Q1,2?c

Q2,1!a

Q2,3!d

Q2,3!d

Q1,2?d

Q2,3?d

Q3,1!d

Example 1. Let us illustrate the concepts of distributed system
and CFSM with our running example depicted on the right hand
side. It models a factory composed of three components T1, T2
and T3. The subsystem T2 produces two kinds of items, a and
b, and sends these items to T1 to finish the job. At reception, T1
must immediately terminate the process of each received item.
T1 can receive and process b items at any time, but must be in
a turbo mode to receive and process a items. The subsystem T1
can therefore be in normal mode modeled by the location A0

or in turbo mode (locations A1 and A2). In normal mode, if T1
receives an item a, an error occurs (transition in location Aer).
Since T1 cannot always be in turbo mode, a protocol between
T1 and T2 is imagined. At the beginning, T1 informs (connect

action, modeled by
Q1,2!c→ ) T2 that it goes in a turbo mode, then T2 sends a and b items. At

the end of a working session, T2 informs T1 (disconnect action, modeled by
Q2,3!d→ ) that

it has completed its session, so that T1 can go back in normal mode. This information
has to transit through T3 via queues Q2,3 and Q3,1, as T3 must also record this end of
session. Since d can be transmitted faster than some items a and b, one can easily find a
scenario where T1 decides to go back to A0 and ends up in the Aer location by reading
the message a. Indeed, as T1 cannot observe the content of the queues, it does not know
whether there is a message a in queue Q2,1 when it arrives in A0. This motivates the
interest of computing good state estimates of the current state of the system. If each
subsystem maintains good estimates of the current state of the system, then T1 can
know whether there is a message a in Q2,1, and reach A0 only if it is not the case.

3 State Estimates of Distributed Systems

We introduce here the framework and the problem we are interested in.

Local View of the Global System. A global state of T = T1|| . . . ||Tn is given by a
tuple of locations (one for each subsystem) and the content of all the FIFO queues. In-
formally our problem consists in defining one local estimator per subsystem, knowing
that each of them can only observe the occurrences of actions of its own local subsys-
tem, such that these estimators compute online (i.e., during the execution of the system)
estimates of the global state of T . We assume that each local estimator Ei has a precise
observation of subsystem Ti, and that the model of the global system is known by all the
estimators (i.e., the structure of each subsystem and the architecture of the queues be-
tween them). Each estimator Ei must determine online the smallest possible set of global
states Ei that contains the actual current global state. Note that if Ei observes that the
location of Ti is �i, a very rough state estimate is L1× . . .×{�i}×· · ·×Ln× (M∗)|Q|.
In other words all the global states of the system such that location of Ti is �i; however,
this rough estimate does not provide a very useful information.
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Online State Estimates. The estimators must compute the state estimates online. Since
each estimator Ei is local to its subsystem, we suppose that Ei synchronously observes
the actions fired by its subsystem; hence since each subsystem is deterministic, each
time an event occurs in the local subsystem, it can immediately infer the new location
of Ti and use this information to define its new state estimate. In order to have better
state estimates, we also assume that the estimators can communicate with each other by
adding some information (some timestamps and their state estimates) to the messages
exchanged by the subsystems. Notice that, due to the communication delay, the estima-
tors cannot communicate synchronously, and therefore the state estimate attached to a
message might be out-of-date. A classical way to reduce this uncertainty is to timestamp
the messages, e.g., by means of vector clocks (see section 4.1).

Estimates Based on Reachability Sets. Each local estimator maintains a symbolic
representation of all global states of the distributed system that are compatible with its
observation and with the information it received previously from the other estimators.
In section 4.2, we detail the algorithms which update these symbolic representations
whenever an event occurs. But first, let us explain the intuition behind the computation
of an estimate. We consider the simplest case: the initial state estimate before the system
begins its execution. Each FIFO channel is empty, and each subsystem Ti is in its initial
location �i,0. So the initial global state is known by every estimator Ei. A subsystem
Tj may however start its execution, while Ti is still in its initial location, and therefore
Ei must thus take into account all the global states that are reachable by taking the
transitions of the other subsystems Tj . The initial estimate Ei is this set of reachable
global states. This computation of reachable global states also occurs in the update
algorithms which take into account any new local event occurred or message received
(see section 4.2). The reachability problem is however undecidable for distributed FIFO
systems. In section 5, we explain how we overcome this obstacle by using abstract
interpretation techniques.

Properties of the Estimators. Estimators may have two important properties: sound-
ness and completeness. Completeness refers to the fact that the current state of the
global system is always included in the state estimates computed by each state esti-
mator. Soundness refers to the fact that all states included in the state estimate of Ei
(∀i ∈ [1, n]) can be reached by one of the sequences of actions that are compatible with
the observation of Ti performed by Ei.
Definition 5 (Completeness and Soundness). The estimators (Ei)i≤n are (i) com-
plete if and only if, for any execution x0

e1−→ x1
e2−→ . . .

em−−→ xm of T , xm ∈
⋂n
i=1 Ei,

and (ii) sound if and only if, for any execution x0
e1−→ x1

e2−→ . . .
em−−→ xm of T ,

Ei ⊆ {x′ ∈ X |∃σ ∈ P−1
i (Pi(σe1 .σe2 . . . σem)) : x0

σ→ x′} (∀i ≤ n) where σek

(∀k ∈ [1, m]) is the action that labels the transition corresponding to ek.

4 Algorithm to Compute the State Estimates

We now present our algorithm that computes estimates of the current state of a dis-
tributed system. But first, we recall the notion of vector clocks [12], a standard concept
that we shall use to compute a more precise state estimates.
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4.1 Vector Clocks

To allow the estimators to have a better understanding of the concurrent execution of
the distributed system, it is important to determine the causal and temporal relationship
between the events that occur in its execution. In a distributed system, events emitted by
the same process are ordered, while events emitted by different processes are generally
not. When the concurrent processes communicate, additional ordering information can
however be obtained. In this case, the communication scheme can be used to obtain a
partial order on the events of the system. In practice, vectors of logical clocks, called
vector clocks [12], can be used to time-stamp the events of the distributed system. The
order of two events can then be determined by comparing the value of their respective
vector clocks. When these vector clocks are incomparable, the exact order in which the
events occur cannot be determined. Vector clocks are formally defined as follows:

Definition 6 (Vector Clocks). Let 〈D,�〉 be a partially ordered set, a vector clock
mapping of width n is a function V : D → N

n such that ∀d1, d2 ∈ D : (d1 � d2) ⇔
(V (d1) ≤ V (d2)).

In general, for a distributed system composed of n subsystems, the partial order on
events is represented by a vector clock mapping of width n. The method for comput-
ing this vector clock mapping depends on the communication scheme of the distributed
system. For CFSMs, this vector clock mapping can be computed by the Mattern’s al-
gorithm [16], which is based on the causal and thus temporal relationship between the
sending and reception of any message transferred through any FIFO channel. This infor-
mation is then used to determine a partial order, called causality (or happened-before)
relation ≺c, on the events of the distributed system. This relation is the smallest transi-
tive relation satisfying the following conditions: (i) if the events ei �= ej occur in the
same subsystem Ti and if ei comes before ej in the execution, then ei ≺c ej , and (ii) if
ei is an output event occurring in Ti and if ej is the corresponding input event occurring
in Tj , then ei ≺c ej . In Mattern’s algorithm [16], each process Ti (∀i ∈ [1, n]) has a
vector clock Vi ∈ N

n of width n and each element Vi[j] (∀j ∈ [1, n]) is a counter which
represents the knowledge of Ti regarding Tj and which means that Ti knows that Tj has
executed at least Vi[j] events. Each time an event occurs in a subsystem Ti, the vector
clock Vi is updated to take into account the occurrence of this event (see [16] for de-
tails). When Ti sends a message to some subsystem Tj , this vector clock is piggybacked
and allows Tj , after reception, to update its own vector clock. Our state estimate algo-
rithm uses vector clocks and follows Mattern’s algorithm, which ensures the correctness
of the vector clocks that we use (see section 4.2).

4.2 Computation of State Estimates

Our state estimate algorithm computes, for each estimator Ei and for each event occur-
ring in the subsystem Ti, a vector clock Vi and a state estimate Ei that contains the
current state of T and any future state that can be reached from this current state by
firing actions that do not belong to Ti. This computation obviously depends on the in-
formation that Ei receives. As a reminder, Ei observes the last action fired by Ti and can
infer the fired transition. Ti also receives from the other estimators Ej their state estimate
Ej and their vector clock Vj . Our state estimate algorithm proceeds as follows:
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Algorithm 1. initialization(T )
input : T = T1|| . . . ||Tn .
output: The initial state estimate Ei of the estimator Ei (∀i ∈ [1, n]).
begin1

for i← 1 to n do for j ← 1 to n do Vi[j]← 02

for i← 1 to n do Ei ← ReachT
Δ\Δi

(〈�0,1, . . . , �0,n, ε, . . . , ε〉)3

end4

– When the subsystem Ti sends a message m to Tj , Ti attaches the vector clock Vi
and the state estimate Ei of Ei to this message. Next, Ei receives the action fired
by Ti, and infers the fired transition. It then uses this information to update its state
estimate Ei.

– When the subsystem Ti receives a message m from Tj , Ei receives the action fired
by Ti and the information sent by Tj i.e., the state estimate Ej and the vector clock
Vj of Ej . It computes its new state estimate from these elements.

In both cases, the computation of the new state estimate Ei depends on the computation
of reachable states. In this section, we assume that we have an operator that can compute
an approximation of the reachable states (which is undecidable is the CFSM model).
We will explain in section 5 how such an operator can be computed effectively.
State Estimate Algorithm. Our algorithm, called SE-algorithm, computes estimates
of the current state of a distributed system. It is composed of three sub-algorithms: (i)
the initialization algorithm, which is only used when the system starts its execution,
computes, for each estimator, its initial state estimate (ii) the outputTransition algo-
rithm computes online the new state estimate of Ei after an output of Ti, and (iii) the
inputTransition algorithm computes online the new state estimate of Ei after an input
of Ti.
INITIALIZATION Algorithm: According to the Mattern’s algorithm [16], each compo-
nent of the vector Vi is set to 0. To take into account that, before the execution of the first
action of Ti, the other subsystems Tj (∀j �= i ∈ [1, n]) could perform inputs and outputs,
the initial state estimate of Ei is given by Ei = ReachTΔ\Δi

(〈�0,1, . . . , �0,n, ε, . . . , ε〉).

Algorithm 2. outputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn, the vector clock Vi of Ei, the current state estimate Ei of Ei,

and a transition δ = 〈�1, Qi,j !m, �2〉 ∈ Δi.
output: The state estimate Ei after the output transition δ.
begin1

Vi[i]← Vi[i] + 12

Ti tags message m with 〈Ei, Vi, δ〉 and it writes this tagged message on Qi,j3

Ei ← ReachT
Δ\Δi

(PostTδ (Ei))4

end5
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OUTPUT Algorithm: Let Ei be the current state estimate of Ei. When Ti wants to ex-
ecute a transition δ = 〈�1, Qi,j !m, �2〉 ∈ Δi corresponding to an output on the queue
Qi,j , the following instructions are computed to update the state estimate Ei:

• according to the Mattern’s algorithm [16], Vi[i] is incremented (i.e., Vi[i]← Vi[i]+1)
to indicate that a new event has occurred in Ti.

• Ti tags message m with 〈Ei, Vi, δ〉 and writes this information on Qi,j. The estimate
Ei tagging m contains the set of states in which T can be before the execution of δ.
The additional information 〈Ei, Vi, δ〉 will be used by Tj to refine its state estimate.

• Ei is updated as follows, to contain the current state of T and any future state that
can be reached from this current state by firing actions that do not belong to Ti:
Ei ← ReachTΔ\Δi

(PostTδ (Ei)). More precisely, PostTδ (Ei) gives the set of states in
which T can be after the execution of δ. But, after the execution of this transition,
Tj (∀j �= i ∈ [1, n]) could read and write on their queues. Therefore, we define the
estimate Ei by ReachTΔ\Δi

(PostTδ (Ei)).

Algorithm 3. inputTransition(T , Vi, Ei, δ)
input : T = T1|| . . . ||Tn , the vector clock Vi of Ei, the current state estimate Ei of Ei

and a transition δ = 〈�1, Qj,i?m, �2〉 ∈ Δi. Message m is tagged with the triple
〈Ej, Vj, δ′〉 where (i) Ej is the state estimate of Ej before the execution of δ′ by
Tj , (ii) Vj is the vector clock of Ej after the execution of δ′ by Tj , and (iii) δ′ =
〈�′1, Qj,i!m, �′2〉 ∈ Δj is the output corresponding to δ.

output: The state estimate Ei after the input transition δ.
begin1

\\We consider three cases to update Ej2

if Vj[i] = Vi[i] then Temp1 ← PostTδ (ReachT
Δ\Δi

(PostTδ′(Ej)))3

else if Vj [j] > Vi[j] then4

Temp1 ← PostTδ (ReachT
Δ\Δi

(ReachT
Δ\Δj

(PostTδ′(Ej))))

else Temp1 ← PostTδ (ReachT
Δ(PostTδ′(Ej)))5

Ei ← PostTδ (Ei) \\We update Ei6

Ei ← Ei ∩ Temp1 \\ Ei = update of Ei ∩ update of Ej (i.e., Temp1)7

Vi[i]← Vi[i] + 18

for k ← 1 to n do Vi[k]←max(Vi[k], Vj [k])9

end10

INPUT Algorithm: Let Ei be the current state estimate of Ei. When Ti executes a tran-
sition δ = 〈�1, Qj,i?m, �2〉 ∈ Δi, corresponding to an input on the queue Qj,i, it also
reads the information 〈Ej , Vj , δ′〉 (where Ej is the state estimate of Ej before the ex-
ecution of δ′ by Tj , Vj is the vector clock of Ej after the execution of δ′ by Tj , and
δ′ = 〈�′1, Qj,i!m, �′2〉 ∈ Δj is the output corresponding to δ) tagging m, and the fol-
lowing operations are performed to update Ei:

• we update the state estimate Ej of Ej (this update is denoted by Temp1) by using
the vector clocks to guess the possible behaviors of T between the execution of the
transition δ′ and the execution of δ. We consider three cases:
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Q1,2!cT1
T2

T3

[1, 0, 0]

[1, 1, 0] [1, 2, 0] [1, 3, 0]

[1, 3, 1] [1, 3, 2]

[2, 3, 2] [4, 3, 2][3, 3, 2]

Q1,2?c Q2,1!a Q2,3!d

Q2,3?d Q3,1!d

Q3,1?d Q1,2!dQ2,1?a

Fig. 1. An execution of the running example

− if Vj [i] = Vi[i] : Temp1 ← PostTδ (ReachTΔ\Δi
(PostTδ′(Ej))). In this case,

thanks to the vector clocks, we know that Ti has executed no transition be-
tween the execution of δ′ by Tj and the execution of δ by Ti. Thus, only
transitions in Δ \ Δi could have occurred during this period. We then update
Ej as follows. We compute (i) PostTδ′(Ej) to take into account the execution
of δ′ by Tj , (ii) ReachTΔ\Δi

(PostTδ′(Ej)) to take into account the transitions
that could occur between the execution of δ′ and the execution of δ, and (iii)
PostTδ (ReachTΔ\Δi

(PostTδ′(Ej))) to take into account the execution of δ.
− else if Vj [j] > Vi[j] : Temp1 ← PostTδ (ReachT

Δ\Δi
(ReachT

Δ\Δj
(PostTδ′(Ej)))). In-

deed, in this case, we can prove (see Theorem 1) that if we reorder the transitions
executed between the occurrence of δ′ and the occurrence of δ in order to execute
the transitions of Δi before the ones of Δj , we obtain a correct update of Ei.
Intuitively, this reordering is possible, because there is no causal relation between
the events of Ti and the events of Tj , that have occurred between δ′ and δ. So, in
this reordered sequence, we know that, after the execution of δ, only transitions in
Δ \Δj could occur followed by transitions in Δ \Δi.

− else Temp1 ← PostTδ (ReachT
Δ(PostTδ′(Ej))). Indeed, in this case, the vector

clocks do not allow us to deduce information regarding the behavior of T be-
tween the execution of δ′ and the execution of δ. Therefore, to have a correct state
estimate, we update Ej by taking into account all the possible behaviors of T
between the execution of δ′ and the execution of δ.

• we update the estimate Ei to take into account the execution of δ: Ei ← PostTδ (Ei).
• we intersect Temp1 and Ei to obtain a better state estimate: Ei ← Ei ∩ Temp1.
• according to the Mattern’s algorithm [16], the vector clock Vi is incremented to take

into account the execution of δ and subsequently is set to the component-wise maxi-
mum of Vi and Vj . This last operation allows us to take into account the fact that any
event that precedes the sending of m should also precede the occurrence of δ.

Example 2. We illustrate SE-algorithm with a sequence of actions of our running exam-
ple depicted in Figure 1 (the vector clocks are given in the figure). A state of the global
system is denoted by 〈�1, �2, �3, w1,2, w2,1, w2,3, w3,1〉 where �i is the location of Ti
(for i = 1, 2, 3) and w1,2, w2,1, w2,3 and w3,1 denote the content of the queues Q1,2,
Q2,1, Q2,3 and Q3,1. At the beginning of the execution, the state estimates of the three
subsystems are (i) E1 = {〈A0, B0, C0, ε, ε, ε, ε〉}, (ii) E2 = {〈A0, B0, C0, ε, ε, ε, ε〉,
〈A1, B0, C0, c, ε, ε, ε〉}, and (iii) E3 = {〈A0, B0, C0, ε, ε, ε, ε〉, 〈A1, B0, C0, c, ε, ε, ε〉,
〈A1, B1, C0, ε, b

∗, ε, ε〉, 〈A1, B2, C0, ε, b
∗(a+ ε), ε, ε〉, 〈A1, B3, C0, ε, b

∗(a+ ε), d, ε〉}.
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After the first transition 〈A0, Q1,2!c, A1〉, the state estimate of E1 is not re-
ally precise, because a lot of events may have happened without the estima-
tor E1 being informed: E1 = {〈A1, B0, C0, c, ε, ε, ε〉, 〈A1, B1, C0, ε, b

∗, ε, ε〉,
〈A1, B2, C0, ε, b

∗a, ε, ε〉, 〈A1, B3, C0, ε, b
∗(a+ε), d, ε〉, 〈A1, B3, C1, ε, b

∗(a+ε), ε, ε〉,
〈A1, B3, C0, ε, b

∗(a + ε), ε, d〉}. But, after the second transition 〈B0, Q1,2?c, B1〉, E2
has an accurate state estimate: E2 = {〈A1, B1, C0, ε, ε, ε, ε〉}. We skip a few steps and
consider the state estimates before the sixth transition 〈C1, Q3,1!d, C0〉: E1 is still the
same, because T1 did not perform any action, E3 = {〈A1, B3, C1, ε, b

∗(a + ε), ε, ε〉},
and we do not indicate E2, because T2 is no longer involved. When T3 sends the mes-
sage d to T1 (the transition 〈C1, Q3,1!d, C0〉), it attaches E3 to this message. When T1
reads this message, it computes E1 = {〈A2, B3, C0, ε, b

∗(a + ε), ε, ε〉} and when it
reads the message a, it updates E1: E1 = {〈A2, B3, C0, ε, b

∗, ε, ε〉}. Thus, E1 knows,
after this action, that there is no a in Q2,1, and that after writing d on Q1,2, it cannot
reach Aer from A0. This example shows the importance of knowing the content of the
queues as without this knowledge, E1 may think that there is an a in Q2,1, so an error
might occur if 〈A2, Q1,2!d, A0〉 is enabled. �
Properties. As explained above, we assume that we can compute an approximation of
the reachable states. In this part, we present the properties of our state estimate algo-
rithm w.r.t. the kind of approximations that we use.

Theorem 1. SE-algorithm is complete, if the Reach operator computes an overapprox-
imation of the reachable states.

Theorem 2. SE-algorithm is sound, if the Reach operator computes an underapproxi-
mation of the reachable states.

The proofs of these theorems are given in [11]. If we compute an underapproximation
of the reachable states, our state estimate algorithm is not complete. If we compute an
overapproximation of the reachable states, our state estimate algorithm is not sound. So,
depending on the approximations, our algorithm is either complete or sound. Complete-
ness is a more important property, because it ensures that the computed state estimates
always contain the current global state. Therefore, in section 5, we define an effec-
tive algorithm for the state estimate problem by computing overapproximations of the
reachable states. Finally, note that our method proposes that we only add information to
existing transmitted messages. We can show that increasing the information exchanged
between the estimators (for example, each time an estimator computes a new state esti-
mate, this estimate is sent to all the other estimators) improves their state estimate. This
can be done only if the channels and the subsystems can handle this extra load.

5 Effective Computation of State Estimates by Means of Abstract
Interpretation

The algorithm described in the previous section requires the computation of reachability
operators, which cannot always be computed exactly in general. In this section, we
overcome this obstacle by using abstract interpretation techniques (see e.g. [6,13]) to
compute, in a finite number of steps, an overapproximation of the reachability operators
and thus of the state estimates Ei.
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Computation of Reachability Sets by the Means of Abstract Interpretation. For
a given set of global states X ′ ⊆ X and a given set of transitions Δ′ ⊆ Δ, the
states reachable from X ′ can be characterized by the least fixpoint: ReachTΔ′(X ′) =
μY.X ′ ∪ PostTΔ′(Y ). Abstract interpretation provides a theoretical framework to com-
pute efficient overapproximation of such fixpoints. The concrete domain (i.e., the sets
of states 2X), is substituted by a simpler abstract domain Λ, linked by a Galois Connec-
tion 2X −−→←−−α

γ
Λ [6], where α (resp. γ) is the abstraction (resp. concretization) function.

The fixpoint equation is transposed into the abstract domain: λ = F �
Δ′(λ), with λ ∈ Λ

and F �
Δ′ � α ◦FΔ′ ◦ γ. In this setting, a standard way to ensures that the fixpoint com-

putation converges after a finite number of steps to some overapproximation λ∞, is to
use a widening operator ∇. The concretization c∞ = γ(λ∞) is an overapproximation
of the least fixpoint of the function FΔ′ .

Choice of the Abstract Domain. In abstract interpretation based techniques, the quality
of the approximation we obtain depends on the choice of the abstract domain Λ. In our
case, the main issue is to abstract the content of the FIFO channels. As discussed in [13],
a good abstract domain is the class of regular languages, which can be represented by
finite automata. Let us recall the main ideas of this abstraction.

Finite Automata as an Abstract Domain. We first assume that there is only one queue
in the distributed system T ; we explain later how to handle a distributed system with
several queues. With one queue, the concrete domain of the system T is defined by
X = 2L×M

∗
. A set of states Y ∈ 2L×M

∗
can be viewed as a map Y : L �→ 2M

∗

that associates a language Y (�) with each location � ∈ L; Y (�) therefore represents
the possible contents of the queue in the location �. To simplify the computation, we
substitute the concrete domain 〈L �→ 2M

∗
,⊆,∪,∩, L×M∗, ∅〉 by the abstract domain

〈L �→ Reg(M),⊆,∪,∩, L ×M∗, ∅〉, where Reg(M) is the set of regular languages
over the alphabet M . Since regular languages have a canonical representation given by
finite automata, each operation (union, intersection, left concatenation,...) in the abstract
domain can be performed on finite automata.

Widening Operator. The widening operator is also performed on a finite automaton,
and consists in quotienting the nodes1 of the automaton by the k-bounded bisimulation
equivalence relation ≡k; k ∈ N is a parameter which allows us to tune the precision,
since increasing k improves the quality of the abstractions in general. Two nodes are
equivalent w.r.t. ≡k if they have the same outgoing path (sequence of labeled transi-
tions) up to length k. While we merge the equivalent nodes, we keep all transitions and
we obtain an automaton recognizing a larger language. Note that for a fixed k, the class
of automata which results from such a quotient operation from any original automaton,
is finite and its cardinality is bounded by a number which is only function of k. So,
when we apply this widening operator regularly, the fixpoint computation terminates
(see [13] for more details).

Example 3. We consider the automatonA depicted in Figure 2, whose recognized lan-
guage is a+ ba+ bba+ bbba. We consider the 1-bounded bisimulation relation i.e., two

1 The states of an automaton representing the queue contents are called nodes to avoid the con-
fusion with the states of a CFSM.
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0 1 2 3 4
b b b a

a

aa
{0, 1, 2} {3} {4}b

b

a

a

Fig. 2. Illustration of the 1-bounded bisimulation relation ≡1 for A

nodes of the automaton are equivalent if they have the same outgoing transitions. So,
nodes 0, 1, 2 are equivalent, since they all have two transitions labeled by a and b. Nodes
3 and 4 are equivalent to no other node since 4 has no outgoing transition whereas only
a is enabled in node 3. When we quotient A by this equivalent relation, we obtain the
automaton on the right side of Figure 2, whose recognized language is b∗a. �
When the system contains several queues Q = {Q1, . . . , Qr}, their content can be rep-
resented by a concatenated word w1 . . . wr with one wi for each queue Qi and , a
delimiter. With this encoding, we represent a set of queue contents by a finite automaton
of a special kind, namely a QDD [2]. Since QDDs are finite automata, classical oper-
ations (union, intersection, left concatenation,...) in the abstract domain are performed
as was done previously. We must only use a slightly different widening operator not to
merge the different queue contents [13].

Effective SE-algorithm. The Reach operator is computed using those abstract inter-
pretation techniques: we proceed to an iterative computation in the abstract domain of
regular languages and the widening operator ensures that this computation terminates
after a finite number of steps [6]. So the Reach operator always gives an overapproxi-
mation of the reachable states regardless the distributed system. The efficiency of these
approximations is measured in the experiments of section 6. Because of Theorem 1, our
SE-algorithm is complete.

6 Experiments

We have implemented the SE-algorithm as a new feature of the McScM tool [17], a
model checker for distributed systems modeled by CFSM. Since it represents queue
contents by QDDs, this software provides most of the functionalities needed by our
algorithm, like effective computation of reachable states. We have also added a mech-
anism to manage vector clocks, and an interactive simulator. This simulator first com-
putes and displays the initial state estimates. At each step, it asks the user to choose a
possible transition.

We proceeded to an evaluation of our algorithm measuring the size of the state esti-
mates. Note that this size is not the number of global states of the state estimate (which
may be infinite) but the number of nodes of its QDD representation. We generated ran-
dom sequences of transitions for our running example and some other examples of [10].
Table 1 shows the average execution time for a random sequence of 100 transitions,
the memory required (heap size), the average and maximal size of the state estimates.
Default value of the widening parameter is k = 1. Experiments were done on a stan-
dard MacBook Pro with a 2.4 GHz Intel core 2 duo CPU. These results show that the
computation of state estimates takes about 50ms per transition and that the symbolic
representation of state estimates we add to messages are automata with a few dozen
nodes. A sensitive element in the method is the size of the computed and transmitted
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Table 1. Experiments

example # subsystems # channels time [s] memory [MB] maximal size average size
running example 3 4 7.13 5.09 143 73.0
c/d protocol 2 2 5.32 8.00 183 83.2
non-regular protocol 2 1 0.99 2.19 172 47.4
ABP 2 3 1.19 2.19 49 24.8
sliding window 2 2 3.26 4.12 21 10.1
POP3 2 2 3.08 4.12 22 8.5

information. It can be improved by the use of compression techniques to reduce the size
of this information. A more evolved technique would consist in the offline computation
of the set of possible estimates. Estimates are indexed in a table, available at execution
time to each local estimator. If we want to keep an online algorithm, we can use the
memoization technique. When a state estimate is computed for the first time, it is asso-
ciated with an index that is transmitted to the subsystem which records both values. If
the same estimate must be transmitted, only its index can be transmitted and the receiver
can find from its table the corresponding estimate. We also highlight that our method
works better on the real-life communication protocols we have tested (alternating bit
protocol, sliding window, POP3) than on the examples we introduced to test our tool.

7 Conclusion and Future Work

We have proposed an effective algorithm to compute online, locally to each subsystem,
an estimate of the global state of a running distributed system, modeled as communi-
cating finite state machines with reliable unbounded FIFO queues. With such a system,
a global state is composed of the current location of each subsystem together with the
channel contents. The principle is to add a local estimator to each subsystem such that
most of the system is preserved; each local estimator is only able to compute informa-
tion and in particular symbolic representations of state estimates and to piggyback some
of this computed information to the transmitted messages. Since these estimates may be
infinite, a crucial point of our work has been to propose and evaluate the use of regular
languages to abstract sets of FIFO queues. In practice, we have used k-bisimilarity rela-
tions, which allows us to represent each (possibly infinite) set of queue contents by the
minimal and canonical k-bisimilar finite automaton which gives an overapproximation
of this set. Our algorithm transmits state estimates and vector clocks between subsys-
tems to allow them to refine and preserve consistent state estimates. More elaborate
examples must be taken to analyze the precision of our algorithm and see, in practice, if
the estimates are sufficient to solve diagnosis or control problems. Anyway, it appears
important to study the possibility of reducing the size of the added communication
while preserving or even increasing the precision in the transmitted state estimates.
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Abstract. In this paper we propose a process calculus framework for dynamic
networks in which the network topology may change as computation proceeds.
The proposed calculus allows one to abstract away from neighborhood-discovery
computations and it contains features for broadcasting at multiple transmission
ranges and for viewing networks at different levels of abstraction. We develop
a theory of confluence for the calculus and we use the machinery developed to-
wards the verification of a leader-election algorithm for mobile ad hoc networks.

1 Introduction

Distributed and wireless systems present today one of the most challenging areas of
research in computer science. Their high complexity, dynamic nature and features such
as broadcasting communication, mobility and fault tolerance, render their construction,
description and analysis a challenging task. The development of formal frameworks for
describing and associated methodologies for reasoning about distributed systems has
been an active area of research for the last few decades. Process calculi, e.g. [7,8], are
one such formalism. Since their inception, they have been extensively studied and they
have been extended for modeling and reasoning about a variety of aspects of process
behavior including mobility, distribution and broadcasting.

Our goal in this paper is to propose a process calculus in which to be able to rea-
son about mobile ad hoc networks (MANETs) and their protocols. Our proposal, the
Calculus for Systems with Dynamic Topology, CSDT, is inspired by works which have
previously appeared in the literature [2,5,4,12,13] on issues such as broadcasting, move-
ment and separating between a node’s control and topology information. However, our
calculus extends these works by considering two additional MANET features. The first
concerns the ability of MANETs to broadcast messages at different transmission levels.
This is a standard feature of mobile ad hoc networks; a node may choose to broadcast
a message at a high transmission level in order to communicate with a wider set of
nodes, as required by a protocol or application, or it may choose to use a low transmis-
sion level in order to conserve its power. The second feature concerns that of neighbor
discovery. As computation proceeds and nodes move in and out of each other’s trans-
mission range, each node attempts to remain aware of its connection topology in order
to successfully complete its tasks (e.g. routing). To achieve this, neighbor discovery pro-
tocols are implemented and run which typically involve periodically emitting “hello”
messages and acknowledging such messages received by one’s neighbors. Although it
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is possible that at various points in time a node does not have the precise information
regarding its neighbors, these protocols aim to ensure that the updated topology is dis-
covered and that the node adjusts its behavior accordingly so that correct behavior is
achieved. Thus, when one is called to model and verify a MANET protocol, it is im-
portant to take into account that the neighbor-information available to a node may not
be correct at all times. To handle this one might model an actual neighbor-discovery
protocol in parallel to the algorithm under study and verify the composition of the two.
Although such a study would be beneficial towards obtaining a better understanding of
the behavior of both protocols, it would turn an already laborious task into a more labo-
rious one and it would impose further requirements on behalf of the modeling language
(e.g. to capture timed behaviors).

CSDT allows for reasoning about both of these aspects of behavior. To begin with,
it allows nodes to broadcast information at two different transmission levels. The trans-
mission level of a broadcast is encoded as a parameter of broadcasted messages. Re-
garding the issue of neighborhood discovery, the semantics of CSDT contain rules that
mimic the behavior of a neighborhood-discovery protocol: CSDT equips nodes with
knowledge of their believed (and not necessarily actual) sets of neighbors which is con-
tinuously updated, similarly to the way a neighborhood-discovery algorithm operates
and gradually discerns changes in the connectivity of a node. Furthermore, these neigh-
bor sets are accessible from the control part of a node and may affect the flow of the
node’s execution. A final novelty of CSDT is the introduction of a hiding construct that
allows us to observe networks at different levels of abstraction. Since messages in our
network descriptions are broadcasted over the medium, the notion of channel restric-
tion (or name hiding) becomes irrelevant. Nonetheless, the effect of hiding behaviors
remains useful in our setting, especially for analysis purposes. To achieve this, we as-
sociate every message with a “type” and we implement hiding by restricting the set of
message types which should be observable at the highest level of a process. A similar
encapsulation construct has also recently been proposed in [1].

The operational semantics of our calculus is given in terms of a labelled transition
system on which we propose a notion of weak bisimulation. Subsequently, we develop a
theory of confluence. The notion of confluence was first studied in the context of concur-
rent systems by Milner in CCS [7] and subsequently in various other settings [14,10,11].
Its essence, is that “of any two possible actions, the occurrence of one will never pre-
clude the other”. This paper, is the first to consider the theory of confluence in a setting
of broadcasting communication. We establish a variety of results including a theorem
that allows for compositional reasoning of confluent behavior under the assumption of
a stationary topology of a network. We illustrate the utility of these techniques as well
as the formalism via the analysis of a leader-election algorithm.

Related Work. Several process calculi have recently been proposed for dynamic net-
works such as CBS# [9], CMAN [2], CMN [5], CNT [1], CWS [4], TCSW [6], and the
ω-calculus [13]. Most of these calculi, support broadcasting communication, message
loss and mobility of nodes, with the exception of [4], and explicit location information,
with the exception of the ω-calculus, where neighborhood information is captured via
groups which can be dynamically created or updated thus modeling dynamic network
topologies, and CNT where topology changes are modeled in the semantics as opposed



A Process Calculus for Dynamic Networks 215

to the syntax of the language. Perhaps closest to CSDT is the CMN process calculus.
Differences that exist between the two calculi include (1) the treatment of the notion of
a location (while in CMN locations can be viewed as values in a coordinate system and
neighborhood is computed via a metric distance function, in CSDT locations and their
interconnections are captured as a graph), (2) the fact that CSDT allows point-to-point
communication in addition to broadcasting and (3) CMN caters for lossy communi-
cation whereas CSDT does not. Furthermore, as it has already been discussed, CSDT
extends all of these frameworks by allowing to broadcast at different transmission lev-
els and by associating nodes with their believed sets of neighbors which are updated by
semantic rules that mimic the behavior of a neighbor discovery protocol.

Contribution. The contribution of our work is summarized as follows:

1. We define a new process calculus for reasoning about dynamic networks. This cal-
culus introduces a number of new ideas which have been selected in view of facili-
tating the modeling and the analysis of mobile ad hoc network protocols.

2. We develop the theory of confluence in the context of our calculus. This is the first
such theory for process calculi featuring broadcast communication.

3. We provide a correctness proof of a non-trivial leader-election protocol proposed
in [15] for mobile ad hoc networks.

2 The Process Calculus

In our Calculus for Systems with Dynamic Topology, CSDT, we consider a system
as a set of nodes operating in space. Each node possesses a physical location and a
unique identifier. Movement is modeled as the change in the location of a node, with the
restriction that the originating and the destination locations are neighboring locations.

Nodes in CSDT can communicate with each other by broadcasting messages. Broad-
casting may take place at different transmission levels as required by an underlying pro-
tocol and/or for power-saving purposes. Specifically, in CSDT we consider two trans-
mission levels, a normal level and a high level.

Neighbor discovery, that is, determining which nodes fall within the transmission
range of a node, is a building block of network protocols and applications. To facilitate
the reasoning about such protocols we embed in the semantics of our calculus rules
that mimic the behavior of a neighbor discovery algorithm, which observes changes
in the network’s topology and, specifically, the departure and arrival of nodes within
the normal and high transmission ranges of a node. To achieve this, each node is as-
sociated with two sets of nodes, N and H , which are the sets of nodes believed to be
within the normal and high transmission ranges of a node, respectively. Thus, we write
P :[[id, �, N, H]], for describing a node running code P with unique identifer id, located
at physical location �, believed normal-range and high-range neighbors N , and H .

2.1 The Syntax

We now continue to formalize the above intuitions into the syntax of CSDT. We begin
by describing the basic entities of CSDT. We assume a set of node identifiers I ranged
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over by id, i, j, and a set of physical locations L ranged over by �, �′ and we say
that two locations �, �′ are neighboring locations if (�, �′) ∈ Nb, where Nb ⊆ L × L.
Furthermore, we assume a set of transmission levels {n,h} and associated with these
levels the functions rangen : L → 2L and rangeh : L → 2L which, given a location,
return the locations that fall within its normal and high transmission levels, respectively.
These functions, need not take a symmetric view on locations and may be defined so as
to yield unidirectional links. Furthermore, we assume a set of special labels T . Elements
of T are mere keywords appended to messages indicating the message type.

In addition, we assume a set of terms, ranged over by e, built over (1) a set of con-
stants, ranged over by u, v, (2) a set of variables ranged over by x, y, and (3) function
applications of the form f(e1, . . . en) where f is a function from a set of functions (e.g.
logical connectives, set operators and arithmetic operators), and the ei are terms. We
say that a term is closed if it contains no variables. The evaluation relation � for closed
terms is defined in the expected manner. We write r̃ for a tuple of syntactic entities
r1, . . . , rn. Finally, we assume a set of process constants C, denoted by C, each with an

associated definition of the form C〈x̃〉 def= P , where P may contain occurrences of C,
as well as other constants. Based on these basic entities, the syntax of of CSDT is given
in Table 1, where T ⊆ T .

Table 1. The Syntax

Actions: η ::= b(w, t, ṽ, tl) broadcast
| r(t, x̃) input

Processes: P ::= 0 Inactive Process
| η.P Action Prefix
| P1 + P2 Nondeterministic Choice
| cond (e1 � P1, . . . , en � Pn) Conditional
| C〈ṽ〉 Process Constant

Networks: M ::= 0
| P :σ Located Node
| M1 |M2 Parallel Composition
| M\T Restriction

Interfaces: σ ::= [[id, �,N,H ]]

There are two types of actions in CSDT. A broadcast action b(w, t, ṽ, tl) is a trans-
mission at transition level tl ∈ {n, h}, of type t ∈ T of the tuple ṽ with intended recipi-
ents w, where ′−′ denotes that the message is intended for all neighbors of the transmit-
ting node and j ∈ I denotes that it is intended solely for node j. An input action r(t, x̃)
represents a receipt of a message x̃ of type t. In turn, a process can then be inactive, an
action-prefixed process, the nondeterministic choice between two processes, a process
constant or a conditional process. The conditional process cond (e1 �P1, . . . , en�Pn)
presents the conditional choice between a set of processes: it behaves as Pi, where i is
the smallest integer for which ei evaluates to true.
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On the other hand, networks are built on the basis of located processes, P :σ, where
σ is the node’s topology information which we call its interface. An interface σ con-
tains the node identifier id, its location � as well as its normal-range and high-range
neighbors N and H , according to its current knowledge. We allow the control part of
a located process P :σ, namely P , to access information mentioned in the interface σ,
by using the special labels id, l, N and H, thus allowing the control part of a process
to express dependencies on the node’s neighborhood information. For example, an ex-
pression “4 ∈ N” occurring within P : [[1, �, {2}, {2, 3}]] is evaluated as “4 ∈ {2}”.

Thus, a network can be an inactive network 0, a located node P :σ, a parallel com-
position of networks M1 |M2, or a restricted network M\T . In M\T the scope of
messages of all types in T is restricted to network M : components of M may exchange
messages of these types to interact with one another but not with M ’s environment. To
avoid name collisions on types, we consider α-conversion on processes as the renaming
of types that are bound by some restriction and we say that P and Q are α-equivalent,
P ≡α Q, if P and Q differ by a renaming of bound types.

In what follows, given an interface σ, we write l(σ) and id(σ) for the location and
the identifier mentioned in σ, respectively. Moreover, we use types(M) to denote the
set of all types occurring in activities of M .

2.2 The Semantics

The semantics of CSDT is defined in terms of a structural congruence relation≡, found
in Table 2, and a structural operational semantics, given in Tables 3 and 4.

Table 2. Structural congruence relation

(N1) M ≡M |0 (N5) M\T − {t} ≡M\T if t �∈ types(M)

(N2) M1|M2 ≡M2|M1 (N6) M\T ≡ (M\T − {t})\{t}
(N3) (M1|M2)|M3 ≡M1|(M2|M3) (N7) M1 ≡M2 if M1 ≡α M2

(N4) M1\{t}|M2 ≡ (M1|M2)\{t} if t �∈ types(M2)

The rules of Table 3 describe the behavior of located processes in isolation whereas
the rules in Table 4 the behavior of networks. A transition of P (or M ) has the form
P

α−→ P ′, specifying that P can perform action α and evolve into P ′ where α can have
one of the following forms:

– b(w, t, ṽ, tl, �) denotes a broadcast to recipients w of a message ṽ of type t at trans-
mission level tl, taking place at location �.

