Concurrent Programming with Distributed Objects

Table of Contents

Introduction

Object Technolo

= Object-Oriented

. Ctt
Distributed Processing
Undergraduate Research

= Optical System Design
Work Experience

= 141

Introduction

Thisisan investigation into the application of concurrent programming and
object technology in developing distributed systems with specific interest in
concurrent scheduling and planning algorithms. The research paper begins
with abrief presentation of the concepts of object technology and C++. Then,
as apreface to the presentation of the concepts of concurrent programming

= Airport Traffic Incursion Detection
o Graduate Research

= Object Frameworks
» Hughes Class Library

and object frameworks, the investigation of the Common Object Request
Broker Architecture (CORBA), and the prototyping results, the next section
gives some background information to set the tone for this research and to
support the following statement.

o ThesisTopic
= The Search for the Better Framework L . .
. ORBdine Distributed object technology and concurrent/parallel processing are part of

an abrupt evolution in information systems. Object technology will be the
vehicle that allows information system providers to reap the benefits of
distributed processing. Distributed object technology will affect the IS
industry at all levels of hardware, operating system and software design.

o Research Schedule
. Object Frameworks
o Acceptance of Object Frameworks
o The Divided Framework Camp
o RunTime Type Information (RTTI)
o Serializing the Object
o Framework and Object Requirements
o Nationa Ingtitute of Health Class Library (NIHCL)
= RTTI
= Object Comparison
» Collections and Iterators
= Object Narrowing (safe downcast)
= Copying Objects (Shallow and Deep)
« Object 1/0
= Writing NIHCL Classes
o Hughes Class Library (HCL)
= Introduction
= HObject ithe Hughes version of NIHCL
Objecti
« RTTI
= Object1/O
» Containers
« Using HCL
« Example
= Distributed Programming with HCL
Interprocess Communication
o PostModern's NetClasses
= Reuse
= Features
« Design
» Using the NetClasses Framework
= Success of the Single Rooted Tree
Framework
o Adaptive Communication Environment
("'w2wpA CE! http://www.cs.wustl.edu/~schmidt! pe!)
« Object Request Broker (ORB)
o OMG Concrete Object Model

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/ (1 of 2) [20/02/04 05:40:51 p.m.]

http://www.ece.vill.edu/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

Concurrent Programming with Distributed Objects

= Request
= Vaues
= Object Interface

= Object Operations
o The ORB Structure

» Static IDL ORB Interface
» Language Mapping
» Interface Repository (IR) and the Dynamic
Invocation Interface (DI1)
= Implementation Repository
» Object Adapter
=« CORBA Standard
o PostModern Computing (now Visigenic)'s ORBeline
= ORBeélin€e's Architecture
= The ORBeline Framework
» ORB€line's ORB Objects
= Advanced Features
. Distributed Object Application Prototype
o Hardware Platforms
= Multicomputer
o Paraléel Programming with Objects
» Data Partitioning and Domain/Functional
Decomposition
= Manager-Worker Paradigm and L oad
Balancing
o Classic Complex Problems
= Matrix Chain Multiplication
= Catalan Numbers
o Dynamic Programming
o Prototype
» Data Decomposition
= Corners
= Limitations
» CORBA Implementation
= Calculation Algorithm
« Results
o Conclusions
. Footnotes

http://www.ece.villanova.edu/user/matt/thesisbody/ (2 of 2) [20/02/04 05:40:51 p.m.]

http://www.ece.vill.edu/

Concurrent Programming with Distributed Objects: Object Oriented Frame... Algorithms, and the Common Object Request Broker Architecture (CORBA)

Introduction

Thisis an investigation into the application of concurrent programming and object technology in
developing distributed systems with specific interest in concurrent scheduling and planning algorithms.
The research paper begins with a brief presentation of the concepts of object technology and C++. Then,
as a preface to the presentation of the concepts of concurrent programming and object frameworks, the
investigation of the Common Object Request Broker Architecture (CORBA), and the prototyping results,
the next section gives some background information to set the tone for this research and to support the
following statement.

Distributed object technology and concurrent/parallel processing are part of an abrupt evolution in
infor mation systems. Object technology will be the vehicle that allows information system providersto
reap the benefits of distributed processing. Distributed object technology will affect the ISindustry at all
levels of hardware, operating system and software design.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis.html [20/02/04 05:40:53 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Object Technology

Object Technology

The fundamental characteristic of object oriented technology is the combination of data structure and
behavior.1 This combination of data and function is more understandable to people and most resembles
real life. As operating systems, programming languages, and frameworks evolve through object
technology to allow a more efficient coupling between processing and networking, distributed processing
will be as common place as simple data structures like linked lists.

Many of the sections in this paper do not require the reader to have an in depth knowledge of object
technology and C++; an understanding of C programming is required. However, to fully understand the
topics on object frameworks, CORBA, and the prototyping results, the reader would benefit from an
introduction to object oriented design and implementation in C++. The experienced C++ programmer
may skip to the next section.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Technology_.html [20/02/04 05:40:55 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Object-Oriented

Object-Oriented

Object-Oriented refers to the design and implementation of information systems which, as mentioned
before, combines data structure with the behavior relevant to the data structure. More specifically, object-
oriented exhibits the following characteristics: encapsulation; classification; inheritance; and
polymorphism.

Encapsulation

Encapsulation is the technique of separating the implementation details of an object from the external
interface. The external interface is available for use by other objects. Another name for encapsulation is
"information hiding". Information hiding is not restricted to object-oriented but it is available in most
object implementations. The concept of external or "public” interfaces on objectsis crucial to distributing
objectsin asystem. We will seethat it isreally the "public" interfaces of objects that are distributed in a
system. The actual object implementations are hidden by these distributed interfaces.

Classification

Classification refers to the difference between an "object” and a"class" in an object-oriented system. An
"object" isaunique, identifiable instance of information such as a named employee. Classification isthe
grouping of objects with like attributes (data) and operations (behavior). These groupings are called
"classes". Objects are instances of classes. Classes are types whereas objects are identities (e.g.
STUDENT isaclassand JOE_SMITH is an object which is of type STUDENT). Using the OMT
notation 1, classes are diagrammed as atitled box with two sections for the attributes and behaviors. See

Diagramsin Appendix.

Inheritance

Classes can be organized such that specialized classes can inherit from more general classes. This
technique is called inheritance and it is more easily demonstrated by an example. The classescar ,

ai rpl ane, train,andbus could al inherit from the general classvehi cl e. The attributes (data)
and operations (behavior) are inherited from one class to a more specialized class. Inheritanceis
represented in an object model asin Diagramsin Appendix .

Polymorphism

A more abstract object-oriented characteristic is polymorphism. Polymorphism describes the capability
of applying the same operation to different objects and having the resulting behavior vary depending on

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Oriented_.html (1 of 2) [20/02/04 05:40:56 p.m.]

Object-Oriented

the classtype. As an example, the operation nove on an object of typevehi cl e might behave
differently if the object's specific typeisai r pl ane or car.

Functional vs. Object-Oriented

The discussion of polymorphism sheds light on the real distinction between object-oriented and
functional techniques. It's al in the name, "object-oriented”. A functional programming languageis
centered around a hierarchical, functional flow. Object-oriented implementations are centered around
object interactions. The semantics of object-oriented programming languages vary, however, the code
"reads’ the same. As an example, afunctional code stub "reads"

LAND (Al RPLANE) ; PARK(CAR);
where as the object oriented code would "read"
Al RPLANE(LAND) ; CAR(PARK) ;

In the functional case, the "object” or data is the argument to the function where as the opposite is true
for the object-oriented case; the function is the argument of the object. In fact, functions are "members’
of classesjust like attributes are. In a class they are referred to as "member functions”.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Oriented_.html (2 of 2) [20/02/04 05:40:56 p.m.]

mailto:mstevens@ent.mrj.com

C++

C++

In the first versions 01, a pre-compiler front-end called CFront was used to translate C++ code into C.

Now there are direct to binary C++ compilers. However, the output of CFront isinformative because it
shows how the C++ language constructs can be implemented in C. Although it is an over-simplification,
it can be very instructive for the experienced C programmer to view C++ classes as C structures. Using
C, member functions are implemented as structure members that are of type pointersto functions. Thisis
seen in the following structure declaration.

struct vehicle {

i nt max_speed;

int weight;

int |ength;

voi d nmove(int distance);

voi d change _direction(float angle);

the above structure declaration is defined and used as follows in a simple program:
main() {

struct vehicle V1; // allocate menory

V1. max_speed = 113;

V1. wei ght

2000;

V1.l ength

10;

V1. change_direction(45.0);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (1 of 4) [20/02/04 05:40:58 p.m.]

C++

V1. nove(50);

Notice that the above code segment shows that member functions are neatly engaged just like aclassic
structure member. The C++ language constructs and semantics hide these complex structures. The real
C++ constructs are more "elegant”. In C++ the key word st r uct can be replaced with the key word

cl ass. Inheritance can be demonstrated using the above declaration as follows:

class car : vehicle {
char make[25];
char nodel [25] ;

voi d park(void);

Thecar classinheritsfrom classvehi cl e and all the data members and member functions of
vehi cl e arefoundincar.

Encapsulation and polymorphism are demonstrated in the following re-declaration of vehi cl e and
car . C++ alowsfor information hiding through the key words publ i ¢ and pri vat e which are

modifiers on class members. These modifiers specify the scope of the class members where the public
members constitute the external interface and the private members constitute the internal interface. C++
provides polymorphism with the key word vi r t ual which isamodifier of member function. A

member function specified asvi r t ual will cause the compiler to build atable of pointersto functions

for the class called the virtual function table. All classes which inherit from a base class with virtual
functions must re-implement the virtual functions locally. The virtual function table will contain all
unigue, specialized definitions for the original virtual function. When avirtual function is called, the
virtual function table provides alevel of indirection so that the appropriate function is called.

C++ uses the keywords newand del et e for run-time memory allocation and de-allocation. new and
del et e are operators for all objects. Notice in the example below that a pointer to vehi cl e can be
assigned an address of acar object because car isavehi cl e through inheritance. Therefore, the call
to the virtual nove function uses the virtual function table to engagethe car : : nove(i nt) function.

class vehicle {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (2 of 4) [20/02/04 05:40:58 p.m.]

C++

private:

i nt max_speed;

int weight;
int |ength;
publi c:

virtual void nove(int distance);

voi d change direction(float angle);

class car : public vehicle {

private:

char make[25];

char nodel [25] ;

publi c:

voi d nove(int distance);

voi d park(void);

main() {

vehicle *vptrl, *vptr2

car *cptrl

vptrl = new vehicl e;

vprt2 = new car;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (3 of 4) [20/02/04 05:40:58 p.m.]

C++

cptrl = new car;
vptr1l->nove(55); // vehicle::nove(int)

vptr2->nove(55); // car::nove(int)

cptrl->nmove(55); // car::nmove(int)
del ete vptri;
del ete vptr?2;

del ete cptri;

}

Code Block 1 - Example of Vehicle & Car Class

In C++ there are special functions that handle object initialization and clean-up. These functions are
called "constructors' and "destructors'. A class constructor is called when an object is defined or
explicitly "instantiated" with the new operator. A class destructor is called when a previously allocated
object goes out of scope or is explicitly freed with the operator del et e. Constructors and destructors
are provided either by default in the compiler or they can be included in the class declaration by the
programmer. The constructor must be a part of the "public" interface of the class for an object to be
instantiated. Therefore, an "abstract” class can be implemented by restricting the constructor to the
"private” interface of the class. The "abstract” class allows powerful class designs as will be shown in the
discussion of object frameworks in section 1.5.1. Object frameworks are class hierarchies which use
abstract classes and virtual functions to create common interfaces for the framework user.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (4 of 4) [20/02/04 05:40:58 p.m.]

mailto:mstevens@ent.mrj.com

Distributed Processing

Distributed Processing

Distributed processing is not as abstract to the newcomer as object technology. For decades engineers
have used distributed processing to improve performance of information systems. In general, the more
processors you have to perform atask, the faster it will complete. If a computing process can be
decomposed into smaller, concurrent tasks then in theory a performance increase can be achieved. The
technique of deploying concurrent tasks on either multi-processor hardware or on a multi-processing
operating system is called parallel processing.[1] The research presented here concentrates on
implementing parallel/distributed processing on multi-computers.[2] A multi-computer a grouping of
single processor computers capable of message passing using a high speed network. A small local area
network (LAN) of UNIX and/or MS-Windows workstations is an example of a multi-computer. Another
popular parallel processing schemes uses symmetric multiprocessors (SMP) which refersto asingle
block of memory shared by many processors.

In practice, the application of concurrent processing has been mostly limited to the well funded, high
performance assets of government agencies and military contractors. The complication and intense
training it takes to devel op distributed systems has kept them on the shelf and off the drawing board until
recently. Now there are thousands of organizations with the appropriate hardware and operating systems.
These organizations could be deploying distributed solutions today .

Although implementations are hard to find, there is support for distributed solutions in current CPUs,
operating systems, and high speed networks. This investment from the hardware and operating systems
manufacturers would probably not be without the advent of object-oriented frameworks for distributed
processing. Market forces are driving the manufactures to develop new equipment capable of parallel
processing. The market demand is due in part to the advances in object-oriented frameworks for
distributed processing. There are already companies investing in object technology and distributed
processing by developing object oriented operating systems such as Sun MicroSystem's NEO OS, DOE
(Distributed Objects Environment), and Next Computers NextStep/OpenStep OS. [3],

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Distributed_Processing_.html [20/02/04 05:40:59 p.m.]

mailto:mstevens@ent.mrj.com

Undergraduate Research

Undergraduate Research

My interest in object-oriented, C++, and distributed processing started during my undergraduate research
work at Villanova University, For my undergraduate thesis, | built a prototype software system for the
automated design and optimization of simple optical lens systems. It was designed and built on alBM
compatible PC and later ported to a Silicon Graphics (SGI) UNIX workstation. The prototype was
developed in C++. The techniques of object-oriented design and the clean semantics of C++ allowed for
aquick turn around when producing the prototype. After developing in object-oriented/C++ | was
convinced that it was the best technique for writing high performance software.

The prototype results were limited by alack of both computing resources and a good understanding of
simulation techniques. | started thinking about distributed processing as | sat waiting for ray tracing
results and waiting to run out of memory. | wondered why the hundreds of workstations networked with
my computer could not be used to speed up the prototype. In fact, the other networked computers formed
a multicomputer which could be used to distribute processing and share resources. However, even though
the hardware was there, a framework of tools for building distributed systems was missing. This research
paper presents the requirements for such a framework and shows how object oriented techniques support
distributed processing. The following explanation of my prototype design demonstrates why
simulation/optimization algorithms consume alot of computing resources; this explanation will
demonstrate to requirement for distributed processing.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Undergraduate_Research_.html [20/02/04 05:41:00 p.m.]

http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Optica System Design

Optical System Design

Consider asimple optical lens system such as a microscope. This lens system exhibits optical aberrations that limit the quality of the resulting images. Optical
aberrations, like spherical and chromatic aberration and astigmatism, can be reduced and in some cases, removed from the system using various techniques that
have been developed for centuries.[4] During my undergraduate work on the prototype | was limited by the infinite search space that resulted when calcul ating

the optimal result in an optical element's configuration.

Take the example of the smplest optical system with the most trivial constraints: a magnifying glass that can be trandated in one (1) dimension. The magnifying
lensisafirst order (circular) convex-convex lens. The lensis perpendicular to the optical axis 'z'. The magnifying lens can be translated along this optical axisa
distance 'k’ from the object point. Other variables include the desired location of the image point (focal point), the curvature (radius) of the lens surfaces, the
thickness of the lens, the material of the lens and environment. See Figure 1. The unknown value is the location of the lens along the optical axis. The goal isto
find this unknown value so that the image is brought into focus. Even though this ssmple problem is usually solved using high school physics equations, a search
algorithm is applied for demonstration purposes.

The domain of the lenslocation is from dO to d1. The algorithm will be a search over the domain of [dO,d1]. This domain is the search space. The size of the
search space depends upon the precision of the solution or rather the delta Z along the optical axis. Given afunction Q(z) which evaluates the quality of the
image at location d1 over the domain Z, the optimal location of the lens z can be determined. Again, ignoring the obvious solutions using physics laws and
calculus to find inflection points of the function, it follows that all points along Z must be evaluated and sorted to find the optimal Q(z). This extreme example
uses only simulation. A solution provided by physics equations, geometry and/or calculusis an analytical solution.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Optical_System_Design_.html (1 of 3) [20/02/04 05:41:03 p.m.]

Optica System Design

0 a1

- Simple Optical System

In my undergraduate prototype | used analytical techniques to solve problems. | attempted simple search algorithms but these techniques consumed my
computational resources too quickly. Inthereal life case, the simulation technique is not longer trivial because the search space becomes huge. Thisis seen
when all the real world factors to the simple lens design problem are considered such as attitude and position of lens elementsin three dimensional (3D) space,
multi-spectral radiation, gradients in temperature, gradients in material, nth order optical surfaces, etc.. The simple search space would be the cross
multiplication of all the domains of the said factors. The inability to solve this problem during my undergraduate work sparked an interest in optimization

algorithms.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Optical_System_Design_.html (2 of 3) [20/02/04 05:41:03 p.m.]

Optica System Design
This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Optical_System_Design_.html (3 of 3) [20/02/04 05:41:03 p.m.]

mailto:mstevens@ent.mrj.com

Work Experience

Work Experience

After | completed by undergraduate degree, | worked in the Edison Engineering Program at GE
Aerospace. For three years | worked on large government information and aerospace systems. Asa
member of the Edison Program | attended Villanova University again for my masters. In Villanova's

Intelligent Engineering curriculum, | was introduced to the computer engineering topics of expert
systems, fuzzy logic, thinking algorithms, searching algorithms, recursion, dynamic programming, image
processing, neural networks and more.

Throughout my work and studies in the Edison Program | was presented with software requirements that
were well suited for object technology, distributed processing, and the new techniques | was learning in
Villanova's Intelligent Engineering curriculum.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Work_Experience_.html [20/02/04 05:41:04 p.m.]

http://www.vill.edu/
mailto:mstevens@ent.mrj.com

141

1.4.1

As one example, | worked on a project that required a Global Information System (GIS) which
specialized in generating and displaying terrain maps in 3D. At the time it was not possible to acquire
commercial off the shelf (COTS) map databases easily. However, we were able to obtain the U.S.
Geological Survey's Digital Chart of the World (DCW) product which contained over (1.5) gigabytes
(GB) of mapping data. The maps were displayed on high speed SGI IRIS/VGX UNIX workstations.

The DCW described map datain 2D latitude and longitude coordinates. The elevation data was separate.
The map datawas arranged as points, lines, and polygons for cities, roads/rivers, and areas respectively.
There were many polygons in the DCW (islands, countries, states, lakes, etc.) that contained more than
256 points. Also, many of the polygons were not convex but rather concave. A convex polygon is athree
or more sided shape where a line drawn between any two points does not intersect an edge. A triangleis
aconvex polygon. [5]

The SGI Graphics Language (GL) we used required that graphics data be compiled into vectors of 4D
vertices (X, Yy, z, and 24-bit color value). The vectors could be of length one, two, three or more which
allowed points, lines, triangles, or polygons to be drawn. The vectors had to be less than 256 and
represent convex polygons

The minority of polygonsin our database which represented larger than acceptable polygons and/or
concave polygons had to be "fixed" - split into convex polygons with less than 256 points. In the end, we
manually "fixed" the few hundred polygons. At the time | wanted to employ some agorithms that would
increase the quality, and performance of the mapping system.

The graphics engine in the SGI VGX is optimized for vectors with three (3) points. The graphics pipeline
renders all polygons as triangles. If a>255 point vector enters the graphics pipeline it is decomposed into
adjacent triangles optimized for rendering. It is possible to achieve a performance increase of orders of
magnitude if datais submitted as optimized triangles. Other hardware venders have graphics engines that
are optimized for quadrilaterals.

| investigated algorithms that would decompose any polygon into triangles or quadrilaterals that are
optimized for a given set of constraints. | had trouble finding solutions because of combinational
explosion of the search space. Exploring only geometric decomposition by hand, it can be shown that
there are only afew ways to decompose a square or pentagon. However, one learns that a black board
will not be big enough to decompose even simple shapes like hexagons and octagons let alone polygons
with hundreds or thousands of vertices. In order to insure that all possible decomposition’s are known
(insure an accurate search space), recursion can be used to determine the number of possible pathsto a

http://www.ece.villanova.edu/user/matt/thesisbody/thesis___ w2wx1 4 1_ bk7 .html (1 of 2) [20/02/04 05:41:05 p.m.]

141

solution.

P(n) = pathspern n-2 solution space
P(3) =1 1triangle 1
P(4)=2*P(3)=2 2triangles 2

P(5) =5* P(4) =10 3triangles’5

P(6) =6* P(5) =60 4triangles 14

P(7) =7* P(6) = 420 5 triangles ?

Table 1: The recursive determination of search paths.

Consider afifteen (15) sided polygon. P(15) = 108,972,864,000. This polygon would call for over 100
billion state calculations to find a search space of (I am guessing) hundreds of thousands if not millions
of unique states. If heuristics and rules were employed to reduce the search space size to the square of the
vertex count [P(n) =n2] or evento [P(n) = n* log(n)], then a solvable algorithm could be devel oped.
However, a polygon with hundreds of points would still be time consuming to decompose. | became
determined to learn more about the real application of intelligent search algorithms. | a'so considered the
use of distributed processing to calculate associated search paths concurrently.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis___ w2wx1 4 1_ bk7 .html (2 of 2) [20/02/04 05:41:05 p.m.]

mailto:mstevens@ent.mrj.com

Airport Traffic Incursion Detection

Airport Traffic Incursion Detection

On another project, | helped devel op software to detect and prevent incursions (potential collisions) of
airplanes and ground vehicles at airports. The airport incursion detection system used Global Positioning
Satellites (GPS), radar, lasers, and other sensorsto create areal-time digital map of the vehicles at an
airport. The numerous of channels of sensor data were fused at a central location where incursion
detection would took place. To test the data fusion and incursion detection algorithms vehicle smulators
were required to produce test scenarios.

We choose an object oriented design and an implementation in C++ for the ssmulator. The object-
oriented characteristics made the smulator easy to prototype. As an example, the following entities of
the ssmulator were al objects. command, poi nt ,vect or,unit,vehicle, airplane,l/Q

ti me,queue,list,anddi spl ay. Thisalowed usto build the ssimulator and get it running without

having to flesh out all the details. We could test the command interpreter and dispatch flight commands
to the vehicles even if the flight command implementation was an empty stub. In functional designsthis
guality would be called modular. In object-oriented it is more than modular because the object abstracts
its data and functionality behind the object's interface.

We considered making the simulator distributed by encapsulating or "hiding" ainterprocess
communication (IPC) BSD socket framework in the lower level objects. As an example, acommand
dispatcher object had a reference (pointer) to a command stream object. The dispatcher did not need to
know that the real command stream was coming over a TCP/IP socket from another process. The concept
of information hiding has been around for a while and used with success. However, in object-
oriented/C++ the interface typing is tighter and in fact the methodology calls for information hiding. It is
the definition of classes: clearly defined/typed interfaces to functions and data.

The simulator's success proved that object-oriented and C++ was very powerful. Also, our success
proved that well designed object systems can be made distributed with |ess re-coding than more common
functional designs. Another important lesson learned from this project was that the engineering team,
which we (the systems devel opers) had working on the critical methods for vehicle dynamics, was able
to understand the software design during the development cycle. The qualities of object-oriented design
allowed for more fluid communication between the engineers and programmers. One need not trandate
from reality into C functions, structure, and global/local variables. The discussions were about vehicles,
commands, time, velocity vectors, etc. - the same names for the objects that modeled them.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Airport_Traffic_Incursion_Detection_.html (1 of 2) [20/02/04 05:41:07 p.m.]

Airport Traffic Incursion Detection

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Airport_Traffic_Incursion_Detection_.html (2 of 2) [20/02/04 05:41:07 p.m.]

mailto:mstevens@ent.mrj.com

Graduate Research

Graduate Research

Two years after | had completed my undergraduate optics project, | was confident in my original idea
that object-oriented technology was a viable alternative to common functional models. | was convinced
that distributed systems, especially those designed object-oriented, were not limited to hardware
intentionally designed for parallel processing like Cray, Thinking Machines, and Intel Paragon. Given a
robust development environment, high speed network, and powerful operating system like UNIX, or
Windows NT, any organization could harness distributed processing.

Villanova has many powerful UNIX workstations, hundreds of 486/Pentium PCs, and a campus wide

area network (WAN) integrating various local area networks (LAN). If aframework for building
distributed systems could be found that coupled heterogeneous systems at the application level,
Villanova could support distributed systems. The goal of the research in this report is to prove that
practical accessto parallel processing using commonplace hardware and object oriented design is
possible. Thefirst part of my graduate independent research was an investigation of distributed object
frameworks. The following section introduces the reader to object frameworks and my research results.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Graduate_Research_.html [20/02/04 05:41:08 p.m.]

http://www.vill.edu/
http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Object Frameworks

Object Frameworks

In the case of object-oriented/C++, a software development framework is a combination of pre-defined
class hierarchies, libraries, design patterns, and tools that allow for re-useable and consistent software.
Frameworks are similar to programming standards like IBM's Standard Query Language (SQL), SGl's
Graphics Language (OpenGL), BSD Sockets, X 11, etc. Common object frameworks in this report refer
to those which are used for general software development, not just database, graphics, user-interface, or
communication systems.

In the past, as more complicated client-server and peer-to-peer systems were devel oped, the expertise
needed to overcome the intricacies of network programming was a mgor problem. In the late 1980s
many companies started investing in common frameworks for application programming. The two leading
C/C++ compiler venders for PCs, Microsoft and Borland, devel oped there own frameworks for building
consistent standalone M S-Windows applications; Microsoft Foundation Classes (MFC) and Borland's
Object Windows Library (OWL). Over the past five years, commercia frameworks have evolved into
two types: high powered client server frameworks for 32-bit operating systems; and high level visual
programming tools like MS Visual Basic and Borland's Delphi. The latter are very popular because they
allow for Rapid Application Development (RAD) on networked PCs and small database servers.

The market for larger industrial strength object frameworks for 32-bit systems had been small but
promising. It is afact that information system providers do not like to buy into technology that is neither
guaranteed to be supported for along time nor not part of a standard. Therefore, while industry leaders
and research ingtitutions moved slowly on UNIX standards like POSIX, X/OPEN, DCE, CORBA, CDE,

.etc, information system providers have continued to produce systems without reuse, common
frameworks, or maintainability in mind. However, there were some frameworks built for internal use at
various research institutions and companies possessing enough foresight.

These internal frameworks turned out to be a good investment. Framework development added to the
organization's technical base and the benefits of common frameworks could be realized before the
standards were delivered. Some of these home grown frameworks, like the National Institute of Health's
Class Library (NIHCL) built by Keith Gorlen, are quite popular now and are the basis for many
commercia systems.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Frameworks_.html (1 of 2) [20/02/04 05:41:09 p.m.]

http://www.omg.org/

Object Frameworks

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Frameworks_.html (2 of 2) [20/02/04 05:41:09 p.m.]

mailto:mstevens@ent.mrj.com

Hughes Class Library

Hughes Class Library

| was introduced to the technology of object frameworks at L ockheed Martin (GE Aerospace) where |
worked with a object-oriented/C++ framework built by Hughes Aircraft called Hughes Class Library
(HCL). I investigated using the design patterns found in HCL for various portions of a satellite ground
system. The engineers at Hughes Information Technology Center (HITC) developed a COTS product
based on HCL called Delphi for Satellite Mission Scheduling and Planning. As the prime contractor,
Hughes is using Delphi or aevolution of its technology today to build the ground station and
dissemination systems for the Earth Observation Satellite (EQS).

HCL was the first framework | encountered that allowed for the development of complex distributed
systems using a pure object oriented paradigm. During my investigation of HCL | discovered Keith
Gorlen's NIHCL, a common object framework that the engineers at HITC partly based their work on.
Thisreuse will be seen in Section 2.6 when NIHCL is shown in detail.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Hughes_Class_Library_.html [20/02/04 05:41:10 p.m.]

mailto:mstevens@ent.mrj.com

Thesis Topic

Thesis Topic

| investigated object technology as a topic for my graduate independent study and thesis. | wanted to try
and build distributed solutions for some of the real-world problems that | found in the aerospace and
business industry and prove their viability. In order to build the prototypes | needed a devel opment
environment that would support such distributed object frameworks. It isimpossible for one person to
make a complete distributed object framework - one must re-use the work of others.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Thesis_Topic_.html [20/02/04 05:41:11 p.m.]

mailto:mstevens@ent.mrj.com

The Search for the Better Framework

The Search for the Better Framework

Throughout the second half of 1994 | searched the Internet for object-oriented/C++ frameworksin
fulfillment of my graduate research requirements. What | found was both good and bad: good because
object-oriented/C++ frameworks were proliferating at universities and research organizations; bad
because there was alot of duplication of effort. Almost al of the research | found was not robust enough
for my requirements.

| needed a framework that was designed for the purposes of distributing objects; passing objects between
processes on the same host and on remote hosts. Most of the frameworks | found were C++ wrappers
around UNIX 1PC mechanisms. These frameworks allowed for faster, type safe way of UNIX system
programming but not distributed objects.

While reviewing technical journalsthat | found some viable candidates for my framework. It wasin the
C++ Report that | found articles on Doug Schmidt's Adaptive Communication Environment and the
Common Object Request Broker Architecture (COBRA).[6]

"The Adaptive Communication Environment (ACE) is a collection of reusable C++ classlibraries and
object-oriented framework components that enhance the development of distributed applications..."

Doug Schmidt, now the editor of the C++ Report, promotes the ACE framework for use in building the

infrastructures of large distributed systems. However, the ACE framework does not address problem of

distributed objects - although, ACE does not try to satisfy this requirement. ACE isalow level, systems
programming framework.

| also was introduced to an organization, The Object Management Group (OMG), which was developing
standards for distributed object systems since 1989. The result of the ideas and technology of the OMG's
members was the Object Request Broker (ORB). An ORB is a system that provides services for object
location, 9 At the end of 1994 | found a number of companies offering products based on the OMG's

revision 1.1 of the CORBA specification.

. [IBM] Distributed System Object Model (DSOM)
« [Expersoft] X Shell

« [lona] Orbix

. [PostModern] ORBeline

. [Hewlett Packard] Orb Plus

[Digital] Object Broker

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_Search_for_the_ Better Framework_.html (1 of 2) [20/02/04 05:41:13 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.omg.org/
http://www.visigenic.com/

The Search for the Better Framework

. [SunSoft] Distributed Objects Environment (DOE)

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_Search_for_the_ Better Framework_.html (2 of 2) [20/02/04 05:41:13 p.m.]

mailto:mstevens@ent.mrj.com

ORBe€line

ORBeline

One company, PostM odern Computing (now Visigenic), had a framework for the development of
distributed systems called NetClasses. In 1994, with the release of CORBA 1.1, PostModern released
ORBeline. ORBeline was built on the proven NetClasses technology. At the beginning of 1995,
PostM odern offered ORBeline to universities for research purposes. | had two (2) viable development
tools to choose from: HCL, and ORBeéline. | choose ORBeline for obvious reasons.

. ORBélineis built to the CORBA specification that is the industry standard.
. ORBeélineisacommercially supported product.

. ORBédlineisavailable for many platforms and compilersincluding GCC

. HCL isaproprietary framework.

| requested research support from other commercial ORB vendors including Iona Technologies Inc.,
Candle Inc., HP, IBM, and DEC. At the time, these companies either declined support, or offered support
in form of single node software licenses (runs on one host). What good is an ORB that runs on one (1)
machine only? The marketing supervisor Suresh Challa and other PostM odern staff members have been
very helpful and were very generous to allow me to use ORBeline without sizing restrictions for my

research project. Late in 1995, | received some licenses to run lona's Orbix on Windows 3.1. The
ORBeline product supports both the UNIX and NT side of my research and the PC workstation

requirements will use the Orbix 3.1 (never completed) - Villanova has hundreds of PCs and many UNIX

workstations. The majority of my investigation into distributed programming using ORBs deals with the
ORBeéline system because | have had accessto it for ayear.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ ORBeline_.html [20/02/04 05:41:14 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.vill.edu/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Research Schedule

Research Schedule

This research has been submitted to the computer engineering department in two (2) phases. The first
submission was for an independent study course. It included reviews of distributed object frameworks,
CORBA, and selected topics in intelligent algorithms. Also, as a proof of concept, a prototyping plan was
presented. A supplement to the first report was submitted to complete the thesis requirements. Included

In this last submission was the software prototype which was implemented on a distributed,
heterogeneous multi-computer. This multicomputer consisted of both Sun Sparc workstations running
Solaris and SunOS and PC-compatibles running MS-Windows NT (i.e. SVR4, BSD, NT-WIN32). The
prototype implements a parallel version of a dynamic programming algorithm which calcul ates the
optimal solution to both the matrix multiplication order problem and the polygon triangularization
problem (See Section 1.4.1) in paralldl.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Research_Schedule_.html [20/02/04 05:41:15 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Object Frameworks

Object Frameworks

High level, domain specific software is usually built on top of low level operating system, database,
communication, and user interface services. The programming interface to these services is complicated
and software written at this level is error prone and difficult to maintain. It has been common practice to
assemble common service requirements and construct high level APIs or service layers. This proven
technique has evolved in the form of object frameworks.

