
An Introduction to Distributed Algorithms
by Valmir C. Barbosa ISBN: 0262024128

The MIT Press © 1996, 365 pages

A senior undergraduate or graduate level computer science
textbook on algorithm design for distributed computer
systems.

Table of Contents Colleague Comments

Back Cover

Synopsis by Dean Andrews

Distributed computing poses special challenges for software developers.
When programs must run across multiple processors, either multiprocessors
within the same computer or processors distributed across a computer
network, software developers encounter the unique problems of information
propagation, synchronization, deadlock detection, and more. In An
Introduction to Distributed Algorithms, author Valmir Barbosa describes
general use algorithms (for any language or platform) to meet the demands of
distributed software design. He also devotes chapters to topics like program
debugging and simulation that are seldom covered in other books. Each of the
ten chapters ends with a bibliography and exercises.

Table of Contents

An Introduction to Distributed Algorithms

Preface

Part 1 Fundamentals

Chapter 1 - Message-Passing Systems

Chapter 2 - Intrinsic Constraints

Chapter 3 - Models of Computation

Chapter 4 - Basic Algorithms

Chapter 5 - Basic Techniques

Part 2 Advances and Applications

Chapter 6 - Stable Properties

Chapter 7 - Graph Algorithms

Chapter 8 - Resource Sharing

Chapter 9 - Program Debugging

Chapter 10 - Simulation

Bibliography

Author Index

Subject Index

List of Figures

List of Listings

Back Cover

An Introduction to Distributed Algorithms takes up some of the main concepts
and algorithms, ranging from basic to advanced techniques and applications,
that underlie the programming of distributed-memory systems such as
computer networks, networks of workstations, and multiprocessors. Written
from the broad perspective of distributed-memory systems in general, it
includes topics such as algorithms for maximum flow, program debugging,
and simulation that do not appear in other texts on distributed algorithms.

Moving from fundamentals to advances and applications, ten chapters -- with
exercises and bibliographic notes -- cover a variety of topics. Thses include
models of distributed computation, information propagation, leader election,
distributed snap-shots, network synchronization, self-stability, termination
detection, deadlock detection, graphic algorithms, mutual exclusion, program
debugging, and simulation.

All of the algorithms are present in a clear, template-based format for the
description of message-passing computations among the nodes of a
connected graph. Such a generic setting allows the treatment of problems
originating from many different application areas. The main ideas and
algorithms are described in a way that balances intuition and formal rigor --
most are preceded by general intuitive discussion and folowed by formal
statements as to correctness, complexity, or other properties.

About the Author

Valmir C. Barbosa is Associate Professor of Computer Science at Federal
University of Rio de Janeiro.

Preface
This book presents an introduction to some of the main problems, techniques, and
algorithms underlying the programming of distributed-memory systems, such as computer
networks, networks of workstations, and multiprocessors. It is intended mainly as a textbook
for advanced undergraduates or first-year graduate students in computer science and
requires no specific background beyond some familiarity with basic graph theory, although
prior exposure to the main issues in concurrent programming and computer networks may

also be helpful. In addition, researchers and practitioners working on distributed computing
will also find it useful as a general reference on some of the most important issues in the
field.

The material is organized into ten chapters covering a variety of topics, such as models of
distributed computation, information propagation, leader election, distributed snapshots,
network synchronization, self-stability, termination detection, deadlock detection, graph
algorithms, mutual exclusion, program debugging, and simulation. Because I have chosen to
write the book from the broader perspective of distributed-memory systems in general, the
topics that I treat fail to coincide exactly with those normally taught in a more orthodox course
on distributed algorithms. What this amounts to is that I have included topics that normally
would not be touched (as algorithms for maximum flow, program debugging, and simulation)
and, on the other hand, have left some topics out (as agreement in the presence of faults).

All the algorithms that I discuss in the book are given for a "target" system that is represented
by a connected graph, whose nodes are message-driven entities and whose edges indicate
the possibilities of point-to-point communication. This allows the algorithms to be presented
in a very simple format by specifying, for each node, the actions to be taken to initiate
participating in the algorithm and upon the receipt of a message from one of the nodes
connected to it in the graph. In describing the main ideas and algorithms, I have sought a
balance between intuition and formal rigor, so that most are preceded by a general intuitive
discussion and followed by formal statements regarding correctness, complexity, or other
properties.
The book's ten chapters are grouped into two parts. Part 1 is devoted to the basics in the
field of distributed algorithms, while Part 2 contains more advanced techniques or
applications that build on top of techniques discussed previously.
Part 1 comprises Chapters 1 through 5. Chapters 1 and 2 are introductory chapters, although
in two different ways. While Chapter 1 contains a discussion of various issues related to
message-passing systems that in the end lead to the adoption of the generic message-driven
system I mentioned earlier, Chapter 2 is devoted to a discussion of constraints that are
inherent to distributed-memory systems, chiefly those related to a system's asynchronism or
synchronism, and the anonymity of its constituents. The remaining three chapters of Part 1
are each dedicated to a group of fundamental ideas and techniques, as follows. Chapter 3
contains models of computation and complexity measures, while Chapter 4 contains some
fundamental algorithms (for information propagation and some simple graph problems) and
Chapter 5 is devoted to fundamental techniques (as leader election, distributed snapshots,
and network synchronization).
The chapters that constitute Part 2 are Chapters 6 through 10. Chapter 6 brings forth the
subject of stable properties, both from the perspective of selfstability and of stability detection
(for termination and deadlock detection). Chapter 7 contains graph algorithms for minimum
spanning trees and maximum flows. Chapter 8 contains algorithms for resource sharing
under the requirement of mutual exclusion in a variety of circumstances, including
generalizations of the paradigmatic dining philosophers problem. Chapters 9 and 10 are,
respectively, dedicated to the topics of program debugging and simulation. Chapter 9
includes techniques for program re-execution and for breakpoint detection. Chapter 10 deals
with time-stepped simulation, conservative event-driven simulation, and optimistic event-
driven simulation.

Every chapter is complemented by a section with exercises for the reader and another with
bibliographic notes. Of the exercises, many are intended to bring the reader one step further
in the treatment of some topic discussed in the chapter. When this is the case, an indication
is given, during the discussion of the topic, of the exercise that may be pursued to expand
the treatment of that particular topic. I have attempted to collect a fairly comprehensive set of
bibliographic references, and the sections with bibliographic notes are intended to provide
the reader with the source references for the main issues treated in the chapters, as well as
to indicate how to proceed further.
I believe the book is sized reasonably for a one-term course on distributed algorithms.
Shorter syllabi are also possible, though, for example by omitting Chapters 1 and 2 (except

for Sections 1.4 and 2.1), then covering Chapters 3 through 6 completely, and then selecting
as many chapters as one sees fit from Chapters 7 through 10 (the only interdependence that
exists among these chapters is of Section 10.2 upon some of Section 8.3).

Notation
The notation logkn is used to indicate (log n)k. All of the remaining notation in the book is
standard.

Part 1: Fundamentals
Message-Passing Systems
Intrinsic Constraints
Models of Computation
Basic Algorithms
Basic Techniques

Part Overview

This first part of the book is dedicated to some of the fundamentals in the field of distributed
algorithms. It comprises five chapters, in which motivation, some limitations, models, basic
algorithms, and basic techniques are discussed.
Chapter 1 opens with a discussion of the distributed-memory systems that provide the
motivation for the study of distributed algorithms. These include computer networks,
networks of workstations, and multiprocessors. In this context, we discuss some of the
issues that relate to the study of those systems, such as routing and flow control, message
buffering, and processor allocation. The chapter also contains the description of a generic
template to write distributed algorithms, to be used throughout the book.
Chapter 2 begins with a discussion of full asynchronism and full synchronism in the context
of distributed algorithms. This discussion includes the introduction of the asynchronous and
synchronous models of distributed computation to be used in the remainder of the book, and
the presentation of details on how the template introduced in Chapter 1 unfolds in each of the
two models. We then turn to a discussion of intrinsic limitations in the context of anonymous
systems, followed by a brief discussion of the notions of knowledge in distributed
computations.
The computation models introduced in Chapter 2 (especially the asynchronous model) are in
Chapter 3 expanded to provide a detailed view in terms of events, orders, and global states.
This view is necessary for the proper treatment of timing issues in distributed computations,
and also allows the introduction of the complexity measures to be employed throughout. The
chapter closes with a first discussion (to be resumed later in Chapter 5) of how the
asynchronous and synchronous models relate to each other.
Chapters 4 and 5 open the systematic presentation of distributed algorithms, and of their
properties, that constitutes the remainder of the book. Both chapters are devoted to basic
material. Chapter 4, in particular, contains basic algorithms in the context of information
propagation and of some simple graph problems.
In Chapter 5, three fundamental techniques for the development of distributed algorithms are
introduced. These are the techniques of leader election (presented only for some types of
systems, as the topic is considered again in Part 2, Chapter 7), distributed snapshots, and
network synchronization. The latter two techniques draw heavily on material introduced
earlier in Chapter 3, and constitute some of the essential building blocks to be occasionally
used in later chapters.

Chapter 1: Message-Passing Systems

Overview
The purpose of this chapter is twofold. First we intend to provide an overall picture of various
real-world sources of motivation to study message-passing systems, and in doing so to
provide the reader with a feeling for the several characteristics that most of those systems

share. This is the topic of Section 1.1, in which we seek to bring under a same framework
seemingly disparate systems as multiprocessors, networks of workstations, and computer
networks in the broader sense.

Our second main purpose in this chapter is to provide the reader with a fairly rigorous, if not
always realizable, methodology to approach the development of message-passing programs.
Providing this methodology is a means of demonstrating that the characteristics of real-world
computing systems and the main assumptions of the abstract model we will use throughout
the remainder of the book can be reconciled. This model, to be described timely, is graph-
theoretic in nature and encompasses such apparently unrealistic assumptions as the
existence of infinitely many buffers to hold the messages that flow on the system's
communication channels (thence the reason why reconciling the two extremes must at all be
considered).
This methodology is presented as a collection of interrelated aspects in Sections 1.2 through
1.7. It can also be viewed as a means to abstract our thinking about message-passing
systems from various of the peculiarities of such systems in the real world by concentrating
on the few aspects that they all share and which constitute the source of the core difficulties
in the design and analysis of distributed algorithms.
Sections 1.2 and 1.3 are mutually complementary, and address respectively the topics of
communication processors and of routing and flow control in message-passing systems.
Section 1.4 is devoted to the presentation of a template to be used for the development of
message-passing programs. Among other things, it is here that the assumption of infinite-
capacity channels appears. Handling such an assumption in realistic situations is the topic of
Section 1.5. Section 1.6 contains a treatment of various aspects surrounding the question of
processor allocation, and completes the chapter's presentation of methodological issues.
Some remarks on some of the material presented in previous sections comes in Section 1.7.
Exercises and bibliographic notes follow respectively in Sections 1.8 and 1.9.

1.1 Distributed-memory systems

Message passing and distributed memory are two concepts intimately related to each other.
In this section, our aim is to go on a brief tour of various distributed-memory systems and to
demonstrate that in such systems message passing plays a chief role at various levels of
abstraction, necessarily at the processor level but often at higher levels as well.

Distributed-memory systems comprise a collection of processors interconnected in some
fashion by a network of communication links. Depending on the system one is considering,
such a network may consist of point-to-point connections, in which case each communication
link handles the communication traffic between two processors exclusively, or it may
comprise broadcast channels that accommodate the traffic among the processors in a larger
cluster. Processors do not physically share any memory, and then the exchange of
information among them must necessarily be accomplished by message passing over the
network of communication links.
The other relevant abstraction level in this overall panorama is the level of the programs that
run on the distributed-memory systems. One such program can be thought of as comprising
a collection of sequential-code entities, each running on a processor, maybe more than one
per processor. Depending on peculiarities well beyond the intended scope of this book, such
entities have been called tasks, processes, or threads, to name some of the denominations
they have received. Because the latter two forms often acquire context-dependent meanings
(e.g., within a specific operating system or a specific programming language), in this book we
choose to refer to each of those entities as a task, although this denomination too may at
times have controversial connotations.

While at the processor level in a distributed-memory system there is no choice but to rely on
message passing for communication, at the task level there are plenty of options. For
example, tasks that run on the same processor may communicate with each other either
through the explicit use of that processor's memory or by means of message passing in a
very natural way. Tasks that run on different processors also have essentially these two

possibilities. They may communicate by message passing by relying on the message-
passing mechanisms that provide interprocessor communication, or they may employ those
mechanisms to emulate the sharing of memory across processor boundaries. In addition, a
myriad of hybrid approaches can be devised, including for example the use of memory for
communication by tasks that run on the same processor and the use of message passing
among tasks that do not.

Some of the earliest distributed-memory systems to be realized in practice were long-haul
computer networks, i.e., networks interconnecting processors geographically separated by
considerable distances. Although originally employed for remote terminal access and
somewhat later for electronic-mail purposes, such networks progressively grew to
encompass an immense variety of data-communication services, including facilities for
remote file transfer and for maintaining work sessions on remote processors. A complex
hierarchy of protocols is used to provide this variety of services, employing at its various
levels message passing on point-to-point connections. Recent advances in the technology of
these protocols are rapidly leading to fundamental improvements that promise to allow the
coexistence of several different types of traffic in addition to data, as for example voice,
image, and video. The protocols underlying these advances are generally known as
Asynchronous Transfer Mode (ATM) protocols, in a way underlining the aim of providing
satisfactory service for various different traffic demands. ATM connections, although
frequently of the point-to-point type, can for many applications benefit from efficient
broadcast capabilities, as for example in the case of teleconferencing.

Another notorious example of distributed-memory systems comes from the field of parallel
processing, in which an ensemble of interconnected processors (a multiprocessor) is
employed in the solution of a single problem. Application areas in need of such
computational potential are rather abundant, and come from various of the scientific and
engineering fields. The early approaches to the construction of parallel processing systems
concentrated on the design of shared-memory systems, that is, systems in which the
processors share all the memory banks as well as the entire address space. Although this
approach had some success for a limited number of processors, clearly it could not support
any significant growth in that number, because the physical mechanisms used to provide the
sharing of memory cells would soon saturate during the attempt at scaling.

The interest in providing massive parallelism for some applications (i.e., the parallelism of
very large, and scalable, numbers of processors) quickly led to the introduction of distributed-
memory systems built with point-to-point interprocessor connections. These systems have
dominated the scene completely ever since. Multiprocessors of this type were for many years
used with a great variety of programming languages endowed with the capability of
performing message passing as explicitly directed by the programmer. One problem with this
approach to parallel programming is that in many application areas it appears to be more
natural to provide a unique address space to the programmer, so that, in essence, the
parallelization of preexisting sequential programs can be carried out in a more
straightforward fashion. With this aim, distributed-memory multiprocessors have recently
appeared whose message-passing hardware is capable of providing the task level with a
single address space, so that at this level message passing can be done away with. The
message-passing character of the hardware is fundamental, though, as it seems that this is
one of the key issues in providing good scalability properties along with a shared-memory
programming model. To provide this programming model on top of a message-passing
hardware, such multiprocessors have relied on sophisticated cache techniques.

The latest trend in multiprocessor design emerged from a re-consideration of the importance
of message passing at the task level, which appears to provide the most natural
programming model in various situations. Current multiprocessor designers are then
attempting to build, on top of the message-passing hardware, facilities for both message-
passing and scalable shared-memory programming.

As our last example of important classes of distributed-memory systems, we comment on
networks of workstations. These networks share a lot of characteristics with the long-haul
networks we discussed earlier, but unlike those they tend to be concentrated within a much
narrower geographic region, and so frequently employ broadcast connections as their chief
medium for interprocessor communication (point-to-point connections dominate at the task
level, though). Also because of the circumstances that come from the more limited
geographic dispersal, networks of workstations are capable of supporting many services
other than those already available in the long-haul case, as for example the sharing of file
systems. In fact, networks of workstations provide unprecedented computational and storage
power in the form, respectively, of idling processors and unused storage capacity, and
because of the facilitated sharing of resources that they provide they are already beginning to
be looked at as a potential source of inexpensive, massive parallelism.

As it appears from the examples we described in the three classes of distributed- memory
systems we have been discussing (computer networks, multiprocessors, and networks of
workstations), message-passing computations over point-to-point connections constitute
some sort of a pervasive paradigm. Frequently, however, it comes in the company of various
other approaches, which emerge when the computations that take place on those
distributed-memory systems are looked at from different perspectives and at different levels
of abstraction.

The remainder of the book is devoted exclusively to message-passing computations over
point-to-point connections. Such computations will be described at the task level, which
clearly can be regarded as encompassing message-passing computations at the processor
level as well. This is so because the latter can be regarded as message-passing
computations at the task level when there is exactly one task per processor and two tasks
only communicate with each other if they run on processors directly interconnected by a
communication link. However, before leaving aside the processor level completely, we find it
convenient to have some understanding of how a group of processors interconnected by
point-to-point connections can support intertask message passing even among tasks that run
on processors not directly connected by a communication link. This is the subject of the
following two sections.

1.2 Communication processors
When two tasks that need to communicate with each other run on processors which are not
directly interconnected by a communication link, there is no option to perform that intertask
communication but to somehow rely on processors other than the two running the tasks to
relay the communication traffic as needed. Clearly, then, each processor in the system must,
in addition to executing the tasks that run on it, also act as a relayer of the communication
traffic that does not originate from (or is destined to) any of the tasks that run on it.
Performing this additional function is quite burdensome, so it appears natural to somehow
provide the processor with specific capabilities that allow it to do the relaying of
communication traffic without interfering with its local computation. In this way, each
processor in the system can be viewed as actually a pair of processors that run
independently of each other. One of them is the processor that runs the tasks (called the
host processor) and the other is the communication processor. Unless confusion may arise,
the denomination simply as a processor will in the remainder of the book be used to indicate
either the host processor or, as it has been so far, the pair comprising the host processor
and the communication processor.

In the context of computer networks (and in a similar fashion networks of workstations as
well), the importance of communication processors was recognized at the very beginning, not
only by the performance-related reasons we indicated, but mainly because, by the very
nature of the services provided by such networks, each communication processor was to
provide services to various users at its site. The first generation of distributed-memory
multiprocessors, however, was conceived without any concern for this issue, but very soon
afterwards it became clear that the communication traffic would be an unsurmountable

bottleneck unless special hardware was provided to handle that traffic. The use of
communication processors has been the rule since.

There is a great variety of approaches to the design of a communication processor, and that
depends of course on the programming model to be provided at the task level. If message
passing is all that needs to be provided, then the communication processor has to at least be
able to function as an efficient communication relayer. If, on the other hand, a shared-
memory programming model is intended, either by itself or in a hybrid form that also allows
message passing, then the communication processor must also be able to handle memory-
management functions.
Let us concentrate a little more on the message-passing aspects of communication
processors. The most essential function to be performed by a communication processor is in
this case to handle the reception of messages, which may come either from the host
processor attached to it or from another communication processor, and then to decide where
to send it next, which again may be the local host processor or another communication
processor. This function per se involves very complex issues, which are the subject of our
discussion in Section 1.3.
Another very important aspect in the design of such communication processors comes from
viewing them as processors with an instruction set of their own, and then the additional issue
comes up of designing such an instruction set so to provide communication services not only
to the local host processor but in general to the entire system. The enhanced flexibility that
comes from viewing a communication processor in this way is very attractive indeed, and has
motivated a few very interesting approaches to the design of those processors. So, for
example, in order to send a message to another (remote) task, a task running on the local
host processor has to issue an instruction to the communication processor that will tell it to
do so. This instruction is the same that the communication processors exchange among
themselves in order to have messages passed on as needed until a destination is reached.
In addition to rendering the view of how a communication processor handles the traffic of
point-to-point messages a little simpler, regarding the communication processor as an
instruction-driven entity has many other advantages. For example, a host processor may
direct its associated communication processor to perform complex group communication
functions and do something else until that function has been completed system-wide. Some
very natural candidate functions are discussed in this book, especially in Chapters 4 and 5
(although algorithms presented elsewhere in the book may also be regarded as such, only at
a higher level of complexity).

1.3 Routing and flow control
As we remarked in the previous section, one of the most basic and important functions to be
performed by a communication processor is to act as a relayer of the messages it receives
by either sending them on to its associated host processor or by passing them along to
another communication processor. This function is known as routing, and has various
important aspects that deserve our attention.
For the remainder of this chapter, we shall let our distributed-memory system be represented
by the connected undirected graph GP = (NP,EP), where the set of nodes NP is the set of
processors (each processor viewed as the pair comprising a host processor and a
communication processor) and the set EP of undirected edges is the set of point-to-point
bidirectional communication links. A message is normally received at a communication
processor as a pair (q, Msg), meaning that Msg is to be delivered to processor q. Here Msg
is the message as it is first issued by the task that sends it, and can be regarded as
comprising a pair of fields as well, say Msg = (u, msg), where u denotes the task running on
processor q to which the message is to be delivered and msg is the message as u must
receive it. This implies that at each processor the information of which task runs on which
processor must be available, so that intertask messages can be addressed properly when
they are first issued. Section 1.6 is devoted to a discussion of how this information can be
obtained.
When a processor r receives the message (q, Msg), it checks whether q = r and in the
affirmative case forwards Msg to the host processor at r. Otherwise, the message must be
destined to another processor, and is then forwarded by the communication processor for

eventual delivery to that other processor. At processor r, this forwarding takes place
according to the function nextr (q), which indicates the processor directly connected to r to
which the message must be sent next for eventual delivery to q (that is, (r,nextr(q)) ∊ EP).
The function next is a routing function, and ultimately indicates the set of links a message
must traverse in order to be transported between any two processors in the system. For
processors p and q, we denote by R (p,q) ⊆ EP the set of links to be traversed by a message
originally sent by a task running on p to a task running on q. Clearly, R(p,p) = Ø and in
general R(p,q) and R(q,p) are different sets.
Routing can be fixed or adaptive, depending on how the function next is handled. In the fixed
case, the function next is time-invariant, whereas in the adaptive case it may be time-varying.
Routing can also be deterministic or nondeterministic, depending on how many processors
next can be chosen from at a processor. In the deterministic case there is only one choice,
whereas the nondeterministic case allows multiple choices in the determination of next.
Pairwise combinations of these types of routing are also allowed, with adaptivity and
nondeterminism being usually advocated for increased performance and fault-tolerance.
Advantageous as some of these enhancements to routing may be, not many of adaptive or
nondeterministic schemes have made it into practice, and the reason is that many difficulties
accompany those enhancements at various levels. For example, the FIFO (First In, First Out)
order of message delivery at the processor level cannot be trivially guaranteed in the
adaptive or nondeterministic cases, and then so cannot at the task level either, that is,
messages sent from one task to another may end up delivered in an order different than the
order they were sent. For some applications, as we discuss for example in Section 5.2.1, this
would complicate the treatment at the task level and most likely do away with whatever
improvement in efficiency one might have obtained with the adaptive or nondeterministic
approaches to routing. (We return to the question of ensuring FIFO message delivery among
tasks in Section 1.6.2, but in a different context.)
Let us then concentrate on fixed, determinist routing for the remainder of the chapter. In this
case, and given a destination processor q, the routing function nextr(q) does not lead to any
loops (i.e., by successively moving from processor to processor as dictated by next until q is
reached it is not possible to return to an already visited processor). This is so because the
existence of such a loop would either require at least two possibilities for the determination of
nextr(q) for some r, which is ruled out by the assumption of deterministic routing, or require
that next be allowed to change with time, which cannot be under the assumption of fixed
routing. If routing is deterministic, then another way of arriving at this loopfree property of
next is to recognize that, for fixed routing, the sets R of links are such that R(r,q) ⊆ R(p,q) for
every processor r that can be obtained from p by successively applying next given q. The
absence of loops comes as a consequence. Under this alternative view, it becomes clear
that, by building the sets R to contain shortest paths (i.e., paths with the least possible
numbers of links) in the fixed, deterministic case, the containments for those sets appear
naturally, and then one immediately obtains a routing function with no loops.
Loops in a routing function refer to one single end-to-end directed path (i.e., a sequence of
processors obtained by following nextr(q) from r = p for some p and fixed q), and clearly
should be avoided. Another related concept, that of a directed cycle in a routing function, can
also lead to undesirable behavior in some situations (to be discussed shortly), but cannot be
altogether avoided. A directed cycle exists in a routing function when two or more end-to-end
directed paths share at least two processors (and sometimes links as well), say p and q, in
such a way that q can be reached from p by following nextr(q) at the intermediate r's, and so
can p from q by following nextr(p). Every routing function contains at least the directed cycles
implied by the sharing of processors p and q by the sets R(p,q) and R(q,p) for all p,q ∈ NP. A
routing function containing only these directed cycles does not have any end-to-end directed
paths sharing links in the same direction, and is referred to as a quasi-acyclic routing
function.
Another function that is normally performed by communication processors and goes closely
along that of routing is the function of flow control. Once the routing function next has been
established and the system begins to transport messages among the various pairs of
processors, the storage and communication resources that the interconnected
communication processors possess must be shared not only by the messages already on

their way to destination processors but also by other messages that continue to be admitted
from the host processors. Flow control strategies aim at optimizing the use of the system's
resources under such circumstances. We discuss three such strategies in the remainder of
this section.
The first mechanism we investigate for flow control is the store-and-forward mechanism. This
mechanism requires a message (q,Msg) to be divided into packets of fixed size. Each packet
carries the same addressing information as the original message (i.e., q), and can therefore
be transmitted independently. If these packets cannot be guaranteed to be delivered to q in
the FIFO order, then they must also carry a sequence number, to be used at q for the re-
assembly of the message. (However, guaranteeing the FIFO order is a straightforward
matter under the assumption of fixed, deterministic routing, so long as the communication
links themselves are FIFO links.) At intermediate communication processors, packets are
stored in buffers for later transmission when the required link becomes available (a queue of
packets is kept for each link).
Store-and-forward flow control is prone to the occurrence of deadlocks, as the packets
compete for shared resources (buffering space at the communication processors, in this
case). One simple situation in which this may happen is the following. Consider a cycle of
processors in GP, and suppose that one task running on each of the processors in the cycle
has a message to send to another task running on another processor on the cycle that is
more than one link away. Suppose in addition that the routing function next is such that all
the corresponding communication processors, after having received such messages from
their associated host processors, attempt to send them in the same direction (clockwise or
counterclockwise) on the cycle of processors. If buffering space is no longer available at any
of the communication processors on the cycle, then deadlock is certain to occur.
This type of deadlock can be prevented by employing what is called a structured buffer pool.
This is a mechanism whereby the buffers at all communication processors are divided into
classes, and whenever a packet is sent between two directly interconnected communication
processors, it can only be accepted for storage at the receiving processor if there is buffering
space in a specific buffer class, which is normally a function of some of the packet's
addressing parameters. If this function allows no cyclic dependency to be formed among the
various buffer classes, then deadlock is ensured never to occur. Even with this issue of
deadlock resolved, the store-and-forward mechanism suffers from two main drawbacks. One
of them is the latency for the delivery of messages, as the packets have to be stored at all
intermediate communication processors. The other drawback is the need to use memory
bandwidth, which seldom can be provided entirely by the communication processor and has
then to be shared with the tasks that run on the associated host processor.
The potentially excessive latency of store-and-forward flow control is partially remedied by
the second flow-control mechanism we describe. This mechanism is known as circuit
switching, and requires an end-to-end directed path to be entirely reserved in one direction
for a message before it is transmitted. Once all the links on the path have been secured for
that particular transmission, the message is then sent and at the intermediate processors
incurs no additional delay waiting for links to become available. The reservation process
employed by circuit switching is also prone to the occurrence of deadlocks, as links may
participate in several paths in the same direction. Portions of those paths may form directed
cycles that may in turn deadlock the reservation of links. Circuit switching should, for this
reason, be restricted to those routing functions that are quasi-acyclic, which by definition
pose no deadlock threat to the reservation process.

Circuit switching is obviously inefficient for the transmission of short messages, as the time
for the entire path to be reserved becomes then prominent. Even for long messages,
however, its advantages may not be too pronounced, depending primarily on how the
message is transmitted once the links are reserved. If the message is divided into packets
that have to be stored at the intermediate communication processors, then the gain with
circuit switching may be only marginal, as a packet is only sent on the next link after it has
been completely received (all that is saved is then the wait time on outgoing packet queues).
It is possible, however, to pipeline the transmission of the message so that only very small
portions have to be stored at the intermediate processors, as in the third flow-control strategy
we describe next.

The last strategy we describe for flow control employs packet blocking (as opposed to packet
buffering or link reservation) as one of its basic paradigms. The resulting mechanism is
known as wormhole routing (a misleading denomination, because it really is a flow-control
strategy), and contrasting with the previous two strategies, the basic unit on which flow
control is performed is not a packet but a flit (flow-control digit). A flit contains no routing
information, so every flit in a packet must follow the leading flit, where the routing information
is kept when the packet is subdivided. With wormhole routing, the inherent latency of store-
and-forward flow control due to the constraint that a packet can only be sent forward after it
has been received in its entirety is eliminated. All that needs to be stored is a flit, significantly
smaller than a packet, so the transmission of the packet is pipelined, as portions of it may be
flowing on different links and portions may be stored. When the leading flit needs access to a
resource (memory space or link) that it cannot have immediately, the entire packet is blocked
and only proceeds when that flit can advance. As with the previous two mechanisms,
deadlock can also arise in wormhole routing. The strategy for dealing with this is to break the
directed cycles in the routing function (thereby possibly making pairs of processors
inaccessible to each other), then add virtual links to the already existing links in the network,
and then finally fix the routing function by the use of the virtual links. Directed cycles in the
routing function then become "spirals", and deadlocks can no longer occur. (Virtual links are
in the literature referred to as virtual channels, but channels will have in this book a different
connotation—cf. Section 1.4.)
In the case of multiprocessors, the use of communication processors employing wormhole
routing for flow control tends to be such that the time to transport a message between nodes
directly connected by a link in GP is only marginally smaller than the time spent when no
direct connection exists. In such circumstances, GP can often be regarded as being a
complete graph (cf. Section 2.1, where we discuss details of the example given in Section
1.6.2).
To finalize this section, we mention that yet another flow-control strategy has been proposed
that can be regarded as a hybrid strategy combining store-and-forward flow control and
wormhole routing. It is called virtual cut-through, and is characterized by pipelining the
transmission of packets as in wormhole routing, and by requiring entire packets to be stored
when an outgoing link cannot be immediately used, as in store-and-forward. Virtual cut-
through can then be regarded as a variation of wormhole routing in which the pipelining in
packet transmission is retained but packet blocking is replaced with packet buffering.

1.4 Reactive message-passing programs
So far in this chapter we have discussed how message-passing systems relate to
distributed-memory systems, and have outlined some important characteristics at
the processor level that allow tasks to communicate with one another by message
passing over point-to-point communication channels. Our goal in this section is to
introduce, in the form of a template algorithm, our understanding of what a
distributed algorithm is and of how it should be described. This template and some
of the notation associated with it will in Section 2.1 evolve into the more compact
notation that we use throughout the book.
We represent a distributed algorithm by the connected directed graph GT = (NT,DT),
where the node set NT is a set of tasks and the set of directed edges DT is a set of
unidirectional communication channels. (A connected directed graph is a directed
graph whose underlying undirected graph is connected.) For a task t, we let Int ⊆
DT denote the set of edges directed towards t and Outt ⊆ DT the set of edges
directed away from t. Channels in Int are those on which t receives messages and
channels in Outt are those on which t sends messages. We also let nt = |Int|, that is,
nt denotes the number of channels on which t may receive messages.
A task t is a reactive (or message-driven) entity, in the sense that normally it only
performs computation (including the sending of messages to other tasks) as a
response to the receipt of a message from another task. An exception to this rule is
that at least one task must be allowed to send messages out "spontaneously" (i.e.,
not as a response to a message receipt) to other tasks at the beginning of its
execution, inasmuch as otherwise the assumed message-driven character of the
tasks would imply that every task would idle indefinitely and no computation would

take place at all. Also, a task may initially perform computation for initialization
purposes.
Algorithm Task_t, given next, describes the overall behavior of a generic task t.
Although in this algorithm we (for ease of notation) let tasks compute and then
send messages out, no such precedence is in fact needed, as computing and
sending messages out may constitute intermingled portions of a task's actions.

Algorithm Task_t:

 Do some computation;
 send one message on each channel of a (possibly empty) subset of Outt;
 repeat
 receive message on c1 ∈ Int and B1→
 Do some computation;
 send one message on each channel of a (possibly empty) subset of Outt

 or…
 or
 receive message on cnt ∈ Int and Bnt→
 Do some computation;
 send one message on each channel of a (possibly empty) subset of Outt

 until global termination is known to t.

There are many important observations to be made in connection with Algorithm
Task_t. The first important observation is in connection with how the computation
begins and ends for task t. As we remarked earlier, task t begins by doing some
computation and by sending messages to none or more of the tasks to which it is
connected in GT by an edge directed away from it (messages are sent by means of
the operation send). Then t iterates until a global termination condition is known to
it, at which time its computation ends. At each iteration, t does some computation
and may send messages. The issue of global termination will be thoroughly
discussed in Section 6.2 in a generic setting, and before that in various other
chapters it will come up in more particular contexts. For now it suffices to notice
that t acquires the information that it may terminate its local computation by means
of messages received during its iterations. If designed correctly, what this
information signals to t is that no message will ever reach it again, and then it may
exit the repeat…until loop.
The second important observation is on the construction of the repeat…until loop
and on the semantics associated with it. Each iteration of this loop contains nt

guarded commands grouped together by or connectives. A guarded command is
usually denoted by

 guard → command,
where, in our present context, guard is a condition of the form

 receive message on ck ∈ Int and Bk

for some Boolean condition Bk, where 1 ≤ k ≤ nt. The receive appearing in the
description of the guard is an operation for a task to receive messages. The guard
is said to be ready when there is a message available for immediate reception on
channel ck and furthermore the condition Bk is true. This condition may depend on
the message that is available for reception, so that a guard may be ready or not, for
the same channel, depending on what is at the channel to be received. The overall
semantics of the repeat…until loop is then the following. At each iteration, execute
the command of exactly one guarded command whose guard is ready. If no guard
is ready, then the task is suspended until one is. If more than one guard is ready,
then one of them is selected arbitrarily. As the reader will verify by our many

distributed algorithm examples along the book, this possibility of
nondeterministically selecting guarded commands for execution provides great
design flexibility.
Our final important remark in connection with Algorithm Task_t is on the semantics
associated with the receive and send operations. Although as we have remarked
the use of a receive in a guard is to be interpreted as an indication that a message
is available for immediate receipt by the task on the channel specified, when used
in other contexts this operation in general has a blocking nature. A blocking
receive has the effect of suspending the task until a message arrives on the
channel specified, unless a message is already there to be received, in which case
the reception takes place and the task resumes its execution immediately.
The send operation too has a semantics of its own, and in general may be
blocking or nonblocking. If it is blocking, then the task is suspended until the
message can be delivered directly to the receiving task, unless the receiving task
happens to be already suspended for message reception on the corresponding
channel when the send is executed. A blocking send and a blocking receive
constitute what is known as task rendez-vous, which is a mechanism for task
synchronization. If the send operation has a nonblocking nature, then the task
transmits the message and immediately resumes its execution. This nonblocking
version of send requires buffering for the messages that have been sent but not
yet received, that is, messages that are in transit on the channel. Blocking and
nonblocking send operations are also sometimes referred to as synchronous and
asynchronous, respectively, to emphasize the synchronizing effect they have in the
former case. We refrain from using this terminology, however, because in this book
the words synchronous and asynchronous will have other meanings throughout (cf.
Section 2.1). When used, as in Algorithm Task-t, to transmit messages to more
than one task, the send operation is assumed to be able to do all such
transmissions in parallel.
The relation of blocking and nonblocking send operations with message buffering
requirements raises important questions related to the design of distributed
algorithms. If, on the one hand, a blocking send requires no message buffering (as
the message is passed directly between the synchronized tasks), on the other hand
a nonblocking send requires the ability of a channel to buffer an unbounded
number of messages. The former scenario poses great difficulties to the program
designer, as communication deadlocks occur with great ease when the
programming is done with the use of blocking operations only. For this reason,
however unreal the requirement of infinitely many buffers may seem, it is
customary to start the design of a distributed algorithm by assuming nonblocking
operations, and then at a later stage performing changes to yield a program that
makes use of the operations provided by the language at hand, possibly of a
blocking nature or of a nature that lies somewhere in between the two extremes of
blocking and nonblocking send operations.
The use of nonblocking send operations does in general allow the correctness of
distributed algorithms to be shown more easily, as well as their properties. We then
henceforth assume that, in Algorithm Task_t, send operations have a nonblocking
nature. Because Algorithm Task_t is a template for all the algorithms appearing in
the book, the assumption of nonblocking send operations holds throughout.
Another important aspect affecting the design of distributed algorithms is whether
the channels in DT deliver messages in the FIFO order or not. Although as we
remarked in Section 1.3 this property may at times be essential, we make no
assumptions now, and leave its treatment to be done on a case-by-case basis. We
do make the point, however, that in the guards of Algorithm Task_t at most one
message can be available for immediate reception on a FIFO channel, even if
other messages have already arrived on that same channel (the available message
is the one to have arrived first and not yet received). If the channel is not FIFO,
then any message that has arrived can be regarded as being available for
immediate reception.

1.5 Handling infinite-capacity channels
As we saw in Section 1.4, the blocking or nonblocking nature of the send operations is
closely related to the channels ability to buffer messages. Specifically, blocking operations
require no buffering at all, while nonblocking operations may require an infinite amount of
buffers. Between the two extremes, we say that a channel has capacity k ≥ 0 if the number of
messages it can buffer before either a message is received by the receiving task or the
sending task is suspended upon attempting a transmission is k. The case of k = 0
corresponds to a blocking send, and the case in which k → ∞ corresponds to a nonblocking
send.
Although Algorithm Task_t of Section 1.4 is written under the assumption of infinite-capacity
channels, such an assumption is unreasonable, and must be dealt with somewhere along the
programming process. This is in general achieved along two main steps. First, for each
channel c a nonnegative integer b(c) must be determined that reflects the number of buffers
actually needed by channel c. This number must be selected carefully, as an improper choice
may introduce communication deadlocks in the program. Such a deadlock is represented by
a directed cycle of tasks, all of which are suspended to send a message on the channel on
the cycle, which cannot be done because all channels have been assigned insufficient
storage space. Secondly, once the b(c)'s have been determined, Algorithm Task_t must be
changed so that it now employs send operations that can deal with the new channel
capacities. Depending on the programming language at hand, this can be achieved rather
easily. For example, if the programming language offers channels with zero capacity, then
each channel c may be replaced with a serial arrangement of b(c) relay tasks alternating with
b(c) + 1 zero-capacity channels. Each relay task has one input channel and one output
channel, and has the sole function of sending on its output channel whatever it receives on
its input channel. It has, in addition, a storage capacity of exactly one message, so the entire
arrangement can be viewed as a b(c)-capacity channel.
The real problem is of course to determine values for the b(c)'s in such a way that no new
deadlock is introduced in the distributed algorithm (put more optimistically, the task is to
ensure the deadlock-freedom of an originally deadlock-free program). In the remainder of
this section, we describe solutions to this problem which are based on the availability of a
bound r(c), provided for each channel c, on the number of messages that may require
buffering in c when c has infinite capacity. This number r(c) is the largest number of
messages that will ever be in transit on c when the receiving task of c is itself attempting a
message transmission, so the messages in transit have to be buffered.
Although determining the r(c)'s can be very simple for some distributed algorithms (cf.
Sections 5.4 and 8.5), for many others such bounds are either unknown, or known
imprecisely, or simply do not exist. In such cases, the value of r(c) should be set to a "large"
positive integer M for all channels c whose bounds cannot be determined precisely. Just how
large this M has to be, and what the limitations of this approach are, we discuss later in this
section.
If the value of r(c) is known precisely for all c ∈ DT, then obviously the strategy of assigning b(
c) = r(c) buffers to every channel c guarantees the introduction of no additional deadlock, as
every message ever to be in transit when its destination is engaged in a message
transmission will be buffered (there may be more messages in transit, but only when their
destination is not engaged in a message transmission, and will therefore be ready for
reception within a finite amount of time). The interesting question here is, however, whether it
can still be guaranteed that no new deadlock will be introduced if b(c) < r(c) for some
channels c. This would be an important strategy to deal with the cases in which r(c) = M for
some c ∈ DT, and to allow (potentially) substantial space savings in the process of buffer
assignment. Theorem 1.1 given next concerns this issue.

Theorem 1.1
Suppose that the distributed algorithm given by Algorithm Task_t for all t ∈ NT is deadlock-
free. Suppose in addition that GT contains no directed cycle on which every channel c is such
that either b(c) < r(c) or r(c) = M. Then the distributed algorithm obtained by replacing each
infinite-capacity channel c with a b(c)-capacity channel is deadlock-free.

Proof: A necessary condition for a deadlock to arise is that a directed cycle exists in GT

whose tasks are all suspended on an attempt to send messages on the channels on that
cycle. By the hypotheses, however, every directed cycle in GT has at least one channel c for
which b(c) = r(c) < M, so at least the tasks t that have such channels in Outt are never
indefinitely suspended upon attempting to send messages on them.
The converse of Theorem 1.1 is also often true, but not in general. Specifically, there may be
cases in which r(c) = M for all the channels c of a directed cycle, and yet the resulting
algorithm is deadlock-free, as M may be a true upper bound for c (albeit unknown). So
setting b(c) = r(c) for this channel does not necessarily mean providing it with insufficient
buffering space.
As long as we comply with the sufficient condition given by Theorem 1.1, it is then possible to
assign to some channels c fewer buffers than r(c) and still guarantee that the resulting
distributed algorithm is deadlock-free if it was deadlock-free to begin with. In the remainder of
this section, we discuss two criteria whereby these channels may be selected. Both criteria
lead to intractable optimization problems (i.e., NP-hard problems), so heuristics need to be
devised to approximate solutions to them (some are provided in the literature).
The first criterion attempts to save as much buffering space as possible. It is called the
space-optimal criterion, and is based on a choice of M such that

where C+ is the set of channels for which a precise upper bound is not known. This criterion
requires a subset of channels C ⊆ DT to be determined such that every directed cycle in GT

has at least one channel in C, and such that

is minimum over all such subsets (clearly, C and C+ are then disjoint, given the value of M,
unless C+ contains the channels of an entire directed cycle from GT). Then the strategy is to
set

which ensures that at least one channel c from every directed cycle in GT is assigned b(c) = r
(c) buffers (Figure 1.1). By Theorem 1.1, this strategy then produces a deadlock-free result if
no directed cycle in GT has all of its channels in the set C+. That this strategy employs the
minimum number of buffers comes from the optimal determination of the set C.
The space-optimal approach to buffer assignment has the drawback that the concurrency in
intertask communication may be too low, inasmuch as many channels in DT may be allocated
zero buffers. Extreme situations can happen, as for example the assignment of zero buffers
to all the channels of a long directed path in GT. A scenario might then happen in which all
tasks in this path (except the last one) would be suspended to communicate with its
successor on the path, and this would only take place for one pair of tasks at a time. When at
least one channel c has insufficient buffers (i.e., b(c) < r(c)) or is such that r(c) = M, a
measure of concurrency that attempts to capture the effect we just described is to take the
minimum, over all directed paths in GT whose channels c all have b(c) < r(c) or r(c) = M, of
the ratio

where L is the number of channels on the path. Clearly, this measure can be no less than 1/|
NT| and no more than 1/2, as long as the assignment of buffers conforms to the hypotheses
of Theorem 1.1. The value of 1/2, in particular, can only be achieved if no directed path with
more than one channel exists comprising channels c such that b(c) < r(c) or r(c) = M only.
Another criterion for buffer assignment to channels is then the concurrency-optimal criterion,
which also seeks to save buffering space, but not to the point

Figure 1.1: A graph GT is shown in part (a). In the graphs of parts (b) through (d), circular nodes
are the nodes of GT, while square nodes represent buffers assigned to the corresponding channel
in GT. If r(c) = 1 for all c ∈ {c1, c2, c3, c4}, then parts (b) through (d) represent three distinct buffer
assignments, all of which deadlock-free. Part (b) shows the strategy of setting b(c) =r(c) for all c ∈
{c1, c2,c3, c4}. Parts (c) and (d) represent, respectively, the results of the space-optimal and the
concurrency-optimal strategies.

that the concurrency as we defined might be compromised. This criterion looks for buffer
assignments that yield a level of concurrency equal to 1/2, and for this reason does not allow
any directed path with more than one channel to have all of its channels assigned insufficient
buffers. This alone is, however, insufficient for the value of 1/2 to be attained, as for such it is
also necessary that no directed path with more than one channel contain channels c with r(c)
= M only. Like the space-optimal criterion, the concurrency-optimal criterion utilizes a value of
M such that

This criterion requires a subset of channels C ⊆ DT to be found such that no directed path
with more than one channel exists in GT comprising channels from C only, and such that

is maximum over all such subsets (clearly, C+ ⊆ C, given the value of M, unless C+ contains
the channels of an entire directed path from GT with more than one channel). The strategy is
then to set

thereby ensuring that at least one channel c in every directed path with more than one
channel in GT is assigned b(c) = r(c) buffers, and that, as a consequence, at least one
channel c from every directed cycle in GT is assigned b(c) = r(c) buffers as well (Figure 1.1).
By Theorem 1.1, this strategy then produces a deadlock-free result if no directed cycle in GT

has all of its channels in the set C+. The strategy also provides concurrency equal to 1/2 by
our definition, as long as C+ does not contain all the channels of any directed path in GT with
more than one channel. Given this constraint that optimal concurrency must be achieved (if
possible), then the strategy employs the minimum number of buffers, as the set C is
optimally determined.

1.6 Processor allocation
When we discussed the routing of messages among processors in Section 1.3 we saw that
addressing a message at the task level requires knowledge by the processor running the
task originating the message of the processor on which the destination task runs. This
information is provided by what is known as an allocation function, which is a mapping of the
form

where NT and NP are, as we recall, the node sets of graphs GT (introduced in Section 1.4)
and GP (introduced in Section 1.3), respectively. The function A is such that A(t) = p if and
only if task t runs on processor p.
For many of the systems reviewed in Section 1.1 the allocation function is given naturally by
how the various tasks in NT are distributed throughout the system, as for example computer
networks and networks of workstations. However, for multiprocessors and also for networks
of workstations when viewed as parallel processing systems, the function A has to be
determined during what is called the processor allocation step of program design. In these
cases, GT should be viewed not simply as the task graph introduced earlier, but rather as an
enlargement of that graph to accommodate the relay tasks discussed in Section 1.5 (or any
other tasks with similar functions—cf. Exercise 4).
The determination of the allocation function A is based on a series of attributes associated
with both GT and GP. Among the attributes associated with GP is its routing function, which, as
we remarked in section 1.3, can be described by the mapping

For all p,q ∈ NP,R(p,q) is the set of links on the route from processor p to processor q,

possibly distinct from R(q,p) and such that R(p, p) = . Additional attributes of GP are the
relative processor speed (in instructions per unit time) of p ∈ NP, sp, and the relative link
capacity (in bits per unit time) of (p,q) ∈ EP, c(p,q) (the same in both directions). These
numbers are such that the ratio sp/sq indicates how faster processor p is than processor q;
similarly for the communication links.
The attributes of graph GT are the following. Each task t is represented by a relative
processing demand (in number of instructions) ψt, while each channel (t → u) is represented
by a relative communication demand (in number of bits) from task t to task u, ζ(t→u),
possibly different from ζ(u→t)The ratio ψt/ψu is again indicative of how much more
processing task t requires than task u, the same holding for the communication
requirements.
The process of processor allocation is generally viewed as one of two main possibilities. It
may be static, if the allocation function A is determined prior to the beginning of the
computation and kept unchanged for its entire duration, or it may be dynamic, if A is allowed
to change during the course of the computation. The former approach is suitable to cases in
which both GP and GT, as well as their attributes, vary negligibly with time. The dynamic
approach, on the other hand, is more appropriate to cases in which either the graphs or their
attributes are time-varying, and then provides opportunities for the allocation function to be
revised in the light of such changes. What we discuss in Section 1.6.1 is the static allocation
of processors to tasks. The dynamic case is usually much more difficult, as it requires tasks
to be migrated among processors, thereby interfering with the ongoing computation.
Successful results of such dynamic approaches are for this reason scarce, except for some
attempts that can in fact be regarded as a periodic repetition of the calculations for static
processor allocation, whose resulting allocation functions are then kept unchanged for the
duration of the period. We do nevertheless address the question of task migration in Section
1.6.2 in the context of ensuring the FIFO delivery of messages among tasks under such
circumstances.

1.6.1 The static approach
The quality of an allocation function A is normally measured by a function that expresses the
time for completion of the entire computation, or some function of this time. This criterion is
not accepted as a consensus, but it seems to be consonant with the overall goal of parallel
processing systems, namely to compute faster. So obtaining an allocation function by the
minimization of such a function is what one should seek. The function we utilize in this book
to evaluate the efficacy of an allocation function A is the function H(A) given by

where HP(A) gives the time spent with computation when A is followed, HC(A) gives the time
spent with communication when A is followed, and α such that 0 < α < 1 regulates the
relative importance of HP(A) and HC(A). This parameter α is crucial, for example, in conveying
to the processor allocation process some information on how efficient the routing
mechanisms for interprocessor communication are (cf. Section 1.3).
The two components of H(A) are given respectively by

and

This definition of HP(A) has two types of components. One of them, ψt/sp, accounts for the
time to execute task t on processor p. The other component, ψtψu/sp, is a function of the
additional time incurred by processor p when executing both tasks t and u (various other
functions can be used here, as long as nonnegative). If an allocation function A is sought by
simply minimizing HP(A) then the first component will tend to lead to an allocation of the
fastest processors to run all tasks, while the second component will lead to a dispersion of
the tasks among the processors. The definition of HC(A), in turn, embodies components of
the type ζ(t→u)/c(p,q), which reflects the time spent in communication from task t to task u on
link (p,q) ∈ R(A(t), A(u)). Contrasting with HP(A), if an allocation function A is sought by
simply minimizing HC(A), then tasks will tend to be concentrated on a few processors. The
minimization of the overall H(A) is then an attempt to reconcile conflicting goals, as each of
its two components tend to favor different aspects of the final allocation function.
As an example, consider the two-processor system comprising processors p and q. Consider
also the two tasks t and u. If the allocation function A1 assigns p to run t and q to run u, then
we have. assuming α = 1/2,

An allocation function A2 assigning p to run both t and u yields

Clearly, the choice between A1 and A2 depends on how the system's parameters relate to
one another. For example, if sp = sq, then A1 is preferable if the additional cost of processing
the two tasks on p is higher than the cost of communication between them over the link (p,q),
that is, if

Finding an allocation function A that minimizes H(A) is a very difficult problem, NP-hard in
fact, as the problems we encountered in Section 1.5. Given this inherent difficulty, all that is
left is to resort to heuristics that allow a "satisfactory" allocation function to be found, that is,
an allocation function that can be found reasonably fast and that does not lead to a poor
performance of the program. The reader should refer to more specialized literature for
various such heuristics.

1.6.2 Task migration
As we remarked earlier in Section 1.6, the need to migrate tasks from one processor to
another arises when a dynamic processor allocation scheme is adopted. When tasks
migrate, the allocation funtion A has to be updated throughout all those processors running
tasks that may send messages, according to the structure of GT, to the migrating task. While
performing such an update may be achieved fairly simply (cf. the algorithms given in Section
4.1), things become more complicated when we add the requirement that messages
continue to be delivered in the FIFO order. We are in this section motivated not only by the
importance of the FIFO property in some situations, as we mentioned earlier, but also
because solving this problem provides an opportunity to introduce a nontrivial, yet simple,
distributed algorithm at this stage in the book. Before we proceed, it is very important to
make the following observation right away. The distributed algorithm we describe in this
section is not described by the graph GT, but rather uses that graph as some sort of a "data
structure" to work on. The graph on which the computation actually takes place is a task
graph having exactly one task for each processor and two unidirectional communication
channels (one in each direction) for every two processors in the system. It is then a complete
undirected graph or node set NP, and for this reason we describe the algorithm as if it were
executed by the processors themselves. Another important observation, now in connection
with GP, is that its links are assumed to deliver interprocessor messages in the FIFO order
(otherwise it would be considerably harder to attempt this at the task level). The reader
should notice that considering a complete undirected graph is a means of not having to deal
with the routing function associated with GP explicitly, which would be necessary if we
described the algorithm for GP.
The approach we take is based on the following observation. Suppose for a moment and for
simplicity that tasks are not allowed to migrate to processors where they have already been.
and consider two tasks u and v running respectively on processors p and q. If v migrates to
another processor, say q′, and p keeps sending to processor q all of task u's messages
destined to task v, and in addition processor q forwards to processor q′ whatever messages
it receives destined to v, then the desired FIFO property is maintained. Likewise, if u
migrates to another processor, say p′, and every message sent by u is routed through p first,
then the FIFO property is maintained as well. If later these tasks migrate to yet other
processors, then the same forwarding scheme still suffices to maintain the FIFO order.
Clearly, this scheme cannot be expected to support any efficient computation, as messages
tend to follow ever longer paths before eventual delivery. However, this observation serves
the purpose of highlighting the presence of a line of processors that initially contains two
processors (p and q) and increases with the addition of other processors (p′ and q′ being the
first) as u and v migrate. What the algorithm we are about to describe does, while allowing
tasks to migrate even to processors where they ran previously, is to shorten this line
whenever a task migrates out of a processor by removing that processor from the line. We
call such a line a pipe to emphasize the FIFO order followed by messages sent along it, and
for tasks u and v denote it by pipe(u,v).
This pipe is a sequence of processors sharing the property of running (or having run) at least
one of u and v. In addition, u runs on the first processor of the pipe, and v on the last
processor. When u or v (or both) migrates to another processor, thereby stretching the pipe,
the algorithm we describe in the sequel removes from the pipe the processor (or processors)
where the task (or tasks) that migrated ran. Adjacent processors in a pipe are not necessarily
connected by a communication link in GP, and in the beginning of the computation the pipe
contains at most two processors.
A processor p maintains, for every task u that runs on it and every other task v such that (u
→ v) ∈ Outu, a variable pipep(u, v) to store its view of pipe(u, v). Initialization of this variable
must be consonant with the initial allocation function. In addition, for every task v, at p the
value of A(v) is only an indication of the processor on which task v is believed to run, and is
therefore denoted more consistently by Ap(v). It is to Ap(v) that messages sent to v by other
tasks running on p get sent. Messages destined to v that arrive at p after v has migrated out
of p are also sent to Ap(v). A noteworthy relationship at p is the following. If v ∈ Outu then
pipep(u, v) = <p,…q> if and only if Ap(v) = q. Messages sent to Ap(v) are then actually being
sent on pipe(u, v).

First we informally describe the algorithm for the single pipe pipe(u,v), letting p be the
processor on which u runs (i.e., the first processor in the pipe) and q the processor on which
v runs (i.e., the last processor in the pipe). The essential idea of the algorithm is the
following. When u migrates from p to another processor p′, processor p sends a message
flush(u,v,p′) along pipep(u, v). This message is aimed at informing processor q (or processor
q′, to which task v may have already migrated) that u now runs on p′, and also "pushes"
every message still in transit from u to v along the pipe (it flushes the pipe). When this
message arrives at q (or q′) the pipe is empty and Aq(u) (or Aq′(u)) may then be updated. A
message flushed(u, v, q) (or flushed(u,v, q′)) is then sent directly to p′, which then updates
Ap'(v) and its view of the pipe by altering the contents of pipep′(u, v). Throughout the entire
process, task u is suspended, and as such does not compute or migrate.

Figure 1.2: When task u migrates from processor p to processor p′ and v from q to q′, a flush(u,
v, p′) message and a flush-request(u, v) message are sent concurrently, respectively by p to q and
by q to p. The flush message gets forwarded by q to q′, and eventually causes q′ to send p′ a
flushed(u, v, q′) message.

This algorithm may also be initiated by q upon the migration of v to q′, and then v must also
be suspended. In this case, a message flush_request(u, v) is sent by q to p, which then
engages in the flushing procedure we described after suspending task u. There is also the
possibility that both p and q initiate concurrently. This happens when u and v both migrate (to
p′ and q′, respectively) concurrently, i.e., before news of the other task's migration is
received. The procedures are exactly the same, with only the need to ensure that flush(u, v,
p′) is not sent again upon receipt of a flush_request(u, v), as it must already have been sent
(Figure 1.2).
When a task u migrates from p to p′, the procedure we just described is executed
concurrently for every pipe(u, v) such that (u → v) ∈ Outu and every pipe(v, u) such that (v →
u) ∈ Inu. Task u may only resume its execution at p′ (and then possibly migrate once again)
after all the pipes pipe(u, v) such that (u → v) ∈ Outu and pipe(v, u) such that (v → u) ∈ Inu

have been flushed, and is then said to be active (it is inactive otherwise, and may not
migrate). Task u also becomes inactive upon the receipt of a flush_request(u, v) when
running on p. In this case, only after pipep(u, v) is updated can u become once again active.
Later in the book we return to this algorithm, both to provide a more formal description of it
(in Section 2.1), and to describe its correctness and complexity properties (in Section 2.1 and
Section 3.2.1).

1.7 Remarks on program development

The material presented in Sections 1.4 through 1.6 touches various of the fundamental
issues involved in the design of message-passing programs, especially in the context of
multiprocessors, where the issues of allocating buffers to communication channels and
processors to tasks are most relevant. Of course not always does the programmer have full
access to or control of such issues, which are sometimes too tightly connected to built-in
characteristics of the operating system or the programming language, but some level of
awareness of what is really happening can only be beneficial.
Even when full control is possible, the directions provided in the previous two sections should
not be taken as much more than that. The problems involved in both sections are, as we

mentioned, probably intractable from the standpoint of computational complexity, so that the
optima that they require are not really achievable. Also the formulations of those problems
can be in many cases troublesome, because they involve parameters whose determination is
far from trivial, like for example the upper bound M used in Section 1.5 to indicate our inability
in determining tighter values, or the α used in Section 1.6 to weigh the relative importance of
computation versus communication in the function H. This function cannot be trusted too
blindly either. because there is no assurance that, even if the allocation that optimizes it could
be found efficiently, no other allocation would in practice provide better results albeit its
higher value for H.
Imprecise and troublesome though they may be, the guidelines given in Sections 1.5 and 1.6
do nevertheless provide a conceptual framework within which one may work given the
constraints of the practical situation at hand. In addition, they in a way bridge the abstract
description of a distributed algorithm we gave in Section 1.4 to what tends to occur in
practice.

1.8 Exercises
1. For d ≥ 0, a d-dimensional hypercube is an undirected graph with 2d nodes in which every node
has exactly d neighbors. If nodes are numbered from 0 to 2d − 1, then two nodes are neighbors if
and only if the binary representations of their numbers differ by exactly one bit. One routing
function that can be used when GP is a hypercube is based on comparing the number of a
message's destination processor, say q, with the number of the processor where the message is,
say r. The message is forwarded to the neighbor of r whose number differs from that of r in the
least-significant bit at which the numbers of q and r differ. Show that this routing function is quasi-
acyclic.
2. In the context of Exercise 1, consider the use of a structured buffer pool to prevent deadlocks
when flow control is done by the store-and-forward mechanism. Give details of how the pool is to
be employed for deadlock prevention. How many buffer classes are required?
3. In the context of Exercise 1, explain in detail why the reservation of links when doing flow
control by circuit switching is deadlock-free.
4. Describe how to obtain channels with positive capacity from zero-capacity channels, under the
constraint the exactly two additional tasks are to be employed per channel of GT.

1.

For d ≥ 0, a d-dimensional hypercube is an undirected graph with
2d nodes in which every node has exactly d neighbors. If nodes
are numbered from 0 to 2d − 1, then two nodes are neighbors if
and only if the binary representations of their numbers differ by
exactly one bit. One routing function that can be used when GP is
a hypercube is based on comparing the number of a message's
destination processor, say q, with the number of the processor
where the message is, say r. The message is forwarded to the
neighbor of r whose number differs from that of r in the least-
significant bit at which the numbers of q and r differ. Show that
this routing function is quasi-acyclic.

2.

In the context of Exercise 1, consider the use of a structured
buffer pool to prevent deadlocks when flow control is done by the
store-and-forward mechanism. Give details of how the pool is to
be employed for deadlock prevention. How many buffer classes
are required?

3.

In the context of Exercise 1, explain in detail why the reservation
of links when doing flow control by circuit switching is deadlock-
free.

4.

Describe how to obtain channels with positive capacity from zero-
capacity channels, under the constraint the exactly two additional
tasks are to be employed per channel of GT.

1.9 Bibliographic notes
Sources in the literature to complement the material of Section 1.1 could hardly be more
plentiful. For material on computer networks, the reader is referred to the traditional texts by

Bertsekas and Gallager (1987) and by Tanenbaum (1988), as well as to more recent material
on the various aspects of ATM networks (Bae and Suda, 1991; Stamoulis, Anagnostou, and
Georgantas, 1994). Networks of workstations are also well represented by surveys (e.g.,
Bernard, Steve, and Simatic, 1993), as well as by more specific material (Blumofe and Park,
1994).

References on multiprocessors also abound, ranging from reports on early experiences with
shared-memory (Gehringer, Siewiorek, and Segall,1987) and message-passing systems
(Hillis, 1985; Seitz, 1985; Arlauskas, 1988; Grunwald and Reed, 1988; Pase and Larrabee,
1988) to the more recent revival of distributed-memory architectures that provide a shared
address space (Fernandes, de Amorim, Barbosa, França, and de Souza, 1989; Martonosi
and Gupta, 1989; Bell, 1992; Bagheri, Ilin, and Ridgeway Scott, 1994; Reinhardt, Larus, and
Wood, 1994; Protić, Tomašević, and Milutinović, 1995). The reader of this book may be
particularly interested in the recent recognition that explicit message-passing is often needed,
and in the resulting architectural proposals, as for example those of Kranz, Johnson,
Agarwal, Kubiatowicz, and Lim (1993), Kuskin, Ofelt, Heinrich, Heinlein, Simoni,
Gharachorloo, Chapin, Nakahira, Baxter, Horowitz, Gupta, Rosenblum, and Hennessy
(1994), Heinlein, Gharachorloo, Dresser, and Gupta(1994), Heinrich, Kuskin, Ofelt, Heinlein,
Singh, Simoni, Gharachorloo, Baxter, Nakahira, Horowitz, Gupta, Rosenblum, and Hennessy
(1994), and Agarwal, Bianchini, Chaiken, Johnson, Kranz, Kubiatowicz, Lim, Mackenzie, and
Yeung (1995). Pertinent theoretical insights have also been pursued (Bar-Noy and Dolev,
1993).
The material in Section 1.2 can be expanded by referring to a number of sources in which
communication processors are discussed. These include, for example, Dally, Chao, Chien,
Hassoun, Horwat, Kaplan, Song, Totty, and Wills (1987), Ramachandran, Solomon, and
Vernon (1987), Barbosa and França (1988), and Dally (1990). The material in Barbosa and
França (1988) is presented in considerably more detail by Drummond (1990), and, in
addition, has pioneered the introduction of messages as instructions to be performed by
communication processors. These were later re-introduced under the denomination of active
messages (von Eicken, Culler, Goldstein, and Schauser, 1992; Tucker and Mainwaring,
1994).
In addition to the aforementioned classic sources on computer networks, various other
references can be looked up to complement the material on routing and flow control
discussed in Section 1.3. For example, the original source for virtual cut-through is Kermani
and Kleinrock (1979), while Günther (1981) discusses techniques for deadlock prevention in
the store-and-forward case and Gerla and Kleinrock (1982) provide a survey of early
techniques. The original publication on wormhole routing is Dally and Seitz (1987), and
Gaughan and Yalamanchili (1993) should be looked up by those interested in adaptive
techniques. Wormhole routing is also surveyed by Ni and McKinley (1993), and Awerbuch,
Kutten, and Peleg (1994) return to the subject of deadlock prevention in the store-and-
forward case.
The template given by Algorithm Task_t of Section 1.4 originates from Barbosa (1990a), and
the concept of a guarded command on which it is based dates back to Dijkstra (1975). The
reader who wants a deeper understanding of how communication channels of zero and
nonzero capacities relate to each other may wish to check Barbosa (1990b), which contains
a mathematical treatment of concurrency-related concepts associated with such capacities.
What this work does is to start at the intuitive notion that greater channel capacity leads to
greater concurrency (present, for example, in Gentleman (1981)), and then employ (rather
involved) combinatorial concepts related to the coloring of graph edges (Edmonds, 1965;
Fulkerson, 1972; Fiorini and Wilson, 1977; Stahl, 1979) to argue that such a notion may not
be correct. The Communicating Sequential Processes (CSP) introduced by Hoare (1978)
constitute an example of notation based on zero-capacity communication.
Section 1.5 is based on Barbosa (1990a), where in addition a heuristic is presented to
support the concurrency-optimal criterion for buffer assignment to channels. This heuristic
employs an algorithm to find maximum matchings in graphs (Syslo, Deo, and Kowalik, 1983).
The reader has many options to complement the material of Section 1.6. References on the
intractability of processor allocation (in the sense of NP-hardness, as in Karp (1972) and
Garey and Johnson (1979)) are Krumme, Venkataraman, and Cybenko (1986) and Ali and

El-Rewini (1994). For the static approach, some references are Ma, Lee, and Tsuchiya
(1982), Shen and Tsai (1985), Sinclair (1987), Barbosa and Huang (1988)—on which Section
1.6.1 is based, Ali and El-Rewini (1993), and Selvakumar and Siva Ram Murthy (1994). The
material in Barbosa and Huang (1988) includes heuristics to overcome intractability that are
based on neural networks (as is the work of Fox and Furmanski (1988)) and on the A*
algorithm for heuristic search (Nilsson, 1980; Pearl, 1984). A parallel variation of the latter
algorithm (Freitas and Barbosa, 1991) can also be employed. Fox, Kolawa, and Williams
(1987) and Nicol and Reynolds (1990) offer treatments of the dynamic type. References on
task migration include Theimer, Lantz, and Cheriton (1985), Ousterhout, Cherenson, Douglis,
Nelson, and Welch (1988), Ravi and Jefferson (1988), Eskicioˇlu and Cabrera (1991), and
Barbosa and Porto (1995)—which is the basis for our treatment in Section 1.6.2.
Details on the material discussed in Section 1.7 can be found in Hellmuth (1991), or in the
more compact accounts by Barbosa, Drummond, and Hellmuth (1991a; 1991b; 1994).

There are many books covering subjects quite akin to our subject in this book. These are
books on concurrent programming, operating systems, parallel programming, and distributed
algorithms. Some examples are Ben-Ari (1982), Hoare (1984), Maekawa, Oldehoeft, and
Oldehoeft (1987), Perrott (1987), Burns (1988), Chandy and Misra (1988), Fox, Johnson,
Lyzenga, Otto, Salmon, and Walker (1988), Raynal (1988), Almasi and Gottlieb (1989),
Andrews (1991), Tanenbaum (1992), Fox, Williams, and Messina (1994), Silberschatz,
Peterson, and Galvin (1994), and Tel (1994b). There are also surveys (Andrews and
Schneider, 1983), sometimes specifically geared toward a particular class of applications
(Bertsekas and Tsitsiklis, 1991), and class notes (Lynch and Goldman, 1989).

Chapter 2: Intrinsic Constraints

Overview
This chapter, like Chapter 1, still has the flavor of a chapter on preliminaries, although
various distributed algorithms are presented and analyzed in its sections. The reason why it
is still in a way a chapter on preliminary concepts is that it deals mostly with constraints on
the computations that may be carried out over the model introduced in Section 1.4 for
distributed computations by point-to-point message passing.
Initially, in Section 2.1, we return to the graph-theoretic model of Section 1.4 to specify two of
the variants that it admits when we consider its timing characteristics. These are the fully
asynchronous and fully synchronous variants that will accompany us throughout the book.
For each of the two, Section 2.1 contains an algorithm template, which again is used through
the remaining chapters. In addition to these templates, in Section 2.1 we return to the
problem of ensuring the FIFO delivery of intertask messages when tasks migrate discussed
in Section 1.6.2. The algorithm sketched in that section to solve the problem is presented in
full in Section 2.1 to illustrate the notational conventions adopted for the book. In addition,
once the algorithm is known in detail, some of its properties, including some complexity-
related ones, are discussed.
Sections 2.2. and 2.3 are the sections in which some of our model's intrinsic constraints are
discussed. The discussion in Section 2.2 is centered on the issue of anonymous systems,
and in this context several impossibility results are presented.Along with these impossibility
results, distributed algorithms for the computations that can be carried out are given and to
some extent analyzed.
In Section 2.3 we present a somewhat informal discussion of how various notions of
knowledge translate into a distributed algorithm setting, and discuss some impossibility
results as well. Our approach in this section is far less formal and complete than in the rest of
the book because the required background for such a complete treatment is normally way
outside what is expected of this book's intended audience. Nevertheless, the treatment we
offer is intended to build up a certain amount of intuition, and at times in the remaining
chapters we return to the issues considered in Section 2.3.
Exercises and bibliographic notes follow respectively in Sections 2.4 and 2.5.

2.1 Full asynchronism and full synchronism

We start by recalling the graph-theoretic model introduced in Section 1.4,
according to which a distributed algorithm is represented by the connected directed
graph GT = (NT, DT). In this graph, NT is the set of tasks and DT is the set of
unidirectional communication channels. Tasks in NT are message-driven entities
whose behavior is generically depicted by Algorithm Task_t (cf. Section 1.4), and
the channels in DT are assumed to have infinite capacity, i.e., no task is ever
suspended upon attempting to send a message on a channel (reconciling this
assumption with the reality of practical situations was our subject in Section 1.5).
Channels in DT are not generally assumed to be FIFO channels unless explicitly
stated.
For the remainder of the book, we simplify our notation for this model in the
following manner. The graph GT = (NT, DT) is henceforth denoted simply by G =
(N,D), with n = |N| and m = |D|. For 1 ≤ i, j ≤ n, ni denotes a member of N, referred
to simply as a node, and if j ≠ i we let (ni → nj) denote a member of D, referred to
simply as a directed edge (or an edge, if confusion may not arise). The set of
edges directed away from ni is denoted by Outi ⊆ D, and the set of edges directed
towards ni is denoted by Ini ⊆ D. Clearly, (ni → nj) ∊ Outi if and only if (ni → nj) ∊ Inj.
The nodes ni and nj are said to be neighbors of each other if and only if either (ni →
j) ∊ D or (nj → nj) ∊ D. The set of ni's neighbors is denoted by Neigi, and contains
two partitions, I_Neigi and O_Neigi, whose members are respectively ni's neighbors
nj such that (nj → ni) ∊ D and nj such that (ni → nj) ∊ D.
Often G is such that (ni → nj) ∊ D if and only if (nj → ni) ∊ D, and in this case
viewing these two directed edges as the single undirected edge (ni, nj) is more
convenient. In this undirected case, G is denoted by G = (N, E), and then m = |E|.
Members of E are referred to simply as edges. In the undirected case, the set of
edges incident to ni is denoted by Inci ⊆ E. Two nodes ni and nj are neighbors if and
only if (ni, nj) ∊ E. The set of ni's neighbors continues to be denoted by Neigi.
Our main concern in this section is to investigate the nature of the computations
carried out by G's nodes with respect to their timing characteristics. This
investigation will enable us to complete the model of computation given by G with
the addition of its timing properties.
The first model we introduce is the fully asynchronous (or simply asynchronous)
model, which is characterized by the following two properties.
 Each node is driven by its own, local, independent time basis, referred to

as its local clock.
 The delay that a message suffers to be delivered between neighbors is

finite but unpredictable.
The complete asynchronism assumed in this model makes it very realistic from the
standpoint of somehow reflecting some of the characteristics of the systems
discussed in Section 1.1. It is this same asynchronism, however, that accounts for
most of the difficulties encountered during the design of distributed algorithms
under the asynchronous model. For this reason, frequently a far less realistic
model is used, one in which G's timing characteristics are pushed to the opposing
extreme of complete synchronism. We return to this other model later in this
section.
One important fact to notice is that the notation used to describe a node's
computation in Algorithm Task_t (cf. Section 1.4)is quite well suited to the
assumptions of the asynchronous model, because in that algorithm, except
possibly initially, computation may only take place at the reception of messages,
which are in turn accepted nondeterministically when there is more than one
message to choose from. In addition, no explicit use of any timing information is
made in Algorithm Task_t (although the use of timing information drawn from the
node's local clock would be completely legitimate and in accordance with the
assumptions of the model).
According to Algorithm Task_t, the computation of a node in the asynchronous
model can be described by providing the actions to be taken initially (if that node is
to start its computation and send messages spontaneously, as opposed to doing it

in the wake of the reception of a message) and the actions to be taken upon
receiving messages when certain Boolean conditions hold. Such a description is
given by Algorithm A_Template, which is a template for all the algorithms studied in
this book under the asynchronous model, henceforth referred to as asynchronous
algorithms. Algorithm A_Template describes the computation carried out by ni ∊ N.
In this algorithm, and henceforth, we let N0 ⊆ N denote the nonempty set of nodes
that may send messages spontaneously. The prefix A_ in the algorithm's
denomination is meant to indicate that it is asynchronous, and is used in the names
of all the asynchronous algorithms in the book.
Algorithm A_Template is given for the case in which G is a directed graph. For the
undirected case, all that needs to be done to the algorithm is to replace all
occurrences of both Ini and Outi with Inci.

Algorithm A_Template:

 Variables:
 Variables used by ni, and their initial values, are listed here.

Listing 2.1

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 Do some computation;
 Send one message on each edge of a (possibly empty) subset of
 Outi.

Listing 2.2

 Input:
 msgi such that origini(msgi) = ck ∊Ini with 1 ≤ k ≤ | Ini|.
 Action when Bk:
 Do some computation;
 Send one message on each edge of a (possibly empty) subset of
 Outi.

Before we proceed to an example of how a distributed algorithm can be expressed
according to this template, there are some important observations to make in
connection with Algorithm A_Template. The first observation is that the algorithm is
given by listing the variables it employs (along with their initial values) and then a
series of input/action pairs. Each of these pairs, in contrast with Algorithm Task_t,
is given for a specific message type, and may then correspond to more than one
guarded command in Algorithm Task_t of Section 1.4, with the input corresponding
to the message reception in the guard and the action corresponding to the
command part, to be executed when the Boolean condition expressed in the guard
is true. Conversely, each guarded command in Algorithm Task_t may also
correspond to more than one input/action pair in Algorithm A_Template. In addition,
in order to preserve the functioning of Algorithm Task_t, namely that a new

guarded command is only considered for execution in the next iteration, therefore
after the command in the currently selected guarded command has been executed
to completion, each action in Algorithm A_Template is assumed to be an atomic
action. An atomic action is an action that is allowed to be carried out to completion
before any interrupt. All actions are numbered to facilitate the discussion of the
algorithm's properties.
Secondly, we make the observation that the message associated with an input,
denoted by msgi, is if ni ∊ N0 treated as if msgi = nil, since in such cases no
message really exists to trigger ni's action, as in (2.1). When a message does exist,
as in (2.2), we assume that its origin, in the form of the edge on which it was
received, is known to ni. Such an edge is denoted by origini(msgi) ∊ Ini. In many
cases, knowing the edge origini(msgi) can be regarded as equivalent to knowing nj

∊ I-Neigi for origini(msgi) = (nj → ni) (that is, nj is the node from which msgi

originated). Similarly, sending a message on an edge in Outi is in many cases
equivalent to sending a message to nj ∊ O_Neigi if that edge is (ni → nj). However,
we refrain from stating these as general assumptions because they do not hold in
the case of anonymous systems, treated in Section 2.2. When they do hold and G
is an undirected graph, then all occurrences of I_Neigi and of O_Neigi in the
modified Algorithm A_Template must be replaced with occurrences of Neigi.
As a final observation, we recall that, as in the case of Algorithm Task_t, whenever
in Algorithm A_Template ni sends messages on a subset of Outi containing more
than one edge, it is assumed that all such messages may be sent in parallel.
We now turn once again to the material introduced in Section 1.6.2, namely a
distributed algorithm to ensure the FIFO order of message delivery among tasks
that migrate from processor to processor. As we mentioned in that section, this is
an algorithm described on a complete undirected graph that has a node for every
processor. So for the discussion of this algorithm G is the undirected graph G = (N,
E). We also mentioned in Section 1.6.2 that the directed graph whose nodes
represent the migrating tasks and whose edges represent communication channels
is in this algorithm used as a data structure. While treating this problem, we then let
this latter graph be denoted, as in Section 1.6.2, by GT = (NT, DT), along with the
exact same notation used in that section with respect to GT. Care should be taken
to avoid mistaking this graph for the directed version of G introduced at the
beginning of this section.
Before introducing the additional notation that we need, let us recall some of the
notation introduced in Section 1.6.2. Let A be the initial allocation function. For a
node ni and every task u such that A(u) = ni, a variable pipei(u, v) for every task v
such that (u → v) ∊ Outu indicates ni's view of pipe(u, v). Initially, pipei(u, v) = ni, A
(v) . In addition, for every task v a variable Ai(v) is used by ni to indicate the node
where task v is believed to run. This variable is initialized such that Ai(v) = A(v).
Messages arriving at ni destined to v are assumed to be sent to Ai(v) if Ai(v) ≠ ni, or
to be kept in a FIFO queue, called queuev, otherwise.
Variables employed in connection with task u are the following. The Boolean
variable activeu (initially set to true) is used to indicate whether task u is active. Two
counters, pending_inu and pending_outu, are used to register the number of pipes
that need to be flushed before u can once again become active. The former
counter refers to pipes pipe(v, u) such that (v → u) ∊ Inu and the latter to pipes
pipe(u, v) such that (u → v) ∊ Outu. Initially these counters have value zero. For
every v such that (v → u) ∊ Inu, the Boolean variable pending_inu(v) (initially set to
false) indicates whether pipe(v, u) is one of the pipes in need of flushing for u to
become active. Constants and variables carrying the subscript u in their names
may be thought of as being part of task u's "activation record", and do as such
migrate along with u whenever it migrates.
Algorithm A_FIFO, given next for node ni, is an asynchronous algorithm to ensure
the FIFO order of message delivery among migrating tasks. When listing the
variables for this algorithm, only those carrying the subscript i are presented. The
others, which refer to tasks, are omitted from the description. This same practice of
only listing variables that refer to G is adopted everywhere in the book.