– r(id, t, ṽ, �) denotes a receipt by node id of a message ṽ of type t, taking place at
location �.
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– r?(id, t, ṽ, �) denotes an advertisement by node id that it is willing to receive a
message ṽ of type t, at location �.

– τ and μ denote two types of unobservable actions in the calculus. Action τ is asso-
ciated with the effect of restriction (rule (Hide2), Table 4) and μ is associated with
the movement of nodes (rule (L6), Table 3) as well as with updates of neighborhood
information (rules (InSN), (InSH), (OutSN) and (OutSH), Table 4).

We let Act denote the set of all actions and let α and β range over Act and we write
type(α) for the type of an α ∈ Act− {τ, μ}.

Table 3. Transition rules for located nodes

(L1) (b(w, t, ṽ, tl).P ):σ
b(w,t,ṽ,tl,l(σ))−→ P :σ (L2) (r(t, x̃).P ):σ

r(id(σ),t,ṽ,l(σ))−→ P{ṽ/x̃}:σ

(L3) [P{ṽ/x̃}]:σ α−→ P ′:σ
[C〈ṽ〉]:σ α−→ P ′:σ

C〈x̃〉 def
= P (L4) Pi:σ

α−→ P ′
i :σ

(P1 + P2):σ
α−→ P ′

i :σ
, i ∈ {1, 2}

(L5) Pi:σ
α−→ P ′

i :σ

(cond (e1 � P1, . . . , en � Pn)):σ
α−→ P ′

i :σ
ei� true, ∀j < i, ej � false

(L6)
(�, �′) ∈ Nb

P :[[i, �,N,H]]
μ−→ P :[[i, �′, N,H ]]

Moving our attention to the rules of Table 4, we point out that the first four rules
implement the underlying neighborhood discovery protocol. Nodes which are within
the normal and high transmission ranges of a located process are included in the ap-
propriate sets in its interface and, similarly, nodes which have exited these transmission
ranges are removed. In all four cases a μ internal action takes place.

The two (BrC) rules which follow give semantics to broadcasting within the lan-
guage. They employ the compatibility function comp, where comp(w, i) is evaluated
to true only if identifier i is compatible with intended recipient w: comp(w, i) = (w =′

−′ ∨ w = i). Axiom (BrC1) specifies that, if a broadcast is available and there exists
a compatible recipient within the range of the broadcast, the message is received and
the broadcast message is propagated. If there is no appropriate receiver then, again, the
broadcast is propagated (BrC2). Note that rule (BrC2) (as well as (Rec)) is defined in
terms of the inability of executing an action via the use of relation

α
�, where P

α
�, if

¬(P α−→ P ′) for any P ′.
Moving on to rule (Rec), we observe that a network can advertise the fact that it

may receive an input. This is necessary, otherwise an inactive network and a network

such as M
def= [r(t, x̃).P ]:σ1 | [r(t, ỹ).Q]:σ2 would have exactly the same transition

systems when clearly they would yield distinct behaviors when placed in parallel with
a network such as M ′ = [b(−, t, ṽ, n).S]:σ (affecting compositionality in the calcu-
lus). Now, if rule (Rec) was enunciated via a normal receive action instead of r?,

we would have: M
r(id(σ1),t,ṽ,l(σ1))−→ [P{ṽ/x̃}]:σ1 | [r(t, ỹ).Q]:σ2 and subsequently
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Table 4. Transition rules for networks

(InSN)
l(σ) ∈ rangen(�), id(σ) �∈ N

P :[[id, �,N,H ]] | Q:σ
μ−→ P :[[id, �,N ∪ {id(σ)},H ]] | Q:σ

(OutSN)
l(σ) �∈ rangen(�), id(σ) ∈ N

P :[[id, �,N,H ]] | Q:σ
μ−→ P :[[id, �,N − {id(σ)},H ]] | Q:σ

(InSH)
l(σ) ∈ rangeh(�), id(σ) �∈ H

P :[[id, �,N,H ]] | Q:σ
μ−→ P :[[id, �,N,H ∪ {id(σ)}]] | Q:σ

(OutSH)
l(σ) �∈ rangeh(�), id(σ) ∈ H

P :[[id, �,N,H ]] | Q:σ
μ−→ P :[[id, �,N,H − {id(σ)}]] | Q:σ

(BrC1)
M1

b(w,t,ṽ,tl,�)−→ M ′
1,M2

r(id,t,ṽ,�′)−→ M ′
2, comp(w, id), �′ ∈ rangetl(�)

M1 |M2
b(w,t,ṽ,tl,�)−→ M ′

1 |M ′
2

(BrC2) M1
b(w,t,ṽ,tl,�)−→ M ′

1 and M2
r(id,t,ṽ,�′)

� ∀id, �′ · comp(w, id), �′ ∈ rangetl(�)

M1 |M2
b(w,�,l,t,ṽ)−→ M ′

1 |M2

(Rec) M1
r(id,�,t,ṽ)−→ M ′

1 and M2
b(w,t,ṽ,tl,�′)

� ∀w, �′, tl · comp(w, id), � ∈ rangetl(�
′)

M1 |M2
r?(id,�,t,ṽ)−→ M ′

1 |M2

(Hide1)
M

α−→M ′ and type(α) �∈ T
M\T α−→M ′\T

(Hide2) M
α−→M ′ and type(α) ∈ T
M\T τ−→M ′\T

(Par)
M1

α−→M ′
1, α ∈ {τ, μ}

M1 |M2
α−→M ′

1 |M2

(Struct) M1 ≡M2,M2
α−→M ′

2,M
′
2 ≡M ′

1

M1
α−→M ′

1

M | M ′ b(−,t,ṽ,n,l(σ))−→ ([P{ṽ/x̃}]:σ1 | [r(t, ỹ).Q]:σ2) | S:σ, In this way only one of
the two components of M ends up receiving the broadcasted message of M ′ which is
not what one would expect of a broadcasting communication. To achieve the correct
interpretation, only located nodes can emit an r(. . .) action (see (Rec), Table 3) and to
obtain the transition of M | M ′ we would employ structural congruence and the facts
that (1) M | M ′ ≡ M1 = [r(t, x̃).P ]:σ1 | ([r(t, ỹ).Q]:σ2 | [b(−, t, ṽ, n).S]:σ), (2)

M1
b(−,t,ṽ,n,l(σ))−→ [P{ṽ/x̃}]:σ1 | ([Q{ṽ/ỹ}]:σ2 | S:σ), to obtain, by rule (Struct), that

M |M ′ b(−,t,ṽ,n,l(σ))−→ ([P{ṽ/x̃}]:σ1 | [Q{ṽ/ỹ}]:σ2) | S:σ.
Finally, rules (Hide1) and (Hide2) specify that the effect of restricting a set of types

T within a process is to transform all actions of these types into internal actions.
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2.3 Bisimulation and Confluence

In the next section we build some machinery for reasoning about broadcasting networks.
Due to lack of space, all proofs from this section are omitted. The complete exposition
can be found in [3]. First, let us recall that M ′ is a derivative of M , if there exist actions
α1, . . . , αn, n ≥ 0, such that M

α1−→ . . .
αn−→M ′. Moreover, we define weak transitions

as follows: given an action α we write M =⇒ M ′ for M(
τ,μ−→)∗M ′, M

α=⇒ M ′ for

M =⇒ α−→=⇒ M ′, and M
α̂=⇒ M ′ for M =⇒ M ′ if α ∈ {τ, μ}, M

r(id,�,t,ṽ)
=⇒ M ′ if

α = r?(id, �, t, ṽ), and M
α=⇒M ′ otherwise.

The first useful tool which accompanies CSDT is a notion of observational
equivalence:

Definition 1. Bisimilarity is the largest symmetric relation, denoted by ≈, such that, if

M1 ≈M2 and M1
α−→M ′

1, there exists M ′
2 such that M2

α̂=⇒M ′
2 and M ′

1 ≈M ′
2.

We may prove that bisimilarity is a congruence relation. It is also worth pointing out that
we may establish the following property of mobile nodes pertaining to their ubiquitous
nature, namely:

Lemma 1. For any process P , id ∈ I, �, �′ ∈ L and N, H ⊆ L, if (�, �′) ∈ Nb+, where
Nb+ is the transitive closure of relation Nb, then P [[id, �, N, H]] ≈ P [[id, �′, N, H]].

We now turn to consider the notions of determinacy and confluence in our calculus.
These make use of the following notation: given actions α and α′ we write α �	 α′ if α
and α′ differ only in their specified location, i.e. α′ = α[�′/�], for some � and �′.

Definition 2. M is determinate if, for every derivative M ′ of M and for all actions α,

α′, α �	 α′, whenever M ′ α−→M1 and M ′ α̂′
=⇒M2 then M1 ≈M2.

This definition makes precise the requirement that, when an experiment is conducted on
a network, it should always lead to the same state up to bisimulation. This is irrespective
of the location at which the action is taking place which explains the use of the �	
operator. As an example, consider networks

M1
def= b(−, t, ṽ, n).0:[[1, �, {2}, {2}]] M ′

1
def= b(−, t, ṽ, n).0:[[1, �′, {2}, {2}]]

M2
def= (r(t, x̃).b(−, s, x̃, h).0, ):[[2, �, {1}, {1}]]

We observe that M1 and M2 are determinate, whereas M1 | M2 is not: Assuming that

� �∈ rangen(�′), M1 | M2
b(−,t,ṽ,n,�)−→ M ≡ b(−, s, x̃,h).0:[[2, �, . . .]] and M1 |M2

μ−→
M ′

1 |M2
b(−,t,ṽ,n,�′)−→ M ′ ≡M2, where M �≈M ′.

A conclusion that we may draw from this example is that determinacy is not pre-
served by parallel composition. We may in fact show that determinacy is preserved by
prefix and conditional statements. In order to strengthen determinacy into a notion pre-
served by a wider range of operators, and in particular parallel composition, Milner [7]
introduced the notion of confluence. According to the definition of [7], a CCS process P
is confluent if it is determinate and, for each of its derivatives Q and distinct actions α,
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β, given the transitions to Q
α−→ Q1 and Q

β
=⇒ Q2, the diamond property is satisfied,

that is, there exist transitions Q1
β=⇒ Q′

1 and Q2
α=⇒ Q′

2 such that Q′
1 ≈ Q′

2.
In the context of our work, we observe that the nature of broadcasting communi-

cation allows to enunciate confluence through a weaker treatment of input actions. In
particular, given the fact that the emission of messages by network nodes is continu-
ously enabled and is not blocked by the availability of a receiver, a network that can
receive two distinct inputs need not satisfy the diamond property with respects to these
inputs; what matters is that the network can reach equivalent states after each of the two
inputs, either by executing the other input or not.

Definition 3. M is confluent if it is determinate and, for each of its derivatives M ′ and

distinct actions α, β, where ¬(α �	 β), whenever M ′ α−→M1 and M ′ β
=⇒M2 then,

1. if α = r(id, t, ũ, �) and β = r(id, t, ṽ, �′), then, either (1) M1 ≈ M2, or (2)

M1
β

=⇒ M ′
1 ≈ M2, or (3) M2

α=⇒ M ′
2 ≈ M1, or (4) M1

β
=⇒ M ′

1, M2
α=⇒ M ′

2,
and M ′

1 ≈M ′
2,

2. otherwise, there are M ′
1 and M ′

2 such that M2
α̂=⇒M ′

2, M1
β̂=⇒M ′

1 and M ′
1 ≈M ′

2.

We note that the first clause of the definition captures the four possibilities for bringing
together two input actions by receiving further input after the first input, or not.

We may see that bisimilarity preserves confluence. Furthermore, confluent networks
possess an interesting property regarding internal actions. We define a network M to be
τ -inert if, for each derivative M1 of M , if M1

τ−→M2 or M1
μ−→M2, then M1 ≈M2.

By a generalization of the proof in CCS, we obtain:

Lemma 2. If M is confluent then M is τ -inert.

Although confluence is preserved by more operators than determinacy, namely the re-
striction operator, it is still not preserved by parallel composition. The counter-example
provided in the case of determinacy is still valid: while M1 and M2 are confluent,
M1 |M2 is not.

The main obstacle in establishing the compositionality of confluence with respect to
parallel composition, as well as other operators, is that of node mobility. In what follows
we extend our study of confluence in the context of stationary CSDT systems, that is,
systems in which there is no movement of nodes (i.e. no μ action). The benefits of this
study are twofold. On one hand, we develop a theory of confluence for broadcasting
systems which turns out to be both simple as well as compositional. On the other hand,
this theory remains useful in the context of mobility since, during the verification of ad
hoc network systems, correctness criteria focus on the behavior of systems once their
topology remains stable for a sufficient amount of time.

We begin by defining a new notion of weak transition that permits τ actions and

excludes μ actions. Specifically, we write M =⇒s M ′, M
α=⇒s M ′ and M

α̂=⇒s M ′

for the subsets of relations M =⇒ M ′, M
α=⇒ M ′ and M

α̂=⇒ M ′ where no
μ−→

are present. In a similar vein, the new notion of bisimilarity, S-bisimilarity matches the
behavior of equivalent systems excluding μ-actions:
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Definition 4. S-Bisimilarity is the largest symmetric relation, denoted by ≈s, such
that, if M1 ≈s M2 and M1

α−→ M ′
1, α ∈ Act − {μ}, there exists M ′

2 such that

M2
α̂=⇒s M ′

2 and M ′
1 ≈s M ′

2.

It is easy to see that ≈⊂≈s and that S-bisimilarity is a congruence relation. Based
on the notion of S-bisimulation, we may define the notions of S-determinacy and S-
confluence via variations of Definitions 2 and 3 which replace

a=⇒, ≈, and Act by
α=⇒s, ≈s, and Act − {μ}. We may see that S-bisimilarity preserves S-confluence and

that S-confluent networks possess the property that their observable behavior remains
unaffected by τ actions. In particular, we define a network M to be τs-inert if, for each
derivative M1 of M , if M1

τ−→M2, then M1 ≈s M2 and we may prove:

Lemma 3. If M is S-confluent then M is τs-inert.

We prove that S-confluence is preserved by most CSDT operators including that of
parallel composition.

Lemma 4

1. If P :σ is S-confluent then so are (τ.P ):σ and (b(w, t, x̃, tl).P ):σ.
2. If Pi:σ, 1 ≤ i ≤ n, are S-confluent, then so is cond (e1 � P1, . . . , en � Pn):σ.
3. If M is S-confluent, then so is M\T .
4. If M1 and M2 are S-confluent then so is M1 |M2.

3 Specification and Verification of a Leader-Election Algorithm

3.1 The Algorithm

The algorithm we consider for our case study is the distributed leader-election algorithm
presented in [15]. It operates on an arbitrary topology of nodes with distinct identifiers
and it elects as the leader of the network the node with the maximum identifier.

We first describe the static version of the algorithm which assumes that no topology
changes are possible. We then proceed to extend this description to the mobile setting.
In brief, the static algorithm operates as follows. In its initial state, a network node may
initiate a leader-election computation (note that more than one node may do this) or
accept leader-election requests from its neighbors. Once a node initiates a computation,
it triggers communication between the network nodes which results into the creation
of a spanning tree of the graph: each node picks as its father the node from which
it received the first request and forwards the request to its remaining neighbors. Each
node awaits to receive from each of its children the maximum identifier of the subtree at
which they are rooted and, then, forward it to its father. Naturally, the root will receive
the maximum identifier of the entire computation tree which is the elected leader. The
leader is then flooded to the entire network.

Note that if more than one node initiates a leader-election computation then only
one computation survives. This is established by associating each computation with a
source identifier. Whenever a node already in a computation receives a request for a
computation with a greater source, it abandons its original computation and it restarts a
computation with this new identifier.
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In the mobile setting, it is easy to observe that with node mobility, crashes and fail-
ures as well as network partitions and merges, the above algorithm is inadequate. To
begin with, let us note that once a leader is elected it emits so-called heartbeat mes-
sages to the environment, which are essentially messages sent at a high transmission
level. The absence of a heartbeat message from its leader triggers a node to initiate a
new computation of a leader. Note that such an absence may just indicate that the node
is outside of the high transmission range of the leader even though they belong to the
same connected component of the network. However, this does not affect the correct-
ness of the algorithm. Based on this extension, computation proceeds as described by
the static algorithm with the exception of the following fine points:

– Losing a child node. If a node loses a child then it removes the child from the set of
nodes from which it expects an acknowledgement and continues its computation.

– Losing a parent node. If a node loses its father then it assigns itself the role of the
root of its subtree and continues its computation.

– Partition Merges. If two components of the system meet each other, they each
proceed with their computation (if they are still computing a leader) ignoring any
invitations to join the other’s computation. Once they elect their individual leaders
and start flooding their results, each adopts the leader with the largest identifier. An
exception to this is the case when the two nodes that have come into contact have
the same previous-leader field (a piece of information maintained in the mobile
version of the algorithm), in which case they proceed as with the static case with
the highest valued-computation being the winner.

3.2 Specification of the Protocol

In this subsection we model the algorithm in CSDT. We assume that messages ex-
changed by the network nodes must be accompanied by one of the following types:

– election: used when a node invites another to join its computation.
– ack1: used to notify the recipient that the sender has agreed to enter its computation

and commits to forward the maximum identifier among its downward nodes.
– ack0: used to notify the recipient that the sender has not agreed to be one of its

children.
– leader: used to announce the elected leader of a computation during the flooding

process.
– reply: used to announce the computation in which a node participates. Such mes-

sages are important for the following reason: If a node x departs from its location,
enters a new computation and returns to its previous location before its initial neigh-
bors notice its departure, these reply messages will notify initial neighbors that x is
no longer part of their computation and thus they will no longer expect x to reply.

– hbeat: a message of this type is emitted by a leader node.

In its initial state the algorithm is modeled by the process S consisting of a set of
nodes who possess a leader (although this leader may be outside of their range).

S def= (
∏

k∈K
Elected〈bk, sk, leadk〉:σk)\T,
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where T = {election, ack0, ack1, leader, reply}. Thus, we restrict all but hbeat
messages emitted by leader nodes which are the messages we wish to observe. Based on
these messages we will subsequently express the correctness criterion of the algorithm.

The description of the behavior of nodes can be found in Figure 1. To begin with,
a node in Elected possesses a leader lead, a source s which records the computation
in which it has participated to elect its leader, and a status b which records whether or
not it needs to broadcast its leader. Note that a leader node (i.e. a node with id = lead)
regularly sends a heartbeat to notify its heartbeat neighbors of its availability. We may
see in Figure 1 that if a process Elected receives an election message from one of its
neighbors or, if it observes the absence of its leader (see condition lead �∈ H), it enters
InComp mode, wherein it begins its quest for a new leader.

The InComp process has a number of parameters: c records whether the node should
broadcast a leader election invitation to its neighbors and f is the node’s father to which
eventually an ack1 message needs to be returned (unless the node itself is the root of
the tree). src and lead are the computation’s source and previous leader, whereas max
is the maximum identifier observed by the node. Sets R and A record the neighbors
of the node that are expected to reply and the neighbors to which an ack0 should be
returned, respectively. Note that these sets are regularly updated according to the node’s
interface: we write R′ = R∩N, A′ = A∩N and f ′ =f, if f∈ N, and NULL, otherwise.
It is worth noting that at these points (as well as others, e.g. ”f = id”, “lead ∈ H”), the
ability of referring to the node’s interface plays a crucial role for the specification of the
protocol. Furthermore, the fact that sets N and H are the believed sets of neighbors and
may contain errors is realistic and it allows us to explore the correctness of the protocol
in its full generality.

Finally, node Leader〈f, src, max, lead〉 awaits to be notified of the component’s
leader by its father f . It recalls its computation characterized by its source and previous
leader (src and lead) as well as the maximum node it has observed from its downstream
nodes, max. In case of the loss of its father, the node elects this maximum node as the
leader of the component.

3.3 Verification of the Protocol

The aim of our analysis is to establish that after a finite number of topology changes,
every connected component of the network, where connectedness is defined in terms of
the normal transmission range, will elect the node with the maximum identifier as its
leader. We consider an arbitrary derivative of S, namely S1, where we assume that for
all nodes, sets N and H are consistent with the network’s state, and we show:

Theorem 1. S1 ≈s (
∏
k∈K Elected〈1, s, maxk〉:σk)\T where maxk is the maximum

node identifier in the connected component of node k.

In words, our correctness criterion states that, eventually, assuming nodes stop moving,
all nodes will learn a leader which is the node with the maximum identifier within their
connected component. We proceed to sketch the proof of the result which can be found
in its entirety in [3].
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Elected〈0, src, lead〉 def
= b(−, leader, 〈lead〉, n).Elected〈1, src, lead〉

Elected〈1, src, lead〉 def
=

cond (lead = id � b(−,hbeat, 〈lead〉, h).Elected〈1, src, lead〉,
lead �∈ H � InComp〈0, id, id,N, ∅, id, lead〉)

+ r(leader, 〈lead′〉). cond (lead < lead′ � Elected〈0, src, lead′〉,
true � Elected〈1, src, lead〉)

+ b(−, reply, 〈id, s〉, n).Elected〈1, src, lead〉
+ r(election, 〈j, l, s〉). cond (l = lead � InComp〈0, j, s,N− {j}, ∅, id, lead〉,

true � Elected〈1, src, lead〉)

InComp〈c,NULL, src,R,A,max, lead〉 def
= InComp〈c, id, src,R′, A′,max, lead〉

InComp〈1, f, src, ∅, ∅,max, lead〉 def
=

cond (f = id � Elected〈0, src,max〉,
true � b(f,ack1, 〈id, scr,max〉, n).Leader〈f, src,max, lead〉)

InComp〈c, f, src,R,A,max, lead〉 def
=

cond (c = 0 � b(−,election, 〈id, lead, scr〉, n). InComp〈1, f ′, scr,R′, A′,max, lead〉)
+

∑
j∈A b(j, ack0, 〈id〉, n). InComp〈1, f ′, scr,R′, A′ − {j}, max, lead〉

+ r(election, 〈j, l, s〉).
cond (l = lead ∧ s > src � InComp〈0, j, s,N− {j}, ∅, max, lead〉,

l = lead ∧ s = scr � InComp〈c, f ′, scr,R′, A′ ∪ {j}, max, lead〉,
true � InComp〈c, f, scr,R′, A′,max, lead〉)

+ r(ack0, 〈j〉). InComp〈1, f ′, src,R′ − {j}, A′,max, lead〉
+ r(ack1, 〈j, s,max′〉).

cond (s = src ∧max′ > max � InComp〈c, f ′, src,R′ − {j}, A′,max′, lead〉,
s = src ∧max′ ≤ max � InComp〈c, f ′, src,R′ − {j}, A′,max, lead〉,
true � InComp〈c, f ′, src,R′ − {j}, A′,max, lead〉)

+ r(leader, 〈l〉). InComp〈c, f ′, src,R′, A′, max, lead〉
+ r(reply, 〈j, s〉).

cond (src �= s � InComp〈c, f ′, src,R′ − {j}, A′ − {j}, max, lead〉,
true � InComp〈c, f ′, src,R′, A′,max, lead〉)

+ b(−, reply, 〈id, src〉, n). InComp〈c, f ′, src,R′, A′,max, lead〉

Leader〈NULL, src,max, lead〉 def
= Elected〈0, src,maxi〉

Leader〈f, src,max, lead〉 def
=

r(election, 〈j, l, s〉).
cond (l = lead ∧ s > src � InComp〈0, j, s,N− {j}, ∅,max, lead〉,

true � Leader〈f ′, src,max, lead〉)
+r(leader, 〈l〉).Elected〈0, src, l〉
+b(−, reply, 〈id, src〉,n).Leader〈f ′, scr,max, lead〉

Fig. 1. The description of a node

Sketch of Proof of Theorem 3
Let us consider an arbitrary derivative of S. This may be viewed as the composition of
a set of connected components CCg where independent leader-election computations
are taking place within some subsets of nodes Ng. We prove the following:
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Lemma 5. CCg ≈s Spec1, where Spec1
def= (

∏
i∈Ng

Elected〈1, si, maxg〉:σi)\T
and maxg = max{maxi|i ∈ Ng}.
The proof takes place in two steps. In the first step, we consider a simplification of CCg,
Fg , where each node x in Fg is associated with a specific node being the unique node
that x can accept as its father. We show that, by construction and Lemma 4, Fg is an
S-confluent process and we exhibit an execution Fg =⇒s Spec1. Here we may observe
the power of confluence: it is sufficient to study only a single execution of Fg . Then,
by τs-inertness, S-confluence guarantees that Fg ≈s Spec1. For the second step of the
proof we show that whenever CCg =⇒s D where exists an Fg (i.e. an assignment of
fathers to nodes) that is similar to D. Since this is true for any D we conclude that CCg
cannot diverge from the behavior of the Fg’s and that it is in fact destined to produce
only their behavior. Hence, we deduce that CCg ≈s Spec1 as required.

Bearing in mind that network S1 is a composition of the components CCg , each
concerning a distinct communication neighborhood of the network, S-confluence argu-
ments along with considerations regarding the availability of believed maximum nodes
allow us to deduce the correctness of the theorem. �

4 Conclusions

We have presented CSDT, a process calculus for reasoning about systems with broad-
casting communication and dynamic interconnections. A salient aspect of CSDT is its
ability to simulate a neighbor discovery protocol through its semantics and to asso-
ciate nodes with their (believed) set of neighbors. Furthermore, we have allowed nodes
to broadcast messages at two different transmission levels. As illustrated via our case
study, the ability to do so is not only useful with respect to saving power but can also
play an important role for protocol correctness. We point out that this could easily be
extended to a wider range of transmission levels, by considering a set of transmission
levels T l and replacing sets N and H in a node’s interface by a relation I ×T l. Finally,
we have introduced the notion of a message type and a hiding operator based on types
which allows an observer to focus on a subset of the message exchange. These message
types are reminiscent of tags by which various applications prefix different messages
according to their roles. As illustrated via our case study, this can be especially useful
for expressing appropriate correctness criteria via bisimulations.

We have also studied the notion of confluence for CSDT in the presence and absence
of node mobility. It turns out that in the case of stationary systems confluence yields
a compositional theory which is remarkably simple compared to similar value-passing
theories: the absence of channels for communication has removed a number of consid-
erations relating to confluence preservation. We believe that the results can be extended
to other calculi featuring a broadcasting style of communication. As in our case study,
these results allow one to conclude the confluence of the analyzed systems merely by
construction and then to deduce the desired bisimilarity via examining a single execu-
tion path and appealing to τ -inertness.

We have illustrated the applicability of the new formalism via the analysis of a leader-
election MANET protocol. In [15], the authors also give a proof of their algorithm using
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temporal logic: in particular they show a “weak form of stabilization of the algorithm”,
namely, that after a finite number of topological changes, the algorithm converges to
a desired stable state in a finite amount of time. As we do in our proof, they operate
under the assumption of no message loss. The same algorithm has also been considered
in [13] where its correctness was analyzed for a number of tree and ring-structured
initial topologies for networks with 5 to 8 nodes. It was shown automatically that it is
possible that eventually a node with the maximum id in a connected component will be
elected as the leader of the component and that every node connected to it via one or
more hops will learn about its election. The reachability nature of this result is due to
the lossy communication implemented in the ω-calculus.

In conclusion, we believe that CSDT can be applied for specifying and verifying a
wide range of dynamic-topology protocols and that the theory of confluence can play
an important role in facilitating the construction of their proofs. This belief is supported
by our current work on specifying and verifying a MANET routing algorithm. In future
work we plan to extend our framework in the presence of message loss.
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Abstract. This paper studies a behavioural theory of the π-calculus with session
types under the fundamental principles of the practice of distributed computing
— asynchronous communication which is order-preserving inside each connec-
tion (session), augmented with asynchronous inspection of events (message ar-
rivals). A new theory of bisimulations is introduced, distinct from either standard
asynchronous or synchronous bisimilarity, accurately capturing the semantic na-
ture of session-based asynchronously communicating processes augmented with
event primitives. The bisimilarity coincides with the reduction-closed barbed
congruence. We examine its properties and compare them with existing seman-
tics. Using the behavioural theory, we verify that the program transformation of
multithreaded into event-driven session based processes, using Lauer-Needham
duality, is type and semantic preserving.

1 Introduction

Modern transports such as TCP in distributed networks provide reliable, ordered de-
livery of messages from a program on one computer to another, once a connection is
established. In practical communications programming, two parties start a conversation
by establishing a connection over such a transport and exchange semantically mean-
ingful, formatted messages through this connection. The distinction between possibly
non order-preserving communications outside of connection and order-preserving ones
inside each connection is a key feature of this practice: order preservation allows proper
handling of a sequence of messages following an agreed-upon conversation structure,
while unordered deliveries across connections enhance asynchronous, efficient band-
width usage. Further, asynchronous event processing [18] using locally buffered mes-
sages enables the receiver to asynchronously inspect and consume events/messages.

This paper investigates semantic foundations of asynchronously communicating pro-
cesses, capturing these key elements of modern communications programming – dis-
tinction between non order-preserving communications outside connections and the
order-preserving ones inside each connection, as well as the incorporation of asyn-
chronous inspection of message arrivals. We use the π-calculus augmented with ses-
sion primitives, buffers and a simple event inspection primitive. Typed sessions capture
structured conversations in connections with type safety; while a buffer represents an
intermediary between a process and its environment, capturing non-blocking nature of
communications, and enabling asynchronous event processing. The formalism is in-
tended to be an idealised but expressive core communications programming language,
offering a basis for a tractable semantic study. Our study shows that the combination
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of these basic elements for modern communications programming leads to a rich be-
havioural theory which differs from both the standard synchronous communications
semantics and the fully asynchronous one [8], captured through novel equational laws
for asynchrony. These laws can then be used as a semantic justification of a well-known
program transformation based on Lauer and Needham’s duality principle [15], which
translates multithreaded programs to their equivalent single-threaded, asynchronous,
event-based programs. This transformation is regularly used in practice, albeit in an
ad-hoc manner, playing a key role in e.g. high-performance servers. Our translation is
given formally, is type-preserving and is backed up by a rigorous semantic justifica-
tion. While we do not detail in the main sections, the transform is implemented in the
session-extension of Java [14,13], resulting in competitive performance in comparison
with more ad-hoc transformations.

Let us outline some of the key technical ideas of the present work informally. In the
present theory, the asynchronous order-preserving communications over a connection
are modelled as asynchronous session communication, extending the synchronous ses-
sion calculus [24,9] with message queues [5,12,6]. A message queue, written s [i :�h,o :
�h′], encapsulates input buffer (i) with elements�h and output buffer (o) with�h′. Figure
below represents the two end points of a session. A message v is first enqueued by a
sender s!〈v〉;P at its output queue at s, which intuitively represents a communication
pipe extending from the sender’s locality to the receiver’s. The message will eventually
reach the receiver’s locality, formalised as its transfer from the sender’s output buffer
(at s) to the receiver’s input buffer (at s). For a receiver, only when this transfer takes
place, a visible (and asynchronous) message reception takes place, since only then the
receiver can inspect and consume the message (as shown in Remote below).Note that
dequeuing and enqueing actions inside a location are local to each process and is there-
fore invisible (τ-actions) (Local below).
Local (the dashed arrows)

s!〈v〉;Q | s [o :�h] τ−→ Q | s [o :�h·v]
s?(x).P | s [i :w·�h] τ−→ P{w/x} | s [i :�h]
Remote (the solid arrows)

s [i :�h]
s?〈v〉−→ s [i :�h·v] s [o :v·�h]

s!〈v〉−→ s [o :�h]

The induced semantics captures the nature of asynchronous observables not studied
before. For example, in weak asynchronous bisimilarity in the asynchronous π-calculus
(≈a in [8,10]), the message order is not observable (s!〈v1〉 | s!〈v2〉 ≈a s!〈v2〉 | s!〈v1〉) but
in our semantics, messages for the same destination do not commute (s!〈v1〉;s!〈v2〉 �≈
s!〈v2〉;s!〈v1〉) as in the synchronous semantics [20] (≈s in [8,10]); whereas two inputs
for different targets commute (s1?(x);s2?(y);P ≈ s2?(x);s1?(y);P) since the dequeue
action is not observable, differing from the synchronous semantics, s1?(x);s2?(y);P �≈s

s2?(x);s1?(y);P.
Asynchronous event-handling [13] introduces further subtleties in observational

laws. Asynchronous event-based programming is characterised by reactive flows driven
by the detection of events, that is message arrivals at local buffers. In our formalism, this
facility is distilled as an arrived predicate: e.g., Q = if arrived s then P1 else P2

reduces to P1 if the s input buffer contains one or more message; otherwise Q reduces
to P2. By arrived, we can observe the movement of messages between two locations.
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For example, Q | s[i : /0] | s[o : v] is not equivalent with Q | s[i : v] | s[o : /0] because the
former can reduce to P2 (since v has not arrived at the local buffer at s yet) while the
latter cannot.

Online appendix [23] lists the full definition of Lauer-Needham transformation, the
detailed definitions, full proofs and the benchmark results in Session-based Java which
demonstrate the potential of the session-type based translation as semantically transpar-
ent optimisation techniques.

2 Asynchronous Network Communications in Sessions

2.1 Syntax and Operational Semantics

We use a sub-calculus of the eventful session π-calculus [13], defined below.

(Identifier) u ::= a,b | x,y k ::= s,s | x,y n ::= a,b | s,s (Value) v ::= tt,ff | a,b | s,s
(Expression) e ::= v | x,y,z | arrived u | arrived k | arrived k h

(Process) P,Q ::= u(x).P | u(x);P | k!〈e〉;P | k?(x).P | k � l;P | k �{li :Pi}i∈I

| if e then P else Q | (ν a)P | P |Q | 0 | µX .P | X
| a [�s] | a〈s〉 | (ν s)P | s [i :�h,o :�h′] (Message) h ::= v | l

Values v,v′, ... include constants (tt,ff), shared channels a,b,c and session channels
s,s′. A session channel denotes one endpoint of a session: s and s denote two ends
of a single session, with s = s. Labels for branching and selection range over l, l′, ...,
variables over x,y,z, and process variables over X ,Y,Z. Shared channel identifiers u,u′
denote shared channels/variables; session identifiers k,k′ are session endpoints and vari-
ables. n denotes either a or s. Expressions e are values, variables and the message arrival
predicates (arrived u, arrived k and arrived k h: the last one checks for the arrival
of the specific message h at k). �s and�h stand for vectors of session channels and mes-
sages respectively. ε denotes the empty vector.

We distinguish two kinds of asynchronous communications, asynchronous session
initiation and asynchronous session communication (over an established session). The
former involves the unordered delivery of a session request message a 〈s〉, where a〈s〉
represents an asynchronous message in transit towards an acceptor at a, carrying a fresh
session channel s. As in actual network, a request message will first move through the
network and eventually get buffered at a receiver’s end. Only then a message arrival
can be detected. This aspect is formalised by the introduction of a shared channel input
queue a [�s], often called shared input queue for brevity, which denotes an acceptor’s
local buffer at a with pending session requests for�s. The intuitive meaning of the end-
point configuration s [i :�h,o :�h′] is explained in Introduction.

Requester u(x);P requests a session initiation, while acceptor u(x).P accepts one.
Through an established session, output k!〈e〉;P sends e through channel k asyn-
chronously, input k?(x).P receives through k, selection k � l;P chooses the branch with
label l, and branching k � {li : Pi}i∈I offers branches. The (ν a)P binds a channel a,
while (ν s)P binds the two endpoints, s and s, making them private within P. The condi-
tional, parallel composition, recursions and inaction are standard. 0 is often omitted. For
brevity, one or more components may be omitted from a configuration when they are



On Asynchronous Session Semantics 231

irrelevant, writing e.g. s [i :�h] which denotes the input part of s [i :�h,o :�h′]. The notions
of free variables and channels are standard [21]; fn(P) denotes the set of free channels in
P. a〈s〉, (ν s)P and s [i :�h,o :�h′] only appear at runtime. A process without free variables
is called closed and a closed process without runtime syntax is called program.

[Request1]

[Request2]

[Accept]

[Send,Recv]

[Sel,Bra]

[Comm]

[Areq]

[Ases]

[Amsg]

a(x);P −→ (ν s)(P{s/x} | s [i :ε,o :ε ] | a〈s〉) (s /∈ fn(P))
a [�s] | a〈s〉 −→ a [�s·s]

a(x).P | a [s·�s] −→ P{s/x} | s [i :ε,o :ε ] | a [�s]
s!〈v〉;P | s [o :�h] −→ P | s [o :�h·v] s?(x).P | s [i :v·�h] −→ P{v/x} | s [i :�h]
s� li;P | s [o :�h] −→ P | s [o :�h·li] s�{l j :Pj} j∈J | s [i : li ·�h] −→ Pi | s [i :�h] (i ∈ J)

s [o :v·�h] | s [i :�h′] −→ s [o :�h] | s [i :�h′ ·v]
E[arrived a] | a [�s] −→ E[b] | a [�s] (|�s| ≥ 1)↘ b

E[arrived s] | s [i :�h] −→ E[b] | s [i :�h] (|�h| ≥ 1)↘ b

E[arrived s h] | s [i :�h] −→ E[b] | s [i :�h] (�h = h·�h′)↘ b

The above table defines the reduction relation over closed terms. The key rules are
given in Figure above. We use the standard evaluation contexts E[ ] defined as E ::=
− | s!〈E〉;P | if E then P else Q. The structural congruence ≡ and the rest of the
reduction rules are standard. We set→→ = (−→∪≡)∗.

The first three rules define the initialisation. In [Request1], a client requests a server
for a fresh session via shared channel a. A fresh session channel, with two ends s
(server-side) and s (client-side) as well as the empty configuration at the client side,
are generated and the session request message a〈s〉 is dispatched. Rule [Request2] en-
queues the request in the shared input queue at a. A server accepts a session request
from the queue using [Accept], instantiating its variable with s in the request message;
the new session is now established. Asynchronous order-preserving session communi-
cations are modelled by the next four rules. Rule [Send] enqueues a value in the o-buffer
at the local configuration; rule [Receive] dequeues the first value from the i-buffer at the
local configuration; rules [Sel] and [Bra] similarly enqueue and dequeue a label. The
arrival of a message at a remote site is embodied by [Comm], which removes the first
message from the o-buffer of the sender configuration and enqueues it in the i-buffer at
the receiving configuration.

Output actions are always non-blocking. An input action can block if no message is
available at the corresponding local input buffer. The use of the message arrivals can
avoid this blocking: [Areq] evaluates arrived a to tt iff the queue is non-empty (e↘ b
means e evaluates to the boolean b); similarly for arrived k in [Areq]. [Amsg] evaluates
arrived s h to tt iff the buffer is nonempty and its next message matches h.

2.2 Types and Typing

The type syntax follows the standard session types from [9].
(Shared) U ::= bool | i〈S〉 | o〈S〉 | X | µ X.U (Value) T ::= U | S
(Session) S ::= !(T );S | ?(T );S | ⊕{li : Si}i∈I | &{li : Si}i∈I | µ X.S | X | end
The shared types U include booleans bool (and, in examples, naturals nat); shared chan-
nel types i〈S〉 (input) and o〈S〉 (output) for shared channels through which a session
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of type S is established; type variables (X,Y,Z, ..); and recursive types. The IO-types
(often called server/client types) ensure a unique server and many clients [11]. In the
present work they are used for controlling locality (queues are placed only at the server
sides) and associated typed transitions, playing a central role in our behavioural the-
ory. In session types, output type !(T );S represents outputting values of type T , then
performing as S. Dually for input type ?(T );S. Selection type ⊕{li : Si}i∈I describes a
selection of one of the labels say li then behaves as Ti. Branching type &{li : Si}i∈I waits
with I options, and behaves as type Ti if i-th label is chosen. End type end represents
the session completion and is often omitted. In recursive type µ X.S, type variables are
guarded in the standard sense.

The judgements of processes and expressions are Γ � P � ∆ and Γ ,∆ � e : T , with
Γ ::= /0 |Γ ·u :U |Γ ·X :∆ and ∆ ::= /0 | ∆ ·a | ∆ ·k :T | ∆ ·s where session type is extended
to T ::= M;S | M with M ::= /0 | ⊕ l | &l | !(T ) | ?(T) | M;M which represents types
for values stored in queues (note /0;S = S). Γ is called shared environment, which maps
shared channels and process variables to, respectively, constant types and value types;
∆ is called linear environment maps session channels to session types and recording
shared channels for acceptor’s input queues and session channels for end-point queues.
The judgement is read: program P is typed under shared environment Γ , uses channels
as linear environment ∆ . In the expression judgement, expression e has type T under
Γ , and uses channels as linear environment ∆ . We often omit ∆ if it is clear from the
context. The typing system is similar with [13,2], and can be found in online Appendix
[23]. We say that ∆ well configured if s :S ∈ ∆ , then s :S ∈ ∆ . We define: {s :!(T);S · s :
?(T );S′} −→ {s : S · s : S′}, {s :⊕{li : Si}i∈I · s : &{li : S′i}i∈I} −→ {s : Sk · s : S′k} (k ∈ I),
and ∆ ∪∆ ′′ −→ ∆ ′ ∪∆ ′′ if ∆ −→ ∆ ′.1

Proposition 2.1 (Subject Reduction). if Γ � P � ∆ and P →→ Q and ∆ is well-
configured, then we have Γ � Q� ∆ ′ such that ∆ −→∗ ∆ ′ and ∆ ′ is well-configured.