Object frameworks provide a consistent and efficient foundation for producing object oriented systems.
Object frameworks consists of general, reusable, objects hierarchiesin the form of code, binary libraries,
compilers/parsers and design patterns. They are more than application programming interfaces (APIs).
Frameworks not only provide developers with general objects like storage classes and file 1/0O but they
also encapsulate complicated operating system services and proven design patterns.

These common object frameworks allow for very efficient use of lower level system services through
consistent object patterns. An object framework may alow an application level object to be pulled from a
database, distributed to remote and local processes, replicated to redundant systems, automatically made
persistent, and displayed to an operator. In this way, complicated distributed systems can be designed and
built using application level, abstract service layer objects.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Frameworks1.html [20/02/04 05:41:16 p.m.]

mailto:mstevens@ent.mrj.com

Acceptance of Object Frameworks

Acceptance of Object Frameworks

for many reasons. The reason that object frameworks are not in widespread use today in large projectsis
lack of adequate training. Many engineers considered qualified in object-oriented analysis and design are
actually missing important concepts. Object oriented methodology fundamentals are taught well but
implementation strategies of object oriented designs are presented in alimiting way.

Students of object oriented are correctly shown that all information system problems including data-
processing, simulation, command and control, and real-time are candidates for object oriented designs.
However, they are mislead when example implementations are presented to them. These design and
coding examples show object techniques used at the application domain level only. Operating system,
database, and networking services are excluded from the design. Therefore, when real-world solutions
are attempted in industry, the engineers only apply the object techniques to the domain information, not
the whole architecture. Students are rarely shown that features of operating systems, databases and
networking protocols can be encapsulated in Small Talk or C++ objects just like bank accounts and
personnel data.8

It is complicated and costly to develop software on high performance platforms and operating systems
like UNIX. Students have been taught that object oriented techniques facilitate higher quality software in
these environments. The information system industry is struggling to deploy distributed systems. The
complication and detail of new operating systems, network programming APIs, and parallel architectures
Is making this deployment slow. Object frameworks apply object technology to simplify distributed
programming projects.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Acceptance_of Object_Frameworks_.html [20/02/04 05:41:17 p.m.]

mailto:mstevens@ent.mrj.com

The Divided Framework Camp

The Divided Framework Camp

There have been two strategies used when designing general object frameworksin C++. (1) Design the
framework so that almost all classes are part of the same inheritance tree. In other words, almost all
classes are descendants of a super, abstract object. Thisis similar to the approach seen in SmallTalk. This
is called the 'single tree' approach. (2) Design your framework so that it doesn't. Thisis called the 'forest’
approach because there are many trees. For now | am partial to the single tree approach but | have seen
some interesting designs using templates and the new Standard Template Library (STL). The STL is not
presented in this paper.1

The strategy you should use for an object framework depends on the requirements of the system. One
requirement or capability called run-time type information is presented next as an example of a
requirement that can only be satisfied with the single-tree object framework. Thereis presently an effort
under way to produce an ANSI/ISO standard for C++ which includes come of the capabilities here
including run-time type information.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_Divided_Framework_Camp_.html [20/02/04 05:41:18 p.m.]

mailto:mstevens@ent.mrj.com

Run Time Type Information (RTTI)

Run Time Type Information (RTTI)

When writing high quality object systemsit is necessary to have collections of objects. As an example,
one might need alinked list of bank accounts for afinance program. In aclassic C program alinked list
Isimplemented using pointers. A node in the list has a pointer to the next node and a pointer to the data
element in the list. This data pointer could be typed to be a pointer to abank _account structure. If

there are many types of bank accounts then the bank account structure could be expanded to handle
the general case and atype field could be placed in the header of the bank _account structure. Inthis
way, abank_account typed linked list can be populated with heterogeneous set of bank account
information. See below.

struct bank_account {

short account _type;

struct node {
struct node *previous;

struct bank_account *dat a;

struct linklist {
struct node *head;

struct node *tail;

Code Block 2 - Example Bank Account Linked Listin C

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Run_Time_Type_Information__ RTTI__.html (1 of 3) [20/02/04 05:41:20 p.m.]

Run Time Type Information (RTTI)

Through object oriented techniques, we can improve on this design by making the linked list typed to a
abstract account object. Every type of bank account could be implemented using this design through
inheritance. A checki ng_account class could inherit from the abstract bank _account class. In

fact, all accounts could be descendants of the abstract bank _account . All account classes can be
stored in the linked list because all accounts are of type bank account . The common operations that

can be performed on the accounts are limited to the set of virtual functions in the base class
bank account . The object oriented design provides a powerful storage mechanism but the retrieval is

still complicated. When aretrieval is made on thislink list the result is a pointer to abank _account
object. However, the pointer actually represents a specialized, concrete account type.

In order to safely type cast apointer to abank account object to its actual defined class, type

information can to be stored in the object. Explicit type information, like the type field found in the C
implementation bank _account structure above, is considered undesirable in object oriented designs.

Some argue that a design that requires type information in an object is "ugly". The argument is that the
need for type information can be satisfied instead with a better inheritance scheme or application of
polymorphism.

However, type information is required for truly heterogeneous collections. Actually, more than just type
information is needed to use dynamic heterogeneous collections. RTTI provides the basis for two
capabilities: cloning and narrowing.

. Cloning isthe ability to duplicate (memory copy) an object without specifying the type explicitly.
Normally, to make a copy of an object the size of an object must be known and the type of an
object must be known to determineits size.

. Narrowing isthe ability to automatically and safely type cast an object to a more specific
definition of it. For instance, a pointer to aback _account object might need to be safely type
casted to a more specific account type without explicit type information in the public interface of
thebank _account object.

RTTI isan newly adopted requirement of the ANSI C++ standard. However, without standard RTTI and
the complicated template classesin the STL, framework designers for years have implemented RTTI
with a proven technique of single tree libraries. Briefly stated, RTTI is achieved by including the
mechanism for type information in the interface of the root object of the tree library. In thisway, the
RTTI mechanism is a primitive capability of the framework. Most single tree implementation include
additional capabilitiesin the root object; many of these primitives depend on the RTTI.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Run_Time_Type_Information__ RTTI__.html (2 of 3) [20/02/04 05:41:20 p.m.]

Run Time Type Information (RTTI)

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Run_Time_Type_Information__ RTTI__.html (3 of 3) [20/02/04 05:41:20 p.m.]

mailto:mstevens@ent.mrj.com

Seridizing the Object

Serializing the Object

Another capability that the single tree object framework providesis serializing objects. Objects can be
sent across an 1/0 stream when it is serialized. For instance, an object can be passed between local and
remote processes, saved to files, and shared between heterogeneous networks. To thisday, | have not
found a solution to this distributed object requirement other than the single tree design.

When information is stored to disk or passed over the network it can be read back into a process or
received at the other end of the network connection because the reader has knowledge of the format of
the information. In addition to the format or size of the information, the reader must know the type
currently being read. In a synchronous algorithm, the flow of the algorithm determines the type of the
information being read. In the asynchronous case, each segment of information being read must have a
common header which contains type information. Using type information, specific formats can be
selected from the set of all known formats. As an example, the software might require that all records
stored to disk be preceded by atype header and all records/messages sent over a serial stream shall be
preceded by the common header also. The common header requirement of the software forms a contract
or shared interface to information.

The single tree object framework implements a protocol for distributing objectsin a more elegant
fashion. The contract or agreement of header format is in the abstract class - the root of the tree. All
objects in the framework agree to the contract (method of serializing objects) by inheriting from the
abstract root object who declares the format. The single tree framework satisfies the requirement of
serializing objects. In general, common object requirements are most easily satisfied by thisway as
shown in the following section.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Serializing_the_Object_.html [20/02/04 05:41:21 p.m.]

mailto:mstevens@ent.mrj.com

Framework and Object Requirements

Framework and Object Requirements

Consider the question about the goals and capabilities of aframework. If the requirement of a framework
isthat all objects have a common, primitive set of capabilities and the capabilities are not provided
through alanguage primitive then the single tree library is a viable solution. Some argue this statement
by presenting object frameworks that are not singly rooted. These arguments prove to be weak when it is
pointed out that even powerful libraries like the Adaptive Communication Environment (ACE) lack

many higher level framework requirements like serializing objects. ACE does not use RTTI because
there isn't any requirement on ACE to use RTTI. Object frameworks should be compared first according
to the requirements of the framework. The goals of NIHCL are different from those of ACE. Therefore,
they should be compared carefully if at all.[7]

Other reasons presented in opposition to the single tree object frameworks deal with performance and
integration restrictions. A deep class inheritance tree tend to over complicate the virtual function tables,
especially when multiple inheritance is used. Dispatching paths through a complicated class tree can
create performance problems. The careful analysis of frameworks like NIHCL, HCL, NetClasses, etc.
show that most interfaces are designed using inline functions and minimized levels of indirection to
provide acceptable performance.

The argument that single rooted libraries do not integrate efficiently with other libraries is misleading
when the integration concerns libraries with duplicate capabilities. If reasonable consideration is taken
during the design of asingletree library, then integration with other frameworks can be done. Integration
of frameworks with overlapping capabilitiesis always difficult. A good example of thisisthe concurrent
use of the C++ I/O stream library with the C standard I/O library routines which can lead to buffering
problems.

| have only found two type of object frameworks - those that do and those that do not use the single tree.
Excluding the newly born technology of the ANSI/ISO C++ standard template library (STL), |
characterize these two design strategies further: there are frameworks that do not use the single tree
paradigm and there are frameworks that work - there are engineers who debate the single tree paradigm
and engineers who get the work done. In this paper, | present frameworks from both camps. The ACE
framework is aforest implementation but ACE doesn't satisfy requirements such as object serializing or

heterogeneous collections.

An informative debate should be focused on the goals and requirements of a desirable framework before
investigating the use of asingle tree or forest. Once these capabilities are determined, the design strategy
will be obvious. It can be shown that the single tree strategy satisfies certain library requirements where

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Framework_and_Object_Requirements_.html (1 of 2) [20/02/04 05:41:22 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt

Framework and Object Requirements

forest strategy does not - and vice versa.

The following sections present four object frameworks which were encountered during this research. The
NIH Class Library is presented first. The Hughes Class Library and NetClasses Library follow. These
two proprietary libraries demonstrate the reuse of many framework techniques from the NIHCL which is
afederally funded public domain software. Finally the Adaptive Communication Environment (ACE) is
presented not only because it isahigh quality framework but also because it isimplemented as a forest
of objects as opposed to the first three frameworks which are single rooted.

It would take volumes of documentation to fully cover all capabilities and design techniques of the

following frameworks. Therefore, only crucial library design details from each framework are discussed
here. Special interest is taken in the implementation of the root objects of the single tree libraries and the
primitive classes of the ACE library. The interest here is to determine the techniques used by framework

designersto satisfy distributed object requirements.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Framework_and_Object_Requirements_.html (2 of 2) [20/02/04 05:41:22 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
mailto:mstevens@ent.mrj.com

Nationa Institute of Health Class Library (NIHCL)

National Institute of Health Class Library (NIHCL)

The NIH Class Library (NIHCL) [8] is composed of around sixty (60) general purpose classes that all
belong to a single inheritance tree with class Cbj ect astheroot. The class Obj ect declares data

members and virtual functions that allow for copying, printing, storing, reading, and comparing objects
for al classesin thelibrary that inherit from Qbj ect . Almost all classesin the NIHCL and any new

class added by users of NIHCL are ultimately descendants of the abstract class Qbj ect . All these
specialized classes inherit the public interface of the class Cbj ect which alows a common interface for
all objects beyond the primitive capabilities of the language. This technique, introduced in the previous
section is called a single root tree or common object library.

It isimportant to note that it is the interfaces to these common functions that are inherited, not the
implementations of these functions. The virtual functions of the root Cbj ect implement the
polymorphic characteristic of the common functionsin all descendent objects. The inheritance tree for
most of the NIH classes is shown below.

NIHCL - library static nenber variables and functions

ohject - root of the NNH C ass Library inheritance tree

|-Bitset - set of small integers

| -G ass - class descriptor

| -Coll ection - abstract class for collections

| Arraychar - byte array

| ArrayCb - array of Object pointers

| Bag - unordered collection of Objects

| SeqCtn - ordered, indexed collections

| Heap - min/nmax heap of Cbject pointers

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of Health_Class_Library .html (1 of 4) [20/02/04 05:41:24 p.m.]

Nationa Institute of Health Class Library (NIHCL)

| LinkedList - singly linked Iist

| Ordereddtn - ordered Object pointers

| Sorteddtn - sorted collection

| KeySortCtn - keyed sorted collection

| Stack - stack of (bject pointers

| Set - unordered collection of non-duplicate Cbjects

| Dictionary - set of associations

| IdentDict - keyed by Cbject address

| IdentSet - set keyed by Object address

| -Date - Gregorian Cal endar date

| -FDSet - set of file descriptors

| -Float - floating point number

| -Fraction - rational arithmetic

| -l nteger - integer nunber object

|-lterator - collection iterator

| -Link - abstract class for LinkedList |inks

| Link@ - link containing Cbject pointer

| Process - co-routine process object

| HeapProc - process with stack in free store

| StackProc - process with stack on main() stack

| - LookupKey - abstract class for Dictionary associations

| Assoc - association of Cbject pointers

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of Health_Class_Library .html (2 of 4) [20/02/04 05:41:24 p.m.]

Nationa Institute of Health Class Library (NIHCL)

| Assoclnt - association of Object pointer with |nteger

|-Nil - the Nil object

| -Point - X/Y coordinate pair

| - Random - random nunber gener at or

| - Range - range of integers

| - Rectangl e - rectangl e object

| - Semaphore - Process synchroni zation

| - Shar edQueue - shared queue of Objects

| -String - character string

| Regex - regul ar expression

|-Time - time of day

| -Vector - abstract class for vectors

| BitVec - bit vector

| ByteVec - byte vector

| ShortVec - short integer vector

| I'ntVec - integer vector

| LongVec - long integer

| FloatVec - floating point vector

| Doubl eVec - doubl e precision floating point vector

| - ReadFronirbl - tables used by Object 1/0O readfrom()

| Oafd - file descriptor hject 1/0

| OQOn - abstract class for Ghject I/0

| OO stream- abstract class for stream Cbject 1/0

| OOnihin - stream Cbject 1/0

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of Health_Class_Library .html (3 of 4) [20/02/04 05:41:24 p.m.]

Nationa Institute of Health Class Library (NIHCL)

| - Schedul er - co-routine Process schedul er

| -StoreOnThl - tables used by Cbject 1/0O storeOn()
O Cofd - file descriptor Object 1/0

O OCout - abstract class for Ohject /0

O Costream - abstract class for stream Gbject /0
O Oni hout - stream (bject 1/0

Figure 2 - Inheritance Tree of NIH C ass Library

The foll owi ng di scussion of the NIHCL Object and C ass classes will

refer to selective code bl ocks

in Listing X and Y respectively. Full code listings for pertinent NIHCL classes are in the

appendi ces.

Thi s page was | ast updated on February 18, 1997
Pl ease send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of Health_Class_Library .html (4 of 4) [20/02/04 05:41:24 p.m.]

mailto:mstevens@ent.mrj.com

RTTI

RTTI

The RTTI capability isimplemented in the NIHCL with Cl ass object. The T ass object isnot a user
object like Poi nt or Dat e. The Cl ass object encapsulates the "type" information of all NIHCL
objects (al objects that inherit from Obj ect). Every NIH class has a static member variable which isan
instance of Cl ass.[9] Class Obj ect declaresavirtua function

virtual const C ass* isA() const;

which returns a pointer to the Cl ass object which is a static member of the referenced object. Asan
example, if you had a pointer to an Obj ect which isreally of type Poi nt ,

oj ect* obj _ptr = new Point(0,0);
then a pointer to the Poi nt : : cl assDesc static member variable can be obtained using[10]

const C ass* class_ptr = obj _ptr->isA()

Even though obj ptr isof type Chj ect *, thevirtual specification of Obj ect: : i SA() will mapto
thePoi nt : : i sSA() function (if the object that obj _pt r pointstoisreally of type Poi nt). Thisis
how all the virtual functions declared in Gbj ect work; create new primitive capabilities for the classes
of the tree.

Thecl assdesc member variable of NIHCL classesis designated as "private" so that is can not be
modified easily. Explicit access to the static value of X: : cl assdesc isthrough the static member
function

const C ass* X :desc() { return &cl assDesc; }

Again, apointer to the Cl ass instance for any NIHCL class can be accessed without an instance of the
class.

const Class * class_ptr = Point::desc();

The RTTI capability is accessed through two functions declared by all NIHCL classes

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_RTTI_.html (1 of 2) [20/02/04 05:41:26 p.m.]

RTTI

bool isMenber O (const C ass&) const
bool isKindOf (const C ass& const

Thei sMenber O member function returns YES if the object it is applied to shares the argument

Cl ass. Thei sKi ndOf member function return YES if the object it is applied to shares the argument
Cl ass or isadescendent of aclasswhich sharesthe argument Cl ass. As seen in the example below, a
St ri ng objectisakind of Cbj ect but not amember of the Cbj ect class.

String s("Villanova");
if(s.isMenmberOF(*String::desc())) // YES
if(s.isKindOF(*String::desc())) // YES

i f(s.isMenmberOf (*Object::desc())) // NO
if(s.isKindO(*Object::desc())) // YES

i f(s.isMenmberOf (*Point::desc())) // NO

i f(s.isKindO(*Point::desc())) // NO

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_RTTI_.html (2 of 2) [20/02/04 05:41:26 p.m.]

http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Object Comparison

Object Comparison

Another primitive capability of the NIHCL is object comparison. A robust comparison capability both
simplifies higher level application programming and also enables the use of complex collection classes
such as bags, dictionaries, sets, etc. There are many ways to compare objects. data member comparison,
address comparison, and abstract comparisons. Object identification, versions, equality, and scope are all
part of the comparison capability. In the NIHCL, comparison is based on an abstract notion of an object's
"species’. Objects that belong to the same species can be compared. It isarun-time error to compare
objects that are not of the same species. The function

bool isSpecies(const O ass&) const;

issimilar toi sMenber OF except that YES isreturned only if the object that i sSpeci es() isapplied
to is part of the species of the argument Cl ass. Therefore, the equality of objectsis determine by the
function

bool isEqual (const (bject& const;

which first checks the species of the argument objects and then checks their explicit equality with the
oper at or ==() member function. As an example,

bool Point::isEqual (const Object& p) const

return p.isSpecies(classDesc) &&

*this == (const Point&)p;
}

bool Point:: operator==(const Point& p) const

return (xc==p.xc && yc==p.yc);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Comparison_.html (1 of 2) [20/02/04 05:41:27 p.m.]

Object Comparison

Another point of view of equality is whether two argument objects are not just i sequal () but arethe
same object in memory.

bool isSame(const Cbject& const
The difference between i sSanme() andi sEqual () can be seen by example:

String a("Villanova"), b("MRJ"), c("Villanova");

if (a.isEqual(b)) // NO

if (a.isSame(b)) // NO

if (a.isEqual(a)) // YES

if (a isSane(a)) // YES

if (a.isEqual(c)) // YES

if (a isSame(c)) // NO

The comparison capability isimplemented using the functions mentioned above. The compare function
int conpare(const Cbject& const

returns a negative value if the reference object is"less' than the argument object; positive if greater than
and zero if equal. Again, it isarun-time error to compare two objects that are not of the same species.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Comparison_.html (2 of 2) [20/02/04 05:41:27 p.m.]

http://www.vill.edu/
http://www.mrj.com/
http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Collections and Iterators

Collections and Iterators

It was mentioned in the previous section that it is sometimes necessary to have heterogeneous container
classes. The NIHCL allows for this using the robust set of container classes which all inherit from the
abstract Col | ecti on class. TheclassCol | ect i on isthe primitive interface of al container classes.

Theclass Col | ect i on models acontainer of Qbj ect (s). Because Col | ect i on(s) can contain
instances of (bj ect (s), Col | ect i on(s) can contain another Col | ect i on which alows for
powerful data structures.

In addition to the extensible Col | ect i on classes, the NIHCL implements a new design pattern called
theiterator. Theclass| t er at or encapsulates the functionality of moving through aCol | ecti on. It
Is called an iterator because it can travel through aCol | ect i on in many ways: forward, backward, etc.
Thel t erat or isrelatedtothe Col | ecti on classsoany | t er at or will work with any class
inheriting from Col | ect i on. This Collection-Iterator model provides alevel of indirection that allows

for multiple, simultaneous consumers without the performance penalty of the collection managing
consumer reference points.

The NIHCL implementsthe Ni | object/class to enhance the capabilities of the Col | ect i on classes.
The Ni | object inherits from the Cbj ect class so that when a programmer needs to use areference to
nothing (nil), the primitive operations allowed for Obj ect s can be applied without causing fatal errors.
TheNi | class prevents the unsafe use of NULL or O in pointers.

class Object {
private:
static hject* reader(AO G n& strn;

static Object* reader(O O fd& fd);

pr ot ect ed:

void Object(OQfd&);

void Object(A QA n&);

virtual void storer (O Oofd&) const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (1 of 4) [20/02/04 05:41:29 p.m.]

Collections and Iterators

virtual void storer(QO Oout& const;

void Object(void) {}

publi c:

static Object* const nil;

static Object& castdown(Cbject& p) { return p; }

static const (bjecté& castdown(const bhject& p) { return p; }

static Object* castdown(Cbject* p) { return p; }

static const (bject* castdown(const oject* p) { return p; }

static const O ass* desc();

virtual const Cass* isA()const = 0;

virtual Object* shall owCopy() const = 0;

static ohject* readFron(O O fd& fd);

static ohject* readFron(A O n& strm;

const char* classNane() const;

oj ect* deepCopy() const;

bool isKindOf (const Cl ass& const;

bool i sMenberOf (const O ass& clid) const

{ return isA()==&clid; }

bool isSane(const Object& ob) const

{ return this==&ob; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (2 of 4) [20/02/04 05:41:29 p.m.]

Collections and Iterators

bool isSpecies(const O ass& clid) const

{ return species()==&clid; }

voi d st oreMenber On(A Oof d&) const;

voi d storeMenber On(O Cout & const;

void storeOn(d Oof d&) const;

void storeOn(d Oout & const;

voi d* _safe castdown(const Cl ass& const;

virtual int conpare(const Object& const = 0;

virtual Object* copy() const;

virtual void deepenShal | owCopy() = O0;

virtual void dunpOn(ostream& strm =cerr) const;

virtual unsigned hash() const = O;

virtual bool isEqual (const Object&) const = O;

virtual const C ass* species() const;

virtual void* _castdown(const C ass&) const;

Code Block 3 - NIHCL Object class declaration

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (3 of 4) [20/02/04 05:41:29 p.m.]

mailto:mstevens@ent.mrj.com

Collections and Iterators

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (4 of 4) [20/02/04 05:41:29 p.m.]

Object Narrowing (safe downcast)

Object Narrowing (safe downcast)

In the previous section the concept of an object downcast operation was introduced. The downcast, or
"narrowing" operation, allows an instance or pointer to a general object to be cast to the type of amore
specific declaration. In the NIHCL, it is often necessary to downcast a pointer of type Cbj ect toa

pointer of type Col | ect i on; apointer of type Col | ecti on to apointer of typeDi cti onary.In
many cases, information can be managed as pointersto Qbj ect (s). The generalized virtual functions

like copy(), shallowCopy(), storeOn(), readFrom(), etc. can be used until the object needs behavein a
specialized manner. Downcasting to a more specific formis required to call specialized member
functions. The NIHCL implements downcasting or object narrowing with the static castdown functions

static X&

X:: cast down(Obj ect & p)

static const X&

X:: castdown(const (bjecté& p)

static X*

X: : cast down(Qbj ect* p)

static const X*
X: : castdown(const (bject& p)

These static function can be called without an instance of a object. Every combination of non-const,
const, pointer, and reference argument typesis provided. The castdown functions are automatically
produced by the NIHCL macros. Also, the complicated situation of multiple inheritance is handled

properly inthecast down() functions.

The castdown functions work because of the virtual _cast down() function. Inthe example
oj ect* obj _ptr = new Airpl ane;

Vehi cl e* veh_ptr = Vehicl e::castdown(obj ptr);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Narrowing__safe_downcast__.html (1 of 2) [20/02/04 05:41:31 p.m.]

Object Narrowing (safe downcast)

Thecast down() function callsthe cast down() function with the pointer to the static class
descriptor object of the type to be cast down to as an argument

obj _ptr->_castdown(*Vehicle::desc());

The virtual nature of the _cast down() function causesthe"real” cast down() function to be
called for the actual type of obj _ptr whichisAi r pl ane:: cast down()

All NIHCL classesimplement X: : _cast down() so that the argument class descriptor object is
compared with its own class descriptor. If they arethe same - if obj _pt r isof type Vehi cl e - then

t hi s [11]isreturned as* voi d. If they are not equal (asin our example where Vehi cl e: : desc() is
not equal to Ai r pl ane: : desc()) thenthe cast down functioniscalled for the base class. In this

way, the entire inheritance tree is search for avalid cast. The search will continue to the top of the tree at
oj ect: : _cast down() which will return NULL to end the search and the cast will fail. In our

example Ai r pl ane: : _cast down() will fail and Vehi cl e: : _castdown() iscalledandt hi s
IS returned.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Narrowing__safe_downcast__.html (2 of 2) [20/02/04 05:41:31 p.m.]

mailto:mstevens@ent.mrj.com

Copying Objects (Shallow and Deep)

Copying Objects (Shallow and Deep)

In order to perform object I/O (the ability to send and receive Objects over 1/0 medialike files and
communication streams), the ability to accurately copy Objectsis needed. In the previous section it was
shown that there are many ways to compare Objects. It is the point of view of the Objects that matters
when comparing - comparison at the physical (memory) or datalevel (information)?

Copying Objects deals with similar issues. There two ways that Objects can be copied: shallow and deep.
A shallow or deep copy refersto how the resulting Object has its data members copied. The strategy for
copying Objects begins the same for shallow and deep copies. In fact, a shallow copy is aways done first
during a deep copy.

During a copy operation, a new block of memory is allocated from the free store for the new object. Data
member values are copied from the source object to the target object memory depending on the type of
data member. Data members can be any of the following:

. instance of aNIHCL class

. pointer to an instance of aNIHCL class
. primitivetypelikeint or float

. array (pointer) of primitive types

. non-NIHCL object, or structure

When the data members are instances of data structures or primitives, the shallow and deep copies are the
same. In this case, the data member istruly duplicated in memory. However, when the data member isa
pointer to an instance of a data structure or primitive, the data member can be shallow copied or deep
copied. The shallow copy will duplicate the value of the pointer (address). The deep copy will duplicate
In memory the instance of the data structure or primitive type.

The implementation of shallow copy in NIHCL isavirtual member function of Cbj ect

Obj ect* X :shall owCopy() { return new X(*this); }

The X: : shal | owCopy() calsthe copy constructor of the X object. Therefore, the real work of the
shallow copy is done by the copy constructor.[12] Theshal | owCopy() functionisavailableto all
NIHCL classes and user defined classes that inherit from the NIHCL tree.

In order to handle the deep copy of member variables which are pointers, the NIHCL classes implement
the non-virtual deepCopy() andvirtual deepenShal | owCopy() functions. The deepCopy()

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Copying_Objects__Shallow_and_Deep__.html (1 of 2) [20/02/04 05:41:32 p.m.]

Copying Objects (Shallow and Deep)

function first creates a shallow copy of the source Object using : : shal | owCopy(). Then,
deepCopy() calsdeepenShal | owCopy() to change the shallow copied target to a deep version.
ThedeepenShal | owCopy() function starts by calling the deepenShal | owCopy() of its parent
class. Inthisway, al ancestor datais properly copied. An Object'sdeepenShal | owCopy() function
will call deepenShal | owCopy() on al member classinstances and deepCopy on all member
pointers to classes.

The goal of the deep copy isto have a new Object which shares no data with the source Object. To do
this, thedeepCopy() function keeps arecord of all new instances of member Objectsit copies using

thel dent Di ct Object. Thistechnique allows for the situation where a source Object has two or more

data members all pointing to the same instance of a class. This multi-referenced Object is only deep
copied once in the target Object.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Copying_Objects__Shallow_and_Deep__.html (2 of 2) [20/02/04 05:41:32 p.m.]

mailto:mstevens@ent.mrj.com

Object 1/0

Object 1/0O

The deep copy technique must be implemented before object 1/0 can be done. The issues involved with
object 1/0 aso include the complication of data members with referenced to the same objects. If atarget
object has many data members that all point to the same object, this multi-referenced object must
transferred only once. The values of the data members must be transferred as object references.

Output

The Qbj ect : : st oreOn() function implementsthe I/O capability and issimilar to the deepCopy/()
function in that the st or eOn() function keeps arecord of all objects that it has stored. The

st or eOn() function checksthistable of stored objects and stores an object reference instead. The

st or eOn() function callsthe virtual function st or er () to actualy do the work.

Thest orer () functionfirst callsthest or er () function of its base class and then storesits own

member variables. Member variables are stored by explicitly calling the storage mechanism of itstype.
The object name is also stored so that |ater the object's reader function can load the serialized object.

Input

Object input isimplemented by the static r eadFr on() function which is the counterpart to the
st oreOn() function. The r eadFr on() function interprets the input stream by reading the objects
stored by st or eOn() and building atable. When ther eadFr on{) function encounters an Object

reference, the reference is converted into a pointer by looking up the object reference in the table. The
r eadFr on() function loads an instance of an object by calling that object's specific 1/0 constructor.

Every NIHCL class has constructors with 1/0 objects as arguments to the constructor.

Ther eadFr onm() constructors perform much likethe st or er () functions. A r eadFr om()
constructor first calsits base classs r eadFr on() constructor to load the ancestor data members. Then
the constructor initializes its own data members by calling the type specific read mechanisms.

The Object I/0 is performed in two stages: class independent 1/0 and class dependent 1/0. The
st oreOn() andr eadFr on() functionsimplement the class independent portion by converting

Object pointers to and from Object references using the temporary tables generated during reading and
writing. The various Object st or er () functionsand r eadFr on() constructor implement the class

dependent 1/0O.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_|I_O_.html (1 of 2) [20/02/04 05:41:34 p.m.]

Object 1/0

Anintegra part of the Object 1/0 (OIO) capability arethe O G n and O Oout classesand all their

derived Object /O classes. These classes encapsul ate the primitive mechanism that store and retrieve
data types in a machine independent, and program independent format.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_|I_O_.html (2 of 2) [20/02/04 05:41:34 p.m.]

mailto:mstevens@ent.mrj.com

Writing NIHCL Classes

Writing NIHCL Classes

The NIHCL comes with template files for developing your own classes compatible with the NIHCL tree.
Also, the common functions needed for RTTI, Collections, comparison, Object I/O, etc. are easily
included in your own classes using an extensive set of preprocessor macros in your class definitions and
declarations.

