

Lecture Notes in Computer Science 6698
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert B. France Jochen M. Kuester
Behzad Bordbar Richard F. Paige (Eds.)

Modelling Foundations
and Applications

7th European Conference, ECMFA 2011
Birmingham, UK, June 6-9, 2011
Proceedings

13

Volume Editors

Robert B. France
Colorado State University, Computer Science Department, Fort Collins, CO, USA
E-mail: france@cs.colostate.edu

Jochen M. Kuester
IBM Research Zürich, Rüschlikon, Switzerland
E-mail: jku@zurich.ibm.com

Behzad Bordbar
University of Birmingham, School of Computer Science, Birmingham, UK
E-mail: b.bordbar@cs.bham.ac.uk

Richard F. Paige
University of York, Department of Computer Science, York, UK
E-mail: paige@cs.york.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21469-1 e-ISBN 978-3-642-21470-7
DOI 10.1007/978-3-642-21470-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, F.3, D.3, C.2, H.4, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 2011 European Conference on Modelling Foundations and Applications, held
at the University of Birmingham, UK, during June 6–9, 2011, focused on present-
ing and assessing the state of the art in the research and practice of model-driven
engineering (MDE). The seventh edition of the conference (previously known
as the “European Conference on Model-Driven Architecture – Foundations and
Applications”) covered major advances in foundational research and industrial
applications of MDE.

The included papers indicate the breadth, depth and maturity of research
and application of MDE, and show that the field has well-established standards,
mature tool support, broad areas of application, and substantial appreciation
for the challenges of transferring fundamental research results to application.
ECMFA is the leading venue for publishing such research.

In 2011, the Program Committee received 61 submissions, of which 19 Foun-
dations track papers and 5 Applications track papers were accepted. Papers
on all aspects of MDE were received, including on topics such as model execu-
tion, model analysis, methodologies, model management, model transformation,
architectural modelling and product lines, and domain-specific modelling. The
breadth of topics, as well as the high quality of the results presented in these
accepted papers, demonstrate the maturity and vibrancy of the field.

This proceedings volume also summarizes one of the conference keynote talks,
given by Wilhelm Schäfer, as well as brief overviews of the tutorials and work-
shops held during the conference.

We are grateful to our Program Committee members for providing their
expertise and quality and timely reviews. Their helpful and constructive feedback
to all authors is most appreciated. We thank the ECMFA Conference Steering
Committee for their advice and help. We also thank our sponsors, both keynote
speakers – Wilhem Schäfer and Steve Cook – and all authors who submitted
papers to ECMFA 2011.

June 2011 Robert France
Jochen Küster

Behzad Bordbar
Richard Paige

Conference Organization

ECMFA 2011 was organized by the Department of Computer Science, University
of Birmingham, UK.

Program Chairs

Foundations Track Robert France (Colorado State University,
USA)

Applications Track Jochen Küster (IBM Zurich, Switzerland)

Local Organization

Local Organization Chair Behzad Bordbar (University of Birmingham,
UK)

Workshops and Tutorials Chair Rami Bahsoon (University of Birmingham, UK)
Publications Chair Richard Paige (University of York, UK)
Sponsorship Chair Nick Blundell (University of Birmingham, UK)
Finance Chair David Oram (University of Birmingham, UK)
Tools and Consultancy Chair Dimitris Kolovos (University of York, UK)

Program Committee

Jan Aagedal
Terry Bailey
Mariano Belaunde
Reda Bendraou
Jorn Bettin
Xavier Blanc
Behzad Bordbar
Marc Born
Phil Brooke
Jordi Cabot
Tony Clark
Benoit Combemale
Arnaud Cuccuru
Zhen Ru Dai
Miguel A. De Miguel
Birgit Demuth
Philippe Desfray
Juergen Dingel

Gregor Engels
Anne Etien
Luis Ferreira Pires
Stephan Flake
Franck Fleurey
Robert France
Mathias Fritsche
Sebastien Gerard
Marie-Pierre Gervais
Martin Gogolla
Reiko Heckel
Markus Heller
Andreas Hoffmann
Gabor Karsai
Jörg Kienzle
Andreas Korff
Jochen Kuester
Vinay Kulkarni

VIII Conference Organization

Ivan Kurtev
Philippe Lahire
Roberto Erick Lopez-Herrejon
Tiziana Margaria
Dragan Milicev
Parastoo Mohagheghi
Ana Moreira
Tor Neple
Ileana Ober
Richard Paige
Arend Rensink
Laurent Rioux
Tom Ritter
Julia Rubin
Bernhard Rumpe
Andrey Sadovykh
Houari Sahraoui
Andy Schürr

Bran Selic
Renuka Sindghatta
Alin Stefanescu
Gabriele Taentzer
Francois Terrier
Juha-Pekka Tolvanen
Andreas Ulrich
Antonio Vallecillo
Pieter Van Gorp
Marten J. Van Sinderen
Daniel Varro
Markus Voelter
Regis Vogel
Michael Von Der Beeck
Ksenia Wahler
Olaf Zimmermann
Steffen Zschaler

External Reviewers

Mathieu Acher
Abiar Al-Homaimeedi
Mauricio Alferez
Vincent Aranega
Camlon Asuncion
András Balogh
Olivier Barais
Jorge Barreiros
Gábor Bergmann
Luiz Olavo Bonino Da Silva Santos
Artur Boronat
Fabian Büttner
Sebastian Cech
Asma Charfi
Robert Clarisó
Mickael Clavreul
Arnaud Cuccuru
Maarten De Mol
Dolev Dotan
Hubert Dubois
Jean-Rémy Falleri
Martin Faunes
Masud Fazal-Baqaie
Silke Geisen

Christian Gerth
Amir Hossein Ghamarian
Cristina Gómez
TimGülke
Arne Haber
Lars Hamann
Ábel Hegedüs
Rim Jnidi
Stefan Jurack
Pierre Kelsen
Marouane Kessentini
Mirco Kuhlmann
Marius Lauder
Markus Look
Sebastien Mosser
Chokri Mraidha
Muhammad Naeem
Florian Noyrit
Sven Patzina
Ernesto Posse
Dirk Reiss
István Ráth
Brahmananda Sapkota
Gehan Selim

Conference Organization IX

Karsten Sohr
Jeffrey Terrell
Massimo Tisi
Gergely Varro
Steven Völkel

Christian Wende
Claas Wilke
Manuel Wimmer
Mohammad Zarifi Eslami
Karolina Zurowska

Table of Contents

Keynote

Building Advanced Mechatronic Systems . 1
Wilhelm Schäfer

Model Execution

Contracts for Model Execution Verification . 3
Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier

A FUML-Based Distributed Execution Machine for Enacting Software
Process Models . 19

Ralf Ellner, Samir Al-Hilank, Johannes Drexler, Martin Jung,
Detlef Kips, and Michael Philippsen

A Generic Tool for Tracing Executions Back to a DSML’s Operational
Semantics . 35

Benôıt Combemale, Laure Gonnord, and Vlad Rusu

Model Analysis

Incremental Security Verification for Evolving UMLsec Models 52
Jan Jürjens, Löıc Marchal, Mart́ın Ochoa, and Holger Schmidt

Assessing the Kodkod Model Finder for Resolving Model
Inconsistencies . 69

Ragnhild Van Der Straeten, Jorge Pinna Puissant, and Tom Mens

Operation Based Model Representation: Experiences on Inconsistency
Detection . 85

Jerome Le Noir, Olivier Delande, Daniel Exertier,
Marcos Aurélio Almeida da Silva, and Xavier Blanc

Methodology

Generating Early Design Models from Requirements Analysis Artifacts
Using Problem Frames and SysML . 97

Pietro Colombo, Ferhat Khendek, and Luigi Lavazza

Automated Transition from Use Cases to UML State Machines to
Support State-Based Testing . 115

Tao Yue, Shaukat Ali, and Lionel Briand

XII Table of Contents

Transformation Rules for Translating Business Rules to OCL
Constraints . 132

Imran S. Bajwa and Mark G. Lee

Model Management (1)

Preventing Information Loss in Incremental Model Synchronization by
Reusing Elements . 144

Joel Greenyer, Sebastian Pook, and Jan Rieke

An MDE-Based Approach for Solving Configuration Problems:
An Application to the Eclipse Platform . 160

Guillaume Doux, Patrick Albert, Gabriel Barbier, Jordi Cabot,
Marcos Didonet Del Fabro, and Scott Uk-Jin Lee

Incremental Updates for View-Based Textual Modelling 172
Thomas Goldschmidt and Axel Uhl

Transformations

Easing Model Transformation Learning with Automatically Aligned
Examples . 189

Xavier Dolques, Aymen Dogui, Jean-Rémy Falleri,
Marianne Huchard, Clémentine Nebut, and François Pfister

Code Generation for UML 2 Activity Diagrams: Towards a
Comprehensive Model-Driven Development Approach 205

Dominik Gessenharter and Martin Rauscher

Tractable Model Transformation Testing . 221
Martin Gogolla and Antonio Vallecillo

Variability Analysis and ADLs

Extending SysML with AADL Concepts for Comprehensive System
Architecture Modeling . 236

Razieh Behjati, Tao Yue, Shiva Nejati, Lionel Briand, and Bran Selic

Analyzing Variability: Capturing Semantic Ripple Effects 253
Andreas Svendsen, Øystein Haugen, and Birger Møller-Pedersen

Integrating Design and Runtime Variability Support into a System
ADL . 270

Marie Ludwig, Nicolas Farcet, Jean-Philippe Babau, and
Joël Champeau

Table of Contents XIII

Domain-Specific Modelling

Domain-Specific Model Verification with QVT . 282
Maged Elaasar, Lionel Briand, and Yvan Labiche

A SysML Profile for Development and Early Validation of TLM 2.0
Models . 299

Vaibhav Jain, Anshul Kumar, and Preeti R. Panda

Taming the Confusion of Languages . 312
Rolf-Helge Pfeiffer and Andrzej W ↪asowski

Model Management (2)

Table-Driven Detection and Resolution of Operation-Based Merge
Conflicts with Mirador . 329

Stephen C. Barrett, Patrice Chalin, and Greg Butler

Improving Naming and Grouping in UML . 345
Antonio Vallecillo

Aspect-Oriented Model Development at Different Levels of
Abstraction . 361

Mauricio Alférez, Nuno Amálio, Selim Ciraci, Franck Fleurey,
Jörg Kienzle, Jacques Klein, Max Kramer, Sebastien Mosser,
Gunter Mussbacher, Ella Roubtsova, and Gefei Zhang

Workshop Summaries

MBSDI 2011 3rd International Workshop on Model-Based Software
and Data Integration . 377

Ralf-Detlef Kutsche and Nikola Milanovic

MELO 2011 - 1st Workshop on Model-Driven Engineering, Logic and
Optimization . 379

Jordi Cabot, Patrick Albert, Grégoire Dupé,
Marcos Didonet del Fabro, and Scott Lee

The Third Workshop on Behaviour Modelling - Foundations and
Applications . 381

Ella Roubtsova, Ashley McNeile, Ekkart Kindler, and Mehmet Aksit

Process-Centred Approaches for Model-Driven Engineering (PMDE)
–First Edition . 383

Reda Bendraou, Redouane Lbath, Bernard Coulette, and
Marie-Pierre Gervais

XIV Table of Contents

Third International Workshop on Model-Driven Product Line
Engineering (MDPLE 2011) . 385

Goetz Botterweck, Andreas Pleuss, Julia Rubin, and
Christa Schwanninger

Tutorial Summaries

Agile Development with Domain Specific Languages 387
Bernhard Rumpe, Martin Schindler, Steven Völkel, and
Ingo Weisemöller

Incremental Evaluation of Model Queries over EMF Models: A Tutorial
on EMF-IncQuery . 389

Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró

Integrated Model Management with Epsilon . 391
Dimitrios S. Kolovos, Richard F. Paige, Louis M. Rose, and
James Williams

Creating Domain-Specific Modelling Languages That Work:
Hands-On . 393

Juha-Pekka Tolvanen

Author Index . 395

Building Advanced Mechatronic Systems

Wilhelm Schäfer

Heinz Nixdorf Institute & Department of Computer Science,
University of Paderborn, Germany

wilhelm@upb.de

Mechatronics is the engineering discipline concerned with the construction of
systems incorporating mechanical, electronical and information technology com-
ponents. The word mechatronics as a blend of mechanics and electronics has
already been invented 40 years ago by a Japanese company. Then, mechatronics
just meant complementing mechanical parts with some electronical units, a typ-
ical example being a photo camera. Today, mechatronics is an area combining a
large number of advanced techniques from engineering, in particular sensor and
actuator technology, with computer science methods.

Typical examples of mechatronic systems are automotive applications, e.g. ad-
vanced braking systems, fly/steer-by-wire or active suspension techniques, but
also DVD players or washing machines. Mechatronic systems are characterised
by a combination of basic mechanical devices with a processing unit monitoring
and controlling it via a number of actuators and sensors. This leads to massive
improvements in product performance and flexibility. The introduction of mecha-
tronics as a tight integration of mechanical, electronical and information-driven
units allowed for turning conventionally designed mechanical components intos-
mart devices. The significance of mechatronics is today also reflected inuniversity
education: mechatronics has become a degree on its own, and is at many places
not merely taught by one area but jointly by all three. The subject managed to
cross the traditional boundaries between engineering and computer science.

Today we see the first steps in the emergence of the next generation of mecha-
tronic systems. While “intelligence” in the behaviour has so far always been
achieved by gathering information (and reacting to it) from the one single ma-
chine, the usage and retrieval of information in the future will be characterised
by an exchange of information between different machines. This can for instance
already be seen in the automotive and rail domain: intelligent lighting systems
combine information about their environment obtained from their own sensors
with those collected by other cars. In the Paderborn rail system shuttles au-
tonomously form convoys as to reduce air resistance and optimise energy con-
sumption. This is a general trend: The smart devices of today’s mechatronic
systems will turn into “populations” of smart devices, exchanging information
for optimising their global behaviour as well as possibly competing for limited
resources. This movement imposes in particular new challenges on the computer
science side in mechatronics. The mechatronic systems of the future will be char-
acterised by the following properties:
– high degree of concurrency: Systems will consist of a large number of au-

tonomous components, exchanging information while running in parallel.
Components may form clusters to collaborate on a common goal but may
also compete as to optimise their own aims.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 1–2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 W. Schäfer

– decentralisation: Due to the high degree of concurrency and distribution sys-
temscannotbecentrallyobservedandasaconsequencenotcentrallycontrolled.

– Self-Coordination: As a result of the previous two points, advanced mecha-
tronic systems will largely have to rely on principles of self-coordination.

Several disciplines in computer science are affected by this change. For achiev-
ing reliable and secure transmission of information the areas of network technology
and cryptography are challenged. With respect to the issue of self-coordination it
is in particular software engineering which has to make a major step towards a
new design methodology. Current self-developments in software engineering are
already making small steps in this direction. For the design of complex mecha-
tronic systems of the future these have to be combined and complemented with
other advanced techniques as to form an engineering method for self-coordinating
systems. Such a method in particular has to involve

• modeling formalisms integrating model transformations (describing adapta-
tion, reconfiguration etc.) themselves into the model,

• code generation techniques, operating at run-time and taking platform spe-
cific parameters into account,

• elaborate formal analysis techniques being able to cope with the high volatil-
ity of systems (and properties emerging by a continuous dynamic change).

In the talk we survey current state of the art in the development of mechatronic
systems from a software engineering point of view. Based on identified weaknesses
of existing approaches we present our own approach called Mechatronic UML.
Mechatronic UML supports model-driven development of mechatronic systems
addressing complex coordination between system components under hard real-
time constraints and reconfiguration of control algorithms at runtime to adjust
the system behaviour to changing system goals as well as target platform specific
code generation. Modelling is based on a syntactically and semantically rigorously
defined and partially refined subset of UML. It uses a slightly refined version of
component diagrams, coordination patterns, and a refined version of state charts
including the notion of time which are called Real time state charts. Verification
of safety properties is based on a special kind of compositional model checking to
make it scalable. Model checking exploits an underlying unifying semantics which
is formally defined using graph transformation systems. The last part of the talk
is devoted to pointing out future developments and research challenges which we
believe characterise advanced mechatronic systems of the future.

Results presented in this paper and the talk evolved during many discussions
with many of my PhD students and my colleagues Heike Wehrheim and Holger
Giese (now with the HPI at Potsdam University) to whom I am indebted.

Biography. Dr. Wilhelm Schäfer is full Professor and chair, head of Software
Engineering Group, Department of Computer Science, University of Paderborn,
Chair of the International Graduate School of the University of Paderborn,
Chair of the Paderborn Institute for Advanced Studies in Computer Science and
Engineering (PACE), and Vice President at the University of Paderborn.

Contracts for Model Execution Verification

Eric Cariou1, Cyril Ballagny2, Alexandre Feugas3, and Franck Barbier1

1 University of Pau / Liuppa, B.P. 1155, 64013 Pau Cedex, France
{Eric.Cariou,Franck.Barbier}@univ-pau.fr

2 Softeam, Objecteering Software, 8 Parc Ariane, 78284 Guyancourt Cedex, France
Cyril.Ballagny@softeam.fr

3 Inria Lille-Nord Europe / Lifl Cnrs Umr 8022 / University of Lille 1
Cité scientifique, Bât. M3, 59655 Villeneuve d’Ascq Cedex, France

Alexandre.Feugas@inria.fr

Abstract. One of the main goals of model-driven engineering is the ma-
nipulation of models as exclusive software artifacts. Model execution is
in particular a means to substitute models for code. We focus in this
paper on verifying model executions. We use a contract-based approach
to specify an execution semantics for a meta-model. We show that an
execution semantics is a seamless extension of a rigorous meta-model
specification and is composed of complementary levels, from static el-
ement definition to dynamic elements, execution specifications as well.
We use model transformation contracts for controlling the dynamic con-
sistent evolution of a model during its execution. As an illustration, we
apply our approach to UML state machines using OCL as the contract
expression language.

Keywords: design by contract, runtime verification, model execution,
model-driven engineering, UML state machines, OCL.

1 Introduction

One of the main goals of Model-Driven Engineering (MDE) is to cope with
models as final software artifacts. This can be performed by directly executing
the model itself; the model is thus the “code” that is executed. Being able to
execute a model is a key challenge for MDE. It also requires to ensuring that the
execution has been performed correctly, by applying verification or validation
techniques. In this paper, we focus on the verification of model execution.

Programming and design by contract have shown their interest in verifying
the execution of software systems [2,12,13]. Contracts ensure a sufficient con-
fidence on the software system through a lightweight verification approach at
runtime. We propose to apply design by contract principles to the context of
model execution. We aim at ensuring that a model execution, realized by any
tool or engine, is correct with respect to the defined semantics. The first step
to execute a model is thus to define its execution semantics, in a specification
and verification purpose. This requires the definition of a rigorous meta-model
including the specification of the state of the model during its execution. A given

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 3–18, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

4 E. Cariou et al.

execution engine can then execute a model by defining its new state at each ex-
ecution step. If considering that each modification of the model state is a model
transformation, a model execution can be seen as a serie of endogenous model
transformations. Accordingly, we can use model transformation techniques for
verifying model execution, namely model transformation contracts [5].

The rest of the paper is organized as follows. Section 2 defines the requirements
on meta-models for being able to execute a model and how contracts can be
applied to define an execution semantics and verify a model execution. Section 3
describes the execution of UML state machines, including the required extension
of the UML meta-model [16] and the associated execution engine. Section 4
defines an execution contract example, showing the feasibility of our approach.
Then, before concluding, we review related works.

2 Verifying Model Execution through Contracts

In this section, we first recall the concept of contract and its application to model
transformations. We next explain how a model execution can be seen as a suite
of model transformations. Then we discuss the kinds of semantics we need for
being able to specify the execution of a model and show that contracts – and
model transformation contracts – can be used in this context.

2.1 Contracts and Model Transformation Contracts

Programming and design by contract [2,12,13] consist in specifying what a soft-
ware component, a program or a model does, in order to know how to properly
use it. Design by contract also allows at runtime the assessment of what has
been computed with respect to the expressed contracts. A contract is composed
of two kinds of constraints:

– Invariants that have to be respected by software elements;
– Specification of operations on the software elements through pre and post-

conditions. A pre-condition defines the state of a system to be respected
before its associated operation can be called in a safe mode. Post-conditions
establish the state of a system to respect after calls. If a pre-condition is vio-
lated, post-conditions are not ensured and the system can be in an abnormal
state.

In the MDE context, a meta-model is a structural diagram defining the kinds
of model elements and their relations. But this structural view is rarely suffi-
cient for expressing all relations among elements, we need to complement it with
well-formedness rules. They are additional constraints expressed in a dedicated
language, such as OCL (Object Constraint Language [15]). Contract invariants
can be typically this kind of rules, and operations are any kind of model manip-
ulation and modification, such as model transformations.

In [5], an approach for specifying contracts on model transformation opera-
tions using OCL has been proposed. These contracts describe expected model

Contracts for Model Execution Verification 5

transformation behaviors. Formally, constraints on the state of a model before
the transformation (source model) are offered. Similar constraints on the state
of the model after the transformation (target model) are offered as well. Post-
conditions guarantee that a target model is a valid result of a transformation
with respect to a source model. Pre-conditions ensure that a source model can
effectively be transformed. A couple of pre and post-conditions for specifying a
transformation can also be organized via three distinct sets of constraints:

– Constraints on the source model: constraints to be respected by a model to
be able to be transformed;

– Constraints on the target model: general constraints (independently of the
source model) to be respected by a model for being a valid result of the
transformation;

– Constraints on element evolution: constraints to be respected on the evolu-
tion of elements between the source and the target models, in order to ensure
that the target model is the correct transformation result according to the
source model content.

2.2 Model Execution as Model Transformations

Figure 1 shows an execution example of a UML state machine specifying the
behavior of a microwave. The microwave can be in two main states depending
on the state of the door: open or closed. When the door is closed, the power
button allows a cycle from baking to putting the microwave off. When opening
the door, if the microwave was baking, it gets in a pause mode. Otherwise, it
gets in off mode. Closing the door leads to come back in the previous mode
when the door was closed, either baking or being off (this is specified thanks
to the history state of the state Closed). The state machine is represented in
conformity with the common graphical syntax of UML state machines, except
coloring leaf active states in grey. Indeed, we must know at a given time which
states of the machine are currently active1. Then, active states fully belong to
the model specification.

The figure shows several steps of the model execution. At the first step, the
microwave is in baking mode with the door closed. Then, the user opens the
door – the event DoorOpen is generated – and the microwave gets in the pause
mode (step 2). When the user closes the door, this activates back the baking
state (step 3). The last step of the example shows a particular execution step of
the model: the state machine refinement. The single baking state is replaced by a
composite state defining several power positions. This refinement is made during
the execution of the model, at runtime. This kind of structural modification is
typically what can be done for supporting adaptation at runtime [1].

As seen in the figure, each model execution step is associated with an op-
eration: run to completion(Event) or refine state(State, State). Indeed,
1 The UML meta-model does not include the specification of the current active states

of a state machine. We have then extended it, as described in section 3.1.

6 E. Cariou et al.

Closed

OffOff
Power

Closed

Baking

Power

Power

Open

OpenClosed

Wattage

Off

Power

Off

Power

Open

Off

Power

Power

OpenClosed

Off

Off

Wattage

Off

Power

DoorClosed

DoorOpen

DoorOpen

PausedBaking

H*
DoorClosed

DoorOpen

DoorOpen

Step 2

Step 1

Step 3

refine_state(bakingState, refinedBakingState)

Step 4

run_to_completion(doorOpenEvent)

run_to_completion(doorClosedEvent)

Paused
600 W. 900 W.

H*
DoorClosed

DoorOpen

DoorOpen

PausedBaking

H*
DoorClosed

DoorOpen

DoorOpen

PausedBaking

H*

Fig. 1. Model execution example: a UML state machine of a microwave

the easiest way to specify a semantics for an execution is to link it to opera-
tions associated with meta-model elements. This allows the discretization and
the reification of the execution process. Concretely, these operations are either
explicitly defined on meta-elements or only implicit to be used for supporting
the semantics at runtime. Here, the StateMachine UML meta-element can own
these operations.

Each call of such an operation makes the model evolve by realizing an execu-
tion step. In other words, the model is transformed at each execution step. In
the example, either the active states are changing (run to completion) or the
structure of the state machine is dynamically modified (refine state). Even
if changing the active states modifies only marginally the model, it is a model
transformation. As a result, an execution of a model can be considered as a suite
of model transformations associated with the execution operations. These trans-
formations are endogenous because all models conform to the same meta-model
during the execution.

2.3 An Approach for Verifying Model Execution

Requirements on Meta-models for Executing Models. As already stated
by previous works (such as [7,9,18]), a model execution requires that its meta-
model defines several kinds of element specification, such as dynamic ones. Here,
we propose our own meta-model part classification for an execution specification.

Contracts for Model Execution Verification 7

For state machines, in addition to the specification of the states, we must know
at a given time which of its states are the active ones. For a model execution,
its meta-model must then contain two kinds of meta-elements:

– Static part: structural definition of the model elements defining the static
view of a model. For a state machine, it defines the concepts of State, Tran-
sition, Event, ...

– Dynamic part: structural definition of the elements specifying the execution
state of a model. For a state machine, it will notably define the concept of
Active State.

Defining the structure of the elements is not enough for specifying all the
constraints on these elements and their relationships: we need to add to the
meta-model structure the “well-formedness rules”. They are defined through a
constraint language, such as OCL for instance. Well-formedness rules are de-
fined for the static part but also for the dynamic part of the meta-model. For
instance, for the static part of a state machine, one can specify that two differ-
ent transitions associated with the same event and the same guard cannot be
assigned to the same source state. For the dynamic part of a state machine, one
can specify that two exclusive states can not be active at the same time (like
Open and Closed on Figure 1).

The meta-model structure and its well-formedness rules are not sufficient for
fully specifying an execution semantics, even when including a dynamic part. For
instance, in the context of state machines, if an event occurs and if associated
transitions exist on current active states, the processing of this event by the
execution engine implies that these transitions will be triggered. This model
evolution between execution steps must also be defined as a set of constraints or
rules we are calling “well-evolution rules”.

These well-evolution rules can, like the well-formedness rules, be defined on
the static and the dynamic parts of the meta-model. For the dynamic part, they
embody constraints on the model evolution during its execution, such as the
event management policy specifying which states have to be activated according
to an event occurence. For the static part, this implies that the model (its “static”
elements) can be modified during the execution. On a state machine, states and
transitions can change during the execution (such as on Figure 1, step 4). This
is what can be typically done in an adaptation context. The well-evolution rules
then define the constraints of this adaptation, i.e., its semantics.

Classification of Semantic Levels. Several complementary levels of seman-
tics must be introduced in relation with the above discussion:

– Structural meta-model: definition of the static meta-elements and their re-
lationships (the static part with the associated well-formedness rules). This
structural meta-model is the common result of a meta-model definition when
no model execution aspect is taken into account.

8 E. Cariou et al.

– Executable meta-model2: addition to the structural meta-model of elements
allowing the execution of a model (the dynamic part with the associated
well-formedness rules).

– Execution semantics3: addition to the executable meta-model of semantics of
element evolution (the well-evolution rules added to the static and dynamic
parts).

Figure 2 summarizes the semantics levels. We differentiate the executable meta-
model from the full definition of the execution semantics. Indeed, the executable
meta-model is usually unique because one single kind of representation of the
model state during its execution is sufficient. However, it makes sense to define
different semantics of model evolution for a same meta-model. This allows the
definition of execution semantics variation points [8,10].

Well−Evolution Rules

W.−Form. Rules

Executable meta−model

Execution semantics

Static part

W.−Form. Rules

Dynamic part

Structural meta−model

Fig. 2. Semantics levels for a meta-model

Execution Semantics as Contracts. An execution semantics can be directly
expressed as a contract: a set of invariants and operation specifications through
couples of pre and post-conditions. The invariants are the well-formedness rules
of the executable meta-model and the specification of execution operations con-
tains the required well-evolution rules.

An important point to notice is about defining the execution semantics of
a meta-model through contracts. In our approach, this definition is done in a
“seamlessly way”. In other words, we use the same “technological space” to
maintain in one and only one meta-model, structural aspects and the way they
may be subject to a well-established evolution: the execution semantics. As an
illustration, let us consider for instance the definition of a DSL (Domain Specific

2 We use the term of “executable meta-model” as a shortcut for expressing that models
conforming to this meta-model are executable, but the meta-model itself is not
directly executable.

3 To avoid any ambiguity: execution semantics is to be considered here as constraints
to be respected during the model evolution and not as how the execution is carried
out. We are not defining an operational semantics.

Contracts for Model Execution Verification 9

Language) using the EMF framework4 and OCL. First, the Ecore meta-model
and OCL constraints are used for specifying the structural part and its associ-
ated well-formedness rules. Next, making this meta-model executable leads to
modifying the Ecore meta-model by adding new elements and their associated
well-formedness rules by means of OCL. Finally, a concrete execution semantics
for this meta-model supposes the introduction of the well-evolution rules. In this
respect, we demonstrated in [5] that model transformations – here the model
execution steps through associated operations – can be specified using standard
OCL. So, during all these stages of execution semantics specification, one re-
mains in the same “technological space” (Ecore and OCL) without requiring to
use and know specification techniques of another technological space (Petri nets,
temporal logic, graph transformations, ...) for defining some parts of the execu-
tion semantics. Moreover, these techniques are often formal and then harder to
accept by the designers who define meta-models and DSLs.

Model Execution Engine Requirements. Intuitively, one can consider that
managing a model execution and its contracts requires using an implementation
platform offering both execution and verification capabilities (such as for the
Eiffel language in a programming context [13]). This can be achieved by imple-
menting the model execution engine with a platform, such as Kermeta5, that
contains an action language for defining executable operations associated with
meta-elements and a constraint language that enables to specify invariants on
meta-elements and pre/post-conditions for their operations.

Our approach allows less restricting requirements. The main issue when eval-
uating the contract is checking pre and post-conditions. Indeed, this task is
strongly linked to the execution of the operations. As explained in [5] and sec-
tion 2.1, a couple of pre and post-conditions can be written under the form of
three sets of invariants. Then, an execution contract consists only of invariants.
Checking invariants on a model is made independently of the way the model is
handled, i.e., the way by which the model is executed. We then simply require
to couple the execution engine with a constraint evaluator. Besides, it is possible
to check the contract at any time when the models are available, not only at the
execution time. So, the contract evaluation can become an independent task of
the model execution whether the execution engine is capable to store models.

As an intermediate conclusion, we rely on lesser assumptions as possible about
the model execution engine or the virtual machine interpreting the model. The
imposed basic requirements are the fact that the engine supports the operations
characterizing the key execution steps and is able to store and manage the current
state of the model before and after each execution step.

Contract Evaluation and Usage. Depending on the model execution engine
capabilities, there are two main contract checking times. The first one is during
the model execution: if the execution engine is coupled with a contract evaluator
(typically an OCL evaluator), at each required execution step, the contract can
4 Eclipse Modeling Framework: http://www.eclipse.org/emf/
5 http://www.kermeta.org

10 E. Cariou et al.

be checked. The second one is a posteriori : the execution engine stores the model
state after each required execution step, building in this way an execution trace.
Afterwards, the contract will be checked on models from this trace.

The completeness of the contract has an influence on the contract usage for
ensuring confidence on the execution engine. As defined in [12], a complete con-
tract is a contract that detects all possible errors on models.

Depending on the moment of the contract checking and its completeness,
execution contracts can be used in several ways, such as:

– In a debugging mode: for each step, a complete contract is checked and allows
the designer to detect programming errors through an adequate interaction
with the execution engine.

– With a complete contract and generation of execution traces, contracts can
be used for model-checking: they play the role of oracles. Several traces are
built with a set of different entry models. They simulate environment inter-
actions for covering, as much as possible, most of the test cases. Contracts
must then be valid for all execution traces.

– Considering a non-complete contract and evaluation at runtime, it supports
the management of some execution errors and adaptations to the context
during the model execution. In this case, a non-complete contract is usually
preferable to avoid performance overheads. Indeed, once the execution engine
tested, complete contracts are no longer required at runtime because of the
prior elimination of errors.

3 Execution of UML State Machines

3.1 Extension of the UML Meta-model

To be able to execute a UML state machine, the UML meta-model – more
precisely its part defining state machines ([16], Superstructure, chapter 15) –
must be enhanced to become an executable meta-model.

The static part of the UML meta-model (defining that a state machine owns
regions which themselves own states which are connected with transitions, ...)
has been kept without modification. As for the dynamic part, it globally aims
at specifying state machine instances in execution. For this, UML object dia-
grams are reused and extended. Figure 3 represents this dynamic part and its
relationships to existing meta-elements of the UML meta-model.

An object diagram enables to specify instances. The InstanceSpecification
meta-element represents an instance when it is associated with a Classifier
object, namely the Class meta-element. In addition, a class can own a state
machine in order to model its behavior. In the UML meta-model, a state machine
is a kind of classifier, thus an instance specification can be linked to this state
machine. Nevertheless, while there are meta-elements to specify what values of
attributes are for an object, there is no meta-element to specify what the current
state, a state machine object is in.

Contracts for Model Execution Verification 11

activeContainer

StateMachineInstanceSpecification

InstanceSpecification
(from UML)

Element
(from UML)

Region
(from UML)

StateMachine
(from UML)

Class
(from UML)

Classifier
(from UML)

Behavior
(from UML)

ActiveRegion

ActiveState
State

(from UML)

{subsets classifier}
stateMachine0..1

activeRegion*
*

0..1 0..1

activeRegion*1

0..1
activeState

1

*

* *

*

activeSubmachine

1

1

regionhistoryConfiguration

classifier

0..1

*

state 1

activeSubvertex

Fig. 3. UML meta-model extension for specifying state machine instances

To move forward, we specialize the InstanceSpecificationmeta-element to
model an instance of a state machine. The association from this StateMachine-
InstanceSpecification meta-element to StateMachine is a subset of the pre-
existing association from InstanceSpecification to Classifier. The current
state of a state machine instance is characterized by an active state configuration,
i.e., the hierarchy of states which are active in the state machine at a particu-
lar moment. To model this configuration, we have introduced the ActiveRegion
and ActiveState meta-elements. If an active state is a submachine state (i.e., a
state which is an alias to another state machine), a state machine instance can be
referenced from this active state (association from ActiveState to StateMach-
ineInstanceSpecification). If a region owns a history state (such as in the ex-
ample of Figure 1), the last active state configuration can be store (association
historyConfiguration from StateMachineInstanceSpecification to
ActiveRegion). Furthermore, cardinalities of associations ensure that: 1) an ac-
tive region only belongs to one state machine instance or to one active state; 2) an
active region owns one and only one active state; 3) an active state is only active in
one region. As an example, when the 600W leaf state is active in the microwave (cf.
Figure 1, step 4), the active state configuration is the path from the state machine
to this active state, including the active Closed state and the active Baking state.

Other well-formedness rules are required to complete the dynamic part defi-
nition. They ensure that: 1) the active regions and states of an instance belong
to the state machine whose instance is described; 2) an active composite state
(i.e., a state which owns regions) owns an active state for each one of its regions;
3) an active submachine state references a state machine instance which is the
submachine of this active state; 4) a history configuration is only referenced
when a history state exists. These rules are concretely defined as OCL invari-
ants. For example, here is the invariant for the well-formedness rule concerning
the activation of a composite state6:

6 The complete technical material presented in this paper is available online:
http://web.univ-pau.fr/%7Eecariou/contracts/

12 E. Cariou et al.

context ActiveState inv activeComposite:
state.isComposite() implies (activeRegion -> size() = state.region -> size()
and activeRegion -> forAll(ar1, ar2 | state.region->exists(ar1.region) and

(ar1<> ar2 implies ar1.region <> ar2.region)))

3.2 MOCAS: A UML State Machine Execution Engine

We have implemented an engine, MOCAS7, for interpreting UML state ma-
chines. This engine is a Java library which relies on the Eclipse Modeling Frame-
work implementation of UML. It supports all state machine features: transition
guards, state invariants, submachine states, history states, change events, time
events, signal events, call operation actions, ... The engine interprets state ma-
chine models conforming to the UML meta-model as enhanced in this paper.

MOCAS implements a “default” semantics for UML state machine execution.
This supposes that some choices have been made for semantic variation points
of the UML meta-model or when points have not been clearly specified in the
UML documentation. However, MOCAS can be customized in order to realize
different semantics. By relying on execution contracts, we are able to verify at
runtime that an implementation respects the desired semantics.

Other execution engines could be used. We can for instance implement such
an engine using fUML [17]. As stated in section 2.3, if these engines are able
to store the executed model after each execution step or are associated with a
constraint checker, our approach can be applied, independently of the way these
engines are carrying out the execution and of their implementation technology.

4 Execution Contracts on UML State Machines

Checking invariants is easier compared to checking operation specifications. We
then focus in this section on the definition of a contract part for an execution
operation. As an example, we describe the semantics of the run to completion
operation for the execution of UML state machines. An operation specification
can be classically defined through pre and post-conditions but, as explained in
section 2.3, this restricts the usability of the contract. So, we present this op-
eration specification under the form of three sets of invariants, to widen the
possibility of evaluating and using contracts. To explain how to express an op-
eration specification in this way, we first detail some technical points.

4.1 Automatic Meta-model Modification

As stated in [5], a problem remains when evaluating OCL constraints: they are
expressed for a single context and, as a result, they relate to a single model. When
evaluating constraints on element evolution, we both need to reference source and
target model elements. The technical solution to this problem is to concatenate
all elements of these two models into a global one. This concatenation is made
possible by automatically modifying their meta-model.
7 http://mocasengine.sourceforge.net/

Contracts for Model Execution Verification 13

The modification consists in adding elements to an existing meta-model for
which a transformation contract has to be checked (see Figure 4). First, each ex-
isting meta-element is viewed as a specialization of ContractModelElement (for
the UML meta-model, the meta-element Element simply becomes a specializa-
tion of ContractModelElement as each meta-element of the UML meta-model
inherits directly or transitively from it). Then, each element of the source or
the target model will be tagged, respectively, with the “source” or “target”
string value through its inherited modelName attribute. Secondly, we need to
know the characteristics of the operation associated with the contract: this
is the role of ContractOperation referencing elements of the global model
for specifying parameters (the return value of operations as well). Lastly, the
ContractEvaluation element is in charge of the evaluation result of the con-
tract for embedded models. We offer the possibility of stating this result element
by element, showing when necessary if an element respects (Correct) or not
(Error) its part of the contract.

1

Error Warning Correct

modelName : String

ContractModelElement

ContractBase

Element (from UML)... ...

operationName : String

ContractOperation

Result

comment : String

1 element*

eval 0..1

name : String

ContractParameter

parameters*

returnValue

0..1

ContractEvaluation

globalResult : boolean

*

0..1 operation
elements

paramValue

Fig. 4. Automatic meta-model modification to support contract management and its
application to the UML meta-model

To sum up, when expressing the contract part for execution operations, we
rely on the modified meta-model version. The modification of the meta-model is
carried out automatically thanks to a dedicated tool. This tool is able to make
the modification for any Ecore meta-model (including the UML implementation
and then our extended version for managing state machine execution). It also
realizes the concatenation of a source and a target models into a global model
conforming to the modified meta-model. If instead of OCL, we use a constraint
language able to handle several models simultanely, all this will not be required.
Nevertheless, it will be useful to rely on it also in this case because it helps in
structuring the contracts as embedding in the same global model, the source and
the target models, the description of the operation and the contract evaluation
result. From a practical point of view, the contract is evaluated via an ATL8

transformation. Indeed, ATL offers a full OCL implementation and can then
easily be used to check OCL constraints [3].

8 ATLAS Transformation Language: http://www.eclipse.org/m2m/atl/

14 E. Cariou et al.

4.2 Specification of the run to Completion Operation

Since there are no constraints to be respected for source and target models of
the transformation corresponding to the run to completion operation, we only
need to specify the element evolution between source and target models. The
main goal is to ensure that the right transitions are triggered for active states
when the associated event occurs. Figure 5 shows an extract of this specification9.
The following description is applied to the state machine execution example of
Figure 1 for the processing of the “DoorOpen” event, making the microwave
state machine passing from step 1 to step 2.