Algorithm A_FIFO:

 Variables:
 pipei(u, v) = ni, A(v) for all (u → v) ∊ DT such that A(u) = ni;
 Ai(v) for all v ∊ NT.

Listing 2.3

 Input:
 msgi = nil.
 Action when activeu and a decision is made to migrate u to nj:
 activeu ≔ false;
 for all (u → v) ∊ Outu do
 begin
 Send flush(u, v, nj) to Ai(v);
 pending_outu≔ pending_outu + 1
 end;
 for all (v → u) ∊ Inu do
 begin
 Send flush_request (v,u) to Ai(v);
 pending_inu ≔ pending_inu + 1;
 pending_inu(v)≔ true
 end;
 Ai(u) ≔ nj;
 Send u to nj.

Listing 2.4

 Input:
 msgi = u.
 Action:
 Ai(u) ≔ ni

Listing 2.5

 Input:
 msgi = flush(v, u, nj).
 Action:
 if Ai(u) = ni then
 begin
 Ai(v) ≔ nj;
 Send flushed(v,u,ni) to nj;
 if pending_inu(v)then
 begin
 pending_inu(v) ≔ false;
 pending_inu ≔ pending_inu −1;
 activeu

 ≔ (pending_inu = 0) and (pending_outu = 0)
 end
 end
 else
 Send flush(v,u,nj) to Ai(u).

Listing 2.6

 Input:
 msgi = flush_request(u,v).
 Action:
 if Ai(u) = ni then
 begin
 activeu ≔ false;
 Send flush (u,v,ni) to Ai(v);
 pending_outu ≔ pending_outu + 1
 end.

Listing 2.7

 Input:
 msgi = flushed(u, v,nj).
 Action when Ai(u) = ni:
 Ai(v) ≔ nj;
 pipei(u,v) ≔ ni, nj ;
 pending_outu ≔ pending_outu −1;
 activeu ≔ (pending_inu = 0) and (pending_outu = 0).

Algorithm A_FIFO expresses, following the conventions established with Algorithm
A_Template, the procedure described informally in Section 1.6.2. One important
observation about Algorithm A_FIFO is that the set N0 of potential spontaneous
senders of messages now comprises the nodes that concurrently decide to send
active tasks to run elsewhere (cf. (2.3)), in the sense described in Section 1.6.2,
and may then be such that N0 = N. In fact, the way to regard spontaneous
initiations in Algorithm A_FIFO is to view every maximal set of nodes concurrently
executing (2.3) as an N0 set for a new execution of the algorithm, provided every
such execution operates on data structures and variables that persist (i.e., are not
re-initialized) from one execution to another.
For completeness, next we give some of Algorithm A_FIFO's properties related to
its correctness and performance.

Theorem 2.1.
For any two tasks u and v such that(u → v) ∊ Outu, messages sent by u to v
are delivered in the FIFO order.
Proof: Consider any scenario in which both u and v are active, and in this
scenario let ni be the node on which u runs and nj the node on which v runs.

There are three cases to be analyzed in connection with the possible
migrations of u and v out of ni and nj, respectively.
In the first case, u migrates to another node, say ni', while v does not
concurrently migrate, that is, the flush(u,v,ni') sent by ni in (2.3) arrives at nj

when Aj(v) = nj. A flushed(u,v, nj) is then by (2.5) sent to ni', and may upon
receipt cause u to become active if it is no longer involved in the flushing of
any pipe (pending_inu = 0 and pending_outu = 0), by (2.7). Also, pipei'(u,v) is in
(2.7) set to ni',nj , and it is on this pipe that u will send all further messages
to v once it becomes active. These messages will reach v later than all the
messages sent previously to it by u when u still ran on ni, as by Gp's FIFO
property all these messages reached nj and were added to queueu before nj,
received the flush(u,v, ni').
In the second case, it is v that migrates to another node, say nj', while u does
not concurrently migrate, meaning that the flush_request(u,v) sent by nj to nj in
(2.3) arrives when Ai(u) = ni. What happens then is that, by (2.6), as
pending_outu is incremented and u becomes inactive (if already it was not, as
pending_outu might already be positive), a flush(u,v,ni) is sent to nj and, finding
Aj(v) ≠ nj, by (2.5) gets forwarded by nj to nj'. Upon receipt of this message at
nj', a flushed(u, v, nj') is sent to ni, also by (2.5). This is a chance for v to
become active, so long as no further pipe flushings remain in course in which
it is involved (pending_inv = 0 and pending_outv = 0 in (2.5)). The arrival of that
message at ni causes pending_outv to be decremented in (2.7), and possibly u
to become active if it is not any longer involved in the flushing of any other
pipe (pending_inu = 0 and pending_outu = 0). In addition, pipei(u,v) is updated
to ni,nj' . Because u remained inactive during the flushing of pipe(u,v), every
message it sends to v at nj' when it becomes active will arrive at its destination
later than all the messages it had sent previously to v at nj, as once again Gp's
FIFO property implies that all these messages must have reached nj' and been
added to queueu ahead of the flush(u,v,ni).
The third case corresponds to the situation in which both u and v migrate
concurrently, say respectively from ni to ni' and from nj to nj'. This concurrency
implies that the flush(u,v,ni') sent in (2.3) by ni to nj' finds Aj(v) ≠ nj on its arrival
(and is therefore forwarded to nj', by (2.5)), and likewise the flush_request(u, v)
sent in (2.3) by nj to ni finds Ai(u) ≠ ni at its destination (which by (2.6) does
nothing, as the flush(u,v,ni') it would send as a consequence is already on its
way to nj or nj'). A flushed(u,v,nj') is sent by nj' to ni', where by (2.7) it causes the
contents of pipei,(u,v) to be updated to ni', nj' . The conditions for u and v to
become active are entirely analogous to the ones we discussed under the
previous two cases. When u does finally become active, any messages it
sends to v will arrive later than the messages it sent previously to v when it ran
on ni and v on nj. This is so because, once again by Gp's FIFO property, such
messages must have reached nj' and been added to queueu ahead of the
flush(u,v,ni').
Let |pipe(u,v)| denote the number of nodes in pipe(u,v). Before we state
Lemma 2.2, which establishes a property of this quantity, it is important to note
that the number of nodes in pipe(u,v) is not to be mistaken for the number of
nodes in ni's view of that pipe if ni is the node on which u runs. This view,
which we have denoted by pipei(u,v), clearly contains at most two nodes at all
times, by (2.7). The former, on the other hand, does not have a precise
meaning in the framework of any node considered individually, but rather
should be taken in the context of a consistent global state (cf. Section 3.1).

Lemma 2.2.
For any two tasks u and v such that(u → v)∊ Outu |pipe(u, v)| ≤ 4 always
holds.
Proof: It suffices to note that, if u runs on ni, |pipe(u, v)| is larger than the
number of nodes in pipei(u,v) by at most two nodes, which happens when both

u and v migrate concurrently, as neither of the two tasks is allowed to migrate
again before the pipe between them is shortened. The lemma then follows
easily from the fact that by (2.7) pipei(u,v) contains at most two nodes.
To finalize our discussion of Algorithm A_FIFO in this section, we present its
complexity. This quantity, which we still have not introduced and will only
describe at length in Section 3.2, yields, in the usual worst-case asymptotic
sense, a distributed algorithm's "cost" in terms of the number of messages it
employs and the time it requires for completion. The message complexity is
expressed simply as the worst-case asymptotic number of messages that flow
among neighbors during the computation ("worst case" here is the maximum
over all variations in the structure of G, when applicable, and over all
executions of the algorithm— cf. Section 3.2.1). The time-related measures of
complexity are conceptually more complex, and an analysis of Algorithm
A_FIFO in these terms is postponed until our thorough discussion of
complexity measures in Section 3.2.
For a nonempty set K ⊆ NT of tasks, we henceforth let mK denote the number
of directed edges in DT of the form (u → v) or (v → u) for u ∊ K and v ∊ NT

Clearly,

Theorem 2.3.
For the concurrent migration of a set K of tasks, Algorithm A_FIFO employs O
(mK)messages
Proof: When a task u ∊ K migrates from node ni to node ni', ni sends |Inu|
messages flush_request(v, u) for (v → u) ⊆ Inu and |Outu| messages flush
(u,v,ni') for (u → v) ∊ Outu. In addition, ni' receives |Inu| messages flush(v,u,nj)
for (v → u) ∊ Inu and some appropriate nj, and |Outu| messages flushed(u,v,nj)
for (u → v) ∊ Outu and some appropriate nj. Node ni' also sends |Inu|
messages flushed(v,u,ni') for (v → u) ∊ Inu. Only flush messages traverse
pipes, which by Lemma 2.2 contain no more than four nodes or three edges
each. Because no other messages involving u are sent or received even if
other tasks v such that (v → u) ∊ Inu or (u → v) ∊ Outu are members of K as
well, except for the receipt by ni of one innocuous message flush_request(u, v)
for each v ∊ K such that (u → v) ∊ Outu, the concurrent migration of the tasks
in K accounts for O(mK) messages.
The message complexity asserted by Theorem 2.3 refers to messages sent
on the edges of G, which is a complete graph. It would also be legitimate, in
this context, to consider the number of interprocessor messages actually
employed, that is, the number of messages that get sent on the edges of Gp.
In the case of fixed, deterministic routing (cf. Section 1.3),a message on G
corresponds to no more than n − 1 messages on Gp, so by Theorem 2.3 the
number of interprocessor messages is O(nmK). However, recalling our remark
in Section 1.3 when we discussed the use of wormhole routing for flow control
in multiprocessors, if the transport of interprocessor messages is efficient
enough that Gp too can be regarded as a complete graph, then the message
complexity given by Theorem 2.3 applies to interprocessor messages as well.
In addition to the asynchronous model we have been discussing so far in this
section, another model related to G's timing characteristics is the fully
synchronous (or simply synchronous) model, for which the following two
properties hold.
 All nodes are driven by a global time basis, referred to as the global

clock, which generates time intervals (or simply intervals) of fixed,
nonzero duration.

 The delay that a message suffers to be delivered between neighbors
is nonzero and strictly less than the duration of an interval of the
global clock.

The intervals generated by the global clock do not really need to be of the
same duration, so long as the assumption on the delays that messages suffer
to be delivered between neighbors takes as bound the minimum of the
different durations.
The following is an outline of the functioning of a distributed algorithm, called a
synchronous algorithm, designed under the assumptions of the synchronous
model. The beginning of each interval of the global clock is indicated by a
pulse. For s ≥ 0, pulse s indicates the beginning of interval s. At pulse s = 0,
the nodes in N0 send messages on some (or possibly none) of the edges
directed away from them. At pulse s > 0, all the messages sent at pulse s − 1
have by assumption arrived, and then the nodes in N may compute and send
messages out.
One assumption that we have tacitly made, but which should be very clearly
spelled out, is that the computation carried out by nodes during an interval
takes no time. Without this assumption, the duration of an interval would not
be enough for both the local computations to be carried out and the messages
to be delivered, because this delivery may take nearly as long as the entire
duration of the interval to happen. Another equivalent way to approach this
would have been to say that, for some d ≥ 0 strictly less than the duration of
an interval, local computation takes no more than d time, while messages take
strictly less than the duration of an interval minus d to be delivered. What we
have done has been to take d = 0. We return to issues related to these in
Section 3.2.2.
The set N0 of nodes that may send messages at pulse s = 0 has in the
synchronous case the same interpretation as a set of potential spontaneous
senders of messages it had in the asynchronous case. However, in the
synchronous case it does make sense for nodes to compute without receiving
any messages, because what drives them is the global clock, not the
reception of messages. So a synchronous algorithm does not in principle
require any messages at all, and nodes can still go on computing even if N0 =

Nevertheless, in order for the overall computation to have any meaning
other than the parallelization of n completely indepenent sequential
computations, at least one message has to be sent by at least one node, and
for a message that gets sent at the earliest pulse that has to take place at
pulse s = d for some d ≥ 0. What we have done has been once again to make
the harmless assumption that d = 0, because whatever the nodes did prior to
this pulse did not depend on the reception of messages and can therefore be
regarded as having been done at this pulse as well. Then the set N0 has at
least the sender of that message as member.
Unrealistic though the synchronous model may seem, it may at times have
great appeal in the design of distributed algorithms, not only because it
frequently simplifies the design (cf. Section 4.3, for example), but also
because there have been cases in which it led to asynchronous algorithms
more efficient than the ones available (cf. Section 3.4). One of the chiefest
advantages that comes from reasoning under the assumptions of the
synchronous model is the following. If for some d > 0 a node ni does not
receive any message during interval s for some s ≥ d, then surely no message
that might "causally affect" the behavior of ni at pulse s + 1 was sent at pulses
s − d,…, s by any node whose shortest distance to ni is at least d. The
"causally affect" will be made much clearer in Section 3.1 (and before that
used freely a few times), but for the moment it suffices to understand that, in
the synchronous model, nodes may gain information by just waiting, i.e.,
counting pulses. When designing synchronous algorithms, this simple

observation can be used for many purposes, including the detection of
termination in many cases (cf., for example, Sections 2.2.2 and 2.2.3).
It should also be clear that every asynchronous algorithm is also in essence a
synchronous algorithm. That is, if an algorithm is designed for the
asynchronous model and it works correctly under the assumptions of that
model, then it must also work correctly under the assumptions of the
synchronous model for an appropriate choice of interval duration (to
accommodate nodes' computations). This happens because the conditions
under which communication takes place in the synchronous model is only one
of the infinitely many possibilities that the asynchronous model allows. We
treat this issue in more detail in Section 3.3. The converse of this implication
(i.e., that synchronous algorithms run correctly in the asynchronous model)
can also be achieved with appropriate algorithm transformation, and is not at
all immediate as its counterpart. This transformation lends support to our
interest in the synchronous model and is our subject in Section 5.3, after we
return to it in Sections 3.3 and 3.4.
Our last topic in this section is the presentation of Algorithm S_Template,
which sets the conventions on how to describe a synchronous algorithm and is
used as a template throughout the book. The prefix S_, similarly to the
asynchronouscase discussed earlier, indicates that the algorithm is
synchronous, and is used in all synchronous algorithms we present. For s ≥ 0
and ni ∊ N, in Algorithm S_Template MSGi(s) is either the empty set (if s = 0)
or denotes the set of messages received by ni during interval s − 1 (if s > 0),
which may be empty as well. The algorithm for ni is given next. As with
Algorithm A_Template, Algorithm S_Template too is given for the case in
which G is a directed graph. The undirected case is obtained by simply
replacing Ini and Outi with Inci throughout the algorithm.

Algorithm S_Template:

 Variables:
 Variables used by ni, and their initial values, are listed here.

Listing 2.8

 Input:

 s = 0, MSGi(0) =
 Action if ni ∊ N0:
 Do some computation;
 Send one message on each edge of a (possibly empty) subset of
 Outi.

Listing 2.9

 Input:
 s > 0, MSGi(1),…, MSGi(s) such that origini(msg) = ck ∊ Ini

 with 1 ≤ k ≤ |Ini| for MSGi(r).
 Action:
 Do some computation;

 Send one message on each edge of a (possibly empty) subset of
 Outi

As in the case of Algorithm A_Template, Algorithm S_Template is presented
as a set of input/action pairs whose actions are numbered for ease of
reference ((2.8) corresponds to s = 0 and (2.9) to s > 0). The inputs now
include information from the global clock (in the form of the nonnegative
integer s), which is, as we have seen, what really drives the nodes. The
atomicity of the actions comes as a consequence of the characteristics of the
synchronous model, because no node performs more than one action per
interval of the global clock. In fact, it is simple to see that every node performs
exactly one action per interval of the global clock, because actions are now
unconditional, that is, in describing Algorithm S_Template we have done away
with the Boolean conditions that Algorithm A_Template inherited from the
guard's of Algorithm Task_t of Section 1.4. The reason why we could do this is
that such conditions are in the synchronous case evaluated only at the
occurrence of pulses, and this can be treated inside the action itself (through
the use of if's, as opposed to the use of when's in the asynchronous case).
Another important observation regarding Algorithm S_Template is that we
allow ni to have access, during its computation at interval s > 0, to all the sets
MSGi(1),…,MSGi(s). Although normally only MSGi(s) is needed, the greater
generality is useful for our purposes in various situations, as for example in
Sections 2.2.3 and 3.3.

2.2 Computations on anonymous systems
The system represented by the graph G is said to be an anonymous system when its nodes
do not have identifications that they can use in their computations. Of course, we as outside
observers can still make use of the identifications n1,…, nn in describing the anonymous
system, the computations that run on it, and the properties of those computations. The nodes
themselves, however, cannot have access to such identifications for use in the algorithm, not
even to identify a neighbor as the source or the destination of a message. In an anonymous
system, all that is known to a node ni are the sets Ini and Outi of edges (Inci, in the undirected
case), so messages have to be received and sent over these edges without explicit mention
to the nodes on the other side, whose identifications are unknown. When receiving a
message msgi, the only information related to the origin of msgi that ni can use is the
identification of the edge on which the message arrived, and this is denoted by origini(msgi),
as we discussed in Section 2.1. The reader should check that Algorithms A_Template and
S_Template of Section 2.1 were written in this fashion, so they can be used directly to
express algorithms on anonymous systems.
The study of computations on anonymous systems is interesting from at least two
perspectives. First of all, this study provides an opportunity to investigate the limits of what
can be computed distributedly when nodes do not have, and cannot possibly obtain,
complete information on the overall structure of G. The second perspective is that of systems
that really should be regarded as anonymous, as many systems represented by massively
parallel models that in fact can be viewed as performing distributed computations (cf. Section
10.2 for examples).

One of the foremost consequences of assuming that a system is anonymous is that the
algorithm describing the computation to be carried out by a node must be the same for all
nodes. The reason why this property must hold is that differences in the algorithms
performed by the nodes might provide a means to establish identifications that the nodes
would then be able to use in their computations, in which case the system would no longer be
anonymous.
Our discussion throughout Section 2.2. will be limited to the cases in which G is an
undirected graph with one single cycle, that is, an undirected ring. In the case of a ring, Inci

has exactly two members for all ni ∊ N, which we let be called lefti and righti. If every edge (ni,
nj) is such that (ni, nj) = lefti = rightj, then we say that the ring is locally oriented, or,
equivalently, that the assignment of denominations to edges locally at the nodes establishes
a local orientation on the ring. Equivalently, this can be expressed by rephrasing the condition
as (ni, nj) = leftj = righti for all (ni, nj) ∊ E.
Section 2.2.1 contains a discussion of two impossibility results under the assumption of
anonymity. These two results refer to computations of Boolean functions and to the
establishment of local orientations under certain assumptions on n, the number of nodes in
the ring. The remaining two sections contain algorithms to compute Boolean functions
(Sections 2.2.2) and to find a local orientation (Sections 2.2.2 and 2.2.3) when the conditions
leading to the impossibility results of Section 2.2.1 do not hold.

2.2.1 Some impossibility results
Let f be a Boolean function of the form

In this section, we consider algorithms to compute f when the n Booleans that constitute its
arguments are initially scattered throughout the nodes, one per node, in such a way that at
the end of the algorithm every node has the same value for f (we say that such an algorithm
computes f at all nodes). Naturally, the assignment of arguments to nodes has to be
assumed to be given initially, because an anonymous system cannot possibly perform such
an assignment by itself.
The first impossibility result that we discuss is given by Theorem 2.4, and is related to the
availability of n to be used by the nodes in their computations.

Theorem 2.4.
No synchronous algorithm exists to compute f at all nodes if n is not known to the nodes.
Proof: We show that any synchronous algorithm that computes f in the absence of
information on n must in some cases fail, that is, we show that such an algorithm does not
necessarily compute f at all nodes.
For consider an algorithm to compute f when n is not known to the nodes. This algorithm
must function independently of n, therefore for rings with all numbers of

Figure 2.1: This is the 2 v (2⌉T/3⌈ + 1)-node ring used in the proof of Theorem 2.4, here shown for
v = 3 and T = 3. Each of the three portions in the upper half comprising three contiguous nodes
each is assigned f's arguments according to af. Similar portions in the lower half of the ring follow
assignment at.

nodes. In particular, for a ring with n = v ≥ 3 nodes, let af and at be assignments of f's
arguments to nodes, i.e.,

such that

and

Furthermore, let Tf and Tt be the numbers of pulses that the algorithm spends in computing f
for, respectively, assignments af and at. Let T be such that

The next step is to consider a ring with n = 2v(2⌉T/3⌈ + 1) nodes, for which the algorithm must
also work, and to assign arguments to the nodes as follows. Divide the ring into two
connected halves, and within each half identify 2⌉T/3⌈ + 1 portions, each with v contiguous
nodes. To each such portion in one of the halves assign arguments as given by af. Then use
at to do the assignments to each of the portions in the other half (Figure 2.1).
Because the number of portions in each half is odd, we can identify a middle portion in each
of the halves. Also, except for the nodes at either end of the two halves, every node is in the
larger ring connected as it was in the smaller one (i.e., the Booleans assigned to a node's
neighbors are the same in the two rings). In the synchronous model, it takes at least d pulses
for a node to causally affect another that is d edges apart on a shortest path, so nodes in the
middle portions of both halves cannot be causally affected by any other node in the other half
within T pulses of the beginning of the computation. What these considerations imply is that
the nodes in the middle portion of the half related to af will by pulse T have terminated and
proclaimed the value of f to be false, because this is what happened by assumption under
the same circumstances on the smaller ring. Similarly, nodes in the middle portion of the half
related to at will have terminated and proclaimed f to have value true within T pulses of the
beginning of the computation.

Corollary 2.5.
No algorithm exists to compute f at all nodes if n is not known to the nodes.
Proof: This is a direct consequence of our discussion in Section 2.1, where we mentioned
that every asynchronous algorithm easily yields an equivalent synchronous algorithm. So, if
an asynchronous algorithm existed to compute f at all nodes in the absence of information on
n at the nodes, then the resulting synchronous algorithm would contradict Theorem 2.4.
If n is known to the nodes, then f can be computed at all nodes by a variety of algorithms, as
we discuss in Section 2.2.2.
The second impossibility result that we discuss in this section is related to establishing a local
orientation on the ring when, for ni ∊ N, the identifications lefti and righti are not guaranteed to
yield a local orientation initially. This problem is related to the problem of computing f we
discussed previously in the following manner. At node ni, the positioning of lefti and righti with
respect to how its neighbors' edge identifications are positioned can be regarded as
constituting a Boolean input. Establishing a local orientation for the ring can then be regarded
as computing a function f on these inputs and then switching the denominations of the two
edges incident to ni if the value it computes for f turns out to be, say, false. Now, this function
is not in general expected to yield the same value at all nodes, and then Corollary 2.5 would
not in principle apply to it. However, another Boolean function, call it f', can be computed
easily once f has been computed. This function has value true if and only if the ring is locally
oriented, and this is the value it would be assigned at each node right after that node had
computed f and chosen either to perform the switch in edge identifications or not to. Clearly,
f' is expected to be assigned the same value at all nodes, and then by Corollary 2.5 there is
no algorithm to compute it at all nodes in the absence of information on n. As a
consequence, there is no algorithm to compute f either.
Even when n is known to the nodes, there are cases in which no algorithm can be found to
establish a local orientation on the ring. Theorem 2.6 gives the conditions under which this
happens.

Theorem 2.6.
No synchronous algorithm exists to establish a local orientation on the ring if n is even.
Proof: Our argument is to show that any synchronous algorithm to establish a local
orientation on the ring fails in some cases if n is even. To do so, we let n = 2v for some v ≥ 2,
and then consider the following arrangement of lefti and righti for all ni ∊ N. For 1 ≤ i ≤ v − 1,
we let

and for v + 2 ≤ i ≤ 2v we let

Clearly, this arrangement also implies

and

so the ring is not locally oriented.

Now we consider a mapping of the form

such that, for 1 ≤ i ≤ 2v,

for which it clearly holds that (Figure 2.2). This mapping is also
such that, for 1 ≤ i ≤ 2v, if ni sends a message at a certain pulse (or receives a message

during the corresponding interval) on edge lefti or edge righti, then does exactly the

same at the same pulse, respectively on edge or edge

Consequently, ni and reach the same conclusion on whether they

Figure 2.2: The 2v-node ring used in the proof of Theorem 2.6 is depicted here for v = 5. Shown

is also the mapping , emphasizing the symmetry among the nodes in the ring's
upper half and the corresponding nodes in the lower half.

should switch their incident edges' identifications or not, and the ring continues to be not
locally oriented

Corollary 2.7.
No algorithm exists to establish a local orientation on the ring if n is even.
Proof: The proof here is entirely analogous to that of Corollary 2.5.
If n is known to the nodes and is odd, then a local orientation can be established on the ring.
We give algorithms to do this in Sections 2.2.2 and 2.2.3.

2.2.2 Boolean-function computations
When n is known to the nodes, Corollary 2.5 does not apply and the function f introduced in
Section 2.2.1 can be computed at all nodes. Also, if such a function is computed with the aim
of eventually establishing a local orientation on the ring, then n has to be odd for Corollary 2.7
not to apply.
In this section, we start by presenting Algorithm A_Compute_f, which is an asynchronous
algorithm to compute f at all nodes when n is known to the nodes. In addition, we present this
algorithm in such a way that, if n is odd, then it may be used almost readily to establish a
local orientation on the ring as well.
In Algorithm A_Compute_f, bi ∊ {false, true} denotes f's argument corresponding to ni ∊ N.
In order for the algorithm to be also suitable to the determination of a local orientation on the
ring, the messages that it employs carry the pair of Booleans comprising one argument of f
and a Boolean constant.
So far as computing f goes, the essence of Algorithm A-Compute-f is very simple. If ni ∊ N0,
or upon receiving the first message if ni ∉ N0, ni sends the pair (bi, false) on lefti and the pair
(bi,true) on righti. For each of the ⌊n/2⌋ messages it receives on each of the edges incident to
it, ni records the Booleans contained in the message and sends them onward on the edges
opposite to those on which they were received. After all these messages have been
received, ni has the Booleans originally assigned to every node and may then compute f
locally.
Node ni employs two variables to count the numbers of messages received, respectively
count-lefti and count-righti for lefti and righti. Initially, these counters have value zero. In

addition, ni employs the n Boolean variables to record the values of b1,…,bn when they

are received in messages (if j ≠ i) for 1 ≤ j ≤ n. Initially, = bi (the others do not need any
initial value to be set). Another variable ji is used to contain the subscripts to these variables.
Because Algorithm A-Compute-f has to be exactly the same for all nodes in N, another
Boolean variable, initiatedi (initially set to false), is employed by ni to indicate whether ni ∊ N0

or not. This variable is set to true when ni starts its computation if it is a member of N0

Nonmembers of N0 will have this variable equal to false upon receiving the first messages,
and will then know that first of all it must send messages out. In the absence of anonymity,
sometimes it is simpler to specify an algorithm for ni ∊ N0 and another for ni ∉ N0

Algorithm A-Compute-f:

 Variables:
 count-lefti = 0;
 count-righti = 0;

 (= bi, if k = 1) for 1 ≤ k ≤ n;
 ji = 1;
 initiatedi = false.

Listing 2.10

 Input:
 msgi = nil.
 Action if ni ∊ N0

 initiatedi ≔ true;

 Send (, false) on lefti;

 Send (, true) on righti.

Listing 2.11

 Input:
 msgi = (b,B)

 Action:

 if not initiatedi then

 begin

 initiatedi ≔ true;

 Send (, false) on lefti;

 Send (, true) on righti

 end;

 if origini(msgi) = lefti then

 begin

 count_lefti ≔ count_lefti + 1;

 ji ≔ ji + 1;

 if ji ≤ n then

 bji ≔ b;

 if count_lefti ≤ ⌊n/2⌋ − 1 then

 Send msgi on righti

 end;

 if origini (msgi) = righti then

 begin

 count_righti ≔ count_righti + 1;

 ji ≔ ji + 1;

 if ji ≤ n then

 bji ≔ b;

 if count_righti ≤ ⌊n/2⌋ − 1 then

 Send msgi on lefti

 end;

 if count_lefti + count_righti = 2⌊n/2⌋ then

 Compute

An instructive observation at this point is that Algorithm A_Compute_f is indeed an algorithm
for anonymous rings. Nowhere in the algorithm are the identities of the nodes mentioned,
except in the description of (2.10), but this is only for notational consistency with Algorithm
A_Template, because in any event the set N0 is determined by an "external agent." In fact, it
is because of the system's anonymity that the b's that ni receives have to placed by (2.11) in

the variables irrespective of their original senders, which would be
simpler if the denominations of those senders could be used by the algorithm. In addition, the
algorithm does make use of n, as anticipated by Corollary 2.5.
Let us now examine Algorithm A_Compute_f carefully. During ni's computation, it receives
the messages originally sent to it by its neighbors by (2.10) or (2.11), and whatever those
neighbors forward to it by (2.11). Because by (2.11) a node only forwards to each of its
neighbors ⌊n/2⌋ − 1 messages, ni actually receives 2 ⌊n/2⌋ messages, of which the last two it
does not forward. Upon receipt of the last of the 2⌊n/2⌋ messages, ni has either n (if n is odd)
or n + 1 (if n is even) arguments of f, which it may then compute. Although it may be possible
to modify the algorithm a little bit to ensure that exactly n arguments are received if n is even
as well (cf. Exercise 1), as presented the last argument received is a repetition and may be
dropped (as in (2.11)).
In many cases, it may only be possible to compute f if the information ni receives is organized
more orderly than as in Algorithm A_Compute_f. In other words, unless f is invariant with
respect to the order of its arguments (as in the case of the AND and OR functions, for

example), then the variables have to be replaced with two sets of similar
variables, each with ⌊n/2⌋ variables to accommodate the Booleans received from each of ni's
neighbors. In addition, if such an invariance does not hold, then the edges in E have to be
assumed to be FIFO. Even so, however, because the system is anonymous f can only be
computed if it is invariant under rotations of its arguments.
As we mentioned earlier, Algorithm A_Compute_f can also be used to provide the ring with a
local orientation, and this is the role of the B's that get sent along with every message. When
the algorithm is used with this purpose, then the b's have no role and the B's are treated as
follows at the step in which f would be computed in (2.11). A B that ni receives indivates
either that its original sender had its left and right edges positioned like lefti and righti (if B =
true is received on lefti or B = false is received on righti) or positioned otherwise (if B = false
is received on lefti or B = true is received on righti). In either case, so long as n is odd (and n
has to be odd, by Corollary 2.7), ni can decide whether its-edges are positioned like those of
the majority of the nodes, in which case it maintains their positioning, or not, in which case it
reverses their positioning. The result of these decisions system-wide is clearly to establish a
local orientation on the ring. (Note that in this case Algorithm A_Compute_f would have to be
modified to treat the B's, not the b's, ni receives—cf. Exercise 3.)
Because each node receives 2⌊n/2⌋ messages during the computation, the total number of
messages employed by the algorithm is 2n⌊n/2⌋, and its message complexity is clearly O(n2).

In Section 3.2.1, we return to Algorithm A_Compute_f to discuss its time-related complexity
measures.
In the remainder of this section and in Section 2.2.3, we show that synchronous algorithms
exist whose message complexities are significantly lower than that of Algorithm
A_Compute_f, so long as the generality of this algorithm can be given up. The synchronous
algorithm that we discuss next is specific to computing the AND function, while the one we
discuss in Section 2.2.3is specific to providing the ring with a local orientation.
The key ingredient in obtaining the more efficient synchronous algorithm is that the AND
function can be assumed to be true unless any of its arguments if false. In the synchronous
case, this observation can be coupled with the assumptions of the synchronous model as
follows. Only nodes with false arguments send their argument to neighbors. The others
simply wait to receive a false or long enough to know that any existing false would already
have reached them. In either case, computing the AND is a simple matter. Algorithm
S_Compute_AND embodies this strategy and is given next. In this algorithm, N0 = N and a
Boolean variable fi (initially set to true) is employed by ni to store the result of evaluating the
AND function.

Algorithm S_Compute_AND

 Variables:
 fi = true.

Listing 2.12

 Input:

 s = 0, MSGi(0) =

 Action if ni ∊ N0:

 if bi = false then
 begin

 fi ≔ false:

 Send bi on lefti and on righti

 end.

Listing 2.13

 Input:
 0 < s < ⌊n/2⌋, MSGi(s).
 Action:
 if fi then

 if MSGi(s) ≠ then
 begin
 fi ≔ false;
 if there exists msg ∊ MSGi(s) such that

 origini(msg) = lefti then
 Send msg on righti;

 if there exists msg ∊ MSGi(s) such that
 origini(msg) = righti then
 Send msg on lefti

 end.

If ni is not such that bi = false, then the largest number of pulses that can go by before ni

concludes that fi cannot be changed from its initial value of true is ⌊n/2⌋, so that after pulse s
= ⌊n/2⌋ = O(n) no further computation has to be performed and the algorithm may terminate.
By (2.12) and (2.13), ni sends at most two messages during its computation, either initially if
bi = false, by (2.12), or upon receiving the first message, if any messages are at all received,
by (2.13). Clearly, then, the message complexity of Algorithm S_Compute_AND, is O(n).

2.2.3 Another algorithm for local orientation
In addition to Algorithm S_Compute_AND, another example of how to employ many fewer
messages than those required by Algorithm A_Compute_f comes from considering a
synchronous algorithm tailored specifically to establishing a local orientation on the ring. By
Theorem 2.6, such an algorithm may only exist if n is odd, as we assume henceforth in this
section.
The basic strategy behind this algorithm employs the following terminology. Say that two
nodes ni and nj are segment ends if (ni, nj) ∊ E and furthermore (ni, nj) = lefti = leftj. Segment
ends delimit segments, which are subsets of N inducing connected subgraphs of G with at
least two nodes. If ni and nj are segment ends and (ni, nj) ∊ E, then ni, and nj belong to
different segments, unless the number of segments in the ring is exactly one. Clearly, a
locally oriented ring contains no segment ends, while a ring that is not locally oriented
contains a nonzero even number of segment ends, and half as many segments. Because n
is odd, an odd number of segments must have an odd number of nodes each.
The synchronous algorithm proceeds in iterations, each one comprising two phases. Initially,
all nodes are said to be active, and the goal of each of the iterations is to reduce the number
of active nodes. During an iteration, nodes that are not active function solely as message
relays, so that the computation can always be looked at as being carried out on a ring
containing the active nodes only, called the active ring. Iterations proceed until exactly one
active node remains or until an active ring is reached which is locally oriented (in this case
with more than one active node). A local orientation can then be established on the entire
ring by the last active nodes.
The number of iterations that the algorithm requires depends largely on how active nodes are
eliminated from one iteration to the next. In Algorithm S_Locally_Orient, given next, this
elimination takes place as follows. In the first phase of an iteration, segment ends are
identified on the active ring. Then, in the second phase, the nodes, called center nodes,
occupying the central positions in the segments having an odd number of nodes are
identified and selected to be the only active nodes to remain through to the next iteration. By
our preceding discussion, the number of center nodes must be odd, and then so must the
number of nodes in every active ring, thereby guaranteeing the feasibility of every iteration.
The last iteration is characterized by the absence of segment ends among the active nodes.
Because at each iteration segments with an even number of nodes do not contribute with any
active node to the next iteration, and considering that segments with odd numbers of nodes
have at least three nodes each, clearly the number of iterations required is no larger than
⌈log3n⌉ = O (log n).
Letting σ ≥ O indicate the pulses within each of the iterations, the following is how the two
aforementioned phases within an iteration are implemented. At pulse σ = O, node ni, if active,
sends token on edge righti. Active nodes then idle throughout the following n − 1 pulses,

while nodes that are not active simply relay token onward if they at all receive it. An active
node ni that by pulse σ = n has not received token on lefti is a segment end, and at pulse σ =
n sends the integer O on righti. Throughout the following n − 1 pulses (i.e., from pulse σ =
n+1 through pulse σ = 2n − 1), active nodes forward the integer z + 1 upon receiving integer
z, for some z ≥ 0, while the other nodes continue to function as relays. An active node ni that
by pulse σ = 2n has received the same integer over lefti and righti during the same interval is
a center node. This is the last iteration if ni did not receive any message during intervals n
through 2n − 1, otherwise only center nodes remain active for the next iteration. A message
orient is sent on, say, lefti by an active node ni after the last iteration. This message, if
received on lefti by a node ni that is not active, causes lefti and righti to be interchanged.

The reader should notice that the characteristics of the synchronous model are used
profusely in this strategy to establish a local orientation. Indeed, both the determination of
segment ends and of center nodes rely heavily on the assumed synchronism, as does the
determination of when an iteration is the last one.
In Algorithm S_Locally_Orient, k identifies the iteration and is then such that 1 ≤ k ≤ K, where
K is the last iteration, therefore such that K ≤ ⌈log3 n⌉. Pulses within the kth iteration are
numbered s = 2n(k − 1) + σ, that is, from s = 2n(k − 1) through s = 2nk. After the last
iteration, additional n − 1 pulses must elapse before termination. The only variable employed
by ni is the Boolean variable activei, initially set to true, used to indicate whether ni is active.
Because initially activei = true for all ni ∊ N, in this algorithm N0 = N. Because K has to be
determined as the algorithm progresses, it is assumed to be equal to infinity initially.

Algorithm S_Locally_Orient:

 Variables:
 activei = true.

Listing 2.14

 Input:

 s = 2n(k − 1), MSGi(s) = .
 Action (if ni ∊ N0, for k = 1):
 if activei then
 Send token on righti.

Listing 2.15

 Input:

 2n(k − 1) + 1 ≤ s ≤ 2nk − n − 1, MSGi(s).
 Action:
 if not activei then
 begin
 if there exists token ∊ MSGi(s) such that origini(token) =
 lefti then
 Send token on righti;

 if there exists token ∊ MSGi(s) such that origini (token) =
 righti then

 Send token on lefti

 end.

Listing 2.16

 Input:
 s = 2nk − n, MSGi(2n(k − 1) + 1),…, MSGi(2nk − n).
 Action:
 if activei then

 if there does not exist token MSGi(r) such that
 origini (token) = lefti then
 Send 0 on righti.

Listing 2.17

 Input:
 2nk − n + 1 ≤ s ≤ 2nk − 1, MSGi(s).s
 Action:
 if activei then
 begin
 if there exists z ∊ MSGi(s) such that origini(z) = lefti

 then
 Send z + 1 on righti;
 if there exists z ∊ MSGi(s) such that origini(z) = righti

 then
 Send z + 1 on lefti

 end

 else
 begin
 if there exists z ∊ MSGi(s) such that origini(z) = lefti

 then
 Send z on righti;
 if there exists z ∊ MSGi(s) such that origini (z) = righti
 then
 Send z on lefti

 end.

Listing 2.18

 Input:
 s = 2nk, MSGi(2nk − n + 1),…, MSGi(2nk).

 Action:
 if activei then

 if MSGi(r) = for all r ∊ {2nk − n,…,2nk − 1} then
 begin
 K ≔ k;
 Send orient on lefti

 end

 else

 if there do not exist r ∊ {2nk − n,…, 2nk − 1} and
 z1, z2 ∊ MSGi(r) with z1 = z2 such that origini(z1) = lefti

 and origini(z2) = righti then
 activei ≔ false.

Listing 2.19

 Input:
 2nK + 1 ≤ s ≤ 2nK + n − 1, MSGi(s)
 Action:
 if not activei then
 begin
 if there exists orient ∊ MSGi(s) such that
 origini(orient) = lefti then
 Interchange lefti and righti;
 Send orient on lefti

 end.

In Algorithm S_Locally_Orient, (2.14) implements the sending of token at the beginning of
each iteration, while in (2.15) the relaying of token by nodes that are not active appears. In
(2.16), segment ends are identified and initiate the propagation of integers, which are relayed
as appropriate by (2.17). Center nodes are identified in (2.18), which, in the last iteration, also
includes the propagation of orient, relayed onward by (2.19). In no action does a node send
more than two messages, and then the number of messages per iteration is clearly O(n). It
follows from our earlier determination of the maximum number of iterations that the message
complexity of Algorithm S_Locally_Orient is O(n log n).

2.3 The role of knowledge in distributed computations

The notion of knowledge is a notion of many possible meanings, but even the
simplest algorithms we have seen so far in this chapter indicate that much of what
distributed computations do is, in some sense, to collectively manipulate the
system's knowledge so that at the end of the computation what nodes "know"
individually relates in some way to the computation's original goal. During the past
decade, various interesting hints at how notions related to knowledge might be
used in the design and analysis of distributed algorithms were envisaged. Although
today the interest in such an approach has waned somewhat, a few interesting
insights were obtained that can be expressed in a particularly simple fashion when
viewed from the standpoint of knowledge in the system.

Our goal in this section is to finalize the chapter by presenting some of these
insights, which will be referred back to in forthcoming chapters for the sake of
illustration within the context of those chapters. The ideal approach to our
discussion in this section would be that of a logician, but naturally we refrain from
doing that, especially because the necessary background to undertake such an
approach intersects what is expected of a reader of this book very narrowly.
Rather, we approach the subject quite informally, aiming essentially at conveying
some of its intuitive underpinnings.

If denotes a sentence (in the logical sense), then we denote the notion that a

node ni knows by KI , where, loosely, Ki is an operator indicating knowledge
by ni. Normally, only true sentences are assumed to be knowable, that is, in order

for to be known by ni it is necessary that be true, giving rise to the axiom

(If A and B are two formulas, in the usual logical sense, then A → B is equivalent to
¬A V B.) Every distributed algorithm embodies various steps whereby the
knowledge status of the nodes evolves. For example, if ni sends a message

containing a true sentence to nj ∊ Neigi, then KI holds as early as when the

message is sent, but Kj may happen to hold only from the time of receipt of

the message onward, and then KjKi also holds.
Despite the simplicity of such a notion of knowledge by ni, it contains not too
evident idiosyncrasies that include limits on what ni may know. This has been
illustrated in the literature in the following anecdotic fashion.

"In a class with daily meetings the teacher announces, by the end of a Friday
class, that there will be an unexpected exam in the following week. The
students reason over the possibilities during the weekend, and conclude that
the exam will not be on Friday, otherwise it would not be unexpected, and
inductively that it cannot be on any other day of the week either. As a result,
they do not study for the exam and, surely enough, a totally unexpected exam
is given on Monday."

If we let ε denote "there will be an exam today," then the flaw in the students'
reasoning is that, while it is possible for the sentence ε ¬∧ KIε to be true for a node
(student) ni, the same cannot possibly hold for the sentence KI(ε ¬∧ KIε), so that
there are limits to what is knowable to ni.
In a distributed setting like the one we have been considering in this book, there is
interest in generalizing the notion of individual knowledge embodied in the operator
Ki to notions of group knowledge, say by all the members of N. Two simple
possibilities of generalization in this sense are summarized by the operators SN and
EN, intended respectively to convey the notions of knowledge by at least one node
and by all nodes. In other words,

and

Another similar possibility of generalization is that of the notion of implicit

knowledge by the group N. The meaning of implicit knowledge of by N,

denoted IN , is that can be concluded from the individual knowledge that

the members of N have. For example, if and → are both true

sentences, and moreover both KI and (→) hold for ni, nj ∊ N, then

is also true and IN holds as well.
Associated with this notion of implicit knowledge is a notion of conservation, which
states that no communication can change the implicit knowledge of propositional
nature that N has. This result, which we do not investigate in any further depth in
this book, is to be regarded with care. In particular, the requirement that the
conserved implicit knowledge be propositional is crucial, as otherwise the

conservation need not hold. For example, if for a true sentence it holds that

¬KI and Kj for ni, nj ∊ N such that (ni, nj) ∊ E, then a message sent by nj

to ni containing suffices for KI to become implicit knowledge, although
such was not the case prior to the receipt of the message by ni. However, the

sentence Ki is not propositional, and then no contradiction to the conservation
principle is implied by this acquisition of new implicit knowledge.
The next step in generalizing the notion of individual knowledge to broader notions
of group knowledge is to consider the notion of common knowledge by N. This

notion, denoted by CN for a true sentence , is such that

where and, for k > 1,

This notion is very hard to grasp
intuitively, but nonetheless it should be clear that

holds for any set of integers {i1,…, iz} {1,…,⊃ n,} with z ≥ 1. Another anecdote is
usually very helpful in building up some intuition on the notion of common
knowledge.

"A group of boys are playing together and have been advised by their parents
that they should not get dirty. However, it does happen that some of them, say
k ≥ 1, get dirty, but only on their foreheads, so that no boy knows whether his
own forehead is dirty though he can see the others'. One of the parents then
shows up and states, 'At least one of you has a dirty forehead,' thereby
expressing a fact already known to all the boys if k > 1. The parent then asks
repeatedly, 'Can anyone prove that his own forehead is dirty?' If we assume
that all the boys are unusually intellectually gifted, and moreover that they all
reply simultaneously at each repetition of the parent's question, then every boy
replies 'No' to the first k − 1 questions, and the boys with dirty foreheads reply
'Yes' to the kth question."

What supports the boys' reasoning in replying to the parent's repeated questions is
the following inductive argument. If k = 1, then the only boy with a dirty forehead

replies "Yes" immediately upon the first question, because he knows that at least
one boy has a dirty forehead, and seeing no one else in that condition he must be
the one. If we inductively hypothesize that the boys reason correctly for 1 ≤ k ≤ k'
with k' ≥ 1, then for k = k' + 1 we have the following. A boy with a dirty forehead
sees k' other boys with dirty foreheads, while a boy with a clean forehead sees k' +
1 boys with dirty foreheads. By the induction hypothesis, a boy with a dirty forehead
must reply "Yes" to the kth question, because if he did not have a dirty forehead the
other k' boys with dirty foreheads that he sees would all have replied "Yes" upon
hearing the previous question. Because they did not, his own forehead must be
dirty.

In the context of this anecdote, the issue of knowledge comes in as follows. If
represents the parent's statement concerning the existence of boys with dirty

foreheads and N is the set of boys, then, before the statement,

holds but does not. What the parent's statement does is to establish CN

, therefore which is the necessary state of knowledge for the boys'
reasoning to be carried out.

The various notions of knowledge we have encountered so far relate to each other
hierarchically in such a way that

holds for every k ≥ 1. While every information that is "built in" the nodes constitutes
common knowledge, the acquisition of new common knowledge is far from trivial,
unless some sort of "shared memory" can be assumed, as in the case of the
anecdote we presented on the dirty-forehead boys (the parent's statement can be
regarded as having been "written" into such a shared memory). To see why
acquiring new common knowledge may be important, we consider yet another
anecdote.

"Two divisions of an army are camped on the hills surrounding a valley, and in
the valley is the enemy army. Both divisions would like to attack the enemy
army simultaneously some time the next day, because each division
individually is outnumbered by the enemies. Having agreed on no plan
beforehand, the divisions' generals are forced to rely on forerunners to convey
messages to each other. Forerunners must go through the enemy's camp with
their messages, and then do it at night, although the risk of being caught still
exists and in addition they may get lost. Given that normally one hour is
enough for the trip, and that at this particular night the forerunners travel
uneventfully through the enemy's camp and do not get lost, how long does it
take for an agreement to be reached between the two generals?"

Clearly, what the two generals seek in this anecdote is common knowledge of an
agreement. The reader must quickly realize, though, that such a state of
knowledge cannot be attained. Indeed, unless communication is totally reliable (as
we have implicitly been assuming) and the model of distributed computation is the
synchronous model, no new common knowledge can ever be attained. However,
the literature contains examples of how to attain new common knowledge in the
asynchronous model with reliable communication by restricting the definition of
common knowledge to special global states (cf.Section 3.1).

2.4 Exercises
1. Show that, if the ring is locally oriented, then Algorithm A_Compute_f can be modified so that
every node receives exactly n arguments of f even if n is even.

2. Describe how to simplify Algorithm S_Locally_Orient if the determination of K is not required
(that is, if the algorithm is to run for the maximum possible number of iterations).
3. Show how to modify Algorithm A_Compute_f so that it can be used to establish a local
orientation on the ring (i.e., show how it should be changed to treat the B's instead of the b's).

1.

Show that, if the ring is locally oriented, then Algorithm
A_Compute_f can be modified so that every node receives
exactly n arguments of f even if n is even.

2.

Describe how to simplify Algorithm S_Locally_Orient if the
determination of K is not required (that is, if the algorithm is to run
for the maximum possible number of iterations).

3.

Show how to modify Algorithm A_Compute_f so that it can be
used to establish a local orientation on the ring (i.e., show how it
should be changed to treat the B's instead of the b's).

2.5 Bibliographic notes
Readers in need of references on concepts from graph theory, for use not only in this chapter
but throughout the book, may choose from a variety of sources, including some of the classic
texts, like Harary (1969), Berge (1976), Bondy and Murty (1976), and Wilson (1979). The
asynchronous and synchronous models introduced in Section 2.1 are pretty standard in the
field, and can also be found in Lamport and Lynch (1990), for example. Algorithm A_FIFO,
used as example in that section, is from Barbosa and Porto (1995).
The material on anonymous systems in Section 2.2 is based on Attiya and Snir (1985), which
later appeared in revised form in Attiya, Snir, and Warmuth (1988). Further developments on
the theme can be found in Attiya and Snir (1991), Bodlaender, Moran, and Warmuth (1994),
Kranakis, Krizanc, and van den Berg (1994), and Lakshman and Wei (1994).
Readers seeking additional information on the notions related to knowledge can look for the
survey by Halpern (1986), as well as the guide to the logics involved by Halpern and Moses
(1992). The material in Section 2.3 is drawn from a variety of publications, which the reader
may seek in order to deepen the treatment of a particular topic. The application of
knowledge-related notions to problems in the context of distributed computations dates back
to the first version of Halpern and Moses (1990) and to Lehmann (1984). In Halpern and
Moses (1990), the reader will also find the definitions of implicit and common knowledge, as
well as the argument for the impossibility of attaining common knowledge in the
asynchronous model or under unreliable communication. Fischer and Immerman (1986)
describe situations in which common knowledge can be attained in the asynchronous model
if communication is totally reliable and in addition one is restricted to considering only some
special global states. The anecdote involving students and the unexpected exam is from
Lehmann (1984). The conservation of implicit knowledge is from Fagin and Vardi (1986).
Problems related to the agreement between generals of a same army can be found in
Lamport, Shostak, and Pease (1982) and in Dwork and Moses (1990). Additional work on
knowledge in distributed systems has appeared by Halpern and Fagin (1989), Fagin,
Halpern, and Vardi (1992), Neiger and Toueg (1993), and van der Meyden (1994).

Chapter 3: Models of Computation

Overview
In this chapter, we return to the topic of computation models for distributed algorithms. We
start where we stopped at the end of Section 2.1, which was devoted essentially to
introducing the asynchronous and synchronous models of distributed computation. In that
section, we also introduced, along with examples throughout Chapter 2, Algorithms
A_Template and S_Template, given respectively as templates to write asynchronous and
synchronous algorithms.
Our first aim in this chapter is to establish a more detailed model of the distributed
computations that occur under the assumption of both the asynchronous and the
synchronous model. We do this in Section 3.1, where we introduce an event-based
formalism to describe distributed computations. Such a formalism will allow us to be much
more precise than we have been so far when referring to global timing issues in the

asynchronous case, and will in addition provide us with the necessary terminology to define
the time-related complexity measures that we have so far avoided.
This discussion of complexity measures appears in Section 3.2 where the emphasis is on
time-related measures for asynchronous algorithms, although we also discuss such
measures for synchronous algorithms and return to the issue of message complexity
introduced in Section 2.1.
We continue in Section 3.3 by returning to the template algorithms of Section 2.1 to provide
details on how asynchronous algorithms can be executed under the assumptions of the
synchronous model. In addition, we also indicate, but only superficially in this chapter, how
synchronous algorithms can be transformed into equivalent asynchronous algorithms.
Section 3.4 is dedicated to a deeper exploration of the synchronous model, which, as we
have indicated previously,although unrealistic possesses some conceptual and practical
features of great interest. Some of these are our subject in Section 3.4 as an example of a
computation that is strictly more efficient in time-related terms in the synchronous model than
in the asynchronous model, and another in which the initial assumption of full synchronism in
the process of algorithm design eventually leads to greater overall efficiency with respect to
existing solutions to the same problem.
Sections 3.5 and 3.6 contain exercises and bibliographic notes, respectively.

3.1 Events, orders, and global states
So far in the book there have been several occasions in which we had to refer to
global characteristics of the algorithms we studied and found ourselves at a loss
concerning appropriate conceptual bases and terminology. This has been most
pronounced in the case of asynchronous algorithms, and then we have resorted to
expressions as "concurrent", "scenario", and "causally affect" to make up for the
appropriate terminology and yet convey some of the intuition of what was actually
meant. This happened, for example, during our discussion of task migration in
Sections 1.6.2 and 2.1, in our introduction of the synchronous model in Section 2.1,
and in the proof of Theorem 2.4. As we indicated in Sections 2.1 and 2.3, such
imprecisions can be corrected easily once the appropriate concept of a global state
has been established. Such a concept lies at the core of our discussion in this
section.
The case of synchronous algorithms is clearly much simpler as far as the concepts
underlying global temporal issues are concerned. In fact, in describing Algorithms
S_Compute_AND and S_Locally_Orient, respectively in Sections 2.2.2 and 2.2.3,
we managed without any difficulty to identify the number of pulses that had to
elapse for termination of the algorithm at hand. This number, as we will see in
Section 3.2.1, essentially gives the algorithm's time-related measure of complexity,
which in the asynchronous case we have not even approached.
Our discussion in this section revolves around the concept of an event, and is
intended especially to the description of computations taking place in the
asynchronous model (that is, executions of asynchronous algorithms). However, as
we mentioned in Section 2.1, the conditions under which the synchronous model is
defined can be regarded as a particularization of the conditions for the
asynchronous model, and then all of our discussion is also applicable in its
essence to the synchronous model as well. We shall return to this issue later to be
more specific on how the characteristics of the synchronous model can be seen to
be present in our event-based formalism.
The concept of an event in our formalism is that of a fundamental unit of a
distributed computation, which in turn is an execution of a distributed algorithm. A
distributed computation is then viewed simply as a set of events, which we denote
by Ξ. An event ξ is the 6-tuple

where
 ni is the node at which the event occurs;
 t is the time, as given by ni's local clock, at which the event occurs;

 is the message, if any, that triggered the event upon its reception by ni;
 σ is the state of ni prior to the occurrence of the event;
 σ' is the state of ni, after the occurrence of the event;
 Φ is the set of messages, if any, sent by ni as a consequence of the

occurrence of the event.
This definition of an event is based on the premise that the behavior of each node
during the distributed computation can be described as that of a state machine,
which seems to be general enough. The computation Ξ then causes every node to
have its state evolve as the events occur. We let Σi denote the sequence of states
ni goes through as Ξ goes on. The first member of Σi is ni's initial state. The last
member of Σi (which may not exist if Ξ is not finite) is ni's final state.
This definition of an event is also general enough to encompass both the assumed
reactive character of our distributed computations (cf. Section 1.4) and to allow the
description of internal events, i.e., events that happen without any immediate
external cause (understood as a message reception or the spontaneous initiation
by the nodes in N0, which ultimately can also be regarded as originating externally).
In order to be able to describe internal events and events associated with the

spontaneous initiation by the nodes in N0, we have allowed the input message
associated with an event to be absent sometimes. The atomic actions that we have
associated with asynchronous algorithms (cf. Algorithm A_Template) can then be
regarded as sequences of events, the first of which triggered by the reception of a
message (or corresponding to the spontaneous initial activity of a node in N0), and
the remaining ones being internal events.
For synchronous algorithms, these definitions are essentially valid as well, but a
few special characteristics should be spelled out. Specifically, because in the
synchronous case it helps to assume that local computation within an interval of the
global clock takes zero time (cf. Section 2.1,)and because nodes in the
synchronous case are in reality driven by the global clock and not by the reception
of messages, at each node exactly one event can be assumed to take place at
each pulse, with t being a multiple of an interval's duration. Such an event does not
have an input message associated with it, because by assumption every message
is in the synchronous model delivered in strictly less time than the duration of an
interval. In addition to these events, others corresponding solely to the reception of
messages may also happen, but then with a different restriction on the value of t,
namely that t be something else than a multiple of an interval's duration. Finally,
internal events are now meaningless, because every event either has an input
message associated with it, or occurs in response to a pulse, having in either case
an external cause. The overall picture in the synchronous case is then the
following. At the beginning of the first interval (i.e., at the first pulse), an event
happens at each of the nodes in N0. Subsequently, at each new pulse and at each
node an event happens corresponding to the computation by that node on the
messages (if any) that it received during the preceding interval. Other events may
happen between successive pulses, corresponding exclusively to the reception of
messages for use at the succeeding pulse. The reader should notice that this
description of a synchronous computation is in entire accordance with Algorithm
S_Template, that is, the events for which t is a multiple of an interval's duration
correspond to the actions in that algorithm. The other events do not correspond to
any of the algorithm's actions, being responsible for establishing the sets MSGi(s)
for ni ∈ N and s > 0.
Events in Ξ are strongly interrelated, as messages that a node sends in connection
with an event are received by that node's neighbors in connection with other
events. While this relationship is already grasped by the definition of an event, it is
useful to elaborate a little more on the issue. Let us then define a binary relation,
denoted by ≺, on the set of events Ξ as follows. If ξ1 and ξ2 are events, then ξ1 ≺ξ2

if and only if one of the following two conditions holds.

i. Both ξ1 and ξ2 occur at the same node, respectively at (local) times t1

and t2 such that t1 < t2 In addition, no other event occurs at the same
node at a time t such that t1 < t < t2.

ii. Eventsξ1 and ξ2 occur at neighbor nodes, and a message exists that is
sent in connection with ξ1 and received in connection with ξ2.

It follows from conditions (i) and (ii) that ≺ is an acyclic relation. Condition (i)
expresses our intuitive understanding of the causality that exists among events that
happen at the same node, while condition (ii) gives the basic cause-effect
relationship that exists between neighbor nodes.
One interesting way to view the relation ≺ defined by these two conditions is to
consider the acyclic directed graph H = (Ξ,≺). The node set of H is the set of
events Ξ,and its set of edges is given by the pairs of events in ≺. The graph H is a
precedence graph, and can be pictorially represented by displaying the events
associated with a same node along a horizontal line, in the order given by ≺. In this
representation, horizontal edges correspond to pairs of events that fall into the
category of condition(i),while all others are in the category of condition(ii).
Equivalently, horizontal edges can be viewed as representing the states of nodes
(only initial and final states are not represented), and edges between the horizontal
lines of neighbor nodes represent messages sent between those nodes. Viewing
the computation Ξ with the aid of this graph will greatly enhance our understanding
of some important concepts to be discussed later in this section and in Section 3.2.
The transitive closure of ≺, denoted by ≺+, is irreflexive and transitive, and
therefore establishes a partial order on the set of events Ξ. Two events ξ1 and ξ2

unrelated by ≺+, i.e., such that

and

are said to be concurrent events. This denomination, as one readily understands, is
meant to convey the notion that two such events are in no way causally related to
each other.
In addition to its use in defining this concept of concurrent events, the relation ≺+

can also be used to define other concepts of equally great intuitive appeal, as for
example those of an event's past and future. For an event ξ, we let

Figure 3.1: A precedence graph has Ξ for node set and the pairs in the partial order ≺ for edges.
It is convenient to draw precedence graphs so that events happening at the same node in N are
placed on a horizontal line and positioned on this line, from left to right, in increasing order of the
local times at which they happen. In this figure, shown for n = 4, the "conically"-shaped regions
delimited by dashed lines around event ξ happening at node n3 represent {ξ} ∪ Past(ξ) (the one on
the left) and {ξ} ∪ Future (ξ) (the one on the right).

and

These two sets can be easily seen to induce "conical" regions emanating from ξ in
the precedence graph H and contain, respectively, the set of events that causally
influence ξ and the set of events that are causally influenced by ξ (Figure 3.1).
We now focus on a closer examination of the issues raised in the beginning of this
section with respect to an appropriate conceptual basis and a terminology for the
treatment of global timing aspects in a distributed computation. The key notion that
we need is that of a consistent global state, or simply global state, or yet snapshot.
This notion is based on the formalism we have developed so far in this section,
and, among other interesting features, allows several global properties of
distributed systems to be referred to properly in the asynchronous model. We will in
this section provide two definitions of a global state. While these two definitions are
equivalent to each other (cf. Exercise 1), each one has its particular appeal, and is
more suitable to a particular situation. Our two definitions are based on the weaker
concept of a system state, which is simply a collection of n local states, one for
each node, and one edge state for each edge. If G is a directed graph, then the
number of edge states is m, otherwise it is 2m (one edge state for each of the two
directions of each of the m edges).
The state of node ni in a system state is drawn from Σi, the sequence of states ni

goes through as the distributed computation progresses, and is denoted by σi.
Similarly, the state of an edge (ni → nj) is simply a set of messages, representing
the messages that are in transit from ni to nj in that system state, i.e., messages
that have been sent by ni on edge (ni → nj) but not yet received by nj. We denote
this set by Φij. The notion of a system state is very weak, in that it allows absurd
global situations to be represented. For example, there is nothing in the definition of

a system state that precludes the description of a situation in which a message
has been sent by ni on edge (ni → nj), but nevertheless neither has arrived at nj nor
is in transit on (ni → nj).
Our first definition of a global state is based on the partial order ≺+ that exists on
the set Ξ of events of the distributed computation, and requires the extension of ≺+

to yield a total order, i.e., a partial order that includes exactly one of (ξ1, ξ2) or (ξ2,
ξ1) for all ξ1, ξ2 ∈ Ξ. This total order does not contradict ≺+, in the sense that it
contains all pairs of events already in ≺+. It is then obtained from ≺+ by the
inclusion of pairs of concurrent events, that is, events that do not relate to each
other according to ≺+, in such a way that the resulting relation is indeed a partial
order. A total order thus obtained is said to be consistent with ≺+.
Given any total order < on Ξ, exactly |Ξ| − 1 pairs (ξ1, ξ2) ∈< can be identified such
that every event ξ ≠ξ1, ξ2 is either such that ξ < ξ1or such thatξ2 < ξ Eventsξ1and ξ2

are in this case said to be consecutive in <. It is simple to see that, associated with
everypair(ξ1,ξ2) of consecutive events in <, there is a system state, denoted by
system_state(ξ1,Ξ2), with the following characteristics.
 For each node ni, σi is the state resulting from the occurrence of the most

recent event (i.e., with the greatest time of occurrence) at ni, say ξ, such
that ξ1 ≮ ξ (this includes the possibility that ξ = ξ1).

 For each edge (ni → nj),Φij is the set of messages sent in connection with
an event ξ such that ξ1 ≮ ξ (including the possibility that ξ = ξ1) and
received in connection with an event ξ' such that ξ' ≮ ξ2 (including the
possibility that ξ' = ξ2).

Figure 3.2: Part (a) of this figure shows a precedence graph, represented by solid lines, for n = 2.
As ≺ is already transitive, we have ≺+=≺. Members of ≺+ are then represented by solid lines,
while the dashed lines are used to represent the pairs of concurrent events, which, when added to

≺+, yield a total order consistent with ≺+. The same graph is redrawn in part (b) of the figure
to emphasize the total order. In this case, system-state (ξ2, ξ3) is such that n1 is in the state at
which it was left by the occurrence of ξ1, n2 is in the state at which it was left by the occurrence of
ξ2, and a message sent in connection with ξ2 is in transit on the edge from n2 to n1 to be received

in connection with ξ2. Because is consistent with ≺+, system_state (ξ2, ξ3) is a global state, by
our first definition of global states.

The first definition we consider for a global state is then the following. A system,
state Ψ is a global state if and only if either in Ψ all nodes are in their initial states
(and then all edges are empty), or in Ψ all nodes are in their final states (and then

all edges are empty as well), or there exists a total order ≺ consistent with ≺+,
in which a pair (ξ1, ξ2) of consecutive events exists such that Ψ = system_state (ξ1,
ξ2) (Figure 3.2).
Our second definition of a global state is somewhat simpler, and requires that we
consider a partition of the set of events Ξ into two subsets Ξ1 and Ξ2. Associated
with the pair (Ξ1, Ξ2) is the system state, denoted by system_state (Ξ1, Ξ2), in which
σi is the state in which ni was left by the most recent event of Ξ1 occurring at ni, and
Φij is the set of messages sent on (ni → nj) in connection with events in Ξ1 and
received in connection with events in Ξ2.
The second definition is then the following. A system state Ψ is a global state if and
only if Ψ = system_state(Ξ1, Ξ2) for some partition (Ξ1, Ξ2) of Ξ such that

whenever ξ ∈ Ξ2. (Equivalently, we might have required the existence of a partition
(Ξ1, Ξ2) such that

whenever Ξ ∈ Ξ2.) For simplicity, often we refer to such a partition as the global
state itself. Note that there is no need, in this definition, to mention explicitly the
cases in which all nodes are either in their initial or final states, as we did in the

case of the first definition. These two cases correspond, respectively, to Ξ1 = and

Ξ2 = .
As we mentioned earlier, these two definitions of a global state are equivalent to
each other. The first definition, however, is more suitable to our discussion in
Section 5.2.1, particularly within the context of proving Theorem 5.5. The second
definition , on the other hand, provides us with a more intuitive understanding of
what a global state is. Specifically, the partition (Ξ1, Ξ2) involved in this definition
can be used in connection with the precedence graph H introduced earlier to yield
the following interpretation. The partition (Ξ1, Ξ2) induces in H a cut (a set of edges)
comprising edges that lead from events in Ξ1 to events in Ξ2 and edges from

events in Ξ2 to events in Ξ1. This cut contains no edges from Ξ2 to Ξ1 if and only if
system_state(Ξ1, Ξ2) is a global state, and then comprises the edges that represent
the local states of all nodes (except those in their initial or final states) in that global
state, and the edges that represent messages in transit in that global state (Figure
3.3).

We also mentioned at the beginning of this section that our discussion would apply
both under full asynchronism and under full synchronism. In fact, when defining an
event we explicitly described how the definition specializes to the case of full
synchronism. It should then be noted that the concept of a global state is indeed
equally applicable in both the asynchronous and the synchronous models, although
it is in the former case that its importance is more greatly felt. In the

Figure 3.3: Parts(a) and (b) show the same precedence graph for n= 2. Each of the cuts shown
establishes a different partition (Ξ1, Ξ2) of Ξ. The cut in part (a) has no edge leading from an event
in Ξ2 to an event in Ξ1, and then system_state (Ξ1, Ξ2) is a global state, by our second definition. In
this global state, n1 is in its initial state, n2 is in the state at which it was left by the occurrence of ξ2,
and a message is in transit on the edge from n2 to n1, sent in connection with ξ2, and to be
received in connection with ξ3. The cut in part (b), on the other hand, has an edge leading from ξ2

∈ Ξ2 to ξ3 ∈ Ξ1, so system_state(Ξ1, Ξ2) cannot be a global state.
synchronous case, many global states can be characterized in association with the
value of the global clock, as for example in "the global state at the beginning of
pulse s ≥0." However, there is nothing in the definition of a global state that
precludes the existence in the synchronous case of global states in which nodes'
local states include values of the global clock that differ from node to node.
Having defined a global state, we may then extend the definitions of the past and
the future of an event, given earlier in this section, to encompass similar notions
with respect to global states. If Ψ is a global state, then we define its past and
future respectively as

and

where Ψ = system_state (Ξ1,Ξ2) (this definition demonstrates another situation in
which our second definition of a global state is more convenient). Similarly, we say
that a global state Ψ1 comes earlier in the computation Ξ than another global state
Ψ2 if and only if Past(Ψ1 ⊂ Past(Ψ2) (or, alternatively, if Future(Ψ2) ⊂ Future(Ψ1)).
This definition will be of central importance in our discussion of stable properties in
Chapter 6. Another related definition, that of an earliest global state with certain
characteristics in a computation, can be given likewise. We shall return to it in
detail in Section 9.3.1.
In finalizing this section, the reader should return to our discussion at the section's
beginning to recognize the importance of the concepts we have introduced in
establishing a rigorous and meaningful terminology. In particular, it should be clear
that the partial order ≺+ and the notion of a global state suffice to do away with all
the ambiguities in our previous use of expressions like "concurrent," "scenario,"
and "causally affect" when referring to global timing aspects in the asynchronous
model.

3.2 The complexity of distributed computations

Analyzing the complexity of any computation is a means of expressing quantitatively how
demanding that computation is on the resources that it requires to be carried out. Depending
on the type of computation one is considering, such resources may include the number of
processor cycles, the number of processors, the number of messages that are sent, and
various other quantities that relate to the resources upon which the computation's demands
are heaviest. Determining which resources are crucial in this sense is then the fundamental
issue when defining the appropriate measures of complexity for a computation. For example,
for sequential computations the chiefest resource is time, as given by the number of
processor cycles that elapse during the computation, but often the number of memory cells
employed is also important.

Another example comes from considering parallel computations. Quite often the study of
such computations is concerned with the feasibility of solving a certain problem on more than
one processor so that the computation can be solved faster than on one single processor. In
such cases, one of the fundamental resources continues to be the number of processor
cycles, but now the number of processors is also important, because it is the interplay of
these two quantities that establishes the overall efficiency of the resulting algorithm and also
how that algorithm relates to its sequential counterpart. Models of parallel computation
adopting measures of complexity related to these two types of resource include the PRAM
(Parallel Random Access Machine), which is essentially a synchronous model of parallel
computation on shared-memory cells, as well as other distributed-memory variants, also
synchronous.
Whereas the models of parallel computation we just mentioned are geared towards the so-
called data parallelism, the computations we treat in this book relate more closely to what is
known as control parallelism, and then the approach to measure complexity needs to be
substantially revised. Data parallelism is the parallelism of problem solving, that is, given a
problem, the task is to solve it efficiently in parallel, which includes the design of an algorithm
and the choice of a number of processors leading to the desired efficiency. Control
parallelism, by contrast, is concerned with the computations that have to be carried out on a

fixed number of processors, interconnected in a fixed manner, like our graph G. The
computations of interest are not so much geared towards problem solving, but mainly
towards controlling the sharing of resources, understood in a very broad sense, throughout
the system. Very often this also includes the solution of problems very much in the data-
parallel sense, but now the problem is stated on G, which is fixed, so that the control-parallel
aspects of the computation become far more relevant.
The complexity of distributed algorithms is based on the assumption that communication and
time are the resources whose usage should be measured. Given this choice of crucial
resources, the measures of complexity are expressed in the usual worst-case, asymptotic
fashion, as functions of n and m, respectively the number of nodes and edges in G.
However, because G is in this book taken to represent a great variety of real-world systems
(cf. Section 1.1) at some level of abstraction, some elaboration is required when establishing
the appropriate complexity measures.
A convenient starting point to establish the complexity measures of distributed algorithms is
to first consider communication as the predominant resource under demand. This does not
mean that time ceases to be a relevant issue, but rather that only the time directly related to
communication should be taken into account. This approach takes care of most of our needs
in the book, and is our subject in Section 3.2.1. InSection 3.2.2, we relax this assumption that
communication takes precedence over time that is not related to communication, and then
the time that a node spends computing locally becomes a third resource whose usage is to
be measured. The resulting extended definitions of complexity will be of use especially in
Section 9.3.3..

3.2.1 Communication and time complexities
If communication is the dominating resource under demand, then the complexity of a
distributed algorithm is expressed as two measures. The first measure is the already seen
message complexity (cf. Section 2.1), which is given by the number of messages sent
between neighbors during the computation in the worst case, that is, the maximum number
of messages when variations in the structure of G are considered (when applicable), as well
as all possible executions of the algorithm (each yielding a different set of events, in the
terminology of Section 3.1). Alternatively, this measure can be substituted by the more
accurate message-bit complexity, or simply bit complexity, which can be useful in conveying
relevant differences among algorithms when the messages' lengths depend on n or m (as
opposed to being O(1)). This is, for example, the case of Algorithm A_FIFO ofSection 2.1
and of Algorithm S_Locally_Orient of Section 2.2.3.. In the former case, a message may
contain a task's identification and a node's identification (it may also contain a migrating task,
but we may assume for our present purposes that such a message does not actually contain
the task's code, which would already be present at all nodes, but rather simply the task's
identification), and then the algorithm's bit complexity is, by Theorem 2.3, O(mk(log|NT| + log
n)). In the latter case, messages are sent containing integers no larger than n (cf. (2.16) and
(2.17)), so that the algorithm's bit complexity is O(n log2 n). The bit complexity will be
sometimes employed for our analyses in the book.
The other measure that contributes to expressing the algorithm's complexity is its time
complexity, which, in very loose terms, is given by the time spent in communication that
elapses during the computation in the worst case (again a maximum over the possible
structures of G and over all of the algorithm's executions). Any further elaboration on this
definition requires that we consider the asynchronous model and the synchronous model
separately.
For the synchronous model, the assumption that the cost of communicationdominates all
others should come as no surprise, because since the definition of this model in Section 2.1.
we have assumed that local computation takes no time (or takes a constant time, which can
be assumed to be zero). Although we made this assumption so that the synchronous model
could be described without much further elaboration, in this section the assumption comes in
handy as well, because it is in full accord with the assumed dominance of communication
costs.
The definition of the time complexity in the synchronous model is rather simple, and amounts
essentially to counting the number of pulses that elapse during the computation. In essence,
then, already inSections 2.2.2.and2.2.3. we would have been able to express the time

complexities of Algorithms S_Compute_AND and S_Locally_Orient, respectively. In fact, in
Section 2.2.2we saw that Algorithm S_Compute_AND requires O(n) pulses for completion,
and that is then its time complexity. Similarly, in Section 2.2.3the number of iterations
required by Algorithm S_Locally_Orient was seen to be given by O(log n), and because each
iteration comprises O(n) pulses, the time complexity of that algorithm is O(n log n)
Defining the time complexity for the synchronous model in this straightforward fashion may
seem to the reader not to be in complete agreement with our stated purpose of measuring
time solely as it relates to communication. After all, many pulses may elapse without any
communication taking place (cf., for example, the synchronous algorithms presented in
Sections 2.2.2and 2.2.3), but such pulses do nevertheless get counted when assessing the
algorithm's time complexity. What should be considered to resolve this apparent conflict is
that, as we have mentioned more than once already, in the synchronous model messages
are as important as their absence. By including in the time complexity intervals during which
messages are not sent, we are essentially accounting for the time needed to convey
information through the absence of communication as well.
In the asynchronous model, the assumption that the time complexity only takes into account
the time to perform communication leads to the following methodology to compute an
algorithm's time complexity. First assume, as in the synchronous model, that local
computation takes no time, and also that the time to communicate one message to each
node in a nonempty subset of a node's set of neighbors is O(1).
The time complexity is then the number of messages in the longest causal chain of the form
"receive a message and send a message as a consequence" occurring in all executions of
the algorithm and over all applicasble variations in the structure of G.

This definition can be made more formal, but before we do that let us consider two important
related issues. First of all, it should be clear that the time complexity can never be larger than
the message complexity, because every message taken into account to compute the former
is also used in the computation of the latter. The usefulness of the time complexity in spite of
this relationship with the message complexity is that it only considers messages that happen
"sequentially" one after the other, that is, messages that are causally bound to one another.
Essentially, then, the time complexity in the asynchronous case can be regarded as being
obtained from the message complexity by trimming off all the messages that are "concurrent"
to those in the longest receive-send causal chain.
The second issue is that the assumption of O(1) message transmission times for the
computation of the time complexity is only completely valid if every message has length O(1)
as well. However, we do maintain the assumption to compute the time complexity even
otherwise, because taking variable lengths into account would not contribute qualitatively to
establishing what the lengthiest causal chain is. In addition, the effect of variable length is
already captured by the algorithm's bit complexity, introduced earlier in this section, which
should be used when needed.
The way to define the time complexity of an asynchronous algorithm more formally is to
resort to the precedence graph H introduced in Section 3.1. This graph summarizes the
essential causal dependencies among events in the computation, and allows the definition of
the time complexity to be given rather cleanly as follows. Let every edge in H be labeled
either with a 1, if it corresponds to a message, or with a 0, otherwise. Clearly, this reflects our
assumptions that messages take constant time to be sent between neighbors and that local
computation takes no time. The time complexity for fixed G and H (i.e., for a fixed execution
of the algorithm) is then the length of the longest directed path in H, with the labels of
individual edges taken as their lengths. Taking the maximum over the applicable variations of
G and over all the executions of the algorithm (all H's) yields the desired measure.
The reader should now be in position to return to the asynchronous algorithms given
previously in the book, and have their time complexities assessed to O(1), in the case of
Algorithm A_FIFO, and to O(n), in the case of Algorithm A_Compute_f.

