
Concurrent Programming with Distributed Objects

Table of Contents
● Introduction

❍ Object Technology
■ Object-Oriented
■ C++

❍ Distributed Processing
❍ Undergraduate Research

■ Optical System Design
❍ Work Experience

■ 1.4.1
■ Airport Traffic Incursion Detection

❍ Graduate Research
■ Object Frameworks
■ Hughes Class Library

❍ Thesis Topic
■ The Search for the Better Framework
■ ORBeline

❍ Research Schedule
● Object Frameworks

❍ Acceptance of Object Frameworks
❍ The Divided Framework Camp
❍ Run Time Type Information (RTTI)
❍ Serializing the Object
❍ Framework and Object Requirements
❍ National Institute of Health Class Library (NIHCL)

■ RTTI
■ Object Comparison
■ Collections and Iterators
■ Object Narrowing (safe downcast)
■ Copying Objects (Shallow and Deep)
■ Object I/O
■ Writing NIHCL Classes

❍ Hughes Class Library (HCL)
■ Introduction
■ HObject ìthe Hughes version of NIHCL

Objectî
■ RTTI
■ Object I/O
■ Containers
■ Using HCL
■ Example
■ Distributed Programming with HCL

Interprocess Communication
❍ PostModern's NetClasses

■ Reuse
■ Features
■ Design
■ Using the NetClasses Framework
■ Success of the Single Rooted Tree

Framework
❍ Adaptive Communication Environment

(!!w2wpACE!!http://www.cs.wustl.edu/~schmidt!pe!)
● Object Request Broker (ORB)

❍ OMG Concrete Object Model

Introduction

This is an investigation into the application of concurrent programming and
object technology in developing distributed systems with specific interest in
concurrent scheduling and planning algorithms. The research paper begins
with a brief presentation of the concepts of object technology and C++. Then,
as a preface to the presentation of the concepts of concurrent programming
and object frameworks, the investigation of the Common Object Request
Broker Architecture (CORBA), and the prototyping results, the next section
gives some background information to set the tone for this research and to
support the following statement.

Distributed object technology and concurrent/parallel processing are part of
an abrupt evolution in information systems. Object technology will be the
vehicle that allows information system providers to reap the benefits of
distributed processing. Distributed object technology will affect the IS
industry at all levels of hardware, operating system and software design.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/ (1 of 2) [20/02/04 05:40:51 p.m.]

http://www.ece.vill.edu/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

Concurrent Programming with Distributed Objects

■ Request
■ Values
■ Object Interface
■ Object Operations

❍ The ORB Structure
■ Static IDL ORB Interface
■ Language Mapping
■ Interface Repository (IR) and the Dynamic

Invocation Interface (DII)
■ Implementation Repository
■ Object Adapter
■ CORBA Standard

❍ PostModern Computing (now Visigenic)'s ORBeline
■ ORBeline's Architecture
■ The ORBeline Framework
■ ORBeline's ORB Objects
■ Advanced Features

● Distributed Object Application Prototype
❍ Hardware Platforms

■ Multicomputer
❍ Parallel Programming with Objects

■ Data Partitioning and Domain/Functional
Decomposition

■ Manager-Worker Paradigm and Load
Balancing

❍ Classic Complex Problems
■ Matrix Chain Multiplication
■ Catalan Numbers

❍ Dynamic Programming
❍ Prototype

■ Data Decomposition
■ Corners
■ Limitations
■ CORBA Implementation
■ Calculation Algorithm
■ Results

❍ Conclusions
● Footnotes

http://www.ece.villanova.edu/user/matt/thesisbody/ (2 of 2) [20/02/04 05:40:51 p.m.]

http://www.ece.vill.edu/

Concurrent Programming with Distributed Objects: Object Oriented Frame... Algorithms, and the Common Object Request Broker Architecture (CORBA)

Introduction

This is an investigation into the application of concurrent programming and object technology in
developing distributed systems with specific interest in concurrent scheduling and planning algorithms.
The research paper begins with a brief presentation of the concepts of object technology and C++. Then,
as a preface to the presentation of the concepts of concurrent programming and object frameworks, the
investigation of the Common Object Request Broker Architecture (CORBA), and the prototyping results,
the next section gives some background information to set the tone for this research and to support the
following statement.

Distributed object technology and concurrent/parallel processing are part of an abrupt evolution in
information systems. Object technology will be the vehicle that allows information system providers to
reap the benefits of distributed processing. Distributed object technology will affect the IS industry at all
levels of hardware, operating system and software design.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis.html [20/02/04 05:40:53 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Object Technology

Object Technology
The fundamental characteristic of object oriented technology is the combination of data structure and
behavior.1 This combination of data and function is more understandable to people and most resembles
real life. As operating systems, programming languages, and frameworks evolve through object
technology to allow a more efficient coupling between processing and networking, distributed processing
will be as common place as simple data structures like linked lists.

Many of the sections in this paper do not require the reader to have an in depth knowledge of object
technology and C++; an understanding of C programming is required. However, to fully understand the
topics on object frameworks, CORBA, and the prototyping results, the reader would benefit from an
introduction to object oriented design and implementation in C++. The experienced C++ programmer
may skip to the next section.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Technology_.html [20/02/04 05:40:55 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Object-Oriented

Object-Oriented

Object-Oriented refers to the design and implementation of information systems which, as mentioned
before, combines data structure with the behavior relevant to the data structure. More specifically, object-
oriented exhibits the following characteristics: encapsulation; classification; inheritance; and
polymorphism.

Encapsulation

Encapsulation is the technique of separating the implementation details of an object from the external
interface. The external interface is available for use by other objects. Another name for encapsulation is
"information hiding". Information hiding is not restricted to object-oriented but it is available in most
object implementations. The concept of external or "public" interfaces on objects is crucial to distributing
objects in a system. We will see that it is really the "public" interfaces of objects that are distributed in a
system. The actual object implementations are hidden by these distributed interfaces.

Classification

Classification refers to the difference between an "object" and a "class" in an object-oriented system. An
"object" is a unique, identifiable instance of information such as a named employee. Classification is the
grouping of objects with like attributes (data) and operations (behavior). These groupings are called
"classes". Objects are instances of classes. Classes are types whereas objects are identities (e.g.
STUDENT is a class and JOE_SMITH is an object which is of type STUDENT). Using the OMT
notation 1, classes are diagrammed as a titled box with two sections for the attributes and behaviors. See
Diagrams in Appendix.

Inheritance

Classes can be organized such that specialized classes can inherit from more general classes. This
technique is called inheritance and it is more easily demonstrated by an example. The classes car,
airplane, train, and bus could all inherit from the general class vehicle. The attributes (data)
and operations (behavior) are inherited from one class to a more specialized class. Inheritance is
represented in an object model as in Diagrams in Appendix .

Polymorphism

A more abstract object-oriented characteristic is polymorphism. Polymorphism describes the capability
of applying the same operation to different objects and having the resulting behavior vary depending on

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Oriented_.html (1 of 2) [20/02/04 05:40:56 p.m.]

Object-Oriented

the class type. As an example, the operation move on an object of type vehicle might behave
differently if the object's specific type is airplane or car.

Functional vs. Object-Oriented

The discussion of polymorphism sheds light on the real distinction between object-oriented and
functional techniques. It's all in the name, "object-oriented". A functional programming language is
centered around a hierarchical, functional flow. Object-oriented implementations are centered around
object interactions. The semantics of object-oriented programming languages vary, however, the code
"reads" the same. As an example, a functional code stub "reads"

LAND (AIRPLANE); PARK(CAR);

where as the object oriented code would "read"

AIRPLANE(LAND); CAR(PARK);

In the functional case, the "object" or data is the argument to the function where as the opposite is true
for the object-oriented case; the function is the argument of the object. In fact, functions are "members"
of classes just like attributes are. In a class they are referred to as "member functions".

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Oriented_.html (2 of 2) [20/02/04 05:40:56 p.m.]

mailto:mstevens@ent.mrj.com

C++

C++

In the first versions o1, a pre-compiler front-end called CFront was used to translate C++ code into C.
Now there are direct to binary C++ compilers. However, the output of CFront is informative because it
shows how the C++ language constructs can be implemented in C. Although it is an over-simplification,
it can be very instructive for the experienced C programmer to view C++ classes as C structures. Using
C, member functions are implemented as structure members that are of type pointers to functions. This is
seen in the following structure declaration.

struct vehicle {

int max_speed;

int weight;

int length;

void move(int distance);

void change_direction(float angle);

}

the above structure declaration is defined and used as follows in a simple program:

main() {

struct vehicle V1; // allocate memory

V1.max_speed = 113;

V1.weight = 2000;

V1.length = 10;

V1.change_direction(45.0);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (1 of 4) [20/02/04 05:40:58 p.m.]

C++

V1.move(50);

}

Notice that the above code segment shows that member functions are neatly engaged just like a classic
structure member. The C++ language constructs and semantics hide these complex structures. The real
C++ constructs are more "elegant". In C++ the key word struct can be replaced with the key word
class. Inheritance can be demonstrated using the above declaration as follows:

class car : vehicle {

char make[25];

char model[25];

void park(void);

}

The car class inherits from class vehicle and all the data members and member functions of
vehicle are found in car.

Encapsulation and polymorphism are demonstrated in the following re-declaration of vehicle and
car. C++ allows for information hiding through the key words public and private which are
modifiers on class members. These modifiers specify the scope of the class' members where the public
members constitute the external interface and the private members constitute the internal interface. C++
provides polymorphism with the key word virtual which is a modifier of member function. A
member function specified as virtual will cause the compiler to build a table of pointers to functions
for the class called the virtual function table. All classes which inherit from a base class with virtual
functions must re-implement the virtual functions locally. The virtual function table will contain all
unique, specialized definitions for the original virtual function. When a virtual function is called, the
virtual function table provides a level of indirection so that the appropriate function is called.

C++ uses the keywords new and delete for run-time memory allocation and de-allocation. new and
delete are operators for all objects. Notice in the example below that a pointer to vehicle can be
assigned an address of a car object because car is a vehicle through inheritance. Therefore, the call
to the virtual move function uses the virtual function table to engage the car::move(int) function.

class vehicle {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (2 of 4) [20/02/04 05:40:58 p.m.]

C++

private:

int max_speed;

int weight;

int length;

public:

virtual void move(int distance);

void change_direction(float angle);

}

class car : public vehicle {

private:

char make[25];

char model[25];

public:

void move(int distance);

void park(void);

}

main() {

vehicle *vptr1,*vptr2;

car *cptr1;

vptr1 = new vehicle;

vprt2 = new car;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (3 of 4) [20/02/04 05:40:58 p.m.]

C++

cptr1 = new car;

vptr1->move(55); // vehicle::move(int)

vptr2->move(55); // car::move(int)

cptr1->move(55); // car::move(int)

delete vptr1;

delete vptr2;

delete cptr1;

}

Code Block 1 - Example of Vehicle & Car Class

In C++ there are special functions that handle object initialization and clean-up. These functions are
called "constructors" and "destructors". A class constructor is called when an object is defined or
explicitly "instantiated" with the new operator. A class destructor is called when a previously allocated
object goes out of scope or is explicitly freed with the operator delete. Constructors and destructors
are provided either by default in the compiler or they can be included in the class declaration by the
programmer. The constructor must be a part of the "public" interface of the class for an object to be
instantiated. Therefore, an "abstract" class can be implemented by restricting the constructor to the
"private" interface of the class. The "abstract" class allows powerful class designs as will be shown in the
discussion of object frameworks in section 1.5.1. Object frameworks are class hierarchies which use
abstract classes and virtual functions to create common interfaces for the framework user.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_C___.html (4 of 4) [20/02/04 05:40:58 p.m.]

mailto:mstevens@ent.mrj.com

Distributed Processing

Distributed Processing
Distributed processing is not as abstract to the newcomer as object technology. For decades engineers
have used distributed processing to improve performance of information systems. In general, the more
processors you have to perform a task, the faster it will complete. If a computing process can be
decomposed into smaller, concurrent tasks then in theory a performance increase can be achieved. The
technique of deploying concurrent tasks on either multi-processor hardware or on a multi-processing
operating system is called parallel processing.[1] The research presented here concentrates on
implementing parallel/distributed processing on multi-computers.[2] A multi-computer a grouping of
single processor computers capable of message passing using a high speed network. A small local area
network (LAN) of UNIX and/or MS-Windows workstations is an example of a multi-computer. Another
popular parallel processing schemes uses symmetric multiprocessors (SMP) which refers to a single
block of memory shared by many processors.

In practice, the application of concurrent processing has been mostly limited to the well funded, high
performance assets of government agencies and military contractors. The complication and intense
training it takes to develop distributed systems has kept them on the shelf and off the drawing board until
recently. Now there are thousands of organizations with the appropriate hardware and operating systems.
These organizations could be deploying distributed solutions today.

Although implementations are hard to find, there is support for distributed solutions in current CPUs,
operating systems, and high speed networks. This investment from the hardware and operating systems
manufacturers would probably not be without the advent of object-oriented frameworks for distributed
processing. Market forces are driving the manufactures to develop new equipment capable of parallel
processing. The market demand is due in part to the advances in object-oriented frameworks for
distributed processing. There are already companies investing in object technology and distributed
processing by developing object oriented operating systems such as Sun MicroSystem's NEO OS, DOE
(Distributed Objects Environment), and Next Computers NextStep/OpenStep OS. [3],

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Distributed_Processing_.html [20/02/04 05:40:59 p.m.]

mailto:mstevens@ent.mrj.com

Undergraduate Research

Undergraduate Research
My interest in object-oriented, C++, and distributed processing started during my undergraduate research
work at Villanova University, For my undergraduate thesis, I built a prototype software system for the
automated design and optimization of simple optical lens systems. It was designed and built on a IBM
compatible PC and later ported to a Silicon Graphics (SGI) UNIX workstation. The prototype was
developed in C++. The techniques of object-oriented design and the clean semantics of C++ allowed for
a quick turn around when producing the prototype. After developing in object-oriented/C++ I was
convinced that it was the best technique for writing high performance software.

The prototype results were limited by a lack of both computing resources and a good understanding of
simulation techniques. I started thinking about distributed processing as I sat waiting for ray tracing
results and waiting to run out of memory. I wondered why the hundreds of workstations networked with
my computer could not be used to speed up the prototype. In fact, the other networked computers formed
a multicomputer which could be used to distribute processing and share resources. However, even though
the hardware was there, a framework of tools for building distributed systems was missing. This research
paper presents the requirements for such a framework and shows how object oriented techniques support
distributed processing. The following explanation of my prototype design demonstrates why
simulation/optimization algorithms consume a lot of computing resources; this explanation will
demonstrate to requirement for distributed processing.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Undergraduate_Research_.html [20/02/04 05:41:00 p.m.]

http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Optical System Design

Optical System Design

Consider a simple optical lens system such as a microscope. This lens system exhibits optical aberrations that limit the quality of the resulting images. Optical
aberrations, like spherical and chromatic aberration and astigmatism, can be reduced and in some cases, removed from the system using various techniques that
have been developed for centuries.[4] During my undergraduate work on the prototype I was limited by the infinite search space that resulted when calculating
the optimal result in an optical element's configuration.

Take the example of the simplest optical system with the most trivial constraints: a magnifying glass that can be translated in one (1) dimension. The magnifying
lens is a first order (circular) convex-convex lens. The lens is perpendicular to the optical axis 'z'. The magnifying lens can be translated along this optical axis a
distance 'k' from the object point. Other variables include the desired location of the image point (focal point), the curvature (radius) of the lens surfaces, the
thickness of the lens, the material of the lens and environment. See Figure 1. The unknown value is the location of the lens along the optical axis. The goal is to
find this unknown value so that the image is brought into focus. Even though this simple problem is usually solved using high school physics equations, a search
algorithm is applied for demonstration purposes.

The domain of the lens location is from d0 to d1. The algorithm will be a search over the domain of [d0,d1]. This domain is the search space. The size of the
search space depends upon the precision of the solution or rather the delta Z along the optical axis. Given a function Q(z) which evaluates the quality of the
image at location d1 over the domain Z, the optimal location of the lens z can be determined. Again, ignoring the obvious solutions using physics laws and
calculus to find inflection points of the function, it follows that all points along Z must be evaluated and sorted to find the optimal Q(z). This extreme example
uses only simulation. A solution provided by physics equations, geometry and/or calculus is an analytical solution.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Optical_System_Design_.html (1 of 3) [20/02/04 05:41:03 p.m.]

Optical System Design

W2WTHUMBFigure
1 - Simple Optical System

In my undergraduate prototype I used analytical techniques to solve problems. I attempted simple search algorithms but these techniques consumed my
computational resources too quickly. In the real life case, the simulation technique is not longer trivial because the search space becomes huge. This is seen
when all the real world factors to the simple lens design problem are considered such as attitude and position of lens elements in three dimensional (3D) space,
multi-spectral radiation, gradients in temperature, gradients in material, nth order optical surfaces, etc.. The simple search space would be the cross
multiplication of all the domains of the said factors. The inability to solve this problem during my undergraduate work sparked an interest in optimization
algorithms.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Optical_System_Design_.html (2 of 3) [20/02/04 05:41:03 p.m.]

Optical System Design

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Optical_System_Design_.html (3 of 3) [20/02/04 05:41:03 p.m.]

mailto:mstevens@ent.mrj.com

Work Experience

Work Experience
After I completed by undergraduate degree, I worked in the Edison Engineering Program at GE
Aerospace. For three years I worked on large government information and aerospace systems. As a
member of the Edison Program I attended Villanova University again for my masters. In Villanova's
Intelligent Engineering curriculum, I was introduced to the computer engineering topics of expert
systems, fuzzy logic, thinking algorithms, searching algorithms, recursion, dynamic programming, image
processing, neural networks and more.

Throughout my work and studies in the Edison Program I was presented with software requirements that
were well suited for object technology, distributed processing, and the new techniques I was learning in
Villanova's Intelligent Engineering curriculum.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Work_Experience_.html [20/02/04 05:41:04 p.m.]

http://www.vill.edu/
mailto:mstevens@ent.mrj.com

1.4.1

1.4.1

As one example, I worked on a project that required a Global Information System (GIS) which
specialized in generating and displaying terrain maps in 3D. At the time it was not possible to acquire
commercial off the shelf (COTS) map databases easily. However, we were able to obtain the U.S.
Geological Survey's Digital Chart of the World (DCW) product which contained over (1.5) gigabytes
(GB) of mapping data. The maps were displayed on high speed SGI IRIS/VGX UNIX workstations.

The DCW described map data in 2D latitude and longitude coordinates. The elevation data was separate.
The map data was arranged as points, lines, and polygons for cities, roads/rivers, and areas respectively.
There were many polygons in the DCW (islands, countries, states, lakes, etc.) that contained more than
256 points. Also, many of the polygons were not convex but rather concave. A convex polygon is a three
or more sided shape where a line drawn between any two points does not intersect an edge. A triangle is
a convex polygon. [5]

The SGI Graphics Language (GL) we used required that graphics data be compiled into vectors of 4D
vertices (x, y, z, and 24-bit color value). The vectors could be of length one, two, three or more which
allowed points, lines, triangles, or polygons to be drawn. The vectors had to be less than 256 and
represent convex polygons

The minority of polygons in our database which represented larger than acceptable polygons and/or
concave polygons had to be "fixed" - split into convex polygons with less than 256 points. In the end, we
manually "fixed" the few hundred polygons. At the time I wanted to employ some algorithms that would
increase the quality, and performance of the mapping system.

The graphics engine in the SGI VGX is optimized for vectors with three (3) points. The graphics pipeline
renders all polygons as triangles. If a >255 point vector enters the graphics pipeline it is decomposed into
adjacent triangles optimized for rendering. It is possible to achieve a performance increase of orders of
magnitude if data is submitted as optimized triangles. Other hardware venders have graphics engines that
are optimized for quadrilaterals.

I investigated algorithms that would decompose any polygon into triangles or quadrilaterals that are
optimized for a given set of constraints. I had trouble finding solutions because of combinational
explosion of the search space. Exploring only geometric decomposition by hand, it can be shown that
there are only a few ways to decompose a square or pentagon. However, one learns that a black board
will not be big enough to decompose even simple shapes like hexagons and octagons let alone polygons
with hundreds or thousands of vertices. In order to insure that all possible decomposition's are known
(insure an accurate search space), recursion can be used to determine the number of possible paths to a

http://www.ece.villanova.edu/user/matt/thesisbody/thesis___w2wx1_4_1__bk7_____.html (1 of 2) [20/02/04 05:41:05 p.m.]

1.4.1

solution.

P(n) = paths per n n-2 solution space

P(3) = 1 1 triangle 1

P(4) = 2 * P(3) = 2 2 triangles 2

P(5) = 5 * P(4) = 10 3 triangles 5

P(6) = 6 * P(5) = 60 4 triangles 14

P(7) = 7 * P(6) = 420 5 triangles ?

Table 1: The recursive determination of search paths.

Consider a fifteen (15) sided polygon. P(15) = 108,972,864,000. This polygon would call for over 100
billion state calculations to find a search space of (I am guessing) hundreds of thousands if not millions
of unique states. If heuristics and rules were employed to reduce the search space size to the square of the
vertex count [P(n) = n2] or even to [P(n) = n * log(n)], then a solvable algorithm could be developed.
However, a polygon with hundreds of points would still be time consuming to decompose. I became
determined to learn more about the real application of intelligent search algorithms. I also considered the
use of distributed processing to calculate associated search paths concurrently.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis___w2wx1_4_1__bk7_____.html (2 of 2) [20/02/04 05:41:05 p.m.]

mailto:mstevens@ent.mrj.com

Airport Traffic Incursion Detection

Airport Traffic Incursion Detection

On another project, I helped develop software to detect and prevent incursions (potential collisions) of
airplanes and ground vehicles at airports. The airport incursion detection system used Global Positioning
Satellites (GPS), radar, lasers, and other sensors to create a real-time digital map of the vehicles at an
airport. The numerous of channels of sensor data were fused at a central location where incursion
detection would took place. To test the data fusion and incursion detection algorithms vehicle simulators
were required to produce test scenarios.

We choose an object oriented design and an implementation in C++ for the simulator. The object-
oriented characteristics made the simulator easy to prototype. As an example, the following entities of
the simulator were all objects: command, point, vector, unit, vehicle, airplane, I/O,
time, queue, list, and display. This allowed us to build the simulator and get it running without
having to flesh out all the details. We could test the command interpreter and dispatch flight commands
to the vehicles even if the flight command implementation was an empty stub. In functional designs this
quality would be called modular. In object-oriented it is more than modular because the object abstracts
its data and functionality behind the object's interface.

We considered making the simulator distributed by encapsulating or "hiding" a interprocess
communication (IPC) BSD socket framework in the lower level objects. As an example, a command
dispatcher object had a reference (pointer) to a command stream object. The dispatcher did not need to
know that the real command stream was coming over a TCP/IP socket from another process. The concept
of information hiding has been around for a while and used with success. However, in object-
oriented/C++ the interface typing is tighter and in fact the methodology calls for information hiding. It is
the definition of classes: clearly defined/typed interfaces to functions and data.

The simulator's success proved that object-oriented and C++ was very powerful. Also, our success
proved that well designed object systems can be made distributed with less re-coding than more common
functional designs. Another important lesson learned from this project was that the engineering team,
which we (the systems developers) had working on the critical methods for vehicle dynamics, was able
to understand the software design during the development cycle. The qualities of object-oriented design
allowed for more fluid communication between the engineers and programmers. One need not translate
from reality into C functions, structure, and global/local variables. The discussions were about vehicles,
commands, time, velocity vectors, etc. - the same names for the objects that modeled them.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Airport_Traffic_Incursion_Detection_.html (1 of 2) [20/02/04 05:41:07 p.m.]

Airport Traffic Incursion Detection

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Airport_Traffic_Incursion_Detection_.html (2 of 2) [20/02/04 05:41:07 p.m.]

mailto:mstevens@ent.mrj.com

Graduate Research

Graduate Research
Two years after I had completed my undergraduate optics project, I was confident in my original idea
that object-oriented technology was a viable alternative to common functional models. I was convinced
that distributed systems, especially those designed object-oriented, were not limited to hardware
intentionally designed for parallel processing like Cray, Thinking Machines, and Intel Paragon. Given a
robust development environment, high speed network, and powerful operating system like UNIX, or
Windows NT, any organization could harness distributed processing.

Villanova has many powerful UNIX workstations, hundreds of 486/Pentium PCs, and a campus wide
area network (WAN) integrating various local area networks (LAN). If a framework for building
distributed systems could be found that coupled heterogeneous systems at the application level,
Villanova could support distributed systems. The goal of the research in this report is to prove that
practical access to parallel processing using commonplace hardware and object oriented design is
possible. The first part of my graduate independent research was an investigation of distributed object
frameworks. The following section introduces the reader to object frameworks and my research results.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Graduate_Research_.html [20/02/04 05:41:08 p.m.]

http://www.vill.edu/
http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Object Frameworks

Object Frameworks

In the case of object-oriented/C++, a software development framework is a combination of pre-defined
class hierarchies, libraries, design patterns, and tools that allow for re-useable and consistent software.
Frameworks are similar to programming standards like IBM's Standard Query Language (SQL), SGI's
Graphics Language (OpenGL), BSD Sockets, X11, etc. Common object frameworks in this report refer
to those which are used for general software development, not just database, graphics, user-interface, or
communication systems.

In the past, as more complicated client-server and peer-to-peer systems were developed, the expertise
needed to overcome the intricacies of network programming was a major problem. In the late 1980s
many companies started investing in common frameworks for application programming. The two leading
C/C++ compiler venders for PCs, Microsoft and Borland, developed there own frameworks for building
consistent standalone MS-Windows applications; Microsoft Foundation Classes (MFC) and Borland's
Object Windows Library (OWL). Over the past five years, commercial frameworks have evolved into
two types: high powered client server frameworks for 32-bit operating systems; and high level visual
programming tools like MS VisualBasic and Borland's Delphi. The latter are very popular because they
allow for Rapid Application Development (RAD) on networked PCs and small database servers.

The market for larger industrial strength object frameworks for 32-bit systems had been small but
promising. It is a fact that information system providers do not like to buy into technology that is neither
guaranteed to be supported for a long time nor not part of a standard. Therefore, while industry leaders
and research institutions moved slowly on UNIX standards like POSIX, X/OPEN, DCE, CORBA, CDE,
.etc, information system providers have continued to produce systems without reuse, common
frameworks, or maintainability in mind. However, there were some frameworks built for internal use at
various research institutions and companies possessing enough foresight.

These internal frameworks turned out to be a good investment. Framework development added to the
organization's technical base and the benefits of common frameworks could be realized before the
standards were delivered. Some of these home grown frameworks, like the National Institute of Health's
Class Library (NIHCL) built by Keith Gorlen, are quite popular now and are the basis for many
commercial systems.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Frameworks_.html (1 of 2) [20/02/04 05:41:09 p.m.]

http://www.omg.org/

Object Frameworks

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Frameworks_.html (2 of 2) [20/02/04 05:41:09 p.m.]

mailto:mstevens@ent.mrj.com

Hughes Class Library

Hughes Class Library

I was introduced to the technology of object frameworks at Lockheed Martin (GE Aerospace) where I
worked with a object-oriented/C++ framework built by Hughes Aircraft called Hughes Class Library
(HCL). I investigated using the design patterns found in HCL for various portions of a satellite ground
system. The engineers at Hughes Information Technology Center (HITC) developed a COTS product
based on HCL called Delphi for Satellite Mission Scheduling and Planning. As the prime contractor,
Hughes is using Delphi or a evolution of its technology today to build the ground station and
dissemination systems for the Earth Observation Satellite (EOS).

HCL was the first framework I encountered that allowed for the development of complex distributed
systems using a pure object oriented paradigm. During my investigation of HCL I discovered Keith
Gorlen's NIHCL, a common object framework that the engineers at HITC partly based their work on.
This reuse will be seen in Section 2.6 when NIHCL is shown in detail.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Hughes_Class_Library_.html [20/02/04 05:41:10 p.m.]

mailto:mstevens@ent.mrj.com

Thesis Topic

Thesis Topic
I investigated object technology as a topic for my graduate independent study and thesis. I wanted to try
and build distributed solutions for some of the real-world problems that I found in the aerospace and
business industry and prove their viability. In order to build the prototypes I needed a development
environment that would support such distributed object frameworks. It is impossible for one person to
make a complete distributed object framework - one must re-use the work of others.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Thesis_Topic_.html [20/02/04 05:41:11 p.m.]

mailto:mstevens@ent.mrj.com

The Search for the Better Framework

The Search for the Better Framework

Throughout the second half of 1994 I searched the Internet for object-oriented/C++ frameworks in
fulfillment of my graduate research requirements. What I found was both good and bad: good because
object-oriented/C++ frameworks were proliferating at universities and research organizations; bad
because there was a lot of duplication of effort. Almost all of the research I found was not robust enough
for my requirements.

I needed a framework that was designed for the purposes of distributing objects; passing objects between
processes on the same host and on remote hosts. Most of the frameworks I found were C++ wrappers
around UNIX IPC mechanisms. These frameworks allowed for faster, type safe way of UNIX system
programming but not distributed objects.

While reviewing technical journals that I found some viable candidates for my framework. It was in the
C++ Report that I found articles on Doug Schmidt's Adaptive Communication Environment and the
Common Object Request Broker Architecture (COBRA).[6]

"The Adaptive Communication Environment (ACE) is a collection of reusable C++ class libraries and
object-oriented framework components that enhance the development of distributed applications ..."

Doug Schmidt, now the editor of the C++ Report, promotes the ACE framework for use in building the
infrastructures of large distributed systems. However, the ACE framework does not address problem of
distributed objects - although, ACE does not try to satisfy this requirement. ACE is a low level, systems
programming framework.

I also was introduced to an organization, The Object Management Group (OMG), which was developing
standards for distributed object systems since 1989. The result of the ideas and technology of the OMG's
members was the Object Request Broker (ORB). An ORB is a system that provides services for object
location, 9 At the end of 1994 I found a number of companies offering products based on the OMG's
revision 1.1 of the CORBA specification.