The following code blocks show the detailed pre-processor macros that allow new NIHCL classesto be
created with ease. | have found macros very similar to these in other object frameworks. Because of the
complicated "contract” that new classes sign up to by inheriting from the NIHCL tree, these macros are
necessary to insure correct virtual function declaration and conformance to other requirements of the
tree. The common functions need not be typed again because they are produced properly by the macros.
The class Point is declared as follows:

class Point: public Object {
DECLARE_MEMBERS(Poi nt) ;

pr ot ect ed:

short xc, yc;

virtual void storer(O Oofd&) const;
virtual void storer(Q Oout&) const;
publi c:

Point () {xc =yc = 0;}

Poi nt (short newx, short newy) {xc=newx; yc=newy;}
short x () const {return xc; }

short x (short newx) {return xc = newx;}

short y () const {return yc;}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (1 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

short y (short newy) {return yc = newy;}

Poi nt operator+ (const Pointé& p) const

{return Point(xc+p.xc, yc+p.yc);}

Poi nt operator- () const {return Point(-xc,-yc);}
Poi nt operator- (const Pointé& p) const

{return Point(xc-p.xc, yc-p.yc);}

bool operator== (const Point& p) const

{return (xc==p.xc && yc==p.yc);}

doubl e di st (const Pointé& p) const

{return hypot (xc-p.xc, yc-p.yc);}

virtual int conpare (const Object&) const;
virtual void deepenShal | onCopy ();

virtual unsigned hash () const;

virtual bool isEqual (const Object& const;
virtual void printOn (ostream& strm =cout) const;

virtual const C ass* species () const;
H
Code Block 4 - Example NIHCL Point Class Declaration

Besides the framework functions explicitly placed in the class declaration (shown in bold) the
DECLARE_MEMBERS macro supplies the rest of the common functions as follows:

#def i ne DECLARE_CASTDOMWN(cl assnane) \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (2 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

static cl assnane& castdown (bject& p) \

{return (classnane&)p;} \

static const classnanme& castdown (const Object& p) \

{return (const classname&)p;} \

static classnane* castdown (Chject* p) \

{return (classnane*)p;} \

static const classnane* castdown (const Cbject* p) \

{return (const classnane*)p;}

#def i ne DECLARE_MEMBERS(cl assnane) \

private: \

static C ass classDesc; \

public: \

DECLARE_CASTDOWN(cl assnane) \

static const Cl ass* desc () {return &cl assDesc;} \

static classnane* readFrom (O QG n& strn) \

{return castdown(desc()->readFron(strm);} \

static classnane* readFrom (O G fd& fd) \

{return castdown(desc()->readFrom(fd));} \

classname (O QG nNn&); \

classname (OO fd&); \

virtual const Cass* isA () const; \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (3 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

virtual Object* shall owCopy () const; \
virtual void* _castdown (const C ass&) const; \
private: \

static Object* reader (OO N& strm; \

static hject* reader (O Qfd& fd);
Code Block 5 - NIHCL Framework Declaration Macros

The definition of class Poi nt includes the following - notice that the DEFI NE_ CLASS macros takes
care of most of the function and member definitions:

DEFI NE_CLASS(Poi nt, 1,"Point.c,v 3.13 92/12/19 15:53: 22", NULL)
bool Point::isEqual (const Objecté& ob) const {

return ob.isSpecies(classbDesc) && *thi s==castdown(ob); }
const C ass* Point::species () const { return &cl assDesc; }
unsi gned Point::hash () const { return xc"yc; }

int Point::conpare (const (bject& ob) const {

assert ArgSpeci es(ob, cl assDesc, "conpare");

const Point& p = castdown(ob);

int t =yc - p.yc;;

if (t !'=0) return t;

el se return xc - p.xc; }

voi d Poi nt:: deepenShal | owCopy () {}

void Point::printOn (ostrean& strm const {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (4 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

strm<< ' (' << xCc << ',' << yCc << ")’

: pY
Point::Point (OO N& strm : BASE(strm {
strm>> xc >> yc; }

void Point::storer (O Qouté& strm const {
BASE: : storer(strn); strm<< xc << yc; }

Point::Point (OQfd& fd) : BASE(fd) {

fd >> xc > yc; }

void Point::storer (O OQofd& fd) const {

BASE: : storer(fd); fd << xc << yc; }

Code Block 6 - Example NIHCL Point Class Definition
where the DEFINE_CLASS macrosis

#def i ne _DEFI NE_CLASS(cl assnane) \

oj ect* classnane::reader (O QO Nn& strm \
{return (Qoject*)new classnane(strm;} \

oj ect* cl assnane: :reader (OO fd& fd) \
{return (Qoject*)new classnane(fd);} \

oj ect* cl assnane: : shal | owCopy () const \

{return (oject*)new cl assnanme(*this);}
#defi ne _DEFI NE_CLASS_ALWAYS(cl assnane, version,identification,initor) \
O ass cl assnane: : cl assDesc (STRI NG ZE(cl assnane), \

Cl asslLi st (0, BASE CLASSES, 0), \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (5 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

Cl asslLi st (0, MVEMBER CLASSES-0, 0), \

Cl assLi st (0, VI RTUAL_BASE_CLASSES- 0, 0), \
version, identification, sizeof(classnane), \
cl assname: : reader, classnane::reader, \
initor); \

const C ass* classnane::isA () const \
{return &cl assDesc;}

#def i ne _DEFI NE_CASTDOMWN(cl assnane) \

voi d* cl assnane:: _castdown (const C ass& target) const \
{\

if (& arget == desc()) return (void*)this; \

return BASE:: castdown(target); \

#def i ne DEFI NE_CLASS(cl assnane, version,identification,initor) \
_DEFI NE_CLASS(cl assname) \

_DEFI NE_CLASS_ALWAYS(cl assnane, version,identification,initor) \

_DEFI NE_CASTDOMWN(cl assnane)
Code Block 7 - NIHCL Framework Class Definition Macros

The introduction to NIHCL presented in this research paper only touches the surface. Many aspects of
the NIHCL were skipped including its support for light weight processing (LWP). The goal was to show
the NIHCL's support for distributed objects. It will be shown that many designers have reused the coding
techniques and design patterns of the NIHCL in their own object frameworks. The next two sections
introduce object frameworks which implement industrial strength libraries for distributed object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (6 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

computing based on NIHCL.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (7 of 7) [20/02/04 05:41:36 p.m.]

mailto:mstevens@ent.mrj.com

Hughes Class Library (HCL)

Hughes Class Library (HCL)

The Hughes Class Library (HCL) is a proprietary object framework built and used by Hughes Aircraft
for the development of complex, distributed object libraries and applications. | used HCL for over six (6)
months at Martin Marietta where Hughes Information Technology (HITC) group was a subcontractor.

Because HCL is proprietary material, only an introduction to the HCL design patterns and technology is
allowed in this paper; the details of implementation are excluded.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Hughes_Class_Library_ HCL__.html [20/02/04 05:41:37 p.m.]

mailto:mstevens@ent.mrj.com

Introduction

Introduction

HCL issimilar and in many ways based on the technology found in NIHCL and it isfor both this reason
and also HCL is innovative management of distributed objects that | discuss HCL in this paper. |
mentioned in Section X that some companies had invested in distributed object frameworks, Hughes
Aircraft is one such company. HCL isthe basis of many distributed object solutions for the customers of
Hughes Aircraft. NASA is using the HCL technology on the Earth Observation Satellite Information
System (EOSDIS). Also, Hughes Aircraft has a commercially available product for the mission planning
and scheduling of satellites called Delphi in which distributed resource models and activity schedulers
were built using HCL.[13]

HCL provides agenera framework object applications. However, it is obvious that HCL was devel oped
by an aerospace company because of the robust set of class found in HCL for time management. There
are 20 classes associated with date/time management, epoch time information, and temporal -interval
objects. In addition to the general framework which HCL providesthereisalibrary extension for the
management of distributed objects, object communication, and operating system services called HIPC.
The Hughes Interprocess Communication (HIPC) library consists of the following framework
extensions:

Nameserver
IPC

Timer
Notifier

Figure 3 has an inheritance diagram of the classesin HCL and the framework extensions. The classes
from the framework extensions are labeled respectively. Although they are not included in Figure 3,
Hughes also built aHCL extension library for X-Windows programming in OpenLook and Motif. HCL
and the library extensions are an excellent example of aindustrial strength implementation of distributed
objects using a C++ and the single rooted tree design pattern.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Introduction_.html (1 of 2) [20/02/04 05:41:38 p.m.]

Introduction

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Introduction_.html (2 of 2) [20/02/04 05:41:38 p.m.]

mailto:mstevens@ent.mrj.com

HObject ithe Hughes version of NIHCL Objectl

HODbject ithe Hughes version of NIHCL Objecti

Just likein NIHCL, the engineers at Hughes determined that every object in the framework needed to
have certain common characteristics and capabilities:

virtual destructor

run-time type information (RTTI)

run-time dynamic object creation

cloning

support for model/view pattern

object 1/0 streaming and serialization

generic comparison

debugging and logging support

Not only does HCL have the same requirements for objects as NIHCL but also satisfies these
requirements by providing a common interface through a single rooted class called HObject. In fact,
most of the interface to HObject is the same as NIHCL is Object class. In many cases, the only difference
between HObject and Object isin the details like member function names, class names, and other coding
styles. However, there are a'so many differences between HCL and NIHCL. For example, HCL avoids
the notion of iSpeciesi (see section X) in HObject (NIHCL dictates that only Objects of the same species
can be compared). HCL has support for debugging or monitoring of object life cycles. HCL is support for
multiple inheritance for HODbject is not nearly as robust as NIHCL support for multiple inheritance. |
think that HCL was devel oped with some specific software and mission requirements in mind which is
why HCL is not as general or abstract as NIHCL. For instance, the elegant concept of classispeciesi is
missing as are other design patterns because of the strict performance requirements. HCL was probably

designed to insure aroot class (HObject) that was as lightweight as possible. Some notabl e features of
HCL are shown below.

HObj ect - base class of framework
| - Configuration - provides protocol for configurable entities

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (1 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

| ConfigurationFile - stores configuration information

| - H2DPoi nt - unsi gned two-di nensi onal coordinate

| - H2DPoi nt S - si gned two-di nensi onal coordinate

| - Haddress !'PC - descri bes agent by |ocation informtion

| HAddressCd 'PC - describes agent by |ocation infornation

| -HC assDesc - class neta information for HObject derived cl asses

| HAbsCl assDesc - abstract class nmeta information

| - HCndLi ne - argc and argv command |ine hol ding and parsing

| -HCol I ection - abstract collection

| HObj Collection - base class for HObject collections

| HObj List - object collection using |ist container

| HintervalList - collection tine intervals

| HObj OrdList - base class for ordered list collections

| HEIntvlListAbs - abstract base class for HEpochlnterval lists

| HEpochlnterval List - collection of epoch time intervals

| HObj Uni queOrdLi st - ordered list collection with uni que menbers

| HiterList - object list of iterators for noids

| HVsglterList NAMESERVER . noid list iterator

| HObj Array - array collection of HObjects

| HObj Set - object collection using set container

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (2 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

| HPool Abs - abstract object collection using pool container

| HPool List - object list pool collection

| HDi agMsgPool - storehouse of all HDi agMsgs

| HPool Set - object set pool collection

| HDi agMsgSet - gl obal storehouse of all HD agMsgs

| HVCollection - collection of void pointers

| HVList - list collection of void pointers

| - HConnAbs 'PC - abstract ipc connections

| HvsgConn !'PC - connection between nessage agents

| HVsgConnPerm !'PC - pernmanent nessage agent connection

| HVsgConnTenp 'PC - tenporary nmessage agent connection

| HVsgConnUnk 'PC - convertabl e nessage agent connection tenp/perm

| HVsgService 'PC - |istens on well known service ports

| - HDAGNode - directed acyclic graph node (nmenber of HDAG

| -HDate - holds the notion of date YY/ MV DD

| -HDat eTime - holds the notion of a tinme-date HH MM SS YY/ MM DD

| -HDay - holds the notion of elapsed days

| - HDayYear - holds the notion of a year and day within the year

| - HDi agMsg - di agnosti c nessage obj ect

| HRankDi agMsg - priority diagnotic nessage

| - HEpochl nterval - closed tine interval in epoch tine

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (3 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

| - HEpochTine - time since a given absolute tinme called th epoch

| - HHour - el apsed hours

| -H nterval - tinme interval

| -HJulianDay - julian day representation

| -Hvatrix - 3x3 matrix

|-Hvatrix2 - 2x2 matrix

| -HVatrix3 - 3x3 matrix

| -HVatrix4 - 4x4 matrix

| -HMatri xN - NxN matrix

| - HVessage 'PC - abstract nessage

| HvsgData !'PC - nessage representing data

| HvsgAdr 'PC - message representing address information

| Hvsgldentify IPC . nessage identifying address

| Hvsglnterest 'PC - message representing interest

| HvsglnterestRsp 'PC - nmessage interest response

| HvsgReply 'PC - nessage reply

| HvsgRoute !'PC - nessage to be routed

| HvsgCol !'PC - message containing collection object

| HvsgTransfer !'PC - transffered nessage

| HVBgAgent Shut down !'PC - nessage representing agent shutdown notification

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (4 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

| HVbgConnType 'PC - nmessage containing type of connection

| HVBgDi sconnect !'PC - di sconnect nessage

| HVBgShut down 'PC - shutdown nmessage

| HvsgStat !'PC - status nmessage

| HVsgSysShutdown 'PC - total system shutdown nessage

| HvsgText !'PC - text message

| HvsgTextStat 'PC - test status nessage

| -HM nute - el apsed m nutes

| -HMonth - el apsed nont hs

| -HVsgAgent 'PC - abstract nessage agent nmanages connection and address

| HvsgAgent Ns NAMESERVER . nanme server nessage agent

| HNoi dAgent NAMESERVER - npid nane server nessage agent

| - HMsgFi nder - finds diag nessages

| HRankMsgFndr - finds priority diagnostic nessages

| - HNaneSer vAbs NAMESERVER - gpstract nameserver

| - HNoi d NAMESERVER . | j ght wei ght nessage handl er

| HSt dNoi d NAMESERVER . st andard noi d

| HSt dNoi dNs NAMESERVER . ngpi d whi ch uses nameserver for connection

| - HNoi dConnAbs NAMESERVER . apstract noid connection class

| HNoi dConn NAMESERVER . noi d agent connection class

| HExpConn NAMESERVER . explicit noid connection

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (5 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

HNsConn NAMESERVER _ npameserver connection cl ass

HNsCl eaner NAMESERVER . garbage col | ection of unused addresses

HNsAdr Cnt NAMESERVER . address and count pair

HNot i fier NOTIFY - pase class of notification nmanagers

HSel Noti fier NOTIFY . gselect notification manager

HUni xNot i fier NOTIFY . native Unix notification managenent

HvmsNot i fier NOTIFY - VNS native notification managenment

HVnmeMNot i fier NOTIFY - nptif notification for VMS management

Hvbti f Notifier NOTIFY - nptif notification nmanager

HXvNoti fier NOTIFY . xview notification manager

HNotifyd i NOTIFY - notification client nodes

HTi mMNot Cl'i NOTIFY _ tiner notification client

HUni xTi mMNot i NOTIFY _ native Unix notification client

HvotifTinmNotli NOTIFY _ nptif timer notification client

HXvTi mNot Cl'i NOTIFY _ xview tinmer notification client

HvimsTi mNot i NOTIFY _ wWB tinmer notification client

H ONot Cli NOTIFY _ /O notification client nodes

HSel IONot d'i NOTIFY - /O notification client using select

Hvotifl ONotCli NOTIFY _ pptif 1/O notification client

HXvI ONot O'i NOTIFY _ xvyiew | /O notification clients

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (6 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

- Hnj Ext Abs - abstract object extractor

-Hojlter - baseclass for iteration across HObject collections

HObj Arraylter - iterator across an HObj Array

HObj Listlter - iterator across an Hbj Li st

HObj Li stForlter - forward/increnenting list iterator

HObj Li stRevliter - reverse/decrenenting list iterator

HObj Setlter - iterator through an HObj Set

-Hnjlterator - iteration across collections of HObjects

-HObj Link - linked Iist node

-HRectangl e - rectangle geonetry

-HRect angl eS - signed rectangle geonetry

-HSecond - el apsed seconds

-HSi gCat cher - process signal catcher

HSi gMgr - reacts to signals fromcatchers and dispatches to handl ers

- HSi gHand - process signal handl er

HNsSi gHand NAMESERVER - npane server signal handl er

-HString - null term nated character array

-HTinme - standard tinme encapsul ation

-HTi mneCvtrAbs - overridable tiner conversion algorithns

HTi meCvtr - overridable tiner conversion algorithns

- HTi meProbe T'MER - keeps track of named instant in time (probe)

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (7 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

| - HTi neProbelList T'TMER - |ist of time probe objects

| - HTi mer Abs T'MER - abstract representation of callback tinmer object

| HTimerEvent TIMER - event firing tinmer

| HTimerinterval TTMER - interval firing tiner

| HNoi dConnTi nr NAMESERVER - timer for noid connections

| HTi meProbeTinmer T'MER - interupt timer for tinme probe instance

| -HUser Qut - presents diag nessages to the user

|-HVIiter - iteration across void pointer collections

| HVListlter - iteration across void pointer list collection

| HVListForlter - forward iteration across void pointer list collection
| HVListReviter - reverse iteration across void pointer list collection
|-HVIiterator - iteration across void pointer collections

pointer lists

| -HVect2 - two dinmensional vector

| - HVect 3 three di nensi onal vector
| -Hvect4 - four dinmensional vector

| -HVect N - N di nensi onal vector

| -HVector - three dinensional vector

| - HvwDepsAbs - abstract nodel /vi ew dependenci es

| HvwDeps - nodel /vi ew dependenci es

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (8 of 9) [20/02/04 05:41:41 p.m.]

HObject ithe Hughes version of NIHCL Objectl

| - HYwDepsNd - node in nodel /vi ew dependency |i st

| - H\eekDay - el apsed week days

+-HYear - el apsed years

HDAG - directed acyclic graph (collection of HDAGNodes)

HvenDbg - nonitors nenory | eaks

El apTi meTi ner - stop-watch |ike el apsed tiner

HO assDict - dictionary of HCO assDesc information

HObj Set Node - node of object set collection

Figure 3 - Hughes Class Library and Interprocess Communication Extensions

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (9 of 9) [20/02/04 05:41:41 p.m.]

mailto:mstevens@ent.mrj.com

RTTI

RTTI

HCL provides RTTI and object 1/0 streaming through the HClassDesc object in the same way that
NIHCL uses the Class object. The relationship between an HObject (any class which is part of the
HODbject tree) and its static member HClassDesc is the same as the relationship between NIHCL is Object
and Class classes. Every HODbject has a static member of type HClassDesc. The HClassDesc contains the
meta information of the respective class and has member functions to create a new object instance of the
respective class. In NIHCL, the Class objects contained the run-time meta information representing
inheritance relationships with pointers/arrays internally in each Class object. Instead, the HClassDesc
objects in HCL have a static member pointer to a global class dictionary object (HClassDict). This class
dictionary object encapsulates a data structure containing an image of the run-time utilization of all
HObjects.

HObjects are identified by a string representation of their names using the HString class. The
HClassDesc object has a member of type HString to store the Class name. For instance, when HObjects
are serialized on adisk file or sent across a network over a byte stream communication mechanism the
objectis type string representation is sent first. In thisway, the consumer of the disk file or receiver on
the end of the network connection will read the objectis string name first and ask the class dictionary to
create an instance of the object from the string name. In this way, objects are instanciated with out itypel
knowledge; of course the itypel information is abstracted into the HClassDict container object.
Nevertheless, when using the HCL framework, the programmeris can rely on dynamic object creation
using istringifiedi HObject names.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_RTTI1.html [20/02/04 05:41:42 p.m.]

mailto:mstevens@ent.mrj.com

Object 1/0

Object 1/0O

HObject has a much better foundation for object I/O. In addition to member functions which provide
object I/O using iistreami and iostreami objects, HObject has an interface to a special class called XDR
which encapsul ates the external data representation (xdr) system for dispatching data on heterogeneous
networks. The XDR class and HObject class allow object I/O between hosts which have different
implementations of binary data on their hardware. For instance, two machines which store binary datain
Big Endian and Little Endian respectively can still transport object between them with XDR and HCL..

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_|_O1.html [20/02/04 05:41:43 p.m.]

mailto:mstevens@ent.mrj.com

Containers

Containers

HODbject does not have a built in interface for ideep copyingi (see section 2.6.5) objects like NIHCL does.
If desired, deep copying is left up to the cloning and object 1/0O implementations of individual HObjects.

HCL employs a very robust hierarchy of container classes and iterators. HCL abstracts the interface of
container classes and iteratorsin HCollection abstract class. Both HODject typed collection classes
(HObjCollection) and void typed collection classes (HV Collection) are supported as specialized
HCollection classes. This alows not only HObject classes but also standard €Ci structures in HCollection
classes.

[R Rk ko Kk K kK ko ok ok Kk kK ko Kok kK R ko Kk Rk Kk Kk Rk ko Kk Rk Kk Kk K kK K ko
** Copyright (c) 1991 Hughes Aircraft Conpany.

** UNPUBLI SHED WORK

e T TITTTTTTITOTTTTYTYTY
cl ass HObj ect {

pr ot ect ed:

/1 Constructor is protected since HObject is an abstract cl ass.

HObj ect () ;

/1 _castDown is the function that actually check cl ass

/] descriptions. This is usually provided in the single

/1 inheritance case by the DECLARE/ DEFI NE nacr os.

virtual void* _castDown(const HC assDesc&) const;

publi c:

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (1 of 4) [20/02/04 05:41:44 p.m.]

Containers

virtual ~HOoject();

/Il Al classes have a HC assDesc

/1 HAbsd assDesc.

static HAbsCl assDesc nyd ass;

/! Run tine class information.

static HC assDesc& cl assDesc();

static HObj ect & cast Down(HObj ect &) ;

static HObj ect* cast Down(HObj ect*);

virtual void* obj Cast Down(const HC assDesc& obj d assDesc() const;

vi rtual Hoject* hclone();

virtual int islnheritedFrom const HC assDesc&) const;

/1 Support for nodels and views.

virtual int changed(HObject *nodel, const char *token);

/1 Support for dynanic creation of HCbjects. Wen storing an object

/1 on a stream first the classNane is put and then the instance data.

/]l Create a new HObject fromthe stream

static HObj ect* newObj (istreamd);

static HObj ect* newObj (XDR*);

/'l Store instance data on an ostream

virtual int put(ostream& const;

/] CGet instance data froman istream

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (2 of 4) [20/02/04 05:41:44 p.m.]

Containers

virtual int get(istreamg);

// ENCODE/ DECODE i nstance data to/from an xdr stream

virtual int xdr(XDR*);

/1 Store class nane and then call put

virtual int store(XDR*) const;

/'l Read cl ass nane and then call get

virtual int read(istreamg);

/! Read cl ass nane and then call xdr

virtual int read(XDR*);

/1 Put to cerr - nostly for debugging

voi d dunp() const;

/1 Conparison: returns 0/1 and checks HObject identity

virtual int isSane(const HObject& const

/1 Conparison: returns 0/1 and checks HObject data

virtual int isEqual (const HObject&) const;

/1 Conparison: returns -1/0/1 and checks HObject dta

virtual int conpare(const HObject&) const;

/1 Conparison: hashes on HObject data - two objects with

/'l the sane data should have the sane hash

virtual unsigned hash() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (3 of 4) [20/02/04 05:41:44 p.m.]

Containers

Code Block 8 - Hughes Class Library (HCL) Root Class HObject

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (4 of 4) [20/02/04 05:41:44 p.m.]

mailto:mstevens@ent.mrj.com

Using HCL

Using HCL

HCL provides many useful macrosto help the programmer adhere to the common framework. The style
of these macros is the same as those found in NIHCL. These macros are used in the declaration,
definition, and data definition of new HObjects. Many different categories of new HObject -like classes
can be formed with the macros. New classes can be abstract or concrete, single or multiple inheritance,
distributed or local. The following code block is taken from the iIHClassDefines.h" header file.

[Rk ko ko Kk kK ko ko kR ko ko kR ko ok kK ko ko ok kK ko ko kR ko ko kR Kk
** Copyright (c) 1992 Hughes Aircraft Conpany.

** UNPUBLI SHED WORK

Kk Ak Ak ko ko K Rk Ak Kk Kk K R Rk ok ok Kk kK Rk ok Kk kK kK kK Rk Kk kK kK kK Rk Kk Kk k|
/1 To add a sinple class d with base b

/1 add DELARE CLASS(d) as first line of class definition

/1 add DEFI NE_CLASS(d, b) in one source file

#defi ne _DECLARE CLASS(cl assnane) \
private: \
static HO assDesc nyd ass; \

static HObj ect* maked ass();

#defi ne _DECLARE _CLONE \

public: \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (1 of 4) [20/02/04 05:41:45 p.m.]

Using HCL

virtual HOoject* hclone();

#def i ne _DECLARE_CASTDOMN(cl assnane) \

protected: \

virtual void* _castDown(const HC assDesc&) const; \

public: \

static HCO assDesc& cl assDesc(); \

virtual HC assDesc& obj C assDesc() const; \

static classnane& cast Down(HObj ect &) \

{return *(classname*) (&p ? p.obj Cast Down(cl assnane::classDesc()) :0);} \

static classnane* cast Down(HObj ect *p) \

{return (classnane*)(p ? p->obj Cast Down(cl assnane: :classDesc()) :0);}

#def i ne DECLARE_CLASS(cl assnane) \

_DECLARE_CLONE \

_DECLARE_CLASS(cl assnane) \

_DECLARE_CASTDOMN(cl assnane)

Code Block 9 - Hughes Class Library (HCL) Framework Declaration Macros

#def i ne _DEFI NE_DEFAULT_CLONE(cl assnane) \

HObj ect* cl assname: : hclone() {return new cl assnane(*this); }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (2 of 4) [20/02/04 05:41:45 p.m.]

Using HCL

#defi ne _DEFI NE_DEFAULT_CREATI ON(cl asnane) \

HObj ect* cl assnane: : makeC ass() { \

cl assnane *s = new cl assnane; \

return HObj ect: : cast Down((HObj ect*) s); }

#def i ne _DEFI NE_CLASS DATA(cl assnane) \

HCO assDesc cl assnane: : myC ass(#cl assnane, cl assnane: : naked ass) ;

#defi ne _DEFI NE_CASTDOWN(cl assnane) \

HC assDesc& cl assname: : cl assDesc() { return nydas; } \

HCl assDesc& cl assnane: : obj G assDesc() const (return nyd ass; }

#def i ne _DEFI NE_CAST_FCN(cl assnane, basecl ass) \

voi d* cl assnane:: cast Down(const HC assDesc &cl) const { \

if (cl == nydass) return (void*) this; \

el se return baseclass:: castDown(cl); }

#def i ne DEFI NE_CLASS(cl assnane, basecl as) \

_DEFI NE_CLONE(cl assnane) \

_DEFI NE_DEFAULT_CREATI ON(cl assnane) \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (3 of 4) [20/02/04 05:41:45 p.m.]

Using HCL

_DEFI NE_CLASS DATA(cl assnane) \

__DEFI NE_CASTDOMWN(cl assnane) \

_DEFI NE_CAST_FCN(cl assnane, basecl ass)

Code Block 10 - Hughes Class Library (HCL) Framework Class Definition Macros

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (4 of 4) [20/02/04 05:41:45 p.m.]

mailto:mstevens@ent.mrj.com

Example

Example

Consider the class HPoint below. Notice that HPoint is very close to the definition of the Point class
shown in Code Block 4.

/**

** Copyright (c) 1992 Hughes Aircraft Conpany.

** UNPUBLI SHED WORK

**/

class HPoint : public Hbject {

DELARE_CLASS(HPoi nt) ;

private:

unsi gned | ong nyX;

unsi gned | ong nyY;

public:

HPoi nt () ;

HPoi nt (unsi gned | ong, unsigned | ong);

HPoi nt (const HPoi nt &) ;

~HPoi nt () ;

unsi gned | ong x() const;

unsi gned |l ong y() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Example_.html (1 of 3) [20/02/04 05:41:47 p.m.]

Example

voi d x(unsigned | ong);

voi d y(unsigned | ong);

int put(ostream®) const;

int get(istream);

int xdr(XDR *);

b

Code Block 11 - Hughes Class Library (HCL) Example HPoint Class Declaration

/**

** Copyright (c) 1992 Hughes Aircraft Conpany.

** UNPUBLI SHED WORK

**/

#i ncl ude 1 HPoi nt. ht

DEFI NE_CLASS(HPoi nt, HObj ect);

HPoi nt: : HPoi nt () : myX(0), nyY(0)

{ DBG_MEM CONSTRUCTOR(HPoi nt. 1); }

HPoi nt : : HPoi nt (unsi gned | ong aX, unsigned |ong aY) : myX(aX), myY(ay)

{ DBG_MEM CONSTRUCTOR(HPoi nt . 2); }

HPoi nt : : ~HPoi nt ()

{ DBG_MEM DESTRUCTOR(HPoi nt); }

i nt HPoint::put(ostream &str) const

{ str << i[] << nyX << i, 1 << nyY << i]7 << endl;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Example_.html (2 of 3) [20/02/04 05:41:47 p.m.]

Example

if (!str) return FALSE;

return TRUE, }

int HPoint::get(istream &str)

{ char c¢; str >>c; if (!str) return FALSE;

str >> nyX; if (!str) return FALSE;

str >> c; if (!str) return FALSE;

str >> nyY; if (!str) return FALSE;

str >> c¢; if (!str) return FALSE

return TRUE;, }

i nt HPoi nt:: xdr (XDR* xdrs)

{ return xdr_long(xdrs, &mwX) && xdr_|ong(xdrs, &mwY); }

Code Block 12 - Hughes Class Library (HCL) Example HPoint Class Definition

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Example_.html (3 of 3) [20/02/04 05:41:47 p.m.]

mailto:mstevens@ent.mrj.com

Distributed Programming with HCL Interprocess Communication

Distributed Programming with HCL Interprocess Communication

In addition to the object I/O capabilities of HObject, the HIPC libraries form an environment which
allows peer-to-peer communications between concurrent processes on local or remote hostsin a
heterogeneous network. Using a message passing architecture HIPC provides transient and persistent
connections between processes, asynchronous and synchronous messages, and remote-procedure-call
(RPC) like designs.

Message, Agents, Address, and Connections

The are four (4) specialized HODject classes responsible for communicating objects/messages:
HMsgConn, HAddress, HM essage, and HM sgAgent. HM sgConn class abstracts the concept of a
connection between two (2) end-points. Processes can communicate if thereisavalid HMsgConn tied to
both ends. The end-points are abstracted in the HAddress class. This class encapsulates the host name, IP
address, port number, service name, etc. of the end point. Information is passed between HAddress
objects over aHMsgConn object using abstract HM essage class. Even though any HObject could be sent
over a network connection, HIPC designers imposed the notion of a specialized message object to
encapsulate the details of HIPC. If there was not a HM essage class then the HObject class would be
iheavieri with more detailed HIPC material. At the lowest level the object 1/0 interfaces of HObject are
used to marshal HM essage objects over the XDR stream. The HIPC designers wanted to decouple the
interface to HIPC from HODject. The management of HAddress and HM sgConn objects and the
dispatching of asynchronously received HMessage objects is performed by the HM sgAgent class.

A process can have many HM sgAgent objects; each with a HAddress associated with it. HMsgAgents
manage connections with other HMsgAgents on alocal or remote host. All message passing is done
asynchronously using notifier systems available from the operating system. HIPC is capable of using the
SunSoft Notifier system, the X notifier, or a generic reactor/notifier pattern built with standard poll/select
system calls with sockets. Connections between agents can be permanent or temporary; temporary
connections are perfect for event notification and permanent connections are well suited for streaming of
data between agents.

The four main HIPC classes introduced above have very detailed private implementations using
operating system services and other HIPC classes which encapsul ate more complicated mechanisms like
high resolution timers and sockets. The public interfaces are straight forward and are somewhat
deceptive in that the hide such powerful UNIX network programming techniques.

Connection End-point Determination

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (1 of 5) [20/02/04 05:41:49 p.m.]

Distributed Programming with HCL Interprocess Communication

The reason why HCL/HIPC isindustria strength is how it handles the end-point determination problem.
Aslong as aHMsgAgent iknowsi the HAddress of another HM sgAgent then communication is simple.
The HMsgAgent can ask the HAddress object to create a connection and send a HMessage across in one
member function call. However, if the HAddress is not known then the situation becomes complicated.
The HIPC designers offer three (3) solutionsto this problem and they all work well according to there
constraints:

Pre-all ocate the end-point/location information before running/compiling the system. This information
could be hard coded or configured at run-time through command line arguments or configuration files. In
many cases thisis an acceptable solution for asmall distributed system that does not change its
configuration often.

Deploy a specialized HMsgAgent in one or more processes in a network which all HMsgAgents know
how to contact (through a well-known service port maybe). In thisway a HMsgAgent could register
itself with this well-known iNameServeri and supply logical information about the services/objects
which it manages. In thisway, ainterested HMsgAgent could query the NameServer and receive
location/address information for desired agents and then connect to them. Thislevel of indirection
between communicating agentsis very powerful for it allows systemsto configured differently at run-
time. Also, amore intelligent NameServer can be used to allow HMsgAgents and there associated
process/objects to re-locate during run-time for purposes of load-balancing and fail-over. In fact,
redundant/duplicate HM sgA gents/objects could be deployed using this architecture.

