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Foreword

Research in theoretical computer science has experienced tremendous growth both
in the depth to which older theories have been pursued and also in the number of
new problem areas that have arisen. While theoretical computer science is
mathematical in nature, its goals include the development of an understanding of the
nature of computation as well as the solution of specific problems that arise in the
practice of computing.

The purpose of this series of monographs is to make available to the professional
community expositions of topics that play an important role in theoretical computer
science or that provide bridges with other aspects of computer science and with
aspects of mathematics. The scope of the series may be considered to be that
represented by the leading journals in the field. The editors intend that the scope
will expand as the field grows and welcome submissions from all of those interested
in theoretical computer science.

Ronald V. Book
Main Editor
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Preface

Parallel complexity theory, the study of resource-bounded parallel computation,
is surely one of the fastest-growing areas of theoretical Computer Science. In the
light of this, it would be foolish to attempt an encyclopedic coverage of the field.
However, it is the belief of the author that its foundations are becoming increas-
ingly clear and well-defined. This Monograph is an attempt to present these
foundations in a unified and coherent manner.

The material contained herein is aimed at advanced Graduate students or
researchers in theoretical Computer Science who wish to gain an insight into
parallel complexity theory. It is assumed that the reader has (in addition to a
certain level of mathematical maturity) a general knowledge of Computer Sci-
ence, and familiarity with automata theory, formal languages, complexity theory
and analysis of algorithms. The interested reader may wish to augment his or
her knowledge with books by Goldschlager and Lister [47], Hopcroft and Ullman
[57], Garey and Johnson [39] and Aho, Hopcroft and Ullman [3].

This Monograph contains some of results that the author feels are funda-
mental, important, or exceptionally beautiful. The reader is free to make his or
her own judgements. Lack of space and the current dynamic nature of the field
prevent coverage of much recent material. In particular, results that are proba-
bilistic in nature (both probabilistic proofs and results that concern probabilistic
computations) have in general been avoided. This Monograph could not hope to
do - justice to so large and complicated a topic in the limited space available.
There are sufficient results in probabilistic complexity theory to warrant a book
devoted entirely to that subject.

The main part of this Monograph consists of twelve chapters. Chapter 1,
the Introduction, sets the scene for the remainder of the work by elucidating our
aims and motivation. Chapter 2 examines some early work in the field including
sorting networks, permutation networks and the parallel prefix problem.
Chapters 3 and 4 develop a parallel machine model that we will use throughout
the remainder of the Monograph. Chapter 5 examines the parallel computation
thesis, which is an attempt to characterize time-bounded parallel computation in



terms of space-bounded sequential computation. In Chapter 6 we explore the
computational power of our machine model by providing upper and lower-bounds
for some problems of interest. Chapter 7 contains some elementary results con-
cerning a restricted variant of our machine model. Chapter 8 deals with the
asymptotically optimal sorting network of Ajtai, Komlés and Szemerédi [5,6].
The results of Chapters 7 and 8 will be used in Chapter 9 to provide a restricted
network Which is universal for the general model with a modest increase in
resources.  Chapter 9 also considers the extended parallel computation thesis, an
a.ttempt‘ to characterize time and hardware-bounded parallel computation.
Chapter’ 10 is devoted to a more detailed discussion of universal parallel
machines, whilst Chapter 11 covers unbounded fan-in parallelism and provides a
new paralle] computation thesis which operates in that framework. Finally,
Chapter 12 is the Conclusion, which attempts to summarize and put into per-
spective the results of the previous ten chapters.

This Monograph has grown, under the encouragement of Ron Book, from
the author’s Doctoral Dissertation [91], which was supervised by M. S. Paterson.
The preliminary notes were used for a Graduate-level course on parallel complex-
ity theory at the Pennsylvania State University in 1986 and 1987. Students were
required to complete homework problems plus a fairly substantial project (one of
the choices for the latter being a summary of one of the papers from recent
conference proceedings). With this in mind, some problems are provided at the
end of most chapters. Naturally, some chapters are a more fruitful source of
problems than others. None of the problems are particularly difficult, the most
intransigent requiring the work of perhaps a few hours. No indication of
difficulty is provided, since such qualitative judgements are usually unreliable. In
the interests of fostering originality, no solutions are given. An attempt has been
made to lead the reader to the threshold of the solution during the relevant
chapter. If solutions have appeared elsewhere in print, they are either difficult to
obtain or are substantially more complicated or more general than necessary.
Students requiring inspiration will no doubt consult them despite these
difficulties.

Many people have directly or indirectly contributed to the ideas contained in
this Monograph. The author is pal'ticularly indebted to Les Goldschlager,
Friedhelm Meyer auf der Heide, Mike Paterson, Nick Pippenger, Walter Ruzzo,
Georg Schnitger, Janos Simon and Hans-Ulrich Simon for numerous discussions,
either in-person or by correspondence. The author is also grateful to students,



particularly Joe Niederberger and Eric Mettala, who have offered helpful sugges-
tions and pointed out minor errors in the manuscript. The author would particu-
larly like to thank an anonymous referee, whose careful reading of, and thought-
ful comments on a rough draft of this manuscript were greatly appreciated.

Ian Parberry,y
University Park,
Pennsylvania, U.S.A.
May, 1987.
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1 Introduction

As recently as 1980, Schwartz [112] complained of an apparent lack of theoretical
results concerning the computational complexity of parallel or concurrent algo-
rithms.

“In the serial case, the design of algorithms has come to be illuminated by
a growing body of theoretical knowledge concerning the ultimate limits of
algorithm performance.... Until a like body of theoretical knowledge has
been developed for highly concurrent algorithms, we will have little basis
for judging the extent to which a given concurrent approach can be im-

proved.”

Two of the most important and fundamental papers in the field of parallel com-
plexity theory (those of Goldschlager [41,45], and Pippenger [102]) had already
appeared by the time Schwartz’s paper reached publication. Since then, the flow
of results has increased from a trickle to a steady stream, and is now threatening
to become a flood. Today, parallel compléxity theory must be ranked as one of
the fastest-growing fields of theoretical Computer Science.

A theoretical treatment of parallel computation is an attempt to formalize
the intuitive concept of a ‘‘parallel computer” based on practical experience or
reasonable expectations. Amongst the questions which should be addressed by
such a formal exposition are the following:

¢ What do we mean by parallel computation?

e What constitutes a good model of a parallel computer?

e What are the resources of interest, and how should they be defined?

e How should we express parallel algorithms?

e What kind of problems lend themselves to a fast solution on a parallel

computer?

e What resources do we need to solve a given interesting problem in paral-

lel? ' ;
The latter question appears to be the most popular, judging by sheer volume of
contributions (for example, consult [105,127] and the references contained



therein). In contrast, relatively little attention has been paid to the first four
questions, whlch has resulted in a proliferation of parallel machine models j in the
current literature. Even the most -popular model, the shared-memory machme
(consisting of a collection of RAMs communicating via a shared memory, see, for
example, [33,45]) has many variants.

Intuxtlvely, a parallel machine should consist of a collection of processors
which in some way co-operate in order to compute a result. Obviously there are
many ways of formalizing this intuition. Compare the SIMDAG of Gofdschlager
[45] to the model of Galil and Paul [38]. The processors of the former are RAMs;
the latter allow processors which range from RAMs to finite-state machines. Lev,
Pippenger and Valiant [74] use RACs. Goldschlager has almost identical proces-
sors which are all started simultaneously at the start of the computation, and
communicate via a shared memory. Galil and Paul have “similar” processors
which start up at run-time, and communicate via direct processor-to-processor
links. Some of the more obvious variations on these models include the
instruction-set (for example, should multiplication be allowed?), and memory
access conflicts (should multiple attempts to write to a shared memory location
be allowed as in [45], or should even multiple reads be disallowed, as in [74,118]?).
Some of these differences are cosmetic in nature, while others are more crucial. o

We will choose a model which consists of a network of interconnected
RAMSs; each RAM can in one step perform an internal computation, or read from
or write to a register belonging to one of its neighbours. We believe that the net-
work paradigm is fundamental to the understanding of parallel computation.
One attraction is the fact that it possesses a certain theoretical elegance. The
network model has the advantage of encompassing a number of pdpula.r machine
models, for example, a shared-memory machine (see Section 4.2) is just a network
where all processors can communicate with a single distinguished processor and
no other, and that distinguished processor remains idle throughout the computa-
tion. The number of extant papers which use the shared-memory model attest to
its ease of programmihg, and its usefulness as a tool for proving and communicat-
ing theoretical results. It is widely accepted, however, that the shared-memory
model is not a viable architecture. By placing restrictions on our network model,
it is possible to define a practical variant in a natural and elegant fashion.

The aim of this Monograph, then, is to shed some light on the nature of
parallel computation. We shall do this by presenting a unified theory of parallel
computation based on a network model. We shall demonstrate its utility by



providing some fairly concise and elegant proofs of results from. the current litera-
ture (Which will occasionally lead to improved resource bounds or more general
qﬁeorems). We will also attempt to provide answers to the questions posed at the
start of this Introduction.

It should be noted that this is a theoretical treatment of parallel computa-
tion, and as.such is based upon a number of assumptiohs which are widely
accepted amongst workers in the field of parallel complexity theory. Although
our model is synchronous (in the sense that the instruction-cycles of the proces-
sors are synchronized), we will see in Section 4.3 that this is not an important
restriction. Synchronous models are far easier to deal with than asynchronous
ones. We assume that inter-processor communications can take place within a
single instruction-cycle. In the real world, this assumption is unlikely to be true
for large numbers of processors; a complexity theory based on this observation
will differ quite radically from ours [111}]. However, we feel fair]y safe in making
the assumption for networks consisting of a small number (say in the millions) of
fairly large processors (about the size of a microprocessor), even though it is
unlikely to hold for, say, individual gates in a VLSI chip.

Finally, the reader should note that throughout this work, all logarithms are
to base 2, N denotes the set of non-negative integers, Z the set of integers, and R
the set of real numbers. If c€N, d€Z, then d mod ¢ is defined to be the unique
integer a€N such that 0 < a < ¢ and there exists b€Z such that a+bc = d. For
those unfamiliar with the “order” notation, we provide the following reminder.
Let f,g:N—R™" (where R* denotes the set of positive real numbers). We say that:
1. f(n)= O(g(n)) if there exists c€R*, ny€N such that for all n > n,
f(n) < cg(n). |
2. f(n) = Q(g(n)) if there exists c€R*, nyeN such that for all n > n,,
f(n) > ¢ g(n). |
3. f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = N(g(n)).

= o(g(n)) i imi(—{ll =
4. f(n) - (g( )) fnl—wo g(n) 0.



2 Combinational Circuits

Early reséarch in parallel complexity theory focussed on combinational circuits,
that is, circuits without feedback loops. In this model, we are given as ‘“‘basic
units” a collection of gates which can compute certain useful functions on a fixed
number of inputs in one time-unit. Our aim is to construct a circuit which is
efficient in both parallel time and hardware to compute a desirable function on n
inputs. We are allowed to wire the gates together in an arbitrary manner
without feedback loops. We use the depth and size of the circuit as a measure of
parallel time and hardware respectively. The depth of a combinational circuit is
the maximum number of gates on a path from an input to an output. The size is
the number of gates used.

The first problem that we will tackle is that of sorting n values. The ‘“‘basic
units”, called comparators, are gates which can sort two inputs. The circuits are
further constrained in a manner more fully described in Section 2.1. In that sec-
tion we also prove some useful preliminary results on sorting networks. In Sec-
tion 2.2 we meet sorting networks based on Batcher’s odd-even merge and bitonic
sorting networks, with depth O(log®n) and size O(n log?n). Section 2.3 investi-
gates a slightly easier problem, that of performing fixed permutations using basic
units called switiches. We meet Waksman's permutation network, which has log-
arithmic depth and log-linear size. Finally, Section 2.4 presents the parallel
prefix circuit of Fischer and Ladner, of logarithmic depth and linear size.

2.1. Sorting Networks

One of the early investigations into parallel complexity theory concerned a vari-
ant of the sorting problem, dubbed the Bose-Nelson sorting problem by Floyd
and Knuth [31], after Bose and Nelson [17]. We are given a basic unit of
hardware called a comparator. A comparator takes two integers as input, and
outputs them in ascending order. A comparator network is a circuit built from

comparators according to the following constraints.



1.

We
We

(i)
(ii)

(iif)

(iv)

The values to be sorted are treated as atomic units. They may neither be
divided nor duplicated. :
The values travel in n channels, which we will represent in our diagrams as
vertical lines. The inputs will be presented at the top of the network, and
will appear in some permuted order at the bottom.
The network is divided vertically into a finite number of levels, which are
numbered consecutively, starting at 0. The O* level consists of the inputs.
Each of the subsequent levels contains one or more comparators. Each com-
parator is placed on two channels. At most one comparator is placed on any
channel at any particular level. We will depict a comparator using a horizon-
tal line between the two channels, with heavy dots emphasizing the
connection-points (see Figure 2.1.1).
will number the channels 1 through n, in ascending order from left to right.
will say that channel i carries value v at level 5 on input Xyy..0yXp If either
j=0andx;=v,or
j > 0, there is no comparator on channel i at level j, and channel i carries
value v at level j-1, or
j > 0, there is a comparator between channels i and k at level j, k < i,
channel i carries value v; at level j-1, channel k carries value vy at level j-1,
and v = max(v;,vy), or
j > 0, there is a comparator between channels i and k at level j, k > i,
channel i carries value v; at level j-1, channel k carries value vy at level j-1,

and v = min(v;,vy).

The output of the network consists of the n values carried by the channels at the

final level, in left-to-right order. If they are always in ascending order from left-

to-right, the network is called a sorting network.

Figure 2.1.1 A comparator.



Each level of a comparator network consists of a set of independent com-
parisons which may be performed in parallel. The number of levels is thus a rea-
sonable measure of parallel time. We will call this the depth of the network. We
are also interested in the size of the network, that is, the number of comparators
used. For example, consider the following algorithm for sorting four values. In
parallel, compare the first value with the second, and the third with the fourth.
This is the first level of the network. Clearly the minimum of the two minima is
the smallest of the four values, and the maximum of the two maxima is the larg-
est. This is the second level of the network. However, at that point we know
nothing of the relative order of the remaining two values. The third level of the

network compares them. This gives us the depth-3, size-5 sorting network in Fig-
ure 2.1.2.

Figure 2.1.2 A sorting network with 4 inputs, of size 5 and depth 3.

We have chosen to build our network using comparators which send the
smallest value to the left, and the largest to the right. Let us call these min-maz
comparators, as opposed to maz-min comparators, which send the largest to the
left and the smallest to the right. We have not lost anything by restricting out-

selves to min-max comparators:

Theorem 2.1.1 (Floyd-Knuth) For every sorting network built from a mixture
of max-min and min-max comparators there is a sorting network with the same
size and depth built purely from min-max comparators.

Proof. Suppose C is a sorting network built from min-max and max-min com-
parators, of depth d and size s. Suppose we represent each comparator as a 3-
tuple <a,b,c>, where a denotes its level number, and b and c the channels on
which its min-output and max-output emerge respectively. Note that a min-max

comparator will have b < ¢, while a max-min comparator will have b > c.



Let IT be a permutation of the set {1,...,n}, that is, IT:{1,...,n}—{1,...,n} and
is one-to-one and onto. Let (i,j) denote the permutation IT such that II(i) = j,
I(j) =1 and TI(k) = k for k 5£1i,j. Define the product of two permutations
IT = II,I1, by II(i) = II,(I,(i)) for i€{1,...,n}. Define a II-sorter to be a compara-
tor network whose outputs are in sorted order after application of IT to the chan-
nels below the final level. Thus, in this new terminology, a sorting network is an
I-sorter, where I denotes the identity permutation.

We will represent a comparator network as a list of 3-tuples, each of which
represents a comparator. We will insist that the list is in ascending order on the
first index, that is, comparators on the lowest-numbered levels appear first. Let
C = <C,,Cy,...,Cs>, where C; = <a;b,e;> for 1 <i<s, and a; < ay,; for
1 <i < s. Consider the following algorithm:

L:=C
ILi=1
for i:=1 to s do
if b; > ¢; then
for j:=i to s do
Consider L; = <aj,bj,ei>
if b; = b; then bj:=g¢;
else if b; = ¢; then b;:=b;
if ¢; = b; then c;:=c¢;
else if ¢; = ¢; thenc

IL=II (bj,c;)

j:

Claim 1. After the i*! iteration of the outer for-loop, L is a II-sorter, for
0<i<s.

Proof. The result follows by induction on i. The hypothesis is true for i = 0,
since immediately before the first iteration, L = C, and is thus an I-sorter. Now
suppose that the hypothesis is true after the (i-1)** iteration. There are two cases
to consider.

Case 1. b; < ¢;. No change is made to either L or II, so L remains a Il-sorter
by the induction hypothesis.

Case 2. b; > ¢;. The effect of the algorithm is to ‘“‘swap’ channels b; and ¢;
“below’ level i. Thus by the induction hypothesis, the outputs are Il-sorted,
since II is modified to swap the outputs on those channels back into sorted order.
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Claim 2. After the i*? iteration of ‘the outer for-loop, {Ly,...,L;} are all min-max
comparators.

Proof. The proof follows easily by induction on i. [J

Claim 3., On termination of the algorithm, IT = 1.

Proof. When the algorithm has terminated, L is a II-sorter for some II (by
Claim 1) built from min-max comparators (by Claim 2). Suppose we give L a
sequence of integers which are already sorted in ascending order. Since L is built
from min-max comparators, no swapping is done; the values stay on their respec-
tive channels. Thus the values are still in ascending order when they reach the
outputs. Furthermore, they are still sorted after application of II, which implies
II=1. 0

Thus by Claims 1, 2 and 3, on termination of the algorithm, L is a sorting
network built from min-max comparators. It is easy to prove by induction that
L has depth d and size s. [

An obvious method for proving that an n-input comparator network sorts is
to try all n! different permutations of n distinct numbers as inputs to the net-
work. However, slightly fewer trials suffice. The following Theorem is attributed
to Bouricius by Knuth [65]. '

Theorem 2.1.2 (The Zero-One Principle). An n-input comparator network is a
sorting network iff it sorts all sequences of n zeros and ones.

Proof. Clearly if a comparator network sorts, then it will correctly sort all
sequences of zeros and ones. Conversely, suppose we have a comparison network
which sorts all sequences of zeros and ones. Suppose a€R is a constant. Define
hy:Z—7Z as follows:

1 ifx>a
ho(x) = 0 otherwise

Claim. For j > 0, if for inputs x;,Xy,...,x, a channel carries the value 8 at level
J, then for inputs h,(x;),h4(xg),..., ho(%y,) it carries the value h,(B) at level j.

Proof. The result follows by induction on j. The hypothesis is trivially true for
j=10. Now suppose j > 0. Consider channel i, which has value £ at level j on
input xy,...,xp. We will write v(i,j) = 8. We will also write v,(i,j) for the value

that channel i carries at level j on input h,(x;),...,h,(x;). If there is no



comparator on channel i at level j, then v,(i,j)=h,(f) by the induction
hypothesis. Suppose there is a comparator between channels i and k at level j.
There are two cases to consider. ’

Case 1. i< k. Suppose v(i,j-1) = B;, v(k,j-1) = B;. Then F = min(B;,f).
Thus:

Vali) = min(vy (i,i-1)va(k,i-1))
= min(hy(8),h,(A))  (by the induction hypothesis)
= hy(min(8,8,)) (by. the definition of h,)
= h(h)

Case 2. k < i. Similar to Case 1, replacing “min” by “max”. O

Suppose we have an n-input comparator network C which sorts all sequences
of zeros and ones. Suppose we give it inputs x;,...,x,. Let the outputs, in left-
to-right order, be yl,...;yn. For a contradiction, suppose that they are not in
ascending order, in particular that y; > y;,; for some 1 <i < n. By the above
Claim, when C is given the inputs h,(x,),...,h,(x,), its outputs are, in left-to-right
order, hy(y),..,hy(yy). Choose a = (y;+y;y1)/2. Then hy(y;)=1 and
h,(¥i;1) = 0, which contradicts the fact that C sorts all sequences of zeros and
ones. Therefore y,,...,y, must be in sorted order, and so C is a sorting network.

O

«.2. Batcher’s Sorting Networks

The sorting networks in this section are due to Batcher [10]. Since we are mainly
interested in the asymptotic depth and size complexity of sorting networks, it is
sufficient to consider sorting n inputs where n is a power of 2 (since if we wish to
sort an arbitrary number of values, we can add enough large ‘‘dummy”’ elements
to fill out n to a power of 2; this increases the number of inputs, and hence the
siZe and depth, by at most a small constant multiple). This has the added
benefit of simplifying the proofs. More detailed proofs for general n can be found
in Knuth [65]. Let p be a power of 2. Consider the following recursive descrip-
tion of a network to merge two sorted sequences a = <ap..2,> and
b = <by,e,bp>. If p =1 then the network consists of a single comparator. If

p > 1 then recursively merge the odd-numbered elements of a with the odd-



numbered elements of b, merge the even-numbered elements of a with the even-
numbered elements of b, then insert a final level of comparators between channel
2i and channel 2i+1, 1 < i < n/2. Figure 2.2.1 shows the construction of M, a
comparator network to merge two sorted p-sequences, from two copies of Mp /2
according to this description. The network thus obtained is called the odd-even

merging network.

a Q; Q3 Qg o » o Gpa Qp b1 bz b3 b4 ¢« o o b,,-] bp

MP/; M"/z
C C2 . . O C p d 1 d 2 . . . dp
& (-7) €1 (€2
f| fz f3 f4 LI fp_| fp fp.] ® * * fz pA fzp

Figure 2.2.1 Batcher’s odd-even merging network.

Theorem 2.2.1 M, will merge two sorted sequences of length p.

Proof. The proof will follow by induction on p. The hypothesis is clearly true
for p=1. Now suppose that the two recursive sub-networks merge correctly.
We will make use of the fact that the Zero-One Principle holds for merging net-
works (see Exercise 2.1). Let a = <apy..,2,> and b = <by,...,b,> denote the
two sorted input sequences, ¢ = <cy,...,c;> denote the output from the left-hand
(*odd”) recursive sub-network, d = <djy..ydp> denote the output from the
right-hand (“‘even’’) recursive sub-network, e = <ej,...,ep,> denote the sequence
of values immediately before the final level of comparators, and f = <fpyeesfop>
denote the output, in left-to-right order (see Figure 2.2.1).
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Suppose that a consists of g zeros followed by p-g ones, and that b consists
of h zeros followed by p-h ones. Then, by the induction hypothesis, ¢ consists of
rg/2 1+ fh/ 21 zeros followed by p- fg/2 1- rh/2 1 ones, and d consists of
lg/2 |+ Lh/2 | zeros followed by p- lg/2 |- [h/2 ] ones. Thus ¢ has either the
same number, one more, or two more zeros than d. Therefore, noting that
e == <¢y,d;,C9idg,...,Cp,dp>, there are three cases to consider:
Case 1. c has the same number of zeros as d. If g = h = 0 then the output is
sorted. Otherwise e is of the form e = <0,0,...0,1,0,1,1,...,1>, more specifically,
eg=0for1 <i< g+h-1,e.,p=1,¢€,pi; =0and ¢ =1 for g+h+1 <i<n.
Since g=:—-h, g+h is even, and therefore there is a comparator between eg4pn and
€g+h+1 0 the final level. This ensures that f is in sorted order.
Case 2. c has one more zero than d. Then e is already sorted, which implies
that f is sorted.
Case 3. ¢ has two more zeros than d. Then, as in Case 2, e is already sorted,
which implies that f is sorted.

In each case, the final output is sorted. Therefore, the merger correctly
merges all sequences of zeros and ones, which by the Zero-One Principle implies
that it merges all sequences of integers. [J

Let d(p) be the depth, and s(p) the size of an odd-even merging network
which merges two sorted sequences of length p. Then d(1) =1, and for p > 1,
d(p) = d(p/2)+1. By induction on p, d(p) = log p + 1. Also, s(1) = 1, and for
p > 1, s(p) = 2s(p/2)+p-1. By induction on p, s(p) = p log p + 1.

The following is the recursive description of an n-input sorting network,
called the odd-even sorting network. If n =1, then the network is empty. If
n > 1, sort the first half of the values recursively, sort the second half of the
values recursively, and then merge the two sorted sequences using an odd-even
merging network. Figure 2.2.2 shows the construction of S;, a network for sort-
ing n inputs, from two copies of S;/, and one copy of M/, according to this
description.

The correctness of the odd-even sorting network is easily proved by induc-
tion. Let D(p) be the depth, and S(p) the size of an odd-even sorting network
with n inputs. Then D(1) = 0 and for n > 1,

D(n) = D(n/2)+d(n/2)
= D(n/2)+log n.

11



Figure 2.2.2 Batcher’s odd-even sorting network.

Therefore, by induction,
D(n) = —%—(log n)(log n + 1).
Also, S(1) == 0 and for n > 1,
S(n) = 2 S(n/2) + s(n/2)
=2 S(n/2) + —-21}- (logn-1) + 1.
Therefore, by induction,
S(n) = -4‘1-(1og n)(logn—1) + n-1.

Figure 2.2.3 shows an odd-even sorting network with 32 inputs, of depth 15 and
size 191. The recursive structure of this network is immediately apparent.

Thus we see that it is possible to sort n inputs in depth O(loan) and size
O(n log?n), with very small constant multiples in the resource bounds (certainly
less than 1 for large enough n, even when n is not a power of 2). k Recently, Ajtaj,
Komlés and Szemerédi [5,6] demonstrated that depth O(log n) and-size O(n log n)
is possible. This new network (which we will describe in more detail in Chaptér
8) is of great interest theoretically because it is asymptotically optimal in both
size and depth (see Exercise 2.2). However, since the constant multiples in the
depth and size bounds are so large, the odd-even sorting network outperforms it

12
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Figure 2.2.3 An odd-even sorting network with 32 inputs.
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for all practical values of n.

In [10] Batcher presents a second sorting network which is based, not upon
merging, but upon a principle which he calls bitonic sorting. To simplify the
presentation, we will demonstrate the construction when the number of values to
be sorted is a power of 2. Let p be g power of 2. A bitonic sequence of length P
is a sequence of p integers, the first q of which are non-decreasing, and the last
p-q of which are non-increasing (or vice-versa), for some 0 < q < p. The follow-
ing is a recursive method for sorting a bitonic sequence. If p = 1, the network is
empty. Suppose p > 1, and the input is a bitonic sequence a = <BpyeesBp>.
Compare a; with a; +p/2 for 1 <1i < p/2. Separate the min-outputs and the
max-outputs from these comparators, and recursively sort each group. The result
is a sorted sequence. Figure 2.2.4 shows the construction of B;, a comparator
network which sorts a bitonic sequence of length p, from two copies of Bp/2
according to this description. The correctness proof and complexity analysis is
left to Exercise 2.3.

Figure 2.2.4 Batcher’s bitonic sorting network.

The bitonic sorting network can be used to construct an O(logzn) depth,
O(n log?n) size sorting network built from min-max and max-min comparators
(see Exercise 2.4). These can be converted to min-max comparators using
Theorem 2.1.1. There is some confusion in the literature over the nomenclature
“bitonic sorting network’. We use it, as did Batcher, to denote a comparison
network which sorts bitonic sequenceé. It has become popular to use it to

14



describe the sorting network which is constructed from bitonic sorters.

2.3. Waksman’s Permutation Network

Consider the problem of permuting n inputs. We will use a petwork similar to
the comparator network defined in the previous section. Instead of comparators
the basic building blocks will be switches. A switch, like a comparator, can
either pass its two inputs directly to the outputs, or swap them. A comparator
swaps if the right input is smaller than the left input. In contrast, a switch is
subject to outside control. A switch can either be set to on, indicating that it is
to swap its inpﬁts, or off indicating that it is to pass the inputs through directly,
unchanged in any way. A network built from switches according to the following
constraints is called a switching network.

1. The values to be sorted are treated as atomic units. They may neither be
divided nor duplicated.

2. The values travel in n channels, which we will in our diagrams represent by
vertical lines. The inputs will be presented at the top of the network, and
will appear in some permuted order at the bottom.

3. The channels are labelled 1 through n, in ascending order from: left to right.
The network is divided vertically into a finite number of levels, which are
numbered consecutively, starting at 0. The O level consists of the inputs.
Each of the subsequent levels contains one or more switches. Each switch is
placed on two channels. At most one switch is placed on any channel at any
particular level. We will depict a switch using a horizontal line between the
two channels, with heavy dots emphasizing the end-points, in the same
manner as we depicted comparators in the previous section.

We will say that channel i carries value v at level j on input x,,...,x, if either

(i) j=0and x;=v,or

(ii) j > O, there is no switch on channel i at level j, and channel i carries value v

at level j-1, or

(iii) j > O and there is a switch on channel i at level j, that switch is “off’” and

channel i carries value v at level j-1, or -

(iv) j > 0 and there is a switch between channels i and k at level j, that switch

is ““on” and channel k carries value v at level j-1.
The output of the network consists of the n values carried by the channels at the

final level, in left-to-right order. As with comparator networks, the depth of a

- 15



switching network is the number of levels, and the size is the number of switches.
An p-input switching network is called a permutation network if, for every per-
mutation IT on n objects, the switches of the network can be set in such a
manner that the output of the network consists of the inputs whose positions
have been permuted according to II. That is, on input X1ye-sX, the output of the
network is XI1(1)2++ X1 Yn):

The following is the recursive description of a permutation network with n
inputs, due to Waksman [131]. Suppose n is a power of 2. If n = 1, then the
network consists of a single channel with no switches. If n > 1, place a level of
switches between channel 2i-i and channel 2i, 1 < i< n/2. Separately, take
the left-outputs and right-outputs from these switches, and recursively permute
them. Finally, place switches between channel 2i-1 and channel 2i, for
2 <i< n/2. Figure 2.3.1 shows the construction of P,, a switching network

which permutes n inputs, from two copies of P, /2 according to this description.

U W U u . . . Uny Upn

! I I,

i v V3 Y L Vag Vi

Figure 2.3.1 Waksman’s permutation network.

Theorem 2.3.1 The switches of Waksman’s permutation network can be set to
realize any permutation of n inputs.

Proof. The proof follows by induction on n. Suppose the inputs are u,...,u,,
and the outputs are vy,...,v,, and that we number the first layer of switches
Ijs-.sIn/o, and the last layer of switches Oy,...,0 121_ oy The induction hypothesis is

16



trivially true when n=1. Now suppose n > 1. Take any permutation on n
objects. Start with v,. Set the switches of the left-hand copy of P /2 to route it
to the appropriate I-switch. Set that I-switch to route it to the appropriate
input. Say that input is u;. Now consider y; +(-1)» the “partner” of u; in switch
Iti/27- It has been routed to the right-hand copy of P, /2. Set the switches of
that sub-network to route it to the appropriate O-switch (or to v,, if necessary).
Set that O-switch to send it to the appropriate output. Continue this process, at
each stage selecting the “‘partner” of the previously processed channel in the
appropriate I-switch or O-switch. If the partner has already been chosen (or we
end up at v,), start again from any other input or output value. Continue in this
manner until all of the input-output routings have been made. By the induction
hypothesis, the switches of the sub-networks can be set in such a manner that
the appropriate sub-permutations are realized. [

Let D(n) denote the depth, and S(n) denote the size of Waksman’s permuta-
tion network on n inputs. Then D(1) =0, and for n > 1, D(n) = D(n/2)+2.
Therefore, by induction, D(n) = 2logn. Also, S(1)=0, and for n > 1,
S(n) = 2 S(n/2) + n-1. Therefore, by induction, S(n) = n log n — n+1. Since
the lower-bounds of Exercise 2.2 hold equally well for permutation networks,
these results are asymptotically optimal.

2.4. Parallel Prefix Computation

Suppose we have an ‘“‘addition gate’’, which computes the sum of two inputs. It
is easy to construct a combinational circuit with addition gates, of depth [log n ]
and linear size, to sum n inputs (using a binary tree). However, suppose that we
want a circuit with n inputs and n outputs, such that on input <x,...,.x,> the
output is <yyye..,yy>, wherefor 1 <i<n,y, = Zl]xj. This is called the parallel
=1

prefix problem. The obvious solution uses n trees, has logarithmic depth and
quadratic size. However, it is possible to obtain logarithmic depth and linear
size. The following is a recursive description of a parallel prefix circuit on n
inputs, due to Fischer and Ladner [70].

Suppose n is a power of 2. On input <x,,...,x,>, first compute x;4+x;,, for
each odd i, 1 < i £ n-1. Compute the prefix-sum of these values, using a sub-
network with n/2 inputs. The i*® output of the sub-network becomes the (2i)h
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Figure 2.4.1 The parallel prefix circuit of Fischer and Ladner.

output of the network, for 1 <i < n/2. The first output of the network is just
x;. The (2j — 1)* output of the network, 2 < j < n/2 consists of the j*t output
of the sub-network added to xp; _;. Figure 2.4.1 gives the recursive construction
of an n-input parallel prefix circuit R, from Ry /9, according to this description.
In that diagram, solid dots denote fan-out, and circles denote addition gates.

The correctness of the construction can be readily verified by induction on n.
Let D(n) denote the depth, and S(n) the size of an n-input parallel prefix circuit.
Then D(1) =0, and for n>1, D(n) =D(n/2) + 2. Therefore, by induction,
D(n) = 2 log n. Also, S(1) =0, and for n > 1, S(n) = S(n/2) + n-1. Therefore,
by induction, S(n) = 2n-2-log n. These bounds are easily seen to be asymptoti-
cally optimal.

