An Introduction to Distributed Algorithms
by Valmir C. Barbosa ISBN: 0262024128

The MIT Press © 1996, 365 pages

A senior undergraduate or graduate level computer science
textbook on algorithm design for distributed computer
systems.

< Table of Contents =+Colleague Comments

—+Back Cover

Synopsis by Dean Andrews

Distributed computing poses special challenges for software developers.
When programs must run across multiple processors, either multiprocessors
within the same computer or processors distributed across a computer
network, software developers encounter the unique problems of information
propagation, synchronization, deadlock detection, and more. In An
Introduction to Distributed Algorithms, author Valmir Barbosa describes
general use algorithms (for any language or platform) to meet the demands of
distributed software design. He also devotes chapters to topics like program
debugging and simulation that are seldom covered in other books. Each of the
ten chapters ends with a bibliography and exercises.

Topsy
Table of Contents

An Introduction to Distributed Algorithms
Preface

Part 1 Fundamentals

Chapter 1 - Message-Passing Systems
Chapter 2 - Intrinsic Constraints
Chapter 3 - Models of Computation
Chapter 4 - Basic Algorithms

Chapter 5 - Basic Techniques

Part 2 Advances and Applications
Chapter 6 - Stable Properties

Chapter 7 - Graph Algorithms
Chapter 8 - Resource Sharing

Chapter 9 - Program Debugging
Chapter 10 - Simulation

Bibliography
Author Index

Subject Index
List of Figures
List of Listings

Back Cover

An Introduction to Distributed Algorithms takes up some of the main concepts
and algorithms, ranging from basic to advanced techniques and applications,
that underlie the programming of distributed-memory systems such as
computer networks, networks of workstations, and multiprocessors. Written
from the broad perspective of distributed-memory systems in general, it
includes topics such as algorithms for maximum flow, program debugging,
and simulation that do not appear in other texts on distributed algorithms.

Moving from fundamentals to advances and applications, ten chapters -- with
exercises and bibliographic notes -- cover a variety of topics. Thses include
models of distributed computation, information propagation, leader election,
distributed snap-shots, network synchronization, self-stability, termination
detection, deadlock detection, graphic algorithms, mutual exclusion, program
debugging, and simulation.

All of the algorithms are present in a clear, template-based format for the
description of message-passing computations among the nodes of a
connected graph. Such a generic setting allows the treatment of problems
originating from many different application areas. The main ideas and
algorithms are described in a way that balances intuition and formal rigor --
most are preceded by general intuitive discussion and folowed by formal
statements as to correctness, complexity, or other properties.

About the Author

Valmir C. Barbosa is Associate Professor of Computer Science at Federal
University of Rio de Janeiro.

Preface

This book presents an introduction to some of the main problems, techniques, and
algorithms underlying the programming of distributed-memory systems, such as computer
networks, networks of workstations, and multiprocessors. It is intended mainly as a textbook
for advanced undergraduates or first-year graduate students in computer science and
requires no specific background beyond some familiarity with basic graph theory, although
prior exposure to the main issues in concurrent programming and computer networks may

also be helpful. In addition, researchers and practitioners working on distributed computing
will also find it useful as a general reference on some of the most important issues in the
field.

The material is organized into ten chapters covering a variety of topics, such as models of
distributed computation, information propagation, leader election, distributed snapshots,
network synchronization, self-stability, termination detection, deadlock detection, graph
algorithms, mutual exclusion, program debugging, and simulation. Because | have chosen to
write the book from the broader perspective of distributed-memory systems in general, the
topics that | treat fail to coincide exactly with those normally taught in a more orthodox course
on distributed algorithms. What this amounts to is that | have included topics that normally
would not be touched (as algorithms for maximum flow, program debugging, and simulation)
and, on the other hand, have left some topics out (as agreement in the presence of faults).

All the algorithms that | discuss in the book are given for a "target" system that is represented
by a connected graph, whose nodes are message-driven entities and whose edges indicate
the possibilities of point-to-point communication. This allows the algorithms to be presented
in a very simple format by specifying, for each node, the actions to be taken to initiate
participating in the algorithm and upon the receipt of a message from one of the nodes
connected to it in the graph. In describing the main ideas and algorithms, | have sought a
balance between intuition and formal rigor, so that most are preceded by a general intuitive
discussion and followed by formal statements regarding correctness, complexity, or other
properties.

The book's ten chapters are grouped into two parts. Part 1 is devoted to the basics in the
field of distributed algorithms, while Part 2 contains more advanced techniques or
applications that build on top of techniques discussed previously.

Part 1 comprises Chapters 1 through 5. Chapters 1 and 2 are introductory chapters, although
in two different ways. While Chapter 1 contains a discussion of various issues related to
message-passing systems that in the end lead to the adoption of the generic message-driven
system | mentioned earlier, Chapter 2 is devoted to a discussion of constraints that are
inherent to distributed-memory systems, chiefly those related to a system's asynchronism or
synchronism, and the anonymity of its constituents. The remaining three chapters of Part 1
are each dedicated to a group of fundamental ideas and techniques, as follows. Chapter 3
contains models of computation and complexity measures, while Chapter 4 contains some
fundamental algorithms (for information propagation and some simple graph problems) and
Chapter 5 is devoted to fundamental techniques (as leader election, distributed snapshots,
and network synchronization).

The chapters that constitute Part 2 are Chapters 6 through 10. Chapter 6 brings forth the
subject of stable properties, both from the perspective of selfstability and of stability detection
(for termination and deadlock detection). Chapter 7 contains graph algorithms for minimum
spanning trees and maximum flows. Chapter 8 contains algorithms for resource sharing
under the requirement of mutual exclusion in a variety of circumstances, including
generalizations of the paradigmatic dining philosophers problem. Chapters 9 and 10 are,
respectively, dedicated to the topics of program debugging and simulation. Chapter 9
includes techniques for program re-execution and for breakpoint detection. Chapter 10 deals
with time-stepped simulation, conservative event-driven simulation, and optimistic event-
driven simulation.

Every chapter is complemented by a section with exercises for the reader and another with
bibliographic notes. Of the exercises, many are intended to bring the reader one step further
in the treatment of some topic discussed in the chapter. When this is the case, an indication
is given, during the discussion of the topic, of the exercise that may be pursued to expand
the treatment of that particular topic. | have attempted to collect a fairly comprehensive set of
bibliographic references, and the sections with bibliographic notes are intended to provide
the reader with the source references for the main issues treated in the chapters, as well as
to indicate how to proceed further.

| believe the book is sized reasonably for a one-term course on distributed algorithms.
Shorter syllabi are also possible, though, for example by omitting Chapters 1 and 2 (except

for Sections 1.4 and 2.1), then covering Chapters 3 through 6 completely, and then selecting
as many chapters as one sees fit from Chapters 7 through 10 (the only interdependence that
exists among these chapters is of Section 10.2 upon some of Section 8.3).

Notation
The notation log“n is used to indicate (log n)*. All of the remaining notation in the book is
standard.

rart 1: FUNdamentals

Message-Passing Systems
Intrinsic Constraints
Models of Computation
Basic Algorithms

Basic Techniques

Part Overview

This first part of the book is dedicated to some of the fundamentals in the field of distributed
algorithms. It comprises five chapters, in which motivation, some limitations, models, basic
algorithms, and basic techniques are discussed.

Chapter 1 opens with a discussion of the distributed-memory systems that provide the
motivation for the study of distributed algorithms. These include computer networks,
networks of workstations, and multiprocessors. In this context, we discuss some of the
issues that relate to the study of those systems, such as routing and flow control, message
buffering, and processor allocation. The chapter also contains the description of a generic
template to write distributed algorithms, to be used throughout the book.

Chapter 2 begins with a discussion of full asynchronism and full synchronism in the context
of distributed algorithms. This discussion includes the introduction of the asynchronous and
synchronous models of distributed computation to be used in the remainder of the book, and
the presentation of details on how the template introduced in Chapter 1 unfolds in each of the
two models. We then turn to a discussion of intrinsic limitations in the context of anonymous
systems, followed by a brief discussion of the notions of knowledge in distributed
computations.

The computation models introduced in Chapter 2 (especially the asynchronous model) are in
Chapter 3 expanded to provide a detailed view in terms of events, orders, and global states.
This view is necessary for the proper treatment of timing issues in distributed computations,
and also allows the introduction of the complexity measures to be employed throughout. The
chapter closes with a first discussion (to be resumed later in Chapter 5) of how the
asynchronous and synchronous models relate to each other.

Chapters 4 and 5 open the systematic presentation of distributed algorithms, and of their
properties, that constitutes the remainder of the book. Both chapters are devoted to basic
material. Chapter 4, in particular, contains basic algorithms in the context of information
propagation and of some simple graph problems.

In Chapter 5, three fundamental techniques for the development of distributed algorithms are
introduced. These are the techniques of leader election (presented only for some types of
systems, as the topic is considered again in Part 2, Chapter 7), distributed snapshots, and
network synchronization. The latter two techniques draw heavily on material introduced
earlier in Chapter 3, and constitute some of the essential building blocks to be occasionally
used in later chapters.

chapter 1: MeSsage-Passing Systems

Overview

The purpose of this chapter is twofold. First we intend to provide an overall picture of various
real-world sources of motivation to study message-passing systems, and in doing so to
provide the reader with a feeling for the several characteristics that most of those systems

share. This is the topic of Section 1.1, in which we seek to bring under a same framework
seemingly disparate systems as multiprocessors, networks of workstations, and computer
networks in the broader sense.

Our second main purpose in this chapter is to provide the reader with a fairly rigorous, if not
always realizable, methodology to approach the development of message-passing programs.
Providing this methodology is a means of demonstrating that the characteristics of real-world
computing systems and the main assumptions of the abstract model we will use throughout
the remainder of the book can be reconciled. This model, to be described timely, is graph-
theoretic in nature and encompasses such apparently unrealistic assumptions as the
existence of infinitely many buffers to hold the messages that flow on the system's
communication channels (thence the reason why reconciling the two extremes must at all be
considered).

This methodology is presented as a collection of interrelated aspects in Sections 1.2 through
1.7. It can also be viewed as a means to abstract our thinking about message-passing
systems from various of the peculiarities of such systems in the real world by concentrating
on the few aspects that they all share and which constitute the source of the core difficulties
in the design and analysis of distributed algorithms.

Sections 1.2 and 1.3 are mutually complementary, and address respectively the topics of
communication processors and of routing and flow control in message-passing systems.
Section 1.4 is devoted to the presentation of a template to be used for the development of
message-passing programs. Among other things, it is here that the assumption of infinite-
capacity channels appears. Handling such an assumption in realistic situations is the topic of
Section 1.5. Section 1.6 contains a treatment of various aspects surrounding the question of
processor allocation, and completes the chapter's presentation of methodological issues.
Some remarks on some of the material presented in previous sections comes in Section 1.7.
Exercises and bibliographic notes follow respectively in Sections 1.8 and 1.9.

1.1 Distributed-memory systems

Message passing and distributed memory are two concepts intimately related to each other.
In this section, our aim is to go on a brief tour of various distributed-memory systems and to
demonstrate that in such systems message passing plays a chief role at various levels of
abstraction, necessarily at the processor level but often at higher levels as well.

Distributed-memory systems comprise a collection of processors interconnected in some
fashion by a network of communication links. Depending on the system one is considering,
such a network may consist of point-to-point connections, in which case each communication
link handles the communication traffic between two processors exclusively, or it may
comprise broadcast channels that accommodate the traffic among the processors in a larger
cluster. Processors do not physically share any memory, and then the exchange of
information among them must necessarily be accomplished by message passing over the
network of communication links.

The other relevant abstraction level in this overall panorama is the level of the programs that
run on the distributed-memory systems. One such program can be thought of as comprising
a collection of sequential-code entities, each running on a processor, maybe more than one
per processor. Depending on peculiarities well beyond the intended scope of this book, such
entities have been called tasks, processes, or threads, to name some of the denominations
they have received. Because the latter two forms often acquire context-dependent meanings
(e.g., within a specific operating system or a specific programming language), in this book we
choose to refer to each of those entities as a fask, although this denomination too may at
times have controversial connotations.

While at the processor level in a distributed-memory system there is no choice but to rely on
message passing for communication, at the task level there are plenty of options. For
example, tasks that run on the same processor may communicate with each other either
through the explicit use of that processor's memory or by means of message passing in a
very natural way. Tasks that run on different processors also have essentially these two

possibilities. They may communicate by message passing by relying on the message-
passing mechanisms that provide interprocessor communication, or they may employ those
mechanisms to emulate the sharing of memory across processor boundaries. In addition, a
myriad of hybrid approaches can be devised, including for example the use of memory for
communication by tasks that run on the same processor and the use of message passing
among tasks that do not.

Some of the earliest distributed-memory systems to be realized in practice were long-haul
computer networks, i.e., networks interconnecting processors geographically separated by
considerable distances. Although originally employed for remote terminal access and
somewhat later for electronic-mail purposes, such networks progressively grew to
encompass an immense variety of data-communication services, including facilities for
remote file transfer and for maintaining work sessions on remote processors. A complex
hierarchy of protocols is used to provide this variety of services, employing at its various
levels message passing on point-to-point connections. Recent advances in the technology of
these protocols are rapidly leading to fundamental improvements that promise to allow the
coexistence of several different types of traffic in addition to data, as for example voice,
image, and video. The protocols underlying these advances are generally known as
Asynchronous Transfer Mode (ATM) protocols, in a way underlining the aim of providing
satisfactory service for various different traffic demands. ATM connections, although
frequently of the point-to-point type, can for many applications benefit from efficient
broadcast capabilities, as for example in the case of teleconferencing.

Another notorious example of distributed-memory systems comes from the field of parallel
processing, in which an ensemble of interconnected processors (a multiprocessor) is
employed in the solution of a single problem. Application areas in need of such
computational potential are rather abundant, and come from various of the scientific and
engineering fields. The early approaches to the construction of parallel processing systems
concentrated on the design of shared-memory systems, that is, systems in which the
processors share all the memory banks as well as the entire address space. Although this
approach had some success for a limited number of processors, clearly it could not support
any significant growth in that number, because the physical mechanisms used to provide the
sharing of memory cells would soon saturate during the attempt at scaling.

The interest in providing massive parallelism for some applications (i.e., the parallelism of
very large, and scalable, numbers of processors) quickly led to the introduction of distributed-
memory systems built with point-to-point interprocessor connections. These systems have
dominated the scene completely ever since. Multiprocessors of this type were for many years
used with a great variety of programming languages endowed with the capability of
performing message passing as explicitly directed by the programmer. One problem with this
approach to parallel programming is that in many application areas it appears to be more
natural to provide a unique address space to the programmer, so that, in essence, the
parallelization of preexisting sequential programs can be carried out in a more
straightforward fashion. With this aim, distributed-memory multiprocessors have recently
appeared whose message-passing hardware is capable of providing the task level with a
single address space, so that at this level message passing can be done away with. The
message-passing character of the hardware is fundamental, though, as it seems that this is
one of the key issues in providing good scalability properties along with a shared-memory
programming model. To provide this programming model on top of a message-passing
hardware, such multiprocessors have relied on sophisticated cache techniques.

The latest trend in multiprocessor design emerged from a re-consideration of the importance
of message passing at the task level, which appears to provide the most natural
programming model in various situations. Current multiprocessor designers are then
attempting to build, on top of the message-passing hardware, facilities for both message-
passing and scalable shared-memory programming.

As our last example of important classes of distributed-memory systems, we comment on
networks of workstations. These networks share a lot of characteristics with the long-haul
networks we discussed earlier, but unlike those they tend to be concentrated within a much
narrower geographic region, and so frequently employ broadcast connections as their chief
medium for interprocessor communication (point-to-point connections dominate at the task
level, though). Also because of the circumstances that come from the more limited
geographic dispersal, networks of workstations are capable of supporting many services
other than those already available in the long-haul case, as for example the sharing of file
systems. In fact, networks of workstations provide unprecedented computational and storage
power in the form, respectively, of idling processors and unused storage capacity, and
because of the facilitated sharing of resources that they provide they are already beginning to
be looked at as a potential source of inexpensive, massive parallelism.

As it appears from the examples we described in the three classes of distributed- memory
systems we have been discussing (computer networks, multiprocessors, and networks of
workstations), message-passing computations over point-to-point connections constitute
some sort of a pervasive paradigm. Frequently, however, it comes in the company of various
other approaches, which emerge when the computations that take place on those
distributed-memory systems are looked at from different perspectives and at different levels
of abstraction.

The remainder of the book is devoted exclusively to message-passing computations over
point-to-point connections. Such computations will be described at the task level, which
clearly can be regarded as encompassing message-passing computations at the processor
level as well. This is so because the latter can be regarded as message-passing
computations at the task level when there is exactly one task per processor and two tasks
only communicate with each other if they run on processors directly interconnected by a
communication link. However, before leaving aside the processor level completely, we find it
convenient to have some understanding of how a group of processors interconnected by
point-to-point connections can support intertask message passing even among tasks that run
on processors not directly connected by a communication link. This is the subject of the
following two sections.

1.2 Communication processors

When two tasks that need to communicate with each other run on processors which are not
directly interconnected by a communication link, there is no option to perform that intertask
communication but to somehow rely on processors other than the two running the tasks to
relay the communication traffic as needed. Clearly, then, each processor in the system must,
in addition to executing the tasks that run on it, also act as a relayer of the communication
traffic that does not originate from (or is destined to) any of the tasks that run on it.
Performing this additional function is quite burdensome, so it appears natural to somehow
provide the processor with specific capabilities that allow it to do the relaying of
communication traffic without interfering with its local computation. In this way, each
processor in the system can be viewed as actually a pair of processors that run
independently of each other. One of them is the processor that runs the tasks (called the
host processor) and the other is the communication processor. Unless confusion may arise,
the denomination simply as a processor will in the remainder of the book be used to indicate
either the host processor or, as it has been so far, the pair comprising the host processor
and the communication processor.

In the context of computer networks (and in a similar fashion networks of workstations as
well), the importance of communication processors was recognized at the very beginning, not
only by the performance-related reasons we indicated, but mainly because, by the very
nature of the services provided by such networks, each communication processor was to
provide services to various users at its site. The first generation of distributed-memory
multiprocessors, however, was conceived without any concern for this issue, but very soon
afterwards it became clear that the communication traffic would be an unsurmountable

bottleneck unless special hardware was provided to handle that traffic. The use of
communication processors has been the rule since.

There is a great variety of approaches to the design of a communication processor, and that
depends of course on the programming model to be provided at the task level. If message
passing is all that needs to be provided, then the communication processor has to at least be
able to function as an efficient communication relayer. If, on the other hand, a shared-
memory programming model is intended, either by itself or in a hybrid form that also allows
message passing, then the communication processor must also be able to handle memory-
management functions.

Let us concentrate a little more on the message-passing aspects of communication
processors. The most essential function to be performed by a communication processor is in
this case to handle the reception of messages, which may come either from the host
processor attached to it or from another communication processor, and then to decide where
to send it next, which again may be the local host processor or another communication
processor. This function per se involves very complex issues, which are the subject of our
discussion in Section 1.3.

Another very important aspect in the design of such communication processors comes from
viewing them as processors with an instruction set of their own, and then the additional issue
comes up of designing such an instruction set so to provide communication services not only
to the local host processor but in general to the entire system. The enhanced flexibility that
comes from viewing a communication processor in this way is very attractive indeed, and has
motivated a few very interesting approaches to the design of those processors. So, for
example, in order to send a message to another (remote) task, a task running on the local
host processor has to issue an instruction to the communication processor that will tell it to
do so. This instruction is the same that the communication processors exchange among
themselves in order to have messages passed on as needed until a destination is reached.
In addition to rendering the view of how a communication processor handles the traffic of
point-to-point messages a little simpler, regarding the communication processor as an
instruction-driven entity has many other advantages. For example, a host processor may
direct its associated communication processor to perform complex group communication
functions and do something else until that function has been completed system-wide. Some
very natural candidate functions are discussed in this book, especially in Chapters 4 and 5
(although algorithms presented elsewhere in the book may also be regarded as such, only at
a higher level of complexity).

1.3 Routing and flow control

As we remarked in the previous section, one of the most basic and important functions to be
performed by a communication processor is to act as a relayer of the messages it receives
by either sending them on to its associated host processor or by passing them along to
another communication processor. This function is known as routing, and has various
important aspects that deserve our attention.

For the remainder of this chapter, we shall let our distributed-memory system be represented
by the connected undirected graph G = (Np,Er), where the set of nodes N is the set of
processors (each processor viewed as the pair comprising a host processor and a
communication processor) and the set Er of undirected edges is the set of point-to-point
bidirectional communication links. A message is normally received at a communication
processor as a pair (q, Msg), meaning that Msg is to be delivered to processor q. Here Msg
is the message as it is first issued by the task that sends it, and can be regarded as
comprising a pair of fields as well, say Msg = (u, msg), where u denotes the task running on
processor q to which the message is to be delivered and msg is the message as u must
receive it. This implies that at each processor the information of which task runs on which
processor must be available, so that intertask messages can be addressed properly when
they are first issued. Section 1.6 is devoted to a discussion of how this information can be
obtained.

When a processor r receives the message (q, Msg), it checks whether g = r and in the
affirmative case forwards Msg to the host processor at r. Otherwise, the message must be
destined to another processor, and is then forwarded by the communication processor for

eventual delivery to that other processor. At processor r, this forwarding takes place
according to the function next; (g), which indicates the processor directly connected to r to
which the message must be sent next for eventual delivery to q (that is, (r,next(q)) € Ep).
The function next is a routing function, and ultimately indicates the set of links a message
must traverse in order to be transported between any two processors in the system. For
processors p and g, we denote by R (p,q) < Er the set of links to be traversed by a message
originally sent by a task running on p to a task running on q. Clearly, R(p,p) = @ and in
general R(p,q) and R(q,p) are different sets.

Routing can be fixed or adaptive, depending on how the function next is handled. In the fixed
case, the function next is time-invariant, whereas in the adaptive case it may be time-varying.
Routing can also be deterministic or nondeterministic, depending on how many processors
next can be chosen from at a processor. In the deterministic case there is only one choice,
whereas the nondeterministic case allows multiple choices in the determination of next.
Pairwise combinations of these types of routing are also allowed, with adaptivity and
nondeterminism being usually advocated for increased performance and fault-tolerance.
Advantageous as some of these enhancements to routing may be, not many of adaptive or
nondeterministic schemes have made it into practice, and the reason is that many difficulties
accompany those enhancements at various levels. For example, the FIFO (First In, First Out)
order of message delivery at the processor level cannot be trivially guaranteed in the
adaptive or nondeterministic cases, and then so cannot at the task level either, that is,
messages sent from one task to another may end up delivered in an order different than the
order they were sent. For some applications, as we discuss for example in Section 5.2.1, this
would complicate the treatment at the task level and most likely do away with whatever
improvement in efficiency one might have obtained with the adaptive or nondeterministic
approaches to routing. (We return to the question of ensuring FIFO message delivery among
tasks in Section 1.6.2, but in a different context.)

Let us then concentrate on fixed, determinist routing for the remainder of the chapter. In this
case, and given a destination processor q, the routing function next{q) does not lead to any
loops (i.e., by successively moving from processor to processor as dictated by next until q is
reached it is not possible to return to an already visited processor). This is so because the
existence of such a loop would either require at least two possibilities for the determination of
next{(q) for some r, which is ruled out by the assumption of deterministic routing, or require
that next be allowed to change with time, which cannot be under the assumption of fixed
routing. If routing is deterministic, then another way of arriving at this loopfree property of
next is to recognize that, for fixed routing, the sets R of links are such that R(r,q) < R(p,q) for
every processor r that can be obtained from p by successively applying next given q. The
absence of loops comes as a consequence. Under this alternative view, it becomes clear
that, by building the sets R to contain shortest paths (i.e., paths with the least possible
numbers of links) in the fixed, deterministic case, the containments for those sets appear
naturally, and then one immediately obtains a routing function with no loops.

Loops in a routing function refer to one single end-to-end directed path (i.e., a sequence of
processors obtained by following next(q) from r = p for some p and fixed q), and clearly
should be avoided. Another related concept, that of a directed cycle in a routing function, can
also lead to undesirable behavior in some situations (to be discussed shortly), but cannot be
altogether avoided. A directed cycle exists in a routing function when two or more end-to-end
directed paths share at least two processors (and sometimes links as well), say p and g, in
such a way that g can be reached from p by following next(q) at the intermediate r's, and so
can p from g by following next{p). Every routing function contains at least the directed cycles
implied by the sharing of processors p and q by the sets R(p,q) and R(q,p) for all p,q O Ne. A
routing function containing only these directed cycles does not have any end-to-end directed
paths sharing links in the same direction, and is referred to as a quasi-acyclic routing
function.

Another function that is normally performed by communication processors and goes closely
along that of routing is the function of flow control. Once the routing function next has been
established and the system begins to transport messages among the various pairs of
processors, the storage and communication resources that the interconnected
communication processors possess must be shared not only by the messages already on

their way to destination processors but also by other messages that continue to be admitted
from the host processors. Flow control strategies aim at optimizing the use of the system's
resources under such circumstances. We discuss three such strategies in the remainder of
this section.

The first mechanism we investigate for flow control is the store-and-forward mechanism. This
mechanism requires a message (q,Msg) to be divided into packets of fixed size. Each packet
carries the same addressing information as the original message (i.e., q), and can therefore
be transmitted independently. If these packets cannot be guaranteed to be delivered to g in
the FIFO order, then they must also carry a sequence number, to be used at q for the re-
assembly of the message. (However, guaranteeing the FIFO order is a straightforward
matter under the assumption of fixed, deterministic routing, so long as the communication
links themselves are FIFO links.) At intermediate communication processors, packets are
stored in buffers for later transmission when the required link becomes available (a queue of
packets is kept for each link).

Store-and-forward flow control is prone to the occurrence of deadlocks, as the packets
compete for shared resources (buffering space at the communication processors, in this
case). One simple situation in which this may happen is the following. Consider a cycle of
processors in Gp, and suppose that one task running on each of the processors in the cycle
has a message to send to another task running on another processor on the cycle that is
more than one link away. Suppose in addition that the routing function next is such that all
the corresponding communication processors, after having received such messages from
their associated host processors, attempt to send them in the same direction (clockwise or
counterclockwise) on the cycle of processors. If buffering space is no longer available at any
of the communication processors on the cycle, then deadlock is certain to occur.