Similar to the previous option, the HM sgAgents could register in a nameservice provided by a standard
product like the OSI X.500 directory or DCE.

On inspection of the inheritance diagram in , one sees that there are already many specialized HMessage
classes supplied by HIPC. Actually, these HM essages classes are used by the internals of the HIPC
library to manage the connections, address, and agents. For instance, there is a specialized HMessage
class called HM sgShutdown which is sent by a HMsgAgent to another to notify that agent to shutdown.
There is ageneric text message class called HMsgText for sending status messages. There is a abstract
HMsgData class which has specialized classes for sending various forms of information. The HM sgCol
classisvery powerful. This class encapsulated the capability to transport any object of derived from
HCaoallection. In thisway, all HCL container classes can be transferred to another process.

When developing a distributed application with HCL/HIPC you have to create specialized objects from
HODbject and also enhance the agent object with specialized message(s) objects associated with you new
HObject class. Aswe will seein section 3, on CORBA, classes are specified in Interface Definition

Language (IDL) and a pre-compiler creates the actual implementation class and the message/dispatching
class(es) for you.

The details of the message object 1/0 use the object 1/0O interface of HObject. When amessage is
marshaled on to a XDR stream, three (3) element are streamed; the message header containing the

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (2 of 5) [20/02/04 05:41:49 p.m.]

http://www.omg.org/

Distributed Programming with HCL Interprocess Communication

istringifiedi name of the HMessage object in xdr string format, the message body according to the virtual
xdr() method of the HMessage class, and a xdr end-of-record marker. The receiving processis notified
by the operating system through an asynchronous I/O system and the respective HMsgAgent handles the
receipt of the HMessage. The agent reads the istringifiedi name of the HM essage and uses the
HObject/HClassDesc/HClassDict system to create a new instance of the specified HMessage object. The
agent then hands off control to the new HMessage object and instructs it to marshal its own data off the
xdr stream by calling the HMessage::xdr() method. Then, according to the type of HMessage, the agent
dispatches the information to the appropriate internal object in the process.

Example

Thefollowing is an example taken from Hughes Aircraft internal white papers[14],:

/**

** Copyright (c) 1992 Hughes Aircraft Conpany.
** UNPUBLI SHED WORK

Hk kK ko ko Kk kK ko ko ok kK ko ko ok kK ko ok kR ko ko kR Kk ok kR Kk k ok kK k|
#i ncl ude 1 Hwessage. ht

cl ass HVsgDoSonet hi ng : public Hvessage {
DELARE_CLASS(HVsgDoSoret hi ng) ;

publi c:

HVsgDoSonet hi ng() ;

~HVsgDoSonet hi ng() ;

/1 over ride fromvirtual HObject::xdr(XDR¥)

i nt xdr(XDR* stream;

private:

i nt nyl ntVal ue;

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (3 of 5) [20/02/04 05:41:49 p.m.]

Distributed Programming with HCL Interprocess Communication

HString myStringVal ue;

/**

** Copyright (c) 1992 Hughes Aircraft Company.

** UNPUBLI SHED WORK

**/

#i ncl ude 1 HvsgDoSonet hi ng. hi

DEFI NE_CLASS(HVsgDoSonet hi ng, Hwessage) ;

i nt HvsgDoSomet hi ng: : xdr (XDR* strean)

{ if(!'Hvessage::xdr(stream) || // call base class behavior
Ixdr_int(stream &mwlntValue) || // xdr filter on C++ data type
'myStringVal ue. xdr(strean)) // ask object to xdr itself

return FALSE;

return TRUE;

Code Block 13 - Hughes Class Library (HCL) Example HIPC Class

At aminimum, aHAddress and a HMessage is needed to send ainformation. A HMessage has an
interface to send itself given a HAddress or HMsgConn as an argument. A HMsgConn or HAddress each
have interfaces to send a supplied HMessage. Aslong as the HMsgAgent isin a notification/listening
mode on the other end, the message will be sent.

HCL isan evolution of NIHCL and extends the object /O solution to real world operating systems like
Solaris, VMS, AlX, and IRIX. HCL is an excellent example of the single root tree design pattern and
HCL provided a solution which allow for development of all aspects of distributed applications including

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (4 of 5) [20/02/04 05:41:49 p.m.]

Distributed Programming with HCL Interprocess Communication

the user interface, interprocess message system, and internal implementations. HCL provesthat a
common object framework can be used to build such systems without having to integrate separate
libraries for application devel opment, network communication, and user interface.

The HCL framework can be used for general C++ application development using the robust container
classes and the objects specific to temporal processing. Also, many advanced features can be employed
by the HCL user because of the capabilities of the single rooted tree design based on HObj ect .

However, it is the message agent services of the HIPC extensions which make HCL well suited for
distributed object implementations. The following section presents NetClasses, the distributed object
system from PostM odern which is the foundation for their CORBA compliant commercially available

product ORBeline. NetClasses and ORBeline provide distributed object services; components for general

application development are not integrated in the framework. In fact, | have not found many systems
which provide components for all aspects of distributed object application development. | usually find
genera frameworks or distributed object frameworks, but never both. In some cases, general framework
vendors and ORB vendors integrate their libraries into a more efficient package which offers cross-
platform GUI development, general application components, and distributed object services. HCL
provides such a solution.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (5 of 5) [20/02/04 05:41:49 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

PostModern's NetClasses

PostModern's NetClasses

NetClassesis aframework for the development of distributed object system applications. ORBeline,
PostM odern Computing (now Visigenic)'s CORBA compliant product, is built on the foundation of the

NetClasses framework. There is no documentation that explicitly asserts this but | have found evidence
to support the latter statement. In my review of the C++ header files that come with the ORBeline

product | found references to the NetClasses material. Some of the lower level classesin the ORBeline
framework are prefixed with "NC" and "DS" which represent components of "NetClasses"' and
"Distributed Services' respectively. Distributed Services [15] is the named subsystem of NetClasses
which is responsible for the management of object dissemination and peer to peer connections - much
like the Message Agent components of HCL..

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_PostModern_s_NetClasses_.html [20/02/04 05:41:50 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Reuse

Reuse

Another reason that PostM odern Computing (now Visigenic) probably reused NetClasses for the ORB
product is that it makes sense. In fact, reuseis practiced at PostM odern Computing (now Visigenic) in
earnest. The technical staff at PostM odern Computing (now Visigenic) are up front about reuse practices.
Both NIH Class Library design patterns and the dispatching code from the object oriented X-Windows
toolkit, Interviews, have been reused in PostM odern Computing (now Visigenic)'s products. The
following sections will reflect this reuse, especially the reuse of the single rooted tree technique.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Reuse_.html [20/02/04 05:41:51 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Features

Features

Before looking at the details of NetClasses, the high level design goals of the NetClasses product should
be reviewed. NetClasses provides more than just Object Transport (PostM odern Computing (now

Visigenic)'s term for object I/0O). NetClasses provides for, as stated above, management of object

services and connections through the Distributed Services subsystem. Also, NetClasses features "Remote
Method Invocation (RMI)" and " Security". RMI and security features are based on Distributed Services.

Distributed Services

The Distributed Services feature of NetClasses provide the user an abstraction to the service ports
paradigm for socket and remote procedure call programming. A service agent design pattern very much
like the message agent of HCL provides this abstraction. Objects on a network provide services by
advertising to agents processes who monitor the service providers and service consumers. The agent is
also the location for connection management. PostM odern Computing (now Visigenic)'s technology

overview document of NetClasses presents the capabilities of Distributed Services and is an excellent
statement in general for requirements of any distributed object system:

Service Registration. What network services are available, and which machines on the network are
providing them?

Connection Management. How are service providers connected to service consumers? Which consumers
are connected to which servers?

Fault Tolerance Strategy. When a server or client fails, what service reconnection and fault tolerance
strategies are in effect?

Load Balancing. How are servers loaded? Do we need to reconnect some client and servers dynamically
to even out machines |oads?

Service Location/Location Transparency. How does a client with no knowledge of current servers status
locate the services it requires?

Remote Method Invocation

Remote Method Invocation (RMI) isimplemented on top of Distributed Services. Through RMI, aclient
with an object reference to an external service (in a separate process on alocal or remote machine) can
iInvoke an object member function using the object reference. Thisis the abstraction of the classic remote

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Features_.html (1 of 2) [20/02/04 05:41:52 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Features

procedure call (RPC) and socket programming paradigms which have complicated interfaces and are
difficult to maintain and scale. The RMI feature makes the fault tolerance and connection management of
Distributed Services transparent to the programmer.

Security

The Security feature of NetClasses provides programmers with the means to implement
encryption/decryption for object transport, and method invocation. Also, authentication of consumer
accesses to remote service objectsis provided and aided by this feature.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Features_.html (2 of 2) [20/02/04 05:41:52 p.m.]

mailto:mstevens@ent.mrj.com

Design

Design

The following presentation of the design of the C++ objects used in NetClasses, which are also the
foundation for PostM odern Computing (now Visigenic)'s CORBA compliant product ORBeline, is
limited by two factors. First, the only information available are the C++ header files for these classes
provided in the publicly available ORBeline distribution. The C++ header files represent the interface to
the classes and provide only an estimate of the implementation hidden in the binary library. Obvioudly,
PostM odern Computing (now Visigenic) only supplies the header files to the user because the C++
source files reveal confidential, proprietary, and trade secret material. The header files are necessary for
the programmer to access the binary libraries. However, the header files also reveal alot of confidential
material. A copyright and disclosure statement is a part of al header filesin the ORBeline
distribution.[16] In the sameway as | presented HCL, | will use common sense when showing the
following material in such away as to promote the advanced design patterns and techniques found in
PostM odern Computing (now Visigenic)'s product without violating the copyright statement. The
following material is my interpretation of the C++ header files which anyone can download from the

I nternet anyway.

Single Rooted Tree

The inheritance diagram of all the C++ objects for the ORBeline product can be found in Appendix A
(page 2). Many of the classesin the diagram are named with the prefix "CORBA::". This prefix denotes
classes which are part of the "CORBA" namespace using the scope delimiter operator of C++. [17]
Notice that all the classes which are part of the CORBA namespace inherit from asingle class called

DSResource. The DSResource class denotes the Distributed Service Resource class of the NetClasses
framework. The DSResource class represents the root class of the single rooted tree pattern. DSResource
IS the equivalent to the Object classin NIHCL and the HODbject classin HCL. The DSResource class
provides a common interface for al classinstances which are to act a"distributable”" objects. The
DSReource class provides the primitive features for such objects. (See Appendix A, page 4)

DSResource features and interfaces are composed of its own members and those inherited from its
multiple parent classes NCResource and NCODbject. The NCResource and NCObject classes are low
level NetClasses components. The NCResource class supplies areference counting capability. The
NCODbject class suppliesthe RTTI, object I/O, and other capabilities similar to Object and HObject.

NCResource

The NCResource class encapsul ates the concept of reference counting for objects which are shared.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (1 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

Design

Reference counting is aform of garbage collection which in most likely areuse of the reference counting
component of the object -oriented X-Windows toolkit, Interviews. Because the NCResource class only
does reference counting, the class interface is very ssmple. A reference counted object has a
private/hidden member which keeps track of the number of references to itself which are held by other
entities or objects. For NCResource, this private member isthe _ref_count integer value. (See Appendix

A, page 4)

When a pointer to an object, which inherits from NCResource, is added to alinked list, set, or any
collection, the object which is pointed engages its "reference” behavior. The "reference’ behavior ssimply
increments the private reference count of the object. Objects inheriting from NCResource record the
number of entities currently consuming or referencing the object. When the consuming entity is finished
with the referenced object it calls the "unreference” behavior or the referenced object. The "unreference”
behavior decrements the private reference count of the object. Objects which inherit from NCResource
are never explicitly deleted by another entity using the standard destructor behavior. The object will
delete itself when its reference count reaches zero. The reference count isinitialized to one (1) when the
object is constructed. The reference counting capability encapsulated by the NCResource class provides
referenced objects with the self discipline to self destruct when they are no longer required. The
DSResource class inherits from NCResource to add the referencing counting capability. See Code Block

14.

/**/

/* ORBeline (c) by PostMdern Conputing (nhow Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/*****7\'****7\'*7\'**7\'*7\'****7\'**********7\'****7\'*7\'**7\'*7\'************************/

cl ass NCResource {

private:

unsi gned _ref count;

publi c:

NCResource() { _ref _count = 0; }

virtual ~NCResource();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (2 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

NCResour ce(const NCResource&) { _ref _count = 0; }

voi d operator=(const NCResource&) { _ref_count = 0; }

static void ref (NCResource *obj);

static void unref(NCResource *obj);

void ref() { _ref_count++; }

void unref();

unsi gned nunRefs() const { return _ref_count; }
H

Code Block 14 - PostModern Computing (now Visigenic)'s NCResource Class

There are five important interfaces to NCResource. A NCResource object can be referenced by calling
the static NCResource::ref() function with a pointer to itself or calling the object's ref() member function
with no argument. A similar interface is provided for unreferencing NCResource objects. Also, the
private reference count can be obtained by calling the NCResource object's numRefs() member function.

NCObject

The other class which DSResource inherits from is the NCODbject class. The NCODbject class provides
most of the capability for object I/O, RTTI, and heterogeneous collections to the DSResource class. (See
Appendix A, page 4) The NCObject declaration demonstrates a different strategy for the single rooted
tree pattern. In the cases of NIHCL and HCL, all the common, primitive capabilities of the framework
are encapsulated in one class; Object and HObject respectively. The NetClasses framework uses
composition and inheritance techniques to complete the common framework provided by the
DSResource class. DSResource takes its reference counting capability from NCResource. The rest of the
capabilities are inherited from NCObject. NCODbject forms its capabilities in three (3) ways: inheriting
the object I/O interface from NCTransObject, the RTTI components by composition of NCTypelnfo, and
adding its own behaviors for transportable, heterogeneous collections. The following two sections
present NCTransObject and NCTypel nfo.

NCTransObject

The NCTransObject is an abstract class which encapsulates object 1/0O and provides the abstract
interfacesfor RTTI. (See Appendix A, page 4) Even though the NCTransObject does not have a data

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (3 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

member of type NCTypelnfo, interfaces are provided for accessing class information, classinfo(), and
verifying safe cast requests with hasBase() and canCast().

In the case of HCL, the HODbject class provided interfaces for reading and writing to 1/0 stream objects
and the special XDR class. NetClasses, however, employs a more detailed object I/O scheme. It is
important to reiterate that the purpose of the NetClasses framework is to provide distributed object only.
Because it is not a general framework, more detailed is placed on the object I/O implementation.

The NCTransObject has atightly coupled association with two (2) 1/O classes. NCistream and
NCostream. These stream classes decouple the NCTransObject from the standard iostream classes
istream and ostream. Also, the NCistream and NCostream each have a helper class for conducting object
[/O: NCInTbl and NCOutThl respectively.

There are four (4) member functions for object I/0O in NCTranObject which declare the abstract interface
for the framework - two functions for input and two for output. First, member functions for reading and
writing to standard iostreams are provided using readFromStream() and printOn() respectively. The
arguments to these two functions are references to the standard iostream objects. Object output using the
NCostream class is accessed with the write() member function. Object input using the NCistream class is
accessed with the operator>>() member function which overloads the >> operator. Refer to Code Block
15. This member function's inline implementation shows that the real work for object input is done by
the NCistream class. The implementation calls the readTransObj() member function of NCistream to
perform the object input and return a pointer to the new NCTransObject. The NCistream and NCostream
classes direct the real work of object 1/0. For this reason, NCTransObject and the NetClasses |/O classes
are tightly coupled. The reason for this design cannot be determined with access to more detailed
implementation code.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

/* Al rights reserved. */

/**/

cl ass NCTranshj ect {

publi c:

virtual void wite(NCostream& strm const =0;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (4 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design
virtual const NCTypel nfo* classlinfo() const = 0;

virtual void printOn(ostream& strmecout) const;

virtual void prettyPrint(NCostrean& strnm const {

wite(strm; }

virtual void readFronttrean(istream&) {}

inline friend NG stream& operator>>(NC strean& strm NCTransObj ect *& obj){

obj = strmreadTransQbj ();

return strny }

virtual ~NCTransChject() {}

NCTransCbj ect () {}

NCTransObj ect (NCi stream& strm) { strm addToThl (*this); }

i nt hasBase(const NCTypel nfo& p) const {

return (classlnfo()->hasBase(p)); }

i nt canCast (const NCTypel nfo& p) const {

return (classlinfo() == & || hasBase(p)); }

b

ostrean& oper at or<<(ostrean& ostrm const NCTransCbject& obj);

i stream& operator>>(istream& i strm NCTransObj ect & obj);

Code Block 15 - PostModern Computing (now Visigenic)'s NCTransObject Class

NCTypelnfo
The NCTypelnfo classis very similar to the Class and HClassDesc classes of NIHCL and HCL.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (5 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

NCTypelnfo encapsulates the RTTI for the framework. NCTypelnfo issimilar in that it has a private
character string for the classname, _name, and a private function which knows how to assemble an
object of that type from a byte stream object, read func. (See Appendix A, page 4) Multiple inheritance
isprovided inthe RTTI using NCTypelnfo's array of NCTypelnfo for the base class(es), bases. See
Code Block 16.

Even though a user would not normally use the NCTypelnfo interface, a public interface is provided for
usein thelow level framework classes and macros. The character string name of the class can be
accessed using the classname() member function. A pointer to the function which can read the object off
a byte stream can be accessed with the readFunc() member function. The safe casting capability is
provided with the hasBase() and canCast() member functions. A boolean response is returned from these
functions when the NCTypelnfo argument is compared to the private type information. The NCObject
class and some detailed preprocessor macros provides the real user interface to the RTTI.

The most powerful methods of NCTypelnfo are the static methods for determining NCTypelnfo,
NCTypelnfo::typelnfo() and read function from a character string argument, NCTypelnfo::readFunc(). It
Is these static or global methods which allow objects to be constructed from a byte stream without type
information. When an object is marshaled to a byte stream the object class name is marshaled before the
instance information. In thisway, the reader of the byte stream can call NCTypelnfo::typelnfo() static
function with the character from the stream as an argument. The type information is determined from the
character string class name and the proper read function can be engaged to unmarshal the object instance
datafrom the byte stream. Again, thisis the same pattern used in NIHCL and HCL.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

/[* Copyright 1993, 1994 by Post Mbdern Conputing (now Vi sigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

typedef NCTransCbject *(*NCTransReadFunc) (NG stream&);

cl ass NCTypelnfo {

private:

const char *_ nane;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (6 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

NCTr ansReadFunc _read_func;

short _num bases;

NCTypel nfo **_ bases;

NCTypel nf o(const NCTypel nfo&);

NCTypel nf 0& oper at or =(const NCTypel nf 0&) ;

publi c:

NCTypel nfo(const char *nane, NCTransReadFunc readfunc,...);

virtual ~NCTypel nfo();

i nt operator==(const NCTypel nfo& p) const {

return (_name == p._nane); }

i nt operator!=(const NCTypel nfo& p) const {

return (! (*this ==p)); }

const char *classNane() const { return _nane; }

NCTr ansReadFunc readFunc() const { return _read _func; }

i nt hasBase(const NCTypel nfo& p) const;

i nt canCast (const NCTypel nfo& p) const {

return (this == & || hasBase(p)); }

static const NCTypelnfo *typelnfo(const char *nane);

static NCTransReadFunc readFunc(const char *name);

b

Code Block 16 - PostM odern Computing (now Visigenic)'s NCTypelnfo Class

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (7 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

cl ass NCObj ect : public NCTransOhject {

private:

static NCTypelnfo cl ass_info;

pr ot ect ed:

NCObj ect () ;

publi c:

virtual ~NCObject() {}

static const NCTypelnfo *desc();

NCObj ect (NG stream& strnj;

inline friend NG stream& operator>>(NC stream& strm NCOhject*& obj) {

obj = (NCbject *)strmreadTransQoj ();

return strny }

static NCObj ect *readFron{NC stream& strn) {

return (NCObj ect *)strmreadTransObj (); }

virtual const NCTypelnfo *classlnfo() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (8 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

virtual unsigned hash() const = 0;

virtual int conpare(const NCObject&) const =0;

virtual NCbool isEqual (const NCObj ect& p) const {

return ((classinfo() == p.classinfo()) && conpare(p) == 0); }

virtual NCbool isSane(const NCObject& p) const {

return (this == &); }

const char *cl assName() const {

return classlinfo()->classNane(); }

NCbool isMenmber O (const NCTypel nfo& i nfo) const {

return (classlinfo() == & nfo); }

NCbool isMenber O (const NCObj ect & p) const {

return (classlinfo() == p.classinfo()); }

NCbool i sKi ndOF (const NCTypel nfo& p) const {

return (classlnfo()->hasBase(p)); }

NCbool isKi ndOf (const NCTypel nfo *p) const {

return (classlnfo()->hasBase(*p)); }

vi rtual NCbool operator==(const NCObject& p) const {

return isEqual (p); }

vi rtual NCbool operator!=(const NCObject& p) const {

return (!isEqual (p)); }

b

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (9 of 13) [20/02/04 05:41:57 p.m.]

Design

Code Block 17 - PostModern Computing (now Visigenic)'s NCObject Class

The NCObject class builds on the abstract interface of NCTransODbject to include behavior that allow
classes derived from NCObject to be placed in collection classes. The components of Object from
NIHCL and HObject from HCL which provide methods for comparing ject class. The RTTI class
NCTypelnfo is a static data member of the NCODbject class. A class derived from NCObject will have
one (1) copy of aNCTypelnfo Object pre class. The private data member class_info can be accessed
publicly by the static class function X::desc() where X is aclass derived from NCTypeObject. The
NCTypelnfo for a particular class can also be accessed with the member function classinfo() and the
character string class name can be accessed with the member function className().

NCODbject builds on the lower level interface of the safe casting behavior, canCast() and hasBase(), with
the following methods. isMemberOf() and isKindOf(). The isMemberOf() method takes a NCTypelnfo
object reference as an argument and checks to see if the subject is the same class as the argument. The
IsKindOf() works the same way but returns TRUE if the subject is derived from the argument.

A complete set of preprocessor macros are provided with NetClasses to guarantee conformance to the
common framework. (See Appendix A, page 6 &7) These macros avery similar to those found in
NIHCL and HCL.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/)\')\'*)\')\')\')\'*)\')\')\')\'*)\')\')\')\'*)\')\')\'*************)\'*)\')\')\')\'*)\')\')\'******************)\'*)\')\')\')\'*)\'/

#def i ne DECLARE_CLASSI NFQ(cl assnane) \

static NCTypelnfo cl ass_info;

#def i ne DECLARE_NCOBJECT_CLASS(cl assnane) \

private: \

DECLARE_CLASSI NFQO(cl asshane) \

public: \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (10 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

static const NCTypelnfo *desc(); \

virtual const NCTypelnfo *classlinfo() const; \

inline friend NG stream& operator>>(NC stream& strmcl assnane*& obj) { \

obj = (classnane *)strmreadTransQoj (); \

return strnm } \

virtual void wite(NCostrean&) const; \

virtual void prettyPrint(NCostream&) const; \

virtual unsigned hash() const; \

virtual int conpare(const NCObhject&) const; \

static NCTransObj ect *readFrom(NG stream& strm; \

cl assname(NG stream& strn

#def i ne DEFI NE_NCOBJECT CLASS(cl assnane) \

const NCTypel nfo *cl assnane:: classinfo() const \

{ return &classnane::class_info; } \

const NCTypel nfo *cl assnane::desc() { return &classnane::class_info; } \

NCTransObj ect *cl assnane: : readFrom(NG stream& strnj) \

{ return new classname(strm; } \

NCTypel nfo cl assnane: : cl ass_i nf o(STRI NG ZE(cl assnane), \

(NCTr ansReadFunc) &l assnane: : readFrom NCObj ect: : desc(), 0)

Code Block 18 - PostModern Computing (now Visigenic)'s NetClasses NCObject Macros

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (11 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

DSResource

The ORBéline product uses the classes which all derive from DSResource. As stated before, DSResource

inherits its capability from both the NCResource class and the NCObject class. The interface to the
resource referencing capability from NCResource class is enhanced in DSResource. An object can be
requested to create a new reference to itself - return a pointer to itself. This behavior is encapsulated in
the public member function _duplicate() which calls the lower level ref() member function of the
NCResource class to increment the reference count and return a pointer to itself. Thisissimilar to the
cloning capability found in NIHCL and HCL but no copy is made of the object; a copy is made of the
object reference (pointer). There is no standard copy constructor or cloning mechanism for the
DSResource class. A subsequent request to dismiss an object reference is done by calling the member
function _release() on the object reference (pointer). The _release() member function simple calls the
lower level unref() member function of the NCResource class to decrement the reference count and
potentially self destruct the object.

In addition to the CORBA:: X classes defined in the ORBeline product, there are some other Distributed
Services classes which derive from DSResource. The DSCollection and DSAssoc classes inherit from
DSResource and are fundamental components for other container classes. The abstract DSCollection
class encapsul ates the common functions for use by any collections of DSResource objects. There are
three concrete collection classes which inherit from DSCollection. The DSAssoc class encapsul ates the
concept of key value pairs. DSAssoc objects are used in DSSet and DSDictionary classes.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

/* Copyright 1993, 1994 by Post Modern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

cl ass DSResource: public NCObject, public NCResource {

private:

static NCTypelnfo cl ass_info;

publi c:

static const NCTypelnfo *desc();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (12 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

DSResour ce();

DSResour ce(NCi stream& strm ;

virtual ~DSResource();

inline friend NG stream& operator>>(NC strean& strm DSResource*& obj) {

obj = (DSResource *)strmreadTranshj ();

return strny }

virtual const NCTypelnfo *classlnfo() const;

DSResource * _duplicate() { ref(); return this; }

void release() { unref(); }
b

Code Block 19 - PostModern Computing (now Visigenic)'s DSResource Class

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (13 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Using the NetClasses Framework

Using the NetClasses Framework

As stated above, the NetClasses framework is the foundation of the ORBeline product for reasons
presented above. A detailed explanation of the use of the NetClasses and Distributed Services classes
will be given in Section 3 on CORBA and ORBeéline. For the purposes of being consistent with the
previous two frameworks, NIHCL and HCL, an example will be presented by showing how a " Point"
object would be formed using NetClasses. Even though this might not be consistent with how

PostM odern Computing (now Visigenic) intends their product to be used, atrivial example is consistent

with this presentation on distributed object frameworks.

A user defined class would inherit publicly from DSResource and the NCObject macros would be used
to supply common framework interfaces for RTTI and object 1/0. The user specific interface and data
members would be in addition to the macros.

cl ass DSPoint : public DSResource {
DECLARE_NCOBJECT_CLASS(DSPoi nt) ;
private:

unsi gned | ong nyX;

unsi gned | ong nyY;

publi c:

DSPoi nt () ;

DSPoi nt (unsi gned | ong, unsi gned | ong);
DSPoi nt (const DSPoi nt &) ;

virtual ~DSPoint();

voi d copyFron(NG streang);

void get (NG stream& strm { copyFrom(strm; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (1 of 4) [20/02/04 05:41:59 p.m.]

http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Using the NetClasses Framework

voi d put (NCCstream& strm const { wite(strm; }

unsi gned | ong x() const;

unsi gned | ong y() const;

voi d x(unsigned | ong);

voi d y(unsigned |ong);
b

Code Block 20 - PostModern Computing (now Visigenic)'s NetClasses Example DSPoint Class Declaration

The above class declaration of DSPoint is amost identical to that of HPoint for HCL example and Point
in the NIHCL example. The exact definition of the DSPoint classis not easily determined because
implementation details of NetClasses is not supplied with the ORBeline distribution; thisinformation is

company proprietary. However, the Interface Definition Language (IDL) compiler which comes with the
ORBeline product (as explained in Section 3.3.3.3) trandlates IDL into C++ header files and source files.

These files declare and define the C++ classes used in the ORB. The ORBeline IDL compiler produces
C++ code which adheres to the NetClasses framework. The C++ code is a mixture of ORBeline specific
code and NetClasses code. The code output from the ORBeline compiler gives avery good indication as

to the implementation details of the NetClasses discuss above. The following is asimple example of a
possible definition of the DSPoint class. It isjust an estimate but is actually isvery similar to the
definitions of HPoint from HCL and Point from NIHCL.

#i ncl ude " DSPoi nt. h"

DEFI NE_NCOBJECT _CLASS1(DSPoi nt , DSResour ce) ;

DSPoi nt : : DSPoi nt (NCi stream& strm : DSResource(strm {
strm >> nyX;

strm>> nyY;

voi d DSPoi nt: : copyFron{ NG stream& strn) {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (2 of 4) [20/02/04 05:41:59 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Using the NetClasses Framework

strm>> nyX;

strm >> nyY;

DSPoi nt : : DSPoi nt (const DSPoi nt & obj) {

myX = obj . x();
myY = obj.y();
}

voi d DSPoi nt: : oper at or =(const DSPoi nt & obj) {

myX = obj . x();
myY = obj.y();
}

voi d DSPoi nt::wite(NCostream& strm const {

strm << nyX;

strm << nyYy;

DSPoi nt : : DSPoi nt () {

myX = 0;
nyY = 0;
}

DSPoi nt : : ~DSPoi nt () {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (3 of 4) [20/02/04 05:41:59 p.m.]

Using the NetClasses Framework

Code Block 21 - PostModern Computing (now Visigenic)'s NetClasses Example DSPoint Class Definition

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (4 of 4) [20/02/04 05:41:59 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Success of the Single Rooted Tree Framework

Success of the Single Rooted Tree Framework

The power of the above example is the demonstration of the obvious benefit of reuse, especialy in the
case of distributed object frameworks. Also, NetClasses proves the capability of the single rooted tree
paradigm in that NetClasses and ORBeline are both industrial strength products.

It will be seen in the presentation on CORBA in Section 3 and ORBeline specifically, that PostM odern
Computing (now Visigenic)'s investment in the technology found in NetClasses based in part on NIHCL,
created a strong foundation for the development of their CORBA 1.1 compliant product. Using a proven

distributed object framework, this company was among the first to market with their ORB. It isimportant
to note that a year after the first release of ORBeline, PostM odern Computing (now Visigenic) was again

first to market with their CORBA 2.0 compliant version of ORBeline. | think that the strong foundation
of the NetClasses distributed object framework helped speed the evolution of the ORBeline product to
version 2.0.

In the next section on the Adaptive Communication Environment (ACE) adifferent framework is

presented that does not use the single rooted tree paradigm. The single rooted tree provides aviable
solution for the requirement of object transport or object I/O. It will be shown that ACE satisfiesa

different set of requirements for a distributed framework.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Success_of the_Single_Rooted_Tree_Framework.html [20/02/04 05:42:00 p.m.]

http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
mailto:mstevens@ent.mrj.com

Adaptive Communication Environment (!!'w2wpACE!! http://www.cs.wustl.edu/~schmidt! pel)

Adaptive Communication Environment
("M"w2wpACE!!nhttp://www.cs.wustl.edu/~schmidt!pe!)

The Adaptive Communication Environment (ACE) is a C++ framework for the development of high
speed, object-oriented, distributed applications such as concurrent network servers and gateways. The
distinction between the goals of the ACE framework and the three presented in the previous sectionsis
best shown by example.

The ACE framework is being used for the network management portion of the Motorola Iridium global
mobile communication system. The high speed, distributed network servers built using ACE manage the
connection and synchronization of services among world wide satellite ground stations. However, the
implementation of aservice in athread of control in a particular server would probably be designed and
coded from scratch or more than likely in another framework for general application development. ACE

provides the building blocks for the servers and is not intended for the development of the services
installed in the servers. The NIHCL or HCL frameworks are not optimized for high speed network server
creation because they provide for general application development also. There is some overlap in the two
frameworks with respect to interprocess communication schemes. The ultimate framework would
combine the fast operating system wrappers and distributed service frameworks of ACE and the elegant

distributed object patterns of NIHCL, HCL, and NetClasses.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Adaptive_Communication_Environment w2wpA.html [20/02/04 05:42:01 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
mailto:mstevens@ent.mrj.com

Object Reguest Broker (ORB)

Object Request Broker (ORB)

One of the driving goals for this research was to identify the best distributed object framework. The
conclusion of thisresearch is that the Object Request Broker (ORB) represents the future of distributed
object systems. As stated before, ORBs provide the framework for object location, activation, and
communication. 9 Standards for ORBs and commercially available products which deliver ORBs have
been insufficient in the eyes of information system providers. However, the potential advantages of using
ORBs for the development of the new generation of world wide, high performance, distributed systems
reflects the wide spread investment in object systems. In other words, the use of ORBs today is not wide
spread, but it is accepted that ORBs and ORB-like systems will become common place.