18



2.5. Exercises

2.1

2.2

2.3

2.4

2.5

Prove that the Zero-One Principle” (Theorem 2.1.2) holds equally well for
merging networks. That is, a comparator network merges two sorted se-
quences of integers iff it merges two sorted sequences of zeros and ones.
Show that an n-input sorting or permutation network must have size at least
n log n —o(n). Show that an n-input sorting or permutation network must
have depth at least 2 log n ~ o(1). (Hint: use Stirling’s approximation).

Use the Zero-One Principle to prove the correctness of Batcher’s bitonie sort-
ing network. Analyze its size and depth.

Use Batcher’s bitonic sorting network to construct a sorting network which
will sort all input sequences, not just bitonic ones. Prove its correctness, and
analyze its size and depth.

(Van Voorhis [130]). Let S(n) denote the minimum size of an n-input sorting
network. Prove that S(n) > S(n-1) + [logzn ]

We saw in Section 2.2 how to construct a sorting network using comparators.

These are gates which input two integers, and output them in sorted order. Sup-

pose that we also have 3-comparators. These are gates which input three in-

tegers, and output them in sorted order. In our diagrams, we will draw 3-

comparators as horizontal lines, with three heavy dots denoting connections to

the appropriate channels.

2.6

2.7

Prove that the Zero-One Principle (Theorem 2.1.2) still holds. That is,
prove that a network built from comparators and 3-comparators sorts iff it
can sort all sequences of zeros and ones.

Prove, using the Zero-One Principle (see Exercise 2.6), that the following
network M, (adapted from Tseng and Lee [123]) will merge three sorted se-
quences of p integers, where p is a power of 3. M, is just a single 3-
comparator. M, is constructed recursively from three copies of M, /3 2s in
Figure 2.5.1. We call this network the modulo-8 merging network. Show
that its depth is 2 logzp + 1, and that it uses p logzp + 1 3-comparators and

p-1

p loggp + = -comparators.
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Figure 2.5.1 The modulo-3 merging network.

2.8 Use the merging network of Exercise 2.7 to construct a network for sorting n
integers (where n is a power of 3) with depth log®n. How many 3-
comparators and 2-comparators does your sorting network use?

2.9 Suppose we can build a gate which adds k numbers. Construct a ciréuit for

finding the prefix-sum of n numbers with depth (2 [logkn ]) and linear size.

20



3 Designing a Parallel Machine Model

In Chapter 2 we saw three primitive paralle]l machine models which were particu-
larly suited to a limited type of computation. In this chapter we present a gen-
eral parallel machine model and attempt to justify some of the decisions which
contributed to its design. Informally, the model consists of a synchronous net-
work of sequential processors, each of which have random-access to each other’s
memory. In the first section we give a more formal description, providing illus-
tration by way of an example instruction-set. We define the major resources of
interest: processors (the number of sequential processors used), time (number of"
instructions executed), degree (degree of the interconnection graph), space
(number of registers required) and word-size (the size of those registers). In order
to simplify the presentation of algorithms, we describe a high-level pseudo-
programming language which we will use in subsequent chapters.

The second section is devoted to a discussion of our choice of a unit-cost
measure of time. We choose to charge a single unit of time for each instruction
executed, rather than charge according to some notion of “difficulty’’. This raises
an interesting question: for which instruction-sets is this valid? It does not a
prior: seem reasonable to charge a single unit of time for complex instruction
sets, but it is not obvious as to exactly where the line should be drawn. We shall
see in subsequent chapters that the answer can be provided in several different
ways.

Our basic networks have a single program for all processors. In the third
section we justify this approach, comparing and contrasting it with the SIMD
and MIMD machines of Flynn [32]. In a SIMD machine the processors have
program-counters which at any point in time, all contain the same value, with
each individual processor either executing the common current instruction or
remaining dormant for a step. In contrast, we allow each processor to be at a
different point in the program. A MIMD machine has a different program for
each processor. Our model is seen to be equivalent to a SIMD one, and to a rea-
sonable subset of the MIMD model.

Finally, in the fourth section we justify our decision to start the computa-

tion with all processors active, rather than have them become active at run-time.
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This latter approach places a not altogether unreasonable ‘upper-bound on the
number of processors used in a computation, in relation to time. If we place a
similar restriction on our model,” then the two activation conventions are
equivalent.” However, we will see in Sections 6.1 and 6.2 that it is sometimes
profitable to lift the restriction.

3.1. The Basic Model

Our parallel machine model can be viewed as an infinite collection of intercon-
nected, synchronous random-access machines, only finitely many of which are
active in any particular finite computation. By ‘‘random-access machine"” we
refer to a variant of the RAM, which is already well-known as a sequential
machine model (see, for example, [3,23,113]); and by ‘‘synchronous” we mean
that the instruction-cycles of the RAMs are synchronized. Every RAM has an
infinite number of general-purpose.registers rg,ry,..., each of which is capable of
storing a single integer, and a read-only processor identity register PID. The PID
of the i RAM is preset to i, for i = 0,1,....

More formally, a network M consists of a program to be executed and a
processor-bound which indicates how many processors are to be used. The pro-
gram of M is a finite list of instructions; each instruction has the form either:

(i) Read a value from a register of a neighbouring processor.

(ii) Write a value to a register of a neighbouring processor.

(iii) Perform an internal computation.

(iv) Transfer of control.

For example, let “0” denote a binary operation defined on integers. For con-
venience we divide our example instruction-set into two categories. Local instruc-

tions have the form:

r;«—constant (load register with constant)
- I TjoTy (binary operation)

Ty (indirect load)

Iyt (indirect store)

ry«PID (store PID)

halt (end execution)

goto m if r; > 0 (conditional transfer of control)
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Communication instructions have the form:
ri—(ry, of 1) (read)

(ry, of rj)e=ry (write)

The program is 'to be executed synchronously in parallel by the (finitely
many) active processors. As far as local instructions are concerned, their
behaviour is that of independent RAMs, that is, references to registers in local
instructions are treated as references to their respective local registers. Execution
of a read instruction: ‘

ri—(ry, of ry)

by processor p has the following effect. Suppose registers rj, 1 of processor p
contain the values q and s respectively. Then the contents of register rq of pro-
cessor s are read and placed into register r; of processor p. Similarly, execution of

a write instruction:
(ry, of 1)1y

by processor p has the following effect. Suppose registers r;, r; of processor p con-
tain the values q and s respectively. Then the contents of register ri of processor
p are written into register ry of processor s.

Simultaneous reads (often called multiple reads or concurrent reads) of the
same register are allowed.. In the case of simultaneous writes to a single register
we adopt some reasonable convention whereby a single processor succeeds and is
allowed to write its value, whilst all others fail. For example (after [45]) the
lowest-numbered processor attempting to write succeeds, or (as in Chapter 9), the
processor which is attempting to write the smallest value succeeds, with ties
being broken in favour of the lowest-numbered processor. A write-attempt
always takes precedence over a local instruction, should any conflict occur. This
is popularly called a CRCW (concurrent-read, concurrent-write) protocol. We
will mostly be interested in CRCW networks, although occasionally (for example,
in Section 6.3) we will consider CREW (concurrent-read, exclusive-write) net-
works, in which simultaneous writes are forbidden. EREW (exclusive-read,
exclusive-write) models are also often studied in the literature (see, for example,
Lev, Pippenger and Valiant [74] and Snir [118]). In the case of read-attempts
conflicting with write-attempts, the reads are serviced first. Any attempt to
write to a non-existent or halted processor is ignored. Any attempt to read from

a non-existent or halted processor returns zero.
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Suppose f:Z°—Z* and x = <X@Xy; « » « 5 Xp_1>, Where ;€7 for 0 <i < n.
We will say that x has size or length n, and write | x| =n. Let

m = 'n?ax | f(x) | and f:Z"—Z™ denote the restriction of f to n arguments
X =1

(we adopt the convention that unused output places are filled by zeros). We will
variously refer to x as an input or input string, and each X; as an argument or
input symbol.

Suppose M is a network with processor-bound P:N—N. We assume that P
is computable. Let p =P(n). A computation of M on input x is defined as fol-
lows. The input symbols are placed consecutively into register ro of processors
0,1,.... If p < n we wrap around into register r; of processors 0,1,... etc., utilizing
in this fashion as many registers as necessary. That is, we place X; into register
T li/p | of processor (i mod p). All other general-purpose registers are set to zero.
We then simultaneously activate processors 0,1,...,p-1. These synchronously exe-
cute the program of M. For 0 <i < m let y; denote the contents of register
T li/p ) of processor (i mod p) when all processors have finally halted. We say that
M computes f if for all n>0 and inputs x with |x| =n,
fu(x) = <¥os¥1, - - - » ¥Ym-1>. Recognition of a language over a finite alphabet is
defined in the customary manner; we will encode each input symbol as a positive
integer, and say that acceptance of an input occurs if register ry of processor 0
contains the value 1 on termination of the computation.

Note that if P(n) > n, then the network can determine n, the input-size, in
constant time, as follows. We simply adopt the convention that zero is never
used as an input value, replacing every non-negative integer i in the input by
i+1. Each processor j examines its register ry. If it is non-zero, it then examines
register ry of processor j+1. If that is zero (and exactly one processor will find
that this is the case), then the number of inputs is j+1, which value it writes to
register r; of processor 0. Each processor in possession of a positive input value
then subtracts one from it, and finally all processors simultaneously read the
number of inputs from register r; of processor 0. For general P(n), this algorithm

can be modified to run in time O(—=p—

- P(n)

tions which depend on all n input symbols, since such a computation requires

+1), which can be ignored for computa-

time Q(P—?IJ +1).

The interconnection pattern of M is an infinite family of finite graphs
G = (Gg,Gy,...), one for each input-size. For n >0, G, has vertex-set
{0,1,...,P(n)-1}, and an edge between vertices i and j if at any time during the
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computation of M on an input of length n, processor i attempts to read from or
write to a register of processor j. Let D:N—N. M is said to have degree D(n) if
for all n > 0, G, has degree D(n).

Let T,S,W:N—N. M is said to compute within time T(n) if for all inputs of
size n, all active processors have halted within T(n) steps. For 0 < t < T(n), let
Si(n) be the maximum (over all inputs of size n) number of registers of M with
non-zero contents after t instructions have been executed. Then M uses space

S(n) if S(n)=o<1:13xT(n) Sy(n). It has word-size W(n) if every value which

appears in a register during such a computation has absolute value less than
gW(n) (note that this includes the inputs, outputs and processor identity registers).

The space bound is a measure of the number of registers used in a computa-
tion. It is slightly non-standard; it is more usual to define space to be the
number of registers which are assigned non-zero contents at any point during the
computation (see, for example, [3] for the case of a single RAM). Our reasons
will become more apparent in Chapter 9. The word-size is a measure of the
width of (inter- and intra-processor) data paths, and a measure of register size.
This can be combined with our unit-cost measure of space to provide an upper-
bound on log-cost space.

Consider the example instruction-set given earlier in this section. So far, we
have not specified exactl}; which binary operations can be used for “o". In par-
ticular we will be interested in five types of instruction-sets.

1. The minimal instruction-set allows addition, subtraction and shifts of posi-
tive values by a single bit.

Pye—TjEry
rj«— [1‘1/2 J

Note that the second instruction corresponds to a right-shift by a single bit,
and that a left-shift can be achieved by using integer addition.

2. The restricted arithmetic instruction-set also allows arbitrary-length shifts.

ry— [r] *21‘)( J

Note that r, may be either positive (corresponding to a left-shift) or negative

?

(corresponding to a right-shift). The ‘“floor” operators are not necessary in
the former case.
3. The full arithmetic instruction-set is the restricted arithmetic instruction-set

augmented with multiplication and integer division.
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rj*—rj*rk
Iy ll'j/ Tk J
4. The extended arithmetic instruction-set is the full arithmetic instruction-set
plus exponentiation.

T,
k
I'i4—l'j

5. The general instruction-set includes any instruction which can be simulated
by a multi-tape deterministic Turing machine in polynomial time. (That is,
a multi-tape deterministic 'Turing machine can, when given as input the m-
bit binary representations of the operands, compute the binary representa-
tion of the result in time m©(1),)
A number of questions spring to mind. Given that we have chosen a unit-cost
measure of time (that is, we charge one unit of time for each instruction exe-
cuted, regardless of the type of instruction or the size of its arguments), are these
instruction-sets reasonable? Are they powerful enough? Too powerful? Natural?
Clearly an unrestricted instruction-set which allows any computable function as a
local instruction is too powerful, but what kind of instruction-set is reasonable?
We will return to these questions in the next section.

Instead of writing algorithms in the low-level RAM language, we will follow
the common practice of using a high-level language which can easily be translated
into instructions of this form. We use the usual high-level constructs for flow-of-
control, based on sequencing, selection and iteration. Variables of the form
(x of processor i) will be taken as a reference to variable x of processor i. An
unmodified variable x will be taken to mean (x of processor PID), that is, a

local variable. For example, execution of the statement

if y < (y of processor [PID/2 |)
then statement,

else statement,

by a network of P(n) processors causes the i*" processor, 0 < i < P(n), to com-
pare its variable y with variable y of processor |_i/2 1. If it finds that the former
is less than the latter, then it executes statement,, otherwise it executes state-
ment,. All processors execute this code in parallel. To aid synchronization, we
assume that statement,; and statement, are translated into blocks of code con-

taining the same number of instructions, by filling with NO-OPs (such as ry«rg)
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as necessary. All of the algorithms in this Monograph will maintain synchroniza-
tion by virtue of this simple arrangement. As a notational convenience we may
occasionally use concurrent and conditional assignments. Block-structuring will
be indicated by inden},ation, in the customary fashion.

3.2. The Unit-Cost Measure of Time

In Section 3.1 we defined the running-time of our parallel machines to be the
number of instructions executed (synchronously) before all active processors have
halted. That is, we charge a single unit of time for each instruction. This is
termed a unit-cost measure of time. The use of unit-cost charging is potentially a
contentious issue. The alternative is log-cost charging, whereby the cost of an
instruction is expressed as a function of the size of its arguments, thus tying the
time required for a particular computation to its word-size.

We follow Cook {22] in the belief that the major parallel resources of interest
are time and hardware. We also believe that the important issues in the design
of parallel algorithms are more clear-cut if these two resources are kept com-
pletely independent. A hardware measure should take into account the amount
of memory used, which will depend upon the word-size. This makes the unit-cost
measure of time more attractive, since it alone is independent of word-size, and
thus hardware.

Even for purely sequential machines, the selection of unit-cost measures
versus log-cost is of fundamental importance. Inter-simulations between various
log-cost models (for example (3], Turing machines and log-cost RAMs) can be
achieved with only a polynomial increase in time, whereas no such simulation can
be obtained between unit-cost and log-cost models. For example, in time t a
unit-cost RAM with multiplication can compute (without input) a value as large
as 22”6(1)

value as large as 2t+6(1),

, whereas the same machine with log-cost charging can only compute a

From a purely practical standpoint, the choice of charging mechanism
depends on the type of computation in question. If the word-size of an algorithm
is sufficiently small compared to the word-size of the computer on which it is to
be implemented, then the unit-cost measure is more applicable. Alternatively, if
the values being manipulated grow very quickly with input-size, requiring the use
of multi-word instructions for quite modest input lengths, then the log-cost meas-

ure is preferable.
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This issue is neatly encapsulated in what Goldschlager and Lister [47] call
the “sequential computation thesis’’. This states that time on all “‘reasonable’
sequential models is polynomially related. This is motivated principally by the
polynomial-time simulations of one log-cost model by another, but in fact breaks
the models into two disjoint classes, those with unit-cost and those with log-cost
measure of time. Members of the same class are polynomially related, but two
models from different classes are not. Given this observation, the important
question which must be addressed by any theoretical treatment is not ‘““which
model is better”, but “which model is more accurate for the intended applica-
tion”. We believe that a unit-cost model is more suitable for the individual pro-
cessors of a parallel machine.

The parallel analogue of the sequential computation thesis is the so-called
“parallel computation thesis’ [18,45]. This states that time on all “reasonable”
parallel models is polynomially related. Furthermore, it attempts to characterize
parallel computers by relating parallel time to a sequential resource. More pre-
cisely, it states that time on a ‘“‘reasonable” parallel computer is polynomially
equivalent to log-cost sequential (for example, Turing machine) space. This has
two implications. "Firstly, a machine which is too weak to simulate an S(n)
space-bounded Turing machine in time S(n)o(l) is not powerful enough to be
called a parallel machine. Secondly, a machine which is so strong that a T(n)
time-bounded computation cannot be simulated in space T(n)o(l) by a Turing
machine is too powerful to be called parallel. We will be concentrating mainly on
the latter aspect of the parallel computation thesis, since networks with an unres-
tricted instruction-set are obviously extremely powerful. Henceforth, by ‘“‘reason-
able” we will mean ‘“‘not too powerful’’, in the sense that it is “‘reasonable” to
expect a parallel computer to have only a moderate amount of resources at its
disposal. ’

As we shall see in Section 5.3, one way of making our model satisfy the
parallel computation thesis is to restrict the processors to the minimal
instruction-set of Section 3.1 (this approach was taken by Goldschlager for his
SIMDAG [45]). This ensures that the word-size grows by at most one in every
time-step, and so the log-cost of the individual instructions executed in any given
computation is at most a polynomial in the unit-cost running-time, provided the
input integers are sufficiently small. In this case, unit-cost and log-cost are poly-
nomially related. It makes sense to restrict the word-size of parallel processors

since (as we saw in the second paragraph of this section) the extra power of unit-
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cost RAMs over log-cost RAMs seems to stem from their ability to generate large
integers quickly. Indeed, a single unit-cost RAM with either the restricted [103]
or full arithmetic [50] instruction-sets satisfies the parallel computation thesis, so
is itself as powerful as a parallel machine.

We claim that the unit-cost measure of time is valid for parallel processors.
We shall call this the unit-cost hypothesis. It is framed as a hypothesis (rather
than a theorem or proposition) because it cannot be proved or disproved in the
formal sense. In particular, it depends upon the way in which the word *‘valid”
is interpreted. We will meet several interpretations in the remainder of this
Monograph. Whilst it is intuitively obvious that the unit-cost measure of time is
unrealistic for very powerful instruction-sets which allow the computation of
infeasible functions in a single step, we may reasonably expect it to be realistic
for fairly weak instruction-sets, such as the minimal instruction-set of Section 3.1.

This raises a number of interesting side-issues. We are in effect asking when
a unit-cost model is ‘‘reasonable”. We have seen that restricting the processors
to the minimal instruction-set makes our model “reasonable’ in the sense that it
satisfies the parallel computation thesis. But what do we actually mean by ‘‘rea-
sonable’”? Do models which satisfy the parallel computation thesis successfully
formalize the idea of ‘‘parallel computers”? What do we really expect from a
parallel machine model? These are amongst the issues that we will address in
Chapter 4.

3.3. The Assignment of Programs to Processors

Although every processor of our parallel machine executes the same program, our
model does not fall precisely into the SIMD category of Flynn [32]. SIMD is an
acronym for ‘““Single Instruction-étream, Multiple Data-stream” computer. In the
latter, each processor has the same program, and shares the same program-
counter. At each time-step, each processor either executes the common current
instruction, or remains dormant for a step. This model is attractive since
program-control can thus be left to a single central processor (as in Goldschlager
[45]). This central processor broadcasts the current instruction to all processors,
which individually decide whether to participate. In our model, the conditional
goto instruction takes action depending on the value of a local register, the con-
tents of which may vary from processor to processor. Thus different processors
may be at different points in the program at any given time. However, it is fairly
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easy to show that our model is equal in power to a SIMD one, and to a reason-
able subset of MIMD models. MIMD is an acronym for “Multiple Instruction-
stream, Multiple Data-stream’ computer, and refers to a model in which each
processor may have a different program.

For the sake of discussion, we will call our assignment of programs to proces-
sors a untform one. We use the term “‘uniform” in the sense of Karp and Lipton
[61], meaning that every machine has a finite description. In our case, the finite
description consists of the program (a finite list of instructions) and the
processor-bound (which can be represented as the G&del number of a Turing
machine which computes the binary representation of P(n), on input n in binary).
A MIMD model is non-uniform in the sense that it allows a different program for
each processor; thus an infinite family of finite descriptions (one for each input-
size) is needed. Some authors (for example [15,22,108]) use the term ‘‘uniform”
to denote the fact that an external ‘“‘constructibility’ condition has been enforced
on a non-uniform model in order to restrict interest to machines with finite
descriptions.

A SIMD machine is a uniform one in which, at any given point in time, all
active processors are either executing the same instruction, or are dormant. Our
high-level pseudo-programming language allows the user to write non-SIMD pro-
grams; we believe that this keeps the language simple, elegant and flexible (it
may be argued that it gives the user the flexibility to get into trouble, but the
same is often sald of the gofo statement in modern programming languages).
Furthermore, it is not really necessary to force the programmer to write SIMD
programs, since a uniform network can be simulated by a SIMD one without
asymptotic time-loss, using the same number of processors and degree, with space
and word-size increasing by only a constant.

Suppose M is a P(n)-processor uniform network. We will construct a SIMD
network to simulate M as follows. Processor i of the SIMD network,
0 <i < P(n), simulates processor i of M, using variables PC, VPC, NPC, PR, A
and V, and an infinite array R. PC keeps track of the program-counter of the
simulated processor, whilst for j > 0, R[j] contains the current contents of its
register r;. VPC (the virtual program-counter) will cycle from 1 to the program
length (which is a constant, independent of n); when PC = VPC the PCt
instruction of the program of M is simulated. NPC receives the new program-
counter value, and if the instruction involves a data-transfer, A and PR receive
the address and PID respectively of the register to be updated, and V its new

30



value. At the end of the cycle, the arrays R are updated to reflect the new regis-
ter contents, using the information in PR, A and V, whilst PC is updated using
the contents of NPC. The process is completed at the end of a cycle in which a
halt instruction is simulated.

We present the algorithm in the high-level language of Section 3.1. A
different interpretation is placed on the control constructs however, in order to
make them strictly SIMD. The branches of a selection statement (such as if or
case ) are tried one at a time, with a processor executing a particular branch if
its register contents satisfy the entry condition; all other processors remain dor-
mant during that period. This is opposed to the general (non-SIMD) uniform
case, in which all processors are free to start their respective branches at the
same time, or to enter and leave the construct at different times.

Suppose M has the example instruction-set of Section 3.1. Then the pro-
gram of the simulating network is as follows:

A:=V:=0
PC:=VPC:=1
while PC > 0 do
for VPC:=1 to program length do
if VPC = PC then
PR,A,V:=case PC% instruction of M of
‘‘r,—constant’:PID,i,constant
“ri¢r;0 r:PID,i,R[j]JoR[K]
“rié—rrj”:PID,i,R[R[j]]
“ry1;"PID,R[i],R[j]
“r;~PID":PID,i,PID
“rie—ry of n: PID,i,(R[R[j]] of processor R[k])
“(ry, of rj)erk”:R[j],R[i],R[k]
NPC:=case PC* instruction of M of
“halt’:0
“goto m if r; > 0":if R[i] > O then m else PC+1
‘“others ":PC+1
(R[A] of processor PR):=V
PC:=NPC
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Thus we see that our uniform model is equivalent to a SIMD one (noting
that the SIMD model is a special case of the uniform one). Now, a MIMD model
allows a different program for each processor. Let A:N—N be such that A(i) is a
reasonable encoding of a RAM program (say, using the example instruction-set of
Section 3.1), for i > 0. By “reasonable encoding” we mean that a universal
RAM should be able to decode this program, using negligible resources, into a
format which allows efficient simulation. A MIMD variant of our model is identi-
cal to that of Section 3.1, except that processor i of a P(n)-processor network has
program A(i), 0 < i < P(n). A is called the processor assignment function.

Let M be a P(n)-processor MIMD network which uses resources R,(n), whose
processor assignment A is such that A* = <A(0),A(1), . . ., A(P(n)-1)> can be
computed by a P(n)-processor uniform network using resources Ry(n). Then
clearly there is a uniform P(n)processor network which can simulate M in
resources R;(n)+Ry(n), simply by computing A%, and then having processor i,
0 < i < P(n) simulate program A(i). Each processor of the uniform network has
an identical program made up of two parts, a part to compute A*, and a univer-
sal RAM.

Thus we see that (provided the resources needed to compute A are kept to a
feasible level, as in, for example, Galil and Paul [38]) a uniform network can
efficiently simulate a MIMD one. This can be summarized as follows: if a MIMD
network is easy to specify, then it can be specified as a uniform network. Thus a
uniform model is equivalent to a practical MIMD model.

3.4. Processor Activation

In our model as presented so far, all P(n) processors are activated simultaneously
at the start of the computation, and synchronously execute the first instruction of
the program at time t==1. We call this the initial activation model. An alterna-
tive formulation (lazy activation) is to start off with some small number of active
processors (for example, just processor 0, or just those which receive input), post-
poning the activation of the remainder until run-time. This convention was
adopted by Galil and Paul [38] and Savitch [110].

There are two essentially different ways of approaching lazy activation. The
first requires that an active processor explicitly activate an inactive one by exe-
cuting a special “call” instruction (as in Savitch [110]). This implies that the
number of active processors can at most doiuble in each time-step. Alternatively,
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Galil and Paul [38] allow the inactive processors to execute a polling-loop, inter-

rogating each of its neighbours in turn in order to decide when to become active.

This is really only feasible for networks with constant degree, in which case it is

asymptotically equivalent to the first approach.

Note that this implies that a T(n) time-bounded network can have at most
n 20(T(n)) (in the case when only input-bearing processors are initially active), or
20(T(n)) (in the case when only processor O is initially active) processors. We will,
in later sections, find it useful to consider networks with far more processors.

We will consider a canonical lazy-activation scheme in which:

1. Initially, only processor O is activated.

2. In a computation on an input of size n, processor 0 is initially given the value
of P(n) as part of its input.

3. If an inactive processor has a value written into it for the first time in a com-
putation during time-step t, it becomes active and executes the first instruc-
tion of the program during time-step t+1. Thereafter, it is indistinguishable
from any other active processor. A processor which has halted cannot be
reactivated.

We will see that lazy activation is essentially the same as initial activation,
provided P(n) < 90(T(n)) If this condition does not hold, it is clear that
initially-activated networks are more powerful than lazily-activated ones, by the
simple virtue of their being able to produce longer unary strings. Clearly an
initial-activation network can simulate a lazy-activation one without asymptotic
loss in resources, by simply maintaining an activation flag in each processor.
Simulation in the other direction is only slightly more difficult. The problem is
to activate P(n) processors and synchronize them so that they begin the execu-
tion of the program of M at the same time. If M has P(n) processors and runs in
time T(n), we will show that the simulating (lazy) network runs in time
O(T(n)+log P(n)), whilst increasing space, word-size and degree by only a con-
stant term.

To simplify the presentation, assume that P(n) is of the form 2k_1 for some
k > 0. We will activate P(n) processors using an interconnection pattern in the
shape of a complete binary tree (see Figure 3.4.1). A complete binary tree has
2k_1 processors for some k > 1; processor i is connected to processors 2i+1 and
2i+2 (its children) for 0 < i < 2¥°1-1, and to processor L(i-1)/2 | (its parent) for
0<i<2k1.
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7 8 9 10 11 12 13 14

Figure 3.4.1. The binary tree interconnection pattern with 15 vertices.

Each processor has variables C and P. P holds the value of P(n) (we assume
that P of processor O is set to P(n) at the start of the computation), and C the
number of processors activated so far (we assume that C of processor 0O is initial-
ized to zero). The algorithm consists of a single loop. At each iteration, a new
level of the tree is activated; C is used to detect termination. Upon exiting the
loop, all processors are synchronized, and execution of the program of M can
begin. ,

Processor i activates its children at the next level (processors 2i+1 and 2i42)
using the high-level statements:

(C,P) of processor 2i+1 := C,P
(C,P) of processor 2i+2 := C,P

(Note that we use concurrent assignments as a notational convenience only; four
transfers of data take place in sequence). This also initializes their variables C
and P so that they can join in the loop at the appropriate stage. Note that the
left (odd-numbered) child is activated before the right (even-numbered) child, and
so potentially enters the loop earlier. We can avoid this by making odd-
numbered processors wait for a steps (where a is a suitably chosen constént)
before entering the loop. In order to synchronize the newly-activated processors
entering the loop with those already inside it, it is necessary to add another
delay, this time of § steps (where § is another suitably chosen cénst'ant). Noté
that the values o, § depend only on the exact form of the RAM instruction—seé,
and the ability of the compiler to generate succinct code from high-level
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statements. In a high-level form, the algorithm is:

Odd-numbered processors wait for « steps

Wait for g steps

C:=2C+1

while C < P do
(C,P) of processor 2*PID+1 := C,P
(C,P) of processor 2*PID+2 := C,P
C:=2C+1

To make the synchronization method completely transparent, this program would
generate the following code (using an instruction-set similar to that of Section
3.1, with certain minor liberties taken with arithmetic and Boolean expressions to
ensure brevity). In this case, o =2 and § = 1.

goto 4 if PID mod 2 = 0
NOOP

NOOP

NOOP
C+2*C+1

goto 13if C > P
(C of 2*PID+1)«C
(P of 2*PID+1)«~P
(C of 2¥PID+2)«—C
. (P of 2¥PID+2)+P"
. C2%C+1

. goto 6

© PN ok W

I
w N = O

. etc.

Table 3.4.1 gives a trace of this algorithm for P(n) = 7 processors.

Many papers in the current literature use a lazy-activation model, either
explicitly, or implicitly by insisting that P(n) < 2T(m), However, there are many
problems which can be solved in sub-logarithmic time on polynomial-processor
machines, once the processors have.beeg activated (see Lemmas 6.1.1 and 6.1.6,
Corollary 6.1.7 and Theorem 6.1.10). This class of problems, which is becoming

increasingly well-studied in the literature, deserves some consideration.
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PC,P,C of Processor
Time| 0 1 2 3 4 5 6
0 1,7,0
1 4,7,0
2 15,70
3 16,7,1
4 |77
5 87,111
6 9,7,1 {2,7,1
7 110,7,113,7,1 | 1,-,1
8 |11,7,1|4,7,1 |4,7,1
9 |12,7,3|5,7,1 |5,7,1
10 |6,7,316,7,3 [6,7,3
11 {7,7,317,7,317,7,3
12 18,7,318,7,3(87,3|1,-3 1,-,3
13 19,7,319,7,3 19,7,3 12,7,3 27,3
14 |10,7,310,7,3110,7,3:3,7,3 | 1,-,3 {3,7,3 | 1,-,3
15 |11,7,3111,7,311,7,3|4,7,3 |4,7,3 1 4,7,3 | 4,7,3
16 |12,7,712,7,7112,7,715,7,3 |5,7,3 | 5,7,3 | 5,7,3
17 |e6,7,7 |6,7,7 16,77 16,7,76,7,7 16,7,7 |6,7,7
18 |18,7,7(18,7,7(18,7,7 |18,7,7(18,7,718,7,7 |13,7,7

Table 3.4.1 Activation and synchronization of 7 processors in a lazy-
activation model. Each entry shows the value of the program-counter (PC),
and variables P and C for a particular processor, initially (at time 0), and

after each of 18 steps. A blank entry indicates an inactive processor. An

entry of “-” for a variable indicates that it has not yet been initialized.

Run-time on the initial-activation model more accurately measures the cost
of running algorithms as sub-routines; in particular, initial-activation run-time
remains accurate under iteration. The cost of activating processors can, if this is

desired, be added at the end of the entire computation. For example, consider a
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sequence of O(log n) sub-computations, each of duration O(log log n), on a
polynomial-processor machine. In an initial—activation model, the run-time would
be O((log n)(log log n)); simulating this" on a lazy-activation machine will not
asymptotically affect the run-time. Insisting that each sub-computation cost
O(log n) for activating the processors is unnecessary, since each sub-computation
can re-use the same set of processors. The O(log®n) run-time obtained using the
lazy-activation model for the sub-computations is clearly inaccurate.

We will also be studying networks with an exponential number of processors.
It is not surprising that many problems be(;ome solvable in sub-logarithmic time
with exponential hardware. Our primary motivation for studying algorithms
which need exponential hardware is to use them as sub-routines on very small
input-sizes. For example, Theorem 6.1.9, which uses exponentially many proces-
sors to sum finite objects in constant time, is used as a sub-routine in Theorem
6.1.10 to perform the summation in sub-logarithmic time using a linear number
of processors. Lemma 6.2.1, which simulates Turing machines on networks with
exponential hardware, can be ‘“‘slowed down” to derive speedups of of sequential
machines on networks which satisfy the parallel computation thesis (see Sections
5.5 and 6.2) and the extended parallel computation thesis (see Sections 9.4 and
9.5). This study would have been more difficult to carry out within the artificial
constraints of a lazy-activation model.

3.5. Exercises.

3.1 Show how to compute the following on a single processor with the given
instruction-set in constant time.
(i) Compute any two-input Boolean function with the minimal
instruction-set.
(ii) Implement the following high-level program wusing the minimal

instruction-set.
if x is odd then x:=x+1

(iii) Let x, y and z be positive integers, with y > z. Show how to compute

the integer whose binary representation consists of the y™ through z*h
bits of the binary representation of x, where the bits are numbered con-
secutively starting at zero for the least-significant bit, using the res-

tricted arithmetic instruction-set.
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3.2

3.3

3.4

3.5

38

Design a SIMD instruction-set which is powerful enough to implement the
high-level SIMD language used in Section 3.3.