This type of deadlock can be prevented by employing what is called a structured buffer pool.
This is a mechanism whereby the buffers at all communication processors are divided into
classes, and whenever a packet is sent between two directly interconnected communication
processors, it can only be accepted for storage at the receiving processor if there is buffering
space in a specific buffer class, which is normally a function of some of the packet's
addressing parameters. If this function allows no cyclic dependency to be formed among the
various buffer classes, then deadlock is ensured never to occur. Even with this issue of
deadlock resolved, the store-and-forward mechanism suffers from two main drawbacks. One
of them is the latency for the delivery of messages, as the packets have to be stored at all
intermediate communication processors. The other drawback is the need to use memory
bandwidth, which seldom can be provided entirely by the communication processor and has
then to be shared with the tasks that run on the associated host processor.

The potentially excessive latency of store-and-forward flow control is partially remedied by
the second flow-control mechanism we describe. This mechanism is known as circuit
switching, and requires an end-to-end directed path to be entirely reserved in one direction
for a message before it is transmitted. Once all the links on the path have been secured for
that particular transmission, the message is then sent and at the intermediate processors
incurs no additional delay waiting for links to become available. The reservation process
employed by circuit switching is also prone to the occurrence of deadlocks, as links may
participate in several paths in the same direction. Portions of those paths may form directed
cycles that may in turn deadlock the reservation of links. Circuit switching should, for this
reason, be restricted to those routing functions that are quasi-acyclic, which by definition
pose no deadlock threat to the reservation process.

Circuit switching is obviously inefficient for the transmission of short messages, as the time
for the entire path to be reserved becomes then prominent. Even for long messages,
however, its advantages may not be too pronounced, depending primarily on how the
message is transmitted once the links are reserved. If the message is divided into packets
that have to be stored at the intermediate communication processors, then the gain with
circuit switching may be only marginal, as a packet is only sent on the next link after it has
been completely received (all that is saved is then the wait time on outgoing packet queues).
It is possible, however, to pipeline the transmission of the message so that only very small
portions have to be stored at the intermediate processors, as in the third flow-control strategy
we describe next.

The last strategy we describe for flow control employs packet blocking (as opposed to packet
buffering or link reservation) as one of its basic paradigms. The resulting mechanism is
known as wormhole routing (a misleading denomination, because it really is a flow-control
strategy), and contrasting with the previous two strategies, the basic unit on which flow
control is performed is not a packet but a flit (flow-control digit). A flit contains no routing
information, so every flit in a packet must follow the leading flit, where the routing information
is kept when the packet is subdivided. With wormhole routing, the inherent latency of store-
and-forward flow control due to the constraint that a packet can only be sent forward after it
has been received in its entirety is eliminated. All that needs to be stored is a flit, significantly
smaller than a packet, so the transmission of the packet is pipelined, as portions of it may be
flowing on different links and portions may be stored. When the leading flit needs access to a
resource (memory space or link) that it cannot have immediately, the entire packet is blocked
and only proceeds when that flit can advance. As with the previous two mechanisms,
deadlock can also arise in wormhole routing. The strategy for dealing with this is to break the
directed cycles in the routing function (thereby possibly making pairs of processors
inaccessible to each other), then add virtual links to the already existing links in the network,
and then finally fix the routing function by the use of the virtual links. Directed cycles in the
routing function then become "spirals”, and deadlocks can no longer occur. (Virtual links are
in the literature referred to as virtual channels, but channels will have in this book a different
connotation—cf. Section 1.4.)

In the case of multiprocessors, the use of communication processors employing wormhole
routing for flow control tends to be such that the time to transport a message between nodes
directly connected by a link in Gp is only marginally smaller than the time spent when no
direct connection exists. In such circumstances, Gr can often be regarded as being a
complete graph (cf. Section 2.1, where we discuss details of the example given in Section
1.6.2).

To finalize this section, we mention that yet another flow-control strategy has been proposed
that can be regarded as a hybrid strategy combining store-and-forward flow control and
wormhole routing. It is called virtual cut-through, and is characterized by pipelining the
transmission of packets as in wormhole routing, and by requiring entire packets to be stored
when an outgoing link cannot be immediately used, as in store-and-forward. Virtual cut-
through can then be regarded as a variation of wormhole routing in which the pipelining in
packet transmission is retained but packet blocking is replaced with packet buffering.

1.4 Reactive message-passing programs

So far in this chapter we have discussed how message-passing systems relate to
distributed-memory systems, and have outlined some important characteristics at
the processor level that allow tasks to communicate with one another by message
passing over point-to-point communication channels. Our goal in this section is to
introduce, in the form of a template algorithm, our understanding of what a
distributed algorithm is and of how it should be described. This template and some
of the notation associated with it will in Section 2.1 evolve into the more compact
notation that we use throughout the book.

We represent a distributed algorithm by the connected directed graph Gr = (Nr,Dr),
where the node set Nris a set of tasks and the set of directed edges Dr is a set of
unidirectional communication channels. (A connected directed graph is a directed
graph whose underlying undirected graph is connected.) For a task t, we let In; =
Dr denote the set of edges directed towards t and Out; < Dr the set of edges
directed away from t. Channels in In; are those on which f receives messages and
channels in Out; are those on which t sends messages. We also let n; = |In{, that is,
n: denotes the number of channels on which t may receive messages.

A task t is a reactive (or message-driven) entity, in the sense that normally it only
performs computation (including the sending of messages to other tasks) as a
response to the receipt of a message from another task. An exception to this rule is
that at least one task must be allowed to send messages out "spontaneously" (i.e.,
not as a response to a message receipt) to other tasks at the beginning of its
execution, inasmuch as otherwise the assumed message-driven character of the
tasks would imply that every task would idle indefinitely and no computation would

take place at all. Also, a task may initially perform computation for initialization
purposes.

Algorithm Task_t, given next, describes the overall behavior of a generic task t.
Although in this algorithm we (for ease of notation) let tasks compute and then
send messages out, no such precedence is in fact needed, as computing and
sending messages out may constitute intermingled portions of a task's actions.

Aliorithm Task t:

Do some computation;
send one message on each channel of a (possibly empty) subset of Out;
repeat
receive message on ¢, [l In;and B—
Do some computation;
send one message on each channel of a (possibly empty) subset of Out;
or...
or
receive message on ¢, O In; and B,—
Do some computation;
send one message on each channel of a (possibly empty) subset of Out;

until cI}IobaI termination is known to t.

There are many important observations to be made in connection with Algorithm
Task_t. The first important observation is in connection with how the computation
begins and ends for task t. As we remarked earlier, task t begins by doing some
computation and by sending messages to none or more of the tasks to which it is
connected in Gt by an edge directed away from it (messages are sent by means of
the operation send). Then t iterates until a global termination condition is known to
it, at which time its computation ends. At each iteration, f does some computation
and may send messages. The issue of global termination will be thoroughly
discussed in Section 6.2 in a generic setting, and before that in various other
chapters it will come up in more particular contexts. For now it suffices to notice
that t acquires the information that it may terminate its local computation by means
of messages received during its iterations. If designed correctly, what this
information signals to t is that no message will ever reach it again, and then it may
exit the repeat...until loop.

The second important observation is on the construction of the repeat...until loop
and on the semantics associated with it. Each iteration of this loop contains n;
guarded commands grouped together by or connectives. A guarded command is
usually denoted by

guard — command,
where, in our present context, guard is a condition of the form

receive message on ¢, O In; and By
for some Boolean condition By, where 1 < k < n.. The receive appearing in the
description of the guard is an operation for a task to receive messages. The guard
is said to be ready when there is a message available for immediate reception on
channel ¢, and furthermore the condition By is true. This condition may depend on
the message that is available for reception, so that a guard may be ready or not, for
the same channel, depending on what is at the channel to be received. The overall
semantics of the repeat...until loop is then the following. At each iteration, execute
the command of exactly one guarded command whose guard is ready. If no guard
is ready, then the task is suspended until one is. If more than one guard is ready,
then one of them is selected arbitrarily. As the reader will verify by our many

distributed algorithm examples along the book, this possibility of
nondeterministically selecting guarded commands for execution provides great
design flexibility.

Our final important remark in connection with Algorithm Task_t is on the semantics
associated with the receive and send operations. Although as we have remarked
the use of a receive in a guard is to be interpreted as an indication that a message
is available for immediate receipt by the task on the channel specified, when used
in other contexts this operation in general has a blocking nature. A blocking
receive has the effect of suspending the task until a message arrives on the
channel specified, unless a message is already there to be received, in which case
the reception takes place and the task resumes its execution immediately.

The send operation too has a semantics of its own, and in general may be
blocking or nonblocking. If it is blocking, then the task is suspended until the
message can be delivered directly to the receiving task, unless the receiving task
happens to be already suspended for message reception on the corresponding
channel when the send is executed. A blocking send and a blocking receive
constitute what is known as task rendez-vous, which is a mechanism for task
synchronization. If the send operation has a nonblocking nature, then the task
transmits the message and immediately resumes its execution. This nonblocking
version of send requires buffering for the messages that have been sent but not
yet received, that is, messages that are in transit on the channel. Blocking and
nonblocking send operations are also sometimes referred to as synchronous and
asynchronous, respectively, to emphasize the synchronizing effect they have in the
former case. We refrain from using this terminology, however, because in this book
the words synchronous and asynchronous will have other meanings throughout (cf.
Section 2.1). When used, as in Algorithm Task-t, to transmit messages to more
than one task, the send operation is assumed to be able to do all such
transmissions in parallel.

The relation of blocking and nonblocking send operations with message buffering
requirements raises important questions related to the design of distributed
algorithms. If, on the one hand, a blocking send requires no message buffering (as
the message is passed directly between the synchronized tasks), on the other hand
a nonblocking send requires the ability of a channel to buffer an unbounded
number of messages. The former scenario poses great difficulties to the program
designer, as communication deadlocks occur with great ease when the
programming is done with the use of blocking operations only. For this reason,
however unreal the requirement of infinitely many buffers may seem, it is
customary to start the design of a distributed algorithm by assuming nonblocking
operations, and then at a later stage performing changes to yield a program that
makes use of the operations provided by the language at hand, possibly of a
blocking nature or of a nature that lies somewhere in between the two extremes of
blocking and nonblocking send operations.

The use of nonblocking send operations does in general allow the correctness of
distributed algorithms to be shown more easily, as well as their properties. We then
henceforth assume that, in Algorithm Task t, send operations have a nonblocking
nature. Because Algorithm Task _t is a template for all the algorithms appearing in
the book, the assumption of nonblocking send operations holds throughout.
Another important aspect affecting the design of distributed algorithms is whether
the channels in Dt deliver messages in the FIFO order or not. Although as we
remarked in Section 1.3 this property may at times be essential, we make no
assumptions now, and leave its treatment to be done on a case-by-case basis. We
do make the point, however, that in the guards of Algorithm Task_t at most one
message can be available for immediate reception on a FIFO channel, even if
other messages have already arrived on that same channel (the available message
is the one to have arrived first and not yet received). If the channel is not FIFO,
then any message that has arrived can be regarded as being available for
immediate reception.

1.5 Handling infinite-capacity channels

As we saw in Section 1.4, the blocking or nonblocking nature of the send operations is
closely related to the channels ability to buffer messages. Specifically, blocking operations
require no buffering at all, while nonblocking operations may require an infinite amount of
buffers. Between the two extremes, we say that a channel has capacity k = 0 if the number of
messages it can buffer before either a message is received by the receiving task or the
sending task is suspended upon attempting a transmission is k. The case of k =0
corresponds to a blocking send, and the case in which k — « corresponds to a nonblocking
send.

Although Algorithm Task_t of Section 1.4 is written under the assumption of infinite-capacity
channels, such an assumption is unreasonable, and must be dealt with somewhere along the
programming process. This is in general achieved along two main steps. First, for each
channel ¢ a nonnegative integer b(c) must be determined that reflects the number of buffers
actually needed by channel c. This number must be selected carefully, as an improper choice
may introduce communication deadlocks in the program. Such a deadlock is represented by
a directed cycle of tasks, all of which are suspended to send a message on the channel on
the cycle, which cannot be done because all channels have been assigned insufficient
storage space. Secondly, once the b(c)'s have been determined, Algorithm Task_t must be
changed so that it now employs send operations that can deal with the new channel
capacities. Depending on the programming language at hand, this can be achieved rather
easily. For example, if the programming language offers channels with zero capacity, then
each channel ¢ may be replaced with a serial arrangement of b(c) relay tasks alternating with
b(c) + 1 zero-capacity channels. Each relay task has one input channel and one output
channel, and has the sole function of sending on its output channel whatever it receives on
its input channel. It has, in addition, a storage capacity of exactly one message, so the entire
arrangement can be viewed as a b(c)-capacity channel.

The real problem is of course to determine values for the b(c)'s in such a way that no new
deadlock is introduced in the distributed algorithm (put more optimistically, the task is to
ensure the deadlock-freedom of an originally deadlock-free program). In the remainder of
this section, we describe solutions to this problem which are based on the availability of a
bound r(c), provided for each channel ¢, on the number of messages that may require
buffering in ¢ when ¢ has infinite capacity. This number r(c) is the largest number of
messages that will ever be in transit on ¢ when the receiving task of c is itself attempting a
message transmission, so the messages in transit have to be buffered.

Although determining the r(c)'s can be very simple for some distributed algorithms (cf.
Sections 5.4 and 8.5), for many others such bounds are either unknown, or known
imprecisely, or simply do not exist. In such cases, the value of r(c) should be set to a "large"
positive integer M for all channels ¢ whose bounds cannot be determined precisely. Just how
large this M has to be, and what the limitations of this approach are, we discuss later in this
section.

If the value of r(c) is known precisely for all ¢ 00 Dr, then obviously the strategy of assigning b(
c) = r(c) buffers to every channel ¢ guarantees the introduction of no additional deadlock, as
every message ever to be in transit when its destination is engaged in a message
transmission will be buffered (there may be more messages in transit, but only when their
destination is not engaged in a message transmission, and will therefore be ready for
reception within a finite amount of time). The interesting question here is, however, whether it
can still be guaranteed that no new deadlock will be introduced if b(c) < r(c) for some
channels c. This would be an important strategy to deal with the cases in which r(c) = M for
some ¢ [0 Dr, and to allow (potentially) substantial space savings in the process of buffer
assignment. Theorem 1.1 given next concerns this issue.

Theorem 1.1

Suppose that the distributed algorithm given by Algorithm Task _t for all t [J Nt is deadlock-
free. Suppose in addition that Gr contains no directed cycle on which every channel c is such
that either b(c) < r(c) or r(c) = M. Then the distributed algorithm obtained by replacing each
infinite-capacity channel ¢ with a b(c)-capacity channel is deadlock-free.

Proof: A necessary condition for a deadlock to arise is that a directed cycle exists in Gr
whose tasks are all suspended on an attempt to send messages on the channels on that
cycle. By the hypotheses, however, every directed cycle in Gr has at least one channel ¢ for
which b(c) = r(c) < M, so at least the tasks t that have such channels in Out; are never
indefinitely suspended upon attempting to send messages on them.

The converse of Theorem 1.1 is also often true, but not in general. Specifically, there may be
cases in which r(c) = M for all the channels c of a directed cycle, and yet the resulting
algorithm is deadlock-free, as M may be a true upper bound for ¢ (albeit unknown). So
setting b(c) = r(c) for this channel does not necessarily mean providing it with insufficient
buffering space.

As long as we comply with the sufficient condition given by Theorem 1.1, it is then possible to
assign to some channels c¢ fewer buffers than r(c) and still guarantee that the resulting
distributed algorithm is deadlock-free if it was deadlock-free to begin with. In the remainder of
this section, we discuss two criteria whereby these channels may be selected. Both criteria
lead to intractable optimization problems (i.e., NP-hard problems), so heuristics need to be
devised to approximate solutions to them (some are provided in the literature).

The first criterion attempts to save as much buffering space as possible. It is called the
space-optimal criterion, and is based on a choice of M such that

M> Y o),

o Dy =C4
where C* is the set of channels for which a precise upper bound is not known. This criterion
requires a subset of channels C < D to be determined such that every directed cycle in Gr
has at least one channel in C, and such that
Yorle)

cEC

is minimum over all such subsets (clearly, C and C* are then disjoint, given the value of M,
unless C* contains the channels of an entire directed cycle from Gy). Then the strategy is to
set

_Jrie), fceCC;

)= { 0, otherwise,
which ensures that at least one channel ¢ from every directed cycle in Gris assigned b(c) =r
(c) buffers (Eigure 1.1). By Theorem 1.1, this strategy then produces a deadlock-free result if
no directed cycle in Gt has all of its channels in the set C*. That this strategy employs the
minimum number of buffers comes from the optimal determination of the set C.
The space-optimal approach to buffer assignment has the drawback that the concurrency in
intertask communication may be too low, inasmuch as many channels in D+ may be allocated
zero buffers. Extreme situations can happen, as for example the assignment of zero buffers
to all the channels of a long directed path in Gr. A scenario might then happen in which all
tasks in this path (except the last one) would be suspended to communicate with its
successor on the path, and this would only take place for one pair of tasks at a time. When at
least one channel ¢ has insufficient buffers (i.e., b(¢) < r(c)) or is such that r(c) = M, a
measure of concurrency that attempts to capture the effect we just described is to take the
minimum, over all directed paths in Gr whose channels c all have b(c) < r(c) or r(c) = M, of

the ratio
1

L+1'
where L is the number of channels on the path. Clearly, this measure can be no less than 1/|
N7| and no more than 1/2, as long as the assignment of buffers conforms to the hypotheses
of Theorem 1.1. The value of 1/2, in particular, can only be achieved if no directed path with
more than one channel exists comprising channels ¢ such that b(c) < r(c) or r(c) = M only.
Another criterion for buffer assignment to channels is then the concurrency-optimal criterion,
which also seeks to save buffering space, but not to the point

. — -
"._J_." L % b S
| ¥
L | [
[i
[i 1
o P b,
% F, N 1
| o 2 i | - —aip—{
J : i 4
- 'R - - -
| 13
= F e P
e B | I il 1]
S & -'-\._.-' et
1 |
L 2| 5
| | T 1 | | b =i 1
W sl No—

Figure 1.1: A graph G is shown in part (a). In the graphs of parts (b) through (d), circular nodes
are the nodes of Gr, while square nodes represent buffers assigned to the corresponding channel
in Gr. If r(c) = 1 for all ¢ O {c4, ¢, c3, c4}, then parts (b) through (d) represent three distinct buffer
assignments, all of which deadlock-free. Part (b) shows the strategy of setting b(c) =r(c) for all c O
{c4, C2,Cs, Ca}. Parts (c) and (d) represent, respectively, the results of the space-optimal and the
concurrency-optimal strategies.
that the concurrency as we defined might be compromised. This criterion looks for buffer
assignments that yield a level of concurrency equal to 1/2, and for this reason does not allow
any directed path with more than one channel to have all of its channels assigned insufficient
buffers. This alone is, however, insufficient for the value of 1/2 to be attained, as for such it is
also necessary that no directed path with more than one channel contain channels ¢ with r(c)
= M only. Like the space-optimal criterion, the concurrency-optimal criterion utilizes a value of
M such that

M> 3 ()
ceDr—C*
This criterion requires a subset of channels C < Dy to be found such that no directed path
with more than one channel exists in Gr comprising channels from C only, and such that

S (o)

o=l
is maximum over all such subsets (clearly, C* < C, given the value of M, unless C* contains
the channels of an entire directed path from Gy with more than one channel). The strategy is
then to set

0, ifceC;

bc) = { rie), otherwise,
thereby ensuring that at least one channel c in every directed path with more than one
channel in Gris assigned b(c) = r(c) buffers, and that, as a consequence, at least one
channel ¢ from every directed cycle in Gr is assigned b(c) = r(c) buffers as well (Eigure 1.1).
By Theorem 1.1, this strategy then produces a deadlock-free result if no directed cycle in Gr

has all of its channels in the set C*. The strategy also provides concurrency equal to 1/2 by
our definition, as long as C* does not contain all the channels of any directed path in Gr with
more than one channel. Given this constraint that optimal concurrency must be achieved (if
possible), then the strategy employs the minimum number of buffers, as the set C is
optimally determined.

1.6 Processor allocation

When we discussed the routing of messages among processors in Section 1.3 we saw that
addressing a message at the task level requires knowledge by the processor running the
task originating the message of the processor on which the destination task runs. This
information is provided by what is known as an allocation function, which is a mapping of the
form

: Np = Np,

where Nrand Nr are, as we recall, the node sets of graphs Gr (introduced in Section 1.4)
and Ge (introduced in Section 1.3), respectively. The function A is such that A(f) = p if and
only if task t runs on processor p.

For many of the systems reviewed in Section 1.1 the allocation function is given naturally by
how the various tasks in Nr are distributed throughout the system, as for example computer
networks and networks of workstations. However, for multiprocessors and also for networks
of workstations when viewed as parallel processing systems, the function A has to be
determined during what is called the processor allocation step of program design. In these
cases, Gr should be viewed not simply as the task graph introduced earlier, but rather as an
enlargement of that graph to accommodate the relay tasks discussed in Section 1.5 (or any
other tasks with similar functions—cf. Exercise 4).

The determination of the allocation function A is based on a series of attributes associated
with both Gr and Gr. Among the attributes associated with Gy is its routing function, which, as
we remarked in section 1.3, can be described by the mapping

: Np x Np — 2Fr,

For all p,qg O Np,R(p,q) is the set of links on the route from processor p to processor g,

possibly distinct from R(q,p) and such that R(p, p) = m . Additional attributes of Gr are the
relative processor speed (in instructions per unit time) of p O Np, s°, and the relative link
capacity (in bits per unit time) of (p,q) O Ep, ¢(s,q) (the same in both directions). These
numbers are such that the ratio s,/s, indicates how faster processor p is than processor g;
similarly for the communication links.

The attributes of graph Gr are the following. Each task t is represented by a relative
processing demand (in number of instructions) y;, while each channel (t — u) is represented
by a relative communication demand (in number of bits) from task t to task u, {(t—u),
possibly different from {(u—t)The ratio /. is again indicative of how much more
processing task f requires than task u, the same holding for the communication
requirements.

The process of processor allocation is generally viewed as one of two main possibilities. It
may be static, if the allocation function A is determined prior to the beginning of the
computation and kept unchanged for its entire duration, or it may be dynamic, if A is allowed
to change during the course of the computation. The former approach is suitable to cases in
which both G and Gy, as well as their attributes, vary negligibly with time. The dynamic
approach, on the other hand, is more appropriate to cases in which either the graphs or their
attributes are time-varying, and then provides opportunities for the allocation function to be
revised in the light of such changes. What we discuss in Section 1.6.1 is the static allocation
of processors to tasks. The dynamic case is usually much more difficult, as it requires tasks
to be migrated among processors, thereby interfering with the ongoing computation.
Successful results of such dynamic approaches are for this reason scarce, except for some
attempts that can in fact be regarded as a periodic repetition of the calculations for static
processor allocation, whose resulting allocation functions are then kept unchanged for the
duration of the period. We do nevertheless address the question of task migration in Section
1.6.2 in the context of ensuring the FIFO delivery of messages among tasks under such
circumstances.

HpA

1.6.1 The static approach

The quality of an allocation function A is normally measured by a function that expresses the
time for completion of the entire computation, or some function of this time. This criterion is
not accepted as a consensus, but it seems to be consonant with the overall goal of parallel
processing systems, namely to compute faster. So obtaining an allocation function by the
minimization of such a function is what one should seek. The function we utilize in this book
to evaluate the efficacy of an allocation function A is the function H(A) given by

H(A) = aHp(A) + (1 — a)He(A),

where Hp(A) gives the time spent with computation when A is followed, Hc(A) gives the time
spent with communication when A is followed, and a such that 0 < a < 1 regulates the
relative importance of He(A) and Hc(A). This parameter a is crucial, for example, in conveying
to the processor allocation process some information on how efficient the routing
mechanisms for interprocessor communication are (cf. Section 1.3).

The two components of H(A) are given respectively by

and

H('[.‘” 2 Z _1- Z ":H‘—-ull'

f.")
(pglEER P (I"'“]FDI'H!F-?]'EH{r‘-“].-"l['-lf]

This definition of He(A) has two types of components. One of them, wis,, accounts for the
time to execute task t on processor p. The other component, ww./s,, is a function of the
additional time incurred by processor p when executing both tasks t and u (various other
functions can be used here, as long as nonnegative). If an allocation function A is sought by
simply minimizing Hp(A) then the first component will tend to lead to an allocation of the
fastest processors to run all tasks, while the second component will lead to a dispersion of
the tasks among the processors. The definition of H¢(A), in turn, embodies components of
the type ((t—u)/c(,4), which reflects the time spent in communication from task t to task u on
link (p,q) O R(A(t), A(u)). Contrasting with He(A), if an allocation function A is sought by
simply minimizing Hc(A), then tasks will tend to be concentrated on a few processors. The
minimization of the overall H(A) is then an attempt to reconcile conflicting goals, as each of
its two components tend to favor different aspects of the final allocation function.

As an example, consider the two-processor system comprising processors p and q. Consider
also the two tasks f and u. If the allocation function A assigns p to run t and q to run u, then
we have. assuming a = 1/2,

2h(Ay) = ¥ 4 Vo | Seovw) Flumy
p &y C(p.q)
An allocation function A, assigning p to run both t and u yields
OH(Ag) =Tt 4 ¥u Vet
Hp ﬂp SF
Clearly, the choice between A and A; depends on how the system's parameters relate to
one another. For example, if s, = s4, then A, is preferable if the additional cost of processing
the two tasks on p is higher than the cost of communication between them over the link (p,q),
that is, if
Pty . Cle—u) + Cfuan)

Ip (pua)

Finding an allocation function A that minimizes H(A) is a very difficult problem, NP-hard in
fact, as the problems we encountered in Section 1.5. Given this inherent difficulty, all that is
left is to resort to heuristics that allow a "satisfactory" allocation function to be found, that is,
an allocation function that can be found reasonably fast and that does not lead to a poor
performance of the program. The reader should refer to more specialized literature for
various such heuristics.