● [IBM] Distributed System Object Model (DSOM)
● [Expersoft] XShell
● [Iona] Orbix
● [PostModern] ORBeline
● [Hewlett Packard] Orb Plus
● [Digital] Object Broker

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_Search_for_the_Better_Framework_.html (1 of 2) [20/02/04 05:41:13 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.omg.org/
http://www.visigenic.com/

The Search for the Better Framework

● [SunSoft] Distributed Objects Environment (DOE)

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_Search_for_the_Better_Framework_.html (2 of 2) [20/02/04 05:41:13 p.m.]

mailto:mstevens@ent.mrj.com

ORBeline

ORBeline

One company, PostModern Computing (now Visigenic), had a framework for the development of
distributed systems called NetClasses. In 1994, with the release of CORBA 1.1, PostModern released
ORBeline. ORBeline was built on the proven NetClasses technology. At the beginning of 1995,
PostModern offered ORBeline to universities for research purposes. I had two (2) viable development
tools to choose from: HCL, and ORBeline. I choose ORBeline for obvious reasons.

● ORBeline is built to the CORBA specification that is the industry standard.
● ORBeline is a commercially supported product.
● ORBeline is available for many platforms and compilers including GCC
● HCL is a proprietary framework.

I requested research support from other commercial ORB vendors including Iona Technologies Inc.,
Candle Inc., HP, IBM, and DEC. At the time, these companies either declined support, or offered support
in form of single node software licenses (runs on one host). What good is an ORB that runs on one (1)
machine only? The marketing supervisor Suresh Challa and other PostModern staff members have been
very helpful and were very generous to allow me to use ORBeline without sizing restrictions for my
research project. Late in 1995, I received some licenses to run Iona's Orbix on Windows 3.1. The
ORBeline product supports both the UNIX and NT side of my research and the PC workstation
requirements will use the Orbix 3.1 (never completed) - Villanova has hundreds of PCs and many UNIX
workstations. The majority of my investigation into distributed programming using ORBs deals with the
ORBeline system because I have had access to it for a year.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_.html [20/02/04 05:41:14 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.vill.edu/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Research Schedule

Research Schedule
This research has been submitted to the computer engineering department in two (2) phases. The first
submission was for an independent study course. It included reviews of distributed object frameworks,
CORBA, and selected topics in intelligent algorithms. Also, as a proof of concept, a prototyping plan was
presented. A supplement to the first report was submitted to complete the thesis requirements. Included
in this last submission was the software prototype which was implemented on a distributed,
heterogeneous multi-computer. This multicomputer consisted of both Sun Sparc workstations running
Solaris and SunOS and PC-compatibles running MS-Windows NT (i.e. SVR4, BSD, NT-WIN32). The
prototype implements a parallel version of a dynamic programming algorithm which calculates the
optimal solution to both the matrix multiplication order problem and the polygon triangularization
problem (See Section 1.4.1) in parallel.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Research_Schedule_.html [20/02/04 05:41:15 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Object Frameworks

Object Frameworks

High level, domain specific software is usually built on top of low level operating system, database,
communication, and user interface services. The programming interface to these services is complicated
and software written at this level is error prone and difficult to maintain. It has been common practice to
assemble common service requirements and construct high level APIs or service layers. This proven
technique has evolved in the form of object frameworks.

Object frameworks provide a consistent and efficient foundation for producing object oriented systems.
Object frameworks consists of general, reusable, objects hierarchies in the form of code, binary libraries,
compilers/parsers and design patterns. They are more than application programming interfaces (APIs).
Frameworks not only provide developers with general objects like storage classes and file I/O but they
also encapsulate complicated operating system services and proven design patterns.

These common object frameworks allow for very efficient use of lower level system services through
consistent object patterns. An object framework may allow an application level object to be pulled from a
database, distributed to remote and local processes, replicated to redundant systems, automatically made
persistent, and displayed to an operator. In this way, complicated distributed systems can be designed and
built using application level, abstract service layer objects.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Frameworks1.html [20/02/04 05:41:16 p.m.]

mailto:mstevens@ent.mrj.com

Acceptance of Object Frameworks

Acceptance of Object Frameworks
for many reasons. The reason that object frameworks are not in widespread use today in large projects is
lack of adequate training. Many engineers considered qualified in object-oriented analysis and design are
actually missing important concepts. Object oriented methodology fundamentals are taught well but
implementation strategies of object oriented designs are presented in a limiting way.

Students of object oriented are correctly shown that all information system problems including data-
processing, simulation, command and control, and real-time are candidates for object oriented designs.
However, they are mislead when example implementations are presented to them. These design and
coding examples show object techniques used at the application domain level only. Operating system,
database, and networking services are excluded from the design. Therefore, when real-world solutions
are attempted in industry, the engineers only apply the object techniques to the domain information, not
the whole architecture. Students are rarely shown that features of operating systems, databases and
networking protocols can be encapsulated in SmallTalk or C++ objects just like bank accounts and
personnel data.8

It is complicated and costly to develop software on high performance platforms and operating systems
like UNIX. Students have been taught that object oriented techniques facilitate higher quality software in
these environments. The information system industry is struggling to deploy distributed systems. The
complication and detail of new operating systems, network programming APIs, and parallel architectures
is making this deployment slow. Object frameworks apply object technology to simplify distributed
programming projects.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Acceptance_of_Object_Frameworks_.html [20/02/04 05:41:17 p.m.]

mailto:mstevens@ent.mrj.com

The Divided Framework Camp

The Divided Framework Camp
There have been two strategies used when designing general object frameworks in C++. (1) Design the
framework so that almost all classes are part of the same inheritance tree. In other words, almost all
classes are descendants of a super, abstract object. This is similar to the approach seen in SmallTalk. This
is called the 'single tree' approach. (2) Design your framework so that it doesn't. This is called the 'forest'
approach because there are many trees. For now I am partial to the single tree approach but I have seen
some interesting designs using templates and the new Standard Template Library (STL). The STL is not
presented in this paper.1

The strategy you should use for an object framework depends on the requirements of the system. One
requirement or capability called run-time type information is presented next as an example of a
requirement that can only be satisfied with the single-tree object framework. There is presently an effort
under way to produce an ANSI/ISO standard for C++ which includes come of the capabilities here
including run-time type information.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_Divided_Framework_Camp_.html [20/02/04 05:41:18 p.m.]

mailto:mstevens@ent.mrj.com

Run Time Type Information (RTTI)

Run Time Type Information (RTTI)
When writing high quality object systems it is necessary to have collections of objects. As an example,
one might need a linked list of bank accounts for a finance program. In a classic C program a linked list
is implemented using pointers. A node in the list has a pointer to the next node and a pointer to the data
element in the list. This data pointer could be typed to be a pointer to a bank_account structure. If
there are many types of bank accounts then the bank_account structure could be expanded to handle
the general case and a type field could be placed in the header of the bank_account structure. In this
way, a bank_account typed linked list can be populated with heterogeneous set of bank account
information. See below.

struct bank_account {

short account_type;

...

};

struct node {

struct node *previous;

struct bank_account *data;

};

struct linklist {

struct node *head;

struct node *tail;

};

Code Block 2 - Example Bank Account Linked List in C

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Run_Time_Type_Information__RTTI__.html (1 of 3) [20/02/04 05:41:20 p.m.]

Run Time Type Information (RTTI)

Through object oriented techniques, we can improve on this design by making the linked list typed to a
abstract account object. Every type of bank account could be implemented using this design through
inheritance. A checking_account class could inherit from the abstract bank_account class. In
fact, all accounts could be descendants of the abstract bank_account. All account classes can be
stored in the linked list because all accounts are of type bank_account. The common operations that
can be performed on the accounts are limited to the set of virtual functions in the base class
bank_account. The object oriented design provides a powerful storage mechanism but the retrieval is
still complicated. When a retrieval is made on this link list the result is a pointer to a bank_account
object. However, the pointer actually represents a specialized, concrete account type.

In order to safely type cast a pointer to a bank_account object to its actual defined class, type
information can to be stored in the object. Explicit type information, like the type field found in the C
implementation bank_account structure above, is considered undesirable in object oriented designs.
Some argue that a design that requires type information in an object is "ugly". The argument is that the
need for type information can be satisfied instead with a better inheritance scheme or application of
polymorphism.

However, type information is required for truly heterogeneous collections. Actually, more than just type
information is needed to use dynamic heterogeneous collections. RTTI provides the basis for two
capabilities: cloning and narrowing.

● Cloning is the ability to duplicate (memory copy) an object without specifying the type explicitly.
Normally, to make a copy of an object the size of an object must be known and the type of an
object must be known to determine its size.

● Narrowing is the ability to automatically and safely type cast an object to a more specific
definition of it. For instance, a pointer to a back_account object might need to be safely type
casted to a more specific account type without explicit type information in the public interface of
the bank_account object.

RTTI is an newly adopted requirement of the ANSI C++ standard. However, without standard RTTI and
the complicated template classes in the STL, framework designers for years have implemented RTTI
with a proven technique of single tree libraries. Briefly stated, RTTI is achieved by including the
mechanism for type information in the interface of the root object of the tree library. In this way, the
RTTI mechanism is a primitive capability of the framework. Most single tree implementation include
additional capabilities in the root object; many of these primitives depend on the RTTI.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Run_Time_Type_Information__RTTI__.html (2 of 3) [20/02/04 05:41:20 p.m.]

Run Time Type Information (RTTI)

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Run_Time_Type_Information__RTTI__.html (3 of 3) [20/02/04 05:41:20 p.m.]

mailto:mstevens@ent.mrj.com

Serializing the Object

Serializing the Object
Another capability that the single tree object framework provides is serializing objects. Objects can be
sent across an I/O stream when it is serialized. For instance, an object can be passed between local and
remote processes, saved to files, and shared between heterogeneous networks. To this day, I have not
found a solution to this distributed object requirement other than the single tree design.

When information is stored to disk or passed over the network it can be read back into a process or
received at the other end of the network connection because the reader has knowledge of the format of
the information. In addition to the format or size of the information, the reader must know the type
currently being read. In a synchronous algorithm, the flow of the algorithm determines the type of the
information being read. In the asynchronous case, each segment of information being read must have a
common header which contains type information. Using type information, specific formats can be
selected from the set of all known formats. As an example, the software might require that all records
stored to disk be preceded by a type header and all records/messages sent over a serial stream shall be
preceded by the common header also. The common header requirement of the software forms a contract
or shared interface to information.

The single tree object framework implements a protocol for distributing objects in a more elegant
fashion. The contract or agreement of header format is in the abstract class - the root of the tree. All
objects in the framework agree to the contract (method of serializing objects) by inheriting from the
abstract root object who declares the format. The single tree framework satisfies the requirement of
serializing objects. In general, common object requirements are most easily satisfied by this way as
shown in the following section.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Serializing_the_Object_.html [20/02/04 05:41:21 p.m.]

mailto:mstevens@ent.mrj.com

Framework and Object Requirements

Framework and Object Requirements
Consider the question about the goals and capabilities of a framework. If the requirement of a framework
is that all objects have a common, primitive set of capabilities and the capabilities are not provided
through a language primitive then the single tree library is a viable solution. Some argue this statement
by presenting object frameworks that are not singly rooted. These arguments prove to be weak when it is
pointed out that even powerful libraries like the Adaptive Communication Environment (ACE) lack
many higher level framework requirements like serializing objects. ACE does not use RTTI because
there isn't any requirement on ACE to use RTTI. Object frameworks should be compared first according
to the requirements of the framework. The goals of NIHCL are different from those of ACE. Therefore,
they should be compared carefully if at all.[7]

Other reasons presented in opposition to the single tree object frameworks deal with performance and
integration restrictions. A deep class inheritance tree tend to over complicate the virtual function tables,
especially when multiple inheritance is used. Dispatching paths through a complicated class tree can
create performance problems. The careful analysis of frameworks like NIHCL, HCL, NetClasses, etc.
show that most interfaces are designed using inline functions and minimized levels of indirection to
provide acceptable performance.

The argument that single rooted libraries do not integrate efficiently with other libraries is misleading
when the integration concerns libraries with duplicate capabilities. If reasonable consideration is taken
during the design of a single tree library, then integration with other frameworks can be done. Integration
of frameworks with overlapping capabilities is always difficult. A good example of this is the concurrent
use of the C++ I/O stream library with the C standard I/O library routines which can lead to buffering
problems.

I have only found two type of object frameworks - those that do and those that do not use the single tree.
Excluding the newly born technology of the ANSI/ISO C++ standard template library (STL), I
characterize these two design strategies further: there are frameworks that do not use the single tree
paradigm and there are frameworks that work - there are engineers who debate the single tree paradigm
and engineers who get the work done. In this paper, I present frameworks from both camps. The ACE
framework is a forest implementation but ACE doesn't satisfy requirements such as object serializing or
heterogeneous collections.

An informative debate should be focused on the goals and requirements of a desirable framework before
investigating the use of a single tree or forest. Once these capabilities are determined, the design strategy
will be obvious. It can be shown that the single tree strategy satisfies certain library requirements where

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Framework_and_Object_Requirements_.html (1 of 2) [20/02/04 05:41:22 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt

Framework and Object Requirements

forest strategy does not - and vice versa.

The following sections present four object frameworks which were encountered during this research. The
NIH Class Library is presented first. The Hughes Class Library and NetClasses Library follow. These
two proprietary libraries demonstrate the reuse of many framework techniques from the NIHCL which is
a federally funded public domain software. Finally the Adaptive Communication Environment (ACE) is
presented not only because it is a high quality framework but also because it is implemented as a forest
of objects as opposed to the first three frameworks which are single rooted.

It would take volumes of documentation to fully cover all capabilities and design techniques of the
following frameworks. Therefore, only crucial library design details from each framework are discussed
here. Special interest is taken in the implementation of the root objects of the single tree libraries and the
primitive classes of the ACE library. The interest here is to determine the techniques used by framework
designers to satisfy distributed object requirements.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Framework_and_Object_Requirements_.html (2 of 2) [20/02/04 05:41:22 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
mailto:mstevens@ent.mrj.com

National Institute of Health Class Library (NIHCL)

National Institute of Health Class Library (NIHCL)
The NIH Class Library (NIHCL) [8] is composed of around sixty (60) general purpose classes that all
belong to a single inheritance tree with class Object as the root. The class Object declares data
members and virtual functions that allow for copying, printing, storing, reading, and comparing objects
for all classes in the library that inherit from Object. Almost all classes in the NIHCL and any new
class added by users of NIHCL are ultimately descendants of the abstract class Object. All these
specialized classes inherit the public interface of the class Object which allows a common interface for
all objects beyond the primitive capabilities of the language. This technique, introduced in the previous
section is called a single root tree or common object library.

It is important to note that it is the interfaces to these common functions that are inherited, not the
implementations of these functions. The virtual functions of the root Object implement the
polymorphic characteristic of the common functions in all descendent objects. The inheritance tree for
most of the NIH classes is shown below.

NIHCL - library static member variables and functions

Object - root of the NIH Class Library inheritance tree

|-Bitset - set of small integers

|-Class - class descriptor

|-Collection - abstract class for collections

| Arraychar - byte array

| ArrayOb - array of Object pointers

| Bag - unordered collection of Objects

| SeqCltn - ordered, indexed collections

| Heap - min/max heap of Object pointers

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of_Health_Class_Library_.html (1 of 4) [20/02/04 05:41:24 p.m.]

National Institute of Health Class Library (NIHCL)

| LinkedList - singly linked list

| OrderedCltn - ordered Object pointers

| SortedCltn - sorted collection

| KeySortCltn - keyed sorted collection

| Stack - stack of Object pointers

| Set - unordered collection of non-duplicate Objects

| Dictionary - set of associations

| IdentDict - keyed by Object address

| IdentSet - set keyed by Object address

|-Date - Gregorian Calendar date

|-FDSet - set of file descriptors

|-Float - floating point number

|-Fraction - rational arithmetic

|-Integer - integer number object

|-Iterator - collection iterator

|-Link - abstract class for LinkedList links

| LinkOb - link containing Object pointer

| Process - co-routine process object

| HeapProc - process with stack in free store

| StackProc - process with stack on main() stack

|-LookupKey - abstract class for Dictionary associations

| Assoc - association of Object pointers

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of_Health_Class_Library_.html (2 of 4) [20/02/04 05:41:24 p.m.]

National Institute of Health Class Library (NIHCL)

| AssocInt - association of Object pointer with Integer

|-Nil - the Nil object

|-Point - X/Y coordinate pair

|-Random - random number generator

|-Range - range of integers

|-Rectangle - rectangle object

|-Semaphore - Process synchronization

|-SharedQueue - shared queue of Objects

|-String - character string

| Regex - regular expression

|-Time - time of day

|-Vector - abstract class for vectors

| BitVec - bit vector

| ByteVec - byte vector

| ShortVec - short integer vector

| IntVec - integer vector

| LongVec - long integer

| FloatVec - floating point vector

| DoubleVec - double precision floating point vector

|-ReadFromTbl - tables used by Object I/O readfrom()

| OIOifd - file descriptor Object I/O

| OIOin - abstract class for Object I/O

| OIOistream - abstract class for stream Object I/O

| OIOnihin - stream Object I/O

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of_Health_Class_Library_.html (3 of 4) [20/02/04 05:41:24 p.m.]

National Institute of Health Class Library (NIHCL)

|-Scheduler - co-routine Process scheduler

|-StoreOnTbl - tables used by Object I/O storeOn()

OIOofd - file descriptor Object I/O

OIOout - abstract class for Object I/O

OIOostream - abstract class for stream Object I/O

OIOnihout - stream Object I/O

Figure 2 - Inheritance Tree of NIH Class Library

The following discussion of the NIHCL Object and Class classes will refer to selective code blocks
in Listing X and Y respectively. Full code listings for pertinent NIHCL classes are in the
appendices.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_National_Institute_of_Health_Class_Library_.html (4 of 4) [20/02/04 05:41:24 p.m.]

mailto:mstevens@ent.mrj.com

RTTI

RTTI

The RTTI capability is implemented in the NIHCL with Class object. The Class object is not a user
object like Point or Date. The Class object encapsulates the "type" information of all NIHCL
objects (all objects that inherit from Object). Every NIH class has a static member variable which is an
instance of Class.[9] Class Object declares a virtual function

virtual const Class* isA() const;

which returns a pointer to the Class object which is a static member of the referenced object. As an
example, if you had a pointer to an Object which is really of type Point,

Object* obj_ptr = new Point(0,0);

then a pointer to the Point::classDesc static member variable can be obtained using[10]

const Class* class_ptr = obj_ptr->isA()

Even though obj_ptr is of type Object*, the virtual specification of Object::isA() will map to
the Point::isA() function (if the object that obj_ptr points to is really of type Point). This is
how all the virtual functions declared in Object work; create new primitive capabilities for the classes
of the tree.

The classdesc member variable of NIHCL classes is designated as "private" so that is can not be
modified easily. Explicit access to the static value of X::classdesc is through the static member
function

const Class* X::desc() { return &classDesc; }

Again, a pointer to the Class instance for any NIHCL class can be accessed without an instance of the
class.

const Class * class_ptr = Point::desc();

The RTTI capability is accessed through two functions declared by all NIHCL classes

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_RTTI_.html (1 of 2) [20/02/04 05:41:26 p.m.]

RTTI

bool isMemberOf(const Class&) const

bool isKindOf(const Class&) const

The isMemberOf member function returns YES if the object it is applied to shares the argument
Class. The isKindOf member function return YES if the object it is applied to shares the argument
Class or is a descendent of a class which shares the argument Class. As seen in the example below, a
String object is a kind of Object but not a member of the Object class.

String s("Villanova");

if(s.isMemberOf(*String::desc())) // YES

if(s.isKindOf(*String::desc())) // YES

if(s.isMemberOf(*Object::desc())) // NO

if(s.isKindOf(*Object::desc())) // YES

if(s.isMemberOf(*Point::desc())) // NO

if(s.isKindOf(*Point::desc())) // NO

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_RTTI_.html (2 of 2) [20/02/04 05:41:26 p.m.]

http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Object Comparison

Object Comparison

Another primitive capability of the NIHCL is object comparison. A robust comparison capability both
simplifies higher level application programming and also enables the use of complex collection classes
such as bags, dictionaries, sets, etc. There are many ways to compare objects: data member comparison,
address comparison, and abstract comparisons. Object identification, versions, equality, and scope are all
part of the comparison capability. In the NIHCL, comparison is based on an abstract notion of an object's
"species". Objects that belong to the same species can be compared. It is a run-time error to compare
objects that are not of the same species. The function

bool isSpecies(const Class&) const;

is similar to isMemberOf except that YES is returned only if the object that isSpecies() is applied
to is part of the species of the argument Class. Therefore, the equality of objects is determine by the
function

bool isEqual(const Object&) const;

which first checks the species of the argument objects and then checks their explicit equality with the
operator==() member function. As an example,

bool Point::isEqual(const Object& p) const

{

return p.isSpecies(classDesc) &&

*this == (const Point&)p;

}

bool Point::operator==(const Point& p) const

{

return (xc==p.xc && yc==p.yc);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Comparison_.html (1 of 2) [20/02/04 05:41:27 p.m.]

Object Comparison

}

Another point of view of equality is whether two argument objects are not just isEqual() but are the
same object in memory.

bool isSame(const Object&) const

The difference between isSame() and isEqual() can be seen by example:

String a("Villanova"), b("MRJ"), c("Villanova");

if (a.isEqual(b)) // NO

if (a.isSame(b)) // NO

if (a.isEqual(a)) // YES

if (a.isSame(a)) // YES

if (a.isEqual(c)) // YES

if (a.isSame(c)) // NO

The comparison capability is implemented using the functions mentioned above. The compare function

int compare(const Object&) const

returns a negative value if the reference object is "less" than the argument object; positive if greater than
and zero if equal. Again, it is a run-time error to compare two objects that are not of the same species.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Comparison_.html (2 of 2) [20/02/04 05:41:27 p.m.]

http://www.vill.edu/
http://www.mrj.com/
http://www.vill.edu/
mailto:mstevens@ent.mrj.com

Collections and Iterators

Collections and Iterators

It was mentioned in the previous section that it is sometimes necessary to have heterogeneous container
classes. The NIHCL allows for this using the robust set of container classes which all inherit from the
abstract Collection class. The class Collection is the primitive interface of all container classes.
The class Collection models a container of Object(s). Because Collection(s) can contain
instances of Object(s), Collection(s) can contain another Collection which allows for
powerful data structures.

In addition to the extensible Collection classes, the NIHCL implements a new design pattern called
the iterator. The class Iterator encapsulates the functionality of moving through a Collection. It
is called an iterator because it can travel through a Collection in many ways: forward, backward, etc.
The Iterator is related to the Collection class so any Iterator will work with any class
inheriting from Collection. This Collection-Iterator model provides a level of indirection that allows
for multiple, simultaneous consumers without the performance penalty of the collection managing
consumer reference points.

The NIHCL implements the Nil object/class to enhance the capabilities of the Collection classes.
The Nil object inherits from the Object class so that when a programmer needs to use a reference to
nothing (nil), the primitive operations allowed for Objects can be applied without causing fatal errors.
The Nil class prevents the unsafe use of NULL or 0 in pointers.

class Object {

private:

static Object* reader(OIOin& strm);

static Object* reader(OIOifd& fd);

protected:

void Object(OIOifd&);

void Object(OIOin&);

virtual void storer(OIOofd&) const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (1 of 4) [20/02/04 05:41:29 p.m.]

Collections and Iterators

virtual void storer(OIOout&) const;

void Object(void) {}

public:

static Object* const nil;

static Object& castdown(Object& p) { return p; }

static const Object& castdown(const Object& p) { return p; }

static Object* castdown(Object* p) { return p; }

static const Object* castdown(const Object* p) { return p; }

static const Class* desc();

virtual const Class* isA()const = 0;

virtual Object* shallowCopy() const = 0;

static Object* readFrom(OIOifd& fd);

static Object* readFrom(OIOin& strm);

const char* className() const;

Object* deepCopy() const;

bool isKindOf(const Class&) const;

bool isMemberOf(const Class& clid) const

{ return isA()==&clid; }

bool isSame(const Object& ob) const

{ return this==&ob; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (2 of 4) [20/02/04 05:41:29 p.m.]

Collections and Iterators

bool isSpecies(const Class& clid) const

{ return species()==&clid; }

void storeMemberOn(OIOofd&) const;

void storeMemberOn(OIOout&) const;

void storeOn(OIOofd&) const;

void storeOn(OIOout&) const;

void* _safe_castdown(const Class&) const;

virtual int compare(const Object&) const = 0;

virtual Object* copy() const;

virtual void deepenShallowCopy() = 0;

virtual void dumpOn(ostream& strm =cerr) const;

virtual unsigned hash() const = 0;

virtual bool isEqual(const Object&) const = 0;

virtual const Class* species() const;

virtual void* _castdown(const Class&) const;

};

Code Block 3 - NIHCL Object class declaration

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (3 of 4) [20/02/04 05:41:29 p.m.]

mailto:mstevens@ent.mrj.com

Collections and Iterators

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Collections_and_Iterators_.html (4 of 4) [20/02/04 05:41:29 p.m.]

Object Narrowing (safe downcast)

Object Narrowing (safe downcast)

In the previous section the concept of an object downcast operation was introduced. The downcast, or
"narrowing" operation, allows an instance or pointer to a general object to be cast to the type of a more
specific declaration. In the NIHCL, it is often necessary to downcast a pointer of type Object to a
pointer of type Collection; a pointer of type Collection to a pointer of type Dictionary. In
many cases, information can be managed as pointers to Object(s). The generalized virtual functions
like copy(), shallowCopy(), storeOn(), readFrom(), etc. can be used until the object needs behave in a
specialized manner. Downcasting to a more specific form is required to call specialized member
functions. The NIHCL implements downcasting or object narrowing with the static castdown functions

static X&

X::castdown(Object& p)

static const X&

X::castdown(const Object& p)

static X*

X::castdown(Object* p)

static const X*

X::castdown(const Object& p)

These static function can be called without an instance of a object. Every combination of non-const,
const, pointer, and reference argument types is provided. The castdown functions are automatically
produced by the NIHCL macros. Also, the complicated situation of multiple inheritance is handled
properly in the castdown() functions.

The castdown functions work because of the virtual _castdown() function. In the example

Object* obj_ptr = new Airplane;

Vehicle* veh_ptr = Vehicle::castdown(obj_ptr);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Narrowing__safe_downcast__.html (1 of 2) [20/02/04 05:41:31 p.m.]

Object Narrowing (safe downcast)

The castdown() function calls the _castdown() function with the pointer to the static class
descriptor object of the type to be cast down to as an argument

obj_ptr->_castdown(*Vehicle::desc());

The virtual nature of the _castdown() function causes the "real" _castdown() function to be
called for the actual type of obj_ptr which is Airplane::_castdown()

All NIHCL classes implement X::_castdown() so that the argument class descriptor object is
compared with its own class descriptor. If they are the same - if obj_ptr is of type Vehicle - then
this [11]is returned as *void. If they are not equal (as in our example where Vehicle::desc() is
not equal to Airplane::desc()) then the _castdown function is called for the base class. In this
way, the entire inheritance tree is search for a valid cast. The search will continue to the top of the tree at
Object::_castdown() which will return NULL to end the search and the cast will fail. In our
example Airplane::_castdown() will fail and Vehicle::_castdown() is called and this
is returned.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Narrowing__safe_downcast__.html (2 of 2) [20/02/04 05:41:31 p.m.]

mailto:mstevens@ent.mrj.com

Copying Objects (Shallow and Deep)

Copying Objects (Shallow and Deep)

In order to perform object I/O (the ability to send and receive Objects over I/O media like files and
communication streams), the ability to accurately copy Objects is needed. In the previous section it was
shown that there are many ways to compare Objects. It is the point of view of the Objects that matters
when comparing - comparison at the physical (memory) or data level (information)?

Copying Objects deals with similar issues. There two ways that Objects can be copied: shallow and deep.
A shallow or deep copy refers to how the resulting Object has its data members copied. The strategy for
copying Objects begins the same for shallow and deep copies. In fact, a shallow copy is always done first
during a deep copy.

During a copy operation, a new block of memory is allocated from the free store for the new object. Data
member values are copied from the source object to the target object memory depending on the type of
data member. Data members can be any of the following:

● instance of a NIHCL class
● pointer to an instance of a NIHCL class
● primitive type like int or float
● array (pointer) of primitive types
● non-NIHCL object, or structure

When the data members are instances of data structures or primitives, the shallow and deep copies are the
same. In this case, the data member is truly duplicated in memory. However, when the data member is a
pointer to an instance of a data structure or primitive, the data member can be shallow copied or deep
copied. The shallow copy will duplicate the value of the pointer (address). The deep copy will duplicate
in memory the instance of the data structure or primitive type.

The implementation of shallow copy in NIHCL is a virtual member function of Object

Object* X::shallowCopy() { return new X(*this); }

The X::shallowCopy() calls the copy constructor of the X object. Therefore, the real work of the
shallow copy is done by the copy constructor.[12] The shallowCopy() function is available to all
NIHCL classes and user defined classes that inherit from the NIHCL tree.

In order to handle the deep copy of member variables which are pointers, the NIHCL classes implement
the non-virtual deepCopy() and virtual deepenShallowCopy() functions. The deepCopy()

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Copying_Objects__Shallow_and_Deep__.html (1 of 2) [20/02/04 05:41:32 p.m.]

Copying Objects (Shallow and Deep)

function first creates a shallow copy of the source Object using ::shallowCopy(). Then,
deepCopy() calls deepenShallowCopy() to change the shallow copied target to a deep version.
The deepenShallowCopy() function starts by calling the deepenShallowCopy() of its parent
class. In this way, all ancestor data is properly copied. An Object's deepenShallowCopy() function
will call deepenShallowCopy() on all member class instances and deepCopy on all member
pointers to classes.

The goal of the deep copy is to have a new Object which shares no data with the source Object. To do
this, the deepCopy() function keeps a record of all new instances of member Objects it copies using
the IdentDict Object. This technique allows for the situation where a source Object has two or more
data members all pointing to the same instance of a class. This multi-referenced Object is only deep
copied once in the target Object.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Copying_Objects__Shallow_and_Deep__.html (2 of 2) [20/02/04 05:41:32 p.m.]

mailto:mstevens@ent.mrj.com

Object I/O

Object I/O

The deep copy technique must be implemented before object I/O can be done. The issues involved with
object I/O also include the complication of data members with referenced to the same objects. If a target
object has many data members that all point to the same object, this multi-referenced object must
transferred only once. The values of the data members must be transferred as object references.

Output

The Object::storeOn() function implements the I/O capability and is similar to the deepCopy()
function in that the storeOn() function keeps a record of all objects that it has stored. The
storeOn() function checks this table of stored objects and stores an object reference instead. The
storeOn() function calls the virtual function storer() to actually do the work.