The Object Management Group (OMG) defines, in the Common ORB Architecture (CORBA)

specification, that the ORB is a system which provides mechanisms for sending requests and receiving
responses to and from objects. In addition, the ORB operates in a heterogeneous distributed environment
and interconnects unrelated object systems. [18] The OMG specifies that CORBA is based on a concrete

object model derived from the abstract OMG Object Model.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Request_Broker_ ORB__.html [20/02/04 05:42:02 p.m.]

http://www.omg.org/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

OMG Concrete Object Model

OMG Concrete Object Model

The object model defines the terms and concepts used in the CORBA specification. The following isa
list of terms and concepts as defined by the OMG.

. Anobject system is a collection of objects that isolate the requesters of services (clients) from the
providers of services by awell-defined encapsulating interface.

. The classical object model represents the situation where a client sends a message to an object,
the object interprets the message to decide what service to perform, the object determines both the
method to call and the object responds to the client.

. A client of aserviceis any entity capable of requesting a service from an object in an object
system.

. Anobject isan identifiable, encapsulated entity that provides one or more services that can be
requested by aclient.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ OMG_Concrete_Object_Model_.html [20/02/04 05:42:03 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Request

Request

. A request for servicesis an event sent by aclient to an object consisting of an operation, atarget
object, zero or more parameters, and an optional request context.

. A valueisan instance of an Interface Definition Language (IDL) datatype that may be a
legitimate parameter in arequest.

. Anobject nameisavaue which identifies an object type in an object system.

. Anobject referenceis an object name that reliably denotes a particular object; an object reference
will identify the same object each time the reference is used in arequest.

. A request context is arequest parameter which provides state information about the associated
request.

« An exception represents an abnormal condition occurring during the execution of arequest.

. A request parameter may be one of three (3): input parameter, output parameter, or input-
output parameter.

. Objects are created or destroyed as an outcome of issuing requests in the object system.

. A typeissignature which restricts all parameters or return values in the object system and
requests.

. A valueisan instance of atype.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Request_.html [20/02/04 05:42:04 p.m.]

mailto:mstevens@ent.mrj.com

Values

Values

. There arethree (3) value types. object references, basic values, and constructed values.

. Thebasic values are more specifically of value type { Short | Long | UShort | ULong | Float | Double
| Char | String | Boolean | Octet | Enum | Any }

. The Short and UShort values are 16-bit, 2's complement integers.

. The Long and ULong values are 32-hit, 2's complement integers.

. TheFloat and Double values are 32-bit and 64-bit |EEE floating point numbers.

. The Octet value is an 8-bit opague datatype, guaranteed to not undergo any conversion during
transfer between systems.

. The String value consists of avariable-length array of characters; the length of the string is available
at run-time.

. The Any value can represent any possible basic or constructed type.

TYalue

Constructed VYalue

.--“'__ﬂ-""'--.

Struct Sequence Undon Array

Object Reference

fhort Long U5hort VLhong Float Double Char String Boolean Octet Enum Any

. The constructed values are more specifically of value type { Struct | Sequence | Union | Array } and
represent user defined data structures through IDL.

. The Struct valueis arecord type consisting of an ordered set of (name, value) pairs.

. The Sequence value consists of a variable-length array of asingle type; the length of the sequenceis
available at run-time.

. The Union value consists of a discriminator followed by an instance of atype appropriate to the
discriminator value.

. The Array value consists of afixed-length array of a single type.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Values_.html (1 of 2) [20/02/04 05:42:06 p.m.]

Values

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Values_.html (2 of 2) [20/02/04 05:42:06 p.m.]

mailto:mstevens@ent.mrj.com

Object Interface

Object Interface

. Aninterfaceisthe description of the set of possible operations that a client may request of an
object. The interface hides the implementation details of the object.

. Aninterfacetypeisatypethat is satisfied by any object that satisfies a particular interface. An
interface typeis any value that identifies an object.

. Interfaces are specified in I nterface Definition Language (IDL). I nterface inheritance provides
the composition mechanism for permitting an object to support multiple interfaces.

. Theprincipal interface is the most-specific interface that the object supports.

. Aninterface may have attributes. An attribute islogically equivaent to declaring a pair of
accessor functions.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Interface_.html [20/02/04 05:42:07 p.m.]

mailto:mstevens@ent.mrj.com

Object Operations

Object Operations

. Anoperation is an identifiable entity that denotes a service that can be requested.

. Anoperation isidentified by an operation identifier.

. An operation has a signature that describes the legitimate values of request parameters and
returned results.

. Anoperation signature consists of the required parameters, the result, the exceptions that may be
raised and the parameters, and contextual or execution semantics.

« The operation parameters are specified by their mode (IN, OUT, or INOUT) and type.

. The codethat is executed to perform a serviceis called a method.

. The execution of amethod is called a method activation.

When aclient issues arequest, a method of the target object is called. The input parameters passed by the
requester are passed to the method and the output parameters and return value are passed back to the
requester.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Operations_.html [20/02/04 05:42:08 p.m.]

mailto:mstevens@ent.mrj.com

The ORB Structure

The ORB Structure

In any discussion of ORBSs, the term "client" represents the initiator of arequest and the term "object" or
"object implementation” represents the service being requested. However, this client/server paradigm
only appliesto the point of view of the request. It is the existence of arequest which labels one entity as
the client and the other asthe server. In fact, a server object might also be the client of another server
object while it is servicing a request.

The ORB isresponsible for al of the mechanisms required to find the object implementation for the
request, to prepare the object implementation to receive the request, and to communicate the parameters
making up the request. The interface the client sees is completely independent of where the object is
located and how the object isimplemented.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORB_Structure_.html [20/02/04 05:42:09 p.m.]

mailto:mstevens@ent.mrj.com

Static IDL ORB Interface

Static IDL ORB Interface

There are three (3) ways which the client communicates with the ORB. The client can directly interact
with the ORB for administrative functions through the common ORB Interface. See Figure 5. The other

two forms of client/ORB communication are used for request invocation. A specific, IDL defined
interface to an object can be called through the IDL Stub to invoke a request. A request can also be
invoked through the Dynamic Invocation interface (DI1) for cases when the IDL stub is not present in the
client (arequest is made to an object interface for which no a priori knowledge of the interface through
IDL is known) The object implementation (server) receives arequest as an up-call through the IDL
generated skeleton.

Client Obhject Implementation

HHTHE NS

Dynami IDL ORB
Invocatio Stub=s Interface
ORB Core

Il 1nterface identical for all ORB implementations

honyennsyny There may be multiple obhject adaptexs
s There are stubs and a skeleton for each object type

Figure5 - OMG ORB Structure

The IDL isthe language used to describe the interface to object implementations or services which a
client object calls. In the ORB architecture, all communication is done through object interfaces (defined
by IDL) and the end points of communication are the caller entity (client) and the object implementation.
The client can invoke operations of a specific interface because the client has an object reference to the
object implementation. An object reference represents the information needed to specifically an object
within the ORB. The IDL which defines the object interface is used to construct the IDL stub and IDL

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Static_IDL_ORB_Interface_.html (1 of 2) [20/02/04 05:42:11 p.m.]

Static IDL ORB Interface

skeleton located in the client and server respectively. The client initiates arequest by calling IDL stub
routines that are specific to the object interface pointed to be the object reference.

After arequest has been accepted by the ORB from the IDL stub or DII, the ORB locates the appropriate
object implementation and transmits parameters and control to the object implementation through the
IDL skeleton. See Figure 5. The object implementation services the request and the passes return
parameters and control back to the client.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Static_IDL_ORB_Interface_.html (2 of 2) [20/02/04 05:42:11 p.m.]

mailto:mstevens@ent.mrj.com

Language Mapping

Language Mapping

The programmer interfaces to the ORB, DII, and object adapter are specified according to alanguage
mapping. From a programmer's point of view, their programs must interface to the ORB in the same
language that the program iswritten in (C, C++, SmallTalk, Java, etc.) Also, the portable IDL codeis
compiled into a programming language according to a CORBA specified language mapping. As an
example, the same object interface can be used in a Java program and a C++ program because the
interface iswritten in IDL and can then be compiled separately into Java and C++ stubs and skeletons. In
fact, aclient could call a specific object stub using Small Talk and the stub converts the request into
canonical form. The ORB then transmits the request to a IDL skeleton mapping to a C++ object
implementation. The ORB, the ORB interfaces, and the IDL not only allow the object system to work
properly in a heterogeneous hardware network but also in a heterogeneous coding environment.

Another important factor in having the ORB work in a heterogeneous environment is the object
reference. Object references can be implemented according to any language mapping. Through common
ORB functionality, object references can be converted to a string form which can be transmitted to
another part of the object system which needs the object reference in an alternate language mapping.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Language_Mapping_.html [20/02/04 05:42:12 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Interface Repository (IR) and the Dynamic Invocation Interface (DII)

Interface Repository (IR) and the Dynamic Invocation Interface (DII)

The interface repository (IR) is arun-time database of the IDL declarations. The interface repository
allows a programmer to query an object interface in the repository to find out what types of operations
and parameters are supported by the interface. Dynamic requests are built at run-time using the interface
repository. A client which has an object reference for which no IDL stub is available can call the ORB's
commonget interface() functiontoretrievethel nt er f aceDef object from the interface

repository. Thel nt er f aceDef object isastandard type. Using thel nt er f aceDef object, other
associated objects can beretrieved including Oper at i onDef objects for the operations of the object
interface. Even the exceptions associated with an operation can be retrieved from the Except i onDef
object.

The IR and DIl provide the user/programmer interface to the low level implementation of the request
protocol. All object interfaces in the ORB are unique, identifiable entities. Also, within an object
interface, there are uniquely identifiable operations, parameters, and exceptions. When arequest is
issued, it isthese low level unique IDsfor the interfaces, operations, parameters, and exceptions which
are assembled and sent to and from the ORB. The DIl processes requests which are already in the low
level form and have no relationship with the client or server code. Requests which originate in the IDL
Stubs are formed at compile-time and are therefore known to the programmer and are represented as
code in the language mapping.

The low level aspect of dynamic requests make them powerful but also very abstract. As an example,
using adynamic request is like using a protocol like TCP but accessing it at the IP level at one end of a
connection stream. In this case, just like the case of DI, the other end of the TCP protocol connection
doesn't know the difference. When a DL skeleton receives arequest, the origin of the request is not
known. The request can come from a pre-compiled IDL stub in the client program or can be built at run-
time using the DIl and IR.

| find the IR and DI so abstract that | haven't found a use for it in any application program. When | find
examples of applications using dynamic requests, the applications are always interacting with a human to
create requests. For example, the IR could be used to query the interface of an object reference returned
in aprevious request. In thisway, the IR could be used to find reusable software components. In another
example, inspired during an open discussion of CORBA at Object Expo NY 1995, the IR and DIl could
be used to monitor and control abstract componentsin alarge computer network. If every node in the
network had a built in system management object, even an unrecognized node could be monitored by
querying the IR with areference to the system management object. Here again, human intervention is
needed to interpret the IR query results.

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Interface_Repository _IR__and_the_Dynamic_l.html (1 of 2) [20/02/04 05:42:14 p.m.]

http://www.omg.org/

Interface Repository (IR) and the Dynamic Invocation Interface (DII)

For aimost all cases, the standard IDL stubs provide the best interface for invoking requests. Even if code
could be designed to use the IR and DIl without human intervention, the performance would be
degraded. In order to create a dynamic request, a static operation for all object referencesis provided to
create arequest object. The request object encapsulates the behavior of adding arguments and
dispatching the request. As the name implies, the dynamic request is actually "built" during run-time.
The IDL stub contains pre-compiled request which are obviously faster.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Interface_Repository _IR__and_the_Dynamic_l.html (2 of 2) [20/02/04 05:42:14 p.m.]

mailto:mstevens@ent.mrj.com

Implementation Repository

Implementation Repository

The OMG also specifies another ORB database called the implementation repository which stores the
unigue details the ORB uses to locate and activate object implementations. The implementation
repository usually contains operating system and vendor specifics which are not portable. Installation of
implementations and control of policies related to the activation and execution of object implementations
Is done through operations on the implementation repository. A client can call acommon ORB function
get_implementation() on an object reference to retrieve the implementation information.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Implementation_Repository_.html [20/02/04 05:42:15 p.m.]

mailto:mstevens@ent.mrj.com

Object Adapter

Object Adapter

The Object Implementation communicates with the ORB through the common ORB Interface or the
Object Adapter component. As an example, the Object might register its service(s) with the ORB through
calls to the Object Adapter. Services provided by the ORB through an Object Adapter also include:
generation and interpretation of object references, method invocation, security of interactions, object and
implementation activation and deactivation, and mapping object references to implementations.

. A CORBA compliant ORB shall have at least on type of object adapter called the Basic Object
Adapter (BOA). The requirements on the BOA are [19]:

. The BOA shall supply a Implementation Repository that |ets the server install and register object
implementations.

. The BOA shall provide mechanisms for generating and interpreting object references, activating
and deactivating object implementations, and invoking methods and passing request parameters.

. The BOA shall provide an identification mechanism for clients. The client or "principa™
identification is provided by the adapter but it is up to the implementation to use it.

. The BOA shall provide for method invocation through stubs.

The activation of object implementationsis governed by four specified policies: shared server,
unshared server, server-per-method, and persistent server.

Multiple objects reside in the same server program (process) in a shared server activation policy. Using
the Implementation Repository, the BOA starts the server process following the first request. A server
process notifies the BOA that it is ready by calling the common object adapter function

I mpl i s_ready() . Theserver handles one request at atime. When the server isready to terminate, it

calls the common object adapter function deact i vat e_i npl () . The unshared server activation

policy provides for one object implementation per process. When the object implementation server
processisready it notifies the BOA by calling the common adapter functionobj i s_ready().The

server object remains active and will receive requests until it calls the common object adapter function
deactivate_obj ().

The server-per-method activation policy allows for a new server process to be started for every request
made on an object implementation. The persistent server activation policy isfor server objects which are
started outside of the control of the BOA.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Adapter_.html (1 of 2) [20/02/04 05:42:16 p.m.]

http://www.omg.org/

Object Adapter

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Adapter_.html (2 of 2) [20/02/04 05:42:16 p.m.]

mailto:mstevens@ent.mrj.com

CORBA

CORBA Standard

The state of the art in CORBA compliant ORBs are those compliant with the new (late 95) CORBA 2.0
specification from the OMG. CORBA 2.0 addresses some of the short comings of the CORBA 1.1
specification such as standard inter-ORB compatibility. | found that most commercial CORBA 1.1

vendors provided extensions to the standard which made there ORB a viable product. In many case,
CORBA 2.0 provided a standard for what ORB vendors were already doing but doing differently. For

instance, CORBA 2.0 requires that TCP/IP be used for inter-ORB communication but most ORB vendors
already used TCP/IP. The following section describes ORBeline, the CORBA 1.1 compliant ORB sold
by PostM odern Computing (now Visigenic) and Orbix, the CORBA 1.1 compliant ORB produced by
|lona Technologies. PostM odern Computing (now Visigenic) and lona have provided their ORBs for
distributed object research at Villanova University.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ CORBA_.html [20/02/04 05:42:17 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.vill.edu/
mailto:mstevens@ent.mrj.com

PostModern Computing

PostModern Computing (now

Visigenic)'s ORBeline

The ORBeline system from PostModern Computing (now Visigenic) is acomplete CORBA 1.1
implementation with extensions added for fault-tolerance, distributed directory services, and automated
protocol selection. ORBeline works on top of the proven distributed object system, NetClasses (see

PostM odern's NetClasses Section 2.8). This section describes the overall architecture of ORBeline, the
implementation details and relationship to NetClasses, and some example IDL code.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_PostModern_Computing_.html [20/02/04 05:42:18 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

ORBE€line's Architecture

ORBeline's Architecture

The heart of ORBeéline isthe replicated dynamic directory service called the Smart Agent which keeps

track of all objectsin the ORB. The Smart Agent is aprocess running on a host in a network. Not only
the activated objects but also the dormant object implementations registered with the object activation
daemons are monitored by the Smart Agent. Upon the ORBeline ORB receiving arequest from aclient,

the Smart Agent will either map the request to an activated object (already running) or a new server
process will be started according to the object implementation details found in an associated object
activation daemon.

In addition to the ORB objects, the Smart Agent keeps track of all active clients and their respective
connectionsto serversin the ORB. The Smart Agent monitors these connections and the end-point
processes using heart beats. A heart beat refers to operating system mechanisms which are used to
determine the state of another process. If a connection is broken or an end point processis no longer
running, the Smart Agent will facilitate a reconnect or the object server will be restarted. The ORBeline

architecture is fault-tolerant because of the Smart Agent. ORBeline allows objects to be replicated so that

the Smart Agent can reconnect a client to a duplicate object server when the first one is unavailable. For
example, if aclient is connected to an object running on host A and host A crashes, the Smart Agent will
seamlessly reconnect the client to an object running on host B. The Smart Agent itself can be replicated
on many hosts in anetwork. If the host running the primary Smart Agent crashes, a replicated Smart
Agent will takeover on another host.

As mentioned above, the Smart Agent relies on object activation daemonsto start object servers. Object
implementation can be registered with an object activation daemon running on a particular host. The
object activation daemon will be notified upon a client request to start the server object.

ORBeline provides a very elegant distributed object implementation. Object implementations can be
anywhere in the ORB with respect to the client. The objects can be collocated in the same process or on
the same machine as the client. The objects can aso be on another machine in the same network or in a
remote network. The Smart Agent will monitor other Smart Agents registered from other network. No
matter where the requested object islocated, this fact istotally transparent to the client. Again, the notion
of aclient/server relationship is from the point of view of the request endpoints. ORBelines CORBA 1.1

compliance and fault tolerant extension operates on the strong foundation of the NetClasses product.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_Architecture_.html (1 of 2) [20/02/04 05:42:19 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

ORBE€line's Architecture

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_Architecture_.html (2 of 2) [20/02/04 05:42:19 p.m.]

mailto:mstevens@ent.mrj.com

The ORBeline

The

ORBeline Framework

In addition to the executable objects provided with ORBeline such as the Smart Agent, IDL compiler,

Object Activation Daemons, and the Interface Repository, PostModern created an object framework
which supports the CORBA 1.1 specification. This object framework (now referred to as the ORBeline

framework), brings the NetClasses framework up to compliance with CORBA 1.1 and completes a
seamless C++ mapping of CORBA IDL. The ORBeline framework is aforest of classes where most of

the classes are part of the tree inheriting from DSResource and the rest are supporting classes which
complete the ORB interface. (See Appendix A, page 2) As presented in Section 2.8.3.2, the DSResource

classis an abstract interface for distributed objects which provides reference counting, object I/0O, RTTI,
and other primitive behaviors necessary to implement CORBA objects. This section describes the details

of the ORBeline framework including the configuration, the implementation of primitive ORB types, the
exception handling system, and the ORB Object.

Namespaces and the

CORBA class

The ORBeline framework consists of many classes (including all those in the DSResource tree) which
are part of the CORBA namespace. A namespace, in the context of C++, refers to the specification of the

scope of asymbol in the code. Namespaces are part of the new ANSI/ISO standard but are not available
in all compilers. Namespaces provide a almost perfect guard against symbol collisions. An example of a
symbol or name collision is when two (2) object frameworks are being used at the same time and they
both declare atype bool ean. Theidea solution to this problem isto allow designers the freedom to use

names which they deem appropriate and provide a name collision prevention mechanism. The ANSI/ISO
standard specifies such a solution.

The ORBeline framework provides a protected namespace by declaring names within the bounds of the
class CORBA (nested classes). For instance, ORBeline declares a class Cbj ect in aheader file called

obj ect . h. Theobj ect . h header fileis never explicitly included in auser file. Instead, the file
cor ba. h declares the class CORBA which declares all the ORBeéline classes, typedefs, statics, and

includes the ORBeline header files inside the CORBA class declaration. (See code block below and
Appendix A, page 3) The only header needed by auser fileiscor ba. h.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (1 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

The ORBeline

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

cl ass CORBA

public:

cl ass Object;

class Structure;

cl ass Environment;

class Array;

cl ass Sequence;

class String;

cl ass Uni on;

cl ass ORB;

cl ass BQA;

cl ass Marshal Stream

cl ass Cont ext;

class Property;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (2 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

The ORBeline

class Propertylist;

cl ass TypeCode;

cl ass Struct TypeCode;

cl ass EnuniypeCode;

cl ass Uni onTypeCode;

class StringTypeCode;

cl ass Obj Ref TypeCode;

cl ass SequenceTypeCode;

cl ass ArrayTypeCode;

cl ass Any;

cl ass Val ue;

cl ass Val ueShort;

cl ass Val uelong;

cl ass Val ueUShort;

cl ass Val ueULong;

cl ass Val ueChar;

cl ass Val ueCct et ;

cl ass Val ueBool ean;

cl ass Val ueString;

cl ass Val ueObj Ref;

cl ass Val ueTypeCode;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (3 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

cl ass Val ueStruct;

cl ass Val uelni on;

cl ass Val ueEnum

cl ass Val ueSequence;

cl ass Val ueArray;

typedef short Short;

typedef |ong Long;

t ypedef unsi gned short UShort;

typedef unsigned | ong ULong;

typedef char Char;

typedef float Float;

typedef doubl e Doubl e;

typedef unsigned char Bool ean;

typedef unsi gned char Cctet;

stati c Bool ean TRUE

stati c Bool ean FALSE

#i ncl ude "env. h"

#i ncl ude "cstring. h"

#i ncl ude "struc. h"

#i nclude "array. h"

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (4 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

#i ncl ude "seq. h"

#i ncl ude "uni on. h"

#i

ncl ude "typeinfo.h"

#i

ncl ude "princ. h"

#i ncl ude "idefclnt. hh"

#i ncl ude "orb. h"

#i ncl ude "boa. h"

#i

ncl ude "bopt. h"

4i

ncl ude "object.h"

#i

ncl ude "typecode. h"

4i

ncl ude "any. h"

#i ncl ude "val ue. h"

#i ncl ude "nstrm h"

4

ncl ude "prop. h"

#i ncl ude "context.h"

4

ncl ude "optr.h"
s

Code Block 22 - PostModern Computing (now Visigenic)'s CORBA Class

By declaring all the ORBeline names inside the class CORBA, they can be referenced by using the scope delimiter operator
and the encapsulating class. Continuing the above example, the class Obj ect isdenoted

CORBA: : bj ect

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (5 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

The ORBeline

When an ORBeline type name is referenced outside the scope of another ORBeéline class, the scope
delimiter must be used.

ORBeline's Typecodes , Any, and Value Classes

In section 3.1.2, the primitive concept of an CORBA Vaue and Type was presented. Figure 4 - OMG
Specified Type Values, is shown here again.

Talue

Constructed Talue
Object BReferance

Sttruct Sequence Union Array

Short Long WVShort ULong Float Double Char String Boolean Octet Enum fAny

The CORBA concepts of Values and Types is confusing because they refer to the same thing; only the
point of view is different. A CORBA object is an interface, specified with IDL, which hides an object

implementation in the ORB. The object interface declares all possible public requests on the object
implementation. These requests can have input, output, and return arguments. The "type" of these
arguments are referred to as CORBA Type and an instance of a particular CORBA Typeisa CORBA

Vaue. For necessary reasons which will be describes shortly, ORBeline adds to the confusion by

declaring, in many cases, three (3) C++ classes for every apparent "type". Below are the three classes
which model the CORBA "String" type/value. (See Appendix A, page 10,12, & 26)

class CORBA::String; // "cstring.h"
cl ass CORBA: : ValueString; // "value.h”

class CORBA: : StringTypeCode; // "typecode. h"

In ORBeline, the CORBA value "String" isimplemented using the CORBA: : St ri ng class. The
CORBA type"String” isimplemented using the C++ type of the St r i ng class. In other words, the

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (6 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

CORBA value"String" is an instance of the ORBeline C++ class CORBA: : St ri ng. The CORBA type
"String" maps directly to the C++ type for the ORBeline class CORBA: : Stri ng.

When you read the ORBeline framework specifications, you find many "String" classes. What are the
CORBA: : Val ueStri ng and CORBA: : St ri ngTypeCode classesfor? The answer isthat they are

used by the implementation of the CORBA: : Any, CORBA: : Val ue, and CORBA: : TypeCode classes.

As presented in Section 3.1.2, the CORBA Value "Any" is an opague type place holder used for
wildcarding "any" IDL type including primitive types and user defined "constructed” types.

ORBeline implements the CORBA "Any" value using the C++ class CORBA: : Any. The CORBA: : Any
class usesthe CORBA: : Val ue class and the CORBA: : Val ue class usesthe CORBA: : TypeCode

class. In order to implement the CORBA "Any" concept, every primitive "type" needs an associated class
derived from both CORBA: : Val ue and CORBA: : TypeCode. In addition to using the CORBA type

"Any" in an IDL declaration, the programmer can build dynamic requests using the Dynamic Invocation
Interface and Interface Repository. ORBeline provides the capability to build dynamic requests using the

CORBA: : Val ue classes and CORBA: : TypeCode classes. Therest of this section and the following

two (2) sections describe the implementation details of the ORBeline framework with respect to the
CORBA: : TypeCode, CORBA: : Any, and CORBA: : Val ue classes.

The TypeCode Classes

Thereisa CORBA: : Val ueX classfor every "Value" specified in the CORBA Specification (See Figure
above). These classesinherit from the CORBA: : Val ue class. The "constructed values' are specialized
inthe CORBA: : Val ueConst r uct ed class and its derived sub-classes. (See Appendix A, page 11)
Since the CORBA: : Val ue classes are used for referencing within the ORB even the C++ primitives are
modeled (e.g. CORBA: : Val ueShor t , CORBA: : Val ueChar).

In addition to the implementation classes and typedefs for the primitive CORBA "Values',
typedef Object * bjectRef;

typedef short Short;

typedef |ong Long;

typedef unsigned short UShort;

t ypedef unsigned | ong ULong;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (7 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

typedef char Char;

typedef float Float;

typedef doubl e Doubl e;

t ypedef unsi gned char Bool ean;
typedef unsi gned char Cctet;
static Bool ean TRUE;

static Bool ean FALSE;

class Structure;

class Array;

cl ass Sequence;

class String;

cl ass Union;

cl ass Any;

2>Code Block 23 - PostModern Computing (now Visigenic)'s CORBA "Vaues' Implementation

there are also CORBA "TypeCodes'. ORBeline implements CORBA "TypeCodes' as C++ classes. This
iIswhy the CORBA: : St ri ngTypeCode classexists. A CORBA "TypeCode" consists of a"Kind"

value and a parameter list for more complicated types. The following table shows this relationship.

TypeCode Const (* C++ class) Kind Parameter List
TC nul | tk_nul | none
TC void tk_void none
TC short tk_short none
TC | ong tk_l ong none
TC ushort tk_ushort none

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (8 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

TC ul ong tk_ul ong none
TC fl oat tk_fl oat none
TC doubl e t k_doubl e none
TC_bool ean tk_bool ean NONE
TC char tk_char none
TC oct et tk_octet none
TC any * t k_any none
TC TypeCode * tk_TypeCode NONe
TC Princi pal * tk_Princi pal 'none
TC vj ect * tk_objref none
struct-name,

Structure * (const generated) |tk _struct

{ member, TypeCode}
union-name, switch TypeCode

Uni on * (const gener at ed} tk_union

{label-value, member-name, TypeCode}
TC string * tk_string maxlen
Enum * tk_enum {enum-name, enum-id}

Sequence * (const gener at ed) t k_sequence TypeCode, maxlen
Array * (const gener ated) tk_array TypeCode, length

Table 2 - PostModern Computing (now Visigenic)'s TypeCodes and "Kinds'

The "kind" values are declared in the CORBA: : TypeCode class. The TypeCodes for the C++ primitive
types are also defined as static const instantiations within the CORBA: : TypeCode class. Noticein the
following declaration of the CORBA: : TypeCode class. (1) the enumeration of TCKi nd andt k_x

values, (2) the static const members for the primitive types (3) and the ki nd and _par anet er s data
members.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Vi sigenic) Technol ogies, Inc. */

[* Al rights reserved. */

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ The ORBeline_.html (9 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

/**/

cl ass TypeCode: public nject

publi c:

enum TCKi nd {

tk_null,

tk_voi d,

tk_short,

tk_| ong,

tk_ushort,

t k_ul ong,

tk_fl oat,

t k_doubl e,

tk_bool ean,

tk_char,

tk_octet,

tk_any,

t k_TypeCode,

tk_Princi pal

tk_objref,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (10 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

tk_struct,

tk_uni on,

tk_enum

tk_string,

t k_sequence,

tk_array

b

TypeCode() { _kind =tk null; }

TypeCode(TCKi nd ki nd);

TCKi nd kind() const { return _kind; }

Long param count () const { return (Long)_parameters.size(); }

Bool ean equal (const TypeCode& tc) const

{ return (_kind == tc._kind &&

_paraneters.iskEqual (tc. _paraneters)); }

Any* paraneter (Long i ndex, Environnent& env) const;

static const TypeCode TC null;

static const TypeCode TC voi d;

static const TypeCode TC short;

static const TypeCode TC_ | ong;

static const TypeCode TC ushort;

static const TypeCode TC ul ong;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (11 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

static const TypeCode TC fl oat;

static const TypeCode TC doubl e;

static const TypeCode TC bool ean;

static const TypeCode TC char;

static const TypeCode TC octet;

static const TypeCode TC any;

static const TypeCode TC TypeCode;

static const TypeCode TC Princi pal;

virtual ~TypeCode() {};

virtual Boolean is_primtive() const { return 1; }

static const char *convert_to_string(TCKi nd kind);

static TypeCode * read(NCi stream& strm;

static TypeCode *_create(const TypeCode& code);

pr ot ect ed:

TCKi nd _ki nd;

DSOrderedd tn _paraneters;

voi d _read_paraneters(NC stream& strm;

voi d operator=(const TypeCode&);

private:

static const Typelnfo _class_info;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (12 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

publi c:

TypeCode(NCi strean& strm;

static const Typelnfo * _desc();

virtual const Typelnfo *_type_info() const;

virtual void * _safe narrowconst Typelnfo *)const;

static TypeCode *_narrow const Cbject *obj);

static Object * reader (NG stream& strm

{ return TypeCode:: read(strm; }

void writer(NCostream& strn) const;

Boolean _is local () const { return 1; }

i nt conpare(const TypeCode& tc) const;

unsi gned hash() const;

virtual const char * _interface_nane() const

{ return "CORBA:: TypeCode";}

Code Block 24 - PostModern Computing (now Visigenic)'s CORBA:: Typecode Class

The CORBA: : TypeCode classinherits from CORBA: : Obj ect which will be presented in the next
section. The CORBA: : Ohj ect class encapsulates an object interface within the ORB. By having
CORBA: : TypeCode or any other class inheriting from CORBA: : Cbj ect makesthe derived classa

specialized object in the ORB. Developers will use the "TypeCode" objects when querying the Interface
Repository or using an "Any" argument. In the example mentioned above, the CORBA: : St ri ng class

also hasthe CORBA: : Stri ngTypeCode and CORBA: : Val ueSt ri ng classes. The
CORBA: : Stri ngTypeCode classinherits from CORBA: : TypeCode and istherefore derived from
CORBA: : bj ect and can be an object in the ORB. The static const value TC_St r i ng isdefined in

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (13 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

the class.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

/* Copyright 1993, 1994 by Post Modern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

class StringTypeCode: public TypeCode

private:

static const Typelnfo _class_info;

publi c:

static const StringTypeCode TC string;

StringTypeCode(Long naxl en);

StringTypeCode(Val ueLong *naxl en) ;

StringTypeCode(NC strean& strm;

Boolean is_primtive() const { return O; }

~StringTypeCode() {}

static const Typelnfo * _desc();

virtual const Typelnfo *_type_info() const;

virtual void *_safe narrowconst Typelnfo *)const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (14 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

static StringTypeCode * narrow(const Object *obj);

const char *_interface_nanme() const

{ return "CORBA: : StringTypeCode";}

b

Code Block 25 - PostModern Computing (now Visigenic)'s CORBA::StringTypeCode Class

The Any Class

When the "Any" typeis specified in IDL then the CORBA: : Any classisused in the ORBeline
implementation. Every instance of the CORBA: : Any classis associated with an instance of the
CORBA: : Val ue class as seen in the following declaration:

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

class Any: public DSResource

DECLARE_NCOBJECT_CLASS(Any) ;

pr ot ect ed:

Val ue * _val ue;

publi c:

Any();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (15 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

Any(const Anyé& a);

Any(Val ue *val ue);

Any(const Val ue& val ue);

Any(const TypeCode& code);

Any(TypeCode: : TCKi nd ki nd) ;

~Any();

voi d copyFrom(NG stream& strm;

const TypeCode* type() const;

voi d type(const TypeCode& code);

TypeCode: : TCKi nd ki nd() const;

Value * value() { return _value; }

const Value * value() const { return _value; }

voi d val ue(const Val ue&);

voi d val ue(Val ue *);

Bool ean is_prinmitive() const;

Long nenber count() const;

short shortVal ue() const;

| ong | ongVal ue() const;

unsi gned short ushort Val ue() const;

unsi gned | ong ul ongVal ue() const;

float floatValue() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (16 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

doubl e doubl eVal ue() const;

char charVal ue() const;

const char * stringValue() const;

const TypeCode& typeCodeVal ue() const;

oj ect *objrefValue() const;

voi d shortVal ue(short);

voi d | ongVal ue(l ong);

voi d ushort Val ue(unsi gned short);

voi d ul ongVal ue(unsi gned | ong);

void floatVal ue(float);

voi d doubl eVal ue(doubl e);

voi d char Val ue(char);

voi d stringVal ue(const char*);

voi d typeCodeVal ue(const TypeCode&);

voi d objrefVal ue(hj ect *obj);

const Val ue& nmenber (const char *nenber _name) const;

Val ue& nenber (const char *nenber nane);

voi d get (NG stream& strm;

voi d put (NCostream& strm const;

b

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (17 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

Code Block 26 - PostModern Computing (now Visigenic)'s CORBA::Any Class

Notice that the CORBA: : Any class has many member functions which allow the developer to treat the
"Any" argument as what ever primitive type the developer chooses. The CORBA: . Any classinherits
from DSResour ce which allows CORBA: : Any to be adistributed object in that it can be send over the
wire to another process host, or network. The _val ue datamember of CORBA: : Any isa pointer to the
abstract CORBA: : Val ue object. This object encapsulates the real value represented by the

CORBA: : Any instance.