1.6.2 Task migration

As we remarked earlier in Section 1.6, the need to migrate tasks from one processor to
another arises when a dynamic processor allocation scheme is adopted. When tasks
migrate, the allocation funtion A has to be updated throughout all those processors running
tasks that may send messages, according to the structure of Gr, to the migrating task. While
performing such an update may be achieved fairly simply (cf. the algorithms given in Section
4.1), things become more complicated when we add the requirement that messages
continue to be delivered in the FIFO order. We are in this section motivated not only by the
importance of the FIFO property in some situations, as we mentioned earlier, but also
because solving this problem provides an opportunity to introduce a nontrivial, yet simple,
distributed algorithm at this stage in the book. Before we proceed, it is very important to
make the following observation right away. The distributed algorithm we describe in this
section is not described by the graph Gr, but rather uses that graph as some sort of a "data
structure" to work on. The graph on which the computation actually takes place is a task
graph having exactly one task for each processor and two unidirectional communication
channels (one in each direction) for every two processors in the system. It is then a complete
undirected graph or node set Np, and for this reason we describe the algorithm as if it were
executed by the processors themselves. Another important observation, now in connection
with Gp, is that its links are assumed to deliver interprocessor messages in the FIFO order
(otherwise it would be considerably harder to attempt this at the task level). The reader
should notice that considering a complete undirected graph is a means of not having to deal
with the routing function associated with Gr explicitly, which would be necessary if we
described the algorithm for Ge.

The approach we take is based on the following observation. Suppose for a moment and for
simplicity that tasks are not allowed to migrate to processors where they have already been.
and consider two tasks u and v running respectively on processors p and q. If v migrates to
another processor, say @', and p keeps sending to processor q all of task u's messages
destined to task v, and in addition processor g forwards to processor q' whatever messages
it receives destined to v, then the desired FIFO property is maintained. Likewise, if u
migrates to another processor, say p’, and every message sent by u is routed through p first,
then the FIFO property is maintained as well. If later these tasks migrate to yet other
processors, then the same forwarding scheme still suffices to maintain the FIFO order.
Clearly, this scheme cannot be expected to support any efficient computation, as messages
tend to follow ever longer paths before eventual delivery. However, this observation serves
the purpose of highlighting the presence of a line of processors that initially contains two
processors (p and q) and increases with the addition of other processors (p' and g’ being the
first) as u and v migrate. What the algorithm we are about to describe does, while allowing
tasks to migrate even to processors where they ran previously, is to shorten this line
whenever a task migrates out of a processor by removing that processor from the line. We
call such a line a pipe to emphasize the FIFO order followed by messages sent along it, and
for tasks u and v denote it by pipe(u,v).

This pipe is a sequence of processors sharing the property of running (or having run) at least
one of u and v. In addition, u runs on the first processor of the pipe, and v on the last
processor. When u or v (or both) migrates to another processor, thereby stretching the pipe,
the algorithm we describe in the sequel removes from the pipe the processor (or processors)
where the task (or tasks) that migrated ran. Adjacent processors in a pipe are not necessarily
connected by a communication link in Ge, and in the beginning of the computation the pipe
contains at most two processors.

A processor p maintains, for every task u that runs on it and every other task v such that (u
— v) O Out,, a variable pipe,(u, v) to store its view of pipe(u, v). Initialization of this variable
must be consonant with the initial allocation function. In addition, for every task v, at p the
value of A(v) is only an indication of the processor on which task v is believed to run, and is
therefore denoted more consistently by A,(v). It is to A,(v) that messages sent to v by other
tasks running on p get sent. Messages destined to v that arrive at p after v has migrated out
of p are also sent to A,(v). A noteworthy relationship at p is the following. If v O Out, then
pipes(u, v) = <p,...q> if and only if A,(v) = q. Messages sent to A,(v) are then actually being
sent on pipe(u, v).

First we informally describe the algorithm for the single pipe pipe(u,v), letting p be the
processor on which u runs (i.e., the first processor in the pipe) and q the processor on which
v runs (i.e., the last processor in the pipe). The essential idea of the algorithm is the
following. When u migrates from p to another processor p', processor p sends a message
flush(u,v,p") along pipey(u, v). This message is aimed at informing processor g (or processor
q', to which task v may have already migrated) that u now runs on p’, and also "pushes"”
every message still in transit from u to v along the pipe (it flushes the pipe). When this
message arrives at q (or q') the pipe is empty and Aq(u) (or A¢{(u)) may then be updated. A
message flushed(u, v, q) (or flushed(u,v, q")) is then sent directly to p’, which then updates
Ao(v) and its view of the pipe by altering the contents of pipe,{(u, v). Throughout the entire
process, task u is suspended, and as such does not compute or migrate.

Figure 1.2: When task u migrates from processor p to processor p' and v from q to q', a flush(u,
v, p') message and a flush-request(u, v) message are sent concurrently, respectively by p to q and
by q to p. The flush message gets forwarded by q to g', and eventually causes q' to send p’ a
flushed(u, v, Q') message.
This algorithm may also be initiated by g upon the migration of v to q', and then v must also
be suspended. In this case, a message flush_request(u, v) is sent by g to p, which then
engages in the flushing procedure we described after suspending task u. There is also the
possibility that both p and q initiate concurrently. This happens when u and v both migrate (to
p' and ¢, respectively) concurrently, i.e., before news of the other task's migration is
received. The procedures are exactly the same, with only the need to ensure that flush(u, v,
p') is not sent again upon receipt of a flush_request(u, v), as it must already have been sent
(Eigure 1.2).
When a task u migrates from p to p’, the procedure we just described is executed
concurrently for every pipe(u, v) such that (u — v) O Out, and every pipe(v, u) such that (v —
u) O In,. Task u may only resume its execution at p’ (and then possibly migrate once again)
after all the pipes pipe(u, v) such that (u — v) O Out, and pipe(v, u) such that (v — u) O In,
have been flushed, and is then said to be active (it is inactive otherwise, and may not
migrate). Task u also becomes inactive upon the receipt of a flush_request(u, v) when
running on p. In this case, only after pipe,(u, v) is updated can u become once again active.
Later in the book we return to this algorithm, both to provide a more formal description of it
(in Section 2.1), and to describe its correctness and complexity properties (in Section 2.1 and
Section 3.2.1).

1.7 Remarks on program development

The material presented in Sections 1.4 through 1.6 touches various of the fundamental
issues involved in the design of message-passing programs, especially in the context of
multiprocessors, where the issues of allocating buffers to communication channels and
processors to tasks are most relevant. Of course not always does the programmer have full
access to or control of such issues, which are sometimes too tightly connected to built-in
characteristics of the operating system or the programming language, but some level of
awareness of what is really happening can only be beneficial.

Even when full control is possible, the directions provided in the previous two sections should
not be taken as much more than that. The problems involved in both sections are, as we

mentioned, probably intractable from the standpoint of computational complexity, so that the
optima that they require are not really achievable. Also the formulations of those problems
can be in many cases troublesome, because they involve parameters whose determination is
far from trivial, like for example the upper bound M used in Section 1.5 to indicate our inability
in determining tighter values, or the a used in Section 1.6 to weigh the relative importance of
computation versus communication in the function H. This function cannot be trusted too
blindly either. because there is no assurance that, even if the allocation that optimizes it could
be found efficiently, no other allocation would in practice provide better results albeit its
higher value for H.

Imprecise and troublesome though they may be, the guidelines given in Sections 1.5 and 1.6
do nevertheless provide a conceptual framework within which one may work given the
constraints of the practical situation at hand. In addition, they in a way bridge the abstract
description of a distributed algorithm we gave in Section 1.4 to what tends to occur in
practice.

1.8 Exercises
1. For d = 0, a d-dimensional hypercube is an undirected graph with 2d nodes in which every node
has exactly d neighbors. If nodes are numbered from 0 to 2d — 1, then two nodes are neighbors if
and only if the binary representations of their numbers differ by exactly one bit. One routing
function that can be used when GP is a hypercube is based on comparing the number of a
message's destination processor, say g, with the number of the processor where the message is,
say r. The message is forwarded to the neighbor of r whose number differs from that of r in the
least-significant bit at which the numbers of g and r differ. Show that this routing function is quasi-
acyclic.
2. In the context of Exercise 1, consider the use of a structured buffer pool to prevent deadlocks
when flow control is done by the store-and-forward mechanism. Give details of how the pool is to
be employed for deadlock prevention. How many buffer classes are required?
3. In the context of Exercise 1, explain in detail why the reservation of links when doing flow
control by circuit switching is deadlock-free.
4. Describe how to obtain channels with positive capacity from zero-capacity channels, under the

constraint the exactly two additional tasks are to be employed per channel of GT.
For d = 0, a d-dimensional hypercube is an undirected graph with

1. 29 nodes in which every node has exactly d neighbors. If nodes
are numbered from 0 to 2% - 1, then two nodes are neighbors if
and only if the binary representations of their numbers differ by
exactly one bit. One routing function that can be used when G is
a hypercube is based on comparing the number of a message's
destination processor, say q, with the number of the processor
where the message is, say r. The message is forwarded to the
neighbor of r whose number differs from that of r in the least-
significant bit at which the numbers of g and r differ. Show that
this routing function is quasi-acyclic.

2. In the context of Exercise 1, consider the use of a structured
buffer pool to prevent deadlocks when flow control is done by the
store-and-forward mechanism. Give details of how the pool is to
be employed for deadlock prevention. How many buffer classes
are required?

3. In the context of Exercise 1, explain in detail why the reservation
of links when doing flow control by circuit switching is deadlock-
free.

Describe how to obtain channels with positive capacity from zero-

4, capacity channels, under the constraint the exactly two additional

tasks are to be employed per channel of Gr.

1.9 Bibliographic notes
Sources in the literature to complement the material of Section 1.1 could hardly be more
plentiful. For material on computer networks, the reader is referred to the traditional texts by

Bertsekas and Gallager (1987) and by Tanenbaum (1988), as well as to more recent material
on the various aspects of ATM networks (Bae and Suda, 1991; Stamoulis, Anagnostou, and
Georgantas, 1994). Networks of workstations are also well represented by surveys (e.g.,
Bernard, Steve, and Simatic, 1993), as well as by more specific material (Blumofe and Park,
1994).

References on multiprocessors also abound, ranging from reports on early experiences with
shared-memory (Gehringer, Siewiorek, and Segall,1987) and message-passing systems
(Hillis, 1985; Seitz, 1985; Arlauskas, 1988; Grunwald and Reed, 1988; Pase and Larrabee,
1988) to the more recent revival of distributed-memory architectures that provide a shared
address space (Fernandes, de Amorim, Barbosa, Franga, and de Souza, 1989; Martonosi
and Gupta, 1989; Bell, 1992; Bagheri, llin, and Ridgeway Scott, 1994; Reinhardt, Larus, and
Wood, 1994; Proti¢, TomasSevi¢, and Milutinovi¢, 1995). The reader of this book may be
particularly interested in the recent recognition that explicit message-passing is often needed,
and in the resulting architectural proposals, as for example those of Kranz, Johnson,
Agarwal, Kubiatowicz, and Lim (1993), Kuskin, Ofelt, Heinrich, Heinlein, Simoni,
Gharachorloo, Chapin, Nakahira, Baxter, Horowitz, Gupta, Rosenblum, and Hennessy
(1994), Heinlein, Gharachorloo, Dresser, and Gupta(1994), Heinrich, Kuskin, Ofelt, Heinlein,
Singh, Simoni, Gharachorloo, Baxter, Nakahira, Horowitz, Gupta, Rosenblum, and Hennessy
(1994), and Agarwal, Bianchini, Chaiken, Johnson, Kranz, Kubiatowicz, Lim, Mackenzie, and
Yeung (1995). Pertinent theoretical insights have also been pursued (Bar-Noy and Dolev,
1993).

The material in Section 1.2 can be expanded by referring to a number of sources in which
communication processors are discussed. These include, for example, Dally, Chao, Chien,
Hassoun, Horwat, Kaplan, Song, Totty, and Wills (1987), Ramachandran, Solomon, and
Vernon (1987), Barbosa and Franga (1988), and Dally (1990). The material in Barbosa and
Franca (1988) is presented in considerably more detail by Drummond (1990), and, in
addition, has pioneered the introduction of messages as instructions to be performed by
communication processors. These were later re-introduced under the denomination of active
messages (von Eicken, Culler, Goldstein, and Schauser, 1992; Tucker and Mainwaring,
1994).

In addition to the aforementioned classic sources on computer networks, various other
references can be looked up to complement the material on routing and flow control
discussed in Section 1.3. For example, the original source for virtual cut-through is Kermani
and Kleinrock (1979), while Gunther (1981) discusses techniques for deadlock prevention in
the store-and-forward case and Gerla and Kleinrock (1982) provide a survey of early
techniques. The original publication on wormhole routing is Dally and Seitz (1987), and
Gaughan and Yalamanchili (1993) should be looked up by those interested in adaptive
techniques. Wormhole routing is also surveyed by Ni and McKinley (1993), and Awerbuch,
Kutten, and Peleg (1994) return to the subject of deadlock prevention in the store-and-
forward case.

The template given by Algorithm Task_t of Section 1.4 originates from Barbosa (1990a), and
the concept of a guarded command on which it is based dates back to Dijkstra (1975). The
reader who wants a deeper understanding of how communication channels of zero and
nonzero capacities relate to each other may wish to check Barbosa (1990b), which contains
a mathematical treatment of concurrency-related concepts associated with such capacities.
What this work does is to start at the intuitive notion that greater channel capacity leads to
greater concurrency (present, for example, in Gentleman (1981)), and then employ (rather
involved) combinatorial concepts related to the coloring of graph edges (Edmonds, 1965;
Fulkerson, 1972; Fiorini and Wilson, 1977; Stahl, 1979) to argue that such a notion may not
be correct. The Communicating Sequential Processes (CSP) introduced by Hoare (1978)
constitute an example of notation based on zero-capacity communication.

Section 1.5 is based on Barbosa (1990a), where in addition a heuristic is presented to
support the concurrency-optimal criterion for buffer assignment to channels. This heuristic
employs an algorithm to find maximum matchings in graphs (Syslo, Deo, and Kowalik, 1983).
The reader has many options to complement the material of Section 1.6. References on the
intractability of processor allocation (in the sense of NP-hardness, as in Karp (1972) and
Garey and Johnson (1979)) are Krumme, Venkataraman, and Cybenko (1986) and Ali and

El-Rewini (1994). For the static approach, some references are Ma, Lee, and Tsuchiya
(1982), Shen and Tsai (1985), Sinclair (1987), Barbosa and Huang (1988)—on which Section
1.6.1 is based, Ali and EI-Rewini (1993), and Selvakumar and Siva Ram Murthy (1994). The
material in Barbosa and Huang (1988) includes heuristics to overcome intractability that are
based on neural networks (as is the work of Fox and Furmanski (1988)) and on the A*
algorithm for heuristic search (Nilsson, 1980; Pearl, 1984). A parallel variation of the latter
algorithm (Freitas and Barbosa, 1991) can also be employed. Fox, Kolawa, and Williams
(1987) and Nicol and Reynolds (1990) offer treatments of the dynamic type. References on
task migration include Theimer, Lantz, and Cheriton (1985), Ousterhout, Cherenson, Douglis,
Nelson, and Welch (1988), Ravi and Jefferson (1988), Eskicio’lu and Cabrera (1991), and
Barbosa and Porto (1995)—which is the basis for our treatment in Section 1.6.2.

Details on the material discussed in Section 1.7 can be found in Hellmuth (1991), or in the
more compact accounts by Barbosa, Drummond, and Hellmuth (1991a; 1991b; 1994).

There are many books covering subjects quite akin to our subject in this book. These are
books on concurrent programming, operating systems, parallel programming, and distributed
algorithms. Some examples are Ben-Ari (1982), Hoare (1984), Maekawa, Oldehoeft, and
Oldehoeft (1987), Perrott (1987), Burns (1988), Chandy and Misra (1988), Fox, Johnson,
Lyzenga, Otto, Salmon, and Walker (1988), Raynal (1988), Almasi and Gottlieb (1989),
Andrews (1991), Tanenbaum (1992), Fox, Williams, and Messina (1994), Silberschatz,
Peterson, and Galvin (1994), and Tel (1994b). There are also surveys (Andrews and
Schneider, 1983), sometimes specifically geared toward a particular class of applications
(Bertsekas and Tsitsiklis, 1991), and class notes (Lynch and Goldman, 1989).

chapter 2: INtrinsic Constraints

Overview

This chapter, like Chapter 1, still has the flavor of a chapter on preliminaries, although
various distributed algorithms are presented and analyzed in its sections. The reason why it
is still in a way a chapter on preliminary concepts is that it deals mostly with constraints on
the computations that may be carried out over the model introduced in Section 1.4 for
distributed computations by point-to-point message passing.

Initially, in Section 2.1, we return to the graph-theoretic model of Section 1.4 to specify two of
the variants that it admits when we consider its timing characteristics. These are the fully
asynchronous and fully synchronous variants that will accompany us throughout the book.
For each of the two, Section 2.1 contains an algorithm template, which again is used through
the remaining chapters. In addition to these templates, in Section 2.1 we return to the
problem of ensuring the FIFO delivery of intertask messages when tasks migrate discussed
in Section 1.6.2. The algorithm sketched in that section to solve the problem is presented in
full in Section 2.1 to illustrate the notational conventions adopted for the book. In addition,
once the algorithm is known in detail, some of its properties, including some complexity-
related ones, are discussed.

Sections 2.2. and 2.3 are the sections in which some of our model's intrinsic constraints are
discussed. The discussion in Section 2.2 is centered on the issue of anonymous systems,
and in this context several impossibility results are presented.Along with these impossibility
results, distributed algorithms for the computations that can be carried out are given and to
some extent analyzed.

In Section 2.3 we present a somewhat informal discussion of how various notions of
knowledge translate into a distributed algorithm setting, and discuss some impossibility
results as well. Our approach in this section is far less formal and complete than in the rest of
the book because the required background for such a complete treatment is normally way
outside what is expected of this book's intended audience. Nevertheless, the treatment we
offer is intended to build up a certain amount of intuition, and at times in the remaining
chapters we return to the issues considered in Section 2.3.

Exercises and bibliographic notes follow respectively in Sections 2.4 and 2.5.

2.1 Full asynchronism and full synchronism

We start by recalling the graph-theoretic model introduced in Section 1.4,
according to which a distributed algorithm is represented by the connected directed
graph Gr = (N, Dy). In this graph, N is the set of tasks and Dr is the set of
unidirectional communication channels. Tasks in Ny are message-driven entities
whose behavior is generically depicted by Algorithm Task _t (cf. Section 1.4), and
the channels in Dr are assumed to have infinite capacity, i.e., no task is ever
suspended upon attempting to send a message on a channel (reconciling this
assumption with the reality of practical situations was our subject in Section 1.5).
Channels in Dr are not generally assumed to be FIFO channels unless explicitly
stated.
For the remainder of the book, we simplify our notation for this model in the
following manner. The graph Gr = (Nr, D7) is henceforth denoted simply by G =
(N,D), with n = |N| and m = |D|. For 1 <, j < n, n; denotes a member of N, referred
to simply as a node, and if j # i we let (n; — n;) denote a member of D, referred to
simply as a directed edge (or an edge, if confusion may not arise). The set of
edges directed away from n; is denoted by Out; € D, and the set of edges directed
towards n; is denoted by In; < D. Clearly, (n; — n;) € Out; if and only if (n; — n)) € In;.
The nodes n; and n; are said to be neighbors of each other if and only if either (n; —
;) € Dor (n;— n)) € D. The set of n;s neighbors is denoted by Neig;, and contains
two partitions, I_Neig; and O_Neig;,, whose members are respectively ni;s neighbors
n; such that (n; — n;) € D and n; such that (n;, — n;) € D.
Often G is such that (n; — n;) € D if and only if (n; — n;) € D, and in this case
viewing these two directed edges as the single undirected edge (n;, n;) is more
convenient. In this undirected case, G is denoted by G = (N, E), and then m = |E|.
Members of E are referred to simply as edges. In the undirected case, the set of
edges incident to n; is denoted by Inc; < E. Two nodes n; and n; are neighbors if and
only if (n, n;) € E. The set of n;s neighbors continues to be denoted by Neig.
Our main concern in this section is to investigate the nature of the computations
carried out by G's nodes with respect to their timing characteristics. This
investigation will enable us to complete the model of computation given by G with
the addition of its timing properties.
The first model we introduce is the fully asynchronous (or simply asynchronous)
model, which is characterized by the following two properties.
= Each node is driven by its own, local, independent time basis, referred to

as its local clock.
= The delay that a message suffers to be delivered between neighbors is

finite but unpredictable.
The complete asynchronism assumed in this model makes it very realistic from the
standpoint of somehow reflecting some of the characteristics of the systems
discussed in Section 1.1. It is this same asynchronism, however, that accounts for
most of the difficulties encountered during the design of distributed algorithms
under the asynchronous model. For this reason, frequently a far less realistic
model is used, one in which G's timing characteristics are pushed to the opposing
extreme of complete synchronism. We return to this other model later in this
section.
One important fact to notice is that the notation used to describe a node's
computation in Algorithm Task_t (cf. Section 1.4)is quite well suited to the
assumptions of the asynchronous model, because in that algorithm, except
possibly initially, computation may only take place at the reception of messages,
which are in turn accepted nondeterministically when there is more than one
message to choose from. In addition, no explicit use of any timing information is
made in Algorithm Task_t (although the use of timing information drawn from the
node's local clock would be completely legitimate and in accordance with the
assumptions of the model).
According to Algorithm Task _t, the computation of a node in the asynchronous
model can be described by providing the actions to be taken initially (if that node is
to start its computation and send messages spontaneously, as opposed to doing it

in the wake of the reception of a message) and the actions to be taken upon
receiving messages when certain Boolean conditions hold. Such a description is
given by Algorithm A_Template, which is a template for all the algorithms studied in
this book under the asynchronous model, henceforth referred to as asynchronous
algorithms. Algorithm A_Template describes the computation carried out by n, € N.
In this algorithm, and henceforth, we let N, = N denote the nonempty set of nodes
that may send messages spontaneously. The prefix A_ in the algorithm's
denomination is meant to indicate that it is asynchronous, and is used in the names
of all the asynchronous algorithms in the book.
Algorithm A_Template is given for the case in which G is a directed graph. For the
undirected case, all that needs to be done to the algorithm is to replace all
occurrences of both In; and Out; with Inc..

Algorithm A Template:

Variables:
Variables used by n;, and their initial values, are listed here.

Listing 2.1

Input:
msg; = nil.
Action if n, € No:
Do some computation;
Send one message on each edge of a (possibly empty) subset of
OUt,'.

Listing 2.2

Input:
msg; such that origin{msgi) = cx €In;with 1 < k< | In|.
Action when By
Do some computation;
Send one message on each edge of a (possibly empty) subset of
OUtj.

Before we proceed to an example of how a distributed algorithm can be expressed
according to this template, there are some important observations to make in
connection with Algorithm A_Template. The first observation is that the algorithm is
given by listing the variables it employs (along with their initial values) and then a
series of input/action pairs. Each of these pairs, in contrast with Algorithm Task ¢,
is given for a specific message type, and may then correspond to more than one
guarded command in Algorithm Task_t of Section 1.4, with the input corresponding
to the message reception in the guard and the action corresponding to the
command part, to be executed when the Boolean condition expressed in the guard
is true. Conversely, each guarded command in Algorithm Task t may also
correspond to more than one input/action pair in Algorithm A_Template. In addition,
in order to preserve the functioning of Algorithm Task _t, namely that a new

guarded command is only considered for execution in the next iteration, therefore
after the command in the currently selected guarded command has been executed
to completion, each action in Algorithm A_Template is assumed to be an atomic
action. An atomic action is an action that is allowed to be carried out to completion
before any interrupt. All actions are numbered to facilitate the discussion of the
algorithm's properties.

Secondly, we make the observation that the message associated with an input,
denoted by msg;, is if n; € N, treated as if msg; = nil, since in such cases no
message really exists to trigger n;s action, as in (2.1). When a message does exist,
as in (2.2), we assume that its origin, in the form of the edge on which it was
received, is known to n.. Such an edge is denoted by origin{msg;) € In.. In many
cases, knowing the edge origin{msg;) can be regarded as equivalent to knowing n;
€ I-Neig, for origin{msg;) = (n; — n;) (that is, n; is the node from which msg;
originated). Similarly, sending a message on an edge in Out; is in many cases
equivalent to sending a message to n; € O_Neig; if that edge is (n; — n)). However,
we refrain from stating these as general assumptions because they do not hold in
the case of anonymous systems, treated in Section 2.2. When they do hold and G
is an undirected graph, then all occurrences of /_Neig; and of O_Neig; in the
modified Algorithm A_Template must be replaced with occurrences of Neig..

As a final observation, we recall that, as in the case of Algorithm Task _t, whenever
in Algorithm A_Template n; sends messages on a subset of Out; containing more
than one edge, it is assumed that all such messages may be sent in parallel.

We now turn once again to the material introduced in Section 1.6.2, namely a
distributed algorithm to ensure the FIFO order of message delivery among tasks
that migrate from processor to processor. As we mentioned in that section, this is
an algorithm described on a complete undirected graph that has a node for every
processor. So for the discussion of this algorithm G is the undirected graph G = (N,
E). We also mentioned in Section 1.6.2 that the directed graph whose nodes
represent the migrating tasks and whose edges represent communication channels
is in this algorithm used as a data structure. While treating this problem, we then let
this latter graph be denoted, as in Section 1.6.2, by Gr = (Ny, Dr), along with the
exact same notation used in that section with respect to Gr. Care should be taken
to avoid mistaking this graph for the directed version of G introduced at the
beginning of this section.

Before introducing the additional notation that we need, let us recall some of the
notation introduced in Section 1.6.2. Let A be the initial allocation function. For a
node n; and every task u such that A(u) = n;, a variable pipe{(u, v) for every task v
such that (u — v) € Out, indicates n;s view of pipe(u, v). Initially, pipe{u, v)= n;, A
(v) . In addition, for every task v a variable A(v) is used by n; to indicate the node
where task v is believed to run. This variable is initialized such that A(v) = A(v).
Messages arriving at n; destined to v are assumed to be sent to A(v) if A(v) # n;, or
to be kept in a FIFO queue, called queue,, otherwise.

Variables employed in connection with task u are the following. The Boolean
variable active, (initially set to true) is used to indicate whether task u is active. Two
counters, pending_in, and pending_out,, are used to register the number of pipes
that need to be flushed before u can once again become active. The former
counter refers to pipes pipe(v, u) such that (v — u) € In, and the latter to pipes
pipe(u, v) such that (u — v) € Out.. Initially these counters have value zero. For
every v such that (v — u) € In,, the Boolean variable pending_in,(v) (initially set to
false) indicates whether pipe(v, u) is one of the pipes in need of flushing for u to
become active. Constants and variables carrying the subscript v in their names
may be thought of as being part of task u's "activation record", and do as such
migrate along with u whenever it migrates.