The invariant to be verified on the global model (concatenating the source
and the target models; each one containing one main state machine instance)
is specified at line 1. First, we retrieve the event associated with the operation
through contract parameters (line 2). Then (line 3), if the current state machine
instance is the source one (step 1 of Figure 1), it must be valid with respect to the
target one (step 2 of Figure 1) and this event, based on the transitionValidity

1 context StateMachineInstanceSpecification inv:
2 let evt : ContractParameter =

ContractParameter.allInstances() -> any(name = ’event’) in
3 (self = self.getSMI(’source’)) implies

self.transitionValidity(self.getSMI(’target’), evt.paramValue)

4 context StateMachineInstanceSpecification def : getSMI(name : String) :
StateMachineInstanceSpecification =

5 StateMachineInstanceSpecification.allInstances() -> any(smi |
smi.modelName = name and smi.activeState -> isEmpty())

6 context StateMachineInstanceSpecification def : transitionValidity(
smiTarget : StateMachineInstanceSpecification, event : Event): Boolean =

7 let activeStatesForEvent : Set(ActiveState) = self.activeLeaves() -> select(s |
s.state.hasTransitionForEvent(event)) in

8 let activeTransitions : Set(Transition) = activeStatesForEvent -> collect(s |
s.state.getTransitionForEvent(event)) in

9 activeTransitions -> forAll(t | t.hasBeenPassedInTarget(smiTarget))

10 context Transition def : hasBeenPassedInTarget(smiTarget :
StateMachineInstanceSpecification) : Boolean =

11 let targetTransition : Transition = smiTarget.getMappedTransition(self) in
12 let states = smiTarget.getActiveStates() -> collect (state) in
13 states -> exists (s | targetTransition.target = s) and
14 targetTransition.unactivateSourceState() implies

not(states -> exists (s | targetTransition.source = s))

Fig. 5. OCL invariant specifying the run to completion operation

9 For simplifying, transition guards are not taken into account.

Contracts for Model Execution Verification 15

OCL operation evaluation (specified from lines 6 to 9). Retrieving a main state
machine instance in the global model is realized thanks to the getSMI OCL
operation, using the modelName attribute (lines 4 and 5).

To check a transition validity, on the source side, the set of transitions that
have to be triggered is computed, based on current active states and the parame-
ter event (lines 7 and 8). In our example, two transitions can be actually triggered
for the “DoorOpen” event, starting from the two active states of the state ma-
chine (the leaf state Baking and its container state Closed): the “external” one
from Closed to Open leading to the Off state of Open, or the “internal” one from
Baking to Paused. The choice of the transition is an execution semantic variation
point. It is concretely defined in the getTransitionForEvent OCL operation.
Following the UML common semantics, it returns here the most internal transi-
tion. Finally, each required transition has to be passed towards the target state
machine instance (line 9), through the validation of hasBeenPassedInTarget
(specified from lines 10 to 14).

A transition is passed on the target side when there is an active state asso-
ciated with the target state (Paused) of this transition (line 13) and when the
source state (Baking) of this transition is not anymore active10 (line 14) except
in particular cases (such as when the source and target states of the transition
are the same) checked by the unactivateSourceStateOCL operation. For that,
we need to point to the transition on target side that is equivalent (i.e., with
the same associated states and event) to the one on the source side (on which
the hasBeenPassedInTarget OCL operation is called, that is the current OCL
context). This is achieved by the mapping function getMappedTransition. As
explained in [5], mapping functions are key construction of our contracts and
can be automatically generated.

Finally, one may notice that the proposed contract is not a complete contract.
Indeed, not all required verifications on the model evolution are processed. We
need to check that the active states that do not correspond to eligible transitions
are not modified. We also need to verify that the structural part of the model
– its states and its transitions – are not modified. About this issue, this simply
leads to verifying that each element of the source side has an equivalent element
on the target side, and vice-versa. As explained in [5], this is an unmodification
contract and it can be fully and automatically generated by means of our tool.
This feature greatly helps the writing of complete contracts.

5 Related Works

In the recent literature, as far as we know, there are no other design by contract
(or related) approaches than ours for model execution verification at runtime,
where models are considered in the context of MDE, that is UML, MOF or Ecore-
like models. The closest work is [14] that proposes a global method for trusting
10 To be complete, the state Closed must also be active. It is not necessary to check

this here because it is already specified through the well-formedness rules ensuring
the coherency of active state hierarchy (see section 3.1).

16 E. Cariou et al.

model-driven components based on contracts, notably for expressing oracles in
model checking techniques. It classifies contracts as entities constituted by basic
and behavioral parts that can match this paper’s semantic levels. [14] points out
the problem of not having a standard for expressing contracts. Our approach can
be an answer to this problem since we propose a structured and implementable
approach for defining well-integrated contracts in executable models.

Even if the goal of [9,11] is the definition of an operational semantics for visual
models (typically UML ones), it can be adapted to be used in a verification
purpose. Its interests is to define model evolution during an execution through
UML collaboration diagrams. The drawback is that UML collaborations are
dedicated to UML and are rarely present under an equivalent form in other
technological spaces. This approach is then hard to generalize within a single
technological space. Moreover, collaboration diagrams are concretely specified
through graph transformations. This requires using another technological space.

Other techniques can be applied for verifying model execution. The main
research field is concerned with model-checking where program verification tech-
niques have been adapted to a modeling context. Not all of these works discuss
directly model execution verification but some of them focus on model trans-
formation verification. Indeed, as seen, model transformations are a way for ex-
pressing a part of a model execution semantics. In all these approaches, a trans-
lational semantics is defined: a model or a model transformation is specified in
another technological space in order to use third-party simulation and/or verifi-
cation tools. For instance, [4] verifies invariants or temporal constraints through
the Maude framework and LTL properties. [7] proposes prioritized timed Petri
nets while [19] stresses the expression of transformations towards colored Petri
nets. [6] allows the specification of a behavioral semantics through abstract state
machines (ASM). The major advantage of these approaches is the capability of
using robust and efficient model-checking techniques. However, they have two
main drawbacks. Firstly, the designer must master these technological spaces in
addition of the technological space in which the meta-model is defined. Secondly,
they require transformations of models from the meta-modeling technological
space to the one of the model-checking tools, and vice-versa. This implies a sup-
plementary work to ensure or prove the correctness of these transformations.
This leads to making these approaches harder to use than integrated contracts
as done in this paper, where a complete execution semantics is straightforwardly
available as a logical and natural extension of a rigorous meta-model specifica-
tion. Furthermore, these model checking approaches are usable at design time,
but they are not at runtime. They however offer more facilities to prove the cor-
rectness of special properties, such as temporal aspects. In this respect, they can
be used as a complementary approach to ours. Moreover, these model-checking
or testing techniques could be used to help in validating a contract. Indeed, it
can be sometimes difficult to ensure that a set of constraints covers all required
specifications and that some of these constraints are not mutually contradictory.

Lastly, discussion about other model transformation contract approaches and
the choice of OCL are available in the related works section of [5].

Contracts for Model Execution Verification 17

6 Conclusion

We present an approach for applying design by contract principles to model
execution. In this paper, execution contracts allow the verification of model exe-
cution at runtime. They can also be used for model-checking at design time. One
of the main interest of our approach is that a full execution semantics specified
through a contract is realized within a single technological space, in a seamlessly
way: an ordinary meta-model definition is directly enriched with execution spec-
ifications. We propose a progressive method for specifying a complete execution
semantics, starting from structural part definitions to behavorial specifications.
This method has the ability of defining execution semantic variants.

We have applied our approach to UML state machine execution. We have ex-
tended the UML meta-model for making state machines executable and defined
the execution semantics through operation specifications in OCL. We in effect
provide a support to verify the correctness of state machine execution for the
MOCAS platform.

This first experimentation has shown the feasibility of our approach. The next
step is to focus on usage of the contract evaluation. Notably, we plan to imple-
ment model checking techniques using our execution contracts as test oracles.
The goal is to be able to execute an executable model through a framework
allowing the simulation of environment interactions. Then, several traces are
built with a set of different entry models and contracts must be valid for all
execution traces. Another perspective is using contract for managing software
adaptation at runtime. Indeed, the MOCAS platform not only executes state
machines, it is dedicated to performing adaptations of software components [1].
A direct application of execution contracts is to guiding the adaptation of the
executed components (e.g., refining the behavior of a component or changing an
operating mode of a component). Contracts can uncover a failure and lead to
executing recovering policies.

References

1. Ballagny, C., Hameurlain, N., Barbier, F.: MOCAS: A State-Based Component
Model for Self-Adaptation. In: Third IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO 2009). IEEE Computer Society, Los
Alamitos (2009)

2. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making Components
Contract Aware. IEEE Computer 32(7) (1999)

3. Bézivin, J., Jouault, F.: Using ATL for Checking Models. In: Intl. Workshop on
Graph and Model Transformation (GraMoT 2005). ENTCS, vol. 152 (2005)

4. Boronat, A., Heckel, R., Meseguer, J.: Rewriting Logic Semantics and Verification
of Model Transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 18–33. Springer, Heidelberg (2009)

5. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL Contracts for the Verification
of Model Transformations. In: Proceedings of the Workshop The Pragmatics of
OCL and Other Textual Specification Languages at MoDELS 2009. Electronic
Communications of the EASST, vol. 24 (2009)

18 E. Cariou et al.

6. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

7. Combemale, B., Crégut, X., Garoche, P.-L., Xavier, T.: Essay on Semantics Def-
inition in MDE – An Instrumented Approach for Model Verification. Journal of
Software 4(9) (2009)

8. Crane, M.L., Dingel, J.: UML vs. Classical vs. Rhapsody Statecharts: not all Mod-
els are created Equal. Software and Systems Modeling 6(4) (2007)

9. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Meta-Modeling: A Graphi-
cal Approach to the Operational Semantics of Behavioral Diagrams in UML. In:
Evans, A., Caskurlu, B., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337.
Springer, Heidelberg (2000)

10. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-Driven Development
Using UML 2.0: Promises and Pitfalls. IEEE Computer 39(2) (2006)

11. Hausmann, J.H.: Dynamic Meta Modeling: A Semantics Description Technique for
Visual Modeling Languages. PhD thesis, University of Paderborn (2005)

12. Le Traon, Y., Baudry, B., Jézéquel, J.-M.: Design by Contract to improve Software
Vigilance. IEEE Transaction on Software Engineering 32(8) (2006)

13. Meyer, B.: Applying “Design by Contract”. IEEE Computer (Special Issue on
Inheritance & Classification) 25(10), 40–52 (1992)

14. Mottu, J.-M., Baudry, B., Le Traon, Y.: Reusable MDA Components: A Testing-
for-Trust Approach. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 589–603. Springer, Heidelberg (2006)

15. OMG. Object Constraint Language (OCL) Specification, version 2.0 (2006),
http://www.omg.org/spec/OCL/2.0/

16. OMG. Unified Modeling Language (UML) Specification, version 2.2 (2009),
http://www.omg.org/spec/UML/2.2/

17. OMG. Semantics of a Foundational Subset for Executable UML Models (fUML),
version 1.0 (2011), http://www.omg.org/spec/FUML/1.0/

18. Pons, C., Baum, G.: Formal Foundations of Object-Oriented Modeling Notations.
In: 3rd International Conference on Formal Engineering Methods (ICFEM 2000).
IEEE, Los Alamitos (2000)

19. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Right or Wrong? – Verification of Model Transformations using Col-
ored Petri Nets. In: 9th OOPSLA Workshop on Domain-Specific Modeling (DSM
2009) (2009)

A FUML-Based Distributed Execution Machine

for Enacting Software Process Models

Ralf Ellner1, Samir Al-Hilank2, Johannes Drexler2, Martin Jung2,
Detlef Kips1,2, and Michael Philippsen1

1 University of Erlangen-Nuremberg, Computer Science Department,
Programming Systems Group, Martensstr. 3, 91058 Erlangen, Germany

{ralf.ellner,philippsen}@cs.fau.de
2 develop group Basys GmbH, Am Weichselgarten 4, 91058 Erlangen, Germany

{alhilank,drexler,jung,kips}@develop-group.de

Abstract. OMG’s SPEM standard allows for a detailed modeling of
software development processes and methods, but only a rather coarse
description of their behavior. This gap can be filled by extending SPEM
with a fine-grained behavior modeling concept based on UML activities
and state machines. In order to gain full benefit from detailed software
process models including behavior, an automated enactment of these
software process models is required.

In theory, the operational semantics of UML activities as defined by
OMG’s FUML (Semantics of a Foundational Subset for Executable UML
Models) could be used to instantiate and sequentially simulate software
process models on a single computer. However, FUML is insufficient to
execute software process models to drive realistic projects with large and
geographically spread teams. FUML lacks support for distributed execu-
tion in order to guide and support team members with their concurrent
activities. FUML also does not fulfill key requirements of software pro-
cesses, in particular requests for human interaction. Additionally, FUML
requires explicit modeling of auxiliary user specific attributes and behav-
ior of model elements, which is a cumbersome, repetitive and error-prone
task and leads to non-reusable standard software process models.

We present the required FUML extensions to support distributed ex-
ecution, human interaction, and to weave in user specific extensions of
the execution machine. With these FUML extensions it becomes feasible
to enact reusable standard software process models in realistic projects.

1 Introduction

Software development processes (SDPs) are widely accepted as a critical factor
in the efficient development of complex and high-quality software and systems.
Beginning with Osterweil’s process programming [1] many process modeling lan-
guages (PML) have been proposed to describe SDPs in more or less abstract,
(semi-)formal ways, see [2,3,4] for an overview. Some of those PMLs are standard-
ized, for example, SEMDM [5] and SPEM [6]. In contrast to SEMDM, SPEM

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 19–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

20 R. Ellner et al.

is based on the UML Infrastructure [7] and defines a graphical notation. Its fa-
miliar high-level notation allows practitioners to pick up SPEM easily. However,
SPEM has been primarily designed to model and document the static structure
of SDPs. Thus, when an SDP is modeled in detail with SPEM this results in
a thorough documentation of the process. Such a well documented process is
valuable or may even be required (e.g., in safety critical projects), but it does
not provide much additional value for the project staff that uses the process
documentation as there is no help in executing the process. Although it has
been a requirement, executability is not in the scope of the current version 2.0
of SPEM, even though it would provide additional benefits (see [1,8,9]):

– Executable software process models can be simulated and thus more easily
validated before using them in a project.

– A process execution machine (PEX) can guide and support the project staff.
– Since a PEX can automatically check conformance of the executed process

with the modeled process, it can detect and prevent process violations.
– A PEX can track progress of the executed process. This is of great use for

process audits, because proofing conformity of the actually executed process
with the modeled process can be partially automated.

In [10] we presented eSPEM, a SPEM extension based on UML activities and
state machines [11]. Beside the UML behavior modeling concepts (for example,
decisions, exceptions, and events), eSPEM provides additional behavior modeling
concepts that are specific to SDPs (e.g., task scheduling). The behavior modeling
concepts in eSPEM can be used to describe the behavior of SDPs in a fine-
grained, formal, but intuitive way. The formality of the SDP behavior description
is required in order to execute it. Another requisite to execute an SDP is the
definition of the operational semantics of the PML used to describe an SDP.

An approach to define the operational semantics of a subset of UML activities
and actions is provided by the OMG standard Semantics of a Foundational
Subset for Executable UML Models (FUML) [12]. FUML provides a mapping
of UML activities and actions to Java and can instantiate and simulate UML
models. However, the Java implementation is limited to a single thread in a single
Java virtual machine (JVM). Consequently, FUML can be used to instantiate
and locally simulate SDPs modeled in PMLs based on UML, for example eSPEM.
We have verified this by implementing a simulator based on the operational
semantics of the concepts we reused from UML (for example, DecisionNode,
ForkNode, and Action), as well as the semantics of the additional behavior
modeling concepts in eSPEM, like task scheduling.

While suitable for local simulation, a FUML-based implementation is in-
sufficient to support distributed process execution needed for typical software
projects that are driven by teams. In such projects, each team member has a
personal workstation and is connected to a network. To be useful in such a
distributed environment [13,2], a FUML-based execution machine for software
processes must be able to:

– share the state of a running software process instance across several nodes
in a network (R1),

A FUML-Based Distributed Execution Machine 21

– suspend and resume execution on different nodes (R2),
– interact with project staff (R3), and
– adapt to the needs of different teams in different organizations (R4).

However, FUML does not meet these requirements, because it was not designed
for a distributed execution environment or to interact with humans. We discuss
the problems that prevent a distributed execution in detail in Sect. 2. Section
3 presents our solutions for the insufficiencies found in FUML in order to meet
all the above requirements. Sect. 4 evaluates our solutions with an exemplary
SDP. In Sect. 5, we compare our execution machine to other existing approaches,
before we conclude and give a brief outlook on the further steps.

2 FUML Architecture

To understand the problems that prevent a distributed execution using FUML,
we start with a brief overview of FUML’s architecture. FUML defines a UML
model named execution model, that acts as a type model for models that store
information about a running instance of an executed UML model. Figure 1 shows
a small excerpt of FUML’s execution model. The elements in the execution model
(e.g., operations) are annotated with their respective Java codes. A Java-based
execution machine can be generated from this annotated execution model.

In the FUML execution model, a Locus is responsible for instantiating classes
from the executed UML model and for holding the instantiated Objects. FUML
uses the visitor design pattern [14] to add operations (that define the operational
semantics) to classes in the UML meta model. A visitor class (for example, those
named *Execution, and *Activation) exists for each supported UML concept.
An ActivityExecution represents a single execution of a UML::Activity(e.g.,

instantiate(type : UML::Class) : Object

Locus

activate(nodes : ActivityNode [0..*],
edges : ActivityEdge [0..*])

ActivityNodeActivationGroup

receiveOffer()
fire(incomingTokens : Token [0..*])

ActivityNodeActivation
0..* nodeActivations

Token

0..* heldTokens

execute()

ActivityExecution

1

activationGroup Object

ExtensionalValue

Execution

Java implementation of this operation:
Activity activity =
(Activity)(this.getTypes().getValue(0));
this.activationGroup = new
ActivityNodeActivationGroup();
this.activationGroup.activate(activity.node,
activity.edge);
...

sendOffer(tokens : Token [0..*])

ActivityEdgeInstance
0..* edgeInstances

target

source1

1

0..*
extensionalValues

Fig. 1. Excerpt of FUML’s execution model

22 R. Ellner et al.

the behavior of a UML::Class from the executed UML model). An Activity-
NodeActivation represents an execution of a UML::ActivityNode. Specializa-
tions of the abstract class ActivityNodeActivation exist in FUML for the
different types of ActivityNodes in UML (e.g., DecisionNode, and Action).

Since UML activity diagrams are based on Colored Petri nets [15,11], FUML
makes use of the essential Petri net concepts like places, transitions, and to-
kens. ActivityNodeActivations are the places and can hold different types
of Tokens. ActivityEdgeInstances offer these Tokens from their source to
their target ActivityNodeActivation. ActivityEdgeInstances act as Petri
net transitions.

Besides the problem that FUML’s implementation does not provide remote
access to the execution model, there are two further issues that prevent a dis-
tributed execution. First, since access to the FUML execution model instance is
not protected by any locking or synchronization mechanism, the existing Java-
based implementation must fail in a distributed and concurrent environment due
to data corruption (P1). Second, FUML uses synchronous, sequential operation
calls to propagate tokens [16]. Thus, the state of the running model instance
is spread across the call stack of the machine (e.g., a JVM) that executes the
FUML implementation, and the corresponding instance of FUML’s execution
model (P2). This contradicts traditional Petri net semantics, where the state of
the Petri net is solely defined by the number of tokens in each place. Fig. 2 shows
an example of a small UML activity diagram and the required interactions of the
execution model objects (some omissions are made for better readability). Each
of the non-UML arrows from the untyped lifelines towards nodes and edges of
the activity diagram denotes the UML element that corresponds to an untyped
lifeline.

A call of receiveOffer transfers tokens from one node to another. Using
this design to suspend (after action A) and to resume execution later (at the
workstation of another team member) requires to preserve the call stack. Another
problem is that large activity diagrams or activity diagrams with cycles may lead
to an overflowing stack due to the recursive receiveOffer calls.

: ActivityNodeActivationGroup

A B

: :: : : ::

receiveOffer
sendOffer

receiveOffer
sendOffer

receiveOffer
sendOffer

receiveOffer

activate

sd

Fig. 2. Activity diagram and behavior realization in FUML

A FUML-Based Distributed Execution Machine 23

3 Distributed Execution Machine Architecture

This section presents our solutions to the two above mentioned FUML problems
that prevent a distributed execution, and it discusses FUML extensions to meet
all of the requirements for a PEX.

3.1 Shared Access to the Execution Model

To fulfill requirement R1 (shared execution model access), we use the Connected
Data Objects (CDO) model repository [17] to manage our execution model in-
stance. As part of the Eclipse Modeling Framework (EMF) [18], CDO provides
transparent access to a shared model in a network, as well as transactions for
safe model manipulations in distributed environments. With CDO we can share
the state of a running software process instance in a network.

3.2 Synchronized Access to the Execution Model

Transactions are a precondition to solve the FUML problem P1 (synchronized
execution model access) in the Java-based implementation. However, their use
requires changes to the operational semantics of FUML, because some of the
essential Petri net properties [15] need to be respected. First, it must be an
atomic operation to fire a transition (to transfer a number of tokens from the
source node(s) to the target node(s)). Second, different transitions may fire con-
currently.

To reflect these properties, we use CDO transactions to isolate firing of single
ActivityEdges (transitions). This includes the receiveOffer call to the target
ActivityNodeActivation, which in turn includes execution of the behavior of
the target node. Thus, moving tokens from one ActivityNodeActivation to
another is now an atomic operation on an execution model instance. This solves
the FUML problem P1 (synchronized execution model access).

To solve the problem P2 (the execution state spread across the call stack and
the execution model), we substitute FUML’s synchronous, sequential receive-
Offer calls (see Fig. 2) with asynchronous calls performing basic Petri net op-
erations. This can be done, because the state of a Petri net is solely defined by
the number of tokens in each place. The information stored on the call stack is
redundant.

Instead of the preceding receiveOffer calls, our implementation triggers the
firing of transitions by means of system events (different from events modeled
in an SDP). Examples are user inputs, time events, and CDO events upon ma-
nipulation of the execution model instance. Depending on the type of event, the
execution machine checks for transitions that can fire, and then fires them in a
single transaction. Figure 3 shows how a model changed event is handled, if A
holds one token and the edge towards B is ready to fire.

Many CDO transactions can manipulate the execution model instance con-
currently, if there are different source and target nodes (places) involved. If the
same source or target node is involved, it is guaranteed that at most one trans-
action can be committed. The other transactions are rolled back. This ensures
a correct number of tokens on each place.

24 R. Ellner et al.

: SessionListenersd

model changed

: Executor

startTransaction

commitTransaction

run

A B

b :: ActivityNodeActivationGroup

step

e :

findEdgesWithOffers : [e]

getTarget : b

receiveOffer

… triggers a further model changed
event, which can be handled by any
SessionListener on any node.

Fig. 3. Activity diagram and behavior realization in eSPEM

With these changes to FUML, we fix both problems and make the execution
machine useful in distributed and concurrent environments. By using system
events to trigger the firing of ActivityEdges, we also fulfilled requirement R2
(suspending and resuming execution on different (network) nodes), because these
system events can be handled by any node in the network. After an event is
handled, the node automatically suspends execution.

3.3 Human Interaction

To meet requirement R3 (human interaction), FUML has to be extended. This
is due to a different focus of UML activities and actions, which are normally
used to transform inputs into outputs, and must be modeled completely in order
to be executable. In contrast to that, one of the essential properties of software
processes is a usually incomplete formal description of their behavior. A process
designer stops modeling the behavior of activities and tasks at some level of
granularity. Instead, the process designer uses either natural language to describe
the activities and tasks, or simply assumes that the project staff knows what to
do in the course of the activities and tasks. In order to execute a software process
modeled in that way, a tight interaction between the PEX and the project staff
is required [1,19]. That is, the PEX is responsible to support the project staff
by planning and controlling their work according to the behavior model. In
opposition to the PEX, the project staff carries out the actual creative work of a
software process. To support this scenario, a PEX must be able to pass control of
the software process execution over to project staff and take back control when
they are finished with their tasks. However, this is out of FUML’s scope.

A FUML-Based Distributed Execution Machine 25

To gain support for interaction with project staff that also fits into our dis-
tributed execution concept, we added to FUML an abstract class Request and
some specializations of this class (see Fig. 4).

Locus

isFulfilled() : Boolean
Request

requestPool0..*

DecisionRequest

suspend(r : Request)
resume(r : Request)

ActivityNodeActivationsource

0..1

Value
0..1 result

ObtainObjectReferenceRequest

Object

Classifier (from eSPEM)
0..1

ExecutionRequest

ParameterValue
0..*inputParameterValuesclassifier

0..1 result target0..1

Fig. 4. Requests in our Execution Model

Execution may be suspended at any ActivityNodeActivation. Suspending
adds a pending Request to the requestPool of the Locus that (transitively) con-
tains the ActivityNodeActivation. The project staff handles these Requests
by editing their properties through the graphical user interface of the PEX.
Editing Requests is secured by CDO transactions and thus can take place con-
currently on any of the workstations. Once a Request is fulfilled, it is removed
from the Locus and execution resumes at the ActivityNodeActivation that is
the source of the Request. Let us discuss the three subtypes of Requests now.

A DecisionRequest is used whenever no input value for the corresponding
DecisionNode can be determined automatically. For example, a Role can be
modeled [10] to choose the value for a DecisionNode as shown in Fig. 5 with one
of the UML behavior modeling extensions available in eSPEM. At runtime, the
PEX can offer these decisions to the ProductOwner who can choose a Value (the
string Yes) as response to the DecisionRequest (see Fig. 5) through the context
menu of our PEX. The PEX then selects the outgoing edge of the DecisionNode.

An ObtainObjectReferenceRequest is used whenever an Object (e.g., an
instance of a Task or a WorkProduct) is required as input for an Action but

Fig. 5. Decision Modeled with eSPEM and DecisionRequest at Runtime

26 R. Ellner et al.

cannot be determined automatically. This is a quite common case when tasks are
planned in advance and are dynamically selected for later execution. A project
member may select an appropriate object (e.g., a pre-planned Task) that con-
forms to the classifier. The PEX then uses the selected object as an input to
perform the Action.

An ExecutionRequest is used whenever an ExecuteWorkAction is invoked
and the WorkDefinition that shall be executed has no behavior modeled. In
this case control over the execution of the target WorkDefinition is passed to
the project staff. When the staff marks the WorkDefinition as finished, control
is passed back to the PEX.

With these extensions of FUML, we meet requirement R3: interaction with
project staff. Requests also work in the distributed environment when handling
them in CDO transactions.

3.4 Instantiation

A reasonable PEX must manage a lot of master data (for example, time spent
on a task). In order to adapt to the needs of different teams and organizations
(requirement R4), this data must be customizable. For example, one organization
might use a PEX to track the time spent on tasks. Another organization may
use a separate time-tracking software. Thus, it must be customizable whether
all tasks have an attribute timeSpent and automatically track the time, or not.
FUML’s generic instantiation mechanism cannot fulfill this requirement, because
it only works with attributes modeled in the instantiated model. To understand
the problem, we discuss FUML’s instantiation in more detail below.

Software modeling and execution using (F)UML, as well as software process
modeling and execution, are engineering domains that make use of several levels
of (ontological) classification [20]. For an example see Fig. 6.

The model representing the language definition (UML meta model) is an on-
tological type model for system models. In the same manner, a system model is
an ontological type model for models that form the state of running system (in-
stance models). To gain support for the three levels of ontological classification,
FUML uses an orthogonal dimension of classification (linguistic classification) as
proposed by the orthogonal classification architecture (OCA) [21]. Fig. 6 shows
these orthogonal dimensions. FUML uses the prototypical concept pattern [20]
to implicitly weave-in the class Object during linguistic instantiation. Therefore,

Instance modelSystem modelLanguage (UML)

Class Person John W.
«ontological»«ontological»

Execution model
Object

«linguistic»

Fig. 6. Classification Levels used in UML/FUML

A FUML-Based Distributed Execution Machine 27

Object implicitly is the base class of all classes modeled in the system model.
As a result, all instantiated elements in the instance model share the same base
attributes and behavior of Object. This pattern can also be found in several
object-oriented programming languages like Java or C#. During instantiation,
FUML creates slots to hold the additional attribute values as modeled in the
system model. However, there is no way to customize the base attributes and be-
havior of Object in FUML. The only way to do this is to explicitly model these
attributes in the process model for every class (for example, by specializing an
abstract class). This is a cumbersome, repetitive and error-prone task. The same
problem occurs when FUML is used for software process execution. Missing cus-
tomization support also leads to non-reusable standard process models, because
they would be polluted with data specific to an organization or project.

In order to fulfill requirement R4, we add support for customization of base
attributes and behavior. We create an extensible type model for the master data
called runtime model, which is an extension of FUML’s execution model. The
users of the PEX can optionally extend the runtime model with a type model
(runtime model extension). Figure 7 shows the runtime model (extension) in
eSPEM’s classification hierarchy.

Our runtime model provides the base attributes and behavior of the instantiable
language constructs in eSPEM for example TaskDefinition and WorkProduct.
These attributes are required by our PEX in order to work properly. In contrast
to FUML, elements from the process model are not (ontologically) instantiated by
instantiating a generic class (Object) from the executionmodel. Instead,when exe-
cuting aprocessmodel, a typemodel calledprocess runtimemodel is createdon-the-
fly by a configurable model-to-model (M2M) transformation. During this transfor-
mation,classes fromourruntimemodel (oraruntimemodelextension)arewoven-in

Language (eSPEM) Process Model Process Instance

Process Runtime Model

Runtime Model Extension
(optional, user definable)

Runtime Model

Execution Model

TaskDefinition

expectedNum : Integer

«TaskDefinition»
Elicit Requirements

«ontological» effort = 8
timeSpent = 7.8
expectedNum = 10

: Elicit Requirements

«ontological»

Object

effort : Integer
BaseTaskInstance

expectedNum : Integer
Elicit Requirements

«linguistic»

timeSpent : Real

BaseTaskInstanceExt

M2M Transformation

Fig. 7. Classification Levels used in eSPEM

28 R. Ellner et al.

as base classes for the classes from the process runtime model. The used base class
from the runtime model (extension) is determined by the type of the corresponding
process model element and the configuration of the transformation. For example,
BaseTaskInstance (or BaseTaskInstanceExt) is configured as base class for all
instances of TaskDefinition. Therefore, these instances share all the attributes
and the behavior inherited from BaseTaskInstance (or BaseTaskInstanceExt).
The behavior of the base classes can be implemented by the users of the PEX, for
example, using a programming language.We use EMF models for linguistic instan-
tiation. Thus, additional behavior of classes in a runtime model extension can be
addedby implementingmethods in theEMF-generatedJavacode.For convenience,
the Java code generated for a process runtime model is transparentlydistributed to
all workstations.

With the concept presented in this section, we fulfill requirement R4: support
for customization of base attributes and behavior. By weaving-in customizations
contained in a runtime model extension as an aspect, there is no need to pollute
SDP models with this data. Therefore, standard software process models can be
easily reused by different teams and organizations.

4 Evaluation

To test our FUML-based implementation of eSPEM’s operational semantics, we
have implemented a test suite. Each test in this suite uses a small process model
to test a specific language construct, for example, DecisionNode, ForkNode, or
ExecuteActivityAction. In addition to the functional test, we also test some
non-functional properties like maximum execution time.

4.1 Exemplary SDP

In addition to these tests that focus on functionality of individual language
constructs, we have evaluated our PEX by executing an exemplary SDP in a
controlled environment. The used SDP is based on Scrum [22] with changes to
simplify automated testing. Scrum is an iterative incremental SDP. An itera-
tion usually takes 4 weeks and is called sprint. At the beginning of each sprint,
the features are selected that form the product increment developed in that
sprint. Then, activities are planned to implement these features. Figure 8 shows
the behavior of Implement Feature (with its sub-tasks) used to implement

Exec: Understand Requirements

Exec: Test

Exec: Code

Complete?

[No]
[Yes]

RoleUse
Team

◄ decides

Implement Feature

Fig. 8. Behavior of Implement Feature in the Exemplary SDP

A FUML-Based Distributed Execution Machine 29

one feature. The rest of the exemplary SDP consists of an infinite loop that
instantiates and executes several Implement Feature activities.

4.2 Test Setup

Our test setup consists of 6 PCs connected by a local network. One PC acts as
the server for the execution model instance and the execution machine. The other
5 PCs act as clients and simulate human interaction with the execution machine
by answering Requests. Tests are performed with 1, 2, 3, 10, and 20 execution
machine clients running simultaneously on each of the 5 client PCs to simu-
late different project sizes. We measure the execution time of each transaction
on the execution model instance. The benchmark considers five different types
of transactions. Server: The transactions that isolate the firing of transitions.
These transactions are usually faster, because the execution machine is running
within the same JVM as the execution model instance server (local loopback).
Planning: These transactions isolate instantiation of Implement Feature activ-
ities on a client. Understand transactions isolate execution of an Understand
Requirements task by a client. In the same way, Test and Code isolate exe-
cution of Test and Code tasks. The decision whether a feature is completely
implemented or not, is isolated by Finished transactions. The average execution
time for these transactions with 5, 10, 15, 50, and 100 execution machine clients
concurrently working on the execution model instance, is shown in Fig. 9.

0 ms
10 ms
20 ms
30 ms
40 ms
50 ms
60 ms
70 ms
80 ms
90 ms

100 ms

Server Planning Underst. Test Code Finished

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

Transaction Type

5

10

15

50

100

Fig. 9. Average Execution Time vs. Transaction Type for Different Numbers of Clients

Our tests show that execution time of typical transactions is below 100 ms.
Hence, we consider this a sufficient response time for human interaction, even if
the PEX is under high load with connections from many clients. These clients
are running automated tests that handle requests within a second. In contrast,
humans are considered to have a few interactions per hour with a PEX.

5 Related Work

Many authors have identified executability as highly relevant for (software) pro-
cess modeling. Although first descriptions of software processes with process

30 R. Ellner et al.

programming languages were executable [1] (some even supported distributed
execution; see [2]), they had limited impact in industry due to their complex for-
malisms or low level of abstraction [13]. Therefore, below we focus on approaches
that are based on standardized high-level modeling languages.

BPMN [23] or WS-BPEL [24] and its extension for People [25] were created
to model and execute business processes. Although they provide a reasonable
behavior modeling and execution concept, they do not provide essential con-
cepts from SDPs, like roles, guidelines, responsibility assignments, and tools.
These concepts have to be modeled by means of BPEL variables or cannot be
modeled at all [19]. Thus, SDP descriptions with business process languages are
incomplete and limit the support a PEX can provide when executing them.

Bendraou et al. [26] present xSPEM and focus on SDP validation with timed
Petri nets. xSPEM also adds events for SPEM activities but lacks a fine-grained
behavior modeling approach with decisions and task scheduling. Furthermore,
no tool is provided to support direct execution of xSPEM-based models.

Seidita et al. [27] extend SPEM to support the modeling of agent oriented
methodologies [28] but do not focus on executability.

UML4SPM [29] extends SPEM 1.1 with UML 2.0 behavior modeling con-
cepts. There are two ways to make UML4SPM-based models executable. First,
UML4SPM is mapped to WS-BPEL for enactment support [19]. As mentioned
above, business processes lack some of the essential concepts of software pro-
cesses, for example, roles, and guidelines. Moreover, the language WS-BPEL
does not support human interaction during execution. Second, the operational
semantics of UML4SPM is defined based on FUML. In [30], FUML’s execution
model concept is woven into UML4SPM using Kermeta [31]. Another imple-
mentation of UML4SPM based on FUML and Java is presented in [9]. Both im-
plementations allow for a direct simulation and execution of UML4SPM-based
process models, but they lack distributed execution support.

Di Nitto et al. [32] model SDP’s with a UML 1.3-based framework. They do
not use a dedicated meta model for language definition, but rather use plain
UML. The proposed framework elements (e.g., Activity) are all instances of
the UML meta class Class. SDPs are modeled by specializing the framework
elements. This approach achieves executability by generating Java code from
the diagrams (Class, Activity, and State Machine diagrams) used to describe
an SDP. However, it remains vague how essential aspects of software processes
(for example, precedence of activities) are translated. Another major drawback
is the lack of a real modeling language definition. The sole use of UML classes
may also confuse process modelers because all model elements have the same
notation and semantics.

Chou [33] uses a subset of UML 1.4 activity and class diagrams to model
SDPs graphically. He proposes a supplemental low-level object-oriented process
programming language to execute SDPs. However, the executable code must be
manually derived from the diagrams.

Besides SPEM, there is another standardized meta model driven approach
for describing development methodologies: the ISO/IEC standard SEMDM [5].

A FUML-Based Distributed Execution Machine 31

However, SEMDM lacks a fine-grained behavior modeling concept and no exe-
cution support is currently provided.

Engels et al. [34] show how plain UML 2.0 can be used for process modeling.
However, since essential concepts of SDP modeling are missing in UML (e.g.,
work products and responsibility assignments) the resulting SDPs are incomplete
and imprecise so that support by a PEX must be limited.

Other approaches use UML and extensions through stereotypes for SDP mod-
eling, for example [35] and the SPEM standard [6] itself, which also defines a
UML profile. This allows to use behavior modeling concepts from UML with
standard UML tools for modeling SDPs. Additionally, at least parts of the mod-
els could be executed using FUML. However, all of these approaches suffer from
the fact that stereotypes change the semantics of the UML elements they are ap-
plied to but have no influence on the language structure as defined by the UML
meta model. This results in two drawbacks: First, the SDP modeling language
structure has to be re-implemented, for example, as constraints for the stereo-
types. Second, the operational semantics of the stereotypes has to be defined
and integrated with FUML in order to provide reasonable execution support. As
outlined above, FUML also has a different focus and does not provide essential
concepts like human interaction.

Benyahia et al. [16] extend FUML to reflect additional requirements on the
execution semantics for real-time systems (e.g., scheduling, and concurrency).
The authors highlight similar problems with FUML’s Java mapping using syn-
chronous, sequential method calls for token and event propagation. They intro-
duce the class Scheduler in the execution model that is responsible to dispatch
actions and therefore break the strictly sequential execution in FUML. However,
they do not support distributed execution.

Regarding instantiation, several other approaches exist that enable multi-level
modeling. Atkinson and Kühne discuss some of them in [21]. We briefly discuss
the two most prominent of them below.

The powertype pattern [36] (used by SEMDM [5,37]) uses a special rela-
tionship between two classes (powertype and partitioned type). The powertype
instantiates objects that form the process model. In conjunction with a special-
ization of the partitioned type, these objects form a so called clabject. The name
is derived from class and object, because a clabject has both a class facet and
an object facet. Objects at process instance level are instantiated from the class
facet. The powertype pattern still uses one level of instantiation (shallow instan-
tiation), but with generalization relationships crossing the ontological instantia-
tion layers. This violates a strict separation of classification levels as requested
by strict meta modeling [20] and may lead to confusion [38]. FUML and our ap-
proach use an instantiation concept well aligned with orthogonal classification
architecture that also conforms to the rules of strict meta modeling.

Atkinson and Kühne [21,39] present another approach to multi-level modeling
called deep instantiation, which allows to annotate elements of type models (for
example, classes and attributes) with a non-negative number called potency.
With each instantiation step, potency is decreased by 1. An element with potency

32 R. Ellner et al.

above 0 can be further instantiated. With potency 0, it behaves like a normal
object or attribute instance. Although this is a generic approach for multi-level
classification, its application to established standards like UML and SPEM is
problematic [40,41].

6 Conclusion and Future Work

In this paper, we have identified why pure FUML cannot be used to execute
software process models to drive realistic projects with large and distributed
teams. The presented FUML extension supports distributed execution with syn-
chronized access to a shared execution model instance. In addition, it supports
suspending and resuming execution on different nodes, as well as requests to
interact with project staff. Our extension of FUML’s instantiation concept al-
lows organizations and projects to easily weave-in their specific attributes and
behavior in order to tailor the execution machine to their needs. As a result, the
extended FUML can be used to enact reusable standard software process models
in realistic projects.

Our work is also useful for other PMLs based on UML behavior modeling
concepts and for a concurrent execution of UML models in general. With small
modifications of the M2M transformation, our instantiation concept could also
be used to weave-in specific behavior for UML elements with stereotypes and
therefore implement the semantics of the stereotypes.

In the future, we will focus on implementing the operational semantics of state
machines, which are currently missing in both FUML and our FUML-extension.
We also plan to enhance our PEX to integrate existing tools and their data
formats. Another topic of our future work is process evolution: Process evolution
is considered crucial if a model is executed over a long time (duration of the
development project) and the process model or the runtime extension model
has to be changed, for example, due to an error in the process model. Process
evolution should allow for an (semi-)automatic adaptation of the process instance
model to the changed process model or runtime extension model.