The Value Class

The CORBA: : Val ue classis shown here:

/)\')\'*)\')\'*)\'*)\')\'***)\')\'***)\')\'****************)\')\'***)\')\'***************************/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

cl ass Val ue: public DSResource

DECLARE_NCOBJECT_ABSTRACT_CLASS(Val ue) ;

pr ot ect ed:

Val ue() {}

publi c:

static Value* factory(TypeCode *);

static Value* factory(const TypeCode&);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (18 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

virtual ~Value() {}

virtual TypeCode:: TCKind ki nd() const =0;

virtual const TypeCode& typeCode() const=0;

virtual void value(const Value& val) = 0;

virtual void copyFrom(NG stream& strm = O;

virtual Boolean is_primtive() const { return 1; }

virtual void add_nenber(Val ue *);

virtual Val ue& nenber(const char *nane);

virtual const Val ue& nenber(const char *nane) const;

virtual ULong menber count() const { return O; }

virtual Val ue& nmenber At (Long i ndex);

virtual const Val ue& nenber At (Long i ndex) const;

virtual short shortValue() const;

virtual |ong | ongVal ue() const;

virtual unsigned short ushortVal ue()const;

virtual unsigned | ong ul ongVal ue()const;

virtual float floatValue() const;

virtual doubl e doubl eval ue() const;

virtual char charVal ue() const;

virtual const char * stringValue() const;

virtual const TypeCode& typeCodeVal ue() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (19 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

virtual const Any& anyVal ue() const;

virtual Any& anyVal ue();

virtual Object *objrefValue() const;

virtual void shortVal ue(short);

virtual void | ongVal ue(long);

virtual void ushortVal ue(unsigned short);

virtual void ul ongVal ue(unsi gned | ong);

virtual void floatValue(float);

virtual void doubl eVal ue(doubl e);

virtual void charVal ue(char);

virtual void stringVal ue(const char*);

virtual void stringValue(const String&);

virtual void typeCodeVal ue(const TypeCode&);

virtual void anyVal ue(const Anyé&);

virtual void anyVal ue(Any *val ue);

virtual void objrefVal ue(ject *val ue);
s

Code Block 27 - PostModern Computing (now Visigenic)'s CORBA::Value Class

The CORBA::Value class uses a static factory member function [20] called f act or y() which
produces the appropriate CORBA: : Val ue X object from a TypeCode or another CORBA: : Val ue

object. The CORBA: : Val ue class also provides accessor functions for use by derived classes. Again,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (20 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

the CORBA: : Val ue classinherits from DSResource so that it can be a distributed object. Continuing
the example of the CORBA: : St ri ng class, the CORBA: : Val ueSt ri ng classis shown here:

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

/* Al rights reserved. */

/**/

class ValueString: public Value

DECLARE_NCOBJECT CLASS(Val ueSt ring):

private:

String _val ue;

publi c:

Val ueString() {}

Val ueString(const char *val) : _value(val) {}

Val ueString(const String& val) : _value(val) {}

~Val ueString() {}

TypeCode: : TCKi nd ki nd() const

{ return TypeCode::tk_string; }

const TypeCode& typeCode() const

{ return StringTypeCode:: TC string; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (21 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

voi d copyFrom(NG stream& strm

{ _val ue.copyFron(strnm; }

voi d val ue(const Val ue& val)

{ stringVal ue(val.stringValue()); }

const char *stringVal ue() const

{ return (const char *) value; }

voi d stringVal ue(const char * val)

{ _value = val; }

void stringVal ue(const String& val)

{ _value = val; }

b

Code Block 28 - PostModern Computing (now Visigenic)'s CORBA::StringValue Class

The CORBA: : Val ueSt ri ng class contains a private data member which is a pointer to the actual data
object which the Vaue class encapsulates in the ORB. The ki nd() member function aways returns
CORBA: : TypeCode: :tk_string. The typeCode() member function always returns
CORBA: : StringTypeCode: : TC stri ng. Becausethe ki nd() and t ypeCode() member

functions are virtual, the proper TypeCode and Kind will be returned when these functions are called on
a CORBA: : Val ue object pointer.

The Value and TypeCode classes are primarily used when querying/browsing the Interface Repository
(IR) for the purposes of producing Requests on the Dynamic Invocation Interface (DI1). As mentioned in
Section 3.2.3, there is no application of the DIl and IR in this research. Therefore, further details on the

use of Vaue and TypeCode classes will not be shown in this report. In addition to Value and TypeCode,
the following ORBeline namespaces are provided for the classes which interface to the DIl and IR:

CORBA DI | ::

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (22 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/

The ORBeline

CORBA | R::

The use of the "Any" wildcard type specifier is a consideration in many object interfaces. However,
polymorphism can replace the "Any" type in many situations. For instance, if an ORB object interfaceis
declared to perform searching then abstract Goal and Domain classes could also be declared to be used as
arguments to the Search() method. Specialized Goa and Domain classes can be declared as the devel oper
needs. An Any class would not be a productive argument for the Search() method. However, an Any
might be a good type specifier for afunction to populate a given domain because "anything" can be part
of adomain.

This presentation of the opague "Any" type and the complex dynamic request "typecodes’ and "values'
represent a large volume of the ORBeline implementation. The material presented here shows that a lot

of the requirements of the CORBA 1.1 specification might never be used by most ORB users. The rest of
the material in this section describe the components of the ORBeline framework which allow the
developer to build static IDL interfacesin C++.

Environment Class

One of the most important features of the ORB is the exception handling capability. Exceptions are
errors that occur during run-time. For instance, if an object'sinterface is called which causes the object to
try to read some information out of afile and the file can not be opened, an error or exception israised. If
another part of the system has an interest in the presence of that type of exception, a specific error or
exception handler will be executed. The ANSI/ISO C++ standard has approved an exception handling
feature but it also is not common in all compilers. Presently, CORBA 2.0 compliant products are starting

to map CORBA exceptions directly into standard C++ exceptions. The ORBeline framework implements
CORBA 1.1 compliant exceptions using the CORBA ::Environment and CORBA ::Exception classes.

The CORBA::Environment class is the interface to the ORBeline exception system. Whenever a request
Is made on an ORB Object an instance of a CORBA ::Environment object is integrated with the request
arguments and returned to the caller. The caller or client can inspect the CORBA ::Environment object

returned with the resultsif the request failed to see why. A request can fail for common reasons like a
network connection going down or a more specific reason which is user defined. Below is the declaration
of the CORBA ::Environment class. Notice that it is part of the DSResouce tree so that an

CORBA::Environment can be a distributed object. The important interfaces to this class are the member

functions which set an exception, check an exception, and clear an exception. There is a private data
member which is a pointer to an instance of a CORBA ::Exception class.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (23 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

class Environnment: public DSResource

DECLARE_NCOBJECT_CLASS(Envi ronmnent) ;

private:

Exception *_exception;

publi c:

Envi ronment ()

{ _exception = (Exception *)NULL; }

virtual ~Environnent()

{ DSResource: :unref(_exception); }

virtual void copyFronm(NG stream& strm;

voi d get (NG stream& strm

{ copyFrom(strm; }

voi d put (NCostream& strn) const

{ wite(strm; }

Bool ean check_exception() const

{ return _exception != (Exception *)NULL; }

const Exception *exception_val ue() const

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (24 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

{ return _exception; }

Excepti on *exception_val ue()

{ return _exception; }

voi d exception_val ue(Excepti on *exp)

{ DSResour ce: : unref(_exception);

_exception = exp;

DSResource: : ref (_exception); }

voi d cl ear_exception()

{ DSResour ce: :unref(_exception);

_exception = (Exception *)NULL; }

Code Block 29 - PostModern Computing (now Visigenic)'st Class

Exception Class

As described above, ORBeline implements exceptions as distributed C++ objects. The

CORBA ::Exception class inherits from DSResource so that it can be distributed object. The
CORBA::Exception class is abstract because its constructor is not public. Exceptions are further
classified per the CORBA 1.1 specification as system exceptions and user exceptions. There are afinite
number of system exceptions implemented as specialized CORBA ::SystemException classes. Through
an IDL declaration, a programmer create a user exception which derives from the

CORBA ::UserException exceptions are:

System Exception ClassNames Description
CORBA::BAD_PARAM an invalid parameter was passed
CORBA::NO_MEMORY dynamic memory allocation failure
CORBA:IMP_LIMIT violated the implementation limit

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (25 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

CORBA:

:COMM_FAILURE

communication failure

CORBA::INV_OBJREF invalid object reference passed
CORBA::NO_PERMISSION no permission for attempted op
CORBA::INTERNAL ORB internal error
CORBA::MARSHAL error marshalling param/result
CORBA::INITIALIZE ORB initialization failure
CORBA::NO_IMPLEMENT operation implementation unavailible
CORBA::BAD_TYPECODE bad typecode

CORBA::BAD OPERATION invalid operation
CORBA::NO_RESOURCES insufficient resources for request
CORBA::NO_RESPONSE response to request not yet availible
CORBA::PERSIST_STORE persistent storage failure
CORBA::BAD_INV_ORDER routineinvocation out of order
CORBA: . TRANSIENT transient failure
CORBA::FREE MEM cannot free memory
CORBA::INV_IDENT invalid identifier syntax
CORBA:INV_FLAG invalid falg was specified
CORBA::INTF_REPOS error accessing interface repository
CORBA::CONTEXT error processing context object
CORBA::0OBJ ADAPTER failure detected by object adapter
CORBA::DATA_CONVERSION data conversion error
CORBA::UNKNOWN the unknown exception

Table 3 - PostModern Computing (now Visigenic)'s Standard System Exceptions Descriptions

The abstract CORBA ::Exception classis very simple as seen below. When a client receives a response

and the environment returns an exception, two (2) actions can be taken. First, the string name of the
exception can be retrieved using the _id() member function. If more information is needed by the client,
the CORBA ::Exception pointer needs to be cast to a more specific CORBA ::SystemException or

CORBA ::UserException.

/**/

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ The ORBeline_.html (26 of 34) [20/02/04 05:42:30 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

cl ass Exception: public DSResource

DECLARE_NCOBJECT_CLASS(Excepti on);

pr ot ect ed:

Exception() {}

publi c:

virtual ~Exception() {}

virtual const char *_id() const;
s

Code Block 30 - PostModern Computing (now Visigenic)'s CORBA::Exception Class

A client can cast areturned CORBA ::Exception pointer to a CORBA ::SystemException pointer by
calling the static _cast() member function of the CORBA ::SystemException class. The resulting pointer

will be NULL if the cast was invalid. The standard system exception classes contain a"minor" code
which further describes the exception which occurred. Since exceptions occur during requests, standard
system exceptions also contain a"completion" status. The completion status indicates whether the
request was completed regardless of the exception. The CORBA ::SystemEXxception classis below:

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

[* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (27 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

[* Al rights reserved. */

/**/

cl ass SystenkException: public Exception

DECLARE_NCOBJECT CLASS(Syst enExcept i on) ;

publi c:

enum conpl eti on_status {

YES =0,

NOC=1,

MAYBE=2

b

private:

ULong _minor;

conpl etion_status _status;

pr ot ect ed:

Syst enkException() { _mnor = 0; _status = NO }

publi c:

Syst enExcepti on(ULong minor, conpletion status status) {

_mnor = mnor;

_Status = status; }

virtual ~SystenException() {}

ULong minorFlag() const { return _mnor;}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (28 of 34) [20/02/04 05:42:30 p.m.]

The ORBeline

ULong& minorFlag() { return _nminor; }

void m norFl ag(ULong val) { _mnor = val; }

conpl etion_status conpleted() const { return _status; }
conpl etion_status& conpleted() { return _status; }

voi d conpl eted(conpl etion_status status) { _status = status; }

static SystenException *_cast(Exception *exc);

static const SystenkException * cast(const Exception *exc);
s

Code Block 31 - PostModern Computing (now Visigenic)'s CORBA::SystemException Class

The CORBA::UserException classis very similar to the CORBA ::SystemException class however, it

does not have a minor code or completion status. Again, the user exception classes are declared in IDL
and defined by the programmer.

IDL Constructed Types (array,sequence,union,structure)

Asdescribesin section 3.1.2, the programmer can declare user defined, "constructed” typesusing IDL.
These user types are declared in IDL from the primitive CORBA types like short, ushort, float, etc. Also,

constructed types can contain previously declared types. The four types of constructed value
implementations will be described below. For all the types, the IDL compiler will map the declarations
into C++ code.

The array and sequence types are mapped to C++ using macros and typedefs. There are simple, abstract
classes defined which al user defined arrays and sequences classes inherit from. IDL structure and union
declarations are mapped into C++ classes which inherit from CORBA::Structure and CORBA::Union

respectively. Consider the IDL declaration of a Point structure. Notice that the IDL codeisvery similar
to C++.

struct Point

float x;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (29 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

float vy;

Code Block 32 - Example of IDL for Point Structure

The IDL compiler creates a simple implementation class derived from CORBA::Structure

class Point : public CORBA:: Structure

DECLARE_NCOBJECT_CLASS(Poi nt) ;
private:

CORBA: : Fl oat _x;

CORBA: : Fl oat _y;

public:

Point ();

~Poi nt ();

voi d copyFrom(NG stream& strm;

voi d operator=(const Point& obj);

Poi nt (const Poi nt & obj);

CORBA: : Float & x() { return _x; }
CORBA: : Fl oat x() const {return _x; }
void x(CORBA: : Float val) { _x = val; }

CORBA: : Float& y() { return _y; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (30 of 34) [20/02/04 05:42:30 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

CORBA: : Fl oat y() const {return _y; }

void y(CORBA: : Float val) { _y =val; }

Code Block 33 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Point Structure Class)

The IDL compiler will also create member function definitions for the functions declared by the
NetClasses macros. (see section 2.8.4)

DEFI NE_NCOBJECT _CLASS1(Poi nt, CORBA:: Structure);

Poi nt:: Point(NC strean& strm : CORBA:: Structure(strm

strm>> _x;

strm>> _y;

voi d Point::copyFron(NC strean& strm

strm>> _x;

strm>> _y;

}

Poi nt : : Poi nt (const Poi nt & obj)
{

X = obj.x();

_y = o0bj.y();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (31 of 34) [20/02/04 05:42:30 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

The ORBeline

voi d Point::operator=(const Point& obj)

{

_X = obj.x();

_y = obj.y();

}

void Point::wite(NCostream& strn) const
{

strm << X;

strm<< _y;

void Point::prettyPrint(NCostrean& strm const

strm << "Point" << endl;

strm << "\tx: << X << endl;

strm<< "\ty: " << _y << endl;

i nt Point::conpare(const NCObj ect& p) const

const Point& nc_tenp = NCCONST_REF_CAST(Point, p);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (32 of 34) [20/02/04 05:42:30 p.m.]

The ORBeline

int diff = 0;

diff = ((int) x - (int) nc_tenp. Xx);

if (diff)

return diff;

diff = ((int) _y - (int) nc_tenp. _Vy);

if (diff)

return diff;

return diff;

unsi gned Point::hash() const

unsigned h = 0;

h "= (unsigned) _x;

h "= (unsigned) _vy;

return h;

Poi

nt:: Point()

[
o

-y =

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (33 of 34) [20/02/04 05:42:30 p.m.]

The ORBeline

Poi nt : : ~Poi nt ()

Code Block 34 - PostM odern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Point Structure Definition)

IDL union types are built in the same fashion where user declared CORBA Unions are classes derived
from CORBA::Union.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (34 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

ORBeline's ORB Objects

ORBeline's ORB Objects

In addition to interactions with the ORB core, all interactions and dialog between clients and servers are
done with respect to ORB Objects. From the point of view of the server, the ORB Object is an Object
Implementation which is registered with the ORB. In the client, the same Object is hidden by a Object
Reference which the client uses to access the interface of the Object in the server.

Object Reference

If the ORB Object islocated in another process or node then the Object Reference refersto an ORB
Object proxy class which hides the remote aspect of the actual ORB Object. The standard convention for
specifying an Object in the ORB is through the Object Reference. ndard CORBA type/value. The

implementation details of the Object Reference is hidden from the user.

In OBReline, Object References are mapped directly into C++ pointers to classes derived from
CORBA: : (bj ect . Inorder for aclient to access an ORB Object the client must have the Object

Reference. An Object Reference can be obtained directly from the ORB, returned as an argument from a
previous request, or acquired outside the ORB in a string form. An Object Reference can be "stringified"
(converted to a string form) and converted back to areal Object Reference again using ORB functions.
This implementation independent string form allows Object References to be stored in non-ORB
systems, files like World Wide Web (WWW) hypertext markup language (HTML), or database tables.

Interface Name and Object Name

In the case where the ORB generates and returns an Object Reference ("binding"), a hierarchy of
information can be used to specify the desired Object. All ORB Objects are at least described by their
Interface Name. The Interface Name is the name of the interface specified in the IDL. For example, the
IDL for asear ch_engi ne interfaceis specified in IDL as:

i nterface search_engine {

b

The Interface Name "sear ch_engi ne" specifies an interface of typesear ch_engi ne which will
be implemented in ORBeline asa C++ class called sear ch_engi ne which isderived from

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (1 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/

ORBeline's ORB Objects

CORBA: : (bj ect . In ORBeline, an ORB Object can be referenced more specifically by its Object

Name. The Object Name is a string which denotes a particular instance of an Interface Name. For
example, a client could asked the ORB to locate an Object not only by its IDL matching Interface Name
but also the particular Object Name. Even though the ORB can find an Object when the requester ison a
different node in the network, a hostname can also be used to specify the node location of an ORB
Object. In other words, aclient can ask for asear ch_engi ne Object on host A.

Using IDL, adesigner can have Object Interfaces inherit from other interfaces. For instance, the
di stri buted_sear ch_engi ne Object Interface can inherit from the general sear ch_engi ne

Object Interface. In this case, if aclient asks the ORB to return an Object Reference to a search_engine
Interface, the resulting Object Reference could referenceadi st ri but ed _sear ch_engi ne instead.

The feature of Object Interface inheritance works just like C++ class inheritance (See section 1.1.1.3).
Both Object Interface functions and properties are inherited.

Object Class

One of the most powerful features of ORBs s the ability to "bind" to a specified Object in the ORB.
When aclient asks the ORB to generate and return an Object Reference to specified Object, it is called
"binding" to an ORB Object. The details of the CORBA: : Cbj ect class must be reviewed to understand

the implementation of the "bind" capability. (See Appendix A, page 22)

The abstract CORBA: : Obj ect class encapsulates the details of sustaining an Object within the ORB.

As mentioned above, every Object Interface declared in IDL is mapped to a C++ object which derives
from CORBA: : Obj ect . Therefore, in addition to the interface members specified in the IDL, the new

object class inherits all the data and function members of the CORBA ::Object class. For instance, the
interface G i d isdeclared in IDL as:

/1 struct Point already decl ared

interface Gid

void query(in Point the _point, out float the_ val ue);
b

Code Block 35 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid Interface)

The IDL compiler will create the C++ code for the Grid class as follows:

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (2 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

ORBeline's ORB Objects

class Gid: public virtual CORBA:: (bject

private:

static const CORBA:: Typelnfo _class_info;

publi c:

static const CORBA:: Typelnfo * _desc();

virtual const CORBA:: Typelnfo * type info() const;

virtual void *_safe_narrowconst CORBA:: Typelnfo *) const;

static CORBA:: (bject *_reader(NC strean& strm

{return new Gid(strm;}

pr ot ect ed:

Grid(const char *obj _nane = NULL) : CORBA:: Ooj ect (obj name) {}

G id(NC stream& strm : CORBA:: Object(strm {}

virtual ~Gid() {}

publi c:

enum _Gid_Methods {

_Gid Mquery =0

}s

static Gid *_narrowconst CORBA:: (hject *obj);

static Gid *_bi nd(CORBA: : Envi ronnment & env,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (3 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

const char *object_name = NULL,

const char *host _nane = NULL,

const CORBA: : Bi ndOpti ons* opt = NULL);

static Gid *_bind(const char *object nanme = NULL,

const char *host name = NULL,

const CORBA: : Bi ndOpti ons* opt = NULL)

{ CORBA:: Environnent env;

return _bind(env, object_name, host_nane, opt); }

virtual const char * _interface_nane() const { return "Gid"; }

voi d query(const Point& the_point, CORBA::Float& the val ue,

CORBA: : Envi ronnment & _env);

virtual void query(const Point& the point,

CORBA: : Fl oat & t he_val ue)

{ query(the_point, the value, _environnment()); }

typedef Gid* GidRef;

Code Block 36 - PostM odern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid Interface Class)

Notice that most of the G i d classis generic except for the query functions. There is a query function
for the case when the global, static CORBA: : Envi r onnent object (see Section 3.3.2.3) should be used

and a second query function for the case where the requester calls the query function with alocal
CORBA: : Envi r onnment object reference. The remaining class functions come with every derived

CORBA: : bj ect class. The CORBA: : (bj ect class, which Gri d and all other interfaces inherit

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (4 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

from, is declared as follows.

/**/

/* ORBeline (c) by PostMdern Conputing (now Visigenic) Technol ogies, Inc */

/* Copyright 1993, 1994 by Post Modern Conputing (now Visigenic) Technol ogies, Inc. */

[* Al rights reserved. */

/**/

class Object {

publi c:

ULong _ref _count() const;

void _ref();

void release();

hj ect * _duplicate() const;

oj ect * _clone() const;

Boolean _is nil() const;

virtual Boolean _is_local () const;

Boolean _is renote() const;

Bool ean _is_bound() const;

Bool ean _is_persistent() const;

const char *_object_nane() const;

virtual const char*_interface_name() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (5 of 22) [20/02/04 05:42:37 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

ORBeline's ORB Objects

const Principal *_principal () const;

voi d _principal (Principal *principal);

const BindOptions * _bind options() const;

static const BindOptions *_default_bind_options();

static void _default _bind options(const Bi ndOptions&);

_njectinpl *_object_inmpl() { return _inpl; }

Envi ronment & _environnent () ;

static const Typelnfo * desc() { return & class_info; }

virtual const Typelnfo * _type_info() const {return _desc();}

virtual void witer(NCostream&) const;

static Object * reader(NC strean& strn);

static object * read(NC stream& strm

const Typel nfo *expectedType);

static void wite(const Cbject *obj, NCostream& strm

const Typel nfo *expectedType);

virtual void *_safe_narrow const Typelnfo *desc) const;

private:

static const Typelnfo _class_info;

_ojectlnpl *_inpl;

pr ot ect ed:

Obj ect (const bject&) {}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (6 of 22) [20/02/04 05:42:37 p.m.]

ORBeline's ORB Objects

voi d operator=(const Ohject&) {}

virtual ~Qoject();

oj ect (const char *object _nane = NULL,

ORB: : _CRBType type =

ORB: : _ORB_POSTMODERN) ;

oj ect (NCi strean& strm;

voi d _object _name(const char *nane);

void _bind(const char *interface_nane,

Envi ronnent & env,

const char *object _name =

(const char *) NULL,

const char *host _nane =

(const char *)NULL,

const BindOptions *options =

(const Bi ndOptions *)NULL);

voi d _rebi nd(Envi ronnent & env);

voi d _unbi nd(Envi ronnment & env) ;

Mar shal St ream *_creat e_oneway_r equest (

const char *interface_nane,

ULong met hod_i d,

Envi ronment & env) ;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (7 of 22) [20/02/04 05:42:37 p.m.]

ORBeline's ORB Objects

Mar shal St ream *_creat e_i nvoke_r equest (

const char *interface_nane,

ULong met hod_i d,

Envi ronment & env) ;

voi d _send_oneway(Envi ronment & env) ;

Mar shal St ream *_i nvoke(Envi ronnment & env) ;

void orb_type(ORB:: ORBType

type=0ORB: : _ORB_POSTMODERN) ;

void _register_inplenmentation(

const char *interface_nane,

ULong num net hods,

_PMCSkel Func *func_Iist,

voi d *user _data,

Envi ronnment & env,

BQA: : Regi strati onScope scope,

BOA: : | MPLEvent Handl er *handl er =

(BOA: : | MPLEvent Handl er *) NULL) ;

void _register_inplenmentation(

const char *interface_nane,

ULong num net hods,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (8 of 22) [20/02/04 05:42:37 p.m.]

ORBeline's ORB Objects

_PMCSkel Func *func_list,

voi d *user _dat a,

Envi ronnment & env,

BOA: : | MPLEvent Handl er *handl er =

(BOA: : | MPLEvent Handl er *) NULL)

{register_inplenentation(interface_nane, num nethods, func_|ist, user_data, env, BQOA::scope(),
handl er) ; }

void _unregister_inplementation(

const char *interface_nane,

voi d *user _data,

Envi ronment & env) ;

static Object * _inplenmentation(const char *interface_nange,

const char *object _nanme =

(const char *)NULL);

publi c:

virtual void _receive_reply(Mrshal Streanm&, Environnent&) {}

virtual void _exception(Environmenté& env);
b
typedef Object *Object Ref;

Code Block 37 - PostModern Computing (now Visigenic)'s CORBA::Object Class

Even though the CORBA: : Obj ect class does not inherit from DSResour ce, there are many member
functions which resemble the behaviors of DSRsour ce for reference counting, cloning, RTTI, object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (9 of 22) [20/02/04 05:42:37 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

1/O, and safe run-time casting. In addition, the CORBA: : Obj ect class provides behavior for

determining ORB Object state, identity, client or "principa” state, bind options, operating system
Implementation details, and exception environment. Other private member functions provide the
behaviors for binding Object instances to clients, generating requests, and registering implementations.

The reference counting feature is very important during distributed processing. The size of the reference
count of an object determines how many clients are using the ORB Object. (See Section 2.8.3.2) The

reference count can be accessed withthe r ef _count () member function. The Object's can be
referenced (increase the reference count) by calling _r ef () and dereferenced or released calling the
_rel ease() function.

The Object can bequeriedusing _is | ocal (), _is_renmote(), _is_bound(),and
_is_persistent () todetermineif the Object isin the same address space, on another network node

or process, currently bound to aclient, or persistent respectively. The Object Name can be accessed using
the _obj ect _nane() function and the Interface Name by the i nt er f ace_nane() function.

Noticethat the i nt erface_nane() functionisvirtua so that proper Interface Name s returned

when the caller has a pointer to a general interface which is actually a more specific class. For instance,
in the following code example

di stributed_search_engi ne the_DSE;
search_engi ne *the_SE ptr = &t he DSE;
char *the_interface_nane = the_SE ptr->_interface_nane();

the result of the call to _interface_name() would call the _interface_name() function of
distributed search_engine class instead because of the virtual specifier.

The CORBA: : (bj ect classisassociated with CORBA: : Pri nci pal , CORBA: : Bi ndOpt i ons, and
CORBA: : bj ect | npl classes and there are accessor functions for those as well. These other
ORBeéline classes will be described later.

As mentioned above, there are member functionsin the CORBA: : (bj ect class which resemble the

behavior of the DSResour ce class. Instead of using the NCTypel nf o (see section 2.8.3.3.2) classto
provide RTTI, aspecial class called CORBA: : Typel nf o isused which is specific to

CORBA: : (bj ect . Asinthe case with NCChj ect , the CORBA: : (bj ect class has a static member of
type CORBA: : Typel nf 0. A run-time safe casting operation called _saf e _narrow() isalso
provided.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (10 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

ORB Object Binding

In order the understand the details of the CORBA: : Obj ect class with respect to binding and Object

Interface functions, the implementation code of the Gr i d classis presented below. Refer to the class
declaration generated by the ORBeline IDL compiler (Code Block 36).

const CORBA:: Typelnfo Gid:: _class_info("Gid",

&&= i d:: _reader,

CORBA: : bj ect:: _desc(),

0);

const CORBA: : Typelnfo *Grid:: _desc()

return & class_info;

const CORBA: : Typelnfo *Grid:: type_ info() const

return & class_info;

void *Gid:: _safe narrow(const CORBA:: Typelnfo *info) const

if (&class_info == info)

return (void *) this;

void *ret = NULL;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (11 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

return ret;

Gid *Gid::_narrowm const CORBA:: Ohject *obj)

void *ptr = obj-> safe_narrow(& cl ass_info);

return (Gid *) ptr;

Gid *Gid::_bind(CORBA:: Environment & env, const char *_object_nane,

const char *_host_name, const CORBA:: Bi ndOptions *opt)

_env. cl ear_exception();

Gid *_inpl;
CORBA: : Object *_obj = _inplenentation("Gid", _object_nane);
if (!_obj) {

_inpl = new Gid(_object_name);

_inpl->CORBA: : Ohject:: bind("Gid", _env, _object_nane, _host nane, opt);

if (_env.check_exception()) {

delete _inpl;

return NULL;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (12 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

el se

_inmpl = Gid:: _narrow(_obj);

return _inpl;

void Gid::query(const Point& the_point,

CORBA: : Fl oat & t he_val ue, CORBA:: Environnent & _env)

_env. cl ear_exception();

if (_is_local()) {

query(the_point, the_value);

return;

CORBA: : Marshal Stream *_strm = _create_i nvoke_request (

"Grid"', _Gid_Mquery,_env);

i f (_env.check _exception())

return;

_strm>put Structure(the_point, CORBA: :Murshal Stream: ARG IN);

_invoke(_env);

if (_env.check exception()) {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (13 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

if (CORBA:: St Excep:: TRANSI ENT: : _cast(_env. exception_value()) !'= NULL)

query(the_point, the_value, _env);

return;

_strm >get Fl oat (t he_val ue, CORBA:: Marshal Stream : ARG_QUT) ;

_strm>flush(_env);

return;
}

Code Block 38 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid Interface Definition)

In the declaration of the G i d class, aprivate datamember, cl ass_i nf o, isdeclared asa static
CORBA: : Typel nf o object. All instances of the G i d class are associated to asingle

CORBA: : Typel nf o object. This data member,

static const CORBA:: Typelnfo _class_info;

Is defined in the source code for the Gr i d class. Again, the definitionof _cl ass_i nf o isalmost
identical to the NCTypel nf o object. The classname, " Gri d", the address of the

Gid:: _reader () member function, andthe cl ass_i nf o of the parent class are arguments to the
constructor of the CORBA: : Typel nf o object. TheGri d: : desc() member function accesses the
static_cl ass_i nf o member. TheG'i d: : _safe_narrow() member function, as stated above,
provides run-time safe casting according to the type information found inthe _cl ass_i nf o data
member. The CORBA: : (bj ect:: _safe_narrow() functionisdeclared vi rt ual so that the
correct narrowing function is called in the polymorphic case. TheGri d: : _narrow() member
function is a static accessto the G i d class narrowing behavior.

The ORBeline IDL compiler declares a new type to implement the specific Object Reference for the
G i d class. In C++ CORBA mappings, an Object Reference mapped to atyped pointer to the Object

class. However, in other language mappings, the Object Reference might be more complicated so the
details are kept hidden.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (14 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/

ORBeline's ORB Objects

typedef Gid* GidRef;

The constructors defined for the G i d class ssimply call parent class constructors. The G i d class can be
initialized with just an Object Name or a new instance can be read off a NetClasses |/O stream class.