Algorithm A_FIFO, given next for node n;, is an asynchronous algorithm to ensure
the FIFO order of message delivery among migrating tasks. When listing the
variables for this algorithm, only those carrying the subscript j are presented. The
others, which refer to tasks, are omitted from the description. This same practice of
only listing variables that refer to G is adopted everywhere in the book.

Algorithm A _FIFO:

Variables:
pipe{u, v)= n;, A(v) forall (u— v) € Drsuch that A(u) = n;
A(v) for all v € Ny.

Listing 2.3

Input:
msg; = nil.
Action when active, and a decision is made to migrate u to n;:
active, := false;
for all (u — v) € Out, do
begin
Send flush(u, v, n)) to A(v);
pending_out,= pending_out, + 1
end;
for all (v — u) € In, do
begin
Send flush_request (v,u) to A(v);
pending_in, .= pending_in, + 1;
pending_in.,(v):= true
end;
A;(U) =nj
Send u to n,.

Listini 2.4
Input:
msg; = u.
Action:

A,' u) =n,

Listing 2.5

Input:
msg; = flush(v, u, n).
Action:
if A(u) = n;then
begin
A,‘(V) =ny
Send flushed(v,u,n;) to n;
if pending_in,(v)then
begin
pending_in,(v) = false;
pending_in, = pending_in, —1;
active,

= (pending_in, = 0) and (pending_out, = 0)
end
end
else

Send flushi v,u,n-i to A,-iui.

Listini 2.6

Input:
msg; = flush_request(u,v).
Action:
if A(u) = n;then
begin
active, := false;
Send flush (u,v,n)) to A(v);
pending_out, = pending_out, + 1
end.

Listini 2.7

Input:
msg; = flushed(u, v,n;).
Action when A(u) = n::
A(v) = ny;
pipe{u,v) = n, n; ;
pending_out, .= pending_out, —1;
active, = (pending in, = 0) and (pending out, = 0).

Algorithm A_FIFO expresses, following the conventions established with Algorithm
A_Template, the procedure described informally in Section 1.6.2. One important
observation about Algorithm A_FIFO is that the set N, of potential spontaneous
senders of messages now comprises the nodes that concurrently decide to send
active tasks to run elsewhere (cf. (2.3)), in the sense described in Section 1.6.2,
and may then be such that N, = N. In fact, the way to regard spontaneous
initiations in Algorithm A_FIFO is to view every maximal set of nodes concurrently
executing (2.3) as an N, set for a new execution of the algorithm, provided every
such execution operates on data structures and variables that persist (i.e., are not
re-initialized) from one execution to another.

For completeness, next we give some of Algorithm A_FIFO's properties related to
its correctness and performance.

Theorem 2.1.

For any two tasks u and v such that(u — v) € Out,, messages sent by u to v
are delivered in the FIFO order.

Proof: Consider any scenario in which both u and v are active, and in this
scenario let n; be the node on which u runs and n; the node on which v runs.

There are three cases to be analyzed in connection with the possible
migrations of u and v out of n; and n;, respectively.

In the first case, u migrates to another node, say n;, while v does not
concurrently migrate, that is, the flush(u,v,n;) sent by n;in (2.3) arrives at n;
when A/(v) = n;. A flushed(u,v, nj) is then by (2.5) sent to n;, and may upon
receipt cause u to become active if it is no longer involved in the flushing of
any pipe (pending_in, = 0 and pending_out, = 0), by (2.7). Also, pipe«{u,v) is in
(2.7) setto nyn; , and itis on this pipe that u will send all further messages
to v once it becomes active. These messages will reach v later than all the
messages sent previously to it by u when u still ran on n;, as by G,'s FIFO
property all these messages reached n; and were added to queue, before n;,
received the flush(u,v, n;).

In the second case, it is v that migrates to another node, say n;, while u does
not concurrently migrate, meaning that the flush_request(u,v) sent by n; to n;in
(2.3) arrives when A(u) = n. What happens then is that, by (2.6), as
pending_out, is incremented and u becomes inactive (if already it was not, as
pending_out, might already be positive), a flush(u,v,n;) is sent to n; and, finding
Ai(v) # n;, by (2.5) gets forwarded by n; to n;. Upon receipt of this message at
n;, a flushed(u, v, n;) is sent to n;, also by (2.5). This is a chance for v to
become active, so long as no further pipe flushings remain in course in which
it is involved (pending_in, = 0 and pending_out, = 0 in (2.5)). The arrival of that
message at n; causes pending_out, to be decremented in (2.7), and possibly u
to become active if it is not any longer involved in the flushing of any other
pipe (pending_in, = 0 and pending_out, = 0). In addition, pipe(u,v) is updated
to n,n; .Because uremained inactive during the flushing of pipe(u,v), every
message it sends to v at ny when it becomes active will arrive at its destination
later than all the messages it had sent previously to v at nj, as once again G,'s
FIFO property implies that all these messages must have reached n; and been
added to queue, ahead of the flush(u,v,n;).

The third case corresponds to the situation in which both v and v migrate
concurrently, say respectively from n; to ny and from n; to ny. This concurrency
implies that the flush(u,v,n;) sentin (2.3) by n; to n; finds A{(v) # n; on its arrival
(and is therefore forwarded to ny, by (2.5)), and likewise the flush_request(u, v)
sent in (2.3) by n; to n; finds A{u) # n; at its destination (which by (2.6) does
nothing, as the flush(u,v,n;) it would send as a consequence is already on its
way to n; or ny). A flushed(u,v,n;) is sent by n; to ny, where by (2.7) it causes the
contents of pipe,(u,v) to be updated to n;, n/' . The conditions for u and v to
become active are entirely analogous to the ones we discussed under the
previous two cases. When u does finally become active, any messages it
sends to v will arrive later than the messages it sent previously to v when it ran
on n;and v on n;. This is so because, once again by G,'s FIFO property, such
messages must have reached n; and been added to queue, ahead of the
flush(u,v,n;).

Let |pipe(u,v)| denote the number of nodes in pipe(u,v). Before we state
Lemma 2.2, which establishes a property of this quantity, it is important to note
that the number of nodes in pipe(u,v) is not to be mistaken for the number of
nodes in n;s view of that pipe if n; is the node on which u runs. This view,
which we have denoted by pipe{(u,v), clearly contains at most two nodes at all
times, by (2.7). The former, on the other hand, does not have a precise
meaning in the framework of any node considered individually, but rather
should be taken in the context of a consistent global state (cf. Section 3.1).

Lemma 2.2.

For any two tasks u and v such that(u — v)€ Out, |pipe(u, v)| < 4 always
holds.

Proof: It suffices to note that, if u runs on n, |pipe(u, v)| is larger than the
number of nodes in pipe(u,v) by at most two nodes, which happens when both

u and v migrate concurrently, as neither of the two tasks is allowed to migrate
again before the pipe between them is shortened. The lemma then follows
easily from the fact that by (2.7) pipe{u,v) contains at most two nodes.

To finalize our discussion of Algorithm A_FIFO in this section, we present its
complexity. This quantity, which we still have not introduced and will only
describe at length in Section 3.2, yields, in the usual worst-case asymptotic
sense, a distributed algorithm's "cost" in terms of the number of messages it
employs and the time it requires for completion. The message complexity is
expressed simply as the worst-case asymptotic number of messages that flow
among neighbors during the computation ("worst case" here is the maximum
over all variations in the structure of G, when applicable, and over all
executions of the algorithm— cf. Section 3.2.1). The time-related measures of
complexity are conceptually more complex, and an analysis of Algorithm
A_FIFO in these terms is postponed until our thorough discussion of
complexity measures in Section 3.2.

For a nonempty set K = N of tasks, we henceforth let m« denote the number
of directed edges in Dr of the form (u — v) or (v — u) foru € Kand v € Nt
Clearly,

my < Z (| Iny| + [Out,|) < 2mg.
uc K

Theorem 2.3.
For the concurrent migration of a set K of tasks, Algorithm A_FIFO employs O
(mx)messages
Proof: When a task u € K migrates from node n; to node n;, n; sends |In,|
messages flush_request(v, u) for (v — u) < In, and |Out,| messages flush
(u,v,ny) for (u — v) € Out,. In addition, n; receives |In,| messages flush(v,u,n))
for (v — u) € In, and some appropriate n;, and |Out,| messages flushed(u,v,n;)
for (u — v) € Out, and some appropriate n. Node n; also sends |In,|
messages flushed(v,u,n;) for (v — u) € In,. Only flush messages traverse
pipes, which by Lemma 2.2 contain no more than four nodes or three edges
each. Because no other messages involving u are sent or received even if
other tasks v such that (v — u) € In, or (u — v) € Out, are members of K as
well, except for the receipt by n; of one innocuous message flush_request(u, v)
for each v € K'such that (u — v) € Out,, the concurrent migration of the tasks
in K accounts for O(mk) messages.
The message complexity asserted by Theorem 2.3 refers to messages sent
on the edges of G, which is a complete graph. It would also be legitimate, in
this context, to consider the number of interprocessor messages actually
employed, that is, the number of messages that get sent on the edges of G,.
In the case of fixed, deterministic routing (cf. Section 1.3),a message on G
corresponds to no more than n — 1 messages on G, so by Theorem 2.3 the
number of interprocessor messages is O(nmg). However, recalling our remark
in Section 1.3 when we discussed the use of wormhole routing for flow control
in multiprocessors, if the transport of interprocessor messages is efficient
enough that G, too can be regarded as a complete graph, then the message
complexity given by Theorem 2.3 applies to interprocessor messages as well.
In addition to the asynchronous model we have been discussing so far in this
section, another model related to G's timing characteristics is the fully
synchronous (or simply synchronous) model, for which the following two
properties hold.
= All nodes are driven by a global time basis, referred to as the global

clock, which generates time intervals (or simply intervals) of fixed,

nonzero duration.

= The delay that a message suffers to be delivered between neighbors
is nonzero and strictly less than the duration of an interval of the
global clock.

The intervals generated by the global clock do not really need to be of the
same duration, so long as the assumption on the delays that messages suffer
to be delivered between neighbors takes as bound the minimum of the
different durations.

The following is an outline of the functioning of a distributed algorithm, called a
synchronous algorithm, designed under the assumptions of the synchronous
model. The beginning of each interval of the global clock is indicated by a
pulse. For s 2 0, pulse s indicates the beginning of interval s. At pulse s =0,
the nodes in Ny send messages on some (or possibly none) of the edges
directed away from them. At pulse s > 0, all the messages sent at pulse s — 1
have by assumption arrived, and then the nodes in N may compute and send
messages out.

One assumption that we have tacitly made, but which should be very clearly
spelled out, is that the computation carried out by nodes during an interval
takes no time. Without this assumption, the duration of an interval would not
be enough for both the local computations to be carried out and the messages
to be delivered, because this delivery may take nearly as long as the entire
duration of the interval to happen. Another equivalent way to approach this
would have been to say that, for some d = 0 strictly less than the duration of
an interval, local computation takes no more than d time, while messages take
strictly less than the duration of an interval minus d to be delivered. What we
have done has been to take d = 0. We return to issues related to these in
Section 3.2.2.

The set N, of nodes that may send messages at pulse s = 0 has in the
synchronous case the same interpretation as a set of potential spontaneous
senders of messages it had in the asynchronous case. However, in the
synchronous case it does make sense for nodes to compute without receiving
any messages, because what drives them is the global clock, not the
reception of messages. So a synchronous algorithm does not in principle
require any messages at all, and nodes can still go on computing even if Ny =

{ Nevertheless, in order for the overall computation to have any meaning
other than the parallelization of n completely indepenent sequential
computations, at least one message has to be sent by at least one node, and
for a message that gets sent at the earliest pulse that has to take place at
pulse s = d for some d = 0. What we have done has been once again to make
the harmless assumption that d = 0, because whatever the nodes did prior to
this pulse did not depend on the reception of messages and can therefore be
regarded as having been done at this pulse as well. Then the set N, has at
least the sender of that message as member.

Unrealistic though the synchronous model may seem, it may at times have
great appeal in the design of distributed algorithms, not only because it
frequently simplifies the design (cf. Section 4.3, for example), but also
because there have been cases in which it led to asynchronous algorithms
more efficient than the ones available (cf. Section 3.4). One of the chiefest
advantages that comes from reasoning under the assumptions of the
synchronous model is the following. If for some d > 0 a node n; does not
receive any message during interval s for some s 2 d, then surely no message
that might "causally affect" the behavior of n; at pulse s + 1 was sent at pulses
s —d,..., s by any node whose shortest distance to n;is at least d. The
"causally affect” will be made much clearer in Section 3.1 (and before that
used freely a few times), but for the moment it suffices to understand that, in
the synchronous model, nodes may gain information by just waiting, i.e.,
counting pulses. When designing synchronous algorithms, this simple

observation can be used for many purposes, including the detection of
termination in many cases (cf., for example, Sections 2.2.2 and 2.2.3).
It should also be clear that every asynchronous algorithm is also in essence a
synchronous algorithm. That is, if an algorithm is designed for the
asynchronous model and it works correctly under the assumptions of that
model, then it must also work correctly under the assumptions of the
synchronous model for an appropriate choice of interval duration (to
accommodate nodes' computations). This happens because the conditions
under which communication takes place in the synchronous model is only one
of the infinitely many possibilities that the asynchronous model allows. We
treat this issue in more detail in Section 3.3. The converse of this implication
(i.e., that synchronous algorithms run correctly in the asynchronous model)
can also be achieved with appropriate algorithm transformation, and is not at
allimmediate as its counterpart. This transformation lends support to our
interest in the synchronous model and is our subject in Section 5.3, after we
return to it in Sections 3.3 and 3.4.
Our last topic in this section is the presentation of Algorithm S_Template,
which sets the conventions on how to describe a synchronous algorithm and is
used as a template throughout the book. The prefix S_, similarly to the
asynchronouscase discussed earlier, indicates that the algorithm is
synchronous, and is used in all synchronous algorithms we present. For s =20
and n; € N, in Algorithm S_Template MSG((s) is either the empty set (if s = 0)
or denotes the set of messages received by n; during interval s — 1 (if s > 0),
which may be empty as well. The algorithm for n; is given next. As with
Algorithm A_Template, Algorithm S_Template too is given for the case in
which G is a directed graph. The undirected case is obtained by simply
replacing In; and Out; with Inc; throughout the algorithm.

Algorithm S_Template:

Variables:
Variables used by n;, and their initial values, are listed here.

Listini 2.8
Input:
s=0, MSG(0) = il

Action if ni € No:
Do some computation;
Send one message on each edge of a (possibly empty) subset of
Out,.

Listing 2.9
Input:
§>0, MSG(1),..., MSG{(s) such that origin{imsg) = ¢« € In;
8
msqg € U,.—
with 1 < k < |In] for g €Ura MSG(r).

Action:
Do some computation;

Send one message on each edge of a (possibly empty) subset of
Out;

As in the case of Algorithm A_Template, Algorithm S_Template is presented
as a set of input/action pairs whose actions are numbered for ease of
reference ((2.8) corresponds to s = 0 and (2.9) to s > 0). The inputs now
include information from the global clock (in the form of the nonnegative
integer s), which is, as we have seen, what really drives the nodes. The
atomicity of the actions comes as a consequence of the characteristics of the
synchronous model, because no node performs more than one action per
interval of the global clock. In fact, it is simple to see that every node performs
exactly one action per interval of the global clock, because actions are now
unconditional, that is, in describing Algorithm S_Template we have done away
with the Boolean conditions that Algorithm A_Template inherited from the
guard's of Algorithm Task_t of Section 1.4. The reason why we could do this is
that such conditions are in the synchronous case evaluated only at the
occurrence of pulses, and this can be treated inside the action itself (through
the use of if's, as opposed to the use of when's in the asynchronous case).
Another important observation regarding Algorithm S_Template is that we
allow n; to have access, during its computation at interval s > 0, to all the sets
MSG(1),...,MSG(s). Although normally only MSG{s) is needed, the greater
generality is useful for our purposes in various situations, as for example in
Sections 2.2.3 and 3.3.

2.2 Computations on anonymous systems

The system represented by the graph G is said to be an anonymous system when its nodes
do not have identifications that they can use in their computations. Of course, we as outside
observers can still make use of the identifications n,..., n, in describing the anonymous
system, the computations that run on it, and the properties of those computations. The nodes
themselves, however, cannot have access to such identifications for use in the algorithm, not
even to identify a neighbor as the source or the destination of a message. In an anonymous
system, all that is known to a node n; are the sets In; and Out; of edges (/nc;, in the undirected
case), so messages have to be received and sent over these edges without explicit mention
to the nodes on the other side, whose identifications are unknown. When receiving a
message msg;, the only information related to the origin of msg; that n; can use is the
identification of the edge on which the message arrived, and this is denoted by origin{msg),
as we discussed in Section 2.1. The reader should check that Algorithms A_Template and
S_Template of Section 2.1 were written in this fashion, so they can be used directly to
express algorithms on anonymous systems.

The study of computations on anonymous systems is interesting from at least two
perspectives. First of all, this study provides an opportunity to investigate the limits of what
can be computed distributedly when nodes do not have, and cannot possibly obtain,
complete information on the overall structure of G. The second perspective is that of systems
that really should be regarded as anonymous, as many systems represented by massively
parallel models that in fact can be viewed as performing distributed computations (cf. Section
10.2 for examples).

One of the foremost consequences of assuming that a system is anonymous is that the
algorithm describing the computation to be carried out by a node must be the same for all
nodes. The reason why this property must hold is that differences in the algorithms
performed by the nodes might provide a means to establish identifications that the nodes
would then be able to use in their computations, in which case the system would no longer be
anonymous.

Our discussion throughout Section 2.2. will be limited to the cases in which G is an
undirected graph with one single cycle, that is, an undirected ring. In the case of a ring, Inc;

has exactly two members for all n; € N, which we let be called left; and right. If every edge (n,
nj) is such that (n;, n;) = left; = right;, then we say that the ring is locally oriented, or,
equivalently, that the assignment of denominations to edges locally at the nodes establishes
a local orientation on the ring. Equivalently, this can be expressed by rephrasing the condition
as (n;, n;) = left; = right; for all (n, n;) € E.

Section 2.2.1 contains a discussion of two impossibility results under the assumption of
anonymity. These two results refer to computations of Boolean functions and to the
establishment of local orientations under certain assumptions on n, the number of nodes in
the ring. The remaining two sections contain algorithms to compute Boolean functions
(Sections 2.2.2) and to find a local orientation (Sections 2.2.2 and 2.2.3) when the conditions
leading to the impossibility results of Section 2.2.1 do not hold.

2.2.1 Some impossibility results

Let fbe a Boolean function of the form

: {true, false}"™ —+ {true, false}.

In this section, we consider algorithms to compute f when the n Booleans that constitute its
arguments are initially scattered throughout the nodes, one per node, in such a way that at
the end of the algorithm every node has the same value for f (we say that such an algorithm
computes f at all nodes). Naturally, the assignment of arguments to nodes has to be
assumed to be given initially, because an anonymous system cannot possibly perform such
an assignment by itself.

The first impossibility result that we discuss is given by Theorem 2.4, and is related to the
availability of n to be used by the nodes in their computations.

Theorem 2.4.

No synchronous algorithm exists to compute f at all nodes if n is not known to the nodes.
Proof: We show that any synchronous algorithm that computes f in the absence of
information on n must in some cases fail, that is, we show that such an algorithm does not
necessarily compute f at all nodes.

For consider an algorithm to compute f when n is not known to the nodes. This algorithm
must function independently of n, therefore for rings with all numbers of

.'I!' i ":f iy

-

T, i

- o — o ~ ey P

! % i | [i 1

{ .' ':.H. i ﬁ":_ | o i _.;I._i' _,_}_I' .'_f o]
e o S L e, , o j

i
| 1
' ¥ = = =
| I |
i
i = el |
q = 5

|
X X I.-'-'H. | 7 F o Y '-\-\.l | e .d---\. _.---\l
i T g, TR o -_{ 2 I i WY i S
L Nt '\-\._.-"I- | '\._."I I"'-\._."I Bt R I"'._.-'I S L4 _.-'l
|

e iy ! g

Figure 2.1: This is the 2 v (2]T/3| + 1)-node ring used in the proof of Theorem 2.4, here shown for
v =3 and T = 3. Each of the three portions in the upper half comprising three contiguous nodes
each is assigned f's arguments according to ar. Similar portions in the lower half of the ring follow
assignment a.
nodes. In particular, for a ring with n = v =2 3 nodes, let ar and a; be assignments of f's
arguments to nodes, i.e.,

ag,ag : {ny,....n,} —+ {false, true},

such that

f(ﬂf{;nl:l_g i ,_ﬂ-f{f{.ujj = false

and

Flae(ng), ..., ag(n,)) = true.

Furthermore, let T;and T; be the numbers of pulses that the algorithm spends in computing f
for, respectively, assignments arand a.. Let T be such that

T = max{T¢, T, }.

The next step is to consider a ring with n = 2v(2]T/3| + 1) nodes, for which the algorithm must
also work, and to assign arguments to the nodes as follows. Divide the ring into two
connected halves, and within each half identify 2|T/3] + 1 portions, each with v contiguous
nodes. To each such portion in one of the halves assign arguments as given by ar. Then use
a; to do the assignments to each of the portions in the other half (Figure 2.1).

Because the number of portions in each half is odd, we can identify a middle portion in each
of the halves. Also, except for the nodes at either end of the two halves, every node is in the
larger ring connected as it was in the smaller one (i.e., the Booleans assigned to a node's
neighbors are the same in the two rings). In the synchronous model, it takes at least d pulses
for a node to causally affect another that is d edges apart on a shortest path, so nodes in the
middle portions of both halves cannot be causally affected by any other node in the other half
within T pulses of the beginning of the computation. What these considerations imply is that
the nodes in the middle portion of the half related to ar will by pulse T have terminated and
proclaimed the value of f to be false, because this is what happened by assumption under
the same circumstances on the smaller ring. Similarly, nodes in the middle portion of the half
related to a; will have terminated and proclaimed f to have value true within T pulses of the
beginning of the computation.

Corollary 2.5.

No algorithm exists to compute f at all nodes if n is not known to the nodes.

Proof: This is a direct consequence of our discussion in Section 2.1, where we mentioned
that every asynchronous algorithm easily yields an equivalent synchronous algorithm. So, if
an asynchronous algorithm existed to compute f at all nodes in the absence of information on
n at the nodes, then the resulting synchronous algorithm would contradict Theorem 2.4.

If n is known to the nodes, then f can be computed at all nodes by a variety of algorithms, as
we discuss in Section 2.2.2.

The second impossibility result that we discuss in this section is related to establishing a local
orientation on the ring when, for n; € N, the identifications left; and right; are not guaranteed to
yield a local orientation initially. This problem is related to the problem of computing f we
discussed previously in the following manner. At node n;, the positioning of left; and right; with
respect to how its neighbors' edge identifications are positioned can be regarded as
constituting a Boolean input. Establishing a local orientation for the ring can then be regarded
as computing a function f on these inputs and then switching the denominations of the two
edges incident to n; if the value it computes for f turns out to be, say, false. Now, this function
is not in general expected to yield the same value at all nodes, and then Corollary 2.5 would
not in principle apply to it. However, another Boolean function, call it f, can be computed
easily once f has been computed. This function has value true if and only if the ring is locally
oriented, and this is the value it would be assigned at each node right after that node had
computed f and chosen either to perform the switch in edge identifications or not to. Clearly,
f'is expected to be assigned the same value at all nodes, and then by Corollary 2.5 there is
no algorithm to compute it at all nodes in the absence of information on n. As a
consequence, there is no algorithm to compute f either.

Even when n is known to the nodes, there are cases in which no algorithm can be found to
establish a local orientation on the ring. Theorem 2.6 gives the conditions under which this
happens.

Theorem 2.6.

No synchronous algorithm exists to establish a local orientation on the ring if n is even.
Proof: Our argument is to show that any synchronous algorithm to establish a local
orientation on the ring fails in some cases if n is even. To do so, we let n = 2v for some v = 2,
and then consider the following arrangement of left; and right; for alln;€ N. For1<i<v -1,
we let

vight, = left,,

andforv+2<i<2vwelet

right, = left;_,.

Clearly, this arrangement also implies

lefty = lefty,

and

right,, = right,,,,

so the ring is not locally oriented.

wi{l.. 20} = {1,...,20)
Now we consider a mapping of the form
wi{l,..., v} =+ {1,...,2v}

such that, for 1 <j <2y,

pli) =20 +1—i,

== f.r:[-'.-*" '_ }
for which it clearly holds that TJ{- ¢] (Figure 2.2). This mapping is also
such that, for 1 < j < 2v, if n; sends a message at a certain pulse (or receives a message

ff .
during the corresponding interval) on edge left; or edge right;, then LT]does exactly the

ﬂﬂﬁw[n right (4

same at the same pulse, respectively on edge or edge

Thoald
Consequently, n;and LT]reach the same conclusion on whether they

my mp my Ny ng
.w
=00

ng Mg Mg Ty Ng

@

Figure 2.2: The 2v-node ring used in the proof of Theorem 2.6 is depicted here for v = 5. Shown

is also the mapping * 2= {2 "emphasizing the symmetry among the nodes in the ring's
upper half and the corresponding nodes in the lower half.

should switch their incident edges' identifications or not, and the ring continues to be not
locally oriented

Corollary 2.7.
No algorithm exists to establish a local orientation on the ring if n is even.

Proof: The proof here is entirely analogous to that of Corollary 2.5.
If nis known to the nodes and is odd, then a local orientation can be established on the ring.

We give algorithms to do this in Sections 2.2.2 and 2.2.3.

2.2.2 Boolean-function computations

When n is known to the nodes, Corollary 2.5 does not apply and the function fintroduced in
Section 2.2.1 can be computed at all nodes. Also, if such a function is computed with the aim
of eventually establishing a local orientation on the ring, then n has to be odd for Corollary 2.7
not to apply.

In this section, we start by presenting Algorithm A_Compute_f, which is an asynchronous
algorithm to compute f at all nodes when n is known to the nodes. In addition, we present this
algorithm in such a way that, if n is odd, then it may be used almost readily to establish a
local orientation on the ring as well.