3.2.2 Local and global measures
Assuming that communication dominates the complexity of a distributed computation, and
that in turn local computation takes no time, is reasonable for many of the systems discussed
in Section 1.1, especially computer networks and networks of workstations. However, G is

intended to model a greater variety of message-passing systems, and for some of these,
including the multiprocessors also discussed in Section 1.1, such an assumption may be a
bit too strong.
In this section, we consider the impact of facing nonconstant local processing times, and
expand our collection of complexity measures to encompass others that may reflect this
extended view more appropriately. In the synchronous case, all that would be required would
be to let the duration of an interval of the global clock be a function of n and m. This function
would then yield a third complexity measure for the synchronous model, and everything else
would remain essentially as is. It is interesting to note, however, that under this broader
assumption on the duration of an interval the overall picture of a synchronous computation
would change a little. Specifically, it would be possible to send messages at any point inside
an interval, not only at the interval's beginning. Furthermore, in terms of the event-based
formalism of Section 3.1,internal events would exist in the synchronous model as well.
It is important to note, in the synchronous model, that at pulse s > 0 a node ni may need to
examine the set of MSGi(s) of messages received during the previous interval, and the time
to do this should continue to be assumed constant even when the time to do local processing
is taken to be variable. What this implies, together with the assumption we have made so far
that a node may send one message to all of its neighbors in parallel, is that none of the
synchronous algorithms we have seen so far requires taking local processing times to be
anything else than constant. Even Algorithm S_Locally_Orient, in which by (2.16) and (2.18)
it would seem that the examination of O(n) sets of messages is required at a single pulse,
can be easily written in more detail and then seen to require the examination of only one
such set per pulse.
In the context of this book, however, it is in the asynchronous case that nonconstant times for
local computation will be most important, although not until Chapter 9. In the asynchronous
model, then, we shall let the local time complexity refer to the time to perform local
computation upon receiving a message. This is then the complexity of an atomic action in
Algorithm A_Template. Whenever we use this complexity measure in the book, and if
confusion may arise, we refer to the algorithm's time complexity as its global time complexity.
Algorithm A_Compute_f is the only algorithm we have seen so far for which variable local
processing times may need to be considered. What leads to this is that the computation of

in (2.11) may require a time to be performed that is a function of
n.Considering this algorithm carefully leads us to other situations in which it would be
justifiable to assume nonconstant local processing times. As we mentioned earlier in Section
3.2,often a distributed algorithm is designed to solve a problem that is posed on G. Typical
examples of such problems are the ones in consider in Sections 4.2, and 4.3, and in Chapter
7, in which we discuss graph algorithms. Clearly, in such cases a possibility would be to have
all nodes transmit their local share of information on the structure of G to a previously
designated node (a leader—cf. Section 5.1,), which would then solve the problem locally and
then after that possibly spread the solution to the other nodes. This would be very much in
the style of Algorithm A_Compute_f, although the assumed anonymity in the case of that
algorithm disallows the existence of a leader altogether, as we discuss in section 5.1. In fact,
in the presence of anonymity there is no other choice but to program all nodes to perform the
same computation, as we discussed in Section 2.2.
However, if the system is not anonymous, then the alternative of coalescing all the
information regarding G into a leader for solution of the problem is a real possibility, and for
this possibility it is important to consider the local time complexity of solving the entire
problem in one single node. Moreover, concentrating all the relevant information in the leader
may have O(nm) message complexity (considering that each message contains a constant
number of node identifications) and O(n) time complexity, which, after added to the
complexity of electing a leader, should also be compared with the corresponding measures
elicited by the fully distributed alternative, in which all nodes participate in the solution of the
problem by computing on its share of the problem's input (the structure of G).

3.3 Full asynchronism and full synchronism
Having introduced the complexity measures of relevance for distributed algorithms,
in this section we return to the question, first raised in Section 2.1,of the

equivalence between the asynchronous and synchronous models. What we do is
first to indicate explicitly how Algorithm S_Template can be used to express an
asynchronous algorithm (originally written over the template given by Algorithm
A_Template). Then, conversely, we show how to employ Algorithm A_Template as
a basis to transform a synchronous algorithm (originally written over the template
Algorithm S_Template) into an asynchronous algorithm.
The first part is simpler, because an asynchronous algorithm runs under all
possible variations in the timing of the asynchronous model, in particular in the
variation that corresponds to the synchronous model. The only concern we must
have when translating Algorithm A_Template into Algorithm S_Template is that, in
the former, atomic actions are in general triggered by the arrival of messages and
executed when the corresponding Boolean conditions hold, while in the latter nodes
are driven solely by the global clock and operate on the sets of messages received
during the preceding intervals. Algorithm S_Template makes no provisions to
condition the execution of an action upon the validity of a Boolean expression,
which must then be treated inside the action itself. What this amounts to in the
translation of an asynchronous algorithm into a synchronous one is that, upon the
occurrence of pulse s=1, only those messages in MSGi(1) received by ni∈N on
edges for which the corresponding Boolean conditions in the asynchronous
algorithm hold can lead to the execution of the corresponding actions. The others
must be held for reconsideration upon the occurrence of pulse s = 2. In general,
then, at pulse s > 0 a node ni, may compute on messages from any of MSGi(1),…,
MSGi(s), at which occasion those messages are deleted from the set to which they
belong so that the remaining ones may be considered in further pulses. This
strategy is reflected in Algorithm A-to-S_Template, given next.
The message msgi that in Algorithm A_Template triggers ni's action is in Algorithm
A-to-S_Template viewed as a variable, initially equal to nil.

Algorithm A-to-S_Template:

 Variables:
 msgi = nil;
 Other variables used by ni, and their initial values, are listed here.

Listing 3.1

 Input:

 s=0, MSGi(0) = .
 Action if ni ∈ No:
 Do some computation;
 Send one message on each edge of a (possibly empty) subset of
 Outi.

Listing 3.2

 Input:
 s > 0, MSGi(1),…, MSGi(s) such that origini(msg) = ck ∈ Ini

 with 1 ≤ k ≤ |Ini | for MSGi(r).
 Action:

 while there exist msg, r ∈ {1,…, s}, and k ∈ {1,…,|Ini|} such
 that msg ∈ MSGi(r) with origini (msg) = ck and Bk do
 begin
 Let r' be the smallest such r and k' any such k;
 msgi := msg;
 Remove msg from MSGi(r');
 Do some computation;
 Send one message on each edge of a (possibly empty) sub-
 set of Outi

 end.

In Algorithm A-to-S_Template, (3.1) is identical to (2.8) in Algorithm S_Template,
while (3.2) reflects the need to evaluate the appropriate Boolean conditions before
the action corresponding to (2.2) in Algorithm A_Template can be executed. What
(3.2) does at pulse s > 0 is to select from MSGi(1),…, MSGI (s) one of the earliest
messages (in the synchronous sense) for which the corresponding Boolean
condition is true, and then to allow the corresponding action of the asynchronous
algorithm to be executed. When edges are FIFO, then (3.2) has to be worked on a
little so that the choice of r' and k' guarantees that msg is, of the messages to have
arrived on ck' but not yet received, the one to have arrived first. The reason why this
might not happen is that Bk' might be false for the first message and not for some
other arriving on the same edge. If this happened for all edges, then ni should
simply halt, thereby indicating an error in the design of the algorithm, just as
Algorithm A_Template would.
Clearly, this translation of an asynchronous algorithm to run in the synchronous
model does not change the algorithm's message complexity. In addition, the reader
should check carefully that the same holds for the time complexity, that is, the
number of pulses that elapse before termination of the resulting synchronous
algorithm is exactly the number of messages in the lengthiest causal chain during
an execution of the asynchronous algorithm. In addition, even if local processing
cannot be assumed to be instantaneous, the translation does not increase the
amount of local computation that needs to be carried out, even though it would
seem that the need to check so many sets of messages in (3.2) could require
further local processing. Readily, these sets can be organized as |Ini| queues of
messages at ni, that is, one per incoming edge. Then the work that has to be done
at (3.2) is the same that in Algorithm S_Template ni has to do, and this is assumed
to take constant time even if local processing cannot be so assumed.
The other direction of transformation, namely to transform a synchronous algorithm
into an asynchronous one, is not as immediate, and in this secion we only touch
the issue superficially. We return to the subject in Section 5.3 for the complete
details. Naturally, the problem in this case is that the resulting asynchronous
algorithm must only allow the action of ni at pulse s > 0 to be executed when the set
MSGi(s) is available, and this is not immediate in the asynchronous model. It
seems apparent, then, that in the resulting asynchronous algorithms there has to
be more communication among the nodes than in the synchronous algorithm, so
that these sets of messages can be ensured to contain all the pertinent messages
when they are used. This further increase in communication may then lead to a
greater time complexity for the asynchronous algorithm when compared to the
synchronous algorithm.
A template for the translation of a synchronous algorithm into an asynchronous
algorithm is given next as Algorithm S-to-A_Template. This algorithm employs an
integer variable si ≥ 0 for ni ∈ N. This variable, initially such that si = 0, is used to
keep track of the pulses of the synchronous algorithm. A Boolean function DONEi

(si) is used to indicate whether ni is ready to proceed to the execution of the action
that the synchronous algorithm would execute at pulse si + 1 for si ≥ 0 (determining
what this function should do is then essentially our subject in Section 5.3). Finally,
the sets MSGi(s) for s ≥ 0 that Algorithm S_Template employs are also variables of
Algorithm S-to-A_Template, initially empty sets.

Algorithm S-to-A_Template:

 Variables:
 si=0;

 MSGi(s) = for all s ≥ 0;
 Other variables used by ni, and their initial values, are listed here.

Listing 3.3

 Input:
 msgi = nil
 Action if ni ∈ No:
 Do some computation:
 Send one message on each edge of a (possibly empty) subset of
 Outi

Listing 3.4

 Input:
 msgi such that origini (msgi) = ck ∈ Ini with 1 ≤ k ≤ |Ini|.
 Action:
 if DONEi(si) then
 begin
 si := si + 1;
 Do some computation;
 Send one message on each edge of a (possibly empty) sub-
 set of Outi

 end
 else
 Add msgi to MSGi(si + 1) if appropriate.

In Algorithm S-to-A-Template, (3.3) is identical to (2.1) in Algorithm A-Template,
while (3.4) indicates how the function DONEi(si) is to be used to ensure that si can
be incremented and that the action that Algorithm S-Template would perform at
pulse.si + 1 by (2.9) can be executed. When (3.4) is executed and DONEi(si) turns
out to be false, then msgi, the message that triggered the action, is added to MSGi

(si + 1) if appropriate (msgi may be a message unrelated to the synchronous
algorithm, that is, one of the messages constituting the additional communication
traffic that the transformation requires).
As we remarked earlier, transforming a synchronous algorithm into an
asynchronous one may lead to increases in both the message complexity and the

time complexity with respect to the synchronous algorithm. On the other hand, as
will become apparent from the material in Section 5.3, the complexity that results
from assuming nonconstant local processing times remains unchanged.

3.4 The role of synchronism in distributed computations
So far in the book we have stressed more than once that the synchronous model is, in at
least one important sense, more "powerful" than the asynchronous model. The justification
behind this informal notion has been that, in the synchronous model, the absence of
messages conveys information to nodes, while in the asynchronous model nothing like this
happens. In fact, in Sections 2.2.2 and 2.2.3we have given two synchronous algorithms,
respectively Algorithms S-Compute-AND and S-Locally-Orient, whose message complexities
are strictly lower than that of Algorithm A-Compute-f, which is an asynchronous algorithm that
may be used for the same purposes as those two synchronous algorithms. Of course,
Algorithms S-Compute-AND and S-Locally-Orient do not have the same generality of
Algorithm A-Compute-f, and then it might be argued that the improvement in message
complexity is a consequence of their single-purpose nature, rather than the result of
exploiting the characteristics of the synchronous model. However, it should be simple for the
reader to verify that the same particularizations would not lead to any improvements in
message complexity under the asynchronous model.
The central question that we address in this section is whether the synchronous model can
also yield improvements in the time complexity of some asynchronous algorithms. As we
remarked in Section 3.3, designing an algorithm for the synchronous model and then
transforming it into an asynchronous algorithm may lead to an increase in both the message
and time complexities with respect to the synchronous algorithm. But this does not imply that
an asynchronous algorithm designed "from scratch" (i.e., not as the result of a transformation
from a synchronous algorithm) would not have better complexities than the synchronous
algorithm. In order to address this issue, we discuss a problem for which every asynchronous
algorithm must have a strictly greater time complexity than a very straightforward
synchronous algorithm that solves the same problem, thereby answering our question
affirmatively.
The problem that we discuss is stated in very abstract terms, and is related to
synchronization issues in distributed systems, although one will probably not easily find any
practical situation to which it may be readily applicable. Stating the problem requires the
introduction of the following new terminology. A port is a special edge in the graph G, and a
port event is an event that involves the sending of a message on a port. A node at which a
port event may happen (i.e., it may send messages on a port) is called a port node. A
session is informally defined in terms of our terminology of Section 3.1as a set of events
including at least one port event for every port and"delimited" by two global states. More
formally, if Ξ is the set of events representing a distributed computation, then S ⊆ Ξ is a
session if and only if S includes at least one port event for every port and in addition two
global states (Ξ1, Ξ2) and (Ξ3, Ξ4) exist such that

For integers μ and σ such that 1 ≤ μ ≤ m and σ ≥ 1, the problem that we consider is called the
(μ, σ)-session problem, and asks that a graph G with μ ports and a distributed algorithm on G
be found such that every execution of the algorithm can be partitioned into at least σ
sessions. In addition, the set of events associated with every execution of the algorithm is
required to be finite and every port node is required to obtain the information that the σ
sessions have occurred.
Solving the (μ, σ)-session problem is in general very simple. For the synchronous model, the
problem is solved by choosing G to be any graph with no more than one port per node, and
the synchronous algorithm to be such that every port node sends a message on its port at
each of the pulses s = 0,…, σ −1. The time complexity of this synchronous algorithm is O (σ).
In the asynchronous model, we can also solve the problem with the same time complexity,
as follows. Choose G as in the synchronous case, except that all port nodes can send
messages to one another as well. The asynchronous algorithm is such that every port node
performs σ rounds of sending a message on its port and then sending a message to every
other port node containing information that it has finished its participation in the current
session. The next round is only performed after similar messages have been received from

all other port nodes. The reader should verify that the time complexity of this algorithm is O
(σ) if N0 contains all port nodes.
The difficulty arises when in G we place a constant bound b on | Outi | (or | Inci |, in the
undirected case), thereby limiting the number of messages that a node may send in a single
action of Algorithm S-Template or Algorithm A-Template (G is in this case said to be b-
bounded). Clearly, this bound does not affect our proposed synchronous solution to the (μ,
σ)-session problem, but the asynchronous solution is no longer feasible within O (σ) time,
because the broadcast to all port nodes at the end of each round can no longer be achieved
within O(1) time. We give in Theorem 3.1 a lower bound on the time required by any
asynchronous solution to the problem.

Theorem 3.1.
For b ≥ 1, every asynchronous solution to the (μ, σ)-session problem in which G is b-
bounded must be such that the corresponding asynchronous algorithm has time complexity
of at least (σ −1)⌊logb+1 μ⌋ − 1.
Proof: Let G be b-bounded, and consider an asynchronous solution to the (μ, σ)- session
problem consisting of G and of an asynchronous algorithm. Let Ξ be the set of events

corresponding to an execution of this algorithm, and label every event Ξ with an integer
(ξ) obtained inductively as follows. If ξ happens at ni ∈ N when ni is in its initial state, then let

(Ξ) = 0. If not, then let (ξ) = (ξ') + 1, where ξ' is the event having the greatest label
among the events ξ' in connection with which at least one m`essage is sent and in addition ξ'
≺+ ξ. Informally, this labeling of the events in Ξ corresponds to attaching to each event the
number of messages on which it depends causally. Because Ξ is finite, every label is finite as
well. Let t be the greatest label over Ξ. Clearly, the time complexity of the algorithm is at least
t. Now let

and partition Ξ into the K subsets of events Ξ1,…, ΞK, where, for k = 1,…, K, ξ ∈ Ξk is such

that (k − 1) ⌊logb+1 μ⌋ ≤ (ξ) ≤ k⌊logb+1 μ⌋ − 1. Clearly, then, all of

for 1 ℓ l < K) are global states, because of the way the labels were assigned and of the
fact that no two sets of Ξ 1,…, Ξ K have any event with the same value for
The next step is to partition every Ξ k into the sets Γk and Θk such that all of

for 1 < ℓ < K, and

are global states, and furthermore the following two conditions hold for a sequence of ports
e0,…,eK (this sequence may contain the same port more than once).

i. Γk does not contain any port event involving ek−1.
ii. Θk does not contain any port event involving ek.

This partitioning can be done for all k = 1,…, K inductively as follows. Pick e0 to be any
arbitrary port, and assume that ek−1 has been defined. If a port exists that is not involved in
any port event in Ξk, then let ek be that port, Γk = Θ, and Θk = Ξk, thereby satisfying conditions
(i) and (ii). If, on the other hand, every port is involved in at least one port event in Ξk, then let
Ξ1 be the earliest port event involving ek−1 in Ξk, and consider the number of port events
contained in the set

This set includes Ξ1 and every other port event in Ξk that is in the future of Ξ1 (including, of
course, every other port event involving ek−1 in ek−1 in Ξk). Because G is b-bounded, and
considering the range of values for in Ξk, the number of port events that we seek is no

larger than the sum of the elements in the geometric progression of rate b + 1 starting at 1
and ending at

that is,

What this means is that at least one of the μ ports is not involved in any of the port events in
Fk. Taking one of these ports to be ek, Γk = Ξk - Fk, and Θk = Fk clearly satisfies conditions (i)
and (ii). It can be easily verified that, in both cases, the resulting Γk and Θk induce global
states, as required (cf. Exercise 5).
By conditions (i) and (ii), the sets Γ1, Θk−1 ∪ Γk for 1 < k ≤ K, and ΘK cannot contain a
session, because a session must include at least one port event for every port. What this
amounts to is that every session must have a nonempty intersection with both Γk and Θk for
some k such that 1 ≤ k ≤ K, meaning that K is the maximum number of sessions in Ξ.
Because Ξ contains at least σ sessions, and considering the definition of K, we have

and then t ≥ (σ −1) ⌊logb+1 μ⌋ − 1.
Theorem 3.1 and our discussion earlier in this section indicate that the synchronous model
possesses characteristics that allow synchronous algorithms to perform better than
asynchronous algorithms with respect to the algorithms' message and time complexities. In
practice, however, the main interest in the synchronous model stems from the possibility of
eventually obtaining an asynchronous algorithm from an algorithm originally designed for the
synchronous model. This is the subject of extensive discussion in Section 5.3, but in this
section we wish to highlight the role that this approach has had historically in the
development of distributed algorithms.
We consider the problem of establishing a breadth-first numbering on the nodes of G when
G is a directed graph. This problem asks that every node ni be assigned a nonnegative
integer di equal to the shortest distance from a designated node n1 to ni in terms of numbers
of edges. Initially, di = ∞ for all ni ∈ N, thereby taking care of those nodes to which no directed
path exists from n1. This problem is closely related to the problem of determining the shortest
distances between all pairs of nodes when G is undirected (we treat this problem in Section
4.3).
Obtaining a synchronous algorithm to solve this problem is a trivial matter. At pulse s = 0, n1

sets d1 to zero and sends a message on every edge in Out1. For s > 0, if a node ni receives
at least one message during interval s – 1 and at pulse s it still holds that di = ∞, then it must
be that the shortest directed path from n1 to ni contains s edges. What ni does in this case is
to set di to s and then send a message on each edge in Outi. Readily, this algorithm requires
no more than n – 1 pulses for completion and employs no more than m messages. Its time
and message complexities are then, respectively, O(n) and O{m).
Historically, this simple synchronous algorithm has accounted for the introduction of an
asynchronous algorithm of time complexity O(n log n/ log k) and message complexity O(kn2)
for arbitrary k such that 2 ≤ k < n, while the best asynchronous algorithm available at the time
had time complexity O(n2−2ℓ) and message complexity O(n2+ ℓ) for arbitrary ℓ such that O ≤ ℓ ≤
0.25. The reader should experiment with these complexities to verify that, given any l in the
appropriate range, there exists a k, also in the appropriate range, such that the algorithm
obtained from the synchronous algorithm is strictly better in at least one of the two complexity
measures (and no worse in neither).

3.5 Exercises
1. Show that the two definitions of a global state given in Section 3.1are equivalent to each other.
2. Obtain the time complexity of Algorithm A_FIFO when it is viewed as being executed over GP.

3. Give the details of an algorithm to concentrate upon one single node all the information on the
structure of G. The resulting algorithm should have the complexities mentioned in Section 3.2.2.
4. Consider the (μ,σ)-session problem in the asynchronous case, and suppose that a node does
its σ port events all before the broadcast. What is wrong with this approach?
5. Consider an event ξ and the sets
6. Consider the synchronous algorithm for breadth-first numbering described in Section 3.4.
Express that algorithm in the format given by AlgorithmS-Template.

1.
Show that the two definitions of a global state given in Section
3.1are equivalent to each other.

2.
Obtain the time complexity of Algorithm A_FIFO when it is viewed
as being executed over GP.

3.

Give the details of an algorithm to concentrate upon one single
node all the information on the structure of G. The resulting
algorithm should have the complexities mentioned in Section
3.2.2.

4.

Consider the (μ,σ)-session problem in the asynchronous case,
and suppose that a node does its σ port events all before the
broadcast. What is wrong with this approach?

5.

Consider an event ξ and the sets

and

Show that both partitions (Ξ1,Ξ - Ξ1) and (Ξ - Ξ2,Ξ2) are global
states.

6.

Consider the synchronous algorithm for breadth-first numbering
described in Section 3.4. Express that algorithm in the format
given by AlgorithmS-Template.

3.6 Bibliographic notes
The material in Section 3.1is based on Lamport (1978) and on Chandy and Lamport (1985),
having also benefited from the clearer exposition of the concept of a global state to be found
in Bracha and Toueg (1984). Additional insights into the concepts discussed in that section
can be found in Yang and Marsland (1993), and in the papers in Zhonghua and Marsland
(1994).
Formalisms different from the one introduced in Section 3.1, often with accompanying proof
systems, have been proposed by a number of authors. These include temporal logic (Pnueli,
1981; Manna and Pnueli, 1992) and I/O automata combined with various proof techniques
(Lynch and Tuttle, 1987; Chou and Gafni, 1988; Welch, Lamport, and Lynch, 1988; Lynch,
Merritt, Weihl, and Fekete, 1994). Additional sources on related material are Malka and
Rajsbaum (1992) and Moran and Warmuth (1993).
Most of the complexity measures introduced in Section 3.2 are standard in the field, and can
also be looked up in Lamport and Lynch (1990). The reader may also find it instructive to
check different models and associated complexity measures in the field of parallel and
distributed computation. Source publications include Gibbons and Rytter (1988), Akl (1989),
Karp and Ramachandran (1990), Feldman and Shapiro (1992), JáJá (1992), and Leighton
(1992).
Section 3.3is related to the discussion in Awerbuch (1985a), while the material in Section
3.4is based mostly on the work by Arjomandi, Fischer, and Lynch (1983). The comments at
the end of the section on the breadth-first numbering of nodes derive from Awerbuch
(1985b).

Chapter 4: Basic Algorithms

Overview

Three basic problems are considered in this chapter, namely the problems of propagating
information from a group of nodes to all nodes, of providing every node with information on
which are the identifications of all the other nodes in G, and of computing the shortest
distances (in terms of numbers of edges) between all pairs of nodes. Throughout this
chapter, G is an undirected graph.
The first problem is treated in Section 4.1, first in the context of propagating information from
a group of nodes to all the nodes in G, and then in the context of propagating information
from one single node to all others but with the additional requirement that the node originally
possessing the information must upon completion of the algorithm have received news that
all other nodes were reached by the propagation. Our discussion in Section 4.1
encompasses both the case of one single instance of the algorithm being executed on G and
of multiple concurrent instances initiated one after the other.
Section 4.2 contains material on the detection of G's connectivity by all nodes in the form of
providing each node with a list of all the other nodes in G. Although many algorithms can be
devised with this end, the one we present builds elegantly on top of one of the algorithms
discussed in the previous section, and is for this reason especially instructive.
Computing all-pair shortest distances is our subject inSection 4.3. This is the first graph
problem we treat in detail in the book (others can be found in Chapter 7). Our approach in
Section 4.3 is that of not only giving a fundamental distributed algorithm, but also providing a
nontrivial example to be used to illustrate the relationship between the asynchronous and
synchronous models of distributed computation when we further return to that topic inSection
5.3.
Sections 4.4 and 4.5contain, respectively, exercises and bibliographic notes.

4.1 Information propagation
The problem that we consider in this section is that of propagating a piece of information
(generically denoted by inf) from the single node (or group of nodes) that originally possesses
it to all of G's nodes. We divide our discussion into two parts. The first part is the
presentation of algorithms to solve two important variations of the problem, and comes in
Section 4.1.1.
The second part is a discussion of how to handle multiple concurrent instances of these
algorithms without examining the contents of the message being propagated. This is the
subject ofSection 4.1.2.

4.1.1 Basic algorithms
The problem of propagating information through the nodes of G is the problem of
broadcasting throughout G information originally held by only a subset of G's nodes. In this
section, we consider two variations of this problem, known respectively as the Propagation of
Information problem (or PI problem) and the Propagation of Information with Feedback
problem (or PIF problem). In the PI problem, all that is asked is that all nodes in G receive inf,
whereas in the PIF problem the requirement is that not only all nodes receive inf but also that
the originating node be informed that all the other nodes possess inf. Let us discuss the PI
problem first.
The PI problem can be solved by a wide variety of approaches, each one with its own
advantages. For example, if n1 is the node that originally possesses inf, then one possible
approach is to proceed in two phases. In the first phase, -a spanning tree is found in G. In
the second phase, the spanning tree is employed to perform the broadcast, as follows. Node
n1 sends inf on all the edges of the spanning tree that are incident to it. Every other node,
upon receiving inf, passes it on by sending it on every edge of the spanning tree that is
incident to it and is not the edge on which inf arrived. Readily, if the spanning tree can be
assumed to be available to begin with, then an asynchronous algorithm based on this
strategy has message and time complexities both equal to O(n)
This simple approach can be extended to the case in which inf is originally possessed by
more than one node. In this case, instead of a spanning tree we need a spanning forest,
each of whose trees including exactly one of the nodes having inforiginally. The broadcast
procedure on each tree is then entirely the same as we described for the case of a single
initiator.

There are essentially three reasons why this simple and effective approach may be
undesirable. The first reason is that the spanning tree (or spanning forest) may not be
available to begin with and then has to be determined at the cost of additional message and
time complexities. Of course, once the tree (or forest) has been determined, then it may in
principle be used indefinitely for many further broadcasts from the same nodes, so that
apparently at least the additional cost may be somehow amortized over many executions of
the algorithm and then become negligible for most purposes. The second reason for
investigating other approaches in spite of this possible amortization of the initial cost comes
from considering possible applications of the algorithm. By forcing the broadcast to be
carried out on the same edges all the time, we are in essence ignoring the effect the possible
variations with time on the delays for message delivery and also ignoring the fact that relying
on a single tree (or forest) may be unreliable. Although our models of computation make no
provisions for either circumstance to actually be an issue, in practice it may certainly be the
case.
The third reason for us to consider a different approach (and really the most important one)
is that this other approach, although extremely simple, illustrates interesting principles of
distributed algorithm design, and in addition constitutes a sort of foundation for the rest of this
chapter and for other sections to come as well(Section 5.2.1, for example).
The solution we describe next to the PI problem does the broadcast by "flooding" the
network, and for this reason has a higher message complexity than the one we gave based
on a spanning forest. The very simple idea behind this approach is that all nodes possessing
inf initially send it to all of their neighbors at the beginning (they all start concurrently). Every
other node, upon receiving inf for the first time, sends it on to all of its neighbors, including
the one from which it was received. As a result, a node receives inf from all of its neighbors.
In this strategy, inf is propagated from the nodes that initially possess it as a "wave," and then
reaches all nodes as fast as possible and regardless of most edge failures (that is, those that
do not disconnect G). This figurative view of how the algorithm proceeds globally is quite
helpful to one's understanding of various distributed algorithms, including many that we
discuss in this book, most notably inChapter 5,6, and 9.
This strategy is reflected in Algorithm A_PI, given next. In this algorithm, The set N0

comprises the nodes that possess inf initially. A node ni, employs the the Boolean variable
reachedi (equal to false, initially) to indicate whether ni has been reached by inf. Node ni,
upon receiving inf from a neighbor, must check this variable before deciding whether inf
should be passed on or not.

Algorithm A_PI

 Variables:
 reachedi = false.

Listing 4.1

 Input:
 msgi = nil.

 Action if ni ∊ N0

 reachedi := true;
 Send inf to all nj ∊Neigi

Listing 4.2

 Input:

 msgi = inf.

 Action:
 if not reachedi then
 begin
 reachedi := true;
 Send inf to all nj ∊ Neigi

 end.

It should be instructive for the reader to briefly return to the interpretation of the functioning of
this algorithm as a wave propagation to verify the following. It is impossible for a node ni, for
which reachedi = true to tell whether a copy of inf it receives in (4.2) is a response to a
message it sent in (4.1) or (4.2), or a copy that was already in transit to it when a message it
sent out arrived at its destination. In the latter case, letting nj be the node from which this
copy of inf originated, the edge (ni, nj) is one of the edges on which two waves meet, one
from each of two members of N0 (possibly ni, nj, or both, depending on whether they belong
to N0).
Because in G there exists at least one path between every node and all the nodes in N0, it is
a trivial matter to see that inf does indeed get broadcast to all nodes by Algorithm A_PI. In
addition, by (4.1) and (4.2), it is evident that the message complexity of this algorithm is O(m)
(exactly one message traverses each edge in each direction, totaling 2m messages) and that
its time complexity is O(n)
Let us now consider the PIF problem. Unlike the PI problem, the PIF problem is stated only
for the case in which inf is initially possessed by a single node. Similarly to the PI problem, a
solution based on a spanning tree can also be adopted, having essentially the same
advantages and drawbacks as in the case of that problem. In such a solution, n1, the only
node originally possessing inf, is viewed as the tree's root, while every other node possesses
a special neighbor, called parenti at node ni on the tree path from ni to n1. The algorithm
initiates with n1 sending inf on all tree edges incident to it. Every other node ni, upon receiving
inf from a neighbor for the first time, sets parentito be that neighbor and, if not a leaf,
forwards inf on all tree edges incident to it, except the one leading to parenti. If ni is a leaf,
then it sends inf back to parenti immediately upon receiving it for the first time. Every other
node, except n1, having received inf on every tree edge, sends inf to parenti. Upon receiving
inf on all tree edges incident to it, n1 has the information that inf has reached all nodes.
Clearly, this solution has both the message and time complexities equal to O(n)
The solution by flooding to the PIF problem that we now describe in detail is an extension of
the flooding solution we gave in Algorithm A_PI to the PI problem. Similarly to the spanning-
tree-based solution we just described, a variable parenti is employed at each node ni to
indicate one of ni's neighbors. In contrast with that solution, however, this variable is no
longer dependent upon a preestablished spanning tree, but rather is determined dynamically
to be any of ni's neighbors as follows. When ni receives inf for the first time, parenti is set to
point to the neighbor of ni from which it was received. The algorithm is started by n1, which
sends inf to all of its neighbors. Every other node ni, upon receiving inf for the first time, sets
parenti appropriately and forwards inf to all of its neighbors, except parenti. Upon receiving a
copy of inf from each of its neighbors, ni may then send inf to parenti as well. Node n1 obtains
the information that all nodes possess inf upon receiving inf from all of its neighbors.
This algorithm is given next as Algorithm A-PIF. The variable parenti is initialized to nil for all
ni ∊ N. Node ni also employs the variable counti, initially equal to zero, to register the number
of copies of inf received, and the Boolean variable reachedi, initially set to false, to indicate
whether ni, has been reached by inf. Note that counti = 0 if reachedi = false, but not
conversely, because reached1 must become true right at the algorithm's onset, at which time
count1 = 0. The set N0 now comprises one single element, namely the node that initially
possesses inf, so No = {n1}

Algorithm A_PIF:

 Variables:
 parenti = nil;
 counti = 0;
 reachedi = false.

Listing 4.3

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 reachedi := true;
 Send inf to all nj ∊ Neigi.

Listing 4.4

 Input:
 msgi = inf such that origini(msgi) = (ni, nj).

 Action
 counti := counti + 1;
 if not reachedi then
 begin
 reachedi := true;
 parenti := nj;
 Send inf to every nk Neigi such that nk ≠ parenti

 end;
 if counti = |Neigii| then
 if parenti ≠ nil then
 Send inf to parenti.

It follows easily from (4.3) and (4.4) that the collection of variables parenti for all ni ∊ N
establishes on G a spanning tree rooted at n1 (Figure 4.1). The leaves in this tree are nodes
from which no other node receives inf for the first time. The construction of this tree can be
viewed, just as in the case of Algorithm A-PI, as a wave of information that propagates
outward from n1 to the farther reaches of G. Clearly, this construction involves

messages and O(n) time. If it can be shown that every edge on the tree (there are n− 1 such
edges) carries an additional copy of inf from node ni ≠ n1 to parenti by time O(n) as well, then
the total number of messages involved in Algorithm

Figure 4.1: During an execution of Algorithm A_PIF, the variables parent i for all nodes ni are set
so that a spanning tree is created on G. This spanning tree is rooted at n1, and its leaves

correspond to nodes from which no other node received inƒ for the first time. In this figure, a
directed edge is drawn from ni to nj to indicate that parenti = nj.

A_PIF is 2m = O(m), while its time complexity is O(n). Theorem 4.1 provides the necessary
basis for this argument, with Ti ⊆ N containing the nodes in the subtree rooted at node ni.

Theorem 4.1
In Algorithm A_PIF, node ni ≠1 sends in ƒ to parenti within at most 2d time of having received
inƒ for the first time, where d is the number of edges in the longest tree path between ni and
a leaf in Ti. In addition, at the time this message is sent every node in Ti has received in ƒ.
Proof: The proof proceeds by induction on the subtrees of Ti. The basis is given by Ti's
leaves, and then the assertion clearly holds, because no nj ∊ N is such that parenti is a leaf in
Ti. Assuming the assertion for all the subtrees of Ti rooted at nodes nj such that parentj= ni

leads directly to the theorem, because the induction hypothesis states that every such nj

sends inƒ to ni within at most 2(d −1) time of having received inƒ for the first time. The
theorem then follows by (4.3) and (4.4).
In addition to helping establish the complexity of Algorithm A_PIF, Theorem 4.1 is also useful
in polishing our view of the algorithm's functioning as a wave propagation. What happens
then is that a wave is propagated forward from n1, and then another wave is propagated
("echoed") back to n1. This second wave is initiated concurrently at all the leaves of the
spanning tree and collapses back towards n1. Notice that the two waves are not really
completely separated from each other. In fact, it may happen that the second wave reaches
a node before the first wave has reached that node on all possible fronts (i.e., on all possible
edges incident to that node).

Corollary 4.2.
In Algorithm A_PIF, node n1 receives inƒ from all of its neighbors within time O(n) of having
executed (4.3). In addition, at the time the last inƒ is received every node in N has received
inƒ
Proof: Immediate from Theorem 4.1 applied to all nodes ni such that parenti = n1 and from
(4.4).
Before ending this section, we wish to make one comment that relates the two algorithms we
have studied to material we saw previously in Section 2.3. From the perspective of the
material discussed in that section, Algorithms A_PI and A_PIF offer good examples of how
the knowledge that the nodes have evolve as the algorithms are executed. In the case of

Algorithm A_PI, before the algorithm is started it holds that Ki for all ni ∊ N0, with

being any sentence that can be deduced from inƒ. When the algorithm is done, then Ki

holds for all ni, ∊ N.
The situation is quite similar for Algorithm A-PIF, although more can be said. Initially, it holds

that Ki , and after the first wave has reached all nodes it holds that Ki for all ni ∊ N. In
addition, by Corollary 4.2, when n1 has received inƒ from all of its neighbors it also holds that

K1Ki for all ni ∊ N.

4.1.2 Handling multiple concurrent instances
Algorithms for propagating information throughout G like the ones we discussed in the
previous section are of fundamental importance in various distributed computations.
Together with the three general techniques discussed in Chapter 5 (leader election,
distributed snapshots, and network synchronization), these algorithms can be regarded as
constituting fundamental building blocks for the design of distributed algorithms in general. In
fact, algorithms for propagating information, either through all of G's nodes (as in the
previous section) or in a more restricted fashion, are themselves components used widely in
the design of the other building blocks we just alluded to. Understandably, then, some of
these algorithms have been incorporated in the design of communication processors as built-

in instructions to be executed by the nodes of G when this graph represents a network of
communication processors (cf.Section 1.2).
It is in this context that the question of how to handle multiple concurrent instances of
Algorithms A_PI and A_PIF arises. In the case of Algorithm A_PI, multiple concurrent
instances occur when the nodes in N0 repeatedly broadcast a series of messages, say inƒ1,
inƒ2,… A quick examination of the algorithm reveals that a possibility to handle such a series

at a node ni, is to employ a Boolean variable in connection with inƒk, for k ≥ 1.
Upon arrival of a message, its contents indicate which variable to use. However, if G's edges
are FIFO, then another alternative can be considered that does not require an unbounded
number of Boolean variables to be employed at each node, and furthermore does away with
the need to inspect the contents of the messages (as befits a communication processor).
This alternative is based on the simple observation that, under the FIFO assumption, every
node receives the stream of messages, on every edge incident to it, in the order the
messages were sent by the nodes in N0. The strategy is to employ |Neigi| counters at ni to
indicate the number of messages already received on each of the edges in Inci. These

counters, called for nj ∊ Neigi, are initially equal to zero and get incremented by
1 upon receipt of a message on the corresponding edge. In order to check whether such a
message, when received from nl, ∊ Neigi, is being received at ni for the first time, it suffices
to check whether

for all nj ∊ Neigi such that j ≠ l. In the affirmative case, the message is indeed being received
for the first time and should be passed on (cf. Exercise 2).
A similar question arises in the context of Algorithm A_PIF when the stream of messages is
sent by node n1. As in the case of Algorithm A_PI, providing each node ni with an unbounded
number of sets of variables, and then allowing ni to inspect the contents of incoming
messages to decide which set to use, is an approach to solve the problem. Naturally, though,
one wonders whether the FIFO assumption on the edges of G can lead to a simplification
similar to the one we obtained in the previous case. It should not be hard to realize, however,
that the FIFO assumption does not necessarily in this case imply that the stream of
messages is received at each node, on every edge incident to it, in the order it was sent by
n1, and then our previous strategy does not carry over (cf. Exercise 3). Nevertheless, the
weaker assertion that every node is reached by the stream of messages in the order it was
sent does clearly hold under the assumption of FIFO edges, but this does not seem to readily
provide a solution that is independent of the messages' contents.

4.2 Graph connectivity
The problem that we treat in this section is the problem of discovery, by each node
in N, of the identifications of all the other nodes to which it is connected by a path in
G. The relevance of this problem becomes apparent when we consider the myriad
of practical situations in which portions of G may fail, possibly disconnecting the
graph and thereby making unreachable from each other a pair of nodes that could
previously communicate over a path of finite number of edges. The ability to
discover the identifications of the nodes that still share a connected component of
the system in an environment that is prone to such changes may be crucial in many
cases. The algorithm that we present in this section is not really suited to the cases
in which G changes dynamically. The treatment of such cases requires techniques
that are altogether absent from this book, where we take G to be fixed and
connected. The interested reader is referred to the literature for additional
information. The algorithm that we present is not the most efficient one, either, but
it is the one of our choice because it very elegantly employs techniques for the
propagation of information seen in Section 4.1.1.
The algorithm is called Algorithm A_Test _Connectivity, and its essence is the
following. First of all, it may be started by any of the nodes in N, either
spontaneously (if the node is in N0) or upon receipt of the first message
(otherwise). In either case, what a node ni does to initiate its participation in the

algorithm is to broadcast its identification, call it idi, in the manner of Algorithm
A_PIF. As we will see, this very simple procedure, coupled with the assumption
that the edges in G are FIFO, suffices to ensure that every node in N obtains the
identifications of all the other nodes in G.
The set of variables that node ni employs to participate in Algorithm
A_Test_Connectivity is essentially an n-fold replication of the set of variables
employed in Algorithm A_PIF, because basically what ni is doing is to participate in
as many concurrent instances of Algorithm A_PIF as there are nodes in G
(although not in the sense of Section 4.1.2, because now each instance is

generated by a different node). So, for nj ∊ N, (initialized to nil)

indicates the node in Neigi from which the first idj has been received,
(initially equal to zero) stores the number of times idj has been received, and the

Boolean (equal to false, initially) is used to indicate whether idj has
been received at least once. Another Boolean variable, initiatedi, initialized to false,
is employed at ni to indicate whether ni ∊ N0. (Use of this variable is a redundancy,
but we keep it for notational simplicity; in fact, initiatedi = true if and only if there

exists at least one nj ∊ N such that = true)
Algorithm A_Test_Connectivity:

 Variables:

 = nil for all nk ∊ N;

 = 0 for all nk ∊ N;

 = false for all nk ∊ N;
 initiatedi = false.

Listing 4.5

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 initiatedi := true;

 := true;
 Send idi to all nj ∊ Neigi.

Listing 4.6

 Input:
 msgi = idk such that origini(msgi) = (ni, nj) for some nk ∊ N.
 Action:
 if not initiatedi then

 begin
 initiatedi := true;

 := true;
 Send idi to all nl ∊ Neigi

 end;

 := + 1;

 if not then
 begin

 := true;

 := nj;

 Send idk to every nl ∊ Neigi such that nl ≠
 end;

 if = |Neigi| then

 if ≠ nil then

 Send idk to

In Algorithm A_Test_Connectivity, (4.5) and (4.6) should compared respectively
with (4.3) and (4.4) of Algorithm A_PIF. What this comparison reveals is that (4.3)
and (4.5) are essentially the same, whereas (4.6) is obtained from (4.4) by the
addition of the appropriate commands for ni to initiate its participation in the
computation if it is not in N0
As we mentioned earlier, this algorithm is based on the assumption that G's edges
are FIFO. To see that it works, it is helpful to resort to the pictorial interprepation as
propagating waves that we employed in the previous section for the algorithms for
information propagation. The wave that node ni propagates forward with its
identification reaches every other node nj either when initiatedj = true or when
initiatedj = false. By (4.5) and (4.6), and because of the FIFO property of the
edges, in either case idi is only sent along the nodes on the path from nj to ni

obtained by successively following the parent pointers after idj has been sent on the
same path. Therefore, by the time ni receives idi from all of its neighbors it has
already received idj at least once (cf. Exercise 4). Because this is valid for all nj ∊
N, then ni must by this time know the identifications of all nodes in G
Algorithm A_Test_Connectivity can be regarded as the superposition of n
instances of Algorithm A_PIF, so its message complexity is n times the message
complexity of that algorithm, that is, O(nm) (to be precise, each edge carries
exactly n messages in each direction, so the total number of messages is 2nm).
Because the lengths of messages depend upon n, it is in this case appropriate to
compute the algorithm's bit complexity as well. If we assume that every node's
identification can be expressed in [logn] bits, then the bit complexity of Algorithm
A_Test_Connectivity is O(nm log n). The time complexity of the algorithm is
essentially that of Algorithm A_PIF, plus the time for a node in N0 to trigger the
initiation of another node as far from it as n − 1 edges; in summary, O(n) as well.

4.3 Shortest distances
The last basic problem considered in this chapter is the problem of determining the shortest
distances in G between all pairs of nodes. Distances between two nodes are in this section
taken to be measured in numbers of edges, so that the problem that we treat is closely
related to the problem of breadth-first numbering that we considered briefly at the end
ofSection 3.4. The problem is now much more general, though, because in that section we
concentrated solely on computing the distances from a distinguished node n1 to the other
nodes in N that could be reached from it (G was then a directed graph). In addition, in that
section, n1 was not required to know at the end of the algorithm the numbers that had been
assigned to the other nodes.
Another requirement that we add to the algorithm to compute shortest distances is that at the
end a node be informed not only of the distance from it to all other nodes, but also of which
of its neighbors lies on the corresponding shortest path. Readily, the availability of this
information at all nodes provides a means of routing messages from every node to every
other node along shortest paths. When G has one node for every processor of some
distributed-memory system and its edges reflect the interprocessor connections in that
system, this information allows shortest-path routing to be done (cf.Section 1.3).
We approach this problem by first giving a synchronous algorithm that solves it, and then
indicating how the corresponding asynchronous algorithm can be obtained. The synchronous
algorithm, called Algorithm S_Compute_Distances, proceeds as follows. At pulse s = 0, every
node sends its identification to all of its neighbors. At pulse s = 1, every node possesses the
identifications of all nodes that are no farther from it than one edge (itself and its neighbors).
A node then builds a set with the identifications of all those nodes that are exactly one edge
away from it and sends this set to its neighbors. At pulse s = 2, every node has received the
identifications of all nodes located no farther than two edges from it (itself, its neighbors, and
its neighbors' neighbors). Because a node knows precisely which nodes are zero or one
edge away from it, determining the set of those nodes that are two edges away is a simple
matter. What happens then is that, in general, at pulse s ≥ 0 a node sends to its neighbors a
set containing the identifications of all those nodes that are exactly s edges away from it. For
s = 0, this set comprises the node's own identification only. For s > 0, the set comprises
every node identification received during interval s − 1, except those of nodes which are at
most s − 1 edges away from itself. Clearly, no more than n pulses are required. The last
pulse may be an earlier one, though, specifically pulse S if the set that the node generates at
this pulse is empty. Clearly, all further sets the node generated would be empty as well, and
then it may cease computing (although innocuous messages may still arrive from some of its
neighbors). Naturally, the value of S may differ from node to node. For simplicity, however, in
the algorithm that we give next we let all nodes compute through pulse s = n−1 (cf. Exercise
6).
As inSection 4.2, we let idi denote ni's identification. Variables used by Algorithm
S_Compute_Distances are the following. The shortest distance from ni, to nj ∊ N is denoted

by , initially equal to n (unless j = i, in which case the initial value is zero). The node in

Neigi on the corresponding shortest path to nj ≠ ni is denoted by , initially equal to nil.
The set of identifications to be sent out to neighbors at each step is denoted by seti; initially, it
contains ni's identification only. In Algorithm S_Compute_Distances, N0 = N.

Algorithm S_Compute_Distances:

 Variables:

 := 0

 := n for all nk ∊ N such that k ≤ i;

 := n nil for all nk ∊ N such that k ≤ i;

 seti = {idi

Listing 4.7

--

Listing 4.8

 Input:
 0 < s ≤ n − 1, MSGi(s) such that origini(setj) = (ni,nj) for setj ∊
 M SGi(s)
 Action:

 seti :=
 for all setj ∊ MSGi(s) do
 for all idk ∊ setj do

 if > s then
 begin

 := s;

 := nj;
 seti := seti {∪ idk}
 end;
 Send seti to all nk ∊ Neigi

Even before the correctness of Algorithm S_Compute_Distances is established formally,
evaluating its message and time complexities is a simple matter. If the algorithm functions
correctly, then every node must receive the identification of every other node, and then by
(4.7) and (4.8) every node's identification must traverse every edge in both directions. If we
take a node's identification to be a message, then the number of messages employed by
Algorithm S_Compute_Distances is 2nm, and its message complexity is then O(nm). As in
the case of Algorithm A_Test_Connectivity, message lengths are in this case dependent on
n. If, as in the case of that algorithm, we assume that node identifications can be expressed
in ⌈logn⌉ bits, then the bit complexity of Algorithm S_Compute_Distances is O(nm log n). By
the range of s in (4.8), the time complexity of this algorithm is O(n). What supports these
results is Theorem 4.3.

Theorem 4.3
For s ≥ 0 in Algorithm S_Compute_Distances, at pulse s every node ni has received the
identifications of exactly those nodes nj ∊ N such that the shortest paths between ni and nj

contain no more than s edges. Furthermore, for j ≠ i, and are,
respectively, the number of edges and the neighbor of ni on one such path.
Proof: The proof is by induction, and the basis, corresponding to pulse s = 0, is trivial. If we
inductively assume the theorem's assertion for pulse s − 1, then for pulse s > 0 we have the
following. By the induction hypothesis, ni has at pulse s −1 received the identifications of all nj

∊ N that are at most s −1 edges away from it, and the corresponding and

have been set correctly. In addition, by the induction hypothesis and by (4.7) and
(4.8), during interval s −1 nj has received from each of its neighbors the identifications of all nj

∊ N that are s −1 edges away from that neighbor. A node nj is s edges away from ni if and
only if it is s −1 edges away from at least one node in Neigi, so at pulse s ni, has received the
identifications of all nj ∊ N that are no more than s edges away from it. The theorem follows

easily from the observation that, by (4.8), the variables and for all nj ∊ N
that are s edges away from ni are set when ni first finds in MSGi(s) the identification of nj
Obtaining an asynchronous algorithm from Algorithm S_Compute_Distances goes along the
lines of Section 3.3, where Algorithm S-to-A_Template was given just for such purposes. We
provide the result of such a transformation next, but only in Section 5.3.2, after we have
discussed the general technique of synchronizers, will the reasons why the resulting
asynchronous algorithm is correct be given. The asynchronous algorithm that we give to
compute all the shortest distances in G is called Algorithm A_Compute_Distances, and
requires that all edges in G be FIFO edges (cf. Exercise 7). It is widely used, despite having
been displaced by more efficient algorithms of great theoretical interest. In addition to its
popularity, good reasons for us to present it in detail are its simplicity and the possibility that it
offers of illustrating the synchronization techniques ofSection 5.3.2
In addition to the variables that in Algorithm S_Compute_Distances ni employs, in Algorithm
A_Compute_Distances the following variables are also employed. For each nj ∊ Neigi, a

variable is employed to indicate which sets of node identifications ni has received

from nj. Specifically, = d for some d such that 0 ≤ d < n if and only if ni has
received from nj the identifications of those nodes which are d edges away from nj. Initially,

= −1. Similarly, a variablestatei, is employed by ni, with the following meaning.
Node ni has received the identifications of all nodes that are d edges away from it for some d
such that 0 ≤ d < n if and only if statei = d. Initially, statei = 0. Finally, a Boolean variable
initiatedi, initially set to false, is used to indicate whether ni ∊ N0

Algorithm A_Compute_Distance:

 Variables:

 = 0;

 = n for all nk ∊ N such that k ≠ i;

 = nil for all nk ∊ N such that k ≠ i;
 seti = {idi};

 = −1 for all nj ∊ Neigi;
 statei = 0;
 initiatedi = false

Listing 4.9

 Input:
 msgi = nil
 Action if ni ∊ N0:
 initiatedi := true;
 Send seti to all nj ∊ Neigi

Listing 4.10

 Input:
 msgi = setj such that origini(msgi) = (ni, nj).
 Action:
 if not initiatedi then
 begin
 initiatedi := true;
 Send seti to all nk ∊ Neigi

 end;
 if statei < n −1 then
 begin

 := + 1;
 for all idk ∊ setj do

 if > + 1 then
 begin

 := + 1;

 := nj

 end;

 if statei ≤ for all nj ∊ Neigi then
 begin
 statei := statei + 1;

 seti := {idk | nk: ∊ N and = statei};
 Send seti to all nk ∊ Neigi

 end
 end

In Algorithm A_Compute_Distances, (4.9) and the portion of (4.10) that is executed only
when initiatedi = false are precisely the same as (4.7) in Algorithm S_Compute_Distances.
The remainder of (4.10) corresponds to the translation of (4.8) into the asynchronous model.
Although we relegate most of the discussion on the correctness of Algorithm
A_Compute_Distances to Section 5.3.2, in this section attention should be given to the fact
that, if initiatedi = true, then (4.10) is only executed if statei, < n −1.The point to notice is that
this is in accord with the intended semantics of statei, because if statei = n −1 then ni has
already received the identifications of all nodes in N, and is then essentially done with its
participation in the algorithm.
Another important point to be discussed right away with respect to Algorithm
A_Compute_Distances is that the FIFO property of edges, in this case, is essential for the
semantics of the level variables to be maintained. In (4.10), the distance from ni to nk is

updated to + 1 upon receipt of idk, in a set from a neighbor nj of ni only because that

set is taken to contain the identifications of nodes whose distance to nj is . This
cannot be taken for granted, though, unless (ni,nj) is a FIFO edge.
The complexities of Algorithm A_Compute_Distances can also be obtained right away. By
(4.9) and (4.10), what node ni does is to send its identification to all of its neighbors, then the
identifications of all of its neighbors get sent, then the identifications of all nodes that are two
edges away from it, and so on. Thus ni sends n messages to each of its neighbors, and the
total number of messages employed is then 2nm, yielding a message complexity of O(nm)
and a bit complexity of O(nmlog n) if node identifications can be represented in ⌈log n⌉ bits.
The time complexity comes from considering that a node that is not in N0 starts executing
(4.10) within at most n −1 time of the algorithm's initiation, and that the longest causal
dependency involving messages corresponds to sending a node's identification as far as n
−1 edges away. The resulting time complexity is then O(n)
Our treatment inSection 5.3 will provide a general methodology for assessing an
asynchronous algorithm's complexities from those of the synchronous algorithm from which it
originated. As we mentioned in previous occasions, the natural expectation is that higher
complexities arise in the asynchronous case, specifically to account for the additional number
of messages and time consumed by the function DONEi appearing in (3.4). However, both
the message and time complexities of Algorithm A_Compute_Distances are exactly the
same as its synchronous originator's. The reason for this intuitively unexpected behavior will
become clear in Section 5.3.2.

4.4 Exercises
1. Discuss what happens to Algorithm A_PI if a node refrains from sending inƒ to the neighbor
from which it was received.
2. Write the algorithm that handles multiple concurrent instances_of Algorithm A_PI as suggested
in Section 4.1.2.
3. Show, by means of an example, that FIFO edges do not suffice to guarantee that messages
are received at all nodes in the order sent by node n1, in the context of multiple concurrent
instances of Algorithm A_PIF.
4. Show, by means of an example, that FIFO edges do not suffice to guarantee, in Algorithm
A_Test_Connectivity, that a node receives all the copies of every other node's identification before
receiving as many copies of its own identification as it expects.
5. Compare Algorithm A_Test_Connectivity with the possibility of solving the problem by a leader
(suppose such a leader already exists).
6. Modify Algorithm S_Compute_Distances so that it terminates at a node when that node
generates an empty list.
7. Show that Algorithm A_Compute_Distances can do without the FIFO requirement and without
the level variables, if lists are sent along with the distances to which they correspond.

1.
Discuss what happens to Algorithm A_PI if a node refrains from
sending inƒ to the neighbor from which it was received.

2.
Write the algorithm that handles multiple concurrent instances_of
Algorithm A_PI as suggested in Section 4.1.2.

3.

Show, by means of an example, that FIFO edges do not suffice to
guarantee that messages are received at all nodes in the order
sent by node n1, in the context of multiple concurrent instances of
Algorithm A_PIF.

4.

Show, by means of an example, that FIFO edges do not suffice to
guarantee, in Algorithm A_Test_Connectivity, that a node
receives all the copies of every other node's identification before
receiving as many copies of its own identification as it expects.

5.

Compare Algorithm A_Test_Connectivity with the possibility of
solving the problem by a leader (suppose such a leader already
exists).

6.
Modify Algorithm S_Compute_Distances so that it terminates at a
node when that node generates an empty list.

7.

Show that Algorithm A_Compute_Distances can do without the
FIFO requirement and without the level variables, if lists are sent
along with the distances to which they correspond.

4.5 Bibliographic notes

Sections 4.1 through 4.3 are based on Segall (1983) and on Barbosa and Franca (1988).
Additional sources of reference for the problem of determining shortest distances are
Awerbuch (1989), Ogier, Rutenburg, and Shacham (1993), Ramarao and Venkatesan
(1993), and Haldar (1994).

Chapter 5: Basic Techniques

Overview
This chapter expands considerably on the material of Chapter 4 by presenting three
fundamental techniques that can be regarded as building blocks for distributed algorithms in
general. These are the techniques of leader election, distributed snapshots, and network
synchronization
The problem of electing a leader in G is treated in Section 5.1, where we discuss various of
the problem's characteristics and some of the successful approaches to solve it. Because
this problem is intimately related with the problem of establishing a minimum spanning tree
on G, treated in section 7.1 and Section 5.1 we introduce techniques that do not rely on
spanning trees to elect a leader. In doing so, we first give an asynchronous algorithm for
generic graphs, and then introduce two algorithms (one synchronous and one asynchronous)
for the case in which G is a complete graph.
In Section 5.2, we introduce techniques to record, in a distributed_fashion, a global state of
an ongoing distributed computation. The ability to record global states is fundamental in
several cases, and in the remainder of the book there will be several opportunities for us to
employ this and related techniques, as for example insections 6.2 and6.3. InSection 5.2, we
give a general technique to record global states distributedly and also discuss some
centralized variations of interest in some special contexts, as for example in our discussion
of some methods of distributed simulation in Chapter 10.
Network synchronization is the subject ofsection 5.3, in which we return to material previously
covered inSection 3.3 to fill in the details of how to translate a synchronous algorithm into an
asynchronous one. Our approach in this section is to provide the principles underlying the
transformation, then to present a few techniques exhibiting different communication and time
complexities, and then to discuss simplifications that apply in important special cases.
Sections 5.4and5.5contain exercises and bibliographic notes, respectively.

5.1 Leader election

A leader is a member of N that all other nodes acknowledge as being distinguished to
perform some special task. The leader election problem is the problem of choosing a leader
from a set of candidates, given that initially a node ni is only aware of its own identification,
denoted as previously by idi. In the spirit of Section 2.2.1, it should be clear after some
pondering that the leader election problem is meaningless in the context of anonymous
systems. Moreover, even if the system is not anonymous, the leader election problem can
only be solved for G if every node's identification is unique in G (cf. Exercise 1), in which
case the set of all identifications can be assumed to be totally ordered by <.
This assumption is fundamental in the approaches to leader election that take the leader to
be the candidate with greatest identification. However, even if this is not the criterion, the
ability to compare two candidates' identifications is essential to break ties that may occur with
the criterion at hand. (In fact, this is really why unique identifications are needed in the first
place. In their absence, any criterion to select a leader from the set of candidates might
deadlock for the absence of a tie breaker.) Another assumption that we make on a node's
identification is that it can be expressed in ⌈log n⌉ bits. Also, G is throughout this section
assumed to be an undirected graph.
The importance of electing a leader in a distributed environment stems essentially from the
occurrence of situations in which some centralized coordination must take place in G, either
because a technique to solve the particular problem at hand in a completely distributed
fashion is not available, or because the centralized approach offers more attractive
performance. Problems for which satisfactory techniques of a completely distributed nature
are not available include the many recovery steps that have to be taken after G undergoes a
failure (or a topological change, in broader terms). A leader is in this case needed to
coordinate, for example, the reestablishment of allocation and routing functions (if G is
organized to reflect a distributed-memory system). Although it has been our assumption
throughout that G is fixed, all the algorithms that we discuss in this book are also applicable
to the cases in which G varies if G is guaranteed to remain constant for "sufficiently long."
Examples to illustrate the importance of electing a leader when the centralized approach to a
particular problem proves more efficient than the distributed one come from the area of
graph algorithms, treated in Chapter 7 (although in that chapter we concentrate solely on
problems for which efficient distributed solutions do exist). As we remarked inSection 3.2.2,
such situations are in essence characterized by higher complexities for the distributed
approaches than for coalescing into the leader information on the structure of G.
The leader election problem is very closely related to another problem that we treat insection
7.1, namely the problem f establishing on G a minimum spanning tree (or, as we discuss in
that section, the problem of determining any spanning tree on G, which can be reduced to
the former). Once a spanning tree has been established on G, a leader can be elected as
follows. Every node assumes the role of n1 in the PIF problem (cf.Section 4.1.1) and
propagates a piece of information with feedback on the spanning tree. This piece of
information is, if the node is a candidate, its identification. Otherwise, it is simply a token
devoid of any special content. The way the n propagations interact with each other is such
that a node, before forwarding the information being propagated by any other node, must first
ensure that its own information is propagated. If edges are FIFO, then by the time a node
receives its own information from all of its neighbors on the tree it has also received the
information that all other nodes propagated, and can then select as a leader the candidate
with greatest identification. This procedure has message complexity of O(n2) (bit complexity
of O(n2logn)) and time complexity of O(n).
Although more efficient approaches exist to elect a leader once a spanning tree has been
established on G (cf.Sections 7.1.1), the approach we just described is interesting because it
hints immediately at a simple (although not very efficient, either) algorithm to elect a leader
on a generic graph with FIFO edges. This algorithm is simply Algorithm A_Test_Connectivity
ofSection 4.2 with N0 being the set of candidates, slightly modified so that candidates
broadcast their identifications, while the remaining nodes broadcast simply a token that
serves the purpose of signaling to the node that already it has received every candidate's
identification. Upon receiving on all incident edges the information it propagated, a node (be
it a candidate or otherwise) is then ready to choose as a leader the candidate with greatest
identification. As in Section 4.2, this algorithm's message complexity is O(nm) (O(nm log n)
bit complexity), and its time complexity is O(n).

When G is assumed to be some particular graph, these complexities must be revised
accordingly. For example, if G is a ring, then the algorithm's message complexity becomes O
(n2), whereas if it is a complete graph the message complexity is O(n3). The resulting
message complexity for a complete graph is particularly alarming, and it is to the problem of
electing a leader on such a graph that we turn our attention now, aiming specifically at
providing an algorithm of significantly lower message complexity.
We start with a synchronous algorithm, aiming at illustrating the technique more intuitively,
and then provide an asynchronous algorithm. In both algorithms, N0 is the set of candidates.
The synchronous algorithm that we give is inspired in the following straight-forward
synchronous algorithm to elect a leader on a complete graph. At pulse s = 0, every candidate
sends its identification to all other nodes. At pulse s = 1, every node has received every
candidate's identification and can then decide on a leader. The message complexity of this
algorithm is O(n2), and its time complexity is O(1). The synchronous algorithm that we derive
from this has message complexity of O(n log n) and time complexity of O(log n), which have
been proved optimal in the literature.
In order to decrease the message complexity from O(n2) to O(n log n), a candidate does not
send its identification to all of its neighbors at the same pulse, but rather first communicates
with one of its neighbors, then with two other neighbors, then with four others, and so on. For
k ≥ 1, the kth set of neighbors with which a candidate communicates has size 2k−1, and then
exactly ⌈ log n⌉ such sets have to exist to encompass all of the candidate's n − 1 neighbors
(that is, k ≤ ⌈ log n⌉). When a candidate sends a neighbor a message, it is attempting to
"capture" that neighbor, thereby becoming its "owner," so that the candidate that has
captured all nodes at the end is the one to be chosen leader. A candidate succeeds in
capturing a node if its identification is larger than those of the other candidates that are
attempting to capture the same node at the same time, and larger than the identification of
the node's current owner. A candidate only proceeds to attempting to capture the next subset
of its neighbors if it succeeds in capturing all the neighbors it is currently attempting to
capture. Otherwise, it ceases being a candidate.
The resulting synchronous algorithm, called Algorithm S_Elect_Leader_C ("C" for Complete),
proceeds as follows. At an even pulse s ≥ 0, a candidate ni sends a message capture(idi) to
2s/2 of those of its neighbors with which it still has not communicated. At an odd pulse s > 0, a
node ni (candidate or otherwise) selects from those nodes that sent it a capture message at
pulse s − 1 the one with greatest identification. That node is then to become ni's owner if its
identification is greater than ni's current owner's. If ni's owner changes, then it sends an ack
to its new owner. Only a candidate that receives as many ack's as it sent capture's remains
being a candidate.
The following are the variables employed by ni in Algorithm S_Elect_Leader_C. A Boolean
variable candidatei, initially set to false, indicates whether ni is a candidate. For each

neighbor nj of ni, a Boolean variable (equal to false, initially) is used to indicate, if
ni is a candidate, whether it has already attempted to capture nj. Finally, owner_idi contains
the identification of ni's owner. This variable's initial value is nil (we assume that nil < idj for
all nj ∊ N).

Algorithm S_Elect_Leader_C:

 Variables:
 candidatei = false;

 = false for all nj ∊ Neigi;
 owner_idi = nil.

Definition (Gold [80]) [(a) Let M be a computable scientist and let L]
Listing 5.1

 Input:

 s = 0, MSGi(0) = .
 Action if ni∊ N0:
 candidatei := true;
 owneri := idi;
 Let nj be a node in Neigi;

 := true;
 Send capture(idi) to nj.

Listing 5.2

 Input;
 s odd such that 0 < s ≤ 2⌈log n ⌉ −1, MSGi(s) such that
 origini (capture (idj) = (ni, nj) for capture(idj) ∊ MSGi(s).
 Action:
 Let nk ∊ Neigi be such that idk ≥ idj for all capture(idj) ∊
 MSGi(s);
 if owner_idi < idk then
 begin
 if candidatei then
 candidatei:= false;
 owner_idi := idk;
 Send ack to nk

 end.

Listing 5.3

 Input:
 s even such that 0 < s ≤ 2⌈log n⌉, MSGi(s).
 Action:
 if candidatei then
 if | MSGi(s) | < min{2(s−2)/2, n −2(s−2)/2} then
 candidatei := false
 else
 if s < 2 ⌈log n ⌉ then
 begin
 Let S ⊂ Neigi be such that |S| = min{2s/2, n −

 2s/2} and = false for all nj ∊ S;

 := true for all nj ∊ S;
 Send capture(idi) to all nj ∊ S
 end.

In Algorithm S_Elect_Leader_C, (5.1) and (5.3) correspond to opportunities that ni has to
capture nodes if it is a candidate. The attempt to capture more nodes in (5.3) is conditioned
upon having received as many ack's as needed for the last attempt. In other words, if s > 0 is
even, then the number of ack's expected to be in MSGi (s) if ni is a candidate is min{2s−2)/2,
n−2(s−2)/2} (this is the number of nodes ni attempted to capture at the previous even pulse). If
MSGi(s) contains this number of ack's, then ni sends capture's to other 2s/2 nodes, unless the
number of nodes which it still has not attempted to capture is less than this, in which case it
must be n −1 −(2s/2 −1) (the expression in parentheses is the number of nodes it has
captured so far). In (5.2), node ni, decides whether to change its owner or not, regardless of
whether it is a candidate. The node that ni considers to be its owner after all 2⌈log n⌉ + 1
pulses have elapsed (that is, the node whose identification is in owner_idi at that time) is the
elected leader from ni's standpoint. By (5.1) and (5.2), ni's owner is the node with greatest
identification, and therefore from every node's standpoint the elected leader is the same.
Algorithm S_Elect_Leader_C runs for 2⌈log n⌉ + 1 pulses. Becauseē the number of groups of
neighbors that a candidate tries to capture is at most ⌈log n⌉, the last pulse in (5.3) is only
used for a candidate to process the last ack's it has received, if any. The time complexity of
Algorithm S_Elect_Leader_C is, by (5.3), O(log n). The following theorem indicates how to
assess the algorithm's message complexity.

Theorem 5.1.
For 1 ≤ k ≤ ⌈log n⌉ −1, the maximum number of nodes to reach pulse s = 2k as candidates in
Algorithm S_Elect_Leader_C is ⌊n/2k−1⌋.
Proof: At pulse s = 2k, by (5.3) a node must have captured 2k−1 nodes to be still a candidate
(i.e., it must have received 2k−1 ack's). The assertion then follows from the fact that, by (5.2),
any of the n nodes may only be captured by at most one candidate at any even pulse.
By Theorem 5.1, at pulse s = 2⌈log n⌉ −2 there may still be a number of candidates no greater
than

so that the additional even pulse s = 2⌈log n⌉ is indeed needed for all but one of them to quit
being a candidate.

Corollary 5.2.
Algorithm S_Elect_Leader_C employs at most 2n⌈log n⌉ - n capture messages and at most n
⌈log n⌉ack messages.
Proof: The initial number of candidates is at most n, so by (5.1) at pulse s = 0 at most n
capture's are sent. For 1 ≤ k ≤ ⌈log n⌉ −1, by (5.3) at pulse s = 2k a candidate sends at most
2k capture's. By Theorem 5.1, the number of candidates at this pulse is no larger than ⌊n/2k−1⌋,
and then the total number of capture's is at most

By (5.2), a node sends at most one ack per odd pulse, so that the total number of ack's is no
more than n⌈log n⌉, thence the corollary.
It follows from Corollary 5.2 that the message complexity of Algorithm S_Elect_Leader_C is
O(n log n). Also, because a capture message carries a node's identification, it follows that the
algorithm's bit complexity is O(n log2 n). This synchronous algorithm has a better message
complexity than the one we devised initially (which had O(n2) message complexity), but this
comes at the cost of an increase in time complexity from O(1) to O(log n).
What supports the improved message complexity is the technique of comparing a
candidate's identification to those of its neighbors in increasingly large groups, so that the
number of candidates is guaranteed to decrease steadily from an even pulse to another (cf.
Theorem 5.1). When we consider the design of an asynchronous counterpart to Algorithm
S_Elect_Leader_C, the use of such a technique has to undergo a few modifications,
especially because a node cannot in the asynchronous model consider a group of candidate
identifications simultaneously as it did in the synchronous model and reply positively to at

most one of them. It appears, then, that in the asynchronous model a candidate must
attempt to capture one node at a time. However, in order to still be able to benefit from the
advantages of capturing nodes in groups of increasing sizes, in the asynchronous algorithm
identifications are no longer used as a basis of comparison, but rather only to break ties.
Comparisons are instead based on the "level" of each competing candidate, which is the
number of groups of nodes a candidate has so far succeeded in capturing. This amounts to
simulating the technique employed in the synchronous case, but at the expense of a greater
time complexity. As we will see, the resulting algorithm, called Algorithm A_Elect_Leader_C,
has time complexity O(n) but its message complexity remains as in the synchronous case,
that is, O(n log n).
In order to ensure the correctness of this approach, in the sense that no two candidates must
ever be allowed to concurrently remain candidates based on having captured a same node, a
candidate must only consider a node as having been captured when (and if) that node's
current owner ceases being a candidate. The overall approach is then the following. A
candidate attempts to capture nodes one at a time. Its level is at all times given by the
number of groups it has succeeded in capturing, in the same sense as in Algorithm
S_Elect_Leader_C, that is, groups of sizes 1, 2, 4, and so on. If for a candidate ni, we let
leveli denote its level and ownsi, the number of nodes it has captured, then clearly

In order to capture a node nj, ni sends it a message capture(leveli, idi). Upon receiving this
message, nj checks whether

(this comparison is done lexicographically, that is, first the levels are compared and only if
they are the same are the identifications compared). If the comparison fails, then nj sends ni

a nack message, and upon receiving it ni ceases being a candidate (if it still is). If, on the
other hand, the comparison succeeds, then levelj is updated to leveli. In addition, if nj is a
candidate, then it ceases being so and ni becomes its owner. Also, nj sends ni an ack, upon
receipt of which ni proceeds with its node capturing. If nj is not a candidate, then ni is marked
as nj's prospective owner. Before ni becomes nj's owner, however, ni has to ensure that nj's
current owner ceases being a candidate. To this end, nj sends ni a message check(k)
(assuming that owner_idj = idk), and upon receiving this message, ni, if it still is a candidate,
sends a message eliminate(leveli, idi) to nk. At nk, the comparison

is performed and results in one of the following two outcomes. If the comparison fails, then nk

sends ni a nack, thereby causing ni not to be a candidate any longer (if it still is). If the
comparison succeeds, thereby causing nk to cease being a candidate, or if nk was no longer
a candidate upon receiving the eliminate message, then an eliminated message is sent by nk

to ni, where it causes ni, if still a candidate, to try to capture nj once again by sending it
another capture message. If this message, upon arriving at nj, finds that ni still is nj's
prospective owner, then ni becomes nj's new owner and an ack is sent back to ni. Otherwise,
a nack is sent. Upon receipt of one or the other message, ni resumes its captures or ceases
being a candidate, respectively. Notice that, throughout this entire process, nk has not yet
been captured by ni, but merely ceased being a candidate.
The variables leveli and ownsi, both initially equal to zero, are used by ni, in Algorithm
A_Elect_Leader_C in addition to those already used by Algorithm S_Elect_Leader_C. Node
ni employs two other variables, both initialized to nil, to indicate ni's prospective owner and
the node it is currently attempting to capture. These are, respectively, p_owner_idi and
p_owned_idi.

Algorithm A_Elect_Leader_C:

 Variables:
 candidatei = false;

 = false for all nj ∊ Neigi:
 owner_idi = nil;
 leveli = 0;
 ownsi = 0;

 p_owner_idi = nil;
 p_owned_idi = nil.

Listing 5.4

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 candidatei := true;
 owneri := idi;
 Let nj be a node in Neigi;

 := true;
 Send capture(leveli, idi) to nj.

Listing 5.5

 Input:
 msgi = capture(levelj, idj) such that origini(msgi) = (ni nj).
 Action:
 if p_owner_idi = idj then
 begin
 owner_idi := idj;
 Send ack to nj

 end
 else
 if (leveli, owner_idi) < (levelj, idj) then
 begin
 leveli := levelj;
 if candidatei then
 begin
 candidatei := false;
 owner_idi := idj;
 Send ack to nj

 end
 else
 begin
 p_owner_idi := idj;
 Let nk ∊ Neigi be such that owner_idi = idk;
 Send check(k) to nj

 end
 end
 else
 Send nack to nj.

Listing 5.6

 Input:
 msgi = nack.
 Action:
 if candidatei then
 candidatei := false.

Listing 5.7

 Input:
 msgi = check(j).
 Action:
 if candidatei then
 Send eliminate (leveli, idi) to nj.

Listing 5.8

 Input:
 msgi = eliminate (levelj, idj) such that origini(msgi) = (ni, nj).
 Action:
 if not candidatei then
 Send eliminated to nj

 else
 if (leveli, idi) < (levelj, idj) then
 begin
 candidatei := false;
 Send eliminated to nj

 end
 else
 Send nack to nj.

Listing 5.9

 Input:
 msgi = eliminated.
 Action:
 if candidatei then
 begin
 Let nj ∊ Neigi be such that p_owned_idi = idj;
 Send capture (leveli, idi) to nj

 end.

Listing 5.10

 Input:

 msgi = ack.
 Action:
 ownsi := ownsi + 1;
 leveli := ⌊log(ownsi + 1)⌋;

 Let S ∪ Neigi be such that = false for all nj ∊ S;

 if S ≠ then
 begin
 Let nj be a node in S;

 := true;
 p-owned-idi := idj;
 Send capture (leveli, idi) to nj

 end.

In Algorithm A_Elect_Leader_C, (5.4) through (5.10) implement the guidelines we gave to
employ the technique of Algorithm S_Elect_Leader_C in an asynchronous setting. It should

be noted that a candidate ni becomes a leader when S = in (5.10). At this time, it must by
(5.5) be the owner of all nodes and its level equal to ⌊log n⌋. Moreover, by (5.4) through (5.9)
a candidate may only be the owner of a node if that node's previous owner is no longer a
candidate, which leads us to the following counterpart of Theorem 5.1.

Theorem 5.3.
For 1 ≤ k ≤ ⌊log n⌋, the maximum number of candidates of level k in any global state in an
execution of Algorithm A_Elect_Leader_C is ⌊n/(2k − 1)⌋.
Proof: By the definition of level, a candidate ni at level k must have captured at least 2k −1 of
its neighbors, inasmuch as

The theorem then follows from the fact that no two candidates can be owners of a same
node in any global state.

Corollary 5.4.
Algorithm A_Elect_Leader_C involves at most 2n⌊log n⌋ + n attempts at capturing a node by
a candidate.
Proof: Before reaching level 1, by (5.4) a candidate attempts to capture exactly one node.
For 1 ≤ k ≤ ⌊log n⌋, while at level k a candidate attempts to capture at most 2k nodes. By
Theorem 5.3, the total number of node captures the algorithm involves is then

Each node capture by a candidate involves at most six messages (one capture, one check,
one eliminate, one eliminated, one more capture, and one ack). By Corollary 5.4, the
message complexity of Algorithm A_Elect_Leader_C is then O(n log n), and because the
lengthiest messages (capture and eliminate messages) are ⌈log ⌊log n⌋⌉ + ⌈log n⌉ bits long, the
algorithm's bit complexity is O(n log2 n). In order to check that the time complexity of
Algorithm A_Elect_Leader_C is indeed O(n), it suffices to note that candidates capture nodes
independently of one another, in the sense that no candidate depends on another

candidate's messages to capture nodes (only to cease being a candidate), and that
candidates attempt to capture nodes one at a time.