3 Asynchronous Session Bisimulations and Its Properties

3.1 Labelled Transitions and Bisimilarity

Untyped and Typed LTS. This section studies the basic properties of behavioural
equivalences. We use the following labels (�,�′, ...):

� ::= a〈s〉 | a〈s〉 | a(s) | s?〈v〉 | s!〈v〉 | s!(a) | s&l | s⊕ l | τ

where the labels denote the session accept, request, bound request, input, output, bound
output, branching, selection and the τ-action. sbj(�) denotes the set of free subjects
in �; and fn(�) (resp. bn(�)) denotes the set of free (resp. bound) names in �. The
symmetric operator � � �′ on labels that denotes that � is a dual of �′, is defined as:
a〈s〉 � a〈s〉, a〈s〉 � a(s), s?〈v〉 � s!〈v〉, s?〈a〉 � s!(a), and s&l � s⊕ l.

1 In the following sections, we study semantic properties of typed processes: however these de-
velopments can be understood without knowing the details of the typing rules. This is because
the properties of the typing system are captured by the typed LTS defined in section 3.1 later.
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〈Acc〉 a[�s]
a〈s〉−→ a[�s·s] 〈Req〉 a〈s〉 a〈s〉−→ 0 〈In〉 s [i :�h]

s?〈v〉−→ s [i :�h·v]
〈Out〉 s [o :v·�h]

s!〈v〉−→ s [o :�h] 〈Bra〉 s [i :�h] s&l−→ s [i :�h·l] 〈Sel〉 s [o : l·�h] s⊕l−→ s [o :h]

〈Local〉P −→ Q

P
τ−→ Q

〈Par〉P
�−→ P′ bn(�)∩ fn(Q) = /0

P|Q �−→ P′|Q
〈Tau〉 P

�−→ P′ Q
�′−→ Q′ �� �′

P|Q τ−→ (ν bn(�,�′))(P′|Q′)

〈Res〉 P
�−→ P′ n �∈ fn(�)

(ν n)P �−→ (ν n)P′
〈OpS〉 P

a〈s〉−→ P′

(ν s)P
a(s)−→ P′

〈OpN〉 P
s!〈a〉−→ P′

(ν a)P
s!(a)−→ P′

〈Alpha〉P≡α P′ P′ �−→Q

P
�−→ Q

Rule 〈Local〉 is defined from the reductions by [Request1, Accept, Send, Recv, Bra, Sel, Areq, Ases, Amsg]

as well as [Comm] when the communication object is a session (delegation).

In the untyped labelled transition system (LTS) defined above, 〈Acc〉/〈Req〉 are for the
session initialisation. The next four rules 〈In〉/〈Out〉/〈Bra〉/〈Sel〉 say the action is observ-
able when it moves from its local queue to its remote queue. When the process accesses
its local queue, the action is invisible from the outside, as formalised by 〈Local〉. In con-
trast, 〈Com〉 expresses an interaction between two local configutations. This distinction
is useful in our later proofs. Other compositional rules are standard. Based on the LTS,

we use the standard notations [19] such as P
�=⇒ Q, P

��=⇒Q and P
�̂=⇒ Q.

We define the typed LTS on the basis of the untyped one, using the type information
to control the enabling of actions. This is realised by introducing the environment transi-

tion, defined below. A transition (Γ ,∆) �−→ (Γ ′,∆ ′) means that an environment (Γ ,∆)
allows an action � to take place, and the resulting environment is (Γ ′,∆ ′), constraining
process transitions through the linear and shared environments. This constraint is at the
heart of our typed LTS, accurately capturing interactions in the presence of sessions and

local buffers. We write Γ1 �P1 �∆1
�−→Γ2 �P2 �∆2 if P1

�−→P2 and (Γ1,∆1)
�−→ (Γ2,∆2)

with Γi � Pi � ∆i. Similarly for other transition relations.

Γ (a) = i〈S〉,a ∈ ∆ ,s fresh ⇒ (Γ ,∆ )
a〈s〉−→ (Γ ,∆ · s :S)

Γ (a) = o〈S〉,a �∈ ∆ ⇒ (Γ ,∆ )
a〈s〉−→ (Γ ,∆ )

Γ (a) = o〈S〉,a �∈ ∆ ,s fresh ⇒ (Γ ,∆ )
a(s)−→ (Γ ,∆ · s :S)

Γ � v :U and U �= i〈S′〉 and s /∈ dom(∆ ) ⇒ (Γ ,∆ · s :!(U);S)
s!〈v〉−→ (Γ ,∆ · s :S)

s /∈ dom(∆ ) ⇒ (Γ ,∆ · s :!(o〈S′〉);S)
s!(a)−→ (Γ ·a :o〈S′〉,∆ · s :S)

Γ � v :U and U �= i〈S′〉 and s /∈ dom(∆ ) ⇒ (Γ ,∆ · s :?(U);S)
s?〈v〉−→ (Γ ,∆ · s :S)

s /∈ dom(∆ ) ⇒ (Γ ,∆ · s :⊕{li : Si}i∈I)
s⊕lk−→ (Γ ,∆ · s :Sk)

s /∈ dom(∆ ) ⇒ (Γ ,∆ · s :&{li : Si}i∈I)
s&lk−→ (Γ ,∆ · s :Sk)

∆ −→ ∆ ′ ⇒ (Γ ,∆ ) τ−→ (Γ ,∆ ′)

The first rule says that reception of a message via a is possible only when a is input-
typed (i-mode) and its queue is present (a ∈ ∆ ). The second is dual, saying that an
output at a is possible only when a has o-mode and no queue exists. Similarly for a
bound output action. The two session output rules (� = s!〈v〉 and s!(a)) are the standard
value output and a scope opening rule. The next is for value input. Label input and
output are defined similarly. Note that we send and receive only a shared channel which
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has o-mode. This is because a new accept should not be created without its queue in
the same location. The final rule (� = τ) follows the reduction rules defined before
Proposition 2.1. The LTS omits delegations since it is not necessary in the bisimulation
we consider (due to the notion of localisation, see the next paragraph).

Write �� for the symmetric and transitive closure of −→ over linear environments.
We say a relation on typed processes is a typed relation if, whenever it relates two
typed processes, we have Γ � P1 � ∆1 and Γ � P2 � ∆2 such that ∆1 �� ∆2. We write
Γ � P1 �∆1RP2 � ∆2 if (Γ � P1 � ∆1,Γ � P2 � ∆2) are in a typed relation R. Further we
often leave the environments implicit, writing simply P1RP2.

Localisation and Bisimulation. Our bisimulation is a typed relation over those pro-
cesses which are localised, in the sense that they are equipped with all necessary local
queues. We say an environment ∆ is delegation-free if it contains types which are gen-
erated by deleting S from value type T in the syntax of types defined in § 2.2 (i.e.
either !(S);S′ or ?(S);S′ does not appear in ∆ ). Similarly for Γ . Now let P be closed
and Γ � P� ∆ where Γ and ∆ are delegation-free (note that P can perform delegations
at hidden channels by 〈Local〉). Then we say P is localised w.r.t. Γ ,∆ if (1) For each
s : S ∈ dom(∆), s ∈ ∆ ; and (2) if Γ (a) = i〈S〉, then a ∈ ∆ . We say P is localised if it is
so for a suitable pair of environments. For example, s?(x);s!〈x + 1〉;0 is not localised,
but s?(x);s!〈x+1〉;0 | s [i:�h1,o:�h2] is. Similarly, a(x).P is not localised, but a(x).P | a [�s]
is. By composing buffers at appropriate channels, any typable closed process can be-

come localised. If P is localised w.r.t. (Γ ,∆) then Γ � P�∆ l−→ Γ ′ � P′ �∆ ′ implies P′
is localised w.r.t. (Γ ′,∆ ′) (in the case of τ-transition, note queues always stay). We can
now introduce the reduction congruence and the asynchronous bisimilarity.

Definition 3.1 (Reduction Congruence). We write P ↓ a if P ≡ (ν�n)(a〈s〉 | R) with
a �∈ �n. Similarly we write P ↓ s if P ≡ (ν�n)(s [o : h·�h] | R) with s �∈ �n. P ⇓ n means
∃P′.P→→ P′ ↓ n. A typed relation R is reduction congruence if it is a congruence and
satisfies the following conditions for each P1RP2 whenever they are localised w.r.t. their
given environments.

1. P1 ⇓ n iff P2 ⇓ n.
2. Whenever Γ � P1 � ∆1RP2 � ∆2 holds, P1 →→ P′1 implies P2 →→ P′2 such that Γ �

P′1 � ∆ ′1RP′2 � ∆ ′2 holds with ∆ ′1 �� ∆ ′2 and the symmetric case.

The maximum reduction congruence which is not a universal relation exists [10] which
we call reduction congruency, denoted by ∼=.

Definition 3.2 (Asynchronous Session Bisimulation). A typed relation R over lo-
calised processes is a weak asynchronous session bisimulation or often a bisimula-
tion for brevity, if, whenever Γ � P1 �∆1RP2 � ∆2, the following two conditions holds:

(1) Γ � P1 � ∆1
�−→ Γ ′ � P′1 � ∆ ′1 implies Γ � P2 � ∆2

�̂=⇒ Γ ′ � P′2 � ∆ ′2 such that Γ ′ �
P′1 �∆ ′1RP′2 �∆ ′2 with ∆ ′1 �� ∆ ′2 holds and (2) the symmetric case of (1). The maximum
bisimulation exists which we call bisimilarity, denoted by ≈. We sometimes leave en-
vironments implicit, writing e.g. P≈Q.

We extend ≈ to possibly non-localised closed terms by relating them when their mini-
mal localisations are related by≈ (given Γ � P�∆ , its minimal localisation adds empty
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queues to P for the input shared channels in Γ and session channels in ∆ that are miss-
ing their queues). Further ≈ is extended to open terms in the standard way [10].

3.2 Properties of Asynchronous Session Bisimilarity

Characterisation of Reduction Congruence. This subsection studies central proper-
ties of asynchronous session semantics. We first show that the bisimilarity coincides
with the naturally defined reduction-closed congruence [10], given below.

Theorem 3.3 (Soundness and Completeness). ≈ = ∼=.

The soundness (≈⊂∼=) is by showing ≈ is congruent. The most difficult case is a clo-
sure under parallel composition, which requires to check the side condition ∆ ′1 �� ∆ ′2
for each case. The completeness (∼=⊂≈) follows [7, § 2.6] where we prove that every
external action is definable by a testing process, see [23].

Asynchrony and Session Determinacy. Let us call � an output action if � is one of
a〈s〉,a(s),s!〈v〉,s!(a),s⊕ l; and an input action if � is one of a〈s〉,s?〈v〉,s&l. In the fol-
lowing, the first property says that we can delay an output arbitrarily, while the second
says that we can always immediately perform a (well-typed) input.

Lemma 3.4 (Input and Output Asynchrony). Suppose Γ � P� ∆ �=⇒ P′ � ∆ ′.

– (output delay) If � is an output action, then Γ � P � ∆ =⇒ �−→ P′ � ∆ ′.
– (input advance) If � is an input action, then Γ � P� ∆ �−→=⇒ P′ �∆ ′.

The asynchronous interaction on the session buffers enables inputs to happen before
multi-internal steps and outputs to happen after multi-internal steps.

Following [22], we define determinacy and confluence. Below and henceforth we
often omit the environments in typed transitions.

Definition 3.5 (Determinacy). We say Γ ′ � Q � ∆ ′ is derivative of Γ � P� ∆ if there

exists�� such that Γ � P�∆
��=⇒Γ ′ �Q�∆ ′. We say Γ � P�∆ is determinate if for each

derivative Q of P and action �, if Q
�−→ Q′ and Q

�̂=⇒ Q′′ then Q′ ≈ Q′′.

We then extend the above notions to session communications.

Definition 3.6 (Session Determinacy). Let us write P
�−→s Q if P

�−→ Q where if
� = τ then it is generated without using [Request1], [Request2], [Accept], [Areq] nor [Amsg] from
reduction rules (i.e. a communication is performed without arrival predicates or accept

actions). We extend the definition to
��=⇒s and

�̂=⇒s etc. We say P is session determinate

if P is typable, is localised and if Γ � P� ∆
��=⇒Q� ∆ ′ then Γ � P�∆

��=⇒s Q �∆ ′. We
call such Q a session derivative of P.

We define �1��2 (“residual of �1 after �2”) as (1) a〈s〉 if �1 = a(s′) and s′ ∈ bn(�2); (2)
s!〈s′〉 if �1 = s!(s′) and s′ ∈ bn(�2); (3) s!〈a〉 if �1 = s!(a) and a ∈ bn(�2); and otherwise
�1. We write l1 �� l2 when l1 �= l2 and if l1, l2 are input actions, sbj(l1) �= sbj(l2).
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Definition 3.7 (Confluence). Γ � P � ∆ is confluent if for each derivative Q of P and

�1, �2 such that �1 �� �2, (i) if Q
�−→Q1 and Q

�=⇒Q2, then Q1 =⇒Q′1 and Q2 =⇒Q′2≈
Q′1; and (ii) if Q

�1−→Q1 and Q
�2=⇒ Q2, then Q1

�̂2��1=⇒ Q′1 and Q2
�̂1��2=⇒ Q′2 ≈ Q′1.

Lemma 3.8. Let P be session determinate and Γ � P =⇒ Q� ∆ . Then P≈ Q.

Theorem 3.9 (Session Determinacy). Let P be session determinate. Then P is deter-
minate and confluent.

The following relation is used to prove the event-based optimisation. The proof of the
following lemma is by showing =⇒R⇐= with =⇒ determinate is a bisimulation.

Definition 3.10 (Determinate Upto-expansion Relation). Let R be a symmetric,
typed relation such that if Γ � P � ∆ R Q � ∆ and (1) P,Q are determinate; (2) If Γ �
P�∆ l−→Γ ′ � P′′ �∆ ′′ then Γ �Q�∆ l=⇒Γ ′ �Q′�∆ ′ and Γ ′ � P′′ �∆ ′′=⇒Γ ′ � P′�∆ ′
with Γ ′ � P′ � ∆ ′R Q′ � ∆ ′; and (3) the symmetric case. Then we call R a determinate
upto-expansion relation, or often simply upto-expansion relation.

Lemma 3.11. Let R be an upto-expansion relation. Then R ⊂≈.

4 Lauer-Needham Transform

In an early work [15], Lauer and Needham observed that a concurrent program may
be written equivalently either in a thread-based programming style (with shared mem-
ory primitives) or in an event-based style (with a single-threaded event loop processing
messages sequentially with non-blocking handlers). Following this framework and us-
ing high-level asynchronous event primitives such as selectors [18] for the event-based
style, many studies compare these two programming styles, often focusing on perfor-
mance of server architectures (see [13, § 6] for recent studies on event programming).
These implementations implicitly or explicitly assume a transformation from a program
written in the thread-based style, especially those which generate a new thread for each
service request (as in thread-based web servers), to its equivalent event-based program,
which treats concurrent services using a single threaded event-loop (as in event-based
web servers). However the precise semantic effects of such a transformation nor the
exact meaning of the associated “equivalence” has not been clarified.

We study the semantic effects of such a transformation using the asynchronous ses-
sion bisimulation. We first specify both event and thread based programming models
and introduce a formal mapping from a thread-based process to their event-based one,
following [15]. As a threaded system we assume a server process whose code creates
fresh threads at each service invocation. The key idea is to decompose this whole code
into distinct smaller code segments, each handling the part of the original code starting
from a blocking action. Such a blocking action is represented as reception of a message
(input or branching). Then a single global event-loop can treat each message arrival by
processing the corresponding code segment combined with an environment, returning
to inspect the content of event/message buffers. We first stipulate a class of processes
which we consider for our translation. Below ∗a(x);P denotes an input replication ab-
breviating µX .a(x).(P|X).
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Definition 4.1 (Server). A simple server at a is a closed process ∗a(x).P with a typing
of form a :i〈S〉,b1 :o〈S1〉, ..,bn :o〈Sn〉 where P is sequential (i.e. contains no parallel
composition | ) and is determinate and under any localisation. A simple server is often
considered with its localisation with an empty queue a[ε].

A server spawns an unbounded number of threads as it receives session requests re-
peatedly. Each thread may initiate other sessions with outside, and its interactions may
involve delegations and name passing. Definition 4.1 assumes two conditions: (1) de-
terminacy and (2) sequential processing of each event. A practical example of (1) is a
web server which only serves static web pages. As will be discussed later, determinacy
plays an essential role in our proofs while sequentiality is for simplicity of the mapping.
Given a server ∗a(w : S);P | a[ε], its translation, which we call Lauer-Needham trans-
form or LN-transform for short, is written LN [[∗a(w : S);P | a[ε]]](the full mapping is
non-trivial and given in [23]). The key elements of LN [[∗a(w : S);P]] follow:

1. A selector handles events on message arrival. Its function includes a selector queue
q〈ε〉 that stores sessions whose arrival is continuously inspected. Its initial element
is 〈a,c0〉. This data says: “if a message comes at a, jump to the code block (CPS
procedure) whose subject is c0”.

2. A collection of code blocks CodeBlocks〈a,o,q,�c〉, CPS procedures handling in-
coming messages. A code block originates from a threaded server blocking sub-
term, i.e. a subterm starting from an input or a branching.

3. Loop〈o,q〉 implements the event-loop. It passes execution from the selector to a
code block in CPS style, after a successful arrive inspection from the selector.

We use the standard “select” primitive represented as a process, called selector [13]. It
stores a collection of session channels, with each channel associated with an environ-
ment, binding variables to values. It then picks up one of them at which a message ar-
rives, receives that message via that channel and has it be processed by the correspond-
ing code block. Finally it stores the session and the associated environment back in the
collection, and moves to the next iteration. Since a selector should handle channels of
different types, it uses the typecase construct from [13]. typecase k of {(xi :Ti)Pi}i∈I

takes a session endpoint k and a list of cases (xi :Ti), each binding the free variable xi of
type pattern Ti in Pi. Its reduction is defined as:

typecase s of {(xi :Ti)Pi}i∈I | s [S,i :�h,o :�h′] −→ Pj{s/x j} | s [S,i :�h,o :�h′]

where j ∈ I such that (∀i < j.Ti �≤ S∧Tj ≤ S) where≤ denotes a subtyping relation. The
typecase construct finds a match of the session type of the tested channel among the
session types in its list, and proceeds with the corresponding process. For the matching
to take place, session endpoint configuration syntax is extended with the runtime session
typing [13]. The selectors are defined by the following reduction relations:

new selector r in P−→ (ν r)(P | sel〈r, ε〉) register〈s′,r〉;P | sel〈r,�s〉 −→ P | sel〈r,�s · s′〉
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·�s〉 | s′ [S,i :�h]

−→ Pi{s′/xi} | sel〈r,�s〉 | s′ [S,i :�h] (�h �= ε)
let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r, s′ ·�s〉 | s′ [i :ε ]

−→ let x = select(r) in typecase x of {(xi :Ti) : Pi}i∈I | sel〈r,�s · s′〉 | s′ [i :ε ]
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where in the third line S and Ti satisfy the condition for typecase in the reduction rule.
The last two rules integrate reductions for typecase to highlight their combined usage
(which is in effect the only way the selection is meaningfully performed). Operator
new selector r in P (binding r in P) creates a new selector sel〈r, ε〉, named r and
with the empty queue ε. Operator register〈s′,r〉;P registers a session channel s to r,
adding s′ to the original queue�s. The next let retrieves a registered session and checks
the availability to test if an event has been triggered. If so, find the match of the type
of s′ among {Ti} and select Pi; if not, the next session is tested. As proved in [13],
these primitives are encodable in the original calculus augmented with typecase. The
bisimulations and their properties (such as congruency of ≈) remain unchanged.

Example 4.1 (Lauer-Needham Transform). As an example of a server, consider:

P = ∗a(x);x?(y).x!〈y + 1〉;x?(z).x!〈y + z〉;0 | a[ε]

This process has the session type ?(nat); !(nat)?(nat); !(nat) at a, and can be read: a
process should first expect to receive (?) a message of type nat and send (!) it, then
to receive (? again) a nat, and finish by sending (!) a result. We extract the blocking
subterms from this process as follows.

Blocking Process Type at Blocking Prefix

a(x).x?(y).x!〈y+1〉x?(z).x!〈y+ z〉;0 i〈?(nat); !(nat); ?(nat); !(nat)〉
x?(y).x!〈y+1〉x?(z).x!〈y+ z〉;0 ?(nat); !(nat); ?(nat); !(nat)
x?(z).x!〈y+ z〉;0 ?(nat); !(nat)

These blocking processes are translated into code blocks (CodeBlocks) given as:

∗c0(y);a(x).update(y,x,x); register 〈sel,x,y,c1〉;o |
∗c1(x,y);x?(z);update(y,z,z); x!〈[[z]]y +1〉;register 〈sel,x,y,c2〉;o |
∗c2(x,y);x?(z′);update(y,z′,z′);x!〈[[z]]y +[[z′]]y〉;o

which processes each message, using environments to record threads’ states. The op-
eration update(y,x,x); updates an environment, while register stores the blocking
session channel, the associated continuation ci and the current environment y in the
selector queue sel.

Finally, using these code blocks, the main event-loop denoted Loop, is given as:

Loop = ∗o.let (x,y,z) = select from sel in typecase x of {
i〈?(nat); !(nat); ?(nat); !(nat)〉 : new y : env in z(y)
?(nat); !(nat); ?(nat); !(nat) : z(x,y)
?(nat); !(nat) : z(x,y)}

Above select from sel in selects a message from the selector queue sel, and treats
it in P. The new construct creates a new environment y. The typecase construct then
branches into different processes depending on the session of the received message, and
dispatch the task to each code block.

The determinate property allows us to conclude that:

Lemma 4.2. ∗a(w : S);R | a [ε] is confluent.
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We can now establish the correctness of the transform. The proofs of the following
results are found in [23], which use a determinate upto-expansion relation (Definition
3.10) through Lemmas 3.11. First we give a basic equation for the standard event loop,
handling events by non-blocking handlers. We use recursive equations of agents for
legibility, which can be easily encoded into recursions.
P1 = if arrived s1 then (s1?(x).R1);P2 elseif arrived s2 then (s2?(x).R2);P1 else P1

P2 = if arrived s2 then (s2?(x).R2);P1 elseif arrived s1 then (s1?(x).R1);P2 else P2

where we assume well-typedness and each of R1,2, under any closing substitution and
localisation, is determinate and reaches 0 after a series of outputs and τ-actions. The
sequencing (s1?(x).R1);P2 denotes the process obtained by replacing each 0 in R1 with
P2. We can then show P1 ≈ P2 by using the up-to-expansion relation. The following
lemma proves its generalisation, elucidating the selectors behaviour in the stateless en-
vironment. It says that we can permute the session channels in a selector queue while
keeping the same behaviour because of the determinacy of the server’s code.

Lemma 4.3. Let P
def
= µX .let x = select(r) in typecase x of {(xi :Ti) : Ri;X}i∈I

where each Ri is determinate and reaches 0 after a sequence of non-blocking actions
(outputs and τ-actions as well as a single input/branching action at xi). The sequencing
Ri;X is defined as above. Then, assuming typability, we have P | sel〈r,�s1 · s′1 · s′2 ·�s2〉 ≈
P | sel〈r,�s1 · s′2 · s′1 ·�s2〉.
Thus the selector’s behaviour can be matched with the original threaded behaviour step
by step in the sense that there is no difference between which event (resp. thread) is
selected to be executed first. We conclude:

Theorem 4.4 (Semantic Preservation). Let ∗a(w : S);R | a [ε] be a simple server. Then
∗a(w : S);P | a [ε]≈LN [[a(w : S);P | a [ε]]].

5 Discussions

Comparisons with Asynchronous/Synchronous Calculi. We give comprehensive
comparisons with other calculi, clarifying the relationship between (1) the session-
typed asynchronous π-calculus [8] without queues (≈a, the asynchronous version of
the labelled transition relation for the asynchronous π-calculus), (2) the session-typed
synchronous π-calculus [24,9] without queues (≈s), (3) the asynchronous session π-
calculus with two end-point queues without IO queues [6,5,21] (≈2), and (4) the asyn-
chronous session π-calculus with two end-point IO-queues (≈), i.e. the one developed
in this paper. The semantics of (2) is called non-local since the output process directly
puts the value into the input queue. The transition relation for non-local semantics (2)
is defined by replacing the output and selection rules in the LTS relation to:

〈Outn〉 s!〈v〉;P
s!〈v〉−→ P 〈Seln〉 s⊕ l;P

s⊕l−→ P

See [23] for the full definitions and proofs. The following figure summarises distin-
guishing examples. Non-Blocking Input/Output means inputs/outputs on different chan-
nels, while the Input/Output Order-Preserving means that the messages will be received/
delivered preserving the order. The final table explains whether Lemma 3.4 (1) (input
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advance) or (2) (output delay) is satisfied or not. If not, we place a counterexample (in
(4), Π1,2[si,i :ε,o :ε] means [s1,i :ε,o :ε] | [s2,i :ε,o :ε]).

Non-Blocking Input Non-Blocking Output
(1) s1?(x);s2?(y);P≈a s2?(y);s1?(x);P s1〈v〉 | s2〈w〉 | P≈a s1〈w〉 | s2〈v〉 | P
(2) s1?(x);s2?(y);P �≈s s2?(y);s1?(x);P s1!〈v〉;s2!〈w〉;P �≈s s2!〈w〉;s1!〈v〉;P
(3) s1?(x);s2?(y);P | s1 [ε ] | s2 [ε ]≈2 s1!〈v〉;s2!〈w〉;P | s1 [ε ] | s2 [ε ] �≈2

s2?(y);s1?(x);P | s1 [ε ] | s2 [ε ] s2!〈w〉;s1!〈v〉;P | s1 [ε ] | s2 [ε ]
(4) s1?(x);s2?(y);P |Π1,2[si,i :ε ,o :ε ] ≈ s1!〈v〉;s2!〈w〉;P |Π1,2[si,i :ε,o :ε ] ≈

s2?(y);s1?(x);P |Π1,2[si,i :ε ,o :ε] s2!〈w〉;s1!〈v〉;P |Π1,2[si,i :ε ,o :ε ]

Input Order-Preserving Output Order-Preserving
(1) s?(x);s?(y);P ≈a s?(y);s?(x);P s〈v〉 | s〈w〉 | P≈a s〈w〉 | s〈v〉 | P
(2) s?(x);s?(y);P �≈s s?(y);s?(x);P s!〈v〉;s!〈w〉;P �≈s s!〈w〉;s!〈v〉;P
(3) s?(x);s?(y);P | s [ε ] �≈2 s?(x);s?(y);P | s [ε ] s!〈v〉;s!〈w〉;P | s [ε ] �≈2 s!〈w〉;s!〈v〉;P | s [ε ]
(4) s?(x);s?(y);P |Π1,2[si,i :ε ,o :ε] �≈ s!〈v〉;s!〈w〉;P |Π1,2[si,i :ε ,o :ε] �≈

s?(x);s?(y);P |Π1,2[si,i :ε ,o :ε ] s!〈w〉;s!〈v〉;P |Π1,2[si,i :ε ,o :ε ]

Lemma 3.4 (1) Lemma 3.4 (2)
(1) yes yes
(2) (ν s)(s!〈v〉;s′?(x);0 | s?(x);0) (ν s)(s!〈v〉;s′!〈v′〉;0 | s′?(x);0)
(3) yes s!〈v〉; s′?(x);0 | s′[v′]
(4) yes yes

Another technical interest is the effects of the arrived predicate on these combi-
nations. We define the synchronous and asynchronous π-calculi augmented with the
arrived predicate and local buffers. For the asynchronous π-calculus, we add a[�h] and
arrived a in the syntax, and define the following rules for input and outputs.

a〈v〉 a〈v〉−→ 0 a[�h]
a〈h〉−→ a[�h ·h] if arrived a then P else Q|a[ε ] τ−→Q | a[ε ]

a?(x).P | a[�h1 ·hi · �h2]−→ P{hi/x} | a[�h1 · �h2] if arrived a then P else Q|a[�h] τ−→P | a[�h]

where, in the last rule, |�h| ≥ 1. The above definition precludes the order preservation
as the property of transport, but still keeps the non-blocking property as in the asyn-
chronous π-calculus. The synchronous version is similarly defined by setting the buffer
size to be one. The non-local version is defined just by adding arrived predicate.

Let Q = if e then P1 else P2 with P1 �≈ P2. If the syntax does not include arrival
predicates, we have Q | s[i : /0] | s[o : v] ≈ Q | s[i : v] | s[o : /0]. In the presence of the
arrival predicate, we have Q | s[i : /0] | s[o : v] �≈Q | s[i : v] | s[o : /0] with e = arrived s.
Interestingly in all of the calculi (1–4), the same example as the above, which separate
semantics with/without the arrived, are effective.

The IO queues provide non-blocking inputs and outputs, while preserving the in-
put/output ordering, which distinguishes the present framework from other known se-
mantics. As a whole, we observe that the present semantic framework is closer to the
asynchronous bisimulation (1)≈a, augmented with order-preserving nature per session.
Its key properties arise from local, buffered session semantics and typing. We have also
seen the semantic significance of the arrived predicates, which enables processes to
observe the effects of fine-grained synchronisations.
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Related Work. Some of the key proof methods of our work draw their ideas from
[22], which study an extension of the confluence theory on the π-calculus. Our work
differs in that we investigate the effect of asynchronous IO queues and its relationship
to confluence. The work [1] examines expressiveness of various messaging mediums by
adding message bags (no ordering), stacks (LIFO policy) and message queues (FIFO
policy) in the asynchronous π-calculus [8]. They show that the calculus with the mes-
sage bags is encodable into the asynchronous π-calculus, but it is impossible to encode
the message queues and stacks. Neither the effects of locality, queues, typed transitions,
and event-based programming are studied.

Programming constructs that can test the presence of actions or events are studied in
the context of the Linda language [3] and CSP [16,17]. The work [3] measures expres-
sive powers between three variants of asynchronous Linda-like calculi, with a construct
for inspecting the output in the tuple space, which is reminiscent of the inp predicate of
Linda. The first calculus (called instantaneous) corresponds to (1) [8], the second one
(called ordered) formalises emissions of messages to the tuple spaces, and the third
one (called unordered) models unordered outputs in the tuple space by decomposing
one messaging into two stages — emission from an output process and rendering from
the tuple space. It shows that the instantaneous and ordered calculi are Turing power-
ful, while the unordered is not. The work [16] studies CSP with a construct that checks
if a parallel process is able to perform an output action on a given channel and a sub-
sequent work [17] investigates the expressiveness of its variants focusing on the full
abstraction theorem of the trace equivalence. Our calculi (1,2,3,4) are Turing powerful
and we aim to examine properties and applications of the typed bisimilarity charac-
terised by buffered sessions: on the other hand, the focus of [3] is a tuple space where
our input/output order preserving examples (which treat different objects with the same
session channel) cannot be naturally (and efficiently) defined. The same point applies
to [16,17]. As another difference, the nature of localities has not been considered ei-
ther in [3,16,17] since no notion of a local or remote tuple or environment is defined.
Further, none of the above work [3,16,17,22,1] treats large applications which include
these constructs (§ 4) or the performance analysis of the proposed primitives.

Using eventful session types, we have demonstrated that our bisimulation theory is
applicable, through the verification of the correctness of the Lauer-Needham transform.
The asynchronous nature realised through IO message queues provides a precise analy-
sis of local and eventful behaviours, found in major distributed transports such as TCP.
The benchmark results from high-performance clusters in [23] show that the throughput
for the thread-eliminated Server implementations in Session Java [13] exhibits higher
throughput than the multithreaded Server implementations, justifying the effect of the
type and semantic preserving LN-transformation.

As the future work, we plan to investigate bisimulation theories under multiparty
session types [12] and a relationship with a linear logic interpretation of sessions, which
connects a behavioural theory and permutation laws under locality assumption [4].
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Abstract. Pastry is an algorithm that provides a scalable distributed
hash table over an underlying P2P network. Several implementations of
Pastry are available and have been applied in practice, but no attempt
has so far been made to formally describe the algorithm or to verify
its properties. Since Pastry combines rather complex data structures,
asynchronous communication, concurrency, resilience to churn and fault
tolerance, it makes an interesting target for verification. We have mod-
eled Pastry’s core routing algorithms and communication protocol in
the specification language TLA+. In order to validate the model and to
search for bugs we employed the TLA+ model checker tlc to analyze
several qualitative properties. We obtained non-trivial insights in the
behavior of Pastry through the model checking analysis. Furthermore,
we started to verify Pastry using the very same model and the interac-
tive theorem prover tlaps for TLA+. A first result is the reduction of
global Pastry correctness properties to invariants of the underlying data
structures.

Keywords: formal specification, model checking, verification methods,
network protocols.

1 Introduction

Pastry [9,3,5] is an overlay network protocol that implements a distributed hash
table. The network nodes are assigned logical identifiers from an Id space of
naturals in the interval [0, 2M − 1] for some M . The Id space is considered as a
ring, i.e., 2M − 1 is the neighbor of 0. The Ids serve two purposes. First, they
are the logical network addresses of nodes. Second, they are the keys of the hash
table. An active node is in particular responsible for keys that are numerically
close to its network Id, i.e., it provides the primary storage for the hash table
entries associated with these keys. Key responsibility is divided equally according
to the distance between two neighbor nodes. If a node is responsible for a key
we say it covers the key.

The most important sub-protocols of Pastry are join and lookup. The join
protocol eventually adds a new node with an unused network Id to the ring.

R. Bruni and J. Dingel (Eds.): FMOODS/FORTE 2011, LNCS 6722, pp. 244–258, 2011.
c© IFIP International Federation for Information Processing 2011
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The lookup protocol delivers the hash table entry for a given key. An important
correctness property of Pastry is Correct Key Delivery, requiring that there is
always at most one node responsible for a given key. This property is non-trivial
to obtain in the presence of spontaneous arrival and departure of nodes. Nodes
may simply drop off, and Pastry is meant to be robust against such changes,
i.e., churn. For this reason, every node holds two leaf sets of size l containing
its closest neighbors to either side (l nodes to the left and l to the right). A
node also holds the hash table content of its leaf set neighbors. If a node detects,
e.g. by a ping, that one of its direct neighbor nodes dropped off, the node takes
actions to recover from this state. So the value of l is relevant for the amount of
“drop off” and fault tolerance of the protocol.

A lookup request must be routed to the node responsible for the key. Routing
using the leaf sets of nodes is possible in principle, but results in a linear number
of steps before the responsible node receives the message. Therefore, on top of
the leaf sets of a node a routing table is implemented that enables routing in a
logarithmic number of steps in the size of the ring.

Fig. 1. Pastry Routing Example

Pastry routes a message by forwarding it to nodes that match progressively
longer prefixes with the destination key. In the example of Fig. 1, node 18 re-
ceived a lookup message for key 95. The key is outside node 18’s coverage and
furthermore, it doesn’t lie between the leftmost node and the rightmost node of
its leaf sets. Querying its routing table, node 18 finds node 58, whose identifier
matches the longest prefix with the destination key and then forwards the mes-
sage to that node. Node 58 repeats the process and finally, the lookup message
is answered by node 65, which is the closest node to the key 95, i.e., it covers
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key 95. In this case, we say that node 65 delivers the lookup request for key 95
(see also Fig. 4).

The first challenge in modeling Pastry was to determine an appropriate level of
abstraction. As a guiding principle, we focused the model towards supporting de-
tailed proofs of the correctness properties. We abstracted from an explicit notion
of time because it does not contribute to the verification of correctness properties.
For example, time-triggered periodic maintenance messages exchanged between
neighbors are modelled by non-deterministic sending of such messages. In con-
trast, we developed a detailed model for the address ring, the routing tables, the
leaf sets, as well as the messages and actions of the protocol because these parts
are central to the correctness of Pastry.

The second challenge was to fill in needed details for the formal model that
are not contained in the published descriptions of Pastry. Model checking was
very helpful for justifying our decisions. For instance, it was not explicitly stated
what it means for a leaf set to be “complete”, i.e., when a node starts taking over
coverage and becoming an active member on the ring. It was not stated whether
an overlap between the right and left leaf set is permitted or whether the sets
should always be disjoint. We made explicit assumptions on how such corner
cases should be handled, sometimes based on an exploration of the source code
of the FreePastry implementation [8]. Thus, we implemented an overlap in our
model only if there are at most 2l nodes present on the entire network, where l
is the size of each leaf set. A complete leaf set only contains less than l nodes, if
there are less than l nodes on the overall ring.

A further challenge was to formulate the correctness property; in fact, it is not
stated explicitly in the literature [9,3,5]. The main property that we are inter-
ested in is that the lookup message for a particular key is answered by at most
one “ready” node covering the key. We introduced a more fine-grained status
notion for nodes, where only “ready” nodes answer lookup and join requests.
The additional status of a node being “ok” was added in the refined model de-
scribed in Section 4 to support several nodes joining simultaneously between two
consecutive “ready” nodes.

The paper is organized as follows. In Section 2 we explain the basic mecha-
nisms behind the join protocol of Pastry. This protocol is the most important
part of Pastry for correctness. Key aspects of our formal model are introduced
in Section 3. To the best of our knowledge, we present the first formal model
covering the full Pastry algorithm. A number of important properties are model
checked, subsections 3.3–3.4 and subsections 4.2–4.3, and the results are used to
refine our model in case the model checker found undesired behavior. In addi-
tion to model checking our model, we have also been able to prove an important
reduction property of Pastry. Basically, the correctness of the protocol can be
reduced to the consistency of leaf sets, as we show in Section 5, Theorem 6. The
paper ends with a summary of our results, related work, and future directions of
research in Section 6. Further details and all proofs can be found in a technical
report [7].
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2 The Join Protocol

The most sophisticated part of Pastry is the protocol for a node to join the ring.
In its simplest form, a single node joins between two “ready” nodes on the ring.
The new node receives its leaf sets from the “ready” nodes, negotiates with both
the new leaf sets and then goes to status “ready”.

The join protocol is complicated because any node may drop off at any time,
in particular while it handles a join request. Moreover, several nodes may join the
ring concurrently between two adjacent “ready” nodes. Still, all “ready” nodes
must agree on key coverage.

Figure 2 presents a first version of the join protocol in more detail, according
to our understanding from [9] and [3]. We will refine this protocol in Sect. 4
according to the description in [5].

Fig. 2. Overview of the join protocol

Node j announces its interest in joining the ring by performing a Join action.
At this point, its status is “wait”. Its join request will be routed to the closest
“ready” node i just like routing a lookup message, treating j as the key. Node
i replies to j by performing a join reply, JReply action, transmitting its current
leaf sets to enable node j to construct its own leaf sets. Then the node j probes
all nodes in its leaf sets in order to confirm their presence on the ring. A probe
reply, action PReply, signals j that the respective leaf set node received the
probe message from j and updated its local leaf set with j . The reply contains
the updated leaf set. Each time the node j receives a probe reply message, it
updates the local information based on the received message and checks if there
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are outstanding probes. If no outstanding probe exists anymore or a timeout
occurs, it checks whether its leaf set is complete. If it is, it finishes the join phase
and goes to status “ready”. Otherwise, any fault case is summarized in Fig. 2
by Repair. For example, if a probe eventually fails, the probed node needs to
be removed from the leaf set. Then the node j probes the most distant nodes
(leftmost and rightmost) in its leaf sets to get more nodes, retrying to complete
its leaf set.

3 A First Formal Model of Pastry

We modeled Pastry as a (potentially infinite-state) transition system in TLA+ [6].
Although there are of course alternative logics and respective theorem provers
for modelling Pastry, TLA+ fits protocol verification quite nicely, because its
concept of actions matches the rule/message based definition of protocols. Our
model is available on the Web1. We explain those parts of the model that are
used later on for model checking and for proving the reduction theorem.

3.1 Static Model

Several parameters define the size of the ring and of the fundamental data struc-
tures. In particular, M ∈ N defines the space I = [0, 2M − 1] of node and key
identifiers, and l ∈ N indicates the size of each leaf set. The following definition
introduces different notions of distances between nodes or keys that will be used
in the model.

Definition 1 (Distances). Given x, y ∈ I :

Dist(x , y) Δ=

⎧
⎪⎨

⎪⎩

x − y + 2M−1 if x − y < −2M−1

x − y − 2M−1 if x − y > 2M−1

x − y, else

AbsDist(x , y) Δ= |Dist(x , y)|

CwDist(x , y) Δ=

{
AbsDist(x , y) if Dist(x , y) < 0
2M − AbsDist(x , y) else

The sign of Dist(x , y) is positive if there are fewer identifiers on the counter-
clockwise path from x to y than on the clockwise path; it is negative otherwise.
The absolute value AbsDist(x , y) gives the length of the shortest path along the
ring from x to y . Finally, the clockwise distance CwDist(x , y) returns the length
of the clockwise path from x to y.