References

1. Osterweil, L.J.: Software processes are software too. In: Proc. 9th Intl. Conf. on
Softw. Eng., Monterey, CA, pp. 2–13 (April 1987)

2. Zamli, K., Lee, P.: Taxonomy of Process Modeling Languages. In: Proc. ACS/IEEE
Intl. Conf. on Computer Sys. and Appl., Beirut, Lebanon, 435–437 (June 2001)

3. Acuña, S.T., Ferré, X.: Software Process Modelling. In: Proc. World Multiconf. on
Systemics, Cybernetics and Informatics, Orlando, FL, pp. 237–242 (July 2001)

4. Bendraou, R., Jezequel, J.M., Gervais, M.P., Blanc, X.: A Comparison of Six UML-
Based Languages for Software Process Modeling. IEEE Trans. Softw. Eng. 36,
662–675 (2010)

5. ISO/IEC: ISO/IEC 24744:2007 – Software Engineering – Metamodel for Develop-
ment Methodologies (February 2007)

A FUML-Based Distributed Execution Machine 33

6. Object Management Group: Software & Systems Process Engineering Meta-Model
Specification v2.0 (April 2008)

7. Object Management Group: UML: Infrastructure v2.2 (February 2009)
8. Almeida da Silva, M.A., Bendraou, R., Blanc, X., Gervais, M.-P.: Early Deviation

Detection in Modeling Activities of MDE Processes. In: Petriu, D.C., Rouquette,
N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 303–317. Springer,
Heidelberg (2010)

9. Bendraou, R., Jezéquél, J.M., Fleurey, F.: Achieving process modeling and execu-
tion through the combination of aspect and model-driven engineering approaches.
J. of Softw. Maintenance and Evolution: Research & Practice (2010) (preprint) n/a

10. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: eSPEM
– A SPEM Extension for Enactable Behavior Modeling. In: Kühne, T., Selic, B.,
Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 116–131.
Springer, Heidelberg (2010)

11. Object Management Group: UML: Superstructure v2.2 (February 2009)
12. Object Management Group: Semantics of a Foundational Subset for Executable

UML Models v1.0 Beta 3 (March 2010)
13. Gruhn, V.: Process Centered Software Engineering Environments – A Brief History

and Future Challenges. Annals of Softw. Eng. 14(1-4), 363–382 (2002)
14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)
15. Jensen, K.: Coloured Petri nets. Springer, Heidelberg (1995)
16. Benyahia, A., Cuccuru, A., Taha, S., Terrier, F., Boulanger, F., Gérard, S.: Extend-

ing the Standard Execution Model of UML for Real-Time Systems. In: Hinchey,
M., Kleinjohann, B., Kleinjohann, L., Lindsay, P.A., Rammig, F.J., Timmis, J.,
Wolf, M. (eds.) DIPES 2010. IFIP Advances in Information and Communication
Technology, vol. 329, pp. 43–54. Springer, Heidelberg (2010)

17. Eclipse Foundation: Connected Data Objects (CDO) Model Repository,
http://www.eclipse.org/cdo/

18. Eclipse Foundation: Eclipse Modeling Framework (EMF),
http://www.eclipse.org/modeling/emf/

19. Bendraou, R., Sadovykh, A., Gervais, M.P., Blanc, X.: Software Process
Modeling and Execution: The UML4SPM to WS-BPEL Approach. In: Proc. 33rd
EUROMICRO Conf. on Softw. Eng. and Adv. Appl., Lübeck, Germany, pp. 314–
321 (August 2007)

20. Atkinson, C., Kühne, T.: Processes and products in a multi-level metamodeling
architecture. Intl. J. Softw. Eng. and Knowledge Eng. 11(6), 761–783 (2001)

21. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001)

22. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond
(2004)

23. Object Management Group: Business Process Modeling Notation v1.2 (January
2009)

24. OASIS: Web Services Business Process Execution Language v2.0 (April 2007)
25. Active Endpoints Inc., Adobe Systems Inc., BEA Systems Inc., IBM Corp., Oracle

Inc., and SAP AG: WS-BPEL Extension for People (BPEL4People), v1.0 (June
2007)

26. Bendraou, R., Combemale, B., Crégut, X., Gervais, M.P.: Definition of an Exe-
cutable SPEM 2.0. In: Proc. 14th Asia-Pacific Softw. Eng. Conf., Nagoya, Japan,
pp. 390–397 (December 2007)

34 R. Ellner et al.

27. Seidita, V., Cossentino, M., Gaglio, S.: Using and Extending the SPEM Specifi-
cations to Represent Agent Oriented Methodologies. In: Proc. 9th Intl. Workshop
Agent-Oriented Softw. Eng., Estoril, Portugal, pp. 46–59 (May 2008)

28. Henderson-Sellers, B., Giorgini, P.: Agent-Oriented Methodologies. Idea Group,
USA (2005)

29. Bendraou, R., Gervais, M.P., Blanc, X.: UML4SPM: A UML2.0-Based Metamodel
for Software Process Modelling. In: Briand, L.C., Williams, C. (eds.) MoDELS
2005. LNCS, vol. 3713, pp. 17–38. Springer, Heidelberg (2005)

30. Bendraou, R., Jezéquél, J.M., Fleurey, F.: Combining Aspect and Model-Driven
Engineering Approaches for Software Process Modeling and Execution. In: Wang,
Q., Garousi, V., Madachy, R., Pfahl, D. (eds.) ICSP 2009. LNCS, vol. 5543, pp.
148–160. Springer, Heidelberg (2009)

31. Muller, P.A., Fleurey, F., Jezéquél, J.M.: Weaving Executability into Object-
Oriented Meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

32. Di Nitto, E., Lavazza, L., Schiavoni, M., Tracanella, E., Trombetta, M.: Deriving
executable process descriptions from UML. In: Proc. 24th Intl. Conf. on Softw.
Eng., Orlando, FL, pp. 155–165 (May 2002)

33. Chou, S.C.: A Process Modeling Language Consisting of High Level UML-based
Diagrams and Low Level Process Language. J. of Object Technology 1(4), 137–163
(2002)

34. Engels, G., Förster, A., Heckel, R., Thöne, S.: Process Modeling using UML. In:
Dumas, M., van der Aalst, W., ter Hofstede, A. (eds.) Process-Aware Information
Sys., pp. 85–117. John Wiley & Sons, Chichester (2005)

35. Jäger, D., Schleicher, A., Westfechtel, B.: Using UML for Software Process Mod-
eling. In: Proc. 7th European Softw. Eng. Conf., Toulouse, France, pp. 91–108
(September 1999)

36. Odell, J.J.: Power types. J. of Object-Oriented Programming 7(2), 8–12 (1994)
37. Henderson-Sellers, B., Gonzalez-Perez, C.: The Rationale of Powertype-based

Metamodelling to Underpin Software Development Methodologies. In: Proc. 2nd
Asia-Pacific Conf. on Conceptual Model., Newcastle, Australia, pp. 7–16 (January
2005)

38. Kühne, T.: Contrasting classification with generalisation. In: Proc. 6th Asia-Pacific
Conf. on Conceptual Model., Wellington, New Zealand, pp. 71–78 (January 2009)

39. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12(4), 290–321 (2002)

40. Gutheil, M., Kennel, B., Atkinson, C.: A systematic approach to connectors in a
multi-level modeling environment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 843–857. Springer,
Heidelberg (2008)

41. Atkinson, C., Gutheil, M., Kennel, B.: A flexible infrastructure for multilevel lan-
guage engineering. IEEE Trans. Softw. Eng. 35, 742–755 (2009)

A Generic Tool for Tracing Executions Back to a

DSML’s Operational Semantics

Benôıt Combemale1,�, Laure Gonnord2, and Vlad Rusu2

1 University of Rennes 1, IRISA, Campus de Beaulieu, Rennes, France
INRIA Rennes - Bretagne Atlantique (Triskell Project)

2 LIFL - UMR CNRS/USTL 8022, INRIA Lille - Nord Europe
(DaRT Project) 40 avenue Halley, 59650 Villeneuve d’Ascq, France

First.Last@inria.fr

Abstract. The increasing complexity of software development requires
rigorously defined domain specific modeling languages (dsml). Model-
driven engineering (mde) allows users to define a dsml’s syntax in terms
of metamodels. The behaviour of a language can also be described, ei-
ther operationally, or via transformations to other languages (e.g., by
code generation). If the first approach requires to redefine analysis tools
for each dsml (simulator, model-checker...), the second approach allows
to reuse existing tools in the targeted language. However, the second ap-
proach (also called translational semantics) imply that the results (e.g.,
a program crash log, or a counterexample returned by a model checker)
may not be straightforward to interpret by the users of a dsml. We pro-
pose in this paper a generic tool for formally tracing such analysis/execu-
tion results back to the original dsml’s syntax and operational semantics,
and we illustrate it on xSPEM, a timed process modeling language.

1 Introduction

The design of a Domain-Specific Modeling Language (dsml) involves the def-
inition of a metamodel, which identifies the domain-specific concepts and the
relations between them. The metamodel formally defines the language’s abstract
syntax. Several works - [6,11,16], among others - have focused on how to help
users define operational semantics for their languages in order to enable model
execution and formal analyses such as model checking. Such analyses are espe-
cially important when the domain addressed by a language is safety critical.

However, grounding a formal analysis on a dsml’s syntax and operational
semantics would require building a specific verification tool for each dsml; for
example, a model checker that “reads” the syntax of the dsml and “understands”
the dsml’s operational semantics. This is not realistic in practice.

Also, any realistic language will eventually have to be executed, and this
usually involves code generation to some other language. Hence, model execution,
resp. formal analyses, are performed via transformations of a source dsml to

� This work has been partially supported by the ITEA2 OPEES project.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 35–51, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

36 B. Combemale, L. Gonnord, and V. Rusu

some target language (the language chosen for code generation, resp. the input
language of a model checker). The consequence is that execution and analysis
results are typically not understandable by the source dsml practitioners. Hence,
there should be a translation of the execution/analysis results back to the source.

In this paper we address the problem of formally tracing back results that
are finite executions of a target language (that could have been obtained, e.g.,
as counterexamples to safety properties in a model checker, or as program crash
logs) to executions of a source dsml, thereby allowing the dsml users to un-
derstand the results and to take action based on them. We propose a generic
algorithm and its implementation in a dsml-independent tool to achieve this.

Our approach is illustrated in Figure 1. A forward translation typically im-
plemented as a model transformation translates a dsml to a target language.
Consider then an execution of that language, represented at the bottom of Fig-
ure 1. The back-tracing algorithm maps that execution to one that matches it in
the source dsml, according to its syntax and operational semantics. We formally
define this algorithm in the paper, and implement it in an mde framework, using
an aspect-oriented paradigm to make it reusable and generic for a broad class
of dsml: those whose operational semantics are definable as finitely-branching
transition systems (i.e., allowing for finite nondeterminism), and for executions
of the target language presented as finite, totally ordered sequences of states.

The algorithm is parameterized by a relation R (depicted in Figure 1 using
dashed lines) between states of the dsml and states of the target language; and
by a natural number n that encodes an upper bound on the allowed “difference
in granularity” between executions of the dsml and of the target language.

Our algorithm does not require the precondition that R is a bisimulation or a
simulation relation between transition systems; indeed, detects situations where
R is not so. However, in the case that R was proved to be such a relation (typ-
ically, in a theorem prover, as in, e.g., [5]) , our algorithm nicely complements
the proof, by obtaining the parameters R and n that it needs, and by explic-
itly finding which dsml executions match a given target-language execution.
Specifically,
– our algorithm requires the parameters R and n as inputs, and one can rea-

sonably assume that these parameters characterise the bisimulation relation
against which the model transformations was verified; hence, our algorithm
benefits from that verification by obtaining two of its crucial inputs;

– our algorithm provides information that model transformation verification
does not: dsml executions that correspond to given target-language ones.

Target Language

Forward Translation
Backward-Tracing Algorithm
(matching executions)

(model transformation)

dsml

Fig. 1. Back-tracing executions

A Generic Tool for Tracing Executions 37

Also, by combining model transformation verification with our back-tracing al-
gorithm, we completely relieve dsml users of having to know anything about
the target language. This is important for such formal methods to be accepted
in practice. A typical use of the combined approach by a dsml user would be:

– the user chooses a model conforming to the dsml, and a safety property;
– the model transformation automatically maps the model and property to

the target language, here assumed to be the language of a model checker;
– the model checker runs automatically, producing the following output:

• either ok, meaning that the property holds on the domain-specific model;
• or a counterexample (in terms of the target language), that our tool

automatically maps to an execution in terms of the source dsml.

This is an interesting (in our opinion) combination of theorem proving (for model
transformation) and model checking (for model verification), set in the mde and
aspect-oriented paradigms to provide a dsml-independent implementation.

The rest of the paper is organized as follows. In Section 2 we illustrate our ap-
proach on an example (borrowed from [5]) of a process modeling language called
xspem, transformed into Prioritized Time Petri Nets for verification by model
checking. In Section 3 we present the generic implementation of our tool based
on the advanced mde capabilities and aspect-oriented features provided by the
kermeta environment [11], and we show the results of the implementation on
the example discussed in Section 2. In Section 4 we detail the back-tracing algo-
rithm implemented by the tool, and formally state its correctness. In Section 5
we present related work, and we conclude and suggest future work in Section 6.

2 Running Example

In this section we present a running example and briefly illustrate our approach
on it. The example is a dsml called xspem [1], an executable version of the
spem standard [14]. A transformation from xspem to Prioritized Time Petri
Nets (PrTPN) was defined in [5] in order to benefit from the Tina verification
toolsuite [2]. They have also proved (using the coq proof assistant) that this
model transformation induces a weak bisimulation between any xspem model’s
behavior and the behavior of the corresponding PrTPN. This implies in par-
ticular that for every PrTPN P and every execution of P returned by Tina -
for instance, as a counterexample to a safety property - there exists a matching
execution in the xspem model that transforms to P . However, their approach
does not exhibit which xspem execution matches a given PrTPN execution.

This is the problem we address in this paper, with a generic approach that
we instantiate on the particular case of the xspem-to-PrTPN transformation.

In the rest of this section we briefly describe the xspem language (Section 2.1):
its abstract syntax, defined by the metamodel shown in Figure 2, and its opera-
tional semantics. After recalling a brief description of PrTPN (Section 2.2), we
illustrate the model transformation on a model (Section 2.3). Finally, we show
the expected result of our algorithm on this example (Section 2.4).

38 B. Combemale, L. Gonnord, and V. Rusu

Activity
name: String
tmin: Int
tmax: Int
state: ActivityStateKind
timeState: TimeStateKind
startTime: Int
/currentTime: Int

startable():Bool
finishable():Bool
start()
finish()

WorkSequence
kind: WorkSequenceKind

<<enumeration>>
WorkSequenceKind

finishToStart
finishToFinish
startToStart
startToFinish

1
predecessor

linkToSuccessor

0..*

successor
1

0..*

linkToPredecessor

<<enumeration>>
ActivityStateKind

notStarted
inProgress
finished

<<enumeration>>
TimeStateKind

ok
tooLate
tooEarly
undefined

Process
globalTime: Int

 0..* activities

 workSequences 0..*

run()
incrementTime()

pA : Activity
tmin = 3
tmax = 6
state = notStarted
timeState = undefined
startTime = 0

pB : Activity
tmin = 5
tmax = 7
state = notStarted
timeState = undefined
startTime = 0

: Process
globalTime = 0

: WorkSequence
kind = finishToFinish

activitiesactivities

workSequences

successor

predecessor

 linkToSuccessor

linkToPredecessor

Fig. 2. xSPEM (simplified) metamodel and a model example

2.1 The xSPEM Language and Its Operational Semantics

In the metamodel shown in Figure 2 (left), an Activity represents a general
unit of work assignable to specific performers. Activities are ordered thanks to
the WorkSequence concept, whose attribute kind indicates when an activity can
be started or finished. The values of kind are defined by the WorkSequenceKind
enumeration. Values have the form stateToAction where state indicates the state
of the work sequence’s source activity that allows to perform the action on the
work sequence’s target activity. For example, in the right-hand side of Figure 2,
the two activities pA and pB are linked by a WorkSequence of kind finishToFin-
ish, which expresses that pB will be allowed to complete its execution only when
pA is finished. The tmin and tmax attributes of the Activity class denote the
minimum and, respectively, the maximum duration of activities.

Operational Semantics. The following attributes and methods (written in bold
font in Figure 2) are used for defining the system’s state and operational seman-
tics1. An activity can be notStarted, inProgress, or finished (state attribute).
When it is finished an activity can be tooEarly, ok, or tooLate (timeState at-
tribute), depending on whether it has completed its execution in the intervals
[0, tmin[, [tmin, tmax [, or [tmax ,∞[respectively (all intervals are left-closed,
right-open). The timeState value is undefined while an activity is not finished.

Time is measured by a global clock, encoded by the globalTime attribute of
the Process class, which is incremented by the incrementTime() method of the
class. The remaining attributes and methods are used to implement the state
and time changes for each activity; startTime denotes the starting moment of a
given activity, and the derived attribute currentTime records (for implementa-
tion reasons) the difference between globalTime and startTime (i.e., the current
execution time of a given activity). Finally, the startable() (resp. finishable())

1 Defining state and operational semantics using attributes and methods is consistent
with the Kermeta framework [11] in which we implement our tool.

A Generic Tool for Tracing Executions 39

methods check whether an activity can be started (resp. finished), and the start()
and finish() methods change the activity’s state accordingly.

Definition 1. The state of an xspem model defining the set of activities A is the
Cartesian product {globalTime} × Πa∈A(a.state, a.timeState, a.currentTime).

The initial state is {0} × Πa∈A{(notStarted , undefined , 0)}. The method run of
the Process class implements this initialisation (Figure 2). The transition relation
consists of the following transitions, implemented by the following methods:
– for each activity a ∈ A, the transitions shown in Figure 3. The first one

starts the activity (implemented by the method start of the Activity class).
An activity can be started when its associated constraints (written in the
ocl language in Figure 3) are satisfied. These constraints are implemented in
the startable() method of the metamodel. The three remaining transitions
deal with finishing activities, depending on whether the activity ends too
early, in time, or too late.

– the method incrementTime of Process increments the globalTime . It can be
called at any moment. The values of a.currentTime are derived accordingly.

∀ws ∈ a.linkToPredecessor,
(ws.linkType = startToStart && ws.predecessor.state ∈ {inProgress, finished})

|| (ws.linkType = finishToStart && ws.predecessor.state = finished)

(notStarted, undefined, a.currentTime)
start−→ (inProgress, tooEarly, 0)

∀ws ∈ a.linkToPredecessor,
(ws.linkType = startToFinish && ws.predecessor.state ∈ {inProgress, finished})

|| (ws.linkType = finishToFinish && ws.predecessor.state = finished)
if a.currentTime < a.tmin then

(inProgress, tooEarly, a.currentTime)
finish−→ (finished, tooEarly, a.currentTime)

if a.currentTime ∈ [a.tmin, a.tmax[then

(inProgress, ok, a.currentTime)
finish−→ (finished, ok, a.currentTime)

if a.currentTime ≥ a.tmax then

(inProgress, tooLate, a.currentTime)
finish−→ (finished, tooLate, a.currentTime)

Fig. 3. Event-based Transition Relation for Activities

2.2 Prioritized Time Petri Nets

We translate xspem to Prioritized Time Petri Nets (PrTPN) for model checking.
A Petri Net (PN) example is shown in the left-hand side of Figure 4. Let us

quickly and informally recall their vocabulary and semantics. A PN is composed
of places and transitions, connected by oriented Arcs. A marking is a mapping
from places to natural numbers, expressing the number of tokens in each place
(represented by bullet in a place). A transition is enabled in a marking when
all its predecessor (a.k.a. input) places contain at least the number of tokens
specified by the arc connecting the place to the transition (1 by default when
not represented). If this is the case then the transition can be fired, thereby
removing the number of tokens specified by the input arc from each of its input
places, and adding the number of tokens specified by the output arc to each of
its successor (a.k.a. output) places. In the extended Petri net formalism that we

40 B. Combemale, L. Gonnord, and V. Rusu

p0 p2

p1
t1

2

�

�

�

p0 p2

p1
t1

t2

�

�

]1,∞]

[0,∞]

Fig. 4. A Petri Net and a Prioritized Time Petri Net

are using there is an exception to this transition-firing rule: if an input place
is connected by a read-arc (denoted by a black circle) to a transition, then the
number of tokens in this input place remains unchanged when the transition is
fired. An execution of a Petri net is then a sequence of markings and transitions
m0, t1, m1, . . . , tn, mn (for n ≥ 0) starting from a given initial marking m0, such
that each marking mi is obtained by firing the transition ti from the marking
mi−1 (for i = 0, . . . , n) according to the transition-firing rule.

Time Petri Nets (TPN) [9] are an extension of Petri Nets, dedicated to the
specification of real-time systems. TPN are PN in which each transition ti is
associated to a firing interval that has non-negative rational end-points. Exe-
cutions are now sequences of the form (m0, τ0), t1, (m1, τ1) . . . , tn, (mn, τn) (for
n ≥ 0), starting from a given initial marking m0 at time τ0 = 0, and such
that each marking mi is obtained by firing the transition ti at time τi from the
marking mi−1 (for i = 1, . . . , n) according to the transition-firing rule.

Finally, Prioritized Time Petri Nets (PrTPN) [3] allows for priorities between
transitions. When two transitions can both be fired at the same time, the one
that is actually fired is the one that has higher priority (the priorities are denoted
by dotted arrows in the right-hand side of Figure 4 - the source of the arrow
denotes the higher priority).

2.3 A Transformation from xSPEM to PrTPN

In [5] we have defined a model transformation from xspem to PrTPN. We illus-
trate this transformation by presenting its output when given as input the xspem
model shown in the right-hand side of Figure 2. The result is shown in Figure 5.
Each Activity is translated into seven places, connected by four transitions:

– Three places characterize the value of state attribute (NotStarted, InProgress,
Finished). One additional place called Started is added to record the fact
that the activity has been started, and may be either inProgress or finished.

– The three remaining places characterize the value of the time attribute:
tooEarly when the activity ends before tmin, tooLate when the activity ends
after tmax, and ok when the activity ends in due time.

We rely on priorities among transitions to encode temporal constraints. As an
example, the deadline transition has a priority over the finish one (cf. Figure 5).
This encodes the fact that the termination interval [tmin, tmax [is right-open.

Finally, a WorkSequence instance becomes a read-arc from one place of the
source activity, to a transition of the target activity according to the kind
attribute of the WorkSequence. In our example, kind equals finishToFinish,

A Generic Tool for Tracing Executions 41

pA notStarted pA inProgress pA finished

pA started

pA tooEarly pA ok pA tooLate

pB notStarted pB inProgress pB finished

pB started

pB tooEarly pB ok pB tooLate

[0,∞[[0,∞[

[3, 3] [3, 3]

�

�

pB

pA
[0,∞[[0,∞[

[5, 5] [2, 2]

�

�

�pA start pA finish

pA lock pA deadline

pB start pB finish

pB lock pB deadline

Fig. 5. PrTPN obtained from the xspem model in Figure 2 (right). The initial marking
has one token in each of the pA notStarted and pB notStarted places.

meaning that pA has to complete its execution before pB finishes; hence the
read-arc in Figure 5 from the pA finished place to the pB finish transition.

2.4 An Illustration of Our Back-Tracing Algorithm

The PrTPN obtained from the transformation of a given xspem model can be
analyzed by the Tina model checker. For example, to exhibit an execution where
both activities end on time, we challenge Tina to prove that such an execution
does not exist. This is expressed by the following temporal-logic formula:

�¬ (pA finished ∧ pA ok ∧ pB finished ∧ pB ok)
The tool returns false, and chooses one PrTPN execution that contradicts the
temporal-logic property - that is, an execution where both activities end on time.
For sake of simplicity, the markings mi of the execution are not shown:

(m_0,0),pA_start,(m_1,0),pA_lock,(m_2,3),pA_finish,(m_3,3),
pB_start,(m_4,3),pB_lock,(m_5,8),pB_finish,(m_6,8).

That is, pA_start fires at time 0, then pA_lock, pA_finish, pB_start fire in
sequence at time 3, and finally pB_lock, pB_finish fire in sequence at time 8.

Our back-tracing algorithm (cf. Section 4.2) takes this input together with
a relation R between xspem and PrTPN states, and a natural-number bound
n that captures the difference in granularity between xspem and PrTPN ex-
ecutions. Two states are in the relation R if for each activity, the value of its
state attribute is encoded by a token in the corresponding place of the PrTPN,
and when an activity is finished, the value of its timeState attribute is encoded
by a token in the corresponding place of the PrTPN (cf. Section 2.3). For in-
stance, A.state = notStarted is encoded by a token in the pA nonStarted place;

42 B. Combemale, L. Gonnord, and V. Rusu

and similarly for the inProgress and finished state values; and A.timeState = ok
is encoded by a token in the pA ok place; and similarly for the tooEarly and
tooLate time state values. Regarding the bound n, it is here set to 5 - because
in xspem executions globalTime advances by at most one time unit, but in the
given PrTPN execution, the maximum difference between two consecutive time-
stamps is 5 = 8− 3. Then, our algorithm returns the following xspem execution:

globalT ime xspem states : (statei, timeStatei, currentT imei)
i = pA i = pB

0 (notStarted, undefined, 0) (notStarted, undefined, 0)
0 (inProgress, tooEarly, 0) (notStarted, undefined, 0)
3 (inProgress, ok, 3) (notStarted, undefined, 0)
3 (finished, ok, 3) (notStarted, undefined, 0)
3 (finished, ok, 3) (inProgress, tooEarly, 0)
8 (finished, ok, 3) (inProgress, ok, 5)
8 (finished, ok, 3) (finished, ok, 8)

Note that indeed both processes finish in due time: pA starts at 0 and finishes
at 3 (its tmin = 3); and pB starts at 3 and finishes at 8 (its tmin = 5 = 8 − 3).

3 A Generic Tool for Tracing Executions in Kermeta

Our implementation takes as input an execution of the target language and
returns as output a corresponding execution of the source dsml. In our running
example, the input execution trace comes from the Tina toolsuite and the tool
returns an xspem model execution, as shown in the previous section.

3.1 Generic Implementation Using Executable Metamodeling

Kermeta is a language for specifying metamodels, models, and model transfor-
mations that are compliant to the Meta Object Facility (mof) standard [12]. The
abstract syntax of a dsml is specified by means of metamodels possibly enriched
with constraints written in an ocl-like language [13]. Kermeta also proposes an
imperative language for describing the operational semantics of dsml [11].

We implement in Kermeta the back-tracing algorithm given in detail in
Section 4. Here, we focus more specifically on the genericity of the implementa-
tion. Accordingly, our implementation relies on a generic tree-based structure (cf.
Figure 6, left). The algorithm is generically defined in the treeLoading method
of the SimulationTree class. To use this method, the SourceExecution and its
sequence of SourceState have to be specialized by an execution coming from an
execution platform (e.g., a verification tool), and the TargetState have to be
specialized by the corresponding concept in the dsml2.

The treeLoading method builds a simulation tree by calling the method find-
States for each tree node. This method findStates computes the set of target states

2 We assume in this work a naive definition of the domain-specific model state by
specializing TargetState by Process. This work could be extended to well-distinguish
the dynamic information in order to store only this one.

A Generic Tool for Tracing Executions 43

SimulationTree
deep: Int

treeLoading(srcTrace: SourceExecution, initialState: TargetState)
findStates(next: SourceState, current: TargetState): OrderedSet<TargetState>
simulationRelation(s: SourceState, t: TargetState): Boolean
oneMatchingTrace(): OrderedSet<TargetState>

SimulationTreeNode

* child

0..1
parent

root 1

Execution
(from PrTPN)

trace 1
SourceState

source 1

TargetState

execute(): OrderedSet<TargetState>

{ordered}
* target

SourceExecution

State
(from PrTPN)

Process
(from xSPEM)

*
states

xSPEM
.kmt

xSPEM
.ecore

PrTPN
.ecore

Simulation
Tree.kmt

TraceMatching
PrTPN2xSPEM

.kmt

<<require>>

<<require>>

<<require>>

<<require>>

Fig. 6. The generic SimulationTree class (left) and how to use it (right)

that are in relation with the next source state. The generic computation is based on
calling the abstract method execute on the current TargetState. For a given DSML
(xspem in our case), the method execute needs to be implemented to define one ex-
ecution step according to the DSML operational semantics. This method depends
onagiven relationR (in our example, the onediscussed inSection2.4)defined in the
method simulationRelation between sourceState and targetState. It also depends
on a given maximal depth of search defined by the attribute deep. Once the simu-
lation tree is built, a dsml execution that matches any execution provided by the
verification tool can be generated by the method oneMatchingTrace.

3.2 Tool Specialization for a Given Example Using Aspect-Oriented
(Meta)Modeling

Among others, one key feature of Kermeta is its ability to extend an exist-
ing metamodel with constraints, new structural elements (meta-classes, classes,
properties, and operations), and functionalities defined with other languages us-
ing the require keyword. This keyword permits the composition of corresponding
code within the underlying metamodel as if it was a native element of it. This
feature offers flexibility to developers by enabling them to easily manipulate
and reuse existing metamodels. The static introduction operator aspect allows
for defining these various aspects in separate units and integrating them auto-
matically into the metamodel. The composition is performed statically and the
composed metamodel is type-checked to ensure the safe integration of all units.

We use both model weaving and static introduction to specialize our generic im-
plementation of the back-tracing algorithm to the particular context of computing
xspem executions from a PrTPN execution. As described in Figure 6 (right) and
in Listing 1.1, the TraceMatchingPrTPN2xSPEM.kmt program weaves the xspem
metamodel (xSPEM.ecore) and its operational semantics (xSPEM.kmt), together
with a metamodel for PrTPN (PrTPN.ecore) and our generic implementation for
the back-tracing algorithm (SimulationTree.kmt) – cf. lines 4 to 7 in Listing 1.1.

44 B. Combemale, L. Gonnord, and V. Rusu

In addition to weaving the different artifacts, TraceMatchingPrTPN2xSPEM.kmt
also defines the links between them. Thus we define the inheritance relations (cf.
Figure 6, left) between Execution (from PrTPN.ecore) and SourceExecution, be-
tween State (from PrTPN.ecore) and SourceState, and between Process (from
xSPEM.ecore) and TargetState – cf. lines 9 to 11 in Listing 1.1. We also define the
relation Rby specializing the method simulationRelation) (cf. lines 13 to 18 in List-
ing 1.1) and the value of the attribute deep (cf. line 35 in Listing 1.1). Finally, we
illustrate the contentof themethodmain ofTraceMatchingPrTPN2xSPEM.kmt in
Listing 1.1, that loads a given PrTPN execution trace, a given process initial state,
and computes a corresponding process execution trace.

Listing 1.1. TraceMatchingPrTPN2xSPEM.kmt

1 package prtpn2xspem;
2

3 require kermeta

4 require "./ traceMatching.kmt"

5 require "./prtpn.ecore"

6 require "./xSPEM.ecore"

7 require "./xSPEM.kmt"
8
9 aspect class prtpn:: Execution inherits traceMatching::SourceExecution { }

10 aspect class prtpn::State inherits traceMatching:: SourceState { }
11 aspect class xspem::Process inherits traceMatching:: TargetState { }
12
13 aspect class traceMatching:: SimulationTree {
14 operation simulationRelation(next: SourceState , current : TargetState)

: Boolean is do
15 // specification of the simulation relation between xSPEM and

PrTPN
16 // ...
17 end
18 }
19
20 class TraceMatching
21 {
22 // Tracing a Petri net execution trace to an xSPEM process execution
23 operation main(inputTrace: String , initialState: String , deep:

Integer) : Void is do
24 var rep : EMFRepository init EMFRepository.new
25 // loading of the Petri net trace (using EMF API)
26 var resPN : Resource init rep.createResource(inputTrace , "./prtpn

.ecore")
27 var pnTrace : prtpn:: Execution
28 tracePN ?= resPN.load.one
29 // loading of the xSPEM process initial state (using EMF API)
30 var resProcess : Resource init rep.createResource(initialState , "

./xSPEM.ecore")
31 var processInitState : xspem::Process
32 processInitState ?= resProcess.load.one
33 // trace matching
34 var prtpn2xspem : traceMatching:: SimulationTree init

traceMatching:: SimulationTree.new
35 prtpn2xspem.deep := 5
36 prtpn2xspem.treeloading(pnTrace , processInitState)
37 // one possible result
38 prtpn2xspem.oneMatchingTrace()
39 end
40 }
41 endpackage

A Generic Tool for Tracing Executions 45

Thus, TraceMatchingPrTPN2xSPEM.kmt may be used for a given execution of
PrTPN conforming to PrTPN.ecore, in our case, the Tina execution obtained in
Section 2.4). As Tina only provides textual output, we had to parse and pretty-
print it in the right format (XMI - XML Metadata Interchange). This was done in
OCaml3. After running the method SimulationTree, we obtain the following input
(and corresponding model) using the method oneMatchingTrace:

4 Formalizing theProblem

In this section we formally define our back-tracing algorithm and prove its correct-
ness. We start by recapping the definition of transition systems and give a notion
of matching an execution of a transition system with a given (abstract) sequence of
states, modulo a given relation between states.

4.1 Transition Systems and Execution Matching

Definition 2 (transition system). A transition system is a tuple A =
(A, ainit ,→A) where A is a possibly infinite set of states, ainit is the initial state,
and →A⊆ A × A is the transition relation.

Notations. N is the set of natural numbers. We write a →A a′ for (a, a′) ∈→A.
An execution is a sequence of states ρ = a0, . . . an ∈ A, for some n ∈ N, such
that ai →A ai+1 for i = 0, . . . , n− 1; length(ρ) = n is the length of the execution ρ.
Executions of length0 are states.Wedenoteby exec(a) the subset of executions that
start in the state a, i.e., the set of executions ρ of A such that ρ(0) = a. We restrict
ourselves tofinitely branching transition systems,meaning that for all statesa there
are at most finitely many states a′ such that a →A a′.

Definition 3 (R-matching).Givenatransition systemsB = (B, binit ,→B), a set
A with A ∩ B = ∅, an element ainit ∈ A, a relation R ⊆ A × B, and two sequences
ρ ∈ ainitA

∗, π ∈ exec(b), we say that ρ is R-matched by π if there exists a (possibly,
non strictly) increasing function α : [0, . . . , length(ρ)] → N with α(0) = 0, such
that for all i ∈ [0, . . . , length(ρ)], (ai, bα(i)) ∈ R.

Example 1. In Figure 7 we represent two sequences ρ andπ. A relationR is denoted
using dashed lines.The functionα : [0, . . . , 5] → N definedbyα(i) = 0 for i ∈ [0, 3],
α(4) = 1, and α(5) = 5 ensures that ρ is R-matched by π.
3 http://caml.inria.fr/ocaml/

46 B. Combemale, L. Gonnord, and V. Rusu

b3

a2 a3 a4a0 a5

π

ρ

R

b0 b2 b4 b5b1

a1

Fig. 7.R-matching of sequences. The relation R is represented by dashed lines. Note that
R-matching does not require all π-states to be in relation to ρ-states.

In our framework, B = (B, binit ,→B) is the transition system denoting a dsml L
(in our running example, xspem) and its operational semantics, with binit being
the initial state of a particular model m ∈ L (in our example, the model depicted
in the right-hand side of Figure 2). The model m is transformed by some model
transformation φ (in our example, the model transformation defined in [5]) to a
target language (say, L′; in our example, PrTPN, the input language of the Tina
model checker). About L′, we only assume that it has a notion of state and that its
state-space is a given set A. Then, ρ ∈ ainitA

∗ is the execution of the tool that we
are trying to match, where ainit is the initial state of the model φ(m) ∈ L′ (here,
the PrTPN illustrated in Figure 5 with the initial marking specified in the figure).
The relation R can be thought of as a matching criterion between states of a dsml
and those of the target language; it has to be specified by users of our back-tracing
algorithm.

Remark 1. We do not assume that the operational semantics of L′ is known. This
is important, because is saves us the effort of giving operational semantics to the
target language, which can be quite hard if the language is complex.

4.2 The Back-Tracing Problem

Our back-tracing problem can now be formally stated as follows: given
– a transition system B = (B, binit ,→B)
– a set A, an element ainit ∈ A, and a sequence ρ ∈ ainitA

∗

– a relation R ⊆ A × B,
does there exist an execution π ∈ exec(binit) such that ρ is R-matched by π; and if
this is the case, then, construct such an execution π.

Unfortunately, this problem is not decidable/solvable. This is because an execu-
tion π that R-matches a sequence ρ can be arbitrarily long; the function α in Defi-
nition 3 is responsible for this. One way to make the problem decidable is to impose
that, in Definition 3, the function α satisfies a “bounded monotonicity property” :
∀i ∈ [0, length(ρ) − 1] α(i + 1) − α(i) ≤ n for some given n ∈ N. In this way, the
candidate executions π that may match ρ become finitely many.
Definition 4 ((n, R)-matching). With the notations of Definition 3, and given a
natural number n ∈ N we say that the sequence ρ is (n, R)-matched by the execution
π if the function α satisfies ∀i ∈ [0, length(ρ) − 1] α(i + 1) − α(i) ≤ n.
In Example 1 (Figure 7), ρ is (5, R)-matched (but not (4, R)-matched) by π.

A Generic Tool for Tracing Executions 47

4.3 Back-Tracing Algorithm

For a set S ⊆ A of states of a transition system A, we denote by →n
A (S) (n ∈ N)

the set of states {a′ ∈ A|∃a ∈ S. ∃ρ ∈ exec(a). length(ρ) ≤ n ∧ ρ(length(ρ)) = a′};
it is the set of successors of states in S by executions of length at most n. Also, for
a relation R ⊆ A × B and a ∈ A we denote by R(a) the set {b ∈ B|(a, b) ∈ R}.
We denote the empty sequence by ε, whose length is undefined; and, for a nonempty
sequence ρ, we let last(ρ) � ρ(length(ρ)) denote its last element.

Algorithm 1. Return an execution π ∈ exec(binit) of B that (n, R)-matches the
longest prefix of a sequence ρ ∈ ainitA

∗ that can be (n, R)-matched.
Require: B = (B, binit ,→B); A; ainit ∈ A; ρ ∈ ainitA

∗; n ∈ N; R ⊆ A×B
Local Variable: α : [0..length(ρ)]→ N; π ∈ B∗; S, S′ ⊆ B; � ∈ N

1: if (ainit , binit) /∈ R then return ε
2: else
3: α(0)← 0, k ← 0, π ← binit, S ← {binit}
4: while k < length(ρ) and S �= ∅ do
5: k ← k + 1
6: S′ ← R(ρ(k))∩ →n

B (last(π))
7: if S′ �= ∅ then
8: Choose π̂ ∈ exec(last(π))

such that � = length(π̂) ≤ n and π̂(�) ∈ S′ � � can be 0

9: α(k)← α(k − 1) + �
10: πα(k−1)+1..α(k) ← π̂1..l � effect of this assignment is null if � = 0

11: end if
12: S ← S′

13: end while;
14: return π
15: end if

Theorem 1 (Algorithmformatchingexecutions).Consider a transition sys-
tem B = (B, binit ,→B), a set A with A ∩ B = ∅, an element ainit ∈ A, a relation
R ⊆ A × B, and a natural number n ∈ N. Consider also a sequence ρ ∈ ainitA

∗.
Then, Algorithm 1 returns an execution π ∈ exec(binit) ofB that (n, R) matches the
longest prefix of ρ that can be (n, R)-matched.
Aproof canbe found in the extendedversion of this paper [18]. In particular, if there
exists an execution in exec(binit) that (n, R)-matches thewhole sequence ρ then our
algorithm returns one; otherwise, the algorithm says there is none. Regarding the
algorithm’s complexity, it is worst-case exponential in the bound n, with the base of
the exponent being the maximum branching of the transition system denoting the
operational semantics of the sourcedsml. For deterministic dsml, the exponential
disappears. In practice, n may be known if a proof of (bi)simulation between source
and target semantics was performed; this is why our algorithm works best when
combinedwith a theoremprover (as discussed in the introduction). Ifn is unknown,
onecanstartwithn = 1andgradually increasenuntilamatchingexecution is found
or until resources are exhausted.

48 B. Combemale, L. Gonnord, and V. Rusu

ρ

a0 b0

a1

a2

a3

b1
b2

b3

b4

b5

B

Fig. 8. Attempting to match execution ρ

Example 2. We illustrate several runs of our algorithm on the execution ρ depicted
in the left-hand side of Figure 8, with the transition systemB depicted in the right-
hand side of the figure, and the relation R depicted using dashed lines. In the al-
gorithm, let n = 3. The set S is initialized to S = {b0}. For the first step of the
algorithm - i.e., when k = 1 in the while loop - we choose b = b0 and the execution
π̂ = b0; we obtain α(1) = 0, π(0) = b0 and S′ = R(a1) ∩ {b0, b1, b2, b3, b4} =
{b0, b1, b2}. At the second step, we choose b = b0 and, say, π̂ = b0, b2; we obtain
α(2) = 1, π(1) = b2 and S′ = R(a2) ∩ {b2, b3, b4, b5} = {b2}. At the third step, we
can only choose b = b2 and π̂ = b2, b3, b4, b5; we obtain α(3) = 4, π2..4 = π̂, and
S′ = {b5}, and now we are done: the matching execution π for ρ is π = b0, b2 . . . b5.
Note that our non-deterministic algorithm is allowed to make the “most inspired
choices” as above. A deterministic algorithm may make “less inspired choices” and
backtrack from them; for example, had we chosen π̂ = b0, b1 at the second step,
we would have ended up failing locally because of the impossibility of matching the
last step a2a3 of ρ; backtracking to π̂ = b0, b2 solves this problem. Finally, note that
with n < 3, the algorithm fails globally - it cannot match the last step of ρ.