In Algorithm A_Compute_f, b; € {false, true} denotes f's argument corresponding to n; € N.
In order for the algorithm to be also suitable to the determination of a local orientation on the
ring, the messages that it employs carry the pair of Booleans comprising one argument of f
and a Boolean constant.

So far as computing f goes, the essence of Algorithm A-Compute-f is very simple. If n; € Np,
or upon receiving the first message if n; € Ny, n; sends the pair (b;, false) on left; and the pair
(bitrue) on right. For each of the |n/2| messages it receives on each of the edges incident to
it, n; records the Booleans contained in the message and sends them onward on the edges
opposite to those on which they were received. After all these messages have been
received, n; has the Booleans originally assigned to every node and may then compute f
locally.

Node n; employs two variables to count the numbers of messages received, respectively
count-left;and count-right; for left; and right.. Initially, these counters have value zero. In

addition, n; employs the n Boolean variables i to record the values of by,...,b, when they

bl

are received in messages (if j # i) for 1 <j < n. Initially, = % = b; (the others do not need any
initial value to be set). Another variable ji is used to contain the subscripts to these variables.
Because Algorithm A-Compute-f has to be exactly the same for all nodes in N, another
Boolean variable, initiated; (initially set to false), is employed by n; to indicate whether n; € N,
or not. This variable is set to true when n; starts its computation if it is a member of Ny
Nonmembers of Ny will have this variable equal to false upon receiving the first messages,
and will then know that first of all it must send messages out. In the absence of anonymity,
sometimes it is simpler to specify an algorithm for n; € Ny and another for n; No

Aliorithm A-Comiute-f:

Variables:
count-left; = 0;
count-right; = 0;

k
.hf (

Ji=1;
initiated, = false.

=b,ifk=1)for1<k<n;

Listini 2.10

Input:
msg; = nil.
Action if n, € N,
initiated; := true;

bl

Send (1., false) on left;

bl

Send i 1, truei on riiht,-.
Listini 2.11

Input:
msg; = (b,B)

Action:
if not initiated; then
begin

initiated; = true;

bl

Send (2., false) on left;

Send (h:}, true) on right;
end;
if origini(msg,) = left then
begin

count_left; .= count_left; + 1;

Ji=ji+ 1
if i< n then
bj; =b;

if count_left;< [n/2] - 1 then
Send msg; on right;
end;
if origin; (msg,) = right; then
begin
count_right; .= count_right; + 1;
Ji=it 1

if < n then

if count_right; < [n/2| — 1 then
Send msg; on left;
end;

if count_left; + count _right; = 2|n/2| then

ompute f(blﬂ g sbf}

C i i

An instructive observation at this point is that Algorithm A_Compute fis indeed an algorithm
for anonymous rings. Nowhere in the algorithm are the identities of the nodes mentioned,
except in the description of (2.10), but this is only for notational consistency with Algorithm
A_Template, because in any event the set N, is determined by an "external agent." In fact, it
is because of the system's anonymity that the b's that n; receives have to placed by (2.11) in

L2]
the variables Jﬂ- e }1', irrespective of their original senders, which would be
simpler if the denominations of those senders could be used by the algorithm. In addition, the
algorithm does make use of n, as anticipated by Corollary 2.5.
Let us now examine Algorithm A_Compute_f carefully. During ni's computation, it receives
the messages originally sent to it by its neighbors by (2.10) or (2.11), and whatever those
neighbors forward to it by (2.11). Because by (2.11) a node only forwards to each of its
neighbors |n/2| — 1 messages, n; actually receives 2 |n/2| messages, of which the last two it
does not forward. Upon receipt of the last of the 2|n/2| messages, n; has either n (if n is odd)
or n + 1 (if n is even) arguments of f, which it may then compute. Although it may be possible
to modify the algorithm a little bit to ensure that exactly n arguments are received if n is even
as well (cf. Exercise 1), as presented the last argument received is a repetition and may be
dropped (as in (2.11)).
In many cases, it may only be possible to compute fif the information n; receives is organized
more orderly than as in Algorithm A_Compute_f. In other words, unless fis invariant with
respect to the order of its arguments (as in the case of the AND and OR functions, for
L 2 7L
example), then the variables E"iﬁ - il hi have to be replaced with two sets of similar
variables, each with |n/2| variables to accommodate the Booleans received from each of n;s
neighbors. In addition, if such an invariance does not hold, then the edges in E have to be
assumed to be FIFO. Even so, however, because the system is anonymous f can only be
computed if it is invariant under rotations of its arguments.
As we mentioned earlier, Algorithm A_Compute_f can also be used to provide the ring with a
local orientation, and this is the role of the B's that get sent along with every message. When
the algorithm is used with this purpose, then the b's have no role and the B’'s are treated as
follows at the step in which f would be computed in (2.11). A B that n, receives indivates
either that its original sender had its left and right edges positioned like left; and right; (if B =
true is received on left; or B = false is received on right)) or positioned otherwise (if B = false
is received on left; or B = true is received on right;). In either case, so long as nis odd (and n
has to be odd, by Corollary 2.7), n; can decide whether its-edges are positioned like those of
the majority of the nodes, in which case it maintains their positioning, or not, in which case it
reverses their positioning. The result of these decisions system-wide is clearly to establish a
local orientation on the ring. (Note that in this case Algorithm A_Compute_f would have to be
modified to treat the B's, not the b's, n; receives—cf. Exercise 3.)
Because each node receives 2|n/2| messages during the computation, the total number of
messages employed by the algorithm is 2n|n/2|, and its message complexity is clearly O(n?).

In Section 3.2.1, we return to Algorithm A_Compute_f to discuss its time-related complexity
measures.
In the remainder of this section and in Section 2.2.3, we show that synchronous algorithms
exist whose message complexities are significantly lower than that of Algorithm
A_Compute_f, so long as the generality of this algorithm can be given up. The synchronous
algorithm that we discuss next is specific to computing the AND function, while the one we
discuss in Section 2.2.3is specific to providing the ring with a local orientation.
The key ingredient in obtaining the more efficient synchronous algorithm is that the AND
function can be assumed to be true unless any of its arguments if false. In the synchronous
case, this observation can be coupled with the assumptions of the synchronous model as
follows. Only nodes with false arguments send their argument to neighbors. The others
simply wait to receive a false or long enough to know that any existing false would already
have reached them. In either case, computing the AND is a simple matter. Algorithm
S Compute_AND embodies this strategy and is given next. In this algorithm, No = N and a
Boolean variable f; (initially set to true) is employed by n; to store the result of evaluating the
AND function.

Algorithm S _Compute AND

Variables:
f. = true.

Listini 2.12
Input:
s =0, MSG(0) = L'ﬂ

Action if n; € No:

if b; = false then
begin

f = false:
Send b, on left; and on right;

end.

Listing 2.13

Input:

0 <s<|n/2|, MSG(s).
Action:

if f: then

if MSG(s) # il then
begin
f. .= false;
if there exists msg € MSG(s) such that

origin{msg) = left; then
Send msg on right;

if there exists msg € MSG(s) such that
origin{msg) = right; then
Send msg on leff;

end.

If niis not such that b, = false, then the largest number of pulses that can go by before n;
concludes that f; cannot be changed from its initial value of true is |n/2|, so that after pulse s
=|n/2] = O(n) no further computation has to be performed and the algorithm may terminate.
By (2.12) and (2.13), n: sends at most two messages during its computation, either initially if
b; = false, by (2.12), or upon receiving the first message, if any messages are at all received,
by (2.13). Clearly, then, the message complexity of Algorithm S_Compute_AND, is O(n).

2.2.3 Another algorithm for local orientation

In addition to Algorithm S_Compute_AND, another example of how to employ many fewer
messages than those required by Algorithm A_Compute_f comes from considering a
synchronous algorithm tailored specifically to establishing a local orientation on the ring. By
Theorem 2.6, such an algorithm may only exist if n is odd, as we assume henceforth in this
section.

The basic strategy behind this algorithm employs the following terminology. Say that two
nodes n; and n; are segment ends if (n;, nj) € E and furthermore (n;, n)) = left; = left. Segment
ends delimit segments, which are subsets of N inducing connected subgraphs of G with at
least two nodes. If n; and n; are segment ends and (n;, n;) € E, then n;, and n; belong to
different segments, unless the number of segments in the ring is exactly one. Clearly, a
locally oriented ring contains no segment ends, while a ring that is not locally oriented
contains a nonzero even number of segment ends, and half as many segments. Because n
is odd, an odd number of segments must have an odd number of nodes each.

The synchronous algorithm proceeds in iterations, each one comprising two phases. Initially,
all nodes are said to be active, and the goal of each of the iterations is to reduce the number
of active nodes. During an iteration, nodes that are not active function solely as message
relays, so that the computation can always be looked at as being carried out on a ring
containing the active nodes only, called the active ring. Iterations proceed until exactly one
active node remains or until an active ring is reached which is locally oriented (in this case
with more than one active node). A local orientation can then be established on the entire
ring by the last active nodes.

The number of iterations that the algorithm requires depends largely on how active nodes are
eliminated from one iteration to the next. In Algorithm S_Locally_Orient, given next, this
elimination takes place as follows. In the first phase of an iteration, segment ends are
identified on the active ring. Then, in the second phase, the nodes, called center nodes,
occupying the central positions in the segments having an odd number of nodes are
identified and selected to be the only active nodes to remain through to the next iteration. By
our preceding discussion, the number of center nodes must be odd, and then so must the
number of nodes in every active ring, thereby guaranteeing the feasibility of every iteration.
The last iteration is characterized by the absence of segment ends among the active nodes.
Because at each iteration segments with an even number of nodes do not contribute with any
active node to the next iteration, and considering that segments with odd numbers of nodes
have at least three nodes each, clearly the number of iterations required is no larger than
[logsn] = O (log n).

Letting o = O indicate the pulses within each of the iterations, the following is how the two
aforementioned phases within an iteration are implemented. At pulse ¢ = O, node nj, if active,
sends foken on edge right.. Active nodes then idle throughout the following n — 1 pulses,

while nodes that are not active simply relay token onward if they at all receive it. An active
node n; that by pulse o = n has not received token on left;is a segment end, and at pulse o =
n sends the integer O on right. Throughout the following n — 1 pulses (i.e., from pulse ¢ =
n+1 through pulse o = 2n - 1), active nodes forward the integer z + 1 upon receiving integer
z, for some z = 0, while the other nodes continue to function as relays. An active node n; that
by pulse o = 2n has received the same integer over left; and right; during the same interval is
a center node. This is the last iteration if n; did not receive any message during intervals n
through 2n - 1, otherwise only center nodes remain active for the next iteration. A message
orient is sent on, say, left; by an active node n; after the last iteration. This message, if
received on /eft; by a node n; that is not active, causes left; and right; to be interchanged.

The reader should notice that the characteristics of the synchronous model are used
profusely in this strategy to establish a local orientation. Indeed, both the determination of
segment ends and of center nodes rely heavily on the assumed synchronism, as does the
determination of when an iteration is the last one.
In Algorithm S_Locally Orient, k identifies the iteration and is then such that 1 < k < K, where
K is the last iteration, therefore such that K < [logs n|. Pulses within the kth iteration are
numbered s = 2n(k — 1) + o, that is, from s = 2n(k — 1) through s = 2nk. After the last
iteration, additional n — 1 pulses must elapse before termination. The only variable employed
by n;is the Boolean variable active;, initially set to true, used to indicate whether n; is active.
Because initially active; = true for all n; € N, in this algorithm N, = N. Because K has to be
determined as the algorithm progresses, it is assumed to be equal to infinity initially.
Algorithm S Locally Orient:

Variables:
active; = true.

Listini 2.14

Input:
_ _(
s=2nk-1), MSG(s) = .
Action (if n; € N,, for k =1):
if active; then
Send token on right..

Listing 2.15

Input:

2n(k-1)+1<s<2nk-n -1, MSG(s).
Action:
if not active; then
begin
if there exists token € MSG((s) such that origin(token) =
left; then
Send foken on right;

if there exists token € MSG(s) such that origin; (token) =
right; then

Send token on lefft;

end.

Listini 2.16
Input:
s =2nk - n, MSG{(2n(k - 1) + 1),..., MSG{(2nk — n).
Action:

if active; then

E Uﬂ‘tﬂ: — T
if there does not exist token r=2n(k—1)+1 MSG{r) such that
origin; (token) = left; then

Send 0 on right;.

Listing 2.17

Input:
2nk -n+1<s<2nk-1, MSG(s).s
Action:
if active; then
begin
if there exists z € MSG{(s) such that origin(z) = left;
then
Send z + 1 on right;
if there exists z € MSG(s) such that origin{(z) = right;
then
Send z + 1 on Jeft;

end

else
begin
if there exists z € MSG(s) such that origin(z) = left;
then
Send z on right;
if there exists z € MSG{(s) such that origin; (z) = right;
then
Send z on /efft;

end.

Listing 2.18

Input:
s =2nk, MSG{(2nk — n + 1),..., MSG{(2nk).

Action:
if active; then

if MSG(r) = 0 for all r € {2nk — n,...,2nk — 1} then
begin
K:=k;
Send orient on left;
end

else

if there do not exist r € {2nk - n,..., 2nk - 1} and
zy, Z; € MSG({(r) with z, = z, such that origin{z) = left;
and origin{z) = right; then

active; .= false.

Listini 2.19

Input:
2nK+1<8<2nK+n-1, MSG(s)
Action:
if not active; then
begin
if there exists orient € MSG(s) such that
origin{orient) = left; then
Interchange left; and right;;
Send orient on leff;
end.

In Algorithm S_Locally Orient, (2.14) implements the sending of token at the beginning of
each iteration, while in (2.15) the relaying of token by nodes that are not active appears. In
(2.16), segment ends are identified and initiate the propagation of integers, which are relayed
as appropriate by (2.17). Center nodes are identified in (2.18), which, in the last iteration, also
includes the propagation of orient, relayed onward by (2.19). In no action does a node send
more than two messages, and then the number of messages per iteration is clearly O(n). It
follows from our earlier determination of the maximum number of iterations that the message
complexity of Algorithm S_Locally_Orient is O(n log n).

2.3 The role of knowledge in distributed computations

The notion of knowledge is a notion of many possible meanings, but even the
simplest algorithms we have seen so far in this chapter indicate that much of what
distributed computations do is, in some sense, to collectively manipulate the
system's knowledge so that at the end of the computation what nodes "know"
individually relates in some way to the computation's original goal. During the past
decade, various interesting hints at how notions related to knowledge might be
used in the design and analysis of distributed algorithms were envisaged. Although
today the interest in such an approach has waned somewhat, a few interesting
insights were obtained that can be expressed in a particularly simple fashion when
viewed from the standpoint of knowledge in the system.

KP=P.

Our goal in this section is to finalize the chapter by presenting some of these
insights, which will be referred back to in forthcoming chapters for the sake of
illustration within the context of those chapters. The ideal approach to our
discussion in this section would be that of a logician, but naturally we refrain from
doing that, especially because the necessary background to undertake such an
approach intersects what is expected of a reader of this book very narrowly.
Rather, we approach the subject quite informally, aiming essentially at conveying
some of its intuitive underpinnings.

If P denotes a sentence (in the logical sense), then we denote the notion that a

node n; knows P by K P , where, loosely, K;is an operator indicating knowledge
by ni. Normally, only true sentences are assumed to be knowable, that is, in order

for P to be known by n; it is necessary that P be true, giving rise to the axiom

(If A and B are two formulas, in the usual logical sense, then A — B is equivalent to
7AV B.) Every distributed algorithm embodies various steps whereby the
knowledge status of the nodes evolves. For example, if n; sends a message

containing a true sentence P to n; € Neig, then K| P holds as early as when the
message is sent, but K; P may happen to hold only from the time of receipt of

the message onward, and then KK; P also holds.

Despite the simplicity of such a notion of knowledge by nj, it contains not too
evident idiosyncrasies that include limits on what n; may know. This has been
illustrated in the literature in the following anecdotic fashion.

"In a class with daily meetings the teacher announces, by the end of a Friday

class, that there will be an unexpected exam in the following week. The

students reason over the possibilities during the weekend, and conclude that

the exam will not be on Friday, otherwise it would not be unexpected, and

inductively that it cannot be on any other day of the week either. As a result,

they do not study for the exam and, surely enough, a totally unexpected exam

is given on Monday."
If we let € denote "there will be an exam today," then the flaw in the students'
reasoning is that, while it is possible for the sentence € A =K to be true for a node
(student) n;, the same cannot possibly hold for the sentence Ki(¢ A —Kig), so that
there are limits to what is knowable to n;.
In a distributed setting like the one we have been considering in this book, there is
interest in generalizing the notion of individual knowledge embodied in the operator
Ki to notions of group knowledge, say by all the members of N. Two simple
possibilities of generalization in this sense are summarized by the operators Sy and
En, intended respectively to convey the notions of knowledge by at least one node
and by all nodes. In other words,

SvP=\/ KP

nEN

and

ExyP = ﬁ'& K;P.

nyEN

Another similar possibility of generalization is that of the notion of implicit

knowledge by the group N. The meaning of implicit knowledge of P by N,

denoted Iy P , is that P can be concluded from the individual knowledge that
) :

Q) f.—;’ D
the members of N have. For example if and — are both true
sentences, and moreover both K, and P) hold for n;, n; € N, then

P is also true and Iy P holds as well.
Associated with this notion of implicit knowledge is a notion of conservation, which
states that no communication can change the implicit knowledge of propositional
nature that N has. This result, which we do not investigate in any further depth in
this book, is to be regarded with care. In particular, the requirement that the
conserved implicit knowledge be propositional is crucial, as otherwise the

conservation need not hold. For example, if for a true sentence P it holds that
K P and K; P for n;, nj € N such that (n,, nj) € E, then a message sent by n;

to n; containing P suffices for K| P to become implicit knowledge, although
such was not the case prior to the receipt of the message by n. However, the

sentence K P is not propositional, and then no contradiction to the conservation
principle is implied by this acquisition of new implicit knowledge.

The next step in generalizing the notion of individual knowledge to broader notions
of group knowledge is to consider the notion of common knowledge by N. This

notion, denoted by Cy P for a true sentence P , is such that
cyP=)\ ENP

k1
ErP = Ep

where d I and, for k> 1,

be—1
ENP = ExEy 'P.
5 This notion is very hard to grasp

intuitively, but nonetheless it should be clear that
CyFP— Ky, ... K, P

holds for any set of integers {iy,..., i;} ©{1,...,n,} with z > 1. Another anecdote is

usually very helpful in building up some intuition on the notion of common

knowledge.
"A group of boys are playing together and have been advised by their parents
that they should not get dirty. However, it does happen that some of them, say
k =1, get dirty, but only on their foreheads, so that no boy knows whether his
own forehead is dirty though he can see the others'. One of the parents then
shows up and states, 'At least one of you has a dirty forehead,' thereby
expressing a fact already known to all the boys if k > 1. The parent then asks
repeatedly, 'Can anyone prove that his own forehead is dirty?' If we assume
that all the boys are unusually intellectually gifted, and moreover that they all
reply simultaneously at each repetition of the parent's question, then every boy
replies 'No' to the first k — 1 questions, and the boys with dirty foreheads reply
'Yes' to the kth question.”

What supports the boys' reasoning in replying to the parent's repeated questions is

the following inductive argument. If k = 1, then the only boy with a dirty forehead

replies "Yes" immediately upon the first question, because he knows that at least
one boy has a dirty forehead, and seeing no one else in that condition he must be
the one. If we inductively hypothesize that the boys reason correctly for 1 < k< k'
with k' = 1, then for k = k' + 1 we have the following. A boy with a dirty forehead
sees k' other boys with dirty foreheads, while a boy with a clean forehead sees k' +
1 boys with dirty foreheads. By the induction hypothesis, a boy with a dirty forehead
must reply "Yes" to the kth question, because if he did not have a dirty forehead the
other k' boys with dirty foreheads that he sees would all have replied "Yes" upon
hearing the previous question. Because they did not, his own forehead must be
dirty.

In the context of this anecdote, the issue of knowledge comes in as follows. If P
represents the parent's statement concerning the existence of boys with dirty

f—1-
Ex P
_" |rl‘ L
holds but £ i P does not. What the parent's statement does is to establish Cy

) ke
P , therefore 'L N T

reasoning to be carried out.

foreheads and N is the set of boys, then, before the statement,

which is the necessary state of knowledge for the boys'

The various notions of knowledge we have encountered so far relate to each other
hierarchically in such a way that

CyP — P EP b oo EyP 4 B P s [y P P

holds for every k = 1. While every information that is "built in" the nodes constitutes
common knowledge, the acquisition of new common knowledge is far from ftrivial,
unless some sort of "shared memory" can be assumed, as in the case of the
anecdote we presented on the dirty-forehead boys (the parent's statement can be
regarded as having been "written" into such a shared memory). To see why
acquiring new common knowledge may be important, we consider yet another
anecdote.

"Two divisions of an army are camped on the hills surrounding a valley, and in
the valley is the enemy army. Both divisions would like to attack the enemy
army simultaneously some time the next day, because each division
individually is outnumbered by the enemies. Having agreed on no plan
beforehand, the divisions' generals are forced to rely on forerunners to convey
messages to each other. Forerunners must go through the enemy's camp with
their messages, and then do it at night, although the risk of being caught still
exists and in addition they may get lost. Given that normally one hour is
enough for the trip, and that at this particular night the forerunners travel
uneventfully through the enemy's camp and do not get lost, how long does it
take for an agreement to be reached between the two generals?"
Clearly, what the two generals seek in this anecdote is common knowledge of an
agreement. The reader must quickly realize, though, that such a state of
knowledge cannot be attained. Indeed, unless communication is totally reliable (as
we have implicitly been assuming) and the model of distributed computation is the
synchronous model, no new common knowledge can ever be attained. However,
the literature contains examples of how to attain new common knowledge in the
asynchronous model with reliable communication by restricting the definition of
common knowledge to special global states (cf.Section 3.1).

2.4 Exercises

1. Show that, if the ring is locally oriented, then Algorithm A Compute f can be modified so that
every node receives exactly n arguments of f even if n is even.

2. Describe how to simplify Algorithm S Locally Orient if the determination of K is not required

(that is, if the algorithm is to run for the maximum possible number of iterations).
3. Show how to modify Algorithm A_Compute f so that it can be used to establish a local
orientation on the ring (i.e., show how it should be changed to treat the B's instead of the b's).

Show that, if the ring is locally oriented, then Algorithm

1. A_Compute_f can be modified so that every node receives
exactly n arguments of feven if n is even.
Describe how to simplify Algorithm S_Locally _Orient if the

2, determination of K is not required (that is, if the algorithm is to run
for the maximum possible number of iterations).
Show how to modify Algorithm A_Compute_f so that it can be

3. used to establish a local orientation on the ring (i.e., show how it
should be changed to treat the B's instead of the b's).

2.5 Bibliographic notes

Readers in need of references on concepts from graph theory, for use not only in this chapter
but throughout the book, may choose from a variety of sources, including some of the classic
texts, like Harary (1969), Berge (1976), Bondy and Murty (1976), and Wilson (1979). The
asynchronous and synchronous models introduced in Section 2.1 are pretty standard in the
field, and can also be found in Lamport and Lynch (1990), for example. Algorithm A_FIFO,
used as example in that section, is from Barbosa and Porto (1995).

The material on anonymous systems in Section 2.2 is based on Attiya and Snir (1985), which
later appeared in revised form in Attiya, Snir, and Warmuth (1988). Further developments on
the theme can be found in Attiya and Snir (1991), Bodlaender, Moran, and Warmuth (1994),
Kranakis, Krizanc, and van den Berg (1994), and Lakshman and Wei (1994).

Readers seeking additional information on the notions related to knowledge can look for the
survey by Halpern (1986), as well as the guide to the logics involved by Halpern and Moses
(1992). The material in Section 2.3 is drawn from a variety of publications, which the reader
may seek in order to deepen the treatment of a particular topic. The application of
knowledge-related notions to problems in the context of distributed computations dates back
to the first version of Halpern and Moses (1990) and to Lehmann (1984). In Halpern and
Moses (1990), the reader will also find the definitions of implicit and common knowledge, as
well as the argument for the impossibility of attaining common knowledge in the
asynchronous model or under unreliable communication. Fischer and Immerman (1986)
describe situations in which common knowledge can be attained in the asynchronous model
if communication is totally reliable and in addition one is restricted to considering only some
special global states. The anecdote involving students and the unexpected exam is from
Lehmann (1984). The conservation of implicit knowledge is from Fagin and Vardi (1986).
Problems related to the agreement between generals of a same army can be found in
Lamport, Shostak, and Pease (1982) and in Dwork and Moses (1990). Additional work on
knowledge in distributed systems has appeared by Halpern and Fagin (1989), Fagin,
Halpern, and Vardi (1992), Neiger and Toueg (1993), and van der Meyden (1994).

chapter 3: MOdels of Computation

Overview

In this chapter, we return to the topic of computation models for distributed algorithms. We
start where we stopped at the end of Section 2.1, which was devoted essentially to
introducing the asynchronous and synchronous models of distributed computation. In that
section, we also introduced, along with examples throughout Chapter 2, Algorithms
A_Template and S_Template, given respectively as templates to write asynchronous and
synchronous algorithms.

Our first aim in this chapter is to establish a more detailed model of the distributed
computations that occur under the assumption of both the asynchronous and the
synchronous model. We do this in Section 3.1, where we introduce an event-based
formalism to describe distributed computations. Such a formalism will allow us to be much
more precise than we have been so far when referring to global timing issues in the

asynchronous case, and will in addition provide us with the necessary terminology to define
the time-related complexity measures that we have so far avoided.

This discussion of complexity measures appears in Section 3.2 where the emphasis is on
time-related measures for asynchronous algorithms, although we also discuss such
measures for synchronous algorithms and return to the issue of message complexity
introduced in Section 2.1.

We continue in Section 3.3 by returning to the template algorithms of Section 2.1 to provide
details on how asynchronous algorithms can be executed under the assumptions of the
synchronous model. In addition, we also indicate, but only superficially in this chapter, how
synchronous algorithms can be transformed into equivalent asynchronous algorithms.
Section 3.4 is dedicated to a deeper exploration of the synchronous model, which, as we
have indicated previously,although unrealistic possesses some conceptual and practical
features of great interest. Some of these are our subject in Section 3.4 as an example of a
computation that is strictly more efficient in time-related terms in the synchronous model than
in the asynchronous model, and another in which the initial assumption of full synchronism in
the process of algorithm design eventually leads to greater overall efficiency with respect to
existing solutions to the same problem.