The leaf set data structure ls of a node is modeled as a record with three com-
ponents ls .node, ls.left and ls.right . The first component contains the identifier
of the node maintaining the leaf set, the other two components are the two leaf
sets to either side of the node. The following operations access leaf sets.
1 http://www.mpi-inf.mpg.de/~tianlu/software/PastryModelChecking.zip
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Definition 2 (Operations on Leaf Sets)

GetLSetContent(ls) Δ= ls .left ∪ ls .right ∪ {ls .node}

LeftNeighbor (ls) Δ=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ls .node if ls .left = {}

n ∈ ls .left : ∀p ∈ ls .left :
CwDist(p, ls .node)
≥ CwDist(n, ls .node) else

RightNeighbor (ls) Δ=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ls .node if ls .right = {}

n ∈ ls .right : ∀q ∈ ls .right :
CwDist(ls .node, q)
≥ CwDist(ls .node,n) else

LeftCover (ls) Δ= (ls .node + CwDist(LeftNeighbor (ls), ls .node)÷ 2)%2M

RightCover (ls) Δ= (RightNeighbor (ls) +
CwDist(ls .node,RightNeighbor (ls))÷ 2 + 1)%2M

Covers(ls , k) Δ= CwDist(LeftCover (ls), k)
≤ CwDist(LeftCover (ls),RightCover (ls))

In these definitions, ÷ and % stand for division and modulo on the natural
numbers, respectively. Note that they are in fact only applied in the above defi-
nitions to natural numbers. We also define the operation AddToLSet(A, ls) that
updates the leaf set data structure with a set A of nodes. More precisely, both
leaf sets in the resulting data structure ls ′ contain the l nodes closest to ls .node
among those contained in ls and the nodes in A, according to the clockwise or
counter-clockwise distance.

3.2 Dynamic Model

Fig. 3 shows the high-level outline of the transition model specification in TLA+.
The overall system specification Spec is defined as Init∧�[Next ]vars , which is the
standard form of TLA+ system specifications. It requires that all runs start with
a state that satisfies the initial condition Init , and that every transition either
does not change vars (defined as the tuple of all state variables) or corresponds to
a system transition as defined by formula Next . This form of system specification
is sufficient for proving safety properties. If we were interested in proving liveness
properties of our model, we should add fairness hypotheses asserting that certain
actions eventually occur.

The variable receivedMsgs holds the set of messages in transit. Our model
assumes that messages are never modified. However, message loss is implicitly
covered because no action is ever required to execute. The other variables hold
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vars
Δ
= 〈receivedMsgs, status, lset , probing , failed , rtable〉

Init
Δ
= ∧ receivedMsgs = {}
∧ status = [i ∈ I �→ if i ∈ A then “ready” else “dead”]

∧ lset = [i ∈ I �→ if i ∈ A

then AddToLSet(A, [node �→ i , left �→ {}, right �→ {}])
else [node �→ i , left �→ {}, right �→ {}]]

∧ probing = [i ∈ I �→ {}]
∧ failed = [i ∈ I �→ {}]
∧ rtable = . . .

Next
Δ
= ∃i , j ∈ I : ∨ Deliver(i , j )

∨ Join(i , j )

∨ JReply(i , j )

∨ Probe(i , j )

∨ PReply(i , j )

∨ . . .

Spec
Δ
= Init ∧�[Next ]vars

Fig. 3. Overall Structure of the TLA+ Specification of Pastry

arrays that assign to every node i ∈ I its status, leaf set, the set of nodes it is
currently probing, the set of nodes it has determined to have dropped off the
ring, and its routing table. The predicate Init is defined as a conjunction that
initializes all variables; in particular, the model takes a parameter A indicating
the set of nodes that are initially “ready”.

The next-state relation Next is a disjunction of all possible system actions, for
all pairs of identifiers i , j ∈ I . Each action is defined as a TLA+ action formula,
which is a first-order formula containing unprimed as well as primed occurrences
of the state variables, which refer respectively to the values of these variables at
the states before and after the action. As an example, Fig. 4 shows the defini-
tion of action Deliver(i , k) in TLA+. The action is executable if the node i is
“ready”, if there exists an unhandled message of type “lookup” addressed to i ,
and if k , the ID of the requested key, falls within the coverage of node i (cf.
Definition 2). Its effect is here simply defined as removing the message m from

Deliver(i , k)
Δ
=

∧ status[i ] = “ready”

∧ ∃m ∈ receivedMsgs : ∧ m.mreq .type = “lookup”

∧ m.destination = i

∧ m.mreq .node = k

∧ Covers(lset [i ], k)

∧ receivedMsgs ′ = receivedMsgs \ {m}
∧ unchanged 〈status, rtable, lset , probing , failed , lease〉

Fig. 4. TLA+ specification of action Deliver
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the network, because we are only interested in the execution of the action, not
in the answer message that it generates. The other variables are unchanged (in
TLA+, unchanged e is a shorthand for the formula e ′ = e).

3.3 Validation by Model Checking

We used tlc [11], the TLA+ model checker, to validate and debug our model.
It is all too easy to introduce errors into a model that prevent the system from
ever performing any useful transition, so we want to make sure that nodes can
successfully perform Deliver actions or execute the join protocol described in
Section 2. We used the model checker by asserting their impossibility, using the
following formulas.

Property 3 (NeverDeliver and NeverJoin)

NeverDeliver Δ= ∀i , j ∈ I : �[¬Deliver(i , j )]vars
NeverJoin Δ= ∀j ∈ I \ A : �(status [j ] �= “ready”)

The first formula asserts that the Deliver action can never be executed, for any
i , j ∈ I . Similarly, the second formula asserts that the only nodes that may ever
become “ready” are those in the set A of nodes initialized to be “ready”. Running
the model checker on our model, it quickly produced counter-examples to these
claims, which we examined to ensure that the runs look as expected. (Section 4.3
summarizes the results for the model checking runs that we performed.)

We validated the model by checking several similar properties. For example,
we defined formulas ConcurrentJoin and CcJoinDeliver whose violation yielded
counter-examples that show how two nodes may join concurrently in close prox-
imity to the same existing node, and how they may subsequently execute Deliver
actions for keys for which they acquired responsibility.

3.4 Correct Key Delivery

As the main correctness property of Pastry, we want to show that at any time
there can be only one node responsible for any key. This is formally expressed
as follows.

Property 4 (Correct Key Delivery)

CorrectDeliver Δ= ∀i , k ∈ I :
enabled Deliver(i , k)
⇒ ∧ ∀n ∈ I : status [n] = “ready”⇒ AbsDist(i , k) ≤ AbsDist(n, k)
∧ ∀j ∈ I \ {i} : ¬enabled Deliver(j , k)

For an action formula A, the state formula enabled A is obtained by existential
quantification over all primed state variables occurring in A; it is true at a state s
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whenever there exists some successor state t such that A is true for the pair
(s, t), that is, when A can execute at state s. Thus, CorrectDeliver asserts that
whenever node i can execute the Deliver action for key k then (a) node i has
minimal absolute distance from k among all the “ready” nodes and (b) i is the
only node that may execute Deliver for key k .2

Fig. 5. Counter-example leading to a violation of CorrectDeliver

When we attempted to verify Property 4, the model checker produced a
counter-example, which we illustrate in Fig. 5. The run starts in a state with
just two “ready” nodes c and d that contain each other in their respective leaf
sets (the actual size of the leaf sets being 1). Two nodes a and b concurrently
join between nodes c and d . According to their location on the ring, a’s join
request is handled by node c, and b’s request by d . Both nodes learn about the
presence of c and d , and add them to their leaf sets, then send probe requests
to both c and d in order to update the leaf sets. Now, suppose that node d is
the first to handle a’s probe message, and that node c first handles b’s probe.
Learning that a new node has joined, which is closer than the previous entry in
the respective leaf set, c and d update their leaf sets with b and a, respectively
(cf. Fig. 5), and send these updated leaf sets to b and a. Based on the reply
from d , node a will not update its leaf set because its closest left-hand neighbor
is still found to be c, while it learns no new information about the neighborhood
to the right. Similarly, node b maintains its leaf sets containing c and d . Now,
2 Observe that there can be two nodes with minimal distance from k , to either side of

the key. The asymmetry in the definition of LeftCover and RightCover is designed
to break the tie and ensure that only one node is allowed to deliver.
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the other probe messages are handled. Consider node c receiving a’s probe: it
learns of the existence of a new node to its right closer to the one currently in
its leaf set (b) and updates its leaf set accordingly, then replies to a. However,
node a still does not learn about node b from this reply and maintains its leaf
sets containing c and d . Symmetrically, node d updates its leaf set to contain b
instead of a, but b does not learn about the presence of a. At the end, the leaf
sets of the old nodes c and d are correct, but a and b do not know about each
other and have incorrect leaf set entries.

Finally, a lookup message arrives for key k , which lies between a and b, but
closer to a. This lookup message may be routed to node b, which incorrectly
believes that it covers key k (since k is closer to b than to c, which b believes to
be its left-hand neighbor), and delivers the key.

The counter-example shows that our model of the join protocol may lead to
inconsistent views of “ready” nodes about their neighborhoods on the ring, and is
therefore insufficient. Indeed, after the initial publication of Pastry, Haeberlen et
al. [5] presented a refined description of Pastry’s join protocol, without providing
an explicit motivation. We believe that the above counter example explains the
refinement of [5], which we model and analyze in the sequel.

4 Refining the Join Protocol

In contrast to the join protocol described in Section 2, the refined join protocol
requires an explicit transfer of coverage from the “ready” neighbor nodes before
a joining node can become “ready” and answer lookup requests. In the case
of the counter-example shown in Fig. 5, node a would request grants from the
nodes c and d , which it believes to be its neighbors. Node d would refuse this
request and instead inform node a of the presence of node b, enabling it to
rebuild its leaf sets. Similarly, node b would learn about the presence of node a.
Finally, the two nodes grant each other a lease for the nodes they cover. We
now describe the extended protocol as we have understood and modelled it, and
our further verification efforts. In fact, our formal model is also inspired by the
implementation in FreePastry [8], where nodes periodically exchange their leaf
sets to spread information about nodes dropping off and arriving.

4.1 Lease Granting Protocol

Figure 6 depicts the extension to the join protocol as described in Section 2 (cf.
Fig. 2). After node i has built complete leaf sets, it reaches status “ok”. It sends
messages to its neighbors ln and rn (the two closest nodes in its current leaf
sets), requesting a lease for the keys it covers. A node receiving a lease request
from a node that it considers to be its neighbor grants the lease, otherwise it
returns its own leaf sets to the requesting node. The receiving node will update
its own leaf sets accordingly and request a lease from the new neighbor(s). Only
when both neighbors grant the lease will node i become “ready”.
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Fig. 6. Extending the Join Protocol by Lease Granting

Moreover, any node that is “ok” or “ready” may non-deterministically re-
run the lease granting protocol at any time. In the actual implementation, this
happens periodically, as well as when a node suspects its neighbor to have left
the ring.

We amended our TLA+ model to reflect this extended join protocol and reran
tlc on the extended model. Whereas the results for the properties used to
validate the model (cf. Section 3.3) were unchanged, the model checker no longer
produced a counter-example to Property 4. However, we were unable to complete
the model checking run and killed tlc after it had been running for more than
a month.

4.2 Symmetry of Leaf Sets

Based on the counter-example shown in Section 3.4, one may be tempted to
assert that leaf set membership of nodes should be symmetrical in the sense
that for any two “ready” nodes i , j it holds that i appears in the leaf sets of j if
and only if j appears in the leaf sets of i .

Property 5 (Symmetry of leaf set membership)

Symmetry Δ=
∀i , j ∈ I : status [i ] = “ready” ∧ status [j ] = “ready”

⇒ (i ∈ GetLSetContent(lset [j ])⇔ j ∈ GetLSetContent(lset [i ]))

However, the above property is violated during the execution of the join protocol
and tlc yields the following counter-example: a node k joins between i and j .
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Table 1. tlc result with four nodes, leaf set length l = 1

Examples Time Depth # states Counter Example

NeverDeliver 1” 5 101 yes

NeverJoin 1” 9 19 yes

ConcurrentJoin 3’53” 21 212719 yes

CcJoinLookup 23’16” 23 1141123 yes

Symmetry 17” 17 19828 yes

Neighbor 5’35” 16 278904 yes

NeighborProp > 1 month 31 1331364126 no

CorrectDeliver > 1 month 21 1952882411 no

It finishes its communication with i getting its coverage set from i , but its
communication with j is not yet finished. Hence, i and j are “ready” whereas k
is not. Furthermore, i may have removed j from its leaf set, so the symmetry is
broken.

4.3 Validation

Table 1 summarizes the model checking experiments we have described so far,
over the extended model. tlc was run with two worker threads (on two CPUs)
on a 32 Bit Linux machine with Xeon(R) X5460 CPUs running at 3.16GHz with
about 4 GB of memory per CPU. For each run, we report the running time, the
number of states generated until tlc found a counter-example (or, in the case
of Property 4, until we killed the process), and the largest depth of these states.
Since the verification of Property 4 did not produce a counter-example, we ran
the model checker in breadth-first search mode. We can therefore assert that if
the model contains a counter-example to this property, it must be of depth at
least 21.

All properties except Neighbor and NeighborProp were introduced in previous
sections. The property Neighbor is inspired by the counter-example described in
Section 3.4. It is actually the NeighborClosest property relaxed to “ok” and
“ready” nodes. It asserts that whenever i , j are nodes that are “ok” or “ready”,
then the left and right neighbors of node i according to its leaf set contents
must be at least as close to i than is node j . This property does not hold, as the
counter-example of Section 3.4 shows, but it does if node i is in fact “ready”,
which corresponds the NeighborClosest property. The NeighborProp property is
the conjunction HalfNeighbor ∧ NeighborClosest , see the next section.

5 Theorem Proving

Having gained confidence in our model, we now turn to formally proving the main
correctness Property 4, using the interactive TLA+ proof system (tlaps) [4].
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Our full proofs are available on the Web3. The intuition gained from the counter-
example of Section 3.4 tells us that the key to establishing Property 4 is that the
leaf sets of all nodes participating in the protocol contain the expected elements.
We start by defining a number of auxiliary formulas.

Ready Δ= {i ∈ I : status [i ] = “ready”}
ReadyOK Δ= {i ∈ I : status[i ] ∈ {“ready”, “ok”}}
HalfNeighbor Δ=
∨ ∀i ∈ ReadyOK : RightNeighbor(lset [i ]) �= i ∧ LeftNeighbor(lset [i ]) �= i
∨ ∧ Cardinality(ReadyOK ) ≤ 1
∧ ∀i ∈ ReadyOK : LeftNeighbor(lset [i ]) = i ∧RightNeighbor(lset [i ]) = i

NeighborClosest Δ= ∀i , j ∈ Ready :
i �= j ⇒ ∧ CwDist(LeftNeighbor(lset [i ]), i) ≤ CwDist(j , i)

∧ CwDist(i ,RightNeighbor(lset [i ])) ≤ CwDist(i , j )

Sets Ready and ReadyOK contain the nodes that are “ready”, resp. “ready”
or “ok”. Formula HalfNeighbor asserts that whenever there is more than one
“ready” or “ok” node i , then the left and right neighbors of every such node i
are different from i . In particular, it follows by Definition 2 that no leaf set
of i can be empty. The formula NeighborClosest states that the left and right
neighbors of any “ready” node i lie closer to i than any “ready” node j different
from i .

We used tlc to verify NeighborProp Δ= HalfNeighbor ∧ NeighborClosest .
Running tlc for more than a month did not yield a counter-example. Using
tlaps, we have mechanically proved that NeighborProp implies Property 4, as
asserted by the following theorem.

Theorem 6 (Reduction). HalfNeighbor ∧NeighborClosest ⇒ CorrectDeliver .

We sketch our mechanically verified tlaps proof of Theorem 6 by two lemmas.
The first lemma shows that, assuming the hypotheses of Theorem 6, then for
any two “ready” nodes i , n, with i �= n and key k , if node i covers k then i
must be at least as close to k as is n.

Lemma 7 (Coverage Lemma)

HalfNeighbor ∧NeighborClosest
⇒ ∀i , n ∈ Ready : ∀k ∈ I : i �= n ∧ Covers(lset [i ], k)

⇒ AbsDist(i , k) ≤ AbsDist(n, k)

The second lemma shows, under the same hypotheses, that if i covers k then
n cannot cover k . Taking together Lemma 7 and Lemma 8, Theorem 6 follows
easily by the definitions of the property CorrectDeliver (Property 4) and the
action Deliver (see Fig. 4).

3 http://www.mpi-inf.mpg.de/~tianlu/software/PastryTheoremProving.zip
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Lemma 8 (Disjoint Covers)

HalfNeighbor ∧NeighborClosest
⇒ ∀i ,n ∈ Ready : ∀k ∈ I : i �= n ∧ Covers(lset [i ], k)

⇒ ¬Covers(lset [n], k)

In order to complete the proof that our model of Pastry satisfies Property 4, it
is enough by Theorem 6 to show that every reachable state satisfies properties
HalfNeighbor and NeighborClosest . We have embarked on an invariant proof and
have defined a predicate that strengthens these properties. We are currently in
the process of showing that it is indeed preserved by all actions of our model.

6 Conclusion and Future Work

In this paper we have presented a formal model of the Pastry routing protocol, a
fundamental building block of P2P overlay networks. To the best of our knowl-
edge, this is the first formal model of Pastry, although the application of formal
modeling and verification techniques to P2P protocols is not entirely new. For
example, Velipalasar et al. [10] report on experiments of applying the Spin model
checker to a model of a communication protocol used in a P2P multimedia sys-
tem. More closely related to our topic, Borgström et al. [2] present initial work
towards the verification of a distributed hash table in a P2P overlay network in
a process calculus setting, but only considered fixed configurations with perfect
routing information. As we have seen, the main challenge in verifying Pastry
lies in the correct handling of nodes joining the system on the fly. Bakhshi and
Gurov [1] model the Pure Join protocol of Chord in the π-calculus and show that
the routing information along the ring eventually stabilizes in the presence of
potentially concurrent joins. Numerous technical differences aside, they do not
consider possible interferences between the join and lookup sub-protocols, as we
do in our model.

Pastry is a reasonably complex algorithm that mixes complex data structures,
dynamic network protocols, and timed behavior for periodic node updates. We
decided to abstract from timing aspects, which are mainly important for perfor-
mance, but otherwise model the algorithm as faithfully as possible. Our main
difficulties were to fill in details that are not obvious from the published descrip-
tions of the algorithm, and to formally state the correctness properties expected
from Pastry. In this respect, the model checker helped us understand the need
for the extension of the join protocol by lease granting, as described in [5]. It was
also invaluable to improve our understanding of the protocol because it allowed
us to state “what-if” questions and refute conjectures such as the symmetry
of leaf set membership (Property 5). The building of the first overall model of
Pastry in TLA+ took us about 3 months. Almost two third of it was devoted to
the formal development of the underlying data structures, such as the address
ring, leaf sets or routing tables.

After having built up confidence in the correctness of our model, we started
full formal verification using theorem proving. In particular, we have reduced the
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correctness Property 4 to a predicate about leaf sets that the algorithm should
maintain, and have defined a candidate for an inductive invariant. Future work
will include full verification of the correctness properties. Afterwards, we will
extend the model by considering liveness properties, which obviously require
assumptions about the ring being sufficiently stable. We also intend to study
which parts of the proof are amenable to automated theorem proving techniques,
as the effort currently required by interactive proofs is too high to scale to more
complete P2P protocols.

Acknowledgements. We would like to thank the reviewers for their valuable
comments.
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Abstract. Workflow Petri nets (wf-nets) are an important formalism for
the modeling of business processes. For them we are typically interested
in the soundness problem, that intuitively consists in deciding whether
several concurrent executions can always terminate properly. Resource-
Constrained Workflow Nets (rcfw-nets) are wf-nets enriched with static
places, that model global resources. In this paper we prove the unde-
cidability of soundness for rcwf-nets when there may be several static
places and in which instances are allowed to terminate having created or
consumed resources. In order to have a clearer presentation of the proof,
we define an asynchronous version of a class of Petri nets with dynamic
name creation. Then, we prove that reachability is undecidable for them,
and reduce it to dynamic soundness in rcwf-nets. Finally, we prove that
if we restrict our class of rcwf-nets, assuming in particular that a sin-
gle instance is sound when it is given infinitely many global resources,
then dynamic soundness is decidable by reducing it to the home space
problem in P/T nets for a linear set of markings.

1 Introduction

Workflow Nets have been identified and widely used as a solid model of business
processes [1], with a rich theory for their analysis and verification, sustained in
more than 40 years of development of the theory of Petri Nets. Workflow nets
(wf-nets) model business processes, that start in a given initial state and must
eventually finish (under a strong fairness assumption) in a final state in which
its task has been completed. One of the central problems in this area is that
of soundness, that of checking whether a wf-net can always reach its final state
properly [2].

Here we follow the works in [3,4]. In them, the authors study extensions of wf-
nets in which processes must share some global resources. Resource-constrained
workflow nets (rcwf-nets) are wf-nets in which some places are dynamic and
some are static. Following a terminology from OOP, a rcwf-net can be seen
as the definition of a class, with its local and static attributes, represented by
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dynamic and static places, respectively. Then, the rcwf-net can be instantiated
several times, but every instance must share the tokens in static places.

Even if a singe instance of a rcwf-net is sound, several instances could dead-
lock because of static places. In [3] the authors define dynamic soundness, which
essentially amounts to the condition stating that any number of instances run-
ning simultaneously can always reach the final state, that in which all the tasks
have been completed.

In both works, the authors consider rcwf-nets that do not create or consume
static resources, that is, rcwf-nets that always return a global resource after
using it. In particular, the behavior of a single instance of a rcwf-net is such
that the number of tokens in the static places in the initial and final markings
coincide. Under this assumption, the number of tokens in the static places is
bounded by the number of tokens in the initial marking. The authors prove
in [3] that dynamic soundness is decidable whenever there is only a single static
place, that is, whenever there is a single type of global resources. Recently, [4]
further studies the problem of dynamic soundness, extending the previous result
to rcwf-nets with any number of static places, but considering a fixed number
of initial resources (unlike in [3], in which the existence of a minimal number of
resources for which the rcwf-net is sound is part of the problem). Under these
assumptions, it is enough for the authors to study the absence of deadlocks.

In this paper we continue the works in [3,4] by studying the problem of dy-
namic soundness for rcwf-nets with any number of static places, and without
restricting their behavior so that instances can terminate their task having cre-
ated new global resources or having consumed some.

We prove that dynamic soundness under these hypotheses is undecidable. It is
to the best of our knowledge the first undecidability result regarding soundness in
wf-nets (without special arcs like inhibitor or reset arcs [5]). The proof considers
a class of colored Petri nets with dynamic fresh name creation that we have
defined in previous works [6], called ν-PN. It is based on a non-trivial reduction
of reachability in ν-PN, which is undecidable [7,8], to dynamic soundness in rcwf-
nets. Moreover, we believe that the simulation of ν-PN by means of rcwf-nets,
and the reduction of the reachability problem, are interesting by themselves, and
could be used to obtain other decidability/undecidability results.

Finally, we consider the same problem for a subclass of rcwf-nets, arguably a
sensible subclass of rcwf-nets. We will consider rcwf-nets which are sound for a
single instance (that is, such that a single instance can always finish properly)
whenever it is provided with infinitely many resources, and such that every
transition may contribute to the completion of the task. We will prove that
dynamic soundness in this case can be reduced to a home space problem in
ordinary P/T nets, which is decidable [9,10].

The rest of the paper is organized as follows. Section 2 presents the basic
concepts we will need, like P/T nets and ν-PN. Section 3 defines asynchronous
ν-PN and proves undecidability of reachability for them. In Sect. 4 we present
our rcwf-nets, in terms of asynchronous ν-PN. Section 5 proves that dynamic
soundness is undecidable for rcwf-nets. In Sect. 6 we consider a restricted version
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of the problem, and prove decidability in this case. Finally, Sect. 7 presents our
conclusions and directions for further study.

2 Preliminaries

A (finite) multiset m over a set A is a mapping m : A → N. We denote by A⊕

the set of finite multisets over A. For two multisets m1 and m2 over A we define
m1+m2 ∈ A⊕ by (m1+m2)(a) = m1(a)+m2(a) and m1 ⊆ m2 if m1(a) ≤ m2(a)
for every a ∈ A. When m1 ⊆ m2 we can define m2−m1 ∈ A⊕ by (m2−m1)(a) =
m2(a) −m1(a). We denote by ∅ the empty multiset, that is, ∅(a) = 0 for every
a ∈ A. Finally, for λ ∈ N and m ∈ A⊕ we define λ ∗m = m + λ... + m ∈ A⊕.

Petri Nets. A Place/Transition Net [11] (P/T net for short) is a tuple N =
(P, T, F ), where P is a finite set of places, T is a finite set of transitions (disjoint
with P ) and F : (P × T ) ∪ (T × P ) → N is the flow function. P/T nets are
depicted as usual: places are drawn by circles, transitions are drawn by boxes
and F is represented by arrows labeled by a natural, that is, we draw an arrow
from x to y labeled by F (x, y) (or without any label if F (x, y) = 1). We do not
show the arrow whenever F (x, y) = 0.

A marking of N is an element of P⊕. For a transition t we define •t ∈ P⊕

as •t(p) = F (p, t). Analogously, we take t•(p) = F (t, p). A marking m enables
a transition t ∈ T if •t ⊆ m. In that case t can be fired, reaching the marking
m′ = (m− •t) + t•, in which case we write m

t→m′.
Given a P/T net N = (P, T, F ) with initial marking m0, we say that a place

p ∈ P is bounded if there exists b ∈ N such that for each reachable marking m,
m(p) ≤ b. It is bounded if all its places are bounded. Boundedness is decidable
for P/T nets. Moreover, the problem of deciding whether a place is bounded, is
also decidable [10]. Given a P/T net N , a marking m0 and a set H of markings
of N , we say that H is a home space if for every reachable marking m, there is
a marking m′ ∈ H reachable from m.

The problem of deciding whether a linear set of markings is a home space is
decidable too [10,9]. A linear set of markings of a P/T net N is a set of markings
that can be obtained as linear combinations of markings of N . More precisely,
a marking m0 and a finite set of markings {m1, ..., mn} define the linear set of
markings L = {m0 +

∑n
i=1 λi ∗mi | λi ∈ N}.

Workflow Petri Nets. We will use the definition in [4]. A workflow Petri net
(shortly a wf-net) is a P/T net N = (P, T, F ) such that:

– there are in, out ∈ P with •in = ∅ and out• = ∅,
– for each p ∈ P \ {in, out}, •p 	= ∅ and p• 	= ∅.
The second condition intuitively states that all the places contribute to the

completion of the task. In this paper, we can always force that condition to be
satisfied, so that we will from now on ignore it.
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Fig. 1. Two simple ν-PN

Petri Nets with dynamic name creation. Now we briefly define ν-PN [6].
We consider an infinite set Id of names, a set Var of variables and a subset of
special variables Υ ⊂ Var for name creation. A ν-PN is a tuple N = (P, T, F ),
where P and T are finite disjoint sets, and F : (P × T ) ∪ (T × P )→ Var⊕.

A marking is a mapping m : P → Id⊕. We denote by ∅ the empty marking,
that which satisfies ∅(p) = ∅ for all p ∈ P . We write Id(m) to denote the set
of names that appear in m. We denote by Var(t) the set of variables in arcs
adjacent to t. Analogously, we will write Var(p) for the set of variables adjacent
to a place p. A mode is a mapping σ : Var(t) → Id . A transition t can be
fired with mode σ for a marking m if for all p ∈ P , σ(F (p, t)) ⊆ m(p) and
for every ν ∈ Υ , σ(ν) /∈ m(p) for all p. In that case we have m

t→m′, where
m′(p) = (m(p)− σ(F (p, t))) + σ(F (t, p)) for all p ∈ P .

In order to keep usual notations in P/T nets, we will assume that there is a
“distinguished” color • ∈ Id . By “name” we mean any color different from •.
Moreover, we will use a distinguished variable ε that can only be instantiated
to •, which will be omitted in our figures. Thus, we can manage ordinary black
tokens with the same notations as in P/T nets.

The reachability problem is undecidable for ν-PN [7,8], that is, given m0

and mf , markings of a ν-PN N , the problem of deciding whether m0 →∗ mf

is undecidable. By following a standard reduction that removes mf , we can
prove that the problem of deciding whether the empty marking is reachable is
also undecidable. Moreover, without loss of generality we can assume that m0

contains a single token.

3 Asynchronous ν-PN

Intuitively, one can see each name in a ν-PN as a process. Then, we can see a
firing of a transition in which different names are involved as a synchronization
between the corresponding processes.

Next, we prove that we can assume that actually each process can only syn-
chronize with a global shared memory, so that a synchronization between two
processes must be achieved via this shared memory. Technically, we will use or-
dinary black tokens to represent this global memory, and names to represent
processes.
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Fig. 2. Simulation of the ν-PN in the left of Fig. 1 by an asynchronous ν-PN

Definition 1. An asynchronous ν-PN is a ν-PN (P, T, F ) such that:

– for each t ∈ T , either Var(t) ⊆ {ν, ε} or Var(t) ⊆ {x, ε},
– for each p ∈ P , either Var(p) = {x} or Var(p) = {ε}.

We call static places those p ∈ P with Var(p) = {ε}, and dynamic places those
p ∈ P with Var(p) = {x}. We will write P = PS ∪ PD , with PS the set of static
places and PD the set of dynamic places. Thus, we will disallow a situation in
which x, y ∈ Var(t). Let us now see that asynchronous ν-PN can simulate ν-PN
so that reachability is preserved.

Proposition 1. Let N be a ν-PN, and m0 a marking of N . There is an asyn-
chronous ν-PN N ′ and a marking m′

0 of N ′ such that m0 →∗ ∅ iff m′
0 →∗ ∅.

Proof (sketch). We simulate each transition t by the sequential firing of several
transitions satisfying the requirement above. Assume Var(t) = {x1, ..., xn}. We
add transitions t1, ..., tn so that ti is used to remove and add the tokens to which
xi is instantiated (using each of them a single variable x for that purpose).
In order to guarantee that they are fired sequentially, we add auxiliary places,
controlled by arcs labeled by ε. One of these auxiliary places also guarantees
that the simulation of a transition is done atomically, that is, whenever such a
simulation is started, no other simulation can start until the former has finished.
Notice that this simulation can introduce deadlocks (for instance, when we fire
t1 but we cannot continue with t2 due to abscess of tokens), but it does preserve
reachability. Fig. 2 illustrates the previous construction when Var(t) = {x, y}.

Corollary 1. Reachability of ∅ is undecidable for asynchronous ν-PN.

4 Resource-Constrained Workflow Nets

We propose here a presentation of rcwf-nets slightly different from the presenta-
tion of [3], though equivalent. We directly define rcwf-nets using (asynchronous)
ν-PN, in order to shorten the gap between rcwf-nets and ν-PN.
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Given a ν-PN N = (P, T, F ) and x ∈ Var we define the P/T net Nx =
(P, T, Fx), where Fx(n, m) = F (n, m)(x). Moreover, for Q ⊆ P , by F |Q we
mean F restricted to (Q× T ) ∪ (T ×Q). We are now ready to define rcwf-nets.

Definition 2. A resource constrained wf-net (or rcwf-net) is an asynchronous
ν-PN N = (P, T, F ) such that:

– for all t ∈ T , ν /∈ Var(t),
– Np = (PD, T, F |PD)x is a wf-net.

Np is the P/T net obtained by removing static places, which we call production
net of N . Then, a rcwf-net is an asynchronous ν-PN that does not create new
tokens (because the variable ν does not label any arc) and such that its produc-
tion net is a wf-net. In particular, it contains two special places in and out given
by the definition of wf-nets. When there is no confusion we will simple refer to
these places as in and out, respectively.

Definition 3. Let N = (P, T, F ) be a rcwf-net and m0 ∈ P⊕
S . For any k ≥ 0,

we define mk
0 , as the marking of N given by:

– mk
0(s) contains m0(s) black tokens, for each s ∈ PS,

– mk
0(in) contains k pairwise different names,

– mk
0(d) is empty for every d ∈ PD \ {in}.

Moreover, for mk
0 we define the set of final markingsMk

out that contain the same
k names in out, and empty in the rest of the dynamic places.

Notice that in the final markings we are not fixing the amount of tokens in static
places, unlike in [3,4].

Definition 4. Let N = (P, T, F ) be a rcwf-net and m0 ∈ P⊕
S . We say N is

dynamically sound for m0 if for each k ≥ 0 and for each m reachable from mk
0,

we can reach some marking in Mk
out.

5 Undecidability of Dynamic Soundness

In this section we prove undecidability of dynamic soundness for rcwf-nets by
reducing reachability for asynchronous ν-PN, which is undecidable, to it.

For this purpose, given an asynchronous ν-PN N , an initial marking m0 of
N (which we can assume to contain a single token in a given place i), we are
going to construct a rcwf-net N ′ which is dynamic sound if and only if the empty
marking is not reachable from m0. Intuitively, the runs of N ′ will be divided into
four steps: In the first step, the net gets ready for the simulation; in the second
step, the initial marking m0 of N is set; the third step simulates N ; and finally,
the last step is intuitively used to force that ∅ is not reachable if and only if N ′

is dynamically sound.
Let us explain with detail the four steps. In order to control in which step we

are in, we consider four static places step1, step2, step3 and step4, that will be
marked in mutual exclusion. Initially, step1 is marked.
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5.1 Step 1: Getting Ready

First of all, as we want to build a rcwf-net, we add two special places in and out.
We add a transition tout which can move a token from in to out. This transition
does not have any other precondition, so that it can be fired in any of the steps.

We will also consider two dynamic places, d and colours. The purpose of d
will be explained in the last step. The place colours will store all the colours that
we will use in the simulation of N , so that each transition in the construction
which takes a token from in, will add it to colours. We store all the colours in
order to be able to add them to out even if N consume all the tokens of some
color. We need the place colours because N could erase some names, but we
cannot do this in N ′ without being dynamically unsound.

In this first step, a transition t1 is fired, removing a token from in and adding
it to the two dynamic places d and colours. The purpose of placing a token in
d will be explained later, in the last step. It also moves the toke from step1 to
step2, thus moving on to the next step.

Finally, we need the firing of t1 to be “reversible” (for the case in which we
have a single name in in). Therefore, we add a new transition tr1 which moves
a token from step2 to step1, removes the tokens in colours and d, and adds a
token of the same color to out (not to in, since it cannot have incoming arcs).
Fig. 3 illustrates the first step.

5.2 Step 2: Setting the Initial Marking

In order to simulate the behavior of N , we consider in N ′ the set of places of
N . In this step we set the initial marking, which consists only of a name in the
place of N that we call i. Therefore, we take a token from in and put it both in
i and in colours. Moreover, we move the token from step2 to step3.
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5.3 Step 3: Simulating N

In this step we simulate the behavior of N . Since N is an asynchronous ν-PN,
it only uses variables x, ν and ε. Since N ′ is a rcwf-net, we have to simulate the
creation of new names without using ν. We do it analogously as in the previous
steps, by taking from in a name whenever one must be created, and placing it
both in colours and whatever places pointed by arcs labeled by ν. Since all the
names contained in the place in are different, this is a correct simulation of the
creation of a fresh name.

It may be the case that at some point there are no more tokens in the place
in, so that no more name creations can be simulated. Therefore, a run of N ′

with k different names in the place in simulates a run of N in which at most k
names are used (actually, k − 1 because of the name that is put in d). Notice
that the dynamic soundness has to do with the behavior of a rcwf-net from any
initial marking, so that all the behaviors of N will be considered.

In this step we add step3 both as precondition and postcondition of any
transition in N , so that transitions in N can only be fired in this step. At any
point, we can fire a transition t3 that moves the token from step3 to step4, thus
finishing the simulation of N . Moreover, it also puts a black token in a new static
place q, whose purpose we will explain later. Figure 4 shows the simulation of a
transition with a ν.

5.4 Step 4: Reducing Reachability to Dynamic Soundness

When the fourth step starts, there is a name in d, a black token in step4 (which
will stay there until the end of the execution of N ′) and in q, the set of names
that have been used along the execution of the rcwf-net is stored in colours and
the places of N are marked with a marking which is reachable in N .

We add a transition tf , which can move all the tokens from colours to out,
and with step4 both as precondition and postcondition, so that it cannot be
fired until this step starts.

We want to force N ′ to be dynamically unsound whenever ∅ is reachable.
Since we can move names directly from in to out, we need to build a marking
from which it is not possible to remove names from places different from out.



Dynamic Soundness in Resource-Constrained Workflow Nets 267

a,

a,

a,

a,

a, a,

A,

A,

A,

A,

A,
x x

SIMULATION

OF N

step4

colours

out

q

remove

tp

rp

tf

x

x

x d

Fig. 5. Step4

We add to N ′ a transition tp for each place p of N . When q is marked, there
is a choice between all the transitions tp, each of which removes a token from
p, and puts a black token in a static place remove. Intuitively, we are only able
to fire some tp if the current marking of N is not ∅. Otherwise, if t3 was fired
exactly from ∅, then no transition tp can be fired.

If we are able to fire some tp then we have a token in remove. In that case,
we can fire transitions rp for each dynamic place p (different from colours, in
and out), that removes a token from p, and puts the token back to remove.
Therefore, if remove is marked, we can empty every dynamic place different
from colours, in and out. In particular, the firing of rd is the only way to remove
the token in d. Figure 5 sketches how the fourth step is performed.

5.5 Undecidability

Now we are ready to prove that the previous construction reduces reachability
for asynchronous ν-PN to dynamic soundness for rcwf-nets.

Proposition 2. Given a ν-PN N with initial marking m0, the rcwf-net N ′ built
is dynamically sound if and only if ∅ is not reachable from m0 in N .

Proof. First, let us suppose that ∅ is reachable from m0 in N . Let n be the
number of different names created in some run that reaches ∅. If we consider the
net N ′ with n + 1 or more instances (that is, with at least n + 1 different names
in the place in), then we can reach a marking m′ of N ′ in which the places of N
are unmarked, the names that have been used in the computation are stored in
colours, d is marked by a color and step4 and q are marked with black tokens.
From this marking, we cannot fire any of the tp transitions, and therefore, we
cannot remove the token from q. Therefore, remove cannot be marked, which
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is the only way in which the name in d can be removed. Summing up, from the
initial marking with n+ 1 different names in in we have reached a marking from
which we cannot reach a final marking of N ′ (that in which the only marked
dynamic place is out), so that N ′ is not dynamically sound.

Conversely, let us suppose that ∅ is not reachable. We have to prove that for
each k ≥ 0 and for each m reachable from mk

0 , we can reach some marking in
Mk

out. Let us consider several cases, depending on which step the considered
marking is in.

– If step1 is marked in m then all the names are either in the place in or in
out. Therefore, we can fire tout repeatedly, transferring all the tokens in in
to out, and we are done.

– If step2 is marked in m we can fire tr1, reaching a marking in which step1
is marked, so we can apply the previous case.

– If step3 is marked in m we can fire t3, reaching a marking in which step4 is
marked. We discuss this case next.

– If step4 is marked in m we can fire tf repeatedly, putting all the names that
have been used by the construction in out, thus emptying colours. Moreover,
we can fire tout repeatedly, moving all the tokens which remain in in to out.
Therefore, all the tokens that initially were set in in, are set in out, so we
only have to prove that we can empty the other dynamic places. If step4
is marked then there must be a token in q or remove. If the token is in q,
since ∅ is not reachable, there is some name in some place p of N . Therefore,
we can fire the transition tp from m, reaching a marking in which remove
is marked. Finally, if remove is marked in m, we can remove all the tokens
from the dynamic places different from colours, in and out, reaching the
desired marking.

The previous result proves that reachability of the empty marking in asyn-
chronous ν-PN, which is undecidable, can be reduced to dynamic soundness
for rcwf-nets. Therefore, we finally obtain the following result:

Corollary 2. Dynamic soundness is undecidable for rcwf-nets.

6 Decidability of Dynamic Soundness for a Subclass of
rcwf-nets

We have proved that dynamic soundness is undecidable in general. However, if
we consider more restrictive requirements for our rcwf-nets, dynamic soundness
turns decidable. In the literature, several notions of rcwf-nets and soundness have
been studied, most of them being more restrictive than our general definition.
In particular, in [3] the authors consider wf-nets which satisfy the following
condition, which we have not required: for each node n, there are paths from in
to n and from n to out. We are going to consider a less restrictive requirement,
namely that every transition has some dynamic postcondition. In that case, and
considering some very reasonable requirements, dynamic soundness is decidable
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even if shared resources can be consumed or created by instances. This reasonable
requirement is the following: when a single instance is given arbitrarily many
global resources, then it evolves properly. This is equivalent to just removing
static places.

Let N = (P, T, F ) be a wf-net. We denote by min the marking of N given
by min(in) = 1 and min(p) = 0 for p 	= in. Analogously, we define mout as the
marking of N given by mout(out) = 1 and mout(p) = 0 for p 	= out. A wf-net N
is sound [2] if for every marking m reachable from min, mout is reachable from
m. We are now ready to define our subclass of rcwf-nets:

Definition 5. We say that a rcwf-net N = (P, T, F ) is a proper rcwf-net if the
two following conditions hold:

– for each t ∈ T , t• ∩ PD 	= ∅,
– the production net Np of N is sound.

Intuitively, the behavior of Np represents the maximal behavior of each instance
of N . In particular, if m is a reachable marking of a rcwf-net N , then the mark-
ings of Np obtained by projecting m to each of the names in m are all reachable
too.