The storer() function first calls the storer() function of its base class and then stores its own
member variables. Member variables are stored by explicitly calling the storage mechanism of its type.
The object name is also stored so that later the object's reader function can load the serialized object.

Input

Object input is implemented by the static readFrom() function which is the counterpart to the
storeOn() function. The readFrom() function interprets the input stream by reading the objects
stored by storeOn() and building a table. When the readFrom() function encounters an Object
reference, the reference is converted into a pointer by looking up the object reference in the table. The
readFrom() function loads an instance of an object by calling that object's specific I/O constructor.
Every NIHCL class has constructors with I/O objects as arguments to the constructor.

The readFrom() constructors perform much like the storer() functions. A readFrom()
constructor first calls its base class's readFrom() constructor to load the ancestor data members. Then
the constructor initializes its own data members by calling the type specific read mechanisms.

The Object I/O is performed in two stages: class independent I/O and class dependent I/O. The
storeOn() and readFrom() functions implement the class independent portion by converting
Object pointers to and from Object references using the temporary tables generated during reading and
writing. The various Object storer() functions and readFrom() constructor implement the class
dependent I/O.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_I_O_.html (1 of 2) [20/02/04 05:41:34 p.m.]

Object I/O

An integral part of the Object I/O (OIO) capability are the OIOin and OIOout classes and all their
derived Object I/O classes. These classes encapsulate the primitive mechanism that store and retrieve
data types in a machine independent, and program independent format.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_I_O_.html (2 of 2) [20/02/04 05:41:34 p.m.]

mailto:mstevens@ent.mrj.com

Writing NIHCL Classes

Writing NIHCL Classes

The NIHCL comes with template files for developing your own classes compatible with the NIHCL tree.
Also, the common functions needed for RTTI, Collections, comparison, Object I/O, etc. are easily
included in your own classes using an extensive set of preprocessor macros in your class definitions and
declarations.

The following code blocks show the detailed pre-processor macros that allow new NIHCL classes to be
created with ease. I have found macros very similar to these in other object frameworks. Because of the
complicated "contract" that new classes sign up to by inheriting from the NIHCL tree, these macros are
necessary to insure correct virtual function declaration and conformance to other requirements of the
tree. The common functions need not be typed again because they are produced properly by the macros.
The class Point is declared as follows:

class Point: public Object {

DECLARE_MEMBERS(Point);

protected:

short xc,yc;

virtual void storer(OIOofd&) const;

virtual void storer(OIOout&) const;

public:

Point () {xc = yc = 0;}

Point (short newx, short newy) {xc=newx; yc=newy;}

short x () const {return xc; }

short x (short newx) {return xc = newx;}

short y () const {return yc;}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (1 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

short y (short newy) {return yc = newy;}

Point operator+ (const Point& p) const

{return Point(xc+p.xc, yc+p.yc);}

Point operator- () const {return Point(-xc,-yc);}

Point operator- (const Point& p) const

{return Point(xc-p.xc, yc-p.yc);}

bool operator== (const Point& p) const

{return (xc==p.xc && yc==p.yc);}

double dist (const Point& p) const

{return hypot(xc-p.xc, yc-p.yc);}

virtual int compare (const Object&) const;

virtual void deepenShallowCopy ();

virtual unsigned hash () const;

virtual bool isEqual (const Object&) const;

virtual void printOn (ostream& strm =cout) const;

virtual const Class* species () const;

};

Code Block 4 - Example NIHCL Point Class Declaration

Besides the framework functions explicitly placed in the class declaration (shown in bold) the
DECLARE_MEMBERS macro supplies the rest of the common functions as follows:

#define DECLARE_CASTDOWN(classname) \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (2 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

static classname& castdown (Object& p) \

{return (classname&)p;} \

static const classname& castdown (const Object& p) \

{return (const classname&)p;} \

static classname* castdown (Object* p) \

{return (classname*)p;} \

static const classname* castdown (const Object* p) \

{return (const classname*)p;}

#define DECLARE_MEMBERS(classname) \

private: \

static Class classDesc; \

public: \

DECLARE_CASTDOWN(classname) \

static const Class* desc () {return &classDesc;} \

static classname* readFrom (OIOin& strm) \

{return castdown(desc()->readFrom(strm));} \

static classname* readFrom (OIOifd& fd) \

{return castdown(desc()->readFrom(fd));} \

classname (OIOin&); \

classname (OIOifd&); \

virtual const Class* isA () const; \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (3 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

virtual Object* shallowCopy () const; \

virtual void* _castdown (const Class&) const; \

private: \

static Object* reader (OIOin& strm); \

static Object* reader (OIOifd& fd);

Code Block 5 - NIHCL Framework Declaration Macros

The definition of class Point includes the following - notice that the DEFINE_CLASS macros takes
care of most of the function and member definitions:

DEFINE_CLASS(Point,1,"Point.c,v 3.13 92/12/19 15:53:22",NULL)

bool Point::isEqual (const Object& ob) const {

return ob.isSpecies(classDesc) && *this==castdown(ob); }

const Class* Point::species () const { return &classDesc; }

unsigned Point::hash () const { return xc^yc; }

int Point::compare (const Object& ob) const {

assertArgSpecies(ob,classDesc,"compare");

const Point& p = castdown(ob);

int t = yc - p.yc;;

if (t != 0) return t;

else return xc - p.xc; }

void Point::deepenShallowCopy () {}

void Point::printOn (ostream& strm) const {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (4 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

strm << '(' << xc << ',' << yc << ')'; }

Point::Point (OIOin& strm) : BASE(strm) {

strm >> xc >> yc; }

void Point::storer (OIOout& strm) const {

BASE::storer(strm); strm << xc << yc; }

Point::Point (OIOifd& fd) : BASE(fd) {

fd >> xc >> yc; }

void Point::storer (OIOofd& fd) const {

BASE::storer(fd); fd << xc << yc; }

Code Block 6 - Example NIHCL Point Class Definition

where the DEFINE_CLASS macros is

#define _DEFINE_CLASS(classname) \

Object* classname::reader (OIOin& strm) \

{return (Object*)new classname(strm);} \

Object* classname::reader (OIOifd& fd) \

{return (Object*)new classname(fd);} \

Object* classname::shallowCopy () const \

{return (Object*)new classname(*this);}

#define _DEFINE_CLASS_ALWAYS(classname,version,identification,initor) \

Class classname::classDesc (STRINGIZE(classname),\

ClassList(0,BASE_CLASSES,0), \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (5 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

ClassList(0,MEMBER_CLASSES-0,0), \

ClassList(0,VIRTUAL_BASE_CLASSES-0,0), \

version, identification, sizeof(classname), \

classname::reader, classname::reader, \

initor); \

const Class* classname::isA () const \

{return &classDesc;}

#define _DEFINE_CASTDOWN(classname) \

void* classname::_castdown (const Class& target) const \

{ \

if (&target == desc()) return (void*)this; \

return BASE::_castdown(target); \

}

#define DEFINE_CLASS(classname,version,identification,initor) \

_DEFINE_CLASS(classname) \

_DEFINE_CLASS_ALWAYS(classname,version,identification,initor) \

_DEFINE_CASTDOWN(classname)

Code Block 7 - NIHCL Framework Class Definition Macros

The introduction to NIHCL presented in this research paper only touches the surface. Many aspects of
the NIHCL were skipped including its support for light weight processing (LWP). The goal was to show
the NIHCL's support for distributed objects. It will be shown that many designers have reused the coding
techniques and design patterns of the NIHCL in their own object frameworks. The next two sections
introduce object frameworks which implement industrial strength libraries for distributed object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (6 of 7) [20/02/04 05:41:36 p.m.]

Writing NIHCL Classes

computing based on NIHCL.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Writing_NIHCL_Classes_.html (7 of 7) [20/02/04 05:41:36 p.m.]

mailto:mstevens@ent.mrj.com

Hughes Class Library (HCL)

Hughes Class Library (HCL)
The Hughes Class Library (HCL) is a proprietary object framework built and used by Hughes Aircraft
for the development of complex, distributed object libraries and applications. I used HCL for over six (6)
months at Martin Marietta where Hughes Information Technology (HITC) group was a subcontractor.
Because HCL is proprietary material, only an introduction to the HCL design patterns and technology is
allowed in this paper; the details of implementation are excluded.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Hughes_Class_Library__HCL__.html [20/02/04 05:41:37 p.m.]

mailto:mstevens@ent.mrj.com

Introduction

Introduction

HCL is similar and in many ways based on the technology found in NIHCL and it is for both this reason
and also HCLís innovative management of distributed objects that I discuss HCL in this paper. I
mentioned in Section X that some companies had invested in distributed object frameworks; Hughes
Aircraft is one such company. HCL is the basis of many distributed object solutions for the customers of
Hughes Aircraft. NASA is using the HCL technology on the Earth Observation Satellite Information
System (EOSDIS). Also, Hughes Aircraft has a commercially available product for the mission planning
and scheduling of satellites called Delphi in which distributed resource models and activity schedulers
were built using HCL.[13]

HCL provides a general framework object applications. However, it is obvious that HCL was developed
by an aerospace company because of the robust set of class found in HCL for time management. There
are 20 classes associated with date/time management, epoch time information, and temporal-interval
objects. In addition to the general framework which HCL provides there is a library extension for the
management of distributed objects, object communication, and operating system services called HIPC.
The Hughes Interprocess Communication (HIPC) library consists of the following framework
extensions:

Nameserver

IPC

Timer

Notifier

Figure 3 has an inheritance diagram of the classes in HCL and the framework extensions. The classes
from the framework extensions are labeled respectively. Although they are not included in Figure 3,
Hughes also built a HCL extension library for X-Windows programming in OpenLook and Motif. HCL
and the library extensions are an excellent example of a industrial strength implementation of distributed
objects using a C++ and the single rooted tree design pattern.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Introduction_.html (1 of 2) [20/02/04 05:41:38 p.m.]

Introduction

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Introduction_.html (2 of 2) [20/02/04 05:41:38 p.m.]

mailto:mstevens@ent.mrj.com

HObject ìthe Hughes version of NIHCL Objectî

HObject ìthe Hughes version of NIHCL Objectî

Just like in NIHCL, the engineers at Hughes determined that every object in the framework needed to
have certain common characteristics and capabilities:

virtual destructor

run-time type information (RTTI)

run-time dynamic object creation

cloning

support for model/view pattern

object I/O streaming and serialization

generic comparison

debugging and logging support

Not only does HCL have the same requirements for objects as NIHCL but also satisfies these
requirements by providing a common interface through a single rooted class called HObject. In fact,
most of the interface to HObject is the same as NIHCLís Object class. In many cases, the only difference
between HObject and Object is in the details like member function names, class names, and other coding
styles. However, there are also many differences between HCL and NIHCL. For example, HCL avoids
the notion of ìSpeciesî (see section X) in HObject (NIHCL dictates that only Objects of the same species
can be compared). HCL has support for debugging or monitoring of object life cycles. HCLís support for
multiple inheritance for HObject is not nearly as robust as NIHCL support for multiple inheritance. I
think that HCL was developed with some specific software and mission requirements in mind which is
why HCL is not as general or abstract as NIHCL. For instance, the elegant concept of class ìspeciesî is
missing as are other design patterns because of the strict performance requirements. HCL was probably
designed to insure a root class (HObject) that was as lightweight as possible. Some notable features of
HCL are shown below.

HObject - base class of framework

|-Configuration - provides protocol for configurable entities

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (1 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

| ConfigurationFile - stores configuration information

|-H2DPoint - unsigned two-dimensional coordinate

|-H2DPointS - signed two-dimensional coordinate

|-Haddress IPC - describes agent by location information

| HAddressCd IPC - describes agent by location information

|-HClassDesc - class meta information for HObject derived classes

| HAbsClassDesc - abstract class meta information

|-HCmdLine - argc and argv command line holding and parsing

|-HCollection - abstract collection

| HObjCollection - base class for HObject collections

| HObjList - object collection using list container

| HIntervalList - collection time intervals

| HObjOrdList - base class for ordered list collections

| HEIntvlListAbs - abstract base class for HEpochInterval lists

| HEpochIntervalList - collection of epoch time intervals

| HObjUniqueOrdList - ordered list collection with unique members

| HIterList - object list of iterators for noids

| HMsgIterList NAMESERVER - noid list iterator

| HObjArray - array collection of HObjects

| HObjSet - object collection using set container

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (2 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

| HPoolAbs - abstract object collection using pool container

| HPoolList - object list pool collection

| HDiagMsgPool - storehouse of allHDiagMsgs

| HPoolSet - object set pool collection

| HDiagMsgSet - global storehouse of all HDiagMsgs

| HVCollection - collection of void pointers

| HVList - list collection of void pointers

|-HConnAbs IPC - abstract ipc connections

| HMsgConn IPC - connection between message agents

| HMsgConnPerm IPC - permanent message agent connection

| HMsgConnTemp IPC - temporary message agent connection

| HMsgConnUnk IPC - convertable message agent connection temp/perm

| HMsgService IPC - listens on well known service ports

|-HDAGNode - directed acyclic graph node (member of HDAG)

|-HDate - holds the notion of date YY/MM/DD

|-HDateTime - holds the notion of a time-date HH:MM:SS YY/MM/DD

|-HDay - holds the notion of elapsed days

|-HDayYear - holds the notion of a year and day within the year

|-HDiagMsg - diagnostic message object

| HRankDiagMsg - priority diagnotic message

|-HEpochInterval - closed time interval in epoch time

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (3 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

|-HEpochTime - time since a given absolute time called th epoch

|-HHour - elapsed hours

|-HInterval - time interval

|-HJulianDay - julian day representation

|-HMatrix - 3x3 matrix

|-HMatrix2 - 2x2 matrix

|-HMatrix3 - 3x3 matrix

|-HMatrix4 - 4x4 matrix

|-HMatrixN - NxN matrix

|-HMessage IPC - abstract message

| HMsgData IPC - message representing data

| HMsgAdr IPC - message representing address information

| HMsgIdentify IPC - message identifying address

| HMsgInterest IPC - message representing interest

| HMsgInterestRsp IPC - message interest response

| HMsgReply IPC - message reply

| HMsgRoute IPC - message to be routed

| HMsgCol IPC - message containing collection object

| HMsgTransfer IPC - transffered message

| HMsgAgentShutdown IPC - message representing agent shutdown notification

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (4 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

| HMsgConnType IPC - message containing type of connection

| HMsgDisconnect IPC - disconnect message

| HMsgShutdown IPC - shutdown message

| HMsgStat IPC - status message

| HMsgSysShutdown IPC - total system shutdown message

| HMsgText IPC - text message

| HMsgTextStat IPC - test status message

|-HMinute - elapsed minutes

|-HMonth - elapsed months

|-HMsgAgent IPC - abstract message agent manages connection and address

| HMsgAgentNs NAMESERVER - name server message agent

| HNoidAgent NAMESERVER - noid name server message agent

|-HMsgFinder - finds diag messages

| HRankMsgFndr - finds priority diagnostic messages

|-HNameServAbs NAMESERVER - abstract nameserver

|-HNoid NAMESERVER - lightweight message handler

| HStdNoid NAMESERVER - standard noid

| HStdNoidNs NAMESERVER - noid which uses nameserver for connection

|-HNoidConnAbs NAMESERVER - abstract noid connection class

| HNoidConn NAMESERVER - noid agent connection class

| HExpConn NAMESERVER - explicit noid connection

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (5 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

| HNsConn NAMESERVER - nameserver connection class

| HNsCleaner NAMESERVER - garbage collection of unused addresses

|-HNsAdrCnt NAMESERVER - address and count pair

|-HNotifier NOTIFY - base class of notification managers

| HSelNotifier NOTIFY - select notification manager

| HUnixNotifier NOTIFY - native Unix notification management

| HVmsNotifier NOTIFY - VMS native notification management

| HVmsMNotifier NOTIFY - motif notification for VMS management

| HMotifNotifier NOTIFY - motif notification manager

| HXvNotifier NOTIFY - xview notification manager

|-HNotifyCli NOTIFY - notification client nodes

| HTimNotCli NOTIFY - timer notification client

| HUnixTimNotCli NOTIFY - native Unix notification client

| HMotifTimNotCli NOTIFY - motif timer notification client

| HXvTimNotCli NOTIFY - xview timer notification client

| HVmsTimNotCli NOTIFY - VMS timer notification client

| HIONotCli NOTIFY - I/O notification client nodes

| HSelIONotCli NOTIFY - I/O notification client using select

| HMotifIONotCli NOTIFY - motif I/O notification client

| HXvIONotCli NOTIFY - xview I/O notification clients

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (6 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

|-HObjExtAbs - abstract object extractor

|-HObjIter - baseclass for iteration across HObject collections

| HObjArrayIter - iterator across an HObjArray

| HObjListIter - iterator across an HObjList

| HObjListForIter - forward/incrementing list iterator

| HObjListRevIter - reverse/decrementing list iterator

| HObjSetIter - iterator through an HObjSet

|-HObjIterator - iteration across collections of HObjects

|-HObjLink - linked list node

|-HRectangle - rectangle geometry

|-HRectangleS - signed rectangle geometry

|-HSecond - elapsed seconds

|-HSigCatcher - process signal catcher

| HSigMgr - reacts to signals from catchers and dispatches to handlers

|-HSigHand - process signal handler

| HNsSigHand NAMESERVER - name server signal handler

|-HString - null terminated character array

|-HTime - standard time encapsulation

|-HTimeCvtrAbs - overridable timer conversion algorithms

| HTimeCvtr - overridable timer conversion algorithms

|-HTimeProbe TIMER - keeps track of named instant in time (probe)

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (7 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

|-HTimeProbeList TIMER - list of time probe objects

|-HTimerAbs TIMER - abstract representation of callback timer object

| HTimerEvent TIMER - event firing timer

| HTimerInterval TIMER - interval firing timer

| HNoidConnTimr NAMESERVER - timer for noid connections

| HTimeProbeTimer TIMER - interupt timer for time probe instance

|-HUserOut - presents diag messages to the user

|-HVIter - iteration across void pointer collections

| HVListIter - iteration across void pointer list collection

| HVListForIter - forward iteration across void pointer list collection

| HVListRevIter - reverse iteration across void pointer list collection

|-HVIterator - iteration across void pointer collections

pointer lists

|-HVect2 - two dimensional vector

|-HVect3 - three dimensional vector

|-HVect4 - four dimensional vector

|-HVectN - N dimensional vector

|-HVector - three dimensional vector

|-HVwDepsAbs - abstract model/view dependencies

| HVwDeps - model/view dependencies

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (8 of 9) [20/02/04 05:41:41 p.m.]

HObject ìthe Hughes version of NIHCL Objectî

|-HVwDepsNd - node in model/view dependency list

|-HWeekDay - elapsed week days

+-HYear - elapsed years

HDAG - directed acyclic graph (collection of HDAGNodes)

HMemDbg - monitors memory leaks

ElapTimeTimer - stop-watch like elapsed timer

HClassDict - dictionary of HClassDesc information

HObjSetNode - node of object set collection

Figure 3 - Hughes Class Library and Interprocess Communication Extensions

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody..._HObject___igrave_the_Hughes_version_of_NIHC.html (9 of 9) [20/02/04 05:41:41 p.m.]

mailto:mstevens@ent.mrj.com

RTTI

RTTI

HCL provides RTTI and object I/O streaming through the HClassDesc object in the same way that
NIHCL uses the Class object. The relationship between an HObject (any class which is part of the
HObject tree) and its static member HClassDesc is the same as the relationship between NIHCLís Object
and Class classes. Every HObject has a static member of type HClassDesc. The HClassDesc contains the
meta information of the respective class and has member functions to create a new object instance of the
respective class. In NIHCL, the Class objects contained the run-time meta information representing
inheritance relationships with pointers/arrays internally in each Class object. Instead, the HClassDesc
objects in HCL have a static member pointer to a global class dictionary object (HClassDict). This class
dictionary object encapsulates a data structure containing an image of the run-time utilization of all
HObjects.

HObjects are identified by a string representation of their names using the HString class. The
HClassDesc object has a member of type HString to store the Class name. For instance, when HObjects
are serialized on a disk file or sent across a network over a byte stream communication mechanism the
objectís type string representation is sent first. In this way, the consumer of the disk file or receiver on
the end of the network connection will read the objectís string name first and ask the class dictionary to
create an instance of the object from the string name. In this way, objects are instanciated with out ìtypeî
knowledge; of course the ìtypeî information is abstracted into the HClassDict container object.
Nevertheless, when using the HCL framework, the programmerís can rely on dynamic object creation
using ìstringifiedî HObject names.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_RTTI1.html [20/02/04 05:41:42 p.m.]

mailto:mstevens@ent.mrj.com

Object I/O

Object I/O

HObject has a much better foundation for object I/O. In addition to member functions which provide
object I/O using ìistreamî and ìostreamî objects, HObject has an interface to a special class called XDR
which encapsulates the external data representation (xdr) system for dispatching data on heterogeneous
networks. The XDR class and HObject class allow object I/O between hosts which have different
implementations of binary data on their hardware. For instance, two machines which store binary data in
Big Endian and Little Endian respectively can still transport object between them with XDR and HCL.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_I_O1.html [20/02/04 05:41:43 p.m.]

mailto:mstevens@ent.mrj.com

Containers

Containers

HObject does not have a built in interface for ìdeep copyingî (see section 2.6.5) objects like NIHCL does.
If desired, deep copying is left up to the cloning and object I/O implementations of individual HObjects.

HCL employs a very robust hierarchy of container classes and iterators. HCL abstracts the interface of
container classes and iterators in HCollection abstract class. Both HObject typed collection classes
(HObjCollection) and void typed collection classes (HVCollection) are supported as specialized
HCollection classes. This allows not only HObject classes but also standard ëCí structures in HCollection
classes.

/***

** Copyright (c) 1991 Hughes Aircraft Company.

** UNPUBLISHED WORK

**

class HObject {

protected:

// Constructor is protected since HObject is an abstract class.

HObject();

// _castDown is the function that actually check class

// descriptions. This is usually provided in the single

// inheritance case by the DECLARE/DEFINE macros.

virtual void* _castDown(const HClassDesc&) const;

public:

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (1 of 4) [20/02/04 05:41:44 p.m.]

Containers

virtual ~HObject();

// All classes have a HClassDesc

// HAbsClassDesc.

static HAbsClassDesc myClass;

// Run time class information.

static HClassDesc& classDesc();

static HObject& castDown(HObject&);

static HObject* castDown(HObject*);

virtual void* objCastDown(const HClassDesc& objClassDesc() const;

virtual HObject* hclone();

virtual int isInheritedFrom(const HClassDesc&) const;

// Support for models and views.

virtual int changed(HObject *model, const char *token);

// Support for dynamic creation of HObjects. When storing an object

// on a stream, first the className is put and then the instance data.

// Create a new HObject from the stream.

static HObject* newObj(istream&);

static HObject* newObj(XDR*);

// Store instance data on an ostream

virtual int put(ostream&) const;

// Get instance data from an istream

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (2 of 4) [20/02/04 05:41:44 p.m.]

Containers

virtual int get(istream&);

// ENCODE/DECODE instance data to/from an xdr stream.

virtual int xdr(XDR*);

// Store class name and then call put

virtual int store(XDR*) const;

// Read class name and then call get

virtual int read(istream&);

// Read class name and then call xdr

virtual int read(XDR*);

// Put to cerr - mostly for debugging

void dump() const;

// Comparison: returns 0/1 and checks HObject identity

virtual int isSame(const HObject&) const

// Comparison: returns 0/1 and checks HObject data

virtual int isEqual(const HObject&) const;

// Comparison: returns -1/0/1 and checks HObject dta

virtual int compare(const HObject&) const;

// Comparison: hashes on HObject data - two objects with

// the same data should have the same hash

virtual unsigned hash() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (3 of 4) [20/02/04 05:41:44 p.m.]

Containers

};

Code Block 8 - Hughes Class Library (HCL) Root Class HObject

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Containers_.html (4 of 4) [20/02/04 05:41:44 p.m.]

mailto:mstevens@ent.mrj.com

Using HCL

Using HCL

HCL provides many useful macros to help the programmer adhere to the common framework. The style
of these macros is the same as those found in NIHCL. These macros are used in the declaration,
definition, and data definition of new HObjects. Many different categories of new HObject -like classes
can be formed with the macros. New classes can be abstract or concrete, single or multiple inheritance,
distributed or local. The following code block is taken from the ìHClassDefines.h" header file.

/**

** Copyright (c) 1992 Hughes Aircraft Company.

** UNPUBLISHED WORK

**/

// To add a simple class d with base b

// add DELARE_CLASS(d) as first line of class definition

// add DEFINE_CLASS(d,b) in one source file

...

#define _DECLARE_CLASS(classname) \

private: \

static HClassDesc myClass; \

static HObject* makeClass();

...

#define _DECLARE_CLONE \

public: \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (1 of 4) [20/02/04 05:41:45 p.m.]

Using HCL

virtual HObject* hclone();

...

#define _DECLARE_CASTDOWN(classname) \

protected: \

virtual void* _castDown(const HClassDesc&) const; \

public: \

static HClassDesc& classDesc(); \

virtual HClassDesc& objClassDesc() const; \

static classname& castDown(HObject&p) \

{return *(classname*)(&p ? p.objCastDown(classname::classDesc()) :0);} \

static classname* castDown(HObject *p) \

{return (classname*)(p ? p->objCastDown(classname::classDesc()) :0);}

...

#define DECLARE_CLASS(classname) \

_DECLARE_CLONE \

_DECLARE_CLASS(classname) \

_DECLARE_CASTDOWN(classname)

Code Block 9 - Hughes Class Library (HCL) Framework Declaration Macros

#define _DEFINE_DEFAULT_CLONE(classname) \

HObject* classname::hclone() {return new classname(*this); }

...

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (2 of 4) [20/02/04 05:41:45 p.m.]

Using HCL

#define _DEFINE_DEFAULT_CREATION(clasname) \

HObject* classname::makeClass() { \

classname *s = new classname; \

return HObject::castDown((HObject*) s); }

...

#define _DEFINE_CLASS_DATA(classname) \

HClassDesc classname::myClass(#classname,classname::makeClass);

...

#define _DEFINE_CASTDOWN(classname) \

HClassDesc& classname::classDesc() { return myClas; } \

HClassDesc& classname::objClassDesc() const (return myClass; }

...

#define _DEFINE_CAST_FCN(classname, baseclass) \

void* classname::_castDown(const HClassDesc &cl) const { \

if (cl == myClass) return (void*) this; \

else return baseclass::_castDown(cl); }

...

#define DEFINE_CLASS(classname, baseclas) \

_DEFINE_CLONE(classname) \

_DEFINE_DEFAULT_CREATION(classname) \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (3 of 4) [20/02/04 05:41:45 p.m.]

Using HCL

_DEFINE_CLASS_DATA(classname) \

_DEFINE_CASTDOWN(classname) \

_DEFINE_CAST_FCN(classname,baseclass)

Code Block 10 - Hughes Class Library (HCL) Framework Class Definition Macros

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_HCL_.html (4 of 4) [20/02/04 05:41:45 p.m.]

mailto:mstevens@ent.mrj.com

Example

Example

Consider the class HPoint below. Notice that HPoint is very close to the definition of the Point class
shown in Code Block 4.

/**

** Copyright (c) 1992 Hughes Aircraft Company.

** UNPUBLISHED WORK

**/

class HPoint : public HObject {

DELARE_CLASS(HPoint);

private:

unsigned long myX;

unsigned long myY;

public:

HPoint();

HPoint(unsigned long, unsigned long);

HPoint(const HPoint&);

~HPoint();

unsigned long x() const;

unsigned long y() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Example_.html (1 of 3) [20/02/04 05:41:47 p.m.]

Example

void x(unsigned long);

void y(unsigned long);

int put(ostream&) const;

int get(istream&);

int xdr(XDR *);

};

Code Block 11 - Hughes Class Library (HCL) Example HPoint Class Declaration

/**

** Copyright (c) 1992 Hughes Aircraft Company.

** UNPUBLISHED WORK

**/

#include ìHPoint.hî

DEFINE_CLASS(HPoint, HObject);

HPoint::HPoint() : myX(0),myY(0)

{ DBG_MEM_CONSTRUCTOR(HPoint.1); }

HPoint::HPoint(unsigned long aX, unsigned long aY) : myX(aX),myY(aY)

{ DBG_MEM_CONSTRUCTOR(HPoint.2); }

HPoint::~HPoint()

{ DBG_MEM_DESTRUCTOR(HPoint); }

int HPoint::put(ostream &str) const

{ str << ì[ì << myX << ì, ì << myY << ì]î << endl;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Example_.html (2 of 3) [20/02/04 05:41:47 p.m.]

Example

if (!str) return FALSE;

return TRUE; }

int HPoint::get(istream &str)

{ char c; str >> c; if (!str) return FALSE;

str >> myX; if (!str) return FALSE;

str >> c; if (!str) return FALSE;

str >> myY; if (!str) return FALSE;

str >> c; if (!str) return FALSE;

return TRUE; }

int HPoint::xdr(XDR* xdrs)

{ return xdr_long(xdrs, &myX) && xdr_long(xdrs, &myY); }

Code Block 12 - Hughes Class Library (HCL) Example HPoint Class Definition

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Example_.html (3 of 3) [20/02/04 05:41:47 p.m.]

mailto:mstevens@ent.mrj.com

Distributed Programming with HCL Interprocess Communication

Distributed Programming with HCL Interprocess Communication

In addition to the object I/O capabilities of HObject, the HIPC libraries form an environment which
allows peer-to-peer communications between concurrent processes on local or remote hosts in a
heterogeneous network. Using a message passing architecture HIPC provides transient and persistent
connections between processes, asynchronous and synchronous messages, and remote-procedure-call
(RPC) like designs.

Message, Agents, Address, and Connections

The are four (4) specialized HObject classes responsible for communicating objects/messages:
HMsgConn, HAddress, HMessage, and HMsgAgent. HMsgConn class abstracts the concept of a
connection between two (2) end-points. Processes can communicate if there is a valid HMsgConn tied to
both ends. The end-points are abstracted in the HAddress class. This class encapsulates the host name, IP
address, port number, service name, etc. of the end point. Information is passed between HAddress
objects over a HMsgConn object using abstract HMessage class. Even though any HObject could be sent
over a network connection, HIPC designers imposed the notion of a specialized message object to
encapsulate the details of HIPC. If there was not a HMessage class then the HObject class would be
ìheavierî with more detailed HIPC material. At the lowest level the object I/O interfaces of HObject are
used to marshal HMessage objects over the XDR stream. The HIPC designers wanted to decouple the
interface to HIPC from HObject. The management of HAddress and HMsgConn objects and the
dispatching of asynchronously received HMessage objects is performed by the HMsgAgent class.