Sections 3.5 and 3.6 contain exercises and bibliographic notes, respectively.

3.1 Events, orders, and global states

So far in the book there have been several occasions in which we had to refer to
global characteristics of the algorithms we studied and found ourselves at a loss
concerning appropriate conceptual bases and terminology. This has been most
pronounced in the case of asynchronous algorithms, and then we have resorted to
expressions as "concurrent"”, "scenario”, and "causally affect" to make up for the
appropriate terminology and yet convey some of the intuition of what was actually
meant. This happened, for example, during our discussion of task migration in
Sections 1.6.2 and 2.1, in our introduction of the synchronous model in Section 2.1,
and in the proof of Theorem 2.4. As we indicated in Sections 2.1 and 2.3, such
imprecisions can be corrected easily once the appropriate concept of a global state
has been established. Such a concept lies at the core of our discussion in this
section.

The case of synchronous algorithms is clearly much simpler as far as the concepts
underlying global temporal issues are concerned. In fact, in describing Algorithms
S Compute_AND and S_Locally Orient, respectively in Sections 2.2.2 and 2.2.3,
we managed without any difficulty to identify the number of pulses that had to
elapse for termination of the algorithm at hand. This number, as we will see in
Section 3.2.1, essentially gives the algorithm's time-related measure of complexity,
which in the asynchronous case we have not even approached.

Our discussion in this section revolves around the concept of an event, and is
intended especially to the description of computations taking place in the
asynchronous model (that is, executions of asynchronous algorithms). However, as
we mentioned in Section 2.1, the conditions under which the synchronous model is
defined can be regarded as a particularization of the conditions for the
asynchronous model, and then all of our discussion is also applicable in its
essence to the synchronous model as well. We shall return to this issue later to be
more specific on how the characteristics of the synchronous model can be seen to
be present in our event-based formalism.

The concept of an event in our formalism is that of a fundamental unit of a
distributed computation, which in turn is an execution of a distributed algorithm. A
distributed computation is then viewed simply as a set of events, which we denote
by =. An event ¢ is the 6-tuple

&= (ngt,p,0,0,9),

where
= n;is the node at which the event occurs;
= tis the time, as given by n/'s local clock, at which the event occurs;

= lw is the message, if any, that triggered the event upon its reception by n;

= 0o is the state of n; prior to the occurrence of the event;

= o'is the state of n;, after the occurrence of the event;

= O is the set of messages, if any, sent by n; as a consequence of the
occurrence of the event.

This definition of an event is based on the premise that the behavior of each node

during the distributed computation can be described as that of a state machine,

which seems to be general enough. The computation = then causes every node to

have its state evolve as the events occur. We let Z; denote the sequence of states

n; goes through as = goes on. The first member of Z; is n/s initial state. The last

member of %; (which may not exist if = is not finite) is n/'s final state.

This definition of an event is also general enough to encompass both the assumed

reactive character of our distributed computations (cf. Section 1.4) and to allow the

description of internal events, i.e., events that happen without any immediate

external cause (understood as a message reception or the spontaneous initiation

by the nodes in N,, which ultimately can also be regarded as originating externally).

In order to be able to describe internal events and events associated with the

spontaneous initiation by the nodes in N,, we have allowed the input message ¥
associated with an event to be absent sometimes. The atomic actions that we have
associated with asynchronous algorithms (cf. Algorithm A_Template) can then be
regarded as sequences of events, the first of which triggered by the reception of a
message (or corresponding to the spontaneous initial activity of a node in Np), and
the remaining ones being internal events.

For synchronous algorithms, these definitions are essentially valid as well, but a
few special characteristics should be spelled out. Specifically, because in the
synchronous case it helps to assume that local computation within an interval of the
global clock takes zero time (cf. Section 2.1,)and because nodes in the
synchronous case are in reality driven by the global clock and not by the reception
of messages, at each node exactly one event can be assumed to take place at
each pulse, with t being a multiple of an interval's duration. Such an event does not
have an input message associated with it, because by assumption every message
is in the synchronous model delivered in strictly less time than the duration of an
interval. In addition to these events, others corresponding solely to the reception of
messages may also happen, but then with a different restriction on the value of {,
namely that t be something else than a multiple of an interval's duration. Finally,
internal events are now meaningless, because every event either has an input
message associated with it, or occurs in response to a pulse, having in either case
an external cause. The overall picture in the synchronous case is then the
following. At the beginning of the first interval (i.e., at the first pulse), an event
happens at each of the nodes in Ny. Subsequently, at each new pulse and at each
node an event happens corresponding to the computation by that node on the
messages (if any) that it received during the preceding interval. Other events may
happen between successive pulses, corresponding exclusively to the reception of
messages for use at the succeeding pulse. The reader should notice that this
description of a synchronous computation is in entire accordance with Algorithm

S Template, that is, the events for which t is a multiple of an interval's duration
correspond to the actions in that algorithm. The other events do not correspond to
any of the algorithm's actions, being responsible for establishing the sets MSGi(s)
forn,0Nand s> 0.

Events in = are strongly interrelated, as messages that a node sends in connection
with an event are received by that node's neighbors in connection with other
events. While this relationship is already grasped by the definition of an event, it is
useful to elaborate a little more on the issue. Let us then define a binary relation,
denoted by <, on the set of events = as follows. If & and &; are events, then &; <&,
if and only if one of the following two conditions holds.

1. Both &, and &, occur at the same node, respectively at (local) times t;
and f; such that t; < f, In addition, no other event occurs at the same
node at a time t such that t; <t < t..

11. Events¢, and &, occur at neighbor nodes, and a message exists that is
sent in connection with &; and received in connection with &..

It follows from conditions (i) and (ii) that < is an acyclic relation. Condition (i)
expresses our intuitive understanding of the causality that exists among events that
happen at the same node, while condition (ii) gives the basic cause-effect
relationship that exists between neighbor nodes.

One interesting way to view the relation < defined by these two conditions is to
consider the acyclic directed graph H = (=,<). The node set of H is the set of
events =,and its set of edges is given by the pairs of events in <. The graph His a
precedence graph, and can be pictorially represented by displaying the events
associated with a same node along a horizontal line, in the order given by <. In this
representation, horizontal edges correspond to pairs of events that fall into the
category of condition(i),while all others are in the category of condition(ii).
Equivalently, horizontal edges can be viewed as representing the states of nodes
(only initial and final states are not represented), and edges between the horizontal
lines of neighbor nodes represent messages sent between those nodes. Viewing
the computation = with the aid of this graph will greatly enhance our understanding
of some important concepts to be discussed later in this section and in Section 3.2.
The transitive closure of <, denoted by <7, is irreflexive and transitive, and
therefore establishes a partial order on the set of events =. Two events &; and &
unrelated by <*, i.e., such that

(§1,62) EEx = <

and

(£26) EEx E- <t
are said to be concurrent events. This denomination, as one readily understands, is
meant to convey the notion that two such events are in no way causally related to
each other.
In addition to its use in defining this concept of concurrent events, the relation <*
can also be used to define other concepts of equally great intuitive appeal, as for
example those of an event's past and future. For an event g, we let

Past(€) = {€' | €' € Zand € <* ¢}

-
S~ A
/ . ; SN
- " _‘_z"’
f i P b - -3
rd
i i
i e
e
- ™~ -"dt‘-\—__-- gl
& - .“ H\\-\, o
~ . o A
-~ - e B
—_— —— = '-_"T-L

Figure 3.1: A precedence graph has = for node set and the pairs in the partial order < for edges.
It is convenient to draw precedence graphs so that events happening at the same node in N are
placed on a horizontal line and positioned on this line, from left to right, in increasing order of the
local times at which they happen. In this figure, shown for n = 4, the "conically"-shaped regions
delimited by dashed lines around event ¢ happening at node ns represent {¢} O Past() (the one on

the left) and {€} O Future () (the one on the right).

and

Future(€) = {£' | £ € Z and € < €'},

These two sets can be easily seen to induce "conical" regions emanating from ¢ in
the precedence graph H and contain, respectively, the set of events that causally
influence & and the set of events that are causally influenced by ¢ (Figure 3.1).

We now focus on a closer examination of the issues raised in the beginning of this
section with respect to an appropriate conceptual basis and a terminology for the
treatment of global timing aspects in a distributed computation. The key notion that
we need is that of a consistent global state, or simply global state, or yet snapshot.
This notion is based on the formalism we have developed so far in this section,
and, among other interesting features, allows several global properties of
distributed systems to be referred to properly in the asynchronous model. We will in
this section provide two definitions of a global state. While these two definitions are
equivalent to each other (cf. Exercise 1), each one has its particular appeal, and is
more suitable to a particular situation. Our two definitions are based on the weaker
concept of a system state, which is simply a collection of n local states, one for
each node, and one edge state for each edge. If G is a directed graph, then the
number of edge states is m, otherwise it is 2m (one edge state for each of the two
directions of each of the m edges).

The state of node n; in a system state is drawn from Z;, the sequence of states n;
goes through as the distributed computation progresses, and is denoted by o..
Similarly, the state of an edge (n; — nj) is simply a set of messages, representing
the messages that are in transit from n; to n; in that system state, i.e., messages
that have been sent by n; on edge (n; — n;) but not yet received by n;. We denote
this set by ®;. The notion of a system state is very weak, in that it allows absurd
global situations to be represented. For example, there is nothing in the definition of

a system state that precludes the description of a situation in which a message lw
has been sent by n; on edge (n; — n)), but nevertheless neither has arrived at n; nor
is in transit on (n; — n)).
Ouir first definition of a global state is based on the partial order <* that exists on
the set = of events of the distributed computation, and requires the extension of <*
to yield a total order, i.e., a partial order that includes exactly one of (&1, &) or (&2,
&1) for all &, &, O =. This total order does not contradict <*, in the sense that it
contains all pairs of events already in <*. It is then obtained from <* by the
inclusion of pairs of concurrent events, that is, events that do not relate to each
other according to <, in such a way that the resulting relation is indeed a partial
order. A total order thus obtained is said to be consistent with <*.
Given any total order < on =, exactly |=| = 1 pairs (&1, &2) O< can be identified such
that every event ¢ #¢,, &, is either such that € < &,or such thatt, < Eventsgiand &,
are in this case said to be consecutive in <. It is simple to see that, associated with
everypair(&1,&2) of consecutive events in <, there is a system state, denoted by
system_state(&,=,), with the following characteristics.
= For each node nj, o;is the state resulting from the occurrence of the most

recent event (i.e., with the greatest time of occurrence) at n;, say &, such

that & « ¢ (this includes the possibility that & = &,).
= For each edge (n; — n;),®; is the set of messages sent in connection with

an event ¢ such that &, < € (including the possibility that ¢ = &) and

received in connection with an event €' such that &' < &, (including the

possibility that €' = &,).

(a)

(b)
Figure 3.2: Part (a) of this figure shows a precedence graph, represented by solid lines, for n = 2.
As < is already transitive, we have <*=<. Members of <" are then represented by solid lines,
while the dashed lines are used to represent the pairs of concurrent events, which, when added to
+
<*, yield a total order =t consistent with <*. The same graph is redrawn in part (b) of the figure
to emphasize the total order. In this case, system-state (&, &) is such that n, is in the state at
which it was left by the occurrence of &, n; is in the state at which it was left by the occurrence of
&2, and a message sent in connection with &, is in transit on the edge from n. to n, to be received
|

in connection with &,. Because ¢ is consistent with <*, system_state (&, &) is a global state, by
our first definition of global states.

The first definition we consider for a global state is then the following. A system,

state W is a global state if and only if either in W all nodes are in their initial states

(and then all edges are empty), or in W all nodes are in their final states (and then

+

all edges are empty as well), or there exists a total order < ¢ consistent with <*,

in which a pair (&1, &2) of consecutive events exists such that W = system_state (¢,

&2) (Eigure 3.2).

Our second definition of a global state is somewhat simpler, and requires that we

consider a partition of the set of events = into two subsets =; and =,. Associated

with the pair (=4, =) is the system state, denoted by system_state (=1, =), in which

o is the state in which n; was left by the most recent event of =, occurring at n;, and

@; is the set of messages sent on (n; — n;) in connection with events in =; and

received in connection with events in =..

The second definition is then the following. A system state W is a global state if and

only if W = system_state(=4, =) for some partition (=4, =2) of = such that

Past(§) C E,

whenever ¢ 0 =,. (Equivalently, we might have required the existence of a partition
(=41, =2) such that

Future(£) C =,

whenever = [0 =,.) For simplicity, often we refer to such a partition as the global
state itself. Note that there is no need, in this definition, to mention explicitly the
cases in which all nodes are either in their initial or final states, as we did in the

case of the first definition. These two cases correspond, respectively, to =1 = (I and
Ez = M

As we mentioned earlier, these two definitions of a global state are equivalent to
each other. The first definition, however, is more suitable to our discussion in
Section 5.2.1, particularly within the context of proving Theorem 5.5. The second
definition , on the other hand, provides us with a more intuitive understanding of
what a global state is. Specifically, the partition (=1, =) involved in this definition
can be used in connection with the precedence graph H introduced earlier to yield
the following interpretation. The partition (=4, =2) induces in H a cut (a set of edges)
comprising edges that lead from events in =; to events in =; and edges from

events in =, to events in =4. This cut contains no edges from =; to =, if and only if
system_state(=+, =,) is a global state, and then comprises the edges that represent
the local states of all nodes (except those in their initial or final states) in that global
state, and the edges that represent messages in transit in that global state (Eigure

3.3).

We also mentioned at the beginning of this section that our discussion would apply
both under full asynchronism and under full synchronism. In fact, when defining an
event we explicitly described how the definition specializes to the case of full
synchronism. It should then be noted that the concept of a global state is indeed
equally applicable in both the asynchronous and the synchronous models, although
it is in the former case that its importance is more greatly felt. In the

L
Jrl '\\ a4 — -
k.Y
e
fig e
:E"" II|I '\!.:
ial
|
5)
51 La
n - — -

(1)

Figure 3.3: Parts(a) and (b) show the same precedence graph for n= 2. Each of the cuts shown
establishes a different partition (=4, =2) of =. The cut in part (a) has no edge leading from an event
in =; to an event in =4, and then system_state (=4, =) is a global state, by our second definition. In
this global state, n, is in its initial state, n is in the state at which it was left by the occurrence of &,
and a message is in transit on the edge from n; to ns, sent in connection with &, and to be
received in connection with &;. The cut in part (b), on the other hand, has an edge leading from &
0 =, to & O =4, so system_state(=4, =) cannot be a global state.

synchronous case, many global states can be characterized in association with the

value of the global clock, as for example in "the global state at the beginning of

pulse s =20." However, there is nothing in the definition of a global state that

precludes the existence in the synchronous case of global states in which nodes’

local states include values of the global clock that differ from node to node.

Having defined a global state, we may then extend the definitions of the past and

the future of an event, given earlier in this section, to encompass similar notions

with respect to global states. If W is a global state, then we define its past and

future respectively as

FPast(¥) = U [{E}LJ Puﬁt{{}]
£EEE,;
and
Future(¥) = | J [{€} U Future(€)]
{ESy
=] Ez.'

where W = system_state (=1,=,) (this definition demonstrates another situation in
which our second definition of a global state is more convenient). Similarly, we say
that a global state W comes earlier in the computation = than another global state
Y, if and only if Past(W: < Past(W,) (or, alternatively, if Future(W.) c Future(W¥+)).
This definition will be of central importance in our discussion of stable properties in
Chapter 6. Another related definition, that of an earliest global state with certain
characteristics in a computation, can be given likewise. We shall return to it in
detail in Section 9.3.1.

In finalizing this section, the reader should return to our discussion at the section's
beginning to recognize the importance of the concepts we have introduced in
establishing a rigorous and meaningful terminology. In particular, it should be clear
that the partial order <* and the notion of a global state suffice to do away with all
the ambiguities in our previous use of expressions like "concurrent," "scenario,"
and "causally affect” when referring to global timing aspects in the asynchronous
model.

3.2 The complexity of distributed computations

Analyzing the complexity of any computation is a means of expressing quantitatively how
demanding that computation is on the resources that it requires to be carried out. Depending
on the type of computation one is considering, such resources may include the number of
processor cycles, the number of processors, the number of messages that are sent, and
various other quantities that relate to the resources upon which the computation's demands
are heaviest. Determining which resources are crucial in this sense is then the fundamental
issue when defining the appropriate measures of complexity for a computation. For example,
for sequential computations the chiefest resource is time, as given by the number of
processor cycles that elapse during the computation, but often the number of memory cells
employed is also important.

Another example comes from considering parallel computations. Quite often the study of
such computations is concerned with the feasibility of solving a certain problem on more than
one processor so that the computation can be solved faster than on one single processor. In
such cases, one of the fundamental resources continues to be the number of processor
cycles, but now the number of processors is also important, because it is the interplay of
these two quantities that establishes the overall efficiency of the resulting algorithm and also
how that algorithm relates to its sequential counterpart. Models of parallel computation
adopting measures of complexity related to these two types of resource include the PRAM
(Parallel Random Access Machine), which is essentially a synchronous model of parallel
computation on shared-memory cells, as well as other distributed-memory variants, also
synchronous.

Whereas the models of parallel computation we just mentioned are geared towards the so-
called data parallelism, the computations we treat in this book relate more closely to what is
known as control parallelism, and then the approach to measure complexity needs to be
substantially revised. Data parallelism is the parallelism of problem solving, that is, given a
problem, the task is to solve it efficiently in parallel, which includes the design of an algorithm
and the choice of a number of processors leading to the desired efficiency. Control
parallelism, by contrast, is concerned with the computations that have to be carried out on a

fixed number of processors, interconnected in a fixed manner, like our graph G. The
computations of interest are not so much geared towards problem solving, but mainly
towards controlling the sharing of resources, understood in a very broad sense, throughout
the system. Very often this also includes the solution of problems very much in the data-
parallel sense, but now the problem is stated on G, which is fixed, so that the control-parallel
aspects of the computation become far more relevant.

The complexity of distributed algorithms is based on the assumption that communication and
time are the resources whose usage should be measured. Given this choice of crucial
resources, the measures of complexity are expressed in the usual worst-case, asymptotic
fashion, as functions of n and m, respectively the number of nodes and edges in G.
However, because G is in this book taken to represent a great variety of real-world systems
(cf. Section 1.1) at some level of abstraction, some elaboration is required when establishing
the appropriate complexity measures.

A convenient starting point to establish the complexity measures of distributed algorithms is
to first consider communication as the predominant resource under demand. This does not
mean that time ceases to be a relevant issue, but rather that only the time directly related to
communication should be taken into account. This approach takes care of most of our needs
in the book, and is our subject in Section 3.2.1. InSection 3.2.2, we relax this assumption that
communication takes precedence over time that is not related to communication, and then
the time that a node spends computing locally becomes a third resource whose usage is to
be measured. The resulting extended definitions of complexity will be of use especially in
Section 9.3.3..

3.2.1 Communication and time complexities

If communication is the dominating resource under demand, then the complexity of a
distributed algorithm is expressed as two measures. The first measure is the already seen
message complexity (cf. Section 2.1), which is given by the number of messages sent
between neighbors during the computation in the worst case, that is, the maximum number
of messages when variations in the structure of G are considered (when applicable), as well
as all possible executions of the algorithm (each yielding a different set of events, in the
terminology of Section 3.1). Alternatively, this measure can be substituted by the more
accurate message-bit complexity, or simply bit complexity, which can be useful in conveying
relevant differences among algorithms when the messages' lengths depend on n or m (as
opposed to being O(1)). This is, for example, the case of Algorithm A_FIFO ofSection 2.1
and of Algorithm S_Locally_Orient of Section 2.2.3.. In the former case, a message may
contain a task's identification and a node's identification (it may also contain a migrating task,
but we may assume for our present purposes that such a message does not actually contain
the task's code, which would already be present at all nodes, but rather simply the task's
identification), and then the algorithm's bit complexity is, by Theorem 2.3, O(mx(log|N-| + log
n)). In the latter case, messages are sent containing integers no larger than n (cf. (2.16) and
(2.17)), so that the algorithm's bit complexity is O(n log? n). The bit complexity will be
sometimes employed for our analyses in the book.

The other measure that contributes to expressing the algorithm's complexity is its time
complexity, which, in very loose terms, is given by the time spent in communication that
elapses during the computation in the worst case (again a maximum over the possible
structures of G and over all of the algorithm's executions). Any further elaboration on this
definition requires that we consider the asynchronous model and the synchronous model
separately.

For the synchronous model, the assumption that the cost of communicationdominates all
others should come as no surprise, because since the definition of this model in Section 2.1.
we have assumed that local computation takes no time (or takes a constant time, which can
be assumed to be zero). Although we made this assumption so that the synchronous model
could be described without much further elaboration, in this section the assumption comes in
handy as well, because it is in full accord with the assumed dominance of communication
costs.

The definition of the time complexity in the synchronous model is rather simple, and amounts
essentially to counting the number of pulses that elapse during the computation. In essence,
then, already inSections 2.2.2.and2.2.3. we would have been able to express the time

complexities of Algorithms S_Compute_AND and S_Locally Orient, respectively. In fact, in
Section 2.2.2we saw that Algorithm S_Compute_AND requires O(n) pulses for completion,
and that is then its time complexity. Similarly, in Section 2.2.3the number of iterations
required by Algorithm S_Locally _Orient was seen to be given by O(log n), and because each
iteration comprises O(n) pulses, the time complexity of that algorithm is O(n log n)

Defining the time complexity for the synchronous model in this straightforward fashion may
seem to the reader not to be in complete agreement with our stated purpose of measuring
time solely as it relates to communication. After all, many pulses may elapse without any
communication taking place (cf., for example, the synchronous algorithms presented in
Sections 2.2.2and 2.2.3), but such pulses do nevertheless get counted when assessing the
algorithm's time complexity. What should be considered to resolve this apparent conflict is
that, as we have mentioned more than once already, in the synchronous model messages
are as important as their absence. By including in the time complexity intervals during which
messages are not sent, we are essentially accounting for the time needed to convey
information through the absence of communication as well.

In the asynchronous model, the assumption that the time complexity only takes into account
the time to perform communication leads to the following methodology to compute an
algorithm's time complexity. First assume, as in the synchronous model, that local
computation takes no time, and also that the time to communicate one message to each
node in a nonempty subset of a node's set of neighbors is O(1).

The time complexity is then the number of messages in the longest causal chain of the form
"receive a message and send a message as a consequence" occurring in all executions of
the algorithm and over all applicasble variations in the structure of G.

This definition can be made more formal, but before we do that let us consider two important
related issues. First of all, it should be clear that the time complexity can never be larger than
the message complexity, because every message taken into account to compute the former
is also used in the computation of the latter. The usefulness of the time complexity in spite of
this relationship with the message complexity is that it only considers messages that happen
"sequentially" one after the other, that is, messages that are causally bound to one another.
Essentially, then, the time complexity in the asynchronous case can be regarded as being
obtained from the message complexity by trimming off all the messages that are "concurrent"
to those in the longest receive-send causal chain.

The second issue is that the assumption of O(1) message transmission times for the
computation of the time complexity is only completely valid if every message has length O(1)
as well. However, we do maintain the assumption to compute the time complexity even
otherwise, because taking variable lengths into account would not contribute qualitatively to
establishing what the lengthiest causal chain is. In addition, the effect of variable length is
already captured by the algorithm's bit complexity, introduced earlier in this section, which
should be used when needed.

The way to define the time complexity of an asynchronous algorithm more formally is to
resort to the precedence graph H introduced in Section 3.1. This graph summarizes the
essential causal dependencies among events in the computation, and allows the definition of
the time complexity to be given rather cleanly as follows. Let every edge in H be labeled
either with a 1, if it corresponds to a message, or with a 0, otherwise. Clearly, this reflects our
assumptions that messages take constant time to be sent between neighbors and that local
computation takes no time. The time complexity for fixed G and H (i.e., for a fixed execution
of the algorithm) is then the length of the longest directed path in H, with the labels of
individual edges taken as their lengths. Taking the maximum over the applicable variations of
G and over all the executions of the algorithm (all H's) yields the desired measure.

The reader should now be in position to return to the asynchronous algorithms given
previously in the book, and have their time complexities assessed to O(1), in the case of
Algorithm A_FIFO, and to O(n), in the case of Algorithm A_Compute_f.

3.2.2 Local and global measures

Assuming that communication dominates the complexity of a distributed computation, and
that in turn local computation takes no time, is reasonable for many of the systems discussed
in Section 1.1, especially computer networks and networks of workstations. However, G is

intended to model a greater variety of message-passing systems, and for some of these,
including the multiprocessors also discussed in Section 1.1, such an assumption may be a
bit too strong.

In this section, we consider the impact of facing nonconstant local processing times, and
expand our collection of complexity measures to encompass others that may reflect this
extended view more appropriately. In the synchronous case, all that would be required would
be to let the duration of an interval of the global clock be a function of n and m. This function
would then yield a third complexity measure for the synchronous model, and everything else
would remain essentially as is. It is interesting to note, however, that under this broader
assumption on the duration of an interval the overall picture of a synchronous computation
would change a little. Specifically, it would be possible to send messages at any point inside
an interval, not only at the interval's beginning. Furthermore, in terms of the event-based
formalism of Section 3.1,internal events would exist in the synchronous model as well.

It is important to note, in the synchronous model, that at pulse s > 0 a node n; may need to
examine the set of MSG(s) of messages received during the previous interval, and the time
to do this should continue to be assumed constant even when the time to do local processing
is taken to be variable. What this implies, together with the assumption we have made so far
that a node may send one message to all of its neighbors in parallel, is that none of the
synchronous algorithms we have seen so far requires taking local processing times to be
anything else than constant. Even Algorithm S_Locally_Orient, in which by (2.16) and (2.18)
it would seem that the examination of O(n) sets of messages is required at a single pulse,
can be easily written in more detail and then seen to require the examination of only one
such set per pulse.