In [3,4] other classes more restricted than proper rcwf-nets are defined.1 How-
ever, the previous conditions are enough for our decidability result, and indeed
our requirement can be deduced from the conditions required in [3,4].

Lemma 1. The production net Np of a proper rcwf-net N is bounded.

Proof. Let us suppose that Np is sound and unbounded (assuming the initial
marking m1

0). Then, there are markings of Np, m1, m2, and m′
1 such that m1

0 →∗

m1 →∗ m2 = m1 + m′
1 with m′

1 non empty. Since Np is sound, m1 → out, so
that m2 = m1 +m′

1 →∗ out+m′
1. Again, by soundness of Np, it must be the case

that out + m′
1 →∗ out. Since out• = ∅, it must be the case that m′

1 →∗ ∅, but
this is not possible because N is proper (and, in particular, all the transitions of
Np have postconditions).

Actually, in the proof of decidability of dynamic soundness for proper rcwf-nets,
we only need that the production net is bounded (and boundedness is decidable
for P/T nets). By the previous result, we know that the production net of a
proper rcwf-net is bounded, but even if our rcwf-net is not proper, we can still
check whether its production net is bounded, in which case our proof still holds.
We reduce dynamic soundness to a home space problem in P/T nets.

Let us explain intuitively how the construction works. It is similar to a con-
struction used in [4]. Given a proper rcwf-net N , we know that Np is bounded.
Then, we can consider the state machine associated to the reachability graph of
Np. More precisely, if m is a reachable marking in Np, then we will consider a
place also denoted by m. A token in m stands for an instance of N in state m.
1 E.g., by demanding that there are paths from in to every node, and from every node

to out.
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Fig. 7. N tr obtained by applying Def. 6 to N in Fig. 6 (omitting the arcs from ok)

Notice that this is correct because all the markings reachable in N must be reach-
able in Np (after projecting). So far, it is like in [4]. Moreover, the static places
will be considered as places of the new net too, and will be pre/postconditions
of the transitions we add, in the same way as they were in the original net.

Finally, we have to consider one more place src in order to set the initial
number of instances that we are going to consider for the net. Let us denote
by R(N) the set of markings reachable in a wf-net net N from min. Now we
are ready to define the construction which will let us prove the decidability of
dynamic soundness.

Definition 6. Let N = (P, T, F ) be a proper rcwf-net and ms
0 ∈ P⊕

S . We define
the P/T net N tr = (P tr, T tr, F tr) as follows:

– P tr = PS ∪R(Np) ∪ {src, ok},
– T tr = {(m1, t, m2) ∈ R(Np)× T ×R(Np) | m1

t→ m2 in Np} ∪ {new, stop},
– F tr is such that:
• F tr(m1, (m1, t, m2)) = F tr((m1, t, m2), m2) = 1,
• F tr(src, stop) = F tr(stop, ok) = 1,
• F tr(src, new) = F tr(new, src) = F tr(new, in) = 1,
• F tr(ok, (m1, t, m2)) = F ((m1, t, m2), ok) = 1,
• If s ∈ PS, F tr((m1, t, m2), s) = F (t, s) and F tr(s, (m1, t, m2)) = F (s, t),
• F tr(x, y) = 0, otherwise.
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The initial marking of N tr is mtr
0 , given by mtr

0 (src) = 1, mtr
0 (m) = 0 for

m ∈ R(Np) and mtr
0 (s) = ms

0(s) for s ∈ PS .

Figure 7 shows the previous construction for the net in Fig. 6. Note that N tr is
finite because Np is bounded, so that it can be effectively computed. Intuitively,
N tr creates by means of transition new several instances in its initial state,
after which if fires stop, marking place ok, which is a precondition of the rest of
the transitions, so that from then on they can be fired.2 Each token in a place
m ∈ R(Np) of N tr represents an instance of N , running concurrently with other
instances and sharing the resources in the static places with them. Therefore,
the net will simulate runs of as many instances of the original net as times
the transition new has been fired. Let us define a correspondence between the
markings of N and the markings of N tr.

Definition 7. Given a marking m of N , we define the marking mtr of N tr

as follows: mtr(src) = 0, mtr(ok) = 1, mtr(s) = m(s)(•) for s ∈ PS, and
mtr(m′) = |{a ∈ Id(m) | m(p)(a) = m′(p) ∀p ∈ PD}|, that is, the number of
instances in state m′.

Notice that all the markings reachable in N tr with ok marked are of the form mtr

for some marking m reachable in N . The following result is trivial by construction
of N tr.

Lemma 2. mk
0 →∗ m in N if and only if mtr

0
newk·stop−→ (mk

0)tr →∗ mtr. More-
over, all the computations in N tr start by firing new k ≥ 0 times, possibly
followed by stop, in which case (mk

0)tr is reached.

Finally, we are ready to prove that this construction reduces the dynamic sound-
ness problem for proper rcwf-nets to the home space problem for P/T nets. We
denote by ep the marking given by ep(p) = 1 and ep(q) = 0 for p 	= q.

Proposition 3. Let N be a proper rcwf-net. N is dynamically sound if and only
if the linear set L generated by {out} ∪ {es | s ∈ PS} is a home space for N tr.

Proof. We start by remarking that L contains markings with any number of
tokens in out and in static places, and empty elsewhere. Notice also that each
transition different from new and stop has exactly one precondition in R(Np)
and one postcondition in R(Np). Therefore, after the firing of stop, the total
number of tokens in places in R(Np) remains constant. Therefore, if new is fired
k times and a marking in L is reached, then necessarily this marking has k
tokens in out. Finally, notice that m ∈ Mk

out iff mtr ∈ L and it contains exactly
k tokens in out.

Let us first suppose that N is not dynamically sound. Then, there is a k > 0
and a marking m reachable from mk

0 from which no marking inMk
out is reachable.

By Lemma 2, the marking mtr is reachable after firing new k times. Then, from
2 Actually, the construction still works without place ok, though it simplifies the forth-

coming explanations.
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mtr no marking in L can be reached. Indeed, if some marking m′tr in L is reached
from mtr it has necessarily k tokens in out and again by Lemma 2, m′ ∈ Mk

out

is reached in N , contradicting our first hypothesis. Then, L is not a home space
and we conclude this implication.

Reciprocally, let us assume that L is not a home space. Then, there is a
reachable marking of N tr from which no marking of L can be reached. Let us
suppose that this marking is of the form mtr (otherwise, we consider the marking
obtained after firing stop, and no marking of L can be reached from it). Let us
suppose that there are k tokens in places in R(Np) in mtr. Then, by Lemma 2
and the previous remarks (analogously to the previous case) no marking inMk

out

can be reached from m, so that N is not dynamically sound.

Finally, as the home space problem is decidable for linear sets of markings of
P/T nets [9], we obtain the following result:

Corollary 3. Dynamic soundness for proper rcwf-nets is decidable.

7 Conclusions and Future Work

In this paper we have continued the study of concurrent workflow processes
that share some global resources, first studied in [3] and more recently in [4]. In
particular, we consider resource-constrained workflow nets in which each instance
is allowed to consume or create new resources.

We have first established the undecidability of dynamic soundness for rcwf-
nets when the use of resources is unrestricted, so that each instance is allowed
to terminate a run having consumed or created global resources. Such result is
achieved by means of an alternative presentation of rcwf-nets which is closer to
ν-PN. More precisely, we have defined a subclass of ν-PN in which processes can
only interact asynchronously with each other via a global shared memory, thus
bringing together ν-PN and rcwf-nets. We have then seen that the undecidabil-
ity of the reachability problem for ν-PN can be transfered to its asynchronous
subclass. Although we have focused on reachability, we claim that most un-
decidability results can also be transfered, so that both classes are essentially
equivalent. Then we have reduced this reachability problem to dynamic sound-
ness of rcwf-nets. This reduction is not at all trivial, even though the alternative
presentation of rcwf-nets eases the simulation of ν-PN by means of them (third
step of the reduction).

Then we have considered a subproblem of the latter. In the first place, we
assume that each instance is sound when it is given infinitely many resources
(which amounts to saying that its behavior is not restricted by global resources).
Moreover, we assume a technical condition, which is weaker than the standard
“path property”, that intuitively meas that all transitions are significant in the
completion of the task. Under these hypotheses, we prove that dynamic sound-
ness is decidable, by reducing it to a home space problem for a linear set of home
markings, which is decidable.
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There are many ways in which this work must be continued. The most im-
portant one could be to bridge the gap between our undecidability and our
decidability result. In other words, we must address the problem of dynamic
soundness whenever the path property holds, without assuming that a single
instance of the net is necessarily sound (and always without assuming that in-
stances give back the resources they use). Notice that our undecidability proof is
no longer valid if we assume that property (indeed, the step 4 of our construction
has transitions without postconditions), and it does not seem possible to easily
fix this issue.

A dynamically sound rcwf-nets in which some proper runs may consume global
resources without returning them must necessarily have other runs in which there
is no need to consume global resources. Intuitively, the first run may be more
desirable than the second one in terms of some measure which lies outside of the
model. In this sense, a priced extension of rcwf-nets [12] in which runs from in
to out have an associated cost could be interesting to be studied.
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(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

3. van Hee, K.M., Serebrenik, A., Sidorova, N., Voorhoeve, M.: Soundness of resource-
constrained workflow nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 250–267. Springer, Heidelberg (2005)
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Abstract. SimGrid MC is a stateless model checker for distributed sys-
tems that is part of the SimGrid Simulation Framework. It verifies imple-
mentations of distributed algorithms, written in C and using any of sev-
eral communication APIs provided by the simulator. Because the model
checker is fully integrated in the simulator that programmers use to val-
idate their implementations, they gain powerful verification capabilities
without having to adapt their code. We describe the architecture of Sim-
Grid MC, and show how it copes with the state space explosion problem.
In particular, we argue that a generic Dynamic Partial Order Reductions
algorithm is effective for handling the different communication APIs that
are provided by SimGrid. As a case study, we verify an implementation
of Chord, where SimGrid MC helped us discover an intricate bug in a
matter of seconds.

1 Introduction

Distributed systems are in the mainstream of information technology. It has
become standard to rely on multiple distributed units that collectively contribute
to a business or scientific application. Designing and debugging such applications
is particularly difficult: beyond issues common to any parallel (i.e., concurrent or
distributed) program, such as race conditions, deadlocks or livelocks, distributed
systems pose additional problems due to asynchronous communication between
nodes and the impossibility for any node to observe a global system state.

The most common approach to validating distributed applications is to ex-
ecute them over a given testbed. However, many different execution platforms
exist, and it is difficult to assess the behavior of the application on another plat-
form than the one that the programmer has access to. Simulation constitutes
another approach, offering the ability to evaluate the code in more comprehensive
(even if not exhaustive) test campaigns. It remains however difficult to determine
whether the test campaign is sufficient to cover all situations that may occur in
real settings. That is why distributed applications are usually only tested on a
very limited set of conditions before being used in production.

In recent years the use of formal validation techniques has become more promi-
nent for the evaluation of concurrent and distributed software. Due to their
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simplicity and the high degree of automation, model checking techniques have
been particularly successful. Relying on exhaustive state space exploration, they
can be used to establish whether a system, or a formal model of it, meets a given
specification.

Initially, verification techniques were developed for formal modeling languages
such as process algebras [1], Petri nets [2], Promela [3] or TLA+ [4], in which
algorithms and protocols can be modeled at a high level of abstraction. However,
many errors are introduced at the implementation phase, and these can obviously
not be detected by formal verification of models. Several authors have considered
the application of model checking techniques to source or binary code [5,6,7,8],
and our work contributes to this line of research. It promises to catch subtle
bugs in actual programs that escape standard testing or simulation and to give
non-specialists access to powerful verification methods.

The main impediment to make the approach work in practice is the well-
known state explosion problem: the state space of even small programs executed
by a few processes is far too large to construct exhaustively. Powerful reduction
techniques such as dynamic partial-order reduction (DPOR [9]) must be used to
cut down the number of executions that must be explored. DPOR relies on the
notion of independent transitions, which must be established for the semantics
of real-world programs, which can be a daunting task [10].

The contributions of this article are the following:

• We present SimGrid MC, an extension of the SimGrid simulation frame-
work [11] for the formal verification of properties of distributed applications
that communicate by message passing. We believe that by integrating veri-
fication capabilities into an existing simulation environment, we are able to
close the loop of the development process: developers can assess their im-
plementations for both correctness and performance, using the same overall
framework.

• We detail the changes that we made to the main simulation loop to im-
plement the model checking functionality, and how this was eased by the
similarities between both tasks.

• We explain how we could implement the DPOR algorithm to support the
different communication APIs offered by SimGrid through an intermediate
communication layer, for which independence of transitions is established.

This article is organized as follows: Section 2 introduces the SimGrid simula-
tion framework. Section 3 presents the model checker SimGrid MC, its imple-
mentation within the SimGrid framework, and our implementation of DPOR for
multiple communication APIs available in SimGrid. Section 4 evaluates the re-
sulting tool through several experiments. Finally, Section 5 concludes the paper
and discusses future work.

1.1 State of the Art

The idea of applying model checking to actual programs originated in the late
1990s [5,8]. One of the main problems is the representation and storage of
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system states: C programs freely manipulate the stack and heap, and it becomes
difficult to determine the part that should be saved, and costly to actually store
and retrieve it. Godefroid [12] proposed the idea of stateless model checking, in
which executions are re-run instead of saving system states. Flanagan and Gode-
froid also introduced the idea of DPOR [9], although they were not primarily
interested in model checking distributed systems. The closest work to ours is
probably ISP [13], which is a stateless model checker for MPI applications that
also relies on DPOR for effective reductions. ISP is not implemented in a sim-
ulation framework, but intercepts the calls to the runtime to force the desired
interleavings. MACE [6] is a set of C++ APIs for implementing distributed sys-
tems; it contains a model checker geared towards finding dead states. To our
knowledge SimGrid MC is the only model checker for distributed applications
that supports multiple communication APIs and is tightly integrated with a
simulation platform.

2 The SimGrid Framework

2.1 SimGrid Architecture

The SimGrid framework [11] is a collection of tools for the simulation of dis-
tributed computer systems. The simulator requires the following inputs:

The application or protocol to test. It must use one of the communication
APIs provided in SimGrid, and must be written in one of the supported
languages, including C and Java.

Analytical models of the used hardware. These models are used by the
simulator to compute the completion time of each application action, taking
in account the hardware capacity and the resources shared between applica-
tion elements and with the external load.

A description of the experimental setup. This includes the hardware plat-
form (hosts, network topology and routing), the external workload experi-
enced by the platform during the experiment, and a description of the test
application deployment.

The simulator then executes the application processes in a controlled environ-
ment, in which certain events, and in particular communications, are intercepted
to evaluate timing and the use of shared resources, according to the models and
the description of the setup (links, hosts, etc).

Figure 1 shows the architecture of the SimGrid framework. The analytical
models of the resources are provided by the SURF layer, which is the simula-
tion core. On top of this, SIMIX constitutes the virtualization layer. It adds
the notion of process, synchronization, communication primitives, and controls
the execution of the user processes. Three different communication APIs (or
user interfaces) are built on top of the abstractions provided by SIMIX; they
are adapted to different usage contexts. MSG uses a communication model that
is based on messages exchanged through mailboxes; messages are characterized
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Fig. 1. The SimGrid Architecture

as tasks with computation and communication costs. GRAS is a socket-based
event loop API designed to be executed in the simulator or deployed in real-life
platforms. SMPI stands for Simulated MPI, and allows a user to simulate stan-
dard MPI programs without modifications, unlike the other two interfaces that
are specific to SimGrid. It implements a subset of MPI that includes two-sided
synchronous and asynchronous communication, as well as group operations.

The experimental setup is provided by the user through configuration files
that instantiate the models, describing where the processes will be deployed.

Let us point out that SimGrid is a simulator and not an emulator. Its goal is
to compute the timings of the events issued by the system as if it would execute
on the virtual platform, irrespective of the speed of the platform on which the
simulation is run. In particular, processes always execute at full speed.

2.2 The Simulation Loop

Before we present the model checker for SimGrid, we give some more details
about the simulator’s main loop, i.e. how the simulator controls the execution
of the tested application depending on the platform models. This background is
necessary in order to understand how SimGrid MC builds upon the infrastructure
provided by the simulator.

SimGrid runs the entire simulation as a single process in the host machine
by folding every simulated user process in a separate thread. The simulator
itself runs in a special distinguished thread called maestro, which controls the
scheduling.

Figure 2 depicts two simulation rounds starting at time tn−1 with two user
threads T1 and T2 running the simulated processes and the maestro thread M .
The round starts by calling SURF to compute and advance to the time of the
next ending actions, in this case tn. Next, it passes the list of finished actions
to SIMIX that has a table associating them to the blocked threads. Using this
table, SIMIX schedules all the unblocked threads. The user threads run without
interruption until they block, waiting for a new simulation action, such as a
communication. These actions are denoted in Fig. 2 by a and b for threads T1

and T2. The simulation round finishes once all the threads were executed until
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Fig. 2. Simulation Main Loop

they block. Note that the time advances only between scheduling rounds, thus
from the simulator’s point of view, all the actions performed by the user in a
scheduling round happen at the same time.

3 Model Checking Distributed Programs in SimGrid

SimGrid provides us with the capability of simulating distributed programs in
a controlled environment. In particular, it includes functionality for managing
the control state, memory, and communication requests of simulated processes,
which can be run selectively and interrupted at visible (communication) actions.
We now outline how we used this framework to implement verification capabil-
ities, and describe the techniques we employed to make them efficient. In this
article, we focus only on the C interface.

3.1 SimGrid MC

Unlike simulation, which is mainly concerned with the use of available resources
and the performance of a distributed application in a given scenario, verification
attempts to exhaustively explore the state space of a system in order to detect
corner cases that one would be unlikely to encounter in simulation runs. Typi-
cally, the number of process instances will be significantly smaller in verification
than in simulation because of the well known problem of state space explosion.
We designed SimGrid MC as a complement to the simulator functionality, al-
lowing a user to verify instances of distributed systems, without requiring any
modifications to the program code. In the schema presented in Fig. 1, SimGrid
MC replaces the SURF module and a few submodules of SIMIX with a state
exploration algorithm that exhaustively explores the executions arising from all
possible non-deterministic choices of the application.

As we explained before, a distributed system in SimGrid consists of a set
of processes that execute asynchronously in separate address spaces, and that
interact by exchanging messages. In other words, there is no global clock for
synchronization, nor shared memory accessed by different processes.

More precisely, the state of a process is determined by its CPU registers,
the stack, and the allocated heap memory. The network’s state is given by the
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messages in transit, and it is the only shared state among processes. Finally, the
global state consists of the state of every process plus the network state. The only
way a process can modify the shared state (the network) is by issuing calls to the
communication APIs, thus the model-checker considers these as the only visible
transitions. A process transition as seen by the model checker therefore comprises
the modification of the shared state, followed by all the internal computations
of the process until the instruction before the next call to the communication
API. The state space is then generated by the different interleavings of these
transitions; it is generally infinite even for a bounded number of processes due to
the unconstrained effects on the memory and the operations processes perform.

Because the global state contains unstructured heaps, and the transition rela-
tion is determined by the execution of C program code, it is impractical to rep-
resent the state space or the transition relation symbolically. Instead, SimGrid
MC is an explicit-state model checker that explores the state space by system-
atically interleaving process executions in depth-first order, storing a stack that
represents the schedule history. As the state space may be infinite, the explo-
ration is cut off when a user-specified execution depth is reached. Of course, this
means that error states beyond the search bound will be missed, but we consider
SimGrid MC as a debugging tool that is most useful when it succeeds in finding
an error. SimGrid MC ensures complete exploration of the state space up to the
search bound.

When state exploration hits the search bound (or if the program terminates
earlier), we need to backtrack to a suitable point in the search history and con-
tinue exploration from that global state. In a näıve implementation, this would
mean check-pointing the global system state at every step, which is prohibitive
due to the memory requirements and the performance hit incurred by copying
all the heaps. Instead, we adopt the idea of stateless model checking [12] where
backtracking is implemented by resetting the system to its initial state and re-
executing the schedule stored in the search stack until the desired backtracking
point. Because global states are not stored, SimGrid MC has no way of detecting
cycles in the search history and may re-explore parts of the state space that it has
already seen. Note that even if we decided to (perhaps occasionally) checkpoint
the system state, dynamic memory allocation would require us to implement
some form of heap canonicalization [8,14] in order to reliably detect cycles. In
the context of bounded search that we use, the possible overhead of re-exploring
states because of undetected loops is a minor concern for the verification of safety
properties. It would, however, become necessary for checking liveness properties.

Figure 3 illustrates the exploration technique used by SimGrid MC on the
example used in Sect. 2.2. The model checker first executes the code of all threads
up to, but excluding, their first call to the communication API (actions a and b
in this example). The resulting global state S0 (indicated by a red dot in Fig. 3)
is pushed on the exploration stack; it is also stored as the snapshot corresponding
to the initial state, and the model checker records the enabled actions. It then
chooses one action (say, a) for execution and schedules the associated thread,
which performs the communication action and all following local program steps
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Fig. 3. State Exploration by SimGrid MC

up to, but excluding, the next API call (c). This execution corresponds to one
transition as considered by the model checker, which records the actions enabled
at this point and selects one of them (say, b), continuing in this way until the
exploration reaches the depth bound or no more actions are enabled; depending
on the process states, the latter situation corresponds either to a deadlock or to
program termination.

At this point, the model checker has to backtrack. It does so by retrieving the
global state S0 stored at the beginning of the execution, restoring the process
states (CPU registers, stack and heap) from this snapshot, and then replaying
the previously considered execution until it reaches the global state from which
it wishes to continue the exploration. (The choice of backtrack points will be
explained in more detail in Sect. 3.2 below.) In this way, it achieves the illusion
of rewinding the global application state until a previous point in history.

Figure 4 illustrates the architecture of SimGrid MC. Each solid box labeled
Pi represents a thread executing the code of a process in the distributed system
being verified. The exploration algorithm is executed by a particular thread
labeled MC that intercepts the calls to the communication API (dashed box) and
updates the state of the (simulated) communication network. The areas colored
blue represent the system being explored, the area colored red corresponds to

Fig. 4. SimGrid MC Architecture
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the state of the model checker, which holds the snapshot of the initial state and
the exploration stack. When a backtracking point is reached, the blue area is
reset as described above, but the exploration history is preserved intact.

3.2 Partial Order Reduction for Multiple Communication APIs

The main problem in the verification of distributed programs, even using state-
less model checking, lies in the enormous number of interleavings that these
programs generate. Usually, many of these interleavings are equivalent in the
sense that they lead to indistinguishable global states.

Algorithm 1. Depth-first search with DPOR
1: q := initial state
2: s := empty
3: for some p ∈ Proc that has an enabled transition in q do
4: interleave(q) := {p}
5: end for
6: push(s,q)
7: while |s| > 0 do
8: q := top(s)
9: if |unexplored(interleave(q))| > 0 ∧ |s| < BOUND then

10: t := nextinterleaved(q)
11: q’ := succ(t, q)
12: for some p ∈ Proc that has an enabled transition in q’ do
13: interleave(q’) := {p}
14: end for
15: push(s,q’)
16: else
17: if ∃ i ∈ dom(s): Depend(tran(si), tran(q)) then
18: j := max({i ∈ dom(s): Depend(tran(si), tran(q))})
19: interleave(sj−1) := interleave(sj−1) ∪ {proc(tran(q))}
20: end if
21: pop(s)
22: end if
23: end while

(Dynamic) Partial-Order Reduction [9] has proved to be efficient for avoiding
the exploration of equivalent interleavings, and we also rely on this technique in
SimGrid MC. The pseudo-code of the depth-first search algorithm implementing
DPOR appears in Algorithm 1. With every scheduling history q on the explo-
ration stack is associated a set interleave(q) of processes enabled at q and whose
successors will be explored. Initially, an arbitrary enabled process p is selected
for exploration. At every iteration, the model checker considers the history q at
the top of the stack. If there remains at least one process selected for exploration
at q, but which has not yet been explored, and the search bound has not yet
been reached, one of these processes (t) is chosen and scheduled for execution,
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resulting in a new history q′. The model checker pushes q′ on the exploration
stack, identifying some enabled process that must be explored. Upon backtrack-
ing, the algorithm looks for the most recent history sj on the stack for which
the transition tran(sj) executed to generate sj is dependent with the incoming
transition tran(q) of the state about to be popped. If such a history exists, the
process executing tran(q) is added to the set of transitions to be explored at the
predecessor of sj , ensuring its successor will be explored during backtracking
(if it has not yet been explored). Our algorithm is somewhat simpler than the
original presentation of DPOR [9] because it assumes that transitions remain
enabled until they execute, which is the case for SimGrid.

The effectiveness of the reductions achieved by the DPOR algorithm is cru-
cially affected by the precision with which the underlying dependency relation
can be computed. The two extremes are to consider all or no transitions as de-
pendent. In the first case, the DPOR algorithm degenerates to full depth-first
search. In the second case, it will explore only one successor per state and may
miss interleavings that lead to errors. A sound definition of dependence must en-
sure that two transitions are considered independent only if they commute, and
preserve the enabledness of the other transition, at any (global) state where they
are both enabled. Because processes do not share global memory in SimGrid,
memory updates cannot contribute to dependence, and we need only consider
the semantics of the communication actions. However, their semantics must be
described formally enough to determine (in)dependence.

In the case of the SimGrid Simulation Framework, the programs can be writ-
ten using one of its three communication APIs, which lack such formal specifi-
cation, as they were not designed for formal reasoning. Palmer et al. [10] have
given a formal semantics of a substantial part of MPI for use with DPOR, but
this is a tedious and daunting task, which would have to be repeated for the
other APIs in SimGrid.

Instead, our implementation of DPOR in SimGrid relies on the definition of
a minimal internal networking API, for which we have given a fully formal se-
mantics and for which we have proved independence theorems in our previous
work [15]. The three communication APIs provided by SimGrid are implemented
on top of this basic API, and the DPOR-based model checker presented in Al-
gorithm 1 operates at the level of these elementary primitives.

The communication model used by this set of networking primitives is built
around the concept of “mailbox”. Processes willing to communicate queue their
requests in mailboxes, and the actual communication takes place when a match-
ing pair is found. The API provides just the four operations Send , Recv , WaitAny
and TestAny. The first two post a send or receive request into a mailbox, re-
turning a communication identifier. A Send matches any Recv for the same
mailbox, and vice versa. The operation WaitAny takes as argument a set of
communication identifiers and blocks until one of them has been completed. Fi-
nally, TestAny also expects a set of communication identifiers and checks if any
of these communications has already completed; it returns a Boolean result and
never blocks.
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Listing 3.1. Inefficient WaitAll

1 void WaitAll (comm_list[])
2 {
3 while(len(comm_list) > 0){
4 comm = WaitAny (comm_list);
5 list_remove(comm , comm_list);
6 }
7 }

Listing 3.2. Efficient WaitAll

1 void WaitAll ( comm_list[])
2 {
3 for(i=0;i<len(comm_list);i++){
4 WaitAny (comm_list[i]);
5 }
6 }

We specified these primitives formally in TLA+ [4], and for every pair of
communication operations we formally proved conditions ensuring their inde-
pendence. Moreover, it was surprisingly easy to implement SimGrid’s communi-
cation APIs in terms of these primitive operations.

However, it was not clear a priori that this approach would result in a sat-
isfactory degree of reduction, as the implementations of two high-level oper-
ations in terms of the lower-level ones might falsely be considered dependent.
Moreover, the implementation of the higher-level APIs may introduce additional
non-determinism, generating spurious interleavings during model checking. For
example, consider the implementation of listing 3.1: it expects a set of commu-
nications identifiers and repeatedly uses WaitAny for all unfinished communica-
tions, until no one is left. While correct, such an implementation would introduce
a non-deterministic choice among the finished communications, which is irrele-
vant to the semantics of WaitAll but would be considered by the model checker.
For our purposes, it is therefore better to issue WaitAny operations in sequence
for all the communication operations as shown in listing 3.2.

4 Experimental Results

In this section we present a few verification experiments using two of the APIs
supported by SimGrid. We thus illustrate the ability of our approach to use a
generic DPOR exploration algorithm for different communication APIs through
an intermediate communication layer. Each experiment aims to evaluate the
effectiveness of the DPOR exploration at this lower level of abstraction compared
to a simple DFS exploration. We use a depth bound fixed at 1000 transitions
(which was never reached in these experiments), and run SimGrid SVN revision
9888 on a CPU Intel Core2 Duo T7200 2.0GHz with 1GB of RAM under Linux.

4.1 SMPI Experiments

The first case study is based upon two small C programs using MPI that are
designed to measure the performance of our DPOR algorithm.

The first example, presented in Listing 4.1, shows an MPI program with N+1
processes. The process with rank 0 waits for a message from each of the other
processes, while the other processes send their rank value to process 0. The
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Listing 4.1. Example 1

1 if (rank == 0){
2 for (i=0; i < N-1; i++){
3 MPI_Recv (&val, MPI_ANY_SOURCE);
4 }
5 MC_assert(val == N);
6 } else {
7 MPI_Send (&rank , 0);
8 }

Listing 4.2. Example 2

1 if (rank % 3 == 0) {
2 MPI_Recv (&val, MPI_ANY_SOURCE);
3 MPI_Recv (&val, MPI_ANY_SOURCE);
4 } else {
5 MPI_Send (&rank , (rank / 3) * 3);
6 }

property to verify is coded as the assertion at line 5 that checks for the incorrect
assumption of a fixed message receive order, where the last received message will
be always from the process with rank N.

Table 1(a) shows the timing and the number of states visited before finding a
violation of the assertion. In this case, the number of processes does not have a
significant impact on the number of visited states because the error state appears
early in the visiting order of the DFS. Still, using DPOR helps to reduce the
number of visited states by more than 50% when compared to standard DFS.

Table 1. Timing, number of expanded states, and peak memory usage (a) to find the
assertion violation in Listing 4.1; (b) for complete state space coverage of Listing 4.1
and (c) for complete state space coverage of Listing 4.2

(a)

#P
DFS DPOR

States Time Peak Mem States Time Peak Mem

3 119 0.097 s 23952 kB 43 0.063 s 23952 kB

4 123 0.114 s 25008 kB 47 0.064 s 25024 kB

5 127 0.112 s 26096 kB 51 0.072 s 26080 kB

(b)

#P
DFS DPOR

States Time Peak Mem States Time Peak Mem

2 13 0.054 s 21904 kB 5 0.046 s 18784 kB

3 520 0.216 s 23472 kB 72 0.069 s 23472 kB

4 60893 19.076 s 24000 kB 3382 0.913 s 24016 kB

5 - - - 297171 84.271 s 25584 kB

(c)

#P
DFS DPOR

States Time Peak Mem States Time Peak Mem

3 520 0.247 s 23472 kB 72 0.074 s 23472 kB

6 >10560579 >1 h - 1563 0.595 s 26128 kB

9 - - - 32874 14.118 s 29824 kB
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Table 1(b) shows the effectiveness of DPOR for a complete state space ex-
ploration of the same program (without the assertion). Here, the use of DPOR
reduces the number of visited states by an order of magnitude.

The second example, presented in Listing 4.2, shows the relevance of per-
forming reduction dynamically. This time the number of processes in the system
should be a multiple of 3. Every process with a rank that is a multiple of three
will wait for a message from the next two processes, thus process 0 will receive
from processes 1 and 2, process 3 from processes 4 and 5, etc. It is quite obvious
that each group of three processes is independent from the others, but stan-
dard static reduction techniques would not be able to determine this. Again, no
property is verified, as we try to compare the reductions obtained by DPOR.

Table 1(c) shows the experimental results for a complete exploration of the
state space. In this case the DFS with 6 processes was interrupted after one hour,
and up to that point it had visited 320 times more states than the complete state
space exploration of the same program for 9 processes with DPOR enabled.

4.2 MSG Experiment: CHORD

As our second case study we consider an implementation of Chord [16] using the
MSG communication API. Chord is a well known peer-to-peer lookup service,
designed to be scalable, and to function even with nodes leaving and joining the
system. This implementation was originally developed to study the performance
of the SimGrid simulator.

The algorithm works in phases to stabilize the lookup information on every
node that form a logical ring. During each phase, nodes exchange messages
to update their knowledge about who left and joined the ring, and eventually
converge to a consistent global vision.

Listing 4.3 shows a simplified version of Chord’s main loop. In MSG, processes
exchange tasks containing the messages defined by the user. Each node starts
an asynchronous task receive communication (line 3), waiting for petitions from
the other nodes to be served. If there is one (the condition at line 4 is true), a
handler is called to reply with the appropriate answer using the same received
task (line 5). Otherwise, if the delay for the next lookup table update has passed,
it performs the update in four steps: request the information (lines 7-9), wait for
the answer (lines 12-14), update the lookup tables (line 19), and notify changes
to other nodes (line 22).

Running Chord in the simulator, we occasionally spotted an incorrect task
reception in line 14 that led to an invalid memory read, producing a segmenta-
tion fault. Due to the scheduling produced by the simulator, the problem only
appeared when running simulations with more than 90 nodes. Although we thus
knew that the code contained a problem, we were unable to identify the cause of
the error because of the size of the instances where it appeared and the amount
of debugging information that these generated.

We decided to use SimGrid MC to further investigate the issue, exploring a
scenario with just two nodes and checking the property task == update task at
line 15 of listing 4.3. In a matter of seconds we were able to trigger the bug and



286 S. Merz, M. Quinson, and C. Rosa

Listing 4.3. Main loop of CHORD (simplified).

1 while (1) {
2 if (! rcv_comm )
3 rcv_comm = MSG_task_irecv(& task);
4 if (MSG_comm_test(rcv_comm )) {
5 handle(task);
6 } else if(time > next_update_time) {
7 /* Send update request task */
8 snd_comm = MSG_task_isend(& update_task);
9 MSG_task_wait(snd_comm );

10
11 /* Receive the answer */
12 if(rcv_comm == NULL)
13 rcv_comm = MSG_task_irecv(& task);
14 MSG_task_wait(rcv_comm );
15
16 MC_assert(task == update_task); /* <-- Assertion verified by the MC */
17
18 /* Update tables with received task */
19 update_tables(task);
20
21 /* Notify some nodes of changes */
22 notify ();
23 } else {
24 sleep (5);
25 }
26 }

could understand the source of the problem by examining the counter-example
trace, which appears in listing 4.4. It should be read top-down and the events of
each node are tabulated for clarity. The Notify task sent by node 1 in line 22 of
listing 4.3 is incorrectly taken by node 2 at line 14 as the answer to the update
request sent by it line 8. This is due to an implementation error in the line 12:
the code reuses the variable recv comm, incorrectly assuming this to be safe
because of the guard of that branch, but in fact the condition may change after
the guard is evaluated.

Listing 4.4. Counter-example

#line Node 1 #line Node 2

3: rcv_comm = MSG_task_irecv(&task)
4: MSG_comm_test( rcv_comm ) == FALSE
8: snd_comm =

MSG_MSG_task_isend(&update_task)
3: rcv_comm = MSG_task_irecv(&task)

9: MSG_task_wait( snd_comm )
4: MSG_comm_test( rcv_comm ) == TRUE
5: handle(task)
3: rcv_comm = MSG_task_irecv(&task)
4: MSG_comm_test( rcv_comm ) == FALSE

14: MSG_task_wait(recv_comm)
22: Notify ()
3: rcv_comm = MSG_task_irecv(&task)

8: snd_comm =
MSG_MSG_task_isend(&update_task)

9: MSG_task_wait( snd_comm )
14: MSG_task_wait(recv_comm)
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The Chord implementation that was verified has 563 lines of code, and the
model checker found the bug after visiting just 478 states (in 0.280 s) using
DPOR; without DPOR it had to compute 15600 states (requiring 24 s) before
finding the error trace. Both runs had an approximate peak memory usage of
72 MB, measured with the /usr/bin/time program provided by the operating
system.

5 Conclusions and Future Work

We have presented SimGrid MC, a model checker for distributed C programs that
may use one of three different communication APIs. Like similar tools, SimGrid
MC is based on the idea of stateless model checking, which avoids computing
and storing the process state at interruptions, and relies on dynamic partial
order reduction in order to make verification scale to realistic programs. One
originality of SimGrid MC is that it is firmly integrated with the pre-existing
simulation framework provided by SimGrid [11], allowing programmers to use
the same code and the same platform for verification and for performance eval-
uation. Another specificity is the support for multiple communication APIs. We
have implemented sensibly different APIs in terms of a small set of elementary
primitives, for which we could provide a formal specification together with inde-
pendence theorems with reasonable effort, rather than formalize three complete
communication APIs. We have been pleasantly surprised by the fact that this
approach has not compromised the degree of reductions that we obtain, which
are roughly on a par with those reported in [10] for a DPOR algorithm specific
to MPI.

The integration of the model checker in the existing SimGrid platform has
been conceptually simple, because simulation and model checking share core
functionality such as the virtualization of the execution environment and the
ability to execute and interrupt user processes. However, model checking tries to
explore all possible schedules, whereas simulation first generates a schedule that
it then enforces for all processes. SimGrid benefitted from the development of
SimGrid MC in that it led to a better modularization and reorganization of the
existing code. The deep understanding of the execution semantics gained during
this work lets us envision an efficient parallel simulation kernel in future work.

SimGrid MC is currently restricted to the verification of safety properties such
as assertion violations or the detection of deadlock states. The verification of live-
ness properties would require us to detect cycles, which is currently impossible
due to the stateless approach. For similar reasons, state exploration is limited
by a (user-definable) search bound. We intend to investigate hybrid approaches
between stateful and stateless model checking that would let us overcome these
limitations.
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Abstract. This paper investigates ownership types in a concurrent set-
ting using the Join calculus as the model of processes. Ownership types
have the effect of statically preventing certain communication, and can
block the accidental or malicious leakage of secrets. Intuitively, a channel
defines a boundary and forbids access to its inside from outer channels,
thus preserving the secrecy of the inner names from malicious outsiders.
Secrecy is also preserved in the context of an untyped opponent.

1 Introduction

The Join calculus [16] is a message-based model of concurrency whose expres-
siveness is the same as the π-calculus up to weak barbed congruence [15]. It
is a theoretical foundation of programming languages for distributed, mobile
and concurrent systems, such as JOCaml [14], JErlang [22] and Scala’s actor
model [18]. The presence of several implementations of the calculus motivates
the choice of Join calculus over π-calculus. The Join calculus has a notion of
locality given by the channel definition construct: def channels in scope, but
this can be broken by exporting a channel out of the environment it was cre-
ated in. Ideally, scope boundaries are supposed to be crossed only by channels
used for communication while channels defining secrets are supposed to remain
within their scope. In practice, the malicious or accidental exportation of a chan-
nel name outside of a boundary it is not supposed to cross is a serious threat,
because it can result in the leakage of secrets. Since crossing boundaries allows
processes to communicate, it should not be eliminated, it has to be controlled.

Object-oriented programming suffers from a similar problem since object ref-
erences can be passed around leading to issues like aliasing. As a remedy for this
problem ownership types have been devised. Ownership types [11,9] statically en-
force a notion of object-level encapsulation for object-oriented programming lan-
guages. Ownership types impose structural restrictions on object graphs based
on the notions of owner and representation. The owner of an object is another
object and its representation is the objects it owns. These two key concepts can
be both defined and checked statically. The ultimate benefit imposed by own-
ership types is a statically-checkable notion of encapsulation: every object can
have its own private collection of representation objects which are not accessible
outside the object that owns them.
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The aim of this paper is to adapt the strong encapsulation property imposed
by ownership types, also known as owners-as-dominators, to a concurrent setting
and use it for security enforcement. We do so by introducing an analogy between
objects and channels: just as an object is owned by another object, so is a chan-
nel owned by another channel; just as an object owns other objects and limits
access to them, so does a channel. As the Join calculus does not have references,
the owners-as-dominators property is mimicked by limiting how channels are ex-
ported. The idea is that allowing a channel to be passed around as a parameter
on another channel, enables other processes to refer to it. We impose access lim-
itations by forbidding a channel to be exported outside the scope of the channel
that owns it, thus allowing the kinds of restrictions analogous to those found in
the object-oriented setting. A channel is however free to be passed around inside
the area determined by its owner.

The contribution of this paper is a typed version of the Join calculus that
enjoys the owners-as-dominators form of strong encapsulation. This property
allows the calculus to define secrecy policies that are preserved both in a typed
and in an untyped setting.

The paper is structured as follows. Section 2 reviews ownership and encap-
sulation related ideas. Section 3 introduces an ownership types system for the
Join calculus and states its secrecy properties. Section 4 shows the secrecy re-
sults in the context of an untyped opponent. Section 5 presents related work and
Section 6 concludes.

2 Ownership Types

We describe the notions of object ownership and of encapsulation based on it.
In a basic ownership types system [9] every object has an owner. The owner

is either another object or the predefined constant world for objects owned by
the system. Two notions are key in this system: owner and representation. The
owner defines the entity to which the object belongs to. An object implicitly
defines a representation consisting of the objects it owns. The aforementioned
owner associated to an object is indicated using the function owner. Owners
form a tree (C,≺:), where ≺: is called inside, that represents the nesting of
objects C. The tree has root world and is constructed according to the following
scheme: ι ≺: owner(ι), where ι is a newly created object, and owner(ι) refers
to an already existing object. The following containment invariant determines
when an object can refer to another one: ι refers to ι′ ⇒ ι ≺: owner(ι′). Owners
and representations are encoded in a type system and the containment invariant
holds for well-typed programs.