Remark 2. The implementation of our algorithmamounts to implementing nonde-
terministic choicevia state-spaceexploration.Anaturalquestionthatarises is then:
why not use state-space exploration to perform the model checking itself, instead
of using an external model checker and trying to match its result (as we propose
to do)? One reason is that it is typically more efficient to use the external model
checker to come up with an execution, and to match that execution with our al-
gorithm, than performing model checking using our (typically, less efficient) state-
space exploration.Another reason is that the execution we are trying to match may
be produced by something else than a model checker, e.g., a program crash log can
also serve as an input to our algorithm.

5 Related work

The problem of tracing executions from a given target back to a domain-specific
language has been addressed in several papers of the mde community. Most of the
proposedmethodsare eitherdedicatedtoonlyonepairmetamodel/verificationtool
([7], [10]) or they compute an“explanation” of the execution inamore abstractway.

A Generic Tool for Tracing Executions 49

In [8], the authors propose a general method based on a traceability mechanism of
model transformations. It relies ona relationbetweenelements of the source and the
target metamodel, implemented by means of annotations in the transformation’s
source codes.essentially By contrast, our approach does not require instrumenting
themodel transformation code, and is formally grounded onoperational semantics,
a feature that allows us to prove its correctness.

In the formalmethods area,TranslationValidation ([15]) has also the purpose of
validating a compiler by performing a verification after each run of the compiler to
ensure that the output code produced by the compilation is a correct translation of
the source program. The method is fully automatic for the developer, who has no
additional information toprovide inorder toprove the translation: all the semantics
of the two languages and the relation between states are embedded inside the “val-
idator” (thus it cannot be generic). Contrary to our work, Translation Validation
only focuses on proving correctness, and does not provide any useful information
if the verification fails. Also, the Counterexample-Guided Abstraction Refinement
(CEGAR)verificationmethod ([4]) also consists inmatchingmodel-checking coun-
terexamples to program executions. The difference between CEGAR and our ap-
proach is thatCEGAR makes a specific assumption - that the target representation
is an abstract interpretation of the source representation; whereas we do not make
this assumption.

Finally, in thepaper [17]wedescribe, amongothers, anapproach forback-tracing
executions,whichdiffers fromtheonepresentedhere in several aspects: the theoret-
ical framework of [17] is based on observational transition systems and the relation
betweenstates is restrictedtoobservationalequality,whereashereweallow formore
general relations between states; and in in [17], the relation is restricted such that
the parameter n is always one, which means that one step in the source may match
several steps in the target, but not the other way around. The are also practical
differences: Maude is less likely to be familiar and acceptable to software engineers;
andMaude allows for a direct implementation of the nondeterministic back-tracing
algorithm, whereas in Kermeta a deterministic version of the algorithm had to be
designed first.

6 Conclusion and FutureWork

dsmlare often translated to other languages for efficient executionand/or analysis.
We address the problem of formally tracing executions of a given target language
tool back into an execution of a dsml. Our solution is a generic tool implementing
an algorithm that requires that the dsml’s semantics be defined formally, and that
a relation R be defined between states of the dsml and of the target language. The
algorithm also takes as input a natural-number bound n, which estimates a “dif-
ference of granularity” between semantics of the dsml and of the target language.
Then, given a finite execution ρ of the target language (e.g., a counterexample to
a safety property, or program crash log), our algorithm returns an (n, R) match-
ing execution π in terms of the dsml’s operational semantics - if there is one - or it
reports that no such execution exists, otherwise.

50 B. Combemale, L. Gonnord, and V. Rusu

We implement our algorithm in Kermeta, a framework for defining operational
semantics of dsml (among other features). Using Kermeta’s abilities for aspect-
oriented metamodeling, our implementation is generic: the user has to provide the
appropriate metamodels, as well as the estimated bound n and relation R between
the states of dsml and verification tool; the rest is automatic.

We illustrate our tool on an example where the dsml is xspem, a timed pro-
cess modeling language, and the target language is Prioritized Time Petri Nets
(PrTPN), the input language of the Tina model checker.

Regarding future work, the main direction is to exploit the combination of the-
orem proving (for model transformation) and model checking (for model verifica-
tion) as described in the introduction. Another orthogonal research direction is to
optimise our currently naive implementation in Kermeta in order to avoid copying
whole models when only parts of them (their “state”) change.

References

1. Bendraou,R.,Combemale,B.,Crégut,X.,Gervais,M.-P.:Definitionof an eXecutable
SPEM2.0. In: 14th APSEC. IEEE, Los Alamitos (2007)

2. Berthomieu, B., Ribet, P.-O., Vernadat, F.: The tool TINA – construction of
abstract state spaces for Petri nets and time Petri nets. Int. Journal of Production
Research 42(14), 2741–2756 (2004)

3. Berthomieu, B., Peres, F., Vernadat, F.: Model checking bounded prioritized time
petri nets. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 523–532. Springer, Heidelberg (2007)

4. Clarke, E., Grumberg, O., Jha, S., Lu,Y.,Veith,H.: Counterexample-guided abstrac-
tion refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 154–169. Springer, Heidelberg (2000)

5. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X.: Essay on Semantics
Definition in MDE. An Instrumented Approach for Model Verification. Journal of
Software 4(9), 943–958 (2009)

6. Csertán,G.,Huszerl,G.,Majzik, I.,Pap,Z.,Pataricza,A.,Varró,D.:VIATRA-visual
automated transformations for formal verification and validation of UML models. In:
17th ASE, pp. 267–270. IEEE, Los Alamitos (2002)

7. Guerra, E., de Lara, J., Malizia, A., Daz, P.: Supporting user-oriented analysis
for multi view domain specific visual languages. Information & Software Technol-
ogy 51(4), 769–784 (2009)

8. Hegedüs, A., Bergmann, G., Ráth, I., Varró, D.: Back-annotation of simulation traces
with change-driven model transformations. In: SEFM 2010 (September 2010)

9. Merlin, P.M.: A Study of the Recoverability of Computing Systems. Irvine: Univ.
California, PhD Thesis (1974)

10. Moe, J., Carr, D.A.: Understanding distributed systems via execution trace data. In:
Proceedings of the 9th International Workshop on Program Comprehension IWPC
2001. IEEE Computer Society, Los Alamitos (2001)

11. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-
OrientedMeta-languages. In:Briand,L.C.,Williams,C. (eds.)MoDELS2005.LNCS,
vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

12. Object Management Group. Meta Object Facility 2.0 (2006)
13. Object Management Group. Object Constraint Language 2.0 (2006)

A Generic Tool for Tracing Executions 51

14. Object Management Group. Software Process Engineering Metamodel 2.0 (2007)
15. Pnueli, A., Shtrichman, O., Siegel, M.D.: Translation validation: From SIGNAL to

C. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp.
231–255. Springer, Heidelberg (1999)

16. Rivera, J.E.,Vicente-Chicote,C.,Vallecillo,A.:Extendingvisualmodeling languages
with timed behavior specifications. In: CIbSE, pp. 87–100 (2009)

17. Rusu,V.:Embeddingdomain-specificmodelling languages intoMaudespecifications,
http://researchers.lille.inria.fr/~rusu/SoSym

18. Rusu, V., Gonnord, L., Combemale, B.: Formally Tracing Executions From an Anal-
ysis Tool Back to a Domain Specific Modeling Language’s Operational Semantics.
Technical Report RR-7423, INRIA (October 2010)

Incremental Security Verification

for Evolving UMLsec models�

Jan Jürjens1,2, Löıc Marchal3, Mart́ın Ochoa1, and Holger Schmidt1

1 Software Engineering, Department of Computer Science,
TU Dortmund, Germany

2 Fraunhofer ISST, Germany
3 Hermès Engineering, Belgium

{jan.jurjens,martin.ochoa,holger.schmidt}@cs.tu-dortmund.de
loic.marchal@hermes-ecs.com

Abstract. There exists a substantial amount of work on methods, tech-
niques and tools for developing security-critical systems. However, these
approaches focus on ensuring that the security properties are enforced
during the initial system development and they usually have a signifi-
cant cost associated with their use (in time and resources). In order to
enforce that the systems remain secure despite their later evolution, it
would be infeasible to re-apply the whole secure software development
methodology from scratch. This work presents results towards addressing
this challenge in the context of the UML security extension UMLsec. We
investigate the security analysis of UMLsec models by means of a change-
specific notation allowing multiple evolution paths and sound algorithms
supporting the incremental verification process of evolving models. The
approach is validated by a tool implementation of these verification tech-
niques that extends the existing UMLsec tool support.

1 Introduction

The task of evolving secure software systems such that the desired security re-
quirements are preserved through a system’s lifetime is of great importance in
practice. We propose a model-based approach to support the evolution of secure
software systems. Our approach allows the verification of potential future evo-
lutions using an automatic analysis tool. An explicit model evolution implies
the transformation of the model and defines a difference Δ between the original
model and the transformed one. The proposed approach supports the definition
of multiple evolution paths, and provides tool support to verify evolved models
based on the delta of changes. This idea is visualized in Fig. 1: The starting point
of our approach is a Software System Model which was already verified against cer-
tain security properties. Then, this model can evolve within a range of possible
� This research was partially supported by the EU project Security Engineering for

Lifelong Evolvable Systems (Secure Change, ICT-FET-231101).

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 52–68, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

UML-Based Security Verification for Evolving Systems 53

Model

Software System
Model

n
Security verified

{Still secure?

{

1

Evolved System

Evolved System
Model

Δ1

...
...

Δn

Fig. 1. Model verification problem for n possible evolution paths

evolutions (the evolution space). We consider the different possible evolutions
as evolution paths each of which defines a delta Δi. The result is a number of
evolved Evolved System Modeli. The main research question is “Which of the evo-
lution paths leads to a target model that still fulfills the security properties of
the source model?”.

Theoretically, one could simply re-run the security analysis done to establish
the security of the original model on the evolved model to decide whether these
properties are preserved after evolution. This would, however, result in general in a
high resource consumption for models of realistic size, in particular since the goal
in general is to investigate the complete potential evolution space (rather than
just one particular evolution) in order to determine which of the possible evolu-
tions preserve security. Also, verification efficiency is very critical if a continuous
verification is desired (i.e. it should be determined in real-time and in parallel to
the modelling activity whether the modelled change preserves security).

We use models specified using the Unified Modeling Language (UML) 1 and
the security extension UMLsec [6]. The UMLsec profile offers new UML language
elements (i.e., stereotypes, tags, and constraints) to specify typical security re-
quirements such as secrecy, integrity, and authenticity, and other security-relevant
information. Based on UMLsec models and the semantics defined for the different
UMLsec language elements, possible security vulnerabilities can be identified at
an early stage of software development. One can thus verify that the desired se-
curity requirements, if fulfilled, enforce a given security policy. This verification is
supported by a tool suite 2 [8].

In this paper we present a general approach for the incremental security
verification of UML models against security requirements inserted as UMLsec
stereotypes. We discuss the possible atomic (i.e. single model element) evolutions
annotated with certain security requirements according to UMLsec. Moreover,
we present sufficient conditions for a set of model evolutions, which, if satisfied,
ensure that the desired security properties of the original model are preserved
under evolution. We demonstrate our general approach by applying it to a rep-
resentative UMLsec stereotype, 〈〈 secure dependency 〉〉. As one result of our work,
we demonstrate that the security checks defined for UMLsec allow significant
efficiency gains by considering this incremental verification technique.

1 The Unified Modeling Language http://www.uml.org/
2 Available online via http://www-jj.cs.tu-dortmund.de/jj/umlsectool

54 J. Jürjens et al.

To explicitly specify possible evolution paths, we have developed a further ex-
tension of the UMLsec profile (called UMLseCh) that allows a precise definition
of which model elements are to be added, deleted, and substituted in a model.
Constraints in first-order predicate logic allow to coordinate and define more
than one evolution path (and thus obtaining the deltas for the analysis).

Note that UMLseCh is not intended as a general-purpose evolution modeling
language: it is specifically intended to model the evolution in a security-oriented
context in order to investigate the research questions wrt. security preservation
by evolution (in particular, it is an extension of UMLsec and requires the UMLsec
profile as prerequisite profile). Thus, UMLseCh does not aim to be an alternative
for any existing general-purpose evolution specification or model transformation
approaches (such as [4,1,2,14,9]). It will be interesting future work to demon-
strate how the results presented in this paper can be used in the context of those
approaches.

This paper is organized as follows: The change-specific extension UMLseCh
is defined in Sect. 2. Sect. 3 explains our general approach for evolution-specific
security verification. Using class diagrams as an example application, this ap-
proach is instantiated in Sect. 4. In Sect.5, we give an overview of the UMLsec
verification tool and how this tool has been extended to support our reasoning
for evolving systems based on UMLseCh. We conclude with an overview of the
related work (Sect. 6) and a brief discussion of the results presented (Sect. 7).

2 UMLseCh: Supporting Evolution of UMLsec Models

In this section we present a further extension of the UML security profile UMLsec
to deal with potential model evolutions, called UMLseCh (that is, an extension
to UML which itself includes the UMLsec profile). Figure 2 shows the list of
UMLseCh stereotypes, together with their tags and constraints, while Fig. 3
describes the tags.

The UMLseCh tagged values associated to the tags {add} and {substitute}
are strings, their role is to describe possible future model evolutions. UMLseCh
describes possible future changes, thus conceptually, the substitutive or ad-
ditive model elements are not actually part of the current system design model,
but only an attribute value inside a change stereotype3. At the concrete level,
i.e. in a tool, this value is either the model element itself if it can be represented
with a sequence of characters (for example an attribute or an operation within
a class), or a namespace containing the model element.

Note that the UMLseCh notation is complete in the sense that any kind of
evolution between two UMLsec models can be captured by adding a suitable
number of UMLseCh annotations to the initial UMLsec model. This can be
seen by considering that for any two UML models M and N there exists a
sequence of deletions, additions, and substitutions through which the model
M can be transformed to the model N . In fact, this is true even when only
3 The type change represents a type of stereotype that includes 〈〈 change 〉〉,〈〈 substitute 〉〉,

〈〈 add 〉〉 or 〈〈 delete 〉〉.

UML-Based Security Verification for Evolving Systems 55

Stereotype Base Class Tags Constraints Description

change all ref, change FOL formula execute sub-changes
in parallel

substitute all ref, substitute, FOL formula substitute a model
element

add all ref, add, FOL formula add a model
element

delete all ref, delete FOL formula delete a model
element

substitute-all all ref, substitute, FOL formula substitute a
group of elements

add-all all ref, add, FOL formula add a group
of elements

delete-all all ref, delete FOL formula delete a group
of elements

Fig. 2. UMLseCh stereotypes

Tag Stereotype Type Multip. Description

ref change, substitute, add, list of strings 1 List of labels
delete, substitute-all, identifying a
add-all, delete-all change

substitute substitute, list of pairs of 1 List of
substitute-all model elements substitutions

add add, add-all list of pairs of 1 List of
model elements additions

delete delete, delete-all list of pairs of 1 List of
model elements deletions

change change list of references 1 List of
simultaneous
changes

Fig. 3. UMLseCh tags

considering deletions and additions: the trivial solution would be to sequentially
remove all model elements from M by subsequent atomic deletions, and then
to add all model elements needed in N by subsequent additions. Of course, this
is only a thereotical argument supporting the theoretical expressiveness of the
UMLseCh notation, and this approach would neither be useful from a modelling
perspective, nor would it result in a meaningful incremental verification strategy.
This is the reason that the substitution of model elements has also been added
to the UMLseCh notation, and the incremental verification strategy explained
later in this paper will crucially rely on this.

2.1 Description of the Notation

In the following we give an informal description of the notation and its semantics.

56 J. Jürjens et al.

substitute. The stereotype 〈〈 substitute 〉〉 attached to a model element denotes
the possibility for that model element to evolve over time and defines what the
possible changes are. It has two associated tags, namely ref and substitute. These
tags are of the form { ref =CHANGE-REFERENCE} and

{ substitute= (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }
with n ∈ N. The tag ref takes a list of sequences of characters as value, each
element of this list being simply used as a reference of one of the changes modeled
by the stereotype 〈〈 substitute 〉〉. In other words, the values contained in this
tag can be seen as labels identifying the changes. The values of this tag can
also be considered as predicates which take a truth value that can be used to
evaluate conditions on other changes (as we will explain in the following). The
tag substitute has a list of pairs of model element as value, which represent the
substitutions that will happen if the related change occurs. The pairs are of the
form (e, e′), where e is the element to substitute and e′ is the substitutive model
element 4. For the notation of this list, two possibilities exist: The elements of the
pair are written textually using the abstract syntax of a fragment of UML defined
in [6] or alternatively the name of a namespace containing an element is used
instead. The namespace notation allows UMLseCh stereotypes to graphically
model more complex changes (cf. Sect. 2.2).

If the model element to substitute is the one to which the stereotype
〈〈substitute 〉〉 is attached, the element e of the pair (e, e′) is not necessary. In this
case the list consists only of the second elements e′ in the tagged value, instead
of the pairs (this notational variation is just syntactic sugar). If a change is speci-
fied, it is important that it leaves the resulting model in a syntactically consistent
state. In this paper however we focus only on the preservation of security.

Example. We illustrate the UMLseCh notation with the following example. As-
sume that we want to specify the change of a link stereotyped 〈〈 Internet 〉〉 so
that it will instead be stereotyped 〈〈 encrypted 〉〉. For this, the following three
annotations are attached to the link concerned by the change (cf. Figure 4):

〈〈 substitute 〉〉, { ref= encrypt-link }, { substitute= (〈〈 encrypted 〉〉, 〈〈 Internet 〉〉) }

Sendercomp

S:Sender

Sendernode

{ref = encrypt−link}
{substitute = («Internet», «encrypted»)}

«substitute»«Internet»

Receivercomp

R:Receiver

Receivernode

«send»

Fig. 4. Example of stereotype substitute

4 More than one occurrence of the same e in the list is allowed. However, two occur-
rences of the same pair (e, e′) cannot exist in the list, since it would model the same
change twice.

UML-Based Security Verification for Evolving Systems 57

The stereotype 〈〈 substitute 〉〉 also has a list of optional constraints formulated in
first order logic. This list of constraints is written between square brackets and
is of the form [(ref1, CONDITION1), . . . , (refn, CONDITIONn)], n ∈ N, where,
∀i : 1 ≤ i ≤ n, refi is a value of the list of a tag ref and CONDITIONn can be
any type of first order logic expression, such as A ∧ B, A ∨ B, A ∧ (B ∨ ¬C),
(A ∧ B) ⇒ C, ∀x ∈ N.P (x), etc. Its intended use is to define under which
conditions the change is allowed to happen (i.e. if the condition is evaluated to
true, the change is allowed, otherwise the change is not allowed). As mentioned
earlier, an element of the list used as the value of the tag ref of a stereotype
〈〈 substitute 〉〉 can be used as an atomic predicate for the constraint of another
stereotype 〈〈 substitute 〉〉. The truth value of that predicate is true if the change
represented by the stereotype 〈〈 substitute 〉〉 to which the tag ref is associated
occurred, false otherwise.

To illustrate the use of the constraint, the previous example can be refined.
Assume that to allow the change with reference encrypt-link, another change, sim-
ply referenced as change for the example, has to occur. The constraint [change]
can then be attached to the link concerned by the change. To express for ex-
ample that two changes, referenced respectively by change1 and change2, have
to occur first in order to allow the change referenced encrypt-link to happen, the
constraint [change1 ∧ change2] is added to the stereotype 〈〈 substitute 〉〉 modeling
the change.

add and delete. Both 〈〈 add 〉〉 and 〈〈 delete 〉〉 can be seen as syntactic sugar
for 〈〈 substitute 〉〉. The stereotype 〈〈 add 〉〉 attached to a parent model element
describes a list of possible sub-model elements to be added as children to the
parent model element. It thus substitutes a collection of sub-model elements
with a new, extended collection.

The stereotype 〈〈 delete 〉〉 attached to a (sub)-model element marks this element
for deletion. Deleting a model element could be expressed as the substitution of
the model element by the empty model element ∅. Both stereotypes 〈〈 add 〉〉 and
〈〈 delete 〉〉 may also have associated constraints in first order logic.

substitute-all. The stereotype 〈〈 substitute-all 〉〉 is an extension of the stereotype
〈〈 substitute 〉〉. It denotes the possibility for a set of model elements of same
type and sharing common characteristics to evolve over time. In this case,
〈〈 substitute-all 〉〉 will always be attached to the super-element to which the sub-
elements concerned by the substitution belong. As the stereotype 〈〈 substitute 〉〉,
it has the two associated tags ref and substitute, of the form { ref =CHANGE-
REFERENCE} and

{ substitute= (ELEMENT1, NEW1), . . . , (ELEMENTn, NEWn) }.
The tags ref has the same meaning as in the case of the stereotype 〈〈 substitute 〉〉.
For the tag substitute the element e of a pair representing a substitution does not
represent one model element but a set of model elements to substitute if a
change occurs. This set can be, for example, a set of classes, a set of methods of a
class, a set of links, a set of states, etc. All the elements of the set share common

58 J. Jürjens et al.

characteristics. For instance, the elements to substitute are the methods having
the integer argument “count”, the links being stereotyped 〈〈 Internet 〉〉 or the
classes having the stereotype 〈〈 critical 〉〉 with the associated tag secrecy. Again,
in order to identify the model element precisely, we can use, if necessary, either
the UML namespaces notation or, if this notation is insufficient, the abstract
syntax of UMLseCh.

Example. To replace all the links stereotyped 〈〈 Internet 〉〉 of a subsystem so
that they are now stereotyped 〈〈 encrypted 〉〉, the following three annotations
can be attached to the subsystem: 〈〈 substitute-all 〉〉, { ref = encrypt-all-links}, and
{ substitute= (〈〈 Internet 〉〉, 〈〈 encrypted 〉〉) }. This is shown in Figure 5.

Customer
«Internet»

Servercomp

S:Server

Server

«Internet»

Businesscomp

B:Business

Business

Customercomp

C:Customer

{substitute = («Internet», «encrypted»)}
{ref = encrypt−all−links}
«substitute−all»

System

Fig. 5. Example of stereotype substitute-all

A pair (e, e′) of the list of values of a tag substitute here allows us a pa-
rameterization of the values e and e′ in order to keep information of the differ-
ent model elements of the subsystem concerned by the substitution. To allow
this, variables can be used in the value of both the elements of a pair. The
following example illustrates the use of the parameterization in the stereotype
〈〈 substitute-all 〉〉. To substitute all the tags secrecy of stereotypes 〈〈 critical 〉〉 by
tags integrity, but in a way that it keeps the values given to the tags secrecy (e.g.
{ secrecy= d }), the following three annotations can be attached to the subsys-
tem containing the class diagram: 〈〈 substitute-all 〉〉, { ref = secrecy-to-integrity},
and { substitute= ({ secrecy= X }, { integrity=X }) }.

The stereotype 〈〈 substitute-all 〉〉 also has a list of constraints formulated in
first order logic, which represents the same information as for the stereotype
〈〈 substitute 〉〉.

change. The stereotype 〈〈 change 〉〉 is a particular stereotype that represents
a composite change. It has two associated tags, namely ref and change. These

UML-Based Security Verification for Evolving Systems 59

tags are of the form { ref= CHANGE-REFERENCES} and { change=CHANGE-
REFERENCES1, . . ., CHANGE-REFERENCESn }, with n ∈ N. The tag ref has
the same meaning as in the case of a stereotype 〈〈 substitute 〉〉. The tag change
takes a list of lists of strings as value. Each element of a list is a value of a
tag ref from another stereotype of type change.5 Each list thus represents the
list of sub-changes of a composite change modeled by the stereotype 〈〈 change 〉〉.
Applying a change modeled by 〈〈 change 〉〉 hence consists in applying all of the
concerned sub-changes in parallel.

Any change being a sub-change of a change modeled by 〈〈 change 〉〉 must have
the value of the tag ref of that change in its condition. Therefore, any change
modeled by a sub-change can only happen if the change modeled by the super-
stereotype takes place. However, if this change happens, the sub-changes will be
applied and the sub-changes will thus be removed from the model. This ensures
that sub-changes cannot be applied by themselves, independently from their
super-stereotype 〈〈 change 〉〉 modeling the composite change.

2.2 Complex Substitutive Elements

As mentioned above, using a complex model element as substitutive element
requires a syntactic notation as well as an adapted semantics. An element is
complex if it is not represented by a sequence of characters (i.e. it is represented
by a graphical icon, such as a class, an activity or a transition). Such complex
model elements cannot be represented in a tagged value since tag definitions
have a string-based notation. To allow such complex model elements to be used
as substitutive elements, they will be placed in a UML namespace. The name
of this namespace being a sequence of characters, it can thus be used in a pair
of a tag substitute where it will then represent a reference to the complex model
element. Of course, this is just a notational mechanism that allows the UMLseCh
stereotypes to graphically model more complex changes. From a semantic point
of view, when an element in a pair representing a substitution is the name of a
namespace, the model element concerned by the change will be substituted by
the content of the namespace, and not the namespace itself. This type of change
will request a special semantics, depending on the type of element. For details
about this complex substitutions we refer to [15].

3 Verification Strategy

As stated in the previous section, evolving a model means that we either add,
delete, or / and substitute elements of this model. To distinguish between big-
step and small-step evolutions, we will call “atomic” the modifications involving
only one model element (or sub-element, e.g. adding a method to an existing
class or deleting a dependency). In general there exist evolutions from diagram
A to diagram B such that there is no sequence of atomic modifications for which
5 By type change, we mean the type that includes 〈〈 substitute 〉〉, 〈〈 add 〉〉, 〈〈 delete 〉〉 and

〈〈 change 〉〉.

60 J. Jürjens et al.

security is preserved when applying them one after another, but such that both
A and B are secure. Therefore the goal of our verification is to allow some
modifications to happen simultaneously.

Since the evolution is defined by additions, deletion and substitutions of model
elements, we introduce the sets Add, Del, and Subs, where Add and Del con-
tain objects representing model elements together with methods id, type, path,
parent returning respectively an identifier for the model element, its type, its path
within the diagram, and its parent model element. These objects also contain all
the relevant information of the model element according to its type (for exam-
ple, if it represents a class, we can query for its associated stereotypes, methods,
and attributes). For example, the class “Customer” in Fig. 6 can be seen as an
object with the subsystem “Book a flight” as its parent. It has associated a list
of methods (empty in this case), a list of attributes (“Name” of type String,
which is in turn an model element object), a list of stereotypes (〈〈 critical 〉〉) and
a list of dependencies (〈〈 call 〉〉 dependency with “Airport Server”) attached to
it. By recursively comparing all the attributes of two objects, we can establish
whether they are equal.

The set Subs contains pairs of objects as above, where the type, path (and
therefore parent) methods of both objects must coincide. We assume that there
are no conflicts between the three sets, more specifically, the following condition
guarantees that one does not delete and add the same model element:

� o, o′(o ∈ Add ∧ o′ ∈ Del ∧ o = o′)

Additionally, the following condition prevents adding/deleting a model element
present in a substitution (as target or as substitutive element):

� o, o′(o ∈ Add ∨ o ∈ Del) ∧ ((o, o′) ∈ Subs ∨ (o′, o) ∈ Subs)

As explained above, in general, an “atomic” modification (that is the action
represented by a single model element in any of the sets above) could by itself
harm the security of the model. So, one has to take into account other modifica-
tions in order to establish the security status of the resulting model. We proceed
algorithmically as follows: we iterate over the modification sets starting with an
object o ∈ Del, and if the relevant simultaneous changes that preserve security
are found in the delta, then we perform the operation on the original model

Airport server

«call»
pay(Real amount): Boolean

requestFlight(): Flight

«critical»

{high={pay(Real amount)}}
Customer «critical»

{high={pay(Real amount)}}

Name: String

Book a flight
«secure dependency»

Fig. 6. Class Diagram Annotated with 〈〈 secure dependency 〉〉

UML-Based Security Verification for Evolving Systems 61

(delete o and necessary simultaneous changes) and remove the processed objects
until Del is empty. We then continue similarly with Add and finally with Subs.
If at any point we establish the security is not preserved by the evolution we
conclude the analysis. Given a diagram M and a set Δ of atomic modifications
we denote M [Δ] the diagram resulting after the modifications have taken place.
So in general let P be a diagram property. We express the fact that M enforces
P by P (M). Soundness of the security preserving rules R for a property P on
diagram M can be formalized as follows:

P (M) ∧ R(M,Δ)⇒ P (M [Δ]).

To prove that the algorithm described above is sound with respect to a given
property P , we show that every set of simultaneous changes accepted by the
algorithm preserves P . Then, transitively, if all steps were sound until the delta
is empty, we reach the desired P (M [Δ]).

One can obtain these deltas by interpreting the UMLseCh annotations pre-
sented in the previous section. Alternatively, one could compute the difference
between an original diagram M and the modified M ′. This is nevertheless not
central to this analysis, which focuses on the verification of evolving systems
rather than on model transformation itself.

To define the set of rules R, one can reason inductively by cases given a
security requirement on UML models, by considering incremental atomic changes
and distinguishing them according to a) their evolution type (addition, deletion,
substitution) and b) their UML diagram type. In the following section we will
spell-out a set of possible sufficient rules for the sound and secure evolution of
class diagrams annotated with the 〈〈 secure dependency 〉〉 stereotype.

4 Application to <<secure dependency>>

In this section we demonstrate the verification strategy explained in the previous
section by applying it to the case of the UMLsec stereotype 〈〈 secure dependency 〉〉

applied to class diagrams. The associated constraint requires for every commu-
nication dependency (i.e. a dependency annotated 〈〈 send 〉〉 or 〈〈 call 〉〉) between
two classes in a class diagram the following condition holds: if a method or
attribute is annotated with a security requirement in one of both classes (for
example { secrecy= {method()} }), then the other class has the same tag for this
method/attribute as well (see Fig. 6 for an example). It follows that the compu-
tational cost associated with verifying this property depends on the number of
dependencies. We analyze the possible changes involving classes, dependencies
and security requirements as specified by tags and their consequences to the
security properties of the class diagram.

Formally, we can express this property as follows:

P (M) : ∀C, C′ ∈M.Classes (∃d ∈M.dependencies(C, C ′)⇒ C.critical = C ′.critical)

where M.Classes is the set of classes of diagram M , M.dependencies(C, C′) re-
turns the set of dependencies between classes C and C ′ and C.critical returns the

62 J. Jürjens et al.

set of pairs (m, s) where m is a method or an object shared in the dependency
and s ∈ {high, secrecy, integrity} as specified in the 〈〈 critical 〉〉 stereotype for that
class.

We now analyse the set Δ of modifications by distinguishing cases on the
evolution type (deletion, addition, substitution) and the UML type.

Deletion

Class. We assume that if a class C̄ is deleted then also the dependencies com-
ing in and out of the class are deleted, say by deletions D = {o1, ..., on}, and
therefore, after the execution of o and D in the model M (expressed M [o, D])
property P holds since:

P (M [o, D]) :

∀C, C′ ∈M.Classes \ C̄ (∃d ∈M [o, D].dependencies(C, C′)⇒ C.critical = C ′.critical)

and this predicate holds given P (M), because the new set of dependencies of
M [o, D] does not contain any pair of the type (x, C̄), (C̄, x).

Tag in Critical. If a security requirement (m, s) associated to in class C̄ is
deleted then it must also be removed from other methods having dependencies
with C (and so on recursively for all classes CC̄ associated through dependencies
to C̄) in order to preserve the secure dependencies requirement. We assume
P (M) holds, and since clearly M.Classes = (M.Classes \ CC̄) ∪ CC̄ it follows
P (M [o, D]) because the only modified objects in the diagram are the classes in
CC̄ and for that set we deleted symmetrically (m, s), thus respecting P .

Dependency. The deletion of a dependency does not alter the property P since
by assumption we had a statement quantifying over all dependencies (C, C′), that
trivially also holds for a subset.

Addition

Class. The addition of a class, without any dependency, clearly preserves the
security of P since this property depends only on the classes with dependencies
associated to them.

Tag in Critical. To preserve the security of the system, every time a method is
tagged within the 〈〈 critical 〉〉 stereotype in a class C, the same tag referring to the
same method should be added to every class with dependencies to and from C
(and recursively to all dependent classes). The execution of these simultaneous
additions preserves P since the symmetry of the critical tags is respected through
all dependency-connected classes.

Dependency. Whenever a dependency is added between classes C and C ′, for
every security tagged method in C (C′) the same method must be tagged (with
the same security requirement) in C′ (C) to preserve P . So if in the original
model this is not the case, we check for simultaneous additions that preserve
this symmetry for C and C′ and transitively on all their dependent classes.

UML-Based Security Verification for Evolving Systems 63

Substitution

Class. If class C is substituted with class C′ and class C′ has the same security
tagged methods as C then the security of the diagram is preserved.

Tag in Critical. If we substitute { requirement =method() } by
{ requirement’ =method()’ } in class C, then the same substitution must be made
in every class linked to C by a dependency.

Dependency. If a 〈〈 call 〉〉 (〈〈 send 〉〉) dependency is substituted by 〈〈 send 〉〉 (〈〈 call 〉〉)
then P is clearly preserved.

Example. The example in Fig. 7 shows the Client side of a communication chan-
nel between two parties. At first (disregarding the evolution stereotypes) the
communication is unsecured. In the packages Symmetric and Asymmetric, we have
classes providing cryptographic mechanisms to the Client class. Here the stereo-
type 〈〈 add 〉〉 marked with the reference tag {ref} with value add encryption spec-
ifies two possible evolution paths: merging the classes contained in the current
package (Channel) with either Symmetric or Asymmetric. There exists also a stereo-
type 〈〈 add 〉〉 associated with the Client class adding either a pre-shared private
key k or a public key KS of the server. To coordinate the intended evolution paths
for these two stereotypes, we can use the following first-order logic constraint
(associated with add encryption):

<<send>>

+ receive() : Data

<<call>>
SymmetricEncryptionDecryption

{secrecy = {d}}

+ encrypt(d: Data, k: Key) : EncryptedData
+ decrypt(e: EncryptedData, k: Key) : Data

<<critical>>

Symmetric

<<add>>

<<add>>
{add = {<<critical>> secrecy = {d}}}

Client

+ receive() : Data

{ref= add_keys}<<add>>

+ transmit(d: Data)

Client

{add = { :Keys,k:Keys}}

Channel {ref=add_encryption}<<add>>

<<call>>
AsymmetricEncryptionDecryption
<<critical>>

+ decrypt(e: EncryptedData, priv: PrivKey) : Data

{secrecy = {d}}

{add={Symmetric,Asymmetric}}

Asymmetric

Server

secrecy = {d}}}

Client

+ encrypt(d: Data, pub: PubKey) : EncryptedData

{add = {<<critical>>
KS

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

Fig. 7. An evolving class diagram with two possible evolution paths

64 J. Jürjens et al.

[add encryption(add) = Symmetric ⇒ add keys(add) = k : Keys ∧
add encryption(add) = Asymmetric ⇒ add keys(add) = KS : Keys]

The two deltas, representing two possible evolution paths induced by this nota-
tion, can be then given as input to the decision procedure described for checking
〈〈 secure dependency 〉〉. Both evolution paths respect sufficient conditions for this
security requirement to be satisfied.

5 Tool Support

The UMLsec extension [6] together with its formal semantics offers the possibil-
ity to verify models against security requirements. Currently, there exists tool
support to verify a wide range of diagrams and requirements. Such requirements
can be specified in the UML model using the UMLsec extension (created with
the ArgoUML editor) or within the source-code (Java or C) as annotations. As
explained in this paper, the UMLsec extension has been further extended to in-
clude evolution stereotypes that precisely define which model elements are to be
added, deleted, or substituted in a model (see also the UMLseCh profile in [15]).
To support the UMLseCh notation, the UMLsec Tool Suite has been extended
to process UML models including annotations for possible future evolutions.6

Given the sufficient conditions presented in the previous sections, if the trans-
formation does not violate them then the resulting model preserves security. Nev-
ertheless, security preserving evolutions may fail to pass the tests discussed, and
be however valid: With respect to the security preservation analysis procedures,
there is a trade-off between their efficiency and their completeness. Essentially,
if one would require a security preservation analysis which is complete in the
sense that every specified evolution which preserves security is actually shown
to preserve security, the computational difficulty of this analysis could be com-
parable to a simple re-verification of the evolved model using the UMLsec tools.
Therefore if a specified evolution could not be established to preserve security,
there is still the option to re-verify the evolved model.

It is of interest that the duration of the check for 〈〈 secure dependency 〉〉 imple-
mented in the UMLsec tool behaves in a more than linear way depending on the
number of dependencies. In Fig. 8 we present a comparison between the running
time of the verification7 on a class diagram where only 10% of the model elements
were modified. One should note that the inefficiency of a simple re-verification
would prevent analyzing evolution spaces of significant size, or to support on-
line verification (i.e. verifying security evolution in parallel to the modelling
activity), which provides the motivation to profit from the gains provided by
the delta-verification presented in this paper. Similar gains can be achieved for
6 Available online at http://www-jj.cs.tu-dortmund.de/jj/umlsectool/manuals_

new/UMLseCh_Static_Check_SecureDependency/index.htm
7 On a 2.26 GhZ dual core processor

UML-Based Security Verification for Evolving Systems 65

Fig. 8. Running time comparison of the verification

other UMLsec checks such as 〈〈 rbac 〉〉, 〈〈 secure links 〉〉 and other domain-specific
security properties for smart-cards, for which sound decision procedures under
evolution have been worked out (see [15]).

6 Related Work

There are different approaches to deal with evolution that are related to our
work. Within Software Evolution Approaches, [10] derives several laws of soft-
ware evolution such as “Continuing Change” and “Declining Quality”. [12] argue
that it is necessary to treat and support evolution throughout all development
phases. They extend the UML metamodel by evolution contracts to automat-
ically detect conflicts that may arise when evolving the same UML model in
parallel. [16] proposes an approach for transforming non-secure applications into
secure applications through requirements and software architecture models using
UML. However, the further evolution of the secure applications is not consid-
ered, nor verification of the UML models. [5] discussed consistency of models for
incremental changes of models. This work is not security-specific and it considers
one evolution path only.

Also related is the large body of work on software verification based on
Assume-Guarantee reasoning. A difference is that our approach can reason incre-
mentally without the need for the user to explicitly formulate assume-guarantee
conditions.

In the context of Requirements Engineering for Secure Evolution there exists
some recent work on requirements engineering for secure systems evolution such
as [17]. However, this does not target the security verification of evolving design
models. A research topic related to software evolution is software product lines,
where different versions of a software are considered. For example, Mellado et al.
[11] consider product lines and security requirements engineering. However, their
approach does not target the verification of UML models for security properties.

66 J. Jürjens et al.

Evolving Architectures is a similar context with a different level of abstraction.
[3] discusses different evolution styles for high-level architectural views of the
system. It also discusses the possibility of having more than one evolution path
and describes tool support for choosing the “correct” paths with respect to prop-
erties described in temporal logic (similar to our constraints in FOL). However,
this approach is not security specific. On a similar fashion, but more focused on
critical properties, [13] also discusses the evolution of Architectures.

The UMLseCh notation is informally introduced in [7], however no details
about verification are given. Both the notation and the verification aspects are
treated in more detail in the (unpublished) technical report [15] of the Se-
cureChange Project. Note that UMLseCh does not aim to be an alternative
for any existing general-purpose evolution specification or model transforma-
tion approaches (such as [4,1,2,14,9]) or model transformation languages such as
QVT 8 or ATL 9. It will be interesting future work to demonstrate how the
results presented in this paper can be used in the context of those approaches.

To summarize, to the extent of our knowledge there is so far no published
work that considers evolution in the context of a model-based development ap-
proach for security-critical software involving more than one evolution path and
automated model verification.

7 Conclusion

This paper concerns the preservation of security properties of models in different
evolution scenarios. We considered selected classes of model evolutions such as
addition, deletion, and substitution of model elements based on UMLsec dia-
grams. Assuming that the starting UMLsec diagrams are secure, which one can
verify using the UMLsec tool framework, our goal is to re-use these existing ver-
ification results to minimize the effort for the security verification of the evolved
UMLsec diagrams. This is critical since simple re-verification would in general
result in a high resource consumption for models of realistic size, specially if
a continuous verification is desired (i.e. it should be determined in real-time
and in parallel to the modelling activity whether the modelled change preserves
security).