A process can have many HMsgAgent objects; each with a HAddress associated with it. HMsgAgents
manage connections with other HMsgAgents on a local or remote host. All message passing is done
asynchronously using notifier systems available from the operating system. HIPC is capable of using the
SunSoft Notifier system, the X notifier, or a generic reactor/notifier pattern built with standard poll/select
system calls with sockets. Connections between agents can be permanent or temporary; temporary
connections are perfect for event notification and permanent connections are well suited for streaming of
data between agents.

The four main HIPC classes introduced above have very detailed private implementations using
operating system services and other HIPC classes which encapsulate more complicated mechanisms like
high resolution timers and sockets. The public interfaces are straight forward and are somewhat
deceptive in that the hide such powerful UNIX network programming techniques.

Connection End-point Determination

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (1 of 5) [20/02/04 05:41:49 p.m.]

Distributed Programming with HCL Interprocess Communication

The reason why HCL/HIPC is industrial strength is how it handles the end-point determination problem.
As long as a HMsgAgent ìknowsî the HAddress of another HMsgAgent then communication is simple.
The HMsgAgent can ask the HAddress object to create a connection and send a HMessage across in one
member function call. However, if the HAddress is not known then the situation becomes complicated.
The HIPC designers offer three (3) solutions to this problem and they all work well according to there
constraints:

Pre-allocate the end-point/location information before running/compiling the system. This information
could be hard coded or configured at run-time through command line arguments or configuration files. In
many cases this is an acceptable solution for a small distributed system that does not change its
configuration often.

Deploy a specialized HMsgAgent in one or more processes in a network which all HMsgAgents know
how to contact (through a well-known service port maybe). In this way a HMsgAgent could register
itself with this well-known ìNameServerî and supply logical information about the services/objects
which it manages. In this way, a interested HMsgAgent could query the NameServer and receive
location/address information for desired agents and then connect to them. This level of indirection
between communicating agents is very powerful for it allows systems to configured differently at run-
time. Also, a more intelligent NameServer can be used to allow HMsgAgents and there associated
process/objects to re-locate during run-time for purposes of load-balancing and fail-over. In fact,
redundant/duplicate HMsgAgents/objects could be deployed using this architecture.

Similar to the previous option, the HMsgAgents could register in a nameservice provided by a standard
product like the OSI X.500 directory or DCE.

On inspection of the inheritance diagram in , one sees that there are already many specialized HMessage
classes supplied by HIPC. Actually, these HMessages classes are used by the internals of the HIPC
library to manage the connections, address, and agents. For instance, there is a specialized HMessage
class called HMsgShutdown which is sent by a HMsgAgent to another to notify that agent to shutdown.
There is a generic text message class called HMsgText for sending status messages. There is a abstract
HMsgData class which has specialized classes for sending various forms of information. The HMsgCol
class is very powerful. This class encapsulated the capability to transport any object of derived from
HCollection. In this way, all HCL container classes can be transferred to another process.

When developing a distributed application with HCL/HIPC you have to create specialized objects from
HObject and also enhance the agent object with specialized message(s) objects associated with you new
HObject class. As we will see in section 3, on CORBA, classes are specified in Interface Definition
Language (IDL) and a pre-compiler creates the actual implementation class and the message/dispatching
class(es) for you.

The details of the message object I/O use the object I/O interface of HObject. When a message is
marshaled on to a XDR stream, three (3) element are streamed; the message header containing the

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (2 of 5) [20/02/04 05:41:49 p.m.]

http://www.omg.org/

Distributed Programming with HCL Interprocess Communication

ìstringifiedî name of the HMessage object in xdr string format, the message body according to the virtual
xdr() method of the HMessage class, and a xdr end-of-record marker. The receiving process is notified
by the operating system through an asynchronous I/O system and the respective HMsgAgent handles the
receipt of the HMessage. The agent reads the ìstringifiedî name of the HMessage and uses the
HObject/HClassDesc/HClassDict system to create a new instance of the specified HMessage object. The
agent then hands off control to the new HMessage object and instructs it to marshal its own data off the
xdr stream by calling the HMessage::xdr() method. Then, according to the type of HMessage, the agent
dispatches the information to the appropriate internal object in the process.

Example

The following is an example taken from Hughes Aircraft internal white papers [14],:

/**

** Copyright (c) 1992 Hughes Aircraft Company.

** UNPUBLISHED WORK

**/

#include ìHMessage.hî

class HMsgDoSomething : public HMessage {

DELARE_CLASS(HMsgDoSomething);

public:

HMsgDoSomething();

~HMsgDoSomething();

// over ride from virtual HObject::xdr(XDR*)

int xdr(XDR* stream);

private:

int myIntValue;

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (3 of 5) [20/02/04 05:41:49 p.m.]

Distributed Programming with HCL Interprocess Communication

HString myStringValue;

}

/**

** Copyright (c) 1992 Hughes Aircraft Company.

** UNPUBLISHED WORK

**/

#include ìHMsgDoSomething.hî

DEFINE_CLASS(HMsgDoSomething, HMessage);

...

int HMsgDoSomething::xdr(XDR* stream)

{ if(!HMessage::xdr(stream) || // call base class behavior

!xdr_int(stream,&myIntValue) || // xdr filter on C++ data type

!myStringValue.xdr(stream)) // ask object to xdr itself

return FALSE;

return TRUE;

}

Code Block 13 - Hughes Class Library (HCL) Example HIPC Class

At a minimum, a HAddress and a HMessage is needed to send a information. A HMessage has an
interface to send itself given a HAddress or HMsgConn as an argument. A HMsgConn or HAddress each
have interfaces to send a supplied HMessage. As long as the HMsgAgent is in a notification/listening
mode on the other end, the message will be sent.

HCL is an evolution of NIHCL and extends the object I/O solution to real world operating systems like
Solaris, VMS, AIX, and IRIX. HCL is an excellent example of the single root tree design pattern and
HCL provided a solution which allow for development of all aspects of distributed applications including

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (4 of 5) [20/02/04 05:41:49 p.m.]

Distributed Programming with HCL Interprocess Communication

the user interface, interprocess message system, and internal implementations. HCL proves that a
common object framework can be used to build such systems without having to integrate separate
libraries for application development, network communication, and user interface.

The HCL framework can be used for general C++ application development using the robust container
classes and the objects specific to temporal processing. Also, many advanced features can be employed
by the HCL user because of the capabilities of the single rooted tree design based on HObject.
However, it is the message agent services of the HIPC extensions which make HCL well suited for
distributed object implementations. The following section presents NetClasses, the distributed object
system from PostModern which is the foundation for their CORBA compliant commercially available
product ORBeline. NetClasses and ORBeline provide distributed object services; components for general
application development are not integrated in the framework. In fact, I have not found many systems
which provide components for all aspects of distributed object application development. I usually find
general frameworks or distributed object frameworks, but never both. In some cases, general framework
vendors and ORB vendors integrate their libraries into a more efficient package which offers cross-
platform GUI development, general application components, and distributed object services. HCL
provides such a solution.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Distributed_Programming_with_HCL_Interproce.html (5 of 5) [20/02/04 05:41:49 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

PostModern's NetClasses

PostModern's NetClasses
NetClasses is a framework for the development of distributed object system applications. ORBeline,
PostModern Computing (now Visigenic)'s CORBA compliant product, is built on the foundation of the
NetClasses framework. There is no documentation that explicitly asserts this but I have found evidence
to support the latter statement. In my review of the C++ header files that come with the ORBeline
product I found references to the NetClasses material. Some of the lower level classes in the ORBeline
framework are prefixed with "NC" and "DS" which represent components of "NetClasses" and
"Distributed Services" respectively. Distributed Services [15] is the named subsystem of NetClasses
which is responsible for the management of object dissemination and peer to peer connections - much
like the Message Agent components of HCL.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_PostModern_s_NetClasses_.html [20/02/04 05:41:50 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Reuse

Reuse

Another reason that PostModern Computing (now Visigenic) probably reused NetClasses for the ORB
product is that it makes sense. In fact, reuse is practiced at PostModern Computing (now Visigenic) in
earnest. The technical staff at PostModern Computing (now Visigenic) are up front about reuse practices.
Both NIH Class Library design patterns and the dispatching code from the object oriented X-Windows
toolkit, Interviews, have been reused in PostModern Computing (now Visigenic)'s products. The
following sections will reflect this reuse, especially the reuse of the single rooted tree technique.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Reuse_.html [20/02/04 05:41:51 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Features

Features

Before looking at the details of NetClasses, the high level design goals of the NetClasses product should
be reviewed. NetClasses provides more than just Object Transport (PostModern Computing (now
Visigenic)'s term for object I/O). NetClasses provides for, as stated above, management of object
services and connections through the Distributed Services subsystem. Also, NetClasses features "Remote
Method Invocation (RMI)" and "Security". RMI and security features are based on Distributed Services.

Distributed Services

The Distributed Services feature of NetClasses provide the user an abstraction to the service ports
paradigm for socket and remote procedure call programming. A service agent design pattern very much
like the message agent of HCL provides this abstraction. Objects on a network provide services by
advertising to agents processes who monitor the service providers and service consumers. The agent is
also the location for connection management. PostModern Computing (now Visigenic)'s technology
overview document of NetClasses presents the capabilities of Distributed Services and is an excellent
statement in general for requirements of any distributed object system:

Service Registration. What network services are available, and which machines on the network are
providing them?

Connection Management. How are service providers connected to service consumers? Which consumers
are connected to which servers?

Fault Tolerance Strategy. When a server or client fails, what service reconnection and fault tolerance
strategies are in effect?

Load Balancing. How are servers loaded? Do we need to reconnect some client and servers dynamically
to even out machines loads?

Service Location/Location Transparency. How does a client with no knowledge of current servers status
locate the services it requires?

Remote Method Invocation

Remote Method Invocation (RMI) is implemented on top of Distributed Services. Through RMI, a client
with an object reference to an external service (in a separate process on a local or remote machine) can
invoke an object member function using the object reference. This is the abstraction of the classic remote

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Features_.html (1 of 2) [20/02/04 05:41:52 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Features

procedure call (RPC) and socket programming paradigms which have complicated interfaces and are
difficult to maintain and scale. The RMI feature makes the fault tolerance and connection management of
Distributed Services transparent to the programmer.

Security

The Security feature of NetClasses provides programmers with the means to implement
encryption/decryption for object transport, and method invocation. Also, authentication of consumer
accesses to remote service objects is provided and aided by this feature.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Features_.html (2 of 2) [20/02/04 05:41:52 p.m.]

mailto:mstevens@ent.mrj.com

Design

Design

The following presentation of the design of the C++ objects used in NetClasses, which are also the
foundation for PostModern Computing (now Visigenic)'s CORBA compliant product ORBeline, is
limited by two factors. First, the only information available are the C++ header files for these classes
provided in the publicly available ORBeline distribution. The C++ header files represent the interface to
the classes and provide only an estimate of the implementation hidden in the binary library. Obviously,
PostModern Computing (now Visigenic) only supplies the header files to the user because the C++
source files reveal confidential, proprietary, and trade secret material. The header files are necessary for
the programmer to access the binary libraries. However, the header files also reveal a lot of confidential
material. A copyright and disclosure statement is a part of all header files in the ORBeline
distribution.[16] In the same way as I presented HCL, I will use common sense when showing the
following material in such a way as to promote the advanced design patterns and techniques found in
PostModern Computing (now Visigenic)'s product without violating the copyright statement. The
following material is my interpretation of the C++ header files which anyone can download from the
Internet anyway.

Single Rooted Tree

The inheritance diagram of all the C++ objects for the ORBeline product can be found in Appendix A
(page 2). Many of the classes in the diagram are named with the prefix "CORBA::". This prefix denotes
classes which are part of the "CORBA" namespace using the scope delimiter operator of C++. [17]
Notice that all the classes which are part of the CORBA namespace inherit from a single class called
DSResource. The DSResource class denotes the Distributed Service Resource class of the NetClasses
framework. The DSResource class represents the root class of the single rooted tree pattern. DSResource
is the equivalent to the Object class in NIHCL and the HObject class in HCL. The DSResource class
provides a common interface for all class instances which are to act a "distributable" objects. The
DSReource class provides the primitive features for such objects. (See Appendix A, page 4)

DSResource features and interfaces are composed of its own members and those inherited from its
multiple parent classes NCResource and NCObject. The NCResource and NCObject classes are low
level NetClasses components. The NCResource class supplies a reference counting capability. The
NCObject class supplies the RTTI, object I/O, and other capabilities similar to Object and HObject.

NCResource

The NCResource class encapsulates the concept of reference counting for objects which are shared.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (1 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

Design

Reference counting is a form of garbage collection which in most likely a reuse of the reference counting
component of the object -oriented X-Windows toolkit, Interviews. Because the NCResource class only
does reference counting, the class' interface is very simple. A reference counted object has a
private/hidden member which keeps track of the number of references to itself which are held by other
entities or objects. For NCResource, this private member is the _ref_count integer value. (See Appendix
A, page 4)

When a pointer to an object, which inherits from NCResource, is added to a linked list, set, or any
collection, the object which is pointed engages its "reference" behavior. The "reference" behavior simply
increments the private reference count of the object. Objects inheriting from NCResource record the
number of entities currently consuming or referencing the object. When the consuming entity is finished
with the referenced object it calls the "unreference" behavior or the referenced object. The "unreference"
behavior decrements the private reference count of the object. Objects which inherit from NCResource
are never explicitly deleted by another entity using the standard destructor behavior. The object will
delete itself when its reference count reaches zero. The reference count is initialized to one (1) when the
object is constructed. The reference counting capability encapsulated by the NCResource class provides
referenced objects with the self discipline to self destruct when they are no longer required. The
DSResource class inherits from NCResource to add the referencing counting capability. See Code Block
14.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class NCResource {

private:

unsigned _ref_count;

public:

NCResource() { _ref_count = 0; }

virtual ~NCResource();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (2 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

NCResource(const NCResource&) { _ref_count = 0; }

void operator=(const NCResource&) { _ref_count = 0; }

static void ref(NCResource *obj);

static void unref(NCResource *obj);

void ref() { _ref_count++; }

void unref();

unsigned numRefs() const { return _ref_count; }

};

Code Block 14 - PostModern Computing (now Visigenic)'s NCResource Class

There are five important interfaces to NCResource. A NCResource object can be referenced by calling
the static NCResource::ref() function with a pointer to itself or calling the object's ref() member function
with no argument. A similar interface is provided for unreferencing NCResource objects. Also, the
private reference count can be obtained by calling the NCResource object's numRefs() member function.

NCObject

The other class which DSResource inherits from is the NCObject class. The NCObject class provides
most of the capability for object I/O, RTTI, and heterogeneous collections to the DSResource class. (See
Appendix A, page 4) The NCObject declaration demonstrates a different strategy for the single rooted
tree pattern. In the cases of NIHCL and HCL, all the common, primitive capabilities of the framework
are encapsulated in one class; Object and HObject respectively. The NetClasses framework uses
composition and inheritance techniques to complete the common framework provided by the
DSResource class. DSResource takes its reference counting capability from NCResource. The rest of the
capabilities are inherited from NCObject. NCObject forms its capabilities in three (3) ways: inheriting
the object I/O interface from NCTransObject, the RTTI components by composition of NCTypeInfo, and
adding its own behaviors for transportable, heterogeneous collections. The following two sections
present NCTransObject and NCTypeInfo.

NCTransObject

The NCTransObject is an abstract class which encapsulates object I/O and provides the abstract
interfaces for RTTI. (See Appendix A, page 4) Even though the NCTransObject does not have a data

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (3 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

member of type NCTypeInfo, interfaces are provided for accessing class information, classInfo(), and
verifying safe cast requests with hasBase() and canCast().

In the case of HCL, the HObject class provided interfaces for reading and writing to I/O stream objects
and the special XDR class. NetClasses, however, employs a more detailed object I/O scheme. It is
important to reiterate that the purpose of the NetClasses framework is to provide distributed object only.
Because it is not a general framework, more detailed is placed on the object I/O implementation.

The NCTransObject has a tightly coupled association with two (2) I/O classes: NCistream and
NCostream. These stream classes decouple the NCTransObject from the standard iostream classes
istream and ostream. Also, the NCistream and NCostream each have a helper class for conducting object
I/O: NCInTbl and NCOutTbl respectively.

There are four (4) member functions for object I/O in NCTranObject which declare the abstract interface
for the framework - two functions for input and two for output. First, member functions for reading and
writing to standard iostreams are provided using readFromStream() and printOn() respectively. The
arguments to these two functions are references to the standard iostream objects. Object output using the
NCostream class is accessed with the write() member function. Object input using the NCistream class is
accessed with the operator>>() member function which overloads the >> operator. Refer to Code Block
15. This member function's inline implementation shows that the real work for object input is done by
the NCistream class. The implementation calls the readTransObj() member function of NCistream to
perform the object input and return a pointer to the new NCTransObject. The NCistream and NCostream
classes direct the real work of object I/O. For this reason, NCTransObject and the NetClasses I/O classes
are tightly coupled. The reason for this design cannot be determined with access to more detailed
implementation code.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class NCTransObject {

public:

virtual void write(NCostream& strm) const =0;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (4 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

virtual const NCTypeInfo* classInfo() const = 0;

virtual void printOn(ostream& strm=cout) const;

virtual void prettyPrint(NCostream& strm) const {

write(strm); }

virtual void readFromStream(istream&) {}

inline friend NCistream& operator>>(NCistream& strm,NCTransObject*& obj){

obj = strm.readTransObj();

return strm; }

virtual ~NCTransObject() {}

NCTransObject() {}

NCTransObject(NCistream& strm) { strm.addToTbl(*this); }

int hasBase(const NCTypeInfo& p) const {

return (classInfo()->hasBase(p)); }

int canCast(const NCTypeInfo& p) const {

return (classInfo() == &p || hasBase(p)); }

};

ostream& operator<<(ostream& ostrm, const NCTransObject& obj);

istream& operator>>(istream& istrm, NCTransObject& obj);

Code Block 15 - PostModern Computing (now Visigenic)'s NCTransObject Class

NCTypeInfo

The NCTypeInfo class is very similar to the Class and HClassDesc classes of NIHCL and HCL.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (5 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

NCTypeInfo encapsulates the RTTI for the framework. NCTypeInfo is similar in that it has a private
character string for the class name , _name, and a private function which knows how to assemble an
object of that type from a byte stream object, _read_func. (See Appendix A, page 4) Multiple inheritance
is provided in the RTTI using NCTypeInfo's array of NCTypeInfo for the base class(es), _bases. See
Code Block 16.

Even though a user would not normally use the NCTypeInfo interface, a public interface is provided for
use in the low level framework classes and macros. The character string name of the class can be
accessed using the classname() member function. A pointer to the function which can read the object off
a byte stream can be accessed with the readFunc() member function. The safe casting capability is
provided with the hasBase() and canCast() member functions. A boolean response is returned from these
functions when the NCTypeInfo argument is compared to the private type information. The NCObject
class and some detailed preprocessor macros provides the real user interface to the RTTI.

The most powerful methods of NCTypeInfo are the static methods for determining NCTypeInfo,
NCTypeInfo::typeInfo() and read function from a character string argument, NCTypeInfo::readFunc(). It
is these static or global methods which allow objects to be constructed from a byte stream without type
information. When an object is marshaled to a byte stream the object class name is marshaled before the
instance information. In this way, the reader of the byte stream can call NCTypeInfo::typeInfo() static
function with the character from the stream as an argument. The type information is determined from the
character string class name and the proper read function can be engaged to unmarshal the object instance
data from the byte stream. Again, this is the same pattern used in NIHCL and HCL.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

typedef NCTransObject *(*NCTransReadFunc)(NCistream&);

class NCTypeInfo {

private:

const char *_name;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (6 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

NCTransReadFunc _read_func;

short _num_bases;

NCTypeInfo **_bases;

NCTypeInfo(const NCTypeInfo&);

NCTypeInfo& operator=(const NCTypeInfo&);

public:

NCTypeInfo(const char *name,NCTransReadFunc readfunc,...);

virtual ~NCTypeInfo();

int operator==(const NCTypeInfo& p) const {

return (_name == p._name); }

int operator!=(const NCTypeInfo& p) const {

return (! (*this == p)); }

const char *className() const { return _name; }

NCTransReadFunc readFunc() const { return _read_func; }

int hasBase(const NCTypeInfo& p) const;

int canCast(const NCTypeInfo& p) const {

return (this == &p || hasBase(p)); }

static const NCTypeInfo *typeInfo(const char *name);

static NCTransReadFunc readFunc(const char *name);

};

Code Block 16 - PostModern Computing (now Visigenic)'s NCTypeInfo Class

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (7 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class NCObject : public NCTransObject {

private:

static NCTypeInfo class_info;

protected:

NCObject();

public:

virtual ~NCObject() {}

static const NCTypeInfo *desc();

NCObject(NCistream& strm);

inline friend NCistream& operator>>(NCistream& strm, NCObject*& obj) {

obj = (NCObject *)strm.readTransObj();

return strm; }

static NCObject *readFrom(NCistream& strm) {

return (NCObject *)strm.readTransObj(); }

virtual const NCTypeInfo *classInfo() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (8 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

virtual unsigned hash() const = 0;

virtual int compare(const NCObject&) const =0;

virtual NCbool isEqual(const NCObject& p) const {

return ((classInfo() == p.classInfo()) && compare(p) == 0); }

virtual NCbool isSame(const NCObject& p) const {

return (this == &p); }

const char *className() const {

return classInfo()->className(); }

NCbool isMemberOf(const NCTypeInfo& info) const {

return (classInfo() == &info); }

NCbool isMemberOf(const NCObject& p) const {

return (classInfo() == p.classInfo()); }

NCbool isKindOf(const NCTypeInfo& p) const {

return (classInfo()->hasBase(p)); }

NCbool isKindOf(const NCTypeInfo *p) const {

return (classInfo()->hasBase(*p)); }

virtual NCbool operator==(const NCObject& p) const {

return isEqual(p); }

virtual NCbool operator!=(const NCObject& p) const {

return (!isEqual(p)); }

};

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (9 of 13) [20/02/04 05:41:57 p.m.]

Design

Code Block 17 - PostModern Computing (now Visigenic)'s NCObject Class

The NCObject class builds on the abstract interface of NCTransObject to include behavior that allow
classes derived from NCObject to be placed in collection classes. The components of Object from
NIHCL and HObject from HCL which provide methods for comparing ject class. The RTTI class
NCTypeInfo is a static data member of the NCObject class. A class derived from NCObject will have
one (1) copy of a NCTypeInfo Object pre class. The private data member class_info can be accessed
publicly by the static class function X::desc() where X is a class derived from NCTypeObject. The
NCTypeInfo for a particular class can also be accessed with the member function classInfo() and the
character string class name can be accessed with the member function className().

NCObject builds on the lower level interface of the safe casting behavior, canCast() and hasBase(), with
the following methods: isMemberOf() and isKindOf(). The isMemberOf() method takes a NCTypeInfo
object reference as an argument and checks to see if the subject is the same class as the argument. The
isKindOf() works the same way but returns TRUE if the subject is derived from the argument.

A complete set of preprocessor macros are provided with NetClasses to guarantee conformance to the
common framework. (See Appendix A, page 6 &7) These macros a very similar to those found in
NIHCL and HCL.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

#define DECLARE_CLASSINFO(classname) \

static NCTypeInfo class_info;

#define DECLARE_NCOBJECT_CLASS(classname) \

private: \

DECLARE_CLASSINFO(classname) \

public: \

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (10 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

static const NCTypeInfo *desc(); \

virtual const NCTypeInfo *classInfo() const; \

inline friend NCistream& operator>>(NCistream& strm,classname*& obj) { \

obj = (classname *)strm.readTransObj(); \

return strm; } \

virtual void write(NCostream&) const; \

virtual void prettyPrint(NCostream&) const; \

virtual unsigned hash() const; \

virtual int compare(const NCObject&) const; \

static NCTransObject *readFrom(NCistream& strm); \

classname(NCistream& strm)

#define DEFINE_NCOBJECT_CLASS(classname) \

const NCTypeInfo *classname::classInfo() const \

{ return &classname::class_info; } \

const NCTypeInfo *classname::desc() { return &classname::class_info; } \

NCTransObject *classname::readFrom(NCistream& strm) \

{ return new classname(strm); } \

NCTypeInfo classname::class_info(STRINGIZE(classname), \

(NCTransReadFunc)&classname::readFrom, NCObject::desc(), 0)

Code Block 18 - PostModern Computing (now Visigenic)'s NetClasses NCObject Macros

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (11 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

Design

DSResource

The ORBeline product uses the classes which all derive from DSResource. As stated before, DSResource
inherits its capability from both the NCResource class and the NCObject class. The interface to the
resource referencing capability from NCResource class is enhanced in DSResource. An object can be
requested to create a new reference to itself - return a pointer to itself. This behavior is encapsulated in
the public member function _duplicate() which calls the lower level ref() member function of the
NCResource class to increment the reference count and return a pointer to itself. This is similar to the
cloning capability found in NIHCL and HCL but no copy is made of the object; a copy is made of the
object reference (pointer). There is no standard copy constructor or cloning mechanism for the
DSResource class. A subsequent request to dismiss an object reference is done by calling the member
function _release() on the object reference (pointer). The _release() member function simple calls the
lower level unref() member function of the NCResource class to decrement the reference count and
potentially self destruct the object.

In addition to the CORBA::X classes defined in the ORBeline product, there are some other Distributed
Services classes which derive from DSResource. The DSCollection and DSAssoc classes inherit from
DSResource and are fundamental components for other container classes. The abstract DSCollection
class encapsulates the common functions for use by any collections of DSResource objects. There are
three concrete collection classes which inherit from DSCollection. The DSAssoc class encapsulates the
concept of key value pairs. DSAssoc objects are used in DSSet and DSDictionary classes.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class DSResource: public NCObject, public NCResource {

private:

static NCTypeInfo class_info;

public:

static const NCTypeInfo *desc();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (12 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Design

DSResource();

DSResource(NCistream& strm);

virtual ~DSResource();

inline friend NCistream& operator>>(NCistream& strm, DSResource*& obj) {

obj = (DSResource *)strm.readTransObj();

return strm; }

virtual const NCTypeInfo *classInfo() const;

DSResource *_duplicate() { ref(); return this; }

void _release() { unref(); }

};

Code Block 19 - PostModern Computing (now Visigenic)'s DSResource Class

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Design_.html (13 of 13) [20/02/04 05:41:57 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Using the NetClasses Framework

Using the NetClasses Framework

As stated above, the NetClasses framework is the foundation of the ORBeline product for reasons
presented above. A detailed explanation of the use of the NetClasses and Distributed Services classes
will be given in Section 3 on CORBA and ORBeline. For the purposes of being consistent with the
previous two frameworks, NIHCL and HCL, an example will be presented by showing how a "Point"
object would be formed using NetClasses. Even though this might not be consistent with how
PostModern Computing (now Visigenic) intends their product to be used, a trivial example is consistent
with this presentation on distributed object frameworks.

A user defined class would inherit publicly from DSResource and the NCObject macros would be used
to supply common framework interfaces for RTTI and object I/O. The user specific interface and data
members would be in addition to the macros.

class DSPoint : public DSResource {

DECLARE_NCOBJECT_CLASS(DSPoint);

private:

unsigned long myX;

unsigned long myY;

public:

DSPoint();

DSPoint(unsigned long,unsigned long);

DSPoint(const DSPoint&);

virtual ~DSPoint();

void copyFrom(NCistream&);

void get(NCistream& strm) { copyFrom(strm); }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (1 of 4) [20/02/04 05:41:59 p.m.]

http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Using the NetClasses Framework

void put(NCOstream& strm) const { write(strm); }

unsigned long x() const;

unsigned long y() const;

void x(unsigned long);

void y(unsigned long);

};

Code Block 20 - PostModern Computing (now Visigenic)'s NetClasses Example DSPoint Class Declaration

The above class declaration of DSPoint is almost identical to that of HPoint for HCL example and Point
in the NIHCL example. The exact definition of the DSPoint class is not easily determined because
implementation details of NetClasses is not supplied with the ORBeline distribution; this information is
company proprietary. However, the Interface Definition Language (IDL) compiler which comes with the
ORBeline product (as explained in Section 3.3.3.3) translates IDL into C++ header files and source files.
These files declare and define the C++ classes used in the ORB. The ORBeline IDL compiler produces
C++ code which adheres to the NetClasses framework. The C++ code is a mixture of ORBeline specific
code and NetClasses code. The code output from the ORBeline compiler gives a very good indication as
to the implementation details of the NetClasses discuss above. The following is a simple example of a
possible definition of the DSPoint class. It is just an estimate but is actually is very similar to the
definitions of HPoint from HCL and Point from NIHCL.

#include "DSPoint.h"

DEFINE_NCOBJECT_CLASS1(DSPoint,DSResource);

DSPoint::DSPoint(NCistream& strm) : DSResource(strm) {

strm >> myX;

strm >> myY;

}

void DSPoint::copyFrom(NCistream& strm) {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (2 of 4) [20/02/04 05:41:59 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

Using the NetClasses Framework

strm >> myX;

strm >> myY;

}

DSPoint::DSPoint(const DSPoint& obj) {

myX = obj.x();

myY = obj.y();

}

void DSPoint::operator=(const DSPoint& obj) {

myX = obj.x();

myY = obj.y();

}

void DSPoint::write(NCostream& strm) const {

strm << myX;

strm << myY;

}

DSPoint::DSPoint() {

myX = 0;

myY = 0;

}

DSPoint::~DSPoint() {

}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (3 of 4) [20/02/04 05:41:59 p.m.]

Using the NetClasses Framework

Code Block 21 - PostModern Computing (now Visigenic)'s NetClasses Example DSPoint Class Definition

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Using_the_NetClasses_Framework_.html (4 of 4) [20/02/04 05:41:59 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Success of the Single Rooted Tree Framework

Success of the Single Rooted Tree Framework

The power of the above example is the demonstration of the obvious benefit of reuse, especially in the
case of distributed object frameworks. Also, NetClasses proves the capability of the single rooted tree
paradigm in that NetClasses and ORBeline are both industrial strength products.