The property the containment invariant imposes on object graphs is called
owners-as-dominators and it states that all access paths to an object from the
root of a system pass through the object’s owner. In effect, ownership types
erect a boundary that protects an object’s internal representation from external
access. The idea is having a nest of boxes where there is no access from outside
to inside a box, and every object defines one such box.
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3 A Typed Join Calculus with Owners: JOT

In this section we extend the classical Join calculus with ownership annotations.
In this concurrent setting, channels will play an analogous role to objects in the
object-oriented world. A channel will have another channel as owner and it may
have a set of channels as representation.

3.1 Syntax

Following the notation of Pierce [21] we write x as a shorthand for x1, . . . , xn
(similarly T , t, o, etc), and f g for f1 g1 . . . fn gn. Let Σ be a denumerable set of
channel names ranged over by: x, y, u, z. The name world is not in Σ since it is a
constant. Let Ω be a denumerable set of owner variables ranged over by α, β, γ.

P = ∅ D = � J = x〈y〉 : T T = o
o〈|t|〉 o = x

| x〈u〉 | D ∧D | J | J | world
| P | P | J � P t = ∃α.T | α
| def D in P

Fig. 1. Syntax, types and owners definition

Figure 1 presents the syntax of the calculus. A process P is either an empty
process, a message, the parallel composition of processes or a defining process.
A definition D is either an empty definition, the conjunction of definitions or
a clause J � P , called a reaction pattern, which associates a guarded process
P to a specific join pattern J . A join pattern J is either a typed message or
the parallel composition thereof. A type T ≡ o

o′〈|t|〉 is used to remember the
owner (o) and representation (o′) of a channel and to give types (t) to the
parameters the channel expects to send. Typing annotations explicitly establish
ownership relations. The pair owner-representation identifies a single branch of
the ownership tree. Define owners o as either a channel x, the constant world
or an owner variable α. Variables are classified as received (rv), defined (dv) and
free (fv), defined by structural induction in Figure 2. A fresh name is a name
that does not appear free in a process.

The difference with the standard Join calculus [15] is that channels introduced
in a message definition have a type annotation.

Existential quantification on owners is used to abstract over the representa-
tion of an expected parameter; thus a channel can send names that have different
representation while their owner is the same. Existential types are used implic-
itly, thus there are no primitives for packing and unpacking. Existential pairs
would have the form 〈x, x〉, but since the witness and the value coincide, we use
the binding x : T , which is the implicit form of 〈x, x〉 : ∃α.T [α/x].
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rv(x〈y〉) = {y1} ∪ · · · ∪ {yn} rv(J | J ′) = rv(J) ∪ rv(J ′)
dv(x〈y〉) = {x} dv(J | J ′) = dv(J) ∪ dv(J ′)

dv(D ∧D′) = dv(D) ∪ dv(D′) fv(J � P) = dv(J) ∪ (fv(P) \ rv(J))
fv(x〈y〉) = {x} ∪ {y1} ∪ · · · ∪ {yn} fv(def D in P) = (fv(P) ∪ fv(D)) \ dv(D)

fv( o′
o 〈|t|〉) = {o} ∪ {o′} ∪ fv(t) fv(∃α.T ) = fv(T) \ {α}

Fig. 2. Definition of received, defined and free variables (obvious cases omitted)

Example 1 (Typing and message sending). Consider the following two processes:

P = def o〈a〉�∅
∧ x〈〉 | y〈〉�R
in o〈x〉 | o〈y〉

PT = def o〈a〉 : world
o 〈|∃α. oα〈||〉|〉�∅

∧ x〈〉 : ox〈||〉 | y〈〉 : oy〈||〉�R
in o〈x〉 | o〈y〉

P defines three channels o, x, y and sends x and y on o. PT is the typed version of
P . R is in both cases an arbitrary process. Typing is used to enforce an ordering
relation between the defined channels so that o owns x and y, thus x, y ≺: o. To
allow both x and y to be sent on o, the type of o contains an abstraction over the
parameter’s representation: ∃α. oα〈||〉. Since the type of x and y are concretizations
of the abstraction obtained by replacing α with x and y respectively, o〈x〉 and
o〈y〉 are well-typed processes.

3.2 Semantics

The expression t[a/b] reads “where a is substituted for all occurrences of b in
t”. The substitution function [a/b] is defined inductively on P , the most notable
case being: (x〈z〉 : T )[u/y] ≡ x〈z〉 : T [u/y]. For the sake of simplicity we as-
sume names that are to be substituted to be distinct from the defined ones.
Substitution into types is also defined inductively and the most notable case is
(∃α.T )[o/β] = ∃α.T if α = β.

The matching of a join pattern and a parallel composition of messages (J )
is defined by structural induction below. The procedure identifies a substitution
σ that replaces all received variables of the join pattern with the ones of the
message sequence, namely if J �σ J then Jσ ≡ J . The domains of σ1 and σ2
are disjoint for well-typed join patterns, so the union of σ1 and σ2 is well defined.

x〈y〉 : T �[u/y] x〈u〉
J1 �σ1 J1 J2 �σ2 J2

J1 | J2 �σ1∪σ2 J1 | J2

The semantics is specified as a reduced chemical abstract machine RCHAM [17].
The state of the computation is a chemical soupD � P that consists of:D, a set of
definitions, andP , a multiset of processes. Terms of soups will be called molecules.
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S-PAR� P1 | P2 � � P1, P2
dv(D) are fresh

S-DEF� def D in P � D � P
J �σ J

R-BETA
D ∧ J � P ∧D′ � J −→ D ∧ J � P ∧D′ � Pσ

D1 � P1 ⇀↽−→ D2 � P2

(fv(D) ∪ fv(P)) ∩ (dv(D1 ) \ dv(D2 ) ∪ dv(D2 ) \ dv(D1 )) = ∅
CTXD,D1 � P1,P ⇀↽−→ D,D2 � P2,P

Fig. 3. Chemical rules for the RCHAM

Two kind of rules describe the evolution of the soup. Structural rules, heating ⇀,
and cooling ↽, (denoted together by �), are reversible and are used to rearrange
terms. Reduction rules (denoted by−→) represent the basic computational steps.
Each reduction rule consumes a process and replaces it with another. The rules for
the RCHAM are given in Figure 3. Rule S-PAR expresses that “|” is commutative
and associative, as the soup is a multiset. Rule S-DEF describes the heating of
a molecule that defines new names. This rule enforces that names defined in D
are unique for the soup and limits the binding of such names to the process P .
The side condition of this rule mimics the scope extrusion of the ν operator in
π-calculus, and at the same time enforces a strict static scope for the definitions.
The basic computational step is provided by rule R-BETA. Reduction consumes
any molecule J that matches a given pattern J , makes a fresh copy of the guarded
process P , substitutes the formal parameters in P with the corresponding actual
sent names via the substitution σ, and releases this process into the soup as a new
molecule. Rule CTX states a general evolution rule for soups. The symbol ⇀↽−→
denotes any of the above reduction steps. The side condition of CTX ensures that
the names in the additional definitions D and processes P do not clash with those
already in the soup.

3.3 The Type System

The type system needs to track the ownership relations along with the types of
regular variables. These are recorded in an environment parallel to the typing
one. When a channel is defined, the relationship between it and its owner is
added to such an environment.

Define the environment Γ , which provides types for free channel variables,
as Γ = ∅ | Γ, (x : T ). Similarly, environment Δ tracks constraints on owners
Δ = ∅ | Δ, (o ≺: o′). The function dom(Δ) is define inductively as follows:
dom(∅) = ∅, dom(Δ, (o ≺: o′)) = dom(Δ) ∪ {o}.

We can now introduce the concept of ownership and how the environments of
the type system keep track of it.
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Definition 1 (Ownership). A channel x is said to be owned by a channel o
w.r.t Γ and Δ if either (x ≺: o) ∈ Δ or (x : ox〈|t|〉) ∈ Γ .

Note that these two notions will coincide in the sense that if x〈u〉 is a well-typed
message (via P-msg), then (x ≺: o) ∈ Δ iff (x : ox〈|t|〉) ∈ Γ .

A judgment Γ  j is abbreviation for a sequence of judgments Γ  j1, . . . , Γ 
jn. The type system is specified via the typing judgments of Figure 4.

Δ � � well-formed environment Δ
Δ;Γ � � well-formed environments Γ and Δ
Δ;Γ � o good owner o
Δ;Γ � x : T channel x has type T
Δ;Γ � T good type T
Δ;Γ � oRo′ o is R-related to o′, where R ∈ {≺:,≺:∗,≺:+,=}
Δ;Γ � P well-typed process P
Δ;Γ � D :: Δ′;Γ ′ well-typed definition D. Environments Δ′ and Γ ′ contain

context relations and bindings for dv(D)
Δ;Γ � J :: Δ′;Γ ′ well-typed join pattern J . Environments Δ′ and Γ ′ contain

context relations and bindings for dv(J)
Δ;Γ � D � P well-typed soup D � P

Fig. 4. Typing judgments for JOT

Rules for owners and for the inside relation follow Clarke and Drossopolou [10].
Syntax related rules are more or less standard for the Join calculus [17], except
for rules P-msg and J-def, where existential types are implicitly used.

Environment rules are standard.

Environments

Rel-n∅  �
o /∈ dom(Δ) ∪ {world} Δ; ∅  o′

Rel-c
Δ, (o ≺: o′)  �

Δ  � Env-n
Δ; ∅  �

x /∈ dom(Γ ) Δ;Γ  T
Env-c

Δ;Γ, (x : T )  �
The following rules give the validity of owners.

Owners

Δ;Γ  � o ∈ dom(Δ)
C-rel

Δ;Γ  o
Δ;Γ  � x ∈ dom(Γ )

C-ch
Δ;Γ  x

The following rules capture properties of relations, based on the natural in-
clusions: ≺: ⊆ ≺:+ ⊆ ≺:∗, = ⊆ ≺:∗, and ≺:;≺: ⊆ ≺:+; and equivalences:
≺:;≺:∗ ≡ ≺:∗;≺: ≡ ≺:+ and =;R ≡ R; =≡ R and ≺:∗;≺:∗ ≡ ≺:∗.



Ownership Types for the Join Calculus 295

Inside relation

Δ;Γ  � oRo′ ∈ Δ
In-rel

Δ;Γ  oRo′
Δ;Γ  o

In-ref
Δ;Γ  o = o

Δ;Γ  o
In-wo

Δ;Γ  o ≺: world

Δ;Γ  oRo′ R ⊆ R′
In-weak

Δ;Γ  oR′o′
Δ;Γ  oRo′ Δ;Γ  o′R′o′′

In-trans
Δ;Γ  oR;R′o′′

A type is valid (Type-ch) if the representation is directly inside the owner,
and inside all the owners of the types that are sent. To access the owner of a
type, use the function own( ), defined as: own( o′o 〈|t|〉) = o′, own(∃α.T ) = own(T ).

Types

Δ;Γ  o ≺: o′

Δ;Γ  o ≺:∗ own(t) Δ;Γ  t
Type-ch

Δ;Γ  o′o 〈|t|〉

Δ, (α ≺: o);Γ  oα〈|t|〉 Type-∃
Δ;Γ  ∃α. oα〈|t|〉

Rule P-msg enforces that the channel name and the representation indicated
in its type must coincide. The substitution Ti[ui/αi] in P-msg is an implicit
unpacking of the witness ui contained in the implicit existential pair 〈ui, ui〉
created in the eventual definition of ui.

Processes

Δ;Γ  � (x : T ) ∈ Γ
Chan

Δ;Γ  x : T

Δ;Γ  �
P-null

Δ;Γ  ∅
Δ;Γ  P Δ;Γ  P ′

P-par
Δ;Γ  P | P ′

Δ,Δ′;Γ, Γ ′  P
Δ,Δ′;Γ, Γ ′  D :: Δ′;Γ ′ dom(Γ ′) = dv(D) = dom(Δ′)

P-def
Δ;Γ  def D in P

Δ;Γ  x : ox〈|∃α.T |〉 Δ;Γ  ui : Ti[ui/αi] for each i ∈ 1..n
P-msg

Δ;Γ  x〈u〉

Rule D-run shows that bindings for defined channels (Δd;Γd) are collected and
available while their scope lasts, while bindings for received channels (Δr, Γr)
are collected only where they are used, namely in the started process P .

Definitions

Δ;Γ  D :: Δ′;Γ ′

Δ;Γ  D′ :: Δ′′;Γ ′′ dv(D) ∩ dv(D′) = ∅
D-and

Δ;Γ  D ∧D′ :: Δ′, Δ′′;Γ ′, Γ ′′

Δ;Γ  �
D-top

Δ;Γ  �
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Δ,Δr;Γ, Γr  J :: Δ′;Γ ′

Δ,Δr;Γ, Γr  P

Δr = Δ′ \Δd Γr = Γ ′ \ Γd
Δd = {(x ≺: o) ∈ Δ′ | x ∈ dv(J )}
Γd = {(x : T ) ∈ Γ ′ | x ∈ dv(J )}

D-run
Δ;Γ  J � P :: Δd;Γd

An implicit packing of 〈x, x〉 and 〈y, y〉 is made in rule J-def dual to the
unpacking that occurs in rule P-msg. Rule J-def also provides bindings for both
the defined channel and its formal parameters.

Join patterns

Δ;Γ  J :: Δ′;Γ ′

Δ;Γ  J ′ :: Δ′′;Γ ′′
dv(J ) ∩ dv(J ′) = ∅
rv(J ) ∩ rv(J ′) = ∅

J-par
Δ;Γ  J | J ′ :: Δ′, Δ′′;Γ ′, Γ ′′

Δ;Γ  x : T
T ≡ o

x〈|∃α.T |〉
Δ;Γ  yi : Ti[yi/αi] for each i ∈ 1..n

Ti ≡ oi
αi
〈|ti|〉

J-def
Δ;Γ  x〈y〉 : T :: (x ≺: o), (y ≺: o); (x : T ), (y : T [y/α])

Soups

P = P1, . . . , Pn Δ;Γ  Pi for each i = 1..n
P-elim

Δ;Γ  P
Δ;Γ  Di :: Δ′i;Γ ′i for each i = 1..n

dv(D1 ) ∩ . . . ∩ dv(Dn) = ∅
Γ ′ = Γ ′1, . . . , Γ ′n
Δ′ = Δ′1, . . . , Δ′n D-elim

Δ;Γ  D :: Δ′;Γ ′

Δ,Δ′;Γ, Γ ′  P
Δ,Δ′;Γ, Γ ′  D :: Δ′;Γ ′ dom(Γ ′) = dv(D) = dom(Δ′)

Soup
Δ;Γ  D � P

3.4 Soundness of the Type System

A type system for a concurrent language is correct whenever two standard the-
orems hold [24]. The first, subject reduction, ensures that typing is preserved
by reduction. This means no typing error arise as the computation proceeds.
The second one, no runtime errors, ensures that no error occurs as the compu-
tation progresses. An error may be sending a message with a different number
of parameters than expected or, as is specific to our type system, breaking the
owners-as-dominators property. Proofs can be found in a companion technical
report [20].
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Definition 2 (Typing environment agreement �). Two typing environ-
ments agree, denoted with Δ;Γ � Δ′;Γ ′, if the variables they have in common
have the same type.

Theorem 1 (Subject reduction for JOT). One step chemical reductions pre-
serve typings. If Δ;Γ  D � P and D � P ⇀↽−→ D′ � P ′, then there exists Δ′;Γ ′
such that Δ;Γ � Δ′;Γ ′ and Δ′;Γ ′  D′ � P ′.
Definition 3 (Runtime errors). Consider a soup D � P. Say that a runtime
error occurs if any of these kind of messages occurs in the processes set P:

– a message x〈y〉 that is not defined in D, i.e. no join pattern J in D has x
in its defined variables;

– a message x〈y〉 that is defined in D but with different arity (e.g. the defined
channel x wants four parameters while we call it with three);

– a message x〈y〉 where x is not inside some of its arguments’ owners, i.e.
there is a yi owned by o such that x ≺:/ ∗o

Reduction of a well-typed soup never results in a runtime error.
Theorem 2 (No runtime errors for JOT ). If Δ;Γ  D � P and D �
P ⇀↽−→∗D′ � P ′, then no runtime error occur in D′ � P ′.

The following statement is a translation of the owners-as-dominators property
ownership types enforce in the object-oriented setting. No reference from outside
the ownership boundaries to an inner channel exists.
Theorem 3 (Owners as dominators). A channel y owned by o may be sent
over a channel x only if x is transitively inside o: Δ;Γ  x〈y〉 ⇒ Δ;Γ  x ≺:∗ o

Corollary 1 is a restatement of Theorem 3 from a secrecy perspective. The
point of view of Theorem 3 highlights what can be sent on a channel. Dually,
the perspective of Corollary 1 points out what cannot be sent on a channel.
Corollary 1 (Secrecy for JOT ). Consider a well-typed soup D � P that de-
fines a channel y owned by o. However the soup evolves, y is not accessible from
channels whose owner is not transitively inside o.

Example 2 (Secrecy with a typed opponent). Consider the typed process P of
Example 1. Suppose P is a private subsystem of a larger system O. Process P
defines two secrets, namely x and y, which are intended to remain private to
P . This privacy policy can be violated if, for example, a subsystem R can, after
a sequence of reduction steps, send l〈x〉, where l is a channel known to O. To
typecheck the definition of l, O should know the name o. Fortunately o is not in
the environment O uses to typecheck since o is defined in P . As the following
proof tree shows, l cannot be typed in order to send channels owned by o. This
means that the secrecy of x is preserved.

. . .

Impossible since o is unknown
Δ;Γ  l ≺:∗ o . . .

Type-ch
Δ;Γ  l : world

l 〈|∃α. oα〈||〉|〉 . . .
Chan

Δ;Γ  l〈a〉 : world
l 〈|∃α. oα〈||〉|〉 :: . . .
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Example 3 (Code invariant definition). Consider the following process.

B = def mb〈pb〉 : Tm�def guard〈〉 : world
guard〈||〉�∅

∧ empty〈〉 : guardempty〈||〉 | put〈d〉 : Tp � full〈d〉
∧ full〈c〉 : guardfull 〈|Tc|〉 | get〈r〉 : Tg � empty〈〉 | r〈c〉
in empty〈〉 | pb〈put, get〉

in . . .

Process B is a one-place buffer where typing enforces the invariant: the internal
representation of the buffer cannot be accessed except via put and get. The buffer
is spawned by sending a channel pb over mb. Primitives for buffer usage, put and
get, will be returned to the buffer creator on channel pb. Since empty and full are
owned by channel guard, there is no possibility for them to be used outside the
process boundaries, for the same reasons as Example 2. Channel guard and type
annotations are the only additions to an untyped one-place buffer [16] which are
needed to enforce the invariant. We do not fully specify all types involved in B,
focussing the attention only on the types needed to define the invariant.

4 Secrecy in the Context of an Untyped Opponent

When computation is run on a collection of machines that we cannot have access
to or simply rely on, we expect our programs to interact with code that possibly
does not conform to our type system, which could result in a malicious attempt
to access the secrets of our programs. The system must be strong enough to
prevent such attacks.

We follow the approach of Cardelli et. al. [8] and formalize the idea that a
typed process in JOT can keep a secret from any opponent it interacts with, be
it well- or ill-typed. The story reads as follows:

– consider a well-typed JOT soup D � P that defines a secret x owned by o;
– consider an untyped soup D′ � P ′ that knows neither o nor x a priori;
– erase typing annotation from D � P and combine its molecules with those

of D′ � P ′, the result is an untyped soup D′′ � P ′′;
– then, in any way the untyped soup D′′ � P ′′ can evolve, it does not leak the

secret x.

We work with soups instead of processes as a process P is trivially a soup ∅ � P .
The notation JUN will be used to refer to the untyped Join calculus. The

syntax for JUN [15,16] is analogous to the one presented in Figure 1, except that
typing annotations are dropped from channel definitions. The semantics of JUN
follows that of Figure 3 ignoring types.

In the next section a common framework where trusted and untrusted chan-
nels coexist is introduced. We give a precise definition of when an untyped pro-
cess preserves the secrecy of a channel x from an opponent. The most important
result presented in the paper is that the untyped process obtained by erasing
type annotations from a well-typed JOT process preserves the secrecy of x from
any opponent it interacts with.
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4.1 An Auxiliary Type System: JAU

Proving the secrecy theorem in an untyped opponent context is based on an
auxiliary type system. The auxiliary type system partitions the set of chan-
nels into untrusted and trusted ones with regards to one specific channel: the
secret. The idea is that untrusted channels do not have access to the secret,
trusted channels on the other side can handle such secret. Typing enforces such
a distinction. Types have syntax: T = Un | In〈|T |〉. Untrusted channels have
type Un. Trusted channels have type In〈|T |〉, where each Ti is either trusted or
untrusted. The property enforced by the type system is that trusted channels
cannot be sent over untrusted ones. Hence an opponent knowing only untrusted
(Un) names cannot receive a trusted (In) one.

Define Γ as a list of bindings of variables to types: Γ = ∅ | Γ, (x : T ). The
typing judgments that define the type system are analogous to those in Figure 4,
except that owners and environment Δ are dropped. Typing rules for message
sending (P-msg) and channel definition (J-def ) need to be replaced by rules P-
mun and P-min and by rules J-dun and J-din below, respectively. Judgments for
the JAU type system are made against untyped processes, as defined channels
in rules J-dun and J-din do not have typing annotation.

Γ  x : Un Γ  y : Un
J-dun

Γ  x〈y〉 :: (x : Un), (y : Un)
Γ  x : In〈|T |〉 Γ  y : T

J-din
Γ  x〈y〉 :: (x : In〈|T |〉), (y : T )

Rules P-mun and P-min state that untrusted channels cannot send anything
but untrusted ones while trusted channels can mention both kinds.

Γ  x : Un Γ  y : Un
P-mun

Γ  x〈y〉
Γ  x : In〈|T |〉 Γ  y : T

P-min
Γ  x〈y〉

The auxiliary type system enjoys subject reduction, as Theorem 4 shows.

Theorem 4 (Subject reduction). If Γ  D � P and D � P ⇀↽−→ D′ � P ′
then there exists a Γ ′ such that Γ ′  D′ � P ′ and Γ � Γ ′.

4.2 The Common Framework

The auxiliary type system is used as a meeting point for untyped and typed
soups. It serves as a common framework for testing secrecy. Assigning trusted
and untrusted types to channels makes JAU a suitable system to reason about
coexisting trusted and untrusted processes. From now on the notation OT will
indicate a judgment in the JOT system, while AU will indicate a judgment in
the JAU one. Firstly we must be able to typecheck any untyped opponent. The
way of doing it is provided by Proposition 1.

Proposition 1. For all untyped soups D � P, if fv(D � P) = {x1, . . . , xn},
then x1 : Un, . . . , xn : Un AU D � P.
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Secondly we need a way to add elements from JOT to the common framework.
This is done by erasing all type annotations of such elements and by mapping
typing environments of JOT to JAU ones. Type annotations can be erased via
an erasure function (erase( )), which is defined by structural induction on P ,
the most notable case being erase(x〈y〉:T ) = x〈y〉. Translating the typechecking
environment associated with a JOT process to an JAU environment is done via
the mapping function � �o presented below.

�Δ;Γ �o = �Γ �o �∅�o = ∅ �Γ, (x : T )�o = �Γ �o, (x : �T �o)

The environment Δ is dropped since it is not required. Γ is translated in an en-
vironment that contains bindings for the auxiliary type system. For any channel
o that identifies a secret, map JOT types to JAU ones as follows.

�
o′
o 〈|t|〉�o =

{
In〈|�t�o|〉 if o ∈ fv( o′

o 〈|t|〉)
Un else

�∃α.T �o = �T �o

Types that do not mention the secret o are translated as untrusted: Un. All
others preserve their structure and are translated as trusted: In〈|T |〉. Note that
trusted channels are the ones transitively inside the given channel o, while un-
trusted ones are those that are outside the ownership boundaries o defines.

Proposition 2 shows how to combine the erasure and the mapping functions
to obtain a well-typed soup in JAU starting from a well-typed one in JOT . The
secret o is any channel, be it a free name in the environment, a bound name in
the soup or a fresh name.
Proposition 2. If Δ;Γ OT D � P then, for any o, �Δ;Γ �oAU erase(D � P).
Now we have all the machinery to bring together trusted and untrusted processes
in a common framework and show that the former ones cannot leak secrets to
the latter ones.

4.3 Secrecy Theorem

Before stating the secrecy results in the untyped setting we need to introduce
some related concepts.

Soup combination allows us to merge the molecules of two soups if the type-
checking environments agree. The agreement implies that names that are com-
mon to the two soups have the same degree of trust, there is no name that is
considered trusted in a soup but is untrusted in the other one.

Definition 4 (Soups combination). Consider two untyped soups D � P and
D′ � P ′. Suppose they are well-typed in JAU , so there exist Γ, Γ ′ such that
Γ AU D � P and Γ AU D′ � P ′. If Γ � Γ ′, the molecules of the two soups
can be combined into a single one: D,D′ � P ,P ′.
The definition of secret leakage we use is inspired by Abadi [1] for the untyped
spi calculus [3]. The underlying idea is attributed to Dolev and Yao [13]: a name
is kept secret from an opponent if after no series of interactions is the name
transmitted to the opponent.
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Definition 5 (Secret leakage). A soup D � P leaks secrets whenever D �
P ⇀↽−→∗ D′ � P ′ and in P ′ there is an emission of a trusted channel on an
untrusted one.

The following proposition is the crux of the proof of Theorem 5: an opponent
who knows only untrusted names cannot learn any trusted one.

Proposition 3. Suppose y1 : Un, . . . , yn : Un, o : T ′, x : T AU D � P, where
T, T ′ �= Un. Then, the untyped soup D � P does not leak secrets.

Theorem 5 shows that an opponent, which does not know any trusted channel
a priori, does not learn any trusted name by interacting with a well-typed JOT
soup whose type annotations have been erased. Definition 4 allows the two soups
to have names in common and to communicate as long as the shared channels
have the same degree of trust.

Theorem 5 (Secrecy in unsafe context). Consider a well-typed JOT soup
D � P and an untyped soup D′ � P ′ that does not know a priori any trusted
name of the typed one. Let D′′ � P ′′ be the combination of erase(D � P) and
D′ � P ′. Then D′′ � P ′′ does not leak secrets.

5 Related Work

Ownership types have had several applications, mostly unrelated to security.
They have been combined with effects for reasoning about programs [10]. Own-
ership types were used to detect data races and deadlocks [5], to allow safe
persistent storage of objects [6] and to allow safe region-based memory manage-
ment in real time computation [7]. Preventing uncontrolled accesses to EJBs [12]
was obtained using a notion of containment similar to ownership types. Another
similar but more lightweight idea is that of confined types [23], which provide a
per-package notion of object encapsulation. To our knowledge ownership types
have never been used before as a direct way to enforce secrecy policies. Further-
more, this is the first attempt to translate them from the object-oriented setting
to a process calculus. A translation to the π-calculus appears to be straightfor-
ward. Ownership types have also been encoded into System F [19].

As stated before, types are not present in standard Join calculus [15]. Absence
of type annotations is a difference also with the typed Join calculus [17], where
typing is implicit and polymorphic. Since it loosens the constraints imposed by
typing, polymorphism is not used in the current work.

In process algebra, security has been achieved via encryption both for the
Join calculus [2] and the π-calculus [3]. The cited works require encryption and
decryption primitives while the presented work does not. The control flow anal-
ysis for the π-calculus [4] testifies that a process provides a certain encapsulation
property, on the other side our type system allows the programmer to specify
such a property.

Cardelli et al.’s Groups [8] is the closest work to the results presented here.
Groups were created for the π-calculus, a translation in the Join calculus seems
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however straightforward. Groups are created with a specific operator: νG that
mimics the scope extrusion principle of channel definition νx. Channels have type
T = G[T ] which indicates the group G a channel belongs to, and its parameters’
types T . T can only mention groups which are in scope when T is defined. The
notion of secrecy of Groups is thus based on scoping and there are policies that
cannot be expressed using Groups, as Example 4 shows.

Example 4 (Expressiveness). Consider a process that is supposed to match the
password provided from a client, sent on channel c, and the corresponding
database entry, sent on channel d. If the client is able to access any entry, it
can impersonate any user. Database entries must be protected from the client
but they must be accessible from the database. PG and PO specify such a policy
using Groups or using ownership types respectively.
PG = νG

def d〈a〉 : Td | c〈b〉 : Tc�R
in . . .

PO = def d〈a〉 : world
d 〈||〉 | c〈b〉 : world

c 〈||〉�R
in . . .

To design the policy using Groups we can create a group G that is supposed to
protect the database entries. In order for the database to access the entries via
channel d, the declaration of G should appear before the join pattern that starts
the password checking process, since such join pattern defines d. This would allow
the type of the client, Tc, to mention G. The client could then access the data
hidden within G via the channel c, violating the intended security policy. The
designed policy can be expressed using ownership types as PO shows. Channel c
would not be able to access the entries owned by d because c ≺:/ ∗d. On the other
side d would still be able to access the database entries since d owns them.

6 Conclusion

This paper shows how to prevent the leakage of secrets in a mobile setting using
ownership types. We provide a type system that encodes ownership types con-
cepts in the Join calculus. The type system enforces the owners-as-dominators
property and the consequent strong form of encapsulation. A typed process pro-
tects its secrets against malicious or accidental leakage. Secrecy is also preserved
even in the context of an untyped opponent.

A formal comparison between ownership types and Cardelli et al.’s Groups
remains to be done. Additionally, in order to allow a JOCaml implementation
of ownership, polymorphism and type inference need to be investigated.
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Abstract. We present a novel way of encapsulating UML activities us-
ing interface contracts, which allows to verify functional properties that
depend on the synchronization of parallel instances of software compo-
nents. Encapsulated UML activities can be reused together with their
verification results in SPACE, a model-driven engineering method for
reactive systems. Such compositional verification significantly improves
the scalability of the method. Employing a small example of a load bal-
ancing system, we explain the semantics of the contracts using the tem-
poral logic TLA. Thereafter, we propose a more easily comprehensible
graphical notation and clarify that the contracts are able to express the
variants of multiplicity that we can encounter using UML activities. Fi-
nally, we give the results of verifying some properties of the example
system using the TLC model checker.

1 Introduction

A key to efficient software engineering is the reuse of existing software com-
ponents that ideally are independently developed and marketed as commercial
off-the-shelf (COTS) products. To enable a seamless combination of the com-
ponents, one needs meaningful descriptions of the component interfaces that
specify properties to be kept by both the components themselves and their envi-
ronments. Due to the tight interaction with their environment, this requirement
holds in particular for reactive systems [6]. To support the reuse of software com-
ponents for reactive, distributed software systems, we use collaborative building
blocks described by multi-partition UML activities, each augmented with an
interface contract in the form of a UML state machine [12,13]. We call these
contracts External State Machines (ESMs). The contracts not only enable reuse
of problem solutions, but also make for a reuse of verification effort as the user
can verify a composed system using only the contracts, which in turn have been
verified to be correct abstractions of the underlying solutions. This compositional
approach helps to reduce the complexity and state space of the system models
significantly [12]. The ESMs also help another problem with reuse: It may not
always be straightforward to look at a reusable activity and see what it does
and how to compose it correctly with the rest of the system. As the ESM only
describes behaviour visible to the outside of the block, it aids both these tasks.
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c© IFIP International Federation for Information Processing 2011



Contracts for Multi-instance UML Activities 305

ESMs constitute what Beugnard et al. [2] call synchronization contracts,
meaning that they can specify the effect of interleaving operations on a com-
ponent, not just sequential operations. However, up until now we have been
limited to collaborations in which only one instance of each type participates,
as the contracts could not support collaborations featuring multiple component
instances of the same type. If, for instance, a client request may be routed to
one of several servers, we could not express an interface behaviour that permits
server S to receive the request only if none of the other servers have received it.
In systems that employ load balancing or fault-tolerance mechanisms, however,
to specify and guarantee this kind of behaviour is crucial. Thus, compared with
the ESMs, we need additional concepts and notation for behavioural interfaces.

Any extension of ESMs should ideally keep a key characteristic of SPACE [14]:
The underlying formalism is hidden to the user. According to Rushby [21], this
is a key quality of practical development methods. SPACE relies on automatic
model checking to verify system models. To mitigate the problem of state-space
explosion, we limit our scope to verifying properties dependent only on the con-
trol flow of the system designs. While we could very well include data in the
model, the model checker would not be able to verify properties dependent on
data for realistic systems, as the state space would grow exponentially with ev-
ery data element we include. Nevertheless, as pointed out in [13,14], also the
model checking of just control flows is of great practical help, for single-instance
activities.

The ESMs are basically Finite State Machines (FSMs) with special annota-
tions of their transitions. To model multiple entities in a suitable way, we use
Extended Finite State Machines (EFSMs) [3] instead, which allow to refer to the
indexes of instances in the form of auxiliary variables. The semantics of these
Extended ESMs (EESMs) is formalized using the Temporal Logic of Actions,
TLA [15]. To relieve the software engineer from too much formalism, we further
present a more compact graphical notation in the form of UML state machines
where statements closer to programming languages are used to describe variable
operations.

The next section discusses related work on component contracts, particularly
work using UML. Our load balancing example system is presented in Sect. 3.
In Sect. 4, we formalize the EESM semantics for many-to-many activities in
TLA, and present the graphical notation. We give EESMs for the other types
of activities, one-to-one and one-to-many, in Sect. 5. Some results, in particular
about the effects on model checking, as well as future work is discussed in Sect. 6,
where we also conclude.

2 Related Work

There are several other works that define a formal semantics for UML activi-
ties [4,5,23], but neither of them include contracts for use in hierarchical activ-
ities. Eshuis [4] explicitly argues to leave this concept out, as any hierarchical
activity can be represented as a flat one. However, this results in a much bigger
state space.
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As Beugnard et al. [2] point out, we can only expect software components
to be reused for mission-critical systems if they come with clear instructions on
how to be correctly reused and what guarantees they give under those conditions.
UML has the concept of Protocol State Machines [19] to describe the legal com-
munication on a port of a component. Mencl [18] identifies several shortcomings
of these, for example that they do not allow to express dependencies between
events on a provided and required interface, nor nesting or interleaving method
calls. To remedy this, he proposes Port State Machines, where method calls are
split into atomic request and response events. These Port State Machines are
restricted to pure control flow, as transition guards are not supported. Bauer
and Hennicker [1] describe their protocol style as a hybrid of control flow and
data state. However, they also cannot express the dependency between provided
and required interfaces, and they currently lack verification support for whether
two components fit together.

The ESMs have similar properties to Port State Machines in that all inter-
face events are atomic, i.e., an operation is split into a request and response
event, to allow for expressing nesting and interleaving of operations. They also
essentially combine provided and required interfaces in the same contract, hence
allowing to express dependencies between them. The EESMs combine this with
data state to allow for compact representations of parametrized components and
collaborations.

Sanders et al. [22] present what they call semantic interfaces of service com-
ponents, both described as finite state machines. These interfaces support both
finding complementary components and implementations of an interface, hence
also compositional verification. While they provide external interfaces for each
local component and then asynchronously couple these to other, possible re-
mote, components, our activity contracts act as internal interfaces that can
be synchronously coupled with other local behaviour in the fashion of activity
diagrams.

Our approach differs from all the above in that it permits the encapsulation
of both local components and distributed collaborations between components,
described by single-partition or multi-partition activities respectively. Further,
our extended interfaces allow to constrain behaviour based on the state of parallel
component instances, giving a powerful abstraction of distributed collaborations.

3 A Load Balancing Client – Server Example

In SPACE, the main units of composition are collaborative building blocks in
the form of UML activities that can automatically be transformed to executable
code [14]. A system specification consists of a special system activity as the
outermost block. This system activity can contain any number of inner activ-
ities, referenced by call behaviour actions, as well as glue logic between them.
Figure 1(a) shows the system activity for our example, a set of clients that can
send requests via a Router m-n block to a set of servers. Thus, Router m-n is an
inner block, its activity depicted in Fig. 1(b). Each activity partition is named in
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«system» Load Balancing System
server [b]client [a]

r: Router m-n 
(1, a/b)

reqOutreqIn

resInresOut

select responder

m: Make 
Response

req

res

start

(a) System activity

Router m-n
responder [n]requester [m]

reqIn

resOut

reqOut

resIn

select ANY

f: Forwardin

out

select requester

done

(b) Router m-n activity

server 2
responder 2

responder 1server 1
responder 2

responder 1

client 4
requester 1client 3

requester 1client 2
requester 1client 1

requester 1

(c) Structural view of system example
with four clients and two servers

Fig. 1. System example: A load balancing client – server system

the upper left corner and the bracketed parameter behind the name, a for client
and b for server, denotes the number of component instances of this type. While
each client only sees one router, each server partition has a/b instances of the
router block, as denoted by parameters (1, a/b) after its name and the shade
around the server side of the block. This is also illustrated in Fig. 1(c), where
we see that each client component only has a single requester sub-component,
whereas each server has two responders. Note that the structural view is com-
pletely redundant and only serves to illustrate the information in the activities
and the EESMs introduced below. The diagonally striped area inside the server
partition represents other components of the same type, i.e., other servers. This
gives a visual indication that the Router m-n block, in addition to collaborat-
ing with clients, also collaborates with other server instances. Each server also
makes use of an inner activity called Make Response, which turns requests into
responses. We have omitted it in Fig. 1(c), as it is completely local.

It is the job of the Router m-n block in Fig. 1(b) to balance the load so that a
single server does not have to serve requests from all clients at the same time. All
requesters can send requests to all responders, as illustrated by the full mesh con-
nectivity in Fig. 1(c). Each responder uses the Forward block to forward requests
to other responders, if it is currently busy itself. In the structural view, the com-
ponent of the Forward block is shown as a small nameless rectangle on each re-
sponder that can communicate with every other such component. It is important
to note that the Router m-n activity encapsulates asynchronous communication
between components, while the synchronous interaction between an outer and an
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inner activity takes place via pins1 linking flows of the two activities. For in-
stance, the block Router m-n is linked with the system activity by the pins
reqIn, reqOut, resIn and resOut. Here, reqIn is a start pin initiating an activity
instance (really, the corresponding requester instance), whereas resOut is a stop
pin terminating the instance. The remaining pins with black background are
streaming pins for interacting with active instances.

The semantics of UML activities is similar to Petri-nets, where the state is
encoded as tokens resting in token places and then moving along the directed
edges to perform a state transition [19]. In our approach, all behaviour takes
place in run-to-completion steps [9]. That is, all token movements are triggered
by either receptions of external events (for instance, tokens resting between par-
titions) or expiration of local timers, and the tokens move until such an event is
needed to make progress again.

Initial nodes start the behaviour of each system-level partition instance. They
are fired one by one, but we make the assumption that no token will enter a
partition before its initial node has fired. The initial node of the server partition
can fire at any time, releasing a token into the start pin of the Make Response
block. In the client partition, the token emitted from the initial node will enter
the Router m-n block via the reqIn pin. Afterwards, it will be forwarded to a
server instance and leave the block via pin reqOut, to enter pin req of Make
Response. The Make Response block will eventually emit a token via its res pin,
and the server partition will choose one of the Router m-n instances to receive
it via its resIn pin, as denoted by the select statement [10]. A select statement
takes some data carried by the token and uses it to select either among various
instances of a local inner block or of remote partitions. The Router m-n block
will eventually emit a token through its resOut pin in one of the client partitions,
which will follow the edge to the timer on the client side, where the step will
stop. Later, the timer will expire, causing it to emit the token so that the client
can perform another request. In this example, the timer is simply an abstraction
for whatever the client might be doing between receiving a response and sending
a new request. The behaviour of the Router m-n block is described in Sect. 4.

When we compose a system by creating new activities and reusing existing
ones, we want to be able to verify properties of it. Given that SPACE models
have a formal semantics [11,12], we can express them as temporal logic specifi-
cations and use a model checker to verify properties automatically. To mitigate
the problem of the state space growing exponentially with every stateful ele-
ment, each activity is abstracted by an External State Machine (ESM), which is
a description of the possible ordering of events visible on the activity pins. This
allows us to do compositional verification of the system specification: We first
verify that the activity and its ESM are consistent, then we only use that ESM
when verifying properties for a higher-level or system-level block. Note that ver-
ifying the consistency of an ESM and its activity cannot be done automatically

1 They are really activity parameter nodes when seen from the inner activity itself,
but are called pins when an activity is reused via a call behaviour action. We use
pins to denote both, to keep it simple.
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«esm»
Make Response

emptystart/ req/ non-empty
/res

non-empty

/res empty

non-empty
req/

(a) ESM

«eesm»
Make Response

active

start/

req/

active

/res

active

queue = 0

queue > 0

queue -= 1queue += 1

(b) EESM

Fig. 2. Contracts for the Make Response block

for all blocks, as some will constrain their control-flow behaviour according to
data stored in the activity tokens. In this case, the model allows all possible
behaviours, and the potentially false positives reported by a model checker (that
is, error traces that cannot occur in the real system) can be inspected manu-
ally, reducing the verification task. A select statement is an example where data
constrains the destination of a token.