We achieved this goal by providing a general approach for the specification and
analysis of a number of sufficient conditions for the preservation of different se-
curity properties of the starting models in the evolved models. We demonstrated
this approach at the hand of the UMLsec stereotype 〈〈 secure dependency 〉〉. This
work has been used as a basis to extend the existing UMLsec tool framework
by the ability to support secure model evolution. This extended tool supports
the development of evolving systems by pointing out possible security-violating
modifications of secure models. We also show that the implementation of the
techniques described in this paper leads to a significant efficiency gain compared
to the simple re-verification of the entire model.
8 Query/View/Transformation Specification http://www.omg.org/spec/QVT/
9 The ATLAS Transformation Language http://www.eclipse.org/atl/

UML-Based Security Verification for Evolving Systems 67

Our work can be extended in different directions. For example, we plan to
increase the completeness of the approach by analyzing additional interesting
model evolution classes. Also, it would be interesting to generalize our approach
to handle other kinds of properties beyond security properties.

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Science of Computer Programming 34(1), 1–54 (1999)

2. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation models! In: Wang, J., Whittle, J., Harel, D.,
Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer,
Heidelberg (2006)

3. Garlan, D., Barnes, J., Schmerl, B., Celiku, O.: Evolution styles: Foundations and
tool support for software architecture evolution. In: WICSA/ECSA 2009, pp. 131
–140 (September 2009)

4. Heckel, R.: Compositional verification of reactive systems specified by graph trans-
formation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382,
pp. 138–153. Springer, Heidelberg (1998)

5. Johann, S., Egyed, A.: Instant and incremental transformation of models. In:
Proceedings of the International Conference on Automated Software Engineering
(ASE), pp. 362–365. IEEE Computer Society, Washington, DC, USA (2004)

6. Jürjens, J.: Principles for Secure Systems Design. PhD thesis, Oxford University
Computing Laboratory (2002)

7. Jürjens, J., Ochoa, M., Schmidt, H., Marchal, L., Houmb, S., Islam, S.: Modelling
secure systems evolution: Abstract and concrete change specifications (invited
lecture). In: Bernardo, I. (ed.) 11th School on Formal Methods (SFM 2011),
Bertinoro, Italy, June 13-18. LNCS. Springer, Heidelberg (2011)

8. Jürjens, J., Shabalin, P.: Tools for secure systems development with UML. Intern.
Journal on Software Tools for Technology Transfer 9(5-6), 527–544 (2007); Invited
submission to the special issue for FASE 2004/05

9. Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update transformations in the
small with the epsilon wizard language. Journal of Object Technology 6(9), 53–69
(2007)

10. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and
Laws of Software Evolution – The Nineties View. In: METRICS 1997, pp. 20–32.
IEEE Computer Society, Washington, DC, USA (1997)

11. Mellado, D., Rodriguez, J., Fernandez-Medina, E., Piattini, M.: Automated
Support for Security Requirements Engineering in Software Product Line Domain
Engineering. In: AReS 2009, pp. 224–231. IEEE Computer Society, Los Alamitos,
CA, USA (2009)

12. Mens, T., D’Hondt, T.: Automating support for software evolution in UML.
Automated Software Engineering Journal 7(1), 39–59 (2000)

13. Mens, T., Magee, J., Rumpe, B.: Evolving Software Architecture Descriptions of
Critical Systems. Computer 43(5), 42–48 (2010)

14. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: A
comparison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F.,
Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer,
Heidelberg (2004)

68 J. Jürjens et al.

15. Secure Change Project. Deliverable 4.2, http://www-jj.cs.tu-dortmund.de/jj/
deliverable_4_2.pdf

16. Shin, M.E., Gomaa, H.: Software requirements and architecture modeling for
evolving non-secure applications into secure applications. Science of Computer
Programming 66(1), 60–70 (2007)

17. Tun, T.T., Yu, Y., Haley, C.B., Nuseibeh, B.: Model-based argument analysis for
evolving security requirements. In: SSIRI 2010, pp. 88–97. IEEE Computer Society,
Los Alamitos (2010)

Assessing the Kodkod Model Finder

for Resolving Model Inconsistencies�

Ragnhild Van Der Straeten1,2, Jorge Pinna Puissant2, and Tom Mens2

1 Vrije Universiteit Brussel & Université Libre de Bruxelles, Belgium
rvdstrae@vub.ac.be

2 Université de Mons, Belgium
{jorge.pinnapuissant,tom.mens}@umons.ac.be

Abstract. In model-driven software engineering (MDE), software is
built through the incremental development, composition and transfor-
mation of a variety of models. We are inevitably confronted with design
models that contain a wide variety of inconsistencies. Interactive and
automated support for detecting and resolving these inconsistencies is
indispensable. We evaluate an approach to automate the generation of
concrete models in which structural inconsistencies are resolved. We im-
plemented this approach in the model finder Kodkod and assessed its
suitability for model inconsistency resolution based on an objective set
of criteria.

Keywords: model-driven engineering, model finder, inconsistency
resolution.

1 Introduction

Model-driven engineering (MDE) is an approach to software engineering where
the primary assets are models, describing particular aspects of the system, and
being expressed in one or more modelling languages. An important challenge
in MDE is the ability to tolerate the presence of certain model inconsistencies,
while being able to resolve others. This is for example necessary in the early
stages of software design, where design models will be incomplete and contain
a lot of inconsistencies that can only be resolved in later phases of the develop-
ment process. It is the task of the software designer to decide when to detect
inconsistencies and when to resolve them.

This article focuses on resolution of model inconsistencies using formal meth-
ods. The research question we address is which formal techniques can be used for
inconsistency resolution without requiring a lot of effort or customisation. Ex-
amples of such formal methods are fragments of first order logic, logic program-
ming, SAT solving, graph transformation, automated planning and constraint
� This work has been partially supported by (i) Interuniversity Attraction Poles Pro-

gramme - Belgian State – Belgian Science Policy; (ii) Action de Recherche Concertée
AUWB-08/12-UMH 19 funded by the Ministère de la Communauté française - Di-
rection générale de l’Enseignement non obligatoire et de la Recherche scientifique.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 69–84, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

70 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

satisfaction. In the past, we attacked inconsistency resolution using graph trans-
formation [13] and Description Logics, a fragment of first-order logic [23]. Both
approaches exhibited the same problem: resolution rules were specified manually,
which is an error-prone process.

To tackle this problem, we aim to generate consistent models without the need
of writing or generating resolution rules. Based on an inconsistent model and a
set of inconsistencies that need to be resolved, the approach should be able to
generate well-formed models in a reasonable time. The underlying idea is that
model inconsistencies can be resolved by finding models that satisfy the consis-
tencies. Currently, we are investigating the automated generation of resolution
plans [17] and the use of model finders. The latter is the focus of this article. Af-
ter having explained when and how inconsistencies can be resolved (Section 3),
we introduce Kodkod [21] a SAT-based constraint solver for first-order logic with
relations, transitive closure, and partial models (Section 4). We assess this model
finder in the context of inconsistency resolution (Section 5). This experiment re-
veals the complexity of the inconsistency resolution problem in general and the
scalability problem of the model finder in this context (Section 6 and Section 7).

2 Related Work

First, we discuss existing approaches to inconsistency resolution using formal
methods. Finkelstein et al. [15] generate inconsistency resolution actions auto-
matically from inconsistency detection rules. These resolution actions are de-
scribed as first-order logic formulae. The execution of these formulae only allows
to resolve one inconsistency at a time and the resulting models do not necessarily
conform to their metamodels. Kleiner [10] proposes an approach that aims at
modifying a model that partially conforms to a constrained metamodel in or-
der to make it fully conform. A constrained metamodel is a classical metamodel
associated with a set of constraints. The approach uses two types of solvers: a
SAT solver and a CSP solver to automatically modify the model. In the current
article we focus on SAT solvers. Kleiner uses Alloy [9], an expressive relational
language that can be used with different SAT solvers. His experiments result in
a small SAT predicate (753 variables and 1271 clauses).

Other approaches to inconsistency resolution that do not use formal techniques
exist in the literature. Xiong et al. [25] define a language to specify inconsistency
rules and the possibilities to resolve the inconsistencies. This requires inconsis-
tency rules to be annotated with resolution information. The approach is com-
pletely automatic, i.e., without requiring user interaction, which makes it only
usable for a small subset of inconsistencies. Instead of explicitly defining or gen-
erating resolution rules, a set of models satisfying a set of consistency rules can
be generated and presented to the user. Almeida da Silva et al. [1] define such an
approach for resolving inconsistencies in UML models. They generate so-called
resolution plans for inconsistent models. Egyed et al. [7] define a similar approach
that, given an inconsistency and using choice generation functions, generates pos-
sible resolution choices, i.e., possible consistent models. All these approaches ex-
hibit similar problems as the ones that use formal methods: the choice generation

Assessing Kodkod for Inconsistency Resolution 71

functions depend on the modelling language; they only consider the impact of one
consistency rule at a time; and they need to be implemented manually.

3 Background

We use the UML to express design models because it is the de-facto general-
purpose modelling language [16]. Figure 1 presents a UML class diagram and
sequence diagram, respectively, which are part of the design model of an au-
tomatic teller machine (ATM). The interaction shows how a Session object is
created when a card is inserted in the ATM and how the card and PIN code is
read. The model contains an occurrence of the NavigationIncompatibility incon-
sistency [7, 16, 24]. This inconsistency arises because the message performSes-
sion() is sent by an ATM object to a Session object over a link typed by the
association that exists between the ATM and Session class. This association is
only navigable from Session to ATM and not in the other direction.

The set of inconsistencies considered in our study is based on what we found
in the state-of-the-art literature [4, 7, 18, 24, 25]. These inconsistencies specify
constraints expressed in terms of UML metamodel elements. For example, the
previously mentioned NavigationIncompatibility inconsistency boils down to the
following logic formula over the UML metamodel:

Message.receiveEvent.theLine.theObject.ownedType not in

Message.sentConnector.typedAssoc.navigableOwnedEnd.ownedType

The part of the model accessed during evaluation of this formula is depicted in
the lower part of Figure 2 showing the abstract syntax of part of the sequence di-
agram of Figure 1. The upper part of Figure 2 shows part of the UML metamodel
defining metaclasses, meta-associations and meta-attributes.

switchOn() : void
switchOff() : void
getID() : int
cardInserted() : void
readCard() : Card
verifyPIN(pin : int, aCard : Card) : boolean
ejectCard() : void
dispenseCash(amount : Cash) : void
checkIfCashAvailable(cash : Cash) : boolean
readPIN() : int
retainCard() : void

id : int
cash : Cash

ATM

Cash

Card

performSession() : void
handleFailedTransaction() : void

Session

insertCard() : void
readCard() : Card
retainCard() : void

CardReader

atm

reader

atm

session

1 1

1

0..1

0..1

0..1

Fig. 1. UML model containing a class diagram (left) and sequence diagram (right).
The model contains a NavigationIncompatibility inconsistency.

72 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

m3 me3 l3 ce3 c4 Session

as2 p1 c2 ATM

receiveEvent theLine theObject ownedType

name

Model

sentConnector
typedAssoc navigableOwnedEnd

ownedType

instance of

Legend

MessageEnd Lifeline
Connectable

Element

Connector Association Property

receiveEvent

theLine

theObject

ownedType

sentConnector

typedAssoc

navigableOwnedEnd

ownedType

con4

name : String
Class

Metamodel

name

0..1

0..1

0..1

1 0..1

0..1

0..1

*

memberEndassociation

2..*0..1

p2

Operation
signature

0..1

memberEnd

memberEnd

ownedType

ownedOperation*

name : String
Message

performSession

name

Fig. 2. Abstract syntax for model involved in a NavigationIncompatibility inconsistency

To be able to resolve an inconsistency occurrence, we need to know where and
how to resolve it. In the remainder of the paper, we use the word inconsistency to
denote a particular inconsistency occurrence and inconsistency rule to denote the
definition of an inconsistency. Model elements where potentially an inconsistency
can be resolved, are called locations in the literature [7]. A difference is made be-
tween the location type in the metamodel and the exact location in the model [7].
The location types for the NavigationIncompatibility inconsistency rule for exam-
ple, can be read from the aforementioned logic formula. It is much harder to find
all the locations for a certain inconsistency. Egyed et al. [7] used model profiling
to determine the locations. In [24], we demonstrated an approach to inconsistency
detection where inconsistency rules are expressed as logic queries. These queries
return the model elements connected through metamodel relations involved in
the inconsistency. Consequently, the locations, i.e., the model elements connected
through metamodel relations involved in the inconsistency, are known.

If the NavigationIncompatibility rule would be executed as a query over our
inconsistent UML design model using that approach, it would return the ele-
ments connected through metamodel relations shown in Figure 2 (except for
the memberEnd relation, because this relation does not appear in the inconsis-
tency rule). These elements are all possible locations. An inconsistency resolution
needs to change at least one of these elements. For example, a possible location is
navigableOwnedEnd(as2,p1) (navigableOwnedEnd is the location type of the
tuple (as2,p1)) and a possible resolution is to include in the set of navigable
owned ends of the as2 association the property p2 typed by the class c4. These
values of a location resolving an inconsistency are called choices [7]. Current ap-
proaches specify these choices manually or generate them by manually written
choice generation functions.

Assessing Kodkod for Inconsistency Resolution 73

4 Inconsistency Resolution Using Kodkod

This section presents how UML model inconsistency resolution can be automated
using the Kodkod model solver, without the need of manually writing any incon-
sistency resolution rule or resolution generation functions. Kodkod is a constraint
solver. The logic accepted by Kodkod is a core subset of the Alloy modelling lan-
guage supporting first order quantifiers, connectives, arbitrary-arity relations
and transitive closure. Kodkod, in contrast to Alloy, makes no distinction be-
tween unary and non-unary relational variables, and all relations are untyped.
In addition, the purely syntactic conventions of the Alloy language, i.e., predi-
cates, functions and facts, are not part of the Kodkod logic [20]. Kodkod searches
for model instances by completing a user-specified partial solution as opposed
to Alloy. It has been shown that Kodkod outperforms Alloy dramatically [21]
due to a new symmetry detection scheme, a new sparse-matrix translation to
boolean encoding and a new sharing detection mechanism.

4.1 Specification of Models

First, we explain how a UML model can be specified as a Kodkod problem. Next,
we show how to adapt this translation for inconsistency resolution. The left-hand
side of Figure 3 shows the Kodkod formulation of the UML model of Figure 2.

A Kodkod problem consists of a universe declaration, i.e., a set of atoms, a set of
relation declarations and a formula. The universe of a Kodkod problem represent-
ing a UML model contains an atom for each model element. A relation in a Kodkod

{m3, me3, l3, ce3, con4, as2, p1, c2, c4, Session,
{ ATM}
Message :1 [{〈m3〉},{〈m3〉}]
MessageEnd :1 [{〈me3〉},{〈me3〉}]
Lifeline :1 [{〈l3〉},{〈l3〉}]
ConnectableElement :1 [{〈ce3〉},{〈ce3〉}]
Connector :1 [{〈con4〉},{〈con4〉}]
Association :1 [{〈as2〉},{〈as2〉}]
Property :1 [{〈p1〉},{〈p1〉}]
Class :1 [{〈c2〉,〈c4〉},{〈c2〉,〈c4〉}]
receiveEvent :2 [{〈m3,me3〉},{〈m3, me3〉}]
theLine :2 [{〈me3,l3〉},{〈me3, l3〉}]
theObject :2 [{〈l3,ce3〉},{〈l3, ce3〉}]
ownedType :2 [{〈ce3,c4〉〈p1, c2〉〈p2, c4〉},

{〈ce3, c4〉〈p1, c2〉〈p2, c4〉}]
sentConnector :2 [{〈m3, con4〉},{〈m3, con4〉}]
typedAssoc :2 [{〈con4, as2〉},{〈con4, as2〉}]
navigableOwnedEnd :2 [{〈as2, p1〉},{〈as2, p1〉}]
memberEnd :2 [{〈as2, p1〉〈as2, p2〉},

{〈as2, p1〉〈as2, p2〉}]
name :2 [{〈c2, ATM〉, 〈c4, Session〉},

{〈c2, ATM〉, 〈c4, Session〉}]
(all m : Message | lone m.receiveEvent) and
(all me: MessageEnd | one me.theLine) and
(all a : Association | �(a.memberEnd) ≥ 2)

{m3, me3, l3, ce3, con4, as2, p1, c2, c4, Session, ATM}
Message :1 [{〈m3〉}, {〈m3〉}]
MessageEnd :1 [{〈me3〉}, {〈me3〉}]
Lifeline :1 [{〈l3〉}, {〈l3〉}]
ConnectableElement :1 [{〈ce3〉}, {〈ce3〉}]
Connector :1 [{〈con4〉}, {〈con4〉}]
Association :1 [{〈as2〉}, {〈as2〉}]
Property :1 [{〈p1〉}, {〈p1〉}]
Class :1 [{〈c2〉,〈c4〉}, {〈c2〉,〈c4〉}]
receiveEvent :2 [{〈m3, me3〉}, {〈m3, me3〉}]
theLine :2 [{〈me3, l3〉}, {〈me3, l3〉}]
theObject :2 [{〈l3, ce3〉}, {〈l3, ce3〉}]
ownedType :2 [{〈ce3, c4〉〈p1, c2〉〈p2, c4〉},

{〈ce3, c4〉〈p1, c2〉〈p2, c4〉}]
sentConnector :2 [{〈m3, con4〉}, {〈m3, con4〉}]
typedAssoc :2 [{〈con4, as2〉}, {〈con4, as2〉}]
navigableOwnedEnd :2 [{}, {as2} → {p1, p2}]
memberEnd :2 [{〈as2, p1〉〈as2, p2〉},

{〈as2, p1〉〈as2, p2〉}]
name :2 [{〈c2, ATM〉, 〈c4, Session〉},

{〈c2, ATM〉, 〈c4, Session〉}]
(all m : Message | lone m.receiveEvent) and
(all me: MessageEnd | one me.theLine) and
(all a : Association | �(a.memberEnd) ≥ 2) and
all m: Message | m.receiveEvent.theLine.theObject.
ownedType in m.sentConnector.typedAssoc.
navigableOwnedEnd.ownedType)

Fig. 3. On the left: inconsistent UML model expressed as a Kodkod problem. On the
right: a Kodkod problem used for resolving an NavigationIncompatibility.

74 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

problem is declared through a relational variable name, its arity and bounds on
its value. Kodkod requires the relational variables to be bound prior to analysis.
Every relational variable must be bound from above by a relational constant, a
fixed set of tuples drawn from the universe of atoms. Each relation must also be
bound from below by a relational constant, i.e., a lower bound containing the tu-
ples that the variable’s value must include in an instance of the formula. The union
of all relations’ lower bounds forms a problem’s partial instance [21]. Each UML
metaclass is expressed as a unary relation. Its value is the set of model elements
that represent its instances. For example, the variable Class in the Kodkod prob-
lem in Figure 3 represents the metaclass Class and serves as a handle to the unary
constant {〈c2〉, 〈c4〉} that represents the set of all classes in the model. The UML
meta-association ends and attributes are translated into the corresponding k-arity
relational variables. The values of these relational variables are tuples containing
the UML model elements involved in the corresponding UML meta-associations
or meta-attributes. For example, the binary variable navigableOwnedEnd in
Figure 3 represents the meta-association end navigableOwnedEnd and encodes the
ends of an association that are navigable.

The cardinality constraints specified on the UML meta-associations are en-
coded in the formula of the Kodkod problem. For example, cardinalities such as
1, 0..1 and 1..∗ map onto the Kodkod keywords one, lone and some respectively.
The formula specified in the left-hand side of Figure 3 (last three lines) expresses
that each Message optionally has a receiveEvent, each MessageEnd has exactly
one theLine, and each Association has at least two memberEnds. The � operator
is the Kodkod set cardinality operator, the in keyword represents the set inclu-
sion operator. An instance of a formula is a binding of the declared relational
variables to relational constants, that makes the formula true. Kodkod ’s analysis
will search for such an instance within the provided upper and lower bounds.
Remark that there is no conceptual difference between the above translation and
existing translations of UML diagrams and OCL constraints to Alloy (e.g., [2]).
We have built an Eclipse plugin to generate the corresponding Kodkod problem
automatically given a (set of) UML model(s). Our plugin uses the UML2 Eclipse
plug-in API1.

4.2 Inconsistency Resolution

In order to generate consistent models w.r.t. a consistency rule, we need to spec-
ify the consistency rule as part of the Kodkod problem’s formula. In our approach,
the notion of inconsistency rule and consistency rule can be used interchangeably.
Because a consistency rule is the negation of an inconsistency rule, only the logic
connectives and quantifiers differ but not the metamodel elements. For example,
the following formula represents the negation of NavigationIncompatibility.

(all m: Message | m.receiveEvent.theLine.theObject.ownedType

in m.sentConnector.typedAssoc.navigableOwnedEnd.ownedType)

1 http://www.eclipse.org/modeling/mdt/?project=uml2

Assessing Kodkod for Inconsistency Resolution 75

Currently, the translation of such a consistency rule to a Kodkod formula is done
manually. However, an automatic translation can be envisioned similar to the
automatic translation of OCL constraints to Alloy as defined in [2].

Each relational variable in a Kodkod problem representing a UML model
element has the same lower and upper bound (cf. Section 4.1). This means
that the model is static and the size is fixed. For resolving inconsistencies,
we want Kodkod to generate consistent models by adding model elements or
adding elements to a meta-association/attribute or changing the value of a meta-
association/attribute.

Considering the translation specified above, for Kodkod to be able to find mod-
els for the given consistency rule, the lower bound of certain relations needs to
be changed. As explained in Section 3, each element involved in an inconsistency
is a possible location for resolving the inconsistency. After having identified the
possible locations, one or several of these can be chosen and will be excluded
from the corresponding relations’ lower bounds. For example, given the loca-
tion navigableOwnedEnd(as2,p1), the tuple 〈as2, p1〉 will be excluded from
the navigableOwnedEnd’s lower bound in the corresponding Kodkod problem.
This results in an empty set as shown in the right-hand side of Figure 3. The
upper bound of the relational variable representing the location type needs to
be changed too. It becomes the Cartesian product of its domain and its range.
In the example, the upper bound of the navigableOwnedEnd relation is the
Cartesian product of all atoms that represent associations and all atoms that
represent properties. The right-hand side of Figure 3 shows the Kodkod problem
with modified navigableOwnedEnd relation (the Kodkod → operator represents
the set product operation) and the negation of the NavigationIncompatibility
rule included in the formula. Kodkod’s analysis will search for an instance of this
consistency within the provided upper and lower bounds.

Considering the Cartesian product as the upper bound of a relation can result
in models not contributing to the consistency of the model. This is the case
when the cardinality of the UML meta-association ends of the considered meta-
association is of the form n..m with m > 1. Consider the superClass meta-
association ([16], pg. 50) giving the superclasses of a class. Both ends of this
meta-association have an unlimited cardinality (*). Suppose the aim is to add
subclasses to a certain class and suppose we set the upper bound of such a
relation to the Cartesian product of the set of classes. Kodkod will return not
only models that add subclasses to the class under study but also models which
additionally add subclasses to other classes of the model. The latter models do
not contribute to our goal. Consequently, in the case of an association with ends
of cardinality n..m with m > 1, the upper bound of the corresponding relation
equals the lower bound of the relation union the Cartesian product of the model
element (i.e., a singleton) and the range of the relation.

Remark that multiple inconsistency locations can be considered by the ap-
proach by excluding the corresponding tuples from the lower bound of the corre-
sponding relational variables. Currently, modifying the lower and upper bound
is done manually, we envision to automate this step.

76 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

5 Case Study

5.1 Cases

Due to lack of access to sufficiently large and realistic UML models, we evalu-
ate our approach on UML models obtained by reverse engineering five software
systems (Table 1). We opt for open source software systems in order to have
reproducible results. These systems cover finance, chat, modelling and web de-
velopment applications. Reverse engineering was done through Together 2006
Release 2 for Eclipse resulting in class diagrams and sequence diagrams. Al-
though our approach is applicable to all kinds of UML diagrams, the models
considered only contain class and sequence diagrams. The model sizes range
from 2064 to 8572 elements.

Table 1. Reverse engineered open source models

software system version model size

m1 Chipchat 1.0 beta 2 2064
m2 Cleansheets 1.4b 7387
m3 SweetRules 2.0 6342
m4 Thinwire 1.2 8572
m5 UMLet 9beta 4890

We consider 12 model inconsistency rules, borrowed from [4, 13, 16, 24] and
described in [22]. They cover the main constraints that can be expressed in
Kodkod : cardinality constraints, quantified constraints, comparison constraints,
negated constraints and compound constraints using the logic connectives.

Each reverse engineered model mi was consistent with respect to the 12 con-
sidered inconsistency rules, except for Rule9: NavigationIncompatibility. Incon-
sistencies of this type were caused by the absence of associations in the reversed
engineered models. This resulted in 191 inconsistencies in m1, 14 in m2, 103 in
m3, 12 in m4 and 36 in m5.

To carry out our experiment, we first removed all these inconsistencies (by
adding the necessary associations), and next we manually added one inconsis-
tency of each different type to each of the five models. A model inconsistency
typically affects only part of a model. As a result, we only took into consider-
ation relational variables that were involved in the inconsistencies we wanted
to resolve when translating the models into a Kodkod problem. We used the
translation explained in Section 4, but we translated only metamodel elements
(i.e., meta-classes, meta-associations, meta-attributes) occurring in the consis-
tency rules, and only model elements that are instances of these metaclasses and
related through the considered meta-relations. For example, if a user wants to
resolve a NavigationIncompatibility inconsistency (Rule9), only the elements that
are instances of the metamodel elements shown in the upper part of Figure 2 are
considered. The formula of the corresponding Kodkod problem contains the con-
sidered consistency rule and the cardinality constraints involving the considered
metamodel elements. This reduces the resulting number of Kodkod elements.

Assessing Kodkod for Inconsistency Resolution 77

Figure 4 shows, for each model, the percentage of model elements involved in
the Kodkod problem. For each inconsistency rule there is a cluster of five bars,
each bar corresponding to one of the 5 models. Only considering the elements
that are instances of the metamodel classes that are in the rule definition results
in sizes between 5% and 60% of the original model size. The only exception is
Rule4: OwnedElement that uses almost the entire model2 because it considers
the metaclass Element and each model element is an instance of this metaclass.

Figure 5 shows the number of model elements and references (i.e., instan-
tiations of meta-associations and meta-attributes) involved in each generated
Kodkod problem per rule and per model as a percentage of the model size (i.e.,
the number of model elements). This chart shows the importance of the refer-
ences between model elements: they more or less double the size of the elements
involved in the translation.

Fig. 4. Percentage of model elements that need to be considered per inconsistency rule,
for each of the five considered models

Fig. 5. Percentage of model elements and references per rule and per model

2 Rule4 searches for model elements that directly or indirectly own themselves.

78 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

The considered (in)consistency rules contain 44 location types in total, of
which 28 distinct location types. This is not exhaustive because the considered
inconsistencies only reason over a part of the UML metamodel. Resolving an
inconsistency at a certain location gives rise to a set of consistent models, called
choices. Table 2 shows the average number of choices per inconsistency rule
and per model. This table needs more explanation. First of all, remark that the
number of choices is independent of the chosen resolution technique or approach.
The number of choices is infinite for Rule11: MultiplicityIncompatibility dealing
with the upper and lower cardinality of properties. Kodkod lets us deal with this
infinity through its scope bounds that limit the number of choices returned. The
number of choices for Rule2: CyclicInheritance and Rule3: NoConcreteSubclass
for m1 are not relevant (NR) because the rules deal with inheritance and the
model does not contain any inheritance hierarchies. For the remaining models
the number of choices for Rule2 and Rule3 have a complexity of O(2n) with
n the number of classes not involved in the inheritance hierarchy under study.
As an example, inconsistency Rule3: NoConcreteSubclass searches for abstract
leaf classes (implying that the class has no concrete implementation). A possible
resolution is to make a concrete existing class subclass of the abstract class.
The number of choices is the number of concrete classes available in the model
and all possible combinations of classes available in the model. So the total
number of choices equals 2n with n the number of concrete classes in the model.
The number of choices for Rule4: OwnedElement are about half the size of the
models. The number of choices for Rule1: DanglingParameterType and Rule12:
DanglingPropertyType depend on the number of types or properties in the model.
The number of choices for Rule5 till Rule10 is not that large because elements
of sequence diagrams are involved, and these elements constitute a minority of
the elements in the model.

Table 2. Average number of choices per (in)consistency rule and model

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Rule10 Rule11 Rule12

m1 47 NR NR 1021 10 1 3 18 10 3 ∞ 20

m2 572 O(2n) O(2n) 3600 119 2 35 19 8 14 ∞ 237

m3 487 O(2n) O(2n) 3092 92 7 10 17 9 15 ∞ 183

m4 695 O(2n) O(2n) 4201 113 10 57 18 10 20 ∞ 226

m5 442 O(2n) O(2n) 2369 86 3 8 20 9 16 ∞ 172

5.2 Timing Results

We used the Kodkodi [11] front-end for Kodkod and we used the MiniSat solver
[6] available in Kodkod because of its faster performance compared to the other
available SAT solvers (according to the SAT competitions in 2009 and 20103).
Each experiment consisted of the introduction of one inconsistency of a certain

3 http://www.satcompetition.org/

Assessing Kodkod for Inconsistency Resolution 79

type in the consistent model and selecting a location. We executed the reso-
lutions on a MacBook Pro with a 2.33 GHz Intel Core 2 Duo Processor and
4GB of memory. For each model and consistency rule, we resolved one inconsis-
tency by considering the different possible locations. The aggregations of these
experiments resulted in 220 (44 location types × 5 models) timing results.

Figure 6 shows the timing results we obtained. Each dot in the plot represents
the time for generating choices for a certain location type for each rule (the
numbers on the x-axis correspond to the rule numbers, time is expressed in ms)
and per model. All results that took more than 6 minutes of execution time or
that resulted in an out of memory are excluded from Figure 6. Only in case of
Rule4, several experiments ran out of memory. 25% of the experiments resulted
in a time greater than 6 minutes. In 17% of the remaining cases it took more than
one minute to execute a resolution. In general, we conclude that the approach
does not provide instantaneous resolution on medium scale models.

Another question we raised is whether the size of a model has an influence
on the performance of the model finder. Figure 7 shows the timing results again
per rule and per model but the values of the x-axis indicate the size of the
considered models. To verify whether there is a correlation between the size of the
models and the performance results we used three statistical methods. Pearson’s
correlation coefficient, indicating the degree of linear correlation between the
two considered variables, resulted in a value of 0.063. Being very close to 0,
there is no linear correlation between the two variables. We used Spearman’s
rank correlation coefficient to assess how well the relationship between the two
variables can be described using a monotonic function. A perfect Spearman
correlation of +1 or -1 occurs when each of the variables is a perfect monotone
function of the other. We obtained a value of 0.489. Finally, we used Kendall’s
rank correlation to measure the strength of dependence between two variables.

Fig. 6. Timing results in ms (y-axis) for each rule (x-axis) per location type and model

80 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

Fig. 7. Timing results in ms (y-axis) in function of model size (x-axis), using log-log
scale

A value of +1 or -1 indicates a perfect correlation while 0 indicates no correlation
at all. The value obtained for Kendall’s rank correlation based on our data is
0.349. Summarising, we did not observe any convincing correlation between the
size of the model and the timing results.

6 Threats to Validity

External Validity. To determine whether our results are generalisable to other
models (in particular, models that have not been reverse engineered from the
code, and models of a larger size) or other types of models, more experiments
are needed. The same is true for the inconsistency rules. We considered only a
limited set of rules, but tried to include a variety of different expressions and
constraints. We can easily extend our list of inconsistency rules with new ones,
as long as they can be expressed in Kodkod. It remains an open question to which
extent the obtained results depend on the model finder (Kodkod) and the SAT
solver (MiniSat) used.

Internal Validity. Because we obtained our models by reverse engineering
source code, associations were absent in the resulting models and we had to
change these models before they became usable for our experiments. We added
the necessary associations including association ends manually to the models
such that all models were consistent before starting the experiments. An alter-
native would be to generate large models using a model generator such as the
one proposed in [14]. However, this generator generates class diagrams only.

Our approach is restricted in the sense that it does not generate choices that
remove model elements. This is intrinsic to Kodkod because it starts with a
partial model and it will not remove elements from the lower bound of the
problem. On the other hand, the fact that we only consider partial models not
removing elements from the model has the advantage that we do not end up
with dangling references in the complete model.

Assessing Kodkod for Inconsistency Resolution 81

7 Discussion and Future Work

The combination of a model finder with a SAT solver has several advantages. The
strengths of using Kodkod for our purposes are (1) its relational logic extended
with a mechanism for specifying partial models, (2) its new translation to SAT
that uses sparse-matrices resulting in a significantly faster to produce and easier
to solve boolean encoding and new algorithms for identifying symmetries and
for finding minimal unsatisfiable cores [19].

The use of a SAT-based constraint solver enables us to discuss correctness
and completeness of the approach. A generated resolution model is correct if
it no longer contains the particular inconsistency selected for resolution. The
correctness of the generated models is guaranteed by the SAT solver. Because
Kodkod translates relational logic to Boolean logic and invokes an off-the-shelf
SAT solver, it is the correctness of the SAT solver that will guarantee the correct-
ness of Kodkod. State-of-the-art SAT solvers implement formally proven correct
algorithms [12]. The set of generated models after resolution should be complete,
i.e., no other consistent model can be found. Kodkod is complete within the con-
sidered lower and upper bounds of the relations defined in a Kodkod problem:
Kodkod will generate all the consistent models with values of the considered rela-
tions within the relations’ lower and upper bound. Of course, there can be other
consistent models consisting of model elements not within the specified lower
and upper bound of a relation. However, our approach is conceived such that
the original model and the generated models only differ at one or several locations
of certain location types. Consequently, other consistent models either involve
other locations or will only add model elements of the considered location types
to the generated models not contributing to the consistency of the model. When
no models are generated by Kodkod, either more locations need to be specified
(resulting in a smaller lower bound of the considered location type(s)) in order
to resolve the inconsistency, or no consistent models w.r.t. the given consistency
rule can be found. This would mean that the model is over-constrained.

A major limitation of the proposed approach is its poor performance and
lack of scalability. For 80% of the timing results the generation of the CNF
(conjunctive normal form) took more than 90% of the total time. As future work,
several optimisations can be envisioned to make model finders more performant
and hence more suitable for inconsistency resolution. A first optimisation would
be to build the CNF incrementally. Another possible optimisation is to refine
the given constraints and trying to resolve the refinements.

Our experiment focused on a single location type and resolved one inconsis-
tency at a time. We could optimise the given translation (cf. Section 4) further by
considering as an upper bound for the relation to be modified not the Cartesian
product of its domain and range but the given lower bound plus the Cartesian
product of the model element under study and its range. However, this optimi-
sation is not possible when considering multiple locations or multiple inconsis-
tencies. These inconsistencies can be instances of the same rule or of different
rules. In future work we aim to extend our approach to multiple inconsistencies
and multiple location types.

82 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

Next to considering multiple inconsistencies, we will extend the set of rules.
This should give us more statistically relevant information about the correlation
between inconsistencies and models on the one hand and the corresponding
translation and solving time on the other hand. We want to come up with a
classification of inconsistency rules together with a benchmark of suitable models
on which to compare different approaches implementing these rules.

Another way to tackle the scalability would be to limit the number of gener-
ated choices. As our brute-force approach revealed, in some cases large sets of
models are returned to the user, for example, in case of Rule3 where all pos-
sible inheritance hierarchies based on the available classes are returned for one
inconsistency. Most of these inheritance hierarchies do not make sense in the
application domain. Consequently, any inconsistency resolution technique gen-
erating models needs to be able to filter the generated set of models or to define
heuristics to restrict the generation. In the first case the set of models is gener-
ated and afterwards a filter is applied, in the latter case the input of the model
finder is restricted such that a smaller set of models is generated. For example,
enabling end-users to declaratively express relations between the original model
and the desired resulting model(s) would result in only meaningful models being
returned to the end users.

Our approach is strongly related to CSP because Kodkod is used to generate
a set of models satisfying a set of consistency rules. In [5] the tool UMLtoCSP is
presented. Given a UML class diagram annotated with OCL constraints, UML-
toCSP automatically checks several correctness properties. The tool uses Con-
straint Logic Programming and the constraint solver ECLiPSe [3]. We believe
that this constraint solver could be used for resolving model inconsistencies too.
Another issue of further research is the use of search-based approaches advocated
by Harman [8]. Such approaches include a wide variety of different techniques
such as metaheuristics, local search algorithms, automated learning, genetic algo-
rithms. These techniques could be applied to the problem of model inconsistency
resolution, as it satisfies at least three important properties that motivate the
need for search-based software engineering: the presence of a large search space,
the need for algorithms with a low computational complexity, and the absence
of known optimal solutions.

8 Conclusion

Resolution of model inconsistencies is an important and truly challenging ac-
tivity in MDE, necessitating interactive and automated support. This article
explored the use of the Kodkod model finder for automatically generating con-
sistent models starting from an inconsistent model and a set of inconsistencies.
The approach was validated on a set of medium-size models, and the proposed
technique does not appear to be viable for interactive model development.

Because we cannot generalise conclusions from our validation, our initial as-
sessment results call for the initiation of a research path in this area. For ex-
ample, it is necessary to extend the experiment with more inconsistency rules,

Assessing Kodkod for Inconsistency Resolution 83

more models and to consider multiple inconsistencies at a time. This will allow
a correlation analysis between performance and multiple inconsistencies and to
classify inconsistency rules.

References

1. Almeida da Silva, M., Mougenot, A., Blanc, X., Bendraou, R.: Towards automated
inconsistency handling in design models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 348–362. Springer, Heidelberg (2010)

2. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On Challenges of Model Trans-
formation from UML to Alloy. Software and Systems Modeling, Special Issue on
MoDELS 2007 9(1), 69–86 (2008)

3. Apt, K., Wallace, M.: Constraint Logic Programming using ECLiPSe. Cambridge
University Press, Cambridge (2006)

4. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Int’l Conf. Software Engineering,
pp. 511–520. ACM, New York (2008)

5. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: ASE, pp. 547–548. ACM,
New York (2007)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: ASE, pp. 99–108. IEEE, Los Alamitos
(2008)

8. Harman, M.: Search based software engineering. In: Alexandrov, V.N., van Albada,
G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 740–747.
Springer, Heidelberg (2006)

9. Jackson, D. (ed.): Software Abstractions. Logic, Language and Analysis. MIT
Press, Cambridge (2006)

10. Kleiner, M., Didonet Del Fabro, M., Albert, P.: Model search: Formalizing and
automating constraint solving in MDE platforms. In: Kühne, T., Selic, B., Gervais,
M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 173–188. Springer,
Heidelberg (2010)

11. Kodkodi: version 1.2.11 (March 2010), www4.in.tum.de/~blanchet/#kodkodi

12. Marić, F.: Formalization and implementation of modern SAT solvers. J. Autom.
Reason. 43(1), 81–119 (2009)

13. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model
inconsistencies using transformation dependency analysis. In: Wang, J., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214.
Springer, Heidelberg (2006)

14. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

15. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency management with repair
actions. In: ICSE, pp. 455–464. IEEE Computer Society, Los Alamitos (May 2003)

16. Object Management Group: Unified Modeling Language 2.1.2 Superstructure Spec-
ification. formal/2007-11-02 (November 2007), www.omg.org

84 R. Van Der Straeten, J. Pinna Puissant, and T. Mens

17. Pinna Puissant, J., Mens, T., Van Der Straeten, R.: Resolving model inconsisten-
cies with automated planning. In: 3rd Workshop on Living with Inconsistencies in
Software Development, CEUR Workshop Proceeding (September 2010)

18. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: ER, pp. 221–230.
IEEE, Los Alamitos (2007)

19. Torlak, E.: A Constraint Solver for Software Engineering: Finding Models and
Cores of Large Relational Specifications. Ph.D. thesis, MIT (February 2009)

20. Torlak, E., Dennis, G.: Kodkod for alloy users. In: First ACM Alloy Workshop
(2006)

21. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

22. Van Der Straeten, R.: Description of UML model inconsistencies. Tech. rep., Vrije
Universiteit Brussel, Belgium (2011),
http://soft.vub.ac.be/soft/members/ragnhildvanderstraeten/bibliography

23. Van Der Straeten, R., D’Hondt, M.: Model refactorings through rule-based incon-
sistency resolution. In: ACM Symposium on Applied Computing (SAC 2006), pp.
1210–1217. ACM, New York (2006)

24. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logic to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

25. Xiong, Y., Hu, Z., Zhao, H., Song, H., Takeichi, M., Mei, H.: Supporting automatic
model inconsistency fixing. In: ESEC/FSE, pp. 315–324. ACM, New York (2009)

Operation Based Model Representation:

Experiences on Inconsistency Detection

Jerome Le Noir1, Olivier Delande1, Daniel Exertier2,
Marcos Aurélio Almeida da Silva3, and Xavier Blanc4

1 Thales Research and Technology, France
2 Thales Corporate Services, France

3 LIP6, UPMC Paris Universitas, France
4 LABRI, Université de Bordeaux 1, France

Abstract. Keeping the consistency between design models is paramount
in complex contexts. It turns out that the underlying Model Representa-
tion Strategy has an impact on the inconsistency detection activity. The
Operation Based strategy represents models as the sequence of atomic
editing actions that lead to its current state. Claims have been made about
gains in time and space complexity and in versatility by using this kind of
representation when compared to the traditional object based one. How-
ever, this hypothesis has never been tested in an industrial context before.
In this paper, we detail our experience evaluating an Operation Based con-
sistency engine (Praxis) when compared with a legacy system based on
EMF. We evaluated a set of industrial models under inconsistency rules
written in both Java (for EMF) and PraxisRules (the DSL – Domain Spe-
cific Language – for describing inconsistency rules in Praxis). Our results
partially confirm the gains claimed by the Operation Based engines.