In the context of this book, however, it is in the asynchronous case that nonconstant times for
local computation will be most important, although not until Chapter 9. In the asynchronous
model, then, we shall let the local time complexity refer to the time to perform local
computation upon receiving a message. This is then the complexity of an atomic action in
Algorithm A_Template. Whenever we use this complexity measure in the book, and if
confusion may arise, we refer to the algorithm's time complexity as its global time complexity.
Algorithm A_Compute_fis the only algorithm we have seen so far for which variable local
processing times may need to be considered. What leads to this is that the computation of

1 T
f(ba Fom A b?- }in (2.11) may require a time to be performed that is a function of
n.Considering this algorithm carefully leads us to other situations in which it would be
justifiable to assume nonconstant local processing times. As we mentioned earlier in Section
3.2,often a distributed algorithm is designed to solve a problem that is posed on G. Typical
examples of such problems are the ones in consider in Sections 4.2, and 4.3, and in Chapter
7, in which we discuss graph algorithms. Clearly, in such cases a possibility would be to have
all nodes transmit their local share of information on the structure of G to a previously
designated node (a leader—cf. Section 5.1,), which would then solve the problem locally and
then after that possibly spread the solution to the other nodes. This would be very much in
the style of Algorithm A_Compute_f, although the assumed anonymity in the case of that
algorithm disallows the existence of a leader altogether, as we discuss in section 5.1. In fact,
in the presence of anonymity there is no other choice but to program all nodes to perform the
same computation, as we discussed in Section 2.2.
However, if the system is not anonymous, then the alternative of coalescing all the
information regarding G into a leader for solution of the problem is a real possibility, and for
this possibility it is important to consider the local time complexity of solving the entire
problem in one single node. Moreover, concentrating all the relevant information in the leader
may have O(nm) message complexity (considering that each message contains a constant
number of node identifications) and O(n) time complexity, which, after added to the
complexity of electing a leader, should also be compared with the corresponding measures
elicited by the fully distributed alternative, in which all nodes participate in the solution of the
problem by computing on its share of the problem's input (the structure of G).

3.3 Full asynchronism and full synchronism

Having introduced the complexity measures of relevance for distributed algorithms,
in this section we return to the question, first raised in Section 2.1,0f the

A

equivalence between the asynchronous and synchronous models. What we do is
first to indicate explicitly how Algorithm S_Template can be used to express an
asynchronous algorithm (originally written over the template given by Algorithm
A_Template). Then, conversely, we show how to employ Algorithm A_Template as
a basis to transform a synchronous algorithm (originally written over the template
Algorithm S_Template) into an asynchronous algorithm.

The first part is simpler, because an asynchronous algorithm runs under all
possible variations in the timing of the asynchronous model, in particular in the
variation that corresponds to the synchronous model. The only concern we must
have when translating Algorithm A_Template into Algorithm S_Template is that, in
the former, atomic actions are in general triggered by the arrival of messages and
executed when the corresponding Boolean conditions hold, while in the latter nodes
are driven solely by the global clock and operate on the sets of messages received
during the preceding intervals. Algorithm S_Template makes no provisions to
condition the execution of an action upon the validity of a Boolean expression,
which must then be treated inside the action itself. What this amounts to in the
translation of an asynchronous algorithm into a synchronous one is that, upon the
occurrence of pulse s=1, only those messages in MSG(1) received by nlON on
edges for which the corresponding Boolean conditions in the asynchronous
algorithm hold can lead to the execution of the corresponding actions. The others
must be held for reconsideration upon the occurrence of pulse s = 2. In general,
then, at pulse s > 0 a node n;, may compute on messages from any of MSG,(1),...,
MSG((s), at which occasion those messages are deleted from the set to which they
belong so that the remaining ones may be considered in further pulses. This
strategy is reflected in Algorithm A-to-S_Template, given next.

The message msg; that in Algorithm A_Template triggers n/s action is in Algorithm
A-to-S_Template viewed as a variable, initially equal to nil.

orithm A-to-S Template:

Variables:

msg; = nil;
Other variables used by n;, and their initial values, are listed here.

Listing 3.1

Input:

=0, MSG(0) = I .
Action if n; O No:

Do some computation;
Send one message on each edge of a (possibly empty) subset of
OUt/.

Listing 3.2

Input:

s >0, MSG1),..., MSGj(s) such that origin{msg) = ¢« O In;
8
msqg € |,
with 1 < k < [In, | for 9 €U MSG(r).

Action:

while there exist msg, r 0 {1,..., s}, and k O {1,...,|In{} such
that msg 0 MSG(r) with origin; (msg) = ¢« and B, do

begin
Let r' be the smallest such rand k' any such k;
msg; = msg;

Remove msg from MSG(r");

Do some computation;

Send one message on each edge of a (possibly empty) sub-
set of Out;

end.

In Algorithm A-to-S_Template, (3.1) is identical to (2.8) in Algorithm S_Template,
while (3.2) reflects the need to evaluate the appropriate Boolean conditions before
the action corresponding to (2.2) in Algorithm A_Template can be executed. What
(3.2) does at pulse s > 0 is to select from MSG(1),..., MSG, s one of the earliest
messages (in the synchronous sense) for which the corresponding Boolean
condition is true, and then to allow the corresponding action of the asynchronous
algorithm to be executed. When edges are FIFO, then (3.2) has to be worked on a
little so that the choice of r' and k' guarantees that msg is, of the messages to have
arrived on ¢ but not yet received, the one to have arrived first. The reason why this
might not happen is that B« might be false for the first message and not for some
other arriving on the same edge. If this happened for all edges, then n; should
simply halt, thereby indicating an error in the design of the algorithm, just as
Algorithm A_Template would.

Clearly, this translation of an asynchronous algorithm to run in the synchronous
model does not change the algorithm's message complexity. In addition, the reader
should check carefully that the same holds for the time complexity, that is, the
number of pulses that elapse before termination of the resulting synchronous
algorithm is exactly the number of messages in the lengthiest causal chain during
an execution of the asynchronous algorithm. In addition, even if local processing
cannot be assumed to be instantaneous, the translation does not increase the
amount of local computation that needs to be carried out, even though it would
seem that the need to check so many sets of messages in (3.2) could require
further local processing. Readily, these sets can be organized as |/In| queues of
messages at n;, that is, one per incoming edge. Then the work that has to be done
at (3.2) is the same that in Algorithm S_Template n; has to do, and this is assumed
to take constant time even if local processing cannot be so assumed.

The other direction of transformation, namely to transform a synchronous algorithm
into an asynchronous one, is not as immediate, and in this secion we only touch
the issue superficially. We return to the subject in Section 5.3 for the complete
details. Naturally, the problem in this case is that the resulting asynchronous
algorithm must only allow the action of n; at pulse s > 0 to be executed when the set
MSGi(s) is available, and this is not immediate in the asynchronous model. It
seems apparent, then, that in the resulting asynchronous algorithms there has to
be more communication among the nodes than in the synchronous algorithm, so
that these sets of messages can be ensured to contain all the pertinent messages
when they are used. This further increase in communication may then lead to a
greater time complexity for the asynchronous algorithm when compared to the
synchronous algorithm.

A template for the translation of a synchronous algorithm into an asynchronous
algorithm is given next as Algorithm S-to-A_Template. This algorithm employs an
integer variable s; = 0 for n; 0 N. This variable, initially such that s;= 0, is used to
keep track of the pulses of the synchronous algorithm. A Boolean function DONE;

(s) is used to indicate whether n; is ready to proceed to the execution of the action
that the synchronous algorithm would execute at pulse s; + 1 for s;= 0 (determining
what this function should do is then essentially our subject in Section 5.3). Finally,
the sets MSG((s) for s = 0 that Algorithm S_Template employs are also variables of
Algorithm S-to-A_Template, initially empty sets.

Algorithm S-to-A_Template:

Variables:
s~0;

MSG(s) = i-"" for all s = 0;
Other variables used by n;, and their initial values, are listed here.

Listing 3.3

Input:
msg; = nil
Action if n; O N.:
Do some computation:
Send one message on each edge of a (possibly empty) subset of
Out;

Listing 3.4

Input:
msg; such that origin; (msgi) = ¢« O In; with 1 < k < |Inj|.
Action:
if DONE((s)) then
begin
Si=si+1;
Do some computation;
Send one message on each edge of a (possibly empty) sub-
set of Out;
end
else
Add msg; to MSG(s; + 1) if appropriate.

In Algorithm S-fo-A-Template, (3.3) is identical to (2.1) in Algorithm A-Template,
while (3.4) indicates how the function DONE((s)) is to be used to ensure that s; can
be incremented and that the action that Algorithm S-Template would perform at
pulse.s; + 1 by (2.9) can be executed. When (3.4) is executed and DONE((s;) turns
out to be false, then msg;, the message that triggered the action, is added to MSG;
(si+ 1) if appropriate (msg; may be a message unrelated to the synchronous
algorithm, that is, one of the messages constituting the additional communication
traffic that the transformation requires).

As we remarked earlier, transforming a synchronous algorithm into an
asynchronous one may lead to increases in both the message complexity and the

time complexity with respect to the synchronous algorithm. On the other hand, as
will become apparent from the material in Section 5.3, the complexity that results
from assuming nonconstant local processing times remains unchanged.

3.4 The role of synchronism in distributed computations

So far in the book we have stressed more than once that the synchronous model is, in at
least one important sense, more "powerful" than the asynchronous model. The justification
behind this informal notion has been that, in the synchronous model, the absence of
messages conveys information to nodes, while in the asynchronous model nothing like this
happens. In fact, in Sections 2.2.2 and 2.2.3we have given two synchronous algorithms,
respectively Algorithms S-Compute-AND and S-Locally-Orient, whose message complexities
are strictly lower than that of Algorithm A-Compute-f, which is an asynchronous algorithm that
may be used for the same purposes as those two synchronous algorithms. Of course,
Algorithms S-Compute-AND and S-Locally-Orient do not have the same generality of
Algorithm A-Compute-f, and then it might be argued that the improvement in message
complexity is a consequence of their single-purpose nature, rather than the result of
exploiting the characteristics of the synchronous model. However, it should be simple for the
reader to verify that the same particularizations would not lead to any improvements in
message complexity under the asynchronous model.

The central question that we address in this section is whether the synchronous model can
also yield improvements in the time complexity of some asynchronous algorithms. As we
remarked in Section 3.3, designing an algorithm for the synchronous model and then
transforming it into an asynchronous algorithm may lead to an increase in both the message
and time complexities with respect to the synchronous algorithm. But this does not imply that
an asynchronous algorithm designed "from scratch” (i.e., not as the result of a transformation
from a synchronous algorithm) would not have better complexities than the synchronous
algorithm. In order to address this issue, we discuss a problem for which every asynchronous
algorithm must have a strictly greater time complexity than a very straightforward
synchronous algorithm that solves the same problem, thereby answering our question
affirmatively.

The problem that we discuss is stated in very abstract terms, and is related to
synchronization issues in distributed systems, although one will probably not easily find any
practical situation to which it may be readily applicable. Stating the problem requires the
introduction of the following new terminology. A port is a special edge in the graph G, and a
port event is an event that involves the sending of a message on a port. A node at which a
port event may happen (i.e., it may send messages on a port) is called a port node. A
session is informally defined in terms of our terminology of Section 3.1as a set of events
including at least one port event for every port and"delimited" by two global states. More
formally, if = is the set of events representing a distributed computation, then S € = is a
session if and only if S includes at least one port event for every port and in addition two
global states (=1, =2) and (=3, =4) exist such that

§=%,NnE

For integers py and o such that 1 < y<mand ¢ = 1, the problem that we consider is called the
(u, 0)-session problem, and asks that a graph G with u ports and a distributed algorithm on G
be found such that every execution of the algorithm can be partitioned into at least o
sessions. In addition, the set of events associated with every execution of the algorithm is
required to be finite and every port node is required to obtain the information that the
sessions have occurred.

Solving the (u, o)-session problem is in general very simple. For the synchronous model, the
problem is solved by choosing G to be any graph with no more than one port per node, and
the synchronous algorithm to be such that every port node sends a message on its port at
each of the pulses s = 0,..., 0 —1. The time complexity of this synchronous algorithm is O (o).
In the asynchronous model, we can also solve the problem with the same time complexity,
as follows. Choose G as in the synchronous case, except that all port nodes can send
messages to one another as well. The asynchronous algorithm is such that every port node
performs o rounds of sending a message on its port and then sending a message to every
other port node containing information that it has finished its participation in the current
session. The next round is only performed after similar messages have been received from

all other port nodes. The reader should verify that the time complexity of this algorithm is O
(o) if No contains all port nodes.

The difficulty arises when in G we place a constant bound b on | Out; | (or | Inc; |, in the
undirected case), thereby limiting the number of messages that a node may send in a single
action of Algorithm S-Template or Algorithm A-Template (G is in this case said to be b-
bounded). Clearly, this bound does not affect our proposed synchronous solution to the (y,
o)-session problem, but the asynchronous solution is no longer feasible within O (o) time,
because the broadcast to all port nodes at the end of each round can no longer be achieved
within O(1) time. We give in Theorem 3.1 a lower bound on the time required by any
asynchronous solution to the problem.

Theorem 3.1.

For b = 1, every asynchronous solution to the (u, o)-session problem in which G is b-
bounded must be such that the corresponding asynchronous algorithm has time complexity
of at least (o —1)|logb+1 u| — 1.

Proof: Let G be b-bounded, and consider an asynchronous solution to the (u, o)- session
problem consisting of G and of an asynchronous algorithm. Let = be the set of events

corresponding to an execution of this algorithm, and label every event = with an integer T
(€) obtained inductively as follows. If ¢ happens at n; O N when n;is in its initial state, then let

T(2) = 0. If not, then let T(E) =T (€") + 1, where &' is the event having the greatest label
among the events ' in connection with which at least one m*essage is sent and in addition &'
<* &. Informally, this labeling of the events in = corresponds to attaching to each event the
number of messages on which it depends causally. Because = is finite, every label is finite as
well. Let t be the greatest label over =. Clearly, the time complexity of the algorithm is at least
t. Now let

and partition = into the K subsets of events =,..., =«, where, for k=1,..., K, £ 0 =« is such
that (k — 1) |loge« | < T(ﬁ) < K|logw+1 p| = 1. Clearly, then, all of

|:_E| d"'UE;,Ef.;.-.J"'l,iEh':I

for 1 £1 < K) are global states, because of the way the labels -"‘were assigned and of the

fact that no two sets of = 1,..., = K have any event with the same value for 7
The next step is to partition every = k into the sets 'k and Ok such that all of
(M, U U---UEg),
(SaU USp Ul &y UEg U UEE)

for1<{ <K, and
Sy - UEg_ g Uk, O]

are global states, and furthermore the following two conditions hold for a sequence of ports
€o,...,6x (this sequence may contain the same port more than once).

i. '« does not contain any port event involving e-1.

ii. O does not contain any port event involving e.
This partitioning can be done for all k = 1,..., Kinductively as follows. Pick e, to be any
arbitrary port, and assume that e,—1 has been defined. If a port exists that is not involved in
any port event in =, then let e, be that port, I'x = ©, and O, = =, thereby satisfying conditions
(i) and (ii). If, on the other hand, every port is involved in at least one port event in =4, then let
=1 be the earliest port event involving ex—1 in =4, and consider the number of port events
contained in the set

Fi = ({&1} U Future(£,)) N E,.

This set includes =, and every other port event in =, that is in the future of =, (including, of
course, every other port event involving ex—1 in e« in =«). Because G is b-bounded, and

considering the range of values for 7 in =, the number of port events that we seek is no

larger than the sum of the elements in the geometric progression of rate b + 1 starting at 1
and ending at

(b + lﬁ".-!'w'h”"J_l_[k'”i.:'-'ﬂ'-r.rlﬂ.l
that is,
|h-_|u|I Sl g)~ - b g] 3 _ g b+ 1)1 1l 1

b4 01— B
g | i

&
<p—1

What this means is that at least one of the y ports is not involved in any of the port events in
F«. Taking one of these ports to be ey, '« = =« - Fx, and O = Fi clearly satisfies conditions (i)
and (ii). It can be easily verified that, in both cases, the resulting I'x and ©, induce global
states, as required (cf. Exercise 5).
By conditions (i) and (ii), the sets I'1, ©,—1 O 'k for 1 < k < K, and O cannot contain a
session, because a session must include at least one port event for every port. What this
amounts to is that every session must have a nonempty intersection with both ' and O for
some k such that 1 < k < K, meaning that K is the maximum number of sessions in =.
Because = contains at least o sessions, and considering the definition of K, we have

[|I'1"

WO0Rpay]
and then t 2 (o =1) [logpw b] = 1.
Theorem 3.1 and our discussion earlier in this section indicate that the synchronous model
possesses characteristics that allow synchronous algorithms to perform better than
asynchronous algorithms with respect to the algorithms' message and time complexities. In
practice, however, the main interest in the synchronous model stems from the possibility of
eventually obtaining an asynchronous algorithm from an algorithm originally designed for the
synchronous model. This is the subject of extensive discussion in Section 5.3, but in this
section we wish to highlight the role that this approach has had historically in the
development of distributed algorithms.
We consider the problem of establishing a breadth-first numbering on the nodes of G when
G is a directed graph. This problem asks that every node n; be assigned a nonnegative
integer d; equal to the shortest distance from a designated node n; to n; in terms of numbers
of edges. Initially, 4 = « for all n; O N, thereby taking care of those nodes to which no directed
path exists from ns. This problem is closely related to the problem of determining the shortest
distances between all pairs of nodes when G is undirected (we treat this problem in Section
4.3).
Obtaining a synchronous algorithm to solve this problem is a trivial matter. At pulse s =0, n,
sets d; to zero and sends a message on every edge in Out;. For s > 0, if a node n; receives
at least one message during interval s — 1 and at pulse s it still holds that d; = «, then it must
be that the shortest directed path from n; to n; contains s edges. What n; does in this case is
to set d; to s and then send a message on each edge in Out;. Readily, this algorithm requires
no more than n — 1 pulses for completion and employs no more than m messages. Its time
and message complexities are then, respectively, O(n) and O{m).
Historically, this simple synchronous algorithm has accounted for the introduction of an
asynchronous algorithm of time complexity O(n log n/ log k) and message complexity O(kn?)
for arbitrary k such that 2 < k < n, while the best asynchronous algorithm available at the time
had time complexity O(n*%) and message complexity O(n***) for arbitrary £ such that O < { <
0.25. The reader should experiment with these complexities to verify that, given any / in the
appropriate range, there exists a k, also in the appropriate range, such that the algorithm
obtained from the synchronous algorithm is strictly better in at least one of the two complexity
measures (and no worse in neither).

3.5 Exercises

1. Show that the two definitions of a global state given in Section 3.1are equivalent to each other.
2. Obtain the time complexity of Algorithm A_FIFO when it is viewed as being executed over GP.

3. Give the details of an algorithm to concentrate upon one single node all the information on the
structure of G. The resulting algorithm should have the complexities mentioned in Section 3.2.2.
4. Consider the (u.0)-session problem in the asynchronous case, and suppose that a node does
its o port events all before the broadcast. What is wrong with this approach?

5. Consider an event ¢ and the sets

6. Consider the synchronous algorithm for breadth-first numbering described in Section 3.4.

Express that algorithm in the format given by AlgorithmS-Template.
Show that the two definitions of a global state given in Section

1. 3.1are equivalent to each other.
Obtain the time complexity of Algorithm A_FIFO when it is viewed
2. as being executed over Ge.
Give the details of an algorithm to concentrate upon one single
3. node all the information on the structure of G. The resulting
algorithm should have the complexities mentioned in Section
3.2.2.
Consider the (u,0)-session problem in the asynchronous case,
4. and suppose that a node does its o port events all before the
broadcast. What is wrong with this approach?

5. Consider an event ¢ and the sets
1 = {€} U Past(€)

and
Ez = [£} U Future(£).

Show that both partitions (=1,= - =4) and (= - =,,=>) are global
states.
Consider the synchronous algorithm for breadth-first numbering
6. described in Section 3.4. Express that algorithm in the format
given by AlgorithmS-Template.

3.6 Bibliographic notes

The material in Section 3.1is based on Lamport (1978) and on Chandy and Lamport (1985),
having also benefited from the clearer exposition of the concept of a global state to be found
in Bracha and Toueg (1984). Additional insights into the concepts discussed in that section
can be found in Yang and Marsland (1993), and in the papers in Zhonghua and Marsland
(1994).

Formalisms different from the one introduced in Section 3.1, often with accompanying proof
systems, have been proposed by a number of authors. These include temporal logic (Pnueli,
1981; Manna and Pnueli, 1992) and I/O automata combined with various proof techniques
(Lynch and Tuttle, 1987; Chou and Gafni, 1988; Welch, Lamport, and Lynch, 1988; Lynch,
Merritt, Weihl, and Fekete, 1994). Additional sources on related material are Malka and
Rajsbaum (1992) and Moran and Warmuth (1993).

Most of the complexity measures introduced in Section 3.2 are standard in the field, and can
also be looked up in Lamport and Lynch (1990). The reader may also find it instructive to
check different models and associated complexity measures in the field of parallel and
distributed computation. Source publications include Gibbons and Rytter (1988), Akl (1989),
Karp and Ramachandran (1990), Feldman and Shapiro (1992), JaJa (1992), and Leighton
(1992).

Section 3.3is related to the discussion in Awerbuch (1985a), while the material in Section
3.4is based mostly on the work by Arjomandi, Fischer, and Lynch (1983). The comments at
the end of the section on the breadth-first numbering of nodes derive from Awerbuch
(1985b).

chapter 4: Basic Algorithms

Overview

Three basic problems are considered in this chapter, namely the problems of propagating
information from a group of nodes to all nodes, of providing every node with information on
which are the identifications of all the other nodes in G, and of computing the shortest
distances (in terms of numbers of edges) between all pairs of nodes. Throughout this
chapter, G is an undirected graph.

The first problem is treated in Section 4.1, first in the context of propagating information from
a group of nodes to all the nodes in G, and then in the context of propagating information
from one single node to all others but with the additional requirement that the node originally
possessing the information must upon completion of the algorithm have received news that
all other nodes were reached by the propagation. Our discussion in Section 4.1
encompasses both the case of one single instance of the algorithm being executed on G and
of multiple concurrent instances initiated one after the other.

Section 4.2 contains material on the detection of G's connectivity by all nodes in the form of
providing each node with a list of all the other nodes in G. Although many algorithms can be
devised with this end, the one we present builds elegantly on top of one of the algorithms
discussed in the previous section, and is for this reason especially instructive.

Computing all-pair shortest distances is our subject inSection 4.3. This is the first graph
problem we treat in detail in the book (others can be found in Chapter 7). Our approach in
Section 4.3 is that of not only giving a fundamental distributed algorithm, but also providing a
nontrivial example to be used to illustrate the relationship between the asynchronous and
synchronous models of distributed computation when we further return to that topic inSection
5.3.

Sections 4.4 and 4.5contain, respectively, exercises and bibliographic notes.

4.1 Information propagation

The problem that we consider in this section is that of propagating a piece of information
(generically denoted by inf) from the single node (or group of nodes) that originally possesses
it to all of G's nodes. We divide our discussion into two parts. The first part is the
presentation of algorithms to solve two important variations of the problem, and comes in
Section 4.1.1.

The second part is a discussion of how to handle multiple concurrent instances of these
algorithms without examining the contents of the message being propagated. This is the
subject ofSection 4.1.2.

4.1.1 Basic algorithms

The problem of propagating information through the nodes of G is the problem of
broadcasting throughout G information originally held by only a subset of G's nodes. In this
section, we consider two variations of this problem, known respectively as the Propagation of
Information problem (or Pl problem) and the Propagation of Information with Feedback
problem (or PIF problem). In the Pl problem, all that is asked is that all nodes in G receive inf,
whereas in the PIF problem the requirement is that not only all nodes receive inf but also that
the originating node be informed that all the other nodes possess inf. Let us discuss the PI
problem first.

The PI problem can be solved by a wide variety of approaches, each one with its own
advantages. For example, if n is the node that originally possesses inf, then one possible
approach is to proceed in two phases. In the first phase, -a spanning tree is found in G. In
the second phase, the spanning tree is employed to perform the broadcast, as follows. Node
n; sends inf on all the edges of the spanning tree that are incident to it. Every other node,
upon receiving inf, passes it on by sending it on every edge of the spanning tree that is
incident to it and is not the edge on which inf arrived. Readlily, if the spanning tree can be
assumed to be available to begin with, then an asynchronous algorithm based on this
strategy has message and time complexities both equal to O(n)

This simple approach can be extended to the case in which inf is originally possessed by
more than one node. In this case, instead of a spanning tree we need a spanning forest,
each of whose trees including exactly one of the nodes having inforiginally. The broadcast
procedure on each tree is then entirely the same as we described for the case of a single
initiator.

There are essentially three reasons why this simple and effective approach may be
undesirable. The first reason is that the spanning tree (or spanning forest) may not be
available to begin with and then has to be determined at the cost of additional message and
time complexities. Of course, once the tree (or forest) has been determined, then it may in
principle be used indefinitely for many further broadcasts from the same nodes, so that
apparently at least the additional cost may be somehow amortized over many executions of
the algorithm and then become negligible for most purposes. The second reason for
investigating other approaches in spite of this possible amortization of the initial cost comes
from considering possible applications of the algorithm. By forcing the broadcast to be
carried out on the same edges all the time, we are in essence ignoring the effect the possible
variations with time on the delays for message delivery and also ignoring the fact that relying
on a single tree (or forest) may be unreliable. Although our models of computation make no
provisions for either circumstance to actually be an issue, in practice it may certainly be the
case.
The third reason for us to consider a different approach (and really the most important one)
is that this other approach, although extremely simple, illustrates interesting principles of
distributed algorithm design, and in addition constitutes a sort of foundation for the rest of this
chapter and for other sections to come as well(Section 5.2.1, for example).
The solution we describe next to the Pl problem does the broadcast by "flooding" the
network, and for this reason has a higher message complexity than the one we gave based
on a spanning forest. The very simple idea behind this approach is that all nodes possessing
inf initially send it to all of their neighbors at the beginning (they all start concurrently). Every
other node, upon receiving inf for the first time, sends it on to all of its neighbors, including
the one from which it was received. As a result, a node receives inf from all of its neighbors.
In this strategy, infis propagated from the nodes that initially possess it as a "wave," and then
reaches all nodes as fast as possible and regardless of most edge failures (that is, those that
do not disconnect G). This figurative view of how the algorithm proceeds globally is quite
helpful to one's understanding of various distributed algorithms, including many that we
discuss in this book, most notably inChapter 5,6, and 9.
This strategy is reflected in Algorithm A_PI, given next. In this algorithm, The set N,
comprises the nodes that possess inf initially. A node n;, employs the the Boolean variable
reached; (equal to false, initially) to indicate whether n; has been reached by inf. Node n;,
upon receiving inf from a neighbor, must check this variable before deciding whether inf
should be passed on or not.