Suppose we add to our high-level programming language a synch statement.
Any processor encountering a synch statement becomes dormant until all
other processors reach a synch statement. When and if this occurs, all pro-
cessors then simultaneously execute their next instruction. Can a synch
statement be implemented in our model? If so, then describe an efficient
method for doing so. If not, then explain your reasoning, and describe a set
of modifications which make it possible.

Suppose we add an explicit activation instruction to our model:
activate r;

which, when executed by processor p, activates the processor whose PID is in
register r; of processor p, and modify our lazy-activation scheme accordingly.
Show that this model can simulate an initial-activation machine efficiently.
Modify the lazy-activation program in Section 3.4 to work when P(n) is not
necessarily one less than a power of two.



4 Variants of the Model

The aim of tfxis chapter is to examine a few important variants of our basic net-
work model. In the first section we propose a fixed-structure variant, that is, one
in which the interconnection patterns of the networks can be predicted. The
more general model computes its own interconnections, which implies that it
must, in the worst case, be fabricated as a completely-connected network. In
contrast, the degree of a fixed-structure model is an accurate measure. of the
number of communication lines needed by each processor. It is observed that
more efficient fixed-structure networks can be constructed by expending more
resources, for example a network with a non-recursive interconnection function
can compute arbitrary (non-recursive) single-valued Boolean functions in constant
time, given exponentially many processors.

The second section compares our model to the popular shared-memory
machine. In a shared-memory machine the processors communicate indirectly via
a common shared memory, rather than by direct register access. The two models
are easily seen to be almost identical in computing power. In the third section
we define a practical variant of the network, which we will call a feasible net-
work. We suggest the possibility of constructing a feasible network which is
universal for the general model as described in Section 3.1. This suggestion will
be followed up in Section 9.2. Various types of universal network are considered,
differing in how closely they mimic the communications of the simulated network.

4.1. A Fixed-Structure Model

The basic model described in Section 3.1 falls into Cook’s [22] category of
machines with modifiable structure, since processor interconnections are com-
puted at run-time. A resource-bound for such a machine is made up of two
parts, corresponding to the resources required to compute the interconnections
and those required to perform the actual computation. In a fized-structure net-
work these two components are separated. The former reflects the cost of build-
ing the network, and the latter the cost of using it.
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This separation can become significant when the two components differ by a
large amount. For example, consider a network with the example instruction-set
of Section 3.1, whose only allowable binary operations are (single-bit) two-input
Boolean functions, integer division by 2 and multiplication by 2. Let
£:{0,1}*—{0,1}" be defined by f(x,,..., Xp1) == <¥g - -+ » ¥p1> Where for
0<i<m y=x;0® X(i+1) mod n- AN N-processor, constant-degree network can
compute f in a constant number of steps, provided processor i knows the value of
(i+1) mod n, 0 < i < n. However, the same network requires )(log n) steps to
actually compute those values, since it can only perform bit—operatio‘ns. ‘Thus in
a model with modifiable structure, the run-time of this network is Q(log n),
whilst under a fixed-structure model the run-time is constant. Any reasonable
fabrication device which includes addition as part of its instruction-set can com-
pute the interconnections in parallel in a constant amount of time.

A fixed-structure analogue of our basic model can be defined as follows.
Galil and Paul [38] call this a model with predictable communication since the
inter-processor connections need to be known in advance of actually running the
machine. Note that all networks have ‘“predictable communication” in the sense
that they can be fabricated as a completely-connected machine (with each proces-
sor connected to every other), but this may involve an unacceptable increase in
degree. Our fixed-structure model has the same format as the basic model of Sec-
tion 3.1, with a number of minor modifications. Each processor is given a
number of additional read-only registers which are preset at the beginning of a
computation. These correspond to values which are “hard-wired” into the net-
work during the fabrication process. They consist of the DEGREE register, and
an infinite number of port registers py,py;..., each of which is capable of holding a
single integer.

More formally, a fized-structure network consists of a program and an inter-
connection scheme. The program is a finite list of instructions, each of which
may have the following form, where p is a port register. Either:

1. Read a value from a register of processor p.

2.  Write a value to a register of processor p.

3. Perform an internal computation.

4. Transfer of control.

Using the notation of Section 3.1, the read instruction:

= (ry of 1)

would be interpreted as meaning ‘‘read the (rj)th register of processor p; and
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place the result into register r;"’, and the write instruction:
(rrl of }‘j)e—rk

would be interpreted as meaning ‘‘write the value from register r into the (r,)*"

register of processor pr”’.

An interconnection scheme consists of three functions, a processor-bound
P:N—N, a degree function D:N—N and an interconnection function
G:II(n) X A(n)X N—II(n), where II(n) ={i | 0 <i < P(n)} denotes the set of
processors and A(n) = {d | 0 < d < D(n) } denotes the set of communication
lines attached to each processor. In a P(n)-processor computation, processor i is
connected to processors G(i,d,n), 0 < d < D(n). We adopt the convention that if
i€{ G(§,d,n) | 0 < d < D(n) } then j€{ G(i,dn) | 0<d <D(n)}. A compu-
tation of M, where M has interconnection scheme (P,D,G), is defined similarly to
Section 3.1, with the following addition. Before the processors are activated, the
DEGREE register is set to D(n), and for 0 < d < D(n), 0 < i < P(n), register py
of processor i is set to G(i,d,n). The values of the remaining port registers are
undefined. The resources of space and word-size are modified to include the new
registers (the word-size of the port registers may be measured according to their
absolute contents, or some concise relative encoding, if such is applicable).

Note that a resource bound for computing any given function must include
reference to the complexity of the interconnection scheme. This is because, as
might be expected, more efficient networks can be built by investing more
resources in their construction. Information can be stored in the interconnection
pattern, to be used later as a kind of “look-up table”. Take for example the
problem of computing an arbitrary computable single-valued Boolean function
£:{0,1}*—{0,1}. We will show how to compute f on n inputs in a constant
number of steps, using n 2" processors.

If x = <x%q, ..., Xp;> is an input of size n, let int(x) = nil x;2' be a binary
i=0

encoding of x as an integer. The n 2" processors are broken up into 2" teams T,
0<i< 2™ For 0<1i<2% team -Ti consists of the n processors i n + j, for
0 € j < n. The smallest-numbered processor of each team is a distinguished
processor called the manager of that team. For each input x, the manager of
Tinyx) Will have the value f(x) encoded as part of its interconnection pattern.
Our problem then, given an input x, is to notify the manager of the appropriate

team.
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This is achieved as follows. Each team manager sets a specified register a to
zero. For 0 <i< 2% 0<j<n the j® member of team T, compares the j*b
symbol of the input to the j*® bit of i. If these two values are different, it writes
a one to register a of its team manager. The manager of Tint(x) will be the only
manager which is not written to; its register a still contains zero. It then consults
its interconnection pattern for the value of f(x), and writes this value to processor
0 for subsequent output.

The following is a high-level implementation of this algorithm. Assume that
initially variable x of processor p contains the p™® bit (xp) of the input,
0 < p < n. Each processor has two variables i and j which (as in the previous
paragraph) record that processor’s team number and position within that team.
Variable a of the team managers will be used for communication with its team
members. The result f(x) will be found in variable r of processor 0 on termina-
tion.

The interconnection pattern is as follows. For 0 < i1 < 2", 0 < j < n, pro-
cessor i n + j (the j*®* member of T,) is connected to processor j (the processor in
charge of the j*! bit of the input), and processor i.n (its team manager). For each
input x, processor n.int(x) is connected to processor f(x) via a special link. It can
determine the value of f(x) by reading the PID of that processor.

a:=r:=0
i,j== |[PID/n ],PID mod n
if (x of processor j) 7% (j** bit of i)
then (a of processor i*n):=1
if (j = 0) and (a = 0)
then (r of processor 0) := PID of processor special link

Note that even non-recursive functions can be computed in constant time if
the fixed-structure network is allowed to be non-uniform. We will normally res-
trict ourselves to uniform fixed-structure networks, that is, fixed-structure net-
works whose processor, degree and interconnection functions are computable.
The algorithm as presented uses the full arithmetic instruction-set.. The res-
tricted arithmetic instruction-set can be substituted by increasing the number of
processors in each team to 2" (see Exercise 4.1). If the minimal instruction-set is
used, the run-time is O(log n). Note that the values in, 0 <1i < 2% are not
computed at run-time, but are stored as part of the interconnection pattern. The
degree can be reduced to a constant by the use of binary trees for routing. The
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run-time is thus increased to O(log n) on either the full arithmetic, restricted
arithmetic or minimal instruction-sets. The number of processors can be reduced
to 2°*2 [38]. This increases the run-time to O(n), although it does reduce the
degree to a constant, and uses only finite-state machines as processors.

4.2. Shared Memory Machines

A popular alternative model is obtained by constraining processors to communi-
cate via a common memory, rather than communicating by direct processor-to-
processor links. Let P,S,T,W:N—N. A shared memory machine consists of an
infinite number of processors attached to a globally accessible shared memory.
The shared memory consists of an infinite number of memory locations sg,s,...,
each of which can hold a single integer. Each processor possesses an infinite
number of general purpose registers, and a unique read-only processor identity
register PID which is preset to i in the i'" processor, iEN. A program for this
machine consists of a finite list of instructions; each instruction is of the form
either:

1. Read a value from a specified place in the shared memory.

2.  Write a value to a specified place in the shared memory.

3. Perform an internal computation.

4, Transfer of control.

The allowable internal computations usually consist of direct and indirect register
transfers, logical and arithmetic operations. The communication instructions are
of the following form:

ri—s; (read)

SpeTy (write)

More formally, a shared-memory machine consists of a program P and a
processor bound P(n). A computation proceeds roughly as follows. An input of
size n (where the ‘size” measure depends on the problem in question) is broken
up into n unit-size pieces, and the ith piece is stored in shared memory location i,
0 <i < n. All other memory locations and general purpose registers are set to
zero. Processors 0,1,...,P(n)-1 are activated simultaneously; they synchronously
execute the program P . When all processors have halted, the output is to be
found in some specified place in the shared memory.
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The processor bound P(n) is a measure of the number of processors used as
a function of input-size. The space S(n) is the maximum number of non-zero
entries in the shared memory and registers at any time during the computation.
(Note that. this includes the input and the processor identity registers). The
machine is said to have word-size W(n) if the maximum value in any register or
shared memory location during any computation on an input of size n has abso-
lute value less than 2¥(®), The time bound T(n) is the number of instructions
executed before all processors have halted, again as a function of input-size.

Similar parallel machine models have appeared in a large number of papers,
the earliest of which include Fortune and Wyllie [33], Goldschlager [41], Schwartz
[112] and Shiloach and Vishkin [114]. We assume some reasonable protocol for
dealing with memory access conflicts, as in those references. Although for our
purposes the exact details of the write-conflict resolution scheme are not impor-
tant, there are situations in which it is important (see Fich et al [29,28] and Li
and Yesha [75]). The general consensus of opinion is that whilst the shared-
memory model is a powerful theoretical tool, it will not be feasible to construct
one using any foreseeable technology.

A shared-memory machine M can be simulated by a network with identical
internal instruction-set, without asymptotic loss of resources. Suppose M has
P(n) processors. Then the network has P(n)+1 processors. Processor 0 remains
idle throughout the computation, whilst processor i, 1 < i < P(n) simulates the
action of processor i-1 of M. The processors possessing input values first store

them into the registers of processor 0 according to the input-convention of the

shared-memory machine, in time O(F(IEI—I—)- +1). If P(n) = Q(n), then this is a con-

stant. Otherwise eaclr processor has )(n/P(n)) inputs, and thus the machine
must run in time Q(n/P(n)) if it is to access all of the input symbols. In either
case, the running-time of the machine is increased by at most a constant multi-
ple. Any reference to shared memory location m is replaced by a reference to
register r, of processor 0. The extra processor can be eliminated by having pro-
cessor 0 reserve the odd-numbered registers for its own use, and the even-
numbered registers for the contents of the shared memory. A reference to shared
memory location m is then replaced by a reference to register ry, of processor 0.
Alternatively, the shared memory contents can be divided up amongst the
processors of the network, provided the instruction-set is sufficiently powerful.
Suppose M has P(n) processors and space S(n). Processor i of the network,
0 <i < P(n), simulates processor i of M, and in addition holds the values of
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shared memory locations i+jP(n), j > 0. A reference to shared memory location
m is replaced by a reference to register ry | /P(n) | of processor m mod P(n); each
processor reserves its even-numbered registers for memory locations, and the
odd-numbered registers for its own use. This assumes that the instruction-set is
at least as powerful as the full arithmetic instruction-set of Section 3.1. If the
restricted arithmetic instruction-set is used, P(n) should be replaced by
2[18P() 1| For a minimal instruction-set, the time-loss is O(log P(n)) per
instruction, using P(n) processors. If sufficiently many processors are used (so
that each processor holds at most one memory location) this time-loss can be
reduced to a constant multiple.

Similarly, a network M can be simulated by a shared-memory machine
without asymptotic loss in resources, provided the instruction-set is sufficiently
powerful. The registers of the network are stored in the common memory; each
processor of the shared-memory machine need only have a constant number of
local registers. Note that the same trick serves to reduce the local memory
requirements of all shared-memory machines, subject to similar conditions. The
processors which require input values according to the input-convention of the
network can read them from the shared memory. Any reference to register r; of
processor j is replaced by a reference to shared-memory location i P(n) + j.

This replacement costs only a constant number of steps per access for
machines with the full arithmetic instruction-set. As before, if P(n) is replaced
by 2 [og P(n) 1 {4 also costs a constant number of steps with the restricted arith-
metic instruction-set. For machines with the minimal instruction-set, a similar
result can be obtained by storing, along with each register r;, the contents of r;
multiplied by P(n). This requires time proportional to [n/P(n) llog P(n) to set
up for the initial input string. Thereafter, these values can be maintained and
used for register access with a constant loss in time for each step of M. Alterna-
tively, the multiplication by P(n) can be computed at access-time, at a cost of
O(log P(n)) per access. ‘

In. view of the close relationship between networks and shared-memory
machines, particularly since the sharéd—memory machine can be viewed as a sub-

model of the network machine, we will henceforth use the shared-memory model
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whenever possible.

4.3. A Practical Model

In the last section we saw a theoretically elegant but impractical variant of the

network model. Here we will discuss a restricted, more practical variant of the

network model. Many restrictions have been made in the literature, motivated,

it is often claimed, by practical considerations. These include the following:

(1)

(2)

3)

(4)
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Restrictions on degree. It is widely accepted that a completely-connected
network is impractical. Some authors (for example, Galil and Paul [38])
think that degree should be constant (i.e. independent of input-size).
Restrictions on the interconnection pattern. In the case of fixed-structure
networks (see Section 4.1) it is desirable to restrict oneself to networks with
interconnection patterns which are in a sense easy to compute (see, for
example, [38]). This is also the case for uniform circuits [108] and
conglomerates [45]. One advantage of this approach is that it avoids the
kind of network described in Section 4.1, which can compute a large class of
functions (including even non-recursive ones) in an unnaturally small amount
of time.
Restrictions on register access. Even if higher-degree networks are accept-
able, should every processor necessarily have the freedom of being able to
read any register of its neighbours? An alternative is to provide each proces-
sor with a special communication register COM, which is the only register
accessible to other processors. The only allowable communication instrue-
tions are: v

1;+(COM of 1;) (read)

(COM of rj)er; (write)

This approach was taken, for example, by Galil and Paul [38], Karp and Lip-
ton [61] and Upfal [124]. We will call networks of this kind restricted-access
networks. :

Restrictions on multiple register access. Some authors (for example, Fortune
and Wyllie [33]) insist that simultaneous writes to a single register be disal-
lowed, others (for example, Lev, Pippenger and Valiant [74]) insist that
simultaneous reads of a single register also be banned.



We are now ready to define our practical model. A feastble network M is a fixed-

structure network (see Section 4.1) with interconnection scheme (P,D,G), such

that: ’

(i) Each processor has a constant number of general-purpose registers.

(i) The degree, D(n), is a constant.

(iii) The interconnection function G can be computed in pdlynomial time (that
is, time polynomial in log P(n)) by a deterministic Turing machine.

These three conditions ensure that the networks are, in a sense, easy to con-

struct. Each processor has a small amount of memory, and a small number of

easy-to-compute interconnections. Machines with similar characteristics have

appeared in many papers, including [37,86,104,112,122].

Even if we accept the feasible network as being feasibly constructible, it is
unlikely that the fabrication costs would be so low that the average user would
be willing to build a new network for each application. More likely, the user
would prefer to present each new machine (in the form of a program) to a univer-
sal parallel computer which can simulate it at a small cost in resources. The user
would thus be able to trade the fabrication cost of a feasible network for a small
increase in resources at run-time.

A further advantage is to be gained if we can find an efficient feasible net-
work which is universal for the general model of Section 3.1. From a practical
point of view, it would provide the user of a feasible network with a flexible
high-level programming language. Programs which are written in a high-level
programming language similar to that of Section 3.1 could, although they may
correspond to networks which are not feasibly constructible, be run on a feasible
universal machine with only a small extra cost in resources. By building a single
feasible network the user gains the use of a flexible and elegant virtual architec-
‘ture corresponding to a completely-connected network. From a theoretical point
of view, we obtain a practical motivation for studying the more esoteric parallel
machine models of Chapter 3.

Note that the universal network is far more attractive than the machines
that it can simulate. It it is a fixed-structure network with a small number of
easy-to-compute interconnections per processor. The number of registers per pro-
cessor is constant, and therefore the problem of providing access to arbitrary
registers of neighbouring processors vanishes; we can insist that the universal net-
work be restricted-access without asymptotic time-loss. Because the degree is
constant, the problem of whether to allow simultaneous access to those
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communication registers also vanishes. Accesses in the universal network can be
restricted to exclusive reads without asymptotic time-loss (see Exercise 4.3).
Also, the requirement that the universal network is synchronized is no longer
essential (see [38]).

Exactly what do we mean by a ‘“‘universal machine”? Suppose U is a P(n)
processor (feasible) network, M is an arbitrary network, and x = <XgyernsXp 1> is
an input of size n. A stmulation of M on input x by U is to proceed as follows.
Let p=P(n). Place x; into register r Li/p | of processor (i mod p). Place into the
remaining registers of processor 0 a concise finite encoding of the program of M.
Set all other general-purpose registers to zero, and simultaneously activate pro-
cessors 0,1,...p—-1 on the program of U. Suppose M computes a function f, and
fa(x) = <¥g « - + ; ¥m1> (for definitions see Section 3.1). U is said to be unsver-
sal if for all networks M and inputs x, when all processors of U have halted, regis-
ter r i/ | of processor (i mod p) contains y;, for 0 < i < m.

We are interested in a particular kind of simulation, which we shall call
“step-wise”. A simulation of a T(n) time bounded network M on an input of size
n is said to be step-wise if:

(1) Foro<i < S(n), 0 < 7 < T(n) each register i of M has a corresponding
dedicated processor d(i,7) in U. Note that we may allow d(i,7) = d(j,r) when

i £ j.

(2) Suppose t:N—N. The simulation consists of three phases:
(a) Initialization. This includes the assignment of, and routing of the input
values to the dedicated processors as well as any pre-computations
required for phase (b).

(b) Computation. The computation phase is to take t(n)T(n) steps. For
0 < 7 < T(n) we require that after t(n)r steps of this phase, processor
d(i,7) has a distinguished register which contains the contents of register
i of M after 7steps of M, 0 < i < S(n).

(¢) Termination. This includes routing of the output from the dedicated

processors to the output processors.

Such a universal network is said to have delay t(n). The set-up time is the
time required for phases (a) and (c) combined. A step-wise simulation is also said
to be hteral if a data-transfer from registers i to register j of M, 0 < i,j < S(n),
during time-step 7, 1 < 7 < T(n), gives rise to a communication between proces-
sors d(i,1) and d(j,7) of U between time-steps (r-1)t(n)+1 and 7t(n) of phase (b).
More formally, define a directed multi-graph G, as follows (G, is to reflect the
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information flow between processors of U during the simulation of time-step 7 of
M). G, has vertex-set {0,1,...,Py(n)-1} (where U has Py(n) processbrs), and an
edge from vertex u to vertex v, labelled §, if during time-step (7—~1)t(n)+6 of phase
(b), processor v-of U reads a value from processor u, 1 < § < t(n). (Recall that
processors of U use only exclusive-reads for inter-processor communication). We
require that there be a path from d(i,~1) to d(j,7) in G, with monotonic increas-
ing labels on the edges. Thus in a literal simulation, a data transfer between
registers of the simulated network can give rise to a data transfer between the
corresponding dedicated processors within the simulation of that time-step. In a
non-literal simulation, the required data may (for example) have started out dur-
ing the simulation of the previous step of M, and been kept up-to-date by auxili-
ary processors along the way (see Sections 10.2, 10.3).

Later, we will consider a more restrictive form of literal simulation in which
the dedicated processor assignment does not change with time. We will call this
type of simulation strongly-literal. In Section 10.1 we give an upper-bound of
O(log P(n)) on the delay for a strongly-literal simulation of a P(n) processor,
constant-degree, restricted-access network, and match this with a lower-bound in
Section 10.2.

Our characterization of simulations into strongly-literal, literal and non-
literal categories is motivated by (although different from) the type 1, type 2 and
type 3 characterization used by Meyer auf der Heide [52].

4.4. Exercises

4.1 Show that a non-uniform fixed-structure network with the restricted arith-
metic instruction-set can compute any n-input Boolean function in constant
time with 2°(®) processors (see Section 4.1).

4.2 Show that a shared-memory machine can be restricted to have ohly a con-
stant number of registers per processor without increasing any resource by
more than a constant multiple, provided its instruction-set is powerful
enough. What increase in running-time is obtained for the minimal
instruction-set? What increase in running-time is obtained for the restricted
arithmetic instruction-set? How many registers per processor are sufficient?

4.3 Show that register accesses in a feasible network can be restricted to
exclusive reads only, without asymptotic time-loss.
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5 Space and Parallel Time

Suppose we consider a parallel machine as an acceptor for a language over a
finite alphabet (see Section 3.1). The parallel computation thesis is an attempt to
characterize the langliage recognition capabilities of time-bounded parallel com-
puters. Informally, it states that “éequential space is polynomially related to
parallel time”. This enables us to take advantage of the large body of knowledge
relating to sequential space complexity, in particular, P-completeness. P-
complete problems are problems in P which have the property that if any of
them can be recognized in poly-log space (equivalently, poly-log parallel time),
then so can every problem in P. (We use the term ‘“‘poly-log” to describe
logo(l)n, a polynomial in the logarithm of n.) Thus P-complete problems probably
do not have an exponential speed-up in parallel.

In Section 5.1 we introduce small-space sequential computations, and in Sec-
tion 5.2 meet the concept of log-space reduction and P-completeness. Section 5.3
examines a P-complete problem, the circuit-value problem, and some of its vari-
ants. Finally, in Section 5.4 we relate space to parallel time.

5.1. Small-Space Sequential Computations

The space required by a deterministic Turing machine is usually defined to be the
maximum (over all inputs x of size n) of the number of tape cells scanned by any
tape head. It would be just as realistic to define space using the number of bits
of memory used in a RAM program, or any other ‘‘reasonable” model of sequen-
tial computation. Indeed, most ‘‘reasonable” models of sequential computation
seem to have polynomially-related time and space bounds. This extension of the
classical Church-Turing thesis is called the sequential computation thesis by
Goldschlager in [47]. Our decision to use the Turing machine as our model of
sequential computation is therefore not critical, to within a polynomial. Note
that for a standard Turing machine the space requirement is bounded above by
the running-time, and is at least n (since at least n cells are required to store the

input). However, for some problems, the amount of work-space required is
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exponentially smaller than the space required for the input and output. We will
study these problems in more detail.

In order to distinguish between work-space and space used solely for the
storage of inputs, we will use a Turing machine model with a read-only input
tape, a one-way infinite work-tape and a write-only output tape. We measure
space as the maximum, over all inputs x of size n, of the number of work-tape
cells used in processing x. Nondeterminism is defined in the usual way, with
space defined to be the maximum, over all inputs x of size n, of the minimum,
over all accepting computations on input x, of the number of work-tape cells used
in that accepting computation (with space taken to be zero if no such accepting
computation exists). Note that (by the tape reduction theorem [57]), we can
increase the number of work-tapes to any constant k without affecting the space-
bound by more than a constant multiple. And, as we shall see, constant multi-
ples in space-bounds can be ignored.

Definition. DSPACE(S(n)) is the class of languages which can be recognized in
space S(n) by a deterministic Turing machine. Similarly, NSPACE(S(n)) is the
class of languages which can be recognized in space S(n) by a nondeterministic

Turing machine.

Theorem 5.1.1 For all c€EN, ¢ > 2, DSPACE(S(n)) CDSPACE(S(n)/c¢).
Proof. See Hopcroft and Ullman [57]. O

A configuration of a Turing machine is a snapshot of its internal settings at a
particular point in time. That is, it consists of the positions of the input, output
and work-tape heads, the contents of the work-tape and the internal state of the
finite-state control. Note that a configuration of an S(n) space-bounded Turing
machine can be described in O(S(n)+log n) bits if it is used as a language accep-
tor. It is clear that DSPACE(log n)CP, since a deterministic Turing machine
that uses work-space O(log n) has at most polynomially many configurations,
each of which can occur at most once in any computation (otherwise an infinite
loop would occur). Furthermore, it is easy to see that NSPACE(log n)CP. Sup-
pose M is a nondeterministic Turing machine which uses space O(log n). Given
an input x, define the computation graph of M on input x to have a vertex for
every configuration of M on input x, and an edge from vertex u to vertex v pre-
cisely when configuration v follows from configuration u on input x according to
the rules of M. A depth-first search can be carried out on this graph to ascertain
whether a vertex corresponding to an accepting configuration can be reached
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from the initial configuration using the edges of the computation graph. Since M
runs in logarithmic space, it can have at most polynomially many configurations,
and hence the depth-first search can be carried out in polynomial time (those
unfamiliar with depth-first search can consult Aho, Hoperoft and Ullman [3]).
The following are popular conjectures, all of which remain open problems:

NSPACE(log n) % DSPACE(log n).

P # DSPACE(log n).

P £ NSPACE(log n).
Consider the following problem:

THE GRAPH ACCESSIBILITY PROBLEM (GAP).
INSTANCE: A directed graph G = (V,E), and two distinguished vertices, u,v€V.
QUESTION: Does there exist a path from u to v in G?

We use the number of vertices in V as a measure of input-size. We will require
that a reasonable encoding scheme is used, such as an edge-list or adjacency
matrix, so that |V | is to within a polynomial an accurate measure of the
number of bits needed to describe an instance of GAP. The chief requirement is
that edge-queries can be answered using space logarithmic in the size of the
graph. For convenience, suppose that the vertices are numbered 1 through n,
and that the edges are represented by an adjacency matrix. Clearly GAPEP
(simply use depth-first search). Also, it is clear that GAPENSPACE(log n).
Consider the following pseudo-code algorithm. '

xi=u

while x £ v do
guess a value for y
if (x,y)¢E then REJECT
Xi=y

ACCEPT

It uses logarithmic space, and will nondeterministically guess a path from u to v
if one exists. But how much space is needed to solve GAP deterministically?
Consider the following recursive algorithm:
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procedure path(i,j,k)
comment returns true if there is a path from vertex i to j of length at most k
if k = 0 then return(i = j) else
if k = 1 then return((i,j)€E) else
return ( 3 1 path(i,l, [k/2 1) and path(l,j, lk/2 ]))

The existential quantifier is evaluated by sequentially trying each possible vertex
lin turn. The depth of recursion is O(log k), and at each level of recursion we
use a constant number of variables, each requiring O(log n) bits. GAP can be
solved by computing path(u,v,n), which therefore uses space log?n.

In the remainder of this chapter, we will express our algorithms using a so-
called ezpression language, that is, we will omit the returns, deeming a procedure
to return the expression that it contains.

Definition. A function S:N—N is called space-constructible if a deterministic
Turing machine can, on input n in unary, output S(n) in unary using space S(n).
Most useful functions, for example, polynomials and poly-logs, are space-
constructible.

Theorem 5.1.2 (Savitch’s Theorem [109]). If S(n) is space-constructible,
S(n) = Q(log n), then NSPACE(S(n)) CDSPACE(S(n)?).

Proof. (Sketch). Let M be an S(n) space-bounded nondeterministic Turing
machine. Modify it so that its accepting configuration is unique, by ensuring that
before it enters the accept state, it erases all work-tapes, and returns all heads to
their initial positions. The computation graph of this new machine on input x of
length n has 20(5(2)) vertices, and a path from the initial configuration to the final
one iff M accepts x. By using the algorithm for GAP, we can determine if such a
path exists in space (log 20(5(“)))2. The computation graph need not be computed
explicitly since edge-queries can be answered in a small amount of space (see
Exercise 5.1). O

The following conjectures are still open.
PZDSPACE(log?n).
DSPACE(log?n)ZP.
DSPACE(log?n) % DSPACE(log n).
DSPACE(log?n)Z NP.

Definition. POLYLOGSPACE = Y lDSPACE(logkn).
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Note that Theorem 5.1.2 implies that POLYLOGSPACE is invariant under non-
determinism. It is conjectured that PCPOLYLOGSPACE and POLYLOGSPACEZP,
but all that is known is that P 3£ POLYLOGSPACE [14].

5.2. Log-Space Completeness

The question of whether PCPOLYLOGSPACE is still open, and as we shall see
later, is of fundamental importance to parallel computation. The current status
is similar to that of the NPCP question. It is widely conjectured that NPZP,
evidence being provided by the existence of NP-complete problems, which are the
hardest problems in NP in the sense that if they are members of P, then so is
every problem in NP. It is also widely conjectured that P POLYLOGSPACE, evi-
dence being provided by the existence of so-called P-complete problems, which
are the hardest problems in P in the sense that if they are members of
POLYLOGSPACE, then so is every problem in P. A stronger concept of reduction
is needed to show P-completeness; the concept of a polynomial-time reduction is
replaced by a log-space reduction. To emphasize this, a P-complete problem is
often called log-space complete for P. Using this nomenclature, an NP-complete
problem would be called “polynomial-time complete for NP”'.

Definition. Let T be a finite alphabet. A language ACX" is log space reducible
to BC L if there exists a function f computable in logarithmic space such that
for all x€X*, x€A iff f(x)€B. We write A <), B.

Definition. Let C be a class of languages. We say that B is log-space hard for
C if for all A€EC, A Slog B. If, in addition, BEC, we say that B is log-space com-
plete for C. We will use the terms “P-complete’” and ‘“‘log-space complete for P
interchangeably.

Before proceeding further, we should verify that the above notion of log-
space completeness matches our intuitive description, namely, that if a P-
complete problem is a member of POLYLOGSPACE then PCPOLYLOGSPACE.
That is, we must prove that if A <;,B and BEPOLYLOGSPACE then
AEPOLYLOGSPACE. An intuitively appealing, but erroneous approach is the fol-
lowing. Construct a Turing machine which on input x computes f(x) in log space,
and then simulates the poly-log space recognizer for B on its output. This
approach works perfectly well for polynomial-time reductions (see, for example,
Lemma 2.1 of Garey and Johnson [39]), but fails here since it necessitates writing
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f(x) (which may be extremely large; since f(x) is computable by a log-space Tur-
ing machine, it may have size as large as a polynomial in n) on the work-tape.
However, we can avoid writing down f(x) by noting that we only need one symbol
of f(x) at a time; the one under the input head. This can be recomputed by
simulating the Turing machine for f, discarding the output bits that are not
currently required. Let S:N—N. We say that S is closed under polynomials if
S(n°1)) = O(S(n)). Note that S(n) = log®n is closed under polynomials.

Theorem 5.2.1 (Stockmeyer and Meyer [121], Jones [59]) Suppose

S(n) = Qlog n), and S is closed under polynomials. If A <ig B and

BEDSPACE(S(n)) then AEDSPACE(S(n)).

Proof. Since A <, B, there exists a function f computable in logarithmic space

such that for all x€X*, x€A iff f(x)eB. If ye{0,1}', y = Y1 ¥k-1--Yo» let the
k .

integer whose binary representation is y, denoted int(y), be 3 y2'. Suppose we
i=0

have a deterministic Turing machine which computes f in log space. It can easily

be converted into an acceptor M; for the language:

L; = {<x,is> | x€X’, s€L, i€{0,1}" and the int(i)" symbol of f(x) is s}

which also runs in logarithmic space.

Suppose BEDSPACE(S(n)). Then there is a deterministic Turing machine

Mg which recognizes B in space S(n). Create a new Turing machine M. M, has

the following action on input x. It keeps the binary representation i of some

integer on its work-tape (henceforth we will not distinguish between the integer i

and its binary representation). This is the number of the input tape cell that the

input head would be pointing to if it had input f(x) instead of x. It is initially set
to zero. It also keeps the i** symbol of f(x) on the work-tape. It computes this
initially by simulating M; to determine whether <x,0,5>€Ly, for each symbol s€Z
in turn.