5.2 Distributed snapshots
The second fundamental technique that we discuss in this chapter is a technique for
recording global states during the execution of an asynchronous algorithm. While the
concept of a global state, as introduced in Section 3.1, is of fundamental importance by itself,
the ability to record a global state over which some of the algorithm's global properties can be
analyzed is no less attractive. In the context of this book, areas in which algorithms for global
state recording are especially relevant include the treatment of stable properties (discussed
in Chapter 6) and the handling of some issues related to timing during a distributed
simulation (our subject in Chapter 10).
The bulk of our discussion on global state recording is presented in Section 5.2.1, where we
present a distributed algorithm to record a global state and leave the recorded information
spread throughout the nodes of G. However, there are special cases, chiefly within the area
of distributed simulation, for which the recording of global states with some specific
properties is desirable. In these cases, it seems that the use of a leader to perform the global
state recording in a centralized fashion is considerably more efficient. We discuss such a
centralized approach in Section 5.2.2, aiming at their use in Chapter 10.
Throughout all of Section 5.2, G is taken to be a directed graph, so that the states of edges
can be referred to without explicit mention to a particular direction. The extension to the
undirected case is immediate, as usual.

5.2.1 An algorithm
In the case of synchronous algorithms, the recording of a global state can be achieved rather
simply. At each pulse s ≥ 0, the states of all nodes and the messages that were sent at pulse
s −1 (if s > 0), which by assumption must already have arrived at their destinations, constitute
a global state. Without further communication, such a global state can be stored in G
distributedly, so that a node stores its own state and the state of all edges on which it
receives messages.
Clearly, though, nothing like this simple approach can be employed in the asynchronous
case, owing to the total absence of global timing. However, with the aid of communication
among the nodes in addition to that pertaining to the computation whose global state we wish
to record, the task can also be performed for asynchronous algorithms. The algorithm that
we discuss next is surprisingly simple given the apparent intricacy of the task, and yields a
global state that can be found at the end of the algorithm stored in a distributed fashion
throughout G, in much the same way as in the synchronous case we just discussed.
Before we introduce the algorithm for global state recording, it should be noted that,
conceptually, we are dealing with two distributed computations. One of them, which we can
refer to as the substrate, is the computation whose global properties one wishes to study,
and then the global state one is seeking to record is a global state of the substrate. It is then
to the substrate that the set of events Ξ introduced in Section 3.1 refers. The other
distributed computation is an execution of the algorithm for global state recording, which we
henceforth call Algorithm A_Record_Global_State. Both computations run on G, so each
node is responsible for executing its share of the substrate and of Algorithm
A_Record_Global_State. The two computations are, however, totally independent of each
other as far as causality relationships are concerned. Our only assumption about their
interaction is that Algorithm A_Record_Global_State is capable of "peeking" at the
substrate's variables and messages with the purpose of recording a global state. Note that a
node participates in both computations in such a way that, when the substrate is being
executed by a node, Algorithm A_Record_Global_State is suspended, and conversely. This
is immaterial from the standpoint of either computation, though. Having been designed to
operate in the asynchronous model, the suspension of one to execute the other only adds to
the asynchronism already present. Recording a global state during an execution of the
substrate is essentially a means of "freezing" that execution in a snapshot (thence this
alternative denomination for a global state) to analyze the states of all nodes and edges
without actually having to halt the substrate.

This view of the computation at a node as actually comprising the node's participation in two
different distributed algorithms is the view that we adopt in this section. What this amounts to
when specifying the actions of Algorithm A_Record_Global_State is that there has to exist an
action to handle the receipt of messages of the substrate, although in none of the algorithm's
actions does one such message get sent. Alternatively, we might have viewed both
computations as constituting the execution of a single algorithm, in which case the technique
for recording global states would appear truly as a building block. When arguing formally
about the recorded global state, however, we would have to be careful to discriminate events
associated with the substrate from those associated with the additional communication
employed by the recording algorithm, as it is to the former that the recorded global state
relates.
The following is an outline of how Algorithm A_Record_Global_State functions. A node is
responsible for recording the substrate's local state and the states of all edges directed
toward itself. If all nodes carry their recording tasks to their ends, then the resulting overall
recording is a system state, as introduced in Section 3.1, because a local state has been
recorded for each node and a set of messages for each edge. The algorithm progresses
through the exchange between neighbor nodes of a special message called marker. A node
ni ∊ N0 initiates its participation in Algorithm A_Record_Global_State by recording the local
state of the substrate,i in the terminology of Section 3.1, and then sending marker on all
edges that are directed away from it, without however allowing the substrate to send any
messages in the meantime (i.e., after the recording of the local state and before the sending
of marker). In practice, this can be achieved by "disabling interrupts" so that the node will not
switch to execute the other computation while this is undesired. All other nodes behave
likewise upon receiving marker for the first time. Every message of the substrate received at
ni from a neighbor nj after ni has received the first marker (and consequently recorded a local
state) and before ni receives marker from nj is added to the set of messages representing Φji,
which is the state of edge (nj → ni) (cf. Section 3.1 for the appropriate terminology). The state
of the edge on which marker was first received is then recorded as the empty set, so the
system state recorded by Algorithm A_Record_Global_State can be regarded as containing
a forest of empty edges, each of whose trees spanning exactly one node in N0. The recording
is completed at a node when marker has been received on all edges directed toward that
node.
It is instructive at this point to notice the very close resemblance of the algorithm we just
outlined to Algorithm A_PI, introduced in Section 4.1.1 for the propagation of information on
G. While that algorithm was given for an undirected G, Algorithm A_Record_Global_State
can be easily recognized as a variation of Algorithm PI to propagate marker messages by
flooding when G is a directed graph. Of course, the question of whether every node in G
does ever receive a copy of marker in the directed case arises, because there may exist
nodes to which no directed path from a node in N0 exists. One situation in which this can be
guaranteed is, for example, the case of a strongly connected G, in which a directed path
exists from every node to every other node.
Even before describing and analyzing Algorithm A_Record_Global_State more thoroughly,
we are then in position to assess its complexities. Because every edge carries at most one
copy of marker, the algorithm's message complexity is clearly O(m). The algorithm's time
complexity, on the other hand, depends only on how long it takes a marker to reach a node
that is not in N0, and this is clearly O(n) time.
In the description of Algorithm A_Record_Global_State we give next, sub_msg is used to
generically denote a message of the substrate. A node ni maintains a variable to store the
substrate's local state at ni, and for each neighbor nj ∊ I_Neigi a variable to store the state of

edge (nj → ni). These variables are, respectively, node_statei and ,

initialized respectively to nil and . In addition, a variable recordedi (initially equal to false)
indicates whether the substrate's local state has already been recorded, and a variable

for each nj ∊ I_Neigi (initialized to false as well) indicates whether marker

has been received from nj. Clearly, for ni ∉ N0, recordedi = true if and only if =
true for some nj ∊ I_Neigi.

Algorithm A_Record_Global_State:

 Variables::
 node_statei = nil;

 = for all nj ∊ I_Neigi;
 recordedi = false;

 = false for all nj ∊ I_Neigi.

Listing 5.11

 Input:
 msgi = nil.
 Action ifni ∊ N0:
 node_statei := σi;
 recordedi := true;
 Send marker to all nj ∊ O_Neigi.

Listing 5.12

 Input:
 msgi = marker such that origini(msgi) = (nj → ni).
 Action:

 := true;
 if notrecordedi then
 begin
 node_statei := σi;
 recordedi := true;
 Send marker to all nk ∊ O_Neigi.
 end.

Listing 5.13

 Input:
 msgi = sub_msg such that origini(msgi) = (nj → ni).
 Action:
 if recordedi then

 if not then

 := {∪ msgi}.

There are two important observations to be made concerning Algorithm
A_Record_Global_State. The first observation is that the assumed atomicity of actions in
Algorithm A_Template (cf. Section 2.1) suffices to prevent a node from executing the
substrate computation, possibly with the sending of messages, between the recording of the
local state and the sending of marker's in (5.11) and (5.12). The second observation
concerns (5.13) and the sub_msg messages that trigger this action. Because such
messages are in fact messages of_ the substrate, the actions that they trigger do not really
belong in a presentation of Algorithm A_Record_Global_State based on Algorithm
A_Template. In fact, we have made no provisions whatsoever to denote an algorithm's
peeking at some other algorithm's messages, so that our notation in the description of
Algorithm A_Record_Global_State is abusive. One of the problems caused by this abuse of
notation is that Algorithm A_Record_Global_State does not seem to terminate as long as
there are sub_msg's in transit on G's edges, while clearly the algorithm is to terminate as
soon as every node ni has received as many marker's as there are edges in Ini (cf.Section
6.2). As long as these issues are clearly understood, however, our slightly licentious use of
the notation should not be troublesome. We keep the improper notation for simplicity (here
and in other occasions, as in Section 9.3.3), although it appears that adapting Algorithm
A_Template to properly contemplate such an interaction between two distributed algorithms
is a simple matter (cf. Exercise 5).
Theorem 5.5 states two sufficient conditions for the system state that Algorithm
A_Record_Global_State records to be a global state.

Theorem 5.5.
If G is strongly connected and all of its edges are FIFO, then the system state that Algorithm
A_Record_Global_State records is a global state.
Proof: The fact that G is strongly connected implies that every node ni receives marker
exactly once on every edge in Ini, by (5.11) and (5.12).
Recalling that Ξ is the set of events related to the substrate only, let (Ξ1, Ξ2) be a partition of
Ξ such that ξ ∊ Ξ1 if and only if ξ occurred before the local state of the node at which it
occurred was recorded. In addition, referring back to the notation introduced in Section 3.1,

let be any total order of the events in Ξ consistent with ≺ +, and consider two

consecutive events ξ2 ∊ Ξ2 and ξ1 ∊ Ξ1 in .
By the definition of Ξ1 and of Ξ2, it is clear that ξ2 did not happen at the same node as ξ1 and
before the occurrence of ξ1. Now consider a scenario in which a sequence of events follow ξ2

at the node at which it happened, and then a message is sent in connection with the last
event in this sequence, which in turn eventually causes the sending of another message by
its destination node, and then the eventual sending of another message by the destination
node of this second message, and so on, and then the arrival of the last message causes a
sequence of events to happen at its destination node culminating with the occurrence of ξ1.
By (5.11) and (5.12), and by the definition of Ξ1 and Ξ2, the node at which ξ2 happened must
have sent marker's before ξ2 happened. Likewise, the node at which ξ1 happened must not
have received any marker before ξ1 happened. Clearly, these two requirements are
inconsistent with the scenario we just described, as the edges are all FIFO, and the
sequence of messages alluded to in the description of the scenario would then have to have

been overrun by a marker. In summary, (ξ2, ξ1) ∉≺+, so the total order can be altered
by substituting (ξ1, ξ2) for (ξ2, ξ1) in it, and yet remain consistent with ≺+.

Clearly, it takes no more than |Ξ1 Ξ∥ 2| such substitutions to obtain a total order in which at
most one pair (ξ1,ξ2) of consecutive events exists such that ξ1 ∊ Ξ1 and ξ2 ∊ ξ2. The events in
all other pairs of consecutive events are in this total order both in ξ1 or in ξ2. By (5.11) through
(5.13), and by the definition of ξ1 and ξ2, this distinguished pair of consecutive events is such
that system_state (ξ1, ξ2) is precisely the system state recorded by Algorithm A_Record-
Global_State, which is then a global state, by our first definition of global states in Section
3.1.
Before we finalize this section, there are a couple of important observations to be made
regarding Algorithm A_Record_Global_State. The first observation is that, as we mentioned
previously, the global state that the algorithm records is stored in a distributed fashion among
G's nodes. Often the recorded global state can be used without having to be concentrated on
a single node for analysis (cf. Section 6.3.2 for an example), but equally as frequently it must
first be concentrated on a leader, which then works on the global state in a centralized
manner.
The second observation is that the global state that the algorithm records is in principle any
global state, in the sense that no control is provided to make "choices" regarding desirable
characteristics of the resulting global state. While this is fine for many applications (as for
example the detection of the stable properties we treat in Chapter 6), for others it does
matter which global state is used, and then a centralized approach may be advisable. We
elaborate on this a little more in Section 5.2.2.
We end the discussion in this section by returning to the issue of knowledge in distributed
computations, treated in Section 2.3, in order to illustrate one of the concepts introduced in

that section. Specifically, let be any sentence related to a global state that has been
recorded by Algorithm A_Record_Global_State. Because of the distributed fashion in which

this global state is stored after it is recorded, is clearly implicit knowledge that the

members of N have, that is, IN .

5.2.2 Some centralized alternatives
In this section, we briefly comment on two centralized alternatives to the recording of global
states, drawing mainly on motivations to be found in Chapter 10. As we mentioned in the
previous section, these centralized alternatives are a solution when the global state that one
seeks to record cannot be just any global state, but instead must be a global state with
certain specific characteristics.
The first case that we examine is that of a computation for which it is known that the system
state in which every node ni is in the kth local state in the sequence σi (cf.Section 3.1) for
some k ≥ 1 is a global state. This is the case, for example, of the algorithms we discuss in
Section 10.2, where for k > 1 a function of the kth such global state has to be compared with
the result of applying the same function to the k — 1st such global state, regardless of
whatever messages may be in transit on the edges. It turns out that computing such a
function of a global state is a trivial task if done by a single node, and because the edge
states do not matter, the natural choice is for every node ni to report every new local state to
a leader, which then performs the necessary function evaluation and global state comparison
whenever a new global state is completed with information received from the other nodes.
The second case is motivated by the needs of Sections 10.3.2 and 10.6, where in the global
states to be recorded every edge state must be the empty set. Again, a centralized approach
is preferable because it renders the task of checking for empty edges quite simple. The
approach is then the following. Whenever a node ni is in a local state with which it may
participate in a global state of interest (or simply periodically), it sends the leader this local
state, together with the numbers of messages it has so far received on each edge in Ini and
sent on each edge in Outi. Whenever the information the leader receives from all nodes is
such that the number of messages sent on each edge is equal to the number of messages
received on that edge, the corresponding system state is surely a global state, because every
system state in which all edges are empty is a global state (cf. Exercise 7).

5.3 Network synchronization
This section is dedicated to the third major design technique to be discussed in this chapter,
namely network synchronization. As we have anticipated in various occasions, especially in
Sections 2.1 and3.3, a synchronous algorithm can be turned into an asynchronous algorithm
at the expense of additional message and time complexities, so that the lack of a global time
basis and of bounds on delays for message delivery can be dealt with, and the resulting
algorithm can be guaranteed to function as in the synchronous model.
As we remarked in Section 3.3 when presenting Algorithm S-to-A-Template, essentially the
technique of network synchronization amounts to determining that a node ni that has been
executing the action corresponding to pulse s ≥ 0 of the synchronous algorithm is ready to
proceed to pulse s + 1 under the asynchronous model. In Algorithm S-to-A_Template, such a
decision is embodied in a Boolean function DONEi(si), where si is a variable that indicates the
interval ni is currently involved with.
Our approach in this section is to take G to be an undirected graph, and then consider a
generic synchronous algorithm, call it Algorithm S-Alg, written in accordance with Algorithm
S_Template of Section 2.1. The asynchronous algorithm resulting from translating Algorithm
S_Alg into the asynchronous model will be called Algorithm A_Alg(Sync), where Sync
indicates the particular technique, or synchronizer, employed in the translation. In essence,
Algorithm A_Alg(Sync) follows Algorithm S-to-A-Template.
The essential property that we seek to preserve in translating Algorithm S-Alg into Algorithm
A_Alg(Sync) is that no node ni proceeds to pulse s + 1 before all messages sent to it at pulse
s have been delivered and incorporated into MSGi(s) (the reader should recall from Sections
2.1. and 3.3.that this is the set of messages sent to ni at pulse s). In order to ensure that this
property holds for all nodes and at all pulses, we begin by requiring that all messages of
Algorithm S_Alg be acknowledged. These messages are denoted by comp_msg, and the
acknowledgements by ack. A node is said to be safe with respect to pulse s if and only if it
has received an ack for every comp_msg it sent at pulse s. In order to guarantee that our
essential property holds for ni at pulse s, it then suffices that ni receive information stating
that every one of its neighbors is safe with respect to pulse s. The task of a synchronizer is
then to convey this information to all nodes concerning all pulses of the synchronous
computation.
A synchronizer is then to be understood as an asynchronous algorithm that is repeated at
every pulse of Algorithm S_Alg in order to convey to all nodes the safety information we have
identified as fundamental. Now let Messages(Alg) and Time(Alg) denote, respectively, the
message complexity and the time complexity of a distributed algorithm Alg (synchronous or
asynchronous). Then Messages(Sync) and Time(Sync) stand for the message and time
complexities, respectively, introduced by Synchronizer Sync per pulse of Algorithm S-Alg to
yield Algorithm A_Alg(Sync). These two quantities constitute the synchronization overhead
introduced by Synchronizer Sync.
Regardless of how Synchronizer Sync operates, we can already draw some conclusions
regarding the final complexities of Algorithm A_Alg(Sync). Let us, first of all, recognize that
the use of the ack messages does not add to the message complexity of Algorithm S_Alg, as
exactly one ack is sent per comp_msg. Considering in addition that Messages(Sync) is the
message complexity introduced by Synchronizer Sync per pulse of the execution of
Algorithm S_Alg, and that there are Time(S_Alg) such pulses, we then have

where Messages0(Sync) is the message complexity, if any, that Synchronizer Sync incurs
with initialization procedures.
Similarly, as Time(Sync) is the time complexity introduced by Synchronizer Sync per each of
the Time(S_Alg) pulses of Algorithm S_Alg, we have

where Time0(Sync) refers to the time, if any, needed by Synchronizer Sync to be initialized.
Depending on how Synchronizer Sync is designed, the resulting complexities Messages
(A_Alg(Sync)) and Time(A_Alg(Sync)) can vary considerably. In Section 5.3.1., we discuss
three types of general synchronizers, and in Section 5.3.2. consider some special variations
of interest.

5.3.1 General synchronizers
The essential task of a synchronizer is to convey to every node and for every pulse the
information that all of the node's neighbors are safe with respect to that pulse. This safety
information indicates that the node's neighbors have received an ack for every comp_msg
they sent at that pulse, and therefore the node may proceed to the next pulse.
The first synchronizer we present is known as Synchronizer Alpha. The material that we
present in Section 5.3.2 comprises variants of this synchronizer. In Synchronizer Alpha, the
information that all of a node's neighbors are safe with respect to pulse s ≥ 0 is conveyed
directly by each of those neighbors by means of a safe(s) message. A node may then
proceed to pulse s + 1 when it has received a safe(s) from each of its neighbors. Clearly, we
have

and

as a safe message is sent between each pair of neighbors in each direction, and causes no
effect that propagates farther than one edge away. We also have Messages0(Alpha) = Time0

(Alpha) = 0.
Algorithm A_Alg(Alpha) is described next. In this section, we do not assume that edges are
FIFO, and for this reason comp_msg's and ack's sent in connection with pulse s ≥ 0 are sent
as comp-msg(s) and ack(s) (cf. Exercise 8). In Algorithm A_Alg(Alpha), node ni maintains, in
addition to the variables employed by Algorithm S-to-A_Template, the following others. A
variable expectedi(s), initially equal to zero, records for all s ≥ 0 the number of ack(s)'s ni

expects. This variable is assumed to be incremented accordingly whenever ni, sends
comp_msg(s)'s, although this is part of the "Send one message…" that generically appears
in all our templates and then the sending of the messages is not explicitly shown. Node ni,

also maintains a variable (s) for each neighbor nj and all s ≥ 0, initially set to false
and used to indicate whether a safe(s) has been received from nj.
Despite the simplicity of Synchronizer Alpha, designing the initial actions of Algorithm A_Alg
(Alpha) requires that we reason carefully along the following lines. A node in N0 behaves
initially just as it would in the synchronous model. A node in that is not in N0, however,
although in Algorithm S-Alg it might remain idle for any number of pulses, in Algorithm A-Alg
(Alpha) it must take actions corresponding to every pulse, because otherwise its neighbors
would never receive the safe messages that it should send and then not progress in the
computation. The way we approach this is by employing an additional message, called
startup, which is sent by the nodes in N0 to all of their neighbors when they start computing.
This message, upon reaching a node that is not in N0 for the first time, serves the purpose of
"waking" that node up and then gets forwarded by it to all of its neighbors as well. Loosely,
this startup message can be though of as a "safe(−1)" message that is propagated in the
manner of Algorithm A-PI of Section 4.1.1, and is intended to convey to the nodes that are
not in N0 the information that they should participate in pulse s = 0 too, as well as in all other
pulses (although for s > 0 this can be taken for granted by the functioning of Synchronizer
Alpha). All nodes, including those in N0, only proceed to executing pulse s = 0 of the
synchronous computation upon receiving a startup from every neighbor. This is controlled by

a variable , initially set to false, maintained by ni for every neighbor nj to indicate
whether a startup has been received from nj. An additional variable, initiatedi, intially set to
false as well, indicates whether ni ∊ N0.

Algorithm A_Alg(Alpha):

 Variables
 si = 0;

 MSGi(s) = for all s≥ 0;

 initiatedi = false;

 = false for all nj ∊ Neigi;
 expectedi(s) = 0 for all s≥0;

 (s) = false for all nj ∊ Neigi and all s ≥ 0.

Listing 5.14

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 initiatedi := true;
 Send startup to all nj ∊ Neigi.

Listing 5.15

 Input:
 msgi = startup such that origini(msgi) = (ni, nj).
 Action:
 if not initiatedi then
 begin
 initiatedi := true;
 Send startup to all nk ∊ Neigi

 end;

 := true;

 if for all nj ∊ Neigi then
 begin
 Do some computation;
 Send one comp_msg(si) on each edge of a (possibly empty)
 subset of Inci;
 if expectedi(si) = 0 then
 Send safe(si) to all nk ∊ Neigi

 end.

Listing 5.16

 Input:
 msgi = comp_msg(s) such that origini (msgi) = (ni, j).
 Action:
 MSGi(s + 1) := MSGi(s + 1) {∪ msgi};
 Send ack(s) to nj.

Listing 5.17

 Input:
 msgi = ack(s).
 Action:
 expectedi(s) := expectedi(s) −1;
 if expectedi (s) = 0 then
 Send safe(s) to all nj ∊ Neigi.

Listing 5.18

 Input:
 msgi = safe(s) such that origini (msgi) = (ni,nj).
 Action:

 (s) := true

 if (si) for all nk ∊ Neigi then
 begin
 si := si + 1;
 Do some computation;
 Send one comp_msg(si) on each edge of a (possibly empty)
 subset of Inci;
 if expectedi(si) = 0 then
 Send safe(si) to all nk ∊ Neigi

 end.

As we indicated earlier, Algorithm A_Alg (Alpha) can be viewed as a specialization of
Algorithm S-to-A_Template when the synchronization technique is Synchronizer Alpha.
Indeed, the reader may without any difficulty check that (5.14) and (5.15) essentially do the
job of (3.3), although the former involve nodes that are not in N0 while the latter does not.
Similarly, (5.16) through (5.18) offer a detailed view of (3.4) under the rules of Synchronizer

Alpha. In particular DONEi(si) returns a true value in (3.4) if and only if (si) = true
for all nj ∊ Neigi in (5.18).
Synchronizer Alpha is only one of the possibilities. For generic synchronous computations
like Algorithm S_Alg, there are two other synchronizers of interest. The first one is called
Synchronizer Beta, and requires for its operation a spanning tree already established on G,
so the initial complexities Messages0(Beta) and Time0(Beta) are no longer equal to zero, but
depend instead on the distributed algorithm used to generate the tree (cf.Section 7.1.2).
These complexities must also account for the election of a leader, which, as we mentioned in
.Section 5.1, may be carried out rather closely to the construction of the spanning tree (cf.
Section 7.1.1, and Section 7.1.2 as well).
The function of the leader in Synchronizer Beta is to gather from all other nodes the safety
information needed to proceed to further pulses, and then broadcast this information to all of
them. The specifics of this procedure are the following. When a node that is not the leader

becomes safe with respect to a certain pulse and has received a safe message from all but
one of its neighbors on the tree, it then sends a safe message to the single neighbor from
which it did not receive a safe (the tree edge connecting to this neighbor leads towards the
leader). The leader, upon receiving safe messages on all the tree edges that are incident to
it, and being itself safe with respect to that pulse, broadcasts a message on the tree
indicating that the computation of a new pulse may be undertaken. This message may be a
safe message as well, and then the rule for a node to proceed to another pulse is to do it
after having received a safe message on all tree edges incident to it.
Once the leader has been elected and the spanning tree built, the asynchronous algorithm
that results from applying Synchronizer Beta to Algorithm S_Alg, Algorithm A-Alg(Beta), is
initiated as follows. The leader broadcasts on the tree that all nodes may begin the
computation of pulse s = 0.
Clearly, the messages that Synchronizer Beta introduces traverse only tree edges, so we
have

and

For generic computations, Synchronizer Beta does better than Synchronizer Alpha in terms
of message complexity, whereas the reverse holds in terms of time complexity.
The other synchronizer of interest, called Synchronizer Gamma, arises from a combination of
Synchronizers Alpha and Beta. In this combination, nodes are conceptually grouped into
clusters. Inside clusters, Synchronizer Gamma operates as Synchronizer Alpha; among
clusters, it operates as Synchronizer Beta. The size and disposition of clusters are regulated
by a parameter k such that 2 ≤ k < n, and in such a way that Synchronizer Gamma's
complexities are

and

As k varies, Synchronizer Gamma resembles more Synchronizer Alpha or Synchronizer
Beta. Once again the costs of initialization Messages0(Gamma) = and Time0(Gamma) are
nonzero and depend on the mechanisms utilized. Values that can be attained for these
measures are Messages0(Gamma) = O(kn2) and Time0(Gamma) = O(n log n/log k).
Something instructive for the reader to do, having become acquainted with the synchronizers
we discussed in this section, is to return to the various synchronous algorithms we have
already seen in the book and assess their complexities when each of the three synchronizers
is employed. Some of the conclusions to be drawn from this assessment are the following.
First, no synchronizer can beat the complexities of Algorithm A-Compute-f when applied to
either Algorithm S-Compute-AND or Algorithm S-Locally-Orient. Secondly, Synchronizer
Alpha (the only one whose application to a synchronous leader election algorithm is
meaningful), when applied to Algorithm S-Elect-Leader-C, does not yield improvements over
the complexity of Algorithm A-Elect-Leader-C.
What these two conclusions indicate is that synchronizers do not necessarily lead to better
complexities when compared with asynchronous algorithms that were designed without
recourse to synchronization techniques. However, as we remarked at the end of Section 3.4
in the context of establishing a breadth-first numbering on the nodes of a directed graph,
historically there have been occasions in which such improvements were obtained.
Incidentally, it may also be an instructive exercise for the reader to verify that the
complexities claimed in that occasion for the asynchronous solution obtained from the
synchronous one are consistent with the message and time complexities of Synchronizer
Gamma as discussed in this section. (Although in this section G is taken to be undirected, no
conflict exists when addressing the computation for breadth-first numbering discussed in
Section 3.4. The graph is in that case a directed graph, and it is on such a graph that the

synchronous algorithm operates. On the other hand, the synchronizer, and consequently the
resulting asynchronous algorithm, operate on the corresponding undirected graph,
essentially by being allowed to send synchronization-related messages against the direction
of the edges when needed—cf. Exercise 10.)
In Chapter 7, when we discuss algorithms to find maximum flows in networks, synchronizers
will come to the fore once again in the book.

5.3.2 Important special cases
Of the synchronous algorithms we have seen so far in the book, another that deserves our
attention in the light of a synchronizer is Algorithm S-Compute-Distances, introduced in
Section 4.3 for the computation of the shortest distances among all pairs of nodes in G. As
we claimed in that section, this algorithm yields Algorithm A-Compute-Distances, also
introduced in Section 4.3, through the utilization of a synchronizer. Interestingly, and contrary
to the intuition we built during our study in the previous section, both algorithms have the
same message and time complexities. The reason for this is that the synchronizer employed
to transform the synchronous algorithm into the asynchronous one is a particular case of
Synchronizer Alpha, as we discuss next.
Let us first, however, examine the following scenario in the context of Synchronizer Alpha.
Suppose, for the sake of example, that node ni has two neighbors, nj and nk. Suppose further
that nj has only one neighbor (ni) and that nk has many neighbors. Consider the situation in
which ni has just become safe with respect to pulse s ≥ 0 and then sends safe(s) to nj and nk.
Node ni can only proceed to pulse s + 1 after receiving similar messages from its two
neighbors. Suppose that such a message has been received from nj but not from nk (which
depends on many more neighbors other than ni to become safe with respect to pulse s). It is
possible at this moment that a safe(s + 1) too is received from nj before the safe(s) from nk

arrives, at which time ni will have received two safe messages from nj without the respective
counterparts from nk, and will therefore be unable to proceed to pulse s + 1 immediately. It is
simple to see, nevertheless, that nj will at this time be unable to proceed to pulse s + 2, as it
now depends on a safe(s +1) from ni. If we compute the number of safe messages ni has
received since the beginning of the computation from its two neighbors, we will see that the
numbers corresponding to nj and nk differ by no more than two. The particular topological
situation we described was meant to help the understanding of this issue, but the maximum
difference we just stated is true in general.
This relative "boundedness," when coupled with the assumption that all edges are FIFO,
allows various simplifications to be carried out on Algorithm A-Alg(Alpha). For one thing, no
message or variable needs to depend explicitly on s any longer, so that the "per-pulse bit
complexity" of Synchronizer Alpha, which we have not introduced formally but clearly might
be unbounded, becomes constant. In addition, under the FIFO assumption ack's are no
longer needed, and ni may send safe messages to all of its neighbors immediately upon
completion of its computation for the corresponding pulse. Such safe messages will certainly
be delivered after the comp-msg's sent during that computation, indicating that every such
message sent by ni during the current pulse has already arrived.
We now present a version of Algorithm A-Alg (Alpha) in which edges are assumed to be
FIFO, and, in addition, the following important assumption is made. At each pulse s ≥ 0, node
ni sends exactly one comp-msg to each of its neighbors. These two assumptions allow
startup, ack, and safe messages to be done away with altogether, and so render the

variables , expectedi, and useless for all neighbors nj of ni. Also, the sets MSGi

(s) for s ≥ 0 are no longer needed; instead, one single set MSGi for use at all pulses suffices,
as we see next.
The behavior of ni is now considerably simpler, and goes as follows. It starts upon receiving
the first comp-msg (unless it belongs to N0), and proceeds to the next pulse upon receiving
exactly one comp-msg from each of its neighbors. However, it is still possible to receive two
consecutive comp-msg's from one neighbor without having received any comp_msg from
another neighbor. This issue is essentially the same we discussed above concerning the
reception of multiple safe messages from a same neighbor, and some control mechanism
has to be adopted. What we need is, for each neighbor, a queue with one single position in

which comp_msg's received from that neighbor are kept until they can be incorporated into
MSGi. (From our previous discussion, it would seem that two-position queues are needed.
However, we can think of MSGi as containing the queue heads for all of ni's queues.) We

then let denote this queue at ni for neighbor nj. The new version we present is
called Algorithm A_Schedule_AS ("AS" for Alpha Synchronization), in allusion to its use in
Section 10.2.

Algorithm A_Schedule_AS:

 Variables:
 si = 0;

 MSGi =
 initiatedi = false;

 = nil for all nj ∊ Neigi.

Listing 5.19

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 initiatedi := true;
 Do some computation;
 Send exactly one comp_msg on each edge of Inci.

Listing 5.20

 Input:
 msgi = comp_msg such that origini(msgi) = (ni, nj).
 Action:
 if not initiatedi then
 begin
 initiatedi := true;
 Do some computation;
 Send exactly one comp_msg on each edge of Inci

 end;
 if there exists msg ∊ MSGi such that origini(msg) = nj then

 := msgi

 else
 MSGi := MSGi {∪ msgi};
 if |MSGi| = |Neigi| then
 begin
 si := si + 1;
 Do some computation;
 Send exactly one comp_msg on each edge of Inci;

 MSGi := ;

 for all nk ∊ Neigi do

 MSGi := MSGi {∪ };

 := nil for all nk ∊ Neigi

 end.

In Algorithm A_Schedule_AS, (5.19) and (5.20) reflect the considerable simplification that the
assumptions of this section entail with respect to Algorithm A_Alg(Alpha). In addition to the
elimination of many messages and variables with respect to that algorithm, it should also be
noted that, unless ni employs the value of si for its computation at any pulse, this variable too
may be eliminated.
When comparing this algorithm with the general template given by Algorithm S-to-
A_Template, one verifies that DONEi(si)returns true in (3.4) if_ and only if | MSGi|= |Neigi| in
(5.20), although the dependency on si is no longer explicit, as MSGiis a single set for use at
all pulses.
We are now in position to return to the problem of computing shortest distances where we
left it in Section 4.3. Clearly, Algorithm S_Compute_Distances complies with the assumption
of this section that every node sends exactly one message to every one of its neighbors at all
pulses. This, combined with the assumption of FIFO edges, allows a corresponding
synchronous algorithm to be obtained along the lines of Algorithm A_Schedule_AS. Indeed, it
should take little effort to realize that Algorithm A_Compute_Distances is merely an instance
of Algorithm A_Schedule_AS (cf. Exercise 11). Because the latter, when viewed as a
synchronous algorithm that underwent synchronization, does not contain any synchronization
overhead, the complexities of Algorithm A_Compute_Distances are indeed the same as
those of Algorithm S_Compute_Distances.

5.4 Exercises
1. Show that a leader can only be elected if in G all nodes have distinct identifications.
2. Discuss what happens to Algorithm S_Elect_Leader_C if the base is no longer 2, but rather c
such that 2 ≤ c < n −1.
3. Consider the O(n2)-message, O(1)-time synchronous algorithm that we discussed in Section
5.1 for leader election on a complete graph, and discuss how it can be adapted to the
asynchronous case. Show that the message complexity remains the same, but the time
complexity becomes O(n). Compare the resulting algorithm with Algorithm A_Elect_Leader_C.
4. Derive a leader-election algorithm from multiple executions of Algorithm A_PI.
5. Discuss alternatives to Algorithm A_Template that allow the treatment of messages belonging
to another computation as well. Show how this affects the way Algorithm A_Record_Global_State
is expressed.
6. Consider a computation in which nodes halt independently of one another, and consider the
system state in which all nodes are halted. Is this system state a global state? If it is, is it
completely known to the nodes?
7. Show that every system state in which all edges are empty is a global state.
8. Discuss what may happen if the pulse number is omitted from the messages comp_msg and
ack in Algorithm A_Alg(Alpha) when edges are not FIFO.
9. In the context of Section 1.5, find the r(c)'s for Algorithm A_Schedule_AS.
10. Discuss the fundamental alterations synchronizers must undergo when G is a directed graph.
11. Discuss in detail the reasons why Algorithm A_Compute_Distances is an instance of
Algorithm A_Schedule_AS.
12. Explain how to modify Algorithm A_Compute_Distances so that useless work is avoided after
all distances have been determined (instead of keeping running up to the maximum possible
distance of n −1).

1.
Show that a leader can only be elected if in G all nodes have
distinct identifications.

2.
Discuss what happens to Algorithm S_Elect_Leader_C if the
base is no longer 2, but rather c such that 2 ≤ c < n −1.

3.

Consider the O(n2)-message, O(1)-time synchronous algorithm
that we discussed in Section 5.1 for leader election on a
complete graph, and discuss how it can be adapted to the
asynchronous case. Show that the message complexity remains
the same, but the time complexity becomes O(n). Compare the
resulting algorithm with Algorithm A_Elect_Leader_C.

4.
Derive a leader-election algorithm from multiple executions of
Algorithm A_PI.

5.

Discuss alternatives to Algorithm A_Template that allow the
treatment of messages belonging to another computation as
well. Show how this affects the way Algorithm
A_Record_Global_State is expressed.

6.

Consider a computation in which nodes halt independently of
one another, and consider the system state in which all nodes
are halted. Is this system state a global state? If it is, is it
completely known to the nodes?

7.

Show that every system state in which all edges are empty is a
global state.

8.

Discuss what may happen if the pulse number is omitted from
the messages comp_msg and ack in Algorithm A_Alg(Alpha)
when edges are not FIFO.

9.
In the context of Section 1.5, find the r(c)'s for Algorithm
A_Schedule_AS.

10.
Discuss the fundamental alterations synchronizers must undergo
when G is a directed graph.

11.

Discuss in detail the reasons why Algorithm
A_Compute_Distances is an instance of Algorithm
A_Schedule_AS.

12.

Explain how to modify Algorithm A_Compute_Distances so that
useless work is avoided after all distances have been
determined (instead of keeping running up to the maximum
possible distance of n −1).

5.5 Bibliographic notes
The impossibility of electing leaders in the absence of distinct identifications for all nodes is
discussed in Angluin (1980). Our treatment in Section 5.1 is based on Afek and Gafni (1991).
Many other authors have investigated the problem of electing a leader under various
restrictions on G, including synchronous rings (Overmars and Santoro, 1989; Bodlaender
and Tel, 1990) and cases in which G is directed (Afek and Gafni, 1994). Awerbuch (1987)
has addressed the problem for generic graphs, and appears to have given the first time-
optimal algorithm to solve it—cf. Section 7.4. Additional work on leader election includes the
contributions by Peleg (1990), Singh (1992), Tsaan Huang (1993), and Singh and Kurose
(1994).
Most of Section 5.2 is based on the seminal work by Chandy and Lamport (1985). Other
authors have recently addressed the problem of global state recording in different contexts,
as for example Acharya and Badrinath (1992), Alagar and Venkatesan (1994), and Saleh,
Ural, and Agarwal (1994). Applications of algorithms for global state recording other than
those presented in other chapters can be found in Chaves Filho and Barbosa (1992) and in
Choy and Singh (1993), in both cases for scheduling purposes.
A great portion of Section 5.3 is based on the work in which synchronizers were first
introduced (Awerbuch, 1985a). Further developments on the theme can be looked up in
Awerbuch and Peleg (1990), Shabtay and Segall (1992), Garofalakis, Spirakis, Tampakas,
and Rajsbaum (1994), and Rajsbaum and Sidi (1994).

Distributed snapshots and synchronizers are often regarded as essential building blocks for
the design of distributed algorithms in general. The reader interested in such a view of the
design of distributed algorithms may refer to Gafni (1986), and to additional publications in
which techniques with potential to occupy similar positions as building blocks have been
introduced (Afek, Awerbuch, and Gafni, 1987; Afek and Ricklin, 1993).

Part 2: Advances and Applications
Stable Properties
Graph Algorithms
Resource Sharing
Program Debugging
Simulation

This second part of the book comprises five additional chapters, each dedicated to
a class of problems for which distributed algorithms have been devised. These
algorithms constitute advances on the basic algorithms and techniques introduced
in the chapters of Part 1, and are in most cases geared toward particular classes of
applications.
Chapter 6 contains a study of stable properties from the standpoints of self-
stabilization and of stability detection. The investigation of self-stabilizing
computations may be ultimately applicable to the recovery from faults, while the
detection of stability finds much more immediate applicability, for example in the
areas of termination and deadlock detection, both discussed in the chapter.
Chapter 7 expands on material seen previously in Part 1 (Chapters 4 and 5) with
the study of two graph problems. The first graph problem is that of finding a
minimum spanning tree on a graph, and relates directly to the leader election
problem, studied in Chapter 5. The second graph problem is that of finding a
maximum flow in a graph with a few special features. This problem, like those seen
in Chapter 4, are related to problems in the operation of distributed-memory
systems.
Chapter 8 is dedicated to the study of distributed algorithms to ensure mutual
exclusion in the access to shared resources, while guaranteeing deadlock- and
starvation-freedom as well. This problem is studied from two broad perspectives,
which in essence can be reduced to the sharing of one single resource or of
multiple resources concomitantly. One of the algorithms studied in this chapter
provides the basis for part of the discussion in Chapter 10.
Techniques for the deterministic re-execution of distributed algorithms in an
asynchronous setting, and for detecting breakpoints during executions of such
algorithms, are studied in Chapter 9. Both problems constitute essential parts of
the process of program debugging, and present difficulties far beyond those
encountered in a sequential setting. For the detection of breakpoints, we restrict
our attention to a few classes of breakpoints only.
Chapter 10 contains material on the distributed simulation of physical systems,
which are models of natural systems occurring in various scientific fields. We
present approaches for two broad classes of systems, called the time-stepped and
event-driven approaches. Within the latter, we expand on the so-called
conservative and optimistic methods. The chapter also contains a brief discussion
of methods for systems that do not exactly fall into either of the two classes, as well
as a short digression on how the various approaches may be unified.

Chapter 6: Stable Properties

Overview
A stable property is a global property of G that holds for all global states in the future of a
global state for which it holds. This chapter is devoted to the study of stable properties from
two essentially distinct perspectives. The first perspective is that of ensuring that a stable
property is achieved regardless of the initial global state, and the second perspective is that
of detecting that a stable property holds for some global state.

We address stable properties as a desired goal from any initial global state in Section 6.1,
where we relate such a type of behavior to the issue of fault-tolerance. Although fault-
tolerance is outside the intended scope of this book, our approach in Section 6.1 blends quite
well with material to be studied in Chapter 8, and in addition provides us with the opportunity
to discuss a class of distributed algorithms exhibiting nontrivial stable behavior for any initial
global state.

The second perspective from which we study stable properties is the perspective of stability
detection, more specifically the detection of the termination of distributed computations and
the detection of deadlocks. This second perspective contrasts with the first one not only
because of widely differing objectives (achieving stability, in the former case, as opposed to
detecting it, in the latter), but also because termination and deadlocks are far from the sort of
stable properties one is seeking to achieve in the former case.
Termination detection is treated in Section 6.2, where we discuss techniques for detecting
the termination of distributed computations in general and of distributed computations that
that are of the diffusing type. These, as we will see, are characterized by the fact that N0 is a
singleton.
In Section 6.3, we discuss the detection of deadlocks in a distributed computation. Because
deadlocks can occur in a variety of situations, and under assumptions that differ widely from
one case to another, in Section 6.3 we concentrate on a distributed computation that controls
the providing of services by the nodes to one another. Such a computation, as we describe it
in that section, is deadlock-prone. The algorithm that we provide to detect the occurrence of
deadlocks is very elegantly contrived, and moreover allows techniques that we have seen
previously in the book, chiefly in Chapter 4, to be exercised.
Exercises and bibliographic notes appear, respectively, in Sections 6.4 and 6.5.
Before we proceed to the remaining three major sections of this chapter, it may be instructive
to once again return to the issue of implicit knowledge introduced in Section 2.3 for another

example. Quite simply, if is a sentence related to some stable property in some global

state, then is implicit knowledge that N has in that global state and in all global states in

its future, that is, IN . So, for example, an algorithm that has terminated or deadlocked is
such that N has implicit knowledge of either condition. In these cases, what the detection
procedures studied in Sections 6.2 and 6.3 do is to turn such implicit knowledge into
knowledge by one or more individual nodes.

6.1 Self-stabilization
If a distributed algorithm over G can be guaranteed to lead G to a global state
where a particular stable property holds regardless of the global state at which the
computation starts out, then the system comprising G and this distributed algorithm
is said to be a self-stabilizing system. Every self-stabilizing system is fault-tolerant
in the following sense. If the local states of nodes are allowed to change
infrequently as the result of a failure, then by definition the system recovers from
that failure by reaching a global state at which the desired stable property is once
again valid. Just how infrequent such failures have to be for self-stabilization to be
still guaranteed is of course an issue, but for our purposes it suffices to recognize
that failures have to be infrequent enough for the system to reach stability again
once it has been disturbed.

Self-stabilizing systems do not need to be initialized, because by definition the
stable property that the distributed algorithm seeks to achieve is certain to be
reached from any initial global state. Also, because of the fault-tolerance
connotation that inevitably accompanies the subject, once started at some initial
global state, the distributed computation is supposed to be infinite, in the sense of
never terminating. For this reason, not every stable property is meaningful in the
context of self-stabilization, as one is interested in computations that do useful

work despite the initial state and occasionally corrupted local states. Stable
properties such as global termination and deadlocks are then naturally ruled out.
In order to close in on the subject more objectively, we consider the following
example. Suppose that the nodes in G need to utilize certain resources for their
computations, but such resources cannot be utilized concurrently by any two
nodes. In the context of self-stabilization, the task is to devise a distributed
algorithm that, starting at any global state and given the possibility that local states
may be occasionally corrupted, guarantees that the system eventually reaches a
global state in which (and in whose future) no two nodes access the shared
resources concurrently. (The reader may wish to check Section 8.1 for a more
thorough treatment of this problem, although in that section self-stabilization is not
an issue.) The stable property at hand is then that no two nodes access shared
resources concurrently, so long as this can be guaranteed to remain true once it
becomes true.
Henceforth in this section, G is an undirected ring with FIFO edges. Referring back
to the terminology of Section 2.2, the edges incident to node ni are called lefti and
righti, and the ring is assumed to be locally oriented (employing these edge
denominations is only for notational convenience, though, because in this section
the issue of anonymity is unimportant). Associated with a node ni is a variable vi.
The right of a node to access the shared resources depends on the value of its
variable and on the values of the variables of its neighbors. The task of a self-
stabilizing computation on G is then to assign values to all nodes' variables so that
no two nodes have such a right concurrently from a certain global state onward,
regardless of the initial global state (i.e., the initial assignment of values to the
variables).
Although a justification of this fact falls outside the scope we have intended for this
book, for a ring of arbitrary size no self-stabilizing solution exists employing the
exact same algorithm for all nodes. For this reason, in the solution that we present
next the behavior of n1 is distinct from that of the other nodes. Our solution is given
as Algorithm A-Self-Stabilize, and is essentially the following. Every node ni initiates
by sending the value of vi on righti. Upon receiving a value v on edge lefti, ni checks
whether vi ≠ v. In the affirmative case, ni accesses the shared resources, and after
using them sets vi to v and sends vi's new value on righti. An exception to this
behavior is the case of n1, which accesses the shared resources if v1 = v and then
sets v1 to v + 1 before sending the new value on right1.
At node ni, a Boolean variable initiatedi, initially set to false, is used to indicate
whether ni ∈ N0. The simple behavior we just described is all there is to the
algorithm, except for the possibility of faults that may corrupt a node's local state
(i.e., the value of its variable). Before explaining how the algorithm is augmented to
handle such faults, a few assumptions on their nature are in order. First we
assume that actions do indeed take no time to be performed (cf. Section 3.2.2),
and consequently the occasional faults that may corrupt a node's local state can
only occur in the intervals between successive actions at that node. Faults
occurring prior to the first action at a node are immaterial (because the algorithm is
intended to be insensitive to initial conditions), and then it is reasonable to assume
that faults can only occur at ni if initiatedi = true (as in previous occasions when
dealing with asynchronous algorithms, initiatedi is set to true immediately upon
arrival of the first message if ni ∉ N0). Finally, another assumption is that ni is
capable of detecting the occurrence of a fault that may have corrupted its local
state. This detection is modeled as the arrival of a fault message (of purposefully
undetermined origin).
The handling by ni of a fault that may have corrupted its local state goes as follows.
In response to the fault message, ni sets initiatedi to true (since by assumption it
must have been true prior to the occurrence of the fault) and then reproduces the
flow of messages involving ni during initiation. That is, it sends the value of vi (which
may or may not be the same as before the occurrence of the fault) on righti and a

query message on lefti, the latter meant to prompt its corresponding neighbor to
send the value of its variable to ni.

Algorithm A _Self_Stabilize:

 Variables:
 initiatedi = false;
 vi

Listing 6.1

 Input:
 msgi = nil.
 Action if ni ∈ N0:
 initiatedi := true;
 Send vi on righti.

Listing 6.2

 Input:
 msgi = fault.
 Action:
 initiatedi := true;
 Send vi on righti;
 Send query on lefti.

Listing 6.3

 Input:
 msgi = query.
 Action:
 Send vi on righti

Listing 6.4

 Input:
 msgi = v.
 Action if ni =n1:
 if vi = v then
 begin
 Access shared resources;
 vi := vi + 1;
 Send vi on righti

 end.

Listing 6.5

 Input:
 msgi = v.
 Action if ni ∈ {n2,…,nn):
 if vi ≠ v then
 begin
 Access shared resources;
 vi := v;
 Send vi on righti

 end.

The first fact to notice with respect to Algorithm A_Self_Stabilize is that we have
not assigned any initial value to vi for vi ∈ N, precisely because of the intended
insensitivity to the initial global state. Secondly, it should be noticed that (6.1) and
the pair consisting of (6.2) and (6.3) are meant to be executed upon initiation,
triggered respectively by the spontaneous initiation by ni, if it is in N0 and by the
detection by ni of a the occurrence of a fault that may have corrupted the value of
vi. As we remarked previously, (6.2) and (6.3) are supported by our assumptions on
the nature of such faults, in the sense that the response to a fault may be thought
of as a re-initiation of the algorithm as far as ni is concerned.
The necessary asymmetry that we alluded to earlier is reflected in Algorithm
A_Self_Stabilize in (6.4) and (6.5), representing respectively the action that n1 and
ni ∈ {n2,…,nn} take upon receipt of a variable's value on the ring. It follows easily
from these two actions that, if initially all variables have the same value, then by
(6.4) v1 is incremented and by (6.5) its new value is propagated on the FIFO edges
around the ring until all variables have this same value. Then v1 is incremented
again, and so on. If, on the other hand, at least two variables have distinct values in
any global state, then either the value of v1 or that of v1 + 1 (if v1 = vn in that global
state) is propagated on the ring as well, until vn becomes equal to v1, and then the
process continues repeatedly. So, although in the latter case the shared resources
may be concurrently accessed by more than one node during a transient phase of
some global states, a global state in which (6.4) and (6.5) cannot be executed
concurrently by any two nodes is certain to occur, the same property holding for all
global states in its future.
The solution by Algorithm A_Self_Stabilize can be turned into a solution by finite-
state nodes by doing additions modulo V in (6.4), so that variables are confined to
the range {0,…, V − 1}. Any V strictly larger than n will do, so that the range of
values for a variable contains at least the set {0,…, n} (cf. Exercise 1).

6.2 Termination detection
The issue of algorithm termination appeared in this book as early as in Chapter 1, where, in
Section 1.4, Algorithm Task_t runs until "global termination is known to t." As we discussed in
that section, what is meant by this is that task t must execute its disjunction of guarded
commands until it is signaled, by means of messages that it receives, that no further
messages will ever reach it and it may therefore cease executing the guarded commands
and terminate its computation. The notation used in Algorithm Task_t was later modified to
emphasize the reactive character of the algorithm, so that in the resulting template
algorithms (Algorithms A_Template and S_Template) only the atomic actions corresponding

to a task's response to the receipt of messages appear. Such messages, of course, should
include those intended to convey to t the information that it may terminate.
Tasks have since been called nodes, and in none of the algorithms we have seen so far (or
will see in chapters still ahead in the book) have we included actions to handle the treatment
of the termination-related messages we have from Chapter 1 learned to be important. There
are essentially two reasons why we have delayed such a treatment until this far into the book.
The first reason is that global termination, as we will shortly see, is clearly an instance of
stable properties, so that placing its treatment elsewhere in the book might seem a little
unnatural. Secondly, and more importantly, the techniques we investigate in this section build
naturally on top of what we saw in Chapters 4 and 5, often explicitly, but also sometimes
simply in terms of the maturity of reasoning one must have acquired by studying those
chapters.
Of course, for some of the algorithms we have seen, the issue of termination is a trivial one.
For example, all the synchronous algorithms we have investigated terminate when a certain
number of pulses have gone by. Similarly, in the case of all the asynchronous algorithms we
have seen so far, a node should have no problem detecting that messages need no longer
be expected, mostly because those algorithms are all very well structured and have very
great regularity. For example, it is clear that Algorithm A_PI terminates at a node when that
node has received inf from all of its neighbors, at which time it can be certain that no further
message related to that algorithm will ever reach it again. Similar lines of reasoning apply to
all the other asynchronous algorithms we have seen (cf. Exercise 2), as well as to many of
the algorithms yet to be seen in the book. For asynchronous algorithms lacking the regularity
that allows such simple termination analyses, however, the issue of detecting global
termination with the purpose of relieving the various nodes from having to be on the lookout
for new messages needs to be addressed from a general perspective. Asynchronous
algorithms like these appear, for example, in Section 7.2.3.
The remainder of Section 6.2 is dedicated exclusively to asynchronous algorithms, although
for various synchronous computations (e.g., those in Section 7.2.2) the detection of
termination is not as straightforward as it has been with some of the other synchronous
algorithms we have seen so far. However, the central issue in treating the termination of
such algorithms is that, if they do indeed terminate, then it is essentially possible to detect
that by counting pulses. Clearly, such a statement has no clear counterpart in the
asynchronous case, thence our emphasis henceforth.
What we do in the next two sections is essentially to provide the atomic actions to make up
for the treatment of global termination in asynchronous algorithms that do not exhibit enough
regularity for its termination to be treated without messages related explicitly to termination.
These actions complement those of the asynchronous algorithms proper so that the resulting
asynchronous algorithms behave as intended and in addition are also capable of terminating
properly. It should be clear to the reader that the techniques we describe henceforth are also
applicable to asynchronous algorithms exhibiting high regularity, although of course in such
cases they are totally superfluous and the resulting algorithm can in all likelihood be
simplified back to the one whose regularity is enough to indicate termination. Section 6.2.1 is
dedicated to the case of general computations, in the sense that N0 may be any subset of N.
Section 6.2.2, on the other hand, is specific to the case in which N0 is a singleton. Before
entering specifics in either section, however, we must formalize a little further our concept of
global termination.
An asynchronous algorithm is said to have terminated globally or reached global termination
at a certain global state if every node is idle and all edges are empty in that global state. A
node is idle when it is not executing any of the actions that specify its participation in the
algorithm. Obviously, then, global termination is indeed a stable property, owing essentially to
the reactive character of all the asynchronous computations we treat in this book. What a
node needs to detect in order to be able to terminate its computation at a given local state is
that, in every possible global state in which it participates with that local state, the edges on
which it receives messages are all empty. Such a detection may be achieved in a variety of
ways. In the case of Algorithm A_PI, for example, as soon as inf has been received from all
of a node's neighbors, that node enters a local state with which it can only participate in
global states that have empty edges leading to itself, and then it may terminate. When this
conclusion cannot be reached in such a straightforward manner, additional computation

needs to take place globally over G until a global state in which the algorithm has terminated
globally is detected by a leader. The leader is then responsible for spreading this information
over G, and every node, upon receiving it, does finally terminate. Without any loss in
generality, we assume that such a leader is node n1.
In both Sections 6.2.1 and 6.2.2, we present the termination detection algorithms as
expansions of Algorithm A_Template. The resulting algorithms should be regarded as further
elaborations over Algorithm A_Template to make the termination-related actions explicit.
Messages that are not related to the detection of termination are referred to as comp_msg's.

6.2.1 General computations
The distributed computation of interest in this section is initiated by any subset N0 of N and
progresses through the exchange of messages generically referred to as comp-msg's. We
take G to be a strongly connected directed graph, so that the case of an undirected G can
also be handled in a straightforward manner. Our approach to termination detection in this
section is based strongly on Algorithm A_Record_Global_State, and then we assume that
G's edges are FIFO.
The approach we take goes essentially as follows. Before going idle, a node that "suspects"
it may have terminated initiates the recording of a global state. This suspicion is of course
highly dependent upon the particular computation at hand, so we let it be indicated by a
Boolean variable suspectsi at ni ∈ N. This variable is set to either false or true after, in
accordance with Algorithm A_Template, ni has computed and possibly sent out some
messages, either spontaneously if ni N0 or upon the receipt of a comp_msg (the initial value
assigned to the variable is then unimportant). A global state in which suspectsi = true for all
ni ∈ N does not imply global termination in that global state (because there may be
messages in transit), but we assume that global termination does imply that suspectsi = true
for all ni ∈ N.
This recording of a global state proceeds entirely along the lines of Algorithm
A_Record_Global_State, that is, through the exchange of marker messages, and may as in
that case be initiated concurrently by more than one node if for such nodes the suspects
variables become true concurrently. When the recording of a global state is completed at ni,
it then sends what it recorded to n1 (the assumed leader), which, upon receiving similar
information from every node, checks whether the global state that was recorded indicates
global termination. If it does, then a terminate message is broadcast by n1 to all of G's nodes,
which then terminate.
Clearly, this procedure may be wasteful because a node ni that receives a marker when
suspectsi = false should not propagate the marker's onward because the resulting global
state cannot possibly indicate global termination. Aborting a global state recording is not
something we have considered before, and there are a few implications to be considered. In
our present context, the two problems that result from prematurely aborting a global state
recording are the need to terminate the aborted recording properly and the possibility that n1

receives incomplete global states which must somehow be dealt with. We tackle both
problems simultaneously, as follows. Every marker is sent with a tag, and every node keeps
record of the greatest tag it has seen so far in a marker. If the tag a node attaches to a
marker it sends out when initiating a new global state recording is strictly greater than any tag
it has ever seen, then the rule for participating in global state recordings is very simple. A
node only participates in a new global state recording if the tag accompanying the
corresponding marker is strictly larger than every tag it has known of and in addition its
suspects variable is true. Any marker received in different circumstances is ignored. The
reader should note that this provides the necessary control for terminating aborted global
state recordings, and also allows n1 to discard useless information it has recorded if the
information that it receives from nodes on a recorded global state is itself accompanied by
the tag that was attached to the marker's during the recording of that global state.
This strategy is adopted by Algorithm A_Detect_Termination, given next. In addition to the
Boolean variable suspectsi, node ni needs some of the variables employed by Algorithm

A_Record_Global_State as well. These are , initialized to , for each

node nj ∈ I_Neigi, and the Booleans recordedi, and , all initialized to false.
The maximum tag ni has seen in a marker is denoted by max-tagi. Finally, another Boolean
variable, terminatedi, initially equal to false, is used by ni to indicate whether a terminate
message has been received from n1 (terminated1 is used to indicate that global termination
has been detected). This variable, in Algorithm Task_t, can be used to exit the repeat…until
loop.
In Algorithm A_Detect_Termination, marker messages are sent as marker(t) messages,
where t is a positive tag. The initial value of max_tagi is then zero.

Algorithm A_Detect_Termination:

 Variables:
 suspectsi;

 = for all nj ∈ I_Neigi;
 recordedi = false;

 = false for all nj ∈ I_Neigi;
 max_tagi = 0;
 terminatedi = false;
 Other variables used by ni, and their initial values, are listed here.

Listing 6.6

 Input:
 msgi = nil.
 Action if ni ∈ N0:
 Do some computation;
 Send one comp_msg on each edge of a (possibly empty) subset of
 Outi;
 if suspectsi then
 begin
 max_tagi:= max_tagi + 1;
 recordedi:= true;
 Send marker(max-tagi) to all nj ∈ O_Neigi

 end.

Listing 6.7

 Input:
 msgi = comp_msg such that origini(msgi) = (nj → ni).
 Action:
 Do some computation;
 Send one comp_msg on each edge of a (possibly empty) subset of
 Outi;
 if recordedi then

 if not then

 := ∪ {msgi};
 if suspectsi then
 begin

 := for all nk ∈ I_Neigi;

 := false for all nk ∈ I_Neigi;
 max_tagi := max_tagi + 1;
 recordedi := true;
 Send marker(max_tagi) to all nj ∈ O_Neigi

 end.

Listing 6.8

 Input:
 msgi = marker(t) such that origini(msgi) = (nj → ni).
 Action:
 if t = max_tagi then

 := true;
 if t > max_tagi then
 begin
 max_tagi := t;

 := for all nk ∈ I_Neigi;
 recordedi := false;

 := false; for all nk ∈ I_Neigi;
 if suspectsi then
 begin

 := true;

 := true;
 Send marker(max_tagi) to all nk ∈ O_Neigi

 end
 end;

 if for all nk ∈ I_Neigi then

 Send for all nk ∈ I_Neigi, along with max_tagi, to
 n1.

Listing 6.9

 Input:
 msgi = terminate.
 Action if ni ≠ n1:
 terminatedi := true.

This algorithm is, in essence, a blend of Algorithm A_Template on comp_msg's and
Algorithm A_Record_Global_State. Specifically, (6.6) is (2.1) enlarged by (5.11) to initiate a
global state recording if suspectsi = true. Similarly, (6.7) is (2.2) enlarged by (5.11) and
(5.13), respectively to initiate a global state recording if suspectsi = true and to record the
messages that comprise an edge's state in the global state being recorded. Finally, (6.8) is
(5.12), conveniently adapted to abort ongoing global state recordings upon receipt of a
marker carrying a tag strictly greater than the greatest one the node has seen.
Let us consider the functioning of AlgorithmA_Detect_Termination more carefully. Node ni

performs computation, possibly with the sending of somecomp_msg's, either spontaneously,
if it is a member of N0, or upon receiving a comp_msg. In the former case, ni may also start a
global state recording with marker's carrying a tag increased by one with respect to the
greatest tag it has seen (cf. (6.6)). In the latter case, ni may record the comp_msg as part of
the state of the edge on which it was received, or it may, as in the other case, start the
recording of a global state, after re-initializing its variables related to the recording of global
states, or it may do both, in which case the recording of comp_msg will have been in vain (cf.
(6.7)). Notice that these two possibilities account for all the opportunities ni has to start a
global state recording, and in both cases such a start is done with properly initialized
variables. Because ni maintains only one set of variables for global state recording, it may
only participate in the recording of one global state at a time, so that upon initiating its
participation in a new recording it must quit its participation in whatever recording it may have
been participating so far. This is the reason for variable re-initialization in (6.7) if suspectsi

becomes true.
The other occasion in which ni may have to forsake its current participation in a global state
recording is upon receiving a marker(t) such that t > max_tagi. When this happens, ni re-
initializes its variables related to global state recording and, if suspectsi = true, joins in the
new global state recording, as in (6.8). If t < max_tagi, then the marker(t) is ignored (it clearly
belongs to a long-forsaken global state recording), whereas if t = max_tagi, then it may
correspond to a recording in which ni is currently engaged. The receipt of a marker in (6.8)
may also imply that ni has finished its participation in the current global state recording, and
then what it recorded is sent to the leader for analysis (it only sends the edge states, though,
because by (6.6) through (6.8) ni does not participate in the recording of a global state if its
local state is anything other than suspectsi = true). This information is sent to the leader
along with the tag with which it was recorded, and the leader, upon having received
information with the same tag from all nodes, decides whether global termination has been
reached, in which case a terminate message is broadcast to all nodes. We have omitted
from the algorithm the actions for n1 to perform its role as a leader, and we have also omitted
any specific mention to how the broadcast of the terminate order is performed. Filling in
these blanks should pose no difficulty, though, especially after our discussion of information
propagation in Section 4.1 (cf. Exercise 3). The response of ni ≠ n1 to the terminate message
is in (6.9).
The correctness of Algorithm A_Detect_Termination is based on Theorem 5.5 on the
correctness of Algorithm A_Record_Global_State if G is strongly connected with FIFO
edges, and on the following observation. Suppose a global state in which global termination
holds does exist. As we assumed earlier in this section, at this global state it must hold that
suspectsi = true for all ni ∈ N, so we may consider the greatest value of max_tagi over all of

N when the corresponding suspectsi's became true for the last time. The nodes at which this
greatest value occurred must by (6.6) and (6.7) have initiated a global state recording
concurrently, and by (6.8) this global state recording must have been propagated by all
nodes. Consequently, at least one global state recording is carried out to completion,
including the recording of a global state in which global termination holds.
Before leaving this section, a couple of observations are worth making. The first observation
concerns obvious possible simplifications to Algorithm A_Detect_Termination, especially in
what concerns the reports that are sent to n1. We elaborate no further on the issue, but
encourage the reader to further investigate it (cf. Exercise 4). The second observation relates
to the treatment of computations for which global termination does not hold at any global
state. Computations like these appear in Section 10.2, and because they ordinarily do not
terminate by themselves, what we seek is to force their termination by detecting termination-
related properties that appear in some global states with special characteristics. As we
discussed briefly in Section 5.2.2, in this case a leader can be employed to search for the
special global states, and upon finding one of them for which the desired termination-related
properties do hold the leader then directs all other nodes to terminate. In Chapter 10, we
address these issues with more detail.

6.2.2 Diffusing computations
In this section, we concentrate on detecting the termination of asynchronous algorithms for
which N0 has one single member, assumed to be n1, the leader. G is in this section taken to
be an undirected graph. The approach we described in the previous section is of course
applicable to this case as well (and, for that matter, so is the approach of this section
applicable to cases in which N0 is not a singleton—cf. Exercise 5), although in that case n1

would no longer be required to be a member of N0.
Distributed computations for whichN0 is a singleton are referred to as diffusing computations,
because in such computations the causality that the flow of messages induces is "diffused"
from one single node. Of course this same intuition is also present in the cases of larger sets
of initiators, but the denomination as a diffusing computation is not generally used in those
cases because it would seem unnatural to say that the computation is diffused from the
members of N0 when such a set can be arbitrarily large, possibly equal to N.
The algorithm we saw in Section 4.1.1 to propagate information with feedback from n1 is an
example of diffusing computations, and, as we will shortly see, it is an example of particular
interest in the context of detecting the termination of diffusing computations in general. In
Algorithm A_PIF, the role played by n1 can be thought of as being not only that of the original
propagator of inf, but also that of the detector of when the propagation has terminated
throughout all of G. Although, as we remarked earlier in Section 6.2, in that algorithm every
node can decide upon its termination rather easily (without the need for intervention from n1),
the general idea of having a wave of information collapse back to n1 upon global termination
is quite useful for computations whose termination cannot be detected so simply.
One of the main motivations to look for a different solution in the case of diffusing
computations, rather than just employ the general technique of the previous section, is the
potentially very high complexity of the methodology realized by Algorithm
A_Detect_Termination. Although, due to its generality, we did not attempt any analysis when
presenting that algorithm, clearly its complexity depends on the number of global state
recordings it performs, so that the overall complexities may be too high. The specialized
solution we study in this section, on the other hand, allows global termination to be detected
without affecting the complexities of the computation proper.
The following is an outline of Algorithm A_Detect_Termination_D ("D" for Diffusing) . Every
comp_msg is acknowledged with an ack message. Node ni maintains a counter expectedi,
initially equal to zero, to indicate the number of ack messages it expects from its neighbors
(we assume that expectedi is automatically increased whenever a comp_msg is sent by ni).
As in the case of Algorithm A_PIF, ni also maintains a variable parenti, initialized to nil, to
indicate the origin of a comp_msg received in a special situation to be described shortly. The
behavior of ni is then the following. Whenever ni receives a comp_msg and expectedi > 0, an
ack is immediately sent in response. If, on the other hand, a comp_msg is received and
expectedi = 0, then the ack is withheld and sent only when expectedi becomes equal to zero
again (if it at all changes with the computation ni does in response to the arriving comp_msg,

otherwise the ack is sent immediately after that computation). The variable parenti is in this
case set to point to the node that sent the comp_msg until the ack can be sent. We say that
ni has reached a state of tentative termination, or that ni has tentatively terminated when
expectedi becomes zero and the pending ack, if any, is sent to parenti. This condition may,
however, change many times during the computation, for expectedi may again acquire a
positive value as a consequence of the reception of a comp_msg. Global termination is
detected when n1 has tentatively terminated, which in the case of n1may happen only once.
The resulting algorithm is Algorithm A_Detect_Termination_D, presented next. As in the
previous section, a terminate message is employed by n1 to broadcast the detection of global
termination. A Boolean variable terminatedi, initially set to false, is employed by ni to signal
that ni may exit the repeat … until loop in Algorithm Task_t. This variable is set to true by ni

upon detection of global termination, if ni = n1, or upon receipt of the terminate message,
otherwise.

Algorithm A_Detect_Termination_D:

 Variables:
 expectedi = 0;
 parenti = nil;
 terminatedi = false.

Listing 6.10

 Input:
 msgi = nil.
 Action if ni ∈ N0:
 Do some computation;
 Send one comp-msg on each edge of a (possibly empty) subset of
 Inci.

Listing 6.11

 Input:
 msgi = comp_msg such that origini (msgi) = (ni, nj).
 Action:
 if expectedi > 0 then
 begin
 Send ack to nj;
 Do some computation;
 Send one comp_msg on each edge of a (possibly empty)
 subset of Inci

 end
 else
 begin
 Do some computation;
 Send one comp_msg on each edge of a (possibly empty)
 subset of Inci;
 if expectedi > 0 then
 parenti := nj

 else
 Send ack to nj

 end.

Listing 6.12

 Input:
 msgi = ack.
 Action:
 expectedi := expectedi - 1;
 if expectedi = 0 then
 if parenti ≠ nil then
 Send ack to parenti.

Listing 6.13

 Input:
 msgi = terminate.
 Action if ni ∉ N0:
 terminatedi := true.

In Algorithm A_Detect_Termination_D, (6.10) and (6.11) are, in essence, (2.1) and (2.2),
respectively, in Algorithm A_Template on comp_msg's, while (6.12) and (6.13) deal with the
reception of ack and terminate messages, respectively (the latter for ni ≠ n1). Together, (6.11)
and (6.12) can be seen to be closely related to (4.4) in Algorithm A_PIF in that all of them are
involved with withholding acknowledgements from a parent neighbor until it is appropriate for
that acknowledgement to be sent. This similarity with those two algorithms allows Algorithm
A_Detect_Termination_D to be interpreted as a general template for asynchronous diffusing
computations in which n1, the computation's sole initiator, detects global termination upon
being reached by a collapsing wave of acknowledgements. This view of a computation as a
propagating wave is the same that we employed in various occasions in Chapter 4, and in
the present context allows the following pictorial interpretation. In Algorithm
A_Detect_Termination_D, a wave is initiated by n1 in (6.10) and throughout G it propagates
back and forth with respect to n1. It propagates away from n1 with comp_msg's and
backwards in the direction of n1 with ack's. When the wave hits ni in its forward propagation, it
may bounce back immediately (if expectedi > 0 at the beginning of (6.11) or expectedi = 0 at
the end of (6.11)) or it may continue further on from that node (otherwise). Node ni may in
this case be n1 itself, in which case the wave is sure to bounce back at once. The wave that
propagates backwards in the direction of n1 does so by means of ack messages, and
continues to propagate at each node ni that it encounters so long as expectedi becomes zero
with its arrival. What differentiates the wave propagations in this case from those of
Algorithm A_PIF is that a node that has already seen the ack wave go by may be hit by a
forward-moving wave again (that is, by a comp_msg), so that overall the picture is that of a
wave that may oscillate back and forth several times, and in different patterns on the various
portions of G, before it finally collapses back onto n1.
Before proceeding with a more formal analysis of this behavior, we mention that, as in the
case of Algorithm A_Detect_Termination_D of the previous section, we have not in Algorithm
A_Detect_Termination_D been complete to the point of specifying the termination of n1 and

the propagation of the terminate broadcast. The reader should work on providing the missing
details (cf. Exercise 6).
The correctness of Algorithm A_Detect_Termination_D is established by the following
theorem.

Theorem 6.1.
Every global state in which n1 has tentatively terminated in Algorithm
A_Detect_Termination_D is a global state in which global termination holds.
Proof If n1 has tentatively terminated, then by (6.11) and (6.12) every node must have sent a
finite number of comp_msg's. As these comp_msg's and the corresponding ack's were
received, the value of expectedi for node ni, initially equal to zero, became positive and zero
again, possibly several times. Whenever a transition occurred in the value of expectedi from
zero to a positive value, parenti was set to point to the node that sent the corresponding
comp_msg. Consider the system states in which every node ni is either in a state of positive
expectedi following the last transition from zero of its value, if it ever sent a comp_msg during
the diffusing computation, or in any state, otherwise. Clearly, at least one of these system
states is a global state, as for example the one in which every node that ever sent
comp_msg's is in its state that immediately precedes the reception of the last ack (Figure
6.1). In this global state, only ack's flow on the edges, none of which sent as a consequence
of the reception of a last ack. Let us consider one of these global states.
In this global state, the variables parenti for ni ≠ n1 induce a tree that spans all nodes in G
corresponding to nodes that sent at least one comp_msg during the diffusing computation.
(This tree is in fact dynamically changing with the progress of the algorithm, as parenti may
point to several of ni's neighbors along the way; it is always a tree, nevertheless.) This tree is
rooted at n1, and its leaves correspond to those nodes from which no other node ni received
the comp_msg that triggered the last transition from zero to a positive value of expectedi. As
in the proof of Theorem 4.1, we proceed by induction on the subtrees of this tree. Along the
induction, the assertion to be shown is that every global state in which the subtree's root has
tentatively terminated is a global state in which every other node in the subtree has also
tentatively terminated.
The basis of the induction is given by the subtrees rooted at the leaves, and then the
assertion clearly holds, as no leaf ni is such that ni = parentj for some

Figure 6.1: Edges in the precedence graph fragment shown in part (a) are drawn as either solid
lines or dashed lines. Solid lines represent comp_msg's, dashed lines represent ack's, and the
remaining edges of the precedence graph are omitted. In this case, system_state>(Ξ1, Ξ2) is
clearly a global state, and is such that every node that ever sent a comp_msg during the diffusing
computation (i.e., n1 and n3) is in the state that immediately precedes the reception of the last ack.
In part (b), the spanning tree formed by the variables parenti for each node ni in this global state is
shown with directed edges that point from ni to nj to indicate that parenti = nj. In this case, the tree
has n1 for root and its single leaf is n3.

node nj. As the induction hypothesis, assume the assertion for all the subtrees rooted at
nodes nj such that parentj is n1. Then n1 receives expected1 ack's, at which time it has
tentatively terminated, and by the induction hypothesis so have all other nodes.
Let us now return briefly to the question, raised earlier in this section, of the algorithm's
complexities. Because exactly one ack is sent for each comp_msg, the message complexity
of Algorithm A_Detect_Termination_D is exactly the message complexity that Algorithm
A_Template would have to realize the same computation without having to detect global
termination. The same holds with respect to the algorithms' time complexities, because the
time that Algorithm A_Detect_Termination_D spends in addition to that already spent by the
corresponding instance of Algorithm A_Template is used solely for the final collapsing of the
ack wave onto n1. This additional time, clearly, does not exceed that of Algorithm
A_Template, as this wave that propagates backwards comes from as far as the
corresponding forward-propagating wave got.

6.3 Deadlock detection
Deadlocks are a very close acquaintance of anyone who has been involved with any of the
many facets of concurrency at any depth. In this book, our concern for deadlock situations
has already appeared explicitly in a couple of places, as in Sections 1.3 and 1.5, and less
conspicuously it has also appeared in some other situations, as for example in our
discussion on the importance of distinct identifications for nodes in the context of leader

election (cf. Section 5.1). Also, in chapters to come our concern for deadlocks will be often
explicit, as in Chapters 8 and 10.
Informally, a group of nodes is in deadlock when every node in the group is suspended for a
condition that can only be realized by nodes that belong to the group as well. Clearly, then,
deadlocks are indeed stable properties. The classical approaches to the treatment of
deadlocks range from its prevention (as for example in Sections 1.3 and 1.5) to its detection
after it has occurred. The prevention of deadlocks is based on making sure, by design, that
at least one of the conditions necessary for the occurrence of deadlocks can never hold. One
of these conditions is the so-called wait cycle, which in our context consists of a subset of N
whose members are cyclically waiting for one another. Forbidding the occurrence of such
cycles constitutes the strategy we described in Section 1.5 to prevent deadlocks related to
message buffering (cf. Theorem 1.1).

The detection of deadlocks, on the other hand, is based on the rationale that it may be
simpler, or less restrictive in a variety of senses, not to impose conditions leading to the
prevention of deadlocks, but rather to let them occur occasionally and then proceed to
detecting them when the suspicion exists that they may have indeed occurred. Because
deadlocks are stable properties, an approach to detecting their occurrence is to record a
global state of the system and then work on this global state to check for the presence of any
deadlock. If a deadlock is found in the global state that was recorded, then because of its
stability it must have persisted as the system continued to evolve following the recording of
the global state. If, on the other hand, no deadlock was found, then naturally the only
possible conclusion is that no deadlock existed in any global state in the past of the recorded
global state, although it may have occurred in global states in its future.
This section is dedicated to the study of deadlock detection in the case of a very specific
distributed computation. Aside from the deadlock issue per se, the benefits of this study are
manifold. In particular, the approach we describe to deadlock detection yields a distributed
algorithm to perform the detection that works on a recorded global state in a completely
distributed fashion. This is in contrast with our previous use of recorded global states in this
chapter, for example in Section 6.2.1, where the analysis of the recorded global state to
detect the desired stable property was performed in a centralized fashion by a leader. By
contrast, our approach in this section performs the detection without moving any of the
recorded information from the node where it was recorded. Another benefit is that the
algorithm we describe constitutes another elegant example of the wave techniques we have
seen so far in the book, notably in Chapters 4,5 and in this very chapter.
We proceed in the following two sections as follows. In Section 6.3.1, the asynchronous
computation that may deadlock is introduced. In Section 6.3.2, an algorithm is given to look
for deadlocks in a recorded global state of that computation. In both sections, G is taken to
be an undirected graph with FIFO edges.