It will be seen in the presentation on CORBA in Section 3 and ORBeline specifically, that PostModern
Computing (now Visigenic)'s investment in the technology found in NetClasses based in part on NIHCL,
created a strong foundation for the development of their CORBA 1.1 compliant product. Using a proven
distributed object framework, this company was among the first to market with their ORB. It is important
to note that a year after the first release of ORBeline, PostModern Computing (now Visigenic) was again
first to market with their CORBA 2.0 compliant version of ORBeline. I think that the strong foundation
of the NetClasses distributed object framework helped speed the evolution of the ORBeline product to
version 2.0.

In the next section on the Adaptive Communication Environment (ACE) a different framework is
presented that does not use the single rooted tree paradigm. The single rooted tree provides a viable
solution for the requirement of object transport or object I/O. It will be shown that ACE satisfies a
different set of requirements for a distributed framework.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Success_of_the_Single_Rooted_Tree_Framework.html [20/02/04 05:42:00 p.m.]

http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
mailto:mstevens@ent.mrj.com

Adaptive Communication Environment (!!w2wpACE!!http://www.cs.wustl.edu/~schmidt!pe!)

Adaptive Communication Environment
(!!w2wpACE!!http://www.cs.wustl.edu/~schmidt!pe!)
The Adaptive Communication Environment (ACE) is a C++ framework for the development of high
speed, object-oriented, distributed applications such as concurrent network servers and gateways. The
distinction between the goals of the ACE framework and the three presented in the previous sections is
best shown by example.

The ACE framework is being used for the network management portion of the Motorola Iridium global
mobile communication system. The high speed, distributed network servers built using ACE manage the
connection and synchronization of services among world wide satellite ground stations. However, the
implementation of a service in a thread of control in a particular server would probably be designed and
coded from scratch or more than likely in another framework for general application development. ACE
provides the building blocks for the servers and is not intended for the development of the services
installed in the servers. The NIHCL or HCL frameworks are not optimized for high speed network server
creation because they provide for general application development also. There is some overlap in the two
frameworks with respect to interprocess communication schemes. The ultimate framework would
combine the fast operating system wrappers and distributed service frameworks of ACE and the elegant
distributed object patterns of NIHCL, HCL, and NetClasses.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Adaptive_Communication_Environment____w2wpA.html [20/02/04 05:42:01 p.m.]

http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
http://www.cs.wustl.edu/~schmidt
mailto:mstevens@ent.mrj.com

Object Request Broker (ORB)

Object Request Broker (ORB)

One of the driving goals for this research was to identify the best distributed object framework. The
conclusion of this research is that the Object Request Broker (ORB) represents the future of distributed
object systems. As stated before, ORBs provide the framework for object location, activation, and
communication. 9 Standards for ORBs and commercially available products which deliver ORBs have
been insufficient in the eyes of information system providers. However, the potential advantages of using
ORBs for the development of the new generation of world wide, high performance, distributed systems
reflects the wide spread investment in object systems. In other words, the use of ORBs today is not wide
spread, but it is accepted that ORBs and ORB-like systems will become common place.

The Object Management Group (OMG) defines, in the Common ORB Architecture (CORBA)
specification, that the ORB is a system which provides mechanisms for sending requests and receiving
responses to and from objects. In addition, the ORB operates in a heterogeneous distributed environment
and interconnects unrelated object systems. [18] The OMG specifies that CORBA is based on a concrete
object model derived from the abstract OMG Object Model.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Request_Broker__ORB__.html [20/02/04 05:42:02 p.m.]

http://www.omg.org/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

OMG Concrete Object Model

OMG Concrete Object Model
The object model defines the terms and concepts used in the CORBA specification. The following is a
list of terms and concepts as defined by the OMG.

● An object system is a collection of objects that isolate the requesters of services (clients) from the
providers of services by a well-defined encapsulating interface.

● The classical object model represents the situation where a client sends a message to an object,
the object interprets the message to decide what service to perform, the object determines both the
method to call and the object responds to the client.

● A client of a service is any entity capable of requesting a service from an object in an object
system.

● An object is an identifiable, encapsulated entity that provides one or more services that can be
requested by a client.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_OMG_Concrete_Object_Model_.html [20/02/04 05:42:03 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Request

Request

● A request for services is an event sent by a client to an object consisting of an operation, a target
object, zero or more parameters, and an optional request context.

● A value is an instance of an Interface Definition Language (IDL) datatype that may be a
legitimate parameter in a request.

● An object name is a value which identifies an object type in an object system.
● An object reference is an object name that reliably denotes a particular object; an object reference

will identify the same object each time the reference is used in a request.
● A request context is a request parameter which provides state information about the associated

request.
● An exception represents an abnormal condition occurring during the execution of a request.
● A request parameter may be one of three (3): input parameter, output parameter, or input-

output parameter.
● Objects are created or destroyed as an outcome of issuing requests in the object system.
● A type is signature which restricts all parameters or return values in the object system and

requests.
● A value is an instance of a type.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Request_.html [20/02/04 05:42:04 p.m.]

mailto:mstevens@ent.mrj.com

Values

Values

● There are three (3) value types: object references, basic values, and constructed values.
● The basic values are more specifically of value type {Short | Long | UShort | ULong | Float | Double

| Char | String | Boolean | Octet | Enum | Any }
● The Short and UShort values are 16-bit, 2's complement integers.
● The Long and ULong values are 32-bit, 2's complement integers.
● The Float and Double values are 32-bit and 64-bit IEEE floating point numbers.
● The Octet value is an 8-bit opaque datatype, guaranteed to not undergo any conversion during

transfer between systems.
● The String value consists of a variable-length array of characters; the length of the string is available

at run-time.
● The Any value can represent any possible basic or constructed type.

Figure
4 - OMG Specified Type Values

● The constructed values are more specifically of value type {Struct | Sequence | Union | Array } and
represent user defined data structures through IDL.

● The Struct value is a record type consisting of an ordered set of (name, value) pairs.
● The Sequence value consists of a variable-length array of a single type; the length of the sequence is

available at run-time.
● The Union value consists of a discriminator followed by an instance of a type appropriate to the

discriminator value.
● The Array value consists of a fixed-length array of a single type.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Values_.html (1 of 2) [20/02/04 05:42:06 p.m.]

Values

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Values_.html (2 of 2) [20/02/04 05:42:06 p.m.]

mailto:mstevens@ent.mrj.com

Object Interface

Object Interface

● An interface is the description of the set of possible operations that a client may request of an
object. The interface hides the implementation details of the object.

● An interface type is a type that is satisfied by any object that satisfies a particular interface. An
interface type is any value that identifies an object.

● Interfaces are specified in Interface Definition Language (IDL). Interface inheritance provides
the composition mechanism for permitting an object to support multiple interfaces.

● The principal interface is the most-specific interface that the object supports.
● An interface may have attributes. An attribute is logically equivalent to declaring a pair of

accessor functions.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Interface_.html [20/02/04 05:42:07 p.m.]

mailto:mstevens@ent.mrj.com

Object Operations

Object Operations

● An operation is an identifiable entity that denotes a service that can be requested.
● An operation is identified by an operation identifier.
● An operation has a signature that describes the legitimate values of request parameters and

returned results.
● An operation signature consists of the required parameters, the result, the exceptions that may be

raised and the parameters, and contextual or execution semantics.
● The operation parameters are specified by their mode (IN, OUT, or INOUT) and type.
● The code that is executed to perform a service is called a method.
● The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the
requester are passed to the method and the output parameters and return value are passed back to the
requester.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Operations_.html [20/02/04 05:42:08 p.m.]

mailto:mstevens@ent.mrj.com

The ORB Structure

The ORB Structure
In any discussion of ORBs, the term "client" represents the initiator of a request and the term "object" or
"object implementation" represents the service being requested. However, this client/server paradigm
only applies to the point of view of the request. It is the existence of a request which labels one entity as
the client and the other as the server. In fact, a server object might also be the client of another server
object while it is servicing a request.

The ORB is responsible for all of the mechanisms required to find the object implementation for the
request, to prepare the object implementation to receive the request, and to communicate the parameters
making up the request. The interface the client sees is completely independent of where the object is
located and how the object is implemented.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORB_Structure_.html [20/02/04 05:42:09 p.m.]

mailto:mstevens@ent.mrj.com

Static IDL ORB Interface

Static IDL ORB Interface

There are three (3) ways which the client communicates with the ORB. The client can directly interact
with the ORB for administrative functions through the common ORB Interface. See Figure 5. The other
two forms of client/ORB communication are used for request invocation. A specific, IDL defined
interface to an object can be called through the IDL Stub to invoke a request. A request can also be
invoked through the Dynamic Invocation interface (DII) for cases when the IDL stub is not present in the
client (a request is made to an object interface for which no a priori knowledge of the interface through
IDL is known) The object implementation (server) receives a request as an up-call through the IDL
generated skeleton.

Figure 5 - OMG ORB Structure

The IDL is the language used to describe the interface to object implementations or services which a
client object calls. In the ORB architecture, all communication is done through object interfaces (defined
by IDL) and the end points of communication are the caller entity (client) and the object implementation.
The client can invoke operations of a specific interface because the client has an object reference to the
object implementation. An object reference represents the information needed to specifically an object
within the ORB. The IDL which defines the object interface is used to construct the IDL stub and IDL

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Static_IDL_ORB_Interface_.html (1 of 2) [20/02/04 05:42:11 p.m.]

Static IDL ORB Interface

skeleton located in the client and server respectively. The client initiates a request by calling IDL stub
routines that are specific to the object interface pointed to be the object reference.

After a request has been accepted by the ORB from the IDL stub or DII, the ORB locates the appropriate
object implementation and transmits parameters and control to the object implementation through the
IDL skeleton. See Figure 5. The object implementation services the request and the passes return
parameters and control back to the client.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Static_IDL_ORB_Interface_.html (2 of 2) [20/02/04 05:42:11 p.m.]

mailto:mstevens@ent.mrj.com

Language Mapping

Language Mapping

The programmer interfaces to the ORB, DII, and object adapter are specified according to a language
mapping. From a programmer's point of view, their programs must interface to the ORB in the same
language that the program is written in (C, C++, SmallTalk, Java, etc.) Also, the portable IDL code is
compiled into a programming language according to a CORBA specified language mapping. As an
example, the same object interface can be used in a Java program and a C++ program because the
interface is written in IDL and can then be compiled separately into Java and C++ stubs and skeletons. In
fact, a client could call a specific object stub using SmallTalk and the stub converts the request into
canonical form. The ORB then transmits the request to a IDL skeleton mapping to a C++ object
implementation. The ORB, the ORB interfaces, and the IDL not only allow the object system to work
properly in a heterogeneous hardware network but also in a heterogeneous coding environment.

Another important factor in having the ORB work in a heterogeneous environment is the object
reference. Object references can be implemented according to any language mapping. Through common
ORB functionality, object references can be converted to a string form which can be transmitted to
another part of the object system which needs the object reference in an alternate language mapping.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Language_Mapping_.html [20/02/04 05:42:12 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Interface Repository (IR) and the Dynamic Invocation Interface (DII)

Interface Repository (IR) and the Dynamic Invocation Interface (DII)

The interface repository (IR) is a run-time database of the IDL declarations. The interface repository
allows a programmer to query an object interface in the repository to find out what types of operations
and parameters are supported by the interface. Dynamic requests are built at run-time using the interface
repository. A client which has an object reference for which no IDL stub is available can call the ORB's
common get_interface() function to retrieve the InterfaceDef object from the interface
repository. The InterfaceDef object is a standard type. Using the InterfaceDef object, other
associated objects can be retrieved including OperationDef objects for the operations of the object
interface. Even the exceptions associated with an operation can be retrieved from the ExceptionDef
object.

The IR and DII provide the user/programmer interface to the low level implementation of the request
protocol. All object interfaces in the ORB are unique, identifiable entities. Also, within an object
interface, there are uniquely identifiable operations, parameters, and exceptions. When a request is
issued, it is these low level unique IDs for the interfaces, operations, parameters, and exceptions which
are assembled and sent to and from the ORB. The DII processes requests which are already in the low
level form and have no relationship with the client or server code. Requests which originate in the IDL
Stubs are formed at compile-time and are therefore known to the programmer and are represented as
code in the language mapping.

The low level aspect of dynamic requests make them powerful but also very abstract. As an example,
using a dynamic request is like using a protocol like TCP but accessing it at the IP level at one end of a
connection stream. In this case, just like the case of DII, the other end of the TCP protocol connection
doesn't know the difference. When a IDL skeleton receives a request, the origin of the request is not
known. The request can come from a pre-compiled IDL stub in the client program or can be built at run-
time using the DII and IR.

I find the IR and DII so abstract that I haven't found a use for it in any application program. When I find
examples of applications using dynamic requests, the applications are always interacting with a human to
create requests. For example , the IR could be used to query the interface of an object reference returned
in a previous request. In this way, the IR could be used to find reusable software components. In another
example, inspired during an open discussion of CORBA at Object Expo NY 1995, the IR and DII could
be used to monitor and control abstract components in a large computer network. If every node in the
network had a built in system management object, even an unrecognized node could be monitored by
querying the IR with a reference to the system management object. Here again, human intervention is
needed to interpret the IR query results.

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Interface_Repository__IR__and_the_Dynamic_I.html (1 of 2) [20/02/04 05:42:14 p.m.]

http://www.omg.org/

Interface Repository (IR) and the Dynamic Invocation Interface (DII)

For almost all cases, the standard IDL stubs provide the best interface for invoking requests. Even if code
could be designed to use the IR and DII without human intervention, the performance would be
degraded. In order to create a dynamic request, a static operation for all object references is provided to
create a request object. The request object encapsulates the behavior of adding arguments and
dispatching the request. As the name implies, the dynamic request is actually "built" during run-time.
The IDL stub contains pre-compiled request which are obviously faster.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/...s_Interface_Repository__IR__and_the_Dynamic_I.html (2 of 2) [20/02/04 05:42:14 p.m.]

mailto:mstevens@ent.mrj.com

Implementation Repository

Implementation Repository

The OMG also specifies another ORB database called the implementation repository which stores the
unique details the ORB uses to locate and activate object implementations. The implementation
repository usually contains operating system and vendor specifics which are not portable. Installation of
implementations and control of policies related to the activation and execution of object implementations
is done through operations on the implementation repository. A client can call a common ORB function
get_implementation() on an object reference to retrieve the implementation information.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Implementation_Repository_.html [20/02/04 05:42:15 p.m.]

mailto:mstevens@ent.mrj.com

Object Adapter

Object Adapter

The Object Implementation communicates with the ORB through the common ORB Interface or the
Object Adapter component. As an example, the Object might register its service(s) with the ORB through
calls to the Object Adapter. Services provided by the ORB through an Object Adapter also include:
generation and interpretation of object references, method invocation, security of interactions, object and
implementation activation and deactivation, and mapping object references to implementations.

● A CORBA compliant ORB shall have at least on type of object adapter called the Basic Object
Adapter (BOA). The requirements on the BOA are [19]:

● The BOA shall supply a Implementation Repository that lets the server install and register object
implementations.

● The BOA shall provide mechanisms for generating and interpreting object references, activating
and deactivating object implementations, and invoking methods and passing request parameters.

● The BOA shall provide an identification mechanism for clients. The client or "principal"
identification is provided by the adapter but it is up to the implementation to use it.

● The BOA shall provide for method invocation through stubs.

The activation of object implementations is governed by four specified policies: shared server,
unshared server, server-per-method, and persistent server.

Multiple objects reside in the same server program (process) in a shared server activation policy. Using
the Implementation Repository, the BOA starts the server process following the first request. A server
process notifies the BOA that it is ready by calling the common object adapter function
impl_is_ready(). The server handles one request at a time. When the server is ready to terminate, it
calls the common object adapter function deactivate_impl(). The unshared server activation
policy provides for one object implementation per process. When the object implementation server
process is ready it notifies the BOA by calling the common adapter function obj_is_ready(). The
server object remains active and will receive requests until it calls the common object adapter function
deactivate_obj().

The server-per-method activation policy allows for a new server process to be started for every request
made on an object implementation. The persistent server activation policy is for server objects which are
started outside of the control of the BOA.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Adapter_.html (1 of 2) [20/02/04 05:42:16 p.m.]

http://www.omg.org/

Object Adapter

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Object_Adapter_.html (2 of 2) [20/02/04 05:42:16 p.m.]

mailto:mstevens@ent.mrj.com

CORBA

CORBA Standard

The state of the art in CORBA compliant ORBs are those compliant with the new (late 95) CORBA 2.0
specification from the OMG. CORBA 2.0 addresses some of the short comings of the CORBA 1.1
specification such as standard inter-ORB compatibility. I found that most commercial CORBA 1.1
vendors provided extensions to the standard which made there ORB a viable product. In many case,
CORBA 2.0 provided a standard for what ORB vendors were already doing but doing differently. For
instance, CORBA 2.0 requires that TCP/IP be used for inter-ORB communication but most ORB vendors
already used TCP/IP. The following section describes ORBeline, the CORBA 1.1 compliant ORB sold
by PostModern Computing (now Visigenic) and Orbix, the CORBA 1.1 compliant ORB produced by
Iona Technologies. PostModern Computing (now Visigenic) and Iona have provided their ORBs for
distributed object research at Villanova University.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_CORBA_.html [20/02/04 05:42:17 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.vill.edu/
mailto:mstevens@ent.mrj.com

PostModern Computing

PostModern Computing (now

Visigenic)'s ORBeline
The ORBeline system from PostModern Computing (now Visigenic) is a complete CORBA 1.1
implementation with extensions added for fault-tolerance, distributed directory services, and automated
protocol selection. ORBeline works on top of the proven distributed object system, NetClasses (see
PostModern's NetClasses Section 2.8). This section describes the overall architecture of ORBeline, the
implementation details and relationship to NetClasses, and some example IDL code.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_PostModern_Computing_.html [20/02/04 05:42:18 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

ORBeline's Architecture

ORBeline's Architecture

The heart of ORBeline is the replicated dynamic directory service called the Smart Agent which keeps
track of all objects in the ORB. The Smart Agent is a process running on a host in a network. Not only
the activated objects but also the dormant object implementations registered with the object activation
daemons are monitored by the Smart Agent. Upon the ORBeline ORB receiving a request from a client,
the Smart Agent will either map the request to an activated object (already running) or a new server
process will be started according to the object implementation details found in an associated object
activation daemon.

In addition to the ORB objects, the Smart Agent keeps track of all active clients and their respective
connections to servers in the ORB. The Smart Agent monitors these connections and the end-point
processes using heart beats. A heart beat refers to operating system mechanisms which are used to
determine the state of another process. If a connection is broken or an end point process is no longer
running, the Smart Agent will facilitate a reconnect or the object server will be restarted. The ORBeline
architecture is fault-tolerant because of the Smart Agent. ORBeline allows objects to be replicated so that
the Smart Agent can reconnect a client to a duplicate object server when the first one is unavailable. For
example, if a client is connected to an object running on host A and host A crashes, the Smart Agent will
seamlessly reconnect the client to an object running on host B. The Smart Agent itself can be replicated
on many hosts in a network. If the host running the primary Smart Agent crashes, a replicated Smart
Agent will takeover on another host.

As mentioned above, the Smart Agent relies on object activation daemons to start object servers. Object
implementation can be registered with an object activation daemon running on a particular host. The
object activation daemon will be notified upon a client request to start the server object.

ORBeline provides a very elegant distributed object implementation. Object implementations can be
anywhere in the ORB with respect to the client. The objects can be collocated in the same process or on
the same machine as the client. The objects can also be on another machine in the same network or in a
remote network. The Smart Agent will monitor other Smart Agents registered from other network. No
matter where the requested object is located, this fact is totally transparent to the client. Again, the notion
of a client/server relationship is from the point of view of the request endpoints. ORBeline's CORBA 1.1
compliance and fault tolerant extension operates on the strong foundation of the NetClasses product.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_Architecture_.html (1 of 2) [20/02/04 05:42:19 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

ORBeline's Architecture

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_Architecture_.html (2 of 2) [20/02/04 05:42:19 p.m.]

mailto:mstevens@ent.mrj.com

The ORBeline

The

ORBeline Framework

In addition to the executable objects provided with ORBeline such as the Smart Agent, IDL compiler,
Object Activation Daemons, and the Interface Repository, PostModern created an object framework
which supports the CORBA 1.1 specification. This object framework (now referred to as the ORBeline
framework), brings the NetClasses framework up to compliance with CORBA 1.1 and completes a
seamless C++ mapping of CORBA IDL. The ORBeline framework is a forest of classes where most of
the classes are part of the tree inheriting from DSResource and the rest are supporting classes which
complete the ORB interface. (See Appendix A, page 2) As presented in Section 2.8.3.2, the DSResource
class is an abstract interface for distributed objects which provides reference counting, object I/O, RTTI,
and other primitive behaviors necessary to implement CORBA objects. This section describes the details
of the ORBeline framework including the configuration, the implementation of primitive ORB types, the
exception handling system, and the ORB Object.

Namespaces and the

CORBA class

The ORBeline framework consists of many classes (including all those in the DSResource tree) which
are part of the CORBA namespace. A namespace, in the context of C++, refers to the specification of the
scope of a symbol in the code. Namespaces are part of the new ANSI/ISO standard but are not available
in all compilers. Namespaces provide a almost perfect guard against symbol collisions. An example of a
symbol or name collision is when two (2) object frameworks are being used at the same time and they
both declare a type boolean. The ideal solution to this problem is to allow designers the freedom to use
names which they deem appropriate and provide a name collision prevention mechanism. The ANSI/ISO
standard specifies such a solution.

The ORBeline framework provides a protected namespace by declaring names within the bounds of the
class CORBA (nested classes). For instance, ORBeline declares a class Object in a header file called

object.h. The object.h header file is never explicitly included in a user file. Instead, the file
corba.h declares the class CORBA which declares all the ORBeline classes, typedefs, statics, and

includes the ORBeline header files inside the CORBA class declaration. (See code block below and

Appendix A, page 3) The only header needed by a user file is corba.h.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (1 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

The ORBeline

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class CORBA

{

public:

class Object;

class Structure;

class Environment;

class Array;

class Sequence;

class String;

class Union;

class ORB;

class BOA;

class MarshalStream;

class Context;

class Property;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (2 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

The ORBeline

class PropertyList;

class TypeCode;

class StructTypeCode;

class EnumTypeCode;

class UnionTypeCode;

class StringTypeCode;

class ObjRefTypeCode;

class SequenceTypeCode;

class ArrayTypeCode;

class Any;

class Value;

class ValueShort;

class ValueLong;

class ValueUShort;

class ValueULong;

class ValueChar;

class ValueOctet;

class ValueBoolean;

class ValueString;

class ValueObjRef;

class ValueTypeCode;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (3 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

class ValueStruct;

class ValueUnion;

class ValueEnum;

class ValueSequence;

class ValueArray;

typedef short Short;

typedef long Long;

typedef unsigned short UShort;

typedef unsigned long ULong;

typedef char Char;

typedef float Float;

typedef double Double;

typedef unsigned char Boolean;

typedef unsigned char Octet;

static Boolean TRUE;

static Boolean FALSE;

#include "env.h"

#include "cstring.h"

#include "struc.h"

#include "array.h"

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (4 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

#include "seq.h"

#include "union.h"

#include "typeinfo.h"

#include "princ.h"

#include "idefclnt.hh"

#include "orb.h"

#include "boa.h"

#include "bopt.h"

#include "object.h"

#include "typecode.h"

#include "any.h"

#include "value.h"

#include "mstrm.h"

#include "prop.h"

#include "context.h"

#include "optr.h"

};

Code Block 22 - PostModern Computing (now Visigenic)'s CORBA Class

By declaring all the ORBeline names inside the class CORBA, they can be referenced by using the scope delimiter operator

and the encapsulating class. Continuing the above example, the class Object is denoted

CORBA::Object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (5 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

The ORBeline

When an ORBeline type name is referenced outside the scope of another ORBeline class, the scope
delimiter must be used.

ORBeline's Typecodes , Any, and Value Classes

In section 3.1.2, the primitive concept of an CORBA Value and Type was presented. Figure 4 - OMG
Specified Type Values, is shown here again.

The CORBA concepts of Values and Types is confusing because they refer to the same thing; only the
point of view is different. A CORBA object is an interface, specified with IDL, which hides an object
implementation in the ORB. The object interface declares all possible public requests on the object
implementation. These requests can have input, output, and return arguments. The "type" of these
arguments are referred to as CORBA Type and an instance of a particular CORBA Type is a CORBA
Value. For necessary reasons which will be describes shortly, ORBeline adds to the confusion by
declaring, in many cases, three (3) C++ classes for every apparent "type". Below are the three classes
which model the CORBA "String" type/value. (See Appendix A, page 10,12, & 26)

class CORBA::String; // "cstring.h"

class CORBA::ValueString; // "value.h"

class CORBA::StringTypeCode; // "typecode.h"

In ORBeline, the CORBA value "String" is implemented using the CORBA::String class. The

CORBA type "String" is implemented using the C++ type of the String class. In other words, the

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (6 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

CORBA value "String" is an instance of the ORBeline C++ class CORBA::String. The CORBA type

"String" maps directly to the C++ type for the ORBeline class CORBA::String.

When you read the ORBeline framework specifications, you find many "String" classes. What are the
CORBA::ValueString and CORBA::StringTypeCode classes for? The answer is that they are

used by the implementation of the CORBA::Any, CORBA::Value, and CORBA::TypeCode classes.

As presented in Section 3.1.2, the CORBA Value "Any" is an opaque type place holder used for
wildcarding "any" IDL type including primitive types and user defined "constructed" types.

ORBeline implements the CORBA "Any" value using the C++ class CORBA::Any. The CORBA::Any

class uses the CORBA::Value class and the CORBA::Value class uses the CORBA::TypeCode

class. In order to implement the CORBA "Any" concept, every primitive "type" needs an associated class
derived from both CORBA::Value and CORBA::TypeCode. In addition to using the CORBA type

"Any" in an IDL declaration, the programmer can build dynamic requests using the Dynamic Invocation
Interface and Interface Repository. ORBeline provides the capability to build dynamic requests using the
CORBA::Value classes and CORBA::TypeCode classes. The rest of this section and the following

two (2) sections describe the implementation details of the ORBeline framework with respect to the
CORBA::TypeCode, CORBA::Any, and CORBA::Value classes.

The TypeCode Classes

There is a CORBA::ValueX class for every "Value" specified in the CORBA Specification (See Figure

above). These classes inherit from the CORBA::Value class. The "constructed values" are specialized

in the CORBA::ValueConstructed class and its derived sub-classes. (See Appendix A, page 11)

Since the CORBA::Value classes are used for referencing within the ORB even the C++ primitives are

modeled (e.g. CORBA::ValueShort, CORBA::ValueChar).

In addition to the implementation classes and typedefs for the primitive CORBA "Values",

typedef Object * ObjectRef;

typedef short Short;

typedef long Long;

typedef unsigned short UShort;

typedef unsigned long ULong;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (7 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

typedef char Char;

typedef float Float;

typedef double Double;

typedef unsigned char Boolean;

typedef unsigned char Octet;

static Boolean TRUE;

static Boolean FALSE;

class Structure;

class Array;

class Sequence;

class String;

class Union;

class Any;

2>Code Block 23 - PostModern Computing (now Visigenic)'s CORBA "Values" Implementation

there are also CORBA "TypeCodes". ORBeline implements CORBA "TypeCodes" as C++ classes. This
is why the CORBA::StringTypeCode class exists. A CORBA "TypeCode" consists of a "Kind"

value and a parameter list for more complicated types. The following table shows this relationship.