M, simulates Mg step-by-step, with the following modifications:

1. Where the transitions of Mg depend upon the current input symbol, the
corresponding transitions of M, depend upon the current symbol of f(x),
which’ can be found on the work-tape. -

2. Where the transitions of Mg demand that its input head be moved one cell
to the left or right, M, subtracts one from or adds one to the value of i,

respectively, and recomputes the i** symbol of f(x).
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Then M, recognizes A, is deterministic and uses space O(log n) to store i,
O(log n) as work-space for the simulation of M;, and O(S( | f(x) | )) for the simu-
lation of M,. Since a deterministic logarithmic-space Turing machine must run
in polynomial time, [ {x) | = n®Y). Since S is closed under polynomials, and
S(n) = Q(log n), M, uses space S(n). O

Theorem 5.2.2 <, is transitive.
Proof. Similar to the proof of Theorem 5.2.1 (see Exercise 5.3). [J

Corollary 5.2.3 If A is log-space complete for P, and B€P, A <log B, then B is
log-space complete for P.

5.3. The Circuit-Value Problem

Informally, the circuit-value problem is the following. Given a combinational cir-
cuit (that is, a circuit without feedback loops) built from two-input Boolean
gates, and an assignment to its inputs, compute its output.. Let By denote the set
of two-input Boolean functions. More formally, a circuit over base B C By is a
sequence C = <g,,...,g,> where each g; is either a variable X1 Xgy--- (in which
case it is called an input) or f(j, k) for some function f € B (in which case it is
called a gate), i > j,k. Note that we have numbered the gates of a combinational
circuit in such a manner that every gate is numbered higher than the gates from
which it receives its inputs. This enforces the restriction that there are no feed-
back loops. An input assignment is an assignment of values v(x;) € {0,1} to the
variables x; of C. The value of a circuit C at gate g;, v(C,g;) is given by
v(C.x;) = v(x))
v(C,f(j,k)) = f(V(C,gj),V(C,gk))

The value of a circuit C is defined to be v(C) = v(C,g,). The circust-value prob-
lem over base B is defined as CVPg= { C | v(C)=1}. We will use CVP or
“the circuit-value problem’ to denote the circuit-value problem over a complete
base (in classical switching theory, a base B is complele if every two-input
Boolean function can be realized using a combinational circuit built from gates
which realize functions from B). McColl [81] gives an easy method due to Emile

Post for determining whether a given basis is complete. If B consists of two-
input AND and OR functions, then CVPpy is called the monotone circust-value
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problem, denoted MCVP. We can easily generalize the above description to
include unbounded fan-in gates (that is, gates which realize Boolean functions
with an arbitrary number of inputs). -In particular, if the base B consists of
unbounded fan-in AND and OR then CVPg is called the unbounded fan-in
circust-value problem, or UCVP. We can encode every instance of the circuit-
value problem as a list of gate descriptions, where each gate description consists
of the identification number of a gate, the function that it computes and the
identification numbers of the gates from which it receives its inputs. The number
of gates is thus, to within a polynomial, a reasonable measure of the number of
bits needed to desecribe a problem instance.

Theorem 5.3.1 UCVP is log-space complete for P.

Proof. Clearly UCVPEP. It remains to show that, for all LEP, L <jog UCVP.

Suppose LEP. Then there is a single-tape Turing machine M which accepts L in

polynomial time. We will use the formalism of Hoperoft and Ullman [57], with

the minor exception that we will number the tape-cells of our Turing machine
starting from zero and place the inputs, one per cell, consecutively starting in cell

0, with all other cells blank. We insist that M remains in the accept state after it

enters it for the first time. Suppose that M has state-set Q = {qg,q;,---y9,}, With

qo the initial state and q, the accept state, tape-alphabet I' = {sp,3;,...,85}, With
so the  distinguished  blank  symbol, and  trapsition function

&EQXTI—-QXT X{L,R}. Given an input x for M, we will construct, in loga-

rithmic space, a circuit C and an input y such that C outputs 1 on input y iff M

accepts X, that is, iff x€L.

We will use the construction of Ladner [69] to produce a circuit which simu-
lates M. Suppose that M runs in time T(n), a polynomial, and that x = x;X5...x
is an input to M, with x,€l’ for 1 <i < n. Our circuit C will have fourteen
different types of gates. In what follows, “at time t” will mean “immediately
after the t* transition of M”.

1. Gate D(i,jjt), 0<i< 0, 0<j< B 0<t < T(n), will be true if M is in
state g; scanning symbol s; at time t. D(i,j,0) is an input, which is set to 1 if
i=0 and x; =s; and is set to O otherwise. D(i,j,t) for 1 <t < T(n) is a
two-input AND gate, with inputs from Q(i,t) and S(j,t). 4

2. Gate Q(i,t), 0 <i< a, 0 <t < T(n), will be true iff M is in state g; at time
t. Q(i,0) is an input, with Q(0,0) set to 1 and Q(i,0) set to 0 for 1 <i < a.
Q(i,t), 1 <t < T(n), is an OR gate with at most of inputs. The inputs are
from those D(j,k,t-1) with 0 < j < a, 0 <k < @ such that there exists
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10.

11.

12.
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0 <1< B, de{L,R} such that §(q;,s¢) = (q;,8),d).

Gate S(j,t), 0 < j < §, 0 < t < T(n), will be true iff M is scanning symbol 8;
at time t. S(3,0) is an input, which is set to 1 if x; = s; and set to O for all
other j. S(j,t) is an OR gate with T(n)+1 inputs, from P(m,j,t) where
0 < m < T(n).

Gate P(m,j,t), 0 <m,t < T(n), 0 <j< B, is true if M is in cell m scanning
symbol s; at time t. P(m,j,0) is an input, which is set to one if m = 0 and
X; = sj, and to zero otherwise. P(m,j,t), 1 <t < T(n) is a two-input AND
gate with inputs from C(m,j,t) and H(m,t).\

Gate C(m,j,t), 0 < m,t < T(n), 0 < j < B, is true iff cell m contains symbol
s; at time t. C(m,j,0) is an input, which is set to one if either 0 < m < n and
Xp =sj, or n < m < T(n) and j = 0. C(m,j,t) is a two-input OR gate with
inputs from W(m,j,t) and E(m,j,t).

Gate W(m,j,t), 0 < m < T(n), 1 < t < T(n), 0 < j < B, is true iff symbol 5;
was written into cell m during the t* step. W(m,j,t) is a two-lnput AND gate
with inputs from O(j,t) and H(m,t-1).

Gate O(j,t), 1 <t < T(n), 0 < j < B, is true iff symbol s; was written during
the t*® step. O(j,t) is an OR gate with at most o inputs. The inputs are
from those gates D(i,k,t—1) such that there exist 0 < 1 < o and d€{L,R} such
that 6(q;,s) = (qsj,d)-

Gate E(m,j,t), 0 <m < T(n), 1 <t <T(n), 0<j< B, is true iff cell m
retained the symbol s; during the t*h step. E(m,j,t) is a two-input AND gate
with inputs from U(m,t-1) and C(m,j,t-1).

Gate U(m,t), 0 < m,t < T(n), will be true if M is not scanning cell m at time
t. U(m,0) is an input, which is set to zero if m = 0, and is set to one other-
wise. U(m,t) for 1 <t < T(n) is an OR gate with at most T(n) inputs. The
inputs are from H(i,t) where 0 < i < T(n) and i ¢ m.

Gate H(m,t), 0 < m,t < T(n), will be true iff M is scanning cell number m at
time t. H(m,0) is an input, with H(0,0) set to 1, and H(m,0) set to O for
1<m< T(n) Hm,t), 1 <t < T(n) is a two-input OR gate with inputs
from F(m,t) and G(m,t).

Gate F(m,t), 1 < m,t < T(n), will be true if the head enters cell m from the
left on the t*! transition. F(m,t) is a two-input AND gate with inputs from
H(m-1,t-1) and R(t).

Gate G(m,t), 0 < m < T(n), 1 <t < T(n), will be true if the head enters
cell m from the right on the t*® transition. G(m,t) is a two-input AND gate



with inputs from H(m+1,t-1) and L(t).

13. Gate L(t), 1 <t < T(n), will be true if the head moves left on the t* transi-
tion. L(t) is an OR gate with at most o8 inputs. The inputs are from those
D(i,j,t-1) with 0 <i<a, 0<j<f such that there exists O <k < g,
0 <1< @ such that §q;s;) = (qg,s,L).

14. Gate R(t), 1 < t < T(n), will be true if the head moves right on the t*® tran-
sition. R(t) is an OR gate with at most af inputs. The inputs are from those
D(i,j,t-1) with 0 <i<a, 0<j< @ such that there exists 0 <k < g,
0 <1< fsuch that §q;s;) = (q.s,R).

The output of the circuit is gate Q(a,T(n)). It is easy to prove by induction
that the gates play the roles ascribed to them in the above description, in partic-
ular that gate Q(a,T(n)) has output 1 iff M is in state q, at time T(n), that is, M
accepts input x. The construction of the circuit takes space which is logarithmic
in T(n) given x = x,Xy...x,. Since T(n) is a polynomial in n, this implies that our
reduction can be performed in space logarithmic in n. Note that, as expected,
our circuit has size a polynomial in n (it has O(T(n)?) gates and O(T(n)) inputs,
to be precise). We have used only AND and OR gates in our construction.
Hence for all LeP, L. <,,, UCVP, thus UCVP is P-complete. [J

Corollary 5.3.2 (Goldschlager [42]) MCVP is log-space complete for P.
Proof. Clearly MCVPEP. It is easy to prove that UCVP < log MCVP (see Exer-
cise 5.4). Therefore, by Corollary 5.2.3, MCVP is P-complete. [J

Corollary 5.3.3 (Ladner [69]) CVP is log-space complete for P.
Ladner initially proved that CVP was P-complete from first principles, and
Goldschlager [42] demonstrated that CVP <., MCVP (using ‘“‘double-rail logic”,
see Section 11.1), thus implying by Corollary 5.2.3 that MCVP is log-space com-
plete for P. It is known precisely which of the two-input bases BCB, make the
circuit-value problem P-complete (Goldschlager and Parberry [48]). Ignoring the
trivial two-input Boolean functions, CVPg is P-complete except when either:

1. B consists of Boolean OR, ‘

2. B consists of Boolean AND, or ‘ ‘

3. B consists of parity-functions; that is, any or all of exclusive-or,

equivalence and negation.

In each of these three cases, CVPgeDSPACE(log’n).

Corollary 5.3.3 holds even when the circuit is required to be planar, that is,
constructed without crossing wires. More formally, a planar circust over base
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B C B, is a sequence of levels C = <lg,ly,...,]3>. Level |, is a sequence x; Xy,...,%,
of inputs. Level ], 1 <1 < d consists of a sequence <g1i,...,gsi> of gates, where
each gj' = f(ky;_;,ky;), for some function f € B, and ki=ki,ork;=Xk_+1. An
input assignment is an assignment of values v(x;) € {0,1} to the variables x; of C.

The value of a circuit C at gate gji, V(C,gji) is given by:
v(C,g)-O) = v(xj)

and for i > 1, if gj‘ = f(a,b) then:

v(C.gj') = 1(v(C,gs),v(Cos™))-
The value of a.circuit C is defined to be v(C) = v(C,g,). The planar circuit-
value problem over base B is defined as PCVPg = { C | v(C)=1}. We will

use PCVP or “the planar circuit-value problem” to denote the planar circuit-
value problem over a complete base.

Theorem 5.3.4 (Goldschlager [42]) The planar circuit-value problem is log-space
complete for P.

Proof. (Sketch) Clearly PCVPEP. We will show that CVP <, PCVP. We
will make use of a planar crossover circust. This is a planar combinational cir-
cuit with two inputs and two outputs, whose outputs consist of the two inputs
interchanged. Figure 5.3.1 shows a planar crossover circuit built from three
exclusive-or gates.

On input x,y€{0,1}, the left output computes x®(xPy) =y, and the right out-
put computes (x®y)®y = x. McColl [81] has determined exactly which of the
two-input Boolean bases admit planar crossover circuits.

The reduction proceeds as follows. Suppose we are given a combinational
circuit and its inputs. The input assignment for the planar circuit will be identi-
~cal to the input to the original. The planar circuit will be divided into a series of
“phases”, each phase being a planar combinational circuit of size polynomial in
the size of the original circuit. The number of phases will be bounded above by
the size of the original circuit. Phase O just consists of the inputs. Phasei, i > 1
has a copy of the inputs to the circuit, plus the value of gates j, 1 < j < i1, and
will output the value of gates j, 1 < j <1i. Thus the contribution of each phase
is to compute the output of one gate in the original circuit. This is achieved by
using planar crossovers to route the two values needed by that gate together
(remembering that we have numbered the gates of the combinational circuit in
such a manner that every gate is numbered higher than the gates from which it

receives its inputs) and placing the appropriate gate there.
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Figure 5.3.1 Planar crossover circuit.

 This reduction can be carried out using logarithmic space.  Hence
CVP < PCVP, and so by Corollary 5.3.3 and Corollary 5.2.3, PCVP is P-
complete. []

Cﬁriously, whilst the monotone and planar circuit-value 'prdblems are log-space
complete for P, and hence are unlikely to be in POLYLOGSPACE, the circuit-value
problem for circuits which have both of these properties (thé monotone-planar
circust-value problem, MPCVP) can be solved in O(log?n) space [43]. Finally, let
us consider the tree circuit-value problem (TCVP), the circuit-value problem res-
tricted to circuits which have no fan-out.

Lemma 5.3.5 In any tree of N vertices, and k < N, there is a vertex with at
least k vertices beneath it, each of whose children have at most k vertices
beneath it.

Proof. Work up level-by-level from the leaves. Eventually such a \}erté;( must
be found. O

Theorem 5.3.6 TCVPEDSPACE(log2n).

Proof. Suppose we have a tree-circuit whose gates (including inputs) are num-
bered g,,...,g,. Let S denote the set of true inputs and T denote he set of false
inputs. We claim that the circuit has output 1 iff eval(n,S,T,n) returns true,

where procedure eval is defined as follows.
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procedure eval(i,S,T,m)

comment returns true if g; has output 1 in a tree-circuit of size m
assuming that all gates in S have output 1 and all gates
in T have output O

if g;€S then true

. else if (g;€T) V(m = 1) then false
else 3j with 1 < j < n such that the following holds:
Suppose g; = f(gy,g;) and let
V = f(eval(k,S, T, lm/2 D)eval(l,S,T, [m/2 ).
Then (V A eval(i,SU{j},T, [m/2 1)) V
(=V A eval(i,8,Tu{j}, [m/2 1))

We claim that eval(i,S,T,m) returns true if g;i has output 1 in a tree-circuit of size
m, assuming that all gates in S have output 1, and all gates in T have output O.
The proof is by induction on m, using Lemma 5.3.5 with N = |_m/2 ]. Since the
parameter m is halved on each recursive call, the depth of recursion is O(log n).
The existential quantifier can be computed by repeatedly trying each candidate
gate in turn. We solve the tree circuit-value problem by calling eval with i
denoting the output gate, S the set of true inputs, T the set of false inputs and
m = n. Thus the procedure uses O(log n) space at each level of recursion, which
implies that the total space requirement is O(log?n). The bulk of S and T (the
true and false inputs respectively) is kept on the input tape, with the remainder
threaded into the run-time stack. [

Lynch [79] has shown that the tree circuit-value problem can actually be solved
in logarithmic space. However, the above technique is widely applicable to more
difficult problems (see Exercise 5.6).

5.4. The Parallel Computation Thesis

In Section 3.2 we raised the following important question: what constitutes a
“reasonable” model of parallel computation? In particular, what is a reasonable*
instruction-set for our processors, given that we have chosen a unit-cost measure
of time? Goldschlager, in [45] placed certain restrictions on his SIMDAG's (a
variant of the shared-memory model considered in Section 4.2) to ensure that
they satisfy the parallel computation thesis, which can be stated as follows: time
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on any ‘‘reasonable’ parallel model is polynomially equivalent to sequential (log-
cost) space. Evidence for this thesis is provided by a multiplicity of ‘“‘reasonable”
models, including alternating Turing machines [18] uniform circuits [15] and vec-
tor machines [103] in addition to Goldschlager’s SIMDAG and conglomerate.

As we shall see later in this section, in order to make networks and shared-
memory machines satisfy the parallel computation thesis, it is necessary to place
upper-bounds on the word-size and type of instructions allowed. These restric-
tions can be accepted as ‘‘reasonable’ purely on practical grounds; one can argue
that the word-size of problems tackled in practice should not grow too rapidly
with input-size, and that the instruction-set should not be too powerful.

The parallel computation thesis also provides us with a powerful theoretical
tool., Suppose that we are interested in those problems from P which have an
exponential speed-up in parallel, that is, those members of P which can be solved
in time logo(l)n by a ‘“‘reasonable” parallel machine. If a ‘‘reasonable” machine is
one which satisfies the parallel computation thesis, then these are precisely the
members of P which can be solved in poly-log space by a Turing machine. Thus
log-space complete problems probably do not have an exponential speed-up on
any ‘‘reasonable” parallel machine, where the parallel computation thesis is used
as a criterion for ‘‘reasonableness’. Thus, for example, the circuit-value problem
probably does not have an exponential speed-up in parallel on a ‘‘reasonable”
machine, whereas the monotone-planar circuit-value problem does.

The Graph Accessibility Problem also has an exponential speedup in parallel.
We present a poly-log time parallel program for GAP on a shared-memory
machine. An instance of GAP is described as follows. The vertices of G = (V,E)
are numbered from O to n-1 consecutively. The shared-memory machine is given
n, the numbers of the two vertices 0 < u,v < n, and an adjacency matrix for G,
that is, an array A where Ali,j] is true iff (1,jJ€EE. A is kept in the shared
memory; all other values can be maintained locally by all processors. The follow-
ing algorithm is to be run on n® processors.
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i,j k= [PID/n2 J, l(PID mod n?)/n J,PID mod n
Ali,ij:=true
Li=1
while L < n do
if Ali,k] A Alk,j] then Ali,j]:=true
L:=2*,

Note the use of simultaneous writes. After the t™ iteration of the while-loop,
L = 2% and for all 0 < x,y < n, Afx,y] is true iff there is a path of length at most
L from x to y (proof by induction on t). Thus after [log n ] iterations, Alu,v] is
true iff there is any path from u to v. This result can be moved to the correct
place in the shared-memory machine according to the output convention. The
running-time is thus O(log n) using the full arithmetic instruction-set. The
word-size is O(log n) and the space-bound is O(n®). The full arithmetic
instruction-set can be replaced by the minimal instruction-set without asymptoti-
cally affecting the resource bounds, since the integer divisions and multiplications
in the first line can be computed in time O(log n) by each processor using stan-
dard sequential algorithms (see, for example, Wirth [133]), and multiplications
implicit in the array accesses can be pre-computed by each processor before
entering the while-loop.

Earlier in this section we referred to some additional conditions which ensure
that networks satisfy the parallel computation thesis, What exactly are these
conditions?

Theorem 5.4.1 (Goldschlager [45]) Suppose S(n) can be computed by a network
with the minimal instruction-set, of word-size O(S(n)), in time O(S(n)), on input a
single integer n. Then an S(n) space-bounded nondeterministic ‘Turing machine
can be simulated in time O(S(n)) by a network with the minimal instruction-set
and word-size O(S(n)).

Proof. (Sketch) Similar to the proof of Savitch’s Theorem (Theorem 5.1.2),
noting from the above that the Graph Accessibility Problem (see Section 5.1) can
be solved in logarithmic time and word-size. [J

Corollary 5.4.2 An S(n) space-bounded deterministic Turing machine can be
simulated by a network with the minimal instruction-set, of word-size O(S(n)), in

time O(S(n) log S(n)).
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Proof. Use the technique of Theorem 5.4.1 successively with S(n) = 1,2,4,8,...
O

Conversely, we have:

Theorem 5.4.3 (Goldschlager [45]) A T(n) time-bounded network M with word-
size W(n) can be simulated by a deterministic Turing machine using space
T(n)(W(n)+log T(n)) + S(n), where S(n) is the space required for the Turing:
machine to simulate a single instruction of a processor of M.

Proof. We will prove the result for a model in which the lowest-numbered pro-
cessor wins in the case of a write-conflict (as in Goldschlager [45]). The proof will
require only minor modifications for other conflict-resolution schemes. When we
say ‘‘at time t’’, we will mean “after ¢ instructions have been executed”. Assume
that the instructions of M’s program have been numbered consecutively, 1, 2,...,
x, where XEN. Suppose we modify M so that register ry of processor O remains at
zero during the course of the computation, and is reset to 1 if the input is
accepted, -1 if it is rejected, from which time it remains unchanged until all pro-
cessors have terminated (see Exercise 5.5). Consider the following mutually
recursive procedures.

procedure instruction(i,t)
comment returns program-counter of processor i at time t
ift =0 then 1 else
h:=instruction(i,t-1)
case h*! instruction of
“goto m if r; > 07 if register(i,j,t-1) > O then m else h+1
“halt”:h
others :h+1

procedure input(i)
Move input head to the i*! tape cell and return
the character scanned there (O for a blank)
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procedure register(i,j,t)
comment returns contents of register r; of processor i at time ¢
if t =0 then ‘
if j = 0 then input(i) else 0
else comment check for attempts to write there
winner:=P(n)
for w:=P(n)-1 downto 0 do
h:=instruction(w,t-1)
if (h*" instruction is (ry, of ry)e=r,) A
(register(w,y,t—1) = i) A\ (register(w,x,t-1) = j)
then
winner:=w
value:=register(w,z,t—1)
if winner < P(n) then value else comment evaluate local instruction
h:=instruction(i,t-1)
case h*! instruction of
“rj¢«—constant’’:constant
“rjercon": register(i,k,t—-1)oregister(i,l,t-1)
“rjerp s register(i,register(i,k,t-1),t-1)
“rp 1"t if register(i,k,t-1) = j then register(i,l,t-1) _else register(i,j,t~1)
“ rj—(ry, of )" register(register(i,l,t-1),register(i,k,t1),t-1)
others : register(i,j,t—1)

The correctness of the above procedures can be proved by induction. To
discover whether the network accepts a particular input, call procedure
register(0,0,T(n)), where T(n) is the running-time of the network. Since T(n)
may not necessarily be easy to compute, we can try T(n) = 1,2,... in turn,
without asymptotically affecting the space-bound (as soon as a non-zero value is
returned, it can be used to determine acceptance or rejection). At each recursive
procedure-call, the value of t is reduced by 1, and so the depth of recursion is at
most T(n)+1. We use a constant number of variables in each procedure, each of
either O(W(n)) or O(log T(n)) bits. We need a further O(log n) cells for a pointer
into the input. The total amount of work-space needed is thus proportional to
T(n)(W(n)+log T(n))+S(n)+log n, where S(n) is the space required for the Turing
machine to simulate a single instruction of a processor of M. The log n can be
ignored. since W(n) = Q(log n) (at least log n bits are needed to address the n
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inputs to a network). O

These Theorems enables us to throw some light on the unit-cost hypothesis.
As far as the parallel computation thesis is concerned, it is reasonable to charge a
single unit of time for instructions which can be computed by a Turing machine
in space T(n)o(l), where T(n) is the number of steps in the intended computation.
Given this condition, networks satisfy the parallel computation thesis provided
W(n) = T(n)®("). Note that this allows networks with as many as 2T®™ proces-
sors; although those who support lazy activation (see Section 3.4) insist that
P(n) = 2°(T(), and some authors insist that P(n) = n®Y (for example,
[24,25,74,102)).

A number of similar restrictions on networks and shared-memory machines
have been used in the literature to define so-called ‘‘reasonable’” machines,
including:

(1) Restrictions on the instruction-set.

Restrictions on instruction-set are often motivated by a desire to see that

the unit-cost hypothesis holds.

(a) The first premise is that individual processors should behave like log-
cost sequential machines. In particular, the resource of time should be
polynomially related to time on an accepted log-cost sequential machine
model, such as the deterministic Turing machine (c.f. the sequential
computation thesis, Section 3.2). Thus instructions which are valid for
a T(n) unit-cost time-bounded computation should individually take no
more than T(n)%(!) steps on a deterministic Turing machine.

(b) Instructions should be computable in space T(n)o(l) by a Turing
machine. This helps to ensure that the parallel computation thesis
holds. Note that this condition is weaker than condition (a) above.

(2) Bounds upon processors and time.

Upper-bounds on the number of processors are usually motivated by the

observation that, given enough processors, every computable function can be

computed in constant time (see Section 6.2), which makes time a singularly
uninteresting resource.

(a) P(n) < 29(TM), This is a consequence of the lazy activation approach
(see Section 3.4). ' '

(b) P(n) = n°W), T(n) = log®Wn. Parallel machines with these two pro-
perties are sometimes called small and fast respectively. See, for exam-
ple, [24,25,102,108].
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(3)

5.5.

5.1

5.2
5.3
5.4
5.5

Bounds upon word-size.

Upper-bounds on word-size are usually motivated by the observation that

(as previously noted in Sectiofi 3.2) single-processor machines with the full -

[50] or restricted [103] arithmetic instruction-sets satisfy the parallel compu-

tation thesis, and so can be considered “reasonable” parallel machines in

themselves. This makes the processor-bound an uninteresting resource.

(a) W(n) = O(T(n)). This can be achieved indirectly (as in Goldschlager
[45]) by restricting the instruction-set and the size of the input symbols.

(b) W(n) = T(n)**). This condition guarantees that the parallel computa-
tion thesis holds, subject to the additional conditions on the
instruction-set mentioned in 1(b) above.

(¢) W(n) = n®"). This ensures that the input encoding is “concise” in the
sense of [39]. If the input symbols are allowed to be integers with more
than a polynomial number of bits, then n is no longer a reliable (to
within a polynomial) measure of input-size.

Exercises

Complete the proof of Savitch’s Theorem (Theorem 5.1.2) by giving an expli-
cit procedure which can be used ‘to simulate a nondeterministic Turing
machine. ' ‘

Complete the proof of Theorem 5.4.1.

Prove that <. is transitive (Theorem 5.2.2).

Prove that UCVP <, MCVP (Corollary 5.3.2).

Show that a network which is used as a language acceptor (see Section 3.1)
can be modified so that register ry of processor 0 remains at zero during the
course of the computation, and is reset to 1 if the input is accepted, -1 if it
is rejected, from which time it remains unchanged until all processors have
terminated, without affecting its language recognition capabilities, or asymp-
totically changing the processors, word-size, space or running-time (c.f.
Theorem 5.4.3).

A contezt-free grammar (in Chomsky Normal Form) is a 4-tuple G = (N,T,P,S),

where N and T are disjoint finite sets, called nonterminal and terminal symbols

respectively, SEN is the distinguished start symbol and P is a finite set of produc-
tions of the form A—BC or A—a, where A,B,CEN, a€T. The language L(G)
generated by G is defined in the usual manner (see, for example, Hopcroft and
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Ullman [57]). A context-free grammar with e-productions is defined simiiarly,

with the addition of productions of the form A—se, where € denotes the empty

string. The context-free membership problem (CFMEMBER) is defined to be

{G,s | s€L(G)}. The space complexity of the context-free membership problem

depends very much on whether e-productions are permitted.

5.6 Show that if no e-productions are allowed, then CFMEMBER can be solved
in log?n space. (Hint: apply Lemma 5.3.5 to the parse-tree).

5.7 (Goldschlager [44]) Show by reduction from the monotone circuit-value prob-
lem (see Section 5.3) that if e-productions are allowed, then CFMEMBER is
log-space complete for P.
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6 Parallel Computation with
Shared-Memory Machines

In this cﬁapter we investigate some upper and lower-bounds on the time required
by shared-memory machines to compute some interesting functions. The first
two sections are concerned with upper-bounds, and the last two with lower-
bounds. The first section contains some elementary upper-bounds for such func-
tions as the summation of n integers (which we will find useful in the second sec-
tion, and in Chapter 11). The second section contains simulations of time-
bounded deterministic Turing machines on parallel machines with large word-
size, and on machines which satisfy the parallel computation thesis. The third
and fourth sections contain lower-bounds, the former on the time required to per-
form the Boolean OR of n inputs on a machine without simultaneous writes, and
the latter on the time required to sum n integers on a machine with simultaneous

writes.

6.1. Some Upper-Bounds

In this section we will derive upper-bounds for computing some interesting func-
tions in parallel using shared-memory machines. We will find many of these use-
ful in the next section. The following results are from [91,94,96,99]. Unless expli-
citly stated otherwise, the shared-memory machines use the restricted arithmetic

instruction-set.

Lemma 6.1.1 A CREW shared-memory machine with [log n ] processors can
compute [log ]or llog n ] in constant time with word-size O(log n), when given
as input a single positive integer n.

Proof. Suppose n > 1; |logn ] is computed as follows. Processor ibi>0,
computes the value v = I.n/2i J using a single shift instruction. If it finds that
v>0 and |_v/2_| =0, then i= llogn . Computation of [logn] from
llog n ] is simple; if n = 2/ then [logn]= i, otherwise [log n ]=i+1. The
required value can then be written into shared-memory cell sy by processor i. [
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Lemma 6.1.2 A shared-memory machine with word-size O(n(b+log n)) ecan add
n b-bit numbers in constant time. ‘

Proof. We use the techniques of [91,93,94]. Suppose that we are given n b-bit
integers Xg,...,X;;- Let us assume, for the pufposes of this proof, that they are all
positive. The modifications necessary for the inclusion of negative integers are
simple but tedious. We can assume without loss of generality that n is a power
of two.

Firstly, it is easy to determine n, the number of inputs. We can adopt the
convention that zero is never used for an input value (if necessary we can encode
non-negative integers by adding one to them). Processor i reads shared memory
cells i and i+1. If the latter contains zero whilst the former contains a non-zero
value, then 1 = n. Processor i can then write its PID into shared-memory loca-
tion 0, where it can be read simultaneously by all processors. Note that if n is
not a power of two, then we can compute [log n ] using Lemma 6.1.1, and then
with a single processor compute 2 [og “], the power of two immediately above n,
using a shift operation. This will have a negligible effect on our resource bounds.

The sum of n b-bit numbers can have no more than b+log n bits. Each pro-
cessor requires this value. The value log n can be computed using Lemma 6.1.1;
it remains to determine the value of b. We do this by finding the largest input
integer. We use the first n? processors, divided into n equal-sized teams. Each
processor can determine whether it participates in this sub-computation by com-

2

paring its PID to n“. Since n is a power of two and both n and log n are known

2 can be computed with a single shift operation. Next, each

to all processors, n
processor determines which team it is in, and its identity number within its team,
as follows. Each processor extracts the last log n bits of its PID using two shifts
and a subtraction. It treats this value as its identity number within its team. It
treats the remaining leading bits of its PID as its team identity number. That is,
it has divided its PID in constant time into two values (i,j) where 0 < i,j < n,
and acts as the j*® member of the i*! team.

The i team wuses shared memory location n+i for communication
(remembering that the cells O through n-1 contain the input). The O processor
in team i (which we will call the manager of that team) sets shared-memory n+i
to zero. The ith team 0 < i < n determines whether the i*h input integer x; is
the largest overall. The j*® processor in the ih team compares x; with x;, for
0 <1i,j < n. If the former is greater than the latter, then it writes a one into
shared-memory location. n+i. Finally, the team-manager reads shared-memory
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location n+i. If that location still contains zero, it knows that x; is the largest
input. It can then write this value into shared-memory location 0, where it can
be read by all processors. This has taken constant time, and can be performed
provided the word-size is at least 2log n. The value of b can finally be obtained
by finding the logarithm of this largest input value using Lemma 6.1.1.

Now the value b+log n is known to all processors. Let us assume for the
purposes of this proof that it is a power of two. If not, then it can easily be
rounded up to a power of two by using Lemma 6.1.1 and a shift operation. The
number of bits in this value is also easily obtained using Lemma 6.1.1. The. pro-
cessors now divide themselves into 2P+9€ 1) teams of n processors. FEach team
interprets its team identification number (which has n(b+log n) bits) as a
sequence of n (b+log n)-bit integers, yo,¥y,-e;¥53- The i® member of each team,
1 <1i < n extracts y; and y;_;, while the 0" processor extracts Yo- The i*" pro-
cessor will have to perform a shift of i(b+log n) bits. In order to do this, it will
have to first compute this shift amount. Since the latter factor is a power of two,
and its logarithm is known, the multiplication can be implemented using a shift
operation. The i*? processor of each team, 1 < i < n verifies that y; =y, ;+x;,
while the O processor verifies that Yo = X3 Those processors which find a
discrepancy report to their team-managers via the shared-memory as described in
the previous paragraph. Exactly one team will find no discrepancy. Its team-
manager knows that its team identity number represents a valid prefix-sum string
for the given inputs. It then extracts the total sum (the last integer in the
sequence) which it finally writes into shared-memory location 0 for output.

All of the operations described take place in constant time. The PIDs of the
processors have O(n(blog n)) bits, and are the largest words used in the compu-
tation. O

Lemma 6.1.3 A shared-memory machine with word-size O(b?) can multiply two
b-bit positive integers in constant time.
Proof. We will use the standard shift-and-add algorithm. For simplicity, let us
assume that the two input integers x; and x, are both positive. The machine
first finds the value of b by taking the logarithm of the largest input (using
Lemma 6.1.1). Processor i, 0 < i < b, does the following.