1 Introduction

Current large scale software projects involve hundreds of developers working in
a distributed environment over several models that need to conform to several
meta-models (e.g. SysML, UML, Petri nets, business process) [1]. In such context
keeping the consistency between models and with their respective meta-models
is mandatory[2].

Models are usually represented as sets of objects along with their attributes
and mutual associations [3,4]. A model is considered to be inconsistent if and
only if it contains undesirable patterns, which are specified by the so called
inconsistency rules [5]. Even if these rules may be represented in many different
ways, such as the well-formedness rules of [6], the structural rules of [7], the
detection rules of [4], the syntactic rules of [8], and the inconsistency detection
rules of [9], approaches that deal with detection of inconsistencies irremediably
consist in browsing the model in order to detect undesirable patterns.

The underlying strategy used to represent the model is then very likely to have
significant effects on the performance of inconsistency detection algorithms. Un-
der the Operation Based model representation strategy[9,10], instead of keeping

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 85–96, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

86 J. Le Noir et al.

track of the current configuration of the objects, their attributes and associa-
tions, one records the sequence of atomic editing actions that were performed in
order to obtain the current configuration.

Operation Based checkers claim to be as efficient as Object Based ones, and
very adequate for Incremental inconsistency detection mode[11]. This mode, con-
sists in, instead of checking every inconsistency rule over the complete model
every time the model has been modified, limiting the search to a subset of this
problem. The search for inconsistencies is performed on the subset of the model
that was modified since the last check and using the subset of the inconsistency
rules that are concerned by this modification. The efficiency gains claimed by
these checkers would come from the fact that identifying the scope of an incre-
mental check reduces to looking at the sequences of actions appended to the
current model by the uses (these sequences are called increments)[12].

Unfortunately, none of these claims has ever been tested in an industrial
context before, specially on non-UML models. In this paper we report our ex-
periences on the impact of the underlying strategy for model representation to
the overall performance of the inconsistency checker. These experiences have
been synthesized in a case study in which we compare an operation based con-
sistency checker (Praxis [9]) with the one provided by the Eclipse Modeling
Framework (EMF)1. Our tests included industrial models ranging from 1.000
to 50.000 model elements. We have carried out the approach on the engineer-
ing meta-model defined by Thales composed of about 400 meta-classes. This
meta-model contains 114 inconsistency rules implemented in Java, from which
30 mandatory ones were selected, re-implemented and checked in models com-
ing from operational contexts. Our results partially confirm the gains claimed by
Operation Based consistency engines: the overall performance gains were identi-
fied in the incremental mode but no significant gains were identified in the batch
mode.

This paper is organized as follows: Section 2 details the operation model rep-
resentation strategy used in Praxis and compares it to the object based one used
in EMF. Section 3 presents the design and results of our case study. Section 4
concludes.

2 Praxis: An Operation Based Model Representation
Strategy

The objective of this section is introducing Praxis, an operation based model
representation strategy and PraxisRules, the rule based DSL – Domain Specific
Language – for representing consistency rules in Praxis. Our objective is not pre-
senting them in details, but to present their basics in comparison to traditional
object based model representation and consistency rules as provided by EMF,
for example.

1 The Eclipse Modeling Framework, http://eclipse.org/emf

Operation Based Model Representation 87

2.1 Praxis

Praxis[9] is a meta-model independent consistency checking strategy whose inter-
nal model representation is based on the operation based model representation.
In Praxis, a model is represented as the sequence of atomic editing actions that
lead to its current state. This approach uses 6 kinds of atomic actions which
were inspired on the MOF reflective API [3].

The create(me, mc, t) and delete(me, t) actions respectively create and delete
a model element me, that is an instance of the meta-class mc at the time-stamp
t. The time-stamp which indicates the moment when it was executed by the
user. The actions addProperty(me, p, value, t) and remProperty(me, p, value, t)
add or remove the value value to or from the property p of the model element
me at time-stamp t. Similarly, the actions addReference(me, r, target, t) and
remReference(me, r, target, t) add or remove the model element target as a
reference r from the model element me.

Fig. 1. Sample model

create(a,logicalActor,1)
addProperty(a,name, ‘ActorName’,2)
create(b,systemActorRealization,3)
addProperty(b,name, ‘BName’,4))
create(c,systemActorRealization,5)
addProperty(c,name,‘CName’,6)
addReference(a,systemActorRealization,b,7)
addReference(a,systemActorRealization,c,8)
create(d,allocatedComponent,10)
addProperty(d,name, ‘dName’, 11)
addReference(b, allocatedComponent, d, 12)
addReference(c, allocatedComponent, d, 13)

Fig. 2. Model construction operationsequence

Figures 1 and 2 represent the same model in the form of respectively a set of
objects along with attributes and associations and a sequence of editing actions.
Both represent the LogicalActor a, the SystemActorRealizations b and c and
the AllocatedComponent d. They also represent the name attribute of each
object. The actions in timestamps 1 and 2 create the a object and set its name.
The actions 3 − 6 create the b and c objects and set their name attributes.
The actions in timestamps 7 and 8 create the associations between a, b and c.
Finally, the actions in timestamps 10− 13 create the c object and associate it as
the allocatedComponent of b and c.

2.2 PraxisRules: The Consistency Rules DSL for Praxis

PraxisRules is a rule-based logical DSL used to define consistency rules over
Praxis sequences. This language is able to represent constraints over the order
of the actions in a sequence or over the configuration of objects implied by it.

88 J. Le Noir et al.

The Java code snippet below represents a consistency rule over the model in
Figure 1. This rule makes sure that every ActorRealization of a LogicalActor is
an instance of Actor. This is done by navigating through a logical actor (repre-
sented by the logicalActor variable whose declaration is not shown), obtaining
the list of its realizations (line 4) and iterating through it (lines 5−8) and check-
ing if every realization has an associated allocated component that is an instance
of Actor (lines 9 − 13).

1 /* Ensures that the Actor Realization of a Logical Actor always

2 * realizes an Actor (at the system analysis level).

3 */

4 EList<SystemActorRealization> actorRealisations =

logicalActor.getSystemActorRealizations();

5 Iterator<SystemActorRealization> iterator =

actorRealisations.iterator();

6

7 while (iterator.hasNext()) {

8 SystemActorRealization next = iterator.next();

9 Component allocatedComponent =

next.getAllocatedComponent();

10

11 if (null == allocatedComponent ||

!(allocatedComponent instanceof Actor)) {

12 return createFailureStatus(ctx_p,

new Object[] { logicalActor.getName() });

13 }

14 }

15 }

The following PraxisRule code snippet illustrates the definition of the same
rule under an operation based model representation strategy. This code defines
a rule called check_LogicalActor_ActorRealization which detects logical ac-
tors realized by a system realization that is allocated to an object that is not an
actor or that is not realized by any system actor realization.

First of all, notice that this rule defines a logical expression based on logical
connectives (and{} for conjunction, or{} for disjunction and not{} for negation).
Capitalized terms represent variables and terms starting with the # sign represent
meta-classes or associations. Another important fact is that Praxis actions are
used as predicates in this logical expression.

1 ["Ensures that the Actor Realization of a Logical Actor always

realizes an Actor (at the system analysis level)"]

2 public check_LogicalActor_ActorRealization(A, R)

3 <=>

4 and {

5 create(A, #LogicalActor),

6 addReference(A, #systemActorRealizations, R),

7 or {

8 not {addReference(R, #allocatedComponent, _)},

Operation Based Model Representation 89

9 and {

10 addReference(R, #allocatedComponent, A),

11 create(A, #Actor)

12 }

13 }

14 }.

The most important difference between this rule and the previous one is that
this one is not based on navigating through the objects in the current config-
uration, but in looking for actions in the sequence that represents the current
model.

The main advantage of this kind of rule is that it is possible to identify which
rules need to be rechecked (and which parameters need to be rechecked) by a
simple inspection of the rules. For example, every time an action addReference
for the association systemActorRealization is performed this rule needs to be
rechecked, because if a new system actor realization is being added to a logical
actor, it is necessary to verify if it does not violate this rule.

3 Case Study

The advantages of the operation based model representation presented in the last
section have been empirically validated on randomly generated UML models in
[12]. However they have never been investigated in real industrial models. That
is then the main motivation for the present study.

This section is organized as follows: Section 3.1 details the industrial con-
text in which this study has been realized; Section 3.2 lists its main objectives
and planning. Finally, Section 3.3 describes the environment in which it was
effectively performed and Section 3.4 discusses its results.

3.1 Industrial Context

In order to build an architecture of a software intensive system, many stake-
holders contribute to the description of the system architecture. Following a
model-based engineering approach, the different stakeholders will use modelling
tools to describe the architecture and analysis tools to evaluate some properties
of the architecture.

Thales has defined a model-based architecture engineering approach for soft-
ware intensive systems, the ARCADIA method [13]. It defines a model organi-
zation of five abstraction levels (viewpoints) for mainstream engineering and a
set of others viewpoints for speciality engineering, depending typically on non-
functional constraints applied on the system to be engineered. The views con-
forming to these viewpoints are used by different stakeholders during the system
definition process. Therefore, techniques and tools to manage the consistency
of an information bulk made of several views on a system are necessary. The
ARCADIA method adopts a viewpoint-based architectural description such as

90 J. Le Noir et al.

described in the conceptual foundations of ISO/IEC 42010, Systems and Soft-
ware Engineering - Architecture Description [2].

This ongoing standard attempts to specify the manner in which architec-
ture descriptions of systems are expressed. This standard provides key concepts
and their relationships to document an architecture. Its key concepts (Architec-
tureFramework, ArchitectureDescription, Viewpoint, View and Correspondence
rule) are defined thanks to the conceptual model illustrated by the Figure 3. This
conceptual model defines the semantics of the different concepts we overview
here. An architecture description aggregates several Architecture Views. A view
addresses one or more system concerns that are relevant to some of the system’s
stakeholders. A view aggregates one or more Architecture Models. Each view
is defined following the conventions of an Architecture Viewpoint. The view-
point defines the Model Kinds used for that view to represent the architecture
addresses stakeholders’ concerns.

As stated in this standard, in architecture descriptions, one consequence of
employing multiple views is the need to express and maintain the consistency
between these views. The standard introduces the Correspondence Rule concept
that states a constraint that must be enforced on a correspondence to express
relation between architecture description elements (Views, Architectural Model,
etc.). Correspondences can be used to express consistency, traceability, composi-
tion, refinement and model transformation, or dependencies of any type spanning
more than a single model kind.

Considering this industrial context, it can be considered that there are 3 major
types of model coherency to be managed:

– The first one aims at ensuring that a model conforms to its metamodel,
i.e. that it addresses the well-formedness of the model. Since the modeling

Fig. 3. ISO-IEC 42010 Architecture Framework overview

Operation Based Model Representation 91

environment is DSL based (i.e. not profile based using a general purpose
language), the well-formedness can be de facto ensured.

– The second one aims at ensuring that a model conforms to a coherent set
of engineering rules; i.e. that the engineer conforms to a defined engineer-
ing method; in order to capitalize and reuse standard and domain specific
engineering best practices.

– The third one aims at ensuring information consistency between distributed
engineering environments, i.e. when there is not a unique centralized data
reference. The main purpose here is to ensure coherency of all engineering
activities across engineering domains, typically mainstream architecting and
speciality engineering activities.

3.2 Objectives and Planning

Our experimentation focused on the second type of model coherency which con-
sists in determining if a given configuration of set of views (models) are coherent
with a set of consistency rules or not. This study consisted in detecting the in-
consistencies between views conforms to the engineering meta-model defined by
Thales and composed of a set of 20 meta-models and about 400 meta-classes
involved in the five viewpoints defined in ARCADIA. The purpose of this study
was assessing the benefits of Praxis Rules over Praxis strategy when compared to
the traditional Java over EMF one. In terms of benefits, we study the efficiency
to compute the set of inconsistencies in a given model and the usability of the
approach.

In order to evaluate the effectiveness of the operation-based approach, we have
validated the approach against our case study and the experiment environment
with one Prolog expert and two Java developers from Thales. A set of 30 existing
consistency rules initially implemented in Java over EMF have translated in
Praxis Rules thanks to the praxis rule editor. We validated the consistency engine
with models coming from operational contexts. We used three different models
(ranging from 1.000 to 50.000 model elements) to determine the performance of
the consistency engine tool for different model sizes.

3.3 Environment

Our experiment environment consisted of the Praxis consistency engine and a
System engineering tool dedicated to this industrial context. This latter tool
has been built on the top on the Eclipse Obeo Designer tool2 and exposes a
dedicated engineering language providing user-friendly ergonomics.

It allows engineers to define the architecture description of a software system
by providing the five following views:

– The “Operational Analysis” model level, where the customer needs are de-
fined and/or clarified in terms of tasks to accomplish by the System/Soft-
ware, in its environment, for its users.

2 http://obeo.fr/pages/obeo-designer

92 J. Le Noir et al.

– The “System Analysis” model level, that provides a “black box” view of
the System where the System limits are defined and/or clarified in terms of
actors and external interfaces, the System capabilities and functional and
non-functional needs and expectations; allowing to identify the more con-
straining/impacting requirements.

– The “Logical Architecture” model level, which provides a “white box” view
of the System. It defines a technical and material independent decomposition
of the System into components, and where the non-functional constraints are
refined and allocated.

– The “Physical Architecture” model level, which is defined by the structuring
architecture of the System. It takes into account non-functional constraints,
reuses legacy assets and applies product policies.

– The “EPBS (End Product Breakdown Structure)” model level is an organi-
zational view identifying the configuration items for development contracts
and further Integration, Verification and Validation.

The Praxis Consistency engine has been integrated on top of this tool. It has
been written in Java and is coupled with SWI-Prolog. From any given model, a
equivalent sequence of editing operations is generated and passed to SWI Prolog.
The Prolog engine then executes a set of queries representing consistency rules
(also described in Prolog) and returns the list of detected inconsistencies to the
user.

In the point of view of users, the Praxis Consistency engine provides two main
components or features: the ConsistencyRule editor and the Consistency View.
The first one allows the description of consistency rules using the PraxisRules
DSL. These rules are then compiled into Prolog and are used by the Consistency
engine. The Consistency View shows the number of inconsistencies found in the
model and the model information that are not conform to the engineering rules.

A screen shot of the integrated tool is displayed in Figure 4. It shows an
architecture description model that is being edited by an engineer (on the top)
and the set of detected inconsistencies (the list on the bottom right). The only
modification on this tool needed to this experiment was the inclusion of a timer
that precisely indicated the time needed to perform each consistency verification.

3.4 Results and Evaluation

This section details the results of our experiments and the evaluation of the
usability and applicability of Praxis in the industrial context under study. This
section is divided into three parts, in the first one we analyze the comparison
of the performance results obtained by Praxis and EMF. In the second part we
analyze the adaptation of the rules written in the first part to the incremental
checking model provided by Praxis. Finally, the third part describes our overall
evaluation about the difficulty of rewriting part of our existing Java consistency
rules in PraxisRules.

Detecting model inconsistency. Table 1 describes the different metrics of
the models used in our experiment. The model A is a toy model provided with

Operation Based Model Representation 93

Fig. 4. Experiment Environment

the environment and the two others (B and C) are realistic models. The first
three lines describe respectively the number of model elements in each model;
the size of the model as represented as an EMF model and as a Praxis sequence
of actions. Notice that the Praxis representation is in average four times more
verbose than the EMF one. That happens because much more information is
stored in Praxis, namely the order and the time-stamp of execution of each
action.

The fourth, fifth, sixth and seventh lines display respectively the time needed
to generate the actions file from the EMF model; the time needed to load it
along with the translated consistency rules into the SWI Prolog engine and the
amount of memory in MB necessary for the Eclipse process and the Prolog
process to open each representation of it. These memory related numbers have
been obtained by subtracting the amount of memory used by the process before
and after loading the model. The amount of memory used before loading the
EMF file averaged in 261 MB and before loading the Praxis sequences of actions
averaged in 6MB.

Finally, the two last lines compare the time taken by each consistency engine
to verify each model. Notice that, the “Java Overall check time” is always lesser
than the “Praxis Overall check time”.Nevertheless, we consider that the ”Praxis
Overall check time ” is acceptable for the set of rules in this context.

As an overall evaluation, the main limitation of the Praxis consistency engine
lies in the fact that it works with another model representation, a file containing
the sequence of editing actions represented as Prolog facts. This file has to be
generated and loaded into the Prolog engine every time the model has been

94 J. Le Noir et al.

Table 1. Experimentation metrics

Model A Model B Model C

Number of model elements 986 48 616 52 703

EMF model file size (KB) 326 11 282 13 724
Praxis action file size (KB) 1 398 37 589 66 562

Time to generate actions file (ms) 265 7 625 9 610
Loading time (ms) 1 516 11 968 12 031
eclipse.exe (MB) 41 63 62
plcon.exe (MB) 0,6 85,4 89,6

Praxis Overall check time(ms) 63 1 172 1 640
Java Overall check time (ms) 13 292 332

modified. For the two realistic models (B and C), the time to generate the
praxis actions file is about 7 to 10 seconds and the time taken to load this file
is about 12 sec. The performance penalty thus induced means that it would be
impractical to use Praxis in an industrial usage by generating the action file
from scratch and to load the actions files for each check.

Incremental detection of model inconsistencies. Since testing the incre-
mental mode in EMF would require the adaptation of the existing Java rules to
this mode we decided to evaluate only the usability of the Praxis consistency
engine, without comparing it to EMF.

After having opened the model in incremental mode, the user needs to wait for
a batch mode check that computes the initial set of inconsistencies in the model.
From this point on, when any modification is made to the model the incremental
check is executed, taking into consideration only the subset of the models and of
the inconsistency rules that is concerned by the modification that was performed.
We evaluated both the time necessary to perform the initial batch verification
and the time needed to verify the increments. The performance obtained by the
former was equivalent to the performance of the batch checker already displayed
in Table 1. The performance for the later averaged in 100ms.

As an overall evaluation, we concluded that the time needed to perform the
initial batch verification to be reasonable and comparable to the time already
needed to load the model on Eclipse. With respect to the incremental checking
time, we considered it to be quite transparent and independent of the number
of rules that need to be re-checked. We consider that the main drawbacks of the
praxis approach can be mitigated with the incremental mode.

Inconsistency rules. Thanks to the consistency rule editor, 30 rules have
been written by two Java developers without knowledge of Prolog in the be-
ginning of the study and one Logic Programming expert. Java and PraxisRules
are languages built on very different paradigms. Java is imperative in nature,
and querying or checking a model typically consists in iteratively navigating and
inspecting the model elements with the explicit use of loops and collections.
PraxisRules, being built on top of Prolog, inherits its declarative nature, which

Operation Based Model Representation 95

means that the typical querying or checking code consists of a pattern to be
identified in the sequence of actions.

In the present study, 60% of the inconsistency rules were dedicated to verify
some realization relationship between the five views (i.e. verifying if an element
in a view correctly realizes other elements in other views). This kind of rule is
easy to write with the PraxisRule syntax. Nevertheless, the rules that have been
written by the Prolog expert were more efficient in terms of performance than
the ones written by the Java programmers. 4 rules could not be written without
the Prolog expert because they required to use of language constructs that were
not available in the basic PraxisRules library. These constructs needed to be
implemented in Prolog and added to that library by the Prolog expert. In spite
of the language not being typed, the Consistency Rule editor helped to overcome
this limitation by adding warnings to the references in the PraxisRule code that
were not found of the imported metamodels.

As an overall evaluation, we considered that knowledge of Prolog is a very
important prerequisite to write PraxisRules consistency rules. Furthermore, for
more advanced cases it could become difficult to translate rules from Java to
Praxis, especially for complex engineering rules which were considered to be hard
to implement. This difference is counterbalanced by the fact that no rules needed
to be rewritten in order to use Praxis on the incremental mode. Our evaluation
is that for some classes of rules (like the ones detecting simple patterns between
different views) it is worth to write the them in PraxisRules.

4 Conclusion

This paper described our experiences on the impact of the Operation based
underlying model representation strategy to the efficiency of the inconsistency
detection task. We use the Eclipse Modeling Framework (EMF) as the reference
for our study, which consisted in testing Praxis, an operation based consistency
management, by reimplementing a set of 30 consistency rules from the engineer-
ing meta-model defined by Thales and comparing the time necessary to compute
its consistency with the time needed by EMF. This case study was executed in
an industrial context, with non-UML models.

Our results show that, in terms of computation time, the operation based
approach is not better than the object based on. The difficulty of adapting these
rules to being used in the incremental verification was also compared. Our results
show that the work necessary to write the consistency rules is reduced by the use
of the operation based approach, since they usually do not need to be rewritten
to work on incremental mode.

As future works, we intend to compare the Praxis incremental model with the
EMF one. We also intend to repeat this evaluation in non-EMF contexts.

Acknowledgments. This work was partly funded by ANR project MOVIDA
under the convention N◦ 2008 SEGI 011.

96 J. Le Noir et al.

References

1. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5),
19–25 (2003)

2. International Organization for Standardization: ISO/IEC FCD 42010: Systems and
software engineering - Architecture Description (June 2010)

3. OMG: Meta Object Facility (MOF) 2.0 Core Specification (January 2006)
4. Mens, T., Van Der Straeten, R., D’Hondt, M.: Detecting and resolving model

inconsistencies using transformation dependency analysis. In: Wang, J., Whittle,
J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 200–214.
Springer, Heidelberg (2006)

5. Balzer, R.: Tolerating inconsistency. In: Proc. Int’ Conf. Software engineering
(ICSE 1991), vol. 1, pp. 158–165 (1991)

6. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In: Handbook of Software Engineering and Knowl-
edge Engineering, pp. 329–380. World Scientific, Singapore

7. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description
logic to maintain consistency between UML models. In: Stevens, P., Whittle, J.,
Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg
(2003)

8. Elaasar, M., Brian, L.: An overview of UML consistency management. Technical
Report SCE-04-18 (August 2004)

9. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Robby (ed.) Proc. Int’l Conf.
Software Engineering (ICSE 2008), vol. 1, pp. 511–520. ACM, New York (2008)

10. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.:
Viewpoints: A Framework for Integrating Multiple Perspectives in System De-
velopment. International Journal of Software Engineering and Knowledge Engi-
neering 2(1), 31–57 (1992)

11. Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. Int’l Conf.
Software Engineering (ICSE 2007), pp. 292–301. IEEE Computer Society, Los
Alamitos (2007)

12. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Incremental detection of model
inconsistencies based on model operations. In: van Eck, P., Gordijn, J., Wieringa,
R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 32–46. Springer, Heidelberg (2009)

13. Voirin, J.L.: Model-driven architecture building for constrained systems. In: CSDM
2010 (2010)

Generating Early Design Models from

Requirements Analysis Artifacts Using Problem
Frames and SysML

Pietro Colombo1, Ferhat Khendek2, and Luigi Lavazza1

1 Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria
Via Mazzini 5, 21100 Varese, Italy

{pietro.colombo,luigi.lavazza}@uninsubria.it
2 Department of Electrical and Computer Engineering, Concordia University

1455, de Maisonneuve W., Montreal, Canada H3G 1M8
khendek@encs.concordia.ca

Abstract. The relationship between requirement specifications and de-
sign models has been widely investigated with the aim of bridging (semi)
automatically the gap between the two artifacts. The work reported in
this paper contributes to this research stream with an approach for gen-
erating early design models from requirement artifacts and analysis cri-
teria. The approach is based on Problem Frames, decomposition and
re-composition analysis patterns and is supported by SysML.

Keywords: Problem Frames, Decomposition Criteria, Architectural
Patterns, Blackboard, SysML.

1 Introduction

Problem Frames (PFs) [9] are a requirement analysis approach that helps de-
velopers in understanding, mastering and describing problems. PFs have the
potential of improving the early phases of software development processes. How-
ever they have some limitations that may hinder their application in real scale
projects. In fact, the approach provides a set of methodological suggestions that
have to be integrated with the languages and methods used in industrial software
development. In [14,15,6] the integration of PFs with UML [19] was explored:
the experience showed that UML –although quite rich in diagrams–is not always
expressive enough to represent well problem frames concepts. The combination
of PFs with SysML [18] was found to be more effective [3,4].

In [5] an analysis approach based on PFs and supported by SysML has been
applied to a realistic size case study. The experience allowed us to identify de-
composition and re-composition guidelines that can be generalized and drive the
analysis of problems and mitigate their complexity. Based on that experience,
this paper proposes an approach to develop an early design model from the
requirement artifacts and the decomposition decisions made during the analysis.

Stakeholders look at the requirements analysis from different points of view.
This brought to the specialization of the concept of requirements [13] according

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 97–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

98 P. Colombo, F. Khendek, and L. Lavazza

to the level of abstraction. For instance, a high level manager is concerned with
business goals, while the software analyst is concerned with the responsibilities
of the software system in satisfying user needs. Our analysis approach is based
on user requirements. It requires reasoning on the problem domain to define
the specifications of a machine that satisfies the requirements through the in-
teraction with the problem environment [13]. In our approach the requirements
analysis and design activities are strictly connected. In fact, the design consists
of modeling the machine’s internals and refining the specifications.

The original problem is decomposed into simpler sub-problems by means of
the problem projection [9] and using given decomposition criteria. The identified
sub-problems, which may have overlapping parts, are individually analyzed and
a machine specification that satisfies their requirements is defined. The speci-
fication of the original problem is defined by composing and coordinating the
identified machines, each of which helps solving a particular aspect of the entire
problem. The design model is defined through the enhancement of the machine
specifications. The model is structured according to the blackboard architecture.
This choice allows executing the analysis and the design in parallel and incre-
mentally. The machines are designed as “knowledge sources” that collaborate
exchanging information by means of a central repository, “the blackboard”.

SysML is used as modeling language for both the analysis and the design
phases. The benefits are manifolds. SysML supports well the modeling of re-
quirements and design artifacts in an intuitive and expressive manner. Moreover,
the usage of one notation eases the cooperation of analysts and designers; it also
enables traceability and a better integration of the modeled artifacts.

The rest of the paper is organized into four sections. Section 2 introduces the
example used throughout the paper and the analysis approach. In Section 3,
we propose our approach for generating early design models from requirement
models. Section 4 discusses related works. In Section 5, we conclude the paper.

Because of space limits, we do not report here the machine specifications (in
many cases they are similar to the requirements). Moreover, only the most rep-
resentative diagrams illustrating the requirements and design models are shown.

2 The Analysis Process

This section summarizes the problem analysis approach based on PFs, SysML
and decomposition and re-composition criteria [5]. The original problem is de-
composed into sub-problems in a recursive manner. The goal is to tackle each
sub-problem separately. Once sub-problems have been identified, analyzed and
a machine specification is defined, their descriptions are recomposed.

The example of a controller for a road intersection will be used throughout
the paper. An intersection controller manages the traffic lights at a four way in-
tersection. The intersection is composed of two approaches, named NS and EW,
equipped with traffic lights and detectors to sense the approaching of emergency
vehicles. The intersection controller operates the traffic lights according to cri-
teria defined by the “Fixed cycle” and “Preempted” operation modes.

Generating Early Design Models from Requirements Analysis Artifacts 99

The aggregation of the states of the traffic lights represents a state of the
intersection and is called a phase. The system goes through several phases. In
the Fixed cycle mode, the controller issues commands at predefined time intervals
to move from the current phase to the next. Whenever an emergency vehicle is
detected the controller enables the Preempted operation mode, sets to green the
traffic lights for (one of) the emergency vehicles and switches to red the other
ones. The Fixed cycle operation mode resumes after the emergency vehicle has
crossed the intersection. The intersection controller also checks the state of the
traffic lights for compliance with the last commands issued. If a malfunction is
detected it sets all the traffic lights into flashing yellow states.

2.1 Structural Analysis

The structural characteristics of a problem are modeled using Problem diagrams
[9], SysML Block Definition Diagram and Internal Block diagram [18]. These
diagrams describe problem domains, shared phenomena and the allocation of
requirements. The behavior of each problem domain is specified using SysML
behavioral diagrams.

The road intersection system is composed of three domains: 1) the Intersection
Controller, which is the machine in Jacksons terminology, and the target of
the specification activity, 2) the Emergency Vehicle Detector, which notifies the
controller whenever an emergency vehicle is approaching and when it has crossed
the intersection and is moving away, and 3) the Traffic Lights, which besides
setting their lamps according to the commands from the controller, also monitor
the states of the lamps, informing the controller of the current state and of
possible malfunctions. Fig. 1 shows the Problem diagram that describes the
context of the problem.

Fig. 1. The problem diagram describing the domain of the problem

2.2 Problem Decomposition

The decomposition of a problem is guided by the nature of its internal activities
and leads to the identification of parallel and sequential sub-problems charac-
terized by a set of requirements, a machine and a projection of domains and
phenomena of the original problem. The decomposition stops when the identi-
fied sub-problems meet the characteristics of basic PFs.

100 P. Colombo, F. Khendek, and L. Lavazza

a) b)

c) d)

Fig. 2. Problem diagrams of the sub-problems: a) Fixed cycle mode, b)Preempted
mode, c)Traffic Lights States Auditing, d) Traffic Lights Malfunctions Management

At any point in time the controller manages the phases of the intersection and
concurrently checks the state of the traffic lights and reacts when a malfunction
is detected. In the management phase the controller operates the traffic lights
alternating the Fixed cycle mode and the Preempted mode. Each operation
mode is a sequential sub-problem described by a basic frame. The Fixed cycle
sub-problem is described (in Fig. 2a) by the Required behavior frame [9], while
the Preempted mode sub-problem is described (in Fig. 2b) by the Commanded
behavior Frame [9]. The monitoring of the traffic light states (Traffic Light State
Auditing - TLSA) is an Information display problem (Fig. 2c) [9], while the
management of malfunctions (Traffic Light Malfunctions Management - TLMM)
is a Commanded behavior problem (Fig. 2d).

The decomposition process is illustrated using a decomposition tree. The root
represents the original problem while the other nodes represent its sub-problems.
The leaves represent basic problems that do not require further decomposition.
The decomposition of the intersection controller problem is illustrated in Fig. 3.

2.3 Sub-problem Analysis

The analysis is performed for each sub-problem separately –i.e., as if the problem
were independent from the others–by specifying its requirements and the ma-
chine that satisfies such requirements when connected to the problem domains.

Generating Early Design Models from Requirements Analysis Artifacts 101

Fig. 3. The decomposition tree for the intersection controller problem

Fixed cycle mode
In this operation mode the controller repeatedly executes a predefined control
pattern that consists of the sequence of the intersection phases. The requirements
of the problem specify the duration of each phase and are defined with the State
Machine diagram (stm) in Fig. 4.

Fig. 4. The requirements of the Fixed cycle mode problem

Preempted mode
In this operation mode, when an emergency vehicle approaches, the controller
has to set the Go signal for the concerned approach and the Stop for the other
one as soon as possible.

The requirements are described using two parallel stm as shown in Fig. 5. The
first stm keeps track of the emergency condition while the second one orchestrates
the phases.

Traffic lights states auditing
The controller has to check if the current state of the traffic lights complies
with the last issued command. The requirements are specified using the activity
CheckTL shown in Fig. 6, which takes as input, as a continuous flow, the states
of the traffic lights and checks if they are coherent with the last issued command.
In case of misbehaviors the event Alarm is generated.

102 P. Colombo, F. Khendek, and L. Lavazza

Fig. 5. The requirements of the Preempted mode problem

Fig. 6. The requirements of the Traffic lights state auditing problem

Traffic lights malfunctions management
The controller has to switch to phase Flashing whenever a malfunction is de-
tected. Malfunctions are notified via event Alarm generated by the machine of
the auditing sub-problem. The requirements are defined using a stm with the
same states as the Fixed cycle problem, and transitions triggered by the event
Alarm, which causes the transition to the Flashing phase from any other phase.

Generating Early Design Models from Requirements Analysis Artifacts 103

2.4 Sub Problem Composition

At this stage the sub-problems are composed together. The recomposed prob-
lem, obtained using a Composition Frame [12], coordinates the activities of the
machines of the sub-problems and manages possible interferences.

The composition requirements specify how interferences have to be handled.
The recomposed problem is characterized by the union of the problem domains
and machines of the sub-problems and by a new machine. The sub-problems
machines are coordinated by the new machine according to the composition
requirements. The composition process is driven by the decomposition tree using
a bottom up approach.

The composition starts with the sub-problems that manage the phases of
the intersection, namely the Fixed cycle mode and the Preempted mode sub-
problems (step 1). Once they are recomposed by means of a Sequential Coordi-
nator (SC) (step 2), we move into the composition of the parallel sub-problems:
TLSA, TLMM and SC (step 3). We end up with the recomposed problem that
coordinates the execution of the parallel sub-problems (step 4).

Composing sequential sub-problems
The composition of the sequential sub-problems is described by the Sequential
Coordinator (SC) problem diagram in Fig. 7. The machines of the sub-problems
are labeled with the initial letter of the problems name [FC] for Fixed cycle
mode, [PM] for Preempted mode and [SC] for Sequential Coordinator.

Fig. 7. Sequential Coordinator problem diagram

The composition requirements specify that the change of operating mode
should not cause losing memory of the current phase. The requirements also
constrain the changes in operation modes. For instance, whenever an emergency
vehicle approaches the intersection, the controller has to switch to Preempted
mode and, as soon as the emergency is over, the controller has to re-enable the
Fixed cycle mode.

The requirements are described by two parallel stm. The first stm, shown in
Fig. 8, keeps track of the operating mode and of the emergency conditions.

The second stm not shown because of space limits describes the phase tran-
sitions according to the commands issued by the coordinated machines and the
current operation mode.

104 P. Colombo, F. Khendek, and L. Lavazza

Fig. 8. Mode change requirements

Fig. 9. Parallel Coordinator Problem diagram

Composing parallel sub-problems
The composition of parallel sub-problems is defined by the Parallel Coordinator
(PC) problem diagram in Fig. 9. The problem is characterized by the machines
of the TLSA, TLMM, and SC problems, by the problem domains Traffic Light
and Emergency Vehicle Detector and by a new machine Parallel Coordinator.

An interference may occur whenever the controller reacts to a malfunction
by setting the phase Flashing, and at the same time the approaching of an
emergency vehicle causes the controller to switch to the Preempted mode and
to force the transition to the phase that favors the passage of the emergency
vehicle: the two target phases are different!

The composition requirements address this conflict by specifying that once
entered the Flashing phase upon a failure, it should not be abandoned until the
malfunction is fixed. The requirements of the problem are described with a stm
not shown here because of space limits.

3 The Design Process

The decomposition and composition decisions performed during the analysis and
the resulting artifacts can be exploited to generate an early design model. The
recomposed problem is characterized by the problem domains and the machines
of the identified sub-problems.

Generating Early Design Models from Requirements Analysis Artifacts 105

The behaviors of the machines contribute to the definition of the general
behavior of the controller. The composite machines orchestrate the execution of
the recomposed ones by sending and receiving information. This situation where
several agents contribute to the solution of a problem by sharing information can
be seen as a representation of the blackboard approach [10]. This architectural
pattern takes its name from the central data structure, namely the blackboard,
which is accessed and modified by components called knowledge sources.

The blackboard keeps track of the current state of the whole system, which in
turn triggers the execution of knowledge sources that access and possibly modify
the central data structure. This structure is the only interaction and information
exchange medium for these components.

The adoption of this architectural style for defining an early design model
based on our analysis and its artifacts is therefore a straightforward choice. The
machines of the analyzed (sub-) problems represent the independent components
playing the role of knowledge sources, while the blackboard is the component
containing the shared phenomena observed and controlled by the machines of
the (sub-) problems.

The design process starts towards the end of the decomposition process of the
analysis phase (in Section 2.3), when all the basic sub-problems are identified.

The machine of each basic sub-problem is modeled as a knowledge source
specifying both its structural characteristics and contextualizing the behavioral
specification provided during analysis (the contextualization concept will be fur-
ther elaborated later on). The design starts with the definition of the knowledge
sources corresponding to the machines of the sub-problems FC, PM, TLSA and
TLMM. Concurrently, the blackboard component is defined in an incremental
manner through the modeling of the shared phenomena controlled or observed
by the machines of each sub-problem. The design process is synchronized with
the composition activity of the analysis phase and follows a similar bottom up
approach.

The final step of the design consists of generating a component that integrates
and connects the blackboard data structure and all the generated knowledge
sources. Such a component represents the machine of the original problem. The
behavior of this machine accomplishes the dynamics of the blackboard prob-
lem solving approach. The internal parts of this component are interconnected
according to the rules of the blackboard architectural style.

3.1 Blackboard Generation

The blackboard is the central data structure for exchanging information. The
blackboard has to keep track of phenomena controlled and observed by the
machines of the sub-problems as well as of their internal states.

The design process consists of 1) identifying the data types that suitably rep-
resent internal states and shared phenomena, and 2) using such data types for
the design of the blackboard structure. First, suitable attributes of the black-
board are defined, to represent the machines internal states. Next, a type repre-
senting the shared phenomena controlled or observed by machines is identified.

106 P. Colombo, F. Khendek, and L. Lavazza

Fig. 10. The blackboard component after the analysis of the sequential problems

An attribute having such type is added to the blackboard. For instance, let
us consider the Blackboard component represented in Fig. 10. The data type
CommandType models the commands to change the state of the traffic lights;
cmdFC and cmdPM represent the last commands that are issued by the knowl-
edge sources representing the machines of the Fixed Cycle and the Preempted
Mode sub-problems, respectively.

Internal states and Shared Phenomena type identification
The machine specification of each sub-problem is described using state machines.
States can be either simple or composite, i.e. they may contain sub-machines.
For instance, a single stm is associated with the Fixed cycle mode problem,
while two parallel stms describe the Preempted mode problem. Stms character-
ized by simple states are defined by means of enumerative types whose literals
correspond to states. For instance the stm of the Fixed cycle mode involves
literals Stop-Go, Stop-Wait, Stop-Stop 1, Go-Stop, Wait-Stop, Stop-Stop 2 and
Flashing. Specifications characterized by parallel stms or stms with composite
states are defined using data types that keep track of the current state of each
stm using enumerative variables. For instance, the machine of the Preempted
mode problem consists of a stm that keeps track of the emergency conditions
(NoEmergency, Emergency NS, Emergency EW, and Emergency EW/NS) and
a stm that as in the Fixed cycle keeps track of the current phase. Therefore, two
enumerative variables are necessary.

The shared phenomena too are represented using data types. Phenomena
representing states are specified using types that range over the list of the states.
Phenomena representing values are defined using types that characterize their
domains. Finally, phenomena representing events are defined by data structures
composed of fields that characterize the data carried by the event.

Modeling internal states and shared phenomena
The data types representing internal states and shared phenomena are used to
define the internals of the blackboard, namely the types of the attributes that
represent the information exchanged by knowledge sources.

For a given machine, an attribute is defined for each internal state type. The
attribute is named using the identifiers of the machine and the internal state

Generating Early Design Models from Requirements Analysis Artifacts 107

type. For instance, the attribute isPM of type PreemtedModeISType, shown in
Fig. 10, models the internal state of the Preempted mode machine. An attribute
is defined also for each identified phenomenon. The attribute is named using the
identifiers of the phenomenon and the machine, and typed accordingly.

The blackboard component is modeled in SysML using a Block characterized
by different properties (the term “property” is used in SysML to indicate an
attribute). For each property one input and one output Atomic Port are also
defined. Such ports represent interaction points through which the knowledge
sources get access to the internals of the blackboard. For instance, Fig. 10 illus-
trates the blackboard component generated after the analysis of the sequential
basic problem. Such component stores the internal states of the Fixed cycle mode
machine and of the Preempted mode machine, as well as phenomena observed
and controlled by such machines. A set of I/O ports allows for accessing the
content of each property.

3.2 Knowledge Source Generation

The knowledge sources to be modeled correspond to the machines of the different
(sub-)problems identified during decomposition and re-composition. Once the
original problem is fully decomposed, knowledge sources are generated starting
from the specification of the machines of the analyzed (sub-)problems (both
basic and recomposed).