6.3.1 The computation
Every node in G is the provider of a service to some of the other nodes. An edge (ni, nj)
exists in G if and only if at least one of ni and nj may request the service provided by the other
node. Node ni has a Boolean variable availablei, initially set to true, to indicate whether it is
available to provide a service it is requested or not. Because ni may only respond to one
request at a time, every request that it receives when availablei = false must wait to be
serviced when availablei becomes true.
A node requests a service to one of its neighbors by sending it a message request. When the
request is finally honored, a message done is used to indicate that. In the computations that
we consider, nodes are allowed to request the same service to more than one neighbor at a
time. In addition, if ni wishes to request a service to xi of its neighbors, then it is also allowed
to do the request to yi ⊇ xi neighbors. Upon receiving xi done messages, it then sends a quit
message to the yi − xi nodes from which it did not receive a done. Clearly, 0 < xi ⊆yi ⊆ | Inci |
for all ni ∈ N. For simplicity, we assume that xi and yi are constants for each ni ∈ N.
What accounts for the possibility of deadlocks in this computation is that a node, while
servicing the request of one of its neighbors, may itself issue requests for services that it
needs some of its neighbors to perform in order to finish its own task. The possibility of

deadlocks is then obvious, given that no node accepts a new request if it has a pending
request itself. A node that receives a quit on a service for which it sent request's sends out
quit's itself.
This computation is given more formally next, in the form of Algorithm A_Provide_Service. In
this algorithm, a variable requesteri, initially equal to nil, is used by ni to point to the node to
which it is currently providing service. This variable is maintained in such a way that, for ni ∈
N0, availablei = true if requesteri = nil (but not conversely, so no redundancy really exists
between the two variables). In addition, a set pendingi ⊊ Neigi is used by ni to keep track of
the neighbors to which it sent request messages without however having received a done.
This variable is such that yi - xi ⊆ | ⊆ yi.

Algorithm A_Provide_Service:

 Variables:
 availablei = true;
 requesteri = nil;
 pendingi.

Listing 6.14

 Input:
 msgi = nil.
 Action if ni ∈ N0:
 Let Yi ⊊ Neigi be such that yi|Yi|;
 Send request to all nj∈ Yi;
 pendingi :=Yi.

Listing 6.15

 Input:
 msgi = request such that origini(msgi) = (ni,nj).
 Action when availablei:
 if service from other nodes is needed then
 begin
 Let Yi ⊆ Neigi be such that yi = |Yi|;
 Send request to all nk ∈ Yi;
 pendingi := Yi;
 requesteri := nj;
 availablei := false
 end
 else
 begin
 Perform requested service;
 Send done to nj

 end.

Listing 6.16

 Input:
 msgi = done such that origini(msgi) = (ni,nj).
 Action:
 pendingi := pendingi - {nj};
 if |pendingi| = yi - xi then
 begin
 Send quit to all nk ∈ pendingi;
 if requesteri ≠ nil then
 begin
 Perform requested service;
 Send done to requesteri

 end;
 availablei := true
 end.

Listing 6.17

 Input:
 msgi = quit.
 Action:

 if pendingi ≠ then
 Send quit to all nj ∈ pendingi;
 availablei := true.

The reader should have no difficulties to check that (6.14) through (6.17) do indeed realize
the computation we outlined earlier on G. Even so, it may be instructive to check the use of
availablei as a condition for (6.15) to be carried out (cf. Algorithm A_Template).

6.3.2 An algorithm
The possibility of deadlocks in Algorithm A_Provide_Service is very clearly visible in (6.14)
and (6.15), because request messages may be sent in such a way that a wait cycle is formed
in G. One simple example is the situation in which some of the nodes in N0 send request's to
one another in a cyclic fashion. Another example is the case in which a node triggers a chain
of request's that ends up in itself.
When a node ni has waited "too long" (or longer than would be "typical") for the xi done
messages that it expects to be received, it may start a deadlockdetection procedure to verify
whether it is involved in a deadlock. The procedure that we describe in this section is, in
much the same way as Algorithm A_PIF, designed to be started by one node only (so N0

must be a singleton). We assume, without any loss in generality, that such a node is n1, but it
should be clear that in general all the messages related to this detection must bear an
indication of which node initiated the process so that multiple concurrent detections started
by different nodes do not interfere with one another.
What n1 does to detect the occurrence of a deadlock is to start the recording of a global
state, and then to start a detection procedure on the global state that was recorded. The
global state is stored in the same distributed fashion as it was recorded, and the detection
procedure is itself an asynchronous algorithm in which various nodes participate. However,
the deadlock detection does not operate on the entirety of G. Instead, this procedure runs on
some portions of G given in accordance with what is known as a wait graph. The node set of

the wait graph is a subset of N, and its edges are directed versions of some of the edges in
E. In order for a node ni to be in the wait graph, at least one of the edges incident to it in G
must also be in the wait graph.
The conditions for edges of G to be edges of the wait graph vary dynamically as the
computation given by Algorithm A_Provide_Service evolves. In a particular global state of
that computation, an edge (ni,nj) is an edge of the wait graph if and only if, in that global state,
all of the following three conditions hold.

 ni has sent nj a request.
 nj has not sent ni, a done.
 ni has not sent nj a quit.

These three conditions include messages that have been received as well as messages in
transit. In particular, in that global state there may be a request in transit from ni to nj but no
done in transit from nj to ni and no quit in transit from ni to nj, so that what the conditions imply
is that ni has requested a service to nj and is in that global state waiting for the service to be
performed. In the wait graph, such an edge is directed from ni to nj to indicate precisely that
wait. At ni, and in the context of a particular global state, out_waiti is the subset of Neigi such
that nj ∈ out_waiti if and only if an edge directed from ni to nj exists in the wait graph in that
global state. The set in_waiti is defined likewise to include those nodes nj such that an edge
directed from nj to ni exists.
It is on the portions of G that intersect the wait graph that the deadlock detection should run,
as it is on those portions that the waiting is taking place. This should pose no problem,
because the detection runs on a recorded global state and in that global state the wait graph
is well defined, as we just discussed. However, the recording of the global state cannot quite
run on the wait graph as well, because no such graph has yet been determined (determining
it is, in fact, the very purpose of the global state recording). On the other hand, it seems
clearly a waste to perform the global state recording all over G, because a great portion of it
may not have the slightest chance of participating in the wait graph once the global state is
recorded. However, the only other appropriate structure related to G that the global state
recording might utilize is that given by the sets pendingi for ni ∈ N if they are nonempty (cf.
Section 6.3.1), but they are not enough to describe the desired graph that would be
"between" G and the wait graph to be eventually obtained (cf. Exercise 7).
So what n1 does is to initiate a global state recording over G as in Algorithm
A_Record_Global_State, and then to initiate a deadlock detection procedure on the wait
graph, which we describe next as Algorithm A_Detect_Deadlock. Because all edges are
FIFO, n1 might in principle initiate the deadlock detection immediately after initiating the
global state recording. If this were done,-then Algorithm A_Detect_Deadlock would need a
little extra control to ensure that a node would only participate in the latter computation after
being through with its participation in the former. In order to avoid this unnecessary
complication, we assume that n1 is somehow notified of the global termination of the global
state recording. The reader should consider with care the design of an asynchronous
algorithm to record global states and signal its initiator (assumed unique) upon the
recording's global termination (cf. Exercise 8).
For each node ni, the local state to be recorded comprises the variables availablei, requesteri,
and pendingi. The edge states to be recorded may in turn contain request, done, and quit
messages. Once the recording is completed at ni (i.e., ni's local state has been recorded and
so have the states of all edges leading toward ni), the sets in_waiti and out_waiti that describe
the wait graph at ni can be determined as follows. The set in_waiti must include the node
requesteri (if availablei = false and ni is not in the N0 of Algorithm A_Provide_Service) and
every neighbor nj such that the recorded state of the edge (ni,nj) in the direction from nj to ni

contains a request but does not contain a quit. Similarly, the set out_waiti must include every
neighbor nj that is in pendingi and such that neither the recorded state of (ni,nj) in the direction
from nj to ni has a done nor the recorded state of (ni,nj) in the opposite direction has a quit. It
is a simple matter to check that these sets are consistent over all edges, that is, nj ∈
out_waiti if and only if ni ∈ in_waitj, and conversely, for all edges (ni,nj).
The following is a general outline of Algorithm A_Detect_Deadlock. First a wave of notify
messages is propagated by n1 along the edges leading to nodes in the out_wait sets.
Because an in_wait set may contain more than one node, this wave may reach a node more

than once and should only be sent forward upon receipt of the first notify. A node having an
empty out_wait set does not propagate the notify's onward, but rather starts the propagation
of another wave, this time with grant messages and on edges leading to nodes in the in_wait
sets. Such waves simulate the concession of the services upon which nodes wait. A node
that receives as many grant's as it needs (this is given by its x constant) propagates the wave
onward on its own in_wait set, as in the simulation such a node has already been granted
services from as many neighbors as it needs. This wave is propagated as far back as nodes
with empty in_wait sets, from which it collapses back with grant_done messages. A node
with an empty in_wait set sends a grant_done message immediately upon receiving a grant.
Other nodes withhold the grant_done that corresponds to the xth grant, but do respond with
immediate grant_done's upon receiving all other grant's. At node ni, the node from which the
grant_done is withheld is pointed to by out_parenti. The grant_done to out_parenti is sent
when ni has received as many grant_done's as there are nodes in in_waiti. What remains
now is to collapse back onto n1 the wave that it propagated with notify messages. This is
accomplished with notify_done messages as follows. Node ni, upon receiving the first notify,
points to its sender with a variable in_arenti. Every other notify is replied to immediately with a
notify_done message. Whenever the nodesthat initiated the grant waves have received as
many grant_done's as there are nodes in their in_wait sets, they send a notify_done to their
in_parent neighbors.Other nodes do the same upon receiving as many notify_done's as
there are nodes in their out_wait sets. When n1 receives all the notify_done's that are due, it
then checks the number of grant's it received along the process. Node n1 is in deadlock if
and only if this number is less than x1.
In this algorithm, nodes behave as if they could grant service concomitantly for all the
requests they receive. This is of course untrue by assumption, so that what nodes do during
the simulation is to optimistically assume that they can grant service for all of their pending
requests, whereas in fact they can only be sure to be able to honor one such request. The
consequence of this optimism is that, if n1 concludes that it is not deadlocked, what this
conclusion means is that there exists at each of the nodes in the wait graph an order
according to which service should be granted by that node so that n1 will not deadlock. Of
course that order may happen not to be followed and then n1 may deadlock in future global
states.
In Algorithm A_Detect_Deadlock, node ni maintains the following additional variables. The
Boolean variable notifiedi, initialized to false, is employed to indicate whether ni has received
at least one notify. Another variable is a counter, grantedi (initialized to zero), to keep track of
the number of grant's ni receives during the simulation. Two other counters, in_donesi and
out_donesi, both initially equal to zero, indicate respectively the number of grant_done and
notify_done messages received. The variables in_parenti and out_parenti are both initialized
to nil. Node n1 detects that it is deadlocked if and only if granted1 < x1 at the end.

Algorithm A_Detect_Deadlock:

 Variables:
 in_parenti = nil;
 out_parenti = nil;
 notifiedi = false;
 grantedi = 0;
 in_donesi = 0;
 out_donesi = 0.

Listing 6.18

 Input:
 msgi = nil.
 Action if ni ∈ N0:
 notifiedi := true;

 Send notify to all nj ∈ out_waiti.

Listing 6.19

 Input:
 msgi = notify such that origini(msgi) = (ni, nj).
 Action:
 if notifiedi then
 Send notify_done to nj

 else
 begin
 notifiedi := true;
 in_parenti := nj;
 if |out_waiti| = 0 then
 Send grant to all nk ∈ in_waiti

 else
 Send notify to all nk ∈ out_waiti

 end.

Listing 6.20

 Input:
 msgi = grant such that origini(msgi) = (ni, nj).
 Action:
 grantedi := grantedi + 1;
 if |in_waiti| = 0 then
 Send grant_done to nj

 else
 if grantedi ≠ xi then
 Send grant_done to nj

 else
 begin
 out_parenti := nj;
 Send grant to all nk ∈ in_waiti

 end.

Listing 6.21

 Input:
 msgi = grant_done.
 Action:
 in_donesi := in_donesi + 1;
 if in_donesi = |in_wait,| then
 if out_parenti ≠ nil then
 Send grant_done to out_parenti

 else
 Send notify_done to in_parenti

Listing 6.22

 Input:
 msgi = notify_done.
 Action:
 out_donesi := |out_donesi + 1;
 if out_donesi = |out_waiti| then
 if in_parenti ≠ nil then
 Send notify_done to in_parenti.

Like several other asynchronous algorithms we have seen so far in the book (e.g.,
Algorithms A_PIF and A_Detect_Termination_D), this algorithm for deadlock detection by n1

relies essentially on feedback information to achieve its purposes. Like those other
algorithms, it maintains tree structures on the graph so that the feedbacks are sent only
when appropriate.
In the case of Algorithm A_Detect_Deadlock, the pointers in_parent establish a tree that
spans all the nodes that can be reached from n1 in the wait graph. This tree is rooted at n1

and its leaves are nodes for which the out_wait sets are empty. Its creation and eventual
collapse are achieved by the pair (6.18) and (6.19), and by (6.22), respectively. In the same
vein, for each of these nodes with empty out_wait sets, the pointers out_parent establish a
tree that spans some of the nodes in the wait graph from which that node can be reached.
Considered as a set of trees, they constitute a forest rooted at the nodes with empty out_wait
sets spanning all the nodes in the wait graph from which at least one of the roots can be
reached. The leaves of this forest are nodes whose grant messages sent during the
simulation either never were the x th such message to reach their destinations or reached
nodes with empty in_wait sets. This forest is created and collapses back onto its roots by
means of (6.20) and (6.21), respectively.
It comes naturally from this discussion that the message, complexity of Algorithm
A_Detect_Deadlock is O(m) while its time complexity is O(n).

6.4 Exercises
1. Show that Algorithm A_Self_Stabilize is still correct if the variables are restricted to 0,…, V − 1
for V > n.
2. For each of the asynchronous algorithms seen so far in the book (except for the templates),
indicate the condition of global termination that allows the loop in Algorithm Task_t to be exited.
3. Give the details of node n1's participation in Algorithm A_Detect_Termination, as well as of the
participation of all other nodes in the propagation of the terminate message.
4. Indicate how in Algorithm A_Detect_Termination the sending of reports to node n1 can be
simplified.
5. Discuss how to apply the technique of Section 6.2.2 to the cases in which N0 does not contain
one single element.
6. Repeat Exercise 3 for Algorithm A_Detect_Termination_D.
7. Show, in the context of Section 6.3, that the sets pending do not suffice to describe a graph that
is necessarily between a wait graph and G.
8. Design an algorithm for global state recording, which, if initiated by one single node, is capable
of informing that node of the global termination of the recording.

1.
Show that Algorithm A_Self_Stabilize is still correct if the variables
are restricted to 0,…, V − 1 for V > n.

2.

For each of the asynchronous algorithms seen so far in the book
(except for the templates), indicate the condition of global
termination that allows the loop in Algorithm Task_t to be exited.

3.

Give the details of node n1's participation in Algorithm
A_Detect_Termination, as well as of the participation of all other
nodes in the propagation of the terminate message.

4.
Indicate how in Algorithm A_Detect_Termination the sending of
reports to node n1 can be simplified.

5.
Discuss how to apply the technique of Section 6.2.2 to the cases
in which N0 does not contain one single element.

6.
Repeat Exercise 3 for Algorithm A_Detect_Termination_D.

7.

Show, in the context of Section 6.3, that the sets pending do not
suffice to describe a graph that is necessarily "between" a wait
graph and G.

8.

Design an algorithm for global state recording, which, if initiated
by one single node, is capable of informing that node of the global
termination of the recording.

6.5 Bibliographic notes
The notion of self-stabilization was introduced by Dijkstra (1974), along with three algorithms
on rings for which only considerably later proofs were provided (Dijkstra, 1986). Algorithm
A_Self_Stabilize of Section 6.1 is based on one of the algorithms of Dijkstra (1974). For a
survey of the investigations that this paper has spawned, the reader is referred to Schneider
(1993). These investigations are quite broad in scope, ranging from a technique to prove
self-stabilizing properties (Kessels, 1988) to applications to problems such as finding a
minimum spanning tree (Chen, Yu, and Huang, 1991; Aggarwal and Kutten, 1993),
computing on rings as in the original formulation by Dijkstra (1974) (Burns and Pachl, 1989;
Flatebo and Datta, 1994), depth-first traversal (Huang and Chen, 1993; Collin and Dolev,
1994), leader election (Dolev and Israeli, 1992), coloring planar graphs (Ghosh and Karaata,
1993), finding maximal matchings (Hsu and Huang, 1992; Tel, 1994a), breadth-first
numbering (Huang and Chen, 1992), establishing a local orientation on a ring (Israeli and
Jalfon, 1991; 1993), and computing shortest distances (Tsai and Huang, 1994).

The literature on self-stabilization has become quite overwhelming. In addition to the
aforementioned works, the reader may also wish to check further developments by a number
of authors, including Gouda, Howell, and Rosier (1990), Afek and Kutten (1991), Awerbuch
and Varghese (1991), Dolev, Israeli, and Moran (1991), Ghosh (1991), Flatebo and Datta
(1992b; 1992c), Hoover and Poole (1992),

Lin and Simon (1992), Sur and Srimani (1992), Dolev (1993), Ghosh (1993), Katz and Perry
(1993), Lentfert and Swierstra (1993), Sur and Srimani (1993), Huang, Wuu, and Tsai
(1994), and Itkis and Levin (1994).
Section 6.2 is based on Huang (1989) for general computations and on Dijkstra and Scholten
(1980) for diffusing computations. For an alternative account on the material in Dijkstra and
Scholten (1980), the reader is referred to Bertsekas and Tsitsiklis (1989). Additional
publications on termination detection include those by Chandrasekaran and Venkatesan
(1990), Kavianpour and Bagherzadeh (1990), Ronn and Saikkonen (1990), Sheth and
Dhamdhere (1991), Kumar (1992), Brzezinski, Hélary, and Raynal (1993), and Hélary and
Raynal (1994).
Our treatment of deadlock detection in Section 6.3 follows Bracha and Toueg (1984).
Sources of additional material are Singhal (1989b), Flatebo and Datta (1992a; 1992b), and
Kshemkalyani and Singhal (1994).

Chapter 7: Graph Algorithms

Overview
The problems that we consider in this chapter are graph problems posed on G, similarly to
what we did in Sections 4.2 and 4.3, in which we addressed the problems of graph
connectivity and shortest distances, respectively. As in those sections, the aim here is to
provide distributed algorithms in which all of G's nodes participate in the solution based only
on the partial knowledge of G's structure that they have locally. However, our discussion in
Section 3.2.2 should be recalled with special care throughout this chapter. Specifically, one
alternative to the fully distributed approach we just mentioned is to elect a leader and have
that leader obtain information on the entire structure of G. Having done this, the leader is
then in position to solve the graph problem locally. As we remarked in that section, it takes O
(nm) messages and O(n) time to concentrate all the relevant information in the leader, so
that these two measures should be compared to the complexities of the fully distributed
solution. But one must never lose sight of the possible impact of the resulting local time
complexity (cf. Section 3.2.) and of the implications of the nonconstant memory demand at
the leader, in addition to the complexities associated with electing the leader in the first plae.
We consider two graph problems in this chapter. The first problem is that of determining a
minimum spanning tree on G. In addition to the role played by spanning trees in some of the
problems we have studied so far, particularly in Sections 4.1 and 5.3, establishing a
minimum spanning tree on G is, as we remarked in Section 5.1, closely related to electing a
leader in G, and then the relevance of the former problem is enlarged by its relation to all the
situations in which having a leader is important. When a minimum spanning tree is sought
with the purpose of electing a leader, then of course the alternative that we mentioned earlier
of employing a leader to solve graph problems becomes meaningless. We deal with the
minimum spanning tree problem in Section 7.1
The other graph problem that we consider in this chapter is that of finding a maximum flow in
a directed graph related to G with certain characteristics. We address this problem in Section
7.2, where we present three asynchronous algorithms to solve it. What is interesting in our
discussion in that section is that two of the algorithms that we discuss are originally
conceived as synchronous algorithms. By employing the synchronization techniques we
studied in Section 5.3, we may obtain a variety of corresponding asynchronous algorithms.
Some of them are such that the resulting complexities of all the three asynchronous
algorithms we consider are the same.
Sections 7.3 and 7.4 contain, respectively, exercises and bibliographic notes.

7.1 Minimum spanning trees
G is in this section an undirected graph with FIFO edges. Our discussion is presented in
three sections. Section 7.1.1 presents a statement of the problem, and Section 7.1.2
contains an asynchronous algorithm to solve it. Improvements leading to a reduced time
complexity are given inSection 7.1.3.

7.1.1 The problem
As in Section 5.1, nodes in N are assumed to have distinct identifications (idi for node nj)
totally ordered by <. Associated with every edge (ni, nj) ∊ E is a finite weight wij, known to
both ni and nj. The weight of a spanning tree is the sum of the weights of the n − 1 edges that
constitute the tree. The minimum spanning tree problem asks that a spanning tree of
minimum weight, called a minimum spanning tree, be found on G. Another related problem,
that of finding any spanning tree on G, is clearly reducible to the problem of finding a
minimum spanning tree, so that our discussion in this section applies to that problem as well.
Although the problem of finding a spanning tree on G (any one) is conceptually what we have
needed in other occasions in this book (as in Sections 4.1 and 5.3), the more general
problem has greater appeal for at least two reasons. The first reason is that edge weights
can in some situations be used to model delays (or other related quantities) for message
transmission over the edges, in which case a minimum spanning tree represents a tree of
globally minimum transmission delay.

The other reason why considering the more general problem of determining a minimum
spanning tree is more appealing is related to the use of such a tree as a first step in the
election of a leader. A distributed algorithm to find a minimum spanning tree on G can be
built such that, at the end, every node has an indication of which edges incident to it are on
the tree and which of these leads to the core of the tree, which is a single edge in the tree
possessing properties that we describe later. Because only one core edge exists, the two
nodes to which it is incident are natural candidates to be the leader. Clearly, under the usual
assumption of totally ordered distinct identifications for all nodes, one of the two can be
elected leader and the result broadcast over the tree with O(n) message and time
complexities. The core edge is only identified at the end of the algorithm, and may in principle
be any edge, so the procedure we just described for leader election is only applicable to
cases in which all of G's nodes are candidates originally (cf. Section 5.1 for the appropriate
terminology). If such is not the case, however, then the tree can still be employed as a basis
to choose among the existing candidates according to the procedure we discussed in
Section 5.1.
For simplicity, in this section we assume that all edge weights are distinct and totally ordered
by <. If the particular connotation associated with edge weights poses difficulties with respect
to this assumption, then the assumed existence of distinct identifications for all nodes can be
used to break ties. Specifically, in such cases the weight of edge (ni, nj) can be taken to be
the pair

and then all edge weights are totally ordered by < in the lexicographic sense. Note that such
a weight for edge (ni, nj) can be computed easily by both ni and nj by simply sending their
identifications to each other. All over G, this can be regarded as a first step in the
computation of the minimum spanning tree. This first step requires O(m) messages and O(1)
time, which, as we will see, does not add to the overall complexities of determining the
minimum spanning tree.
A fragment of a minimum spanning tree is any subtree of the minimum spanning tree. An
edge is said to be an outgoing edge of a fragment if one of the two nodes to which it is
incident is in the fragment while the other is not. The distributed algorithms we study in this
section to build a minimum spanning tree on G are based on the following two properties (cf.
Exercise 1).

i. If a fragment of a minimum spanning tree is enlarged by the addition of the
fragment's minimum-weight outgoing edge, then the resulting subtree is
also a fragment of the minimum spanning tree.

ii. If all edge weights are distinct, then G has a unique minimum spanning
tree.

Properties (i) and (ii) hint at the following basis for an algorithm to find a minimum spanning
tree on G. Nodes in N0 constitute single-node fragments initially. By property (i), these
fragments can be enlarged independently of one another by simply absorbing nodes that are
connected to the fragments by minimum-weight outgoing edges. Property (ii) ensures that
the union of two fragments that grow to the point of sharing a node is also a fragment.

7.1.2 An algorithm
The algorithm we describe in this section employs properties (i) and (ii) along with the
following rules for the creation of new fragments. The first rule is that every node in N is
initially a single-node fragment. This is achieved by having the nodes in N0 broadcast a
startup message by flooding over G (similarly to the case of Algorithm A_Alg(Alpha) of
Section 5.3.) with a message complexity of O(m) and a time complexity of O(n). Upon
receiving a startup from every neighbor, a node initiates the algorithm as a single-node
fragment. The second rule is that every fragment with at least two nodes has a special edge,
called the core of the fragment, whose weight is taken to be the identification of the fragment.
When the fragment is large enough to encompass all nodes (and then by properties (i) and
(ii) it is the minimum spanning tree), its core is the tree's core, alluded to in the previous
section.
The third overall rule regulates the process whereby fragments are combined to yield larger
fragments. This combination is based on the level of each fragment, which is a nonnegative
integer determined as follows. The level of a single-node fragment is zero. Now consider a

fragment at level ℓ ≥ 0, and let ℓ' be the level of the fragment to which the fragment of level ℓ
is connected by its minimum-weight outgoing edge. If ℓ = ℓ' and the minimum-weight outgoing
edges of both fragments are the same edge, then the two fragments are combined into a
new fragment, whose level is set to ℓ + 1 and whose core is the edge joining the former level-
ℓ fragments.

If ℓ ≠ ℓ' or the two fragments' minimum-weight outgoing edges are not the same edge, then
there are additional five cases to be considered. In two of the cases, ℓ ≠ ℓ' and the two
minimum-weight outgoing edges are the same. In these cases, the lower-level fragment is
absorbed by the higher-level fragment and the resulting fragment inherits the higher level. In
the remaining three cases, the two minimum-weight outgoing edges are not the same, and
either ℓ < ℓ', or ℓ = ℓ', or ℓ > ℓ'. In the case of ℓ < ℓ', the absorption of the level-ℓ fragment by the
level-ℓ' fragment takes place just as we described earlier. If ℓ ≥ ℓ', then the level-ℓ fragment
simply waits until the level of the other fragment has increased from ℓ' enough for the
combination to take place via one of the other possibilities.

Before we proceed, we should pause to investigate whether the waiting of fragments upon
one another may ever lead to a deadlock. Specifically, the only situation one might be
concerned about is that of a wait cycle comprising fragments, all of the same level, and such
that the minimum-weight outgoing edge of every fragment leads to the next fragment in the
cycle. By property (i), however, no such cycle may exist, as all the minimum-weight outgoing
edges would have to be in the minimum spanning tree, which is impossible because they
form a cycle.

Another property that may be investigated without any further details on how the algorithm
functions is given by the following lemma.

Lemma 7.1.
The level of a fragment never exceeds ⌊log n⌋.
Proof: For ℓ > 0, a fragment of level ℓ is only formed when two level-(ℓ − 1) fragments are
such that their minimum-weight outgoing edges lead from one fragment to the other. An
immediate inductive argument shows that a level-ℓ fragment must then contain at least 2ℓ

nodes (this holds for ℓ = 0 as well), so n ≥ 2ℓ, thence the lemma.
Let us now provide the details of an algorithm to find a minimum spanning tree on G based
on the overall strategy we just outlined. The algorithm is called Algorithm A_Find_MST
("MST" for Minimum Spanning Tree), and essentially proceeds repeatedly as follows, until
the minimum spanning tree is found. First the minimum-weight outgoing edge of all
fragments must be determined, then fragments must be combined with one another, and
then (if the combination yielded a new, higher-level fragment) new fragment cores must be
determined. During an execution of Algorithm A_Find_MST, node ni maintains a variable
statei, which may be one of find or found. Initially, statei = found, and along the-execution
statei switches back and forth between the two possibilities, indicating whether ni is involved
in the process of determining its fragment's minimum-weight outgoing edge (statei = find) or

not (statei = found). For each edge (ni, nj) ∊ E, ni also maintains a variable ,
which can be one of on_tree, off_tree, or basic, to indicate respectively whether the edge
has been found by ni to be an edge of the minimum spanning tree, not to be an edge of the
minimum spanning tree, or still neither. Initially, this variable is set to basic for all nj ∊ Neigi
When a minimum-weight outgoing edge has been found for a fragment of level ℓ, a message
connect (ℓ) is sent over that edge. If such an edge is (ni, nj) and ni belongs to the level-ℓ
fragment, than such a message is sent by ni. There are two possibilities for the response that
ni gets from nj, whose fragment we take to be at level ℓ'. It may receive another connect(ℓ),
meaning that ℓ = ℓ' and (ni, nj) is both fragments' minimum-weight outgoing edge, or it may
happen that ℓ < ℓ'. In the former case, the two fragments are joined into a level-(ℓ + 1)
fragment whose core is (ni, nj) and whose identification is the weight wij.Nodes ni and nj are
referred to as the "coordinators" of the new fragment, and their first task is to broadcast over
the fragment the new level and new identification, as well as to direct all nodes in the

fragment to begin a new search for a minimum-weight outgoing edge. The message that this
broadcast carries is an initiate(ℓ + 1, wij, find), where the find is the instruction for every node
in the fragment to participate in looking for the fragment's minimum-weight outgoing edge.
In the latter case, i.e., ℓ < ℓ', nj's fragment absorbs ni's fragment. In order to do this, nj sends
ni either a message initiate (ℓ', w, find) or a message initiate(ℓ', w, found), where w is the
identification of the fragment to which nj belongs. This message is then broadcast by ni over
its own fragment to inform every node of their new fragment's level and identification. In
addition, it prompts nodes to behave differently depending on whether a find or a found is in
the message. If it is a find, then the nodes join in the search for the minimum-weight
outgoing edge of the fragment they now belong to. If it is a found, then the nodes simply
acquire information on their new fragment's level and identification. What remains to be
explained on this interaction between ni and nj is the choice that nj makes between attaching
a find or a found to the initiate message that it sends. Node nj attaches a find if statej =
find; it attaches a found if statej = found. Sending a found in the initiate message is only
correct if it can be argued that the weight of nj's fragment's minimum-weight outgoing edge is
strictly less than wij, so that no edge outgoing from ni's fragment could possibly be a
candidate (because (ni, nj) is that fragment's minimum-weight outgoing edge). We provide
this argument in what follows. The remaining cases cause ni to wait for the level of nj's
fragment to increase from ℓ'.
So far we have seen that the coordinators of a newly formed fragment broadcast initiate
messages with a find parameter over the edges of the new fragment. This broadcast is
meant to inform all the nodes in the fragment that the fragment has a new level and a new
identification. It also carries a find parameter that directs the nodes to engage in seeking the
minimum-weight outgoing edge of the new fragment. A node ni that is reached by an initiate
message with a find parameter sets statei to find and participates in locating the fragment's
minimum-weight outgoing edge. When ni's participation in this process is finished, then statei

is reset to found. If, on the other hand, the initiate message carries a found parameter, then
its effect upon ni is simply the fragment level and identification update. The broadcast of an
initiate message may go beyond the boundaries of the fragment if a node ni that it has
reached receives a connect message from another fragment whose level is strictly less than
the level being carried by the initiate message. The broadcast is then propagated through
that fragment as well, representing its absorption by the higher-level fragment. The initiate
messages that ni propagates into the lower-level fragment carry either a find or a found
parameter, depending on whether statei = find or statei = found. Let us now discuss in detail
the process whereby the minimum-weight outgoing edge of a fragment is found. If the
fragment has level zero, and therefore comprises one single node, than that node simply
inspects the edges that are incident to it and sends a connect(0) message over the edge
having minimum weight. In addition, if that node is ni, then statei is set to found. If the
fragment's level is strictly positive, then it must rely on the initiate message broadcast by its
coordinators to have all the nodes participate in the process.
After receiving an initiate(ℓ, w, find) and setting statei to find, node ni considers all edges (ni,

nj) for which = basic in increasing order of weights. On each edge that it
considers, ni sends a test(ℓ, w) and waits to receive either a reject message or an accept
message. If ℓ' is the level of the fragment to which nj belongs and w' that fragment's
identification (or at least nj's view of that level and that identification, which may already have

changed), then the reject is sent by nj, after it sets to off_tree, if w = w' (in this case,
ni and nj are in the same fragment and the edge between them cannot possibly be on the
minimum spanning tree). If w ≠ w' and ℓ' ≥ ℓ, then nj sends ni an accept. If w ≠ w' and ℓ' < ℓ,
then nj is not in position to send any response immediately and waits to do so until its level
has increased to be at least equal to ℓ (at which time it must also re-evaluate the relation
between w and w', as the latter may have changed along with ℓ').
An accept received from nj makes ni stop the search. A reject that it receives from nj causes

it to set to off_tree. When ni receives an accept from a neighbor nj, the edge (ni,

nj) becomes its "candidate" for minimum-weight outgoing edge of the fragment. In order to
compare the various candidates in the fragment, nodes proceed as follows. When a leaf of

the fragment (i.e., ni such that = on_tree for exactly one neighbor nj) has found its
own candidate, say of weight w, or when it has exhausted all the possibilities without
receiving any accept, it then sends a report (w) message on the fragment in the direction of
the coordinators (w = ∞ if ni does not have a candidate). Every other node does the same
after taking w to be the minimum among its own candidate's weight and the weights that it
receives in report messages over all fragment edges that lead away from the coordinators.
Upon sending a report message, a node ni sets statei to found. If it receives a connect
message from a lower-level fragment, it may then safely respond with an initiate message
carrying a found parameter, because an accept must not have been received on that edge
(accept's only come from fragments that are not at a lower level), and then that edge could
not possibly have been the node's candidate for minimum-weight outgoing edge of the
fragment.
When the report messages finally reach the coordinators, they exchange report messages
themselves (over the fragment's core) and then determine the weight of the fragment's
minimum-weight outgoing edge. If this weight is infinity, then the fragment has no outgoing
edge and is therefore the minimum spanning tree that was being sought.
If every node keeps track of the edge corresponding to the weight it sent along with its report
message, then the path through the fragment from the core to the fragment's minimum-
weight outgoing edge can be traced easily. At node ni, we let best_edgei denote either ni's
candidate edge, if this edge's weight is what ni sends along with its report, or the edge on
which it received the weight that it sends. Another special edge that ni keeps track of is the
edge on the fragment leading to the core. This edge is denoted by to_corei, and it is on this
edge that ni sends its report message. After the coordinators have decided upon the
fragment's minimum-weight outgoing edge, one of them sends a change_core message
along the path given by the best_edge's. Upon reaching ni, this message has the effect of
changing to_corei to be equal to best_edgei. When the change_core message reaches the
node ni to which the fragment's minimum-weight outgoing edge is incident, all to_core's in the
fragment lead to this node, which is then in position to send its connect message over that

edge. If such an edge is (ni, nj), then ni sets to on_tree as it sends the message.
As in various occasions so far in the book, interpreting Algorithm A_Find_MST as
propagating waves over G can be very helpful in building some intuitive understanding on
how it works. What happens in this case is that a fragment's core propagates a wave of
initiate messages over on_tree edges. This wave collapses back with report messages onto
the core, and then a new fragment is formed after the change_core and connect messages
have played their roles. The initiate waves may occasionally "leak" from the fragment when
neighboring fragments are absorbed.
We now turn to the presentation of the algorithm's actions. In addition to the variables that we
have already introduced during our preceding discussion, Algorithm A_Find_MST also
employs the following variables at node ni. The Boolean initiatedi, initially equal to false, is

used to indicate whether ni ∊ N0. For all nj ∊ Neigi, the Boolean , equal to false initially,
indicates whether a startup has been received from nj. At ni, the level and identification of the
fragment to which it belongs are denoted respectively by leveli (set to zero initially) and fragi.
The weight of best_edgei is stored in best_weighti. The counter expectedi, initialized to zero,
is used by ni to indicate the number of messages it must receive before being in position to
send its report message. An additional group of variables is used to control the wait of
higher-level fragments upon lower-level ones. For all nj ∊ Neigi, these are the Booleans

and , both initialized to false, and also

and . The two Booleans are used, respectively, to indicate
that a connect or a test has been received from a higher-level fragment and cannot therefore

be replied to at once. When = true, then and

store respectively the level and the identification that the test message
carried.

Algorithm A_Find_MST:

 Variables:
 initiatedi =false;

 = false for all nj ∊ Neigi;
 statei =found;

 = basic for all nj ∊ Neigi;
 leveli = 0;
 fragi;
 best_edgei;
 best_weighti;
 to_corei;
 expectedi = 0;

 = false for all nj ∊ Neigi;

 = false for all nj ∊ Neigi;

 for all nj ∊ Neigi;

 for all nj ∊ Neigi.

Listing 7.1

 Input:
 msgi =nil.
 Action if ni ∊ N0:
 initiatedi :=true;
 Send startup to all nj ∊ Neigi.

Listing 7.2

 Input:
 msgi = startup such that origini(msgi) = (ni, nj)

 Action:
 if not initiatedi then
 begin
 initiatedi := true;
 Send startup to all nk ∊ Neigi

 end;

 := true;

 if for all nj ∊ Neigi then
 begin
 Let (ni, nk) be such that wik ≤ wil for all nl ∊ Neigi;

 := on_tree;
 Send connect(leveli) to nj

 end.

Listing 7.3

 Input:
 msgi = connect (ℓ) such that origini(msgi) = (ni, nj).
 Action:
 if ℓ < leveli then
 begin

 := on_tree;
 Send initiate(leveli,. fragi, statei) to nj;
 if statei = find then
 expectedi := expectedi + 1
 end
 else

 if = basic then

 := true
 else
 Send initiate (leveli + 1, wij, find) to nj.

Listing 7.4

 Input:
 msgi = initiate (ℓ, w, st) such that origini (msgi) = (ni, nj).
 Action:
 leveli := ℓ;
 fragi := w;

 for all nk ∊ Neigi such that do

 if ≤ leveli then

 if ≠ fragi then
 Send accept to nk

 else
 begin

 if = basic then

 := off_tree;
 Send reject to nk

 end;
 statei := st;
 to_corei := (ni, nj);
 best_weighti := ∞;

 for all nk ∊ Neigi − {nj} such that = on_tree do
 begin
 Send initiate(leveli, fragi, statei) to nk;
 if statei = find then
 expectedi := expectedi + 1
 end;
 if statei = find then

 if nk ∊ Neigi exists such that = basic then
 begin

 Let B ⊂ Neigi be such that = basic for all
 nk ∊ B;
 Let nk ∊ B be such that wik ≤ wil for all nl ∊ B;
 Send test (leveli, fragi) to nk

 end
 else
 if expectedi = 0 then
 begin
 statei := found;
 Send report (best_weighti) on to_corei

 end.

Listing 7.5

 Input:
 msgi = test (ℓ,w) such that origini(msgi) = (ni, nj).
 Action:
 if ℓ > leveli then
 begin

 := true;

 := ℓ;

 := w
 end
 else
 if w ≠ fragi then
 Send accept to nj

 else
 begin

 if = basic then

 = off_tree;
 Send reject to nj

 end.

Listing 7.6

 Input:
 msgi = accept such that origini(msgi) = (ni, nj).
 Action:
 if wij < best_weighti then
 begin
 best_weighti := wij;
 best_edgei := (ni, nj)
 end;
 if expectedi = 0 then
 begin
 statei := found;
 Send report (best_weighti) on to_corei

 end.

Listing 7.7

 Input:
 msgi = reject such that origini(msgi) = (ni, nj).
 Action:

 if = basic then

 := off_tree;

 if nk ∊ Neigi exists such that = basic then
 begin

 Let B ⊂ Neigi be such that = basic for all nk ∊ B;
 Let nk ∊ B be such that wik ≤ wil for all nl ∊ B;
 Send test(leveli, fragi) to nk

 end
 else
 if expectedi = 0 then
 begin
 statei := found;
 Send report (best_weighti) on to_corei

 end.

Listing 7.8

 Input:
 msgi = report(w) such that origini(msgi) = (ni, nj).
 Action when (ni, nj) ≠ to_corei or statei = found:
 if (ni, nj) ≠ to_corei then
 begin
 expectedi := expectedi − 1;
 if w < best_weighti then
 begin
 best_weighti := w;
 best_edgei := (ni, nj)
 end;
 if expectedi = 0 then
 begin
 statei := found;
 Send report(best_weighti) on to_corei

 end
 end
 else
 if w > best_weighti then
 begin
 Let nk ∊ Neigi be such that (ni, nk) = best_edgei;

 if = on_tree then
 Send change_core on best_edgei

 else
 begin
 Send connect(leveli) on best_edgei;

 if then
 Send initiate(leveli + 1, wik, find) on
 best_edgei;

 := on_tree
 end
 end.

Listing 7.9

 Input:
 msgi = change_core such that origini (msgi) = (ni, nj).
 Action:
 Let nk ∊ Neigi be such that (ni, nk) = best_edgei;

 if = on_tree then
 Send change_core on best_edgei

 else
 begin
 Send connect(leveli) on best_edgei;

 if then
 Send initiate(leveli + 1, wik, find) on best_edgei;

 := on_tree
 end.

Actions (7.1) through (7.9) implement the overall strategy we described in detail earlier to find
a minimum spanning tree on G. These actions, the reader must have noticed, account for far
more complex a behavior than that of any of the algorithms we have seen (or will see) in
other chapters. Although a complete proof of correctness cannot be offered within the scope
of this book, we now pause momentarily to offer some more detailed comments on each of
the actions, so that the reader may have additional guidance in studying them.
Actions (7.1) and (7.2) are the standard initial actions so that all nodes can begin
participating in the algorithm after the initial flood of startup messages. A node's initial
participation consists of sending a connect(0) message over the minimum-weight edge that
is incident to it.
Upon receiving a connect(ℓ) message from nj in (7.3), ni either immediately absorbs the
originating fragment (if ℓ < leveli), or it recognizes that this connect is the response to a
connect that it sent previously on the same edge, and therefore the two fragments must be

merged into another of higher level (if ℓ ≥ leveli and ≠ basic). If ℓ ≥ leveli and

= basic, then this must be a connect from a higher-level fragment and must not be
replied to immediately.
The receipt of an initiate message by ni in (7.4) first causes the node to update its fragment
level and identification and then to reply to any of its neighbors that may have sent a test
message in the past with a level higher than its own. It then forwards the initiate message on
all the other on_tree edges that are incident to it and, if statei, = find, begins the search for
its minimum-weight outgoing edge by means of test messages, if basic edges exist that are
incident to it (otherwise, it may be in position to send its report).
When node ni, receives a test(ℓ,w) message from nj in (7.5) and ℓ > leveli, then it cannot reply
immediately and saves both ℓ and w for later consideration when its own level increases in
(7.4). If ℓ ≤ leveli, then either an accept gets sent to nj (if w ≠ fragi) or a reject gets sent
(otherwise).
The receipt of an accept by ni, in (7.6) may cause best_edgei to be updated (along with
best_weighti), and may in addition signal to ni that it may send its report message. If a reject
is received in (7.7) and there are additional basic edges incident to ni, then the node

continues its probing with test messages; if no such edges are left, then ni checks whether its
report may be sent.
Upon receiving a report(w) message in (7.8), there are two possibilities for ni. The first
possibility is that the message is received on edge to_corei, in which case ni must be a
coordinator of the fragment and has to decide on which side of the core the fragment's
minimum-weight outgoing edge lies. If that edge is to be found on its own side (i.e., if w >
best_weighti), then either it sends a change_core or a connect on best_edgei), the former if
best_edgei is an on_tree edge, the latter otherwise (and then the fragment's minimum-
weight outgoing edge is incident to ni, thence the connect that it sends). The second
possibility is that of (ni, nj) ≠ to_corei, in which case ni checks whether it is time for its own
report to be sent.
It is important to notice, in (7.8), that the action is only executed upon receipt of the report on
(ni, nj) when (ni, nj) ≠ to_corei or statei = found. This ensures that a report arriving on the core
((ni, nj) = to_corei) is only acted upon when ni has already identified the least weight on its
side of the fragment (statei = found) and may therefore decide on the fragment's minimum-
weight outgoing edge. (Associating Boolean conditions to actions can also be an approach to
delaying the receipt of a message that cannot be replied to immediately, as in (7.3) and (7.5);
however, this can only be done in the presence of edges that are not FIFO— cf. Exercise 2.)
Action (7.9) corresponds to the receipt by ni, of a change_core message, which is either
forwarded on best_edgei, or causes a connect to be sent on that edge, depending on
whether the fragment's minimum-weight outgoing edge is incident to ni just as in the case of
(7.8). When sending a connect in either (7.8) or (7.9), ni may also have to send an initiate
after it, if in (7.3) a connect was received that could not be replied to immediately.
The algorithm's termination is detected by each coordinator ni upon receiving a report(w)
message on the core when statei = found such that w = best_weighti = ∞ After the minimum
spanning tree has been found on G, at every node the on_tree edges indicate which of the
edges incident to it are on the tree, while the to_core edge indicates which of the on_tree
edges leads to the tree's core.
Next we present Algorithm A_Find_MST's complexities.

Theorem 7.2.
Algorithm A-Find_MST has a message complexity of O(m+n log n) and a time complexity of
O(n log n). In addition, the algorithm's bit complexity is O((m + n log n) (log W + log log n)),
where W ≥ |wij| for all (ni,nj) ∊ E.
Proof: Let ℓ and w denote respectively a generic fragment level and edge weight. A node can
never send more than one reject message on the same edge in the same direction. In
addition, to each such message there corresponds a test(ℓ, w) message, therefore
accounting for O(m) messages and, by Lemma 7.1, O(m(log W+ log log n)) bits. At each
level, a node can receive at most one initiate (ℓ,w,st) and one accept, and it can send no
more than one test(ℓ,w) resulting in an accept, one report (w), and one change_core or
connect(ℓ), where st is one of find or found and requires a constant number of bits to be
expressed. By Lemma 7.1, we have another O(nlogn) messages and O(nlogn(logW + log
logn)) bits, which, added to what we already have, yields the algorithm's message and bit
complexities.
The algorithm's time complexity follows directly from Lemma 7.1 and from the observation
that, for each level, the propagation of messages within a fragment takes no more than O(n)
time.
It should be noted that the initial complexities for determining edge weights (if not distinct
originally, in which case node identifications must be used) and for exchanging the startup
messages do not add to the complexities we have determined.
We finalize the section by returning to some issues raised earlier in the book. The first issue
is that of electing a leader once the minimum spanning tree has been found. As we observed
earlier in Section 7.1.1, the final coordinators (nodes to which the tree's core is incident) may
elect a leader in O(n) time and with O(n) messages. The resulting complexities for the leader
election (including those of finding the minimum spanning tree) are then the same as those
given by Theorem 7.2. When compared with the O(nm)-message, O(n) time procedure for

leader election described in Section 5.1, the new approach has a better message complexity,
but its time complexity turns out to be somewhat worse.
The second issue is that of the complexities to initialize Synchronizer Beta in Section 5.3.1.
The reader should recognize quickly that Theorem 7.2, together with the observation we just
made on the election of a leader on the tree, provides the values of Messages0 and Time0 for
Synchronizer Beta.

7.1.3 Further improvements
Although it can be argued that the O(m + nlog n) message complexity is the best one can
hope for when finding a minimum spanning tree on G, reducing the time complexity from the
O(nlogn) of Algorithm A_Find_MST has been the subject of investigations, aiming at bringing
it down to O(n). We do not in this section aim at conveying the details of how this improved
time complexity can be achieved, but rather point at some of the inessential sources of time
complexity in Algorithm A_Find_MST and at some possible improvements.
In order to identify the reason for the excessive time complexity of Algorithm A_Find_MST,
we must look at the proof of Lemma 7.1, where we argue that, for ℓ ≥ 0, a level-ℓ fragment
has at least 2ℓ nodes. Although for ℓ = 0 this number is exactly 2ℓ (level-0 fragments comprise
exactly one node), for ℓ > 0 a level-ℓ fragment may include a lot more than the minimum 2ℓ

nodes. Because the algorithm is such that higher-level fragments wait for lower-level
fragments to have their levels increased before they can be merged, a level−(ℓ + 1) fragment
that happens to be waiting for such an oversized level-ℓ fragment may have to wait for as
long as O(n) time before the merge (this is what is argued in the proof of Theorem 7.2 as far
as the time complexity is concerned).
So the attempts at improving the algorithm's time complexity concentrate on relating a
fragment's size to its level more tightly. One such attempt is, for example, to force level-ℓ
fragments (which have at least 2ℓ nodes each) to have strictly less than 2ℓ+1 nodes. With a
few modifications to Algorithm A_Find_MST, this strategy can be shown to be able to reduce
the number of fragments by an O(logn) factor within O(n) time. As a consequence, the
reduction from the initial n fragments to the final single fragment representing the minimum
spanning tree can be achieved in as many O(n)-time portions as it takes at a rate of O(logn)
per portion. Employing the usual notation log* k to denote the number of times log has to be
applied to reduce k > 1 to a number no greater than one, we see that the number of O (n)-
time portions that we need is log* n. The time complexity of the resulting algorithm is then O
(nlog* n), and its message complexity can be shown to remain the same as that of Algorithm
A_Find_MST.

7.2 Maximum flows in networks
In all of Section 7.2, G is an undirected graph with two distinguished nodes, called a source
(which we assume to be n1) and a sink (which we assume to be nn). Gis an undirected graph,
in conformity with our practice in this book that only in such graphs may communication
between neighbors flow in both directions. However, the denominations of n1 and nn

respectively as source and sink are only meaningful when we consider a directed variation of
G, denoted by Gd, which is the graph on which the problem that we deal with is posed. The
reason for employing the two graphs is that we want to be able to state the problem properly
and yet, during the execution of the algorithms that we shall investigate, be able to have
messages sent between neighbors in both directions.
The directed graph Gd is obtained from G by associating a direction with each of G's edges.
These directions are such that n1 must not have any edge directed toward itself (thence its
denomination as a source) and nn must not have any edge directed away from itself (thence
its denomination as a sink). In addition, n1 must be the only source in Gd and nn the only sink,
which implies that all the other nodes must in Gd lie on a directed path from n1 to nn. As a side
remark, the reader should notice that, in Section 6.3.2, we were faced with the same
notational issue of being able to refer to G as an undirected graph and at the same time to
another directed graph defined as a function of G. A similar situation will occur once again in
the book, specifically in Sections 8.3 and 8.4.
The problem that we study in the next three sections is the problem of computing a
maximum flow in Gd, which in this context is referred to as a "network," although we refrain
from employing this denomination any further in the book, lest there may be confusion with

the more pervasive meanings we employ for the term. This problem captures the essence of
various problems appearing in the field of computer networks, and that is what justifies our
interest in fully distributed approaches to solve it. The study of flows in Gd, both aiming at
computing a maximum flow in this graph as well as other quantities, constitutes a research
area with issues of its own and a considerable body of knowledge. In particular, arguing for
the correctness of many of the pertinent algorithms (and consequently for their complexities)
requires a level of detail that does not befit a text on distributed algorithms. Our approach in
this section to presenting the algorithms is then far less rigorous than in previous occasions
in the book, and this extends to our treatment of the algorithms' complexities. The
specialized literature is abundant, though, and the interested reader may deepen the
treatment by resorting to it.
We continue our discussion in three further sections. The statement of the problem, as well
as a preview of how the algorithms to be studied relate to one another, is given in Section
7.2.1. Sections 7.2.2 and 7.2.3 then follow with the presentation of two synchronous
algorithms and one asynchronous algorithm, respectively.

7.2.1 The problem
Let Ed be the set of directed edges in Gd (that is, Gd = (N, Ed)). The capacity of Gd is a
function c: N × N→ R such that, for all ni, nj ∊ N, c(ni, nj) ≥ 0. In addition, c(ni, nj) = 0 if (ni →
nj) ∊ Ed.A flow in Gd is a function f: N × N → R satisfying the following three properties.

i. f(ni, nj) ≤ c(ni, nj) for all ni, nj ∊ N.
ii. f(ni, nj) = -f(nj, ni) for all ni, nj ∊ N.
iii. Σnj∊ N f (ni, j) = 0 for all ni ∊ N − {n1, nn}.

For all ni, nj ∊ N such that (ni, nj) ∊ E, the definition of Gd's capacity is such that c(ni, nj) = c(nj,
ni) = 0. By property (i), f(nI, nj) ≤ 0; and f (nj, ni,) ≤ 0; by property (ii), it must then be that f(ni,
nj) = f(nj, ni) = 0. Under the weaker condition that (ni, → nj) ∊ Ed, we still have c(ni, nj), = 0 by
definition, and then by property (i) f(ni, nj) ≤ 0, while by property (ii) f(nj, ni,) ≥ 0. So the
definitions of capacity and of flow imply that nonzero flow may only exist from node ni, to
node nj if (ni, nj) ∊ E.Furthermore, this flow is necessarily nonnegative if (ni→ nj) ∊ Ed,, or
nonpositive if (nj → ni) ∊ Ed.
These observations, together with property (iii), imply that if node ni, is not the source n1 or
the sink nn, then the flow that "comes into it" must be equal to the flow that "goes out from it,"
that is,

so that

If ni = n1, then property (iii) does not hold, because

and

Analogously, if ni = nn, then

and

The value of a flow f, denoted by F, is given by the summation in either of the two previous
inequalities, that is,

(cf. Exercise 3). The maximum-flow problem asks for a flow f of maximum value.
For ni, nj ∊ N, the residual capacity of the ordered pair (ni, nj,) given a flow f is

being therefore equal to zero if (ni, nj) ∊ E. Readily, cf(ni, nj) ≥ 0 if (ni → nj) ∊ Ed. whereas c f
(ni, nj) = f(nj → ni) ∊ Ed. The residual network of G given f is the directed graph Gf = (N,Ef) and
is such that (ni, → nj) ∊ Ed if and only if (ni, nj) ∊ E and cf(ni nj) > 0. Clearly, if (ni → nj) ∊ Ed,
then both (ni nj) and (ni nj) may be members of Ef, so long as f(ni, nj) < c(ni nj) and f(njni) ≥ 0
(these are, respectively, the conditions for each of the memberships in Ef). A directed path
from n1 to nn in Gf is called an augmenting path. The intuitive support for this denomination is
that, along such a path, the residual capacity of (ni, → nj) ∊ Ef can be decreased by either
increasing f(ni, nj,) if (ni → nj) ∊ Ed or decreasing f(nj, ni) if (nj → ni) ∊ Ed.
When f does not satisfy property (iii), but rather the weaker property that

for all ni ∊ N −{n1, nn} then it is called a preflow instead of a flow. In this case, there exists an
excess flow coming into ni, denoted by ef(ni) and given by

The next two sections are devoted to the presentation of three distributed algorithms for the
maximum-flow problem. Two of these algorithms are synchronous and appear in Section
7.2.2. The other algorithm is asynchronous, and is presented in Section 7.2.3. The first of the
synchronous algorithms is based on the concepts of residual networks and augmenting
paths, and is called Algorithm S_Find_Max_Flow. The other synchronous algorithm and the
asynchronous algorithm are both based on the concept of preflows. These two algorithms
are considerably simpler than Algorithm S_Find_Max_Flow, and for this reason are not
presented with all the details as that one is.
Algorithm S_Find_Max_Flow and the preflow-based synchronous algorithm can both be
shown to have the same message and time complexities, being respectively of O(n3) and O
(n2). The asynchronous algorithms that result from applying Synchronizer Gamma to
Algorithm S_Find_Max_Flow and to the other synchronous algorithm, following our
discussion in Section 5.3.1, both have message complexity and time complexity, for 2 ≤ k <
n, respectively of O(kn3) and O(n2 log n/log k). If Synchronizer Alpha is used instead, then the
resulting asynchronous algorithms have message complexity of O(n2m) and time complexity
of O(n2). Interestingly, these are the complexities that the preflow-based asynchronous
algorithm has been shown to have as well.

7.2.2 Two synchronous algorithms
The essence of Algorithm S_Find_Max_Flow is the following. It proceeds in iterations, and at
each iteration a "layered" residual network (to be explained shortly) is built. A maximal flow is
then found on this network and then added to the cumulative flow that is maintained
throughout the iterations. A flow in the layered residual network is said to be maximal when it
is equal to the residual capacity of at least one edge on every n1-to-nn path. When a layered
residual network with at least one augmenting path can no longer be found, the flow is
maximum and the algorithm terminates.

The layered residual network is built at each iteration as follows. Let f be the cumulative flow
obtained at the end of the previous iteration (the initial flow, for the first iteration). The source
n1 is included in the first layer and a process similar to the breadth-first numbering discussed
in Section 3.4 is started to determine the subsequent layers. For l > 1, the lth layer contains
every node ni that is not in any of the previous l − 1 layers and such that there exists a node
nj in the l − 1st layer such that cf(ni, nj) > 0. The synchronous algorithm to build the layered
residual network is then very simple. For l > 1 and σ ≥ 0 to indicate the pulses within each
iteration, the lth layer is determined at pulse σ = l − 2 as follows. Those nodes ni belonging to
the l − 1st layer send a message to their neighbors nj such that cf(ni, nj) > 0. In the next pulse
(i.e., σ = l − 1), nj replies positively or not at all to ni, depending on whether it had already
been included in a layer at any of the previous pulses.
Once the layered residual network has been constructed based on a flow f, a maximal flow
on it is determined by a process that is started at n1 by assigning to each (n1 → ni) ∊ Ef a flow
equal to cf(ni, nj), thereby providing ni with a positive excess flow. This process continues on
to the succeeding layers, and along the way the excess flow at the nodes is either pushed to
the next layer or returned to the previous one (and then possibly re-routed through other
edges). Termination occurs when no node can take any additional flow. The synchronous
algorithm to find a maximal flow on the layered residual network works by sending flow
between neighbors in the form of messages. Whenever flow is received at nj from ni on edge
(ni, nj) such that (ni → nj) → Ef, the amount of flow received is pushed onto a stack along with
a pointer to its sender, ni. At each pulse, a node nj may receive flow from nj on edge (ni, nj)
such that (ni → nj) ∊ Ef or such that (nj → ni) ∊ Ef (this is returned flow). At the beginning of
the next pulse, all the flow nj received is either sent to the succeeding layer, if at all possible,
or returned to the previous one, in this case by popping the amount of flow to be returned
and its destination off the stack. In case no more flow can be sent to the next layer, nj informs
its neighbors in the preceding layer that it is "blocked," so no further attempts will be made to
send flow to it in the remainder of the iteration.
Algorithm S_Find_Max_Flow proceeds in iterations k = 1, …, K, where K is initially viewed as
being equal to infinity and is set to its correct value upon detection by the nodes that the
current iteration is the last one. Incidentally, the detection of termination in this case is, like
for the other synchronous algorithms we have seen, essentially a matter of counting pulses
as they elapse. However, as we mentioned in Section 6.2, in this case such a strategy is
supported by the nontrivial arguments (which we do not reproduce here) that lead to the
algorithm's time complexity.
For 1 ≤ k < K, the kth iteration comprises two phases, each no more than 2n pulses long.
The first phase of an iteration is used to find the layered residual network, while the second
phase is used to find a maximal flow on that network, so for the Kth iteration only the first
phase is needed. The value of K, however, can only be known after a first phase in which nn

could not be reached during the construction of the layered residual network has occurred.
Intuitively, Algorithm S_Find_Max_Flow proceeds through the propagation of synchronous
waves emanating from n1. During the first phase of an iteration, such a wave expands from
n1 to construct the layered residual network, with feedback information sent to n1 when the
network is constructed. During the second phase, the wave that n1 initiates pushes flow
onward on the layered residual network, with occasional "ripples" of returned flow in the
opposite direction that may in turn be sent onward again.
The following are the messages employed in Algorithm S_Find_Max_Flow. A message layer
is employed to build the layered residual network. It is propagated, starting at n1, on edges
that have positive residual capacity (except the edge, if any, on which it was received) when
received for the first time in an iteration. Every layer messages, if belonging to the first group
of such messages to be received in the current iteration, is replied to with an ack. This
propagation of layer messages, as well as ack's, accounts for at most the first n pulses of an
iteration. Additional n pulses (at most) are employed for a success message to be sent by nn

toward n1 if it is reached by the layer messages. If within 2n pulses of the beginning of an
iteration n1 does not receive a success, then it may conclude that the layer messages did not
reach nn and therefore may set K to the number of the current iteration to terminate the
algorithm. The second phase employs flow(x) and block messages, respectively to ship an
amount x of flow and to signal that the sender of the message should not be sent any more
flow during the iteration.

Node ni employs the following variables. A stacki, initialized to nil, is employed for ni to store
the flow shipments it receives, and their origins, for later return if the need arises. The excess
flow at ni is stored in the variable excessi, initially equal to zero. A Boolean reachedi, initially
equal to false, indicates whether during the current iteration ni has already been reached by
a layer message. As in previous occasions, the node from which ni receives layer for the first
time is pointed to by parenti, initially set to nil (if a layer is received from more than one
neighbor at the same pulse, then the choice of which neighbor parenti is to point to is
arbitrary). For all nj ∊ Neigi, the following variables are used. The Booleans

and , initially set to false, are used
respectively to indicate, for each iteration, whether nj is in the previous layer or in the next

layer of the layered residual network with respect to ni. The variables and

give, respectively, the value of the current flow and current residual capacity
of the ordered pair (ni, nj). They are both initialized to zero, unless (ni → nj) ∊ Ed, in which

case is initialized to c(ni, nj). The Booleans and

, both initially equal to false, indicate respectively whether more flow can
be sent to nj during the current iteration and whether flow has been returned to nj during the
current iteration. Finally, node ni employs an auxiliary variable yi.
The initial values we have given for the variables are employed either at the beginning of the
algorithm, and they appear when the variables are first listed, or at the beginning of each
iteration. Variables whose initial values are used only once at the beginning of the algorithm
are the variables related to flows and capacities (these are the excess, flow, and residue
variables). Variables that need to be initialized at the beginning of every iteration are all the
others, which are related either to the construction of the layered residual networks (these
are the reached, parent, in_previous_layer, and in_next_layer variables) or to the control of
flow return (these are the stack, blocked, and returned variables). As a final observation on
the variables employed by the algorithm, it should be noted that some of them are not used
at all by some nodes, but do nonetheless appear listed for the sole sake of simplicity.
The reception of layer messages at ni at a certain pulse in which reachedi = false causes
parenti to point to one of the neighbors that sent the layer's. Each such neighbor nj is sent an

ack and in addition is set to true. Reception by ni of an

ack from nj causes ni to set to true. Whenever a flow message

is sent by nj to nj or received by ni from nj, the variables excessi, , and

are updated accordingly. When ni cannot rid itself of its excess flow by
sending it forward on the layered residual network, it returns that flow on a "last-in, first-out"
basis (supported by stacki) to the nodes that sent it. Nodes in the previous layer that do not
get returned flow are sent a block message. Both returned flows and block messages signal
the receiver that no more flow should during the current iteration be sent to ni.
In Algorithm S_Find_Max_Flow. N0 = {n1} and 1 ≤ k < K. Again for the sake of simplicity
(though at the expense of a longer algorithm), we have chosen to provide separate actions
for n1, ni ∊ N − {n1. nn} and nn.

Algorithm S_Find_Max_Flow.

 Variables:
 reachedi,
 parenti;

 for all nj ∊ Neigi,

 for all ∊ nj Neigi;
 stacki;
 excessi = 0;

 = 0 for all nj ∊ Neigi;

 = c(ni, nj) for all (ni → ni) ∊ Ed;

 = 0 for all (nj → ni) ∊ Ed;

 for all nj ∊ Neigi;

 for all nj ∊ Neigi;
 yi.

Listing 7.10

 Input:

 s = 4n(k − 1) or s = 4n(K − 1), MSGi(s) =
 Action if ni = n1 (if ni ∊ N0, for k = 1):

 := false for all nj∊ Neigi;

 := false for all nj ∊ Neigi;
 K := k;

 Send layer to all nj ∊ Neigi such that > 0.

Listing 7.11

 Input:

 s = 4n(k − 1) or s = 4n(K − 1), MSGi(s) =
 Action if ni ≠ ni ≠ nn:
 reachedi := true;
 parenti := nil;

 := false for all nj ∊ Neigi;

 := false for all nj ∊ Neigi;
 stacki := nil;

 := false for all nj ∊ Neigi;

 := false for all nj ∊ Neigi;
 K := k.

Listing 7.12

 Input:

 s = 4n(k − 1) or s = 4n(K − 1), MSGi(s) =
 Action if ni = nn:
 reachedi = true;
 parenti := nil;
 K := k.

Listing 7.13

 Input:
 4n(k − 1) + 1 ≤ s ≤ 4nk − 2n − 1 or 4n(K − 1) + 1 ≤ s ≤ 4nK − 2n − 1, MSGi(s) such that
origini(msg) = (ni, nj) for msg ∊
 MSGi(s).
 Action if ni = n1:
 for all ack ∊ MSGi(s) do

 := true;
 if there exists success ∊ MSGi(s) then
 K := ∞.

Listing 7.14

 Input:
 4n(k − 1) + 1 ≤ s ≤ 4nk−2n− 1 or 4n(K − 1) + 1 ≤ s ≤ 4nK −
 2n− 1, MSGi(s) such that origini(msg) = (ni, nj) for msg ∊
 MSGi(s).
 Action if ni ≠ n1 and ni ≠ nn:
 if not reachedi then
 if there exists layer ∊ MSGi(s) then
 begin
 reachedi := true;

 for all layer ∊ MSGi(s) do
 begin
 if parenti = nil then
 parenti : = nj;

 := true;
 Send ack to nj

 end;
 Send layer to all nk ∊ Neigi such that nk ≠ nj and

 > 0
 end;
 for all ack ∊ MSGi(s) do

 := true;
 for success ∊ MSGi(s) do
 begin
 K :=∞
 Send success to parenti
 end.

Listing 7.15

 Input:
 4n(k − 1) + 1 ≤ s ≤ 4nk − 2n− 1 or 4n(k − 1) + 1 ≤ s ≤ 4nK −
 2n −1, MSGi(s) such that origini(msg) = (ni, nj) for msg ∊
 MSGi(s).
 Action if ni = nn:
 if not reachedi then
 begin
 if there exists layer ∊ MSGi(s) then
 begin
 reachedi := true;
 for all layer ∊ MSGi(s) do
 begin
 if parenti = nil then
 parenti := nj;
 Send ack to nj

 end
 end
 end
 else
 if K = k then
 begin
 K := ∞;
 Send success to parenti

 end.

Listing 7.16

 Input:

 s = 4nk − 2n, MSGi(0) =
 Action if ni = n1:

 for all nj ∊ Neigi such that do
 begin

 yi := ;

 := + yi;

 := 0;
 Send flow(yi) to nj

 end.

Listing 7.17

 Input:
 4nk − 2n + 1 ≤ s ≤ 4nk − 1, MSGi(s) such that origini(msg) =
 (ni ,nj) for msg ∊ MSGi(s).
 Action if ni = n1:
 for all flow(x) ∊ MSGi(s) do
 begin

 := − x;

 := + x
 end.

Listing 7.18

 Input:
 4nk − 2n + 1 ≤ s ≤ 4nk − 1, MSGi(s) such that origini(msg) =
 (ni,nj) for msg ∊ MSGi(s).
 Action if ni ≠ n1 and ni ≠ nn:
 for all flow(x) ∊ MSGi(s) do
 begin excessi := excessi + x;

 , := − x;

 := + x;

 if then
 Push (nj, x) onto stacki;

 if then

 := true
 end;
 for all block ∊ MSGi(s) do

 := true;

 while (there exists nk ∊ Neigi such that and not

) and excessi > 0 do

 begin yi := min{excessi, };
 excessi := excessi - yi;

 : = + yi;

 := - yi;
 Send flow(yi) to nk

 end;
 while excessi > 0 do
 begin Pop (nk, x) off stacki;
 yi := min{excessi,x};
 excessi := excessi - yi;

 := + yii;

 := - yi;

 := true;
 Send flow(yi) to nk

 end;

 if there exists nk ∊ Neigi such that then

 for all nk ∊ Neigi such that and not

 do

 begin := true;
 Send block to nk

 end.

Listing 7.19

 Input:

 4nk − 2n + 1 ≤ s ≤ 4nk − 1, MSGi(s) such that origini (msg) =
 (ni, nj) for msg ∊ MSGi(s).
 Action if ni = nn:
 for all flow(x) ∊ MSGi(s) do
 begin

 := - x;

 := + x
 end.

In Algorithm S_Find_Max_Flow, (7.10) through (7.19) realize the K-iteration, two-phase-per-
iteration method that we described. Actions (7.10) through (7.15) handle the first phases of
the K iterations, while actions (7.16) through (7.19) handle the second phases of the K − 1
first iterations. Actions (7.10) through (7.12) last for exactly one pulse per iteration each, and
are intended respectively for n1, ni ∊ N − {n1, nn}, and nn to initialize their variables for the new
iteration and for n1 to send out the initial layer messages. Actions (7.13) through (7.15) are
executed for 2n − 1 pulses each in every iteration, and specify the participation of the nodes
in the remainder of the first phase. What these actions contain are the responses,
respectively by n1, ni ∊ N − {n1, nn}, and nn, to the receipt of layer, ack, and success
messages. Note, however, that n1 never receives a layer and nn never receives an ack or
success. It is through (7.15) that a success message first gets sent in each iteration.
In (7.16), which is executed for exactly one pulse in each iteration, n1 sends out the initial
flow messages of the iteration. The handling of such messages, and of block messages, is
achieved through (7.17) through (7.19) for nodes n1, ni ∊ N − {n1, nn}, and nn, respectively (nn

never receives any block message, though). Each of these actions lasts for 2n − 1 pulses,
and is tuned to the peculiarities of the corresponding node or nodes. Specifically, (7.17) and
(7.19), for execution respectively by n1 and nn, do not include the sending of any messages at
all. Also, in (7.17) n1 does not act upon the receipt of block messages. Note that no action is
explicitly given for nodes ni ≠ n1 at pulse s = 4nk− 2n, as this is the first pulse in the second
phase of iteration k and is as such meant for n1 only.
When a new iteration is initiated in (7.10) through (7.12) and the pertinent variables get
initialized, nodes also set K to the number k of the current iteration, in preparation for the
possibility that this may be the last one. When nn sends a success message in (7.15), or
upon receipt of such a message by n1 orni ∊ N −{n1, nn} respectively in (7.13) and (7.14), K is
reset to infinity, thereby indicating that the current iteration will include a second phase, and
then is not the last one. When the algorithm terminates, the flow variables contain a
maximum flow in Gd.
The other synchronous algorithm that we study in this section is considerably simpler than
Algorithm S_Find_Max_Flow. For this reason, we only describe it superficially, and leave to
the reader the task of expressing it more formally in the style of notation we have been
employing (cf. Exercise 4). This algorithm works with the notion of preflows, and continually
tries to push excess flow along the edges of the residual network that the nodes estimate to
be on the shortest paths to n1 or nn. The algorithm starts with a preflow f such that f(n1, nj) = c
(n1, nj) for all (n1 → nj) ∊ Ed and f(ni, nj) = 0 for all (ni → nj) ∊ Ed. with ni ≠ n1.
Every node ni maintains an estimate di of its shortest distance to either n1 or nn in the residual
network. Any initial values for these estimates will do, as long as d1 = n, dn = 0, and di ≤ dj + 1
for all (ni → nj) ∊ Ed. In the first pulse of the algorithm, these estimates are exchanged

between neighbors; at node ni, the estimate of neighbor nj is stored in . At all times during
the execution of the algorithm, these estimates are such that either di is a lower bound on the
distance from is a lower bound on the distance from ni, to nn, if di < n, or di − n is a lower
bound on the distance from ni to n1 if di ≥ n.

At each pulse of the algorithm, the active nodes attempt to get rid of their excess flows by
pushing flow in the direction of n1 or nn. Letting f be the preflow at the end of the previous
pulse (the initial preflow, in the first pulse), a node ni is said to be active if ni ∊ N − {n1, nn} and
ef(ni) > 0. An active node ni, at the current pulse, first sends an amount of flow equal to

to a neighbor njsuch that di = dj
i + 1 and cf(ni, ni) > 0, and updates f (as well as ef(ni) and cf(ni,

nj)) accordingly. This is repeated until either ef(ni) = 0 or cf(ni, nj) = 0 for all nj such that di =
+ 1. If after this ef(ni) > 0, then di is updated to the minimum, over all neighbors nj of ni such

that cf(ni, nj) > 0, of + 1, and this value, if different from the previous one, is sent to ni's The
next pulse is initiated by adding to ef(ni) all the flow received during the pulse. The algorithm
terminates when no nodes are any longer active, although a termination criterion that, as in
previous occasions, only considers the number of pulses elapsed is also possible.

7.2.3 An asynchronous algorithm

In this section, we discuss briefly the asynchronous version of the preflow-based
synchronous algorithm that we introduced in the previous section. As with its synchronous
counterpart, we leave all the details for the reader to pursue as an exercise (cf. Exercise 5).

The essential difficulty in the asynchronous case is that the condition that di = + 1,
necessary for ni to send flow to nj (cf. Section 7.2.2 on the preflowbased synchronous
algorithm), cannot be trivially ensured, as the values of dj and of dj

i may differ substantially.
The solution adopted when proposing the corresponding asynchronous algorithm has been
that every flow sent from ni to nj must carry the value of di, and be explicitly accepted or
rejected by nj before additional flow may be sent.
When nj receives flow from ni and verifies that in fact di = dj + 1, then the flow is accepted and
this is reported back to ni. If, on the other hand, di ≠ dj + 1, then the flow is rejected and this is
reported back to ni along with the value of dj. Upon receiving this rejection message, ni

updates ef (ni), cf (ni, nj), , and possibly di. Whenever di changes, its new value is reported
to all of ni's neighbors.

7.3 Exercises
1. Prove properties (i) and (ii) of Section 7.1.1 on minimum spanning trees.
2. Discuss how to modify Algorithm A_Find_MST for the case in which edges are not FIFO. In
particular, show that the situations in which a connect or test message cannot be replied to
immediately can be handled with the aid of conditions for actions to be executed, instead of
auxiliary variables.
3. In the context of Section 7.2.1, show that the definitions of the value of f as the total flow going
out from n1 or coming into nn are indeed equivalent to each other.
4. Express the second synchronous algorithm of Section 7.2.2 according to Algorithm
S_Template.
5. Express the asynchronous algorithm of Section 7.2.3 according to Algorithm A_Template.

1.
Prove properties (i) and (ii) of Section 7.1.1 on minimum spanning
trees.

2.

Discuss how to modify Algorithm A_Find_MST for the case in
which edges are not FIFO. In particular, show that the situations
in which a connect or test message cannot be replied to
immediately can be handled with the aid of conditions for actions
to be executed, instead of auxiliary variables.

3.

In the context of Section 7.2.1, show that the definitions of the
value of f as the total flow "going out from" n1 or "coming into" nn

are indeed equivalent to each other.

4.
Express the second synchronous algorithm of Section 7.2.2
according to Algorithm S_Template.

5.
Express the asynchronous algorithm of Section 7.2.3 according to
Algorithm A_Template.

7.4 Bibliographic notes
Our treatment in Section 7.1 of the problem of finding a minimum spanning tree follows the
original paper of Gallager, Humblet, and Spira (1983) closely, except for the material in
Section 7.1.3, which is based on Gafni (1985) and Chin and Ting (1990). For an algorithm
with time complexity even lower than the one mentioned in Section 7.1.3, the reader is
referred to Awerbuch (1987). Another publication of interest is Janssen and Zwiers (1992).
For material on maximum flows in networks to complement our treatment in Section 7.2.1,
the reader can count on books dedicated exclusively to the subject (Ford and Fulkerson,
1962; Ahuja, Magnanti, and Orlin, 1993), chapters in more general books (Lawler, 1976;
Even, 1979; Papadimitriou and Steiglitz, 1982; Cormen, Leiserson, and Rivest, 1990), and
surveys (Ahuja, Magnanti, and Orlin, 1989; Goldberg, Tardos, and Tarjan, 1990).
Algorithm S_Find_Max_Flow of Section 7.2.2 is from Awerbuch (1985b), and the concepts of
augmenting paths and of layered residual networks that it employs are originally from Ford
and Fulkerson (1962) and Dinic (1970), respectively. The algorithm in Awerbuch (1985b) is
an adaptation of the algorithm given by Shiloach and Vishkin (1982) for a shared-memory
model (Karp and Ramachandran, 1990). The other synchronous algorithm of Section 7.2.2
and the asynchronous algorithm of Section 7.2.3 can be found in detail in Goldberg and
Tarjan (1988). The concept of preflows on which they are based is originally from Karzanov
(1974).
Parallel implementations of the algorithms of Goldberg and Tarjan (1988) have been
discussed by Anderson and Setubal (1992) and by Portella and Barbosa (1992). In the latter
publication, the authors describe an experimental evaluation of all the three algorithms
discussed in Section 7.2. This evaluation employs random graphs (Bolloba´s, 1985) in the
style suggested in DIMACS (1990).