(a) Extract the i'! bit of x, (where the bits are numbered consecutively

from left-to-right starting with zero) using shifts and a subtraction.
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(b) If the value obtained in (a) is non-zero, then left-shift x; by i places
(that is, multiply it by 2i), and write the result into shared-memory
location i41. i

The sum of these values is computed in constant time using Lemma 6.1.2. O

Lemma, 6.1.4 A shared-memory machine, when given as input a single integer n,

can compute [n1/°] in constant time and word-size O(log?n), for any natural
number ¢ > 1.
Proof. We use n teams of processors. Team i, 0 < i < n, checks to see whether

i= [nl/c ] It does this by computing i° (using ¢-1 multiplications). For this

purpose, each team has 9O(logn)

processors (by Lemma 6.1.3). If i > n, yet
il < n, theni= [nl/c -I [}

For our purposes, it will be sufficient to show that a shared-memory machine
with linear word-size can add n constant-bit integers in constant time. However,

a much stronger result is possible without much extra effort.

Lemma 6.1.5 For every 0 < A < -% there exists u > 0 such that a shared-

1-# can add n n!™-bit integers in constant

memory machine with word-size n
time.

Proof. Suppose we have as input n positive integers, each of n!-1/¢ bits, for
some positive integer ¢ > 2. Since the technique used is elementary, for a cleaner
presentation of this proof we will omit the floor and ceiling operators necessary to
ensure that all values are integers. The sum of these integers (and every partial

sum) has at most O(n!"'/°) bits.
1

The shared-memory machine first determines n, and computes m == n®+tl,
After this pre-computation, the summation is performed in two phases.
Phase 1.

Divide the input into n/m groups of m numbers, and sum each group. After

¢ iterations of this process, we are left with n/m° partial sums.
Phase 2.

' Add the n/m°® partial sums.

By Lemma 6.1.4, the pre-computation takes constant time, and negligible word-
size (for large enough n). By Lemma 6.1.2, phases 1 and 2 can be performed in
constant time. The word-size required for the former is proportional to
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1

)
1-1/c cte
’

mn = n

and for the latter is proportional to”

1

1—
n - 2
nl-1/e e

mC

=1

Thus n n'-'/°-bit integers can be summed in constant time with word-size
1

l-—a—o
O(n c“+c ). D

Suppose x€EN, 1<x;<n for 1<i<n. Define prev:Z*—Z" by
prev(xy,..,Xy) = <¥p,...,yy> Where y, =] if Xj=%;, j<i, and x % x; for
J<k<i, (and 0 if no such j exists) Define last:Z*—2Z® by
last(Xy,..,Xy) = <¥pyeees¥n> Where y, = j if xj=iand x¢ #1iforj < k < n, (and
0 if no such j exists).

Lemma 6.1.8 A shared-memory machine can compute prev(xy,...,x;) and
last(xy,...,x,) in constant time with word-size O(log n).

Proof. We will prove the result for prev (the algorithm used for last is similar).
The values yy,...,y, described above are computed as follows. Divide the proces-
sors into n? teams, one for each ordered pair <i,j>, 1 < 1,j < n. Each team has
n processors, one for each k, 1 < k <n. The k' processor of each team,
J <k <1 remains active, the rest do not participate in the following. We
reserve a shared-memory location for each team, initialized to zero. The k™ pro-
cessor of each team, j < k < i verifies that x 5 x;. If it finds that x, = X;, it
writes a one into the shared memory location reserved for its team. All team
members do this simultaneously. The lowest-numbered member of its team then
reads that value, verifies that it is still zero, and checks that x; = x;. If so, then

it writes the value j to the i*! shared memory cell, for output. O

We close this section by investigating the problem of adding together n
numbers from a finite subset of the integers, which we will call the finite semi-
group summation problem. Let T(n,P(n)) be the time required to sum n elements
of an arbitrary (finite or infinite) semigroup using P(n) processors. For conveni-
ence we will write T(n) for T(n,n). We will say that f:Z—Z is constant-time con-
structible if a shared-memory machine with n processors can compute f(n) from a
single integer n in constant time. By Lemmas 6.1.1, 6.1.3 and 6.1.4, any polyno-
mial in n, log n, and roots of n is constant-time constructible.
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Lemma 6.1.7. Suppose f:N—N, f(n) < n for all n > 0 is constant-time con-
structible. Then T(n) < T( [n/f(n) 1) + T(f(n),n) + O(1).

Proof. Suppose we are to sum n elements with n processors. The shared-
memory machine computes f(n). The processors divide themselves into f(n)
teams. The i team, 0<i< f(n), consists of those processors with
PID mod f(n) = i. Thus there are f(n)-1 teams of [n/f(n) ] processors, and one
team of at most [n/f(n)] processors. Each team independently computes the
sum of its inputs, in time T( [n/f(n) 1) (we assume that T(n) is monotone nonde-
creasing). This leaves f(n) partial sums, which can be added together in time
T(f(n)n). 0O

Corollary 6.1.8 (Shiloach and Vishkin [114]). The maximum of n integers can
be found in time O(log log n) with n processors, and in constant time with nl*¢
processors (for any real number ¢ > 0).

Proof. It is easy to compute the maximum of n elements in constant time using
n? processors (see Exercise 6.2). Thus, by using Lemma 6.1.7 with f(n) = [\/E ],

the time required to find the maximum of n elements using n processors is given
by:

T) < T( [\/ﬁ ])+T( [\/ﬁ -!,n)
= T( {\/ﬁ]) + 0(1)
= O(log log n).

By limiting the depth of recursion to [long ], for some constant k > 1, the time

1
1+
can be reduced to Oflog k) withn ¥ processors. [

Theorem 6.1.9 (Vishkin and Wigderson [129]) The finite semigroup summation
problem can be solved in constant time with 20(m) processors.

Proof. The proof uses the techniques of Lemmas 6.1.2 and 6.1.5 (see Exercise
6.3). O

Theorem 6.1.10 (Reif [106], Parberry [96]). The finite semigroup summation
problem can be solved in time O(log n/log log n) using n processors.
Proof. By Lemma 6.1.7 with f(n) = O(log n), and Theorem 6.1.9. [
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Thus, for example, the exclusive-or of n bits can be computed in time
O(log n/log log n) using n processors. A matching lower-bound for polynomially
many processors with limited instruction-set can be derived from the result of
Yao [134].

Theorem 6.1.10 can be generalized to the case of summing n constant-bit
elements, of an infinite semigroup with the property that any n-element sum can
be described in O(log n) bits (since Theorem 6.1.9 holds with the processor-bound
modified to 20(nlog n), the proof follows from Lemma 6.1.7 with
f(n) = O(log n/log log n).) Thus, for example, n single-bit integers can be added
together in time O(log n/log log n) using n processors.

6.2. Simulation of Sequential Machines

In Chapter 5 we considered the following question: which problems in P have an
exponential speed-up in time on a ‘“‘reasonable” parallel machine, where the latter
is defined to be a network which satisfies the parallel computation thesis? The
only answer which we were able to obtain was ‘‘probably not all of them”. Here
we tackle an easier question: what speed-ups of sequential machines are offered
by our parallel machines (reasonable or otherwise). Firstly, we shall demonstrate
that shared-memory machines with large word-size are immensely powerful.

We will say that T:N—N is word-size constructible if a shared-memory
machine with word-size O(T(n)) can compute T(n) in constant time from a single
integer n. Note that by Lemmas 6.1.1, 6.1.3 and 6.1.4, many useful functions are
word-size constructible.

Lemma 6.2.1 (Parberry and Schnitger [99]). Suppose T(n) is word-size construc-
tible. Then a shared-memory machine with the restricted arithmetic instruction-
set can simulate a T(n) time-bounded k-tape deterministic Turing machine in
constant time and word-size O(T(n)).

Proof. (Sketch) Suppose we list and number the transitions or rules of the Tur-
ing machine in some reasonable fashion. We divide the processors into 20(T(n))
teams, one for each sequence of T(n) rules ro,ry,...,rpn) . Each team has 20(T(n))
processors. Firstly, each team determines the head positions for each of the k
tapes at each instant of time by applying the algorithm of Lemma 6.1.5 to the
sequence of head motions derived from its rule-sequence. It then verifies that:
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- 1. The sequence of states determined by the sequence of rules is a valid one.
That is, rule ry requires that the Turing machine be in its initial state, and
for 1 <1i < T(n) if rule r;_; leaves the Turing machine in state q, then rule
r; requires that the Turing machine be in state q.

2. For each of the k tapes, and for each time t, 0 < t < T(n):

(i) If this is the first time that the head visits this cell, then the symbol
read by rule r, is the symbol found in that cell in the initial
configuration.

(i) If the last time the head visited this cell was at time s < t, then the
symbol written by rule r; is the symbol read by rule r,.

The information necessary for this verification is provided by computing prev

using the algorithm of Lemma 6.1.6. Exactly one team will find that its sequence

of rules is valid. It can then determine if the final state is accepting, and sets the

contents of shared memory location 0 to 0 or 1 accordingly. By Lemmas 6.1.5

and 6.1.6 the simulation requires constant time and word-size O(T(n)). [J

This result can obviously be extended to the simulation of deterministic Tur-
ing machines which compute results, rather than act as acceptors for a language
(the final configuration can be constructed from the valid sequence of rule
numbers- by use of the algorithm for function last in Lemma 6.1.6), and to the

"simulation of nondeterministic Turing machines. The word-size has been
improved to O(T(n)/log*T(n)) for T(n) = Q(log*n) (Parberry and Schnitger [99]).

It is clear that this result depends strongly on the large word-size. But what
if we limit the word-size by requiring that the parallel computation thesis holds?
That is, we require that the shared-memory machine run in time T(n) and have
word-size W(1i), where W(n) = T(n)°(Y). Dymond and Tompa [26] have shown
that speed-up by a square-root is possible in the case where word-size is linear in
parallel running-time. We will show that an arbitrary polynomial speed-up is
possible if word-size is allowed to be polynomial in time. First, we present a gen-
eral speed-up result.

Theorem 6.2.2 (Parberry [94]) Suppose B:N—N is word-size constructible, and
a shared-memory machine with word-size W(n) can simulate a B(n) time bounded
deterministic Turing machine in time C(n). Then a shared memory machine with
word-size O(W(n)+B(n)+log T(n)) can simulate a T(n) time bounded determinis-
tic Turing machine in time O(T(n)/B(n) + C(n)). ‘

Proof. (Outline). Let M be a T(n) time-bounded k-tape deterministic Turing
machine. We will store the current configuration of M in the first kT(n)+k+1
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words of the shared memory (corresponding to the T(n) tape cells on each tape, k

head positions and the control state). The simulation will consist of

[T(n)/B(n) 1 phases, each corresponding to B(n) steps of M. The initial

configuration is easy to compute from the input, and the simulation will

endeavour to maintain it from phase to phase.

A zone consists of that portion of the tape which may be altered during the
current phase, that is, the k(2B(n)-1) tape-cells that are within distance B(n)
from a head at the start of the phase. During each phase the simulation will be
conducted using these zones - at the end of each phase the final zone will be used
to update the stored configuration. To be more precise, a zone consists of
k(2B(n)-1) tape symbols, k head-pointers (each of O(log B(n)) bits), and the
current state of the finite-state control.

Before the first phase, some pre-computation is carried out. The machine
first computes B(n). We divide the processors into 2C(B(™) teams, one for each
possible zone. The i*h team, 1 < i < 29B(®@) gimulates B(n) steps of M from the
i*® zone, in time C(n) and word-size W(n). From this information a look-up table
is constructed in the shared memory. The it® entry of that table is the zone
which follows in B(n) steps from the i*® zone of M.

Each phase is broken up into three parts.

(1) Determine the initial zone from the initial configuration of the phase. The
processors are broken up into 20(B()) teams (one for each possible zone),
each of 2B(n)-1 processors. The lowest-numbered processor of each team is
a distinguished processor called the manager of that team. Processors which
are not members of a team remain idle.

The i*® member of the j* team (i,j > 0) has i = PID mod (2B(n)-1) + 1 and

j= |PID/(2B(n)-1) ] + 1. Each processor first computes i and j. The

value j is interpreted as the encoding of a zone (note that j is the same for
all members of any particular team). The ith processor of each team,

1 <i < (2B(n)-1) decodes the head positions and the i symbol of each

tape from this zone. Every processor of every team then compares its sym-

bols to the corresponding symbols of the stored configuration. If they
disagree, the processor is said to feil. Failed team members report to their
respective managers via the shared memory using the technique from the

proof of Lemma 6.1.2.

The team manager whose zone has the correct state, head-pointers equal to

B(n), and whose shared memory location remains at zero knows that its
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value of j is an encoding of the initial zone of the phase. It writes this value

to the shared memory for safe-keeping.

(2) Determine the final zone of the current phase. Processor 0 can obtain this
information from the i*" entry in the look-up table, where i is the initial zone
of the current phase computed in (1) above.

(3) Determine the final configuration of the phase from the final zone. Processor
i, 1 <i < k updates the stored head positions, whilst processor k+j+cT(n),
1 <e¢<k1<j< T(n) determines whether the j*» tape cell of the ¢! tape
is within B(n) cells of the head, and if so, updates its value. Processor 0
updates the current state of the finite-state control.

The machine is then in a position to begin the next phase. T(n) steps of M
are simulated by repeating this for [T(n)/B(n) ] phases. The pre-computation
takes time O(C(n)), and each of [T(n)/B(n) | phases takes a constant amount of
time, provided the restricted arithmetic instruction-set is used. The maximum
word-size during the computation is the larger of O(W(n)+B(n)) (for the pre-
computation), O(B(n)) (for the processor identity registers during each phase) and
O(log T(n)) (to access the stored configuration). [J

Theorem 6.2.3 Let B:IN—N be word-size constructible. A T(n) time-bounded
deterministic Turing machine can be simulated in time O(T(n)/B(n)) by a
shared-memory machine with word-size O(B(n)+ log T(n)).

Proof. The proof of Lemma 6.2.1 can be modified to work for (deterministic)
Turing machines which actually compute values (instead of just being acceptors).
The desired result then follows by application of Theorem 6.2.2. O

Corollary 6.2.4 If T(n) is word-size constructible, then a T(n) time-bounded
deterministic Turing machine can be simulated in time T(n)™%, for any real
number ¢ > 0, by a shared-memory machine which satisfies the parallel computa-
tion thesis.

Proof. The result follows by Theorem 6.2.3 with B(n) = T(n)’. Note that if
T(n) is word-size constructible , then so is B(n) (consider Lemma 6.1.4). [

That is, an arbitrary polynomial speedup of sequential computation is possible on
a parallel machine which satisfies the parallel computation thesis. This is a
strong result since, as we observed in Chapter 5, there are problems in P (such as
the circuit-value problem) which probably do not have an exponential speedup on
such a machine.
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Corollary 6.2.5 (Dymond and Tompa [26]) If T(n) is word-size constructible,
then a T(n) time-bounded deterministic Turing machine can be simulated in time
O(\/ﬁrﬁ) by a lazy-activation shared-memory machine with the minimal
instruction-set (which satisfies the parallel computation thesis).

Proof. The result follows by Theorem 6.2.3 with B(n) = VT(n), noting that for
a lazy-activation machine, the running-time must be at least the logarithm of the
number of processors. This gives sufficient time for the minimal instruction-set
to be substituted for the restricted arithmetic instruction-set. O

Corollary 6.2.6 If T(n) is word-size constructible, then a T(n) time-bounded
deterministic Turing machine can be simulated in time O(T(n)/log T(n)) by a
lazy-activation shared-memory machine with the minimal instruction-set, using
n°(1) processors and word-size O(log n).

Proof. The result follows by Theorem 6.2.3 with B(n) =logn. O

6.3. A Lower-Bound Without Simultaneous Writes

Consider the problem of computing the Boolean OR of n bits in parallel on a
shared-memory machine. It is clear that constant time can be achieved with n
processors if simultaneous writes are allowed. (First, some processor sets shared-
memory location O to 0. Then each processor examines a different bit. Those
processors whose bit is 1 attempt to write a 1 into shared-memory location 0.)
However, the situation changes radically if simultaneous writes are not allowed.

The material in this section comes from Cook, Dwork and Reischuk [20].
For exactness, we will count a sequence of three instructions “'read, compute,
write” as a single time-unit for the remainder of this chapter (any or all of the
three instructions may be FNO-OPs). It is easy to construct an n processor,
llog n | time algorithm using a complete binary tree. This intuitively appears
optimal. However, a slightly faster algorithm is possible. '

Define the Fibonacci numbers as follows: Fy =0, F, = 1, and for m >0,
Foye =Fp+tFp. The following algorithm will OR together Fgy,, inputs in t

1+V5
2
together more than 2.6' bits in t steps, which is faster than the najve algorithm

steps using 1+Fy,,, processors. Since F, ~ ( )¢ this means that it can OR

in the previous paragraph. We use a local variable y as work-space, and local
variables f and g for the current Fibonacci numbers. We also use an n-cell shared

80



array M, with M[0],...,M[n-1] containing the n input bits at the start of the com-
putation.

y,f,2:=0,0,1

while f < n do
yi=y VM[PID+{]
if (PID >, g A y=1) then M[PID-g|:=1
f,g:=f+g,f+2¢

It is easy to prove by induction that after the t* iteration of the while-loop,
t > 0, local variables f and g of every processor contain Fy, and Fy,, respec-
tively. Let y and M;} denote the value of y of processor i and M[i] respectively
after the j* iteration. Also let OR(i,j) denote x; Vx;,; V... Vx;. We claim that:

yil = OR(i,i+Fy-1)
M, = OR(},i+Fy;,,-1)
The proof is by induction on j. The hypothesis is true for j = 0 since y,° =0
and Mio = X;. Now suppose that the hypothesis is true for the (j-1)* iteration.

Note that during the j™ iteration, f and g contain the values F2(j_1) and F2(j—1) 1
respectively. Then:

vi =y VMR,

= OR(i,i+Fyj_g-1) V OR(i+Fyj_g,i+Fgj +Fyj ;-1) (by the ind. hypoth.)
= OR(i,i+Fy~1) (by the definition of Fibonacci number)
And:
M =M Vg,
= OR(1,i+Fpj_1-1) V OR(i+Fyj_1,i+Fgj_+Fp-1) (by the ind. hypoth.)
= OR(i,i+F2j+1-—1),A (by the definition of Fibonacci number)

The correctness of the algorithm and the complexity analysis follows immediately
from the Claim. Each iteration of the while-loop can be implemented as a single
read-compute-write step, and after j iterations, M[0] contains the OR of Foi+1
bits.

The strength of this algorithm lies in the if-statement. Data is communi-
cated by processors chovsing not to write at that point. It is clear that processors
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can communicate a single-bit value by this mechanism without the use of a direct
chain of reads and writes between them. For example, suppose that processor A
wishes to communicate a value v€{0,1} to processor C. We use an extra proces-
sor B and two shared-memory locations sg and s¢.
(i) Processor P sets sp to 0, for P€{B,C}.
(it) If A has a 0, it writes 1 into sg.
(iii) B then reads sp. If it is a 0, it writes 1 into sg.
(iv) C then reads sc. k
A simple case analysis shows that sg contains 0 iff the value possessed by A was
0. There is no direct chain of reads and writes between A and C, regardless of
the value to be communicated.

We have seen that the naive lower-bound of [log n | is incorrect. However,
a lower-bound of Q(log n) does hold. We define the state of a processor to be the
contents of its registers, and its program-counter. Let I = (xq,...,X,_;}€E{0,1}* be
an input string. Define I(u) = (Xgy++sXy_1:XysXyp15eesXp_1)y Where 0 =1 and 1 = 0
to be the input which is identical to I except in the u*® bit. If 0 < u < n we say
that u affects processor p at time t on input I if the state of p at time t is
different on inputs I and I(u). Similarly, we say that u affects shared-memory cell
¢ at time t on input I if the contents of ¢ at time t is different on inputs I and
I(u). Let:

Y(c,t,I) = {u| 3 processor p, that writes into ¢ at time t on I(u)}
Z(c,t,I) = {(u,v)|u,v€Y(c,t,I) and p, 5% p,}

Lemma 6.3.1 For all (u,v)€Z(c,t,1), either u affects p, at t on I(v) or v affects p,
at t on I(u). ‘

Proof. Consider what happens on input I{(u)(v).

Case 1. Neither p, nor p, write into cell ¢ at time t.

By hypothesis, p, writes into cell ¢ at time t on I(u). Changing the v*® bit of I(u)
causes p, not to write, so v affects p, at time t on I(u) (and symmetrically u
affects p, at time t on I(v)).

Case 2. p, writes into ¢ at time t.

By hypothesis, p, writes into ¢ at time t on I(u). Changing the v** bit of I(u)
must cause p, not to write (otherwise there would be a write-conflict on p,), so v
affects p, at time t on input I(u).

Case 3. p, writes into ¢ at time t.
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By hypothesis, p, writes into ¢ at time t on I(v). Changing the u'® bit of I(v)
must cause p, not to write (otherwise there would be a write-conflict with Py)s SO

u affects p, at time t on input I(v). O

Define:
R(p,t,I) = {u]u affects processor p at time t on I}
L(c,t,I) = {u]u affects cell c at time t on I}.

Also let:
Py = max | R(p,t,0) |

C, = max | L(e,t,I) |
c,

Lemma 6.3.2 Py =0,Cy=1and fort > 0
Piy1 < PGy (1)
Ciy1 < 8P+ 4G, (2)

Proof. The proof is by induction on t. The hypothesis is true for t = 0. Ine-
quality (1) is also clear, since to affect a processor we must either must have
affected it earlier or have affected the shared-memory cell that it is currently
reading. Inequality (2) is slightly more difficult. Consider each cell ¢ in turn.
There are two cases to consider. Either:

Case 1. Some processor/p writes into cell ¢ at time t+1.

Then to affect cell ¢ at time t+1 we must affect processor p at time t+1 (noting
that we count a read-compute-write sequence as a single time-step). Therefore
Ciyy < Pyyy. Since we have already shown that Py,; < P+C,, the required
result certainly follows.

Case 2. No processor writes into cell ¢ at time t+1.

We will first analyze | Z(c,t+1,I)|. Suppose (u,v)€Z(c,t+1,I). By Lemma 6.3.1
either u affects p, at t+1 on I(v) or v affects p, at t+1 on I(u). Without loss of
generality assume that u affects p, at t+1 on I(v). There are | Y(c,t+1,I)|
choices for v, and hence at most | Y(e,t+1,I)| choices for p,. But each proces-
sor py can be affected by at most | R(p,,t+1,I(v)) | < P,,, different choices for

u. Therefore:

| Z(et+1,0) | < 2] Y(e,t+1]) | Pyyy (3)
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(The factor of two is appropriate since each (u,v) also appears in Z(c,t+1,1) as
(v,u)). However, for each u there are at least | Y(e,t+1,I) | -P,,, choices for v,
since at most Py, of the candidates for v can be disqualified by having p, = p,.
Therefore:

| Z(et+1D) | 2 | Yet+LD) | (| Y(et+11) | - Pyyy) 4)
Hence by (3) and (4):

| Y(e,t+1,0) | (| Y(et4+1,]) | - Pyyy) < 2| Y(et+1,1) | Py
That is:

| Y(e,t+1,I) | < 8Py (5)

Now, to affect a cell at time t+1, we must either have affected it earlier, or must
be able to cause a processor to write into it by changing a single bit of the input.
Therefore:

| Lic,t+1,I) | < |L(e,t,I) | + | Y(e,t+1,1) |
Therefore by (5) and the induction hypothesis (2):
I L(c’t+1’l) [ S Ct+ 3Pt+l

< 3P+ 4G (by (1))

From which we can conclude that C,,, < 3P+ 4C, as required. [J

Theorem 6.3.3 If simultaneous writes are not allowed, then the time required to
compute the Boolean OR of n inputs on a shared-memory machine is at least
logyn, where b > 4.79.

Proof. Suppose we have a shared-memory machine which can compute the
Boolean OR of n inputs without the use of simultaneous writes in time T(n).
Take I = (0,0,...,0), the all-zero input vector. Then L(0,T(n),I) = n. But the
solution to the recurrence relations in Lemma 6.3.2 tells us that Crm) < bT(n),
where b > 4.79 (see Exercise 6.5). Therefore n < bT(®), as required. [J

Thus we have seen how to compute the Boolean OR of n bits in time
0.73log n without the use of simultaneous writes, while Theorem 6.3.3 tells us
that any such algorithm must take time at least 0.44log n. Lower-bounds for

84



other functions appear in Simon [116] and Snir [118].

6.4. A Lower-Bound With Simultaneous Writes

We saw in the previous section that lower-bounds for shared-memory machines
can be surprisingly subtle even when multiple writes are not allowed. The first
lower-bounds on models with simultaneous writes were for severely restricted
machines. For example, Vishkin and Wigderson [129] bounded the total amount
of successful communication in each time-step, and Meyer auf der Heide and
Reischuk [55] gave a lower-bound of Q(log n) for integer summation on a machine
with limited local instruction-set. We will give a proof of this result for networks
with an unlimited local instruction-set, from [91,96]. Meyer auf der Heide and
Wigderson [56] subsequently extended the lower-bound of [129] to parallel
machines which compute a larger class of functions using the “lowest-numbered
processor wins” convention for handling multiple writes. More recently, a much
tighter lower-bound for integer summation has been obtained by Beame [11].

Theorem 86.4.1 A restricted-access network of P(n) processors requires time
[ logzn ] to add together n positive integers of size O(P(n)(log P(n))(log n)).
Proof. Suppose M is a P(n) processor network which can sum n elements in
time T(n), and let x = <Xgy..0;Xpy1> be an input string consisting of n symbols,
each of which is a member of S. We assume that the processors are numbered
0,1, ...,P(n)-1, and that the output will be found in processor 0 at the end of
the computation. Let G, be the directed graph with vertices (p,t),
0 < p <P(n), 0 <t < T(n), and an edge from (p;,t,) to (pg,ty) if ty = t,+1 and
either p; = p, or during time-step t, of the computation of M on input x, either
processor p, reads a value from py, or p; successfully writes a value to p,. G, is
called the communication graph of the network on input x. The i*® symbol of x is
said to be reachable if there is a path from vertex (i,0) to vertex (0,T(n)) in G,.
Note that it is not necessarily the case that all of the symbols of any partic-
ular input are reachable since, as in the previous section, information can be com-
municated by a processor choosing not to write. Suppose the integers to be
added together are drawn from a set S of size N. We claim that (provided N is
sufficiently large) there is an input string in which all symbols are reachable. For
a contradiction, suppose that every input x has at least one unreachable symbol.
Define the reachable set of x to be Ry, ={i | xisreachable}. Let
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Q,C{0,1,...,n-1} be such that | Q,| = n-1 and R,CQ,. Then there is a unique
i such that 0 < i < n and i¢Q,. For definiteness, suppose Q, is chosen so that i
is minimal. Call Q, the critical set of x, <xg, . . ., Xj_1, X4 1ye-sXg1> the critical
string of x,’and x; the unreachable symbol of x. o

Suppose we fix an input x. How many input strings y are there such that
Gy = Gy? If Gy = Gj then clearly R, = Ry and the critical set for x is also criti-
cal for y. Suppose there are two inputs y; and y, with identical critical strings,
such that Gy = G, = G,,. Then, by a simple cut-and-paste argument, both y,;
and y, must sum to the same value since A(once the communication graph is fixed)
the unreachable symbol cannot affect the output. But by the cancellation law, if
we have two inputs y; and y, with identical critical strings and identical sums,
then they must have identical unreachable symbols. Therefore y; = y,, from
which we deduce that there are at most as many candidates for y as there are
different critical strings. Since there are at most N®! different critical striﬁgs, we
can conclude that at most N™! different inputs can give rise to the same com-
munication graph.

Let G(n) be the number of possible communication graphs on n inputs. By
the pigeonhole principle, at least one graph must be used for at least N*/G(n)
input strings. If N is chosen such that N > G(n) then this value is greater than
N1 which contradicts the result of the previous paragraph. Thus there must be
an input string for which all symbols are reachable. Since for all x, G, has in-

degree 3, this implies that T(n) > [logsn ]

Exactly how large can G{(n) be? Each communication graph has T(n) layers,
each corresponding to a single step of the network. How many different choices
for each layer are there? Clearly there are P(n)P(“) choices for the subgraph
corresponding to the read operations. The subgraph corresponding to the write
operations forms a bipartite matching (if X and Y are finite, disjoint sets of ver-
tices, a bipartite matching is a graph G = (V,E) where V. = XUY, ECXXY, and
each element of XUY appears in at most one edge of E). Let M(x,y) be the
number of bipartite matchings from a set of size x to a set of size y > x. Then
M(1,y) = y+1 and for all x > 1, M(x,y) = M(x-1,y) + ¥ M(x~1,y-1) Therefore
M(x,y) < (2y—x+3)2*2%y! (proof by induction on x). If we further define
M(x) = M(x,x), we see (by Stirling’s approximation) that M(x) < x*+O(1), Thus
there are P(n)P(“)+O(1) choices for the subgraph corresponding to the write opera-
tions, and so G(n) < (P(n)*f ()-+0()T),
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Corollary 6.4.2 Every n° processor restricted-access network requires time at

least [logsn] to add together n positive integers of size O(n°log2n) The addition

of n arbitrary integers requires time at least [logsn.‘ regardless of the processor
bound.

Note that the proof of Theorem 6.4.1 (and hence Corollary 6.4.2) will extend
to functions on n inputs with the property that fixing n-1 of the inputs and the

output fixes the remaining input. The technique of Theorem 6.4.1 also applies
equally well to shared-memory machines.

Theorem 6.4.3 A shared-memory machine with P(n) processors requires time
{loggn -I to add together n positive integers of size O(P(n).log P(n).log? n).
Proof. Similar to the proof of Theorem 6.4.1, noting that a shared-memory

machine with P(n) processors which runs for time T(n) can access at most
P(n)T(n) different shared-memory cells. See Exercise 6.4. [

Corollary 6.4.4 Every n® processor shared-memory machine requires time at

least [logzn-’ to add together n positive integers of size O(n‘log®n) The addition

of n arbitrary integers requires time at least [log2n] regardless of the processor

bound.

6.5. Exercises

6.1 Show that function last from Section 6.1 can be computed in constant time
with polynomially many processors and word-size O(log n).

6.2 Show that the maximum of n integers can be found in constant time by a
shared-memory machine with n? processors and word-size O(log n).

6.3 Prove Theorem 6.1.9. That is, show that the finite semigroup summation
problem can be solved in constant time with 20(®) processors.

6.4 Complete the proof of Theorem 6.4.3. That is, show that a shared-memory

machine with P(n) processors requires time [log2n-| to add together n posi-

tive integers of size O(P(n)(log P(n))(log? n)).
6.5 Show that the solution to the recurrences in Lemma 6.3.2: Py =0, Cg =1
and for t > O:
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Pyy1 =P+C,

is the following:

p bt bt
T VR Vet
c, — 3HVRL ¢ -3+VET
¢ V21 2v21

where b = (5+v/21)/2 and b = (5-v21)/2.
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7 Programming Techniques for
Feasible Networks

In Chapter 4 we suggested the possibility of finding a feasible network which is
universal for the general network model. Before we actually tackle this problem,
we will first investigate some of the methods at our disposal. This chapter con-
sists of four sections. The first section deals with possible interconnection pat-
terns, concentrating on the shuffle-exchange of Stone [122] and the cube-
connected cycles of Preparata and Vuillemin [104]. The latter paper also pro-
vides us with some useful programming tools; a large class of fast algorithms on
the multi-dimensional cube (called composite algorithms) which can be simulated
without loss of resources on either the cube-connected cycles or shuffle-exchange.
This will allow us to express the program of our universal network in a
moderately high-level form which is to a certain extent independent of intercon-
nection pattern.

The second section deals with recurrent interconnection patterns, that is,
interconnection patterns with the property that each finite graph in the infinite
family is constructed from disjoint subgraphs isomorphic to a smaller member of
the family, plus some extra vertices and edges. We present a recurrent intercon-
nection pattern called the cube-connected lines, which is equal to the cube-
connected cycles in its ability to simulate composite algorithms. It is shown that
a recurrent interconnection pattern constructed without the use of extra vertices
cannot share this property. The material in this section is from Parberry [95]. ‘

The third section contains some composite sub-algorithms which we will
later find useful in the construction of universal networks. The fourth and final
section contains some elementary theorems which allow a reduction in the
number of processors in networks with the shuffle-exchange, cube-connected
cycles or cube-connected lines interconnection patterns, at a cost in time. A
reduction in processors from P,(n) to Py(n) results in a delay of O(P,(n)/Py(n)).

Thus constant multiples in processor bounds can be ignored without asymptotic
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time-loss, a fact that we will use often in later chapters.

7.1. Interconnection Patterns and Programming Tools

As suggested in Section 4.4, our aim is to construct a feasible network which can
efficiently simulate any general network. There are a number of interconnection
patterns available in the literature which we might use for this universal network.
These appear to be roughly equal in computing power. Rather than tie ourselves
to one particular interconnection pattern, we will express our algorithms in a
high-level language which can be implemented efficiently on several interconnec-
tion patterns.

Fortunately, the literature provides us with some tools. Preparata and
Vuillemin [104] consider various algorithms which use a multi-dimensional cube
as the interconnection pattern. Although this has non-constant degree, they find
that a large class of useful algorithms have strong properties which allow them to
be simulated without asymptotic time-loss on a feasibly-buildable network which
they call the cube-connected cycles.

To simplify our notation, we will use the concept of an ‘“‘interconnection
template”. An nterconneclion template is an infinite sequence of finite graphs
F = (F,Fy,...) such that for i > 1, F; = (V;,E;) with | V;| = ¢! for some con-
stant ¢c€N, ¢ > 0. For every processor-bound P(n), we can use F to construct an
O(P(n)) processor interconnection pattern G = (Gg,Gy,...) by taking G, =F
where m = [loch(n) ], for all néEN. We will see that the constant-multiple

increase in processors inherent in this construction can be removed for each of
the interconnection patterns considered in this chapter. We will occasionally fail
to differentiate between an interconnection template, the interconnection pattern
constructed from it, and a network based on that interconnection pattern, relying
on context to resolve any ambiguity.