TypeCode Const (* C++ class) Kind Parameter List

TC_null tk_null none

TC_void tk_void none

TC_short tk_short none

TC_long tk_long none

TC_ushort tk_ushort none

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (8 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

TC_ulong tk_ulong none

TC_float tk_float none

TC_double tk_double none

TC_boolean tk_boolean none

TC_char tk_char none

TC_octet tk_octet none

TC_any * tk_any none

TC_TypeCode * tk_TypeCode none

TC_Principal * tk_Principal none

TC_Object * tk_objref none

Structure * (const generated) tk_struct
struct-name,

{member, TypeCode}

Union * (const generated} tk_union
union-name, switch TypeCode

{label-value, member-name, TypeCode}

TC_string * tk_string maxlen

Enum * tk_enum {enum-name, enum-id}

Sequence * (const generated) tk_sequence TypeCode, maxlen

Array * (const generated) tk_array TypeCode, length

Table 2 - PostModern Computing (now Visigenic)'s TypeCodes and "Kinds"

The "kind" values are declared in the CORBA::TypeCode class. The TypeCodes for the C++ primitive

types are also defined as static const instantiations within the CORBA::TypeCode class. Notice in the

following declaration of the CORBA::TypeCode class: (1) the enumeration of TCKind and tk_x

values, (2) the static const members for the primitive types (3) and the _kind and _parameters data
members.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (9 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

/**/

class TypeCode: public Object

{

public:

enum TCKind {

tk_null,

tk_void,

tk_short,

tk_long,

tk_ushort,

tk_ulong,

tk_float,

tk_double,

tk_boolean,

tk_char,

tk_octet,

tk_any,

tk_TypeCode,

tk_Principal,

tk_objref,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (10 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

tk_struct,

tk_union,

tk_enum,

tk_string,

tk_sequence,

tk_array

};

TypeCode() { _kind = tk_null; }

TypeCode(TCKind kind);

TCKind kind() const { return _kind; }

Long param_count() const { return (Long)_parameters.size(); }

Boolean equal(const TypeCode& tc) const

{ return (_kind == tc._kind &&

_parameters.isEqual(tc._parameters)); }

Any* parameter(Long index, Environment& env) const;

static const TypeCode TC_null;

static const TypeCode TC_void;

static const TypeCode TC_short;

static const TypeCode TC_long;

static const TypeCode TC_ushort;

static const TypeCode TC_ulong;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (11 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

static const TypeCode TC_float;

static const TypeCode TC_double;

static const TypeCode TC_boolean;

static const TypeCode TC_char;

static const TypeCode TC_octet;

static const TypeCode TC_any;

static const TypeCode TC_TypeCode;

static const TypeCode TC_Principal;

virtual ~TypeCode() {};

virtual Boolean is_primitive() const { return 1; }

static const char *convert_to_string(TCKind kind);

static TypeCode *_read(NCistream& strm);

static TypeCode *_create(const TypeCode& code);

protected:

TCKind _kind;

DSOrderedCltn _parameters;

void _read_parameters(NCistream& strm);

void operator=(const TypeCode&);

private:

static const TypeInfo _class_info;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (12 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

public:

TypeCode(NCistream& strm);

static const TypeInfo *_desc();

virtual const TypeInfo *_type_info() const;

virtual void *_safe_narrow(const TypeInfo *)const;

static TypeCode *_narrow(const Object *obj);

static Object *_reader(NCistream& strm)

{ return TypeCode::_read(strm); }

void _writer(NCostream& strm) const;

Boolean _is_local() const { return 1; }

int compare(const TypeCode& tc) const;

unsigned hash() const;

virtual const char *_interface_name() const

{ return "CORBA::TypeCode";}

};

Code Block 24 - PostModern Computing (now Visigenic)'s CORBA::Typecode Class

The CORBA::TypeCode class inherits from CORBA::Object which will be presented in the next

section. The CORBA::Object class encapsulates an object interface within the ORB. By having

CORBA::TypeCode or any other class inheriting from CORBA::Object makes the derived class a

specialized object in the ORB. Developers will use the "TypeCode" objects when querying the Interface
Repository or using an "Any" argument. In the example mentioned above, the CORBA::String class

also has the CORBA::StringTypeCode and CORBA::ValueString classes. The

CORBA::StringTypeCode class inherits from CORBA::TypeCode and is therefore derived from

CORBA::Object and can be an object in the ORB. The static const value TC_String is defined in

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (13 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

the class.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class StringTypeCode: public TypeCode

{

private:

static const TypeInfo _class_info;

public:

static const StringTypeCode TC_string;

StringTypeCode(Long maxlen);

StringTypeCode(ValueLong *maxlen);

StringTypeCode(NCistream& strm);

Boolean is_primitive() const { return 0; }

~StringTypeCode() {}

static const TypeInfo *_desc();

virtual const TypeInfo *_type_info() const;

virtual void *_safe_narrow(const TypeInfo *)const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (14 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

static StringTypeCode *_narrow(const Object *obj);

const char *_interface_name() const

{ return "CORBA::StringTypeCode";}

};

Code Block 25 - PostModern Computing (now Visigenic)'s CORBA::StringTypeCode Class

The Any Class

When the "Any" type is specified in IDL then the CORBA::Any class is used in the ORBeline

implementation. Every instance of the CORBA::Any class is associated with an instance of the

CORBA::Value class as seen in the following declaration:

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class Any: public DSResource

{

DECLARE_NCOBJECT_CLASS(Any);

protected:

Value *_value;

public:

Any();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (15 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

Any(const Any& a);

Any(Value *value);

Any(const Value& value);

Any(const TypeCode& code);

Any(TypeCode::TCKind kind);

~Any();

void copyFrom(NCistream& strm);

const TypeCode* type() const;

void type(const TypeCode& code);

TypeCode::TCKind kind() const;

Value * value() { return _value; }

const Value * value() const { return _value; }

void value(const Value&);

void value(Value *);

Boolean is_primitive() const;

Long member_count() const;

short shortValue() const;

long longValue() const;

unsigned short ushortValue()const;

unsigned long ulongValue()const;

float floatValue() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (16 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

double doubleValue() const;

char charValue() const;

const char * stringValue() const;

const TypeCode& typeCodeValue() const;

Object *objrefValue() const;

void shortValue(short);

void longValue(long);

void ushortValue(unsigned short);

void ulongValue(unsigned long);

void floatValue(float);

void doubleValue(double);

void charValue(char);

void stringValue(const char*);

void typeCodeValue(const TypeCode&);

void objrefValue(Object *obj);

const Value& member(const char *member_name) const;

Value& member(const char *member_name);

void get(NCistream& strm);

void put(NCostream& strm) const;

};

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (17 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

Code Block 26 - PostModern Computing (now Visigenic)'s CORBA::Any Class

Notice that the CORBA::Any class has many member functions which allow the developer to treat the

"Any" argument as what ever primitive type the developer chooses. The CORBA::Any class inherits

from DSResource which allows CORBA::Any to be a distributed object in that it can be send over the

wire to another process host, or network. The _value data member of CORBA::Any is a pointer to the

abstract CORBA::Value object. This object encapsulates the real value represented by the

CORBA::Any instance.

The Value Class

The CORBA::Value class is shown here:

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class Value: public DSResource

{

DECLARE_NCOBJECT_ABSTRACT_CLASS(Value);

protected:

Value() {}

public:

static Value* factory(TypeCode *);

static Value* factory(const TypeCode&);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (18 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

virtual ~Value() {}

virtual TypeCode::TCKind kind() const =0;

virtual const TypeCode& typeCode() const=0;

virtual void value(const Value& val) = 0;

virtual void copyFrom(NCistream& strm) = 0;

virtual Boolean is_primitive() const { return 1; }

virtual void add_member(Value *);

virtual Value& member(const char *name);

virtual const Value& member(const char *name) const;

virtual ULong member_count() const { return 0; }

virtual Value& memberAt(Long index);

virtual const Value& memberAt(Long index) const;

virtual short shortValue() const;

virtual long longValue() const;

virtual unsigned short ushortValue()const;

virtual unsigned long ulongValue()const;

virtual float floatValue() const;

virtual double doubleValue() const;

virtual char charValue() const;

virtual const char * stringValue() const;

virtual const TypeCode& typeCodeValue() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (19 of 34) [20/02/04 05:42:29 p.m.]

The ORBeline

virtual const Any& anyValue() const;

virtual Any& anyValue();

virtual Object *objrefValue() const;

virtual void shortValue(short);

virtual void longValue(long);

virtual void ushortValue(unsigned short);

virtual void ulongValue(unsigned long);

virtual void floatValue(float);

virtual void doubleValue(double);

virtual void charValue(char);

virtual void stringValue(const char*);

virtual void stringValue(const String&);

virtual void typeCodeValue(const TypeCode&);

virtual void anyValue(const Any&);

virtual void anyValue(Any *value);

virtual void objrefValue(Object *value);

};

Code Block 27 - PostModern Computing (now Visigenic)'s CORBA::Value Class

The CORBA::Value class uses a static factory member function [20] called factory() which
produces the appropriate CORBA::ValueX object from a TypeCode or another CORBA::Value

object. The CORBA::Value class also provides accessor functions for use by derived classes. Again,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (20 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

the CORBA::Value class inherits from DSResource so that it can be a distributed object. Continuing

the example of the CORBA::String class, the CORBA::ValueString class is shown here:

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class ValueString: public Value

{

DECLARE_NCOBJECT_CLASS(ValueString);

private:

String _value;

public:

ValueString() {}

ValueString(const char *val) : _value(val) {}

ValueString(const String& val) : _value(val) {}

~ValueString() {}

TypeCode::TCKind kind() const

{ return TypeCode::tk_string; }

const TypeCode& typeCode() const

{ return StringTypeCode::TC_string; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (21 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

void copyFrom(NCistream& strm)

{ _value.copyFrom(strm); }

void value(const Value& val)

{ stringValue(val.stringValue()); }

const char *stringValue() const

{ return (const char *)_value; }

void stringValue(const char * val)

{ _value = val; }

void stringValue(const String& val)

{ _value = val; }

};

Code Block 28 - PostModern Computing (now Visigenic)'s CORBA::StringValue Class

The CORBA::ValueString class contains a private data member which is a pointer to the actual data

object which the Value class encapsulates in the ORB. The kind() member function always returns
CORBA::TypeCode::tk_string. The typeCode() member function always returns

CORBA::StringTypeCode::TC_string. Because the kind()and typeCode() member

functions are virtual, the proper TypeCode and Kind will be returned when these functions are called on
a CORBA::Value object pointer.

The Value and TypeCode classes are primarily used when querying/browsing the Interface Repository
(IR) for the purposes of producing Requests on the Dynamic Invocation Interface (DII). As mentioned in
Section 3.2.3, there is no application of the DII and IR in this research. Therefore, further details on the
use of Value and TypeCode classes will not be shown in this report. In addition to Value and TypeCode,
the following ORBeline namespaces are provided for the classes which interface to the DII and IR:

CORBA_DII::

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (22 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/

The ORBeline

CORBA_IR::

The use of the "Any" wildcard type specifier is a consideration in many object interfaces. However,
polymorphism can replace the "Any" type in many situations. For instance, if an ORB object interface is
declared to perform searching then abstract Goal and Domain classes could also be declared to be used as
arguments to the Search() method. Specialized Goal and Domain classes can be declared as the developer
needs. An Any class would not be a productive argument for the Search() method. However, an Any
might be a good type specifier for a function to populate a given domain because "anything" can be part
of a domain.

This presentation of the opaque "Any" type and the complex dynamic request "typecodes" and "values"
represent a large volume of the ORBeline implementation. The material presented here shows that a lot
of the requirements of the CORBA 1.1 specification might never be used by most ORB users. The rest of
the material in this section describe the components of the ORBeline framework which allow the
developer to build static IDL interfaces in C++.

Environment Class

One of the most important features of the ORB is the exception handling capability. Exceptions are
errors that occur during run-time. For instance, if an object's interface is called which causes the object to
try to read some information out of a file and the file can not be opened, an error or exception is raised. If
another part of the system has an interest in the presence of that type of exception, a specific error or
exception handler will be executed. The ANSI/ISO C++ standard has approved an exception handling
feature but it also is not common in all compilers. Presently, CORBA 2.0 compliant products are starting
to map CORBA exceptions directly into standard C++ exceptions. The ORBeline framework implements
CORBA 1.1 compliant exceptions using the CORBA::Environment and CORBA::Exception classes.

The CORBA::Environment class is the interface to the ORBeline exception system. Whenever a request
is made on an ORB Object an instance of a CORBA::Environment object is integrated with the request
arguments and returned to the caller. The caller or client can inspect the CORBA::Environment object
returned with the results if the request failed to see why. A request can fail for common reasons like a
network connection going down or a more specific reason which is user defined. Below is the declaration
of the CORBA::Environment class. Notice that it is part of the DSResouce tree so that an
CORBA::Environment can be a distributed object. The important interfaces to this class are the member
functions which set an exception, check an exception, and clear an exception. There is a private data
member which is a pointer to an instance of a CORBA::Exception class.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (23 of 34) [20/02/04 05:42:29 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class Environment: public DSResource

{

DECLARE_NCOBJECT_CLASS(Environment);

private:

Exception *_exception;

public:

Environment()

{ _exception = (Exception *)NULL; }

virtual ~Environment()

{ DSResource::unref(_exception); }

virtual void copyFrom(NCistream& strm);

void get(NCistream& strm)

{ copyFrom(strm); }

void put(NCostream& strm) const

{ write(strm); }

Boolean check_exception() const

{ return _exception != (Exception *)NULL; }

const Exception *exception_value() const

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (24 of 34) [20/02/04 05:42:29 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

{ return _exception; }

Exception *exception_value()

{ return _exception; }

void exception_value(Exception *exp)

{ DSResource::unref(_exception);

_exception = exp;

DSResource::ref(_exception); }

void clear_exception()

{ DSResource::unref(_exception);

_exception = (Exception *)NULL; }

};

Code Block 29 - PostModern Computing (now Visigenic)'s t Class

Exception Class

As described above, ORBeline implements exceptions as distributed C++ objects. The
CORBA::Exception class inherits from DSResource so that it can be distributed object. The
CORBA::Exception class is abstract because its constructor is not public. Exceptions are further
classified per the CORBA 1.1 specification as system exceptions and user exceptions. There are a finite
number of system exceptions implemented as specialized CORBA::SystemException classes. Through
an IDL declaration, a programmer create a user exception which derives from the
CORBA::UserException exceptions are:

System Exception Class Names Description

CORBA::BAD_PARAM an invalid parameter was passed

CORBA::NO_MEMORY dynamic memory allocation failure

CORBA::IMP_LIMIT violated the implementation limit

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (25 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

CORBA::COMM_FAILURE communication failure

CORBA::INV_OBJREF invalid object reference passed

CORBA::NO_PERMISSION no permission for attempted op

CORBA::INTERNAL ORB internal error

CORBA::MARSHAL error marshalling param/result

CORBA::INITIALIZE ORB initialization failure

CORBA::NO_IMPLEMENT operation implementation unavailible

CORBA::BAD_TYPECODE bad typecode

CORBA::BAD_OPERATION invalid operation

CORBA::NO_RESOURCES insufficient resources for request

CORBA::NO_RESPONSE response to request not yet availible

CORBA::PERSIST_STORE persistent storage failure

CORBA::BAD_INV_ORDER routine invocation out of order

CORBA::TRANSIENT transient failure

CORBA::FREE_MEM cannot free memory

CORBA::INV_IDENT invalid identifier syntax

CORBA::INV_FLAG invalid falg was specified

CORBA::INTF_REPOS error accessing interface repository

CORBA::CONTEXT error processing context object

CORBA::OBJ_ADAPTER failure detected by object adapter

CORBA::DATA_CONVERSION data conversion error

CORBA::UNKNOWN the unknown exception

Table 3 - PostModern Computing (now Visigenic)'s Standard System Exceptions Descriptions

The abstract CORBA::Exception class is very simple as seen below. When a client receives a response
and the environment returns an exception, two (2) actions can be taken. First, the string name of the
exception can be retrieved using the _id() member function. If more information is needed by the client,
the CORBA::Exception pointer needs to be cast to a more specific CORBA::SystemException or
CORBA::UserException.

/**/

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (26 of 34) [20/02/04 05:42:30 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class Exception: public DSResource

{

DECLARE_NCOBJECT_CLASS(Exception);

protected:

Exception() {}

public:

virtual ~Exception() {}

virtual const char *_id() const;

};

Code Block 30 - PostModern Computing (now Visigenic)'s CORBA::Exception Class

A client can cast a returned CORBA::Exception pointer to a CORBA::SystemException pointer by
calling the static _cast() member function of the CORBA::SystemException class. The resulting pointer
will be NULL if the cast was invalid. The standard system exception classes contain a "minor" code
which further describes the exception which occurred. Since exceptions occur during requests, standard
system exceptions also contain a "completion" status. The completion status indicates whether the
request was completed regardless of the exception. The CORBA::SystemException class is below:

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (27 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

The ORBeline

/* All rights reserved. */

/**/

class SystemException: public Exception

{

DECLARE_NCOBJECT_CLASS(SystemException);

public:

enum completion_status {

YES =0,

NO=1,

MAYBE=2

};

private:

ULong _minor;

completion_status _status;

protected:

SystemException() { _minor = 0; _status = NO; }

public:

SystemException(ULong minor, completion_status status) {

_minor = minor;

_status = status; }

virtual ~SystemException() {}

ULong minorFlag() const { return _minor;}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (28 of 34) [20/02/04 05:42:30 p.m.]

The ORBeline

ULong& minorFlag() { return _minor; }

void minorFlag(ULong val) { _minor = val; }

completion_status completed() const { return _status; }

completion_status& completed() { return _status; }

void completed(completion_status status) { _status = status; }

static SystemException *_cast(Exception *exc);

static const SystemException *_cast(const Exception *exc);

};

Code Block 31 - PostModern Computing (now Visigenic)'s CORBA::SystemException Class

The CORBA::UserException class is very similar to the CORBA::SystemException class however, it
does not have a minor code or completion status. Again, the user exception classes are declared in IDL
and defined by the programmer.

IDL Constructed Types (array,sequence,union,structure)

As describes in section 3.1.2, the programmer can declare user defined, "constructed" types using IDL.
These user types are declared in IDL from the primitive CORBA types like short, ushort, float, etc. Also,
constructed types can contain previously declared types. The four types of constructed value
implementations will be described below. For all the types, the IDL compiler will map the declarations
into C++ code.

The array and sequence types are mapped to C++ using macros and typedefs. There are simple, abstract
classes defined which all user defined arrays and sequences classes inherit from. IDL structure and union
declarations are mapped into C++ classes which inherit from CORBA::Structure and CORBA::Union
respectively. Consider the IDL declaration of a Point structure. Notice that the IDL code is very similar
to C++.

struct Point

{

float x;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (29 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

float y;

};

Code Block 32 - Example of IDL for Point Structure

The IDL compiler creates a simple implementation class derived from CORBA::Structure

class Point : public CORBA::Structure

{

DECLARE_NCOBJECT_CLASS(Point);

private:

CORBA::Float _x;

CORBA::Float _y;

public:

Point();

~Point();

void copyFrom(NCistream& strm);

void operator=(const Point& obj);

Point(const Point& obj);

CORBA::Float& x() { return _x; }

CORBA::Float x() const {return _x; }

void x(CORBA::Float val) { _x = val; }

CORBA::Float& y() { return _y; }

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (30 of 34) [20/02/04 05:42:30 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

The ORBeline

CORBA::Float y() const {return _y; }

void y(CORBA::Float val) { _y = val; }

};

Code Block 33 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Point Structure Class)

The IDL compiler will also create member function definitions for the functions declared by the
NetClasses macros. (see section 2.8.4)

DEFINE_NCOBJECT_CLASS1(Point, CORBA::Structure);

Point::Point(NCistream& strm) : CORBA::Structure(strm)

{

strm >> _x;

strm >> _y;

}

void Point::copyFrom(NCistream& strm)

{

strm >> _x;

strm >> _y;

}

Point::Point(const Point& obj)

{

_x = obj.x();

_y = obj.y();

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (31 of 34) [20/02/04 05:42:30 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

The ORBeline

}

void Point::operator=(const Point& obj)

{

_x = obj.x();

_y = obj.y();

}

void Point::write(NCostream& strm) const

{

strm << _x;

strm << _y;

}

void Point::prettyPrint(NCostream& strm) const

{

strm << "Point" << endl;

strm << "\tx: " << _x << endl;

strm << "\ty: " << _y << endl;

}

int Point::compare(const NCObject& p) const

{

const Point& nc_temp = NCCONST_REF_CAST(Point, p);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (32 of 34) [20/02/04 05:42:30 p.m.]

The ORBeline

int diff = 0;

diff = ((int) _x - (int) nc_temp._x);

if (diff)

return diff;

diff = ((int) _y - (int) nc_temp._y);

if (diff)

return diff;

return diff;

}

unsigned Point::hash() const

{

unsigned h = 0;

h ^= (unsigned) _x;

h ^= (unsigned) _y;

return h;

}

Point::Point()

{

_x = 0;

_y = 0;

}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (33 of 34) [20/02/04 05:42:30 p.m.]

The ORBeline

Point::~Point()

{

}

Code Block 34 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Point Structure Definition)

IDL union types are built in the same fashion where user declared CORBA Unions are classes derived
from CORBA::Union.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_The_ORBeline_.html (34 of 34) [20/02/04 05:42:30 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

ORBeline's ORB Objects

ORBeline's ORB Objects

In addition to interactions with the ORB core, all interactions and dialog between clients and servers are
done with respect to ORB Objects. From the point of view of the server, the ORB Object is an Object
Implementation which is registered with the ORB. In the client, the same Object is hidden by a Object
Reference which the client uses to access the interface of the Object in the server.

Object Reference

If the ORB Object is located in another process or node then the Object Reference refers to an ORB
Object proxy class which hides the remote aspect of the actual ORB Object. The standard convention for
specifying an Object in the ORB is through the Object Reference. ndard CORBA type/value. The
implementation details of the Object Reference is hidden from the user.

In OBReline, Object References are mapped directly into C++ pointers to classes derived from
CORBA::Object. In order for a client to access an ORB Object the client must have the Object

Reference. An Object Reference can be obtained directly from the ORB, returned as an argument from a
previous request, or acquired outside the ORB in a string form. An Object Reference can be "stringified"
(converted to a string form) and converted back to a real Object Reference again using ORB functions.
This implementation independent string form allows Object References to be stored in non-ORB
systems, files like World Wide Web (WWW) hypertext markup language (HTML), or database tables.

Interface Name and Object Name

In the case where the ORB generates and returns an Object Reference ("binding"), a hierarchy of
information can be used to specify the desired Object. All ORB Objects are at least described by their
Interface Name. The Interface Name is the name of the interface specified in the IDL. For example, the
IDL for a search_engine interface is specified in IDL as:

interface search_engine {

...

};

The Interface Name "search_engine" specifies an interface of type search_engine which will
be implemented in ORBeline as a C++ class called search_engine which is derived from

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (1 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/

ORBeline's ORB Objects

CORBA::Object. In ORBeline, an ORB Object can be referenced more specifically by its Object

Name. The Object Name is a string which denotes a particular instance of an Interface Name. For
example, a client could asked the ORB to locate an Object not only by its IDL matching Interface Name
but also the particular Object Name. Even though the ORB can find an Object when the requester is on a
different node in the network, a hostname can also be used to specify the node location of an ORB
Object. In other words, a client can ask for a search_engine Object on host A.

Using IDL, a designer can have Object Interfaces inherit from other interfaces. For instance, the
distributed_search_engine Object Interface can inherit from the general search_engine
Object Interface. In this case, if a client asks the ORB to return an Object Reference to a search_engine
Interface, the resulting Object Reference could reference a distributed_search_engine instead.
The feature of Object Interface inheritance works just like C++ class inheritance (See section 1.1.1.3).
Both Object Interface functions and properties are inherited.

Object Class

One of the most powerful features of ORBs is the ability to "bind" to a specified Object in the ORB.
When a client asks the ORB to generate and return an Object Reference to specified Object, it is called
"binding" to an ORB Object. The details of the CORBA::Object class must be reviewed to understand

the implementation of the "bind" capability. (See Appendix A, page 22)

The abstract CORBA::Object class encapsulates the details of sustaining an Object within the ORB.

As mentioned above, every Object Interface declared in IDL is mapped to a C++ object which derives
from CORBA::Object. Therefore, in addition to the interface members specified in the IDL, the new

object class inherits all the data and function members of the CORBA::Object class. For instance, the
interface Grid is declared in IDL as:

// struct Point already declared

interface Grid

{

void query(in Point the_point, out float the_value);

};

Code Block 35 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid Interface)

The IDL compiler will create the C++ code for the Grid class as follows:

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (2 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

ORBeline's ORB Objects

class Grid: public virtual CORBA::Object

{

private:

static const CORBA::TypeInfo _class_info;

public:

static const CORBA::TypeInfo *_desc();

virtual const CORBA::TypeInfo *_type_info() const;

virtual void *_safe_narrow(const CORBA::TypeInfo *) const;

static CORBA::Object *_reader(NCistream& strm)

{return new Grid(strm);}

protected:

Grid(const char *obj_name = NULL) :CORBA::Object(obj_name) {}

Grid(NCistream& strm) :CORBA::Object(strm) {}

virtual ~Grid() {}

public:

enum _Grid_Methods {

_Grid_M_query = 0

};

static Grid *_narrow(const CORBA::Object *obj);

static Grid *_bind(CORBA::Environment &_env,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (3 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

const char *object_name = NULL,

const char *host_name = NULL,

const CORBA::BindOptions* opt = NULL);

static Grid *_bind(const char *object_name = NULL,

const char *host_name = NULL,

const CORBA::BindOptions* opt = NULL)

{ CORBA::Environment env;

return _bind(env, object_name, host_name, opt); }

virtual const char *_interface_name() const { return "Grid"; }

void query(const Point& the_point, CORBA::Float& the_value,

CORBA::Environment& _env);

virtual void query(const Point& the_point,

CORBA::Float& the_value)

{ query(the_point, the_value, _environment()); }

};

typedef Grid* GridRef;

Code Block 36 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid Interface Class)

Notice that most of the Grid class is generic except for the query functions. There is a query function
for the case when the global, static CORBA::Environment object (see Section 3.3.2.3) should be used

and a second query function for the case where the requester calls the query function with a local
CORBA::Environment object reference. The remaining class functions come with every derived

CORBA::Object class. The CORBA::Object class, which Grid and all other interfaces inherit

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (4 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

from, is declared as follows.

/**/

/* ORBeline (c) by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

/* All rights reserved. */

/**/

class Object {

public:

ULong _ref_count() const;

void _ref();

void _release();

Object *_duplicate() const;

Object *_clone() const;

Boolean _is_nil() const;

virtual Boolean _is_local() const;

Boolean _is_remote() const;

Boolean _is_bound() const;

Boolean _is_persistent() const;

const char *_object_name() const;

virtual const char*_interface_name() const;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (5 of 22) [20/02/04 05:42:37 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/

ORBeline's ORB Objects

const Principal *_principal() const;

void _principal(Principal *principal);

const BindOptions *_bind_options() const;

static const BindOptions *_default_bind_options();

static void _default_bind_options(const BindOptions&);

_ObjectImpl *_object_impl() { return _impl; }

Environment& _environment();

static const TypeInfo *_desc() { return &_class_info; }

virtual const TypeInfo *_type_info() const {return _desc();}

virtual void _writer(NCostream&) const;

static Object *_reader(NCistream& strm);

static Object *_read(NCistream& strm,

const TypeInfo *expectedType);

static void write(const Object *obj, NCostream& strm,

const TypeInfo *expectedType);

virtual void *_safe_narrow(const TypeInfo *desc) const;

private:

static const TypeInfo _class_info;

_ObjectImpl *_impl;

protected:

Object(const Object&) {}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (6 of 22) [20/02/04 05:42:37 p.m.]

ORBeline's ORB Objects

void operator=(const Object&) {}

virtual ~Object();

Object(const char *object_name = NULL,

ORB::_ORBType type =

ORB::_ORB_POSTMODERN);

Object(NCistream& strm);

void _object_name(const char *name);

void _bind(const char *interface_name,

Environment& env,

const char *object_name =

(const char *)NULL,

const char *host_name =

(const char *)NULL,

const BindOptions *options =

(const BindOptions *)NULL);

void _rebind(Environment& env);

void _unbind(Environment& env);

MarshalStream *_create_oneway_request(

const char *interface_name,

ULong method_id,

Environment& env);

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (7 of 22) [20/02/04 05:42:37 p.m.]

ORBeline's ORB Objects

MarshalStream *_create_invoke_request(

const char *interface_name,

ULong method_id,

Environment& env);

void _send_oneway(Environment& env);

MarshalStream *_invoke(Environment& env);

void _orb_type(ORB::_ORBType

type=ORB::_ORB_POSTMODERN);

void _register_implementation(

const char *interface_name,

ULong num_methods,

_PMCSkelFunc *func_list,

void *user_data,

Environment& env,

BOA::RegistrationScope scope,

BOA::IMPLEventHandler *handler=

(BOA::IMPLEventHandler *)NULL);

void _register_implementation(

const char *interface_name,

ULong num_methods,

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (8 of 22) [20/02/04 05:42:37 p.m.]

ORBeline's ORB Objects

_PMCSkelFunc *func_list,

void *user_data,

Environment& env,

BOA::IMPLEventHandler *handler=

(BOA::IMPLEventHandler *)NULL)

{register_implementation(interface_name,num_methods, func_list, user_data,env, BOA::scope(),
handler);}

void _unregister_implementation(

const char *interface_name,

void *user_data,

Environment& env);

static Object *_implementation(const char *interface_name,

const char *object_name =

(const char *)NULL);

public:

virtual void _receive_reply(MarshalStream&,Environment&) {}

virtual void _exception(Environment& env);

};

typedef Object *ObjectRef;

Code Block 37 - PostModern Computing (now Visigenic)'s CORBA::Object Class

Even though the CORBA::Object class does not inherit from DSResource, there are many member

functions which resemble the behaviors of DSRsource for reference counting, cloning, RTTI, object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (9 of 22) [20/02/04 05:42:37 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

I/O, and safe run-time casting. In addition, the CORBA::Object class provides behavior for

determining ORB Object state, identity, client or "principal" state, bind options, operating system
implementation details, and exception environment. Other private member functions provide the
behaviors for binding Object instances to clients, generating requests, and registering implementations.

The reference counting feature is very important during distributed processing. The size of the reference
count of an object determines how many clients are using the ORB Object. (See Section 2.8.3.2) The
reference count can be accessed with the _ref_count() member function. The Object's can be
referenced (increase the reference count) by calling _ref() and dereferenced or released calling the
_release() function.

The Object can be queried using _is_local(), _is_remote(), _is_bound(), and
_is_persistent() to determine if the Object is in the same address space, on another network node
or process, currently bound to a client, or persistent respectively. The Object Name can be accessed using
the _object_name() function and the Interface Name by the _interface_name() function.
Notice that the _interface_name() function is virtual so that proper Interface Name is returned
when the caller has a pointer to a general interface which is actually a more specific class. For instance,
in the following code example

distributed_search_engine the_DSE;

search_engine *the_SE_ptr = &the_DSE;

char *the_interface_name = the_SE_ptr->_interface_name();

the result of the call to _interface_name() would call the _interface_name() function of
distributed_search_engine class instead because of the virtual specifier.

The CORBA::Object class is associated with CORBA::Principal, CORBA::BindOptions, and

CORBA::ObjectImpl classes and there are accessor functions for those as well. These other

ORBeline classes will be described later.

As mentioned above, there are member functions in the CORBA::Object class which resemble the

behavior of the DSResource class. Instead of using the NCTypeInfo (see section 2.8.3.3.2) class to
provide RTTI, a special class called CORBA::TypeInfo is used which is specific to

CORBA::Object. As in the case with NCObject, the CORBA::Object class has a static member of

type CORBA::TypeInfo. A run-time safe casting operation called _safe_narrow() is also

provided.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (10 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

ORB Object Binding

In order the understand the details of the CORBA::Object class with respect to binding and Object

Interface functions, the implementation code of the Grid class is presented below. Refer to the class
declaration generated by the ORBeline IDL compiler (Code Block 36).

const CORBA::TypeInfo Grid::_class_info("Grid",

&Grid::_reader,

CORBA::Object::_desc(),

0);

const CORBA::TypeInfo *Grid::_desc()

{

return &_class_info;

}

const CORBA::TypeInfo *Grid::_type_info() const

{

return &_class_info;

}

void *Grid::_safe_narrow(const CORBA::TypeInfo *info) const

{

if (&_class_info == info)

return (void *) this;

void *ret = NULL;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (11 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

return ret;

}

Grid *Grid::_narrow(const CORBA::Object *obj)

{

void *ptr = obj->_safe_narrow(&_class_info);

return (Grid *) ptr;

}

Grid *Grid::_bind(CORBA::Environment &_env, const char *_object_name,

const char *_host_name, const CORBA::BindOptions *opt)

{

_env.clear_exception();

Grid *_impl;

CORBA::Object *_obj = _implementation("Grid", _object_name);

if (!_obj) {

_impl = new Grid(_object_name);

_impl->CORBA::Object::_bind("Grid", _env, _object_name, _host_name, opt);

if (_env.check_exception()) {

delete _impl;

return NULL;

}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (12 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

}

else

_impl = Grid::_narrow(_obj);

return _impl;

}

void Grid::query(const Point& the_point,

CORBA::Float& the_value, CORBA::Environment& _env)

{

_env.clear_exception();

if (_is_local()) {

query(the_point, the_value);

return;

}

CORBA::MarshalStream *_strm = _create_invoke_request(

"Grid", _Grid_M_query,_env);

if (_env.check_exception())

return;

_strm->putStructure(the_point, CORBA::MarshalStream::ARG_IN);

_invoke(_env);

if (_env.check_exception()) {

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (13 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

if (CORBA::StExcep::TRANSIENT::_cast(_env.exception_value()) != NULL)

query(the_point, the_value, _env);

return;

}

_strm->getFloat(the_value, CORBA::MarshalStream::ARG_OUT);

_strm->flush(_env);

return;

}

Code Block 38 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid Interface Definition)

In the declaration of the Grid class, a private data member, _class_info, is declared as a static
CORBA::TypeInfo object. All instances of the Grid class are associated to a single

CORBA::TypeInfo object. This data member,

static const CORBA::TypeInfo _class_info;

is defined in the source code for the Grid class. Again, the definition of _class_info is almost
identical to the NCTypeInfo object. The class name, "Grid", the address of the
Grid::_reader() member function, and the _class_info of the parent class are arguments to the
constructor of the CORBA::TypeInfo object. The Grid::desc() member function accesses the

static _class_info member. The Grid::_safe_narrow() member function, as stated above,
provides run-time safe casting according to the type information found in the _class_info data
member. The CORBA::Object::_safe_narrow() function is declared virtual so that the

correct narrowing function is called in the polymorphic case. The Grid::_narrow() member
function is a static access to the Grid class' narrowing behavior.