Every Interface Class, asseen inthe G i d class declaration, declares an enumeration of methods
specifictotheclass. Inthe Gr i d class, the enumeration,

enum _Gid Methods { _Gid Mquery =0 };

provides the low level protocol for ORB requests. When aremote client makes a request on an ORB
Interface Object, in addition to the Object Reference and request arguments, the client must tell the ORB
the proper 1D of the Object Interface's method the request is for. The enumeration of class methods
defines the method I1Ds. These method Ids are the key to performing dynamic requests through the DI .

In the case of the static IDL stubs, the method I Ds are hard coded into the stub. However, the method IDs
are returned from the Interface Repository(IR) during dynamic request creation. The _Gri d_M query

value is used in the implementation of the Gri d: : Quer y() member function.

TheGi d: : _bi nd() member functions are factory methods 24 [21] for generating Object References.
These static functions return pointersto G i d objects. The actual type of the object depends on the
location of the "real™ ORB Object. The ORBeline IDL compiler generates a second class which derives
from thefirst class. Inthisexample, the Gi d_i npl classis generated by the ORBeline IDL compiler.

class Gid inpl: public virtual Gid

pr ot ect ed:

Gid_inpl (const char *object_name = NULL);

virtual ~Gid_inpl();

public:

virtual const CORBA:: Typelnfo * type_ info() const
{ return Gid:: _type_info(); }

virtual void *_safe_narrow(const CORBA:: Typelnfo *inf) const

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (15 of 22) [20/02/04 05:42:37 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

{ return Gid:: _safe narrow(inf); }

virtual const char *_interface_nanme() const

{ return Gid:: _interface_nane(); }

virtual CORBA::Boolean _is |ocal() const

{ return 1; }

virtual void query(const Point& the_point,

CORBA: : Fl oat & the_val ue) = 0O;

static void _query(void *obj, CORBA::Marshal Stream &strm

CORBA: : Environnent & _env,

CORBA: : Princi pal *principal);

Code Block 39 - PostM odern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid_impl class)

TheGi d_i npl classisabstract (can not be instanciated) because the constructor function has

pr ot ect ed access. The G i d class represents the "stub" or proxy class for the Grid Object on the
client sde. TheGri d_i npl classrepresentsthe "skeleton" or agent for the Grid Object on the server
side. Theintention here isto have the programmer derive athird classfrom Gri d_i npl which actually
implements the Grid Object's behavior. Therefore, the Gri d: : _bi nd() function returns a pointer to an
instance of either the G i1 d class, if the Grid Object is remote, or the user class derived from

Gi d_i npl if the Grid Object islocal. Thisisthe most powerful and elegant aspect of PostModern
Computing (now Visigenic)'s ORBeline system. If the "real" ORB Object isin the same address space
then the ORB is bypassed entirely and a pointer to the actual Object isreturnedina: : _bi nd() . The
local locator serviceis provided through the CORBA: : Obj ect class. The slower (IPC) ORB Core call

to the ORBeline Smart Agent for network locator servicesis only done when the Object is not local.
There aretwo (2) Grid::_bind() functions: one for the case of a supplied CORBA ::Environment object
and a second for the global CORBA ::Environment object. The bind operation takes optional arguments
which specify the Object Name, host name, and/or bind options.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (16 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

Continuing the Gr i d class example, the detailed operations of the Gri d: : _bi nd() functionisas
follows (refer to Code Block 38):

The CORBA: : Envi ronnent argument, _env, iscleared of old exceptions.
A local pointer toa G i d object isdefined named i npl .
A local pointer to a CORBA: : Obj ect isdefined named _obj .
_0bj isassigned the return value of the call to the static
CORBA: : Obj ect:: i npl enmentation() member function.
5. The CORBA: : Obj ect:: i nplenentation() functioniscalled with the hard coded
Interface Name" Gr i d" and Object Name (possibly NULL).
6. Thereturn value will be apointer to avalid CORBA: : (bj ect which satisfiesthe Interface
Name and Object Name if the one is available locally.
7. If the pointer assigned to _obj isnot NULL, then _obj isnarrowed by calling the static
Gid:: _narrow) method and the result is returned.
8. If the pointer assigned to _obj is NULL, then the remote bind (connect) is attempted.
9. i npl isassigned the address of anewly instanciated G i d object (the client side stub class).
10. The CORBA: : Cbj ect : : _bi nd() member function of _i npl iscalled with the target
arguments. This function will contact the ORB Core to create the connection (according to the
CORBA: : Bi ndOpt i ons argument).
11. After the function returns, the environment, _env, is checked for exceptions. If none have
occurred then the new Gr i d object isreturned. Otherwise, the new Gr i d object is deleted and
NULL isreturned.

A wbdh e

ORB Object Method Invocation (Client-Side)

Aftera: . _bi nd() factory function returns with avalid Object Reference, both the accessorsto the
Object Interface's properties and the methods of the Interface can be called. Inthe Gr i d class example,
theGi d: : query() method iscalled with areferenceto aPoi nt object and areferenceto a
CORBA: : Fl oat type. Inthis casethe Poi nt object is an input argument and the CORBA: : Fl oat

reference is areturn argument. The query behavior takes an x, y coordinate (Poi nt) and returns the float
value at that location.

IftheGrid:: _bind() factory returned a user derived, local object
Gid *the grid = Gid::_bind(); // returned user derived, |ocal object

them acall to the virtual function

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (17 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

the_grid->query(the_point,the float);

will engage the correct quer y () function for actual type of the object pointedtoby t he _gri d.

Therefore, if the object islocal then the ORB is bypassed and the actual query behavior is executed as
normal in C++. However, if the object isthe Interface stub class, G i d, thenthe Gri d: : query()

function is executed. The detailsof theGri d: : quer y() functionisasfollows:

1. The CORBA: : Envi r onnent argument, env, iscleared of old exceptions.
2. A local pointer to a CORBA: : Mar shal St r eamobject isdefined named _st rm The
CORBA: : Mar shal St r eamclass multiply inheritsfrom NCi st r eamand NCost r eamto

provide a utility class for directing object 1/0 within the ORB. (See Section 2.8.3.3)
3. _strmisassigned the CORBA: : Mar shal St r eampointer returned from the

CORBA: : (bj ect:: create_invoke request () member function. The hard coded

Interface Name" Gri d",theG i d classmethod ID _Grid_M query, andthe
CORBA: : Envi ronnent reference _env ispassed as arguments to the

_create_invoke_request ().
4. |If the pointer assignedto st r misvalid, then t he_poi nt argument is placed on the
CORBA: : Mar shal St r eamvariable st r musing the

CORBA: : Mar shal Stream : put St ruct ure() function.

5. Therequest isthen started by calling the CORBA: : Cbj ect : : _i nvoke() member function.
6. If aCORBA: : st Excep: : TRANSI ENT exception occurs, the request will be recursively tried
again.

7. If the request was successful, the output arguments are pulled off the
CORBA: : Mar shal Stream _strm by caling the

CORBA: : Mar shal Stream : get Fl oat () function and then returns.

ORB Object Method Invocation (Server-Side)

The scenario shown above has been from the point of view of the client or calling side. Again, in the case
where the ORB Object isremote, the callstothe: : _bi nd() and Object Interface methods engage the

behavior of the client side stub class. On the server side, the abstract skeleton interface class, provides the
interface to the ORB. In Code Block 39, the Grid Interface skeleton classGri d_i npl derivesfrom the

client stub classGr i d. In the ORBeline system, as stated above, the programmer will derive athird class
from the abstract G i d_i npl class which will actually implement the Grid I nterface methods. Below is
the definitionsfor the G i d_i npl class produced by the ORBeline compiler.

static CORBA:: PMCSkel Func _Grid_func_array[] =

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (18 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

ORBeline's ORB Objects

{ &&id_inpl:: _query, 0 };

Gid_inmpl::Gid_inpl(const char *object nane) : Gid(object name)

_obj ect _nane(obj ect nane);

CORBA: : Environnent _env;

_register_inmplenentation("Gid", 1, _Gid_func_array,

(void *) this, _env);

Gidinpl::~Gid_inpl()

CORBA: : Envi ronment _env;

_unregister_inplenentation("Gid", (void *) this, _env);

void Gid_inpl::_query(void *obj, CORBA::Murshal Stream &strm

CORBA: : Environnent & _env,

CORBA: : Princi pal *principal)

Gid_inpl *_inpl = (Gid_inpl *) obj;

_env. cl ear_exception();

Poi nt the_point;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (19 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

strmget Structure(the_point, CORBA::Mrshal Stream: ARG IN);

CORBA: : Fl oat the_val ue;

the_value = (CORBA: : Fl oat) O;

strmflush(_env);

i f (_env.check _exception())

return;

_inmpl->_principal (principal);

_inpl->query(the_point, the_value);

strm put Envi ronment (_env) ;

strm put Fl oat (t he_val ue, CORBA:: Marshal Stream : ARG OQUT) ;

_inmpl->_principal ((CORBA: : Principal *) NULL);

Code Block 40 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid_impl class definitions)

Thefirst component of all skeleton implementationsis a static array (scope within the source file only) of
type CORBA: : PMCSkel Func. The declaration of the CORBA: : PMCSkel Func typeis

typedef void (*_PMCSkel Func) (void *,
Mar shal Streanm& strm

Envi ronment & env,

Principal *principal);

a pointer to afunction which takes four (4) arguments. apointer tovoi d, a
CORBA: : Mar shal St r eamobject reference, a CORBA: : Envi r onnent object reference, and a

pointer to a CORBA: : Pri nci pal object. The function type matches the prototypes of skeleton class

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (20 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

static member functions which bootstrap the Object Interface method invocations. For the Grid Interface
example, theGr i d_i npl class has a static member function, Gi d_i npl : : _query() . TheGrid

Interface skeleton's static array of CORBA: : PMCSkel Func typesiscadled Gid func_array.
The Grid_func_array isinitialized with the addresses of the skeleton's methods and is then NULL

terminated. This static function pointer array is used by the ORB Core to find the appropriate method to
call according to the ORB Object method ID passed by the client in arequest. A server does not know
the origin of the request - the request can be from a ORBeline generated stub or adynamically built

request. In the current example, the _Gri d_M quer y method ID isthe index into the
_Gid_func_array. Inthisway, the proper method can be called using the method ID and
bootstraping function array.

The constructor and destructor methods for the skeleton class call the

CORBA: : (bj ect:: register _inplenentation() and

CORBA: : bj ect:: _unregister _inplenentati on() member functions respectively. The
CORBA: : bj ect:: _register_inplenentation() function takesthe Interface Name, the

number of Interface methods (size of the static skeleton function array), the address of the skeleton
function array, user data, environment, and optional bind options. IntheGri d_i npl class case

_register_inmplenentation("Gid",1, Gid func_array,(void *) this, _env);

When the ORB Core receives arequest from a client the combination of the Interface Name and Method
ID in the request is akey into the implementation information. The Interface Name/Method ID key
allows the correct static method address to be found. The Object Reference information provided with
the request determines the skeleton object pointer in the server. This skeleton object pointer is passed as
an argument to the static method along with an environment object reference, CORBA ::Marshal Stream

object reference, and a pointer to principal object.

void Gid_ inpl:: _query(void *obj, CORBA: :Marshal Stream &strm
CORBA: : Envi ronnment & _env,

CORBA: : Princi pal *principal)

The details of the Grid_impl::_query() are

1. A local Grid_impl object pointer is defined named _impl and is assigned the address of the obj
void pointer. _impl actually points to the user object derived from Grid_impl found using the
Object Reference in the server.

2. The CORBA: : Envi r onnment argument, _env, iscleared of old exceptions.

3. A local Point object is defined named the _point.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (21 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

4. the pointisinitialized by pulling data off the marshal stream by calling the
CORBA ::Marshal Stream::getStructure() function.

5. A local CORBA::Float type is defined named the value and is set to zero.

6. If thereis an exception the request is aborted, otherwise, the Grid_impl object's principal is set.
The CORBA::Principal encapsulates information about the caller.

7. Then, thereal, user defined method is called on the Grid_impl pointer with the input and output
arguments. Thisisavirtual function call so that the correct method is called in the polymorphic
case.

8. Theresulting environment, _env, and the resulting float value, the value, are placed on the
marshal stream and the object's principal is cleared.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (22 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

Advanced Features

Advanced Features

The ORBeéline 1.1 system is used in the software prototype portion of this research. In the prototype,
more detailed aspects of the ORBeline product are demonstrated including ORB event handling, request
filtering, object replication and migration, and inter-ORB communication. See following section.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Advanced_Features_.html [20/02/04 05:42:39 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Distributed Object Application Prototype

Distributed Object Application Prototype

This detailed description of the distributed object application prototype is presented in the enhanced
version of this report which completes the thesis requirements.

For the development of the software prototype, advanced techniques involving the decomposition of
parallel problems were used. These techniques are presented below with specia attention placed on the
utilization of distributed objects.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Distributed_Object_Application_Prototype_.html [20/02/04 05:42:40 p.m.]

mailto:mstevens@ent.mrj.com

Hardware Platforms

Hardware Platforms

The intent of this research is to show the accessibility of parallel programming to those who have access
to simple networks. The conventional PCs and workstations available today conform to the von
Neumann architecture.[22] In this architecture, the computer is composed of a central processing unit, a
control unit, amemory unit, and I/O units. The common PC and workstation networks are basically
collections of autonomous von Neumann processors, each with their own memory, interconnected using
avariety of network architectures. Both the object-oriented implementation of parallel programming
technigues and the inherently portable architecture of CORBA allow this prototype to conform to other

hardware configurations including shared memory processors and multidimensional interconnection
networks.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Hardware_Platforms_.html [20/02/04 05:42:41 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Multicomputer

Multicomputer

The distributed memory, interconnected processor environment used in the prototype is referred to as the
multicomputer. The interconnected processors are referred to as nodes in the multicomputer. The
multicomputer used in this prototype was a heterogeneous multicomputer in that various workstations,
operating systems, and interconnects were present. The software prototype was fully implemented on this
heterogeneous multicomputer. However, because of inadequacies in the load-bal ancing, task scheduling,
and data partitioning, the best results were limited to executing the software prototype in a homogeneous
scenario. The details of the thisresult is explained in detail in Section 4.5.6.

The multicomputer consisted of PCs and workstations at three locations: Villanova University's ECE
labs, MRJ Inc., and development facilities at Infonautics Inc. Available platforms included PCs running
MS Windows NT 3.51, and SM S SparcStations running SunOS 4.x and Solaris 2.x. These nodes varied
in CPU speeds and memory. The three network locations are connected with a "highly-contended" 64KB
Internet services. Again, poor results were achieved when executing the prototype across locations for
the same reasons mentioned before. The extent of the multicomputer was limited by supported for
ORBeline 1.1 development environment. MS Visual C++ 2.2 was used with MS Windows NT on the
PCsand GNU GCC 2.6.x for UNIX. Asthe software prototype first entered development, ORBeline 2.0,
anewer CORBA 2.0 compliant ORB was available. However, required compiler upgrades were not

available so the older version was used.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Multicomputer_.html [20/02/04 05:42:42 p.m.]

http://www.vill.edu/
http://www.mrj.com/
http://www.infonautics.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

Parallel Programming with Objects

Parallel Programming with Objects

Most research involving parallel programming and objects concentrates on the concept of the
'server'.[23] In this context, server refers to an object which encapsulates a running task. Servers are

objects in execution.

"servers arerelatively self-contained programs that implement one or more tasks of a parallel program.
In the server model, a parallel program is a collection of miniature programs running independently, but
occasionally interacting with one another by message passing.”

The real benefit with using the CORBA architecture for parallel processing is that the above server
model is provided by the ORB. The ORB does most of the work for you. In every parallel system design,
the programmer must perform the same decomposition of data and functionality into concurrent tasks.
This design step is easier with object-oriented analysis for all the usual reasons. However, once the object
model is complete for the specific problem, the ORB allows the concurrent solution to be distributed
with little effort. The results of this prototype show that the most difficult step in the process was
formulating the concurrent tasks for the problem at hand. Once concurrency was achieved in the object
analysis, implementing the solution in parallel was trivial. This, of course, was the goal of the research;
show that parallel processing can be harnessed with commonplace hardware and software without
incurring the expertise of complex network programming. The ORB abstracts distributed processing to
the more intuitive server model of concurrent tasks.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Parallel_Programming_with_Objects_.html [20/02/04 05:42:43 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Data Partitioning and Domain/Functional Decomposition

Data Partitioning and Domain/Functional Decomposition

As stated above, the most difficult portion of the prototype design was the formulation of the concurrent
tasks for the target problem. The goal here is ssimple; the problem has to be broken into smaller pieces
which can be executed concurrently.[24] There are two ways to break up a problem:

ctional Decomposition: realize what functionality from the normal serial execution can be placed in
parallel.

Domain Decomposition: realize which data in the system is independent and can therefore be processed
in parallel and later combined into a complete solution.

The application of objects hereis that the decomposed components described above can be encapsul ated
in objects; whether the components are function or data makes no difference. Once the components are
determined, the granularity of the components is adjusted to improve salability and performance. This
step turned out to be the pitfall during the prototype design. Also, the mapping of these component tasks
to available CPUs in a efficient manners was just as difficult. The next two sections discuss these
problemsin detail. For now, it is enough to understand that using the ORB to distribute the parallel
components or objectsis not the end of the road - intelligent scheduling of these objects on processors
with varying performance is required. As stated before, the prototype did not perform properly on the
entire multicomputer for this reason. It will be shown that this deficiency was overcome be directing
execution to processor sets with equivalent resources.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Data_Partitioning_and_Domain_Functional_Dec.html [20/02/04 05:42:44 p.m.]

mailto:mstevens@ent.mrj.com

Manager-Worker Paradigm and Load Balancing

Manager-Worker Paradigm and Load Balancing

Some problems have regular pattern in the data domain which allow these problems to be decomposed
into regularly fitted components. Thisis the case for large sparse and non-sparse matrices used in linear
algebra, computational grids used in flow dynamics and genetic sequences used in biology.28 Thereis

another class of problems where the exact set of parallel components are not known a priori but rather,
the components are calculated during run-time. Combinatorial search algorithms are usually part of this
class.3 The Traveling Salesman and Shortest Path are good examples of these search problems where the

search space is dynamically changed during execution.

One solution to the class of problem which have this dynamic behavior is the "replicated worker" or
"manager-worker" paradigm. In this case, identical worker processes are assigned to run on each physical
processor, and computing tasks are dynamically assigned to the workers as the program runs. The
workers are all associated with an abstract managing structure called the "work pool” or "manager”. As
workers become available and tasks become candidates, tasks are assigned to workers and when workers
complete tasks, the work pool or manager is updated. This paradigm maps well into an object model and
was used in the prototype. A detailed presentation of the prototype's object model follows the discussion
of the combinatorial search problem which is solved in the prototype.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Manager_Worker_Paradigm_and_Load_Balancing_.html [20/02/04 05:42:45 p.m.]

mailto:mstevens@ent.mrj.com

Classic Complex Problems

Classic Complex Problems

In Section, areal world combinatorial search problem was presented. The problem there was to
decompose complex polygons into triangles for use in adigital mapping database. It turns out that this
problem has been documented before as the optimal polygon triangularization problem.[25] Also, the
optimal polygon triangularization problem is a more specific version of the generalized matrix chain
multiplication problem. The matrix chain multiplication problem is presented in detail below and is aso

the problem solved by the prototype. The optimal polygon triangularization scenario is shown in Figure 6

where a complex polygon isfirst dissected into a convex polygon and then triangularized.

TR - .
irs - PER .
Haer

1
nae
o
-
=

-F‘Ff‘l:%

Convex Polvgon

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Classic_Complex_Problems_.html (1 of 2) [20/02/04 05:42:47 p.m.]

Classic Complex Problems

Figure 6 - Example of decomposing convex polygon into component triangles.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Classic_Complex_Problems_.html (2 of 2) [20/02/04 05:42:47 p.m.]

mailto:mstevens@ent.mrj.com

Matrix Chain Multiplication

Matrix Chain Multiplication

This problem is characterized by a sequence (chain) of matrices{ A, Ay, ..., A, } to be multiplied
together to form aresulting matrix or product.

AAs. A,

In order for achain of matrices to be multiplied together, it must be fully parenthesized, that is, it must be
either asingle matrix or the product of two fully parenthesized matrix products, surrounded by
parentheses. Because matrix multiplication is associative, all possible parenthesizations of a matrix chain
yield the same product matrix.

Where is the search problem? Consider the simple multiplication of two matrices, A and B. The inner
dimensions must be the same. In other words, the number of columns of A isequal to the number of rows
of B. If Alisap by g matrix and B isaq by r matrix, the resulting product C isap by r matrix. Thetime
required to compute C is dominated by the scalar multiplication's of the form (p)(q)(r). For the matrix
chain situation, the way the chain is parenthesized makes a considerable difference in how long it takes
to compute the product.

Table 4 has dimensions for six matrices. These dimensions are used in the continuing examples. The
graph in Figure 7 shows all five (5) parenthesizations of the first four (4) matrices. The graph in Figure 8
shows all fourteen (14) parenthesizations of the first five (5) matrices. In both examples, thereisan
optimal parenthesization which isless than half the worst case. By picking random values for the matrix
dimensions, one can find variations in many orders of magnitude.

A; 3035
A, 3515
A; 155
As; 510
As 1020
Ag 2025

Table 4 - Example of six (6) matrices

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (1 of 4) [20/02/04 05:42:50 p.m.]

Matrix Chain Multiplication

Figure 7 - Bar graph comparing all five (5) combinations of multiplying four (4) matrices.
(AL(A2(A3A4)))
(AL((A2A3) A4))
((ALA2) (A3A4))
((AL(A2A3)) Ad)

(((ALA2) A3) Ad)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (2 of 4) [20/02/04 05:42:50 p.m.]

Matrix Chain Multiplication

Varying Computations For All Combinations of the Product of Matrices
Al, A2, A3, Ad, AS

c
Ll
I
C
o
_
[=
=
i

S000 10000 185000 20000 28000 0000

e e Vi e’ e e et o e e e et

ndrmber of computations

Figure 8 - Bar graph comparing all fourteen (14) combinations of multiplying five (5) matrices
(AL(A2(A3(A4A5))))
(AL(A2((A3A4) A5)))
(AL((A2A3) (A4A5)))
(AL((A2(A3A4)) A5))
(AL(((A2A3) Ad4) AS))
((ALA2) (A3(A4A5)))

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (3 of 4) [20/02/04 05:42:50 p.m.]

Matrix Chain Multiplication

((ALA2) ((A3A4) A5))

((AL(A2A3)) (A4A5))

(((ALA2) A3) (A4A5))

((AL(A2(A3A4))) A5)

((AL((A2A3) Ad)) AB)

(((ALA2) (A3A4)) A5)

(((AL(A2A3)) A4) AS)

((((ALA2) A3) A4) A5)

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (4 of 4) [20/02/04 05:42:50 p.m.]

mailto:mstevens@ent.mrj.com

Catalan Numbers

iy

Catalan Numbers

The example of al six matricesistoo difficult to show because the number of possibilitiesis so large
(42). In fact, this number grows very fast with the size of matrix chain - just like the case of decomposing
polygons. Therefore, an exhaustive search of all possibilitiesisimpossible. The domain of the search
space sizes can be characterized as a sequence of Catalan Numbers.

The following graph shows Catalan Numbers up through n=16. If the number of possible
parenthesizations of a chain of n matricesis P(n), then P(n) = C(n-1), where C(n) is the Catalan Number
for n. Notice that the Catalan Number C(16) is over 9 million.

Catalan Humbers Ci{n)

InEls]

| Ltiam o

zize of

Cin-11

Figure 9 - Graph showing relationship between Catalan numbers and the matrix multiplication search space.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Catalan_Numbers_.html (1 of 2) [20/02/04 05:42:52 p.m.]

Catalan Numbers

The combinatorial explosion found in the sequence of Catalan Numbers is common for many search
problems. There are many techniques and algorithms that produce an optimal result and at the same time,
avoid the search space explosion. The technique of dynamic programming is presented by example
below and is used in the prototype to determine optimal matrix chain multiplication's for chains on the
order or n ={512,1024,2048,4096}

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Catalan_Numbers_.html (2 of 2) [20/02/04 05:42:52 p.m.]

mailto:mstevens@ent.mrj.com

Dynamic Programming

Dynamic Programming

An optimization problem can be solved by dynamic programming techniques if the structure of the optimal
solution reflects optimal substructure and overlapping subproblems. In other words, the optimal solution
must exhibit the recursive property of being directly related to solutions to optimal subproblemsin which
these subproblems encompass subsets of the problem domain.

In addition to the optimal substructure, the domain of subproblems must be small or at least the
subproblems should repeat more than once. The matrix chain multiplication problem demonstrates these
characteristics. The example which follows uses the data from . In order to find the optimal solution for all
six (6) matrices, m[i,j] is defined as the minimum number of scalar multiplication's needed to compute the
matrix A;

wherei=1and j=6

If i=] then the matrix chain consist of just one (1) matrix so there are no scalar multiplication's are required
so the value m[i,j] = O for i=j.

If i<j then m[i,j] equalsthe cost of the two (2) subproblems m[i,k] and m[k+1,j] plusthe cost of
multiplying the two resulting matrices together. Since computing the matrix product A; | Ay, 1 j takes

Pi-1PP; scalar multiplication'’s,
m[i,j] can be generalized as m[i,j] = m{i,k] + m{k+1,j] + pi_1pyp; -

For each problem m[i,j], the value of k is unknown and must be selected from the (] - i) possible valuesin
the domain

k=1i,i+1, ...,j-1

The m[i,j] values give the costs of optimal solutions to subproblems. To track of how to construct an
optimal solution, g[i,j] is defined to be avalue of k at which we can split the product A/A;, 1...A; to obtain
an optimal parenthesization. That is,

gli,j] equalsavalue k such that m[i,j] = m[i,K] + m{k+1j] + pi_1pyp;.

The figure below shows a easy way to visualize this data. This table shows the structure of the problem

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (1 of 4) [20/02/04 05:42:55 p.m.]

Dynamic Programming
m[1,6] and all the subproblems, m[1,2], m[1,3], etc. The problem m[1,6] is at the top of the table with the
cost of 15125. As an example, the subproblem m[2,5] is highlighted in the darkly shaded square. Notice
that this subproblem is made up of the further subproblems to the left and down. These subproblems are
defined by the domain of k for m[2,5]. The minimal cost of m[2,5] is found by exhaustively searching all
values of k.
m[2,5] = min{ m[2,2] + m[3,5] + p1p2p5 =0 + 2500 + (35)(15)(20) = 13000,
m[2,3] + m[4,5] + p1p3p5 = 2625 + 1000 + (35)(5)(20) = 7125,
m[2,4] + m[5,5] + p1p4p5 = 4375 + 0 + (35)(10)(20) = 11375}

= 7125

m value
table

Figure
10 - Diagram of data space of m(i,j) values for example matrix multiplication order problem using dynamic programming.

Figure 11 shows the S table which is structured just like the M table in the above figure. Each entry in the
table isindexed by the [i,j] pair. The S table contains the calculated k value for each entry in the M table.
The Stable can be used to formulate the optimal paraenthesization of the matrix chain. This completes the
structure of the problem. The input to the problem is the vector containing the dimensions of the matrix
chain. The output is the Stable.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (2 of 4) [20/02/04 05:42:55 p.m.]

Dynamic Programming

s value
table

Figure 11 - Diagram of data space of (i,j) values for example matrix multiplication order problem using dynamic
programming

A1 3035
A, 3515
Ag 155
As 510
Ag 1020
Ag 2025

It is the recursive nature of the matrix chain problem which allows this problem to be decomposed into
concurrent components for use in a parallel implementation. The next section will show the details of the
data decomposition used in the prototype.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (3 of 4) [20/02/04 05:42:55 p.m.]

Dynamic Programming

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (4 of 4) [20/02/04 05:42:55 p.m.]

mailto:mstevens@ent.mrj.com

Prototype

Prototype

For the purposes of demonstrating the power of distributed objects and the Object Request Broker
(ORB), an example of adistributed search agorithm was built using acommercial ORB. The ORBeline

System from PostM odern Computing (now Visigenic) was used for the prototype.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Prototype_.html [20/02/04 05:42:56 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Data Decomposition

Data Decomposition

The first step made when building the prototype was to define the software problem by decomposing the
structure of the matrix chain problem in away that is can be implemented using concurrent tasks or
objects. A form of data decomposition was performed on the problem structure which allowed for
concurrent tasks to be created. Figure 12 shows this decomposition for an arbitrary matrix chain of length
n=20. In this case, the ultimate goal of finding the optimal parentheszation of matrices A1..A20 is done
by completing the Stable for m[1,20] and all its subproblems. Any intersection on the M table m[i,j]
cannot be cal culated without knowing the answers to the subproblems. Thisistrue for all intersections
except for those on the center diagonal. The center diagonal represent all intersections where m[i,j] | i =]
are zero and have no subproblems. The structure of the problem revolves around the diagonals of the
table. The diagonals represent the size of the matrix chain. For every intersection of the table, the value (j
- 1) isthe size of the matrix chain. Along every diagonal, the matrix chain length is the same. According
the form,

mii,j] = mli,K + mik+1]] + PPy

each entry in the table is dependent upon al the intersections to the left and down. This fact formsthe
basis of how this problem is decomposed for parallelism.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Data_Decomposition_.html [20/02/04 05:42:57 p.m.]

mailto:mstevens@ent.mrj.com

Corners

Corners

In addition to the M table on Figure 12, the data decomposition is overlaid with "corners' labeled 0-15.
In this prototype, "corners’ refer to the components which are separately calculated. Corners which form
adiagonal aretotally independent. For instance, corner O can be cal culated independently from corner
1,2,3, or 4. Once thisfirst corner-diagonal is completed (0,1,2,3,4), then corners 5,6,7, and 8 can be
calculated, in parallel, to complete the second corner-diagonal. This decomposition design has afew
problem explained as follows.

1T 2 9 4 5 6 7 &8 9 10 11 12 13 14 15 16 17 18 19 20
r

Lo 8

—

L Y o o T (Y o T o | O U o B

| 18
F 19
|

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (1 of 4) [20/02/04 05:43:00 p.m.]

Corners

Figure 12 - Data decomposition of dynamic programming data space for matrix multiplication order problem.

19
20

n=1024 corner size=128 diagonal=g8 diagonals color ¢
Calls to weight function per Corner

16,000,008 "] [
14,000, 008—"1
12,000,008
10,000,008
5,000,008
5,000,004
4,000,004
2,000,008
|:|-

calculations

4 columns

rows 1
in t:u_rner 3 4 5 . in corner
grid T g 1 grid

Figure 13 - 3D View of Corner Grid (n=1024, cs=128) showing the number of entriesinto the weight function per Corner

Object.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (2 of 4) [20/02/04 05:43:00 p.m.]

Corners

n=1024 corner size=128 diagonal=8 diagonals color ci
per diagonal total calls to weight function
total corners per diagonal shown at left

@s
|’

L al:

md
e
m:
o1

Diagonals

- .

0 fooooo0 14000000 21,000,000 25000000 35000000

Calls to weight function

Figure 14 - Bar graph of the number of entriesinto the weight function per diagonal in the Corner Grid (n=1024, cs=128)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (3 of 4) [20/02/04 05:43:00 p.m.]

Corners

h=1024 corner size=128 diagonal=8 diagonals color ¢
Indirect accesses to m(i,j) values per Corner

o—'—''_. B
=] .
P S e
120,000,008 — |
d—f'_ﬂf | — __h_\—_-___—'
100,000,008—"" I Sy —t— |
''_'_'_,_,—- L B
@ 90,000,008 I ——1
£ En,nnn,nngf“‘f
é 40,000, 008"
% 20000 008"
4
0- g
rows 1 2 4 columns
in cn_rner 3 4 5 . in corner
grid I 0 1 grid

Figure 15 - 3D View of Corner Grid (n=1024, cs=128) showing the number of indirect accessesto m(i,j) values per Corner
Object.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (4 of 4) [20/02/04 05:43:00 p.m.]

mailto:mstevens@ent.mrj.com

Limitations

Limitations

One limitation of the decomposition design in is that only one corner-diagonal can be calculated at a
time. Thisis a problem because if the corners on a diagonal are each assigned to a processor for
calculation, then the last corner to complete will delay the other unallocated processors. Also, the level of
parallelism decreases from the center diagonal so that the final diagonal which has only on corner can
only be calculated by one (1) processor. This limitation is compounded by the fact that this same corner
Is the most expensive to calculate. Figure 13 introduces an example of an arbitrary matrix chain of length

n=1024. In this example, the corner sizeisfixed at 128 so that there are eight (8) corners along the first
center diagonal. The diagonals are color coded through this graph and the next two. Figure 13 shows the
number of calls to the weight function per corner to determine the costs, complete the corner, and fill in
the Stable. Notice that the number of calls per corner increase linearly between diagonals. This can be
seen aso in adifferent of the same datain Figure 14. Figure 15 shows a further limitation of the design.