First, let us introduce some useful technical notation. Suppose v and i are
non-negative integers. If i > 1, let v; denote the i*h least-significant bit in the

binary representation of v, that is, v = lv/2(i‘l) J mod 2. Where convenient,
we may choose to blur the distinction between the integer v and a binary
representation vy, ; * - * v; (where k > | log v |+1) of v. Also let v()) denote
the integer which differs from v precisely in the ith (least-significant) bit, that is,
i) = v 4 21 _ vi2. If v € {0,1}, let ¥ denote v{Y), the complement of v.
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Suppose k is a non-negative integer. The k-cube C; has vertex-set
{v | 0<v <2k}, and each vertex v is joined to vertices v for 1 <i < k.
Cy has 9K vertices and degree k; it is this high degree which makes it unsuitable
for the construction of a realistic interconnection pattern. However, it has played
an important part in motivating the degree-3 interconnection templates which we
shall meet below. Figure 7.1.1 shows the four-dimensional cube (commonly called

the hyper-cube) C,, which has 16 vertices and degree 4.

0 1

8 9 < 2 3
4 5
10 n

12 13 X6 7
14 15

Figure 7.1.1 The hyper-cube, C,.

Consider a network based on the k-cube, with a constant number of registers
per processor. The link between processors v and vl is said to be in dimension i.
Suppose j < k. An algorithm is termed simple-ascend (after [104]) if all data
transfers occur synchronously along dimension 1, then dimensions 2,3,...,j in
monotone increasing order. Similarly it is called simple-descend if the data
transfers occur in the opposite order, from j down to 1. An algorithm is called
stmple if it is either simple-ascend or simple-descend, or consists of a constant
number of ascend or descend passes. It is called composste if it is either simple or
made up from local instructions and composite modules. We learn from [104]
that there are fast composite algorithms for a rich selection of data routing prob-
lems (such as permutations, merging and sorting).

The shuffle-ezchange SE, of Stone [122] has vertex-set {v | 0 < v < 2},
and each vertex v is joined to vertices v(1), (2v) mod 2X+v and [v/2 | + v,25L
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Relative to processor v, these three edges are called exchange, shuffle and
unshuffle edges respectively. SE; has 2K vertices and degree 3. Figure 7.1.2
shows the 8 vertex shuffle-exchange SE,.

Figure 7.1.2 The 8 vertex shufile-exchange, SE,.

In the remainder of this chapter we will call the processors of the simulated
network processes in order to distinguish them from the processors of the simu-
lating machine. This is consistent with the view that the simulated network is
presented to the simulator as a program, not as a physical collection of processors
and wires.

Theorem 7.1.1 A shuffle-exchange with 2% processors can simulate a 2K process
composite algorithm with constant delay.

Proof. (Outline) Suppose j < k. Without loss of generality we will prove the
result for algorithms whose data transfers occur synchronously along dimensions
1,2,...,J-Lj,-1,...,21 in turn. Both simple-ascend and simple-descend
class algorithms fit into this category with constant delay, the former by taking
the last j data transfers to be null, and the latter the first j. Applying the same
technique to each simple module shows that the result also holds for composite
algorithms.

Each processor will be assigned the task of simulating one process. Since
each process has only a constant number of registers, it is possible to have a
simulation in which the processor assignments are flexible. To move a process
from one processor to another, we need only transfer the contents of its registers.
If this transfer is to take place between neighbouring processors, the entire pro-
cess can be moved in constant time. We start off with processor i of the shuffle-
exchange simulating process i, 0 < i < 2X. Most importantly where composite
algorithms are concerned, we also end up in this configuration. Initially, we can
manage the data transfers along dimension 1, since for 0 < i < 2X, processor i is
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connected to processor i) via an exchange link.

Next we simply move the entire process from processor i to processor
ijigdg_g * * * iy via the unshuffle edge out of processor i (which the processor at the
other end views as a shuffle edge). After this has been done in parallel for all i,
0 <i < 2% we see that process i(?) is then resident in processor (iyigig_y -+« i),
which is adjacent to processor iijiy_; * ‘i, via the exchange link. Thus the
necessary transfers between processes i and i(?) can take place over the exchange
links. After a second unshuffle of processes, data transfers in dimension 3 can
take place over the exchange links. This continues up to dimension j, and then is
reversed back down to dimension 1. O

The cube-connected cycles CCCy of Preparata and Vuillemin [104] is defined
as follows. Let r be such that 2"14r-1 < k < 27+r. CCC, has vertex-set
{(v,p) | 0<v < 2¢,0< p < 2}, and each vertex (v,p) is joined to vertices:
(i) (v(e*1),p), provided 0 < p < k-,

(i) (v,(p+1) mod 27), and
(iii) (v,(p-1) mod 27).

(0,3) (0,0) (1,0) (1,3)

(2,3 (2,0) G.0 (3.3

(0,2) (0,1) (1,n (1,2)

(2,2) (2,1) (3,1 {3,2)

Figure 7.1.8 The 16 vertex cube-connected cycles, CCC,.

\

The first link is called a cube edge, the remaining two cycle edges. Relative to
processor (v,p), the first cycle-edge is called upcycle, the second downcycle. CCCy
has 2¥ vertices and degree 3. Figure 7.1.3 shows the 16 vertex cube-connected
cycles, CCC,. Note that every processor (v,p) can be numbered canonically by
concatenating the binary representations of v and p. The processors of a fixed-
structure network based on the cube-connected cycles do not need to compute v
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and p from their PIDs since the connections are ““hard-wired” into the machine
via the port registers.

Theorem 7.1.2 A cube-connected cycles with 2 processors can simulate a 2%
process composite algorithm with constant delay.

Proof. Preparata and Vuillemin [104] prove this result when the upper dimen-
sion in the simple modules is equal to k. A straightforward modification to the
pipelining argument and to LOOPOPER gives us the desired result (Exercise
71). O

By application of these theorems we have:

Theorem 7.1.3 A feasible network with at most 2 llog 1 processors can permute
n items according to some fixed permutation in time O(log n) (provided some
pre-computation is allowed).
Proof. The algorithm is just a simulation of the permutation network of Waks-
man [131] (covered in Section 2.3). See Schwartz [112] or Preparata and Vuille-
min [104]. (Exercise 7.2). O

Theorem 7.1.4 A feasible network with at most 2 llogn processors can perform
the pre-computation mentioned in Theorem 7.1.3 in time O(log*n).

Proof. See, for example, Nassimi and Sahni [87], Schwartz [112], Opferman and
Tsao-Wu [89] or Lev, Pippenger and Valiant [74]. a

Theorem 7.1.5 A feasible network with at most 2 llogn] processors can sort n
items in time O(log®n).

Proof. The algorithm is a composite realization of the odd-even or bitonic sort-
ing algorithms of Batcher [10] (covered in Section 2.2). See, for example,
Schwartz [112] or Preparata and Vuillemin [104]. (Exercises 7.3, 7.4). O

7.2. Recurrent Interconnection Patterns

Informally, an interconnection pattern is said to be recurrent if every graph in
the series is constructed from isomorphic copies of smaller graphs in the series.
Recurrent interconnection patterns are desirable since they are in a sense
“upward-compatible”, that ié, more processors can be “‘plugged in” to the net-
work without altering the existing links. Recurrent networks can also be easily
divided (either physically or virtually) into smaller machines for different
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applications. Neither the cube-connected cycles nor the shuffle-exchange is
recurrent (Seigal [115]).

More formally, An interconnection template F = (F,F,,...) with P(n) proces-
sors is said to be recurrent if for all n,m with 0 < m < n, F, has Q(P(n)/P(m) )
disjoint subgraphs isomorphic to F,. The simplest form of recurrence one might
choose is to have F, constructed from precisely P(n)/P(m) such subgraphs.
Unfortunately, we will see that this type of recurrent interconnection template is
much less powerful than the shuffle-exchange or cube-connected cycles intercon-
nection templates.

Suppose ¢ is a fixed positive integer (independent of n). More precisely, a
recursive interconnection template is one in which F, (n > 0) is made up of
exactly ¢ disjoint copies of F_; (with some fixed graph for F,), joined by extra
edges from some graph ﬁ‘n. We will call a network recurstve if its interconnection

pattern is constructed from a recursive interconnection template.

Theorem 7.2.1 A constant degree recursive network with P(n) processors cannot
permute P(n) items in O(log P(n)) steps.

Proof. For a contradiction, suppose F = (F,F,,...) is a P(n)-processor, degree-d
recursive interconnection template that can be used to permute P(n) items in
time O(log P(n)). The following simple and elegant technique is due to Meertens
[82].

Without loss of generality assume P(1)=c¢ (note that this means
P(n) = ¢®). For convenience, write P, for P(n). Let E; denote the number of
edges in F, En denote the number of edges in I, and Ty = E_/P,. Note that
T, < d/2. (Let S, be the sum over all vertices v in F; of the number of edges
incident with v. Clearly S, < dP,. But every edge is counted twice, so
S, =2E,).

We claim that for n > 1, B, = ©(c®/n ). Consider one of the subgraphs of
F, isomorphic to F,_;. Pick a permutation that takes a data item from each
vertex of the subgraph (there are ¢®! of them) to a vertex of F;, outside that sub-
graph. These data items must pass along the edges of Gn, since these are the
only edges linking the subgraph with the rest of Gy. Thus in one step, at most
En items can be moved. By hypothesis we can move all the items in O(n) steps.
There are ™! items to be moved. Hence ¢® = O(E;n). This is sufficient to
prove the above claim.

Therefore:
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En - En +c En—l
n-1 N

= Z ciEn—i

1=1

= Q(nz_:lcicn“i/(n—i) ) (by the claim)

i=1

n-1
= Q(Z e /1) (by re-indexing)

=1
n-1
Thus I'y =E,/P, = Q(}]1/i ), which diverges as n—oo. But this contradicts
=1
the fact that I'y < d/2, a constant independent of n. Thus no such parallel

machine can exist. [

This is in contrast to the corresponding result for the cube-connected cycles and
shuffle-exchange (see Theorem 7.1.3).

Although recursive interconnection patterns are thus in a sense weaker than
the shuffle-exchange or cub-connected cycles, the same is not necessarily true of
recurrent interconnection patterns. The following is a recurrent interconnection
template appearing in Reif and Valiant [107] and Parberry [95] that is as power-
ful as the cube-connected cycles, at least in its ability to simulate composite algo-
rithms. The cube-connected lines, CCLy is simply a copy of CCCy with the
edges from vertices (v,0) to (v,2°-1), 0 < v < 257 deleted (we call the remaining
cycle edges line edges, and the deleted cycle edges external edges). That is, the
cycles of the cube-connected cycles are broken, and thus become lines. CCLy has
2k vertices and degree 3. Figure 7.2.1 shows the 16-vertex cube-connected lines
graph, CCL,.

It is fairly easy to see that CCLy is recurrent. We need to differentiate the
special case of CCLy when k is of the form 2°+r, for some r. In this case we call

CCLy a full cube-connected lines graph.
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(0,0 (1,0

ONs
(2,00 /

(0,2)¢
(2,1

0,3)¢
(2,2)¢
(2,38

Figure 7.2.1 The 16 vertex cube-connected lines graph, CCL,. Line-edges

are drawn vertically; the remainder are cube-edges.

Lemma 7.2.2 If k = 2"+r then CCLy,, has exactly one subgraph isomorphic to
CCL,. ’

Proof. Suppose k = 2"+r. CCL; has vertices (v,p) with 0 < v < ok-1
0 < p < 2'. Vertex (v,p) is joined to vertices:

@) PHp)0<v <2, 0<p <2,

(i) (v,p+1),0<v < okT 0 < p < 2-1, and

(i) (v,p-1),0<v <2, 0<p <2

CCLy,; has vertices (v,p) with 0 < v < okt 0 < p < 21, Vertex (v,p) is
joined to vertices:

@) P+p),0<v< 2T, 0<p <2,

(i) (v,p+1),0 <v <257, 0<p < 21, and

(iii) (v,p-1),0 < v < 287,00 < p < 2™ Thus

CCL, looks exactly like CCLy_, with lines extended to double the length using
vertices without cube edges (see Figure 7.2.2). So CCLy,, has exactly one sub-
graph isomorphic to CCLy. OO
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CCL. CCL,

L 1 D

4

-

Figure 7.2.2 CCL, has one subgraph isomorphic to CQLa.

Lemma 7.2.3 If k is not of the form 2'+r then CCLy,; has two disjoint sub-
graphs isomorphic to CCL,. .

Proof. Without loss of generality, suppose k < 2'+r. CCLy has vertices (v,p)
with 0 < v < 27,0 < p < 2%, Vertex (v,p) is joined to vertices

() P+p)0<v <2k, 0<p < ker,

(i) (v,p+1),0 <v < 27,0 < p < 21, and

(iii) (v,p-1),0<v < 2¥T 0<p < 2N

CCLy4, has vertices (v,p) with 0 < v < 2kT+1 ¢ < p < 2. Vertex (v,p) is
joined to vertices

() (v(p“”),p), 0<v< 2k—r+1’ 0<p<krtl,

(ii) (v,p+1),0 <v < 2¢™1 0 < p < 21, and

(ili) (v,p-1),0 <v < 2¥™1 0 < p < 2%,

Thus deleting the cube-edges from (v,p) to'(v(p+1),p) with p = k-r from CCL,,
gives two disjoint graphs isomorphic to CCLy (see Figure 7.2.3). O
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CCLs CCL,

CCL,

Figure 7.2.3 CCL; has two subgraphs isomorphic to CCL,.

Lemma 7.2.4 If k = 2™4r, and j = 2%+s, where r > s then CCL, has exactly
2k disjoint subgraphs isomorphic to CCL;.

Proof. Suppose k = 2"+r and j = 2°+s for some r > s > 0. CCL; has vertices
(vip), 0 < v < 2%, 0 < p < 2% Vertex (v,p) is joined to vertex

@0 ¢Fp)o0<v<2¥0<p <2,

(i) (v,p+1),0<v<2%¥,0<p<2-1,and

(iii) (v,p-1),0<v<2¥,0<p< 2.

CCLy has vertices (v,p), 0 < v < 22,0 < p < 2. Vertex (v,p) is joined to ver-
tex .

i) Pp),0<v <2, 0<p <,

(i) (v,p+1),0<v < 2¥,0<p < 21, and

(iti) (v,p-1),0<v<2?,0<p <2

Deleting the line-edges between vertices (v,i.2°-1) and (v,i2%) for 0 < v < 22
0 <i < 2% breaks CCLy into 257 graphs isomorphic¢ to CCL; (see Figure 7.2.4).
Thus a full CCLy has 2k-i disjoint subgraphs isomorphic to a full CCL;. O
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V.Z:?
Figure 7.2.4 CCL; has four subgraphs isomorphic to CCL,.

Theorem 7.2.5 For 0 < j < k, CCL, has at least 2k-1 disjoint subgraphs iso-
morphic to CCL;.
Proof. (Sketch) The result follows easily using the above Lemmas. First reduce
CCLy into subgraphs isomorphic to the next smaller full CCL, using Lemmas
7.2.2 and 7.2.3. If CCL; is encountered along the way, then this is sufficient.
Next, using Lemma 7.2.4, reduce the full CCL immediately below CCLy, into sub-
graphs isomorphic to the full CCL immediately above CCL;. The latter can be
reduced to CCL; by application of Lemma 7.2.3.

In this entire process we only once have to reduce a non-full CCL to sub-
graphs isomorphic to full ones. Thus CCL, consists of 2%7-! subgraphs iso-
morphic to CCL;. O

Note that any attempt to increase the number of subgraphs from 2¥i-! to
2k is doomed to failure. For if CCL, had 2% subgraphs isomorphic to CCL;, it
would then be recursive. Thus by Theorem 7.2.1 it would be much weaker than

the cube-connected cycles for computing permutations. However we have:

Theorem 7.2.6 A cube-connected lines with 2X processors can simulate a 2% pro-

cessor composite algorithm without asymptotic time loss.

Proof. The proof is almost identical to that for the cube-connected cycles [104].

In that proof: ;

1. The pipelining phase utilizes a synchronous cyclic shift around the cycles.
This can be replaced with a linear shift along the corresponding lines of the
cube-connected lines graph, with wrap-around at the ends (at most doubling
the time requirement).

2. Communication within the cycles is performed using a procedure called
LOOPOPER. A close examination of this procedure reveals that it never
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uses external edges, and thus can be executed on the cube-connected lines
graph.
A complete proof will be deferred to Exercise 7.5. O

Thus, in particular, a network based on the cube-connected lines interconnection
pattern can permute n items in time O(log n). A degree-4 graph with similar
properties was earlier devised by Meyer auf der Heide [52,53].

7.3. Some Useful Algorithms

Having developed the idea of a composite algorithm in Section 7.1, we are now
ready to describe some simple sub-algorithms which we will find useful in the
next three chapters. The algorithms are given for the k-cube, but can be simu-
lated without asymptotic loss of resources on either the shuffle-exchange, cube-
connected cycles or cube-connected lines interconnection patterns, as described in
Sections 7.1 and 7.2. It is important to note that the algorithms are SIMD in
nature; synchronization is maintained by the fact that (as we earlier insisted in
Section 3.1) the code generated for each branch of a selection statement (such as
if-then-else, even if the ‘“‘else’” branch is null) has the same number of instruc-
tions.

Algorithm 1. Broadcast.

Suppose processor 0 has a value v which it wishes to broadcast to all 2¥ proces-
sors of a k-cube. This can be achieved in time O(k) by the following simple-
ascend algorithm, which terminates with variable V of every processor equal to v.

V:=if PID = 0 then v else 0
for b:=1 to k do ’
if PID, = 1 then V := (V of processor PID(}))

If 0 <i< 2% define the b-block (after [86,88]) of processor i to be the set of 2P
processors { I_i/2b J2b+j | 0<j< 2P} It is easy to prove by induction that
after the b*® iteration of the for-loop, variable V of all processors in the b-block
of processor 0 is equal to v, for b = 0,1,....k. (By the otk iteration, we mean the
point immediately before the loop is entered for the first time). Table 7.3.1
shows a trace of the algorithm for k==4. The concept of a b-block will play an
important part in the next two algorithms.
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'V of processor
b0 1 2 3 45 6 7 8 9101112131415
Oiv
1iv|v ,
21v|viv v
3{vivivi|v|viv]v|y
4 v|viviviv|viviviv]|v]|viviviv]|v]|y

Table 7.3.1 A trace of Algorithm 1 on 16 processors. Each line of the
table shows the contents of variable V of each processor after b iterations

of the for-loop. A blank entry indicates that V is uninitialized.

Algorithm 2. Local Rank.

Suppose every processor of a k-cube holds an integer value in some variable V.
For simplicity, suppose that these values are in non-decreasing order, that is, if
i <j then (V of processor i) < (V of processor j) (this restriction can be
removed, see Exercise 7.6). The local rank of processor i, 0 < i < 2¥ is defined to
be the number of processors j, 0 < j < i, such that for all processors p with
J < p <1, V of processor p equals V of processor i. The following is a simple-
ascend class algorithm which sets variable R of each processor to its local rank,
and runs in time O(k).

VT:=V
R:=RT:=0
for b:=1 to k do
if (PID}, = 1) and (VT of processor PID()) =V
then R := R+(RT of processor PID()+1
if (VT of processor PID(*)) = VT
then RT := RT+(RT of processor PID(®)+1
else if PIDy = 0 then (VT,RT):= (VT,RT) of processor PID(®)

At the end of the b iteration of the for-loop, 0 < b < k, variable R of processor
Lbo<i< 2% holds that processor’s local rank within its b-block. At the same
time, variables VT and RT contain the values V and R (respectively) of the top-

most processor in its b-block (that is, processor li/2b 2b49b_1). The correctness
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of the algorithm follows by induction. TAable 7.3.2 shows a trace for k=3, with V

of processor i initially equal to 0,0,0,6,6,6,6,1 for i = 0,1,...,7 respectively.

(e

PR

Processor .

b | Variable [0 1 2 3 4 5 6 7
R olo|lojolojo]olo

10 VT oloflol|s6|6|6 6|1
RT ‘o'lofojo|lojo]O]O

| R |o|1]olofo|1]o]0
11 VT {ojo|e|6]6|6]|1|1
RT i1{1]ojol1l1lo]o

R o{1|2|ojoj1l|21]0

2 VT 6|6 (6|6 11(1]1]1
RT o{o|lolo]olo|ofo

R o|l1(2]0j1]2|3]0

3 VT 11111111
RT olo|oflo|{o]|ol|o]|O

Table 7.8.2 A trace of Algorithm 2 on 8 processors. Each table entry
shows the contents of variables R, VT and RT of each processor after b

iterations of the for-loop.

Algorithm 3. Fan-out.

Suppose every processor of a k-cube holds two integer values x and y (which may

be different for each processor). Our aim is to produce a value fanout(i) for each

processor i, where for 0 < i < 2K, fanout(i) is defined to be the y-value of the

smallest numbered processor j such that for all p with j < p < i, x of processor p

is equal to x of processor i. For simplicity, suppose that the x-values are in non-

decreasing order, that is, if i < j then (x of processor i) < (x of processor j)

(this restriction can be removed, see Exercise 7.7). The following is a simple-

ascend class algorithm which sets variable Y of processor i to fanout(i),

0 < i < 2% in time O(k).
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Y:=y
XT,YT :=x,y
for b:=1 to k do
if (PIDy, = 1) A\ (XT of processor PD(®) = x)
then Y := YT of processor PID(b)
if (XT = XT of processor PID)) < (PID, = 1)
then (XT,YT) := (XT,YT) of processor PID(®)

At the end of the b*® iteration of the for-loop, 0 < b < k, variable Y of processor
i contains the value of fanout(i) restricted to its b-block. At the same time, vari-
ables XT and YT contain the values of X and Y (respectively) of the highest-
numbered processor in its b-block (that is processor |[i/2b J2b +2°-1). The
correctness of the algorithm follows by induction. Table 7.3.3 shows a trace for
k = 3 with (x,y) of processor i equal to (0,99), (0,89), (0,69), (6,95), (6,19), (6,28),
(6,58), (1,44) for i == 0,1,...,7 respectively.

Processor
b | Variable | O 1 2 3 4 5 6 7

Y 09 |89 [69 |95 (19 | 28 | 56 | 44
0 XT ojo0]o 6 6 6 6 1
YT 99 |89 |69 [ 95 |19 | 28 | 56 | 44

Y 99 |99 (69 [95 [ 19 [ 19 | 56 | 44
1 XT 006 6 {6 6 1 1
YT 99 199 (95 195 (19 |19 |44 | 44

Y 99 {99 [99 |95 |19 |19 |19 | 44
2| XT 6 |6 |6 6|11 ]|1]1
YT |95 (95|95 |05 |44 |44 |44 |44

Y 99 199 [09 195 (95 {95 | 95 | 44
3 XT 1 1 1 1 1 1 1 1
YT 44 144 |44 |44 |44 | 44 |44 | 44

Table 7.8.8 A trace of Algorithm 3 on 8 processors. Each table entry
shows the contents of variables X, XT and YT of each processor after b

iterations of the for-loop.
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Algorithm 4. Scatter.

For the moment we briefly step away from the main theme of this chapter, and
allow the processors of our networks to have more than a constant number of
registers each. In particular, we want each of the 2% processors of a k-cube to
have an afray of 2% elements. Suppose processor 0 has 2¥ items of data in its
array, and wishes to scatter these amongst processors 0,1,...,2%-1 in such a
manner that each processor receives precisely one value. The algorithm consists
of k stages. At the end of the i*! stage, the 2! processors p, 0 < p < 2!, are each
in possession of 2¥ data items. Stage i consists of processor p, 0 < p < 2! send-
ing 2% of its data items to pfocessor p(i). In the following implementation, pro-
cessor O starts off with 2¥ items of data in an array d[1..2¥]. Each processor
receives its value into variable d[1].

for i:==1 to k do ~
for j:==1 to 2¥i do
if PID, = 1
then d[j) := (d[j+2%] of processor PID)
else d[j+2%]:=0

Table 7.3.4 shows a trace for k = 3, with d[i] of processor 0 initially containing i,
1<i<8

The algorithm runs in time O(Ek)2k‘i)= O(2*) on a k-cube, but is not

i=1

strictly simple-ascend (because dimension i is used 2k- times in succession, not
merely once). This makes very little difference as far as the shuffle-exchange is
concerned (see the proof of Theorem 7.1.1). A minor modification to the proofs
of Theorems 7.1.2 and 7.2.3 serves to give the same result for the cube-connected
cycles and cube-connected lines interconnection patterns, the key point being the
fact that after the i*P iteration, 0 < i < k, only 2 processors are in possession of
data items (see Exercise 7.8).

7.4. Reducing the Number of Processors

In this section we examine a particular kind of time-processor trade-off, namely,
the question of whether a reduction in the number of processors of a network
based on the shuffle-exchange, cube-connected cycles or cube-connected lines
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d[j] of Processor
iljllo 1 2 38 4 5 6 7
1|1
2|12
3 |i3
0|4 |4
5 |5
6 ||6
7|7
8 |8
1115
1 {2216
337
4114 |8
2111|537
2126148
3 (1|1 |53 |7 ]|2(61]4]8

Table 7.3.4 A trace of Algorithm 4 on 8 processors. Each table entry
shows the contents of d[j] of each processor for various values of j after i
iterations of the outer for-loop. A blank entry indicates that d[j] has not

yet been initialized.

interconnection patterns can be made at a reasonable cost in time. We find that,
due to the highly regular form of the interconnection patterns, a small network
based on these interconnection patterns can simulate a larger one by having each
processor of the former simulate many of the latter. These processor-reduction
theorems have many applications. Firstly, as pointed out in [38], in many situa-
tions the input to a parallel computer cannot be read in parallel (this assumption
has been made, for example, in [84,90,132]). In this case our results can be
applied to slow down various fast parallel algorithms to the speed at which the
input becomes available, and thus decrease the number of processors without any
observable increase in time. Secondly, we can remove the need for constant fac-
tors in processor bounds. For example, Galil and Paul [38] are able to reduce the

number of processors in their universal network from O(p) to p while increasing
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time by only a constant multiple. We are able to extend this result by showing
that the number of processors in any network based on many popular intercon-
nection patterns can be reduced by a constant factor without asymptotic time-
loss.

Constant multiples in processor-bounds pervade the current literature, due
to the fact that the commonly used interconnection templates come only in cer-
tain sizes, typically 2k or k2¥ for some non-negative integer k. Thus we are res-
tricted to processor bounds which are powers of two (which may almost double
the processor requirements) if we use any of the shuffle-exchange, cube-connected
cycles or cube-connected lines interconnection patterns. For example, we have
seen in Theorem 7.1.3 that it is possible to permute n items on a 2 flog n 1 proces-
sor cube-connected cycles, cube-connected lines or shuffle-exchange in time
O(log n) by simulating Waksman’s [131] permutation network. In this case it
may be necessary to use as many as 2n-2 processors. Our results enable us to
remove these ‘‘hidden’ constants without asymptotic time loss. The results of
this section are from [30,67,68,91]. Our technique is motivated by the following
result.

Theorem 7.4.1 For all d > 0, C can simulate Cy, 4 with delay O(2%).

Proof. In order to simulate a single step of Cy 4, every processori, 0 <i < ok

will synchronously execute a single step of processes 29 43, for 0<j < od,

This takes place in two stages.

(1) For 0 < j < 24 simulate the communication between process 2% + j and its
neighbouring processes. Suppose, for example, process 2di + j wishes to com-
municate with process (2% + j)(m) for some m with 1 <m <k+d. If
m < d then no inter-processor communication is necessary. Otherwise
d<m<k+d and so process (2%i+ j)(m) = 24i(m-d) 4 ; is being simu-
lated by processor i(m-d), Since processor i(m-4) is a neighbour of processor i
in Cy, the desired communication can be carried out in O(1) steps, the exact
constant being dependent on the type of instruction-set in use. Note that
communications with process 2%i +j may be initiated by processes
2dj(m-d) 4 ;1 < m < k, resident in every neighbour i(m) of processor i. We
assume that the communication protocol of Cy deals with these possible
clashes in the same manner as that of C, 4. Clashes involving a communi-
cation between two processes resident in the same processor are to be dealt

with in a manner which is compatible with this protocol.
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(2) Finally, simulate the current step of processes 2% + j, 0 <j < 24, making
possible use of the information obtained in (1). This is assumed to take 0O(1)
steps per process (the constant again being dependent on the instruction-
set).

At this point, Cy is ready to simulate the next step of Cy +d- Thus we have simu-

lated a single step of a 2¥*td processor network Criqona 2k processor Cy with a

time-loss of only O(24). g

Note that the simulation of Theorem 7.4.1 can be carried out in such
manner that it maintains the simple-ascend or simple-descend property of Section
7.1. Thus it is strong enough to achieve the desired savings in processors for
composite algorithms.

As observed earlier in this section, in some instances the input to a parallel
machine may not be available in parallel. The example taken by Galil and Paul
in [38] is that of matrix multiplication. It is well-known (see Exercise 7.9) that
two n X n matrices can be multiplied in time O(log n) using O(n®) processors on
any of the graphs listed in Sections 7.1 and 7.2 provided the input can be read in
parallel. Suppose, to the contrary, that the input can only be read sequentially,
so that there is an a priori lower-bound of Q(n2). By applying Theorem 7.4.1
with k = |log (nlogn) ] andd = [3logn]- k, we have a linear-time (that is,
O(n?)) algorithm on n log n processors. If a row (or column) of the input can be
read in  parallel, Theorem 7.4.1 with k= llog(n2log n) J and
d= [3logn ]1-k gives us an O(n) time algorithm on O(n%log n) processors.
This improvement over the corresponding results in [38] stems from the fact that
they have used a universal parallel network, which leads to a significant degrada-
tion in performance.

Whilst Theorem 7.4.1 gives the claimed savings in processors for an impor-
tant class of algorithms on the shuffle-exchange, cube-connected cycles and cube-
connected lines, it is possible to produce a stronger result which holds for all
algorithms on these graphs. Fortunately the interconnection templates are
sufficiently like the k-cube for similar techniques to work. The shuffle-exchange,
for instance, is particularly amenable. k

Theorem 7.4.2 For all d > 0, SEy can simulate SEy_ 4 with delay O(29).

Proof. In order to simulate one step of SEy 4, every processor i, 0 < i < 2K will
synchronously simulate one step of processes 24i + j, for 0 <j< 2 Asin the
proof of Theorem 7.4.1, this takes place in two phases - each processor first
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carries out any communications required by its processes from their respective

neighbours, then updates their configurations once all the information has been

gathered. )

Suppose 0 < j < 2% and process 2% + j wishes to communicate with one of
its neighbours in SEy, 4. There are three cases to be considered, according to
whether process 2% + j wishes to communicate with its neighbour along the
exchange, shuffle or unshuffle edge. Either:

(1) Ezchange edge. It wishes to communicate with process (2% + j)YV). In this
case, no inter-processor communication is necessary, since process
(24 + j)(l) = 24 + j() is also being simulated by processor i.

(2) Shuffle edge. It wishes to communicate with process
i adx e *iyjgigeg * ¢+ Julk- This process is being simulated by processor
ig_yigo *  * ijjq- There are two cases to consider:

(a) i = jgq. Processor i = jgi_;ix_o * * *i; can communicate with processor

fqigo * * + 1;]q directly through its shuffle edge.

(b) ix % jq. Processor i =JTdik_lik_2 * + +i; can communicate indirectly with
processor i_jix_o * - ijq by utilizing the shuffle edge to processor
foyigeg il_]Td, and the exchange link from there to processor
Igaikg * * * inae

(3) Unshuffle edge. It wishes to  communicate with  process
Jilkdkoy * v iyJgdaey © © * Jo- This process is being simulated by processor
Jiigig_g * * * ip. Again, there are two cases to be considered:

(a) i; =1}j;. Processor i=1ii;; " "1ij; can communicate directly with
processor jyiyiy_; * * * i, through its unshuffle edge.

(b) i; 5% j;. Processor i=iip_; - i,j, can communicate indirectly with
processor jyijiy_; ¢ * iy by utilizing the exchange link to processor
igi; * - -ipj; and the wunshuffle edge from there to processor
Jaikdgg 0 g

Thus we have shown how to simulate one step of the 25¥9 processor SEy 4
on the 2% processor SE; with a time-loss of only O(2%), the constant multiple
being dependent on the instruction-set used. [

The results for the variants of the cube-connected cycles are proved in.a

similar manner.
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Theorem 7.4.3 For alld > 0, -

(¢) CCCy can simulate CCCy 4, and

(#) CCLy can simulate CCLy 4,

with delay O(29).

Proof. We will demonstrate the technique for d = 1. This can be looked upon

as a recursive algorithm for the processor assignment, along with a proof that the

assignment is valid. We consider CCCy first.

First, suppose that k is of the form 2F + r for some integer r > 0. Then the
processors of the simulating network are of the form (v,p) where 0 < v < 22,
0 < p < 2. In contrast, the processes of the simulated network have the form
(v,p) with 0 < v < 2%, 0 < p < 2™, Processor (vip), 0<v<2¥,0<p<or
will simulate processes (v,p) and (v,2"*!-p-1). As before, each processor synchro-
nously carries out the communications requested by all its processes, and then
updates their configurations internally.