The ORBeline IDL compiler declares a new type to implement the specific Object Reference for the
Grid class. In C++ CORBA mappings, an Object Reference mapped to a typed pointer to the Object
class. However, in other language mappings, the Object Reference might be more complicated so the
details are kept hidden.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (14 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/

ORBeline's ORB Objects

typedef Grid* GridRef;

The constructors defined for the Grid class simply call parent class constructors. The Grid class can be
initialized with just an Object Name or a new instance can be read off a NetClasses I/O stream class.

Every Interface Class, as seen in the Grid class declaration, declares an enumeration of methods
specific to the class. In the Grid class, the enumeration,

enum _Grid_Methods { _Grid_M_query = 0 };

provides the low level protocol for ORB requests. When a remote client makes a request on an ORB
Interface Object, in addition to the Object Reference and request arguments, the client must tell the ORB
the proper ID of the Object Interface's method the request is for. The enumeration of class methods
defines the method IDs. These method Ids are the key to performing dynamic requests through the DII.
In the case of the static IDL stubs, the method IDs are hard coded into the stub. However, the method IDs
are returned from the Interface Repository(IR) during dynamic request creation. The _Grid_M_query
value is used in the implementation of the Grid::Query() member function.

The Grid::_bind() member functions are factory methods 24 [21] for generating Object References.
These static functions return pointers to Grid objects. The actual type of the object depends on the
location of the "real" ORB Object. The ORBeline IDL compiler generates a second class which derives
from the first class. In this example, the Grid_impl class is generated by the ORBeline IDL compiler.

class Grid_impl: public virtual Grid

{

protected:

Grid_impl(const char *object_name = NULL);

virtual ~Grid_impl();

public:

virtual const CORBA::TypeInfo *_type_info() const

{ return Grid::_type_info(); }

virtual void *_safe_narrow(const CORBA::TypeInfo *inf) const

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (15 of 22) [20/02/04 05:42:37 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

{ return Grid::_safe_narrow(inf); }

virtual const char *_interface_name() const

{ return Grid::_interface_name(); }

virtual CORBA::Boolean _is_local() const

{ return 1; }

virtual void query(const Point& the_point,

CORBA::Float& the_value) = 0;

static void _query(void *obj, CORBA::MarshalStream &strm,

CORBA::Environment& _env,

CORBA::Principal *principal);

};

Code Block 39 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid_impl class)

The Grid_impl class is abstract (can not be instanciated) because the constructor function has
protected access. The Grid class represents the "stub" or proxy class for the Grid Object on the
client side. The Grid_impl class represents the "skeleton" or agent for the Grid Object on the server
side. The intention here is to have the programmer derive a third class from Grid_impl which actually
implements the Grid Object's behavior. Therefore, the Grid::_bind() function returns a pointer to an
instance of either the Grid class, if the Grid Object is remote, or the user class derived from
Grid_impl if the Grid Object is local. This is the most powerful and elegant aspect of PostModern
Computing (now Visigenic)'s ORBeline system. If the "real" ORB Object is in the same address space
then the ORB is bypassed entirely and a pointer to the actual Object is returned in a ::_bind(). The
local locator service is provided through the CORBA::Object class. The slower (IPC) ORB Core call

to the ORBeline Smart Agent for network locator services is only done when the Object is not local.
There are two (2) Grid::_bind() functions: one for the case of a supplied CORBA::Environment object
and a second for the global CORBA::Environment object. The bind operation takes optional arguments
which specify the Object Name, host name, and/or bind options.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (16 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

Continuing the Grid class example, the detailed operations of the Grid::_bind() function is as
follows (refer to Code Block 38):

1. The CORBA::Environment argument, _env, is cleared of old exceptions.

2. A local pointer to a Grid object is defined named _impl.
3. A local pointer to a CORBA::Object is defined named _obj.

4. _obj is assigned the return value of the call to the static
CORBA::Object::_implementation() member function.

5. The CORBA::Object::_implementation() function is called with the hard coded

Interface Name "Grid" and Object Name (possibly NULL).
6. The return value will be a pointer to a valid CORBA::Object which satisfies the Interface

Name and Object Name if the one is available locally.
7. If the pointer assigned to _obj is not NULL, then _obj is narrowed by calling the static

Grid::_narrow() method and the result is returned.
8. If the pointer assigned to _obj is NULL, then the remote bind (connect) is attempted.
9. _impl is assigned the address of a newly instanciated Grid object (the client side stub class).

10. The CORBA::Object::_bind() member function of _impl is called with the target

arguments. This function will contact the ORB Core to create the connection (according to the
CORBA::BindOptions argument).

11. After the function returns, the environment, _env, is checked for exceptions. If none have
occurred then the new Grid object is returned. Otherwise, the new Grid object is deleted and
NULL is returned.

ORB Object Method Invocation (Client-Side)

After a ::_bind() factory function returns with a valid Object Reference, both the accessors to the
Object Interface's properties and the methods of the Interface can be called. In the Grid class example,
the Grid::query() method is called with a reference to a Point object and a reference to a
CORBA::Float type. In this case the Point object is an input argument and the CORBA::Float

reference is a return argument. The query behavior takes an x, y coordinate (Point) and returns the float
value at that location.

If the Grid::_bind() factory returned a user derived, local object

Grid *the_grid = Grid::_bind(); // returned user derived, local object

them a call to the virtual function

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (17 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

the_grid->query(the_point,the_float);

will engage the correct query() function for actual type of the object pointed to by the_grid.
Therefore, if the object is local then the ORB is bypassed and the actual query behavior is executed as
normal in C++. However, if the object is the Interface stub class, Grid, then the Grid::query()
function is executed. The details of the Grid::query() function is as follows:

1. The CORBA::Environment argument, _env, is cleared of old exceptions.

2. A local pointer to a CORBA::MarshalStream object is defined named _strm. The

CORBA::MarshalStream class multiply inherits from NCistream and NCostream to

provide a utility class for directing object I/O within the ORB. (See Section 2.8.3.3)
3. _strm is assigned the CORBA::MarshalStream pointer returned from the

CORBA::Object::_create_invoke_request() member function. The hard coded

Interface Name "Grid", the Grid class method ID _Grid_M_query, and the
CORBA::Environment reference _env is passed as arguments to the

_create_invoke_request().
4. If the pointer assigned to _strm is valid, then the_point argument is placed on the

CORBA::MarshalStream variable _strm using the

CORBA::MarshalStream::putStructure() function.

5. The request is then started by calling the CORBA::Object::_invoke() member function.

6. If a CORBA::stExcep::TRANSIENT exception occurs, the request will be recursively tried

again.
7. If the request was successful, the output arguments are pulled off the

CORBA::MarshalStream, _strm, by calling the

CORBA::MarshalStream::getFloat() function and then returns.

ORB Object Method Invocation (Server-Side)

The scenario shown above has been from the point of view of the client or calling side. Again, in the case
where the ORB Object is remote, the calls to the ::_bind() and Object Interface methods engage the
behavior of the client side stub class. On the server side, the abstract skeleton interface class, provides the
interface to the ORB. In Code Block 39, the Grid Interface skeleton class Grid_impl derives from the
client stub class Grid. In the ORBeline system, as stated above, the programmer will derive a third class
from the abstract Grid_impl class which will actually implement the Grid Interface methods. Below is
the definitions for the Grid_impl class produced by the ORBeline compiler.

static CORBA::_PMCSkelFunc _Grid_func_array[] =

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (18 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/

ORBeline's ORB Objects

{ &Grid_impl::_query, 0 };

Grid_impl::Grid_impl(const char *object_name) : Grid(object_name)

{

_object_name(object_name);

CORBA::Environment _env;

_register_implementation("Grid", 1, _Grid_func_array,

(void *) this, _env);

}

Grid_impl::~Grid_impl()

{

CORBA::Environment _env;

_unregister_implementation("Grid", (void *) this, _env);

}

void Grid_impl::_query(void *obj, CORBA::MarshalStream &strm,

CORBA::Environment& _env,

CORBA::Principal *principal)

{

Grid_impl *_impl = (Grid_impl *) obj;

_env.clear_exception();

Point the_point;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (19 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

strm.getStructure(the_point, CORBA::MarshalStream::ARG_IN);

CORBA::Float the_value;

the_value = (CORBA::Float) 0;

strm.flush(_env);

if (_env.check_exception())

return;

_impl->_principal(principal);

_impl->query(the_point, the_value);

strm.putEnvironment(_env);

strm.putFloat(the_value, CORBA::MarshalStream::ARG_OUT);

_impl->_principal((CORBA::Principal *) NULL);

}

Code Block 40 - PostModern Computing (now Visigenic)'s ORBeline IDL Compiler Output (Grid_impl class definitions)

The first component of all skeleton implementations is a static array (scope within the source file only) of
type CORBA::_PMCSkelFunc. The declaration of the CORBA::_PMCSkelFunc type is

typedef void (*_PMCSkelFunc)(void *,

MarshalStream& strm,

Environment& env,

Principal *principal);

a pointer to a function which takes four (4) arguments: a pointer to void, a
CORBA::MarshalStream object reference, a CORBA::Environment object reference, and a

pointer to a CORBA::Principal object. The function type matches the prototypes of skeleton class

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (20 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

static member functions which bootstrap the Object Interface method invocations. For the Grid Interface
example, the Grid_impl class has a static member function, Grid_impl::_query(). The Grid
Interface skeleton's static array of CORBA::_PMCSkelFunc types is called _Grid_func_array.

The _Grid_func_array is initialized with the addresses of the skeleton's methods and is then NULL
terminated. This static function pointer array is used by the ORB Core to find the appropriate method to
call according to the ORB Object method ID passed by the client in a request. A server does not know
the origin of the request - the request can be from a ORBeline generated stub or a dynamically built
request. In the current example, the _Grid_M_query method ID is the index into the
_Grid_func_array. In this way, the proper method can be called using the method ID and
bootstraping function array.

The constructor and destructor methods for the skeleton class call the
CORBA::Object::_register_implementation() and

CORBA::Object::_unregister_implementation() member functions respectively. The

CORBA::Object::_register_implementation() function takes the Interface Name, the

number of Interface methods (size of the static skeleton function array), the address of the skeleton
function array, user data, environment, and optional bind options. In the Grid_impl class case

_register_implementation("Grid",1,_Grid_func_array,(void *) this, _env);

When the ORB Core receives a request from a client the combination of the Interface Name and Method
ID in the request is a key into the implementation information. The Interface Name/Method ID key
allows the correct static method address to be found. The Object Reference information provided with
the request determines the skeleton object pointer in the server. This skeleton object pointer is passed as
an argument to the static method along with an environment object reference, CORBA::MarshalStream
object reference, and a pointer to principal object.

void Grid_impl::_query(void *obj, CORBA::MarshalStream &strm,

CORBA::Environment& _env,

CORBA::Principal *principal)

The details of the Grid_impl::_query() are

1. A local Grid_impl object pointer is defined named _impl and is assigned the address of the obj
void pointer. _impl actually points to the user object derived from Grid_impl found using the
Object Reference in the server.

2. The CORBA::Environment argument, _env, is cleared of old exceptions.

3. A local Point object is defined named the_point.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (21 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.visigenic.com/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

ORBeline's ORB Objects

4. the_point is initialized by pulling data off the marshal stream by calling the
CORBA::MarshalStream::getStructure() function.

5. A local CORBA::Float type is defined named the_value and is set to zero.
6. If there is an exception the request is aborted, otherwise, the Grid_impl object's principal is set.

The CORBA::Principal encapsulates information about the caller.
7. Then, the real, user defined method is called on the Grid_impl pointer with the input and output

arguments. This is a virtual function call so that the correct method is called in the polymorphic
case.

8. The resulting environment, _env, and the resulting float value, the_value, are placed on the
marshal stream and the object's principal is cleared.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_ORBeline_s_ORB_Objects_.html (22 of 22) [20/02/04 05:42:37 p.m.]

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

Advanced Features

Advanced Features

The ORBeline 1.1 system is used in the software prototype portion of this research. In the prototype,
more detailed aspects of the ORBeline product are demonstrated including ORB event handling, request
filtering, object replication and migration, and inter-ORB communication. See following section.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Advanced_Features_.html [20/02/04 05:42:39 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Distributed Object Application Prototype

Distributed Object Application Prototype

This detailed description of the distributed object application prototype is presented in the enhanced
version of this report which completes the thesis requirements.

For the development of the software prototype, advanced techniques involving the decomposition of
parallel problems were used. These techniques are presented below with special attention placed on the
utilization of distributed objects.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Distributed_Object_Application_Prototype_.html [20/02/04 05:42:40 p.m.]

mailto:mstevens@ent.mrj.com

Hardware Platforms

Hardware Platforms
The intent of this research is to show the accessibility of parallel programming to those who have access
to simple networks. The conventional PCs and workstations available today conform to the von
Neumann architecture.[22] In this architecture, the computer is composed of a central processing unit, a
control unit, a memory unit, and I/O units. The common PC and workstation networks are basically
collections of autonomous von Neumann processors, each with their own memory, interconnected using
a variety of network architectures. Both the object-oriented implementation of parallel programming
techniques and the inherently portable architecture of CORBA allow this prototype to conform to other
hardware configurations including shared memory processors and multidimensional interconnection
networks.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Hardware_Platforms_.html [20/02/04 05:42:41 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Multicomputer

Multicomputer

The distributed memory, interconnected processor environment used in the prototype is referred to as the
multicomputer. The interconnected processors are referred to as nodes in the multicomputer. The
multicomputer used in this prototype was a heterogeneous multicomputer in that various workstations,
operating systems, and interconnects were present. The software prototype was fully implemented on this
heterogeneous multicomputer. However, because of inadequacies in the load-balancing, task scheduling,
and data partitioning, the best results were limited to executing the software prototype in a homogeneous
scenario. The details of the this result is explained in detail in Section 4.5.6.

The multicomputer consisted of PCs and workstations at three locations: Villanova University's ECE
labs, MRJ Inc., and development facilities at Infonautics Inc. Available platforms included PCs running
MS Windows NT 3.51, and SMS SparcStations running SunOS 4.x and Solaris 2.x. These nodes varied
in CPU speeds and memory. The three network locations are connected with a "highly-contended" 64KB
Internet services. Again, poor results were achieved when executing the prototype across locations for
the same reasons mentioned before. The extent of the multicomputer was limited by supported for
ORBeline 1.1 development environment. MS Visual C++ 2.2 was used with MS Windows NT on the
PCs and GNU GCC 2.6.x for UNIX. As the software prototype first entered development, ORBeline 2.0,
a newer CORBA 2.0 compliant ORB was available. However, required compiler upgrades were not
available so the older version was used.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Multicomputer_.html [20/02/04 05:42:42 p.m.]

http://www.vill.edu/
http://www.mrj.com/
http://www.infonautics.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.omg.org/
mailto:mstevens@ent.mrj.com

Parallel Programming with Objects

Parallel Programming with Objects
Most research involving parallel programming and objects concentrates on the concept of the
'server'.[23] In this context, server refers to an object which encapsulates a running task. Servers are
objects in execution.

"servers are relatively self-contained programs that implement one or more tasks of a parallel program.
In the server model, a parallel program is a collection of miniature programs running independently, but
occasionally interacting with one another by message passing."

The real benefit with using the CORBA architecture for parallel processing is that the above server
model is provided by the ORB. The ORB does most of the work for you. In every parallel system design,
the programmer must perform the same decomposition of data and functionality into concurrent tasks.
This design step is easier with object-oriented analysis for all the usual reasons. However, once the object
model is complete for the specific problem, the ORB allows the concurrent solution to be distributed
with little effort. The results of this prototype show that the most difficult step in the process was
formulating the concurrent tasks for the problem at hand. Once concurrency was achieved in the object
analysis, implementing the solution in parallel was trivial. This, of course, was the goal of the research;
show that parallel processing can be harnessed with commonplace hardware and software without
incurring the expertise of complex network programming. The ORB abstracts distributed processing to
the more intuitive server model of concurrent tasks.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Parallel_Programming_with_Objects_.html [20/02/04 05:42:43 p.m.]

http://www.omg.org/
mailto:mstevens@ent.mrj.com

Data Partitioning and Domain/Functional Decomposition

Data Partitioning and Domain/Functional Decomposition

As stated above, the most difficult portion of the prototype design was the formulation of the concurrent
tasks for the target problem. The goal here is simple; the problem has to be broken into smaller pieces
which can be executed concurrently.[24] There are two ways to break up a problem:

ctional Decomposition: realize what functionality from the normal serial execution can be placed in
parallel.

Domain Decomposition: realize which data in the system is independent and can therefore be processed
in parallel and later combined into a complete solution.

The application of objects here is that the decomposed components described above can be encapsulated
in objects; whether the components are function or data makes no difference. Once the components are
determined, the granularity of the components is adjusted to improve salability and performance. This
step turned out to be the pitfall during the prototype design. Also, the mapping of these component tasks
to available CPUs in a efficient manners was just as difficult. The next two sections discuss these
problems in detail. For now, it is enough to understand that using the ORB to distribute the parallel
components or objects is not the end of the road - intelligent scheduling of these objects on processors
with varying performance is required. As stated before, the prototype did not perform properly on the
entire multicomputer for this reason. It will be shown that this deficiency was overcome be directing
execution to processor sets with equivalent resources.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Data_Partitioning_and_Domain_Functional_Dec.html [20/02/04 05:42:44 p.m.]

mailto:mstevens@ent.mrj.com

Manager-Worker Paradigm and Load Balancing

Manager-Worker Paradigm and Load Balancing

Some problems have regular pattern in the data domain which allow these problems to be decomposed
into regularly fitted components. This is the case for large sparse and non-sparse matrices used in linear
algebra, computational grids used in flow dynamics and genetic sequences used in biology.28 There is
another class of problems where the exact set of parallel components are not known a priori but rather,
the components are calculated during run-time. Combinatorial search algorithms are usually part of this
class.3 The Traveling Salesman and Shortest Path are good examples of these search problems where the
search space is dynamically changed during execution.

One solution to the class of problem which have this dynamic behavior is the "replicated worker" or
"manager-worker" paradigm. In this case, identical worker processes are assigned to run on each physical
processor, and computing tasks are dynamically assigned to the workers as the program runs. The
workers are all associated with an abstract managing structure called the "work pool" or "manager". As
workers become available and tasks become candidates, tasks are assigned to workers and when workers
complete tasks, the work pool or manager is updated. This paradigm maps well into an object model and
was used in the prototype. A detailed presentation of the prototype's object model follows the discussion
of the combinatorial search problem which is solved in the prototype.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Manager_Worker_Paradigm_and_Load_Balancing_.html [20/02/04 05:42:45 p.m.]

mailto:mstevens@ent.mrj.com

Classic Complex Problems

Classic Complex Problems
In Section , a real world combinatorial search problem was presented. The problem there was to
decompose complex polygons into triangles for use in a digital mapping database. It turns out that this
problem has been documented before as the optimal polygon triangularization problem.[25] Also, the
optimal polygon triangularization problem is a more specific version of the generalized matrix chain
multiplication problem. The matrix chain multiplication problem is presented in detail below and is also
the problem solved by the prototype. The optimal polygon triangularization scenario is shown in Figure 6
where a complex polygon is first dissected into a convex polygon and then triangularized.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Classic_Complex_Problems_.html (1 of 2) [20/02/04 05:42:47 p.m.]

Classic Complex Problems

Figure 6 - Example of decomposing convex polygon into component triangles.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Classic_Complex_Problems_.html (2 of 2) [20/02/04 05:42:47 p.m.]

mailto:mstevens@ent.mrj.com

Matrix Chain Multiplication

Matrix Chain Multiplication

This problem is characterized by a sequence (chain) of matrices { A1, A2, ..., An } to be multiplied

together to form a resulting matrix or product.

A1A2...An

In order for a chain of matrices to be multiplied together, it must be fully parenthesized, that is, it must be
either a single matrix or the product of two fully parenthesized matrix products, surrounded by
parentheses. Because matrix multiplication is associative, all possible parenthesizations of a matrix chain
yield the same product matrix.

Where is the search problem? Consider the simple multiplication of two matrices, A and B. The inner
dimensions must be the same. In other words, the number of columns of A is equal to the number of rows
of B. If A is a p by q matrix and B is a q by r matrix, the resulting product C is a p by r matrix. The time
required to compute C is dominated by the scalar multiplication's of the form (p)(q)(r). For the matrix
chain situation, the way the chain is parenthesized makes a considerable difference in how long it takes
to compute the product.

Table 4 has dimensions for six matrices. These dimensions are used in the continuing examples. The
graph in Figure 7 shows all five (5) parenthesizations of the first four (4) matrices. The graph in Figure 8
shows all fourteen (14) parenthesizations of the first five (5) matrices. In both examples, there is an
optimal parenthesization which is less than half the worst case. By picking random values for the matrix
dimensions, one can find variations in many orders of magnitude.

matrix dimension

A1 30 35

A2 35 15

A3 15 5

A4 5 10

A5 10 20

A6 20 25

Table 4 - Example of six (6) matrices

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (1 of 4) [20/02/04 05:42:50 p.m.]

Matrix Chain Multiplication

Figure 7 - Bar graph comparing all five (5) combinations of multiplying four (4) matrices.

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (2 of 4) [20/02/04 05:42:50 p.m.]

Matrix Chain Multiplication

Figure 8 - Bar graph comparing all fourteen (14) combinations of multiplying five (5) matrices

(A1(A2(A3(A4A5))))

(A1(A2((A3A4)A5)))

(A1((A2A3)(A4A5)))

(A1((A2(A3A4))A5))

(A1(((A2A3)A4)A5))

((A1A2)(A3(A4A5)))

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (3 of 4) [20/02/04 05:42:50 p.m.]

Matrix Chain Multiplication

((A1A2)((A3A4)A5))

((A1(A2A3))(A4A5))

(((A1A2)A3)(A4A5))

((A1(A2(A3A4)))A5)

((A1((A2A3)A4))A5)

(((A1A2)(A3A4))A5)

(((A1(A2A3))A4)A5)

((((A1A2)A3)A4)A5)

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Matrix_Chain_Multiplication_.html (4 of 4) [20/02/04 05:42:50 p.m.]

mailto:mstevens@ent.mrj.com

Catalan Numbers

Catalan Numbers

The example of all six matrices is too difficult to show because the number of possibilities is so large
(42). In fact, this number grows very fast with the size of matrix chain - just like the case of decomposing
polygons. Therefore, an exhaustive search of all possibilities is impossible. The domain of the search
space sizes can be characterized as a sequence of Catalan Numbers.

The following graph shows Catalan Numbers up through n=16. If the number of possible
parenthesizations of a chain of n matrices is P(n), then P(n) = C(n-1), where C(n) is the Catalan Number
for n. Notice that the Catalan Number C(16) is over 9 million.

Figure 9 - Graph showing relationship between Catalan numbers and the matrix multiplication search space.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Catalan_Numbers_.html (1 of 2) [20/02/04 05:42:52 p.m.]

Catalan Numbers

The combinatorial explosion found in the sequence of Catalan Numbers is common for many search
problems. There are many techniques and algorithms that produce an optimal result and at the same time,
avoid the search space explosion. The technique of dynamic programming is presented by example
below and is used in the prototype to determine optimal matrix chain multiplication's for chains on the
order or n = {512,1024,2048,4096}

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Catalan_Numbers_.html (2 of 2) [20/02/04 05:42:52 p.m.]

mailto:mstevens@ent.mrj.com

Dynamic Programming

Dynamic Programming
An optimization problem can be solved by dynamic programming techniques if the structure of the optimal
solution reflects optimal substructure and overlapping subproblems. In other words, the optimal solution
must exhibit the recursive property of being directly related to solutions to optimal subproblems in which
these subproblems encompass subsets of the problem domain.

In addition to the optimal substructure, the domain of subproblems must be small or at least the
subproblems should repeat more than once. The matrix chain multiplication problem demonstrates these
characteristics. The example which follows uses the data from . In order to find the optimal solution for all
six (6) matrices, m[i,j] is defined as the minimum number of scalar multiplication's needed to compute the
matrix Ai..j

where i=1 and j=6

If i=j then the matrix chain consist of just one (1) matrix so there are no scalar multiplication's are required
so the value m[i,j] = 0 for i=j.

If i<j then m[i,j] equals the cost of the two (2) subproblems m[i,k] and m[k+1,j] plus the cost of
multiplying the two resulting matrices together. Since computing the matrix product Ai..kAk+1..j takes

pi-1pkpj scalar multiplication's,

m[i,j] can be generalized as m[i,j] = m[i,k] + m[k+1,j] + pi-1pkpj .

For each problem m[i,j], the value of k is unknown and must be selected from the (j - i) possible values in
the domain

k = i, i+1, ..., j-1

The m[i,j] values give the costs of optimal solutions to subproblems. To track of how to construct an
optimal solution, s[i,j] is defined to be a value of k at which we can split the product AiAi+1...Aj to obtain

an optimal parenthesization. That is,

s[i,j] equals a value k such that m[i,j] = m[i,k] + m[k+1,j] + pi-1pkpj.

The figure below shows a easy way to visualize this data. This table shows the structure of the problem

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (1 of 4) [20/02/04 05:42:55 p.m.]

Dynamic Programming

m[1,6] and all the subproblems, m[1,2], m[1,3], etc. The problem m[1,6] is at the top of the table with the
cost of 15125. As an example, the subproblem m[2,5] is highlighted in the darkly shaded square. Notice
that this subproblem is made up of the further subproblems to the left and down. These subproblems are
defined by the domain of k for m[2,5]. The minimal cost of m[2,5] is found by exhaustively searching all
values of k.

m[2,5] = min { m[2,2] + m[3,5] + p1p2p5 = 0 + 2500 + (35)(15)(20) = 13000 ,

m[2,3] + m[4,5] + p1p3p5 = 2625 + 1000 + (35)(5)(20) = 7125 ,

m[2,4] + m[5,5] + p1p4p5 = 4375 + 0 + (35)(10)(20) = 11375 }

= 7125

Figure
10 - Diagram of data space of m(i,j) values for example matrix multiplication order problem using dynamic programming.

Figure 11 shows the S table which is structured just like the M table in the above figure. Each entry in the
table is indexed by the [i,j] pair. The S table contains the calculated k value for each entry in the M table.
The S table can be used to formulate the optimal paraenthesization of the matrix chain. This completes the
structure of the problem. The input to the problem is the vector containing the dimensions of the matrix
chain. The output is the S table.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (2 of 4) [20/02/04 05:42:55 p.m.]

Dynamic Programming

Figure 11 - Diagram of data space of s(i,j) values for example matrix multiplication order problem using dynamic
programming

matrix dimension

A1 30 35

A2 35 15

A3 15 5

A4 5 10

A5 10 20

A6 20 25

It is the recursive nature of the matrix chain problem which allows this problem to be decomposed into
concurrent components for use in a parallel implementation. The next section will show the details of the
data decomposition used in the prototype.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (3 of 4) [20/02/04 05:42:55 p.m.]

Dynamic Programming

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Dynamic_Programming_.html (4 of 4) [20/02/04 05:42:55 p.m.]

mailto:mstevens@ent.mrj.com

Prototype

Prototype
For the purposes of demonstrating the power of distributed objects and the Object Request Broker
(ORB), an example of a distributed search algorithm was built using a commercial ORB. The ORBeline
System from PostModern Computing (now Visigenic) was used for the prototype.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Prototype_.html [20/02/04 05:42:56 p.m.]

http://www.visigenic.com/
http://www.visigenic.com/
http://www.visigenic.com/
mailto:mstevens@ent.mrj.com

Data Decomposition

Data Decomposition

The first step made when building the prototype was to define the software problem by decomposing the
structure of the matrix chain problem in a way that is can be implemented using concurrent tasks or
objects. A form of data decomposition was performed on the problem structure which allowed for
concurrent tasks to be created. Figure 12 shows this decomposition for an arbitrary matrix chain of length
n=20. In this case, the ultimate goal of finding the optimal parentheszation of matrices A1..A20 is done
by completing the S table for m[1,20] and all its subproblems. Any intersection on the M table m[i,j]
cannot be calculated without knowing the answers to the subproblems. This is true for all intersections
except for those on the center diagonal. The center diagonal represent all intersections where m[i,j] | i = j
are zero and have no subproblems. The structure of the problem revolves around the diagonals of the
table. The diagonals represent the size of the matrix chain. For every intersection of the table, the value (j
- i) is the size of the matrix chain. Along every diagonal, the matrix chain length is the same. According
the form,

m[i,j] = m[i,k] + m[k+1,j] + pi-1pkpj.

each entry in the table is dependent upon all the intersections to the left and down. This fact forms the
basis of how this problem is decomposed for parallelism.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Data_Decomposition_.html [20/02/04 05:42:57 p.m.]

mailto:mstevens@ent.mrj.com

Corners

Corners

In addition to the M table on Figure 12, the data decomposition is overlaid with "corners" labeled 0-15.
In this prototype, "corners" refer to the components which are separately calculated. Corners which form
a diagonal are totally independent. For instance, corner 0 can be calculated independently from corner
1,2,3, or 4. Once this first corner-diagonal is completed (0,1,2,3,4), then corners 5,6,7, and 8 can be
calculated, in parallel, to complete the second corner-diagonal. This decomposition design has a few
problem explained as follows.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (1 of 4) [20/02/04 05:43:00 p.m.]