To understand this limitation fully, the software design must be explained first.

Caching Corner Data

In the software design, the corner data and behavior has been encapsulated in a distributed object. Corner
objects are managed by Worker objects where one worker object is targeted to be executed on processor
at atime. The Manager object directs all the Worker Objects and also manages a catalog of Corners
aready calculated. When a Corner needs to be calculated, if it is not part of the center diagonal, it
requires values previously calculated in the cornersto the left and down. Since these Corners might have
been calculated on another processor, the remote corner data can be retrieved per method invocation on
remote Corner object. Thisretrieved datais "cached" locally in the so that the current Corner can access
data when needed. In thisway, the Worker assigned the task offering the final Corner will have to have
al other corner data cached. The replication of datais relatively negligible with respect to processing
time. Memory could become a problem when n>4096. The amount of space required to store the corner
datais on the order of n2. The processing time is on the order n3. The limitation shown in Figure 15
describes the compounding of the processing time due to the caching design and decomposition of the
datain corners. Since the M table data is not captured in asingle array but rather in atree-like data
structure where the nodes in the tree are Corner objects, accessing data in distant cornersis expensive.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (1 of 5) [20/02/04 05:43:03 p.m.]

Limitations

n=2048 corner size=128 diagonals=16 diagonals colo
Calls to weight function per Corne

35,000,008
30,000,008
25,000,008
20,000,008
15,000,008
10,000,006

5,000,008

calculation=

rows columns

in corner in corner

grid pal 1 2 grid

Figure 16 - 3D View of Corner Grid (n=2048, cs=128) showing the number of entriesinto the weight function per Corner
Object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (2 of 5) [20/02/04 05:43:03 p.m.]

Limitations

n=2048 corner _size=128 diagonals=16 diagonals color
per diagonal total calls to weight function
total corners per diagonal shown at left

i

Diagonals

I 35,000 000 70,000,000 105,000,000 140,000 000

Calls to m(i,

Figure 17 - Bar graph of the number of entries into the weight function per diagonal in the Corner Grid (n=2048, cs=128)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (3 of 5) [20/02/04 05:43:03 p.m.]

Limitations

n=2048 corner _size=128 diagonals=16 diagonals colo
Indirect accesses to m(i,j) values per

500,000,008 [| LT i | T -
''_,_.—'—'_'_'_'_F-'_'_'_._'_'_ | ——— h_h_hq___h__h—h
400,000,008 T r ||
')] _,_o—"'_'_'_--_'_'_ . [T T T1—
£ 300,000,001 | IR SR
E ._#__d—F— —
T 200,000,008~
— -'_'_'_-
.-}
® 100,000,008t
131
0l 112
rows - B 7 3 columns
in corner o 3 4 d in corner
grid - 2 2 grid

Figure 18 - 3D View of Corner Grid (n=2048, cs=128) showing the number of indirect accesses to m(i,j) values per Corner
Object

The following code block shows the extra processing which is required to accesslocal M datafrom
related Corners. This function getMValue() will recursively call into Corners which are left or down
from the current Corner. Also, if the desired datais in the current Corner, access must be made on the
shared memory region. The datamodeling is not at fault here. The performance problem can be solved
using a better data structures.

MWal ue get Mval ue(Mbat al ndex across, MDat al ndex down) // Real World Coordinates [1 N

if(across < (the_i _value + 1 - the_corner_size)) // in left corner
return(the_Il eft_corner->get Wal ue(across, down));
else if(dowm > (the_ j value + the _corner_size)) // in down corner

return(the_down_corner->get Wal ue(acr oss, down));

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (4 of 5) [20/02/04 05:43:03 p.m.]

Limitations
else // value in TH S corner
i f(the_busy corner == this) // is TH' S corner busy cal cul ati ng
r et ur n(get shmwal ue(across, down)) ;
el se

return((*the_Mdata ptr)[REAL_2 CORNER SEQ NUM acr oss, down, t he_corner_size)]);

Figure 16, Figure 17, and Figure 18 show similar information for a matrix chain problem wheren =
2048. The limitations are more evident in these graphs.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (5 of 5) [20/02/04 05:43:03 p.m.]

mailto:mstevens@ent.mrj.com

CORBA

CORBA Implementation

As show above, a object model consisting of Problems, Solutions (manager), Worker, and Corner objects
was used. See Appendix A for al detailed code listings. The scenario for processing was very simple.
The ssimplicity of the design shows the usefulness of the ORB architecture for doing parallel processing.

. Problem objects are interfaces to the source and destination data for a particular problem. In this
prototype, only the Matrix Multiplication Problem was implemented. The model could be further
expanded by deriving other specialized problem types like Traveling Salesman or Shortest Path.

. The Problem, Solution, and Worker objects are abstracted to the level of processes.

. The Problem, Solution, and Worker objects do not have to be collocated on the same processor
but they can be in the same process. This fact was helpful during testing because the prototype
could be runs as a single process to make initial debugging easier.

. The Worker objects were required to be in separate processes and on separate processors if
parallel processing was to be harnessed.

. The Solution and Worker objects can also be specialized further to expand the capabilities of the
prototype.

. Using the event driven capabilities of the ORBeline System, the objects can be started and
stopped in any order. Workers can be added to the running problem as needed. New problems can
be started when required. If any part of the system fails at either the O/S or hardware level,
replicated objects and take over.

. Each object becomes part of the distributed logging sub-system to track the whole process.

. Theorder of eventsis asfollows (nominally):

1. The Logger object is started from the command line and its output is redirected to afile or
viewed on the standard output. The Logger object registration is made global in the ORB
(other objects can "bind" to it)

2. The Solution object is started with its object name and corner size on the command line,
The Solution object binds with the Logger. The Solution object entersits event loop
waiting for remote method invocations and special ORB events.

The Worker objects are started with their object nanes and sol ution provider interface name which
they intend to connect to. The Wirker objects registration is local and they bind with the renote
Logger. They try to bind to the renpote Sol ution object or do a differed binding if needed. After
they successfully bind to the renpte Sol ution object they call the "volunteer()" nmethod to

register their availability.

1. The Problem object is started with its object name and any input parameters for the problem data.
The Problem object's registration islocal and it binds with the remote Logger. The Problem then
tries to bind with the Solution object or do adiffered binding if needed. After it successfully binds
to the remote Solution object it calls the "getHelp()" method to register its problem. The input

http://www.ece.villanova.edu/user/matt/thesisbody/thesis CORBA1.html (1 of 4) [20/02/04 05:43:05 p.m.]

http://www.omg.org/
http://www.visigenic.com/

CORBA

data (matrix chain) is sent to the Solution object at thistime.

2. Once the Solution object has a specific problem in hand, it will assign tasksto current volunteered
Worker objects and to future Worker objects when they volunteer in the future. The task
assignment relays the input data (matrix chain) to the Workers and sets the corner size.

3. The Worker objects will initialize its data structures for the current tasks by setting up itslocal
Corner objects - all with empty M data. The Worker object will call the "taskReady()" method on
the Solution object to let it know that the Worker is ready for calculating.

4. The Worker object istotally event driven on "taskReady()" messages. While there are more
Corners to be calculated, Workers will be assigned Corners to calculate. The Solution object calls
"getCorner()" method on aworker to retrieve the object reference to the remote Corner object.

5. The"getCorner()" method invocation is ablocking call - the caller can not handle other requests
or events while its blocking. During the time, the Worker object directs its specified Corner object
to cache any M datait needed at thistime. A list of owners of already calculated M datais passed
with the "getCorner()" method.

6. The Corner Object will make calls on remote Corner objects with the "getMData()" method. This
call also blocks but is handled with concurrent processing. See Singlethreaded or Multithreaded

Servers Section 4.5.4.1 and Shared Memory Section 4.5.4.2.

7. With this Corner object reference, the Solution object calls "calcData()" on the remote Corner
object.

8. When the Corner object receivesthe "calcData()" request, the calculation is performed
concurrently so that subsequent "getM Data()" requests can be handled.

9. When a Corner object completes its calculation, it sends a"cornerComplete()" message to the
Solution object and sends the resulting data to the Problem object.

10. When all the Corners are complete, the Solution object calls "endTask()" method on the Worker

objects. At this point the Worker objects may re-volunteer.

Singlethreaded or Multithreaded Servers

At Object Expo 1995 in New Y ork, Doug Schmidt, editor of the C++ Report, described a potential
problem with non-multithreaded implementations of CORBA. The problem was that of deadlock in a

distributed system. Deadlock occurs when object A makes a blocking request on aremote object B,
which, in turn, makes a second blocking call on object A. This second call will not return because the
object A isisolated/busy in the first blocking call. Doug Schmidt recommended a multithreaded
implementation where a given object server could be used concurrently by more than one client object.

Thisis precisely the problem with the prototype faced. Inlines 7, 8, & 9 above, the situation is described.
In this case, a Corner object A may be trying to cache M data by requesting this data from aremote
Corner object B. If another Corner object B' in the same Worker processis busy calculating data then
ORB can neither deliver the request nor can the Corner object B service it.

The ORBeline System provided for full support for multithreaded objects with out any additional work
other than linking executables with reentrant ORB libraries. However, this support was not available for

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ CORBA1.html (2 of 4) [20/02/04 05:43:05 p.m.]

http://www.omg.org/
http://www.visigenic.com/

CORBA

the SUnOS operating system - just Solarisand NT. Also, | was unable to get the multithreaded version
running on Windows NT. Instead, a design was used where Corner calculations would be done
concurrently using Solarisand NT threads and for SunOS, standard heavy-weight processes with fork()
system call. When aWorker process was interrupted with arequest for aresident Corner object to
"calcData()", a new thread or process would be started to perform the CPU intensive task while the rest
of the Worker process could service "getMData()" requests. Thislead to further design problems during
thread compl etion determination. The forked process would send a SIGCHLD UNIX signal to the parent
process when the cal culating process completed. However, the Solarisand NT thread implementation
required polling of the thread status to determine completion. Also, the forked process under SUnOS
needed a shared memory construct to pass the completed corner data back to the parent process. The
shared memory implementation would have to be done in such afashion so that as much of the code
could be shared between Solaris, NT and SunOS.

Shared Memory

For the shared memory implementation, memory mapped files were used. As and example, when a one
megabyte buffer was needed:

1. A temporary file was created and opened on /tmp file system.

2. Thefile was accessed out to the one megabyte point using Iseek() system call and thena NULL
"\0" was written. Thisincrease the size of the file to one megabyte and by definition, cleared the
valuesto NULL.

3. The mmap() system call mapped the file into the address space of the calling process and a pointer
to the beginning of the buffer was returned. This buffer was inherited by the forked process and
the changes made to this buffer in the child process were seen by the parent process.

The combination of the shared memory and concurrent process/thread design was successful although
cryptic. This design also put some constraints on the rest of the system. The Solution object now required
some state information about Corners and Workers. Also, only one (1) worker could be caching data at a
time. Thiswas the price to pay for portability and operation in a heterogeneous environment.

Distributed Logging

One of the most important requirements of a distributed system islogging - knowing what is going onin
avast system. In adistributed system, you don't have the ability to write to the standard output or read
the system console. A time order sequence/stream of eventsin the whole system is needed. For this
prototype, a Logger object was used which had one (1) method - "logMessage()" which accepted asingle
CORBA string as an argument. To enhance the information in the message, the Logger object multiply
inherited from both its IDL implementation class and the Server Event Handler class which came with
the ORBeline System. This allowed call backs to be assigned to almost every event that the Logger
"server" object encountered.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ CORBA1.html (3 of 4) [20/02/04 05:43:05 p.m.]

http://www.omg.org/
http://www.visigenic.com/

CORBA

. 0Object bind/unbind
. method invocation

In thisway, an object which binds to the Logger object has that event logged. If binding to the remote
Logger object is made common to the constructors of all objects (Solution, Workers, Corners, Problems),
then the whole prototype can be monitored. Also, with the per method callback, the "principal”
information of the bound object is accessible (hostname, process id, interface name, object name,
username, password, etc.). Thisallows for detailed logging with most of the effort being made under the
covers. See Appendix B for adetailed look at a prototype log. These logs provided al the data for the
rest of the graphs in this report.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis CORBA1.html (4 of 4) [20/02/04 05:43:05 p.m.]

mailto:mstevens@ent.mrj.com

Calculation Algorithm

Calculation Algorithm

The following code block shows the crucia parts of the MatrixMultCorner class that deal with
concurrent process creation and calculating the M data. The portions of the code which are different for
NT, Solaris, and SunOS are separated by the preprocessor directives. Notice the two entry points for the
threadsin NT and Solaris. Also, thereis specialized processing for the Corner object which are on the
center diagonal.

#i f def W N32

DWORD W NAPI MatrixMultCorner:: thread entry(LPVO D t hread parn

Mat ri xMul t Corner::get_busy corner()->_cal cData();

return(0);

#endi f
#i fdef SOLARI S

voi d* MatrixMiltCorner:: thread_entry(void* thread_parm

Mat ri xMul t Corner:: get_busy_corner()->_cal cData();
Matri xMul t Corner::the_thread_done = 1;

return(0);

#endi f

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (1 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

void MatrixMiltCorner:: cal chData(void)

unsi gned di agonal _count;

unsi gned start _point;

unsi gned end_point;

unsigned i _start_point;

unsi gned i _end_point;

unsigned j _start_point;

unsi gned j _end_point;

unsigned i,j;

if(the_corner_size !'= (the_i_value - the_j value + 1)) // non-center diagona

di agonal _count = O;

start_point = the_i_value - (2 * the_corner_size) + 3 - the_j_val ue;

end point =the_i _value + 1 - the_j _val ue;

i_start_point = the_i_value + 2 - the_corner_size;

j_end_point = the_j value + the_corner_si ze;

for(unsigned diagonal = start_point;

di agonal <=end_poi nt ;

di agonal ++, di agonal _count ++)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (2 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

i f(di agonal _count < the_corner_size) // 0..(CS 1)

{

i_end_point = i_start_point + diagonal_count;
j _start_point = j_end_point - diagonal _count;
}

el se

{

i _start_point ++;

j _end_point--;

for(i =i _start_point,j = j_start_point;

i <=i _end_point;

i ++,] ++)

PVal ue pOp2 = getPValue(j-1) * getPVal ue(i);

M/al ue Mcache = 3999999999;

SVal ue Scache;

for(unsigned k = j;k <= (i-1);k++)

Mal ue q = get Wal ue(k,j) +

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (3 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

get Wal ue(i, k+1) +

pOp2 * get PVal ue(Kk);

i f(g < Mcache)

{
Mcache = q;
Scache = k;
}
}

set shmwal ue(i,j, Mcache);

set shnBVal ue(i, |, Scache);

el se // center diagonal

di agonal _count = O;

start_point = 2;

end_point = the_corner_size;

i _end point = the_ i _value + 1;

i _start_point the i _value + 3 - the_corner_size;

j _start_point the_ j value + 1;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (4 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

j_end_point = the j value + the_corner_size - 1

for(unsigned x=(the_i _value - the_corner_size + 2);

x<=(the_i _value + 1);

X++)

set shmwal ue(x, x, 0);

for(unsi gned di agonal = start_point;

di agonal <=end_poi nt ;

di agonal ++,i _start_poi nt++,j _end_point--)

for(i =i_start_point,j = j_start_point;

i <=i _end_point;

i ++,] ++)

PVval ue pOp2 = getPValue(j-1) * getPVal ue(i);

Mval ue Mcache = 3999999999;

SVal ue Scache;

for(unsigned k = j;k <= (i-1); k++)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (5 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

Mval ue q = get Wwal ue(k,j) +

get Wal ue(i, k+1) +

pOp2 * get PVal ue(Kk);

if(g < Mcache)

{
Mcache = q;
Scache = k;
}
}

set shmwal ue(i,j, Mcache);

set shnsVal ue(i, |, Scache);

voi d MatrixMiltCorner::cal cData(const CornerlListé& corner_list)

Matri xMul t Corner::set_corner_Ilist(new CornerList(corner_list));

prepare();

Mat ri xMul t Corner::set_busy corner(this);

#i f def W N32

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (6 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

#i f def S| NGLE_THREAD

MatrixMul t Corner:: _thread_entry(NULL);

handl e_cal c_conpl etion();

#el se

Matri xMul t Corner::the_thread _handl e =

BEG NTHREADEX(NULL, O,

MatrixMul t Corner:: thread_entry,

NULL, O,

& he_thread_id);

LOG MESSACGE(" Thread Created to handl e corner calculation");

Di spatcher::instance().startTi mer (CORNER TI MER | NTERVAL, O, t hi s);

#endi f

return; // ending bl ocked request to client prevents deadl ock

#endi f

#i f def SCLARI S

if(-1 ==

thr_creat e(NULL, NULL,

MatrixMul t Corner:: thread _entry,

NULL, THR_BOUND

& MatrixMultCorner::the thread_id)))

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (7 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

perror("Thread Create Failed");

exit(-1);

Mat ri xMul t Corner::the_thread _done = O;

LOG MESSAGE("Thread Created to handl e corner cal cul ation");

Di spatcher::instance().startTi mer (CORNER TI MER | NTERVAL, O, t hi s);

return; // ending blocked request to client prevents deadl ock

#endi f

#i f def SUNCS

signal (SI GCHLD, Matri xMul t Corner::child_signal);

if(-1 == (MatrixMultCorner::the_process_id = fork()))

perror("Failure on fork()");

exit(-1);

else if(0 !'= MatrixMiltCorner::the_ process_id)

LOG _MESSAGE("Child Process Created to handle corner cal cul ation");

return; // ending blocked request to client prevents deadl ock

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (8 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

el se

/1 Di spat cher::instance(new Di spatcher);

Mat ri xMul t Corner:: cal cData();

exit(0); // signal parent that cal cul ati on done

#endi f

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (9 of 9) [20/02/04 05:43:08 p.m.]

mailto:mstevens@ent.mrj.com

Results

Results

This section describe the final results of the prototype, recommendations for improvements, and some
presentation graphs. All results are based on average runs of test cases for four (4) problem sizesn =
(512,1024,1536,2048). For each of the four (4) tests, three (3) different scenarios were executed and
compared. The final results are shown in Figure 19.

Cornparizon of Distributed and Trivial Soldtions

gtcPu
alamibdangg
soludon
1535
‘E’ .1 Py
o alam bl
E soludon
B
o dad
EEmaraan
mulal
soludon
Siz

110 Ih st okt

Figure 19 - Bar Graph comparing performance of distributed and trivial solutionsto the matrix multiplication order
problem.

1. Solve the problem using adirect C/C++ mapping of the textbook dynamic programming
algorithmin asingle UNIX process. (shown in cyan)

2. Solve the problem using the ORB prototype with a single Worker object with corner size = n (one
process, one Worker, one Corner, one problem). This scenario shows the overhead associated

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (1 of 7) [20/02/04 05:43:12 p.m.]

Results

with the prototypes data structure and C++ coding. (shown in magenta)
3. Solve the problem as above but with 3 CPUs (three Worker objects) and the empirically derived
optimal corner size (number of corners)

The best results were for the test where n=2048 and corner size=256. Here, a 40% efficiency was
achieved. The research review of published resultsin similar prototypes was on the order of 80%-90%
efficiency. | believe this discrepancy is due to three (3) factors.

1. The published values were achieved using prototypes built on single purpose parallel processing
hardware with multidimensional interconnections which would tend to have greater efficiency
than this prototype's experimental multicomputer.

2. The published prototypes utilities a more viable data decomposition which changed during
execution to achieve greater parallelism during the entire run. This prototype's parallelism
dropped off during final Corner calculations which took the most CPU resources.

3. Asdescribed before, this design had limitations in data structures and overhead due to
heterogeneous requirements.

Figure 20, Figure 21, Figure 22, and Figure 23 show stacked bar graphs of the completion times of

respective Corner objects assigned to processors. Each Graph has the 3 CPU and single CPU solution. In
all cases, it is evident that the most detrimental aspect to this design was the drop off of parallelism
during the last phases of the Corner calculations. The longest stacked bar denotes problem duration. All
tests were completed on the SM S Ultra Sparcs.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (2 of 7) [20/02/04 05:43:12 p.m.]

Results

Cormparison of Sobation with One [1]1and Three [3] CPU:
probler size = 512, corner size for parallel soldation = 12
Graph showss completion times of respective corner 10= pe

3 128 512 b

3128 512 _wen

5 128 512_ma

Cormer Cornpletions per CPU

1_512_512_ma

1]] <0 1] 20 100

wall clock tirme in seconds [longest stacked bar denctes problerr

120

ma
ms
ar
]
o5
md
(m]
O:
|l
oo

Figure 20 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner

objects broken down by CPU (n=512, cs=128,512)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (3 of 7) [20/02/04 05:43:12 p.m.]

Results

Comparison of Solution with One (1) and Three (3) 1
problem size = 1024, corner size for parallel solutior
Graph shows completion times of respective corner i

3 12%_1024_ba

5128 1024 _wen

3_128_1024 ma

Corner Completions per CPLU

1_1024_1024_ma

1] 100 200 200 00 S00 GO0 oo 200

wall clack tirne in seconds [longest stacked bar denotes problermn d

00

o0 m1 Oz

Oz m4 Os

mf O’ me

m? glo git

pi:miz m4

mlimic giv

glg g9 gzo

O:1 O:2 O3

m:d4 O:5 @6

[o =

ma0 @3l gl

m3 mid s

Figure 21 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner

objects broken down by CPU (n=1024, cs=128,1024)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (4 of 7) [20/02/04 05:43:12 p.m.]

Results

Caormparizon of Solution with One (1) and Three (2]
probler size = 1536, corner size for parallel solatio
Graph shows completion tirnes of respective corner L

15 _151E_ba

L e T T

AE_153_ma

Comer Compledon s per CPU

1_ASE_1S2E_ma

T T T
= [EHH jlHHH 150 2

wall clock fimes Ik ot ads daregosd slackocd bar doreodcs prokd cin dovad o

.1\2.]-]- .]4.]-‘.
.3-5-.]-?' .3-'5-.]-&:

[o~ el o 1
a¥EsT 00

EE-'}DE-‘I EE‘EDE‘!

ET’EDT'!- DTI‘-‘-DT‘E

n g s

Figure 22 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner

objects broken down by CPU (n=1536, cs=128,1536)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (5 of 7) [20/02/04 05:43:12 p.m.]

Results

Cormparizon of Salution with One [(1]and Three (2] CP o* m' o
problern size = 2048, cormer size for parallel salution =
Graph shows completion tirmes of respective corner 10s p

o = of

1_ike_itad_ban

1 el _hvua .l.? .l] .Il

.li- .li- Dl'l'

1 _ie_itad_pura

Dll |:||iI I:IH'

ety C arpderhore per S

1 dt=d sl _prund

.Jﬂ- .J 1 .J.i‘

1 1 1 1
.3 1888 JeE Jeds Ll S e

ket pirde I 2 il gt £ 0 iy bt obiratay parabra oo e .JJ .Jl .15-

Figure 23 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner
objects broken down by CPU (n=2048, cs=256,2048)

Improvements

In addition to the improvements already presented above for improved data structures, better use of
multithreaded environment, and more efficient data decomposition, the Manager/Worker scheduling
aspects of this design need to be improved.

After all the effort made to make this prototype work on a heterogeneous multicomputer of various
operating systems, processors speeds and interconnect speeds, heterogeneous operation yielded poor
results because of poor scheduling algorithms. The system worked successfully over the heterogeneous
multicomputer but the results were terrible. In most cases, the efficiency was not only poor but the wall
clock time was worse than the single CPU case.

Thisresult is not surprising because the scheduling logic (if you can call it logic) wastoo simple. As
work became available and workers became ready, the calculations were assigned. The problem was that
hard work was sometimes assigned to slow resources and faster resources were left idle. A simple
remedy would be to rank workers according to some benchmark and eval uate cal culation assignments

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (6 of 7) [20/02/04 05:43:12 p.m.]

Results

based on these benchmarks. A combination of this scheduling improvement, faster data structures and a
higher parallelism during final stages through dynamic data decomposition should yield efficiencies
closer the published values.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (7 of 7) [20/02/04 05:43:12 p.m.]

mailto:mstevens@ent.mrj.com

Conclusions

Conclusions

The success of the distributed object prototype using ORB technology shows that object oriented
technology is the solution for distributed programming requirements. The thesis presented in this
research, first stated in Section 1, that " Distributed object technology and concurrent/parallel processing
are part of an abrupt evolution in information systems' and " Object technology will be the vehicle that
allows information system providers to reap the benefits of distributed processing." has been supported in
theory by this research and demonstrated in the prototype. This research makes no scientific estimation
of the marketplace. However, in the months leading up to the draft of this paper, new technologies
including the JAV A development environment have shown a skyrocketing in the market of distributed
processing based on object frameworks and distributed objects.

The author would like to thank al family, friends, mentors, and supporters of thiswork over the last two
years including Dr. Anthony Zygmont, Dr. Rick Perry, MRJ Inc., PostM odern Computing (now

Visigenic) Inc., and Infonautics Inc.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Sevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Conclusions_.html [20/02/04 05:43:13 p.m.]

http://www.mrj.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.infonautics.com/
mailto:mstevens@ent.mrj.com

Footnotes

Footnhotes

[1] H. Stephen Morse, "Practical Parallel Computing”, Academic Press (AP) Professional, Massachusetts, 1994.

[2] Bruce P. Lester, "The Art of Parallel Programming"”, Prentice Hall, New Jersey, 1993.

[3] Andrew S. Tanenbaum, "Distributed Operating Systems", Prentice Hall, New Jersey, 1995.

[4] Eugene Hecht, "Optics', Addison Wesley, Massachusetts, 1987.

[5] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, "Computer Graphics - Principles and Practice”, Addison-Wesley, Massachusetts, 1987.

[6] Doug C. Schmidt, "The ADAPTIVE Communication Environment - Object-Oriented Network Programming Components for Developing Distributed Applications’, 12th Sun User Group conference, San
Francisco, Cdlifornia, June 1993.

[7]ACE was designed to provide a framework for building very high speed distributed networking applications. Therefore, ACE concentrates on wrapping complicated UNIX System servicesin type-safe
objects (IPC,Shared Memory, Dynamic-Linking, Threads, etc.). NIHCL was designed to simplify higher level application level programming.

[8] Keith E. Gorlen, Sanford M. Orlow, Perry S. Plexico, "Data Abstraction and Object-Oriented Programming in C++", John Wiley & Sons Ltd, England, 1990.
[9]A static class member is defined once for all instances of the class. It is not necessary to have an instance of the class to reference its static members.

[10]A const declaration specifies that the data can not be modified.

[11]All C++ classes have a primitive data member called "t hi s" which is a pointer to itself.

[12] The copy constructor creates a new object from the same type argument object. Every C++ class has a copy constructor generated automatically. The standard copy constructor initializes every member
variable of the new object with that of the source object.

[13]"Delphi, A System for Satellite Mission Planning and Scheduling, Preliminary Product Overview", Hughes Aircraft Company, Aurora, CO, 1993.

[14] Bruce Bohannan (Scientist/Engineer), "A Technical White Paper on the Hughes I nter-Process Communication Library (HIPC)", Hughes Aircraft Company, Aurora, CO, 1993, unpublished.
[15] Suresh Challa, "NetClasses - An Object-Oriented Communication Toolkit - Technology Overview", PostModern Computing (now Visigenic) Technologies Inc., Mountain View, CA, 1993.
[16]

[RAR KRR KAk R Ak kR KRRk R Ak kR KKKk kR KRRk Rk KRR KKK KAk KR KRR KKK KR KRRk R AR Ak

/* ORBeline (c) is copyrighted by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc */

/* Copyright 1993, 1994 by Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. */
http://www.ece.villanova.edu/user/matt/thesisbody/w2wftnts.htm (1 of 2) [20/02/04 05:43:14 p.m.]

Footnotes

/* This code is the sole property of PostMdern Conputing (now Visigenic) Technol ogies, */

/* Inc. and is protected by copyright under the |laws of the United */

/* States. This programis confidential, proprietary, and a trade */

/* secret, not to be disclosed without witten authorization from*/

/* Post Mbdern Conputing (now Visigenic) Technol ogies, Inc. Any use, duplication, or */

/* disclosure of this program by other than PostMdern Conputing */

/* Technologies, Inc. and its assigned licensees is strictly forbidden */

[* by law. */

/* Al rights reserved. */

[R kAR Rk kR Ak kK kAR Rk kAR Rk kA kA k kA kR kKR AR R KRk Kk ARk * AR Rk kAR AR AR kR KR KA K * kK

[17]scope delimiter operator

[18] The Common Object Request Broker: Architecture and Specification, Object Management Group TC Document Number 91.12.1, Revision 1.1, December 1991.
[19] Robert Orfali, Dan Harkey, Jeri Edwards, "The Essential Distributed Objects Survival Guide", John Wiley & SonsInc., New Y ork, 1996.

[20] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns - Elements of Reusable Object-Oriented Software", Addison-Wesley, Massachusetts, 1995.

[21] James O. Coplien, Douglas C. Schmidt, "notes

F="thesis Object | O .html#T1" TARGET="MAIN_FRAME">Object I/0</toc.gif 0100644 0000167 0000144 00000003514 06302364424 0013235 0 ustar 00mstevens perm 0000040 0000020 GIF87a¢ #
+ckkkkkss!

9)!9)1{ 11{ 1){9){ 91{ B1, B9, J9, RB, RBEZBEZJECIECREKR"kZ" sZ"{ ¢"{ coe, cog, kosTEKOaES0e’ S { ¥oe Y, Y, - - (E-CE- " -4 pi/aoq A el YA O SO -Ysb- Vbl AGAEGYAAET YA+ AEAE= AETTOUUYUU
uaega) 64y auvaueU=UOrUyaU OUUOUDHUOUOOUYO

http://www.ece.villanova.edu/user/matt/thesisbody/w2wftnts.htm (2 of 2) [20/02/04 05:43:14 p.m.]

http://www.ece.vill.edu/

	villanova.edu
	Concurrent Programming with Distributed Objects
	Concurrent Programming with Distributed Objects: Object Oriented Frameworks, Intelligent Algorithms, and the Common Object Request Broker Architecture (CORBA)
	Object Technology
	Object-Oriented
	C++
	Distributed Processing
	Undergraduate Research
	Optical System Design
	Work Experience
	1.4.1
	Airport Traffic Incursion Detection
	Graduate Research
	Object Frameworks
	Hughes Class Library
	Thesis Topic
	The Search for the Better Framework
	ORBeline
	Research Schedule
	Object Frameworks
	Acceptance of Object Frameworks
	The Divided Framework Camp
	Run Time Type Information (RTTI)
	Serializing the Object
	Framework and Object Requirements
	National Institute of Health Class Library (NIHCL)
	RTTI
	Object Comparison
	Collections and Iterators
	Object Narrowing (safe downcast)
	Copying Objects (Shallow and Deep)
	Object I/O
	Writing NIHCL Classes
	Hughes Class Library (HCL)
	Introduction
	HObject ìthe Hughes version of NIHCL Objectî
	RTTI
	Object I/O
	Containers
	Using HCL
	Example
	Distributed Programming with HCL Interprocess Communication
	PostModern's NetClasses
	Reuse
	Features
	Design
	Using the NetClasses Framework
	Success of the Single Rooted Tree Framework
	Adaptive Communication Environment (!!w2wpACE!!http://www.cs.wustl.edu/~schmidt!pe!)
	Object Request Broker (ORB)
	OMG Concrete Object Model
	Request
	Values
	Object Interface
	Object Operations
	The ORB Structure
	Static IDL ORB Interface
	Language Mapping
	Interface Repository (IR) and the Dynamic Invocation Interface (DII)
	Implementation Repository
	Object Adapter
	CORBA
	PostModern Computing
	ORBeline's Architecture
	The ORBeline
	ORBeline's ORB Objects
	Advanced Features
	Distributed Object Application Prototype
	Hardware Platforms
	Multicomputer
	Parallel Programming with Objects
	Data Partitioning and Domain/Functional Decomposition
	Manager-Worker Paradigm and Load Balancing
	Classic Complex Problems
	Matrix Chain Multiplication
	Catalan Numbers
	Dynamic Programming
	Prototype
	Data Decomposition
	Corners
	Limitations
	CORBA
	Calculation Algorithm
	Results
	Conclusions
	Footnotes