Knowledge sources are modeled as components. Their generation concerns
structural and behavioral aspects.

Structural aspects
The structural definition depends on the interface of the machine, i.e. on the
phenomena that are shared by the machine and the problem domains to which
it is connected.

The machine is modeled as a component equipped with one port for each of
its shared phenomena and internal states. The machine can either control the
phenomena or it may simply observe them. This determines whether the port is
defined as an input or an output port.

The type associated with the port is the same one used to classify the phe-
nomenon. The component definition is supported in SysML by a Block equipped
with one SysML Atomic Port for each shared phenomenon and internal state. For
instance, the knowledge source corresponding to the machine of the Preempted
mode sub-problem (shown in Fig. 11) is modeled as a component characterized
by: cmdPM-OP, an output port through which the commands to set the state
of the traffic lights are propagated; isPM-IP, an input port to provide access to
the internal states of the machine (i.e., the phase and the emergency condition);
emEvPM-IP, an input port that routes the events generated by the emergency
vehicle detector; and finally, mode, an input port that specifies the mode.

The generation of the static aspects of the knowledge sources may also exploit
the usage of architectural patterns for PFs. Architectural patterns are general
solution structures that match the problem structures represented by basic PFs.

108 P. Colombo, F. Khendek, and L. Lavazza

Fig. 11. The component representing the machine of the Preempted mode problem

In [2] an architectural pattern is proposed for each frame proposed in the cat-
alogue of basic frames defined by Jackson [9]. Architectural patterns can be
directly applied whenever the target machine is defined in a problem that fits
the characteristics of a basic frame.

Behavioral aspects
The definition of the behavioral aspects is based on the specification of actions
that adapt the machine specifications of the different sub-problems to be exe-
cuted in the context of the blackboard architecture. The generation technique
reflects the sequential and parallel nature of the problems.

Modeling the machine of sequential problems. The behavior of a knowledge
source representing sequential machines is modeled using two distinct parallel
actions. The first action continuously monitors the state of the blackboard and
tests the conditions for exercising the behavior of the machine. Since only one
sequential machine can be active at any time, these conditions express the execu-
tion turn. The second action adapts the machine specification to the context of
the blackboard architecture, making the behavior step-based and interruptible.
The generation of the model involves the definition of actions named WatchDog,
CheckTurn and MachineBehaviorStep.

WatchDog continuously checks the state of the shared phenomena whose val-
ues trigger the execution of the machine (see Fig. 12a). WatchDog takes as input
the value carried by the input parameter Turn that identifies the execution turn
of the sequential machines: in our application, the turn identifies the current
operation mode.

Each sequential sub-machine is characterized by an internal property Id that
uniquely identifies the machine. For instance, Id is set to FC for the Fixed cycle
machine and PM for the Preempted mode. In case Turn is equal to Id the
actions MachineBehaviorStep and CheckTurn are invoked.

The definition of WatchDog does not depend on the specification of the origi-
nal machine. MachineBehaviorStep models the behavior defined in the machine

a) b)

Fig. 12. The act diagrams that define the actions: a) WatchDog and b) CheckTurn

Generating Early Design Models from Requirements Analysis Artifacts 109

specification, while CheckTurn supervises such behavior, interrupting it in case
the value of Turn changes during the execution (see Fig. 12b). MachineBehav-
iorStep is responsible for executing a single step of the behavior of the involved
machine. For instance, in the Fixed cycle mode problem, the action is responsible
for changing the current phase when timing conditions are met.

MachineBehaviorStep specifies input and output parameters corresponding
to the internal states and shared phenomena of the current machine. These
parameters, are assigned to the input and output port of the component, and
will be assigned to the internal states and shared phenomena defined in the
blackboard at architecture definition time (see Section 3.3). For instance, for the
Preempted mode machine, the parameters are allocated to the I/O ports shown
in Fig. 11 that route phases, emergency states, commands, and emergency events.

MachineBehaviorStep is generated from the stm used to specify the behavior
of sequential machines. A different flow is defined for each of the states in the
original stm. The flow to be executed depends on the current value of the internal
state at invocation time.

Fig. 13. Characterization of the control flow

Fig. 13 shows the characterization of a generic control flow. Each flow is orga-
nized into three sections. The first section specifies the trigger and the conditions
that enable the firing of the transition (Trigger and Guard elements in Fig. 13).
The second section models behaviors associated with the firing of a transition
(action Effect in Fig. 13). More specifically, Action Effect specifies the firing
effect of the transition, CurrentStateExit specifies the behavior executed while
exiting from the current state, and action NewStateEntry specifies the behavior
performed while entering the new state. Finally, before terminating the execution
the event EndStep is generated to interrupt the execution of the action Check-
Turn. The behavior is defined within an interruptible region, since MachineBe-
haviorStep can be interrupted as a consequence of the event ChangeTurn. Fig. 14
shows a portion of the MachineBehaviorStep definition for the Preempted mode
machine, namely the flow generated for the state NoEmergency.
Modeling the machine of parallel problems. The definition follows the same
process used for the modeling of sequential machines, i.e., it is based on the
definition of the action MachineBehaviorStep. However, differently from the se-
quential machine case, the execution is not regulated by execution turns. Since
MachineBehaviorStep realizes a single step of the behavior defined by the ma-
chine specification, the action is continuously re-invoked as soon as it completes
its task. The invocation is managed by a second action named ExecutionMan-
ager. ExecutionManager is executed in parallel by all the parallel knowledge
sources.

110 P. Colombo, F. Khendek, and L. Lavazza

Fig. 14. A portion of MachineBehaviorStep defined for the Preempted mode machine

Fig. 15. A view of the internal architecture of Intersection Controller

3.3 Composing the Architecture of the System

This phase of the design process aims at instantiating and connecting the black-
board and knowledge sources.

The blackboard data structure, the knowledge sources representing the ma-
chines of parallel and sequential sub-problems and the ones that coordinate their
execution are modeled as internal parts of a component. This component is sim-
ply a container that includes all the different artifacts that contribute to the
definition of the solution.

The component is characterized by the same interface of the machine of the
original problem, hence it will have one input port for each phenomenon con-
trolled by the problem domains and one output port for each observed phe-
nomenon. Therefore, the Intersection Controller component is characterized by
one input port through which it receives the signals generated by the emergency
detector, one through which it gets the current state of the traffic lights, and
one output port used to route the commands to the traffic lights.

Generating Early Design Models from Requirements Analysis Artifacts 111

A connection is defined between input (output) ports of the container and
those input (output) ports of the knowledge source at the root of the decompo-
sition tree. As a consequence, Parallel Coordinator directly receives the events
generated by the emergency detector and the state of the traffic lights through
the input ports of the Intersection Controller container components and issues
commands to the traffic lights through its output ports.

All the communications between the different knowledge sources are mediated
by the blackboard. The generation of the connections among the communication
ports of knowledge sources and the blackboard is a stepwise activity based on
the breadth first visit of the decomposition tree. Each step considers a different
knowledge source.

The input (output) ports of the knowledge source generated for its observed
(controlled) phenomena are connected to the output (input) ports of the black-
board. The input ports of the knowledge sources generated for the internal states
are connected to output ports of the blackboard.

If the knowledge source models a machine that has not been recomposed,
its output ports exposing the internal states are connected to the co-respective
input ports of the blackboard. In other words, the coordinator machines spec-
ify the current internal state shared with the coordinated machine, while the
coordinated machines which are not allowed to modify the state simply access
this property. For instance, Sequential Coordinator observes the movements of
emergency vehicles via the blackboard, and forwards the movement information
in the area of the blackboard that provides input to the sequential machine
Preempted mode.

Sequential Coordinator publishes on the blackboard also the controlled phe-
nomenon representing the current operation mode and internal state (phase and
emergency condition) to be shared with the coordinated machine. Fig. 15 shows
a partial view of the internal architecture of the controller.

4 Related Work

Several researchers investigated the relationship between requirements and ar-
chitectures. For instance, the approach in [16] refines a set of requirements con-
taining rationale into skeletons of architectures, namely, into preliminary archi-
tectural models that need to be completed and refined. The Twin Peaks model
[17] investigates how the requirements engineering and architecture design can
be combined to achieve incremental development. These proposals help under-
standing the relationship between requirements and design, but they do not
support the transition from the former to the latter.

Researchers have also proposed formal methodologies to generate design mod-
els incrementally and (semi-) automatically. Authors in [7] propose a technique
based on Behavior trees. The approach supports the automatic transition from
the problem to the solution domain but it does not consider structural properties
that represent a fundamental aspect of the design.

The approach reported in [11] generates automatically the behavior of SDL
processes from high level Message Sequence Charts (MSC) and the target system

112 P. Colombo, F. Khendek, and L. Lavazza

architecture. This approach does not deal with the analysis phase and assumes
the requirement specification is given; therefore no knowledge about the problem
is reused. Moreover, these techniques focus mainly on behavioral aspects and can
be hardly adapted to general purpose systems for which the structural aspects
of design are crucial characteristics to be considered.

The method proposed in [1] transforms the requirements specification into an
intermediate artifact called architectural prescription, which specifies the most
important and critical aspects of the architecture. An additional step is required
to generate the architecture from this intermediate artifact.

Some other proposals aim at extending the PFs analysis approach to support
the definition of machine architectures. [20] proposes the integration of architec-
tural styles to guide the analysis of the problem by means of Architectural Frame,
a crosscutting element characterized by the properties of the problem and the ar-
chitecture. In [8] an extension is proposed to consider architectural aspects as part
of the problem domain, enhancing machine domain with architectural elements.
These proposals look into the transition from a different and complementary per-
spective to integrate at the analysis level existing architectures.

5 Conclusions

The transition from requirements specification to an early design is an open
research issue. This paper proposes an approach for generating an early design
model structured according to the blackboard architectural pattern. It starts
from artifacts identified during the analysis phase and exploits the decomposition
and composition criteria and decisions made during that phase.

The proposed approach targets the definition of a structure composed of 1)
knowledge sources corresponding to the machine domains in the original problem
and sub-problems and 2) the blackboard component, a data-structure used by
the knowledge sources for communication purposes.

The approach aims at easing the design effort by reusing some knowledge
and decisions from the analysis phase. It is incremental: a knowledge source
is generated as soon as the machine specification of a (sub)problem is defined,
at the same time each (sub)problem contributes to the definition of a part of
the blackboard data structure. The approach allows analysts and designers to
work partially in parallel, thus potentially shortening the development time and
reducing the cost. The approach is model-based and uses SysML as the modeling
language. SysML was preferred to UML for its support of PFs [3][4].The SysML
artifacts of the design model are elaborated from the models defined in the
requirements analysis phase. This favors traceability. Finally, the approach can
be automated. To this aim we are refining the approach into a model-based
transformation process.

Although the benefits of the proposed solution are manifolds, the selected
architectural style is of limited applicability when resource efficiency is critical.
In fact, due to the distributed nature of the blackboard architecture, solutions
defined implementing the generated design model may suffer from low perfor-
mances and high use of resources such as memory consumption and bandwith.

Generating Early Design Models from Requirements Analysis Artifacts 113

In order to address these shortcomings, we are analyzing additional architectural
styles and (de)composition criteria. Our final goal is the definition of a frame-
work supporting the automatic generation of design solutions using multiple
(de)composition guidelines and architectures.

As future work, we will test the scalability and generality of the framework
targeting other case studies.

Acknowledgement

The work described in this paper has been done during a post doctoral term of
Pietro Colombo at Concordia University, Montreal (Canada). The work has been
partially supported by the Natural Sciences and Engineering Research Council
(NSERC) of Canada and by the project “Metodi e tecniche per la modellazione,
lo sviluppo e la valutazione di sistemi software” funded by Università degli Studi
dell’Insubria.

References

1. Brandozzi, M., Perry, D.E.: Transforming goal oriented requirements specifications
into architectural prescriptions. In: STRAW (2001)

2. Choppy, C., Hatebur, D., Heisel, M.: Architectural patterns for problem frames.
IEE Proceedings - Software 152(4), 198–208 (2005)

3. Colombo, P., del Bianco, V., Lavazza, L., Coen-Porisini, A.: A methodological
framework for SysML: a Problem Frames-based approach. In: APSEC 2007 (2007)

4. Colombo, P., del Bianco, V., Lavazza, L., Coen-Porisini, A.: Towards the integra-
tion of SysML and Problem Frames. In: IWAAPF 2008 (2008)

5. Colombo, P., Khendek, F., Lavazza, L.: Requirements analysis and modeling with
Problem Frames and SysML: A case study. In: Kühne, T., Selic, B., Gervais, M.-P.,
Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 74–89. Springer, Heidelberg
(2010)

6. Del Bianco, V., Lavazza, L.: Enhancing Problem Frames with Scenarios and
Histories in UML-based software development. Expert Systems 25(1) (2008)

7. Dromey, R.G.: Formalizing the transition from requirements to design. In: He,
J., Liu, Z. (eds.) Mathematical Frameworks for Component Software Models for
Analysis and Synthesis, pp. 173–205. World Scientific, Singapore

8. Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., Rapanotti, L.: Relating software
requirements and architectures using Problem Frames. In: RE 2002 (2002)

9. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. ACM Press Books, New York (2001)

10. Jagannathan, V., Dodhiawala, R., Baum, L.S.: Blackboard Architectures and
Applications. Academic Press, London (1989)

11. Khendek, F., Zhang, X.J.: From MSC to SDL: Overview and an application to
the autonomous shuttle transport system. In: Leue, S., Systä, T.J. (eds.) Scenar-
ios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 228–254. Springer,
Heidelberg (2005)

12. Laney, R., Barroca, R., Jackson, M., Nuseibeh, B.: Composing Requirements Using
Problem Frames. In: RE 2004 (2004)

13. Lavazza, L.: User needs vs. user requirements: a Problem Frame-based View. In:
IWAAPO 2010 (2010)

114 P. Colombo, F. Khendek, and L. Lavazza

14. Lavazza, L., Del Bianco, V.: A UML-based Approach for Representing Problem
Frames. In: IWAAPF 2004 (2004)

15. Lavazza, L., Del Bianco, V.: Combining Problem Frames and UML in the Descrip-
tion of Software Requirements. In: Baresi, L., Heckel, R. (eds.) FASE 2006. LNCS,
vol. 3922, pp. 199–213. Springer, Heidelberg (2006)

16. Medvidovic, N., Grnbacher, P., Egyed, A., Boehm, B.W.: Bridging models across
the software lifecycle. Journal of Systems and Software 68(3), 199–215 (2003)

17. Nuseibeh, B.: Weaving together requirements and architectures. IEEE Computer
34(3) (2001)

18. OMG SysML, V. 1.2, http://www.omg.org/spec/SysML/1.2/
19. OMG UML, V. 2.3, http://www.omg.org/spec/UML/2.3/
20. Rapanotti, L., Hall, J.G., Jackson, M., Nuseibeh, B.: Architecture-driven problem

decomposition. In: RE 2004 (2004)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 115–131, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Automated Transition from Use Cases to UML State
Machines to Support State-Based Testing

Tao Yue1, Shaukat Ali1,2, and Lionel Briand1,2

1 Simula Research Laboratory
P.O. Box 134, 1325, Lysaker, Norway

2Department of Informatics, University of Oslo, Oslo, Norway
{tao,shaukat,briand}@simula.no

Abstract. Use cases are commonly used to structure and document requirements
while UML state machine diagrams often describe the behavior of a system and
serve as a basis to automate test case generation in many model-based testing
(MBT) tools. Therefore, automated support for the transition from use cases to
state machines would provide significant, practical help for testing system re-
quirements. Additionally, traceability could be established through automated
transformations, which could then be used for instance to link requirements to
design decisions and test cases, and assess the impact of requirements changes.
In this paper, we propose an approach to automatically generate state machine
diagrams from use cases while establishing traceability links. Our approach is
implemented in a tool, which we used to perform three case studies, including
an industrial case study. The results show that high quality state machine dia-
grams can be generated, which can be manually refined at reasonable cost to
support MBT. Automatically generated state machines showed to largely con-
form to the actual system behavior as evaluated by a domain expert.

Keywords: Use Case Modeling; UML; State Machine; Model-Based Testing
(MBT); State-based Testing; Transformation; Natural Language Processing.

1 Introduction

In the last decade, model-based testing (MBT) has attracted much attention in both
industry and academia. This can be seen from a large number of MBT tools which
have been produced in recent years [1]. In addition, several MBT test strategies have
been shown to be highly effective [2]. MBT however relies on complete and precise
models for executable test case generation. Developing such models has always been
a challenge, especially for large-scale industrial systems, and entails a thorough do-
main understanding and solid modeling expertise. Oftentimes, developing such mod-
els is difficult for Software Quality Assurance teams as they are often not sufficiently
acquainted with modeling. On the other hand, these teams are comparatively much
more familiar with writing textual use cases and the application domain. This paper is
part of an automated methodology (aToucan [3, 4]) to assist the development of high-
level (system-level) models from use case models (UCMods). The focus here is on
generating UML state machines, which are subsequently refined such that executable
test cases can be generated using existing MBT tools.

116 T. Yue, S. Ali, and L. Briand

The original motivation of this work was to support test automation for a video
conferencing system (VCS) at Cisco Norway [5]. Since video conferencing systems at
Cisco exhibits state-driven behavior, it is natural to provide support for state-based
testing and therefore the behavior of the system is captured using mostly UML state
machines. Besides, state machines is the most commonly used notation for model-
based test case generation and particularly so in control and communication systems.
However, the construction of such state machines is manual, expensive, and error-
prone. In this paper, we provide support for automated transformation from UCMods
to system-level UML state machines. We targeted system-level state machines since
our focus was on system testing to address the needs of our industry partner; however
lower level state machines can also be generated provided that more detailed use
cases are provided as the input for the transformation.

Fig. 1. Roadmap from requirements to test cases

Automated transformation from use cases to UML state machines would also en-
able automated traceability from requirements to state machine diagrams. Traceability
is important during software development since it allows engineers to understand the
connections between various artifacts of a software system. Traceability is also man-
dated by numerous standards (e.g., IEEE Std. 830-1998 [6]) to support, for example,
change impact analysis or safety verification [7].

The basis of our approach is a use case modeling approach, named RUCM [8],
which relies on a use case template and a set of restriction rules for textual Use Case
Specifications (UCSs) to reduce the imprecision and incompleteness inherent to
UCSs. We have conducted a controlled experiment with human subjects [8] to
evaluate RUCM and results indicate that RUCM, though it enforces a template and
restriction rules, has enough expressive power, is easy to use, and helps improve the
understandability of use cases.

Model-based Testing

 Automated Transition from Use Cases to UML State Machines 117

The current work is part of the aToucan approach and tool [3], which aims to trans-
form a UCMod produced with RUCM into a UML analysis model (e.g., class and
sequence diagrams). aToucan involves three steps. As shown in Figure 1, first, re-
quirements engineers manually define use cases complying with RUCM [8]. Second,
aToucan reads these textual UCSs to identify Part-Of-Speech (POS) and grammatical
relation dependencies of sentences, and then records that information into an instance
of UCMeta (our intermediate metamodel) (Section 3.3). The third step is to transform
the instance of UCMeta into a UML state machine. During these transformations,
aToucan establishes traceability links between the UCMod and the generated UML
state machine diagrams. These state machines are then refined by test engineers such
that executable test cases can be generated [1, 9, 10]. In this work, we focus on the
transformation from an instance of UCMeta to a UML state machine diagram.

Two initial case studies were first performed to evaluate the state machine dia-
grams generated by aToucan. Results show that syntactically correct and largely
complete state machine diagrams were generated. In addition, we also automatically
generated a system-level UML state machine in one industrial case study at Cisco
Norway. The generated state machine was evaluated by a domain expert, who as-
sessed it to mostly conform to the existing, manually developed UML state machine.
The latter case study also showed that refining the generated state machine to get it
ready for test generation took less than one hour.

The rest of the paper is organized as follows. The related work is presented in
Section 2. In Section 3, we briefly discuss RUCM, UCMeta and the running example
being used to exemplify the transformation. The transformation approach is discussed
in Section 4, followed by tool support (Section 5). The evaluation of our approach and
promising future work are discussed in Section 6. Section 7 concludes the paper.

2 Related Work

We conducted a systematic literature review [11] on transformations of textual re-
quirements into analysis models, represented as class, sequence, state machine, and
activity diagrams. A carefully designed paper selection procedure in scientific jour-
nals and conferences from 1996 to 2008 and Software Engineering textbooks identi-
fied 20 primary studies (16 approaches). The method proposed here is based on the
results of this review, with a focus on automatically deriving state machine diagrams
from UCMods.

A series of methods is proposed in [12] (one of the primary studies of our system-
atic review [11]) to precisely capture requirements and then manually transform re-
quirements into a conceptual model composed of object models (e.g., class diagrams),
dynamic models (i.e., state machines and sequence diagrams), and functional
diagrams. The approach does not purport to provide a solution for transforming re-
quirements into analysis models. Instead, it proposes a set of techniques for users to
precisely specify requirements and conceptual models, and also proposes a process to
guide the users in deriving the conceptual models from the requirements. No trans-
formation method is reported in the paper.

Somé [13], another primary study of our systematic review, proposes an approach
to generate finite state machines from use cases in restricted Natural Language (NL).

118 T. Yue, S. Ali, and L. Briand

The approach requires the existence of a domain model. The domain model serves
two purposes: a lexicon for the NL analysis of use cases, and the structural basis of
the state transition graphs being generated. The domain model acts as the lexicon for
NL analysis of the use cases, because the model elements of the domain model are
used to document the use cases. For example, actors of the use cases refer to the
classes of the domain model. Interactions between the system and the actors are de-
fined as one type of use case operations (also including branching statements, use
case inclusion statements) which correspond to class operations in the domain model.
One can see that a great deal of user effort is needed to obtain a domain model
containing classes, associations, and operations, which are all indispensable for gen-
erating state machines. An algorithm is described in the paper to explain how to
automatically transform the use cases plus the domain model into state machines. A
working example is used to explain the approach. No case study is presented to
evaluate the approach.

In summary, none of the existing approaches is able to fully and automatically
generate state machine diagrams from a UCMod while establishing traceability links,
which is what we are proposing in the paper.

3 Background

In this section, we briefly review the use case modeling approach RUCM (Section 3.2)
and the intermediate model (UCMeta) (Section 3.3) of our transformations (Section 4).
The detailed description of RUCM and UCMeta are provided in [8] and [3], respec-
tively. A running example will be presented in Section 3.1 to exemplify RUCM,
UCMeta and the transformations.

3.1 Running Example

The running example is a simplified subsystem (called Saturn) of a communication
system (video conferencing system) developed by Tandberg [5] (now part of Cisco
Norway), which is a leading global provider of telepresence, high-definition video
conferencing and mobile video products and services. This subsystem is the industrial
case study used to evaluate this work (Section 6).

The core functionality of a typical video conferencing system in Tandberg is send-
ing and receiving multimedia streams. The use case diagram capturing the main func-
tionalities of the simplified subsystem Saturn is given in Figure 2. Saturn deals with
establishing video conferencing calls, disconnecting calls, and starting/stopping pres-
entation. It can also receive requests for establishing calls, disconnecting calls, and
starting/stopping presentation from other video conferencing systems (Endpoints)
participating in a videoconference. The endpoints communicating with Saturn are
modeled as secondary actors in the use case diagram in Figure 2.

3.2 RUCM

RUCM encompasses a use case template and 26 well-defined restriction rules [8]. Rules
are classified into two groups: restrictions on the use of Natural Language (NL), and
rules enforcing the use of specific keywords for specifying control structures. The goal of

 Automated Transition from Use Cases to UML State Machines 119

RUCM is to reduce ambiguity and facilitate automated analysis. Two controlled experi-
ment evaluated RUCM in terms of its ease of application and the quality of the analysis
models derived by trained individuals [8, 14]. Results showed that RUCM is overall easy
to apply and that it results in significant improvements over the use of a standard use case
template (without restrictions to the use of NL), in terms of the quality of derived class
and sequence diagrams. Below we discuss the features of RUCM that are particularly
helpful to generate state machine diagrams. An example of UCS documented with
RUCM of use case Disconnect (Figure 2) is presented in Table 1. The complete list of
UCSs of the use cases in Figure 2 is provided in Appendix A for reference.

Fig. 2. Use case diagram of Saturn

A UCS has one basic flow and can have one or more alternative flows (first col-
umn in Table 1). An alternative flow always depends on a condition occurring in a
specific step in a flow of reference, referred to as reference flow, which is either the
basic flow or an alternative flow itself. We classify alternative flows into three types:
A specific alternative flow refers to a specific step in the reference flow; A bounded
alternative flow refers to more than one step in the reference flow–consecutive steps
or not; A global alternative flow (called general alternative flow in [15]) refers to any
step in the reference flow. For example, as shown in Table 1, use case Disconnect has
one basic flow and two specific alternative flows, which branch from Step 1 and Step
5 of the basic flow, respectively. For specific and bounded alternative flows, a RFS
(Reference Flow Step) section specifies one or more (reference flow) step numbers
(e.g., RFS Basic flow 2). Whether and where the flow merges back to the reference
flow or terminates the use case must be specified as the last step of the alternative

120 T. Yue, S. Ali, and L. Briand

flow. Branching condition, merging and termination are specified by following re-
striction rules that impose the use of specific keywords (see below). Each alternative
flow and the basic flow must have a postcondition.

RUCM defines a set of keywords to specify conditional logic sentences (IF-THEN-
ELSE-ELSEIF-ENDIF), concurrency sentences (MEANWHILE), condition checking
sentences (VALIDATES THAT), and iteration sentences (DO-UNTIL). An alterna-
tive flow ends either with ABORT or RESUME STEP, which means that the last step
of the alternative flow should clearly specify whether the flow returns back to the
reference flow and where (using keywords RESUME STEP followed by a returning
step number) or terminates (using keyword ABORT).

Table 1. Use case Disconnect

Use Case Name Disconnect
Brief Description User disconnects an Endpoint participating in a conference call.
Precondition The system is in a conference call.
Primary Actor User Secondary Actors EndPoint
Dependency INCLUDE USE CASE StopPresentation Generalization None
Basic flow steps 1) User sends a message to the system to disconnect an Endpoint. 2) The system

VALIDATES THAT Endpoint to be disconnected is in the conference call. 3)
The system sends a disconnection notification to Endpoint. 4) Endpoint sends an
acknowledgement message back to the system. 5) The system VALIDATES
THAT The conference call has only one EndPoint. 6) The system disconnects
Endpoint. Postcondition: The system is idle.

Specific Alt. Flow
(RFS Basic flow 2)

1) The system sends a failure message to User. 2) ABORT.
Postcondition: The system is in a conference call.

Specific Alt. Flow (RFS
Basic flow 5)

1) The system disconnects Endpoint. 2) ABORT
Postcondition: The system is in a conference call.

3.3 UCMeta

UCMeta is the intermediate model in aToucan [3], used to bridge the gap between a
textual UCMod and a UML analysis model (class, sequence, activity, and state ma-
chine diagrams). As a result, we have two transformations: from the textual UCMod
to the intermediate model, and from the intermediate model to the analysis model
(Figure 1). Metamodel UCMeta complies with the restrictions and use case template
of RUCM. UCMeta is currently composed of 108 metaclasses and is expected to
evolve over time. The detailed description of UCMeta is given in [3].

UCMeta is hierarchical and contains five packages: UML::UseCases, UCSTemplate,

SentencePatterns, SentenceSemantics, and SentenceStructure. UML::UseCases is
a package of UML 2 superstructure [16], which defines the key concepts used for
modeling use cases such as actors and use cases. Package UCSTemplate models the
concepts of the use case template of RUCM: those concepts model the structure that
one can observe in Table 1. SentencePatterns is a package describing different types
of sentence patterns, which uniquely specify the grammatical structure of simple
sentences, e.g., SVDO (subject-verb-direct object) (Table 1, Basic flow, step 6).
SentenceSemantics is a package modeling the classification of sentences from
the aspect of their semantic functions in a UCMod. Each sentence in a UCS can either

 Automated Transition from Use Cases to UML State Machines 121

be a ConditionSentence or an ActionSentence. Package SentenceStructure takes
care of NL concepts in sentences such as subject or Noun Phrase (NP). Package UC-
STemplate is mostly related to the generation of state machine diagrams and there-
fore it is the only package discussed below due to space limitation.

Package UCSTemplate not only models the concepts of the use case template but
also specifies three kinds of sentences: SimpleSentences, ComplexSentences, and
SpecialSentences. In linguistics, a SimpleSentence has one independent clause and
no dependent clauses [17]: one Subject and one Predicate. UCMeta has four types
of ComplexSentences: ConditionCheckSentence, ConditionalSentence, Itera-

tiveSentence, and ParallelSentence, which correspond to four keywords that are
specified in RUCM (Section 3.1) to model conditions (IF-THEN-ELSE-ELSEIF-
THEN-ENDIF), iterations (DO-UNTIL), concurrency (MEANWHILE), and valida-
tions (VALIDATES THAT) in UCS sentences. UCMeta also has four types of special
sentences to specify how flows in a use case or between use cases relate to one an-
other. They correspond to the keywords RESUME STEP, ABORT, INCLUDE USE
CASE, EXTENDED BY USE CASE, and RFS (Reference Flow Step).

4 Approach

Recall that our objective is to automatically transform a textual UCMod expressed
using RUCM into UML state machine diagrams, while establishing traceability links.
Notice that the transformation from the textual UCMod to the instance of UCMeta is
not discussed in this paper, but provided in [3] for reference. In this section, we how-
ever only focus on the transformation from instances of UCMeta to UML state ma-
chine diagrams. We present detailed transformation rules in Section 4.1. The steps
required transforming automatically-generated state machine diagrams into the state
machines that can be used for automated test case generation in Section 4.2.

4.1 Transformation Rules

The transformation from an instance of UCMeta to a state machine diagram involves
12 rules, which are summarized in Table 2. Subscripts on rule numbers (Column 1,
Table 2) indicate the type of the rule: "c" and "a" denote composite and atomic rules,
respectively; a composite rule is decomposed, whereas an atomic rule is not.

Rule 1 generates an instance of UML StateMachine for a UCMod, which can then
be visualized as a state machine diagram. Rules 2-4 generate the initial state (an in-
stance of Pseudostate), the start state (an instance of State), and the transition (an
instance of Transition) from the initial state to the start state, respectively. The rea-
son of requiring the start state is that for a state machine, it is typically required to
transit from the start state to more than one state through more than one transition.
However, an initial state of UML can have at most one outgoing transition [16].

Composite rule 5 invokes atomic rules 5.1-5.4 to process each use case of the
UCMod. Notice that we generate a single state machine for the whole UCMod. The
generated state machine is a system-level state machine where we model the states of
the system as a whole and the system-level calls (e.g., APIs) as transitions. In contrast,
in class-level state machines, states are modeled based on class instance variables and

122 T. Yue, S. Ali, and L. Briand

transitions have triggers with, for instance, call events as method calls. System-level
state machines are at a higher level of abstraction than class-level state machines and are
more suitable for system-level testing - the main motivation of this paper. To automati-
cally generate system-level state machines, we utilize the information mostly contained
in the precondition and postconditions of all the use cases of a UCMod to generate
states. We generate an instance of State for each sentence of the precondition and the
postconditions, but making sure that no duplicate states are generated. Since the precon-
dition of a use case indicates what must happen before the use case can start and the
postconditions of the use case specify what must be satisfied after the use case com-
pletes, we define rule 5.3 to generate transitions between the states derived from the
precondition and the states derived from the postcondition of the basic flow.

Figure 3 presents an excerpt of Kermeta [18] code implementing rule 5.3 to gener-
ate an instance of Transition (pre2post_transition : uml::Transition). The
first section of the excerpt is to show how we determine the guard condition of a tran-
sition (S1). As shown in Figure 3, if the steps of the basic flow of a use case contains
ConditionalSentences (step.asType(ConditionalSentence) and/or Condi-

tionCheckSentences (step.isInstanceOf(ConditionCheckSentence)), then the
guard condition of the generated transition should be the conjunction of the conditions
of these sentences. For example, as shown in the state machine diagram generated for
the subsystem of Saturn in Appendix B, the transition from state The system is in
a conference call (the precondition of use case Disconnect, as shown in Table 1) to
state The system is idle (the postcondition of the basic flow of Disconnect) with
trigger Disconnect and effect The system disconnect Endpoint, has the guard
condition: Endpoint to be disconnected is in the conference call. AND The
conference call has only one Endpoint. The guard condition is the conjunction
of the two condition checking sentences (i.e., VALIDATES THAT sentences) of
steps 2 and 5 of the basic flow (Table 1). Thanks to RUCM and UCMeta, the genera-
tion of precise guard conditions becomes feasible and easier. This is because RUCM
defines a set of keywords (e.g., VALIDATES THAT) and UCMeta formalizes them
as metaclasses (e.g., ConditionCheckSentence). Recall that the transformation from a
UCMod expressed with RUCM to an instance of UCMeta is automated and presented
in [3].

The second section of the excerpt (S2) in Figure 3 shows how the guard condition
is instantiated as an instance of uml::Constraint. The third section of the excerpt
(S3) generates the trigger of the transition. Its name is assigned as the name of the use
case, which is reasonable because the use case triggers the transition from its precon-
dition to the postcondition of its basic flow. The fourth section of the excerpt (S4)
generates the effect of the transition. The effect is determined by the last step of the
basic flow. One may argue that the steps in the basic flow (except the condition sen-
tences) all together should be considered as the effect. However, according to our
experience in developing the tool, we noticed that in most cases, the last step is suffi-
cient to indicate the effect of the transition. In the future, when more case studies are
performed, this transformation is expected to be refined. The last fragment (S5) of the
excerpt invokes an operation to generate the transition.

 Automated Transition from Use Cases to UML State Machines 123

Table 2. Summary of transformation rules

Rule # Description
1a Generate an instance of StateMachine for the use case model.
2a Generate the initial state (instance of Pseudostate with PseudostateKind = ini-

tial) for the state machine.
3a Generate an instance of State, named as ‘start’, representing the start state of the

state machine.
4a Generate an instance of Transition. Its trigger is named as ‘construct’. This

transition connects the initial state to the start state.
5c Invoke rules 5.1-5.4 to process each use case of the use case model.

5.1a Generate an instance of State for each sentence of the precondition of the use
case, as long as such a state has not been generated, which is possible because two
use cases might have the same preconditions.

5.2a Generate an instance of State for each sentence of the postcondition of the basic
flow of the use case, as long as such a state has not been generated.

5.3a Connect the states corresponding to the precondition to the states representing the
postcondition of the basic flow of the use case with the transition whose trigger is
the name of use case. See Figure 3 for the corresponding Kermeta code.

5.4c Process the postcondition of each alternative flow of the use case.
5.4.1a Generate an instance of State for each sentence of the postcondition of each

alternative flow.
5.4.2a Connect the states corresponding to the precondition of the basic flow to the states

corresponding to the postconditions of the alternative flows with the transition
whose trigger is the name of use case. See Figure 4 for how guard conditions are
determined.

6a Connect the precondition of the including use case to its postcondition through a
transition. Its trigger is the including use case. Its effect is the included use case,
and the guard is the conjunction of all the conditions of the condition sentences of
the previous steps of the step containing the INCLUDE USE CASE sentence.

Rule 5.4 processes the postconditions of each alternative flow of the use case. No-
tice that RUCM enforces that each flow of events (both basic flow and alternative
flows) of a UCS contains its own postcondition (Section 3.2). This characteristic of
RUCM makes the transformation (rule 5.4) systematic. For a traditional use case
template without enforcing this RUCM characteristic, the UCSs expressed with it
would have a single postcondition for a use case. Therefore unavoidably the postcon-
dition will combine all the conditions of the basic flow and the alternative flows,
hence resulting in a single state corresponding for the postcondition of the use case.
Such a state is imprecise because it encapsulates all the interesting states that a system
can transit to while executing a particular use case. It is desirable (both for testing and
in general) to have separate states and separate transitions with different conditions to
handle alternative flows. This is exactly what our transformation does with the help of
RUCM.

The reason of handling the postconditions of the alternative flows separately from the
transformation rules of handling the basic flow is that guard conditions are processed in
a different way. Rule 5.4 further invokes rules 5.4.1 and 5.4.2 to generate states for the
postcondition of each alternative flow and connect these states to the already generated
states corresponding to the precondition of the basic flow through transitions, respec-
tively. An excerpt of Kermeta code of this rule is provided in Figure 4, which is mainly

124 T. Yue, S. Ali, and L. Briand

precondition_states.each{precondition_state|
postcondition_states.each{postcondition_state|

var pre2post_transition : uml::Transition
var guard_string : uml::String init uml::String.new

//S1: Determine the guard condition
basicflow.steps.each{step|
 if step.isInstanceOf(ConditionalSentence) and
 guard_string := guard_string + " AND " + step.
 asType(ConditionalSentence).IFcondition.description
 end
 if step.isInstanceOf(ConditionCheckSentence) then
 guard_string := guard_string + " AND " + step.
asType(ConditionCheckSentence).condition.description
 end
}

//S2: Generate the guard condition of the transition
var guard_expression : uml::OpaqueExpression init uml::OpaqueExpression.new

guard_expression.body.add(guard_string)
var guard : uml::Constraint init uml::Constraint.new

guard.specification := guard_expression

//S3: Generate the trigger of the transition
var trigger : uml::Trigger init uml::Trigger.new
trigger.name := uc.name

//S4: Generate the effect of the transition
var effect : uml::OpaqueBehavior init uml::OpaqueBehavior.new
var lastStep : String init String.new
lastStep := basicflow.steps.at(basicflow.steps.size()-1).

asType(Sentence).description
effect.body.add(lastStep)
effect.name := lastStep

//S5: Generate the transition
pre2post_transition := createTransition(statemachine, region,
 precondition_state, postcondition_state, uml::TransitionKind.external,
 guard, trigger, effect)
}

}

Fig. 3. Excerpt of Kermeta code for implementing rule 5.3

var guard_string1 : uml::String init uml::String.new
altflow.postCondition.postCondtionSentences.each{sen|

var alt_postcondition_state : uml::State
alt_postcondition_state := createState(statemachine, region, sen.description)
 precondition_states.each{source|
 altflow.bfs.each{bfs|
 if bfs.isInstanceOf(ConditionalSentence) then
 guard_string1 := "NOT "
 bfs.asType(ConditionalSentence).IFcondition.description
 end
 if bfs.isInstanceOf(ConditionCheckSentence) then
 guard_string1 := "NOT " +
 bfs.asType(ConditionCheckSentence).condition.description
 end
 ...
 }
}

Fig. 4. Excerpt of Kermeta code for implementing rule 5.4.2

 Automated Transition from Use Cases to UML State Machines 125

used to explain how the guard conditions of the transitions are determined. As one can
see for the code, the guard condition of a transition from a state generated for the pre-
condition of the use case and a state generated for the postcondition of an alternative
flow is determined by negating the condition sentence (either a ConditionalSentence
or a ConditionCheckSentence) of the basic flow that the alternative flow branches from
(indicated using keyword RFS in the UCS of the use case) (Section 3.2). For example,
as shown in the state machine diagram in Appendix B, the transition of state The sys-
tem is in a conference call (representing the precondition of use case Disconnect,
as shown in Table 1) to itself (representing the postcondition of the first specific alterna-
tive flow of Disconnect) with trigger Disconnect and effect The system sends a
failure message to User, has the guard condition: NOT Endpoint to be discon-
nected is in the conference call.

Rule 6 processes each include relationship of the UCMod. For each include rela-
tionship, transitions are generated to link the precondition of the including use case to
its postcondition, with the trigger named as the name of the including use case, the
effect named as the name of the included use case, and the guard being as the con-
junction of all the conditions of the condition sentences of the previous steps of the
step INCLUDE USE CASE. As shown in Figure 5, use case ReturnVideo includes use
case ReadBarCode at the basic flow step 2. Transitions are created to connect the
precondition of use case ReturnVideo to its postconditions. For example, a transition
is generated to connect the precondition of ReturnVideo (‘Employee is authenticated’)
to its basic flow postcondition (sentence ‘A video copy has been returned.’ and sen-
tence ‘The video copy is available for rent.’), with trigger ‘ReadBarCode’, effect
‘ReturnVideo’. Since there is no condition sentence before the basic flow step 2, no
guard condition should be generated. Due to space limitation, we cannot provide the
complete UCS in the paper.