Corners

Figure 12 - Data decomposition of dynamic programming data space for matrix multiplication order problem.

Figure 13 - 3D View of Corner Grid (n=1024, cs=128) showing the number of entries into the weight function per Corner
Object.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (2 of 4) [20/02/04 05:43:00 p.m.]

Corners

Figure 14 - Bar graph of the number of entries into the weight function per diagonal in the Corner Grid (n=1024, cs=128)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (3 of 4) [20/02/04 05:43:00 p.m.]

Corners

Figure 15 - 3D View of Corner Grid (n=1024, cs=128) showing the number of indirect accesses to m(i,j) values per Corner
Object.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Corners_.html (4 of 4) [20/02/04 05:43:00 p.m.]

mailto:mstevens@ent.mrj.com

Limitations

Limitations

One limitation of the decomposition design in is that only one corner-diagonal can be calculated at a
time. This is a problem because if the corners on a diagonal are each assigned to a processor for
calculation, then the last corner to complete will delay the other unallocated processors. Also, the level of
parallelism decreases from the center diagonal so that the final diagonal which has only on corner can
only be calculated by one (1) processor. This limitation is compounded by the fact that this same corner
is the most expensive to calculate. Figure 13 introduces an example of an arbitrary matrix chain of length
n=1024. In this example, the corner size is fixed at 128 so that there are eight (8) corners along the first
center diagonal. The diagonals are color coded through this graph and the next two. Figure 13 shows the
number of calls to the weight function per corner to determine the costs, complete the corner, and fill in
the S table. Notice that the number of calls per corner increase linearly between diagonals. This can be
seen also in a different of the same data in Figure 14. Figure 15 shows a further limitation of the design.
To understand this limitation fully, the software design must be explained first.

Caching Corner Data

In the software design, the corner data and behavior has been encapsulated in a distributed object. Corner
objects are managed by Worker objects where one worker object is targeted to be executed on processor
at a time. The Manager object directs all the Worker Objects and also manages a catalog of Corners
already calculated. When a Corner needs to be calculated, if it is not part of the center diagonal, it
requires values previously calculated in the corners to the left and down. Since these Corners might have
been calculated on another processor, the remote corner data can be retrieved per method invocation on
remote Corner object. This retrieved data is "cached" locally in the so that the current Corner can access
data when needed. In this way, the Worker assigned the task offering the final Corner will have to have
all other corner data cached. The replication of data is relatively negligible with respect to processing
time. Memory could become a problem when n>4096. The amount of space required to store the corner
data is on the order of n2. The processing time is on the order n3. The limitation shown in Figure 15
describes the compounding of the processing time due to the caching design and decomposition of the
data in corners. Since the M table data is not captured in a single array but rather in a tree-like data
structure where the nodes in the tree are Corner objects, accessing data in distant corners is expensive.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (1 of 5) [20/02/04 05:43:03 p.m.]

Limitations

Figure 16 - 3D View of Corner Grid (n=2048, cs=128) showing the number of entries into the weight function per Corner
Object

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (2 of 5) [20/02/04 05:43:03 p.m.]

Limitations

Figure 17 - Bar graph of the number of entries into the weight function per diagonal in the Corner Grid (n=2048, cs=128)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (3 of 5) [20/02/04 05:43:03 p.m.]

Limitations

Figure 18 - 3D View of Corner Grid (n=2048, cs=128) showing the number of indirect accesses to m(i,j) values per Corner
Object

The following code block shows the extra processing which is required to access local M data from
related Corners. This function getMValue() will recursively call into Corners which are left or down
from the current Corner. Also, if the desired data is in the current Corner, access must be made on the
shared memory region. The data modeling is not at fault here. The performance problem can be solved
using a better data structures.

MValue getMValue(MDataIndex across,MDataIndex down) // Real World Coordinates [1 N]

{

if(across < (the_i_value + 1 - the_corner_size)) // in left corner

return(the_left_corner->getMValue(across,down));

else if(down > (the_j_value + the_corner_size)) // in down corner

return(the_down_corner->getMValue(across,down));

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (4 of 5) [20/02/04 05:43:03 p.m.]

Limitations

else // value in THIS corner

if(the_busy_corner == this) // is THIS corner busy calculating

return(getshmMValue(across,down));

else

return((*the_M_data_ptr)[REAL_2_CORNER_SEQ_NUM(across,down,the_corner_size)]);

}

Figure 16, Figure 17, and Figure 18 show similar information for a matrix chain problem where n =
2048. The limitations are more evident in these graphs.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Limitations_.html (5 of 5) [20/02/04 05:43:03 p.m.]

mailto:mstevens@ent.mrj.com

CORBA

CORBA Implementation

As show above, a object model consisting of Problems, Solutions (manager), Worker, and Corner objects
was used. See Appendix A for all detailed code listings. The scenario for processing was very simple.
The simplicity of the design shows the usefulness of the ORB architecture for doing parallel processing.

● Problem objects are interfaces to the source and destination data for a particular problem. In this
prototype, only the Matrix Multiplication Problem was implemented. The model could be further
expanded by deriving other specialized problem types like Traveling Salesman or Shortest Path.

● The Problem, Solution, and Worker objects are abstracted to the level of processes.
● The Problem, Solution, and Worker objects do not have to be collocated on the same processor

but they can be in the same process. This fact was helpful during testing because the prototype
could be runs as a single process to make initial debugging easier.

● The Worker objects were required to be in separate processes and on separate processors if
parallel processing was to be harnessed.

● The Solution and Worker objects can also be specialized further to expand the capabilities of the
prototype.

● Using the event driven capabilities of the ORBeline System, the objects can be started and
stopped in any order. Workers can be added to the running problem as needed. New problems can
be started when required. If any part of the system fails at either the O/S or hardware level,
replicated objects and take over.

● Each object becomes part of the distributed logging sub-system to track the whole process.
● The order of events is as follows (nominally):

1. The Logger object is started from the command line and its output is redirected to a file or
viewed on the standard output. The Logger object registration is made global in the ORB
(other objects can "bind" to it)

2. The Solution object is started with its object name and corner size on the command line.
The Solution object binds with the Logger. The Solution object enters its event loop
waiting for remote method invocations and special ORB events.

The Worker objects are started with their object names and solution provider interface name which
they intend to connect to. The Worker objects registration is local and they bind with the remote
Logger. They try to bind to the remote Solution object or do a differed binding if needed. After
they successfully bind to the remote Solution object they call the "volunteer()" method to

register their availability.

1. The Problem object is started with its object name and any input parameters for the problem data.
The Problem object's registration is local and it binds with the remote Logger. The Problem then
tries to bind with the Solution object or do a differed binding if needed. After it successfully binds
to the remote Solution object it calls the "getHelp()" method to register its problem. The input

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_CORBA1.html (1 of 4) [20/02/04 05:43:05 p.m.]

http://www.omg.org/
http://www.visigenic.com/

CORBA

data (matrix chain) is sent to the Solution object at this time.
2. Once the Solution object has a specific problem in hand, it will assign tasks to current volunteered

Worker objects and to future Worker objects when they volunteer in the future. The task
assignment relays the input data (matrix chain) to the Workers and sets the corner size.

3. The Worker objects will initialize its data structures for the current tasks by setting up its local
Corner objects - all with empty M data. The Worker object will call the "taskReady()" method on
the Solution object to let it know that the Worker is ready for calculating.

4. The Worker object is totally event driven on "taskReady()" messages. While there are more
Corners to be calculated, Workers will be assigned Corners to calculate. The Solution object calls
"getCorner()" method on a worker to retrieve the object reference to the remote Corner object.

5. The "getCorner()" method invocation is a blocking call - the caller can not handle other requests
or events while its blocking. During the time, the Worker object directs its specified Corner object
to cache any M data it needed at this time. A list of owners of already calculated M data is passed
with the "getCorner()" method.

6. The Corner Object will make calls on remote Corner objects with the "getMData()" method. This
call also blocks but is handled with concurrent processing. See Singlethreaded or Multithreaded
Servers Section 4.5.4.1 and Shared Memory Section 4.5.4.2.

7. With this Corner object reference, the Solution object calls "calcData()" on the remote Corner
object.

8. When the Corner object receives the "calcData()" request, the calculation is performed
concurrently so that subsequent "getMData()" requests can be handled.

9. When a Corner object completes its calculation, it sends a "cornerComplete()" message to the
Solution object and sends the resulting data to the Problem object.

10. When all the Corners are complete, the Solution object calls "endTask()" method on the Worker
objects. At this point the Worker objects may re-volunteer.

Singlethreaded or Multithreaded Servers

At Object Expo 1995 in New York, Doug Schmidt, editor of the C++ Report, described a potential
problem with non-multithreaded implementations of CORBA. The problem was that of deadlock in a
distributed system. Deadlock occurs when object A makes a blocking request on a remote object B,
which, in turn, makes a second blocking call on object A. This second call will not return because the
object A is isolated/busy in the first blocking call. Doug Schmidt recommended a multithreaded
implementation where a given object server could be used concurrently by more than one client object.

This is precisely the problem with the prototype faced. In lines 7, 8, & 9 above, the situation is described.
In this case, a Corner object A may be trying to cache M data by requesting this data from a remote
Corner object B. If another Corner object B' in the same Worker process is busy calculating data then
ORB can neither deliver the request nor can the Corner object B service it.

The ORBeline System provided for full support for multithreaded objects with out any additional work
other than linking executables with reentrant ORB libraries. However, this support was not available for

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_CORBA1.html (2 of 4) [20/02/04 05:43:05 p.m.]

http://www.omg.org/
http://www.visigenic.com/

CORBA

the SunOS operating system - just Solaris and NT. Also, I was unable to get the multithreaded version
running on Windows NT. Instead, a design was used where Corner calculations would be done
concurrently using Solaris and NT threads and for SunOS, standard heavy-weight processes with fork()
system call. When a Worker process was interrupted with a request for a resident Corner object to
"calcData()", a new thread or process would be started to perform the CPU intensive task while the rest
of the Worker process could service "getMData()" requests. This lead to further design problems during
thread completion determination. The forked process would send a SIGCHLD UNIX signal to the parent
process when the calculating process completed. However, the Solaris and NT thread implementation
required polling of the thread status to determine completion. Also, the forked process under SunOS
needed a shared memory construct to pass the completed corner data back to the parent process. The
shared memory implementation would have to be done in such a fashion so that as much of the code
could be shared between Solaris, NT and SunOS.

Shared Memory

For the shared memory implementation, memory mapped files were used. As and example, when a one
megabyte buffer was needed:

1. A temporary file was created and opened on /tmp file system.
2. The file was accessed out to the one megabyte point using lseek() system call and then a NULL

"\0" was written. This increase the size of the file to one megabyte and by definition, cleared the
values to NULL.

3. The mmap() system call mapped the file into the address space of the calling process and a pointer
to the beginning of the buffer was returned. This buffer was inherited by the forked process and
the changes made to this buffer in the child process were seen by the parent process.

The combination of the shared memory and concurrent process/thread design was successful although
cryptic. This design also put some constraints on the rest of the system. The Solution object now required
some state information about Corners and Workers. Also, only one (1) worker could be caching data at a
time. This was the price to pay for portability and operation in a heterogeneous environment.

Distributed Logging

One of the most important requirements of a distributed system is logging - knowing what is going on in
a vast system. In a distributed system, you don't have the ability to write to the standard output or read
the system console. A time order sequence/stream of events in the whole system is needed. For this
prototype, a Logger object was used which had one (1) method - "logMessage()" which accepted a single
CORBA string as an argument. To enhance the information in the message, the Logger object multiply
inherited from both its IDL implementation class and the Server Event Handler class which came with
the ORBeline System. This allowed call backs to be assigned to almost every event that the Logger
"server" object encountered.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_CORBA1.html (3 of 4) [20/02/04 05:43:05 p.m.]

http://www.omg.org/
http://www.visigenic.com/

CORBA

● object bind/unbind
● method invocation

In this way, an object which binds to the Logger object has that event logged. If binding to the remote
Logger object is made common to the constructors of all objects (Solution, Workers, Corners, Problems),
then the whole prototype can be monitored. Also, with the per method callback, the "principal"
information of the bound object is accessible (hostname, process id, interface name, object name,
username, password, etc.). This allows for detailed logging with most of the effort being made under the
covers. See Appendix B for a detailed look at a prototype log. These logs provided all the data for the
rest of the graphs in this report.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_CORBA1.html (4 of 4) [20/02/04 05:43:05 p.m.]

mailto:mstevens@ent.mrj.com

Calculation Algorithm

Calculation Algorithm

The following code block shows the crucial parts of the MatrixMultCorner class that deal with
concurrent process creation and calculating the M data. The portions of the code which are different for
NT, Solaris, and SunOS are separated by the preprocessor directives. Notice the two entry points for the
threads in NT and Solaris. Also, there is specialized processing for the Corner object which are on the
center diagonal.

#ifdef WIN32

DWORD WINAPI MatrixMultCorner::_thread_entry(LPVOID thread_parm)

{

MatrixMultCorner::get_busy_corner()->_calcData();

return(0);

}

#endif

#ifdef SOLARIS

void* MatrixMultCorner::_thread_entry(void* thread_parm)

{

MatrixMultCorner::get_busy_corner()->_calcData();

MatrixMultCorner::the_thread_done = 1;

return(0);

}

#endif

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (1 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

void MatrixMultCorner::_calcData(void)

{

unsigned diagonal_count;

unsigned start_point;

unsigned end_point;

unsigned i_start_point;

unsigned i_end_point;

unsigned j_start_point;

unsigned j_end_point;

unsigned i,j;

if(the_corner_size != (the_i_value - the_j_value + 1)) // non-center diagonal

{

diagonal_count = 0;

start_point = the_i_value - (2 * the_corner_size) + 3 - the_j_value;

end_point = the_i_value + 1 - the_j_value;

i_start_point = the_i_value + 2 - the_corner_size;

j_end_point = the_j_value + the_corner_size;

for(unsigned diagonal = start_point;

diagonal<=end_point;

diagonal++,diagonal_count++)

{

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (2 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

if(diagonal_count < the_corner_size) // 0..(CS-1)

{

i_end_point = i_start_point + diagonal_count;

j_start_point = j_end_point - diagonal_count;

}

else

{

i_start_point++;

j_end_point--;

}

for(i = i_start_point,j = j_start_point;

i<=i_end_point;

i++,j++)

{

PValue p0p2 = getPValue(j-1) * getPValue(i);

MValue Mcache = 3999999999;

SValue Scache;

for(unsigned k = j;k <= (i-1);k++)

{

MValue q = getMValue(k,j) +

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (3 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

getMValue(i,k+1) +

p0p2 * getPValue(k);

if(q < Mcache)

{

Mcache = q;

Scache = k;

}

}

setshmMValue(i,j,Mcache);

setshmSValue(i,j,Scache);

}

}

}

else // center diagonal

{

diagonal_count = 0;

start_point = 2;

end_point = the_corner_size;

i_end_point = the_i_value + 1;

i_start_point = the_i_value + 3 - the_corner_size;

j_start_point = the_j_value + 1;

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (4 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

j_end_point = the_j_value + the_corner_size - 1;

for(unsigned x=(the_i_value - the_corner_size + 2);

x<=(the_i_value + 1);

x++)

{

setshmMValue(x,x,0);

}

for(unsigned diagonal = start_point;

diagonal<=end_point;

diagonal++,i_start_point++,j_end_point--)

{

for(i = i_start_point,j = j_start_point;

i<=i_end_point;

i++,j++)

{

PValue p0p2 = getPValue(j-1) * getPValue(i);

MValue Mcache = 3999999999;

SValue Scache;

for(unsigned k = j;k <= (i-1);k++)

{

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (5 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

MValue q = getMValue(k,j) +

getMValue(i,k+1) +

p0p2 * getPValue(k);

if(q < Mcache)

{

Mcache = q;

Scache = k;

}

}

setshmMValue(i,j,Mcache);

setshmSValue(i,j,Scache);

}

}

}

}

void MatrixMultCorner::calcData(const CornerList& corner_list)

{

MatrixMultCorner::set_corner_list(new CornerList(corner_list));

prepare();

MatrixMultCorner::set_busy_corner(this);

#ifdef WIN32

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (6 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

#ifdef SINGLE_THREAD

MatrixMultCorner::_thread_entry(NULL);

handle_calc_completion();

#else

MatrixMultCorner::the_thread_handle =

BEGINTHREADEX(NULL,0,

MatrixMultCorner::_thread_entry,

NULL,0,

&the_thread_id);

LOG_MESSAGE("Thread Created to handle corner calculation");

Dispatcher::instance().startTimer(CORNER_TIMER_INTERVAL,0,this);

#endif

return; // ending blocked request to client prevents deadlock

#endif

#ifdef SOLARIS

if(-1 ==

thr_create(NULL,NULL,

MatrixMultCorner::_thread_entry,

NULL,THR_BOUND,

&(MatrixMultCorner::the_thread_id)))

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (7 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

{

perror("Thread Create Failed");

exit(-1);

}

MatrixMultCorner::the_thread_done = 0;

LOG_MESSAGE("Thread Created to handle corner calculation");

Dispatcher::instance().startTimer(CORNER_TIMER_INTERVAL,0,this);

return; // ending blocked request to client prevents deadlock

#endif

#ifdef SUNOS

signal(SIGCHLD,MatrixMultCorner::child_signal);

if(-1 == (MatrixMultCorner::the_process_id = fork()))

{

perror("Failure on fork()");

exit(-1);

}

else if(0 != MatrixMultCorner::the_process_id)

{

LOG_MESSAGE("Child Process Created to handle corner calculation");

return; // ending blocked request to client prevents deadlock

}

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (8 of 9) [20/02/04 05:43:08 p.m.]

Calculation Algorithm

else

{

//Dispatcher::instance(new Dispatcher);

MatrixMultCorner::_calcData();

exit(0); // signal parent that calculation done

}

#endif

}

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Calculation_Algorithm_.html (9 of 9) [20/02/04 05:43:08 p.m.]

mailto:mstevens@ent.mrj.com

Results

Results

This section describe the final results of the prototype, recommendations for improvements, and some
presentation graphs. All results are based on average runs of test cases for four (4) problem sizes n =
(512,1024,1536,2048). For each of the four (4) tests, three (3) different scenarios were executed and
compared. The final results are shown in Figure 19.

Figure 19 - Bar Graph comparing performance of distributed and trivial solutions to the matrix multiplication order
problem.

1. Solve the problem using a direct C/C++ mapping of the textbook dynamic programming
algorithm in a single UNIX process. (shown in cyan)

2. Solve the problem using the ORB prototype with a single Worker object with corner size = n (one
process, one Worker, one Corner, one problem). This scenario shows the overhead associated

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (1 of 7) [20/02/04 05:43:12 p.m.]

Results

with the prototypes data structure and C++ coding. (shown in magenta)
3. Solve the problem as above but with 3 CPUs (three Worker objects) and the empirically derived

optimal corner size (number of corners)

The best results were for the test where n=2048 and corner size=256. Here, a 40% efficiency was
achieved. The research review of published results in similar prototypes was on the order of 80%-90%
efficiency. I believe this discrepancy is due to three (3) factors.

1. The published values were achieved using prototypes built on single purpose parallel processing
hardware with multidimensional interconnections which would tend to have greater efficiency
than this prototype's experimental multicomputer.

2. The published prototypes utilities a more viable data decomposition which changed during
execution to achieve greater parallelism during the entire run. This prototype's parallelism
dropped off during final Corner calculations which took the most CPU resources.

3. As described before, this design had limitations in data structures and overhead due to
heterogeneous requirements.

Figure 20, Figure 21, Figure 22, and Figure 23 show stacked bar graphs of the completion times of
respective Corner objects assigned to processors. Each Graph has the 3 CPU and single CPU solution. In
all cases, it is evident that the most detrimental aspect to this design was the drop off of parallelism
during the last phases of the Corner calculations. The longest stacked bar denotes problem duration. All
tests were completed on the SMS Ultra Sparcs.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (2 of 7) [20/02/04 05:43:12 p.m.]

Results

Figure 20 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner
objects broken down by CPU (n=512, cs=128,512)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (3 of 7) [20/02/04 05:43:12 p.m.]

Results

Figure 21 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner
objects broken down by CPU (n=1024, cs=128,1024)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (4 of 7) [20/02/04 05:43:12 p.m.]

Results

Figure 22 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner
objects broken down by CPU (n=1536, cs=128,1536)

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (5 of 7) [20/02/04 05:43:12 p.m.]

Results

Figure 23 - Stack bar graph showing the wall clock performance of both the complete solution and individual corner
objects broken down by CPU (n=2048, cs=256,2048)

Improvements

In addition to the improvements already presented above for improved data structures, better use of
multithreaded environment, and more efficient data decomposition, the Manager/Worker scheduling
aspects of this design need to be improved.

After all the effort made to make this prototype work on a heterogeneous multicomputer of various
operating systems, processors speeds and interconnect speeds, heterogeneous operation yielded poor
results because of poor scheduling algorithms. The system worked successfully over the heterogeneous
multicomputer but the results were terrible. In most cases, the efficiency was not only poor but the wall
clock time was worse than the single CPU case.

This result is not surprising because the scheduling logic (if you can call it logic) was too simple. As
work became available and workers became ready, the calculations were assigned. The problem was that
hard work was sometimes assigned to slow resources and faster resources were left idle. A simple
remedy would be to rank workers according to some benchmark and evaluate calculation assignments

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (6 of 7) [20/02/04 05:43:12 p.m.]

Results

based on these benchmarks. A combination of this scheduling improvement, faster data structures and a
higher parallelism during final stages through dynamic data decomposition should yield efficiencies
closer the published values.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Results_.html (7 of 7) [20/02/04 05:43:12 p.m.]

mailto:mstevens@ent.mrj.com

Conclusions

Conclusions
The success of the distributed object prototype using ORB technology shows that object oriented
technology is the solution for distributed programming requirements. The thesis presented in this
research, first stated in Section 1, that "Distributed object technology and concurrent/parallel processing
are part of an abrupt evolution in information systems" and "Object technology will be the vehicle that
allows information system providers to reap the benefits of distributed processing." has been supported in
theory by this research and demonstrated in the prototype. This research makes no scientific estimation
of the marketplace. However, in the months leading up to the draft of this paper, new technologies
including the JAVA development environment have shown a skyrocketing in the market of distributed
processing based on object frameworks and distributed objects.

The author would like to thank all family, friends, mentors, and supporters of this work over the last two
years including Dr. Anthony Zygmont, Dr. Rick Perry, MRJ Inc., PostModern Computing (now
Visigenic) Inc., and Infonautics Inc.

This page was last updated on February 18, 1997
Please send comments or questions to Matthew Stevens.

http://www.ece.villanova.edu/user/matt/thesisbody/thesis_Conclusions_.html [20/02/04 05:43:13 p.m.]

http://www.mrj.com/
http://www.visigenic.com/
http://www.visigenic.com/
http://www.infonautics.com/
mailto:mstevens@ent.mrj.com

Footnotes

Footnotes

[1] H. Stephen Morse, "Practical Parallel Computing", Academic Press (AP) Professional, Massachusetts, 1994.

[2] Bruce P. Lester, "The Art of Parallel Programming", Prentice Hall, New Jersey, 1993.

[3] Andrew S. Tanenbaum, "Distributed Operating Systems", Prentice Hall, New Jersey, 1995.

[4] Eugene Hecht, "Optics", Addison Wesley, Massachusetts, 1987.

[5] James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes, "Computer Graphics - Principles and Practice", Addison-Wesley, Massachusetts, 1987.

[6] Doug C. Schmidt, "The ADAPTIVE Communication Environment - Object-Oriented Network Programming Components for Developing Distributed Applications", 12th Sun User Group conference, San
Francisco, California, June 1993.

[7]ACE was designed to provide a framework for building very high speed distributed networking applications. Therefore, ACE concentrates on wrapping complicated UNIX System services in type-safe
objects (IPC,Shared Memory, Dynamic-Linking, Threads, etc.). NIHCL was designed to simplify higher level application level programming.

[8] Keith E. Gorlen, Sanford M. Orlow, Perry S. Plexico, "Data Abstraction and Object-Oriented Programming in C++", John Wiley & Sons Ltd, England, 1990.

[9]A static class member is defined once for all instances of the class. It is not necessary to have an instance of the class to reference its static members.

[10]A const declaration specifies that the data can not be modified.

[11]All C++ classes have a primitive data member called "this" which is a pointer to itself.

[12]The copy constructor creates a new object from the same type argument object. Every C++ class has a copy constructor generated automatically. The standard copy constructor initializes every member
variable of the new object with that of the source object.

[13]"Delphi, A System for Satellite Mission Planning and Scheduling, Preliminary Product Overview", Hughes Aircraft Company, Aurora, CO, 1993.

[14] Bruce Bohannan (Scientist/Engineer), "A Technical White Paper on the Hughes Inter-Process Communication Library (HIPC)", Hughes Aircraft Company, Aurora, CO, 1993, unpublished.

[15] Suresh Challa, "NetClasses - An Object-Oriented Communication Toolkit - Technology Overview", PostModern Computing (now Visigenic) Technologies Inc., Mountain View, CA, 1993.

[16]

/**/

/* ORBeline (c) is copyrighted by PostModern Computing (now Visigenic) Technologies, Inc */

/* Copyright 1993, 1994 by PostModern Computing (now Visigenic) Technologies, Inc. */

http://www.ece.villanova.edu/user/matt/thesisbody/w2wftnts.htm (1 of 2) [20/02/04 05:43:14 p.m.]

Footnotes

/* This code is the sole property of PostModern Computing (now Visigenic) Technologies, */

/* Inc. and is protected by copyright under the laws of the United */

/* States. This program is confidential, proprietary, and a trade */

/* secret, not to be disclosed without written authorization from */

/* PostModern Computing (now Visigenic) Technologies, Inc. Any use, duplication, or */

/* disclosure of this program by other than PostModern Computing */

/* Technologies, Inc. and its assigned licensees is strictly forbidden */

/* by law. */

/* All rights reserved. */

/**/

[17]scope delimiter operator

[18] The Common Object Request Broker: Architecture and Specification, Object Management Group TC Document Number 91.12.1, Revision 1.1, December 1991.

[19] Robert Orfali, Dan Harkey, Jeri Edwards, "The Essential Distributed Objects Survival Guide", John Wiley & Sons Inc., New York, 1996.

[20] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Patterns - Elements of Reusable Object-Oriented Software", Addison-Wesley, Massachusetts, 1995.

[21] James O. Coplien, Douglas C. Schmidt, "notes

F="thesis_Object_I_O_.html#T1" TARGET="MAIN_FRAME">Object I/O</toc.gif 0100644 0000167 0000144 00000003514 06302364424 0013235 0 ustar 00mstevens perm 0000040 0000020 GIF87a# #
÷ c k k k k k s s!
s)!s)!{1!{1){9){91{B1„B9„J9„RB„RBŒZBŒZJŒcJŒcRŒkR”kZ”sZ”{c”{cœ„cœ„kœŒkœŒsœ”s¥”{¥œ{¥¥„¥¥„­­„­­Œ­µŒ­µ”­½”µ½œµÆœµÎ¥½Î¥µÖ¥½Ö­½Þ­½Þµ½çµÆç½Æï½Æ÷ÆÆ÷ÆÎÿÎÎÕUUÿUU
€UU€U€€Uª€UÕ€Uÿ€U ªUUªU€ªUªªUÕªUÿªU ÕUUÕU€ÕUªÕUÕÕUÿÕ

http://www.ece.villanova.edu/user/matt/thesisbody/w2wftnts.htm (2 of 2) [20/02/04 05:43:14 p.m.]

http://www.ece.vill.edu/

	villanova.edu
	Concurrent Programming with Distributed Objects
	Concurrent Programming with Distributed Objects: Object Oriented Frameworks, Intelligent Algorithms, and the Common Object Request Broker Architecture (CORBA)
	Object Technology
	Object-Oriented
	C++
	Distributed Processing
	Undergraduate Research
	Optical System Design
	Work Experience
	1.4.1
	Airport Traffic Incursion Detection
	Graduate Research
	Object Frameworks
	Hughes Class Library
	Thesis Topic
	The Search for the Better Framework
	ORBeline
	Research Schedule
	Object Frameworks
	Acceptance of Object Frameworks
	The Divided Framework Camp
	Run Time Type Information (RTTI)
	Serializing the Object
	Framework and Object Requirements
	National Institute of Health Class Library (NIHCL)
	RTTI
	Object Comparison
	Collections and Iterators
	Object Narrowing (safe downcast)
	Copying Objects (Shallow and Deep)
	Object I/O
	Writing NIHCL Classes
	Hughes Class Library (HCL)
	Introduction
	HObject ìthe Hughes version of NIHCL Objectî
	RTTI
	Object I/O
	Containers
	Using HCL
	Example
	Distributed Programming with HCL Interprocess Communication
	PostModern's NetClasses
	Reuse
	Features
	Design
	Using the NetClasses Framework
	Success of the Single Rooted Tree Framework
	Adaptive Communication Environment (!!w2wpACE!!http://www.cs.wustl.edu/~schmidt!pe!)
	Object Request Broker (ORB)
	OMG Concrete Object Model
	Request
	Values
	Object Interface
	Object Operations
	The ORB Structure
	Static IDL ORB Interface
	Language Mapping
	Interface Repository (IR) and the Dynamic Invocation Interface (DII)
	Implementation Repository
	Object Adapter
	CORBA
	PostModern Computing
	ORBeline's Architecture
	The ORBeline
	ORBeline's ORB Objects
	Advanced Features
	Distributed Object Application Prototype
	Hardware Platforms
	Multicomputer
	Parallel Programming with Objects
	Data Partitioning and Domain/Functional Decomposition
	Manager-Worker Paradigm and Load Balancing
	Classic Complex Problems
	Matrix Chain Multiplication
	Catalan Numbers
	Dynamic Programming
	Prototype
	Data Decomposition
	Corners
	Limitations
	CORBA
	Calculation Algorithm
	Results
	Conclusions
	Footnotes