Chapter 8: Resource Sharing

Overview
When the nodes in G share resources with one another that must not be accessed by more
than one node at the same time, distributed algorithms must be devised to ensure the mutual
exclusion in the access to those resources, that is, ensure that nodes exclude one another in
time to access the shared resources. This problem is not entirely new to us, having been
treated in Section 6.1 in the context of self-stabilization on a ring, and in Section 6.3 in the
context of detecting deadlocks in a distributed computation in which nodes provide service to
one another, but never to more than one node at a time.
In this chapter, G is an undirected graph, and our treatment spans two main problems. The
first problem is to ensure mutual exclusion when all the nodes share one single resource, or
a group of resources that always have to be accessed as a single one. In this case, G may
be as dense as a complete graph, reflecting the need, in some algorithms, for a node to
communicate with all others to secure exclusive resource access. Mentions in the literature
to the "mutual exclusion problem" normally refer to this first problem, which we address in
Section 8.1.
The second problem that we treat in this chapter is that of ensuring mutual exclusion when
each node may require access to a different set of resources. When a node accesses the
same set of resources whenever it accesses any resource, the problem is a generalized form
of the paradigmatic dining philosophers problem. When the set of resources that a node
accesses may vary from one time to the next, then the problem has become known as the
drinking philosophers problem. We dedicate Sections 8.3 and 8.4 respectively to each of
these problems, after a common introduction in Section 8.2.
Two important notions that pervade all of our resource sharing studies in this chapter are
those of a deadlock, which already we are acquainted with, and of starvation. Acceptable
algorithms for resource sharing must ensure that neither conditions are ever present, unless
it can be argued, in the particular situation at hand, that resorting to deadlock detection is
preferable, as we discussed in Section 6.3. In the context of ensuring mutual exclusion in the
access to shared resources by the group N of nodes, deadlock exists when none of the

nodes ever succeeds in obtaining access to the resources. If there always exists at least one
node that does succeed, but at least one other node does not succeed indefinitely, then the
situation is one of starvation.
Exercises and bibliographic notes are given, respectively, in Sections 8.5 and 8.6.

8.1 Algorithms for mutual exclusion
In this section, as in other occasions in the book, we assume that nodes have distinct
identifications totally ordered by <. For node ni such an identification is idi. Nodes share a
resource, or a group of resources, that must be accessed with the guarantee of mutual
exclusion. If it is a group of resources that the nodes share, then we assume that all the
resources in the group are always accessed together, as if they constituted one single
resource, so that for all purposes it is legitimate to assume that the nodes share one single
resource.
For the first algorithm that we study, G is a complete graph, because the algorithm is based
on the strategy that a node, in order to access the shared resource, must obtain permission
to do so from all the other n − 1 nodes. This first algorithm is called A_Mutually_Exclude_C
(the suffix "C" here indicates, as in Section 5.1, that a complete graph is involved), and is
based on the following simple approach. In order to request permission to access the shared
resource,- node ni sends a request(seq, idi) message to all the other nodes in G. The
parameters that this message carries are, respectively, a "sequence number" (akin to the tag
attached to marker's in Algorithm A_Detect_Termination of Section 6.2.1) and ni's
identification. The sequence number is an integer, and is obtained by adding one to the
largest such number ni has received or sent in a request message (or to zero, if no request
has ever been received or sent by it). Node ni proceeds to access the resource upon
receiving one reply message from each of the other nodes.
Upon receiving a request (seq, idj), node ni replies immediately to nj with a reply message if it
is not waiting for reply's itself. If it is waiting for reply's then it is also competing for exclusive
access to the shared resource, and the parameters that it sent out with its request
messages, namely a sequence number seq' and idi, must be compared to those received
with the message from nj to determine which node takes priority. Lower sequence numbers
indicate earlier request messages (in the sense of the partial order ≺+ of Section 3.1), so that
nj takes priority (i.e., is sent a reply by ni) if

where the comparison is done lexicographically. Otherwise, ni delays the sending of a reply
to nj until after it has accessed the shared resource.
In Algorithm A_Mutually_Exclude_C, the following are the variables employed by node ni.
Two integers, seqi and highest_seqi (the latter initialized to zero), are used respectively to
indicate the sequence number ni sent with the last group of request messages it sent (if any)
and the highest sequence number to have been sent or received by ni in a request message.
Another integer, expectedi (set to zero initially), indicates the number of reply messages ni

must receive before accessing the shared resource. For all nj ∊ Neigi, a Boolean

(initially set to false) is used to indicate whether ni has postponed the
sending of a reply to nj.

Algorithm A_Mutually_Exclude_C:

 Variables:
 seqi;
 highest_seqi = 0;
 expectedi = 0;

 = false for all nj ∊ Neigi.

Listing 8.1

 Input:
 msgi = nil.
 Action when expectedi = 0 and access to the shared resource is
 needed:
 seqi := highest_seqi + 1;
 highest_seqi := seqi;
 expectedi := n − 1;
 Send request(seqi, idi) to all nj ∊ Neigi.

Listing 8.2

 Input:
 msgi = request(seq, id) such that origini(msgi) = (ni, nj).
 Action:
 highest_seqi := max{highest_seqi, seq};
 if expectedi = 0 or (seq, id) < (seqi, idi) then
 Send reply to nj

 else

 := true.

Listing 8.3

 Input:
 msgi = reply.
 Action:
 expectedi := expectedi − 1;
 if expectedi = 0 then
 begin
 Access shared resource;

 for all nj ∊ Neigi such that do
 begin

 := false;
 Send reply to nj

 end
 end.

In Algorithm A_Mutually_Exclude_C, actions (8.1) through (8.3) indicate ni's participation
respectively as a spontaneous initiator, upon receipt of a request, and upon receipt of a reply.
Action (8.1), in particular, is executed whenever there is need for ni to access the shared
resource and in addition expectedi = 0 (indicating that ni is not already engaged in seeking

access to that resource). As in Algorithm A_FIFO of Section 2.1, a node may initiate its
participation in the algorithm spontaneously more than once, in that case by deciding to
migrate a task to run elsewhere, in this case by deciding that access to the shared resource
is needed. What this amounts to is that N0 must be regarded as a maximal set of nodes that
send out request's concurrently. Each such set initiates a new execution of the algorithm,
and executions operate on variables that persist, in the sense of not being re-initialized, from
one execution to another.
Theorem 8.1 establishes important properties of this algorithm.

Theorem 8.1.
Algorithm A_Mutually_Exclude_C ensures mutual exclusion in the access to the shared
resource, and is in addition deadlock-and starvation-free.
Proof: Two nodes can only access the shared resource concurrently if they receive the n −
1st reply message concurrently. This follows from (8.3) and, in particular, indicates that each
of the two nodes must have received a reply from the other as well. But by (8.2) and (8.3),
and because node identifications are all distinct from one another, this can only have
happened if at least one of the two was not requesting access to the resource, which is in
contradiction with the possibility that they access the resource concurrently.
By (8.2), node ni only refrains from sending nj a reply if expectedi > 0 and (seq, id) (≮ seqi,
idi), where seq and id are the parameters of nj's request message. In this case, nj is forced to
wait for ni's reply. Because node identifications are totally ordered by <, a wait cycle cannot
be formed among the nodes, and then no deadlock can ever occur (cf. Section 6.3).
Now consider the number of resource accesses that may take place after node ni has sent
request's and before it has received reply's (because mutual exclusion is ensured, resource
accesses are totally ordered, so that the "before" and "after" are meaningful with respect to
this order). By (8.1) and (8.2), the sequence number a node sends along with a request
message is strictly greater than those it has received in request's itself, so that by (8.2) every
node sending out request's after receiving ni's request will only access the shared resource
after ni has done so. The number of resource accesses we are considering is then finite, and
as a consequence no starvation ever occurs.
Let us now examine the complexities of Algorithm A_Mutually_Exclude_C. Clearly, each
access to the shared resource involves n − 1 request messages and n − 1 reply's. The
algorithm's message complexity per access to the shared resource is then O(n). The time
complexity per access to the shared resource refers to the chain of messages that may
occur starting with a request sent by a node and the last reply that it receives. The longest
such chain occurs when a global state exists in which n − 1 nodes in a row have withheld
reply's from the next node in the sequence (by Theorem 8.1, the number of nodes involved in
this wait cannot be greater than n − 1, because otherwise there would be deadlock). If ni and
nj are, respectively, the first and last nodes in this wait chain (that is, ni is the only node not to
have been withheld a reply from), and if the request from nj arrives at ni before ni accesses
the shared resource, then the reply's that ni sends out when it finally does access the
resource start a causal chain of reply's through the other nodes to nj. The time complexity of
the algorithm per access to the shared resource is then O(n) as well.
The algorithm's bit complexity is in principle unbounded, because, although a node's
identification can be as usual assumed to be expressible in ┌log n┐ bits, the other parameter
that request messages carry, the sequence number, does not in the algorithm have any
bound. However, it can be argued relatively easily that no two sequence numbers that a node
has to compare in (8.2) are ever farther apart from each other than n − 1, and then it is
possible to implement them as O(log n)-bit numbers (cf. Exercise 1). The algorithm's bit
complexity is then O(n log n).
Unlike Algorithm A_Mutually_Exclude_C, the next algorithm that we consider in this section
does not require every node to receive explicit permission from every other node before
accessing the shared resource. What makes this possible is the following interesting
observation. For ni ∊ N, let Si ⊆ N denote the set of nodes from which ni must receive explicit
permission before accessing the shared resource (in the previous algorithm, Si = N − {ni} for
all ni ∊ N). In order for Si not to have to include every node in N − {ni} and yet mutual
exclusion to be ensured in the access to the shared resource when the nodes in Si grant

permission for ni to proceed, for every two nodes ni and nj we must have Si ∩ Sj ≠ . If the
S sets can be built such that this property holds, then every pair of conflicting requests to
access the shared resource will reach at least one node, which will then be able to arbitrate
between the two requests and ensure mutual exclusion.
Once the sets S1,…, Sn have been determined, the following is how a node ni proceeds in
order to access the shared resource. For simplicity when describing the algorithm, we
assume that ni ∉ Si, so that the number of request's that ni sends is |Si|. First ni sends a
request message to every node in Si, and then waits to receive one granted message
corresponding to each of the request messages it sent. It may then access the shared
resource, and after doing so sends a release message to each of the nodes in Si. A node
that has sent a granted and receives another request before receiving the corresponding
release's must somehow postpone its permission corresponding to the new request.
Although the granted messages may be thought of as corresponding to the reply messages
of the previous algorithm, the need to explicitly indicate that the resource is no longer in use
through the release messages reflects some of the important differences between the two
approaches. The essential reason why release messages are now needed is that a request
does not reach every node, and thence the double meaning that a reply message had of both
granting permission and signaling the end of an access to the shared resource can no longer
be exploited with the granted messages. In fact, another consequence of the selective
broadcast of request's in addition to the need of explicit release's is that deadlocks can no
longer be taken as prevented even if the request's carry the same information that they did in
the previous case. Because different nodes obtain their permissions from different sets of
nodes, it is rather simple to imagine situations in which wait cycles appear.
The following is then the overall strategy to handle conflicts and the waits that result from
them, and yet ensure that deadlocks are not possible. A request message is, as in the
previous algorithm, sent by ni as request(seqi, idi), where seqi is strictly greater than every
other sequence number ni has ever sent or received in such a message. Node ni maintains a
Boolean variable, called lockedi and initialrized to false, to indicate whether it has sent a
granted message to some node without having received any other message from that node.
When ni receives a request(seq,id) and lockedi = false, a granted is immediately sent to its
originator. If lockedi = true, then ni marks the origin of the request message for later
consideration. Upon delaying the response to a node in this way, ni must ensure that no
deadlock will arise, and to this end proceeds as follows. If the newly received request takes
precedence (in the sense of a lexicographically smaller pair (seq, id)) over the request to
which ni has replied with a granted as well as all the others that ni has not yet replied to, then
a probe message is sent to the same node to which the granted was sent. Otherwise, a
delayed message is sent in response to the new request, which is then kept waiting. A node
that receives a probe responds to it right away with a relinquish if it has already received a
delayed, or when it does receive a delayed. if it still has not. Node ni does not send another
probe until a relinquish or a release has arrived for the one it has sent. A node only sends a
relinquish in response to a probe if a granted was not received from each of the nodes that
sent it a delayed.
Algorithm A_Mutually_Exclude, presented next, is based on this approach. In contrast with
the previous approach, G is no longer a complete graph, but rather has its set of edges given
in accordance with the sets S1,…, Sn in such a way that (ni,nj) ∊ E if and only if nj ∊ Si or ni ∊
Sj. Also, we assume that all edges are FIFO, and then a granted never overruns a delayed or
a probe a granted.
In addition to the variables seqi, highest_seqi, and expectedi, used here as in the previous
algorithm, and the already introduced variable lockedi, Algorithm A_Mutually_Exclude
employs the following additional variables. A request in response to which a granted has
been sent has its origin and seq and id parameters recorded by ni in the variables
granted_nodei, granted_seqi, and granted_idi, respectively. Node ni maintains a queue, called
queuei and initialized to nil, to store these same attributes for all request's that cannot be
immediately replied to. This queue is maintained in lexicographically increasing order of (seq,

id).Finally, the Booleans has_probedi, and and

for all nj ∊ Si, all initialized to false, are employed to indicate
respectively whether ni has sent a probe for which a relinquish or a release was not received
in response, whether ni has received a probe from nj, and whether a delayed was received
from nj without a succeeding granted.

Algorithm A_Mutually_Exclude:

 Variables:
 seqi;
 highest_seqi = 0;
 expectedi = 0;
 lockedi = false;
 granted_nodei;
 granted_seqi;
 granted_idi;
 queuei = nil;
 has_probedi = false;

 = false for all nj ∊ Si;

 = false for all nj ∊ Si.

Listing 8.4

 Input:
 msgi = nil.
 Action when expectedi = 0 and access to the shared resource is
 needed:
 seqi := highest_seqi + 1;
 highest_seqi := seqi;
 expectedi := |Si|;
 Send request(seqi, idi) to all nj ∊ Si.

Listing 8.5

 Input:
 msgi = request(seq,id) such that origini (msgi) = (ni, nj).
 Action:
 highest_seqi := max{highest_seqi, seq};
 if not lockedi then
 begin
 lockedi := true;
 granted_nodei := nj;
 granted_seqi := seq;
 granted_idi := id;
 Send granted to nj

 end
 else

 begin
 Add (nj, seq, id) to queuei;
 if (seq, id) < (granted_seqi, granted_idi) and (nj, seq, id) is
 first in queuei then
 begin
 if not has_probedi, then
 begin
 has_probedi := true;
 Send probe to granted_nodei

 end
 end
 else
 Send delayed to nj

 end.

Listing 8.6

 Input:
 msgi = granted such that origini(msgi) = (ni,nj).
 Action:
 expectedi := expectedi − 1;

 if then

 := false;
 if expectedi = 0 then
 begin
 Access shared resource;

 for all nk ∊ Si such that do

 := false;
 Send release to all nk ∊ Si

 end.

Listing 8.7

 Input:
 msgi = release.
 Action:
 if has_probedi then
 has_probedi := false;
 if queuei = nil then
 lockedi := false
 else
 begin
 Let (granted_nodei, granted_seqi, granted_idi be first in)

 queuei;
 Remove (granted_nodei, granted_seqi, granted_idi) from
 queuei;
 Send granted to granted_nodei

 end.

Listing 8.8

 Input:
 msg i = probe such that origini(msgi) = (ni,nj).
 Action:

 if there exists nk ∊ Si such that then
 begin
 expectedi := expectedi + 1;
 Send relinquish to nj

 end
 else

 := true.

Listing 8.9

 Input:
 msgi = delayed such that origini(msgi) = (ni,nj).
 Action:

 := true;

 for all nk ∊ Si such that > do
 begin
 expectedi := expectedi + 1;
 Send relinquish to nk

 end.

Listing 8.10

 Input:
 msgi = relinquish.
 Action:
 has_probedi := false;
 Add (granted_nodei, granted_seqi, granted_idi) to queuei;
 Let (granted_nodei, granted_seqi, granted_idi) be first in queuei;
 Remove (granted_nodei, granted_seqi, granted_idi) from queuei;

 Send granted to granted_nodei.

Actions (8.4) through (8.10) realize the algorithm we described informally earlier. In this
algorithm, the set N0 is to be interpreted as in the case of Algorithm A_Mutually_Exclude_C.
Some of the algorithm's properties are established by the following theorem.

Theorem 8.2.
Algorithm A_Mutually_Exclude ensures mutual exclusion in the access to the shared
resource, and is in addition deadlock- and starvation-free.
Proof: By (8.4) and (8.6), any two nodes ni and nj can only access the shared resource
concurrently if they receive, respectively, the |Si|th and |Sj|th granted messages concurrently.
However, by definition Si and Sj have at least one node in common, say nk, which by (8.5),
(8.7), and (8.10) only sends granted messages when lockedk = false upon receipt of a
request or when a release or a relinquish is received. In addition, lockedk is only false initially
or upon receipt by nk of a release, so that either nk receives a release or a relinquish from ni

before sending a granted to nj, or conversely. In either case, a contradiction exists with the
possibility of concurrent access to the shared resource by ni and nj.
Because different nodes send request's to different subsets of N, a wait cycle (cf. Section
6.3) may indeed be formed, but only momentarily though, because (8.5) ensures that a
request(seq, id) arriving at ni prompts the sending by ni of a probe if (seq, id) is
lexicographically minimum among (granted_seqi, granted_idi) and all the pairs in queuei. All
node identifications are totally ordered by <, and for this reason at least one probe must
succeed in breaking the wait cycle through the sending of a relinquish by (8.8) or (8.9).
Deadlocks are then not possible.
Ensuring mutual exclusion has the effect that all accesses to the shared resource are totally
ordered. With respect to this total order, it is then legitimate to consider the number of
accesses that may take place after an access by node ni and before the next access by the
same node. Considering that in all nodes queues are kept in increasing lexicographic order
of sequence numbers and node identifications, and that nodes issue request's with strictly
increasing sequence numbers, the number of accesses we are considering is then clearly
finite, and therefore starvation never occurs.
Analyzing Algorithm A_Mutually_Exclude for its complexity measures requires that we
consider the sets S1,…,Sn more closely, because, by the algorithm's actions, the message
complexity per access to the shared resource by node ni is intimately dependent upon the
number of nodes in Si. Before proceeding any further with this discussion, though, we make
two additional assumptions concerning these sets. The first assumption is that |S1 | = = |
Sn|, and the second assumption is that every node is contained in the same number of sets.
The first assumption seeks to guarantee that every node requests an equal number of
permissions in order to access the shared resource, while the second assumption aims at
distributing evenly the "responsibility" for granting permission to access the shared resource.
Combined, the two assumptions are to be regarded as an attempt at "fairness," however this
may be defined.
If we let K denote the size of each of the n sets and D the number of sets of which each node
is a member, then we have

which yields D = K.
One of the possibilities for the sets S1,…,Sn is of course Si = N for all ni ∊ N. It is a trivial
matter, in this case, to simplify Algorithm A_Mutually_Exclude until Algorithm
A_Mutually_Exclude_C is obtained, as G is clearly a complete graph. Our interest, however,
is in obtaining the smallest sets whose pairwise intersections are nonempty, because this is
what will improve the algorithm's message complexity from that of Algorithm
A_Mutually_Exclude_C.

Now consider the set Si, for some node ni. This set has K members, each of which belonging
to other D − 1 sets, so the number of distinct sets involving the members of Si is at most K(D
− 1) + 1. Because we need n such sets (S1 through Sn), and considering that D = K and that
the largest number of sets leads to the smallest sets, we then have

which immediately yields K ≥ If n is the square of some integer, then we adopt

Otherwise, a little imbalance cannot be avoided as some sets must necessarily have more
nodes than the others, although no more than the square root of the least perfect square

greater than n. It should be clear that this square root is still (

Under the two assumptions that led to the determination of the lower bound for K, the

message complexity of Algorithm A_Mutually_Exclude can be seen to be of
per access to the shared resource. This is so because, in the worst case, there will be

request messages, each one causing a probe message, this one being replied to by a
relinquish message, in turn generating a granted message and eventually a release
message. Notice that the argument we employed earlier on the possibility of bounding
sequence numbers in the case of Algorithm A_Mutually_Exclude_C is no longer applicable,
so that the bit complexity is in this case unbounded (cf. Exercise 2).
As in the case of the previous algorithm, the time complexity of Algorithm
A_Mutually_Exclude per access to the shared resource refers to the chain of messages that
may occur starting with a request sent by a node and the release's that it sends. One
possibility for this chain occurs in the following situation. Node nj sends ni a request, which is
queued and only replied to with a granted after ni has sent a granted and received a release
for each of the requests ahead of nj's in queuei. Because of our assumption that ni is in the S
sets of exactly D other nodes, this scenario would account for an O(D) delay. However, such
a chain is not the longest that may occur, as we see next. Suppose that ni and nk are two
nodes in Sj, and in addition that a wait chain exists starting at nk and ending at ni. In this wait
chain, nk is waiting for a release from the next node in the chain, which is waiting for a
granted from the next node, which in turn is waiting for a release, and so on, all the way to
the node that precedes ni in the chain, which is waiting for a granted from ni. By Theorem 8.2,
the algorithm is deadlock-free, so that this chain cannot involve more than n − 1 nodes. If the
granted that ni sends to the node that is waiting on it on the chain is sent after ni receives the
request from nj, we see that a chain of messages of length O(n) exists between a request
sent by nj and its sending of release's. This is then the algorithm's time complexity, therefore
the same as in the previous case.
As one last remark in this section, we encourage the reader to pursue the exercise of
modifying Algorithm A_Mutually_Exclude for the case in which node ni is allowed to belong to
Si (cf. Exercise 3).

8.2 Sharing multiple resources

Henceforth in this chapter, we no longer assume that only one single resource (or a group of
resources that have to be accessed as a single entity) is shared by the nodes, but instead
consider the more general case in which nodes may require access to resources in groups of
varied composition. One immediate consequence of this relaxed view is that it is now
possible for more than one node to be accessing shared resources concurrently, so long as
no resource belongs to the group of resources accessed by any node.
Let R be a set of resources, and let R = |R|. The members of R are the resources ρ1,…,ρR ,
and for 1 ≤ r ≤ ρR with each resource ρr ∊ R a set of nodes Sr ⊆ N is associated. Nodes in

Sr are the only ones that may have access to resource ρr. In the algorithms that we
investigate in Sections 8.3 and 8.4, nodes coordinate the shared access to resources by
communicating with the other nodes that may have access to those resources, and then the
definitions we just introduced are instrumental in establishing the structure of G for those
algorithms.
The graph G to be used in Sections 8.3 and 8.4 has its edge set defined as follows. For ni, nj

∊ N such that ni ≠ nj, (ni, nj) ∊ E if and only if there exists ρr ∊ R such that ni ∊ Sr and nj ∊ Sr.
In other words, nodes ni and nj are neighbors if and only if there exists a resource that both
may access. In G, every resource in R is then represented by a clique (i.e., a completely
connected subgraph) involving the nodes that may have access to that particular resource
(but not conversely, though, as there may be cliques in G that do not correspond to any
resource). For ρr ∊ R, such a clique spans the nodes in Sr. As a side remark, the reader may

note that a more natural representation would in this case be the hypergraph = (N,{S1, …,
SR}), having the same set of nodes as G and one hyperedge for each of the sets S1 through
SR. However, the use of such a representation would be unnatural in our context of message-
passing computations, which in the point-to-point case calls for a graph representation (cf.
Section 1.1).
In Sections 8.3 and 8.4, we study algorithms to coordinate the sharing of resources in two
different cases. The first case is treated in Section 8.3, and corresponds to the situation in
which nodes always access the resources they may access as a group including all such
resources (if all nodes may access all resources, then this is equivalent to the case of
Section 8.1). The second case is treated in Section 8.4, and corresponds to the situation in
which nodes access the resources that they may access in groups of any admissible size.
Both cases are similar, in that a node only has to communicate with its neighbors when
seeking mutual exclusion. There are also differences, however, the most important one
being that, in the latter case, neighbors may access resources concurrently if they request
disjoint sets of resources.

8.3 The dining philosophers problem
The resource-sharing problem that we treat in this section is a generalization of the following
paradigmatic problem, called the dining philosophers problem. Five philosophers sit at a
round table, and five forks are placed on the table so that there is one fork between the
plates of every two adjacent philosophers. A philosopher requires both forks that are
adjacent to him in order to eat, and then it is impossible for neighbor philosophers to eat
concurrently. The life of a philosopher is a cycle of thinking and eating for alternating finite
periods of time. A solution to the problem consists of an algorithm that ensures mutual
exclusion (a fork may only be used by one philosopher at a time), prevents deadlocks (at
least one hungry philosopher must be eating), and prevents starvation (every philosopher
must get to eat within a finite time of becoming hungry; incidentally, it is from the context of
this problem that the term "starvation" in resource sharing comes).
In terms of our modeling of the previous section, in the dining philosophers problem N is the
set of philosophers with n = 5, R is the set of forks with R = 5, and every one of S1 through S5

includes two philosophers that sit next to each other at the table (conversely, each
philosopher is a member of exactly two such sets, specifically those that correspond to the
forks that are adjacent to him). The graph G is then a five-node ring in which an edge
corresponds to a fork.
In the generalized form of this problem, G is any connected undirected graph with one
philosopher per node and one fork per edge. In order to eat, a philosopher must acquire all
the forks that are adjacent to him. It is very important for the reader to note that the dining
philosophers problem in this generalized form is entirely equivalent to the resource sharing
problem, described in the previous section, in which a node always accesses the same set of
resources. Although there is in principle no correspondence between the forks that are
adjacent to a philosopher and those resources, a fork can be used to represent all the
resources that two neighboring nodes share. Acquiring every adjacent fork is then equivalent
to securing mutual exclusion in the access to all the resources a node needs. It is then to this
generalized form of the dining philosophers problem that we dedicate the remainder of
Section 8.3. Our discussion proceeds in two parts. In the first part, presented in Section

8.3.1, we give an algorithm to solve this generalized formulation of the problem. The second
part, in Section 8.3.2, is dedicated to the extreme situation in which the thinking period of
philosophers is negligibly small. Under this situation of perennial hunger, interesting issues
appear related to the concurrency that can be achieved in the sharing of forks by the
philosophers.

8.3.1 An algorithm
The solution to the generalized dining philosophers problem that we discuss in this section is
given as Algorithm A_Dine. In this algorithm, node ni employs a Boolean variable, called
hungryi and initialized to false, to indicate the need to access the resources that it shares
with its neighbors. Whenever this variable becomes true, ni employs request messages to
ask its neighbors to send it the forks it still does not have. Upon acquiring the forks
corresponding to all the edges incident to it, ni accesses the shared resources and, perhaps
contrary to our intuitive expectation, it does not send the forks to the corresponding
neighbors, but rather keeps them to be sent when they are requested. However, if forks are
indiscriminately distributed among the nodes at the beginning, deadlocks may, as it takes
little effort to realize, occur. In addition, in the absence of some sort of priority among the
nodes, the simple sending of forks upon receiving request's may easily lead to starvation.
The priority scheme that we adopt employs what we call a "turn" object per edge of G, much
like forks. In addition, the turn associated with an edge can only be possessed by one of the
nodes to which the edge is incident at a time, much like forks as well. What distinguishes
turns from forks is that a node does not need to acquire turns for all the edges incident to it in
order to access the shared resources, and also that turns get sent over the edges to a node's
neighbors as soon as the node is through with accessing the shared resources. The
essential goal of an edge's turn is to indicate which of its end nodes has the priority to hold
that edge's fork when there is conflict. However, in the absence of conflict, that fork may be
held by either node, even against the current location of the turn. Sending a turn over to the
corresponding neighbor is a guarantee that the priority to hold that edge's fork alternates
between the two nodes. In Algorithm A_Dine, a fork message is used to send a fork, while a
turn message is used to send a turn. For all nj ∊ Neigi, node ni maintains two Boolean
variables to indicate whether ni holds the fork and the turn that it shares with nj. These are,

respectively, and , and should be initialized so that
consistency is maintained over the edge (ni, nj) (that is, exactly one of ni and nj must hold the
fork and exactly one of them, not necessarily the same, must hold the turn). We do not
provide these initial values when presenting the algorithm, but return to the issue later with a
more detailed discussion.

When nj sends ni a requestand this message finds hungryi = true and =
true upon arrival, ni does not send the corresponding fork over to nj, but rather postpones the
sending of this fork to after it has accessed the shared resource. If, on the other hand, the

request message finds hungryi = true and = false upon arrival, then
the fork is sent at once to nj, but nj must know that the fork is to be returned when it has
completed its access to the shared resource. In order not to have to send two messages in
each case (a turn and a fork in the former case, a fork and a request in the latter), every fork
message is sent with a parameter, either as fork(nil). if all that needs to be achieved is the
sending of a fork, or as fork(turn), to indicate that a turn is also being sent, or yet as fork
(request), when a request for the fork is implied. For all nj ∊ Neigi, node ni employs the

additional Boolean variable , initially set to false, to remind it to send nj

a fork when it finishes accessing the shared resources.

We assume that G's edges are FIFO, so that a request never overruns a fork or a turn,

thereby ensuring that the arrival of a request at ni from nj only occurs when =
true.

Algorithm A_Dine:

 Variables:
 hungryi = false;

 for all nj∊ Neigi;

 for all nj∊Neigi;

 = false for all nj∊Neigi.

Listing 8.11

 Input:
 msgi = nil.
 Action when not hungryi and access to shared resources is
 needed:
 hungryi: = true;

 Send request to all nj∊ Neigi such that = false.

Listing 8.12

 Input:
 msgi = request such that origini(msgi) = (ni,nj).
 Action:

 if not hungryi or not then
 begin

 := false;
 if not hungryi then
 Send fork(nil) to nj

 else
 Send fork(request) to nj

 end
 else

 := true.

Listing 8.13

 Input:
 msgi = fork(t) such that origini(msgi) = (ni,nj).
 Action:

 := true;
 if t = turn then

 := true;
 if t = request then

 := true;

 if for all nk∊ Neigi then
 begin
 Access shared resources;
 hungryi := false;
 for all nk ∊ Neigi do

 if then
 begin

 := false;

 if then
 begin

 := false;

 := false;
 Send fork(turn) to nk

 end
 else
 Send turn to nk

 end
 end.

Listing 8.14

 Input:
 msgi= turn such that origini(msgi) = (ni, nj).
 Action:

 := true.

In Algorithm A_Dine, as in previous occasions in this chapter, the set N0 comprises nodes for
which the need to access the shared resources arises concurrently. Multiple executions of
the algorithm coexist, and no variables are re-initialized for executions other than the very
first. In this algorithm, actions (8.11) through (8.14) realize, respectively, the sending of
request's for forks when the need arises for a node to access the shared resources, and the
handling of request, fork, and turn messages.
In order to discuss the algorithm's main properties, we must at last be more specific about
the initial values to be assigned to the holds_fork and holds_turn variables. Whereas any
consistent assignment of values to the holds_fork variables will do, the algorithm's properties
are quite sensitive to the values that are assigned to the holds_turn variables, and simple
consistency across edges will not do in general.
Before continuing with this discussion on initial values, let us pause and introduce the
concept of an orientation of the undirected graph G. As in Sections 6.3 and 7.2, such an
orientation is a means of regarding G as a directed graph, without however sacrificing the
ability for messages to traverse G's edges in both directions. In the present case, as in
Section 6.3, G's orientation will change dynamically, thereby increasing the importance of
assigning directions to edges in a manner that is not too inflexible as assuming that G is
directed in the first place. An orientation of G is a function

such that, for (ni,nj) ∊ E, ω((ni, nj)) is either ni or nj, indicating respectively that, according to
ω, (ni, nj) is directed from nj to ni or from ni to nj. An orientation is said to be acyclic if it does
not induce any directed cycle in G.
The following is then how the assignment of turns to neighbors is performed, and
consequently the consistent assignment of values to the holds_turn variables. Say that the
edge (ni, nj) is directed from ni to nj if the turn that corresponds to it is given to nj. The initial
assignment that we adopt is then such that the resulting orientation is acyclic. The essential
importance of such an initial acyclic orientation is that, as the orientation changes by the
sending of turns when a node is done with accessing the shared resources in (8.13), that
node becomes a source in the new orientation, that is, a node with all incident edges directed
away from it. The resulting orientation is then acyclic as well, because the only changes in an
orientation correspond to nodes that become sources, and then directed cycles that might
have been formed would have to go through those nodes, which is impossible.

We now turn to a more formal statement of the algorithm's properties.

Theorem 8.3.
Algorithm A_Dine ensures mutual exclusion in the access to the shared resources, and is in
addition deadlock- and starvation-free.
Proof: By (8.13), a node only accesses the shared resources if it holds the forks
corresponding to all the edges incident to it. By (8.12) and (8.13), only one of every two
neighbors may hold the fork that they share in any global state, and then no two neighbors
can access the shared resources concurrently. Because by construction of G nodes that are
not neighbors never share any resources, mutual exclusion is guaranteed.
G's orientation is always acyclic, and then G always has at least one sink. Sinks are nodes
that hold the turns corresponding to all the edges incident to them, and then by (8.11) and
(8.12) must acquire all the forks that they do not hold within a finite time of having responded
to the need to access the shared resources. No deadlock is then possible.
A node that is not a sink but does execute (8.11) in order to access the shared resources is
also guaranteed to acquire all the necessary forks within a finite time, and then no starvation
ever occurs either. What supports this conclusion is that either such a node acquires all the

forks because its neighbors that hold turns do not need to access the shared resources (by
(8.12) and (8.13)), or because it eventually acquires all the turns (by (8.13) and (8.14)) and
then the forks as a consequence of the acyclicity of G's orientations.
The number of messages that need to be exchanged per access to the shared resources
can be computed as follows. First a node may send as many request messages as it has
neighbors, that is |Neigi| in the case of node ni. The worst that can happen is that ni does not
hold any turns and the request's that it sends find nodes that do not need to access the
shared resources and then send ni forks. Because ni does not hold any turns, it may happen
that these forks may have to be returned as fork(request) messages if ni receives at least
one request from its neighbors before receiving the last fork. By (8.13), ni will then eventually
receive all these forks back, then access the shared resources, and then send turns out. If
we let

then clearly the algorithm's message complexity per access to the shared resources is O(Δ).
Message lengths are constant, and then the algorithm's bit complexity is also of O(Δ).
The time complexity of Algorithm A_Dine per access to the shared resources is related to the
longest chain of messages beginning with the sending of request's by a node and ending
with the reception by that node of the last fork message that it expects. Such a chain
happens for a node that is a source in the current acyclic orientation when all nodes require
access to shared resources. In this case, the directed distance from that node to the sinks
may be as large as n−1, and then the time complexity that we seek is O(n). One situation in
which this worst case may happen is that of a ring with a single sink.
All of Algorithm A_Dine's properties rely strongly on the assumption of an initial acyclic
orientation for G. Determining this initial acyclic orientation constitutes an interesting problem
by itself, and appears to require randomized techniques to be solved unless nodes can be
assumed to have distinct identifications totally ordered by <, as in Section 8.1 and other
occasions in the book. If such is the case, then the initial acyclic orientation that we need can
be determined with O(m) messages and O(1) time as follows. Every node sends its
identification to its neighbors. For each edge (ni, nj), the turn stays initially with ni if idi < idj; it
stays with nj if idj < idi. When compared with the algorithms of Section 8.1, the approach of
assigning priorities based on a dynamically evolving acyclic orientation of G can be regarded
as trading the nonconstant message length in those cases by an initial overhead to establish
the initial acyclic orientation.

8.3.2 Operation under heavy loads
A heavy-load situation is characterized by the fact that nodes require access to shared
resources continually. Clearly, under such circumstances Algorithm A_Dine may be
simplified to a great extent. Specifically, a node may send forks to all of its neighbors
immediately upon finishing accessing the shared resources. As a consequence, request and
turn messages are no longer needed, provided it is the placement of forks, instead of turns,
that gives G's orientation. The only variables that are needed at ni are then

for all nj ∊ Neigi. The simplified algorithm is presented next as
Algorithm A_Dine_H ("H" for Heavy), with N0 being the set of nodes that are sinks (i.e., hold
all forks corresponding to incident edges) initially.

Algorithm A_Dine_H:

 Variables:

 for all nj ∊ Neigi.

Listing 8.15

 Input:
 msgi = nil.

 Action if ni ∊ N0:
 Access shared resources;

 : = false for all nj ∊ Neigi;
 Send fork to all nj ∊ Neigi.

Listing 8.16

 Input:
 msgi = fork such that origini(msgi) = (ni, nj).
 Action:

 := true;

 if for all nk ∊ Neigi then
 begin
 Access shared resources;

 := false for all nk ∊ Neigi;
 Send fork to all nk ∊ Neigi.
 end.

Actions (8.15) and (8.16) are both related to (8.13) of Algorithm A_Dine. It should then come
with no difficulty that Theorem 8.3 is equally applicable to Algorithm A_Dine_H as well. In the
remainder of this section, we turn to the synchronous model of computation for a more
detailed analysis of Algorithm A_Dine_H. Our choice of a synchronous model for this
analysis is motivated by the simplicity that ensues from that model, although corresponding
results for the asynchronous model also exist and can be found in the literature.
The synchronous counterpart of Algorithm A_Dine_H starts off with an initial acyclic
orientation at pulse s = 0 and generates a sequence of acyclic orientations for pulses s > 0.
For s ≥ 0, at pulse s all sinks concurrently access shared resources and then send forks to
neighbors. The evolution of acyclic orientations in synchronous time is such that a new
acyclic orientation is generated by reversing the orientation of all edges incident to sinks,
which then become sources in the new orientation. This mechanism is referred to as the
edge-reversal mechanism, having applications beyond the context of resource sharing. For
example, together with Algorithm A_Schedule_AS of Section 5.3.2, an algorithm based on
the edge-reversal mechanism is of key importance as a technique for time-stepped
simulation (cf. Section 10.2). Both in this section and in Section 10.2, the edge-reversal
mechanism is employed to schedule nodes for operation so that neighbors do not operate
concurrently. In this section, the "operation" is to access resources that nodes share with
neighbors, while in Section 10.2 the term has a different meaning. Because of its role as a
scheduler, it is also common to find the edge-reversal mechanism referred to as scheduling
by edge reversal.
Let ω1, ω2,…denote the sequence of acyclic orientations created by the edge-reversal
mechanism, and Sinks1, Sinks2,…denote the corresponding sets of sinks. For k ≥ 1, ωk is the

orientation at pulse s = k−1. For ni ∊ N and k ≥ 1, let mi(k) be the number of times ni appears
in Sinks1,…,Sinksk.

Theorem 8.4.
Consider two nodes ni and nj, and let r ≥ 1 be the number of edges on a shortest undirected
path between them in G. Then | mi(k)−mj(k) | ≤ r for all k ≥ 1.
Proof: We use induction on the number of edges on a shortest undirected path between ni

and nj. The case of one edge constitutes the basis of the induction, and then the assertion of
the theorem holds trivially, as in this case ni and nj are neighbors in G, and must therefore
appear in alternating sets in Sinks1, Sinks2, …. As the induction hypothesis, assume the
assertion of the theorem holds whenever a shortest undirected path between ni and nj has a
number of edges no greater than r−1. When ni and nj are separated by a shortest undirected
path with r edges, consider any node nℓ (other than ni and nj) on this path and let d be the
number of edges between ni and nℓ on the path. By the induction hypothesis,

and

yielding

thence the theorem.
Theorem 8.4 is in fact more than a mere starvation-freedom statement, as not only does it
imply that all nodes become sinks within a bounded number of pulses, but it also establishes
a bound on the relative frequency with which nodes become sinks. This theorem is then a
stronger version of Theorem 8.3 as far as starvation is concerned.
The number of distinct acyclic orientations of G is of course finite, so the sequence ω1, ω2, …
must at some pulse embark in a periodic repetition of orientations, which we call a period of
orientations, or simply a period (Figure 8.1). Orientations in a period are said to be periodic
orientations. The next corollary establishes an important property of periods.

Corollary 8.5.
The number of times that a node becomes a sink in a period is the same for all nodes.

Figure 8.1A period of five orientations results from the edge-reversal mechanism started at the
orientation shown in the upper left corner of the figure, which is outside the period. In this period,
every node becomes a sink twice.

Proof: Suppose, to the contrary, that two nodes ni and nj exist that become sinks different
numbers of times in a period. Suppose, in addition, that a shortest undirected path between
ni and nj in G has r edges. Letting p be the number of orientations in the period and k = (r +
1)p yields

which contradicts Theorem 8.4.
Clearly, the period is unequivocally determined given ω1. We let m(ω1) denote the number of
times that nodes become sinks in this period, and p(ω1) denote the number of orientations in
the same period.
One issue of great interest is the "amount of concurrency" that scheduling by edge reversal is
capable to yield from an initial acyclic orientation ω1 The importance of this issue comes from
the very nature of the resource-sharing computations we have been considering in all of

Section 8.3, and from the intuitive realization that the choice of ω1 greatly influences the
number of nodes that become sinks concurrently.
The measure that we adopt for the concurrency attainable from ω1, denoted by Conc(ω1), is
the average, over a large number of pulses and over n, of the number of times each node
becomes a sink in those pulses. More formally,

Clearly, we get more concurrency as more nodes become sinks earlier.

Theorem 8.6.
Conc(ω1) = m(ω1)p(ω1).
Proof: For some ℓ ≥ 1, let ωl be the first periodic orientation in ω1, ω2, … For k≥ ℓ,, the first k
orientations of ω1, ω2,… include ⌊(k − ℓ + 1)/p(ω1)⌋ repetitions of the period, so

and

where ℓ − 1 ≤ ℓ + p(ω1) − 2 and u ≤ u≤ nu. The theorem then follows easily in the limit as k →
∞.
It follows immediately from Theorem 8.6 that

This is so because it takes at most n pulses for a node to become a sink (the longest
directed distance to a sink is n − 1), so

and because the most frequently that a node can become a sink is in every other pulse, so

If G is a tree, then it can be argued relatively simply that Conc(ω1) = 1/2, regardless of the
initial orientation ω 1. If G is not a tree, then, interestingly, Conc(ω1) can also be expressed in
purely graph-theoretic terms, without recourse to the dynamics of the edge-reversal
mechanism. For such, let k denote an undirected cycle in G (with | k | nodes). Let also n +
(k,ω1) and n − (k, ω1) denote the number of edges in k oriented by ω 1 clockwise and counter-
clockwise, respectively. Define

and let K denote the set of all of G's undirected cycles.

Theorem 8.7.
I If G is not a tree, then Conc(ω1) = mink∊K ρ(k, ω1).

Proof: The proof is quite involved, and escapes the intended scope of this book. The
interested reader is referred to the pertaining literature.
There are in the literature additional results concerning scheduling by edge reversal that we
do not explicitly reproduce here. Some are positive, as the one that states that this
mechanism is optimal (provides most concurrency) among all schemes that prevent
neighbors from operating concurrently and require neighbors to operate alternately. Other

results are negative, as for example the computational intractability (NP-hardness) of finding
the initial acyclic orientation ω 1 that optimizes Conc(ω 1).

8.4 The drinking philosophers problem
If nodes may access different subsets of resources whenever they require access
to shared resources, then the possibility that neighbors in G access shared
resources concurrently exists, provided the sets of resources they access have an
empty intersection. In such cases, the technique of employing one single fork per
edge to secure exclusive access to the resources that two neighbors share is no
longer sufficient. Instead, associated with every edge there has to be one object for
each resource that the corresponding neighbors share. Such objects are bottles
from which the philosophers drink, and the problem of ensuring mutual exclusion,
deadlock-freedom, and starvation-freedom in the drinking of the philosophers is
referred to as the drinking philosophers problem.

At node ni the set of bottles shared over edge (ni, nj) is denoted by (which,

clearly, is the same as). For all nj ∊ Neigi, and for bk ∊ Bi
j, node ni employs the

Boolean variable , initially set to false, to indicate

whether bk ∊ is needed. The need to access shared resources is indicated at
ni by the Boolean variable thirstyi, initialized to false. In order to access the shared
resources that it requires, ni must acquire all the bottles corresponding to those

resources, i.e., bk ∊ Bi
j such that = true for all nj ∊

Neigi.
Except for this need to acquire multiple objects corresponding to a same edge, the
solution that we describe for the drinking philosophers problem is quite similar to
that of the dining philosophers problem. In particular, the same priority scheme
based on the turn objects that we employed in Algorithm A-Dine is also used in the
new solution. In contrast with the multiplicity of bottles for each edge, the turns
continue to exist in the number of one per edge, as in the dining philosophers case.
What this amounts to is that turns are sent out on all edges when a node finishes
accessing a group of shared resources, even in those edges whose bottles were
not needed.
This solution to the drinking philosophers problem is given next as Algorithm A-
Drink. Additional variables employed by node ni are, for all nj ∊ Neigi, the Boolean

(employed as in the dining philosophers case), and for all

bk ∊ the Booleans and (this one initially
set to false), employed respectively to indicate whether ni holds bk and whether ni

has postponed the sending of bk to nj until it is through with accessing the shared
resources. As in the dining philosophers case, the holds-turn and holds-bottle
variables must be initialized to consistency across edges. In addition, the holds-
turn variables must be initialized as to induce an acyclic orientation on G Auxiliary
set variables Xi and Yi, both initially empty, are used by ni.
The messages employed by Algorithm A-Drink are completely analogous to those
of Algorithm A-Dine, but with some slight modifications. A message request(X) is

sent by nito nj to request a set of bottles X ⊆ . A set X of bottles is sent via the
message bottle(X), which similarly to the fork message of the dining philosophers

case may carry an additional nil, turn, or request(Y) parameter. Finally, a turn
message is used to send a turn over an edge.

Algorithm A-Drink:

 Variables:
 thirstyi = false;

 for all nj ∊ Neigi and all bk ∊ ;

 for all ni ∊ Neigi;

 = false for all nj ∊ Neigi and all bk ∊ ;

 = false for all nj ∊ Neigi and all bk ∊ ;

 Xi=

 Yi= .

Listing 8.17

 Input:
 msgi = nil.
 Action when not thirstyi and access to shared resources is
 needed:
 thirstyi := true;

 := true for all nj ∊ Neigi and all bk ∊
such that
 access to the resource for which bk stands is needed;

 for all nj ∊ Neigi such that there exists bk ∊ with

 = true and =
false do
 begin

 Let Xi be the subset of such that bk ∊ Xi if and only if

 = true and
= false;
 Send request (Xi) to nj;

 Xi :=
 end.

Listing 8.18

 Input:
 msgi = request(X) such that origini(msgi) = (ni, nj).
 Action:
 for all bk ∊ X do

 if not thirstyi or not or not

 then
 begin

 := false;
 Xi := Xi {∪ bk};

 if thirstyi and then
 Yi:= Yi {∪ bk}
 end
 else

 := true;

 if Xi ≠ then
 begin

 if Yi = then
 Send bottle (Xi, nil) to nj

 else
 begin
 Send bottle (Xi, request (Yi)) to ni;

 Yi :=
 end;

 Xi:=
 end.

Listing 8.19

 Input:
 msgi = bottle (X, t) such that origini (msgi) = (ni, nj).
 Action:

 := true for all bk ∊ X;
 if t = turn then

 := true;
 if t = request(Y) then

 := true for all bk ∊ Y;

 if for all nk ∊ Neigi and all bℓ ∊ then
 begin
 Access shared resources;
 thirstyi := false;
 for all nk ∊ Neigi do

 if then
 begin

 := false;

 for all bℓ ∊ do

 if then
 begin

 := false;

 := false;
 Xi := Xi {∪ bℓ}
 end;

 if Xi ≠ then
 begin
 Send bottle (Xi, turn) to nk;

 Xi :=
 end
 else
 Send turn to nk

 end
 end.

Listing 8.20

 Input:
 msgi = turn such that origini (msgi) = (ni, nj).
 Action:

 := true.

Actions (8.17) through (8.20) are entirely analogous to actions (8.11) through
(8.14), respectively, of Algorithm A-Dine. Because the same priority scheme is
used in both algorithms, Theorem 8.3 is, in essence, applicable to Algorithm A-
Drink as well. With the exception of the bit complexity, the two algorithms also
share the same complexity measures. The bit complexity of Algorithm A-Drink is
different because request and bottle messages carry references to a set of bottles
(possibly two sets of bottles, in the case of bottle messages) with a nonconstant
number of bottles. Because two neighbors share as many bottles as they share
resources, and because they share at most R resources (cf. Section 8.2), the
algorithm's bit complexity is O(ΔRlogR), provided every resource can be identified
with ⌈logR⌉ bits.

8.5 Exercises
1. In Algorithm A_Mutually-Exclude-C, show that the sequence numbers can be implemented with
O(log n) bits.
2. Show, for Algorithm A-Mutually-Exclude, that it may be necessary to compare two sequence
numbers differing from each other by an arbitrarily large amount.
3. Modify Algorithm A-Mutually-Exclude for the case in which node ni may belong to Si.
4. In the context of Section 1.5, find the r(c)'s for Algorithm A-Dine-H.

1.
In Algorithm A_Mutually-Exclude-C, show that the sequence
numbers can be implemented with O(log n) bits.

2.

Show, for Algorithm A-Mutually-Exclude, that it may be necessary
to compare two sequence numbers differing from each other by
an arbitrarily large amount.

3.
Modify Algorithm A-Mutually-Exclude for the case in which node ni

may belong to Si.

4.
In the context of Section 1.5, find the r(c)'s for Algorithm A-Dine-
H.

8.6 Bibliographic notes
In order to sort through the plethora of approaches and algorithms for mutual exclusion, the
reader can resort to the book by Raynal (1986), or the more current taxonomic studies by
Raynal (1991) and Singhal (1993). Our treatment in Section 8.1 is derived from Ricart and
Agrawala (1981) and from Maekawa (1985), where Algorithms A-Mutually-Exclude-C and A-
Mutually-Exclude first appeared, respectively. Further developments on these algorithms, as
well as new approaches, can be found in numerous sources, including Carvalho and
Roucairol (1983), Agrawal and Abbadi (1989), Raymond (1989), Singhal (1989a), Ramarao
and Brahmadathan (1990), Neilsen and Mizuno (1991), Singhal (1991), Bouabdallah and
Konig (1992), Satyanarayanan and Muthukrishnan (1992), Woo and Newman-Wolfe (1992),
Chang and Yuan (1994), Chen and Tang (1994), Helary, Mostefaoui, and Raynal (1994), and
Madhuram and Kumar (1994).
The formulation of Section 8.2 can be found in Barbosa (1986) and in Barbosa and Gafni
(1987; 1989b).
The dining philosophers problem appeared originally in Dijkstra (1968), and received
attention in a distributed setting, either as posed originally or as variations thereof, in Chang
(1980), Lynch (1980), Lynch (1981), and Rabin and Lehmann (1981). Algorithm A-Dine of
Section 8.3.1 is based on Chandy and Misra (1984), but the idea of transforming sinks into
sources to maintain the acyclicity of a graph's orientation appeared previously (Gafni and
Bertsekas, 1981) in the context of routing in computer networks. The analysis that appears in
Section 8.3.2 for the heavy-load case is from Barbosa (1986) and Barbosa and Gafni (1987;
1989b), where the omitted proof of Theorem 8.7 also appears, as well as other results
related to optimality and intractability (in the sense of NP-hardness, as in Karp (1972) and
Garey and Johnson (1979)). Most of the concurrency notions involved with scheduling by
edge reversal are closely related to the concept of a multicoloring of a graph's nodes. Such a
concept can be looked up in Stahl (1976), for example. Other sources of information on
scheduling by edge reversal are Bertsekas and Tsitsiklis (1989), Malka, Moran, and Zaks

(1993), Calabrese and Françca (1994), and Françca (1994). The latter addresses the
randomized determination of G's initial acyclic orientation.
Section 8.4 is based on Chandy and Misra (1984).

Chapter 9: Program Debugging

Overview

Debugging is the part of the program development process whereby conceptual and
programming errors are detected and corrected. The debugging of a sequential program is
achieved mainly through the use of rather simple techniques that involve the ability to re-
execute a program and to halt its execution at certain points of interest (the so-called
breakpoints). Asynchronous algorithms like the ones we have been treating in this book lack
both the determinism that makes the re-execution of sequential programs simple, and the
unique total order of events that facilitates the detection of states where a halt is desired.
Clearly, then, the debugging of programs based on such algorithms is altogether a different
matter.
Notwithstanding this difference in levels of difficulty, approaches to the debugging of
programs based on asynchronous algorithms have concentrated on the same two major
techniques on which the debugging of sequential programs is based, namely deterministic
re-execution and breakpoint detection. It is then to these two major topics that we dedicate
this chapter, beginning in Section 9.1 with some preliminary concepts, and then progressing
through Sections 9.2 and 9.3, respectively on techniques for program re-execution and
breakpoint detection. Throughout the chapter, G is an undirected graph.
The detection of breakpoints can be an especially intricate endeavor, depending on the
characteristics of the breakpoint one is seeking to detect. For this reason, in Section 9.3 we
limit ourselves to very special classes of breakpoints, chiefly those that are either
unconditional or depend on predicates that can be expressed as logical disjunctions or
conjunctions of local predicates. In this context, we provide techniques that fall into two
classes, specifically those that are based on a reexecution (in the style of Section 9.2), and
those that are not so.
Sections 9.4 and 9.5 contain, respectively, exercises and bibliographic notes.

9.1 Preliminaries

The debugging of a sequential program is a cyclic process supported by two basic
techniques, those of program re-execution and of breakpoint detection. We assume
henceforth that the programs that we treat in this chapter, sequential and distributed alike,
never act on probabilistic decisions, and then a sequential program is guaranteed to go
through the same sequence of states whenever it is re-executed from the same initial
conditions. In the asynchronous distributed case, however, there are sources of
nondeterminism other than those related to probabilistic decisions, specifically those related
to the model's unsynchronized local clocks and unpredictable delays for message delivery
among neighbors. As a consequence, the simple re-execution from the same initial
conditions is not enough to ensure that all nodes will repeat the same behavior as in the
previous execution.

This issue of nondeterminacy is also what distinguishes the sequential and asynchronous
distributed cases when it comes to the detection of breakpoints during an execution. In the
sequential case, all operations on variables are totally ordered, and then checking for the
occurrence of particular states where predefined predicates hold poses no conceptual
difficulties. In the asynchronous distributed case, on the other hand, no such unique total
order exists, and the detection of global states with the characteristics required by a
predefined predicate becomes a much harder problem.
The key to approaching the two problems is the treatment of timing issues under the
asynchronous model that we pursued in Section 3.1. Specifically, in order to reproduce an
execution of an asynchronous algorithm, it suffices to ensure that the re-execution follows
the exact same partial order of events that was generated by the original execution.

Detecting breakpoints correctly is also very much dependent upon the concepts introduced in
that section, because, as we already mentioned, what is required is the detection of global
states at which the required predicates hold. However, what is needed is not just an
algorithm like Algorithm A_Record_Global_State of Section 5.2.1, which offers no control as
to which global state it records, but rather algorithms that are guaranteed not to miss a global
state with the desired characteristics if one exists.

Before we proceed to the remaining sections of the chapter, let us pause briefly for a few
terminological comments. Although in these first two sections we have attempted to comply
with the standard practice of reserving the terms "algorithm" and "program" for different
entities (a program is normally a realization of an algorithm, involving a particular
programming language and often assumptions on the system's architecture), henceforth we
shall drop the distinction and refer to the debugging of an algorithm as encompassing the
debugging of programs as well (even though what is normally true is the converse). We do
this to simplify the terminology only, and no further presumptions are implied.

9.2 Techniques for program re-execution
As we remarked in the previous section, the aim when attempting to re-execute an
asynchronous algorithm is to re-generate the same set of events, and hence the
same partial order among them, as in the original execution. What is needed to
achieve this goal is twofold. First of all, the set N0 of spontaneous initiators must be
the same as in the original execution. Secondly, from the perspective of individual
nodes, messages must be received in the same order as in the original execution.
Note that this involves more than the order of message reception on a particular
edge, as in reality what is required is the preservation of the order of message
reception across all edges incident to a node. If edges are FIFO, then it suffices
that a node, during the re-execution, consider the edges to receive messages in
the same order as they happened to be considered in the original execution. Put
differently, if node ni has as neighbors nodes nj1,…,njk for k = |Neigi|, and in the
original execution the first message was received at ni from na ∊ {nj1,…,njk}, the
second message from nb ∊ {nj1,…njk}, and so on, then during the re-execution the
same order must be respected. The solution that we describe next is given for this
case of FIFO edges, although an extension to the case in which edges are not
FIFO can also be devised (cf. Exercise 1).
Preserving this order of appearance of a node's neighbors (equivalently, of a
node's incident edges) in the sequence of messages the node receives during the
re-execution of an algorithm can be achieved through the following two-phase
process. During the original execution, every node records a sequence of pointers
to neighbors; this recording is the process's first phase. The second phase occurs
during the re-execution, in which the sequences recorded during the first phase are
employed to force nodes to receive messages from neighbors in the order implied
by the recorded sequence. The combined sequences recorded by all nodes during
the first phase constitute a trace of the original execution. This trace, along with the
composition of the N0 set associated with the original execution, clearly suffice for
the algorithm to be deterministically re-executed.
Before we proceed to describe more precisely the mechanism whereby the trace is
employed during the re-execution, it must be mentioned that the recording of the
trace may cause the original execution to be different from what it would be if no
recording were being done. This is the so-called probe effect of the tracerecording
process, and is of little consequence from a purely theoretical point of view,
because under the assumptions of the asynchronous model any execution is as
good as any other. However, in a practical setting where certain executions would
be favored by certain prevailing timing conditions, the probe effect can be
misleading, in the sense of causing the trace of an "atypical" execution to be
recorded. In such circumstances, probe effects are important and the recording of
traces (i.e., the "probe") should be designed to keep them to a minimum.
During the trace recording, node ni employs the Boolean variable initiatori, initialized
to false, to indicate whether ni turns out to be a member of N0. In addition, a queue

of pointers to neighbors is employed by ni to record the origins of all the messages
it receives during the execution. This queue is called queuei and is initialized to nil.
At all times, first_in_queuei is assumed to be the first element in queuei, being
equal to nil if queuei = nil. During the re-execution phase, the Boolean initiatori is
used to make up an N0 set that is equal to the one of the original execution.
Similarly, queuei is employed to control the reception of messages by node ni. This
is achieved by conditioning actions on the reception of a message msgi to be
executed only when

provided queuei is updated by the removal of its first element whenever a message
is received. The mechanism whereby this takes place is through the use of the
Boolean conditions allowed in our general template, Algorithm A_Template of
Section 2.1.
Next we present two asynchronous algorithms, one for each of the phases involved
in the deterministic re-execution of asynchronous algorithms. These algorithms are
called Algorithm A_Record_Trace and Algorithm A_Replay, respectively for the first
phase and the second phase. These two algorithms are derived directly from
Algorithm A_Template, and are therefore intended for generic asynchronous
computations that fit that template.

Algorithm A_Record_Trace:

 Variables:
 Initiatori = false;
 queuei = nil;
 first_in_queuei = nil;
 Other variables used by ni, and their intial values, are listed here.

Listing 9.1

 Input:
 msgi = nil.
 Action ifni ∊N0:
 initiatori:= true;
 Do some computation;
 Send one message on each edge of a (possibly empty) subset ofInci.

Listing 9.2

 Input:
 msgi such that origini (msgi) = (ni,nj).
 Action:
 Append nj to queuei;
 Do some computation;
 Send one message on each edge of a (possibly empty) subset ofInci.

In Algorithm A_Record_Trace, the variable initiatori is set to true in (9.1) to signal to
the re-execution phase what the members of N0 must be. Similarly, the portion of

the trace that corresponds to message receptions at ni, is recorded in queuei in
(9.2). In Algorithm A_Replay, presented next, the members of N0 are exactly those
nodes ni for which initiatori = true at the end of the execution of Algorithm
A_Record_Trace. In this sense, N0 is no longer a set of spontaneous initiators, but
rather the set of nodes that are forced to initiate the computation so the original
execution of the algorithm can be faithfully reproduced.

Algorithm A_Replay:

 Variables:
 queuei;
 first_in_queuei;
 Other variables used by ni, and their initial values, are listed here.

Listing 9.3

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 Do some computation;
 Send one message on each edge of a (possibly empty) subset of Inci.

Listing 9.4

 Input:
 msgi such that origini(msgi) = (ni, nj).
 Action when nj = first_in_queuei:
 Remove first_in_queuei from queuei;
 Do some computation;
 Send one message on each edge of a (possibly empty) subset of Inci.

Action (9.3) is executed by the nodes that initiate the re-execution according to the
trace recorded by Algorithm A_Record_Trace. Action (9.4), which is only executed
by ni on a message arriving on edge (ni, nj) when nj = first_in_queuei, ensures that
message receptions are acted upon by ni in the same order as they were in the
execution of Algorithm A_Record_Trace.
As a final remark in this section, note that the message, time, and bit complexities
of both Algorithm A_Record_Trace and Algorithm A_Replay are the same. This is
only expected, in view of the correctness of Algorithm A_Replay in reproducing the
execution of Algorithm A_Record_Trace, if we consider that neither the recording
process nor the deterministic re-execution employ any messages in addition to
those already present in the original computation.

9.3 Breakpoint detection
This section is devoted to the second major problem we discuss in this chapter in connection
with the debugging of asynchronous algorithms, namely that of detecting breakpoints. Our
discussion proceeds in Sections 9.3.1 through 9.3.3 as follows. Section 9.3.1 contains
fundamental definitions and concepts, especially those related to the types of breakpoints to
be treated in the sequel. The remaining two sections are devoted each to a different aspect

of the problem. Section 9.3.2 contains a trace-based approach, and Section 9.3.3 an
approach that does not depend on a trace of a previous execution.
The bulk of Section 9.3 is contained in Section 9.3.3, where we introduce a collection of
distributed algorithms for the detection of some types of breakpoints. Although Section 9.3.2
also contains interesting insights into the problem, it is on Section 9.3.3 that the reader
should concentrate.

9.3.1 Fundamentals
A breakpoint in the execution of an asynchronous algorithm is a global state at which one
wishes the computation to halt so that nodes' variables can be examined. All the breakpoints
we study in the forthcoming sections refer to local states of the nodes only, so that for our
purposes in this chapter messages in transit on edges are an unimportant part of a global
state. Whenever the need arises for a global state to be represented, we shall then do so by
considering nodes' local states only. For node ni, we let lti ≥ 0 be ni's local time. For simplicity
when describing our algorithms, we assume that lti is in fact an event counter at ni, that is, lti
= 0 initially and is increased by one either upon the spontaneous sending of messages by ni if
ni ∊ N0 or upon the reception of a message by ni. Clearly, a node ni's local state is
unequivocally determined given lti.
Because messages in transit play no role in the global states of our interest, and considering
the relationship we just described between a node's local state and local time, a node's view
of a global state can be represented by an n-component array of local times. In such an
array, and for 1≤ i ≤ n, the ith component contains some value of lti. If we revisit our initial

study of global states in Section 3.1, then clearly an n-component array of natural
numbers is a global state if and only if no ni ∊ N exists that ever receives a message earlier

than (or at) [i]that was sent by some nj ∊ Neigi later than [j]. The definition of an
earliest global state with respect to some property that we alluded to in Section 3.1 can in this

simplified view of a global state be given as follows. A global state is the earliest global

state for which a certain property holds if and only if no other global state ' for which the

property also holds is such that [i] ≤ [i] for all ni ∊ N. Depending on the particular
property one is considering, it is conceivable, as we will see later in Section 9.3.3, that more
than one earliest global state exists. In this case, all the earliest global states are
incomparable to one another, in the sense that the past of none of them is in the past of
another (or, equivalently, if we resort to the terminology of Section 3.1, none of them comes
earlier than any other).

There is a great variety of problems that may be considered when studying breakpoints of
asynchronous algorithms, so right at this introductory section it must remain very clear which
the problems that we consider are. The first important distinction is related to the so-called
"weak" and "strong" senses in which breakpoints can be treated. The weak sense refers to
breakpoints as global states of one single execution of the algorithm, while the strong sense
is about breakpoints in all possible executions of the algorithm. Although attempts are
described in the literature that focus on strong-sense problems, it is to be intuitively expected
that such attempts invariably result in computationally intractable problems for general
computations, given the prohibitively large number of possible executions of an
asynchronous algorithm. It is then to problems in the weak sense that we dedicate our study.
One important consequence of restricting ourselves to such problems is that, if a particular
execution of an asynchronous algorithm fails to contain a global state with certain desired
properties, one cannot infer that no execution exists in which such a global state would
appear.
Although in many situations the ultimate goal of considering breakpoints in asynchronous
algorithms is to halt the execution at the corresponding global state, with one single
exception it is not to this halting problem that we dedicate most of our efforts in the
forthcoming sections within Section 9.3, but rather to the problem of only detecting the
occurrence of the breakpoints. The exception is the material that we present in Section 9.3.2,

where the halting problem is considered. In all other situations, that is, those discussed in
Section 9.3.3, if halting is desired after the detection, then special techniques of the so-called
"checkpointing and rollback recovery" type must be employed so that the execution can be
"returned" to the global state where the breakpoint was detected. We pursue the issue no
further in this book, but in Section 10.4 the reader can find closely related techniques, only in
a totally different context.
A breakpoint can be unconditional or conditional. An unconditional breakpoint is specified by
providing a local unconditional breakpoint for each ni ∊ N, denoted by lubi. The local
unconditional breakpoint of ni is either a nonnegative integer specifying the value of lti with
which ni is to participate in the breakpoint, or such that lubi = ∞ if ni does not participate in the
breakpoint. This flexibility of allowing nodes not to participate in breakpoints is fundamental
from a practical perspective, because it allows global properties of interest to be monitored
on subsets of nodes instead of on N as a whole. The goal of detecting an unconditional

breakpoint is to find a global state such that [i] for all ni ∊ N such that lubi < ∞. If no
such global state exists, then the detection algorithm must be able to report this as an error.
A conditional breakpoint is specified by providing for each ni ∊ N a local predicate, that is, a
Boolean function that depends on ni's variables. The local predicate of ni is denoted by lpi,
and can be a constant (either true or false) if ni does not participate in the breakpoint. The
conditional breakpoints that we consider are either disjunctive or conjunctive. A disjunctive
breakpoint is a global state at which the disjunctive predicate given by the logical disjunction
of all participating nodes' local predicates is true. In other words, a global state is a
disjunctive breakpoint if and only if at least one of the participating nodes has a true local
predicate in that global state. A conjunctive breakpoint is defined likewise, being a global
state at which the conjunctive predicate given by the logical conjunction of all participating
nodes' local predicates is true. Put differently, a global state is a conjunctive breakpoint if
and only if all participating nodes have a true local predicate in that global state.

The goal of detecting a disjunctive breakpoint is that of finding a global state such that

lpi = true at local time [i] for at least one node ni that participates in the breakpoint. In the

same vein, the goal of detecting a conjunctive breakpoint is to find a global state such

that lpi = true at time for all nodes ni that participate in the breakpoint. If node ni does not
participate in a breakpoint, then it suffices to set lpi to false in the disjunctive case, or to true
in the conjunctive case, for the goal of the corresponding detections to be re-stated more

simply as follows. Detecting a disjunctive breakpoint is to find a global state such that lpi

= true at time for at least one ni ∊ N; in the conjunctive case, it is to find a global state

such that lpi = true at time [ifor all ni ∊ N.
The following is how Sections 9.3.2 and 9.3.3 are organized. In Section 9.3.2, a trace-based
algorithm is presented to halt an execution at the earliest conjunctive breakpoint. Section
9.3.3, which is where most of our study is concentrated, contains distributed algorithms for
the detection of earliest disjunctive breakpoints, earliest unconditional breakpoints, and
earliest conjunctive breakpoints. In the case of unconditional breakpoints, requiring the
earliest such breakpoint to be detected is only meaningful if there is at least one node that
does not participate in the breakpoint. As we have seen earlier in this section, nodes like this
have the lub variables set to infinity, and may then be required to appear in the detected
breakpoint with as early a local state as possible.
Most of the algorithms that we study employ messages other than the messages of the
computation proper, and for this reason a distinction must be made between such messages
and those additional messages that the algorithms employ. Messages of the computation
proper are then referred to as comp_msg's.

9.3.2 A trace-based technique
In this section, we discuss a trace-based technique to halt the execution of an asynchronous
algorithm at the earliest conjunctive breakpoint that occurs. It is trace-based because, as in

Section 9.2, it is based on two phases, the first one being the recording of a trace and the
second one a re-execution with special attention to the detection of the earliest conjunctive
breakpoint. The trace recording is achieved precisely as in Algorithm A_Record_Trace of
Section 9.2, where the variables queuei and first_in_queuei, respectively a queue of node
references and a pointer to its first element, are employed by node ni to record the
neighborhood-wide order according to which it receives comp_msg's. The difference in this
case is that not only a deterministic re-execution is sought, but a re-execution that does not
progress beyond the earliest conjunctive breakpoint. As in Section 9.2, G's edges are
assumed to be FIFO. Also, for the sake of simplicity when writing the algorithm, we assume
that a node's local predicate can only become true after the node has computed and sent
messages out (unless the node does not participate in the breakpoint, in which case its local
predicate is perpetually true).
The approach that we adopt has the following essential ingredients. During the re-execution
phase, node ni may be active or inactive. It is active initially and becomes inactive when lpi

becomes true. A node only receives comp_msg's (and therefore only computes and sends
comp_msg's out) if it is active, so that becoming inactive when its local predicate becomes
true is a means of cooperating for the execution to halt at the earliest conjunctive breakpoint.
The problem with such a naïve way of cooperating is that, by becoming inactive and
therefore not sending any comp_msg's out, a node may be precluding other nodes from
reaching local states in which their local predicates can become true as well, which is an
absolute must if the execution is to halt at a conjunctive breakpoint.
One way to go around this difficulty is the following. For nj ∊ Neigi, node ni maintains two

counters, and , both initially set to zero, to indicate
respectively the number of comp_msg's received from nj and the number of comp_msg's
sent to nj. Whenever ni is finished with computing and sending comp_msg's out, either
initially or in response to the reception of a comp_msg, and has remained active, it sends a

request(+ 1) message to nj such that nj = first_in_queuei. This
message is intended to activate nj if it is inactive, so that it can send ni the comp_msg that it
needs to proceed according to the trace. When the request message reaches nj with an x

parameter, then it must be that x − 1 ≤ (if ni is requesting the xth
comp_msg, then it must have received exactly x − 1 comp_msg's prior to sending the
request and nj must have sent at least as many comp_msg's prior to receiving the request). If

x − 1 = , then nj does indeed owe ni a comp_msg. If it is not active, it
then becomes active and sends a request itself, and only becomes inactive when its local
predicate becomes true after having sent that comp_msg to ni. Because request's may
accumulate before a node's computation is such that the corresponding comp_msg's get

sent, node ni employs the variable , initially equal to zero, to indicate the number
of comp_msg's that need to be sent to nj∊ Neigi before it may become inactive.
The problem that still persists with this approach is that, because edges are FIFO (as they
must be for correct re-execution) and a node only receives comp_msg's when it is active and
the origin of the comp_msg coincides with the node's first_in_queue variable, it may happen
that a request never reaches its destination. The final fix is then to allow a node to receive all
comp_msg's that reach it, and then to queue them up internally (along with their origins) on
edge-specific queues if the node happens to be inactive or the comp_msg that arrived is not
the one that was expected for re-execution. Upon receipt of a request from nj, an inactive
node ni works on the messages in those queues until the re-execution can no longer

progress or = 0 and lpi = true. If > 0 or lpi = false when ni exits this
loop, then ni becomes active and sends out a request. The reader should reflect on the
reasons why this procedure ensures that the re-execution halts (i.e., all nodes become
inactive) at the earliest conjunctive breakpoint (cf. Exercise 2).
Algorithm A_Replay_&_Halt_CB ("CB" for Conjunctive Breakpoint), given next, realizes the
procedure we just described. In addition to the variables we already introduced, node ni also
employs the Boolean activei, initialized to not lpi to indicate whether it is active. Also, for each
nj ∊ Neigi, the queue where comp_msg's from nj may have to be queued is

, initially set to nil, whose first element is assumed to be the pair (

,

), initially equal to (nil, nil), at all times. In
this algorithm, as in Algorithm A_Replay, the set N0 is given as determined by Algorithm
A_Record_Trace.

Algorithm A_Replay_&_Halt_CB:

 Variables:
 queuei;
 first_in_queuei;

 = 0 for all nj ∊Neigi;

 = 0 for all nj ∊ Neigi:

 = 0 for all nj ∊ Neigi:
 activei = not lpi;
 msg_queuei = nil for all nj ∊ Neigi;
 first_origin_in_msg_queue = nil for all nj ∊ Neigi;
 first_msg_in_msg_queuei = nil for all nj ∊ Neigi;
 Other variables used by ni, and their initial values, are listed here.

Listing 9.5

 Input:
 msgi = nil.
 Action if ni ∊ No:
 Do some computation;
 Send one comp_msg on each edge of a (possibly empty) subset of

 Inci and update the 's accordingly;
 if lpi then
 activei := false.

Listing 9.6

 Input:
 msgi = comp_msg such that origini (msgi) = (ni, nj.
 Action:
 if activei and nj = first_in_queuei then
 begin

 := + 1;
 Remove first_in_queuei from queuei;
 Do some computation;
 Send one comp_msg on each edge of a (possibly empty)

 subset of Inci and update the 's and the 's
 accordingly;

 if = 0 for all nk ∊ Neigi then
 if lpi then
 activei := false;
 if activei then
 begin
 Let nk = first_in_queuei;

 Send request (+ 1) to nk

 end
 end
 else

 Append (nj, msgi) to .

Listing 9.7

 Input:
 msgi = request(x) such that origini(msgi) = (ni, nj).
 Action:

 if not activei and x − 1 = then
 begin

 := + 1;

 while (> 0 or not lpi) and there exists nk ∊ Neigi

 such that first_in_queuei = do
 begin

 := + 1;
 Remove first_in_queuei from queuei;
 Remove the pair

 (,

)

 from ;
 Do some computation;
 Send one comp_msg on each edge of a (possibly

 empty) subset of Inci and update the 's

 and the 's accordingly
 end;

 if > 0 or not lpi then
 begin
 activei := true;
 Let nk = first_in_queuei

 Send request(+ 1) to nk

 end
 end.

There is some correspondence between the actions in this algorithm and those in Algorithm
A_Replay for simple re-execution, but they differ greatly, too. Specifically, actions (9.3) and
(9.5) are related to each other, although (9.5) also undertakes the incrementing of

when a comp_msg is sent to neighbor nj and checks lpi to see if ni must
become inactive. Likewise, actions (9.4) and (9.6) are also related to each other. The
differences are in the internal queueing of comp_msg's and in that (9.6) increments

to account for the receipt of the triggering msgi on (ni, nj),

increments (decrements , if positive) upon sending a comp_msg
to neighbor nk, and in addition checks lpi to possibly set activei to false (if activei remains
true, then (9.6) includes the sending of a request as well). Action (9.7) deals with the
reception of a request from nj. This request, if indeed corresponding to a comp_msg that was

not sent, and if ni is inactive, causes to be incremented and ni to compute on its

internal queues of messages. If remains positive or lpi = false after this, then ni

becomes active and sends a request.

As in the case of Algorithm A_Replay, the message and time complexities of Algorithm
A_Replay_&_Halt_CB are the same as those of Algorithm A_Record_Trace. This is so
because the additional request messages only increase the total number of messages
exchanged and the longest causal chain of messages by a constant factor. However, the
new algorithm's bit complexity may be higher, because request messages carry integers that
depend on how many comp_msg's were received by the sending node during the trace-
recording phase.
We finalize the section with a couple of observations leading to issues that the reader may
find worth pursuing further. The first observation is that devising a procedure similar to
Algorithm A_Replay_&_Halt_CB to halt at the earliest disjunctive breakpoint during a re-
execution is a very different matter. The reader is encouraged to pursue a proof that no such
procedure exists, be it trace-based or otherwise (cf. Exercise 3).
As the second observation, notice that Algorithm A_Replay_&_Halt_CB does not entirely
conform to the standards set by Algorithm A_Template, in the sense that in both (9.6) and
(9.7) a request may follow a comp_msg to the same node, whereas Algorithm A_Template
only allows one message to be sent to a node per action. An instructive exercise is to rewrite
Algorithm A_Replay_&_Halt_CB so that this constraint is respected (cf. Exercise 4).