Figure 2(a) shows the ESM of the local building block Make Response. As
discussed in the introduction, the ESM notation has the same expressive power
as a finite state machine or Mealy machine [17], to be precise. The transition
labels correspond to pins, and the slash character separates the transition trigger
event, as seen from the perspective of the block, from the effect. Hence, start/
means that the transition is triggered from outside by a token entering pin start
and that no tokens will pass any other pins in the same step. The ESM shows
that a response is not output until a request has been sent in, and that this
will not happen in the same step. Once the non-empty state is reached, further
requests may enter and responses may be emitted from the block. Just looking at
the ESM, however, we cannot know exactly how many responses will be sent out,
as there is no way of knowing if a /res event has caused a transition to the empty
state, or if the ESM is still in the non-empty state. This is because there is no
way to track the actual number of buffered requests.2 When verifying properties
of a system, such information may sometimes be necessary. For example, if this
block was used in a system that sends three requests, we would like to infer from
the ESM that exactly three responses can be emitted back out.

4 Contracts for Multi-instance Activities

To support multi-instance activities, we extend the ESMs to include transition
guards, variables, arithmetic and predicate logic. Hence, they are now formally
EFSMs [3]. This enables us to specify event constraints that relate to the state
of parallel component instances. Moreover, this increases the general expressive-
ness, so that we are able to better handle the case of the Make Response block.
2 An ESM could of course track the number of buffered requests in explicit states, up

to some finite number, but it would quickly grow syntactically very large.
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Figure 2(b) shows the EESM of the Make Response block. We have here added
a variable, queue, that tracks the number of requests buffered. To constrain the
behaviour based on the queue size, as well as update it, this EESM also contains
transition guards in square brackets and variable operations in lined boxes.

Figure 1(b) shows the internal activity of the Router m-n block. A request
enters through the reqIn pin of the requester partition and is forwarded to a
responder partition. The select statement, along with the fact that there are n
responder partitions, tells us that a requester expects to have a choice of respon-
ders to communicate with, when forwarding the token. When a token crosses
a partition border, the corresponding activity step ends, as remote communica-
tion is asynchronous. When the token is received by the responder partition, it
is passed on to an inner block, Forward. This block may emit the token directly
through its out pin to be passed on through the reqOut pin of Router m-n, or it
may forward the token to another responder, if this one is busy already serving
a request.3 When a response token is received via the resIn pin, it is duplicated
in the fork node and passed both to pin done and the channel for the originating
requester partition.

We now describe the EESM of block Router m-n using the language TLA+

of the temporal logic TLA [15], as shown in Fig. 3. The TLA+ module starts by
defining the module name on the first line. The extends keyword states that
this module imports the modules Naturals, which defines various arithmetic
operators on natural numbers, and MatrixSum, defining operators for summing
matrices. The variables of the module are declared using the variables keyword,
where req and res represent the requester and responder partitions respectively.
Constants are declared by the constants keyword. They are the parameters of
the model. When creating the building block Router m-n, we do not know how
it will be reused in an enclosing activity. Another developer may choose to put
multiple instances in both, one or none of the enclosing partitions. So, we need
constants for the number of requesters and responders per enclosing partition
instance, as well as the number of enclosing partition instances on each side.
Hence, the global number of requesters is really no req ∗ no req encl.

A TLA+ specification describes a labelled transition system. This is given
as a set of states, a subset of the states that are initial states, a set of actions
(labels) and a transition relation describing whether the system can make a
transition from one state to another via a given action. The set of initial states
is described by the Init construct. Here, the req and res variables are each given
records for their corresponding pins (except pin resOut, see below), which in
turn are functions in two dimensions stating whether a token has passed the
pin for each requester or responder instance. That is, a requester or responder
instance is identified by an enclosing instance number combined with an inner
instance number.

Next in the TLA+ module follow the actions, which formally are predicates
on pairs of states. Variables denoting the state before carrying out an action use

3 This behaviour is described by the EESM of the Forward block, which, due to space
constraints, we do not show.
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module router m n
extends Naturals, MatrixSum
variables req, res
constants no req, no res, no req encl , no res encl

Init
Δ
=

∧ req = [reqIn �→ [e ∈ 1 . . no req encl , i ∈ 1 . . no req �→ 0]]
∧ res = [reqOut �→ [e ∈ 1 . . no res encl , i ∈ 1 . . no res �→ 0],

resIn �→ [e ∈ 1 . . no res encl , i ∈ 1 . . no res �→ 0]]

reqIn(e, i)
Δ
= req.reqIn[e, i ] = 0

∧ req ′ = [req except ! .reqIn[e, i ] = 1] ∧ unchanged 〈res〉
reqOut(e, i)

Δ
= res.reqOut [e, i ] = 0

∧ Sum(req.reqIn, no req encl , no req) > Sum(res.reqOut , no res encl , no res)
∧ res′ = [res except ! .reqOut [e, i ] = 1] ∧ unchanged 〈req〉
resIn(e, i)

Δ
= res.reqOut [e, i ] > 0 ∧ res.resIn[e, i ] = 0

∧ res′ = [res except ! .resIn[e, i ] = 1] ∧ unchanged 〈req〉
resOut(e, i)

Δ
= req.reqIn[e, i ] > 0

∧ ∃ f ∈ 1 . . no res encl , k ∈ 1 . . no res :
∧ res.resIn[f , k ] > 0
∧ res′ = [res except ! .reqOut [f , k ] = 0, ! .resIn[f , k ] = 0]

∧ req ′ = [req except ! .reqIn[e, i ] = 0]

Fig. 3. TLA+ module for the EESM of Router m-n

their common identifiers while those referring to the state afterwards are given
a prime. The action reqIn states that for a requester〈e, i〉 identified by enclosing
instance e and inner instance i , a token can enter pin reqIn only if the given
instance has not yet had a token pass through this pin. The next conjunct of
the reqIn action says that the values of the req variable will be the same as now,
except that the counter for tokens having passed through pin reqIn will be set
to 1 for requester〈e, i〉. The unchanged keyword states which variables are not
changed by an action, as TLA+ requires all next-state variable values to be set
explicitly.

The reqOut action also represents that a token is only allowed through pin
reqOut of responder〈e, i〉 if it has not already had a token pass through. The
second line constrains this further by stating that a token passing event can
only happen if the sum of all tokens having passed any reqIn pin is greater
than the sum of all tokens having passed any reqOut pin. Hence, this event on
responder〈e, i〉 is constrained by the state of parallel components. Action resIn
states that a token may only enter a responder〈e, i〉 via pin resIn if the same
instance has already emitted a token via pin reqOut, but not already sent a
response through pin resIn. The resOut action states that a requester〈e, i〉 can
only emit a token through pin resOut if it has received a token through pin reqIn.
This is constrained further by requiring there to be a responder〈f, k〉, that has
received a token through its resIn pin. All counters belonging to requester〈e, i〉
and responder〈f, k〉 are then set to 0, to reset their state. As the resOut action
also performs the reset, there is no TLA+ variable for its corresponding pin.
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«eesm»
Router m-n

active

∀ i ∈ 1..|requester|: reqIn[i] = 0 
∀ k ∈ 1..|responder|: reqOut[k] = 0 ∧ resIn[k] = 0

active

reqIn(i)/

reqIn[i] = 1

∃ i: reqIn[i] == 0

active

/resOut(i)
reqIn[i] = 0
reqOut[k] = 0
resIn[k] = 0

∃ i: reqIn[i] > 0
∧ ∃ k: resIn[k] > 0

active

resIn(i)/

resIn[i] = 1

∃ i: reqOut[i] > 0
∧ resIn[i] == 0

active

/reqOut(i)

reqOut[i] = 1

∃ i: reqOut[i] == 0
∧ ∑reqIn[ALL] > ∑reqOut[ALL]

Fig. 4. UML notation for the EESM of Router m-n

This behaviour is easier seen looking at the graphical notation in Fig. 4. Here,
the style of the transition operations is closer to programming languages like
Java. The number of partition instances is denoted |partition name|. We omit
the domain of ∃ statements where this is obvious from the context, and the
keyword ALL denotes all indexes in a domain. We also omit specifying which
partition a pin belongs to if there is only one pin by that name in the activity. The
transition from the initial node to the active state represents the Init construct
in TLA+, and the remaining transitions represent the actions.

Since we do not model that a token keeps the index of its requester instance
as data while located at a server, we cannot fully automatically verify that
the activity and EESM for Router m-n are consistent. The model checker finds
counterexamples where a response is simply sent to a requester that has not
yet issued a request, instead of to a requester that has. What we can verify
automatically, however, is that whenever a token is sent back to a requester, the
EESM is in a state where the token would be allowed through the resOut pin of
at least one of them.

Once a building block is complete, we can reuse it like we have reused Router
m-n in our system example from Fig. 1(a). To verify properties of the system,
we generate the TLA+ module in Fig. 5 (see [13]). This module instantiates
other modules, namely Router m-n and Make Response. The constants no clients
and no servers represent the parameters a and b from the system activity. We
express the actions of the system activity as a composition of constraints and
operations on the variables of the system activity, and actions of ESMs of the
inner activities. Hence, the Init construct not only sets the timer in all client
instances to 0 and all initial nodes to 1, but also calls the Init construct of
Router m-n and Make Response as shown by r !Init and m!Init . Note also that
since this is a system activity, we do not need to add an extra dimension for
enclosing partition instances when identifying activity elements like the timer,
as it cannot be reused in other activities. For a description of each action, we
refer back to Sect. 3.
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module load sharing system
extends Naturals, MatrixSum
variables r req, r res, m state, m queue, client , server
constants no clients, no servers
no res

Δ
= no clients ÷ no servers

r
Δ
= instance router m n with no req ← 1, no req encl ← no clients,

no res ← no res, no res encl ← no servers, req ← r req, res ← r res
m

Δ
= instance make response with no make response ← 1, no enclosing ← no servers,

state ← m state, queue ← m queue

Init
Δ
= client = [timer �→ [i ∈ 1 . . no clients �→ 0], initial �→ [i ∈ 1 . . no clients �→ 1]]

∧ server = [initial �→ [i ∈ 1 . . no servers �→ 1]] ∧ r !Init ∧ m ! Init

start client(p)
Δ
= client .initial [p] = 1 ∧ client ′ = [client except ! .initial [p] = 0]

∧ r !reqIn(p, 1) ∧ unchanged 〈server , m state, m queue〉
start server(p)

Δ
= server .initial [p] = 1 ∧ server ′ = [server except ! .initial [p] = 0]

∧ m !start(p, 1) ∧ unchanged 〈client , r req, r res〉
r reqOut m req(p, i)

Δ
= r !reqOut(p, i) ∧ m !req(p, 1) ∧ unchanged 〈client , server〉

m res r resIn(p, i)
Δ
= m !res(p, 1) ∧ r !resIn(p, i) ∧ unchanged 〈client , server〉

r resOut client timer(p)
Δ
= r !resOut(p, 1) ∧ client .timer [p] = 0

∧ client ′ = [client except ! .timer [p] = 1] ∧ unchanged 〈server , m state, m queue〉
client timer r reqIn(p)

Δ
= client .timer [p] = 1 ∧ client ′ = [client except ! .timer [p] = 0]

∧ r !reqIn(p, 1) ∧ unchanged 〈server , m state, m queue〉
Next

Δ
=

∨ ∃ p ∈ 1 . . no clients : start client(p)
∨ ∃ p ∈ 1 . . no servers : start server(p)
∨ ∃ p ∈ 1 . . no servers, i ∈ 1 . . no res : r reqOut m req(p, i)
∨ ∃ p ∈ 1 . . no servers, i ∈ 1 . . no res : m res r resIn(p, i)
∨ ∃ p ∈ 1 . . no clients : r resOut client timer(p)
∨ ∃ p ∈ 1 . . no clients : client timer r reqIn(p)

Spec
Δ
= Init ∧ �[Next ]〈r req, r res,m state,m queue, client, server〉

P1
Δ
= �(∀ p ∈ 1 . . no servers : m queue[p, 1] ≤ no res)

P2
Δ
= �(Sum(r res.reqOut , no servers, no res) ≤ Sum(r req.reqIn, no clients, 1))

P3
Δ
= �(∀ p ∈ 1 . . no servers, i ∈ 1 . . no res :

(server .initial [p] = 0 ∧ enabled r !reqOut(p, i)) ⇒ enabled m !req(p, 1))
P4

Δ
= �(∀ p ∈ 1 . . no servers : enabled m !res(p, 1) ⇒

∃ i ∈ 1 . . no res : enabled r !resIn(p, i))
P5

Δ
= �(∀ p ∈ 1 . . no clients : enabled r !resOut(p, 1) ⇒ client .timer [p] = 0)

Fig. 5. TLA+ module for the system activity

The whole system specification is written as a single formula Spec Δ= Init ∧
�[Next ]〈vars〉. This formula states that the transition system has initial states(s)
as specified by Init and that every change to the variables listed in vars is done
via one of the actions listed in the next-state relation, Next. The box-shaped
symbol (�) in front of [Next ] is the temporal logic operator always. It means
that what follows must be true for every reachable state of the system model.

The small example system of this paper is chosen to allow us to show the for-
mal semantics of the EESMs in TLA+ and clarify that they are unambiguous,
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yet expressive enough for our needs. Therefore, the properties that we can verify
for this system might seem rather trivial, but for more complex systems, vari-
ations of these properties may be very hard to verify without a formal model.
The properties we want to verify are written formally below the horizontal bar
in Fig. 5. All the properties can be verified by model checking. See Sect. 6 for
further discussion of the results.

P1. The number of requests queued in any Make Response block is at most
equal to the number of responders per server, i.e., the inner queue is finite.

P2. There are at most as many ongoing requests on the server side as there are
on the client side.

P3. Whenever a server is started and a responder instance of that server is
ready to emit a token through the reqOut pin, the Make Response instance
of that server is ready to accept a token through its req pin.

P4. Whenever a token can be emitted from the Make Response block of a server,
at least one of the responder instances on that server is able to accept it.

P5. Whenever a token can be emitted via the resOut pin of a requester instance,
the corresponding timer is empty, hence ready to receive a token.

5 Other Types of Multiplicity

Our formalism for expressing contracts of multi-instance activities also works for
one-to-one building blocks without any internal select statements, like Router
1-1 shown in Fig. 6(a). This is a special case, where each requester instance
is statically mapped to a responder instance and vice versa. As each binary
collaboration cannot have any constraints on its behaviour in terms of the state
of parallel instances, we can simplify the EESM as shown in Fig. 7 without loss of
information. This is, in fact, the same notation that we have been using already
for ESMs of activities with one instance of each type [14], only augmented with
an index i . The difference is that the formal semantics now supports multiple
instances globally, instead of requiring such a block to be used in a system with
only one instance of each enclosing partition as well.

Router 1-1
responder [1]requester [1]

reqIn

resOut

reqOut

resIn

(a) Router 1-1

Router 1-n

responder [n]requester [1]
reqIn

resOut

reqOut

resIn

select 
NEW responder

(b) Router 1-n

Fig. 6. The two other variants of the router activity, with respect to select statements
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«eesm» Router 1-1

requestingreqIn(i)/ /resOut(i)respondingmaking_response resIn(i)//reqOut(i)

Fig. 7. UML notation for the EESM of Router 1-1

Finally, we present a one-to-many variation of the router block, Router 1-
n, where a requester is statically mapped to a set of responders, as shown in
Fig. 6(b).4 This could be used in a setting where each server from Fig. 1(a)
has one responder instance per client, so that each client has a choice of any
server when issuing a request. When the response is to be routed back, the
corresponding requester is already given, due to the static mapping.

The EESM of Router 1-n is shown in Fig. 8. Due to the mapping between re-
quester and responder instances, the notation is a bit more complex than for the
other variants. For example, the /reqOut(i) transition states that a token may
only leave the reqOut pin through instance i if this has not happened already.
The rest of the guard constrains this further by stating that a token passing
can only occur if the corresponding requester instance has gotten more tokens
through its reqIn pin than the sum of tokens having already passed through
pin reqOut in all the responders mapping to that requester. The expression
reqIn[responder [i ]] means the value of the reqIn variable for the requester who
can be found by mapping responder [i ] to its corresponding requester. Hence,
Σ reqOut [requester [responder [i ]][k ]] means the sum of reqOut values for the k
different responders found by mapping responder[i] to its requester and then
mapping that requester to the set of corresponding responders.

Note that it is the EESM that holds the information on whether there is a
constrained static mapping or not. In contrast, the EESM of Router m-n, given
in Fig. 4, has no references to any particular parallel instance or set of instances,
only to the current instance and the keyword ALL.

active

/resOut(i)
reqIn[i] = 0
reqOut[k] = 0
resIn[k] = 0

∃ i: reqIn[i] > 0 ∧
∃ k ∈ responder[requester[i]]: resIn[k] > 0

«eesm»
Router 1-n

active

∀ i ∈ 1..|requester|: reqIn[i] = 0
∀ k ∈ 1..|responder|: reqOut[k] = 0 ∧ resIn[k] = 0

active

reqIn(i)/

reqIn[i] = 1

∃ i: reqIn[i] == 0

active

resIn(i)/

 resIn[i] = 1

∃ i: reqOut[i] > 0
∧ resIn[i] == 0

active

/reqOut(i)

reqOut[i] = 1

∃ i: reqOut[i] == 0
∧ reqIn[responder[i]] > 
∑reqOut[requester[responder[i]][k]]

Fig. 8. UML notation for the ESM of Router 1-n

4 In addition, there could naturally be a mirror version of the Router 1-n activity, a
Router n-1, but this is also a one-to-many activity.
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Table 1. Number of states found and time required to verify properties P1–P5

# of servers → 1 2 3
# of clients ↓

1 7 states, < 1 sec

2 37 states, 1 sec 70 states, 1 sec

3 241 states, 2 sec 707 states, 3 sec

4 1713 states, 4 sec 3410 states, 5 sec
5 12617 states, 9 sec

6 94513 states, 48 sec 188962 states, 99 sec 283411 states, 155 sec

7 715001 states, 651 sec

6 Concluding Remarks

All the properties from Fig. 5 have been verified by the TLC model checker [24],
for the parameter values shown in Table 1.5 Model checking only verifies prop-
erties for a model with some exact parameters. It does not say whether those
properties will still hold for different parameters. However, if the model changes
behaviour with respect to a property for some specific parameter values, it is
often when a parameter is changed from 1 to >1, or it is likely due to highly
intentional design decisions. Hence, the fundamental problem remains, but it is
not always that great in practice.

Given that model checking is automatic, one could say that time is not an
issue, as we can just leave a computer at it and check for up to, for example,
a thousand instances of each partition. However, as Table 1 shows, the time
needed grows exponentially as we increase the number of client instances. The
linear increase from server instances comes from the fact that more servers reduce
the number of responders per server.

There is a high level of parallelism in our system example. This is also the
case for other systems using EESMs that we have verified. Hence, we expect
partial order reduction [7] to alleviate the state-space blowup from increasing
the number of instances. We therefore plan to also formalize our semantics in
Promela, so we can use the Spin [8] model checker, which implements partial
order reduction. The formalisms are compatible, as there is already work for
transforming another TLA derivative, cTLA, into Promela automatically [20].
For relatively simple blocks, where the contract must be verified for any number
of instances, the TLA formalism allows for writing manual refinement proofs as
well [16].

We already have a tool for generating TLA+ from SPACE models [13]. This
tool greatly reduces the time required to specify systems, and it automati-
cally generates many types of general properties to ensure the well-formedness
5 We are aware that the TLA+ specification for the given example can be optimized by

only storing the aggregate number of tokens having passed through a pin on any of
the responders in a server. However, this optimization would not work if the EESM
required two tokens to pass pin reqOut before a token is allowed though pin resIn.
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of SPACE models. We will extend the tool to work with EESMs, outputting
Promela specifications as well. To hide the formalism when specifying application-
specific properties, there is work in progress to express them in UML.

To verify properties like “Every request is eventually responded to”, would
require adding data to identify each request and adding liveness constraints to
the model. Being based on TLA, the formalism can accommodate this quite
easily in the form of weak or strong fairness assumptions. The limiting factor is
still time needed for model checking.

Having formalized extended ESMs, we are eager to use them in the setting of
fault-tolerant systems, where multiple instances of the same type often collabo-
rate to mask failures, and conditions such as a majority of the instances being
reachable are often essential to precisely describe the behaviour of a block.

To conclude, contracts encapsulate software components and facilitate both
reuse and compositional verification. The SPACE method uses collaborations
detailed by UML activities as the unit of reuse. We introduce EESMs, which
allow to describe the global behaviour of multi-instance activities, abstracting
away internal state, while still having the expressive power to detail when an
external event can take place. An example from the load balancing Router m-n
block is that a request will only arrive at a server that has free capacity in the
form of free responder instances, and only if the number of requests received
from all clients is greater than the number of requests forwarded to any server.
While the EESMs have a formal semantics in TLA, we give graphical UML state
machines as specification tools, so that software engineers themselves need not
be experts in temporal logic.
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Abstract. With the years, program complexity has increased dramat-
ically: ensuring program correctness has become considerably more diffi-
cult with the advent of multithreading, security has grown more prominent
during the last decade, etc. As a result, static verification has become more
important than ever.

Automated verification tools exist, but they are only able to prove a
limited set of properties, such as memory safety. If we want to prove full
functional correctness of a program, other more powerful tools are avail-
able, but they generally require a lot more input from the programmer:
they often need the code to be verified to be heavily annotated.

In this paper, we attempt to combine the best of both worlds by
starting off with a manual verification tool based on separation logic for
which we develop techniques to automatically generate part of the re-
quired annotations. This approach provides more flexibility: for instance,
it makes it possible to automatically check as large a part of the program
as possible for memory errors and then manually add extra annotations
only to those parts of the code where automated tools failed and/or full
correctness is actually needed.

1 Introduction

During the last decade, program verification has made tremendous progress.
However, a key issue hindering the adoption of verification is that a large amount
of annotations is required for tools to be able to prove programs correct, in par-
ticular if correctness involves not just memory safety, but also program-specific
properties. In this paper, we propose three annotation inference and/or reduc-
tion techniques in the context of separation logic-based verifiers: (1) automatic
predicate folding and unfolding, (2) predicate information extraction lemmas
and (3) automatic lemma application via shape analysis. All aforementioned
contributions were developed in the context of the VeriFast program verifier in
order to reduce annotation overhead for practical examples.

VeriFast [17] is a verification tool being developed at the K.U. Leuven. It is
based on separation logic [21] and can currently be used to verify a multitude of
correctness-related properties of C and Java programs. Example usages are

� Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

R. Bruni and J. Dingel (Eds.): FMOODS/FORTE 2011, LNCS 6722, pp. 319–333, 2011.
c© IFIP International Federation for Information Processing 2011



320 F. Vogels et al.

– ensuring that C code does not contain any memory-related errors, such as
memory leaks and dereferencing dangling pointers;

– checking that functions or methods satisfy contracts describing their in-
tended semantics;

– preventing the occurrence of data races in multi-threaded code.

VeriFast heavily relies on programmer-provided annotations: this makes the tool
very efficient, but the need for annotations can make its use quite cumbersome.
To give the reader an idea of the quantity of annotations needed, we provide some
quick statistics in Figure 1: the first column contains a count of the number of
lines of actual C code. The second column expresses the number of annotations
in number of lines. The numbers between parentheses correspond to the number
of open and close statements, respectively, which will be further explained in
Section 3.1. The third column shows the amount of annotation overhead.

We have developed three different techniques to (partially) automate verifi-
cation by mechanizing the generation of (some of) the necessary annotations.
In this paper, we describe these three approaches in detail. We will make the
distinction between two layers:

– VeriFast’s core, which requires all annotations and performs the actual ver-
ification. This core must be as small and uncomplicated as possible, as the
verification’s soundness relies on it.

– The automation layer, which generates as large a portion of the necessary
annotations as possible, which will then in a second phase be fed to VeriFast’s
core for verification.

This approach maximizes robustness: we need only trust the core and can freely
experiment with different approaches to automation without having to worry
about introducing unsound elements, since the generated annotations will still
be fully verified by the core, thus catching any errors.

In order to be able to discuss and compare our three annotation generation
techniques, we need the reader to be familiar with VeriFast, therefore we included
a small tutorial (Section 2) which explains the basic concepts. Next, we explain
our different approaches to automation in Section 3. We then put them side by
side in Section 4 by comparing how many of the necessary annotations they are
able to generate.

LOC LOAnn LoAnn/LOC

stack (C) 88 198 (18/16) 2.3
sorted binary tree (C) 125 267 (16/23) 2.1
bank example program (C) 405 127 (10/22) 0.31
chat server (C) 130 114 (20/26) 0.88
chat server (Java) 138 144 (19/28) 1.0
game server (Java) 318 225 (47/63) 0.71

Fig. 1. Some line count statistics
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2 VeriFast: A Quick Tutorial

This section contains a quick introduction to VeriFast. It is not our intention
to teach the reader how to become proficient in using VeriFast, but rather to
provide a basic understanding of certain concepts on which VeriFast is built. A
full tutorial is available at [1].

2.1 A Singly Linked List

Figure 2 shows a struct-definition for a singly linked list node together with a
function new which creates and initializes such a node. In order to verify this
function in VeriFast, we need to provide a contract. The precondition, emp, indi-
cates that the function does not require anything to be able to perform its task.
The postcondition is a separating conjunction (&*&) of the “heap fragments”:

– malloc_block_list(result) means that the returned pointer will point to
a malloc’ed block of memory the size of a list. It is produced by a call
to malloc and it is meant to be eventually consumed by a matching free.
Failure to do so eventually leads to an unreachable malloc_block_list
which corresponds to a memory leak.

– result->next |-> n means two things: it grants the permission to read and
write to the node’s next field, and it tells us that the next field contains the
value of the argument n. Idem for result->value |-> v.

– result != 0 guarantees that the returned pointer is not null.

If this function verifies, it will mean that it is both memory safe and functionally
correct. We defer the explanation of the separating conjunction &*& until later.

VeriFast uses symbolic execution [7] to perform verification. The precondition
determines the initial symbolic state, which in our case is empty. VeriFast then
proceeds by symbolically executing the function body.

struct list { struct list* next; int value; };

struct list* new(struct list* n, int v)

//@ requires emp;

/*@ ensures malloc_block_list(result) &*& result->next |-> n &*&

result->value |-> v &*& result != 0 @*/

{

struct list* node = malloc( sizeof( struct list ) );

if ( node == 0 ) abort();

node->next = n; node->value = v;

return node;

}

Fig. 2. A singly linked list node in C
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1. malloc can either fail or succeed. In the case of list, its contract is
requires emp;
ensures result == 0 ? emp

: malloc_block_list(result) &*&
result->next |-> _ &*&
result->value |-> _;

Either it will return 0, which represents failure, and the heap is left un-
changed. Otherwise, it returns a non-null pointer to a block of memory the
size of a struct list, guaranteed by malloc_block_list(result). It also
provides access to both next and value fields of this newly created node,
but does not make any promises about their values.

2. The if statement will intercept execution paths where malloc has failed and
calls abort, causing VeriFast not to consider these paths any further.

3. Next, we assign n to the next field. This operation is only allowed if we
have access to this field, which we do since the previous if statement fil-
tered out any paths where allocation failed, and a successful malloc al-
ways provides the required access rights. This statement transforms the
result->next |-> _ heap fragment to result->next |-> n.

4. Assigning v to node->value works analogously.
5. Finally, we return the pointer to the node. At this point, VeriFast checks

that the current execution state matches the postcondition. This is the case,
which concludes the successful verification of new.

A full explanation of the separating conjunction &*& can be found in [21]. In
short, P &*& Q means that the heap consists of two disjoint subheaps where P and
Q hold, respectively. It is used to express that blocks of memory do not overlap,
and therefore changes to one object do not influence another. Separating con-
junction enables the frame rule, which allows us to reason “locally”. It expresses
the fact that if an operation behaves some way in a given heap ({P} op {Q}),
it will behave the same way in an extended heap ({P &*& R} op {Q &*& R}).
For example, if we were to call malloc twice in a row, how can we be sure that
it didn’t return the same block of memory twice? We know this since, thanks
to the frame rule, we get two malloc_block_list heap fragments joined by a
separating conjunction, guaranteeing us that we are dealing with two different
objects.

2.2 Predicates

As shown in the previous section, freely working with a single node requires
carrying around quite a bit of information. This can become tiresome, especially
if one considers larger structures with more fields whose types might be other
structures. For this reason, VeriFast provides the ability to perform abstractions
using predicates [20] which make it possible to “fold” (or close, in VeriFast
terminology) multiple heap fragments into one.

Figure 3 shows the definition for the Node predicate and an updated ver-
sion of the new function. The close statement removes three heap fragments
(malloc_block_list and the two field access permissions) and replaces them
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predicate Node(struct list* n, struct list* m, int v) =

malloc_block_list(n) &*& n->next |-> m &*& n->value |-> v &*& n != 0;

struct list* new(struct list* n, int v)

//@ requires emp;

//@ ensures Node(result, n, v);

{

struct list* node = malloc( sizeof( struct list ) );

if ( node == 0 ) abort();

node->next = n; node->value = v;

//@ close Node(node, n, v);

return node;

}

Fig. 3. Predicates

by a single Node fragment, on condition that it can ascertain that node is not 0
and the three fragments are present on the symbolic heap, otherwise verification
fails. This closing is necessary in order to have the final execution state match
the postcondition. Closing must happen last, for otherwise the field access per-
missions would be hidden when they are needed to initialize the node’s fields
(third line of the procedure body.) At a later time, whenever the need arises to
access one of a node’s fields, the Node fragment can be opened up (replacing
Node by the three separate heap fragments on the symbolic heap) so as to make
the field access permission available again.

2.3 Recursive Predicates

A linked list consists of a chain of nodes each pointing to the next. Currently,
we can only express linked lists of fixed maximum length:

p == 0 ? emp
: Node(p, q, v1) &*& (q == 0 ? emp

: Node(q, 0, v2)) // len 0-2

We can solve this problem using recursive predicates: we need to express that
a list is either empty or a node pointing to another list. Figure 4 shows the
definition for LSeg(p, q, xs), which stands for a cycleless singly linked list
segment where p points to the first node, q is the one-past-the-end node and xs
stands for the contents of this list segment.

Figure 4 also contains the definition for a prepend function. The contract
fully describes its behaviour, i.e. that a new element is added in front of the list,
and that the pointer passed as argument becomes invalid; instead the returned
pointer must be used.
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/*@ inductive List = Nil | Cons(int, List);

predicate LSeg(struct list* p, struct list* q, List Xs) =

p == q ? Xs == Nil

: Node(p,?t,?y) &*& LSeg(t,q,?Ys) &*& Xs == Cons(y,Ys); @*/

struct list* prepend(struct list* xs, int x)

//@ requires LSeg(xs, 0, ?Xs);

//@ ensures LSeg(result, 0, Cons(x, Xs));

{

struct list* n = new(xs, x);

//@ open Node(n, xs, x);

//@ close Node(n, xs, x);

//@ close LSeg(n, 0, Cons(x, Xs));

return n;

}

Fig. 4. Recursive predicates

2.4 Lemmas

The reader might wonder why a Node is consecutively opened and closed in Fig-
ure 4. Let us first examine what happens without it. When VeriFast reaches the
closing of the LSeg, execution forks due to the conditional in the LSeg predicate:

– n might be equal to 0, in which case xs must be Nil instead of Cons(x, Xs),
so that closing fails. This needs to be prevented.

– n could also be a non-null pointer: the Node and original LSeg get merged
into one larger LSeg, which is exactly what we want.

Therefore, we need to inform VeriFast of the fact that n cannot be equal to 0.
This fact is hidden within the Node predicate; opening it exposes it to VeriFast.
After this we can immediately close it again in order to be able to merge it with
the LSeg heap fragment.

The need to prove that a pointer is not null occurs often, and given the fact
that an open/close pair is not very informative, it may be advisable to make
use of a lemma, making our intentions clearer, as shown in Figure 5. In Section 3,
we will encounter situations where lemmas are indispensable if we are to work
with recursive data structures.

3 Automation Techniques

We have implemented three automation techniques which we discuss in the fol-
lowing sections. For this, we need a running example: Figure 7 contains a fully
annotated list-copying function, for which we will try to automatically infer as
many of the required annotations as possible.
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/*@ lemma void NotNull(struct list* p)

requires Node(p, ?pn, ?pv);

ensures Node(p, pn, pv) &*& p != 0;

{

open Node(p, pn, pv); close Node(p, pn, pv);

}

@*/

struct list* prepend(struct list* xs, int x)

//@ requires LSeg(xs, 0, ?Xs);

//@ ensures LSeg(result, 0, Cons(x, Xs));

{

struct list* n = new(xs, x);

//@ NotNull(n);

//@ close LSeg(n, 0, Cons(x, Xs));

return n;

}

Fig. 5. The NotNull lemma

In our work, we have focused on verifying memory safety; automation for
verifying functional properties is future work. Therefore, we simplify the Node
and LSeg predicates we defined earlier by having the predicates throw away the
data-related information, as shown in Figure 6.

predicate Node(struct list* P, struct list* Q) =

P != 0 &*& malloc_block_list(P) &*& P->next |-> Q &*& P->value |-> ?v;

predicate LSeg(struct list* P, struct list* Q) =

P == Q ? emp : Node(P, ?R) &*& LSeg(R, Q);

Fig. 6. Simplified Node and LSeg predicates

While it is not strictly necessary to understand the code in Figure 7, we choose
to clarify some key points:

– The new() function produces a new Node(result, 0) and always succeeds.
It is just another function defined in terms of malloc and aborts on alloca-
tion failure (comparable to Figure 3).

– NoCycle, Distinct, AppendLSeg and AppendNode are lemmas whose con-
tracts are shown in Figure 8.

The copy function comprises 12 statements containing actual C code, while
the annotations consist of 31 statements, not counting the lemmas since these
can be shared by multiple function definitions. We now proceed with a discussion
of how to generate some of these annotations automatically.
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3.1 Auto-Open and Auto-Close

As can be seen in the examples, a lot of annotations consist of opening and
closing predicates. This is generally true for any program: the values between
parentheses in Figure 1 indicate how many open and close statements respec-
tively were necessary for the verification of other larger programs.

These annotations seem to be ideal candidates for automation: whenever the
execution of a statement fails, the verifier could take a look at the current exe-
cution state and try opening or closing predicates to find out whether the right
heap fragments are produced.

For example, assume we are reading from the next field of a variable x, which
requires a heap fragment matching x->next |-> v. However, only Node(x, y)
is available. Without automation, verification would fail, but instead, the verifier
could try opening Node(x, y) and find out that this results in the required heap
fragment. Of course, this process could go on indefinitely given that predicates
can be recursively defined. Therefore, some sort of heuristic is needed to guide
the search.

We have added support for automatic opening and closing of predicates [20] to
VeriFast. Without delving too much into technical details, VeriFast keeps a di-
rected graph whose nodes are predicates and whose arcs indicate how predicates
are related to each other. For example, there exists an arc from LSeg to Node
meaning that opening an LSeg yields a Node. However, this depends on whether
or not the LSeg does represent the empty list. To express this dependency, we
label the arcs with the required conditions. These same conditions can be used
to encode the relationships between the arguments of both predicates. For the
predicate definitions from Figure 6, the graph would contain the following:

a �= b
a = p p = x

LSeg(a, b) −→ Node(p, q) −→ x→ next �→ y

When, during verification, some operation requires the presence of a Node(p, q)
heap fragment but which is missing, two possible solutions are considered: we can
either attempt to perform an auto-open on an LSeg(p, b) for which we know
that p != b, or try to close Node(p, q) if there happens to be a p->next |-> ?
on the current heap.

Using this technique yields a considerable decrease in the amount of necessary
annotations: each open or close indicated by // a is inferred automatically by
VeriFast. Out of the 31 annotation statements, 17 can be generated, which is
more than a 50% reduction.

3.2 Autolemmas

We now turn our attention to another part of the annotations, namely the lem-
mas. On the one hand, we have the lemma definitions. For the moment, we
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struct list* copy(struct list* xs)

//@ requires LSeg(xs, 0);

//@ ensures LSeg(xs, 0) &*& LSeg(result, 0);

{

if ( xs == 0 ) {

//@ close LSeg(0, 0); // a

return 0; }

else {

struct list* ys = new();

//@ open LSeg(xs, 0);

//@ open Node(xs, _); // a

//@ open Node(ys, 0); // a

ys->value = xs->value;

struct list *p = xs->next, *q = ys;

//@ close Node(ys, 0); // a

//@ close Node(xs, p); // a

//@ NoCycle(xs, p);

//@ close LSeg(p, p); // a

//@ close LSeg(xs, p); // a

//@ close LSeg(ys, q); // a

while ( p != 0 )

//@ invariant LSeg(xs,p) &*& LSeg(p,0) &*& LSeg(ys,q) &*& Node(q,0);

{

//@ struct list *oldp = p, *oldq = q;

struct list* next = new();

//@ Distinct(q, next);

//@ open Node(q, 0); // a

q->next = next; q = q->next;

//@ close Node(oldq, q); // a

//@ open LSeg(p, 0);

//@ assert Node(p, ?pn);

//@ NoCycle(p, pn);

//@ open Node(p, _); // a

//@ open Node(q, 0); // a

q->value = p->value; p = p->next;

//@ close Node(q, 0); // a

//@ close Node(oldp, p); // a

//@ AppendLSeg(xs, oldp); AppendNode(ys, oldq);

}

//@ open LSeg(p, 0); // a

//@ NotNull(q); // b

//@ close LSeg(0, 0); // a

//@ AppendLSeg(ys, q);

//@ open LSeg(0, 0); // a

return ys;

}

}

Fig. 7. Copying linked lists
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lemma void NoCycle(struct list* P, struct list* Q)

requires Node(P, Q) &*& LSeg(Q, 0);

ensures Node(P, Q) &*& LSeg(Q, 0) &*& P != Q;

lemma void Distinct(struct list* P, struct list* Q)

requires Node(P, ?PN) &*& Node(Q, ?QN);

ensures Node(P, PN) &*& Node(Q, QN) &*& P != Q;

lemma void AppendLSeg(struct list* P, struct list* Q)

requires LSeg(P, Q) &*& Node(Q, ?R) &*& Q != R &*& LSeg(R, 0);

ensures LSeg(P, R) &*& LSeg(R, 0);

lemma void AppendNode(struct list* P, struct list* Q)

requires LSeg(P, Q) &*& Node(Q, ?R) &*& Node(R, ?S);

ensures LSeg(P, R) &*& Node(R, S);

Fig. 8. Lemmas

have made no efforts to automate this aspect as lemmas need only be defined
once, meaning that automatic generation would only yield a limited reduction
in annotations.

On the other hand we have the lemma applications, which is where our fo-
cus lies. Currently, we have only implemented one very specific and admittedly
somewhat limited way to automate lemma application. While automatic open-
ing and closing of predicates is only done when the need arises, VeriFast will
try to apply all lemmas regarding a predicate P each time P is produced, in an
attempt to accumulate as much extra information as possible. This immediately
gives rise to some obvious limitations:

– It can become quite inefficient: there could be many lemmas to try out
and many matches are possible. For example, imagine a lemma operates on
a single Node, then it can be applied to every Node on the heap, so it is
linear with the number of Nodes on the heap. If however it operates on two
Nodes, matching becomes quadratic, etc. For this reason, two limitations
are imposed: lemmas need to be explicitly declared to qualify for automatic
application, and they may only depend on one heap fragment.

– Applying lemmas can modify the execution state so that it becomes unus-
able. For example, if the AppendLSeg lemma were applied indiscriminately,
Nodes would be absorbed by LSegs, effectively throwing away potentially cru-
cial information (in this case, we “forget” that the list segment has length 1.)
To prevent this, autolemmas are not allowed to modify the symbolic state,
but instead may only extend it with extra information.

Given these limitations, in the case of our example, only one lemma qualifies for
automation: NotNull. Thus, every time a Node(p, q) heap fragment is added to
the heap, be it by closing a Node or opening an LSeg or any other way, VeriFast
will immediately infer that p != 0. Since we only needed to apply this lemma
once, we decrease the number of annotations by just one line (Figure 7, indicated
by // b).
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3.3 Automatic Shape Analysis

Ideally, we would like to get rid of all annotations and have the verifier just do its
job without any kind of interaction from the programmer. However, as mentioned
before, the verifier cannot just guess what behaviour a piece of code is meant
to exhibit, so that it can only check for things which are program-independent
bugs, such as data races, dangling pointers, etc.

Our third approach for reducing annotations focuses solely on shape analysis
[13], i.e. it is limited to checking for memory leaks and invalid pointers deref-
erences. Fortunately, this limitation is counterbalanced by the fact that it is
potentially able to automatically generate all necessary annotations for certain
functions, i.e. the postcondition, loop invariants, etc.

In order to verify a function by applying shape analysis, we need to determine
the initial program state. The simplest way to achieve this is to require the pro-
grammer to make his intentions clear by providing preconditions. Even though
it appears to be a concession, it has its advantages. Consider the following: the
function length requires a list, but last requires a non-empty list. How does
the verifier make this distinction? If length contains a bug which makes it fail
to verify on empty lists, should the verifier just deduce it is not meant to work
on empty lists?