Suppose process (v,p) wishes to communicate with one of its neighbours.
There are three cases to consider.

(1) Cube edge. It wishes to communicate with process (V(p“),p).' This process is
being simulated by processor (v(p“),p) which is directly connected to proces-
sor (v,p) via a cube edge.

(2) Upcycle edge. It wishes to communicate with process (v,p +1). If
0 < p < 2-1 then process (v,p +1) is being simulated by processor
(v,p + 1), which is directly connected to processor (v,p) by an upeycle edge.
Otherwise p = 2'-1 and process (v,27) is also being simulated by processor
(v,p), so no inter-processor communication is necessary.

(8) Downcycle edge. It wishes to communicate with process (v,(p-1) mod 2r+l),
If 0 < p < 2' then process (v,p-1) is being simulated by processor (v,p-1),
which is directly connected to processor (v,p) by a downcycle edge. Other-
wise p = 0 and process (v,2"*1-1) is also being simulated by processor (v,p),
so no inter-processor communication is necessary.

Now suppose that process (v,2"*!1-p-1) wishes to communicate with one of
its neighbours. This is handled similarly to (2) and (3) above (remembering that
processes of this form have only cycle links).

This completes the case where k is of the form 2F + r. Now suppose k is not
of that form. Let r be such that 2! 4+ r-1 < k < 27+ r. The processors of the
simulating network are of the form (v,p) where 0 < v < 2¥T, 0 < p < 2'. The
processes of the simulated network are of the form (v,p) where 0 < v < 2kT+1,
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0 < p < 2%. Processor (v,p) will simulate processes (v,p) and (v + 2¥7,p). As

always, in order to simulate a single step, each processor first carries out the com-

munications required by its processes, “and then updates their configurations
internally. Suppose process (v,p) wishes to communicate with one of its neigh-
bours. There are two cases to consider.

(1) Cube edge. It wishes to com;unicate with process (V(P“),p). If p<k-r
then process (V(P+1),p) is being simulated by processor (v(P“),p). Otherwise
p = k-r and process (V(p+1),p) = (v + 2¥7,p) is also being simulated by pro-
cessor (v,p), so no inter-processor communication is necessary. Note that p
cannot exceed k-r since processes (v,p) with p > k-r have no cube edge.

(2) Cycle edges. It wishes to communicate with process (v,(p £+ 1) mod 27).
This process is being simulated by processor (v,(p £+ 1) mod 2") respectively,
which is connected to processor (v,p) by a cycle link.

This completes the simulation of process (v,p). Process (v + 25T p) is handled

similarly.

Thus we have shown how to simulate a step of CCCy_ 4 on CCCy in time

O(24). Since CCLy is a subgraph of CCCy, part (i) of the theorem follows

immediately. [

Note that the set-up times for Theorems 7.4.1 and 7.4.2 are far superior to
that of Theorem 7.4.3. Not only are the assignments of processes to processors
easier to compute, but also the input symbols are placed into the correct proces-
sors at the start of a computation according to the convention established in Sec-
tion 4.1.

7.5. Exercises

7.1 Show that a cube-connected cycles with 2k processors can simulate a 2k pro-
cess composite algorithm with constant delay. (Theorem 7.1.2).

7.2 Show that a feasible network with at most 2 fogn1 processors can permute n
items according to some fixed permutation in time O(log n) (Theorem 7.1.3),
by implementing Waksman’s permutation algorithm (Section 2.3).

7.3 Show that a feasible network with at most 2 flogn] processors can sort n
items in time O(log?n) (Theorem 7.1.5) by implementing Batcher’s odd-even
sorting algorithm (Section 2.2).
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7.4

7.5

7.6

7.7

7.8

7.9
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Show that a feasible network with at most 2 [lgn1 processors can sort n
items in time O(log?n) (Theorem 7.1.5) by implementing Batcher’s bitonic
sorting algorithm (Section 2.2).

Show that a cube-connected lines with 2% processors can simulate a 2% pro-
cessor composite algorithm without asymptotic time loss. (Theorem 7.2.8).
Demonstrate that Algorithm 2 (Section 7.3) will not correctly compute the
local rank when the inputs values V are not necessarily in sorted order.
Modify it so that it does.

Demonstrate that Algorithm 3 (Section 7.3) will not correctly compute fan-
out when the inputs values x are not necessarily in sorted order. Modify it
so that it does.

Show that Algorithm 4 (Section 7.3) can be simulated on the cube-connected
cycles interconnection pattern without asymptotic time-loss, even though it
is not strictly simple-ascend.

(Preparata and Vuillemin [104]) Give a composite algorithm for multiplying
two nXn matrices in time O(log n) on n® processors. Express your algo-

rithm using our high-level programming language.



8 The AKS Sorting Network

For over a decade it was thought that the O(log?n) depth, O(n log?n) size sorting
network of Batcher (see Sections 2.1 and 2.2) may be the best possible. It was
not until fairly recently that an asymptotically optimal O(log n) depth,
O(n log n) size network was found by Ajtai, Komlés and Szemerédi [5,6]. This
chapter is devoted to an elegant version of their algorithm due to M. S. Paterson.
Until recently, Paterson’s result existed only in oral tradition, with only sketchy
notes (for example, Leighton [72]) in circulation. The material in this chapter is
based on [72], with the emphasis placed on clarity and simplicity, rather than the
pursuit of the smallest constant multiple. A definitive version of the algorithm,
in which a more sophisticated analysis gives a superior constant multiple, has
been recently published by Paterson [100]. The first section of this chapter exam-
ines the basic building-blocks of the algorithm, called €-nearsorters, which are
constructed using a special family of graphs known as expander graphs. The
second section contains the abstract algorithm, with the third section is devoted
to a correctness proof and the details of implementing the algorithm as a sorting
network.

8.1. Halvers and Nearsorters

Suppose G is a bipartite graph, that is, G = (V;,V,,E), ViNVy =@, ECV,XV,.
If ACV,, write T(A) for the set of neighbours of vertices in A,
{veV, | 1 ueA (u,v)EE}. Similarly, if  ACV,  write T(A) for
{ueV, | 3 veA (u,v)EE}. G is said to be d-regular if every vertex has degree d,
that is, for all v€V,UV,, |T({v})| = d. A d-regular bipartite graph must have
| Vi | = | V2 | .

Definition. Suppose § > 1, a < 1, d€N, with af < 1. An (a,8,d)-expander is
a d-regular bipartite graph G = (V},Vo,E) with |V, | = |V, | = n, such that
for every ACV; with |A| < am, |T(A)| > B|A|,fori=1,2.
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Theorem 8.1.1 (Hall [49]). A bipartite graph G = (V,V,,E) has a perfect
matching iff for all ACV,, |T(A)] > |A].
Proof. See, for example, Even [27]: O

Corollary 8.1.2 Every d-regular bipartite graph can be edge-coloured using d
colours so that every pair of edges with a common vertex have different colours.
Proof. The result follows by induction on d. The hypothesis is clearly true for
1-regular graphs. Suppose the hypothesis holds for (d-1)-regular graphs, and that
G = (V,,V,,E) is d-regular. Note that every d-regular bipartite graph
G = (V|,Vy,E) is a (1,1,d)-expander. (For a contradiction, suppose there exists
ACV, such that [T(A)| < |A|. Let E; be the set of edges incident with A,
and Ey the set of edges incident with I'(A). Clearly by the definition of T'(A),
|Er| £ |Ep|. But |E;| =d|A| and |E| =d|lA)] <d|A],
which implies that |E,| < |E;|.) Thus by Theorem 8.1.1, G has a perfect
matching. This perfect matching can be coloured monochromatically, and upon
its removal leaves a (d-1)-regular graph, which by the induction hypothesis can
be coloured with d-1 colours. [J

Theorem 8.1.3 For all 3> 1, « > 0 with af < 1 there exists a constant d(a,f)
such that arbitrarily large (,8,d(«,8))-expanders exist.

Proof. The proof of this result is beyond the scope of this book. A simple but
tedious counting argument shows that, for sufficiently large n, most regular
bipartite graphs of large degree are expander graphs. Some explicit constructions
of expander graphs are known, but these have degree far larger than those shown
to exist by the counting argument. The interested reader can consult Alon [7],
Gabber and Galil [35), Jimbo and Maruoka [58], Klawe [63], Lubotzsky, Phillips
and Sarnak [77], Margulis [80] and Pippenger [101]. O

Definition. Let X = <xy,Xg,...,x,> be a sequence of n distinct numbers, and
X(i,j) denote {X;Xjiyy-Xj}. For 1 <k < n/2 let Sy be the set of k smallest
numbers in X (that is, | Sy | = k and for all x;€Sy and x;¢8S, x; < x;) and Ly be
the set of k largest numbers in X. Then X is said to be 4-halved if for all
k <n/2, |SX(ln/2]+1mn)] <~k and [LnX(L, ln/2h)| <k A ~-
halver is a comparator network which ~-halves its inputs. '
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Lemma 8.1.4 For every 0 < 7 < 1 and n > 0 there exist n-input ~-halvers of
depth d(%,%— -1), for the function d mentioned in Theorem 8.1.3.

Proof. If n is so small that n-vertex expander graphs cannot be found, then a -
Batcher sorting network will suffice (see Section 2.2). This will have constant

depth. Because of the large constant multiples involved in the construction of
expander graphs, we will assume that the depth is dominated by d(%,3 -1).
: Y

Suppose that n is sufficiently large, and that n is even. Take an (o,8,d)-expander

G = (V,Vo,E) with V, = {1,2,..., |_n/2 J}, V, = { |,n/2_| +1,..,n}, a=-1,
1-o ,

p=-
¢4

large enough n) by Theorem 8.1.3. Colour its edges with colours drawn from the

and d = d('y,—lgyl). This expander graph is guaranteed to exist (for

set {1,2,...,d} (this is possible by Corollary 8.1.2), and construct an n-input com-
parison network with a comparator between channels i and j at level k precisely
when there is an edge coloured k between vertices i and j in G. Clearly the net-
work has depth:

1~ v 2
d = d(y,—) < d({—,— -1).
(1) S d(F2 1)

(We assume that d(a,f) is monotone nondecreasing as f—00.)

Claim 1. All comparators cross the centre-line, that is, i < n/2 and j > n/2.
Proof. This is obvious by construction, whether n is even or odd. 0O

Suppose that the inputs to the network are xj,...,x, and the outputs are
Yiseees¥n. Let Sy be the set of k smallest numbers in xy,..,%x;, and
Y(i,i) = {yisVis1sees¥i )} We  will show that for all k <n/2,
| SkNY(n/2+1,n) | < ~k; the corresponding result for Ly follows in a similar

‘manner.

Claim 2. If there is a comparator between channels i and j on any level, then
¥i <Y

Proof. To see this, note that at the level containing the comparator, the value
on channel i is less than the value on channel j, and that by Claim 1, i < n/2
and j > n/2, hence (again by Claim 1) the value on channel i cannot be increased
by subsequent comparisons and the value on channel j cannot be decreased by

subsequent comparisons. [

Let BC{n/2+1,...,n} be the set of channels which wrongly contain members
of S, at the final level, that is, S,NY(n/2+1,n) = {y; | i€B}, and B be the set of
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channels that are compared to channels in B at any level.

Claim 3. Each channel in B carries a member of Sy at every level.

Proof. The result follows by induction on the distance from the final level. [J

Claim 4. Each channel in B carries a member of Sk at the outputs.
Proof. By Claims 2 and 3. O

We are required to prove that |B| < k. For a -contradiction, suppose
| B| > ~k. By the expander property, Iﬁl > fB|B| > pfvk. Since (by
Claim 1) BNB = §, this means that |BUB| > (B+10k. Since, by Claims 3
and 4, every channel in BUB carries a different member of Sy at the output level,
this implies that | S, | > (#+1)7k. However, since we chose 8 = (1-v)/~, this
says that | Sy | > k, which contradicts the definition of S,.

Now suppose that n is odd. It is possible, using an argument similar to the
above, with & = 7/2, to produce a ~v-halver of the appropriate depth (see Exer-
cise 8.2). O

Definition. Let X = <x;,X,,...,x;> be a sequence of n distinct numbers, and
X(i,j) denote {X;Xiyy,e..Xj}. For 1 <k <n let S; be the set of k smallest
numbers in X (that is, | Sy | = k and for all €Sy, ¢Sy, s; < s;) and Ly be the
set of k largest numbers in X. Then X is said to be e-nearsorted if for all
1<k<n, |SnX(k+en,n)| <ek and |LNX(1,n-k-en)| < ek. An e-

nearsorter is a e~halver which e-nearsorts its inputs.

Lemma 8.1.5 For every 0 < e <1 there exist ¢-nearsorters of depth
E.d(%,% -1), where £ = [-log € ] and d is the function from Theorem 8.1.3.
Proof. Suppose n is a power of 2, and s < log n. Define an (n,s,7)-network,
where v < 1, as follows.” An (n,0,9)-network is empty. For s> 1, an
(n,s,7)-network is constructed from an n-input ~-halver and two
(n/2,5-1,7)-networks as in Figure 8.1.1.
Suppose that the inputs to the network are x,...,x; and the outputs are yy,...,y,.
Let Sy be the set of k smallest numbers in X = {x;,...,x,}, Ly be the set of k
largest numbers in X and Y(i,j) = {¥i)...,¥j;}. Suppose we call the recursive
(n/2,5-1,7)-network whose outputs are Y(1,n/2) the smaller sub-network, and the
other the larger sub-network.

We claim that for 1 < k < n, |SiNY(k+n/2%n)| < ~ks, that is, only a

small proportion of small values find themselves far from the ‘‘smaller” end of
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n-input 7-halver

(n/2,54,7) (n/2,s1,7)

Figure 8.1.1 Recursive construction of an (n,s,4)-network.

the outputs. (The corresponding result for Ly will follow in a similar manner).
The proof is by induction on s. The hypothesis is true for s = 0, since n/2® = n,
and hence for all k, Y(k+n/2%n) = §. Now suppose s > 1.

Case 1. k < n/2.
The ~-halver may cause at most vk members of S, to enter the larger sub-
network, resulting (in the worst case) in them arriving at Y(k+n/2%n).

Furthermore, out of the k smallest values that enter the smaller sub-

network, at most ~k(s-1) of them will end up in Y(k+l21S/_—?,n/2) (by the

induction hypothesis). Thus, out of the members of S that are sent to the

smaller sub-network, at most vk(s-1) of them will end up in Y(k+%,n/2).

Therefore:

S NY(k+n/25n) | < ~4k++k(s~1) = ~ks
k

Case 2. k > n/2.
At most ~y(n-k) members of L, will be forced into the smaller sub-network
by the first v-halver. This displaces at most ~y(n-k) < ~k members of Sy
from Y(1,n/2), which (in the worst case) arrive at Y(k-+n/25n). By the
induction hypothesis, at most y(k-n/2)(s-1) < ~k(s-1) of the k-n/2 smallest
values  entering the larger sub-network are displaced from
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n/2

Y(n/2+1, k———+ pra —=-1). These k-n/2 smallest values must all be from 8.

Therefore:
| SNY(k+n/2%n) | < ~k+4k(s-1) = ~ks

Let &= [-loge]. Consider an (n,&,—-z-)—network. For all 1<k<n,
| SkNY(k+en,n) | < ek and symmetrically |LNY(1,n-k—en)| < ek. That is,

it is an e-nearsorter. It has s = £ layers of y-halvers, (where v= %), each of

which has depth d( 1) by Lemma 8.1.4. Thus the total depth is

£ d(-—i-,%f— -1). A similar argument for arbitrary n will give the same depth (see

2¢
Exercise 8.2). O

8.2. An Abstract Sorting Algorithm

The parallel machine model that we shall use is slightly unorthodox. We will see
later how to transform an algorithm for this model into a sorting network.
Assume that n, the number of values to be sorted, is a power of 2. We also
assume, without loss of generality, that the values to be sorted are distinct. We
will use 2n-1 bags, each of which is capable of holding many input values. These
bags are arranged in the shape of a complete binary tree. The root bag is defined
to be at level 1, and all children of level-k bags are defined to be at level k+1,
fork > 1.

Suppose that each of the bags has the power to halve its inputs, that is, to
separate the values in its possession into two equal-size sets S;,S, such that for all
$,€5,,54€S,, 5; < sy. Then we could sort n values as follows. Initially place all
of them in the root bag. Halve them, and send the set of smaller values to the
left child and the set of larger values to the right child. Each child in parallel
halves its values and sends the smaller set to its left child, etc. Continuing in
this fashion, the input values each follow a direct path from the root to the
appropriate leaf, and thus sorting is achieved in only log n halving and routing
steps.

Unfortunately, this will not lead to an O(log n) depth sounng network, since
the process of halving n inputs requires a comparison network of depth {(log n)
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(see Exercise 8.1). However, we can substitute a ~-halver (for some small con-
stant ), which by the results of the previous section has constant depth. After
the first +-halving step, a small fraction of the values in the smaller half (sym-
metrically, the larger half) have been put into the wrong set, and thus will be
passed to the wrong child. Such values which have strayed from a direct path
from the root. to the appropriate leaf are termed strangers.

Our aim, then, is to ensure that these strangers get back on track. Note
that strangers are either smaller or larger than the values which legitimately
belong in the bag to which they have been erroneously routed. If we e-nearsort,
instead of ~-halve, the values in each bag (for some small constant ¢), then all
but a small fraction of the strangers will find themselves either at the far left-
hand (the ‘“‘smallest’) or the far right-hand (the “largest”) end of the bag respec-
tively. These strangers can be passed back up the tree in an effort to get them
back on track, whilst the legitimate values in the centre of the bag can be sent
further down the tree, carrying with them a small fraction of the old strangers
plus a hopefully small number of new strangers.

We must ensure that the number of strangers is small, so that only a small
number of values in each bag need be passed up the tree. If the fraction of
values passed up the tree is too large, then the algorithm will not terminate in
O(log n) nearsorting and routing steps, in which case all hope of obtaining an
O(log n) depth sorting network is lost. We also need to ensure that the algo-
rithm terminates with exactly one of the values in each leaf bag, in sorted order,

that is, with no strangers.
Suppose A,e,\,u,,6€R, with A > 1, 0 < e < % and 0 < Mu,,6 < 1. In
particular, let:.

A =4.959 v =0.7728
e =0.0171 X = 0.0586
1= 0.0061 &= 0.0051
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Lemma 8.2.1 The following inequalities hold:

1
ﬁ + 2XA + 3uA <v (1)
Av>1 (2)
DN

2u + €< > (3)
26°A% + ¢ < AV (4)
26A < 1 (5)

1 2Aub w €

2ubA + Nl LR 4

MO T A@AT 1)  T-2As T A TaA =W (©)

Proof. By inspection. [

Definition. For k > 1, t > 0, the capacity of a level-k bag at time t is defined
to be C(k,t) = AX1vtn. _

Let us say ‘‘at time t”’ to denote the period immediately after t steps of the algo-
rithm have been executed. Each step consists of four separate parts, which we

will call phases. The t step of the algorithm, t > 1, is the following for a bag

at level k > 1. Each bag B synchronously performs the same sequence of opera-

tions.

1.

120

Collect any values which arrived during the (t—1)* step. If there are an odd
number of values, select an arbitrary one and call it special; e-nearsort the

non-special values in either case.
If k > 1 and pC(k,t-1) > 1, then pass the l%C(k,t—l) J “smallest” (that is,

the smallest values as determined by the nearsorting process), and

%C(k,t—l)J “largest” values to the parent of B. If there are not enough

non-special values in the current bag, then pass up whatever is available.
Note that this leaves an even number of non-special values in B. We will
later show that the number of strangers in a level k bag after t—1 steps of
the algorithm is at most uC(k,t-1). Thus this phase achieves the following:
if B can possibly contain strangers, then pass up a fraction of its contents.

If k > 1, uC(k,t~1) > 1 and B contains an odd number of values, then pass
the special value to its parent. Thus if there is a possibility of B containing

strangers, and it has an odd number of values, then an extra value is passed



up. If there are no strangers, then there is no harm in keeping the extra
value.

4. Split the remaining non-special values evenly into a “smaller” half and a
“larger”” half, as determined by the nearsorting process in Phase 1. Send the
“smaller” values to the left child and the “larger” values to the right child
of B. If the special value was retained in Phase 3, then retain it to the next
step.

At time t = O the algorithm is started with all n values in the root, and all other

bags empty. We claim that it terminates with one value in each of the leaf bags,

in ascending order from left to right.

Lemma 8.2.2 The root bag contains an even number of values at all times.
Proof. We will prove that all bags at level k contain the same number of values
at time t > 0. This implies that there is an even number of values in the tree
below the root; therefore (since n is even) the root must also contain an even
number of values. '

The proof of this claim follows by induction on t. It is certainly true at time
t = O since all bags at level k > 2 are empty at that time. Now suppose that
the hypothesis is true at time t-1. By the induction hypothesis all bags at level
k-1 contain the same number of values at time t-1. Thus, by the symmetry of
the algorithm, every bag at level k receives the same number of values from its

t*h step. By the induction hypothesis all bags at level

parent in Phase 4 of the
k+1 contain the same number of values at time t-1. Thus, by the symmetry of
the algorithm, every bag at level k receives the same number of values from its
children in Phases 2 and 3 of the t*! step. Therefore, since all bags at level k act
symmetrically, it follows that they all receive the same number of values during

the t* step. O

Lemma 8.2.3 For k > 1, t > 0 the number of values in any bag at level k, time
t is at most max(C(k,t),1).

Proof. The proof is by induction on t. The hypothesis is certainly true for
t = 0, since C(1,0) = n and the root holds all n values at that time. Now sup-

pose t > 1. Consider a bag B at level k. By the induction hypothesis, B receives
at most %C(k—l,t—l) values from its parent (and is at risk of receiving this many

if its parent is the root bag or is no longer passing values up in Phases 2 and 3).

It can also receive at most 2

—;\—C(k+1,t—1) J +1 values from each child. It may
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also inherit the special value from itself in Phase 4 of the t*® step. There are two
cases to consider, depending on whether B can be given anything by its children.

Case 1. pC(k+1,t-1) > 1.
B receives at most 2 %C(k+1,t—1)kJ + 1 values from each child, and may also

inherit a single item from itself during the t*® step. Thus the total number
received is at most:
C(k-1,t-1)/2 + 4

%C(k+1,t—1) +3

< ARZ¢1n/9 4 o\AKylp 4 3
< AFZ241n/2 + 23Akutn 4 3uAktln
Thus it is sufficient to prove that:
AF2-1n /2 + 23AK 10 + 3pAkLln < Aty
That is,

1
— + 2X\ 3pA <
2A+ A+ 3uA <v

This inequality holds by Lemma 8.2.1 (1).
Case 2. uC(k+1,t-1) < 1.

B receives no values from its children in the t*®

step of the algorithm. There are
two sub-cases to consider, depending on whether B receives any values from its
parent.

Case 2.1 C(k-1,t-1) < 2.

The parent of B can pass down no values in Phase 4, since it has at most one
value. Thus B receives no values from above or below, and retains only its spe-
cial value, if it has one.

Case 2.2 C(k-1,t-1) > 2.

C(k-1,t-1)

By the induction hypothesis, B receives at most values from its

parent, and may also retain its special value, if it has one. Thus the number of
values received by B is at most:

QQ‘l;ill-)- +1 < Ck-1,6-1)
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This is bounded above by C(k,t) provided Ax2*n < A¥-!utn, that is, Av > 1,
which holds by Lemma 8.2.1 (2). O

Lemma 8.2.4 After O(log n) steps, the n values are distributed one-per-bag in
the leaf bags.

Proof. As time proceeds, the capacity of the root will eventually drop below
one. By Lemma 8.2.3, this implies that the number of values contained in the
root bag will eventually drop to at most one and will not increase thereafter. But
by Lemma 8.2.2 the number of values in the root bag is always even, therefore
when the capacity of the root bag drops below one, the number of values in the
root bag must be zero. Eventually the capacity of the level-2 bags drops below
one, implying by a similar argument that they contain no values at that time.
The same can be said of levels 3,4,...,log n in turn (since n is a power of 2).
Finally, the capacity of the leaf bags drops below one, at which point they are
each in possession of at most one value, while all bags which are above them in
the tree are empty. The symmetry of the algorithm ensures that each leaf bag
containg exactly one value. A steady-state is reached at that point.

Thus the algorithm reaches a steady-state at or before time 7, when
C(log n + 1,7) < 1. Let us say that the algorithm terminates at time 7. Then at
termination, A€ "pn < 1; therefore (taking logs of both sides) the algorithm has
certainly terminated when: =~

> 1+ log A

log —
. ogy

log n

Thus, for our choice of constants, termination is achieved at or before time
9logn. O

8.3. The Correctness Proof

It remains to show that when the algorithm reaches the steady-state, the values
in the leaves are in ascending order from left to right. Consider an input value v.
We say that a bag B is at distance O for v if v is the i*h input value in sorted
order, 1 <i < n, and the i™® leaf of the tree (numbering leaves consecutively
from left to right, starting with 1) is a descendant of B, that is, B is on a strictly
descending path from the root bag to the correct leaf bag for v. A bag is at
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distance d for v, where d > 0, if its parent is at distance d-1 for v. We say that
v has strangeness r at time t if it is contained in a bag at distance r for v at that
time. Intuitively, the strangeness of a value is the number of upward moves that
it must make before it rejoins the path from the root to the correct leaf. A value

which has non-zero strangeness will be termed a stranger.

Definition. Si(k,t) is the maximum number of values of strangeness at least r

contained in any bag at level k, at time t.

Lemma 8.3.1 Forr > 0,t > 0, k > 1, S/(k,t) < pu&1C(k,t).

Proof. The result follows by induction on t. The hypothesis is certainly true for
t = O since at that time all values are held in the root bag, and hence there are
no strangers.

Now suppose that t > 0. Firstly, we claim that the fraction of values
passed up from each bag B at level k during the Phase 2 of the t* step is large
enough to hold most of the strangers at time t-1. By Lemma 8.2.3, after the e-
nearsort we know that at most €S;(k,t—1) small strangers are erronecusly dis-
placed a distance of more than eC(k,t-1) from the S,(k,t-1) “smallest” places
(symmetrically for the large strangers). Therefore we require that the fraction of
values passed up be large enough to hold the S;(k,t-1) + ¢C(k,t~1) “‘smallest’
values, which must include all but an e-fraction of the small strangers (symmetri-
cally for the large strangers). That is, for all k > 0,

Sy(k,t-1) + €C(k,t-1) < [%o(k,H)J

Thus it is sufficient to prove that:
S,(k,t-1) + €Ck,t-1) < —;lC(k,t—l) _1

Equivalehtly,

S,(k,t-1) + eA¥1pt1n 41 < %Ak‘lut"ln

By the induction hypothesis it is sufficient to prove that:

A

pAX Iy oAk 41 < T)—Ak‘lut‘ln

Now, if B is passing up values, it follows that pAkK-11p > 1. Thus it is
sufficient to prove that:

124



pAKLMI ARl 4 AR < _%_Ak-lub—ln

Thus it is sufficient to require that 2u+e < —>2\— This inequality holds by Lemma

8.2.1 (3).

Our claim allows us to easily place an upper-bound on the number of values
of strangeness r > 2 or more received by a bag at level k during the t*! step of
the algorithm. At worst, it can receive all of the strangers held by its children
(at most S, (k+1,t-1) from each child). All of its parent’s strangers get passed
up except for at most an e-fraction of them dropped in the nearsorting process
(that is, it inherits at most €S, ;j(k-1,t-1) values from its parent), by the above
claim. If it inherits a single value from itself in Phase 4, then by the induction
hypothesis it held no strangers in the previous time-step, and hence that single
value is not strange. Thus:

S,(k,t) < 28, (k+1,t=1) + €S,_;(k-1,t-1)
< ouFAKIn + eus2AK 21y (by the induction hypothesis)
Thus it is sufficient to show that:
2uEAR I + end2AR 2 < pstlAk-lpty
Dividing through by ,ub'r“QAk"Qut’ln tells us that we require:
28%A% + ¢ < SAv
which holds by Lemma 8.2.1 (4).

Now suppose r = 1. A bag at level k can receive strangers during the tt
step of the algorithm from as many as three sources.

1. By having values of strangeness 2 or more passed up from its children. Asin
the case r > 2, it can receive at most 2S,(k+1,t-1) < 2uéA¥*!n from this
source. _

2. By having strange items passed down to it from its parent.

3. By having non-strange values erroneously passed down to it from its parent
(that is, values which should have been passed to its sibling).

Note that if it inherits a value from itself, then by the induction hypothesis it

had no strangers at time t-1, and so the inherited value cannot be strange. It

remains to provide an upper-bound on the number of strangers from the second

and third sources.

125



Consider a bag B at level k-1, time t-1. We are interested in the number of
strangers that it passes down to its children during the t“} step of the algorithm,
in order to get an upper-bound on B;(k,t). There are three factors which could
cause it to pass strangers to one of its children.

1. Non-strangers becoming strangers because of unbalanced non-strangers.
Ideally B should contain as many left-seeking values (that is, values which
are bound for leaves which are descendants of its left child) as right-seeking.
If this balance is disturbed then Phase 4 of the t'™® step risks sending non-
strahgers to the wrong child, where they become strangers.

2. Non-strangers becoming strangers because of unbalanced strangers. Simi-
larly, if B contains more left-seeking strangers (that is, values which are
bound for leaf bags which are to the left of the leaves below B) than right-
seeking (or vice-versa), the balance will be disturbed even more. At time
t-1, B can contain at most S;(k-1,t-1) strangers. By the induction
hypothesis, S,(k-1,t-1) < pAX241n, In the worst case, these can be all
left-seeking strangers (say). These displace an equal number of non-strange
left-seeking values into the wrong half during Phase 4 of the tth step, causing
them to erroneously be sent to the right child where they become strangers.
In general there will be s left-seeking strangers and s, right-seeking
strangers. ‘Suppose s; > s.. Suppose that the e-nearsorter erroneously puts
e) of the left-seeking strangers into the right half, and e, of the right-seeking
strangers into the left half, where ) < s; and e, < 's,. The right child will
receive (si—e)}-(s;—e,) left-seeking non-strangers (which thus become strange)
due to the displacement. Thus the number of strangers received by the
right child (and symmetrically by the left child) from this source is at most:

(sre)-(seer) <5 < Sy(k-1,t-1) < pAk-2M1n

3. Strangers and non-strangers becoming strangers because of an error in near-
sorting. In Phase 1 of the t*® step, the nearsort process may cause an e-
fraction of the smallest (and symmetrically the largest) half of the values
contained in B to be sent to the wrong child. By Lemma 8.2.3 this contri-

butes at most —-26—Ak‘21/"‘1n strangers to that child.

Thus the total number of strangers received by a bag at level k during the tth
step is at most 2uéA**1n from its children, plus:
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A+ uAk‘zan+ T;_Ak~2,jt,-1n

from its parent, where A is the displaéement due to the presence of an unbal-

anced number of left-seeking and right-seeking non-strangers in its parent. We

must now derive an upper-bound for A.

Consider the following idealized version of our algorithm. Each value is con-
sidered not as an atomic item, but rather as a divisible entity. More formally,
assign each value v a size w(v)ER, initially equal to one. We allow multiple
copies of each value to appear in the tree, so long as the sum of their respective
sizes is equal to one. We modify the algorithm as follows.

1. Collect any values which arrived during the (t-1)" step and sort them.

2. For each value v of size w(v):

(i) Modify its size to (1-\)w(v), and

(i) Pass a copy of v with size A\w(v) to the parent bag.

3. Null .

4. Split the remaining values evenly into the smaller half and the larger half, as
determined by the sorting process in Phase 1. Send the smaller values to the
left child, and the larger values to the right child.

Note that changes have been made to all four phases. There are no strangers

when this new algorithm is run, since both sources of strangeness (faulty near-

sorters in Phase 1 and unbalanced left and right-seeking values in Phase 4) have
been eliminated. Let us say that the “number of values” in each bag is the sum
of the sizes of those values. In analogy to Lemma 8.2.3, it. is easy to show that
the number of values in a level-k bag at time t is at most C(k,t) (see Exercise

8.5). Let D be a bag at level k. Suppose we call a value important for D if it is

bound for one of its descendants. Note that since there are no strangers in this

new algorithm, at all times the values which are important to D are (possibly
fragmented) either on the path from the root to D or in a proper descendant of

D. The bags alternate between being empty and (possibly) non-empty.

Suppose bag D is empty at time t-1. By the symmetry of the algorithm, the
parent of D must contain exactly the same number of important and unimpor-

tant values, and thus must contain at most —;—C(k—l,t—l) important values. The

grand-parent is empty due to the alternating structure of the algorithm. The
great-grandparent of D has exactly one-eighth of its values important for D, and

hence contains at most %C(k—3,t—1) important values. Thus the number of
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important values above B is at most:
—l—C(k—l,t—l) + iC(k—3 t-1) + —1-0(k~5 t-1) +
2 8 ’ 32 ’
and the number of important values above the parent of D is at most:

1 1 1
3 (k-3,t-1) + D) C(k-5,t-1) + Tog C(k-7,t-1) +

<1 i‘ Cle-3-2i,t-1)
80 4!

1 &1 koig ¢
= =Y Ay
8 j§o 4!

— _1_l/t,—1Ak—4n - ( 1 )i
8 i—o 4A?
AIAk-2,
2(4A%-1)

The values in the tree below D are important since there are no strangers.