9.3.3 A trace-independent approach
In this section we introduce three asynchronous algorithms for the detection of breakpoints.
One of the algorithms detects earliest disjunctive breakpoints, another detects earliest
unconditional breakpoints, and the last one detects earliest conjunctive breakpoints whose
corresponding conjunctive predicates are stable (in the sense of Chapter 6). As we remarked
earlier in Section 9.3.1, not always is the requirement that an unconditional breakpoint be the
earliest such breakpoint meaningful—in fact, it only makes sense when at least one node
does not participate in the unconditional breakpoint. If such is not the case, then what the
algorithm that we discuss achieves is the detection of the requested unconditional
breakpoint. Another pertinent observation regarding the algorithms of this section is the
assumed stability of the conjunctive predicate used to detect the conjunctive breakpoints.
This assumption simplifies matters tremendously, and it is in the wake of this simplicity that
we adopt it. However, there do exist techniques to detect conjunctive breakpoints in the
bsence of stability (as inSection 9.3.2), and at least a couple of recent algorithms that do not
employ traces can be found in the literature.
In contrast with the detection procedure discussed in the previous section, which was based
on a trace of a previous execution, the overall approach in this section does not depend on
any trace, but rather attempts to detect the required breakpoint as the computation
progresses. As in the case of the global state recording discussed in Section 5.2.1, what we
must handle is then the interaction of two computations on G. One of the computations is the
computation proper, the one that progresses by the exchange of the already introduced
comp_msg messages. The other computation is the computation for breakpoint detection,
which, as in Section 5.2.1, must be endowed with certain privileges with respect to the former
computation, because it must be able to inspect nodes' states in that computation as well as
the flow of comp_msg's. In the case of Algorithm A_Record_Global_State, we were able to
get away without being more specific about the way the two computations interacted, but in
the present case we must face the need to provide some of the details, especially because
the computation for breakpoint detection will have to be able to attach additional fields, in the
form of parameters, to the comp_msg's that flow among nodes.
Let us then fill in some of the details on how the two computations interact. We begin by
assuming that the message complexity of the computation proper is O(c(n, m)), or more
succinctly O(c). Likewise, we assume that every node's local clock can only represent local
times up to a value T (i.e., lti ≤ T for all ni ∊ N), which can be arbitrarily large but needs
nevertheless be such that we can refer to it when assessing our algorithms' complexities.
The following is how we henceforth assume the computation proper and the detection
algorithms to interact. At ni ∊ N, the actions of both computations exclude one another in
time, as usual. For clarity, we view node ni as comprising two processes that can send
messages to each other. One of the processes is referred to as pi, while the other is referred
to as qi. For all ni ∊ N, process qi, is responsible for the detection algorithm, while process pi

is responsible for the computation proper. Process qi may send messages to every other

process qj such that nj ∊ Neigi and to pi, while process pi may only send messages to qi. In
this way, qi, is capable of intercepting every comp_msg that pi sends or receives, for the
purpose of detecting breakpoints. In doing so, qi may add fields to, or strip fields off, the
comp_msg's that it intercepts. Of course, every comp_msg sent by pi must somehow contain
an indication of which pj it is destined to, so that qi can forward it appropriately to qj. Process
qi responds to messages it receives either on edges (ni, nj) ∊ E or "internally" from pi. When
specifying the algorithms for breakpoint detection, we provide actions for process qi only, and
then mentions to the set N0 never appear, as clearly actions performed by nodes in this set
are actions of the computation proper.
Perhaps the most important assumption on how processes pi and qi interact is that the
atomicity of pi's actions may be violated, in the following sense. Process qi is activated (and
then pi is suspended, while lti remains constant) when lti becomes equal to lubi (in the case of
unconditional breakpoints) or when the local predicate lpi becomes true (in the case of
conditional breakpoints), or yet upon the sending by pi of a comp_msg or the arrival of a
message from qj such that nj ∊ Neigi. What this amounts to is that qi has some sort of
"preemptive priority" over pi.
When evaluating our algorithms' complexities, this dual character of a node's behavior may
at first seem confusing, so that it is advisable to spell out the criteria to be used right away.
All the complexity measures to be given in this section are measures related to the
breakpoint detection computation only, and then may involve messages sent especially for
detection purposes as well as comp_msg's to which additional fields were attached (although
in the latter case only the message and bit complexities are affected, not the global time
complexity, which is already accounted for by the computation proper). Such measures are
then aimed at capturing the "overhead" of breakpoint detection only.
Our algorithms for breakpoint detection are based on the following general approach. For 1 ≤
i ≤ n, process qi maintains an array gsi of length n representing its view of the global state to
be detected. This array is initialized with zeroes (representing the earliest global state of the
computation) and is updated when information is received concerning the other nodes' local
unconditional breakpoints or local predicates. Such information is conveyed from node to
node either by means of special broadcast messages or as additional fields attached to the
comp_msg's that constitute the communication traffic of the computation proper. This
information, when sent by qi, comprises the array gsi. and may, depending on the type of
breakpoint to be detected, comprise additional data as well. In each of the cases we
consider, this information is exchanged among nodes in such a way as to allow at least one
node, say nk ∊ N, to detect locally that the breakpoint has occurred at the global state
recorded in the current gsk maintained by qk, which is in all cases the earliest global state at
which the breakpoint can be said to have occurred.
Let us now examine Algorithm A_Detect_DB ("DB" for Disjunctive Breakpoint) for the
detection of disjunctive breakpoints. Such a breakpoint is a global state at which for at least
one of the participating nodes the local predicate holds. Clearly, the earliest global state at
which a disjunctive predicate holds does not

Figure 9.1In this figure, the solid segment in a process's horizontal line indicates the time interval
during which the corresponding local predicate is true. The two cuts shown clearly correspond to
global states, in fact earliest global states in which the disjunctive predicate holds.

have to be unique (Figure 9.1), as we mentioned in Section 9.3.1, so it is conceivable that
more than one node detects the occurrence of the breakpoint, however at different global
states.
Because of the inherent ease with which disjunctive predicates can be detected in a
distributed fashion, Algorithm A_Detect_DB is quite straightforward. It does not employ any
broadcast messages, and attaches the array gsi(lti), in addition to a "status bit" (to be
discussed shortly), to the comp_msg's sent by process qi on behalf of pi. This array is
identical to gsi in all components except the ith, which is given by lti. Our earlier assumptions

imply that the value of lti is in this case the local time at pi when it sent the message that qi

intercepted, and then corresponds to pi's local state immediately succeeding the sending of
the message. The comp_msg's sent by qi are then sent as comp_msg ("status bit", gsi(lti)).
Likewise, when qi receives a message comp_msg ("status bit", gs) from qj such that nj ∊
Neigi, it is comp_msg that gets forwarded to pi.
Attaching the modified gsi to comp_msg's is a procedure with important properties in the
context of this section, not only for the algorithm we are beginning to present, but also for
other algorithms presented in the sequel. We then pause briefly to introduce the following two
supporting lemmas.

Lemma 9.1.
For all ni ∊ N, if gsi is a global state such that gsi[i] < lti and no message is received at pi at
time t such that gsi[i] < t ≤lti, then gsi(lti) is also a global state.
Proof: dIf gsi(lti) is not a global state, then there must exist nk, nℓ ∊ N such that a comp_msg
was sent by pk strictly later than gsi(lti)[k] and received at pℓ earlier than (or at) gsi(lti)[ℓ]. By the
definition of gsi(lti), and by hypothesis, it follows that the message must have been sent later
than gsi[k] and arrived at pℓ earlier than (or at) gsi[ℓ], and then gsi must not be a global state,
which is a contradiction.

Lemma 9.2.

If and are global states, then the component-wise maximum of the two is also a
global state.

Proof: Let be the component-wise maximum of and , and suppose that it is
not a global state. Then there must exist nk, nℓ ∊ N such that a message was sent by pk

strictly later than [k]and received at pℓ earlier than (or at) [ℓ]. Because

and then must not be a global state if

Likewise, if then must not be a global state.
Either case yields a contradiction.
The essence of Algorithm A_Detect_DB is the following for ni ∊ N. Variable lpi is initialized
with false at process pi, and is assumed never to become true if ni does not participate in the
breakpoint. Whenever qi detects that lpi has become true, it sets gsi[i] to lti and declares the
disjunctive breakpoint detected at the global state gsi. Because every comp_msg it received
from qj such that nj ∊ Neigi prior to lti carried a copy of qj's view of the global state with jth
component updated to the time the message was sent, gsi must indeed be a global state by
Lemmas 9.1 and 9.2. In order to ensure that it is also an earliest global state with respect to
the disjunctive predicate, the simple procedure we just described must only be allowed to be
performed if no other node has already detected a global state that renders the one qi would
detect not an earliest one. This is where the "status bit" comes in. This bit will indicate, upon
arriving along with a comp_msg, whether any other such global state has already been
detected.
Algorithm A_Detect_DB is presented next. Two additional variables employed by the
algorithm are the Booleans foundi and found_elsewherei, both initially set to false, which
indicate respectively whether qi has detected the disjunctive breakpoint and whether such a
breakpoint has already been detected elsewhere so that the one detected by qi would
necessarily not be an earliest one.

Algorithm A_Detect_DB:

 Variables:
 gsi[k] = 0 for all nk ∊ N;
 foundi = false;

 found_elsewherei = false.

Listing 9.8

 Input:
 msgi = nil.
 Action when lpi becomes true:
 if not (foundi or found_elsewherei) then
 begin
 gsi[i] :=lti;
 foundi := true
 end.

Listing 9.9

 Input:
 msgi = comp_msg from pi to pj.
 Action:
 Send comp_msg(foundi or found_elsewherei, gsi(lti)) to qj.

Listing 9.10

 Input:
 msgi = comp_msg(b, gs).
 Action:
 found_elsewherei := b or found_elsewherei;
 if not (foundi or found_elsewherei) then
 for k := 1 to n do
 if gsi[k] < gs[k] then
 gsi[k] := gs[k];
 Send comp_msg to pi.

The next theorem establishes the correctness of Algorithm A_Detect_DB. This theorem, like
the others to follow in this section, state the equivalence of several conditions. The proof
strategy in all theorems is then to show that the first condition implies the second, which
implies the third, and so on, and finally that the last condition implies the first.

Theorem 9.3.
There exist i ∊ N and ≥ 0 such that the following three conditions are equivalent to one
another for Algorithm A_Detect_DB.

 (i) There exists a global state such that lpk = true at time [k]for at
least one nk ∊ N.

 (ii) foundi becomes true at time lti = t.

 (iii) At time lti = t, gsi is the earliest global state at which lpk = true for at
least one nk ∊ N.

Proof:

(i) → (ii):
At least one of the nodes nk for which lpk ever becomes true must by actions (9.9) and (9.10)
have reached this state for the first time when found_elsewherek = false. The assertion then
follows immediately by action (9.8), with ni being this particular node and t being the local
time at which lpi becomes true for the first time.

(ii) → (iii):
By hypothesis and by action (9.8), found_elsewherei can only have become true after time t.
By Lemmas 9.1 and 9.2, the gsi produced by action (9.8), the gsi(lti) used in action (9.9), and
the gsi yielded by action (9.10) must all be global states. As a consequence of this, by action
(9.8) gsi is at time t a global state at which lpi = true. If gsi were not an earliest global state at
which lpk = true for at least one nk ∊ N, then either found_elsewherei would by actions (9.9)
and (9.10) have become true prior to t, and then foundi would be false at t, which is a
contradiction, or lpk would for some nk ∊ N be true right from the start, which is ruled out by
our assumption on the initial values of these variables.

(iii) → (i):

This is immediate.
Each of the O(c) comp_msg's carries an n-component array, each of whose components is
an integer no larger than T, so the bit complexity of Algorithm A_Detect_DB is O(cn logT).
Because only comp_msg's are employed, the algorithm's message and global time
complexity are of O(1). Each message reception requires O(n) comparisons, which is then
the algorithm's local time complexity.
Detecting the other types of breakpoints we consider in this section is a considerably more
intricate task in comparison with the detection of disjunctive breakpoints. These other cases
comprise unconditional breakpoints and conjunctive breakpoints on stable conjunctive
predicates, all of which require some sort of additional "global" information to be monitored. It
is the propagation of this global information that makes use of the broadcast messages we
introduced earlier.
In general, in addition to gsi process qi also maintains another array of Booleans with its local
view of the global condition to be monitored and detected.
When disseminated by qi, this array is always accompanied by gsi as well, so that whenever
qi, detects locally that the global condition has occurred (by examination of its array), it also
associates the contents of gsi with the global state at which the condition occurred.
Messages of the broadcast type are sent by qi whenever ni is one of the nodes participating
in the global condition to be detected and either its local unconditional breakpoint is reached
(in the case of unconditional breakpoint detection) or its local predicate becomes true (in the
case of the detection of conjunctive breakpoints). The broadcast we employ follows closely
Algorithm A_PI of Section 4.1.1, but during the propagation of information an arriving gs from
some process qj is used by qi to update gsi. In addition, gs and the other array accompanying
it are used to update the local view at qi of the global condition being monitored.
What further differentiates the broadcast that we employ in this section from Algorithm A_PI
is that we adopt a "forward-when-true" rule for the propagation of information. This rule
states that a process participates in the broadcast (i.e., forwards the information it receives)
only when its local condition (local unconditional breakpoint reached or local predicate
become true) holds. Clearly, if no comp_msg's were ever sent, then this broadcast would
suffice for the detection of the desired type of breakpoint. In such a case, whichever process
produced an array with true values for all the participating processes would declare the
breakpoint detected at the global state given by the global-state array obtained along with it.
Algorithm A_Broadcast_When_True does this detection in the absence of comp_msg's, so
long as the global condition under monitoring is stable. In this algorithm, process pi maintains
a Boolean variable lci to indicate whether the local condition with which ni participates (if at
all) in the global condition to be detected is true. It is initialized with false if ni does indeed

participate in the global condition, or with true otherwise. Stability then means that no nk ∊ N
exists such that lck is reset to false once it becomes true. The array associated with qi's view
of the global condition is denoted by gci. For 1 ≤k ≤ n, gci[k] is initialized with the same value
assigned initially to lck. Only broadcast messages are employed in this algorithm (as the
computation proper does not employ any), and are sent as broadcast(gci, gsi) when qi is the
sender. As in the case of Algorithm A_Detect_DB discussed earlier, a Boolean variable
foundi, set to false initially, is employed to indicate whether qi has detected the occurrence of
the global condition. In addition, another Boolean variable, changedi, is used by qi to ensure
that a broadcast message is never sent to a node if not different than the last message sent
to that node.

Algorithm A_Broadcast_When_True:

 Variables:
 gsi[k] = 0 for all nk ∊ N;
 gci[k] for all nk ∊ N;
 foundi = false;
 changedi.

Listing 9.11

 Input:
 msgi = nil.
 Action when lci becomes true:
 gci[i] := lci;
 gsi[i] := lti;
 if gci [1] … ∧ ∧ gci[n] then
 foundi := true
 else
 Send broadcast (gci, gsi) to all qj such that nj ∊ Neigi.

Listing 9.12

 Input:
 msgi = (gc, gs).
 Action:
 if not foundi then
 begin
 changedi := false;
 for k := 1 to n do
 if gsi[k] < gs[k] then
 begin
 gsi[k] := gs[k];
 gci[k] := gc[k];
 changedi := true
 end;
 if lci and changedi then
 if gci[1] … ∧ ∧ gci[n] then
 foundi := true
 else
 Send broadcast (gci, gsi) to all qj such that nj ∊
 Neigi

 end.

Properties of Algorithm A_Broadcast_When_True are given in the following theorem.

Theorem 9.4.
There exist ni ∊ N and t ≥ 0 such that the following three conditions are equivalent to one
another for Algorithm A_Broadcast_When_True.

 (i) There exists a global state such that lck = true at time [k] for all nk

∊ N.
 (ii) foundi becomes true at time lti = t.
 (iii) At time lti = t, gsi is the earliest global state at which lck = true for all nk ∊

N.
Proof:

(i) (ii):
If exactly one node participates in the global condition, then by action (9.11) foundi becomes
true, with ni ∊ N being this node and t the time at which lci becomes true. No messages are
ever sent in this case. If at least two nodes participate, then at least one of them, say nk ∊ N,
is such that qk does by action (9.11) send a broadcast message to nk's neighbors when lck

becomes true, which by action (9.12) pass the updated information on, so long as the update
introduced changes and their local conditions hold as well. Because this broadcast carries
lck, it must introduce changes when reaching every node for the first time and is therefore
propagated. This happens to the local condition of every participating node, and then at least
one process, say qi, upon having been reached by their broadcasts, and having lci = true,
sets foundi = true. The value of t here is either the time at which the last broadcast to reach
qi does reach it by action (9.12) or the time at which lci becomes true by action (9.11).

(ii) (iii):
By Lemmas 9.1 and 9.2, the gsi produced in actions (9.11) and (9.12) are global states.
Consequently, and by actions (9.11) and (9.12) as well, at time t gsi is a global state at which
lck = true for all nk ∊ N. That gsi is the earliest such global state is immediate, because of the
absence of comp_msg's, which implies that gsi[k] is either zero or the time at which lck

becomes true.

(iii) (i):

This is immediate.
Let us now assess Algorithm A_Broadcast_When_True's complexities. The worst case is
that in which all nodes start the algorithm concurrently, and furthermore the broadcast started
by a node traverses all edges. The algorithm's message complexity is then O(nm). Because
two n-component arrays are sent along with each message, one comprising single-bit
components, the other integers bounded by T, the bit complexity becomes O(n2m log T). No
causal chain of messages comprises more than O(n) messages, because this is what it
takes for a broadcast to reach all nodes, so this is the algorithm's global time complexity. The
local time complexity is like that of Algorithm A_Detect_DB, therefore of O(n).
Algorithms A_Detect_DB and A_Broadcast_ When_True detect breakpoints in two extreme
situations, respectively when the breakpoint is a disjunctive breakpoint and when the
breakpoint is a conjunctive breakpoint but the computation proper does not ever send any
message (it is simple to note that the case of unconditional breakpoints in the absence of
comp_msg's is in fact a case of conjunctive breakpoints). In the former case only are
comp_msg's employed, whereas in the latter case only broadcast messages are needed.
Other situations between these two extremes are examined in the sequel, and then the
messages received by process qi are either like comp_msg(gc, gs) or like broadcast(gc, gs).

Now we introduce A_Detect_UB ("UB" for Unconditional Breakpoint), a distributed algorithm
to detect the occurrence in a distributed computation of an unconditional breakpoint. As we
discussed previously, this unconditional breakpoint is specified, for each node actually
participating in the breakpoint, as a local time denoted by lubi for ni ∊ N. For nodes ni that do
not participate in the breakpoint, we have chosen to adopt lubi = ∞, so that lti. can never
equal lubi.
Algorithm A_Detect_UB must operate somewhere between the two extreme situations
assumed by Algorithms A_Detect_DB and A_Broadcast_When_True, and then can be
regarded as a mixture of those. Put differently, the detection of unconditional breakpoints
does require the detection of a global condition (which is ruled out by Algorithm
A_Detect_DB) and must be applicable to the case when messages of the computation
proper exist (which are disallowed by Algorithm A_Broadcast_ When_ True).
The variables employed by Algorithm A_Detect_UB are essentially the ones introduced
earlier for the other two algorithms, except that for process pi the Boolean variable lci is now
replaced with the occurrence of the equality lti = lubi, and furthermore the array ubi, used to
indicate qi's view of the occurrence of the local unconditional breakpoints at all nodes, is now
used in lieu of the array gci. For nk ∊ N, ubi[k] may be either true,false, or undefined. It is
true or false if nk participates in the unconditional breakpoint and is viewed at nias having
already reached its local unconditional breakpoint or not, respectively, and is undefined if nk

is not one of the nodes participating in the unconditional breakpoint. Initially, ubi[k] is set to
false for every participating nk and to undefined if nk does not participate.
Algorithm A_Detect_UB proceeds as follows. Whenever qi detects that lti = lubi, it updates ubi

[i] and gsi[i] accordingly and starts a broadcast to disseminate the updated ubi and gsi. This
broadcast proceeds like the one in Algorithm A_Broadcast_When_True, i.e., it is never
forwarded by a node whose local unconditional breakpoint has not yet been reached (unless
the node does not participate in the unconditional breakpoint), and in addition no duplicate
information is ever forwarded by any node. Every comp_msg is sent with ubi and gsi(lti)
attached to them, in the way of Algorithm A_Detect_DB, so that the global state that is
eventually detected is indeed a global state. This detection, if achieved by qi, corresponds to
the verification that ubi[k] ≠ false for all nk ∊ N, that is, every node has either reached its local
unconditional breakpoint or is not participating in the unconditional breakpoint.
One of the difficulties in designing Algorithm A_Detect_UB is that it must be able to detect
situations in which the requested set of local unconditional breakpoints does not constitute a
global state (Figure 9.2). In such situations, an error must be reported and the computation
proper must be allowed to progress normally. The detection of such a situation can be
achieved along the following lines. Suppose qi receives a comp_msg(ub, gs) from some
process qj. If ub[j] = true and ubi[i] = false at this moment, then clearly an error has occurred
in the determination of the unconditional breakpoint, as pi will never reach its local
unconditional breakpoint in such a way that is consistent with the local unconditional
breakpoint of pj from the point of view of a global state.
The possibility of having nodes for which no local unconditional breakpoint is specified
complicates the treatment of these erroneous conditions a little bit. If a causal chain of
comp_msg's beginning at qℓ such that ubℓ[ℓ] = true and going through a number of processes
qk for which ubk[k] = undefined eventually leads to qi such that ubi [i] = false, then an error
must be detected just as in the case discussed earlier. The way we approach this is by
artificially setting ubk[k] to true for all the qk's. A Boolean variablein_errori, initially set to false,
is employed by qi to indicate whether an erroneous condition has been detected.
Nodes that do not participate in the unconditional breakpoint also complicate the detection of
earliest global states. If such nodes did not exist, or if we did not require the earliest global
state to be detected when they did exist, then what we have outlined so far would suffice for
Algorithm A_Detect_UB to work as needed.

Figure 9.2The tiny solid segment in a process's horizontal line indicates the local time to which

the corresponding local unconditional breakpoint has been set. Clearly, the settings in this figure
are erroneous, as the cut (shown as a dashed line) that goes through them does not correspond
to a global state.

However, the existence of causal chains of comp_msg's similar to the one we just described
but beginning at qℓ such that ubℓ[l] = undefined may lead to distinct earliest global states,
depending on whether it leads to qi, such that ubi[i] = false or ubi[i] = true (Figure 9.3). Only in
the former case should qi take into account what it receives attached to the comp_msg in
updating gsi, but the senders of the preceding messages in the causal chain have no way of
knowing this beforehand. The strategy we adopt to tackle this is the following. In addition to
maintaining gsi as a local view of the global state to be detected, qi also maintains an
alternative view, denoted by alt_gsi, which is initialized like gsi but only updated or attached to
outgoing comp_msg's (the latter in place of gsi) if ubi[i] = undefined. Arriving comp_msg's at
qi affect gsi, if ubi[i] = false or alt_gsi if ubi[i] = undefined. So for qi such that ubi[i] =
undefined, gsi[k] ≤ alt_gsi[k] for all nk ∊ N, and therefore gsi, may constitute an earlier global
state than alt_gsi.

Figure 9.3: Following the same conventions as in Figure 9.2, here a situation is depicted in which
only one node participates in the unconditional breakpoint (node ni). Depending on how the
corresponding local unconditional breakpoint is placed with respect to the reception of the
message by pi, the other processes appear in the resulting earliest global state differently, as
shown in parts (a) and (b).
Algorithm A_Detect_UB:

 Variables:
 gsi[k] = 0 for all nk ∊ N;
 ubi[k] for all nk ∊ N;
 foundi = false;
 changedi;
 in_errori = false;
 alt_gsi[k] = 0 for all nk ∊ N.

Listing 9.13

 Input:

 msgi = nil.
 Action when detecting that lti = lubi:
 if not in_errori then
 begin
 ubi[i] := true;
 gsi[i] :=lti;
 if ubi[k] ≠ false for all k = 1,…,n then
 foundi := true
 else
 Send broadcast (ubi, gsi) to all qj such that nj, ∊ Neigi

 end.

Listing 9.14

 Input:
 msgi = broadcast(ub, gs).
 Action:
 if not (in_errori or foundi) then
 begin
 changedi := false;
 for k := 1 to n do
 if gsi[k] < gs[k] then
 begin
 gsi[k] := gs[k];
 ubi[k] := ub[k];
 changedi := true
 end;
 if ubi[i] = undefined then
 for k := 1 to n do
 if alt_gsi[k] < gs[k] then
 alt_gsi[k] := gs[k];
 if lubi ≠ false and changedi then
 if ubi[k] ≠ false for all k = 1,…, n then
 foundi := true
 else
 Send broadcast(ubi,gsi) to all qj such that nj ∊
 Neigi

 end.

Listing 9.15

 Input:
 msgi = comp_msg from pi to pj.
 Action:
 if ubi[i] = undefined then
 Send comp_msg(ubi, alt_gsi(lti)) to qj

 else
 Send comp_msg(ubi, gsi(lti)) to qj.

Listing 9.16

 Input: msgi = comp_msg(ub, gs) such that origini(msgi) = (ni, nj).
 Action:
 if not (in_errori or foundi) then
 begin
 if ub[j] = true and ubi[i] = false then
 in_errori := true;
 if ub[j] = true and ubi[i] = undefined then
 ubi[i] := true;
 if ub[j] = undefined and ubi[i] = false then
 for k := 1 to n do
 if gsi[k] < gs[k] then
 begin
 gsi[k] := gs[k];
 ubi[k] := ub[k]
 end;
 if ub[j] = undefined and ubi[i] = undefined then
 for k := 1 to n do
 if alt_gsi[k] < gs[k] then
 alt_gsi[k] := gs[k]
 end;
 Send comp_msg to pi.

Next we give properties of Algorithm A_Detect_UB related to its correctness.

Theorem 9.5.
There exist ni ∊ N and t ≥ 0 such that the following four conditions are equivalent to one
another for Algorithm A_Detect_UB.

 (i) There exists a global state such that [k] = lubk for every nk ∊ N
such that lubk < ∞.

 (ii) in_errork never becomes true for any nk ∊ N.
 (iii) foundi becomes true at time lti = t.
 (iv) At time lti = t, gsi is the earliest global state at which gsi[k] =lubk for

every nk ∊ N such that lubk < ∞.
Proof:

(i) (ii):
Suppose that there does exist nk ∊ N such that in_errork becomes true. By action (9.16), this
must happen upon receipt, when ubk[k] = false, of a comp_msg contained in a causal chain

of comp_msg's started at, say, process qℓ, sent when ubℓ[ℓ] = true. No array such that

[k] = lubk and [ℓ]= lubℓ can then be a global state, and because both lubk < ∞ and lubℓ <
∞, we have a contradiction.

(ii) (iii):
If in_errork never becomes true for any nk ∊ N, then actions (9.13) and (9.14) are, so far as
broadcast messages are concerned, identical to actions (9.11) and (9.12), respectively, of
Algorithm A_Broadcast_When_True. This part of the proof is then analogous to the (i) (ii)
part in the proof of Theorem 9.4.

(iii) (iv):
By Lemmas 9.1 and 9.2, the gsi produced by action (9.13), the gsi(lti) and alt_gsi(lti) used in
action (9.15), and the gsi, and alt_gsi produced by actions (9.14) and (9.16) are all global
states. This implies, by actions (9.13) and (9.14) and at time t, that gsi is a global state at
which ubi[k] ≠ false for all nk ∊ N, or, equivalently, a global state such that gsi[k] = lubk for
every nk ∊ N such that lubk < ∞. In order to show that gsi is the earliest global state with these

characteristics, consider any other n-component array of local times, call it such that

[k]= gsi[k] for all nk ∊ N such that lubk < ∞, and [k]< gsi[k] for at least one nk ∊
N such that lubk = ∞. For this particular nk, in order for gsi[k] to have been assigned the value

greater than [k], a causal chain of comp_msg's must have existed from qk (leaving at time
gsi[k]) to some qℓ ∊ N, where by action (9.16) it must have arrived at qℓ when ubℓ[ℓ] = false
(otherwise gsℓ would not have been updated, and so neither would gsi through the
broadcast). In addition, because in_errorℓ must have remained false, every process involved
in this chain (except for qℓ but including qk) must have had an undefined in its local record of
its local unconditional breakpoint (for qk, ubk[k] = undefined). But because ubℓ[ℓ] was found to

be false, cannot possibly be a global state such that k = lubk for all nk ∊ N such that
lubk < ∞.

(iv) (i):

This is immediate.
The message complexity of Algorithm A_Detect_UB is the same as that of Algorithm
A_Broadcast_When_True, that is, O(nm). The algorithm's bit complexity is the sum of those
of Algorithm A_Detect_DB and Algorithm A_Broadcast_When_True, therefore equal to O((c
+ nm)n log T). The global and local time complexities of Algorithm A_Detect_UB are the
same as Algorithm A_Broadcast_When_True's, that is, O(n).
We now finally come to Algorithm A_Detect_CB_Stable for the detection of conjunctive
breakpoints on stable conjunctive predicates. Such predicates are specified for each
participating node ni ∊ N as the local predicate lpi endowed with the property that it remains
true once it becomes true. Unconditional breakpoints are also breakpoints on stable
conjunctive predicates, but much more rigid than the ones we consider now, as in that case
the detected global state is required to match the local unconditional breakpoints specified
for the participating nodes exactly. In contrast, the ones we are now beginning to consider
only ask that the local predicates of the participating nodes be true in the detected global
state, although in some nodes they may have become true earlier than the local times given
by the global state. Not surprisingly, then, the algorithm that we introduce next can be
regarded as a slight simplification of Algorithm A_Detect_UB, as error conditions no longer
need to be addressed.
Algorithm A_Detect_CB_Stable is in many senses related to Algorithm A_Detect_UB, and as
such can also be viewed as a conceptual mixture of the principles employed in Algorithms
A_Detect_DB and A_Broadcast_When_True. With respect to the latter, the local condition
for ni ∊ N, lci, is now expressed by the very local predicate lpi we have been considering
throughout, and qi's view of the global condition, gci, is now the array cpi. For all nk ∊ N, cpi[k]
is initialized like lpk, that is, to false if nk is participating in the breakpoint, and to true
otherwise. All the other variables employed by Algorithm A_Detect_CB_Stable have the
same meaning they had when used in previous contexts.
The simplification of Algorithm A_Detect_UB to yield A_Detect_CB_Stable does not go any
further than the elimination of error detection, as an alternative local view at qi of the global
state to be detected, alt_gsi, is still needed to aid in the detection of the earliest global state
of interest. Similarly to the case of unconditional breakpoints, a causal chain of
comp_msg'sbeginning at qℓ such thatcpℓ[ℓ] = true, going through a number of qk's, each with
cpk[k] = true as well, and finally reaching qi with cpi[i] = false requires qi to take into account
what it receives attached to the comp_msg in updating gsi. On the other hand, if no such qi is
ever reached, then the detected global state has a chance to be an earlier one (Figure 9.4).

Maintaining alt_gsi has the function of allowing this earlier global state to be saved in gsi, to
be used in case no causal chain of the sort we just described ever occurs. The array alt_gsi

is initialized like gsi and is attached to comp_msg's with its ith

Figure 9.4: The conventions employed in this figure are the same as those of Figure 9.1, and the
situation depicted is quite akin to that of Figure 9.3. Specifically, the earliest global state at which
the conjunctive predicate holds depends on when ni's local predicate becomes true with respect to
the reception of the message by pi, as shown in parts (a) and (b).

component modified to lti. A comp_msg arriving at qi affects alt_gsi and may eventually affect
gsi, which happens if cpi[i] = false upon arrival of the comp_msg, by simply updating gsi to
alt_gsi when lpi becomes true. Only in this situation, or upon the receipt of broadcast
messages, does gsi get updated, but then so does alt_gsi, so gsi[k] ≤ alt_gsi[k] for every nk ∊
N.

Algorithm A_Detect_CB_Stable:

 Variables:
 gsi[k] = 0 for all nk ∊ N;
 cpi[k] for all nk ∊ N;
 foundi = false;
 changedi;
 alt_gsi[k] = 0 for all nk ∊ N.

Listing 9.17

 Input:
 msgi = nil.
 Action when lpi becomes true:
 cpi[i] := lpi;
 alt_gsi[i] := lti;
 for k := 1 to n do
 gsi[k] := alt_gsi[k];
 if cpi[1] … ∧ ∧ cpi[n] then
 foundi := true
 else
 Send broadcast(cpi, gsi) to all qj such that nj ∊ Neigi.

Listing 9.18

 Input:
 msgi = broadcast(cp, gs).
 Action:
 if not foundi then
 begin
 changedi := false;
 for k := 1 to n do
 if gsi[k] < gs[k] then
 begin
 gsi[k] := gs[k];
 cpi[k] := cp[k];
 changedi := true
 end;
 for k := 1 to n do
 if alt_gsi[k] < gs[k] then
 alt_gsi[k] := gs[k];
 if cpi[i] and changedi then
 if cpi[1] … ∧ ∧ cpi[n] then
 foundi := true
 else
 Send broadcast(cpi, gsi) to all qj such that nj ∊
 Neigi

 end

Listing 9.19

 Input:
 msgi = comp_msg from pi to pj.
 Action:
 Send comp_msg(cpi, alt_gsi(lti)) to qj.

Listing 9.20

 Input:
 msgi = comp_msg(cp,gs).
 Action:
 if not foundi then
 for k := 1 to n do
 if alt_gsi[k] < gs[k] then
 begin
 cpi[k] := cp[k];
 alt_gsi[k] := gs[k]
 end;
 Send comp_msg to pi.

Correctness properties of Algorithm A_Detect_CB_Stable are established in the following
theorem.

Theorem 9.6.
There exist ni ∊ N and t ≤ 0 such that the following three conditions are equivalent to one
another for Algorithm A_Detect_CB_Stable.

 (i) There exists a global state such that lpk = true at time [k] for all nk

∊ N.
 (ii) foundi becomes true at time lti = t.
 (iii) At time lti = t, gsi is the earliest global state at which lpk = true for all nk

∊ N.
Proof:

(i) (ii):
Actions (9.17) and (9.18) are, from the standpoint of broadcast messages alone, identical to
actions (9.11) and (9.12), respectively, of Algorithm A_Broadcast_When_True. This part of
the proof then goes along the same lines as the (i) (ii) part in the proof of  Theorem 9.4, so
long as no comp_msg overruns any broadcast message on any edge. When this happens,
however, the propagation of the broadcast message may by action (9.18) be interrupted after
traversing the edge, specifically upon arriving, say at process qk, and by action (9.18) finding
cpk[k] = true without causing changes to gsk or to cpk. This is so because the gsj carried by
the broadcast message is no greater than gsk in any component, which in turn was updated
by action (9.17) when lpk became true with the alt_gsk produced by action (9.20) upon receipt
of the comp_msg. The broadcast that by action (9.17) qk then initiates when lpk becomes
true allows the proof to proceed like that of the (i) (ii) part in the proof of  Theorem 9.4 as
well.

(ii) (iii):
By Lemmas 9.1 and 9.2, the gsi and alt_gsi produced by actions (9.17) and (9.18), the alt_gsi

(lti) used in action (9.19), and the alt_gsi produced by action (9.20) must all be global states.
A consequence of this is that, by actions (9.17) and (9.18), gsi is at time t a global state at
which cpi[k] = true for all nk ∊ N. To show that gsi is the earliest such global state requires

that we consider any other n-component array of local times, call it , such that lpk = true

at time for all nk ∊ N and such that [k]< gsi[k] for at least one nk ∊ N. For this

particular nk, gsi[k] can only have been assigned the value greater than if a causal chain
of comp_msg's existed from qk (leaving at time gsi[k]) to some qℓ ∊ N, which by action (9.17)
must have arrived at qℓ when cpℓ[ℓ] = false (otherwise gsℓ would not have been updated, and

so neither would gsi by means of the broadcast). But because cpℓ[ℓ] was found to be false,

cannot possibly be a global state such that lpk = true at time for all nk ∊ N.

(iii) (i):

This is immediate.
All the complexities of Algorithm A_Detect_CB_Stable are the same as the corresponding
complexities of Algorithm A_Detect_UB.
In finalizing this section, we suggest that the reader investigate simplifications to the
algorithms of this section (except Algorithm A_Broadcast_When_True) if they are not
required to detect earliest global states, but instead any global state in which the desired
properties hold (cf. Exercise 5).

9.4 Exercises
1. Devise a solution for the problem discussed in Section 9.2 if the edges are not FIFO.
2. Prove that Algorithm A_Replay_&_Halt_CP halts at the earliest conjunctive breakpoint.
3. Prove that there does not exist an algorithm for halting at an earliest disjunctive breakpoint,
unless it is acceptable to progress further than that global state and then return by means of a
rollback.
4. Rewrite Algorithm A_Replay_&_Halt_CP so that no node sends more than one message to the
same neighbor per action.
5. Show how to simplify the algorithms of Section 9.3.3 (except Algorithm
A_Broadcast_When_True) given that earliest global states do not have to be detected.

1.
Devise a solution for the problem discussed in Section 9.2 if the
edges are not FIFO.

2.
Prove that Algorithm A_Replay_&_Halt_CP halts at the earliest
conjunctive breakpoint.

3.

Prove that there does not exist an algorithm for halting at an
earliest disjunctive breakpoint, unless it is acceptable to progress
further than that global state and then return by means of a
rollback.

4.
Rewrite Algorithm A_Replay_&_Halt_CP so that no node sends
more than one message to the same neighbor per action.

5.

Show how to simplify the algorithms of Section 9.3.3 (except
Algorithm A_Broadcast_When_True) given that earliest global
states do not have to be detected.

9.5 Bibliographic notes
If the reader wishes to check for generalities on the debugging of asynchronous algorithms
other than those discussed in Section 9.1, some references are the survey by McDowell and
Helmbold (1989), and the publications by Garcia-Molina, Germano, and Kohler (1984),
Joyce, Lomow, Slind, and Unger (1987), Haban and Weigel (1988), Miller and Choi (1988b),
Hélary (1989), Choi, Miller, and Netzer (1991), Becher and McDowell (1992), Yang and
Marsland (1992), Garg and Tomlinson (1993), Hurfin, Plouzeau, and Raynal (1993), and
Fromentin and Raynal (1994).
The material in Section 9.2 is inspired in the work by LeBlanc and MellorCrummey (1987).
Additional sources on the same problem include Netzer and Xu (1993).
The sources for reference within the topic of breakpoint detection and related issues are
quite abundant. The material discussed in Section 9.3.1, for example, can be enlarged by
checking Cooper and Marzullo (1991) for a strong-sense approach, while the sources for
additional insights into the use of arrays of local times as global states are Mattern (1989)
and Fidge (1991). Publications of interest on checkpointing and rollback recovery include
Kim, You, and Abouelnaga (1986), Koo and Toueg (1987), Bhargava and Lian (1988),
Goldberg, Gopal, Lowry, and Strom (1991), Ramanathan and Shin (1993), and Xu and
Netzer (1993).
The source of the material discussed in Section 9.3.2 is Manabe and Imase (1992), where
the concern for detecting earliest global states seems to have first appeared. Section 9.3.3 is

closely based on Drummond and Barbosa (1994), where an algorithm to detect earliest
conjunctive breakpoints on predicates that do not need to be stable is also presented.
References for material closely related to that of Section 9.3.3 are Miller and Choi (1988a)
and Garg and Waldecker (1994). Other publications on the detection of breakpoints include
the one by Spezialetti (1991), which is based on an earlier formulation that appears to be
prone to missing many possible global states (Spezialetti and Kearns, 1989).

Chapter 10: Simulation

Overview
In this chapter, a physical system is to be understood as a collection of physical entities,
called physical processes, whose states we wish to determine for all times in a certain range,
beginning at certain initial conditions. Physical processes interact with one another, and it is
as a result of this interaction that their states change. Our interest is in the study of
distributed algorithms for the determination by simulation of all physical processes' states in
the appropriate time range. We divide our presentation according to the nature of the state
changes a physical process may undergo, after detailing the physical-system model and
related notions in Section 10.1.
If the state of a physical process may change as a consequence of the processes' continual
interaction with one another (often at all time units), then the essential drive of the simulation
is time itself, and the simulation is referred to as being time-stepped. Algorithms for this type
of simulation are presented inSection 10.2 for two general classes of physical systems. If, on
the other hand, only at some special instants do the physical processes interact by means of
the so-called events that may cause the state of a physical process to change, then it is the
events that drive the simulation, which is then said to be event-driven.
Algorithms for the event-driven simulation of physical systems are discussed in Section 10.3
and Section 10.4 from two different perspectives on how to guarantee that the causality that
exists among such events is preserved. These sections present, respectively, typical
approaches of the so-called conservative and optimistic types.
Section 10.5 and Section 10.6 contain brief descriptions of extensions on some of the
material discussed in the earlier sections. In the case of Section 10.5, the extension is on
methods for simulating systems whose timing nature is not so well defined as those treated
earlier, and therefore require simulation methods that provide a hybrid approach between the
time-stepped and the event-driven. In Section 10.6, we digress on a general framework
encompassing all sorts of physical systems and simulation strategies discussed along the
chapter.
Exercises and bibliographic notes appear, respectively, inSections 10.7 and 10.8.

The complexities of all the algorithms to be discussed in this chapter are highly dependent
upon the particular physical system being simulated. For this reason, and unlike our practice
so far in the book, in this chapter we do not touch the issue of algorithm complexity at all.
As in earlier occasions (cf. Section 9.3.2), it does occasionally happen during this chapter
that a node sends more than one message to the same node in the same action. While this
is not in full conformity with Algorithm A_Template, fixing it if necessary should be a simple
matter.

10.1 Physical and logical processes

The physical system is represented by either the undirected graph

or the directed graph where is the set of physical processes.

is an undirected graph if and only if, for all νi νj∊ such that νi≠ νj and νi affects the
state evolution of νj , it is also the case that νj affects the state evolution of νi. In this case,
(νiνj) is an edge in ∊. Otherwise, the representation as a directed graph is chosen, and (νi →

νj) ∊ if and only if νi affects the state evolution of νj.

The state of a physical process νi at time t ≥ 0 is in this chapter denoted by xi(t). The goal of a
simulation by computer of the physical system is to determine xi(t) for all νi ∊ N and all time t
such that 0 ≤ t ≤ T. The value of T may be known a priori or it may have to be determined as
the simulation progresses (for example, in cases in which the system is to be simulated until
some sort of convergence is detected).
Physical systems are models of natural systems of interest in various scientific disciplines, so
the particular natural system at hand, or the simplifications made when constructing the
model, ultimately dictates the nature of the time t that governs the evolution of the physical
system. Often t is continuous time (as in all cases in which differential equations are
employed to build the model), but equally as often (for example, in the case of cellular
automata and some other automaton networks) it is discrete. In either case, however, the
simulation by computer of the physical system must be restricted to determining the states of
physical processes at discrete instants (determined by the achievable precision within the
particular computer system in use), and then it is legitimate to assume, for all purposes in
this chapter, that t is a nonnegative integer between 0 and T (also assumed to be an integer).

The simulation of the physical system is achieved by a logical system, which contains a

logical process for each of 's physical processes. Logical processes attempt to mimic
the interaction that occurs among physical processes in the physical system, and for all times
in the appropriate range output the states of the corresponding physical processes. The
approach of a logical process to the simulation of the corresponding physical process
depends largely on how physical processes interact. In this respect, a subdivision into two
broad classes is normally employed.
If physical processes interact continually in such a way that the instants at which the state of
a physical process may change can be determined beforehand, then the main drive of the
logical system is time itself, and the simulation that the logical system carries out is called
time-stepped. If, on the other hand, state changes in the physical processes are restricted to
special instants in which they interact, and such instants can only be known as the simulation
progresses, then the simulation is referred to as being event-driven. in allusion to the
denomination as an event commonly employed to designate the interactions among physical
processes. As the reader will have the opportunity to verify later in this section, such events
do bear resemblance to the events employed in Section 3.1 to model distributed
computations, but they are not the same at all.
The essence of a time-stepped simulation is quite simple. Basically, at each of the
foreseeable instants at which a physical process νi's local state may change, the
corresponding logical process does the update based on the current state of νi and on the
states of the other physical processes that exert influence on the state of νi (these are either

all the processes connected to νi in , if is undirected, or physical processes νj such

that (νj → νi) ∊ , otherwise). Timestepped simulations are treated in Section 10.2.
The essentials of an event-driven simulation are also simple, but are best described if we
resort to a sequential version of it first. A sequential event-driven simulation employs a queue
of events. In this queue, events are kept in nondecreasing order of the time at which they
must happen. The task of a sequential simulator is to iterate on this queue until the queue is
empty or no event in it is scheduled to happen at a time no greater than T. At each iteration,
the simulator removes the first event from the queue, updates the state of the corresponding
physical process, and possibly inserts in the queue new events to happen farther in time at
some of the other physical processes. Initially, the queue contains the only events that
happen spontaneously, which we assume to happen at time zero. The key ingredient in
guaranteeing the correct simulation of the physical system is that events are processed in
nondecreasing order of time.
In the distributed case, one possibility is for each logical process to maintain a similar queue
for the events that are scheduled to happen at the physical process to which it corresponds.
Initially, only a logical process at whose physical process an event happens spontaneously at

time zero has a nonempty queue. The set of such physical processes is 0 ⊆ . This

queue is maintained in increasing order of time (the reason for increasing in place of
nondecreasing is that no two events are allowed to happen at the same physical process at
the same time—we return to this issue shortly). The task of a logical process is, similarly to
the sequential simulator, to remove the first event from the queue, then to update the state of
its physical process, and then possibly to send new events to be inserted in the queues of
other logical processes. The problem is, of course, that this simple iterative treatment of a
logical process's event queue does not suffice to ensure that, globally, events are processed
in nondecreasing order of time. In particular, it is easily conceivable that a logical process
receives, for inclusion in its queue, an event scheduled for a time that has already passed in
the local simulation.
Classically, the approaches to solving this problem are twofold. Either one makes every effort
to ensure that events are indeed globally processed in nondecreasing order of time, or one
lets the simulation progress without this constraint and then makes provisions for correcting
possible errors when they occur. These two approaches are called, respectively,
conservative (discussed inSection 10.3) and optimistic (our subject inSection 10.4), for
reasons that come to mind at once.
Before we leave this section, let us discuss in a little more detail the way logical processes
interact with one another in both the time-stepped and the event-driven cases. We let n = |

|, and for 1 ≤ i ≤ n let node ni be the logical process responsible for simulating the
behavior of the physical process νi. G is then a graph whose edge set (undirected or

directed) has to contain edges at least in one-to-one correspondence to those of , but G

can also be assumed to be a complete undirected graph if the structure of is not known.

Some of the methods that we discuss require G and to be isomorphic, and as a

consequence are only applicable to cases in which the structure of is known. Other
methods do not pose such a requirement, and then it is best to go for generality and assume

that the structure of is not known, in which case G is taken to be a complete undirected
graph.
In a time-stepped simulation by G, the messages that nodes exchange are simply the initial
or updated states of the corresponding physical processes. In event-driven simulations, a
message sent by node ni to node nj stands for an event that the physical process νi causes to
happen at the physical processνj. Such a message is denoted simply by event(t), where t is
the time at which the event is to happen in the physical process νj. Depending on the
particular application at hand, this message will of course have to contain more information
for nj to be able to simulate the event that it stands for in νj. However, in a general framework
like ours such details are of little importance, and so we keep the notation conveniently
minimal.
Unless we explicitly state otherwise, the distributed simulation that the logical system (that is,
G) carries out resorts, for termination, to techniques of the sort we discussed inSection 6.2.
This is termination in the usual sense, that is, the sense in which all nodes are idle and all
edges are empty.
It is very important for the reader to note that the t in the event(t) message has nothing to do
whatsoever with the local time at node nj, in the sense introduced in Section 3.1. This t,
sometimes also referred to as virtual time,is the time at the physical process νj at which the
event is to happen during the simulation by nj, and is as such part of the model of the natural
system that the physical system represents. In spite of such a fundamental difference
between the two notions of time, the times at which events are to happen at the various
physical processes are also related to each other by restrictive properties, in a way similar to
the relation ≺ on the set of events in a distributed computation.
One fundamental property says that, if an event is generated at time t by physical processνi

to happen at time t' at physical process νj,then t < t'. This property expresses the unavoidable
delay that accompanies the transmission of information between the two physical processes
at any finite speed. Another fundamental property, also originating from inherent limitations of
physical processes, is that, if t and t' are times at which two events happen at a certain

physical process, then either t < t' or t' < t. In the remainder of the chapter, we refer to these
two properties as causality properties.
The task of an event-driven simulator, be it sequential or otherwise, is to ensure that, from
the perspective of every single physical process, no event is processed unless all events that
precede it in that physical process have themselves already been processed. As we
remarked earlier, a sequential simulator can guarantee this trivially. A distributed simulator,
by contrast, has a whole suite of techniques to choose from with that goal. So an intuitively
appealing interpretation for the differences in the concepts ofSection 3.1 to those of this
chapter is that, while the relation ≺ emerges from the occurrence of events in that case, in
the present case the aforementioned causality properties have to be forced upon the logical
system.

In all further sections in this chapter, we let be a variable of node ni to contain the time at
physical process νi. This variable is a nonnegative integer, being initialized to zero. Also, ni

employs a variable statei, initialized to xi(0), to contain the state of physical process νi. Unless
otherwise noted, we assume that, when updating statei, node ni also outputs (to the "user")

the pair (, statei).

10.2 Time-stepped simulation
Our treatment of time-stepped simulation in this section unfolds along two main
lines, each motivated by a particular class of physical systems. Physical systems in
the first class are said to be fully concurrent, while physical systems in the second

class are referred to as being partially concurrent. We assume that is an

undirected graph, that its structure is known, and that G and are isomorphic
graphs.
In a fully concurrent physical system, xi(0) is provided for every physical process νi,
and for t > 0 xi (t) is a function of xi(t−1) and of x j(t−1) for every physical process νj

such that (νiνj) ∊ ∊. In a partially concurrent physical system, xi(0) is also provided
for every physical process νi, but the so-called "neighborhood constraints" restrict
the values of t at which the state of a physical process may be updated.
Specifically, two physical processesνi and νj can have their states up-dated for the
same t if and only if (νi,νj) ∊ ∊, that is, xi and xj do not depend on each other to be
updated. The set of physical processes that can have states updated for the same

t must then constitute an independent set in . Because of these neighborhood
constraints, partially concurrent physical systems also come with the requirement
that every node is to be updated infinitely often, which, in our present context,
means the following. If t1 and t2 are nonnegative integers such that t2 − t1 ≥ n − 1,
then every physical process νi must be such that xi is updated for at least one time
t such that t1 ≤ t ≤ t2.
Examples of fully concurrent physical systems are cellular automata,various neural
networks, and other systems whose behavior is described by differential equations.
Notorious partially concurrentphysical systems include binary Hopfield neural
networks, Markov random fields in general (including Boltzmann machines), and
Bayesian networks. Based on what happens in the cases of these examples, the
time-stepped simulations that we consider in this section terminate when they
converge according to some application-dependent criterion. The value of T is then
unknown beforehand, and then termination in the sense of idle nodes and empty
edges in the logical system never really occurs. This is the situation we referred to
inSection 6.2 in which it is convenient to employ a leader-based approach to
termination detection. Specifically, every node, upon updating the state of its
physical process, sends a report to the leader with the new state. The leader, in
possession of such reports, is capable of putting together global states (cf. (Section
5.2.2), and on these global states detecting whatever convergence is required for
termination. Upon detection, the leader instructs the other nodes to terminate,

possibly after some additional exchange of messages for gracefulness at the
termination. We pursue this termination issue no more in this section, but do
nonetheless advise the reader to consider the problem as an exercise (cf. Exercise
1).
Interestingly, already along the book we have seen solutions to the time-stepped
simulation of both types of physical system. Specifically, the simulation of fully
concurrent physical systems requires a synchronous algorithm that employs pulse
s = 0 for initial states to be exchanged among neighbors and for s > 0 updates the
states of all physical processes for time t = s. Because every state of every physical
process has to be sent to all of the corresponding logical process's neighbors, such
a simulation is a synchronous algorithm with the property that, at every pulse,
exactly one message is sent to every neighbor. Couple this property with the
assumption of FIFO edges in G, and we see that Algorithm A_Schedule _AS of
Section 5.3.2can be employed directly for the time-stepped simulation of fully
concurrent physical systems (the case of nonFIFO edges is left for the reader's
appreciation—cf. Exercise 2).
Before being more specific about the algorithm we have seen that can also be
applied to the time-stepped simulation of partially concurrent physical systems, we
provide Algorithm A_Simulate_FC ("FC" for Fully Concurrent) for the time-stepped
simulation of fully concurrent physical systems based on Algorithm
A_Schedule_AS. The two algorithms are entirely analogous to each other, so
essentially we are simply re-writing the previous algorithm to employ appropriate

notation. The variables si, MSGi, and for nj ∊ Neigi, employed in

Algorithm A_Schedule_AS, are now replaced respectively with (already

introduced), a set of variables for nj ∊ Neigi, and

For nj ∊ Neigi, and both initialized to nil, contain if

different from nil the last two states received from nj (is the least
recent, therefore to be used first).

Algorithm A_Simulate_FC

 Variables:

 = 0;
 statei = xi(0);

 = nil for all nj ∊ Neigi;

 = nil for all nj ∊ Neigi;
 initiatedi = false.

Listing 10.1

 Input:
 msgi = nil.
 Action if ni ∊ N0:

 initiatedi := true;
 Send statei to all nj ∊ Neigi.

Listing 10.2

 Input:
 msgi = x such that origini(msgi) = (ni,nj).
 Action:
 if not initiatedi then
 begin
 initiatedi := true;
 Send statei to all nk ∊ Neigi

 end;

 if ≠ nil then

 := x
 else

 :=x;

 if ≠ nil for all nk ∊ Neigi then
 begin

 := + 1;
 Update statei;
 Send statei to all nk ∊ Neigi;
 for all nk ∊ Neigi do
 begin

 :=

 := nil
 end
 end.

Actions (10.1) and (10.2) originate, respectively, from actions (5.19) and (5.20). In
this algorithm, the set N0 is the set of nodes that initiate the simulation concurrently.
Let us now return to our earlier remark that an algorithm has been seen earlier in
this book for the time-stepped simulation of partially concurrent physical systems
as well. By definition of a partially concurrent physical system, we see that its time-
stepped simulation by the corresponding logical system has to obey the constraints
that no two neighbors ever update the states of their physical processes
concurrently, and that every node update the state of its physical process infinitely
often (in the sense explained earlier). Well, aside from the initial exchange of

states, this is exactly the type of computation that is carried out by Algorithm
A_Dine_H ofSection 8.3.2.
That algorithm, as we recall, implements scheduling by edge reversal, and is an
asynchronous algorithm that functions as follows. Assume that G is initially oriented
by an acyclic orientation (cf. Section 8.3.1). Sinks in this orientation must not be
neighbors of one another, and may then update the states of their physical
processes concurrently. Upon doing such an update, a node sends the new state
to all of its neighbors, thereby implicitly reversing the orientation of all edges
incident to it and becoming a source. As we remarked inSection 8.3.1, the resulting
acyclic orientations are thus guaranteed to be always acyclic, so sinks always exist
and the simulation can always progress. In addition. Theorem 8.4 guarantees the
form of infinitely often updates we are seeking.
The simulation algorithm based on Algorithm A_Dine_H is given next as Algorithm
A_Simulate_PC ("PC" for Partially Concurrent). Unlike the fully concurrent case,
now the transformation is a bit more subtle, because initial states need to be
spread selectively, that is, node (ni needs the initial state of neighbor nj's physical
process only if ni is "downstream" from nj with respect to the initial orientation (i.e.,
the initial orientation of edge (ni, nj) is from nj to ni). If such is not the case, then the
state of that process to be used when ni computes for the first time will be the one
received from nj upon reversal of the edge (ni, nj), so no initial state is really
needed. We encourage the reader to write Algorithm A_Schedule_PC in this
fashion (cf. Exercise 3), but for simplicity we provide a version in which all nodes
send initial states to every neighbor, though at times uselessly.
The additional variables employed by node ni in Algorithm A_Simulate_PC are, for

all nj ∊ Neigi, (initialized to nil) and the Boolean

The variable (which is equivalent to in
Algorithm A_Dine_H) indicates the current orientation of edge (ni, nj), and has to be
initialized in accordance with the initial acyclic orientation (to true if the edge is

directed from nj to ni, to false otherwise). The variable if different from

nil and if = true, contains the state of nj's physical process to be
used by ni when it next updates the state of its own physical process.

Algorithm A_Simulate_PC:

 Variables:

 = 0;
 statei = xi(0);

 = nil for all nj ∊ Neigi;

 for all nj ∊ Neigi.

Listing 10.3

 Input:
 msgi = nil.
 Action if ni ∊ N0:

 Send statei to all nj ∊ Neigi.

Listing 10.4

 Input:
 msgi = x such that origini(msgi) = (ni,nj).
 Action:

 if = nil for all nk ∊ Neigi then
 Send statei to all nk ∊ Neigi;

 if ≠ nil then

 := true;

 := x;

 if (≠ nil and) for all nk ∊ Neigi then
 begin

 Update ;
 Update statei;

 := false for all nk ∊ Neigi;
 Send statei to all nk ∊ Neigi

 end.

In Algorithm A_Simulate_PC, actions (10.3) and (10.4) relate closely to actions
(8.15) and (8.16) of Algorithm A_Dine_H. The differences are accounted for by the
need for initial states to be exchanged. Specifically, the set N0 of spontaneous
initiators no longer corresponds to the initial set of sinks, but rather to the set of
nodes that initiate the propagation of initial states spontaneously. In addition, upon
receiving a state x from node nj, node ni must decide whether this is the first

message it receives (that is, whether = nil for all nk ∊ Neigi), in which
case it must send its physical process's initial state out. Node ni must also be able
to distinguish states that it receives from nj that should be interpreted as edge

reversals (when ≠ nil) from those that are initial values and do not imply

edge reversal (when = nil). Finally, testing whether ni has become a

sink requires not only that be checked for all nk ∊ Neigi, but

as well (because if ni is an initial sink, it may only update statei after
receiving initial states from all of its neighbors).

As a final observation, we note that the way to update in (10.4) was left
purposefully vague. It should be clear that simply adding one as in (10.2) does not
suffice, because it is necessary to account for all the time units in which statei was
not updated because ni was not a sink. We leave it to the reader to remove this
vagueness (cf. Exercise 4).

10.3 Conservative event-driven simulation
In this section, we elaborate on conservative approaches to distributed event-driven
simulation. As we remarked in Section 10.1, conservative methods seek to guarantee that
events are processed in increasing order of time at all nodes, so that, globally, events are
processed in nondecreasing order of time.
Our treatment of conservative methods is presented in the two sections that follow. The

method that we present in Section 10.3.1 requires isomorphism between G and , and in
addition that the edges of G be FIFO. Such a method is then only applicable to cases in

which the structure of is known. In Section 10.3.2, by contrast, a conservative method is
discussed that does not require such an isomorphism, and consequently is applicable to

cases in which the structure of is not known. In these cases, G is taken to be a complete
undirected graph, but the method still requires FIFO edges in G.
In addition to the causality properties that we discussed in Section 10.1, in the case of
conservative methods another property is needed on the physical system. If a sequence of
k≥ 1 events is generated at times t1 < t2 < … < tk by a physical process νi to happen

respectively at times at physical process νj, then we require that

as well. This is a monotonicity property. Note that,
although conservative methods seek to faithfully mimic the functioning of a sequential
simulator, in the sequential case monotonicity is not an issue (i.e., it does not need to
happen) so long as the causality properties hold. Requiring monotonicity in the conservative

distributed case may be thought of as requiring that 's edges, like those of G, be FIFO.

10.3.1 A first algorithm

For greater generality, in this section we take (and consequently G) to be a directed

graph. In addition, if is not strongly connected, then we assume that all of it sources are in

.
The monotonicity property of the physical system and the assumption that G's edges are
FIFO guarantee that, if a node processes event(t) messages that it receives in increasing
order of t, then the sequence of event(t) messages that it sends to another node ni is
received in increasing order of t as well. In order to guarantee that ni too processes the event
(t) messages that it receives in increasing order of t, by the causality properties all ni has to
do is to merge the incoming streams of event(t) messages so that the resulting single stream
is sorted in increasing order of t. It then suffices for ni to process event messages as they are
queued in this resulting stream.
The approach that suggests itself for the participation of node ni in the simulation is then the
following. For each nj ∊ I_Neigi, node ni does not really maintain a queue of incoming

messages, but rather a variable , initialized to zero, to contain the t

parameter in the next event(t) message to be processed in the stream from nj (if no such

next message has been received, then is either the t in the last event
(t) message received from nj or the initial zero). All ni has to do is then to select for
processing the event message from nk ∊ I_Neig i such that

for all nj ∊ I_Neigi such that nj ≠ nk. After processing this event message, ni waits to receive
another event message from nk so that a new minimum can be found.
The problem with this initial approach is of course that such a message may never be
received, and then the simulation may deadlock. In fact, this same problem exists from the
very beginning of the simulation, because no node ni may process any event message before
receiving one message from each neighbor in I_Neigi. As in general situations in which
deadlocks may happen, here too we have a choice as to either prevent its occurrence or
detect it after it occurs (cf.Section 6.3). We chose the prevention strategy, but approaches
based on deadlock detection have also been proposed.
The deadlock-prevention fix that we add to the simulation strategy we just described is based
on additional null(t) messages that the nodes exchange. Such messages are sent by ni to
every neighbor in O_Neigi to which it does not send an event upon computing the
aforementioned minimum and simulating the behavior of νi up to that minimum. If the
message that corresponds to this minimum time is itself a null message, then a null is sent to
all of ni's neighbors in O_Neigi. Although null messages may account for an excessive
increase in the algorithm's message complexity, they can also be used to advance the
simulation more rapidly if so the physical system's peculiarities permit, and to enable nodes
to terminate their computations locally.
Before proceeding to the presentation of the algorithm, let us be more specific about these
alternative uses for a null message. When an event(t) or a null(t) is processed by node ni, a
null(t + 1) message is sent to every node nj ∊ O_Neigi to which an event message is not
sent. This null(t + 1) message has the purpose of informing nj that it will never be sent by ni

any event(t') message such that t' ≤ t + 1.
If the physical process being simulated is such that ni can predict that no event(t') message
will ever be sent to nj such that t' ≤ t+ for t+ > t + 1, then a null(t+) message is sent instead.
This message may be quite beneficial to the processing at nj, in the sense that it may allow nj

to make more progress before it has to wait for additional messages from ni. The difference
t+ − t − 1 is known as ni's lookahead at time t with respect to node nj. In the algorithm to be

presented, and for all nj ∊ O_Neigi, ni maintains a variable , which we
assume is properly initialized and maintained based on the physical system's characteristics.
Similarly, when the event(t) message that ni must send is such that t > T, then a null(T) is
sent instead, thereby signaling the destination node that ni is never going to send it another

message. This is also what nodes that correspond to sources in must do after
participating in the algorithm for time zero.
The classical example of a physical system exhibiting the possibility of lookahead
determination is that of a network of queues (although it is easy to argue that in general
simulating such a system by a distributed algorithm is not a good idea—reliable results for
such a physical system require multiple simulations on random initial conditions, and then it
is best to employ multiple sequential simulations). In such a system, each physical process is
a queue with a server that provides service to each customer in the queue according to a
certain distribution of service times. If for a queue it holds that no service time is ever less
than, say, z time units, then the lookahead of the corresponding logical process is at all times
equal to z with respect to all of its neighbors to which it may send event messages.
In order to contain the number of null messages when they are also used for lookahead and
termination purposes, node ni keeps track, for all nj ∊ O_Neig i, of the value of t in the last

null(t) message sent to nj. Variable , initially set to zero, is employed
for this purpose.
The algorithm that realizes this conservative simulation strategy is Algorithm A_Simulate_C
("C" for Conservative), presented next. In addition to the already introduced variables, it also

employs the following. For nj ∊ I_Neigi, the Boolean initialized to
true, indicates whether ni must receive a message from nj before continuing. Also, the

Boolean indicates, if = false,

whether the message corresponding to was a null message. Finally,
the auxiliary set Xi and variable ti are also employed.

Algorithm A_Simulate_C:

 Variables:

 =0;
 statei = xi(0);

 = 0 for all nj ∊ I_Neigi;

 for all nj ∊ O_Neigi;

 = 0 for all nj ∊ O_Neigi;

 = true for all nj ∊ I_Neigi;

 for all nj ∊ I_Neigi;
 Xi;
 ti.

Listing 10.5

 Input:
 msgi = nil.
 Action if ni ∊ N0:
 Let Xi ⊆ O_Neigi be the set of nodes to which event's are to be
 sent;
 for nj ∊ Xi do
 begin

 Let ti > be the time of the event to be sent to nj;
 if ti ≤ T then
 Send event(ti) to nj;

 if ti > T or I_Neigi = then
 Send null(T) to nj

 end;
 for nj ∉ Xi do
 begin

 := min{ + 1 + ,T};

 Send) to nj

 end.

Listing 10.6

 Input:
 msgi = event(t) such that origini(msgi) = (nj → ni).

 Action when :

 := false;

 := false;

 := t;

 if not for all nk ∊ I_Neigi then
 begin

 Let nk ∊ I_Neigi be such that ≤ for
 all nl ∊ I_Neigi;

 :=

 if then Xi :=
 else
 begin
 Update statei;
 Let Xi ⊆ O_Neigi be the set of nodes to which
 event's are to be sent
 end;
 for nl ∊ Xi do
 begin

 Let ti > be the time of the event to be sent to
 nl;
 if ti ≤ T then
 Send event(ti) to nl

 else
 Send null(T) to nl

 end;
 for nl ∉ Xi do
 begin

 if < min{ + 1 + , T} then
 begin

 := min{ + 1 + , T};

 Send to nl

 end
 end;

 := true
 end.

Listing 10.7

 Input:
 msgi = null(t) such that origini(msgi) = (nj → ni).

 Action when

 := false;

 := true;

 := t;

 if not for all nk ∊ I_Neigi then
 begin

 Let nk ∊ I_Neigi be such that ≤ for
 all nl ∊ I_Neigi;

 :=

 if then Xi:=
 else
 begin

 Update statei;
 Let Xi ⊆ O_Neigi be the set of nodes to which
 event's are to be sent
 end;
 for nl ∊ Xi do
 begin

 Let ti > be the time of the event to be sent to
 nl;
 if ti ≤ T then
 Send event(ti) to nl

 else
 Send null(T) to nl

 end;
 for nl ∉ Xi do
 begin

 if < min{ + 1 + , T} then
 begin

 := min{ + 1 + , T};

 Send to nl

 end
 end;

 := true
 end.

In Algorithm A_Simulate_C, the set N0 is the set of all nodes that initiate the simulation

spontaneously. These nodes include those whose physical processes are in 0, but are

not restricted to them (if ni ∊ N0 but νi ∉ 0, then in (10.5) only null messages are sent).
Action (10.5) in the algorithm is executed by the nodes in N0, while actions (10.6) and (10.7)
are executed upon receipt by ni of an event message or a null message, respectively. Actions
(10.6) and (10.7) are identical to each other, except for the setting of variable

, nj, being the message's origin. It is important to note that, in
the algorithm, the causality and monotonicity properties are only implicitly ensured,
depending essentially of the portions of the simulation that relate to the nature of the physical
system under consideration. Another important observation is that, although in (10.6) and
(10.7) the determination of nk would be unique in the absence of null messages (by the
causality properties), when such messages are employed it may happen that the minimum

occurs for more than one node in I_Neigi. However, at most one such node
participates in the minimum with an event message instead of a null message, and it is to

such a neighbor that nk must be preferably set if it exists (the reader should try to be
convinced that, if this is the case, then the null messages for which the minimum time also
holds will not generate the sending of any messages when they are processed).

We now turn to establishing the algorithm's correctness.

Theorem 10.1.
Algorithm A_Simulate_C correctly simulates the physical system for all t ∊ {0,…, T}.
Proof: Every node corresponding to a physical process in N0 is in the set N0 of spontaneous
initiators. In addition, by (10.5) through (10.7) a node never sends any event(t) or null(t)
message for which t > T. Because the causality and monotonicity properties are guaranteed
to hold and all of G's edges are FIFO, what we need to show is that the simulation always

progresses so long as there exists at least one node ni for which < T.
Suppose, to the contrary, that a deadlock happens. It must then be, following our discussion
inSection 6.3,that a wait cycle exists in G. In this cycle, every node ni is precluded from
picking an event or null message to process because there exists nj ∊ I_Neigi such that

= true. Because N0 is nonempty, at least one such wait cycle has

to exist including at least one node ni such that either ni ∊ N0 or > 0. The message that
this ni needs from the corresponding nj in order to continue must carry a parameter t such

that t > when it is sent (by the causality properties), which means that there exists nk in

the cycle waiting for a message from ni with parameter t such that t > . But either by

(10.5) (if ni ∊ N0) or by (10.6) and (10.7) (if > 0), such a message must have been sent,

respectively spontaneously or when ni last updated It is then impossible for any such
wait cycle to exist, thence any deadlock as well.

10.3.2 Conditional events

The need for the structure of to be known and the potentially excessive traffic of null
messages in Algorithm A_Simulate_C have led to the search for other conservative methods.
As we mentioned earlier, some of the other methods that have been proposed are based on
the use of deadlock detection, instead of prevention, although in them the need to know the

structure of still persists. In this section, we do not assume that the structure of is
known, and then take G to be a complete undirected graph. G's edges are still assumed to
be FIFO edges.
The approach that we discuss in this section is based on the following observation. In a
sequential simulation, every event in the single queue of events is a conditional event, in the
sense that it must only be scheduled to happen when it reaches the head of the queue, at
which time it becomes a definite event. In Algorithm A_Simulate_C, definite events were
determined by restraining the input of messages to a node. In other words, only upon having
received exactly one message from each neighbor did a node choose from those messages
one to be processed. If the chosen message was an event message, then event messages
corresponding to definite events were output.
The method to turn conditional events into definite events is in this section different. The
messages exchanged among nodes are still event and null messages, but the latter no
longer have a deadlock-prevention connotation, but rather are only used to convey
lookahead and termination information. Node ni no longer restrains the receipt of messages,
but rather assumes that every incoming event message corresponds to a definite event and
because every edge is FIFO they may therefore be acted upon immediately. In order for this

assumption to be valid globally, ni makes sure that only event messages that correspond to
definite events are output. To this end, ni computes on every event or null message it
receives, and as a result produces as many event and null messages as it can. The null
messages it produces, having solely a lookahead- or termination related meaning, are
immediately output when they are generated. Messages of the event type, however, are
stored in a set eventsi until the events to which they correspond can become definite, at
which time the messages are sent out. At all times, a variable nexti indicates the least time t
associated with the event(t)'s in eventsi.
Determining which of the event messages are to be sent out as definite events (and when
this is to happen) is the crux of the approach, and is achieved as follows. For all nk ∊ N, node

ni maintains a collection of variables to contain local views of nextk . For each such

nk, node ni also maintains the variables and to indicate the number of
messages (of either type) it ever sent to nk or received from nk, respectively. Similarly, for all

ordered pairs of nodes (nk ,nl), a collection of variables and is
also maintained to indicate ni's views of the number of messages sent by nk to nl and
received by nk from nl, respectively.
In order to describe the computation that takes place on these variables, we need to resort to
the terminology of Section 5.2.1,where we described an algorithm for global state recording
on a substrate computation. In the present case, we regard as a substrate computation the
computation that the nodes perform that is related to the simulation proper. That is, ni's
participation in the substrate is to compute on event and null messages it receives, thereby

updating all the variables involved, including the variables eventsi , nexti, the 's, and

the 's. On top of this substrate computation, a global state recording is
performed periodically. The goal of these recordings is to seek global states in which all
edges are empty, and then Algorithm A_Record_Global_State of Section 5.2.1offers no help.
Instead, we recall our observation in Section 5.2.2on the possibility of recording such global
states by a leader, except that no leader will in this case be employed, but rather the
recording will be done by all nodes acting as "leaders."
The following is then how the substrate and the global state recording interact. The local

state to be recorded at node ni comprises the variables nexti, the 's, and the

's. These variables must be recorded (respectively in available 's,

's, and 's) from time to time, specifically a finite time after one of
them changes. In addition, a finite time after the recording they must be broadcast to all other
nodes. Node ni, now in its role as the aforementioned "leader," collects such broadcasts in

available 's, 's, and 's, and looks for system states in which

= for all ordered pairs (nk, nl). In these system states, all edges
are empty, so they must constitute global states, as we observed in Section 5.2.2.If such a

global state is detected at which ≤ for all nk ∊ N, then ni is sure never

to add another event(t) such that t ≤ to eventsi. Consequently, every event(t) ∊

eventsi such that t = is seen to correspond to a definite event, and may be sent to its
destination, while statesi and nexti are updated accordingly.

We do not provide any further details on this algorithm, but rather leave providing such
details for the reader to undertake as an exercise (cf. Exercise 5).
As a final remark, we note that, in addition to the overall scheme for turning conditional
events into definite events we just described, node ni may at any time detect, based on
specifics of the application at hand, that certain conditional events are in fact definite and
may be sent out without waiting for any global information. This is valid for sequential
simulations as well (an event that is not at the head of the queue may, depending on the
application, be processed), although it makes little sense in that case.

10.4 Optimistic event-driven simulation
Optimistic methods of distributed simulation are based on the premise that it may be more
efficient to let causality errors occur and then fix them than to rely on lookaheads and other
application-specific properties in the search for efficiency. Physical systems for which this
premise has proven valid include systems of colliding particles and evolving populations. In
this section, then, there is no place for such things as lookaheads and null messages.

Similarly, the structure of is not assumed to be known, so that G, whose edges no longer
have to be FIFO, is taken to be a complete undirected graph.
The mechanism that we describe in this section for optimistic distributed simulation is known

as the time warp mechanism, perhaps in allusion to the possibility that, at node ni, may
move back and forth as the need arises for errors to be corrected. The essence of this

mechanism is the following. Whenever ni receives an event(t) message such that t > it

sets to t, computes on the message it received, and possibly sends out event(t)'s for

some t > . Because no precautions are taken to ensure that such events are definite (in

the terminology of Section 10.3.2),it may well happen that a event(t) reaches ni with t ≤ ,
thereby indicating that whatever state updates were done or event messages were sent in

the interval {t, …, } were erroneous and must therefore be corrected. This arriving event
(t) message is often referred to as a "straggler."
The approach of the time warp mechanism to correcting such errors when they are detected
is to return the simulation globally to a correct global state, and then to proceed from there. In
order to be able to perform such "rollbacks," every node must store some of its past history,
so that earlier states can be restored when necessary. At node ni, this history has two queue
components, called state_queuei and output_queuei. An element of state_queuei is the pair
(t,x), indicating the state x of the physical process νi at time t. This queue is initialized to nil,
and receives a new pair whenever statei is updated. An element of output_queuei is the triple

(t,t', nk), indicating that ni sent nk an event(t') message when was equal to t. This queue is
initialized to nil, and receives a new triple whenever ni sends an event message. Both
queues are kept in increasing order of t (nondecreasing for output_queue i, for there may be

multiple event's sent for fixed).

When a straggler arrives with a t parameter, is set to t and statei is set to x in the (t',x)
pair in state_queuei. Here t' is the greatest integer less than t for which a pair exists in
state_queuei. This queue is then shortened to contain pairs with time components no greater
than t'. Before resuming normal processing, however, ni has to annul the effect of every

event it sent when = t or later. This is achieved by sending an anti-event(t') message to
the nk in every triple (t+,t',n k) in output_queue i such that t+ ≥ t, and then shortening the queue
by the removal of those triples. It only remains for us to discuss how to handle the reception
of such anti-event's.

Because G's edges are not assumed to be FIFO, an anti_event(t) arriving at node ni may be
following the event(t) to which it corresponds or it may be ahead of the event(t). In the former
case, the anti_event is also a straggler upon arrival, and should be trated as we discussed
previously. In the latter case, ni needs a mechanism to remember the arrival of the anti-event
(t), so that, when the event(t) arrives, it is not acted upon. In order to implement this
mechanism, node ni maintains yet another queue, called input_queuei and initialized to nil,
where the pair (t,nk) corresponding to an anti-event(t) from nk that does not arrive as a
straggler is stored in increasing order of t. An arriving event(t) from node nk that finds the pair
(t,nk) in input_ queuei is rendered ineffective, while the queue is shortened by the removal of
that pair. (Note that, by the causality properties, only the t's would have to be stored in
input_queue i; however, anti-message's occur in erroneous situations, thence the additional
precaution of storing the messages' origins as well.)
This strategy is realized by Algorithm A_Simulate_TW ("TW" for Time Warp), given next. In
addition to the variables already described, the algorithm also employs the auxiliary variable
ti. Contrasting with our initial approach in Section 10.1, no queue of event messages to be
processed is really needed. Instead, node ni in Algorithm A_Simulate_TW acts upon such
messages as they are received.

Algorithm A_Simulate_TW:

 Variables:

 =0;
 statei = xi(0);
 state_queuei = nil;
 output_queuei = nil;
 input_queuei = nil;
 ti.

Listing 10.8

 Input:
 msgi = nil.
 Action if ni ∊ N0:

 Append (, statei) to state_queuei;
 for nj ∊ Neigi do
 if there exists event to be sent to nj then
 begin

 Let ti > be the time of the event to be sent to nj;
 if ti ≤ T then
 Send event(ti) to nj

 end.

Listing 10.9

 Input:
 msgi = event(t) such that origini(msgi) = (ni, nj).
 Action:
 if there exists (t, nj) in input_queuei then
 Remove (t, nj) from input_queuei

 else
 begin

 if t ≤ then
 begin
 Let t' be the greatest integer such that t' < t and
 there exists (t', x) in state_queuei;
 statei := x;
 Remove all (t+, x') such that t+ ≥ t from
 state_queuei;
 for all (t+, t', nk) in output_queuei such that t+ ≥
 t do
 begin
 Remove (t+, t', nk) from output_queuei;
 Send anti-event(t') to nk

 end
 end;

 := t;
 Update statei;

 Append (, statei) to state_queuei;
 for nk ∊ Neigi do
 if there exists event to be sent to nk then
 begin

 Let ti > be the time of the event to be
 sent to nk;
 if ti ≤ T then
 begin

 Append (, ti, nk) to output_queuei;
 Send event(ti) to nk

 end
 end
 end.

Listing 10.10

 Input:
 msgi = anti-event(t) such that origini(msgi) = (ni, nj).
 Action:

 if t ≤ then
 begin
 Let t' be the greatest integer such that t' < t and there
 exists (t', x) in state_queuei;
 statei ≔ x;
 Remove all (t+, x') such that t+ ≥ t from state_queuei;
 for all (t+, t', nk) in output_queuei such that t+ ≥ t do
 begin
 Remove (t+, t', nk) from output_queuei;
 Send anti-event(t') to nk

 end;

 := t
 end
 else
 Add (t, nj) to input_queuei.