We could have the verifier assume that the buggy length function is in fact
correct but not supposed to work on empty lists. The verification is still sound:
no memory-related errors will occur. A downside to this approach is that the
length function will probably be used elsewhere in the program, and the unnec-
essary condition of non-emptiness will propagate. At some point, verification will
probably fail, but far from the actual location of the bug. Requiring contracts
thus puts barriers on how far a bug’s influence can reach.

One could make a similar case for the postconditions: shape analysis performs
symbolic execution and hence ends up with the final program state. If the pro-
grammer provides a postcondition, it can be matched against this final state.
This too will prevent a bug’s influence from spreading.

Our implementation of shape analysis is based on the approach proposed by
Distefano et al. [13]. The idea is simple and very similar to what has been ex-
plained earlier in Section 3.1: during the symbolic execution of a function, it will
open and close the predicates as necessary to satisfy the precondition of the op-
erations it encounters. However, the analysis has a more thorough understanding
of the lemmas: it will know in what circumstances they need to be applied. A
good example of this is the inference of the loop invariant where shape analysis
uses the lemmas to abstract the state, which is necessary to prevent the sym-
bolic heap from growing indefinitely while looking for a fixpoint. Consider the
following pseudocode:

p′ := p; while p �= 0 do p := p→next end

Initially, the symbolic heap contains LSeg(p, 0). To enter the loop, p needs to
be non-null, hence it is a non-empty list and can be opened up to Node(p’, p1)
&*& LSeg(p1, 0). During the next iteration, p1 can be null (the loop ends) or
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without abstraction with abstraction

Node(p’, p) &*& LSeg(p, 0) LSeg(p’, p) &*& LSeg(p, 0)

Node(p’, p1) &*& Node(p1, p) &*& LSeg(p, 0) LSeg(p’, p) &*& LSeg(p, 0)

Fig. 9. Finding a fixed point

non-null (a second node). Thus, every iteration adds the possibility of an extra
node. This way, we’ll never find a fixed point. Performing abstraction will fold
nodes back into LSegs. The difference is shown in Figure 9. One might wonder
why the abstraction doesn’t also merge both LSegs into a single LSeg. The reason
for this is that the local variable p points to the start of the second LSeg: folding
would throw away information deemed important.

For our purposes, the algorithms defined in [13] need to be extended so that
apart from the verification results of a piece of code and final program states
which determine the postcondition, they also generate the necessary annotations
to be added to the verified code. This way, the results can be checked by VeriFast,
keeping our trusted core to a minimum size (i.e. we do not need to trust the
implementation of the shape analysis tool), and extra annotations can be added
later on if we wish to prove properties other than memory safety.

For our example, shape analysis is able to deduce all open and close anno-
tations, the lemma applications, the loop invariant and the postcondition (in
our implementation, we chose to require only the precondition and we manually
check that the generated postcondition is as intended). Hence, the number of
necessary annotations for Figure 7 is reduced to 1, namely the precondition.

4 Comparison

In order to get a better idea of by how much we managed to decrease the number
of annotations, we wrote a number of list manipulation functions. There are four
versions of the code:

C-code #code A B C D lemma A B C

length 10 12 9 9 1 Distinct 9 7 7
sum 11 11 7 7 1 NotNull 7 6 6
destroy 9 6 4 4 1 AppendNode 19 16 16
copy 23 32 15 14 1 AppendLSeg 27 19 18
reverse 12 9 5 5 1 AppendNil 9 7 6
drop_last 28 28 13 13 1 NoCycle 11 10 9
prepend 7 5 3 3 1
append 13 20 11 11 1

#code A B C D

total 113 205 132 128 8

Fig. 10. Annotation line count comparison
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(A) A version with all annotations present.
(B) An adaptation of (A) where we enabled auto-open and auto-close.
(C) A version where we take (B) and make NotNull an autolemma (Section 3.2).
(D) Finally, a minimal version with only the required annotations to make our

shape analysis implementation (Section 3.3) able to verify the code.

Figure 10 shows how the annotation line counts relate to each other.

5 Related Work

Smallfoot [6] is a verification tool based on separation logic which given pre-
and post-conditions and loop invariants can fully automatically perform shape
analysis. It has been extended for greater automation [24], for termination proofs
[8,12], fine-grained concurrency [10] and lock-based concurrency [15].

jStar [14] is an another automatic separation logic based verification tool
which targets Java. One only needs to provide the pre- and post-conditions for
each method, after which it attempts to verify it without extra help. It is able to
infer loop invariants, for which it uses a more generalized version of the approach
described by Distefano et al. [13]. This is achieved by allowing the definition of
user-defined rules (comparable to our lemmas) which are then used by the tool
to perform abstraction on the heap state during the fixed point computation.

A third verification tool based on separation logic is SpaceInvader [13,24],
which performs shape analysis on C programs. Abductor, an extension of this
tool, uses a generalized form of abduction [9], which gives it the ability not only
to infer loop invariants and postconditions, but also preconditions.

Other tools which don’t rely on separation logic are for example KeY [3]
(dynamic logic [16]), Spec� [5], Chalice [19], Dafny [2], and VCC [11], the latter
three being based on Boogie2 (verification condition generation [4,18]). Still other
alternatives to separation logic are implicit dynamic frames [23] and matching
logic [22], the latter being an approach where specifications are expressed using
patterns which are matched against program configurations.

6 Conclusion

We can divide verifiers in two categories.

– Fully automatic verifiers which are able to determine whether code satisfies
certain conditions without any help of the programmer. Unfortunately, this
ease of use comes with a downside: these tools can only check certain prop-
erties for certain patterns of code. More ambitious verifications such as en-
suring full functional correctness remains out of the scope of these automatic
verifiers, since correctness only makes sense with respect to a specification,
which needs to be provided by the programmer.

– Non-automatic tools are able to perform more thorough verifications (such
as full functional correctness), but these require help from the programmer.
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In practice, given a large body of code, it is often sufficient to check only automat-
ically provable properties except for a small section of critical code, where a proof
of full functional correctness is necessary. Neither of the above two options is then
ideal. Our proposed solution is to combine the best of both worlds by using the
following verification framework: at the base lies the non-automatic “core” verifier
(in our case VeriFast), which will be responsible for performing the actual verifi-
cation. To achieve this, it requires code to be fully annotated, but in return, it has
the potential of checking for a wide variety of properties. On this base we build
an automation layer, consisting of specialized tools able to automatically verify
code for specific properties. Instead of just trusting the results of these tools, we
require them to produce annotations understood by the core verifier.

A first advantage is that only the core verifier needs to be trusted. Indeed, in
the end, all automatically produced annotations are fed back to the core verifier,
so that unsoundnesses introduced by buggy automation tools will be caught.

A second advantage is that it allows us to choose which properties are checked
for which parts of the code. For example, in order to verify a given program,
we would start with unannotated code, on which we would apply an automatic
verification tool, such as the shape analysis tool discussed in Section 3.3. This
produces a number of annotations, which are fed to the core verifier. If verifica-
tion succeeds, we know the application contains no memory-related errors.

Now consider the case where a certain function foo appears to be troublesome
and shape analysis fails to verify it, which could mean that all other parts of the
code which call this function also remain unverified. In order to deal with this
problem the programmer can manually add the necessary annotations for foo,
let the core verifier check them, and then re-apply the shape analysis tool, so
that it can proceed with the rest of the code.

After the whole program has been proved memory-safe, one can proceed with
the critical parts of the code where a proof of full functional correct is required.
Thus, it makes an iterative incremental approach to verification possible where
manually added annotations aid the automatic tools at performing their task.

In this paper, we presented preliminary experience gained in our work in
progress towards this goal. Future work includes gaining additional experience
with larger programs, gaining experience with the usability of an iterative infer-
annotate process, and improving the power of the inference algorithm.
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Abstract. Analyzing Border Gateway Protocol (BGP) instances is a crucial step
in the design and implementation of safe BGP systems. Today, the analysis is a
manual and tedious process. Researchers study the instances by manually con-
structing execution sequences, hoping to either identify an oscillation or show
that the instance is safe by exhaustively examining all possible sequences. We
propose to automate the analysis by using Maude, a tool based on rewriting logic.
We have developed a library specifying a generalized path vector protocol, and
methods to instantiate the library with customized routing policies. Protocols can
be analyzed automatically by Maude, once users provide specifications of the
network topology and routing policies. Using our Maude library, protocols or
policies can be easily specified and checked for problems. To validate our ap-
proach, we performed safety analysis of well-known BGP instances and actual
routing configurations.

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP in short. BGP enables Internet-service providers (ISP) world-wide to ex-
change reachability information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export routing
policies on route advertisements exchanged among neighboring ISPs.

Over the past few years, there has been a growing consensus on the complexity and
fragility of BGP routing. Even when the basic routing protocol converges, conflicting
policy decisions among different ISPs have led to route oscillation and slow conver-
gence. Several empirical studies [11] have shown that there are prolonged periods in
which the Internet cannot reliably route data packets to specific destinations due to
routing errors induced by BGP. In response, the networking community has proposed
several alternative Internet architectures [18] and policy constraints (or “safety guide-
lines”) that guarantee protocol convergence if universally adopted [8,6,16].

One of the key requirements for designing new routing architectures and policy
guidelines is the ability to study BGP network instances. These instances can come
in the form of small topology configurations (called “gadgets”), which serve as exam-
ples of safe systems, or counterexamples showing the lack of convergence. They can
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c© IFIP International Federation for Information Processing 2011



Analyzing BGP Instances in Maude 335

also come from actual internal router (iBGP) and border gateway (eBGP) router config-
urations. Today, researchers and network operators analyze these instances by manually
examining execution sequences. This process is tedious and error-prone.

The main contribution of this paper is that we present an automated tool for analyzing
BGP instances, and thus relieve researchers and network operators of manual analysis.
Our tool uses Maude [4], a language and tool based on rewriting logic. We encode in
Maude the BGP protocol as a transition system driven by rewriting rules. Consequently,
we can use the high-performance rewriting engine provided by Maude to analyze BGP
instances automatically. Our tool can simulate execution runs, as well as exhaustively
explore all execution runs for possible divergence.

More specifically, we developed a set of Maude libraries specifying a generalized
path vector protocol that is common to all BGP instances. The generalized path vector
protocol utilizes a set of unspecified routing policy functions. These unspecified func-
tions serve as the interface for specific routing policies which are formalized as Stable
Path Problems (SPP) [10]. To use our library, users only need to input the network
topology and customize routing policies functions in the form of SPP. We illustrate the
use of our tool by analyzing various BGP instances.

2 Background

2.1 BGP

BGP assumes a network model in which routers are grouped into various Autonomous
Systems (AS) administrated by Internet Server Provider (ISP). An individual AS ex-
changes route advertisements with neighboring ASes using the path-vector protocol.
Upon receiving a route advertisement, a BGP node may choose to accept or ignore the
advertisement based on its import policy. If the route is accepted, the node stores the
route as a possible candidate. Each node selects among all candidate routes the best
route to each destination based on its local route rankings. Once a best route is selected,
the node advertises it to its neighbors. A BGP node may choose to export only selected
routes to its neighboring ASes based on its export policy.

BGP systems come in two flavors: external BGP (eBGP), which establishes routes
between ASes; and internal BGP (iBGP), which distributes routes within an AS. At
the AS-level, a BGP system can be viewed as a network of AS nodes running eBGP.
Each AS is represented by one single router node in the network (its internal structure
ignored), and its network state includes its neighbors (ASes), selected best path and a
routing table. Route advertisements constitute the routing messages exchanged among
them. Within an AS, a BGP system can be viewed as a network of two kinds of net-
work nodes running iBGP: gateway routers and internal routers whose network states
are similar to eBGP routers. iBGP allows internal routers to learn external routes (to
destinations outside the AS) from gateway routers.

We model both eBGP and iBGP systems as network systems with two components:
routing dynamics and routing policies. Routing dynamics specify how routers exchange
routing messages, and how they update their network states accordingly. Routing poli-
cies are part of the static configuration of each router, by which the ISP operator ex-
presses his local traffic interests and influences route decisions.
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In our library, we adopt the use of Stable Paths Problems (SPP) [10] as the formal
model of routing policies. An instance of the SPP S is a tuple (G, o, P, Λ), where G
is a graph, o is a specific destination node 1, P is the set of permitted (usable) paths
available for each node to reach o, and Λ is the ranking functions for each node. For
each node v, λv is its ranking function, mapping its routes to natural numbers (ranks),
and P v are its permitted paths, the set of available paths to reach o. A path assignment
is a function π that maps each network node v ∈ V to a path π(v) ∈ P v . A path
assignment is stable if each node u selects a path π(u) which is (1) the highest ranked
path among its permitted paths, and (2) is consistent with the path chosen by the next-
hop node. Consistency requires if π(u) = (uv)P then for the next-hop node v, we must
have π(v) = P . A solution to the SPP is a stable path assignment.

In this paper, we are interested in analyzing BGP convergence (safety) property in
the SPP formalism. A BGP system converges and is said to be safe, if it produces
stable routing tables, given any sequence of routing message exchanges. We can study
BGP convergence by analyzing its SPP representation: SPP instance for a safe BGP
system converges to a solution in all BGP executions. Note that, the existence of an
SPP solution does not guarantee convergence.

For example, Figure 1 presents an SPP in-

n0

n1 n2 [n2 n1 n0]
[n2 n0]

[n1 n2 n0]
[n1 n0]

Fig. 1. Disagree Gadget

stance called the Disagree “gadget”. The per-
node ranking functions are λ1([n1 n2 n0]) =
1, λ1([n1 n0]) = 2, λ2([n2 n1 n0]) = 1, and
λ2([n2 n0]) = 2. The permitted paths for each
node are listed besides the corresponding node.
The order in which the paths are listed is based
on the ranking function: Nodes prefer higher
ranked routes, e.g. node n1 prefers route [n1 n2 n0] over [n1 n0]. Disagree has two sta-
ble path assignment solutions: ([n1 n2 n0], [n2 n0]) and ([n2 n1 n0], [n1 n0]). How-
ever, Disagree is not guaranteed to convergebecause there exists an execution trace
where route assignments keep oscillating. Consider the execution where node n1 and
n2 update and exchange routing messages in a synchronized manner, and their network
states oscillate between two unstable path assignments ([n1 n0]) ([n2 n0]) and ([n1 n2

n0] [n2 n1 n0]) forever.

2.2 Rewriting Logic and Maude

Rewriting logic [13] is a logical formalism that is based on two simple ideas: states of
a system can be represented as elements of an algebraic data type, and the behavior of
a system can be given by transitions between states described by rewrite rules. By al-
gebraic data type, we mean a set whose elements are constructed from atomic elements
by application of constructors. Functions on data types are defined by equations that
allow one to compute the result of applying the function. A rewrite rule has the form
t ⇒ t′ if c where t and t′ are patterns (terms possibly containing variables) and c is a
condition (a boolean term). Such a rule applies to a system state s if t can be matched

1 Assuming the Internet is symmetric, we can study its routing behavior by studying routing to
a single destination.
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to a part of s by supplying the right values for the variables, and if the condition c holds
when supplied with those values. In this case the rule can be applied by replacing the
part of s matching t by t′ using the matching values for variables in t′.

Maude [4] is a language and tool based on rewriting logic [12]. Maude provides
a high performance rewriting engine featuring matching modulo associativity, com-
mutativity, and identity axioms; and search and model-checking capabilities. Given a
specification S of a concurrent system, Maude can execute this specification and allows
one to observe possible behaviors of the system. One can also use the search function-
ality of Maude to check if a state meeting a given condition can be reached during
the system’s execution. Furthermore, one can model-check S to check if a temporal
property is satisfied, and if not, Maude will produce a counter example. Maude also
supports object-oriented specifications that enable the modeling of distributed systems
as a multiset of objects that are loosely coupled by message passing. As a result, Maude
is particularly amenable to the specification and analysis of network routing protocols.

3 A Maude Library for Encoding BGP Protocols

This section presents our Maude library for analyzing BGP instances. This library pro-
vides specification of the protocol dynamics that are common to BGP instances, and
defines a routing policy template in terms of the Stable Path Problem (SPP) so that net-
work designers can customize it to analyze a specific instance. Our library also provides
support for detecting route oscillation.

Table 1. Overview and Interpretation of Maude Library

BGP system Maude interpretation

Network nodes (Router) objects
Routing messages Terms of type Msg

Global Network Multiset of router objects and terms representing messages

Protocol dynamics Local rewriting rules
Global network behaviors Concurrent rewrites using local rules

Route oscillation support A Logger object recording the histories of route assignments
and rewriting rules updating the Logger object

Our library is organized into a hierarchy of Maude modules. Table 1 presents the
correspondence between concepts in BGP protocols and the Maude code. We first show
how our library represents a single network state of BGP system (Section 3.1). Then we
explain how to capture the dynamic behavior of a local BGP router using rewrite rules.
In doing so, the global network behaviors can be viewed as concurrent applications of
the local rewriting rules (Section 3.2). Finally, we discuss the component in the library
that detects route oscillation (Section 3.3).
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3.1 Network State

A network state is represented by a multiset of network nodes (routers) and routing
messages used by routers to exchange routing information. Each network node is rep-
resented by a Maude object, whose attributes consist of its routing table, best path and
neighboring table. We omit the detailed Maude sort definitions, but provide an example
encoding of the network node n1 in Disagree gadget show in Figure 1 as follows.

[n1 : router |
routingTable: (source: n1,dest: n0,pv:(n1 n0),metric: 2),
bestPath: (source: n1,dest: n0,pv:(n1 n0),metric: 2),
nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

The constructor for a node is [ : | , , ]. The first two elements (n1:router) specify the
node’s id n1, and its object class router. The next three elements are the attributes. At
a given state, the routing table attribute constructed from routingTable: contains n1’s
current available routes. Each routing table entry stores the routing information for one
particular next-hop. Here, the routing table attribute only contains one entry (source:

n1, dest: n0, pv:(n1 n0), metric: 2). This route is specified by its source (source: n1),
destination (dest: n0), the path vector that contains the list of nodes along the path (pv:
(n1 n0)), and the cost of the route (metric: 2). This route is also used for the best path
attribute, constructed from bestPath: , which contains n1’s current best path. The last
attribute is the neighbor table, constructed from nb: . To extract a node’s local neighbor
table from the network topology, we further introduce an operator mkNeigh. The first
argument of mkNeigh is the identifier of the neighboring node, and the second argument
the metric associated with the link to that node. Node n1 has two neighbors, node n0, the
cost to which is 2 (mkNeigh(n0,2)); and node n2, the cost to which is 1 (mkNeigh(n2,1)).

Besides router objects, the second part of a network state is routing messages in the
network. Typically, network nodes exchange routing information by sending each other
routing messages carrying newly-learned routes. In our library, a routing message is
constructed from sendPacket( , , , , ). For example, in the Disagree gadget, the initial
routing message sent by node n1 to its neighbor n2 is represented by message term:
sendPacket(n1,n2,n0,2,n1 n0). This message carries n1’s routes to destination n0 with
path vector n1 n0 at cost 2. In general, the first two arguments of sendPacket( , , , , ) de-
note the sender’s identifier (node n1), and the receiver’s identifier (node n2) respectively.
The rest of the arguments specify the identifier of the destination (node n0), the metric
representing the cost of the route (2), and the path vector of the routing path (n1 n0).

3.2 Protocol Dynamics

We now show how to specify network system dynamics in Maude. By modeling a BGP
system as a concurrent system consisting of router objects (and the routing messages),
to specify the global BGP evolution, we only need to specify the local rewrite rules
governing the state transition of each BGP router.

A BGP node’s dynamics can be captured by various equivalent state transitions. To
reduce search space in analysis, we adopt a one-state transition: for each BGP node N,
when it receives routing messages from a neighbor S, N computes the new path from the
received message, updates N’s routing table and re-selects best path accordingly, and
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finally sends out routing messages carrying its new best path information if a different
best path is selected. This state transition is encoded as a single rewrite rule of the
following form:

rl [route-update] :
sendPacket(S, N, D, C, PV)
[ N : router | routingTable: RT, bestPath: Pb, nb: NB ]

=>
if (case 1) then best path re-selects (promotion)
else (if (case 2) then best path remains same

else (if (case 3) then best path re-selection (withdraw)
else error processing
fi) fi) fi.

Here, r1 is the identifier of this rule, and route-update is the name of this rule. Rule r1 is
fired when the left-hand side is matched; that is, when a node N consists of routingTable
RT, bestPath Pb, and neighboring table NB receives a route advertisement message from
neighbor S. The result of applying the rule is shown on the right-hand side: the routing
message is consumed, and attributes of router N are updated. Based on the result of the
re-selected bestPath attribute, there are three different cases for N to update its state as
specified in the three branches. Next, we explain these three cases.

Best path promotion. In any case, node N needs to first compute the new path based on
its neighbor S’s message asserting that S can reach D via a path PV. We define a function
newPath that takes a routing message and the neighbor table as arguments, and returns the
new path by first prepending N to the path announced by S, setting the new path attribute
according to the local ranking function lookUpRank, and then imposing the import policy
by modifying the path metric according to BGP routing policy configuration (import
function). Here import and lookUpRank are unspecified routing policy functions. Together
with export that we will introduce shortly, they constitute our library’s specification
interface for defining BGP routing policy. To specify a particular BGP instance’s routing
policy, the user only needs to specify import, lookUpRank and export accordingly.

The first branch (case 1) is specified below. The newly computed path is compared
with the current bestPath Pb, if the new one is preferred over the old value Pb, the
bestPath attribute will be updated to this new path. Furthermore, if the export policy
allows, the new best path value will be re-advertised to all of N’s neighbors by sending
them routing messages.

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and
prefer?(newPath(sendPacket(S,N,D,C,PV),NB),Pb)==true

then
([ N : router |

routingTable: updatedRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),
bestPath: newPath(sendPacket(S,N,D,C,PV),NB),
nb: NB ]

multiCast(NB, export(newPath(sendPacket(S,N,D,C,PV),NB))))

Here the new state of N is obtained by updating the old routingTable attribute RT

(updateRT function), and updating the bestPath attribute by setting it to the new value of
bestPath. The updateRT function recursively checks the routing table, and for each next-
hop entry, it either inserts the new path (newPath(...)) if no available route is presented;
or replaces the old value with the new path. To complete the state transition, for all N’s
neighbors, routing messages carrying the new path are generated by multiCast function.
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To impose the export routing policy, before sending the new best path, export is applied
to the new path to filter out the routes which are intended to be hidden from neighbors.
Similar to import, export is to be instantiated by the user when analyzing a particular
BGP instance. If the export routing policy prohibits the new path to be announced,
export will transform it to emptyPath, which multiCast will not generate any message.

Best path remains the same. In the second branch (case 2), a new path newPath(...)

is computed from the received message as before. However, the new path is no better
than the current bestPath Pb. But the next-hop node of the new path and Pb are differ-
ent, implying that the new path is just an alternative path 2 for N to reach the destina-
tion. As a result, the current bestPath value Pb is unchanged, and only the routingTable

will be updated with this alternative path (newPath(...)). No routing messages will be
generated:

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and
getNext(newPath(sendPacket(S,N,D,C,PV),NB))=/=getNext(Pb) and
prefer?(Pb,newPath(sendPacket(S,N,D,C,PV),NB))==true

then
[ N : router |

routingTable: updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),
bestPath: Pb,
nb: NB ]

Best path withdraw. The same as in the second branch, in case 3, the newly computed
path newPath(...) is worse than the current bestPath Pb, but it is now routed through the
same next-hop S as current bestPath Pb. The fact that S now sends a less preferred path
indicates that the previous learned route Pb is no longer available at S. Therefore, we
need to withdraw Pb by dropping Pb from routing table, shown as follows:

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and
getNext(newPath(sendPacket(S,N,D,C,PV),NB))==getNext(Pb) and
prefer?(Pb, newPath(sendPacket(S,N,D,C,PV),NB))==true

then
([ N : router |

routingTable: updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),
newBest(newPath(sendPacket(S,N,D,C,PV),NB),

updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT)),
nb: NB ]

multiCast(NB,export(newBest(newPath(sendPacket(S,N,D,C,PV),NB),
updateRT(newPath(sendPacket(S,N,D,C,PV),NB),

RT))))

Here, updateRT replaces (therefore removes) the outdated Pb with the new path
(newPath(...)), and newBest function re-computes the best path from newPath(...) and
the remaining paths in routing table. As in case 1, to complete the state transition, the
newly selected best path is sent to its neighbors by multiCast(...).

3.3 Route Oscillation Detection Support

Our library also provides extra definitions to help detect route oscillation. Our method
is based on the observation that if route oscillation occurs during network system evolu-
tion, there is at least one path assignment (at a given state for a BGP system, we define

2 Different next-hop implies the route is learned from a different neighbor.
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the path assignment to be the collection of best paths currently selected by all network
nodes) that is visited twice. Therefore, we use the following simple heuristic: we main-
tain a record of all path assignments for all visited states in BGP execution, and check
for recurring path assignment. Note that a path assignment (best path attribute of router
object) only constitutes a sub-set of the entire system state (the router objects attributes
and routing messages), consequently our heuristic based on this partial system state can
have false positives: our analysis may report a false route oscillation when two states are
identical only in path assignments, but not the entire system states. Nevertheless, our
heuristic is sound and is still helpful in detecting all potential route oscillation: when
route oscillation occurs, a recurring path assignment state must occur.

More concretely, in our Maude library, we create a global logger object to keep track
of the history of path assignments. For each snapshot of the network state, i.e. whenever
a network node makes a local state transition and updates its best path attribute, the
logger object is synchronized to create a new path assignment entry that corresponds to
the updated best path. We then provide a function that checks for recurring entries in
the list of visited path assignments, which can be used directly in Maude’s exhaustive
search to detect route oscillation.

Logger object. The global logger is represented by an object pa of Logger class which
has one attribute history. At a given state, this attribute contains a list (history) of path
assignments, each entry of which contains the snapshot of the network’s collection of
best paths in a visited state.An example logger object for the disagree gadget is the
following:

{pa : Logger | history: ({[n1 n2 n0] [n2 n0]}
{[n1 n2 n0] [n2 n1 n0]}
{[n1 n2 n0] [n2 n0]}
{[n1 n0] [n2 n0]})}

The above logger records four snapshots of the Disagree’s best paths. For example, the
first path assignment {[n1 n2 n0] [n2 n0]} denotes the network latest state where node
1’s best path to 0 is [n1 n2 n0] and node 2’s best path is [n2 n0]. And line 4 {[n2 n0] [n2

n0]} records Disagree’s path assignment at its initial (oldest) state. Note that, this object
content actually exhibits route oscillation (line 1 and line 3) described in Section 3.2.

Synchronized logging. To log all path assignment changes, we only need to slightly
modify the single rewrite rule for route update, such that whenever the rule is fired to
apply local state transition for some node, the global object pa is synchronized and its
path assignment is updated to reflect changes in the local node’s best path attribute,
shown as follows:

rl [route-update-logging] :
sendPacket(S, N, D, C, PV)
[ N : router | routingTable: RT, bestPath: Pb, nb: NB ]
{ pa : Logger | history: HIS }

=>
*** first branch: bestPath re-selects (promotion)
if ... then ...
{ pa : Logger | history:
historyAppend(updateAt(index(N),

[getPV(newPath(sendPacket(S,N,D,C,PV),NB))],
head(HIS)),HIS)})

else ... fi .
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On the left-hand side, two objects: a router N and the global logger pa are matched to
trigger the transition. As described in 3.2, in the first branch of route update where the
node’s best path attribute is set to newPath(...), the logger pa updates its path assignment
attribute as follows: First, it creates a new path assignment entry to record newPath(...)

by function updateAt(...). Then, the new entry updateAt(...) is inserted into the list of
previous path assignments HIS by function historyAppend. Here, the new path assignment
entry updateAt(...) is computed by updating the latest path assignment entry head(HIS)

with newPath(...). The rest of branches 2 and 3 are modified similarly.

Route oscillation detection. A network state is now a multiset of router objects, routing
messages, and one global logger object. The function detectCycle detects re-curring
path assignments, as follows:

eq detectCycle([ N : router | routingTable: RT,
bestPath: Pb,nb: NB] cf)

= detectCycle (cf) .
eq detectCycle(message cf) = detectCycle (cf) .
eq detectCycle({ pa : Logger | history: HIS } cf)

= containCycle? (HIS) .

The first two equations ignore router objects and routing messages in the network
state, and the last equation examines logger pa by function containCycle? to check for
recurring path assignment entries in HIS. We will revisit the use of detectCycle to search
for route oscillation in Section 5.

4 Specifying BGP Instance

Given a BGP instance with its network topology and routing policies, we show how to
specify the instance as a SPP in our library. We discuss examples for both eBGP and
iBGP.

4.1 eBGP Instance

An eBGP instance can be directly modeled by an SPP instance S = (G, o, P, Λ): G, o
specifies the instance’s network topology, and P, Λ specifies the resulting per-node route
ranking function after applying the eBGP instance’s routing policies. Our library pro-
vides Maude definitions for each SPP element.

Network topology. An eBGP instance’s initial network state is generated from its
network topology, which is represented by a list of network nodes and links. Our library
declares two constants top-Nodes and top-BGP to represent network nodes and links. For
example, to specify the topology of the Disagree gadget, the user defines top-Nodes,

top-BGP as follows:
eq top-Nodes = n1 n2 .
eq top-BGP = (n1,n0 : 2) (n1,n2 : 1) (n2,n1 : 1) (n2,n0 : 2) .

Here, n0 is the identifier of the destination node (o). Each link is associated with its
cost. Based on the value of top-Nodes and top-BGP that are input by the user, our library
automatically generates Disagree’s initial state by init-config function:
eq gadget = init-config (top-Nodes, top-BGP) .



Analyzing BGP Instances in Maude 343

The resulting gadget is a network state which consists of the two network router
objects n1,n2, the four initial routing messages, and the initial logger pa, as shown in
Section 5.1. In this initial state, the three attributes of each network node – the routing
table and best-path and neighbor tables are computed as follows: init-config parses the
BGP links in network topology (top-BGP), for each link (ni,nj : M), a new routing table
entry for nj with cost M is created, and if nj == n0, then set ni’s best path to the one-hop
direct path ni n0, and its routing tables containing this one-hop direct route; otherwise if
there is no direct link from ni to n0, set ni’s best path and the routing table to emptyPath.
Initial routing messages and logger pa are computed in a similar manner.

Routing policy. The route ranking function Λ and permitted paths P are the result
of applying three BGP policies functions: import, export and lookUpRank. As we have
discussed in Section 3, import,export,lookUpRank are three user-defined functions that
serve as the specification interface for routing policies.

Functions import and lookUpRank are used to compute new routing paths from a neigh-
bor’s routing message: import filters out un-wanted paths, and lookUpRank assigns a rank
to the remaining permitted paths. Note that the metric value lookUpRank (N PV) assigned
by lookUpRank also determines the route’s preference in route selection. export is used
to filter out routes the router would like to hide.

As an example, the policy functions for Disagree are defined as follows.

eq export (P) = P . eq import (P) = P .
eq lookUpRank (n1 n2 n0) = 1 . eq lookUpRank (n1 n0) = 2 .
eq lookUpRank (n2 n1 n0) = 1 . eq lookUpRank (n2 n0) = 2 .

The first line says Disagree does not employ additional import/export policies.
Whereas the second and third line asserts that Disagree’s two nodes prefers routes
through each other: For example the second line encodes node n1’s ranking policy that
it prefers path (n1 n2 n0) (with higher rank 1) through n2 over the direct path (n1 n0)

(rank 2).

4.2 iBGP Instance

Our technical report [19] shows our SPP encoding of iBGP instances. The main dif-
ferences between an iBGP and eBGP instances are: (1) iBGP network topology distin-
guishes between internal routers and gateway routers. Gateway routers runs eBGP to
exchange routing information with (gateway routers of) other ISPs, while simultane-
ously running iBGP to exchange the external routing information with internal routers
in the AS. (2) iBGP routing policy utilizes a separate IGP protocol to select best route.
Internal to an AS, the ISP uses its own IGP protocol to compute shortest paths among
all routers. The shortest path distance between internal routers and gateway routers are
used in iBGP route selection: iBGP policy requires the internal routers to pick routes
with shortest distance to its gateway router.

As a result, iBGP requires encoding two types of topologies: a signaling topology
for gateway routers and internal routers to exchange routes within the AS, and a physical
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topology on which the IGP protocol is running. Further, an additional destination router
denoting the special SPP destination o is added as an external router which is connected
with all gateway routers. In our library, we implement and run separately in Maude an
IGP protocol (for computing all-pairs shortest paths) and pass the resulting shortest path
distances to iBGP protocol.

5 Analysis

To analyze BGP instances, our library allows us to (1) execute the Maude specification
to simulate possible execution runs; and (2) exhaustively search all execution runs to
detect route oscillation.

5.1 Network Simulation

Network initialization. For any analysis, we need to first generate a BGP instance’s ini-
tial network state. For a given BGP instance, we have shown how to generate its initial
state gadget from its network topology and routing policy, as described in section 4. For
example, the initial state generated for Disagree is as follows:
{pa : Logger | history:{[n1 n0] [n2 n0]}}
[n1 : router | routingTable: (source: n1, dest: n0,

pv:(n1 n0), metric: 2),
bestPath: (source: n1, dest: n0,

pv:(n1 n0), metric: 2),
nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

[n2 : router | ... ]
sendPacket(n1,n0,n0,n2,n1 n0) sendPacket(n1,n2,n0,n2,n1 n0)
sendPacket(n2,n0,n0,n2,n2 n0) sendPacket(n2,n1,n0,n2,n2 n0)

This state consists of Disagree’s initial logger object pa that holds the initial path as-
signment [n1 n0] [n2 n0], two router objects n1,n2, and four initial routing messages.

Execution. Unlike many formal specification paradigms used in static network analysis,
a Maude specification is executable. To explore one possible execution run from a given
initial state gadget, we can directly use Maude’s rewrite and frewrite (fair rewriting)
commands. For example, we could tell Maude to execute the Disagree gadget with the
following command: frew gadget . This command terminates and returns the following
final state:
{pa : Logger |

history: ({[n1 n0] [n2 n1 n0]} ... {[n1 n0] [n2 n0]})}
[n1 : router |...

bestPath: (source: n1,dest: n0,pv:(n1 n0),metric: 2), ...]
[n2 : router |...

bestPath: (source: n2,dest: n0,pv:(n2 n1 n0),metric: 1),...]

Note that this final state corresponds to one of the stable path assignments of Disagree
described in Section 2, where node n1 sets its best path to [n1 n0], and node n2 sets its
best path to [n2 n1 n0].

On the other hand, with the rew command which employs a different rewriting strat-
egy, divergence scenario is simulated and route oscillation is observed in the simulation.
This is because frewrite employs a depth-first position-fair rewriting strategy, while
rewrite employs a left-most, outer-most strategy that coincides with the execution trace
that leads to divergence.
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5.2 Route Oscillation Detection

While Maude commands frew/rew explore a small portion of possible runs of the in-
stance, the search command allows us to exhaustively explore the entire execution
space. To exhaustively search BGP execution for route oscillation, we only need to
first input the BGP instance’s network topology and routing policy to generate the cor-
responding initial state, as described in Section 4; and then use the search command to
automatically search for oscillation. For example, for Disagree, we run:

search [1] gadget =>+ X such that detectCycle(X) = true .

Here, gadget is Disagree’s initial state, and =>+ X tells Maude to search for any reach-
able network state X such that at that state, the logger pa contains recurring path assign-
ment (detectCycle(X)=true). search command exhaustively explores Disagree runs and
returns with the first Disagree state that exhibits oscillation:

{pa : Logger | history: ({[n1 n2 n0] [n2 n0]}
{[n1 n2 n0] [n2 n1 n0]}
{[n1 n2 n0] [n2 n0]}
{[n1 n0] [n2 n0]})}

[n1 : router |...] [n2 : router |...] ...

Here, the resulting path assignment content in pa exhibits an oscillation (line 1, line 3).
In general, Maude allows us to exhaustively search for violation of a safety property

P by running the following command:

search initialNetwork =>+ X:Configuration such that P(X) == false.

which tells Maude to exhaustively search for a network state X that violates P along all
possible execution traces from the initial state initialNetwork. If Maude returns with No

solution, we can conclude property P holds for all execution traces.

5.3 Case Studies

We have analyzed well-known eBGP instances, including good gadget, bad gadget,
disagree [10]. In addition, we analyze two iBGP configuration instances: a 9-node iBGP
gadget [7] that is known to oscillate, and a 25-node configuration randomly extracted
from the Rocketfuel [17] dataset. Rocketfuel is a well-known dataset on actual iBGP
configurations that are made available to the networking community. Given that an ISP
has complete knowledge of its internal router configurations, the Rocketfuel experiment
presents a practical use case for using our tool to check an actual BGP configuration
instance for safety.

For each BGP instance, we simulate its possible executions using rewriting com-
mands (Simulation), and check for route oscillation using exhaustive search (Exhaus-
tive). We summarize our analysis results are as follows:

We have carried out these analysis on a laptop with 1.9 GB memory and 2.40GHz
dual-cores running Debian 5.0.6. The version of Maude is Maude 2.4. While route os-
cillation detection explores the entire state space of the instance execution, the analysis
time for rewriting based execution are measured for only one possible terminating exe-
cution (that converges to a stable path assignment).
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Table 2. Summary of BGP analysis in Maude. In the first row, each entry shows the simulation
time in milliseconds. In the second row, for each entry, the first value denotes exhaustive search
time in milliseconds, the second denotes number of states explored, and the third on whether our
tool determines the instances to be safe (“Yes”) or unsafe (“No”).

Disagree Bad Good 9-node iBGP 25-node iBGP

Simulation 2 NA 4 20 31
Exhaustive 2,10,No 181,641,No 10997,37692,Yes 20063,52264,No 723827,177483,Yes

Here we summarize findings from our case studies. Single-trace simulation is help-
ful in finding permanent routing oscillation. When simulating the execute trace that
diverges, Maude does not terminate (e.g., in executing Bad gadget 3). However, simula-
tion can miss temporary oscillations which are only manifested on a particular executing
trace. When Maude terminates, single-trace simulation time increases when network
size grows. On the other hand, exhaustive search always provides a solid safety proof.
For instances of similar network size, the search time for a safe instance (good) is con-
siderably longer than that of an unsafe instance (bad). For instances of different sizes,
as network size grows, exhaustive search time grows exponentially. Nevertheless, even
for the 25-node scenario, exhaustive search can be completed in 12 minutes. As future
work, we are going to scale our analysis technique to larger networks.

6 Related Work

Maude is a widely used tool for a variety of protocol analysis. In addition to our use
of Maude for analyzing BGP instances, there is also a huge literature of using Maude
for other complex systems, such as security protocols [9] , real-time systems [14], and
active networking [5].

Theorem proving and model checking techniques have been applied to formal ver-
ification of network protocols. For instance, in [3], a routing protocol standard is for-
malized in the SPIN model checker and HOL theorem prover, where SPIN is used to
check convergence of small network instances, and HOL is used to generalize the con-
vergence proof for arbitrary network instances. Their work focuses on basic intra-AS
routing protocols such as the distance-vector protocol, and does not consider policy in-
teractions that occur in inter-AS routing protocols such as BGP. However, while our
proofs are automated by Maude’s built-in simulation and exhaustive search capabili-
ties, we are restricted to analyzing specific network instances. As future work, we plan
to generalize our instance-based proofs towards more general properties on BGP stabil-
ity, by leveraging Maude’s connection with existing theorem provers such as PVS [15].

Arye et al. [2] has attempted a similar formalization of eBGP gadgets in SPP using
the Alloy [1] tool. Our approach differs from theirs in the overall goal of the formaliza-
tion: Ayre et al. uses Alloy to synthesize eBGP instances that exhibit certain behaviors

3 Bad gadget always diverges and does not have any stable path assignment, therefore, when
we simulate bad gadget with rewriting, Maude does not terminate, and we do not record the
statistics.
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such as divergence, whereas our approach takes an eBGP instance as input and analyzes
it via simulation runs and exhaustive search. Our overall goal is to provide an easy-to-
use library in Maude that eases the entire process of specifying and analyzing a BGP
instance. Besides, in addition to eBGP gadgets, our library also supports iBGP instances
and handles iBGP route ranking generation based on a separate IGP protocol 4.2.

7 Conclusion and Future Work

This paper presents our development of a Maude library for specifying and analyzing
BGP instances. Our work aims to automate an important task for network designers when
designing BGP protocols and safe policy guidelines. Our library uses Maude’s object-
based specification language and enables the user to easily generate Maude specification
by only requiring them to define the network topology and routing policies. To validate
the feasibility of our library, we explored a variety of well-known BGP gadgets and an
actual BGP instance obtained from the Rocketfuel dataset, and demonstrated the use of
Maude’s analysis capabilities to detect possible divergence. All Maude code described
in this paper is available at http://netdb.cis.upenn.edu/discotec11.

In addition to integrating our framework with the PVS theorem prover, our ongoing
work includes: (1) more case studies on BGP instances and recent guidelines to explore
the limits of our library, leading to possible extensions of our Maude library; and (2)
releasing our tool for network designers to use.
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Fratani, Séverine 153

Giachino, Elena 168
Gnesi, Stefania 44
Graf, Susanne 183
Grumbach, Stéphane 106
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