Now suppose we treat the values as atomic units again, returning Phases 2,
3 and 4 to their original form. This may change the distribution of the impor-
tant values on the path from the root to D. In the worst case, all of the impor-
tant values above D will find themselves in D’s parent. That is, the parent of D
can receive at most

AIAK-2,

2(4A%-1)
excess important values from above. Note that the number of values in the tree
below D cannot decrease since the number of values passed up from each bag
during each time-step does not increase.

Finally, suppose that we return Phase 1 to its original state (replacing sort-
ing by nearsorting). This does not affect the distribution of values in the tree,
but will almost certainly affect their strangeness. Since there are now strangers,
it follows that some of the important values below D may have strayed, and may
in the worst case find themselves in the parent of D. However, these will have
been replaced by unimportant values, which will hence be strange. By the induc-
tion hypothesis, we have an upper-bound on the possible number of strangers
below D, and hence on the number of stray important values. The number of

unimportant values below D is at most:

128



28,(k+1,6-1) + 4S5(k+2,t-1) + 8S,(k+3,t-1) + -

o0 .
< ¥ 28, (kHit-1)
i=1

< Y 2usAakltlg (by the induction hypothesis)
i=1

o) .
= pA 110 3 (26A)

2/-"5Ak t-1n
- 1-26A
since 26A. < 1 by Lemma 8.2.1 (5). Thus the parent of D can contain at most:
2ubAkLIn
1-26A

excess important values from below, which tells us that:

MIAK2n  2u8AK 1y

2(4A%-1) 1-26A

Thus the number of strangers received by a bag at level k, time t is at most:
WIAK2y  ousAkutln
2(4A%-1) 1-26A
To prove the induction hypothesxs, it remains to prove that this value is at most
p*A¥1n, That is, ‘

o2ubAk 1 +

+ pAR2pt 1y 4 % lak-2,

1 2Aub + B +—<VM

2udA +
g 2A(4A%-1)  1-2Aé 2A —

This inequality holds by Lemma 8.2.1 (6). O

Theorem 8.3.2 There is a sorting network of depth O(log n).
Proof. Lemma 8.3.1 ensures that at all times S;(k,t) < pC(k,t). The algorithm
terminates at time 7, where C(log n,r) < 1. Therefore S;(log n,7) < 1. That is,
when the algorithm terminates there are no strangers. Thus the values in the
leaves are in ascending order from left to right.

It is straightforward to construct an O(log n) depth sorting network from
this algorithm. The network is divided up into layers, each of which corresponds
to a snapshot of the tree of bags at some point in time. Each bag is then
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represented by a subset of the channels. The contents of each bag can be near-
sorted by placing an e-nearsorter on the appropriate channels. The depth of the
network is thus equal to the depth-of the nearsorters times the running-time of
the abstract algorithm. Thus by Lemma 8.1.5 and Lemma 8.2.4, the depth is at
most:
d(—e—,Eé - 1) £{(1 + log A)/log 1 log n
287 ¢ v

where £ = [-log ¢ ] and d is the function relating to the degree of expander
graphs in Theorem 8.1.3. For our choice of constants, the constant multiple is

bounded above by 54 d(?(lﬁ-,ml). O

Our construction is based on constant-depth ~-halvers with v = ¢/¢ = 0.00285.
Paterson [100] has proved by a direct counting argument that there exist
~-halvers of depth at most 711 for our choice of 4. Therefore our algorithm gives
rise to a sorting network of depth 38,394 log n. Paterson manages by a more
sophisticated analysis to reduce the constant multiple to around 6100.

8.4. Exercises

8.1 A halver is a ~-halver with v = 0 (see Section 8.1). Show that an n-input
halver must have depth Q(log n).

8.2 Comrplete the proof of Lemma 8.1.4 when n is odd. Hence complete the
proof of Lemma 8.1.5.

8.3 What is the role of the constant A in the AKS sorting algorithm? Which
inequality (or inequalities) becomes unsatisfiable if it is removed?

8.4 All bags alternate between being empty (more accurately, holding either zero
or one value) and holding many values. Thus at any one time up to half of
the bags that could have been useful are lying idle. How can the algorithm
be modified to make use of these bags? Is there any advantage to the
modified algorithm?

8.5 Show that in the modified version of the abstract algorithm used in the
proof of Lemma 8.3.1, the number of values in a bag at level k, time t is at
most C(k,t). k

8.6 When analyzing the number of values of strangeness 1, we used the fact that

. €
an e-nearsorter is an e-halver. Our e-nearsorters are actually ?g——halvers,
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where €= [-log ¢ ]. Use this fact to modify the inequalities of Lemma
8.2.1 and derive a superior set.of constants. What is the depth of this new
sorting network?
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9 Simultaneous Resource Bounds

This chaf)ter is centred around a simulation of our general network model on a
more practical model, with particular attention paid to the resources of hardware
and parallel time. The first section contains a general theorem which character-
izes the computational power needed to simulate a resource-bounded network.
Many specific instances of this theorem (for particular machine models) have
already appeared in the literature [10,16,38,74,86,128,126]. In the second section
we construct our universal feasible network. This feasible network is, as has
already been mentioned, to be universal for the general network model. The
result follows as a fairly straightforward corollary to the general theorem of the
first section, by application of the techniques developed in Chapter 7.

In the third section we propose a hardware measure for general networks.
This hardware measure is compared to popular definitions of hardware which
have appeared in the literature (including size and width of uniform circuits),
using simulations based on the result of Section 9.1. We examine the extended
parallel computation thesis [24,25], which is an attempt to characterize “reason-
able” time and hardware bounded parallel computers. This states that time and
hardware on any reasonable parallel machine model are simultaneously polynomi-
ally related to space and reversals on a deterministic Turing machine. The
fourth and final section is devoted to obtaining improved simulations of space
and reversal-bounded deterministic Turing machines by width and depth-
bounded uniform circuits.

Most of the material in this chapter is from Parberry [92,97,98].

9.1. A General Simulation Theorem

The central result of this section is a theorem which describes the computational
power needed to simulate a resource-bounded network. As a fairly easy corollary,
we will in Section 9.2 be able to construct a feasible network which is universal
for the general model of Section 3.1. In order to keep the proof as manageable as
possible, the simulation will be functional rather than machine-based.
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If n > 0, define an n-tuple X over some set S to be a sequence of n elements
<X, Xy, - .+ X 1>, such that X;€S, 0 < i < n. Let S® denote the set of all n-

tuples over S, S* = L>J 0S“ and SXT = {<s,t> | s€S,t€T}, for arbitrary sets S
n

and T. Ofdering of n-tuples is lexicographic (first-field-first). For example, if
X,YEZ", then X < Y iff there exists j with 0 < j < n such that X; <Y, and for
0<i<jXi=Y,

Let M be a P(n) prbcessor, S(n) space bounded network. To simplify the
presentation we will assume that:

(i) All local instructions operate only on registers ry,ry,ro. Register r; be read

from or written to only when i > 3.

(ii) Read instructions have the form “extract values p,a from rqr; respectively,
read register r, of processor p and place the value obtained into ry”’.
(iii) Write instructions have the form ‘“extract values p,a,w from registers rg,r,ro

respectively and write w into register r, of processor p”.

(iv) Multiple reads are allowed, and in the case of write conflicts, the smallest
value being written into a register is the one which succeeds. '

Note that (i), (ii) and (iii) are sufficient for the example instruction-set of Section

3.1, since a processor can address its own registers by the use of reads and writes.

The general case follows in a similar manner.

For convenience we define a special null element null and adopt the conven-
tions that for all X and n, null is always a member of X", and that for all i > 0,
null; = S(n). Define the configuration of M to be a member of
Cy = (Z3X NP (N2x Z)5®), For example, we take

<<XgsXps " " Xp@n)}1><Yoo¥1s " " " 5Ys(n)1> >

to indicate the following. If x; = <a;,b;,¢;,d;> then processor i has values a;,b;,c;
in its registers ry,r,rp respectively, and it is to execute the d,* instruction of the
program of M next (with d; out of range indicating that the processor has halted).
If null 7 y; = <p;,a;,v;>, 8; > 3, then register r, of processor p; contains v;. In
particular, where the latter is concerned we insist that: ‘
(i) Only registers with non-zero contents are listed. These are listed left-
justified in lexicographic order.

(i) The remaining entries are filled, if necessary, with the value null.
Definitions. We now define some useful functions. Let sorted((Z™)™)C(Z")™ be
the set of m-sequences X such that X, < X; < -+ <X ;. For convenience,
if Xe(Z2)™, let (X_;)o = (Xp)o = -1. Then
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(1) sort:(Z%)"—(Z3)® maps unsorted sequences of distinct ordered pairs into
sorted ones. More precisely,

sort(X); = { null otherwise
(2) merg’e:sorted((Z3)n)><sorted((Z?’)m)—>(Z“)“'Hn merges two sorted sequences of

distinet ordered pairs.

¢

<(Xj)0,(Xj)1,(Xj)2,1> if X Fnull,i= | {k|X, < Xj} | +-
k] <(Yo(Yihi> < <(XoXh>}H

merge(X,Y); = § <(Yjo(Y)1,(Y)20> #f Yz null,i= | {k|Y, <Y} |+
k| <GidorXih> < <(Ylo(Yih >}
null otherwise

(3) fanout:sorted((Z*)")—(Z2)" achieves the fan-out of data values to multiple
read requests. Define first(X,i) to be the index j < i such that the j* tuple
in X is numerically the first which agrees with the i*h tuple of X in the first
two places, that is, <(Xj)o,(Xj)1> = <(Xj)o,(Xi)1>, but either (X;_;)y # (Xi)o
or (Xj_1)1 % (X

<(Xj)os(X)e> if (Xj)3 = 0, where j = first(X,i) < i
fanout(X); = ¢ <(X,)p,0> if (X)3 = 1, where j = first(X,i)

null otherwise

(4) deliver:(Z*)*—(Z®)® performs the fan-in of multiple write requests.

<(XiYo X (Xi)e> if (Xi)s = 0 and Xipy 5% <(X)os(Xi)1v,1>
for all v€Z),or ((Xj); = 1 and (Xj); # 0
deliver(X); = and X;_; # <(X)0,(X,)v,1>for all veZ).

null otherwise

(5) concentrate:(Z")"—(Z*)® moves all non-null entries to the left-hand end of
the sequence.
X; ifXj7# null andi= | {Xy|x, 7 null;0 <k <j}|

concentrate(X); = { null otherwise

Let &p:Cy—Cy be the next-configuration function of M. That is, if CECy
then §4(C) is the configuration which follows from C according to the program of
M. Let M be the network obtained from M by changing all read and write -
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instructions to NO-OPS (for example, add zero to a register), and define

oM = by

Theorem 9.1.1 Suppose a machine can:

(i) Merge a sequence of length n with a sequence of length m using resources
R,(n,m).

(ii) Fanout, deliver and concentrate a sequence of length n using resources Ry(n).

(iii) Sort a sequence of length n using resources Rs(n).

(iv) Compute &y for P(n) processors using resources Ry(P(n)).

Then it can compute & using resources proportional to
Ry(P(n),S(n))+Re(P(0)+5(n))+Rs(P(n))+R,(P(n)).

Proof. We make the assumption that the model is capable of storing
configurations of M in such a manner that they can be dismantled and reassem-
bled using negligible resources. For example, we assume that
readrequest,writerequest:Cy— (Z3)F(), data:Cp—(23)5® defined by:

<(X)os(X)psi> if the (X;)s® instruction
readrequest(X,Y); = of M is a read
null otherwise

<(XDos(Xi)1s(Xi)2> if the (X;)4® instruction
writerequest(X,Y);, = of M is a write
null otherwise

data(X,Y) =Y

can be computed easily. This is clearly the case when the processors of the simu-
lating machine are (efficiently) universal for the processors of the simulated
machine.

Let CECy be a configuration of M. The aim is to simulate a single step of
M starting in configuration C. Internal computations can be handled directly by
application of 3M Read requests are satisfied by computing:

x = sort(readrequest(C))
y = merge(x,data(C))

The new  processor configurations can then be obtained from
sort(concentrate(fanout(y))). Write requests are simulated by computing:
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x = sort(writerequest(C))
y = merge(x,data(C))
The new register contents can then be computed from concentrate(deliver(y)).
For example, suppose in a particular step, processors 0,1,2 and 3 wish to
read register 4 of processor 3, register 6 of processor 0, register 7 of processor 1
and register 6 of processor O respectively. Further suppose that the only non-zero
registers at that time are register 6 of processor 0, register 9 of processor 1 and

register 4 of processor 3, which contain the values 99, 89 and 69 respectively.
Then:

readrequest(C) = < <3,4,0>,<0,6,1>,<1,7,2>,<0,6,3> >
This is sorted to give:
x = <«0,6,1>,<0,6,3>,<1,7,2>,<3,4,0>>

Also:

- data(C) = < <0,6,99>,<1,9,89>,<3,4,60> >
This is merged with x to give: ' Jita

y = <<0,6,99,0>,<0,6,1,1>,<0,6,3,1>,<1,9,89,0>, &Mié %{
<1,7,2,1>,<3,4,69,0>,<3,4,0,1>>

Fanout is performed, resulting 1nR 7o ke A

<null ,<1,99>,<3,99>,g_1i{l ,.<_2,’O>,null ,<0,69>> MW’Q

This is concentrated: K=
<<1,99>,<3,99>,<2,0>,<0,69>,null ,null ,null >

And finally sorted, to give the requested values in the correct order:

<«0,69><1,99>,<2,0>,<3,99>,>

Suppose processors 0, 1, 2 and 3 wish to write values 0, 77, 50 and 28 to
register 4 of processor 3, register 6 of processor 0, register 7 of processor 1 and
register 6 of processor O respectively. Further suppose that the current register-
contents are exactly the same as in the read-request example above. Then:

writerequest(C) = <<3,4,0>,<0,8,77>,<1,7,50>,<0,6,28 > >

This is sorted to give:
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x = <<«0,6,28>,<0,6,77>,<1,7,50>,<3,4,0> >
Also: )
data(C) = <<0,6,99>,<1,9,89>,<3,4,60>>

This is merged with x to give:

§ = <<0,6,99,0>,<0,6,28,1>,<0,6,77,1>,<1,7,50,1>,

<1,9,89,0>,<3,4,69,0>,<3,4,0,1>>

Deliver is performed:

<null ,<0,6,28> ,null <1,7,50>,<1,9,89> ,null ,null >
This is concentrated:

<<0,6,28>,<1,7,50>,<1,9,80>,null ,null ,null ,null >

This results in the new sequence of register contents, in the same format as
data(C) above:

< <0,6,28>,<1,7,50>,<1,9,89> >

9.2. A Universal Parallel Machine

Specific instances of Theorem 9.1.1 (the simulation of networks or shared-memory

machines on other parallel machine models) have appeared many times in the

current literature. It can be used to:

(1) Provide general communication between the processors of a feasible network
(which is equivalent to simulating a network on a feasible network) [86].

(2) Simulate restricted-access networks on a universal network with constant
degree and easy-to-compute interconnections [38]. ‘

(3) Simulate shared-memory machines on a network with constant degree and
easy-to-compute interconnections. This has been observed in the case where
no memory access conflicts are allowed [74], or P(n) = S(n) [16].

(4) Remove memory access conflicts from shared-memory machines [126].

(5) Simulate shared-memory machines on a variant of the feasible network
which uses a small number of “large” processors (with a large amount of

local memory and ‘“‘powerful” instruction set) and a larger number of
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“small” processors (with a constant amount of local memory and minimal
instruction-set) [128].

(6) Construct a multi-access memotry [10] to provide a practical implementation
of a shared-memory machine as a physical device.

(7) Simulate space and reversal bounded Turing machines by width and depth
bounded uniform circuits (and vice-versa) [102].

Application (7) will be explored further in the next two sections. In this section

we will concentrate on the application (1).

Corollary 9.2.1 There is a feasible network which can simulate any network of
P(n) processors and space S(n), using S(n) processors, the same word-size as the
simulated machine, set-up time O(log S(n)) and delay O(log?P(n) + log S(n)).
Proof. A P(n)+S(n) processor feasible network can be used as follows. Note
that S(n) > n, so initially every processor has at most one input symbol. The
first P(n) processors are to simulate the processes (keeping only registers ry, rq, 1o
of their respective process); the remaining S(n) are to hold the remaining register
contents. The set-up time comes from the need to first concentrate the input
values (to get rid of any zeros), and route them out to the register-holders using
procedures Rank and Concentrate from [86,88]. An additional O(log P(n)) steps
are required to broadcast the program of the simulated network to the first P(n)
processors using Algorithm 1 of Section 7.3. The result then follows from
Theorems 9.1.1 and 7.4.1, noting that a P(n)+S(n) processor feasible network
based on either the shuffle-exchange, cube-connected-cycles or cub-connected lines
can:

(1) Sort P(n) items in time O(log?’P(n)) using one of Batcher’s sorting algorithms
(see Theorem 7.1.5).

(2) Merge P(n)+S(n) items in time O(log S(n)) by using odd-even merge (see
Theorem 7.1.5).

(3) Fan-out P(n)+S(n) items in time O(log S(n)) by using Algorithm 3 of Section
7.3. Alternatively, procedures Rank, Concentrate and Generalize from [86]
can be utilized, as in that reference.

(4) Deliver P(n)+S(n) items in time O(log S(n)) by using procedure Concentrate
from [86,88].

(5) Concentrate P(n)+S(n) items in time O(log S(n)) using procedures Rank and
Concentrate from [86,88]. [0

The time complexity of Theorem 9.2.1 is dominated by the cost of sorting
the read and write requests. This can be reduced by substituting the sorting
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algorithm of Ajtai, Komlés and Szemerédi (see Chapter 8) for (1). Although this
results in a better asymptotic time-bound, the constant multiple is too large to be
of any practical use. The algorithm as presented in [5] has a constant multiple of
several million, although this has more recently been reduced by M. S. Paterson
(using the method sketched in Chapter 8). For our purposes, Corollary 9.2.1 is to
be regarded as superior. If the number of processors is increased to S(n)'*¢ for
any real number € > O then a more practical O(log n) delay can be obtained
using the sorting algorithm of Nassimi and Sahni [88]. The reduction to sorting
can be avoided entirely by allowing the number of processors to ihcrease by a
polynomial (see Exercise 9.1).

Leighton [73] has discovered an elegant method for sorting P(n) items in
time O(log P(n)), using only P(n) processors, based upon the AKS sorting net-
work (see Chapter 8). Thus we have:

Corollary 9.2.2 There is a feasible network which can simulate any S(n) space
bounded network using O(S(n)) processors, the same word-size and delay

O(log S(n)).

What if the processors of the universal network are allowed to have more
than a constant amount of memory? Then:

(1) Of(log S(n)) delay, with a more reasonable constant multiple, can be achieved
on a probabilistic network (with overwhelming probability) on S(n) proces-
sors by using the sorting algorithm of [107].

(2) The processor bound in (1) can be reduced to P(n) for the simulation of
shared-memory machines, with a delay of O(log?P(n)) [8]. The delay can be
reduced to O(log P(n)) on a probabilistic universal network [60].

(3) A delay of O(log?P(n)) with P(n) processors can easily be achieved on a
deterministic network for the simulation of restricted-access networks [86].
(The delay can also be reduced by the use of the technique of Corollary
9.2.2).

Note that the universal network conserves many of the notions of ‘‘reasonable-

ness”’ mentioned in Section 4.3. For example:

(1) If the network being simulated satisfies the parallel computation thesis, then
so does the universal network.

(2) If the simulated network is small and fast (provided T(n) = Q(log P(n))) the

universal network is small and fast.
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(8) Bounds upon word-size are maintained.

9.3. A Hardware Measure

In this section we attempt to formulate a hardware measure for our network
model. The amount of hardware needed to build a universal feasible network is
governed by the amount of memory needed and the complexity of the
instruction-set. To simplify matters, we will concentrate on networks with the
minimal instruction-set. We claim that spaceXwordsize is a good hardware
measure for such a network (or indeed, any machine where memory-costs dom-
inate the cost of a processing-unit). In order to justify this claim, we can relate
this to the measures of hardware on other popularly-accepted models, whilst
maintaining time to within a polynomial.

A uniform circuit is an infinite family C = (C,Cy,...) of combinational cir-
cuits, one for each input-size (see, for example [15,21,102,108]). Without loss of
generality we assume that the circuits are built using gates which realize fune-
tions drawn from the class B, of two-input Boolean functions. An input of size n
is presented, in some sﬁitably encoded form, to the inputs of C,. The output of
C, is then taken as the output of C. C is said to have depth D(n) if the length of
the longest path from an input to an output in C, is at most D(n), forn > 0. Tt
has size Z(n) if C, has Z(n) gates. Suppose we draw a circuit as a sequence of
levels, numbered consecutively from 0 to D(n). Level O consists of the inputs.
Gates at level i, i > 0, have inputs from the outputs of gates at level < i. The
thickness [102] of a circuit at level i is the number of gates at levels < i upon
which one or more gates at level i depend. A circuit has width W(n) if C, has
maximum thickness at most W(n). We assume D(n) = Q(log W(n)); a circuit
with D(n) < log W(n) would have redundant gates.

The function f:N2X{left,right}—>N where for n > 0 the j-input of gate
H 2 n is connected to the output of gate f(i,n,j), is called the interconnection
function of C. We assume that gates 0,1,...,n-1 are distinguished gates represent-
ing the inputs. The function g:N?>—B,, where for n > 0 gate i>nof C isa
g(i,n)-gate, is called the gate function of C. We insist that the interconnection
and gate functions be computable in linear space (thét is, space O(log Z(n))) by a
deterministic Turing machine.
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Corollary 9.3.1 Every network with P(n) processors, space S(n), time T(n) and
word-size W(n) can be simulated by a uniform circuit of width O(S(n)W(n)) and
depth either: )

(i) O(T(n)(W(n) + log S(n))), or

(i) O(T(n)(log W(n))(log S(n)))-
Proof. (Sketch). The circuit consists of T(n) levels, one for each simulated
‘time-step. Each level has P(n) sub-circuits corresponding to a single step of a
processor, and a further S(n) sub-circuits carrying register values. Between each
level is a circuit for carrying out inter-processor commuhication, built out of a
sorter, merger, concentrator etc. as in Corollary 9.2.2. Each processor unit takes
as input the program-counter, current values of registers ry, r; and r,, and incom-
ing values from read requests. It produces outgoing read and write requests, and
updated values for the aforementioned program-counter and registers (see Figure
9.3.1). These units fit together as in Figure 9.3.2.

Program Incoming
Counter Registers Values
Read
Read Write
New New e
Program Register Outgoing
Counter  Contents Requests

Figure 9.3.1 Block diagram representation of a circuit to compute a single

step of a processor.

FEach processor-unit has circuitry which:

(1) Deals with incoming data which has arrived in résponse to a read request in
the last step.

(2) Performs a single instruction, issuing a read or write request as necessary.
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Registers l l
0 1 o o o P(n)-l
Concentrate,
Sort, Merge etc.
0 1 e ¢ ¢ |PnNA
[l ]

Figure 9.3.2 Block diagram of a circuit to compute a single step of a net-

work.
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The processor units have width O(W(n)) and depth O(log W(n)). Circuits for
sort, merge, concentrate etc. can be constructed with width O(S(n)W(n)) and
depth either O((log S(n))(log W(n))) or O(W(n)+log S(n)) (see Exercise 9.2). The
register contents have width O(S(n)W(n)). Thus the complete circuit has the
required width and depth. O

Note that in the general case, if the internal instructions can be computed
by a uniform circuit of depth din) and width wy(n), then di(n)T(n) must be
added to the depth, and wi(n)P(n) must be added to the width.

In Section 4.3 we saw a number of different ways of characterizing a ‘rea-
sonable’’ parallel machine model. For example, the parallel computation thesis
states that a parallel machine model is reasonable if time on that model is poly-
nomially related to sequential space. Dymond [24,25] gives an extended version
of the parallel computation thesis which takes into account both the time and the
amount of hardware used. This can be loosely summed up as follows: time and
hardware on any reasonable parallel machine model are simultaneously polynomi-
ally related to Turing machine reversals and space respectively (a reversal is said
to occur when any tape-head changes direction).

This raises an obvious question: when are our network machines a ‘“‘reason-
able’” parallel machine model according to the extended parallel computation
thesis, given that space X wordsize is taken as a measure of hardware? By Corol-
lary 9.3.1 (i), we find that a T(n) time, P(n) processor bounded network which
uses space S(n) and has word-size W(n) satisfies the extended parallel computa-
tion thesis provided:

(i) Local instructions can be computed by a deterministic Turing machine using
space (W(n)S(n))°(™) and T(n)?M) reversals.

(ii) P(n)= 9T@)™®, (Note that this implies that S(n) = 2T(“)°(1).)

(iff) W(n) = 2T@,

Part (i) provides more evidence for the unit-cost hypothesis. Note that the Tur-

ing machine is to be given the value of P(n) in binary along with any input of

size n; if P(n) is to be computed, then the necessary resources must be taken into

account. Many useful functions, such as polynomials and poly-logs, can be com-

puted within the required amount of resources.

In particular, for a machine with the minimal instruction-set:
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Corollary 9.3.2 Every P(n) processor network with the minimal instruction-set
which runs in time T(n), space S(n) and word-size W(n) can be simulated by a
deterministic Turing machine <using space O(S(n)W(n)) and reversals
O(T(n)(log?P(n) + log S(n))).

Proof. (Sketch). This result follows from Theorem 9.1.1 much in the same
manner as Corollary 9.2.1. The composite sub-algorithms used thus have simple
modules whose upper dimension is easy to compute.

Consider a simple-ascend class sub-algorithm which ascends to the full value
of k, and uses the minimal instruction-set. Suppose the n inputs are initially
encoded as binary strings on tape 1 of the Turing machine, each separated by a
special blank symbol. The Turin‘g machine computes in k phases (one for each
dimension), each of which consists of a constant number of passes over two tapes.
The first phase does the following. First, copy every alternate string on to tape
2. In a constant number of left-to-right scans over the tapes, perform the neces-
sary data transfers in dimension 1, and the internal computations. Copy the
(updated) strings from tape 2 back to tape 1. The word-size can increase by only
a constant, so the overflow from each string can be stored temporarily by using a
large tape alphabet, and the tape contents can be moved along as part of the
copying process by making extra use of the second tape. (Extra tapes may be
necessary for more powerful instruction-sets which increase the word-size more
rapidly). This is the end of the first phase. Phase i, 2 < i < k achieves data
transfers in dimension i by similarly copying alternate blocks of 2! strings from
tape 1 to tape 2, performing the transfers in a constant number of left-to-right
scans, and copying the strings back to tape 1. [J

We will consider the converse of this result, the simulation of a Turing machine
by a network, in the next section.

9.4. Circuits and Turing Machines

In order to justify his extended parallel computation thesis, Dymond [24,25]
appeals to a seminal paper by Pippenger [102] which relates depth and size of
uniform circuits to Turing machine reversals and time. Dymond prefers to use
Turing machine space instead of time, and circuit width as a measure of
hardware (rather than size) since it is a measure of the amount of hardware

which comes into play at any given instant in time. We can use the results of
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this chapter to obtain simulations of space and reversal bounded Turing
machines by uniform circuits. '

We follow the general structure of the proof appearing in [102]. Pippenger
simulates a Turing machine on an oblivious Turing machine, and then simulates
this on a uniform circuit. We will simulate a Turing machine on a network. We
can then build a uniform circuit by application of Corollary 9.3.1.

Theorem 9.4.1 An S(n) space, R(n) reversal bounded k-tape deterministic Tur-
ing machine can be simulated on a network with the minimal instruction-set, us-
ing processors and space O(S(n)¥/log S(n)), time O(R(n)log S(n)) and word-size
O(log S(n)).

Proof. Let M be a k-tape deterministic Turing machine which runs in space
S(n) and reversals R(n). Following [102] define a pass to be all the steps of M
from one reversal to the next (the first move is counted as a reversal for this pur-
pose), and a situation to be the control state and head positions of M. It may be
assumed that all transition rules of M which write a new value onto a tape cell
also move the head away from that cell. This implies that symbols written dur-
ing one pass cannot be read until the next. Let d(n) = 2 flog log S} 1 4nd call a
situation special if it has at least one head on the (i d(n))'® cell of its tape, for
some iEN. Note that there are at most O(S(n)¥/log S(n)) different special situa-
tions, and that at most O(log S(n)) steps of M can occur between one special
situation and the next.

In order to make the proof more readable, we will present the algorithm on a
shared-memory machine. The simulation proceeds roughly as follows. The tape
contents at the start of the current pass; the head directions and the initial situa-
tion for the current phase are stored in the shared memory. This is easy to do at
the start of the initial pass; the algorithm will maintain this information from
pass to pass. We reserve one processor (and two shared memory locations) for
each special situation. The aim is to have these processors confer, via the shared
memory, and decide which special situations are involved in the current pass.
The processors corresponding to these special situations then simultaneously
update the tape cell contents in shared memory; the final situation (which is
detected by an attempted reversal) determines the head directions and the initial
situation for the next pass. This proceeds for a.total of R(n) passes. ‘

The simulation of a pass is achieved as follows. Processor i handles the it
special situation. Firstly, in parallel, each processor i computes the special situa-
tion which follows from special situation i, by doing a step-by-step read-only
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simulation of M on the tape contents in shared memory (by “read-only simula-
tion” we mean that the tape-contents are not updated). This value is stored into
array element si] in shared memoty. If an illegal situation occurs during this
process, or a reversal is detected (determined by examining the head directions
for the current pass, which are stored in shared memory) then sli] is set to i. All
processors i execute the following code synchronously in parallel. Upon termina-
tion, shared array element active[i] will be set to true iff special situation i occurs
in the current pass. Each processor can determine whether its special situation is
the first special situation to occur in the current pass by using a step-wise read-
only simulation of M starting at the initial situation of the pass.

active[PID]:=(PID encodes the first special situation in this pass)
for b:=1 to [log S(n) ] do

if active[PID] then active[s[PID]]:=true

s[PID]:=s[s[PID]]

Those processors i with active[i] = true can then update the tape contents; the
last special situation is readily available (in all entries of s), from which the final
situation of the current pass can be determined.

The running time is dominated by O(log S(n)) for each pass. This comes
from:

(1) Decoding of PIDs (each of O(log S(n)) bits) into special situations.

(2) Determining the first special situation from the initial situation and the final
situation from the last special situation by simulating at most O(log S(n))
steps of M.

(3) Computing the . special-situation transition function by simulating
O(log S(n)) steps of M.

(4) Computing the active array in O(log S(n)) steps.

(6) Updating the tape contents by simulating O(log S(n)) steps of M.

Repeating this for R(n) pass gives us the required result. []

Corollary 9.4.2 An S(n) space, R(n) reversal bounded deterministic k-tape Tur-
ing machine can be simulated by a uniform circuit of depth O(R(n)log2S(n)) and
width O(S(n)¥).

Proof. The result follows immediately from Theorem 9.4.1 and Corollary 9.3.1

i). O
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Corollary 9.4.3 A T(n) time, R(n) reversal bounded deterministic k-tape Turing
machine can be simulated by a uniform circuit of depth O(R(n)log?T(n)) and size
O(R(n)T(n)*log?T(n)).

This is a small improvement over the results of Pippenger [102] who obtains
depth O(R(n)log?T(n)) and size O(R(n)T(n)*log?T(n)).

' Pippenger focusses on the class of languages recognizable in polynomial size
and poly-log depth by a uniform circuit family (equivalently, polynomial space
and poly-log reversals by a deterministic Turing machine). This class is called
NC (“Nick’s Class”) by Cook [19,22], a nomenclature which has been adopted by
the research community. Whilst Pippenger was the first to consider the resources
of uniform circuit size and depth simultaneously, simulations of single-resource
bounded uniform circuits were earlier studied by Borodin [15). Ruzzo [108] has
demonstrated that NC is fairly robust under different definitions of uniformity.

One interpretation of the extended parallel computation thesis is that NC is
the class of languages recognizable by polynomial hardware (small), poly-log
running-time (fast) parallel computers. NC is contained in POLYLOGSPACE, and
NSPACE(log n) is contained in NC (see Exercise 9.4). We have already seen
(Section 5.3 and Corollary 9.3.2) that GAPENC. Since NCCPOLYLOGSPACE it is
unlikely that PCNC, that is, there are probably problems which are feasibly-
computable on a sequential machine, but cannot be solved by small, fast parallel
computers. For example, the circuit-value problem (see Section 5.3) is probably
not a member of NC by virtue of its being log-space complete for P. However,
although small networks do not appear to provide an exponential speedup of
members of P, a speedup of a factor of log n is possible, by Corollary 6.2.6.

NC is one of the more popular topics of research in parallel complexity
theory. Indeed, there is probably sufficient material to warrant a monograph
devoted entirely to the subject. For some of the more recent results, the reader
can consult Aggarwal et al [2], Ben-Or et al [12], Klein and Reif [64], Kozen and
Yap [66], Lovasz [76], and Mulmuley [85]. Adding randomness to small, fast
parallel computers appears to increase their computing power. The class of
languages recognizable by small, fast probabilistic parallel computers is called
RNC (“random NC”). A result of Adleman [1] on sampling can be used to show
that RNC is contained in the non-uniform analogue of NC. Some of the recent
results on RNC include Anderson [9], Galil and Pan [36], Gazit [40], Karp, Upfal
and Wigderson [62], Luks and McKenzie {78], Miller and Reif [83], and Vazirani
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and Vazirani [125]