The set N0 in Algorithm A_Simulate_TW comprises the nodes whose physical processes are

in 0. Action (10.8) corresponds to the processing on events at physical processes in

0, while actions (10.9) and (10.10) correspond, respectively, to the receipt at ni, of an
event(t) message and an anti-event(t) message. Both actions include n i's participation in a
rollback if the message is a straggler. In the case of an event message, this participation in
the rollback is followed by the processing of the event. If the message is not a straggler, then
the corresponding event is processed in (10.9) or a new element is added to input-queuei . in
(10.10).
The reader will have noticed that the sending of event's in (10.8) and in (10.9) differ from
each other in that (10.8) does not include any additions to output_queue i. As a result,
output_queuei does not contain any pair (0, t', nk). What this amounts to is that provisions are

not made for a possible rollback of the simulation in which n i must return to =0.
The reason why such provisions are indeed unnecessary, and in fact why numerous other
properties of Algorithm A_Simulate_TW and variations thereof hold, relies on the following

definition. At any global state, consider the minimum of the following quantities: for all ni

∊ N, and for every message in transit sent by node ni the value of at the moment the
message was sent. This minimum is called the global virtual time at that global state, known
mainly by the acronym GVT (for Global Virtual Time).

Theorem 10.2.

In Algorithm A_Simulate_TW, is never set to a value t ≤ GVT.

Proof: The value of is only changed to t upon receipt of an event (t) in (10.9) or an anti-
event(t) in (10.10). By the physical system's causality properties, any such message, when

sent by nk ∊ N, must have been sent when < t. The theorem then follows from the

observation that GVT ≤ (and consequently GVT < t) at any global state in which the said
message is in transit.
At the initial global state of the simulation, GVT = 0. The reason why output_queuei does not
contain any elements with a zero time component for any node ni is then immediate from
Theorem 10.2. This theorem, in addition, implies the following.

Corollary 10.3.
Algorithm A_Simulate_TW correctly simulates the physical system for all t ∊{0,…,T}.
Proof: This is an immediate consequence of the fact that every node whose physical

process is in 0 is in N0, the fact that in (10.8) and in (10.9) event(t)'s are never sent with t
> T, and the physical system's causality properties, if only we consider that, by Theorem
10.2, progress in the simulation is always guaranteed.
In addition to being instrumental in establishing the correctness of Algorithm
A_Simulate_TW, the GVT concept is also useful in other situations, including memory
management at the various nodes. Specifically, the only pairs that need to be maintained in
state_queuei at any node ni are those with time component t' ≥ t, where t is the greatest

integer such that t ≤ GVT for which a pair exists in state_queue i. Similarly, output_queue i

need not contain any (t, t', nk) for t ≤ GVT. These are immediate consequences of Theorem
10.2.
When employed for such memory management purposes, the value of GVT needs from time
to time to be accessible locally to the nodes. Regardless of which technique is employed for
this to happen (either a global state recording algorithm in the fashion of Section 5.2.1 or
some of the other techniques present in the literature requiring fewer messages), event and
anti-event messages can no longer be sent as we have introduced them, but instead must

include another time parameter to store the value of the variables at the time they are

sent. So these messages must then be sent by ni as event(, t) and anti-event (, t),
respectively.
Let us make one final observation before leaving this section. As we remarked in Section

10.1,the updating by node ni of statei is implicitly taken as also implying that the pair (,
statei) is output. It should be clear to the reader that guaranteeing this in Algorithm
A_Simulate_TW requires a little more elaboration. Specifically, such a pair can only be output

if ≤ GVT, thereby providing another justification for the need to acquire estimates of GVT
locally from time to time.

10.5 Hybrid timing and defeasible time-stepping
There are physical systems in which the states of the physical processes change in
a way that does not entirely fall into any of the two categories we introduced in
Section 10.1. For such systems, the methods we have seen so far in the book are
inadequate, and other alternatives have to be devised. In this section, we briefly
describe an example of such physical systems and outline a simulation strategy
that can be regarded as a hybrid between some of the approaches we have
studied. The physical system we describe arises from problems in nuclear physics,
and it appears that some phenomena associated with the dynamics of stellar cores
can be modeled likewise.
The physical system consists of p interacting particles in three-dimensional space.
At time t ≥ 0, the particles' positions are z1(t),…,zp(t) and their momenta are p 1(t),
…,pp(t). All particles have mass m, and their behavior can be modeled by integral-
differential equations whose solution cannot be obtained analytically or even
numerically within reasonable bounds on the required computational resources.
The approach to solving them is then to employ a heuristic that assumes simpler
modeling equations and uses randomness to guarantee accuracy. We describe
such a heuristic next.
For 1 ≤ k ≤ p, the behavior of the kth particle is assumed to follow the equations

where U is a potential and ρ(z k(t)) is the average particle density in the vicinity of
point zk(t) at time t. The average here is the average over a large number, call it N,
of random initial conditions, so what is required is the solution of Np pairs of
differential equations like the ones we showed. These equations are very tightly
coupled with one another, so what we have is not the typical situation in which N
independent solutions are required, in which case distributed methods can hardly
be recommended within the context of obtaining each of the individual solutions.
Instead, our problem is to solve for the positions and momenta of Np interacting
particles, based on equations that require knowledge, at all times, of the average
particle density, over N, near the particles' positions.

Because analytical methods to solve this system of equations are not known either,
the sequential approach is to employ simulation. For a conveniently chosen Δt, the
simulation starts at initial positions and momenta for all Np particles and computes
these quantities for the discrete times Δt, 2Δt,…,T. It is, in this sense, a time-
stepped simulation. If t is any of these discrete times, then the solutions at t are
computed from the solutions at t − Δt and from the average densities
corresponding to the interval [t − Δt, t). The problem, naturally, is the computation
of such densities, because they depend on how the particles interact with one
another during that interval. What is done in the sequential method is to perform an
event-driven simulation for each of the intervals, with provisions for events not to be
generated for occurrence at times t' such that t' ≥ t.
This hybrid sequential method has an obvious distributed counterpart, which is the
following. The time-stepped portion can be achieved by a synchronous algorithm.
By means of any of the synchronizers seen in Section 5.3, this synchronous
algorithm can be turned into an asynchronous one. The processing for each pulse
is an event-driven simulation that must terminate before nodes are allowed to
progress to further pulses. This event-driven simulation can employ any of the
approaches we discussed in Sections 10.3 and 10.4, for example.
An alternative that is not so tightly synchronized is to employ essentially the same
guidelines we just described, with the slight modification that an optimistic method
be used within each pulse, and that pulses, like events in the optimistic simulation,
be defeasible, in the sense of being prone to annulment by way of rollbacks. Let us
be a little more specific on a method, called defeasible timestepping, that proceeds
along these lines.
We present the method's essentials for the case of the physical system introduced
at the beginning of this section. A physical process is a region in the portion of
three-dimensional space to which the particles are confined, so the overall

structure of is quite well known. Within each time interval, the events that
characterize the interaction among the physical processes are the arrival of

particles from neighboring regions in space, so is an undirected graph.

Defeasible time-stepping operates on a graph G that is isomorphic to for this
particular problem.
In order to carry out the event-driven simulation corresponding to each time
interval, a logical process requires the particle densities at points within its own
physical process and at points in adjacent physical processes that are in the vicinity
of the boundary between the two. What this implies is that logical processes must,
at the end of each time interval, send information on the appropriate densities to all
of their neighbors in G. Clearly, then, the synchronization method that is best suited
is the particularization of Synchronizer Alpha that we saw in Section 5.3.2(i.e.,
Algorithm A_Schedule_AS), provided edges are FIFO, as we do assume for the
sake of simplicity. So the time-stepped portion of the simulation is in principle
performed in much the same lines as those of Section 10.2.
A logical process starts participating in the event-driven simulation that
corresponds to a time interval as soon as it receives the necessary densities from
all of its neighbors corresponding to the previous time interval. This event-driven
simulation is performed optimistically, say by means of techniques similar to the
one introduced inSection 10.4. When a logical process judges that it may have
finished participating in the simulation for the current time interval, it sends
densities out to its neighbors. If it then receives a straggler to be processed in that
same time interval (or in an earlier one), it must correct the effects of the premature
signal for its neighbors to proceed to the next time interval. Overall, events and
messages carrying densities are processed optimistically, and may then have to be
revised upon the occurrence of errors. The techniques employed to this end are
pretty similar to those of Section 10.4. We provide no further details here, but
encourage the reader to seek additional information in the pertinent literature.

10.6 A general framework

In this section, we provide a brief description of a framework that may help visualize how all
the different approaches to the simulation of physical systems relate to one another. The
overall goal of such a unified understanding has some obvious aesthetic connotations, but
more importantly is to provide an intuitive basis for the development of new methods for
physical systems with new characteristics.

In this unifying framework, the physical system is viewed as a two-dimensional grid, with one
dimension (say the "horizontal") used to represent the physical processes and the other (the
"vertical") used to represent time. Each point in this grid corresponds to a physical process
and a time instant. The goal of a simulation method is to fill out the grid by assigning to each
point the state of the corresponding physical process at the corresponding time.

In broad terms, a logical process may correspond to any set of points in the grid. The task of
the logical process is to fill out the points in that set. Our approach throughout this chapter
has been to restrict such sets to being vertical stripes, but there is in principle no reason why
logical processes may not have different shapes.

Sequential simulation methods can be viewed as employing one single logical process
corresponding to the entire grid. The distributed methods we have studied all restrict each
vertical stripe to correspond to exactly one physical process. Sequential methods normally fill
out the grid in increasing order of time, and essentially this is what their distributed time-
stepped and conservative event-driven counterparts do as well. Optimistic event-driven
methods also have the overall goal of doing that, but they do it in a rather unsynchronized
manner, and occasionally points that have been filled out may have to be erased for later
reconsideration.

Although all the methods we have studied adopt such a vertical-stripe approach to filling out
the grid, the use of other subdivisions in the distributed case accounts for interesting
possibilities. For example, any arrangement other than the one based on vertical stripes
requires more than one logical process to simulate the same physical process, however for
different time intervals. Whether physical systems exist for which such an arrangement of
logical processes is capable of performing efficiently remains largely to be seen.

10.7 Exercises
1. Provide the termination details for the two cases discussed in Section 10.2. Assume, in both
cases, that an additional node, n0, exists whose function is to detect termination. Provide a
solution for each of the following two cases. First, all nodes update the states of their physical
processes the same number of times. Second, nodes perform updates until some global
convergence criterion is met.
2. Provide an algorithm for the time-stepped simulation of fully concurrent systems when edges
are not FIFO.
3. Provide a version of Algorithm A_Schedule_PC in which the initial propagation of states is
selective, depending on the initial orientation.
4. Complete action (10.4) by specifying how to update
5. Write the algorithm described inSection 10.3.2.
6. Discuss an alternative to the use of anti-event's if G's edges are FIFO.

1.

Provide the termination details for the two cases discussed in
Section 10.2. Assume, in both cases, that an additional node, n0,
exists whose function is to detect termination. Provide a solution
for each of the following two cases. First, all nodes update the
states of their physical processes the same number of times.
Second, nodes perform updates until some global convergence
criterion is met.

2. Provide an algorithm for the time-stepped simulation of fully
concurrent systems when edges are not FIFO.

3.

Provide a version of Algorithm A_Schedule_PC in which the initial
propagation of states is selective, depending on the initial
orientation.

4.
Complete action (10.4) by specifying how to update

5.
Write the algorithm described inSection 10.3.2.

6.
Discuss an alternative to the use of anti-event's if G's edges are
FIFO.

10.8 Bibliographic notes
There are many sources of reference to complement the introductory material presented in
Section 10.1. A general introduction to the role played by highperformance computation in
the analysis of physical systems is given by Fox and Otto (1986). Readers wanting to
concentrate on the simulation of physical systems based on continuous-time may need to
acquire a deeper understanding of the mathematics involved (Wylie, 1975; Luenberger,
1979), while those whose interest lies mainly on the study of discrete-time physical systems
may wish to check some of the paradigmatic problems in the area, as the firing squad
problem (Jiang, 1989) and the chip firing problem (Spencer, 1986). Overviews of various
aspects of distributed event-driven simulation can be found in many places, including Misra
(1986), Fujimoto (1990a), Fujimoto (1993), and Nicol and Fujimoto (1994). A discussion on
the relation between distributed simulation and the notions of knowledge of Section 2.3 has
been given by Loucks and Preiss (1990). Alonso, Frutos, and Palacio (1994) provide a
comparative study of conservative and optimistic methods, while Lin (1993) discusses the
termination of event-driven simulations. Pohlmann (1991) discusses an approach that
departs from our taxonomy.
Section 10.2 is entirely based on Barbosa and Lima (1990) and on Barbosa (1991; 1993),
where the time-stepped simulation of numerous physical systems is considered. These
include cellular automata (von Neumann, 1966; Wolfram, 1986), analog Hopfield neural
networks (Hopfield, 1984), neural networks to solve linear systems and linear programming
problems (de Carvalho and Barbosa, 1992), binary Hopfield neural networks (Hopfield,
1982), systems under simulated annealing (Kirkpatrick, Gelatt, and Vecchi, 1983; Gafni and
Barbosa, 1986; Barbosa and Gafni, 1989a; Barbosa and Boeres, 1990), Markov random
fields (Geman and Geman, 1984), Boltzmann machines (Hinton, Sejnowski, and Ackley,
1984), and Bayesian networks (Pearl, 1988; Eizirik, Barbosa, and Mendes, 1993).
The pioneering work on conservative methods for distributed simulation (and hence for
distributed simulation in general) was done independently by Bryant (1977) and by Chandy
and Misra (1979). It is on the work of Chandy and Misra (1979) that Section 10.3.1 is based.
Section Section 10.3.2.is based on the later work by Chandy and Sherman (1989b). In the
context of conservative methods, various authors have addressed the question of reducing
the number of null messages, as for example De Vries (1990) and Preiss, Loucks,
MacIntyre, and Field (1990). Similarly, the effects of the absence of lookaheads (Lin,
Lazowska, and Baer, 1990) and of their presence (Preiss and Loucks, 1990) have also been
studied. Other studies on conservative methods have been conducted by Chandy and Misra
(1981)—where a deadlock-detection strategy is employed in place of prevention, Mehl
(1990), Yu, Ghosh, and DeBenedictis (1990), Lin, Lazowska, and Hwang (1992), Nicol
(1992), Ayani and Rajaei (1994), Blanchard, Lake, and Turner (1994), Teo and Tay (1994),
and Wood and Turner (1994).
Fujimoto (1990b) presents a survey of optimistic methods for distributed simulation, and
Preiss, MacIntyre, and Loucks (1992) elaborate on the relation between "optimism" and
memory availability in optimistic methods. Section 10.4 on the time warp mechanism is
based on Jefferson (1985). For studies on the management of memory during optimistic
simulations, the reader is referred to Lin (1994), for a treatment related to optimistic methods
in general, and to Lin and Preiss (1991) and Das and Fujimoto (1994), for a treatment within
the context of the time warp mechanism. Methods for the periodic computation of GVT have
been proposed by many authors, including, more recently, Mattern (1993), Srinivasan and
Reynolds (1993), and D'Souza, Fan, and Wilsey (1994). Strategies for limiting a method's
optimism have also been investigated, and can be looked up, for example, in the works by

Sokol, Briscoe, and Wieland (1988), Sokol, Stucky, and Hwang (1989), Sokol and Stucky
(1990), and Sokol, Weissman, and Mutchler (1991). Additional relevant publications on
optimistic methods include Prakash and Subramanian (1992) and Nicol (1993).
Section 10.5 is based on Wedemann, Barbosa, and Donangelo (1995). Details on the
physical system described in that section can be found in Aichelin and Bertsch (1985),
Bertsch and Gupta (1988), and Bauer, Bertsch, and Schulz (1992).
Material related to our discussion in Section 10.6 is available from Chandy and Sherman
(1989a), Bagrodia, Chandy, and Liao (1991), and Jha and Bagrodia (1994).

Bibliography

Acharya, A., and B. R. Badrinath (1992). Recording distributed snapshots based on causal order
of message delivery. Information Processing Letters 44, 317-321.

Afek, Y., B. Awerbuch, and E. Gafni (1987). Applying static network protocols to dynamic
networks. In Proc. of the Annual Symposium on Foundations of Computer Science, 358-370.

Afek, Y., and E. Gafni (1991). Time and message bounds for election in synchronous and
asynchronous complete networks. SIAM J. on Computing 20, 376-394.

Afek, Y., and E. Gafni (1994). Distributed algorithms for unidirectional networks. SIAM J. on
Computing 23, 1152-1178.

Afek, Y., and S. Kutten (1991). Memory-efficient self stabilizing protocols for general networks. In
Proc. of the (1990) International Workshop on Distributed Algorithms, 15-28.

Afek, Y., and M. Ricklin (1993). Sparser: a paradigm for running distributed algorithms. J. of
Algorithms 14, 316-328.

Agarwal, A., R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim, K.
Mackenzie, and D. Yeung (1995). The MIT Alewife machine: architecture and performance. In
Proc. of the Annual International Symposium on Computer Architecture, 2-13.

Aggarwal, S., and S. Kutten (1993). Time optimal self-stabilizing spanning tree algorithms. In
Proc. of the Conference on Foundations of Software Technology and Theoretical Computer
Science, 400-410.

Agrawal, D., and A. E. Abbadi (1989). An efficient solution to the distributed mutual exclusion
problem. In Proc. of the Annual ACM Symposium on Principles of Distributed Computing, 193-
200.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1989). Network flows. In G. L. Nemhauser, A. H. G.
Rinnooy Kan. and M. J. Todd (Eds.), Handbooks in Operations Research and Management
Science, Vol. 1: Optimization, 211-369. North-Holland, Amsterdam, The Netherlands.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network flows: Theory, Algorithms, and
Applications. Prentice-Hall, Englewood Cliffs, NJ.

Aichelin, J., and G. Bertsch (1985). Numerical simulation of medium energy heavy ion reactions.
Physical Review C 31, 1730-1738.

Akl, S. G. (1989). The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs,
NJ.

Alagar, S., and S. Venkatesan (1994). An optimal algorithm for distributed snapshots with causal
message ordering. Information Processing Letters 50, 311-316.

Ali, H. H., and H. El-Rewini (1993). Task allocation in distributed systems: a split graph model. J.
of Combinatorial Mathematics and Combinatorial Computing 14, 15-32.

Ali, H. H., and H. El-Rewini (1994). On the intractability of task allocation in distributed systems.
Parallel Processing Letters 4, 149-157.

Almasi, G. S., and A. Gottlieb (1989). Highly Parallel Computing. Benjamin/Cummings, Redwood
City, CA.

Alonso, J. M., A. A. Frutos, and R. B. Palacio (1994). Conservative and optimistic distributed
simulation in massively parallel computers: a comparative study. In Proc. of the International
Conference on Massively Parallel Computing Systems, 528-532.

Anderson, R. J., and J. C. Setubal (1992). On the parallel implementation of Goldberg's maximum
flow algorithm. In Proc. of the Annual ACM Symposium on Parallel lgorithms and Architectures,
168-177.

Andrews, G. R. (1991). Concurrent Programming: Principles and Practice. Benjamin/Cummings,
Menlo Park, CA.

Andrews, G. R., and F. B. Schneider (1983). Concepts and notations for concurrent programming.
ACM Computing Surveys 15, 3-43.

Angluin, D. (1980). Local and global properties in networks of processors. In Proc. of the Annual
ACM Symposium on Theory of Computing, 82-93.

Arjomandi, E., M. J. Fischer, and N. A. Lynch (1983). Efficiency of synchronous versus
asynchronous distributed systems. J. of the ACM 30, 449-456.

Arlauskas, S. (1988). iPSC/2 system: a second generation hypercube. In Proc. of the Conference
on Hypercube Concurrent Computers and Applications, Vol. 1, 38-42.

Attiya, H., and M. Snir (1985). Computing on an anonymous ring. In Proc of the Annual ACM
Symposium on Principles of Distributed Computing, 196-203.

Attiya, H., and M. Snir (1991). Better computing on the anonymous ring. J. of Algorithms 12, 204-
238.

Attiya, H., M. Snir, and M. K. Warmuth (1988). Computing on an anonymous ring. J. of the ACM
35, 845-875.

Awerbuch, B. (1985a). Complexity of network synchronization. J. of the ACM 32, 804-823.

Awerbuch, B. (1985b). Reducing complexities of the distributed max-flow and breadth-first-search
algorithms by means of network synchronization. Networks 15, 425-437.

Awerbuch, B. (1987). Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems: detailed summary. In Proc. of the Annual ACM Symposium
on Theory of Computing, 230-240.

Awerbuch, B. (1989). Distributed shortest paths algorithms. In Proc. of the Annual ACM
Symposium on Theory of Computing, 490-500.

Awerbuch, B., S. Kutten, and D. Peleg (1994). On buffer-economical store-and-forward deadlock
prevention. IEEE Trans. on Communications 42, 2934-2937.

Awerbuch, B., and D. Peleg (1990). Network synchronization with polylogarithmic overhead. In
Proc. of the Annual Symposium on Foundations of Computer Science, 514-522.

Awerbuch, B., and G. Varghese (1991). Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In Proc. of the Annual Symposium on Foundations of
Computer Science, 258-267.

Ayani, R., and H. Rajaei (1994). Parallel simulation based on conservative time windows: a
performance study. Concurrency: Practice and Experience 6, 119-142.

Bae, J. J., and T. Suda (1991). Survey of traffic control schemes and protocols in ATM networks.
Proc. of the IEEE 79, 170-189

Bagheri, B., A. Ilin, and L. Ridgeway Scott (1994). A comparison of distributed and shared
memory scalable architectures. 1. KSR shared memory. In Proc. of the Scalable High-
Performance Computing Conference, 9-16.

Bagrodia, R., K. M. Chandy, and W. T. Liao (1991). A unifying framework for distributed
simulation. ACM Trans. on Modeling and Computer Simulation 1, 348-385.

Barbosa, V. C. (1986). Concurrency in systems with neighborhood constraints. Ph.D. dissertation,
Computer Science Department, University of California, Los Angeles, CA.

Barbosa, V. C. (1990a). Strategies for the prevention of communication deadlocks in distributed
parallel programs. IEEE Trans. on Software Engineering 16, 1311-1316.

Barbosa, V. C. (1990b). Blocking versus nonblocking interprocess communication: a note on the
effect on concurrency. Information Processing Letters 36, 171-175.

Barbosa, V. C. (1991). On the time-driven parallel simulation of two classes of complex
systems.Technical report ES-248/91 COPPE/UFRJ, Rio de Janeiro, Brazil.

Barbosa, V. C. (1993). Massively Parallel Models of Computation: Distributed Parallel Processing
in Artificial Intelligence and Optimization. Ellis Horwood, Chichester, UK.

Barbosa, V. C., and M. C. S. Boeres (1990). An Occam-based evaluation of a parallel version of
simulated annealing. In Proc. of Euromicro-90, 85-92.

Barbosa, V. C., L. M. de A. Drummond, and A. L. H. Hellmuth (1991a). From distributed
algorithms to Occam programs by successive refinements. Technical report ES-237/91,
COPPE/UFRJ, Rio de Janeiro, Brazil.

Barbosa, V. C., L. M. de A. Drummond, and A. L. H. Hellmuth (1991b). An integrated software
environment for large-scale Occam programming. In Proc. of Euromicro-91, 393-400.

Barbosa, V. C., L. M. de A. Drummond, and A. L. H. Hellmuth (1994). From distributed algorithms
to Occam programs by successive refinements. The J. of Systems and Software 26, 257-272.

Barbosa, V. C., and F. M. G. França (1988). Specification of a communication virtual processor
for parallel processing systems. In Proc. of Euromicro- 88, 511-518.

Barbosa, V. C., and E. Gafni (1987). Concurrency in heavily loaded neighborhoodconstrained
systems. In Proc. of the International Conference on Distributed Computing Systems, 448-455.

Barbosa, V. C., and E. Gafni (1989a). A distributed implementation of simulated annealing. J. of
Parallel and Distributed Computing 6, 411-434.

Barbosa, V. C., and E. Gafni (1989b). Concurrency in heavily loaded neighborhoodconstrained
systems. ACM Trans. on Programming Languages and Systems 11, 562-584.

Barbosa, V. C., and H. K. Huang (1988). Static task allocation in heterogeneous distributed
systems. Technical report ES-149/88, COPPE/UFRJ, Rio de Janeiro, Brazil.

Barbosa, V. C., and P. M. V. Lima (1990). On the distributed parallel simulation of Hopfield's
neural networks. Software-Practice and Experience 20, 967-983.

Barbosa, V. C., and S. C. S. Porto (1995). An algorithm for FIFO message delivery among
migrating tasks. Information Processing Letters 53, 261-267.

Bar-Noy, A., and D. Dolev (1993). A partial equivalence between shared-memory and message-
passing in an asynchronous fail-stop distributed environment. Mathematical Systems Theory 26,
21-39.

Bauer, W., G. F. Bertsch, and H. Schulz (1992). Bubble and ring formation in nuclear
fragmentation. Technical report MSUCL-840, National Superconducting Cyclotron Laboratory,
Michigan State University.

Becher, J. D., and C. E. McDowell (1992). Debugging the MP-2001. In Proc. of New Frontiers, A
Workshop on Future Directions of Massively Parallel Processing, 48-57.

Bell, G. (1992). Ultracomputers: a teraflop before its time. Comm. of the ACM 35(8), 26-47.

Ben-Ari, M. (1982). Principles of Concurrent Programming. Prentice-Hall, Englewood Cliffs, NJ.

Berge, C. (1976). Graphs and Hypergraphs. North-Holland, Amsterdam, The Netherlands.

Bernard, G., D. Steve, and M. Simatic (1993). A survey of load sharing in networks of
workstations. Distributed Systems Engineering 1, 75-86.

Bertsch, G. F., and S. D. Gupta (1988). A guide to microscopic models for intermediate energy
heavy ion collisions. Physics Reports 160, 190-233.

Bertsekas, D. P., and R. G. Gallager (1987). Data Networks. Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas, D. P., and J. N. Tsitsiklis (1989). Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Englewood Cliffs, NJ.

Bertsekas, D. P., and J. N. Tsitsiklis (1991). Some aspects of parallel and distributed iterative
algorithms—a survey. Automatica 27, 3-21.

Bhargava, B., and S. R. Lian (1988). Independent checkpointing and concurrent rollback for
recovery: An optimistic approach. In Proc. of the IEEE Symposium on Reliable Distributed
System, 3-12.

Blanchard, T. D., T. W. Lake, and S. J. Turner (1994). Cooperative acceleration: robust
conservative distributed discrete event simulation. In Proc. of the Workshop on Parallel and
Distributed Simulation, 58-64.

Blumofe, R. D., and D. S. Park (1994). Scheduling large-scale parallel computations on networks
of workstations. In Proc. of the IEEE International Symposium on High Performance Distributed
Computing, 96-105.

Bodlaender, H. L., S. Moran, and M. K. Warmuth (1994). The distributed bit complexity of the ring:
from the anonymous to the non-anonymous case. Information and Computation 108, 34-50.

Bodlaender, H. L., and G. Tel (1990). Bit-optimal election in synchronous rings. Information
Processing Letters 36, 53-56.

Bollobás B. (1985). Random Graphs. Academic Press, London, UK.

Bondy, J. A., and U. S. R. Murty (1976). Graph Theory with Applications. North Holland, New
York, NY.

Bouabdallah, A., and J.-C. Konig (1992). An improvement of Maekawa's mutual exclusion
algorithm to make it fault-tolerant. Parallel Processing Letters 2, 283-290.

Bracha, G., and S. Toueg (1984). A distributed algorithm for generalized deadlock detection. In
Proc. of the Annual ACM Symposium on Principles of Distributed Computing, 285-301.

Bryant, R. E. (1977). Simulation of packet communication architecture computer systems.
Technical report MIT/LCS/TR 88, Laboratory for Computer Science, MIT, Cambridge, MA.

Brzezinski, J., J.-M. Hélary, and M. Raynal (1993). Termination detection in a very general
distributed computing model. In Proc. of the International Conference on Distributed Computing
Systems, 374-381.

Burns, A. (1988). Programming in Occam2. Addison-Wesley, Wokingham, England.

Burns, J. E., and J. Pachl (1989). Uniform self-stabilizing rings. ACM Trans. on Programming
Languages and Systems 11, 330-344.

Calabrese, A., and F. M. G. França (1994). A randomised distributed primer for the updating
control of ANNs. In Proc. of the International Conference on Artificial Neural Networks, 585-588.

Carvalho, O., and G. Roucairol (1983). On mutual exclusion in computer networks. Comm. of the
ACM 26, 146-147.

Chandrasekaran, S., and S. Venkatesan (1990). A message-optimal algorithm for distributed
termination detection. J. of Parallel and Distributed Computing 8, 245-252.

Chandy, K. M., and L. Lamport (1985). Distributed snapshots: determining global states of
distributed systems. ACM Trans. on Computer Systems 3, 63-75.

Chandy, K. M., and J. Misra (1979). Distributed simulation: a case study in design and verification
of distributed programs. IEEE Trans. on Software Engineering 5, 440-452.

Chandy, K. M., and J. Misra (1981). Asynchronous distributed simulation via a sequence of
parallel computations. Comm. of the ACM 24, 198-206.

Chandy, K. M., and J. Misra (1984). The drinking philosophers problem. ACM Trans. on
Programming Languages and Systems 6, 632-646.

Chandy, K. M., and J. Misra (1988). Parallel Program Design: A Foundation. Addison-Wesley,
Reading, MA.

Chandy, K. M., and R. Sherman (1989a). Space-time and simulation. In Distributed Simulation,
Proc. of the SCS Multiconference, 53-57.

Chandy, K. M., and R. Sherman (1989b). The conditional event approach to distributed
simulation. In Distributed Simulation, Proc. of the SCS Multiconference, 93-99.

Chang, E. (1980). n philosophers: an exercise in distributed control. Computer Networks 4, 71-76.

Chang, H.-K., and S.-M. Yuan (1994). Message complexity of the tree quorum algorithm for
distributed mutual exclusion. In Proc. of the International Conference on Distributed Computing
Systems, 76-80.

Chaves Filho, E. M., and V. C. Barbosa (1992). Time sharing in hypercube multiprocessors. In
Proc. of the IEEE Symposium on Parallel and Distributed Processing, 354-359.

Chen, H., and J. Tang (1994). An efficient method for mutual exclusion in truly distributed
systems. In Proc. of the International Conference on Distributed Computing Systems, 97-104.

Chen, N.-S., H.-P. Yu, and S.-T. Huang (1991). A self-stabilizing algorithm for constructing
spanning trees. Information Processing Letters 39, 147-151.

Chin, F., and H. F. Ting (1990). Improving the time complexity of messageoptimal distributed
algorithms for minimum-weight spanning trees. SIAM J. on Computing 19, 612-626.

Choi, J., B. P. Miller, and R. H. B. Netzer (1991). Techniques for debugging parallel programs with
flowback analysis. ACM Trans. on Programming Languages and Systems 13, 491-530.

Chou, C.-T., and E. Gafni (1988). Understanding and verifying distributed algorithms using
stratified decomposition. In Proc. of the Annual ACM Symposium on Principles of Distributed
Computing, 44-65.

Choy, M., and A. K. Singh (1993). Distributed job scheduling using snapshots. In Proc. of the
International Workshop on Distributed Algorithms, 145-159.

Collin, Z., and S. Dolev (1994). Self-stabilizing depth-first search. Information Processing Letters
49, 297-301.

Cooper, R., and K. Marzullo (1991). Consistent detection of global predicates. In Proc. of the ACM
Workshop on Parallel and Distributed Debugging, 167-174.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest (1990). Introduction to Algorithms. The MIT
Press, Cambridge, MA.

D'Souza, L. M., X. Fan, and P. A. Wilsey (1994). pGVT: an algorithm for accurate GVT estimation.
In Proc. of the Workshop on Parallel and Distributed Simulation, 102-109.

Dally, W. J. (1990). Network and processor architecture for message-driven computers. In R.
Suaya and G. Birtwistle (Eds.), VLSI and Parallel Computation, 140-222. Morgan Kaufmann, San
Mateo, CA.

Dally, W. J., L. Chao, A. Chien, S. Hassoun, W. Horwat, J. Kaplan, P. Song, B. Totty, and S. Wills
(1987). Architecture of a message-driven processor. In Proc. of the Annual International
Symposium on Computer Architecture, 189-196.

Dally, W. J., and C. L. Seitz (1987). Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Trans. on Computers 36, 547-553.

Das, S. R., and R. M. Fujimoto (1994). An adaptive memory management protocol for Time Warp
parallel simulation. In Proc. of the ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, 201-210.

de Carvalho, L. A. V., and V. C. Barbosa (1992). Fast linear system solution by neural networks.
Operations Research Letters 11, 141-145.

De Vries, R. C. (1990). Reducing null messages in Misra's distributed discrete event simulation
method. IEEE Trans. on Software Engineering 16, 82-91.

Dijkstra, E. W. (1968). Cooperating sequential processes. In F. Genuys (Ed.), Programming
Languages, 43-112. Academic Press, New York, NY.

Dijkstra, E. W. (1974). Self-stabilizing systems in spite of distributed control. Comm. of the ACM
17, 643-644.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of programs.
Comm. of the ACM 18, 453-457.

Dijkstra, E. W. (1986). A belated proof of self-stabilization. Distributed Computing 1, 5-6.

Dijkstra, E. W., and C. S. Scholten (1980). Termination detection for diffusing computations.
Information Processing Letters 11, 1-4.

DIMACS (Center for Discrete Mathematics and Theoretical Computer Science) (1990). The first
DIMACS international algorithm implementation challenge: general information; problem
definitions and specifications; the core experiments. DIMACS, Rutgers University, Piscataway,
NJ.

Dinic, E, A. (1970). Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Doklady 11, 1277-1280.

Dolev, S. (1993). Optimal time self stabilization in dynamic systems. In Proc. of the International
Workshop on Distributed Algorithms, 160-173.

Dolev, S., and A. Israeli (1992). Uniform dynamic self-stabilizing leader election. In Proc. of the
(1991) International Workshop on Distributed Algorithms, 167-180.

Dolev, S., A. Israeli, and S. Moran (1991). Resource bounds for self-stabilizing message driven
protocols. In Proc. of the Annual ACM Symposium on Principles of Distributed Computing, 281-
293.

Drummond, L. M. de A. (1990). Design and implementation of a communication virtual processor.
M.Sc. thesis, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Rio de
Janeiro, Brazil. In Portuguese.

Drummond, L. M. de A., and V. C. Barbosa (1994). Distributed breakpoint detection in message-
passing programs. Technical report ES-306/94, COPPE/UFRJ, Rio de Janeiro, Brazil.

Dwork, C., and Y. Moses (1990). Knowledge and common knowledge in a Byzantine environment:
crash failures. Information and Computation 88, 156-186.

Edmonds, J. (1965). Maximum matching and a polyhedron with 0,1-vertices. J. of Research of the
National Bureau of Standards 69B, 125-130.

Eizirik, L. M. R., V. C. Barbosa, and S. B. T. Mendes (1993). A Bayesian-network approach to
lexical disambiguation. Cognitive Science 17, 257-283.

Eskicioglu, M. R., and L.-F. Cabrera (1991). Process migration: an annotated bibliography.
Technical Report RJ 7935 (72918), IBM Research Division, San Jose, CA.

Even, S. (1979). Graph Algorithms. Computer Science Press, Potomac, MD.

Fagin, R., J. Y. Halpern, and M. Y. Vardi (1992). What can machines know? On the properties of
knowledge in distributed systems. J. of the ACM 39, 328-376.

Fagin, R., and M. Y. Vardi (1986). Knowledge and implicit knowledge in a distributed environment:
preliminary report. In Proc. of the Conference on Theoretical Aspects of Reasoning about
Knowledge, 187-206.

Feldman, Y., and E. Shapiro (1992). Spatial machines: a more realistic approach to parallel
computation. Comm. of the ACM 35(10), 60-73.

Fernandes, E. S. T., C. L. de Amorim, V. C. Barbosa, F. M. G. França, and A. F. de Souza (1989).
MPH: a hybrid parallel machine. Microprocessing and Microprogramming 25, 229-232.

Fidge, C. (1991). Logical time in distributed computing systems. Computer 24(8), 28-33.

Fiorini, S., and R. J. Wilson (1977). Edge-Colourings of Graphs. Pitman, London, England.

Fischer, M. J., and N. Immerman (1986). Foundations of knowledge forsystems. In Proc. of the
Conference on Theoretical Aspects of Reasoning about Knowledge, 171-185.

Flatebo, M., and A. K. Datta (1992a). Distributed deadlock detection algorithms. Parallel
Processing Letters 2, 21-30.

Flatebo, M., and A. K. Datta (1992b). Self-stabilizing deadlock detection algorithms. In Proc. of the
ACM Computer Science Conference, 117-122.

Flatebo, M., and A. K. Datta (1992c). Simulation of self-stabilizing algorithms in distributed
systems. In Proc. of the Annual Simulation Symposium, 32-41.

Flatebo, M., and A. K. Datta (1994). Two-state self-stabilizing algorithms for token rings. IEEE
Trans. on Software Engineering 20, 500-504.

Ford, Jr., L. R., and D. R. Fulkerson (1962). Flows in Networks. Princeton University Press,
Princeton, NJ.

Fox, G. C., and W. Furmanski (1988). Load balancing loosely synchronous problems with a
neural network. In Proc. of the Conference on Hypercube Concurrent Computers and
Applications, Vol. 1. 241-278.

Fox, G. C., M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker (1988).
Solving Problems on Concurrent Processors, Vol. 1. PrenticeHall, Englewood Cliffs, NJ.

Fox, G. C., A. Kolawa, and R. Williams (1987). The implementation of a dynamic load balancer. In
M. T. Heath (Ed.). Hypercube Multiprocessors 1987, 114-121.SIAM, Philadelphia, PA.

Fox, G. C., and S. W. Otto (1986). Concurrent computation and-the theory of complex systems. In
M. T. Heath (Ed.), Hypercube Multiprocessors 1986, 244-268. SIAM, Philadelphia, PA.

Fox, G. C., R. D. Williams, and P. C. Messina (1994). Parallel Computing Works! Morgan
Kaufmann, San Mateo, CA.

França, F. M. G. (1994). Neural networks as neighbourhood-constrained systems. Ph.D. thesis,
Department of Electrical and Electronic Engineering, Imperial College of Science, Technology,
and Medicine, London, UK.

Freitas, L. de P. Sá and V. C. Barbosa (1991). Experiments in parallel heuristic search. In Proc. of
the International Conference on Parallel Processing, III-62-65.

Fromentin, E., and M. Raynal (1994). Inevitable global states: a concept to detect unstable
properties of distributed computations in an observer independent way. In Proc. of the IEEE
Symposium on Parallel and Distributed Processing, 242-248.

Fujimoto, R. M. (1990a). Parallel discrete event simulation. Comm. of the ACM 33(10), 30-53.

Fujimoto, R. M. (1990b). Optimistic approaches to parallel discrete event simulation. Trans. of the
Society for Computer Simulation 7, 153-191.

Fujimoto, R. M. (1993). Parallel and distributed discrete event simulation: algorithms and
applications. In Proc. of the Winter Simulation Conference, 106-114.

Fulkerson, D. R. (1972). Anti-blocking polyhedra. J. of Combinatorial Theory, Series B 12, 50-71.

Gafni, E. (1985). Improvements in the time complexity of two message-optimal election
algorithms. In Proc. of the Annual ACM Symposium on Principles of Distributed Computing, 175-
185.

Gafni, E. (1986). Perspectives on distribute/ network protocols: a case for building blocks. In Proc.
of Milcom-86.

Gafni, E., and V. C. Barbosa (1986). Optimal snapshots and the maximum flow in precedence
graphs. In Proc. of the Allerton Conference on Communication, Control, and Computing, 1089-
1097.

Gafni, E. M., and D. P. Bertsekas (1981). Distributed algorithms for generating loop-free routes in
networks with frequently changing topology. IEEE Trans. on Communications 29, 11-18.

Gallager, R. G., P. A. Humblet, and P. M. Spira (1983). A distributed algorithm for minimum
weight spanning trees. ACM Trans. on Programming Languages and Systems 5, 66-77.

Garcia-Molina, H., F. Germano, and W. Kohler (1984). Debugging a distributed computing
system. IEEE Trans. on Software Engineering 10, 210-219.

Garey, M. R., and D. S. Johnson (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, NY.

Garg, V. K., and A. I. Tomlinson (1993). Detecting relational global predicates in distributed
systems. In Proc. of the ACM/ONR Workshop on Parallel and Distributed Debugging, 21-31.

Garg, V. K., and B. Waldecker (1994). Detection of weak and unstable predicates in distributed
programs. IEEE Trans. on Parallel and Distributed Systems 5, 299-307.

Garofalakis, J., P. Spirakis, B. Tampakas, and S. Rajsbaum (1994). Tentative and definite
distributed computations: an optimistic approach to network synchronization. Theoretical
Computer Science 128, 63-74.

Gaughan, P. T., and S. Yalamanchili (1993). Adaptive routing protocols for hypercube
interconnection networks. Computer 26(5), 12-23.

Gehringer, E. F., D. P. Siewiorek, and Z. Segall (1987). Parallel Processing: The Cm* Experience.
Digital Press, Bedford, MA.

Geman, S., and D. Geman (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 721-741.

Gentleman, W. M. (1981). Message passing between sequential processes: the reply primitive
and the administrator concept. Software—Practice and Experience 11, 435-466.

Gerla, M., and L. Kleinrock (1982). Flow control protocols. In P. E. Green, Jr. (Ed.), Computer
Network Architectures and Protocols, 361-412. Plenum Press, New York, NY.

Ghosh, S. (1991). Binary self-stabilization in distributed systems. Information Processing Letters
40, 153—159.

Ghosh, S. (1993). An alternative solution to a problem on self-stabilization. ACM Trans. on
Programming Languages and Systems 15, 735-742.

Ghosh, S., and M. H. Karaata (1993). A self-stabilizing algorithm for coloring planar graphs.
Distributed Computing 7, 55-59.

Gibbons, A., and W. Rytter (1988). Efficient Parallel Algorithms. Cambridge University Press,
Cambridge, England.

Goldberg, A. P., A. Gopal, A. Lowry, and R. Strom (1991). Restoring consistent global states of
distributed computations. In Proc. of the ACM/ONR Workshop on Parallel and Distributed
Debugging, 144-154.

Goldberg, A. V., E. Tardos, and R. E. Tarjan (1990). Network flow algorithms. In B. Korte, L.
Lovász, H. J. Prömel, A. Schrijver (Eds.), Algorithms and Combinatorics, Vol. 9, 101-164.
Springer-Verlag, Berlin, Germany.

Goldberg, A. V., and R. E. Tarjan (1988). A new approach to the maximum-flow problem. J. of the
ACM 35, 921-940.

Gouda, M. G., R. R. Howell, and L. E. Rosier (1990). The instability of selfstabilization. Acta
Informatica 27, 697-724.

Grunwald, D. C., and D. A. Reed (1988). Networks for parallel processors: measurements and
prognostications. In Proc. of the Conference on Hypercube Concurrent Computers and
Applications, Vol. 1, 600-608.

Günther, K. D. (1981). Prevention of deadlocks in packet-switched data transport systems. IEEE
Trans. on Communications 29, 512-524.

Haban, D., and W. Weigel (1988). Global events and global breakpoints in distributed systems. In
Proc. of the International Conference on System Sciences, II-166-175.

Haldar, S. (1994). An all pairs shortest paths distributed algorithm using 2n2 messages. In Proc. of
the (1993) International Workshop on Graph-Theoretic Concepts in Computer Science, 350-363.

Halpern, J. Y. (1986). Reasoning about knowledge: an overview. In Proc. of the Conference on
Theoretical Aspects of Reasoning about Knowledge, 1-17.

Halpern, J. Y., and R. Fagin (1989). Modelling knowledge and action in distributed systems.
Distributed Computing 3, 159-177.

Halpern, J. Y., and Y. Moses (1990). Knowledge and common knowledge in a distributed
environment. J. of the ACM 37, 549-587.

Halpern, J. Y., and Y. Moses (1992). A guide to completeness and complexity for modal logics of
knowledge and belief. Artificial Intelligence 54, 319-379.

Harary, F. (1969). Graph Theory. Addison-Wesley, Reading, MA.

Heinlein, J., K. Gharachorloo, S. A. Dresser, and A. Gupta (1994). Integration of message passing
and shared memory in the Stanford FLASH multiprocessor. In Proc. of the International
Conference on Architectural Support for Programming Languages and Operating Systems, 38-50.

Heinrich, M., J. Kuskin, D. Ofelt, J. Heinlein, J. P. Singh, R. Simoni, K. Gharachorloo, J. Baxter, D.
Nakahira, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy (1994). The performance
impact of flexibility in the Stanford FLASH multiprocessor. In Proc. of the International Conference
on Architectural Support for Programming Languages and Operating Systems, 274-285.

Hélary, J.-M. (1989). Observing global states of asynchronous distributed applications. In Proc. of
the International Workshop on Distributed Algorithms, 124-135.

Hélary, J.-M., A. Mostefaoui, and M. Raynal (1994). A general scheme for tokenand tree-based
distributed mutual exclusion algorithms. IEEE Trans. on Parallel and Distributed Systems 5, 1185-
1196.

Hélary, J.-M., and M. Raynal (1994). Towards the construction of distributed detection programs,
with an application to distributed termination. Distributed Computing 7, 137-147.

Hellmuth, A. L. H. (1991). Tools for the development of distributed parallel programs. M.Sc.
thesis, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Rio de Janeiro,
Brazil.In Portuguese.

Hillis, W. D. (1985). The Connection Machine. The MIT Press, Cambridge, MA.

Hinton, G. E., T. J. Sejnowski, and D. H. Ackley (1984). Boltzmann machines: constraint
satisfaction networks that learn. Technical report CMU-CS-84-119, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, PA.

Hoare, C. A. R. (1978). Communicating sequential processes. Comm. of the ACM 21, 666-677.

Hoare, C. A. R. (1984). Communicating Sequential Processes Prentice-Hall, London, England.

Hoover, D., and J. Poole (1992). A distributed self-stabilizing solution to the dining philosophers
problem. Information Processing Letters 41, 209-213.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. of the National Academy of Sciences USA 79, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like
those of two-state neurons. Proc. of the National Academy of Sciences USA 81, 3088-3092.

Hsu, S.-C., and S.-T. Huang (1992). A self-stabilizing algorithm for maximal matching. Information
Processing Letters 43, 77-81.

Huang, S.-T. (1989). Termination detection by using distributed snapshots. Information
Processing Letters 32, 113-119.

Huang, S.-T., and N.-S. Chen (1992). A self-stabilizing algorithm for constructing breadth-first
trees. Information Processing Letters 41, 109-117.

Huang, S.-T., and N.-S. Chen (1993). Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7, 61-66.

Huang, S.-T., L.-C. Wuu, and M.-S. Tsai (1994). Distributed execution model for self-stabilizing
systems. In Proc. of the International Conference on Distributed Computing Systems, 432-439.

Hurfin, M., N. Plouzeau, and M. Raynal (1993). Detecting atomic sequences of predicates in
distributed computations. In Proc. of the ACM/ONR Workshop on Parallel and Distributed
Debugging, 32-40.

Israeli, A., and M. Jalfon (1991). Self-stabilizing ring orientation. In Proc. of the (1990)
International Workshop on Distributed Algorithms, 1-14.

Israeli, A., and M. Jalfon (1993). Uniform self-stabilizing ring orientation. Information and
Computation 104, 175-196.

Itkis, G., and L. Levin (1994). Fast and lean self-stabilizing asynchronous protocols. In Proc. of the
Annual Symposium on Foundations of Computer Science, 226-239.

JáJá J. (1992). An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA.

Janssen, W., and J. Zwiers (1992). From sequential layers to distributed processes. Deriving a
distributed minimum weight spanning tree algorithm. In Proc. of the Annual ACM Symposium on
Principles of Distributed Computing, 215-227.

Jefferson D. R. (1985). Virtual time. ACM Trans. on Programming Languages and Systems 7,
404-425.

Jha, V., and R. L. Bagrodia (1994). A unified framework for conservative and optimistic distributed
simulation. In Proc. of the Workshop on Parallel and Distributed Simulation, 12-19.

Jiang, T. (1989). The synchronization of nonuniform networks of finite automata. In Proc. of the
Annual Symposium on Foundations of Computer Science, 376-381.

Joyce, J., G. Lomow, K. Slind, and B. W. Unger (1987). Monitoring distributed systems. ACM
Trans. on Computer Systems 5, 121-150.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher
(Eds.), Complexity of Computer Computations, 85-103. Plenum Press, New York, NY.

Karp, R. M., and V. Ramachandran (1990). Parallel algorithms for shared-memory machines. In J.
van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. A, 869-941. The MIT Press.
Cambridge, MA.

Karzanov, A. V. (1974). Determining the maximal flow in a network by the method of preflows.
Soviet Math. Doklady 15, 434-437.

Katz, S., and K. J. Perry (1993). Self-stabilizing extensions for message-passing systems.
Distributed Computing 7, 17-26.

Kavianpour, A., and N. Bagherzadeh (1990). A three coloring algorithm for distributed termination
detection of nonFIFO distributed systems. In Proc. of the Annual Parallel Processing Symposium,
II-708-718.

Kermani, P., and L. Kleinrock (1979). Virtual cut-through: a new computer communication
switching technique. Computer Networks 3, 267-286.

Kessels J. L. W. (1988). An exercise in proving self-stabilization with a variant function.
Information Processing Letters 29, 39-42.

Kim, K. H., J. H. You, and A. Abouelnaga (1986). A scheme for coordinated execution of
independently designed recoverable distributed processes. In Proc. of the IEEE Fault-Tolerant
Computing Symposium, 130-135.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated annealing.
Science 220, 671-680.

Koo, R., and S. Toueg (1987). Checkpointing and rollback-recovery for distributed systems. IEEE
Trans. on Software engineering 13, 23-31.

Kranakis, E., D. Krizanc, and J. van den Berg (1994). Computing Boolean functions on
anonymous networks. Information and Computation 114, 214-236.

Kranz, D., K. Johnson, A. Agarwal, J. Kubiatowicz, and B.-H. Lim (1993). Integrating message-
passing and shared-memory: early experience. In Proc. of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 54-63.

Krumme, D. W., K. N. Venkataraman, and G. Cybenko (1986). Hypercube embedding is NP-
complete. In M. T. Heath (Ed.), Hypercube Multiprocessors 1986, 148-157. SIAM, Philadelphia,
PA.

Kshemkalyani, A. D., and M. Singhal (1994). On characterization and correctness of distributed
deadlock detection. J. of Parallel and Distributed Computing 22, 44-59.

Kumar, D. (1992). Development of a class of distributed termination detection algorithms. IEEE
Trans. on Knowledge and Data Engineering 4, 145-155.

Kuskin, J., D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D. Nakahira,
J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy (1994). The FLASH
multiprocessor. In Proc. of the Annual International Symposium on Computer Architecture, 302-
313.

Lakshman, T. V., and V. K. Wei (1994). Distributed computing on regular networks with
anonymous nodes. IEEE Trans. on Computers 43, 211-218.

Lamport L. (1978). Time, clocks, and the ordering of events in a distributed system. Comm. of the
ACM 21, 558-565.

Lamport, L., and N. A. Lynch (1990). Distributed computing: models and methods. In J. van
Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. B, 1156-1199. The MIT Press,
Cambridge, MA.

Lamport, L., R. Shostak, and M. Pease (1982). The Byzantine generals problem. ACM Trans. on
Programming Languages and Systems 4, 382-401.

Lawler E. L. (1976). Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and
Winston, New York, NY.

LeBlanc, T., and J. M. Mellor-Crummey (1987). Debugging parallel programs with instant replay.
IEEE Trans. on Computers 36, 471-482.

Lehmann D. (1984). Knowledge, common knowledge and related puzzles. In Proc. of the Annual
ACM Symposium on Principles of Distributed Computing, 62-67.

Leighton F. T. (1992). Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann, San Mateo, CA.

Lentfert, P. J. A., and S. D. Swierstra (1993). Towards the formal design of self-stabilizing
distributed algorithms. In Proc. of the Annual Symposium on Theoretical Aspects of Computer
Science, 440-451.

Lin, C., and J. Simon (1992). Observing self-stabilization. In Proc. of the Annual ACM Symposium
on Principles of Distributed Computing, 113-123.

Lin, Y.-B. (1993). On terminating a distributed discrete event simulation. J. of Parallel and
Distributed Computing 19, 364-371.

Lin, Y.-B. (1994). Memory management algorithms for optimistic parallel simulation. Information
Sciences 77, 119-140.

Lin, Y.-B., E. D. Lazowska, and J.-L. Baer (1990). Conservative parallel simulation for systems
with no lookahead prediction. In Distributed Simulation, Proc. of the SCS Multiconference, 144-
149.

Lin, Y.-B., E. D. Lazowska, and S.-Y. Hwang (1992). Some properties of conservative parallel
discrete event simulation. J. of Information Science and Engineering 8, 61-77.

Lin, Y.-B., and B. R. Preiss (1991). Optimal memory management for time warp parallel
simulation. ACM Trans. on Modeling and Computer Simulation 1, 283-307.

Loucks, W. M., and B. R. Preiss (1990). The role of knowledge in distributed simulation. In
Distributed Simulation, Proc. of the SCS Multiconference, 9-16.

Luenberger D. G. (1979). Introduction to Dynamic Systems. Wiley, New York, NY.

Lynch N. A. (1980). Fast allocation of nearby resources in a distributed system. In Proc. of the
Annual ACM Symposium on Theory of Computing, 70-81.

Lynch N. A. (1981). Upper bounds for static resource allocation in a distributed system. J. of
Computer and System Sciences 23, 254-278.

Lynch, N. A., and K. J. Goldman (1989). Distributed algorithms: lecture notes for 6.852, fall 1988.
Research seminar series MIT/LCS/RSS 5, Laboratory for Computer Science, MIT, Cambridge,
MA.

Lynch, N. A., M. Merritt, W. Weihl, and A. Fekete (1994). Atomic Transactions. Morgan
Kaufmann, San Mateo, CA.

Lynch, N. A., and M. R. Tuttle (1987). Hierarchical correctness proofs for distributed algorithms. In
Proc. of the Annual ACM Symposium on Principles of Distributed Computing, 137-151.

Ma, P. R., E. Y. S. Lee, and M. Tsuchiya (1982). A task allocation model for distributed computing
systems. IEEE Trans. on Computers 31, 41-47.

Madhuram, S., and A. Kumar (1994). A hybrid approach for mutual exclusion in distributed
computing systems. In Proc. of the IEEE Symposium on Parallel and Distributed Processing, 18-
25.

Maekawa, M. (1985). A algorithm for mutual exclusion in decentralized systems. ACM
Trans. on Computer Systems 3, 145-159.

Maekawa, M., A. E. Oldehoeft, and R. R. Oldehoeft (1987). Operating Systems: Advanced
Concepts. Benjamin/Cummings, Menlo Park, CA.

Malka, Y., S. Moran, and S. Zaks (1993). A lower bound on the period length of a distributed
scheduler. Algorithmica 10, 383-398.

Malka, Y., and S. Rajsbaum (1992). Analysis of distributed algorithms based on recurrence
relations (preliminary version). In Proc. of the (1991) International Workshop on Distributed
Algorithms, 242-253.

Manabe, Y., and M. Imase (1992). Global conditions in debugging distributed programs. J. of
Parallel and Distributed Computing 15, 62-69.

Manna, Z., and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, NY.

Martonosi, M., and A. Gupta (1989). Tradeoffs in message passing and shared memory
implementations of a standard cell router. In Proc. of the International Conference on Parallel
Processing, III-88-96.

Mattern, F. (1989). Virtual time and global states of distributed systems. In Proc. of the
International Workshop on Parallel and Distributed Algorithms, 215-226.

Mattern, F. (1993). Efficient algorithms for distributed snapshots and global virtual time
approximation. J. of Parallel and Distributed Computing 18, 423-434.

McDowell, C., and D. Helmbold (1989). Debugging concurrent programs. ACM Computing
Surveys 21, 593-622.

Mehl, H. (1990). Speed-up of conservative distributed discrete event simulation methods by
speculative computing. In Advances in Parallel and Distributed Simulation, Proc. of the (1991)
SCS Multiconference, 163-166.

Miller, B., and J. Choi (1988a). Breakpoints and halting in distributed programs. In Proc. of the
International Conference on Distributed Computing Systems, 316-323.

Miller, B., and J. Choi (1988b). A mechanism for efficient debugging of parallel programs. In Proc.
of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 135-
144.

Misra, J. (1986). Distributed discrete-event simulation. ACM Computing Surveys 18, 39-65.

Moran, S., and M. K. Warmuth (1993). Gap theorems for distributed computation. SIAM J. on
Computing 22, 379-394.

Neiger, G., and S. Toueg (1993). Simulating synchronized clocks and common knowledge in
distributed systems. J. of the ACM 40, 334-367.

Neilsen, M. L., and M. Mizuno (1991). A DAG-based algorithm for distributed mutual exclusion. In
Proc. of the International Conference on Distributed Computing Systems, 354-360.

Netzer, R. H. B., and J. Xu (1993). Adaptive message logging for incremental program replay.
IEEE Parallel & Distributed Technology 1(4), 32-39.

Ni, L. M., and P. K. McKinley (1993). A survey of wormhole routing techniques in direct networks.
Computer 26(2), 62-76.

Nicol, D. (1992). Conservative parallel simulation of priority class queuing networks. IEEE Trans.
on Parallel and Distributed Systems 3, 294-303.

Nicol, D. M. (1993). Global synchronization for optimistic parallel discrete event simulation. In
Proc. of the Workshop on Parallel and Distributed Simulation, 27-34.

Nicol, D., and R. Fujimoto (1994). Parallel simulation today. Annals of Operations Research 53,
249-285.

Nicol, D. M., and P. F. Reynolds, Jr. (1990). Optimal dynamic remapping of data parallel
computations. IEEE Trans. on Computers 39, 206-219.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga, Palo Alto, CA.

Ogier, R. G., V. Rutenburg, and N. Shacham (1993). Distributed algorithms for computing
shortest pairs of disjoint paths. IEEE Trans. on Information Theory 39, 443-455.

Ousterhout, J. K., A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch (1988). The Sprite
network operating system. Computer 21(2), 23-36.

Overmars, M., and N. Santoro (1989). Time vs. bits: an improved algorithm for leader election in
synchronous rings. In Proc. of the Annual Symposium on Theoretical Aspects of Computer
Science, 282-293.

Papadimitriou, C. H., and K. Steiglitz (1982). Combinatorial Optimization. Prentice-Hall,
Englewood Cliffs, NJ.

Pase, D. M., and A. R. Larrabee (1988). Intel iPSC concurrent computer. In R. G. Babb II (Ed.),
Programming Parallel Processors, 105-124. Addison-Wesley, Reading, MA.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley, Reading, MA.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, CA.

Peleg, D. (1990). Time-optimal leader election in general networks. J. of Parallel and Distributed
Computing 8, 96-99.

Perrott, R. H. (1987). Parallel Programming. Addison-Wesley, Wokingham, England.

Pnueli, A. (1981). The temporal semantics of concurrent programs. Theoretical Computer
Science 13, 45-60.

Pohlmann, W. (1991). A fixed point approach to parallel discrete event simulation. Acta
Informatica 28, 611-629.

Portella, C. F., and V. C. Barbosa (1992). Parallel maximum-flow algorithms on a transputer
hypercube. Technical report ES-251/92, COPPE/UFRJ, Rio de Janeiro, Brazil.

Prakash, A., and R. Subramanian (1992). An efficient optimistic distributed simulation scheme
based on conditional knowledge. In Proc. of the Workshop on Parallel and Distributed Simulation,
85-94.

Preiss, B. R., and W. M. Loucks (1990). The impact of lookahead on the performance of
conservative distributed simulation. In Modelling and Simulation, Proc. of the European Simulation
Multiconference, 204-209.

Preiss, B. R., W. M. Loucks, I. D. MacIntyre, and J. A. Field (1990). Null message cancellation in
conservative distributed simulation. In Advances in Parallel and Distributed Simulation, Proc. of
the (1991) SCS Multiconference, 33-37.

Preiss, B. R., I. D. MacIntyre, and W. M. Loucks (1992). On the trade-off between time and space
in optimistic parallel discrete-event simulation. In Proc. of the Workshop on Parallel and
Distributed Simulation, 33-42.

Proti ,

J., M. Toma evi , and V. Milutinovi (1995). A survey of distributed shared memory systems. In
Proc. of the Hawaii International Conference on System Sciences, 74-84.

Rabin, M., and D. Lehmann (1981). On the advantages of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proc. of the Annual ACM Symposium
on Principles of Programming Languages, 133-138.

Rajsbaum, S., and M. Sidi (1994). On the performance of synchronized programs in distributed
networks with random processing times and transmission delays. IEEE Trans. on Parallel and
Distributed Systems 5, 939-950.

Ramachandran, V., M. Solomon, and M. Vernon (1987). Hardware support for interprocess
communication. In Proc. of the Annual International Symposium on Computer Architecture, 178-
188.

Ramanathan, P., and K. G. Shin (1993). Use of common time base for checkpointing and rollback
recovery in a distributed system. IEEE Trans. on Software Engineering 19, 571-583.

Ramarao, K. V. S., and K. Brahmadathan (1990). Divide and conquer for distributed mutual
exclusion. In Proc. of the IEEE Symposium on Parallel and Distributed Processing, 113-120.

Ramarao, K. V. S., and S. Venkatesan (1993). The lower bounds on distributed shortest paths.
Information Processing Letters 48, 145-149.

Ravi, T. M., and D. R. Jefferson (1988). A basic protocol for routing messages to migrating
processes. In Proc. of the International Conference on Parallel Processing, 188-196.

Raymond, K. (1989). A tree-based algorithm for distributed mutual exclusion. ACM Trans. on
Computer Systems 7, 61-77.

Raynal, M. (1986). Algorithms for Mutual Exclusion. The MIT Press, Cambridge, MA.

Raynal, M. (1988). Distributed Algorithms and Protocols. Wiley, Chichester, UK.

Raynal, M. (1991). A simple taxonomy for distributed mutual exclusion algorithms. Operating
Systems Review 25, 47-50

Reinhardt, S. K., J. R. Larus, and D. A. Wood (1994). Tempest and Typhoon: user-level shared-
memory. In Proc. of the Annual International Symposium on Computer Architecture, 325-336

Ricart, G., and A. K. Agrawala (1981). An optimal algorithm for mutual exclusion in computer
networks. Comm. of the ACM 24, 9-17.

Ronn, S., and H. Saikkonen (1990). Distributed termination detection with counters. Information
Processing Letters 34, 223-227.

Saleh, K., H. Ural, and A. Agarwal (1994). Modified distributed snapshots algorithm for protocol
stabilization. Computer Communications 17, 863-870.

Satyanarayanan, R., and D. R. Muthukrishnan (1992). A note on Raymond's tree based algorithm
for distributed mutual exclusion. Information Processing Letters 43, 249-255.

Schneider, M. (1993). Self-stabilization. ACM Computing Surveys 25, 45-67.

Segall, A. (1983) Distributed network protocols. IEEE Trans. on Information Theory 29, 23-35.

Seitz, C. L. (1985). The cosmic cube. Comm. of the ACM 28, 22-33.

Selvakumar, S., and C. Siva Ram Murthy (1994). Static task allocation of concurrent programs for
distributed computing systems with processor and resource heterogeneity. Parallel Computing 20,
835-851.

Shabtay, L., and A. Segall (1992). Message delaying synchronizers. In Proc. of the (1991)
International Workshop on Distributed Algorithms, 309-318.

Shen, C.-C., and W.-H. Tsai (1985). A graph matching approach to optimal task assignment in
distributed computing systems using a minimax criterion. IEEE Trans. on Computers 34, 197-203.

Sheth, B., and D. M. Dhamdhere (1991). Two-level scheme for distributed termination detection.
In Proc. of the Supercomputing Symposium, 343-352.

Shiloach, Y., and U. Vishkin (1982). An O (n2 log n) parallel max-flow algorithm. J. of Algorithms 3,
128-146

Silberschatz, A., J. L. Peterson, and P. B. Galvin (1994). Operating System Concepts. Addison-
Wesley, Reading, MA.

Sinclair, J. B. (1987). Efficient computation of optimal assignments for distributed tasks. J. of
Parallel and Distributed Computing 4, 342-362.

Singh, G. (1992). Leader election in complete networks. In Proc. of the Annual ACM Symposium
on Principles of Distributed Computing, 179-190.

Singh, S., and J. F. Kurose (1994) Electing "good" leaders. J. of Parallel and Distributed
Computing 21, 184-201.

Singhal, M. (1989a). A heuristically-aided algorithm for mutual exclusion in distributed systems.
IEEE Trans. on Computers 38, 651-662.

Singhal, M. (1989b). Deadlock detection in distributed systems. Computer 22(11), 37-48.

Singhal, M. (1991). A class of deadlock-free Maekawa-type algorithms for mutual exclusion in
distributed systems. Distributed Computing 4, 131-138.

Singhal, M. (1993). A taxonomy of distributed mutual exclusion. J. of Parallel and Distributed
Computing 18, 94-101.

Sokol, L. M., D. P. Briscoe, and A. P. Wieland (1988). MTW: a strategy for scheduling discrete
event simulation events for concurrent execution. In Distributed Simulation, Proc. of the SCS
Multiconference, 34-42.

Sokol, L. M., and B. K. Stucky (1990). MTW: experimental results for a constrained optimistic
scheduling paradigm. In Distributed Simulation, Proc. of the SCS Multiconference, 169-173.

Sokol, L. M., B. K. Stucky, and V. S. Hwang (1989). MTW: a control mechanism for parallel
discrete simulation. In Proc. of the International Conference on Parallel Processing, III-250-254.

Sokol, L. M., J. B. Weissman, and P. A. Mutchler (1991). MTW: an empirical performance study.
In Proc. of the Winter Simulation Conference, 557-563.

Spencer, J. (1986). Balancing vectors in the max norm. Combinatorica 6, 55-65.

Spezialetti, M. (1991). An approach to reducing delays in recognizing distributed event
occurrences. In Proc. of the ACM Workshop on Parallel and Distributed Debugging, 155-166.

Spezialetti, M., and J. P. Kearns (1989). Simultaneous regions: a framework for the consistent
monitoring of distributed systems. In Proc. of the Ninth International Conference on Distributed
Computing Systems, 61-68.

Srinivasan, S., and P. F. Reynolds, Jr. (1993). Non-interfering GVT computation via asynchronous
global reductions. In Proc. of the Winter Simulation Conference, 740-749.

Stahl, S. (1976). n-tuple colorings and associated graphs. J. of Combinatorial Theory, Series B
20, 185-203.

Stahl, S. (1979). Fractional edge colorings. Cahiers du C.E.R.O. 21, 127-131.

Stamoulis, G. D., M. E. Anagnostou, and A. D. Georgantas (1994). Traffic source models for ATM
networks: a survey. Computer Communications 17, 428-438.

Sur, S., and P. K. Srimani (1992). A self-stabilizing distributed algorithm to construct BFS
spanning trees of a symmetric graph. Parallel Processing Letters 2, 171-179.

Sur, S., and P. K. Srimani (1993). A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences 69, 219-227.

Syslo, M. M., N. Deo, and J. S. Kowalik (1983). Discrete Optimization Algorithms. Prentice-Hall,
Englewood Cliffs, NJ.

Tanenbaum, A. S. (1988). Computer Networks. Prentice-Hall, Englewood Cliffs, NJ.

Tanenbaum, A. S. (1992). Modern Operating Systems. Prentice-Hall, Englewood Cliffs, NJ.

Tel, G. (1994a). Maximal matching stabilizes in quadratic time. Information Processing Letters 49,
271-272.

Tel, G. (1994b). Introduction to Distributed Algorithms. Cambridge University Press, Cambridge,
UK.

Teo, Y. M., and S. C. Tay (1994). Efficient algorithms for conservative parallel simulation of
interconnection networks. In Proc. of the International Symposium on Parallel Architectures,
Algorithms and Networks, 286-293.

Theimer, M., K. Lantz, and D. Cheriton (1985). Preemptable remote execution facilities for the V-
System. In Proc. of the ACM Symposium on Operating System Principles, 2-12.

Tsaan Huang, S. (1993). Leader election in uniform rings. ACM Trans. on Programming
Languages and Systems 15, 563-573.

Tsai, M.-S., and S.-T. Huang (1994). A self-stabilizing algorithm for the shortest paths problem
with a fully distributed demon. Parallel Processing Letters 4, 65-72.

Tucker, L. W., and A. Mainwaring (1994). CMMD: active messages on the CM-5. Parallel
Computing 20, 481-496.

van der Meyden, R. (1994). Axioms for knowledge and time in distributed systems with perfect
recall. In Proc. of the Symposium on Logic in Computer Science, 448-457.

von Eicken, T., D. E. Culler, S. C. Goldstein, and K. E. Schauser (1992). Active messages: a
mechanism for integrated communication and computation. In Proc. of the Annual International
Symposium on Computer Architecture, 256-266.

von Neumann, J. (1966). Theory of Self-Reproducing Automata, A. W. Burks (Ed.). University of
Illinois Press, Urbana, IL.

Wedemann, R. S., V. C. Barbosa, and R. J. Donangelo (1995). Defeasible timestepping. In
preparation.

Welch, J. L., L. Lamport, and N. A. Lynch (1988). A lattice-structured proof technique applied to a
minimum spanning tree algorithm. In Proc. of the Annual ACM Symposium on Principles of
Distributed Computing, 28-43.

Wilson, R. J. (1979). Introduction to Graph Theory. Longman, London, England.

Wolfram, S. (Ed.) (1986). Theory and Applications of Cellular Automata. World Scientific,
Singapore.

Woo, T.-K., and R. Newman-Wolfe (1992). Huffman trees as a basis for a dynamic mutual
exclusion algorithm for distributed systems. In Proc. of the International Conference on Distributed
Computing Systems, 126-133.

Wood, K. R., and S. J. Turner (1994). A generalized carrier-null method for conservative parallel
simulation. In Proc. of the Workshop on Parallel and Distributed Simulation, 50-57.

Wylie, C. R. (1975). Advanced Engineering Mathematics. McGraw-Hill, Tokyo, Japan.

Xu, J., and R. H. B. Netzer (1993). Adaptive independent checkpointing for reducing rollback
propagation. In Proc. of the IEEE Symposium on Parallel and Distributed Processing, 754-761.

Yang, Z., and T. A. Marsland (1992). Global snapshots for distributed debugging. In Proc. of the
International Conference on Computing and Information, 436-440.

Yang, Z., and T. A. Marsland (1993). Annotated bibliography on global states and times in
distributed systems. Operating Systems Review 27, 55-74.

Yu, M.-L., S. Ghosh, and E. DeBenedictis (1990). A non-deadlocking conservative asynchronous
distributed discrete event simulation algorithm. In Advances in Parallel and Distributed Simulation,
Proc. of the (1991) SCS Multiconference, 39-43.

Zhonghua, Y., and T. A. Marsland (Eds.) (1994). Global States and Time in Distributed Systems.
IEEE Computer Society Press, Los Alamitos, CA.

List of Figures
Chapter 1: Message-Passing Systems

Figure 1.1: A graph GT is shown in part (a). In the graphs of parts (b) through (d), circular
nodes are the nodes of GT, while square nodes represent buffers assigned to the
corresponding channel in GT. If r(c) = 1 for all c ∈ {c1, c2, c3, c4}, then parts (b) through (d)
represent three distinct buffer assignments, all of which deadlock-free. Part (b) shows the

strategy of setting b(c) =r(c) for all c ∈{c1, c2,c3, c4}. Parts (c) and (d) represent,
respectively, the results of the space-optimal and the concurrency-optimal strategies.
Figure 1.2: When task u migrates from processor p to processor p′ and v from q to q′, a
flush(u, v, p′) message and a flush-request(u, v) message are sent concurrently,
respectively by p to q and by q to p. The flush message gets forwarded by q to q′, and
eventually causes q′ to send p′ a flushed(u, v, q′) message.

Chapter 2: Intrinsic Constraints
Figure 2.1: This is the 2 v (2⌉T/3⌈ + 1)-node ring used in the proof of Theorem 2.4, here
shown for v = 3 and T = 3. Each of the three portions in the upper half comprising three
contiguous nodes each is assigned f's arguments according to af. Similar portions in the
lower half of the ring follow assignment at.
Figure 2.2: The 2v-node ring used in the proof of Theorem 2.6 is depicted here for v = 5.

Shown is also the mapping , emphasizing the symmetry among the nodes
in the ring's upper half and the corresponding nodes in the lower half.

Chapter 3: Models of Computation
Figure 3.1: A precedence graph has Ξ for node set and the pairs in the partial order ≺ for
edges. It is convenient to draw precedence graphs so that events happening at the same
node in N are placed on a horizontal line and positioned on this line, from left to right, in
increasing order of the local times at which they happen. In this figure, shown for n = 4, the
"conically"-shaped regions delimited by dashed lines around event ξ happening at node n3

represent {ξ} ∪ Past(ξ) (the one on the left) and {ξ} ∪ Future (ξ) (the one on the right).
Figure 3.2: Part (a) of this figure shows a precedence graph, represented by solid lines, for
n = 2. As ≺ is already transitive, we have ≺+=≺. Members of ≺+ are then represented by
solid lines, while the dashed lines are used to represent the pairs of concurrent events,

which, when added to ≺+, yield a total order consistent with ≺+. The same graph is
redrawn in part (b) of the figure to emphasize the total order. In this case, system-state (ξ2,
ξ3) is such that n1 is in the state at which it was left by the occurrence of ξ1, n2 is in the state
at which it was left by the occurrence of ξ2, and a message sent in connection with ξ2 is in

transit on the edge from n2 to n1 to be received in connection with ξ2. Because is
consistent with ≺+, system_state (ξ2, ξ3) is a global state, by our first definition of global
states.
Figure 3.3: Parts(a) and (b) show the same precedence graph for n= 2. Each of the cuts
shown establishes a different partition (Ξ1, Ξ2) of Ξ. The cut in part (a) has no edge leading
from an event in Ξ2 to an event in Ξ1, and then system_state (Ξ1, Ξ2) is a global state, by
our second definition. In this global state, n1 is in its initial state, n2 is in the state at which it
was left by the occurrence of ξ2, and a message is in transit on the edge from n2 to n1, sent
in connection with ξ2, and to be received in connection with ξ3. The cut in part (b), on the
other hand, has an edge leading from ξ2 ∈ Ξ2 to ξ3 ∈ Ξ1, so system_state(Ξ1, Ξ2) cannot be
a global state.

Chapter 4: Basic Algorithms
Figure 4.1: During an execution of Algorithm A_PIF, the variables parent i for all nodes ni

are set so that a spanning tree is created on G. This spanning tree is rooted at n1, and its
leaves correspond to nodes from which no other node received inƒ for the first time. In this
figure, a directed edge is drawn from ni to nj to indicate that parenti = nj.

Chapter 6: Stable Properties
Figure 6.1: Edges in the precedence graph fragment shown in part (a) are drawn as either
solid lines or dashed lines. Solid lines represent comp_msg's, dashed lines represent ack's,
and the remaining edges of the precedence graph are omitted. In this case, system_state>
(Ξ1, Ξ2) is clearly a global state, and is such that every node that ever sent a comp_msg
during the diffusing computation (i.e., n1 and n3) is in the state that immediately precedes
the reception of the last ack. In part (b), the spanning tree formed by the variables parenti
for each node ni in this global state is shown with directed edges that point from ni to nj to
indicate that parenti = nj. In this case, the tree has n1 for root and its single leaf is n3.

Chapter 8: Resource Sharing
Figure 8.1: A period of five orientations results from the edge-reversal mechanism started
at the orientation shown in the upper left corner of the figure, which is outside the period. In
this period, every node becomes a sink twice.

Chapter 9: Program Debugging
Figure 9.1: In this figure, the solid segment in a process's horizontal line indicates the time
interval during which the corresponding local predicate is true. The two cuts shown clearly
correspond to global states, in fact earliest global states in which the disjunctive predicate
holds.
Figure 9.2: The tiny solid segment in a process's horizontal line indicates the local time to
which the corresponding local unconditional breakpoint has been set. Clearly, the settings
in this figure are erroneous, as the cut (shown as a dashed line) that goes through them
does not correspond to a global state.
Figure 9.3: Following the same conventions as in Figure 9.2, here a situation is depicted in
which only one node participates in the unconditional breakpoint (node ni). Depending on
how the corresponding local unconditional breakpoint is placed with respect to the
reception of the message by pi, the other processes appear in the resulting earliest global
state differently, as shown in parts (a) and (b).
Figure 9.4: The conventions employed in this figure are the same as those of Figure 9.1,
and the situation depicted is quite akin to that of Figure 9.3. Specifically, the earliest global
state at which the conjunctive predicate holds depends on when ni's local predicate
becomes true with respect to the reception of the message by pi, as shown in parts (a) and
(b).