Algorithm A _PI

Variables:
reached; = false.

Listing 4.1

Input:
msg; = nil.

Action if n, € N,
reached, := true;
Send inf to all n; € Neig;

Listing 4.2

e

Input:

msg; = inf.

Action:
if not reached; then
begin
reached; = true;
Send infto all n; € Neig;
end.

It should be instructive for the reader to briefly return to the interpretation of the functioning of
this algorithm as a wave propagation to verify the following. It is impossible for a node n;, for
which reached; = true to tell whether a copy of inf it receives in (4.2) is a response to a
message it sent in (4.1) or (4.2), or a copy that was already in transit to it when a message it
sent out arrived at its destination. In the latter case, letting n; be the node from which this
copy of inf originated, the edge (n;, n;) is one of the edges on which two waves meet, one
from each of two members of N, (possibly n;, n;, or both, depending on whether they belong
to No)

Because in G there exists at least one path between every node and all the nodes in Ny, it is
a trivial matter to see that inf does indeed get broadcast to all nodes by Algorithm A_PI. In
addition, by (4.1) and (4.2), it is evident that the message complexity of this algorithm is O(m)
(exactly one message traverses each edge in each direction, totaling 2m messages) and that
its time complexity is O(n)

Let us now consider the PIF problem. Unlike the PI problem, the PIF problem is stated only
for the case in which inf is initially possessed by a single node. Similarly to the PI problem, a
solution based on a spanning tree can also be adopted, having essentially the same
advantages and drawbacks as in the case of that problem. In such a solution, n4, the only
node originally possessing inf, is viewed as the tree's root, while every other node possesses
a special neighbor, called parent; at node n; on the tree path from n; to n;. The algorithm
initiates with n; sending inf on all tree edges incident to it. Every other node n;, upon receiving
inf from a neighbor for the first time, sets parentito be that neighbor and, if not a leaf,
forwards inf on all tree edges incident to it, except the one leading to parent.. If n; is a leaf,
then it sends inf back to parent;immediately upon receiving it for the first time. Every other
node, except ns, having received inf on every tree edge, sends inf to parent. Upon receiving
inf on all tree edges incident to it, n; has the information that inf has reached all nodes.
Clearly, this solution has both the message and time complexities equal to O(n)

The solution by flooding to the PIF problem that we now describe in detail is an extension of
the flooding solution we gave in Algorithm A_PI to the PI problem. Similarly to the spanning-
tree-based solution we just described, a variable parent; is employed at each node n; to
indicate one of n/s neighbors. In contrast with that solution, however, this variable is no
longer dependent upon a preestablished spanning tree, but rather is determined dynamically
to be any of n/s neighbors as follows. When n; receives inf for the first time, parent;is set to
point to the neighbor of n; from which it was received. The algorithm is started by n,, which
sends inf to all of its neighbors. Every other node n;, upon receiving inf for the first time, sets
parent; appropriately and forwards inf to all of its neighbors, except parent;.. Upon receiving a
copy of inf from each of its neighbors, n; may then send inf to parent; as well. Node n, obtains
the information that all nodes possess inf upon receiving inf from all of its neighbors.

This algorithm is given next as Algorithm A-PIF. The variable parent; is initialized to nil for all
n; € N. Node n; also employs the variable count;, initially equal to zero, to register the number
of copies of inf received, and the Boolean variable reached, initially set to false, to indicate
whether n;, has been reached by inf. Note that count; = 0 if reached; = false, but not
conversely, because reached; must become true right at the algorithm's onset, at which time
count; = 0. The set Nop now comprises one single element, namely the node that initially
possesses inf, so No = {n:}

Algorithm A_PIF:

Variables:
parent; = nil;
count; = 0;

reached; = false.

Listini 4.3
Input:
msg; = nil.

Action if n; € No:
reached; := true;
Send infto all n; € Neig..

Listing 4.4

Input:
msg; = inf such that origin{msg;) = (n;, n;).

Action
count; := count; + 1;
if not reached, then
begin
reached, := true;
parent; == nj;
Send infto every n, Neig; such that n, # parent;
end,;
if count; = |Neigi| then
if parent; # nil then
Send inf to parent,.

It follows easily from (4.3) and (4.4) that the collection of variables parent; for all n;e€ N
establishes on G a spanning tree rooted at n; (Eigure 4.1). The leaves in this tree are nodes
from which no other node receives inf for the first time. The construction of this tree can be
viewed, just as in the case of Algorithm A-PI, as a wave of information that propagates
outward from n; to the farther reaches of G. Clearly, this construction involves

|Neigy |+ 3 (|Neig)| ~1) =2m —n 41
neN-N,

messages and O(n) time. If it can be shown that every edge on the tree (there are n- 1 such
edges) carries an additional copy of inf from node n; # n, to parent; by time O(n) as well, then
the total number of messages involved in Algorithm

~

Figure 4.1: During an execution of Algorithm A_PIF, the variables parent ; for all nodes n; are set
so that a spanning tree is created on G. This spanning tree is rooted at n4, and its leaves

correspond to nodes from which no other node received inf for the first time. In this figure, a
directed edge is drawn from n; to n; to indicate that parent; = n;.

A_PIF is 2m = O(m), while its time complexity is O(n). Theorem 4.1 provides the necessary
basis for this argument, with T; € N containing the nodes in the subtree rooted at node n;.

Theorem 4.1

In Algorithm A_PIF, node n; #; sends in f to parent; within at most 2d time of having received
inf for the first time, where d is the number of edges in the longest tree path between n; and
a leaf in T. In addition, at the time this message is sent every node in T; has received in f.
Proof: The proof proceeds by induction on the subtrees of T. The basis is given by T/'s
leaves, and then the assertion clearly holds, because no n; € N is such that parent;is a leaf in
T.. Assuming the assertion for all the subtrees of T, rooted at nodes n; such that parent= n;
leads directly to the theorem, because the induction hypothesis states that every such n;
sends inf to n; within at most 2(d -1) time of having received inf for the first time. The
theorem then follows by (4.3) and (4.4).

In addition to helping establish the complexity of Algorithm A_PIF, Theorem 4.1 is also useful
in polishing our view of the algorithm's functioning as a wave propagation. What happens
then is that a wave is propagated forward from ns, and then another wave is propagated
("echoed") back to n'. This second wave is initiated concurrently at all the leaves of the
spanning tree and collapses back towards n. Notice that the two waves are not really
completely separated from each other. In fact, it may happen that the second wave reaches
a node before the first wave has reached that node on all possible fronts (i.e., on all possible
edges incident to that node).

Corollary 4.2.

In Algorithm A_PIF, node n; receives inf from all of its neighbors within time O(n) of having
executed (4.3). In addition, at the time the last inf is received every node in N has received
inf

Proof: Immediate from Theorem 4.1 applied to all nodes n; such that parent; = ny and from
(4.4).

Before ending this section, we wish to make one comment that relates the two algorithms we
have studied to material we saw previously in Section 2.3. From the perspective of the
material discussed in that section, Algorithms A_P/ and A_PIF offer good examples of how
the knowledge that the nodes have evolve as the algorithms are executed. In the case of

Algorithm A_PI, before the algorithm is started it holds that K P for all n; € Ny, with P

being any sentence that can be deduced from inf. When the algorithm is done, then K; P
holds for all n;, € N.
The situation is quite similar for Algorithm A-PIF, although more can be said. Initially, it holds

that K; P and after the first wave has reached all nodes it holds that K P foralln;€ N.In
addition, by Corollary 4.2, when n, has received inf from all of its neighbors it also holds that

KiKi P for all n; € N.

4.1.2 Handling multiple concurrent instances

Algorithms for propagating information throughout G like the ones we discussed in the
previous section are of fundamental importance in various distributed computations.
Together with the three general techniques discussed in Chapter 5 (leader election,
distributed snapshots, and network synchronization), these algorithms can be regarded as
constituting fundamental building blocks for the design of distributed algorithms in general. In
fact, algorithms for propagating information, either through all of G's nodes (as in the
previous section) or in a more restricted fashion, are themselves components used widely in
the design of the other building blocks we just alluded to. Understandably, then, some of
these algorithms have been incorporated in the design of communication processors as built-

in instructions to be executed by the nodes of G when this graph represents a network of
communication processors (cf.Section 1.2).

It is in this context that the question of how to handle multiple concurrent instances of
Algorithms A_Pl and A_PIF arises. In the case of Algorithm A_PI, multiple concurrent
instances occur when the nodes in N, repeatedly broadcast a series of messages, say inf,
infa,... A quick examination of the algorithm reveals thatf possibility to handle such a series
at a node n;, is to employ a Boolean variable rﬁﬂﬂhﬁdé in connection with infy, for k= 1.
Upon arrival of a message, its contents indicate which variable to use. However, if G's edges
are FIFO, then another alternative can be considered that does not require an unbounded
number of Boolean variables to be employed at each node, and furthermore does away with
the need to inspect the contents of the messages (as befits a communication processor).
This alternative is based on the simple observation that, under the FIFO assumption, every
node receives the stream of messages, on every edge incident to it, in the order the
messages were sent by the nodes in N,. The strategy is to employ |Neig| counters at n; to
indicate the number of messages already received on each of the edges in Inc.. These

PP |

count: - |

counters, called & for n; € Neig;, are initially equal to zero and get incremented by
1 upon receipt of a message on the corresponding edge. In order to check whether such a
message, when received from n,, € Neig, is being received at n; for the first time, it suffices

to check whether
count! > count!

for all n; € Neig; such thatj # I. In the affirmative case, the message is indeed being received
for the first time and should be passed on (cf. Exercise 2).

A similar question arises in the context of Algorithm A_PIF when the stream of messages is
sent by node ni. As in the case of Algorithm A_PI, providing each node n; with an unbounded
number of sets of variables, and then allowing n; to inspect the contents of incoming
messages to decide which set to use, is an approach to solve the problem. Naturally, though,
one wonders whether the FIFO assumption on the edges of G can lead to a simplification
similar to the one we obtained in the previous case. It should not be hard to realize, however,
that the FIFO assumption does not necessarily in this case imply that the stream of
messages is received at each node, on every edge incident to it, in the order it was sent by
n4, and then our previous strategy does not carry over (cf. Exercise 3). Nevertheless, the
weaker assertion that every node is reached by the stream of messages in the order it was
sent does clearly hold under the assumption of FIFO edges, but this does not seem to readily
provide a solution that is independent of the messages' contents.

4.2 Graph connectivity

The problem that we treat in this section is the problem of discovery, by each node
in N, of the identifications of all the other nodes to which it is connected by a path in
G. The relevance of this problem becomes apparent when we consider the myriad
of practical situations in which portions of G may fail, possibly disconnecting the
graph and thereby making unreachable from each other a pair of nodes that could
previously communicate over a path of finite number of edges. The ability to
discover the identifications of the nodes that still share a connected component of
the system in an environment that is prone to such changes may be crucial in many
cases. The algorithm that we present in this section is not really suited to the cases
in which G changes dynamically. The treatment of such cases requires techniques
that are altogether absent from this book, where we take G to be fixed and
connected. The interested reader is referred to the literature for additional
information. The algorithm that we present is not the most efficient one, either, but
it is the one of our choice because it very elegantly employs techniques for the
propagation of information seen in Section 4.1.1.

The algorithm is called Algorithm A_Test _Connectivity, and its essence is the
following. First of all, it may be started by any of the nodes in N, either
spontaneously (if the node is in Np) or upon receipt of the first message
(otherwise). In either case, what a node n; does to initiate its participation in the

algorithm is to broadcast its identification, call it idj, in the manner of Algorithm
A_PIF. As we will see, this very simple procedure, coupled with the assumption
that the edges in G are FIFO, suffices to ensure that every node in N obtains the
identifications of all the other nodes in G.

The set of variables that node n; employs to participate in Algorithm
A_Test_Connectivity is essentially an n-fold replication of the set of variables
employed in Algorithm A_PIF, because basically what n; is doing is to participate in
as many concurrent instances of Algorithm A_PIF as there are nodes in G
(although not in the sense of Section 4.1.2, because now each instance is

D
pare ”’ﬁ:', (initialized to nil)

generated by a different node). So, for n; € N,

count?
indicates the node in Neig; from which the first id; has been received, * 4
(initially equal to zero) stores the number of times id; has been received, and the

.
Boolean reached 1 (equal to false, initially) is used to indicate whether id; has
been received at least once. Another Boolean variable, initiated,;, initialized to false,
is employed at n; to indicate whether n; € No. (Use of this variable is a redundancy,
but we keep it for notational simplicity; in fact, initiated; = true if and only if there
. o b
exists at least one n; € N such that ' | ached; true)
Algorithm A Test Connectivity:

Variables:
, k
pr.'ﬂ"!?ﬂ.ii = nil for all n, € N:
count”
} "4 =0forallng € N,
o k
T‘:‘-m*h"?dé = false for all n, € N:

initiated; = false.

Listini 4.5

Input:
msg; = nil.
Action if n; € No:
initiated; := true;
Wy '] ?
reached; - yye.
Send id; to all n; € Neig,.

Listini 4.6

Input:

msg; = idx such that origin{msg,) = (n;, n;) for some n, € N.
Action:

if not initiated; then

begin
initiated; := true;

reached®

T = true;
Send id; to all n, € Neig;
end;

r:r)uﬂ.tf = m':"“ﬁ't? +1;
k

if not rea {:hﬁd L then

begin X
reached;
; k
parent; _

= true;

nj

parent?
Send idk to every n, € Neig; such that n, # s
end;

Iy .

¢ count;
;I";

¢ # nil then
. parent?®
Send jdk to (]

= |Neig then
s parent

In Algorithm A_Test Connectivity, (4.5) and (4.6) should compared respectively
with (4.3) and (4.4) of Algorithm A_PIF. What this comparison reveals is that (4.3)
and (4.5) are essentially the same, whereas (4.6) is obtained from (4.4) by the
addition of the appropriate commands for n; to initiate its participation in the
computation if it is not in Ny

As we mentioned earlier, this algorithm is based on the assumption that G's edges
are FIFO. To see that it works, it is helpful to resort to the pictorial interprepation as
propagating waves that we employed in the previous section for the algorithms for
information propagation. The wave that node n; propagates forward with its
identification reaches every other node n; either when initiated; = true or when
initiated; = false. By (4.5) and (4.6), and because of the FIFO property of the
edges, in either case id; is only sent along the nodes on the path from n; to n;
obtained by successively following the parent pointers after id; has been sent on the
same path. Therefore, by the time n, receives id; from all of its neighbors it has
already received id; at least once (cf. Exercise 4). Because this is valid for all n; €
N, then n; must by this time know the identifications of all nodes in G

Algorithm A_Test Connectivity can be regarded as the superposition of n
instances of Algorithm A_PIF, so its message complexity is n times the message
complexity of that algorithm, that is, O(nm) (to be precise, each edge carries
exactly n messages in each direction, so the total number of messages is 2nm).
Because the lengths of messages depend upon n, it is in this case appropriate to
compute the algorithm's bit complexity as well. If we assume that every node's
identification can be expressed in [logn] bits, then the bit complexity of Algorithm
A_Test_Connectivity is O(nm log n). The time complexity of the algorithm is
essentially that of Algorithm A_PIF, plus the time for a node in N, to trigger the
initiation of another node as far from it as n — 1 edges; in summary, O(n) as well.

4.3 Shortest distances

The last basic problem considered in this chapter is the problem of determining the shortest
distances in G between all pairs of nodes. Distances between two nodes are in this section
taken to be measured in numbers of edges, so that the problem that we treat is closely
related to the problem of breadth-first numbering that we considered briefly at the end
ofSection 3.4. The problem is now much more general, though, because in that section we
concentrated solely on computing the distances from a distinguished node n, to the other
nodes in N that could be reached from it (G was then a directed graph). In addition, in that
section, n, was not required to know at the end of the algorithm the numbers that had been
assigned to the other nodes.
Another requirement that we add to the algorithm to compute shortest distances is that at the
end a node be informed not only of the distance from it to all other nodes, but also of which
of its neighbors lies on the corresponding shortest path. Readily, the availability of this
information at all nodes provides a means of routing messages from every node to every
other node along shortest paths. When G has one node for every processor of some
distributed-memory system and its edges reflect the interprocessor connections in that
system, this information allows shortest-path routing to be done (cf.Section 1.3).
We approach this problem by first giving a synchronous algorithm that solves it, and then
indicating how the corresponding asynchronous algorithm can be obtained. The synchronous
algorithm, called Algorithm S_Compute Distances, proceeds as follows. At pulse s = 0, every
node sends its identification to all of its neighbors. At pulse s = 1, every node possesses the
identifications of all nodes that are no farther from it than one edge (itself and its neighbors).
A node then builds a set with the identifications of all those nodes that are exactly one edge
away from it and sends this set to its neighbors. At pulse s = 2, every node has received the
identifications of all nodes located no farther than two edges from it (itself, its neighbors, and
its neighbors' neighbors). Because a node knows precisely which nodes are zero or one
edge away from it, determining the set of those nodes that are two edges away is a simple
matter. What happens then is that, in general, at pulse s = 0 a node sends to its neighbors a
set containing the identifications of all those nodes that are exactly s edges away from it. For
s =0, this set comprises the node's own identification only. For s > 0, the set comprises
every node identification received during interval s — 1, except those of nodes which are at
most s — 1 edges away from itself. Clearly, no more than n pulses are required. The last
pulse may be an earlier one, though, specifically pulse S if the set that the node generates at
this pulse is empty. Clearly, all further sets the node generated would be empty as well, and
then it may cease computing (although innocuous messages may still arrive from some of its
neighbors). Naturally, the value of S may differ from node to node. For simplicity, however, in
the algorithm that we give next we let all nodes compute through pulse s = n—1 (cf. Exercise
6).
As inSection 4.2, we let id; denote n/'s identification. Variables used by Algorithm
S_Compute_Distances are the following. The shortest distance from nj, to n; € N is denoted
dist] . N . .
by i initially equal to n (unless j = i, in which case the initial value is zero). The node in
. . . firstd .
Neig; on the corresponding shortest path to n; # n; is denoted by #, initially equal to nil.
The set of identifications to be sent out to neighbors at each step is denoted by set; initially, it
contains n;'s identification only. In Algorithm S_Compute_Distances, Ny = N.

Aliorithm S Comiute Distances:

Variables:

-
dist.: _)
T :=nforall n € N such that k <i;

first;

= nnil for all n, € N such that k <;

set; = {id

isting 4.7

istini 4.8
Input:
0 <s<n-1, MSG(s) such that origin(set;) = (n;,n)) for set; €
M SGI(S)
Action:
set; =)

for all set; € MSG(s) do
for all idx € set; do

i ok
if d'lz"{;'tt' > s then
begin

dﬁ'stf ;
-
first;

=0
set; ;= set; U {idi}
end;
Send set; to all nx € Neig;

S;

Even before the correctness of Algorithm S_Compute_Distances is established formally,
evaluating its message and time complexities is a simple matter. If the algorithm functions
correctly, then every node must receive the identification of every other node, and then by
(4.7) and (4.8) every node's identification must traverse every edge in both directions. If we
take a node's identification to be a message, then the number of messages employed by
Algorithm S_Compute_Distances is 2nm, and its message complexity is then O(nm). As in
the case of Algorithm A_Test_Connectivity, message lengths are in this case dependent on
n. If, as in the case of that algorithm, we assume that node identifications can be expressed
in [logn] bits, then the bit complexity of Algorithm S_Compute_Distances is O(nm log n). By
the range of s in (4.8), the time complexity of this algorithm is O(n). What supports these
results is Theorem 4.3.

Theorem 4.3
For s 2 0in Algorithm S_Compute_Distances, at pulse s every node n; has received the
identifications of exactly those nodes n; € N such that the shortest paths between n; and n;

zstj ﬁ?“ﬁfj

contain no more than s edges. Furthermore, for j # i, Eare,
respectively, the number of edges and the neighbor of n; on one such path.

Proof: The proof is by induction, and the basis, corresponding to pulse s = 0, is trivial. If we
inductively assume the theorem's assertion for pulse s — 1, then for pulse s > 0 we have the

following. By the induction hypothesis, n; has at pulse s —1 received the identifications of all n;

dist?

€ N that are at most s -1 edges away from it, and the corresponding i and

first?

E have been set correctly. In addition, by the induction hypothesis and by (4.7) and
(4.8), during interval s —1 n; has received from each of its neighbors the identifications of all n;
€ N that are s -1 edges away from that neighbor. A node n; is s edges away from n; if and
only if itis s =1 edges away from at least one node in Neig;, so at pulse s n;, has received the
identifications of all n; € N that are no more than s edges away from it. The theorem follows

zst:" ﬁ?“sfj

easily from the observation that, by (4.8), the variables Eforalln e N
that are s edges away from n; are set when n; first finds in MSG,(s) the identification of n;
Obtaining an asynchronous algorithm from Algorithm S_Compute_Distances goes along the
lines of Section 3.3, where Algorithm S-to-A_Template was given just for such purposes. We
provide the result of such a transformation next, but only in Section 5.3.2, after we have
discussed the general technique of synchronizers, will the reasons why the resulting
asynchronous algorithm is correct be given. The asynchronous algorithm that we give to
compute all the shortest distances in G is called Algorithm A_Compute_Distances, and
requires that all edges in G be FIFO edges (cf. Exercise 7). It is widely used, despite having
been displaced by more efficient algorithms of great theoretical interest. In addition to its
popularity, good reasons for us to present it in detail are its simplicity and the possibility that it
offers of illustrating the synchronization techniques ofSection 5.3.2

In addition to the variables that in Algorithm S_Compute Distances n; employs, in Algorithm
A_Compute_ Distances the following variables are also employed. For each n; € Neig;, a

level?

variable iis employed to indicate which sets of node identifications n; has received

evel’

from n;. Specifically, % = d for some d such that 0 < d < n if and only if n; has
received from n; the identifications of those nodes which are d edges away from n;. Initially,

level] . . . —

= -1. Similarly, a variablestate;, is employed by n;, with the following meaning.
Node n; has received the identifications of all nodes that are d edges away from it for some d
such that 0 < d < n if and only if state; = d. Initially, state; = 0. Finally, a Boolean variable
initiated,, initially set to false, is used to indicate whether n; € N,

AliorithmA Comiute Distance:

Variables:

dwt? _o
dist”

T =nforall nk € N such that k # i;

= nil for all n, € N such that k # /;
set; = {id};

Eeweig

state; = 0;
initiated; = false

= -1 for all n; € Neig;

Listing 4.9

Input:
msg; = nil
Action if n; € Ny:
initiated; := true;
Send sef; to all n; € Neig;

Listing 4.10

Input:
msg; = setj such that origin(msg)) = (n;, n;).
Action:
if not initiated; then
begin
initiated; := true;
Send set; to all nx € Neig;
end;
if state; < n -1 then
begin

level; _level] .

’

for all id, € set, do
dist; _level

begin

Kk
T +1then

i k
dist; _level;

- k
first; _
end; .
level

n;

J
if state; < i for all n; € Neig; then
begin

state; ;= state; + 1;

i ok
set; = {idx | n: € N and d.ﬁ.‘?.‘!ﬂ?; = state};
Send sef; to all n, € Neig;
end
end

In Algorithm A_Compute_Distances, (4.9) and the portion of (4.10) that is executed only
when initiated; = false are precisely the same as (4.7) in Algorithm S_Compute_Distances.
The remainder of (4.10) corresponds to the translation of (4.8) into the asynchronous model.
Although we relegate most of the discussion on the correctness of Algorithm
A_Compute_Distances to Section 5.3.2, in this section attention should be given to the fact
that, if initiated; = true, then (4.10) is only executed if state, < n —1.The point to notice is that
this is in accord with the intended semantics of state;, because if state; = n -1 then n; has
already received the identifications of all nodes in N, and is then essentially done with its
participation in the algorithm.

Another important point to be discussed right away with respect to Algorithm
A_Compute_Distances is that the FIFO property of edges, in this case, is essential for the
semantics of the level variables to be maintained. In (4.10), the distance from n; to ni is

k
updated to EE“EE?; + 1 upon receipt of id, in a set from a neighbor n; of n; only bﬁcause that
set is taken to contain the identifications of nodes whose distance to n; is EEUE% . This

cannot be taken for granted, though, unless (n;,n)) is a FIFO edge.

The complexities of Algorithm A_Compute_Distances can also be obtained right away. By
(4.9) and (4.10), what node n; does is to send its identification to all of its neighbors, then the
identifications of all of its neighbors get sent, then the identifications of all nodes that are two
edges away from it, and so on. Thus n; sends n messages to each of its neighbors, and the
total number of messages employed is then 2nm, yielding a message complexity of O(nm)
and a bit complexity of O(nmlog n) if node identifications can be represented in [log n] bits.
The time complexity comes from considering that a node that is not in N, starts executing
(4.10) within at most n -1 time of the algorithm's initiation, and that the longest causal
dependency involving messages corresponds to sending a node's identification as far as n
-1 edges away. The resulting time complexity is then O(n)

Our treatment inSection 5.3 will provide a general methodology for assessing an
asynchronous algorithm's complexities from those of the synchronous algorithm from which it
originated. As we mentioned in previous occasions, the natural expectation is that higher
complexities arise in the asynchronous case, specifically to account for the additional number
of messages and time consumed by the function DONE; appearing in (3.4). However, both
the message and time complexities of Algorithm A_Compute_Distances are exactly the
same as its synchronous originator's. The reason for this intuitively unexpected behavior will
become clear in Section 5.3.2.

4.4 Exercises
1. Discuss what happens to Algorithm A_PI if a node refrains from sending inf to the neighbor
from which it was received.
2. Write the algorithm that handles multiple concurrent instances of Algorithm A Pl as suggested
in Section 4.1.2.
3. Show, by means of an example, that FIFO edges do not suffice to guarantee that messages
are received at all nodes in the order sent by node n1, in the context of multiple concurrent
instances of Algorithm A_PIF.
4. Show, by means of an example, that FIFO edges do not suffice to guarantee, in Algorithm
A_Test Connecitivity, that a node receives all the copies of every other node's identification before
receiving as many copies of its own identification as it expects.
5. Compare Algorithm A Test Connectivity with the possibility of solving the problem by a leader
(suppose such a leader already exists).
6. Modify Algorithm S_Compute_Distan