In terms of Extend relationships between use cases, we don’t need specific rules to
handle them. As shown in Figure 5, use case VideoOverdue extends use case Return-
Video in the alternative flow 1, when ‘The system VALIDATES THAT the video

ReturnVideo Description: Employee scans a video copy to clear the video copy from
a member’s account. Precondition: Employee is authenticated.
Basic flow step 2: INCLUDE USE CASE ReadBarCode
Basic flow step 5: The system VALIDATES THAT the video copy is not overdue.
Basic flow postcondition: A video copy has been returned. The video copy is avail-
able for rent.
Alternative flow 1 (RFS Basic flow 5): EXTENDED USE CASE VideoOverdue
VideoOverdue Description: Employee of the store handles an overdue video copy. A
fine for the delay in returning the video copy is computed, printed, and recorded.
Precondition: Employee is authenticated. The video copy returned by the member is
overdue.
Basic flow postcondition: The fine for the overdue video copy is computed. The fine
for the overdue video copy is printed. The fine for the overdue video copy is recorded.
Alternative flow postcondition: The member’s privileges are suspended.
ReadBarCode Description: Employee scans a video copy using the bar code reader.
Precondition: There is a bar code on the video copy.

Fig. 5. Example of the Include and Extend relationships among use cases

126 T. Yue, S. Ali, and L. Briand

copy is not overdue’ (Basic flow step 5) is not true. When we follow rules 5.3 and 5.4.2,
transitions are generated to connect the precondition of VideoOverdue and its postcondi-
tions of both the basic and alternative flows. Notice that the precondition of VideoOver-
due is the combination of the precondition of ReturnVideo and the negative condition of
the basic flow step 5. Therefore, there is no need to create transitions from the precondi-
tion of ReturnVideo to the postconditions of VideoOverdue and therefore we don’t see a
need to have a rule to particularly handle Extend relationships.

4.2 Transition to State Machine Diagrams for Automated Test Generation

After the system-level state machine diagram is generated for a UCMod, we need to
follow the following steps to refine the state machine diagram so that it can be used as
an input to automatically generate test cases.

1. We need to add missing transitions and states, remove extra states and transi-
tions, or modify incorrect ones in the generated state machine, if required.

2. Second, we need to add state invariants using the Object Constraint Language
(OCL) [19] for each state of the generated state machine based on the actual
state variables of a system. For example, NumberOfActiveCall is a state
variable of Saturn that determines how many systems are currently in a video
conference. This information is mandatory in state-based testing for automated
oracle generation. However this information cannot be captured in the UCMod
and is therefore missing in the state machine diagram generated by aToucan.

3. The third step is to map all the triggers in the state machine diagram to the ac-
tual API calls of the SUT so that the API of the system can be invoked while
executing test cases generated from the state machine.

4. Last, it is also required to replace textual guard conditions of the generated
state machine with corresponding OCL constraints, based on the state variables
and/or input parameters of the triggers associated with the guards.

An effort estimate for these steps is provided on an industrial case study in Section 6.

5 Tool Support

Our approach has been implemented as part of aToucan [3]. aToucan aims to auto-
matically transform requirements given as a UCMod in RUCM into a UML analysis
model including a class diagram, a set of sequence and activity diagrams, and a state
machine diagram. It relies on a number of existing open source technologies. aToucan
is built as an Eclipse plug-in, using the Eclipse development platform. UCMeta is
implemented as an Ecore model, using Eclipse EMF [20], which generates code as
Eclipse plug-ins. The Stanford Parser [21] is used as a NL parser in aToucan. It is
written in Java and generates a syntactic parse tree for a sentence and the sentence’s
grammatical dependencies (e.g., subject, direct object). The generation of the UML
analysis model relies on Kermeta [18]. It is a metamodeling language, also built on
top of the Eclipse platform and EMF. The target UML analysis model is instantiated
using the Eclipse UML2 project, which is an EMF-Based implementation of the UML
2 standard.

 Automated Transition from Use Cases to UML State Machines 127

The architecture of aToucan is easy to extend and can accommodate certain types
of changes. Transformation rules for generating different types of diagrams are struc-
tured into different packages to facilitate their modifications and extensions. Thanks
to the generation of an Eclipse UML2 analysis model, generated UML models can be
imported and visualized by many open source and commercial tools. Similarly,
though UCSs are currently provided as text files, a specific package to import UCSs
will allow integration with open source and commercial requirement management
tools. More details on the design of aToucan can be found in [3].

We adapted the traceability model proposed in the traceability component
(fr.irisa.triskell.traceability.model) of Kermeta [18] to establish traceability links.
Details of the traceability model is discussed in [3].

6 Evaluation, Discussion, and Future Work

Our goal here is to assess 1) whether the tool does generate system-level state ma-
chine diagrams based on UCMods, 2) whether our transformation rules are semanti-
cally complete, 3) whether our transformation rules lead to state machine diagrams
that are syntactically correct, and 4) whether the automatically generated state ma-
chine diagrams can be refined by engineers to support MBT with reasonable effort.
Regarding point 3, syntactic correctness means that a generated state machine dia-
gram conforms to the UML 2.2 state machine diagram notation. Regarding point 2,
semantic correctness means that a generated state machine diagram correctly repre-
sents its UCMod; all the constructs that are related to the transformation in the
UCMod are correctly transformed by following the transformation rules and no re-
dundant model elements are generated.

Regarding the first three evaluation points, two software system descriptions
(ATM and Elevator, called Banking System and Elevator System in [22]) were used
to evaluate them. UCSs of these systems were re-written by applying RUCM so that
they could be used as input of the transformations. These UCSs have also been used
to generate class and sequence diagrams [3], and activity diagrams [4]. As the state
machines provided in the textbook do not fully correspond to the UCMods also
provided in the same textbook, we cannot compare the state machine diagrams auto-
matically generated by our tool with the ones provided in the textbook. However, we
carefully examined our state machines, and we could verify that the generated state
machines were syntactically correct and mostly but not entirely semantically
complete. More importantly, this allowed us to identify the following limitations:

• The quality of UCSs has direct impact on the quality of the generated state ma-
chine diagrams. For example, correct preconditions and postconditions of UCSs
are required in order to generate meaningful state machine diagrams. In our fu-
ture work, we plan to propose guidelines on how to write UCSs using RUCM
for the purpose of generating state machine diagrams, so that higher quality of
UCSs will be defined and lead to higher quality state machines.

• In order to reduce redundant states and transitions, using advanced lexical
analysis techniques such as WordNet [23] (an electronic lexical database) are
needed to identify similar words and sentences, so as to eliminate redundancy

128 T. Yue, S. Ali, and L. Briand

among model elements in generated state machine diagrams. This is also one of
our future research directions.

• Use case diagrams cannot model possible sequences of use case executions.
However such information is sometimes needed in order to generate more com-
plete and precise system-level state machine diagrams. For example, it is always
an issue to identify the set of states where a state machine should transition from
the start state (Section 4.1, rule 3). As shown in the state machine diagram in
Appendix B, the automatically generated state machine diagram does not have
any transition going from the start state to the other states of the state machine.
The reason is that in order to create such transitions, we need to identify the pos-
sible sequences of executing use cases. Using our case study as example, we
need to answer questions such as: is use case MakeConferenceCall executed
before use case StartPresentation? A use case diagram cannot capture such in-
formation; therefore, using for example activity diagrams to capture such se-
quential constraints is needed. From a testing perspective, such information is
required to generate feasible test cases from state machine diagrams. For exam-
ple, a test case generated from a state machine diagram should correspond to an
infeasible path, e.g., executing use case StartPresentation before use case
MakeConferenceCall.

We also conducted an industrial case study to automatically generate a state machine
diagram from the UCMod of a video conferencing systems (Saturn) developed at Cisco
Norway. The UCMod contains seven use cases as shown in Figure 2 and the generated
state machines contains five states and ten transitions. The automatically generated
state machine was manually refined by one domain expert and one modeling expert
working together by following the steps described in Section 4.2. More specifically,
one transition from the Start state to state The system is idle, with trigger PowerOn,
was manually added to the automatically generated state machine diagram (Appendix
B). One transition from state The system is idle to state The presentation is
started, with trigger Start presentation, was also added. This transition means that
Saturn can start a presentation without being in any conference call. Notice that these
two transitions were not automatically generated, because the required information was
not described in the UCMod. In total, it took around 40 minutes for them to complete
the refinement process. In addition, they did not meet any difficulty in applying
RUCM and they took less than three hours to complete the UCMod of Saturn. aToucan
took less than 200 seconds to generate the state machine diagram for Saturn. In the
future, we plan to conduct controlled experiments to compare the quality of aToucan-
generated state machines with the ones manually derived by engineers.

7 Conclusion

Over the last decade, model-based testing (MBT) has been shown to be effective as a
test automation strategy. However, the success of MBT relies on developing complete
and precise input models. Developing such models from scratch can be a challenging
task, especially when testers are not acquainted with modeling. To assist the initial
modeling required for MBT, we propose an approach to transform use case specifica-
tions into UML state machines, the most common notation used for MBT.

 Automated Transition from Use Cases to UML State Machines 129

A more precise and rigorous use case modeling approach (RUCM) was proposed
in [8] and was used in this paper to automatically generate UML state machines dia-
grams from textual use case specifications. This work is part of the aToucan approach
[3], which aims to transform a use case model produced with RUCM into an initial
UML analysis model that so far included class and sequence diagrams [3], and activ-
ity diagrams [4]. We first evaluated our state machine transformations on two case
studies from Gomaa’s textbook [22]. We manually assessed the quality of generated
state machines and found them largely consistent with the source use cases. In addi-
tion, we evaluated our approach on an industrial application, where we modeled use
case specifications of a video conferencing system developed by Cisco Norway.
These use case specifications were automatically transformed into initial state ma-
chine diagrams using our tool, which were then refined by a domain expert and a
modeling expert to support test case generation. Our industry partner benefited not
only from the executable test cases, but also from the system specification expressed
as UML state machine diagrams and precise requirements expressed with RUCM, all
this for an overall cost of less than four hours, including documenting the use case
model and refining the generated state machine diagram.

In the future, we are planning to provide detailed guidelines to help write use case
specifications using RUCM. We are also planning to extend RUCM to allow the
specification of use case execution sequences, which can further help in improving
completeness of generated state machine diagrams. Empirical studies will be con-
ducted to evaluate the quality of automatically generated state machine diagrams
compared to the ones manually generated by engineers.

Acknowledgments

We are grateful to Cisco Norway for their support and help on performing the
industrial case study.

References

1. Shafique, M., Labiche, Y.: A Systematic Review of Model Based Testing Tool Support.
Carleton University, Technical Report SCE-10-04

2. Neto, A.C.D., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-based
testing approaches: a systematic review. In: The 1st ACM International Workshop on Em-
pirical Assessment of Software Engineering Languages and Technologies. ACM, Atlanta
(2007)

3. Yue, T., Briand, L.C., Labiche, Y.: Automatically Deriving a UML Analysis Model from a
Use Case Model. Simula Research Laboratory, Technical Report 2010-15 (2010)

4. Yue, T., Briand, L.C., Labiche, Y.: An Automated Approach to Transform Use Cases into
Activity Diagrams. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 337–353. Springer, Heidelberg (2010)

5. Cisco Norway (Tandberg), http://www.tandberg.no/
6. IEEE Std. 830-1998, IEEE Standard for Software Requirement Specification (1998)
7. Olsen, G.K., Oldevik, J.: Scenarios of traceability in model to text transformations. In:

Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 144–156.
Springer, Heidelberg (2007)

130 T. Yue, S. Ali, and L. Briand

8. Yue, T., Briand, L.C., Labiche, Y.: A use case modeling approach to facilitate the transi-
tion towards analysis models: Concepts and empirical evaluation. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 484–498. Springer, Heidelberg (2009)

9. Ali, S., Hemmati, H., Holt, N.E., Arisholm, E., Briand, L.: Model Transformations as a
Strategy to Automate Model-Based Testing - A Tool and Industrial Case Studies, Simula
Research Laboratory, Technical Report (2010-01) (2010)

10. Smartesting, http://www.smartesting.com
11. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation approaches be-

tween user requirements and analysis models. Accepted for publication in Requirements
Engineering (Online first) (2011)

12. Insfrán, E., Pastor, O., Wieringa, R.: Requirements Engineering-Based Conceptual Model-
ling. Requirements Engineering 7, 61–72 (2002)

13. Some, S.S.: An approach for the synthesis of state transition graphs from use cases, vol. 1,
pp. 456–462. CSREA Press, Las Vegas (2003)

14. Yue, T., Briand, L., Labiche, Y.: Facilitating the Transition from Use Case Models to
Analysis Models: Approach and Experiments, Simula Research Laboratory, Technical Re-
port (2010-12) (2010)

15. Bittner, K., Spence, I.: Use Case Modeling. Addison-Wesley, Boston (2002)
16. OMG: UML 2.2 Superstructure Specification (formal/2009-02-04)
17. Brown, E.K., Miller, J.E.: Syntax: a linguistic introduction to sentence structure.

Routledge, London (1992)
18. Kermeta: Kermeta metaprogramming environment
19. OMG: OCL 2.0 Specification
20. Eclipse Foundation: Eclipse Modeling Framework
21. The Stanford Natural Language Processing Group: The Stanford Parser version 1.6
22. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML.

Addison-Wesley, Reading (2000)
23. Princeton University, WordNet: A lexical database for English,

http://wordnet.princeton.edu/

Appendix A. Use Case Specifications of Saturn

The following use case specifications only contain the fields with important informa-
tion to understand our approach due to space limitation.

Table 3. Use case Dial

Brief Description User dials the system.
Precondition The system is powered on.
Basic flow steps 1) User dials the system. Postcondition: The system is in a conference call.

Table 4. Use case MakeConferenceCall

Brief Description The system is idle.
Precondition User dials the system to make a conference call.
Basic flow steps 1) User dials the system. 2) The system makes a conference call to Endpoint.

Postcondition: The system is in a conference call.

 Automated Transition from Use Cases to UML State Machines 131

Table 5. Use case JoinConferenceCall

Brief Description User dials the system to join a conference call.
Precondition The system is in a conference call.
Basic flow steps 1) User dials the system. 2) The system VALIDATES THAT the maximum

number of Endpoint to the conference call is not reached. 3) The system adds
Endpoint to the conference call. Postcondition: The system is in a conference
call.

Specific Alt. Flow
(RFS Basic flow 2)

1) The system sends a message to User. 2) ABORT.
Postcondition: The system is in a conference call.

Table 6. Use case StartPresentation

Brief Description User wants to start the presentation.
Precondition The system is in a conference call.
Basic flow steps 1) User requests the system to start a presentation. 2) The system sends the

presentation to Endpoint. Postcondition: The presentation is started.

Table 7. Use case StopPresentation

Brief Description User wants to stop the presentation.
Precondition The presentation is started.
Basic flow steps 1) User requests the system to stop a presentation. 2) The system stops the

presentation to Endpoint. Postcondition: The system is in a conference call.

Table 8. Use case DisconnectAll

Brief Description User disconnects all Endpoint participating in a conference call.
Precondition The system is in a conference call.
Basic flow steps 1) The system disconnects all connected EndPoints. 2) ABORT

Postcondition: The system is idle.

Appendix B. Generated State Machine Diagram for Saturn

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 132–143, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Transformation Rules for Translating Business Rules
to OCL Constraints

Imran S. Bajwa and Mark G. Lee

School of Computer Science, University of Birmingham, B15 2T, Birmingham, UK
{i.s.bajwa,m.g.lee}@cs.bham.ac.uk

Abstract. In design of component based applications, the designers have to
produce visual such as Unified Modeling Language (UML) models, and
describe the software component interfaces. Business rules and constraints are
the key components in the skeletons of software components. Semantic of
Business Vocabulary and Rules (SBVR) language is typically used to express
constraints in natural language and then a software engineer manually maps
SBVR business rules to other formal languages such as UML, Object
Constraint Language (OCL) expressions. However, OCL is the only medium
used to write constraints for UML models but manual translation of SBVR rules
to OCL constraints is difficult, complex and time consuming. Moreover, the
lack of tool support for automated creation of OCL constraints from SBVR
makes this scenario more complex. As, both SBVR and OCL are based on
First-Order Logic (FOL), model transformation technology can be used to
automate the transformation of SBVR to OCL. In this research paper, we
present a transformation rules based approach to automate the process of SBVR
to OCL transformation. The presented approach implemented in SBVR2OCL
prototype tool as a proof of concept. The presented method softens the process
of creating OCL constraints and also assists the designers by simplifying
software designing process.

Keywords: Model Transformation, Transformation Rules, OCL constraints,
SBVR business rules, SBVR business design.

1 Introduction

Software modeling is a major phase of software development and the growing
complexity of large software systems can be handled using the modeling approach.
Unified Modeling Language (UML) is an essential tool for developing high-quality,
possibly error-free, and highly accurate models of complex and mammoth-sized
software systems. However, a UML model remains semantically incomplete without
constraints. Constraints further restrict the behavior of objects in a UML model.
Object Constraint Language (OCL) is a formal specification language [1] used to
define constraints for a UML model. But adaptability of OCL has been a major issue
since it has emerged into an Object Management Group (OMG) standard [2]. Less
adaptability of OCL is due to unfamiliar syntax of OCL [11] and lack of built-in
support in OCL specification for standardized semantic verification [3]. Existing OCL
tools just perform type checking and parsing of OCL expressions [12], [13].

 Transformation Rules for Translating Business Rules to OCL Constraints 133

Currently, there is no tool that facilitates easy creation of OCL constraints from
business rules.

SBVR (Semantic of Business Vocabulary in Rules) [7] is an OMG specification
used for expressing business/software requirements for business/software models in
the form of business rules. A Business rule is key element of SBVR based
business/software models. SBVR has replaced the natural languages to capture
business/software requirements due to inherent support of formal semantics in SBVR.
The business/software constraints can also be represented using SBVR (rules) as
SBVR promises semantically consistent representation to the software/business
constraint specifications. In SBVR, semantic consistency is achieved due to SBVR’s
inherent support of formal approaches: typed predicate logic; arithmetic; set and bag
comprehension, and with some additional basic results from modal logic [7]. As the
logic is essentially classical logic, so mapping to other logic-based specifications such
as OCL should be simple as OCL is also based on typed logic, First-Order-Logic
(FOL) [3].

This work is extension of the automated generation of natural language
specification to OCL constraint via SBVR [19], [22]. The automated transformation
of SBVR rules to OCL constraints simplifies the process of manually generating OCL
constraints from SBVR representation as manual generation is not only difficult and
complex but also causes erroneous OCL expressions [3], [11]. The proposed
methodology for the transformation of SBVR rules to OCL constraints is based on set
of transformation rules. Transformation rules based SBVR to OCL mapping is shown
in Figure 1.

Fig. 1. Transformation rules to map source model (SBVR) to target model (OCL)

Following section gives the brief description of SBVR and OCL elements.

1.1 SBVR Constraints

SBVR [7] is typically used by business people to capture business requirements
specifications and constraints. In business models, constraints are represented using
business rules. The business rules in SBVR are assembled on facts, and facts build on
concepts as expressed by terms. Terms express business concepts; facts make
assertions about these concepts; rules constrain and support these facts. For example
in a business rule “customer uses a credit card”, used concepts are ‘customer’ and
‘credit card’ and this rule is based on a fact-type ‘customer uses card’ while ‘uses’ is a
verb concept. In this example, given concepts are noun concepts. Concepts can also
be individual concept e.g. ‘VISA card’.

In SBVR, a business rule can be of two types: structural rule and behavioral rule
[7]. A structural rule is used to express state or structure of a noun concept for

SBVR Model OCL Model

Transformation Rules

134 I.S. Bajwa and M.G. Lee

example a structural rule “customer has a bank account” expresses the state of a noun
concept ‘customer’ who has a ‘bank account’. A behavioral rule principally describes
the operations or actions performed by a noun concept. For example in a behavioral
rule “customer deposits money” it is given that a noun concept ‘customer’ performs
an action of depositing ‘money’.

Two notations are proposed for SBVR rules in SBVR 1.0 [7]: Structured English
and RuleSpeak. In this paper, we have used Structured English as a formal notation
for SBVR rules [10]. The SBVR structured English notation proposes to underline the
noun concepts, italicize the verb concepts, double underline the individual concepts,
and bold the SBVR keywords. The above SBVR rules with logical formulations are
written using defined notation of Structured English.

1.2 OCL Constraints

The Object Constraint Language (OCL) is another important standard from OMG
used to annotate UML models with logical constraints to avoid semantic ambiguities.
OCL is a declarative language that is mainly used to define constraints on a UML
class models, and define queries for it.

OCL Syntax: To define the basic structure of n OCL expression, OCL syntax is
defined in OCL 2.0 [3]. The syntax of a typical OCL expression is mainly composed
of the following three components.

Context: A context [3] in an OCL expression specifies the scope of the expression.
The OCL context limits a world of an expression in which it is valid using a keyword
‘context’. A keyword ‘self’ is used to refer a particular class or operation of a
class specified in a context.

Property: An OCL property [3] represents an attributes or operation of a class. ‘.’
operator is used to specify these properties e.g. customer.account or
customer.deposit()

Keyword: The OCL keywords [3] e.g. if, then, else, and, or, not, implies are typically
used to specify the conditional expressions.

OCL Constraints: An OCL constraint defines a Boolean expression that can result in
True or False. If a constraint is always true, the system remains in a valid state. An
OCL constraint can have following 3 types:

Invariants: The invariants [3] are conditions those need to be True always. Keyword
‘inv’ is used in invariants.

context customer
inv: self.age >= 18

Precondition: A precondition [3] is a constraint that should be True before the
execution of a method starts. Keyword ‘pre’ is used in preconditions.

context customer :: isAdult(dDOB: Integer): Boolean
pre: dDOB >= 1990

 Transformation Rules for Translating Business Rules to OCL Constraints 135

Postcondition: A postcondition [3] is a constraint that should be True after the
execution of a method has finished. Keyword ‘post’ is used in postconditions.

context customer :: isAdult(dDOB: Integer): Boolean
post: result >= 18

The rest of the paper is structured as follows. Section 2 describes the methodology for
the translation of UML class diagrams into SBVR rules and transformation rules used
to translate the SBVR abstract syntax into the OCL abstract syntax. All the
transformation rules are illustrated by examples. Section 3 describes a prototype
translation tool OCL-Builder, whereas section 4 describes experiments, results and
analysis. Section 5 presents the related work to our research and the paper is closed
with the conclusion section.

2 SBVR to OCL Transformation

SBVR to OCL transformation is performed in two phases. In first phase, the SBVR
constraints specification is mapped to the target UML model and in second phase the
SBVR information is mapped to OCL constraints using a set of transformation rules.
Detailed description of both phases is given here:

2.1 Mapping SBVR Rules to UML Model

In this phase, the SBVR rules are mapped to UML models for semantic verification
before the SBVR rules are mapped to OCL constraints. Semantic verification is
essential to validate that the target OCL constraints will be semantically verified with
the target UML model. To illustrate the process of mapping SBVR rules to the UML
model we have taken an example shown in Figure 2.

Fig. 2. A UML class model

The mapping process starts with the syntax analysis of SBVR rules to extract various
elements of the SBVR rule i.e. noun concepts, verb concepts, fact types, etc.

has 1 .. * Customer

- name: String
- birthDate: Date
- age: String

 - isAdult(): Boolean

BankAccount

- owner: String
- balance: GBP=0

 -deposit(amount:GBP)
 -withdraw(amount:GBP)

SavingAccount
- insertRate: Double

136 I.S. Bajwa and M.G. Lee

Following section describes the process of mapping classes and their respective
associations with a common SBVR rule.

Mapping Classes: The general noun concepts in SBVR rules represent the UML
classes. Verb concepts specify methods of a class. Adjectives are tagged as attributes.
An example of a SBVR rule is given below:

It is obligatory that each customer can have at least one bank account only if
customer is 18 years old.

In the above shown SBVR rule, both noun concepts ‘customer’ and ‘bank account’
are matched to all classes in the UML class model shown in the figure 2 and the noun
concepts are replaced with the names of the classes, if matched.

Mapping Class Associations: Associations in a UML class model express
relationship of two entities in a particular scenario. A UML class model may consists
of different types of associations e.g. packages, associations, generalizations, and
instances. Typically, these associations are involved in defining the context of an
OCL constraint, so it is pertinent to map these associations in the target SBVR
specification of business rules.

Mapping Packages: A package in a UML class model organizes the model's
classifiers into namespaces [20]. In SBVR, there is no specific representation of a
package. Hence user has to manually specify the package name for a set of classes.
The package names are also defined in the OCL constraints, so the package
information is also mapped to the SBVR rules.

Mapping Associations: Associations in a UML model specify relationships between
two classes [20]. Simple associations can be unidirectional, bidirectional, and
reflexive [18]. Unidirectional associations in UML are mapped with unary (based on
one noun concept) fact types in SBVR and the bidirectional associations in UML are
mapped with binary (based on two noun concepts) fact types in SBVR. Direction of
the association is determined by the position (subject or object) of the noun concepts
and object types in SBVR.

Mapping Generalizations: Generalization or inheritance is an association between
two classes that defines the property of one class inheriting the functionalities of the
other [20]. In SBVR the relationship of general noun concept (super class in UML)
and individual noun concept (sub class in UML) is used to identify the inheritance
feature. If a class A inherits the class B then the class B will also be the part of OCL
context of class A.

Mapping Instances: The instances of the classes can also appear in a UML class
model. The individual concepts in SBVR are mapped to the instances (objects). The
defined instances also become part of the OCL contexts and OCL constraints. So, the
instances are also mapped in SBVR rules.

In SBVR to UML mapping, the classes that do not map to the given UML class
model are ignored.

 Transformation Rules for Translating Business Rules to OCL Constraints 137

2.2 Mapping SBVR Rules into OCL Constraints

We present an automated approach for the translation of the SBVR specification into
the OCL constraints. Our approach not only softens the process of creating the OCL
syntax but also verifies the formal semantics of the OCL expressions with respect to
the target UML class model. As OCL is a side-effect free language, hence it is
important that each OCL expression should be semantically verified to the target
UML model. A prototype tool “SBVR2OCL” is also presented that performs the
target transformation. Figure 3 shows a SiTra library [21] based Model
Transformation Framework for SBVR to OCL Transformation using (SBVR to OCL)
mapping rules.

Fig. 3. A SiTra based Model Transformation Framework for SBVR to OCL Transformation

Mapping of SBVR rules to OCL code is carried out by creating different fragments
of OCL expression and then concatenating these fragments to compile a complete
OCL expression. Typically, OCL expression can be of two types: OCL invariant and
OCL query operation. In this paper, we will present only the creation of OCL
invariants and the creation of OCL query operation is part of the future work.

The SBVR rules’ specification created in section 2 is further analyzed to extract the
business information as follows:

It is obligatory that each <actor> <action> at least one <thematic-object> only
if <actor> <action> <thematic-object>

The analyzed SBVR rule is further transformed to the logical representation after
omitting the SBVR keywords as following

p ⇒ q if p → function1() AND q → q.function2()

This logical representation can be further generalized as follows:

p ⇒ q if condition1 = TRUE AND condition2=TRUE

This generalized representation is finally transformed to the OCL constraint by using
the defined transformation rules. A typical transformation rule comprises of the
variables, predicates, queries, etc [9]. A typical transformation rule consists of two
parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS is used to access

Mapping

Rules

SiTra – A MT
Framework

SBVR Metamodel OCL Metamodel

SBVR Modal
(Source Model)

OCL Modal
(Target Model)

<<instance of>> <<instance of>>

138 I.S. Bajwa and M.G. Lee

the source model element, whereas the RHS expands it to an element in the target
model. The transformation rules for each part of the OCL constraints are based on the
abstract syntax of SBVR and OCL that are given in the following section.

Generating OCL Context: The context of an OCL expression defines the scope of
the given invariant or pre/post condition. To specify the context of an OCL invariant,
the major actor in the SBVR rule is extracted to specify the context. To specify the
context of an OCL pre/post condition, the action performed by the actor in a SBVR
rule is considered as the context. Rule 1.1 shows the OCL context for invariant
expressions and Rule 1.2 shows the context of for the pre/post condition of an
operation:

Rule 1.1
T[context-inv(object type)] = context-name
Rule 1.2
T[context-cond(object type, verb concept)] = context-name :: operation-name

Precondition and postcondition can co-exist in a single an OCL expression than the
both precondition and postcondition share the same context.

Generating OCL Constraints: Transformation rules for mapping of the SBVR
specification to OCL constraints are defined in this section. There are two basic types
of an OCL constraints; invariant of a class, and pre/post condition of an operation.
Constraint on a class is a restriction or limitation on a particular attribute, operation or
association of that class with any other class in a model. An expression for these
constraints consists of two elements: context of the constraint and body of the
constraint.

R0u

le 2.1
T[invariant(context-inv, inv-body)] = context context-inv

inv: inv-body
Rule 2.2
T[pre-cond (context-cond, pre-cond-body)] = context context-cond
 pre: pre-cond-body
Rule 2.3
T[post-cond (context-cond, post-cond-body)] = context context-cond

post: post-cond-body

Generating OCL Invariants: The OCL invariant specifies a condition on a class’s
attribute or association. Typically, an invariant is a predicate that should be TRUE in
all possible worlds in UML class model’s domain. The OCL context is specified in
the invariants by using self keyword in place of the local variables.

Rule 3.1
T[inv-body (ocl-exp)] = inv: ocl-exp

An invariant can be expressed in a single attribute or set of attributes from a class. In
OCL, collection operations are used to perform basic operations on the set of
attributes.

 Transformation Rules for Translating Business Rules to OCL Constraints 139

Rule 3.2
T[ocl-exp()] = self . (Expression | collection-exp | if-exp)
Rule 3.3
T[collection-exp(Expression)] = Expression → collection-op |
 Expression → collection-op → collection-exp | “”
Rule 3.4

T[if-exp(Condition, Expression)] = If Condition then Expression-1
 else Expression-2 endif

Generating OCL Pre/Post Conditions: Similar to the OCL invariant, the OCL
preconditions and the OCL postcondition are used specify conditions on operations of
a class. Typically, a precondition is a predicate that should be TRUE before an
operation starts its execution, while a postcondition is a predicate that should be
TRUE after an operation completes its execution.

Rule 4.1
T[pre-cond-body(ocl-exp)] = pre: ocl-exp
Rule 4.2
T[post-cond-body(ocl-exp, value)] = post: ocl-exp | post: result = value
Rule 4.3
T[value(thematic-object)] = Integer-value | Double-value | String-value | Boolean-value

A pre/post condition can be expressed in a single attribute or set of attributes from a
class. Rule 3.2 and 3.3 are reused here to accompany Rule 4.1 and 4.2. In rule 4.3 the
attribute value is verified that the provided value is of accurate type e.g. integer,
double, or String, etc.

Generating OCL Expressions: The OCL expressions express basic operations that
can be performed on available attributes of a class. An OCL expression in the OCL
invariant can be used to represent arithmetic, and logical operations. OCL arithmetic
expressions are based on arithmetic operators e.g. ‘+’, ‘–’, ‘/’, etc, while, logical
expressions use relational operators e.g. ‘<’, ‘>’, ‘=’, ‘<>’, etc and logical operators
e.g. ‘AND’, ‘implies’, etc.

Rule 5.1
T[Expression(Expression)] = Expression infix-oper Expression | prefix-oper Expression
Rule 5.2
T[infix-oper(Quantification)] = +|-|*|/|=|>|<|>=|<=|<>|OR|AND|implies
Rule 5.3
T[prefix-oper(Quantification)] = -|NOT
Rule 5.4
T[Quantification(Keyword)] = at least n | at most n | exactly n

Generating OCL Operations: The OCL collections represent a set of attributes of a
class. A number of operations can be performed on the OCL collections e.g. sum,
size, count, isEmpty, etc.

Rule 6.1

T[collection-op(Expression)] = forAll(Expression) | exists(Expression) |
select(Expression) | allInstances(Expression) | include(Expression) | ….

140 I.S. Bajwa and M.G. Lee

3 Tool Support

SBVR2OCL tool was implemented to translate SBVR to OCL constraints.
Translation rules and the abstract syntax of OCL and SBVR were implemented in
java as an Eclipse plugin using EMF (Eclipse Modeling Framework). A rule based
parser (that we used in [16]) was employed to syntactically analyze SBVR rules and
map them with given UML class Model in EMF UML 2.0 format. SBVR2OCL tool
then finally translates the SBVR specification to OCL constraints by using translation
rules. Figure 4 and 5 shows screen-shots of the tool.

Fig. 4. SBVR2OCL – Input SBVR Rule

Fig. 5. SBVR2OCL – Output OCL Constraint

Limitation of SBVR2OCL tool is that it generates one OCL constraint for one
SBVR specification at a time.

4 Experiments and Results

To find the bugs in the working of the tool experiments were performed to carry out
the dynamic verification of the software tool. To test the accuracy of the OCL
constraints generated by the designed system three classes were defined: invariants,
preconditions and post-conditions. Various complexity levels of input i.e. simple,
compound and complex SBVR rules were also defined to verify the consistency of
tool’s output. Both, the simple and complex constraints contain only one fact type.
Moreover, the simple constraints do not involve association and generalizations but
complex business constraints involve associations and generalizations. Compound
constraints are complex constraints with multiple fact types. Examples of defined
complexity levels are following:

 Transformation Rules for Translating Business Rules to OCL Constraints 141

Simple: It is necessary that each customer has at most one BankAccount.

Complex: It is obligatory that each customer can have at least one BankAccount
only if age of customer is 18 years.

Compound: It is permitted that if each customer has at least one bankAccount and
account balance is at least GBP 500 can apply for at least one credit card.

In the above examples, ‘necessary’, ‘obligatory’, and ‘permitted’ are SBVR keywords
used to represent modality formulation [7]. To test tools accuracy 10 examples of
each complexity-level were used. Constraint types for each 10 examples were
generated. Each generated OCL constraint from each category was type-checked. For
type checking OCLarity [16] tool was used that is an OCL type checking tool. For the
sake of type checking in OCLarity, the used class model and the generated OCL
constraint were given as input. A matrix representing OCL constraints accuracy test
(%) for invariants, preconditions, and post conditions has been constructed. Overall
accuracy for all types of OCL constraints is determined by adding total accuracy of all
categories and calculating its average that is 88.33%.

Table 1. Testing results of OCL constraints

Complexity level/
Constraint Type

Invariant Precondition Postcondition Total

Simple 94.1% 91.5% 89.3% 91.63%

Complex 91.2% 90.2% 87.8% 89.73%

Compound 86.6% 84.7% 79.8% 83.7%

OverAll Accuracy = 88.33%

The graph above is showing the accuracy ratio of various diagram types in terms of
invariants, pre-condition, and post-condition parameters. The correctness of the
software tool was verified though static verification by performing the analysis.

Fig. 6. SBVR2OCL tool Results

0.7

0.75

0.8

0.85

0.9

0.95

1

Invariant Pre condit ion Post condit ion Total

Const raint Type Simple

142 I.S. Bajwa and M.G. Lee

5 Related Work

Transformation of SBVR Business design to the formal representations i.e. UML,
OCL, Java, etc is a relatively new area. In last decade, many automated solutions for
transformation of natural language based informal specification to formal
specification have been presented [15, 17]. Introduction of frameworks and tools for
automated transformation NL to UML model have made things very easy and time
saving for the software designers.

Amit presented his work to transform SBVR business design to UML models [5].
He has used model driven engineering approach to transform SBVR specification into
different UML diagrams e.g. activity diagram, sequence diagram, class diagram. His
research work is a millstone in reducing gap between SBVR and UML based software
modeling. Linehan’s work [14] for the transformation of SBVR rules into formal
languages e.g. Java is one of the only case. In this work, Java code is generated from
the SBVR rules through OCL representation. SBeaVeR is an [18] another open-
source tool that translates the SBVR rules into Prolog rules. This also provides facility
of expressing SBVR rule in “Structured English”. This tool lacks the support for
transformation to standard middleware artifacts.

6 Conclusion

This paper presents a transformation rules based approach to create OCL constraints
from UML based SBVR rules’ specification. SBVR to OCL transformation is based
on transformation rules. The transformation rules are derived from the abstract syntax
of SBVR and OCL. Presented approach is fully automated as user provides only the
input business rules and target UML model. The presented work helps in achieving
the objective of providing a simple means of analysis and verification of the given
UML model. The proposed approach also ensures the creation of consistent OCL
expressions. This automated transformation not only softens the process of creating
OCL but also improves the usability of OCL by providing automatic mechanism of
semantic verification with a UML model. The presented tool, SBVR2OCL performs
transformation of SBVR rules to OCL after semantic verification with a given UML
model. The use of automated transformations ensures seamless creation of OCL
statements and deemed to be non-intrusive. Our tool is used to evaluate usability of
the presented approach.

References

[1] OMG: Object Constraint Language (OCL), OMG Standard, v. 2.0 (2006)
[2] Warmer, J., Kleppe, A.: The Object Constraint Language – Getting Your Models Ready

for MDA, 2nd edn. Addison Wesley, Reading (2003)
[3] Cabot J., et al.: UML/OCL to SBVR Specification: A challenging Transformation.

Journal of Information systems (2009) doi:10.1016/j.is.2008.12.002
[4] Linehan, M.: SBVR Use Cases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)

RuleML 2008. LNCS, vol. 5321, pp. 182–196. Springer, Heidelberg (2008)

 Transformation Rules for Translating Business Rules to OCL Constraints 143

[5] Raj, A., Prabharkar, T., Hendryx, S.: Transformation of SBVR Business Design to UML
Models. In: ACM Conference on India software engineering, pp. 29–38 (2008)

[6] Cabot, J., Teniente, E.: Transformation Techniques for OCL constraints. J. of Science of
Computer Programming 68(03), 152–168 (2007)

[7] OMG: Semantics of Business vocabulary and Rules (SBVR), OMG Standard, v. 1.0
(2008)

[8] Pau, R., Cabot, J.: Paraphrasing OCL Expressions with SBVR. In: Kapetanios, E.,
Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 311–316.
Springer, Heidelberg (2008)

[9] Marcano, R.: Transformation Rules of OCL Constraints in to B Formal Expression. In:
Fifth International Conference on UML – the langauge and its Applications, Workshop
on Critical Systems Development with UML, Dresden, Germany (September 2003)

[10] Enterprise Architect, http://www.sparxsystems.com/products/ea/
[11] Wahler M.: Using Patterns to Develop Consistent Design Constraints, PhD Thesis, ETH

Zurich, Switzerland (2008)
[12] Demuth B, Wilke C.: Model and Object Verification by Using Dresden OCL. In R.G.

Workshop on Innovation Information Technologies: Theory and Practice, pp. 81–89
(2009)

[13] IBM OCL Parser (September 2009), http://www-01.ibm.com/software/
awdtools/library/standards/ocl-download.html

[14] Linehan, M.H.: Ontologies and Rules in Business Models, edocw. In: Eleventh
International IEEE EDOC Conference Workshop, pp. 149–156 (2007)

[15] Bajwa, I., Samad, A., Mumtaz, S.: Object Oriented Software modeling Using NLP based
Knowledge Extraction. European Journal of Scientific Research 35(01), 22–33 (2009)

[16] EmPowerTec, OCLarity, http://www.empowertec.de/index.htm
[17] Bryant, B., et al.: From Natural Language Requirements to Executable Models of

Software Components. In: Workshop on S. E. for Embedded Systems, pp. 51–58 (2008)
[18] De Tomassi, M., Pierpaolo, C.: Sbeaver Business Modeler Editor,

http://www.sbeaver.sourceforge.net
[19] Bajwa I., Behzad B., Lee M.: OCL Constraints Generation from Natural Lanauge

Specification. In: EDOC 2010 – 14th IEEE EDOC Conference, Vitoria, Brazil, pp. 204–
213 (2010)

[20] OMG: Unified Modeling Langauge (UML), OMG Standard, v. 2.1 (2007)
[21] Akehurst, D.H., Boardbar, B., et al.: SiTra: Simple Transformations in Java. In: Wang, J.,

Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 351–364.
Springer, Heidelberg (2006)

[22] Bajwa, I., Lee M., Behzad B.: SBVR Business Rules Generation from Natural Lanauge
Specification. In: AAAI 2011 Spring Symposium – AI for Business Agility, San
Francisco, USA, pp. 2–8 (2011)

Preventing Information Loss in Incremental
Model Synchronization by Reusing Elements�

Joel Greenyer1,��, Sebastian Pook2, and Jan Rieke1,��

1 Software Engineering Group, Department of Computer Science
University of Paderborn, 33098 Paderborn, Germany

{jgreen,jrieke}@uni-paderborn.de
2 Heinz Nixdorf Institute

University of Paderborn, 33098 Paderborn, Germany
Sebastian.Pook@hni.uni-paderborn.de

Abstract. The development of complex mechatronic systems requires
the close collaboration of multiple engineering disciplines. Hence,
multidisciplinary system engineering approaches have been developed.
However, the refinement of discipline-specific aspects of the system, for
example the implementation of software controllers, still requires
discipline-specific models and tools. During the development, changes
in these discipline-specific models may affect other disciplines’ models.
Thus, inconsistencies are likely to occur, leading to increased develop-
ment time and costs if they remain undetected. Bidirectional model
synchronization techniques aim at automatically resolving such inconsis-
tencies. Existing synchronization algorithms today, however, fail in this
application scenario, because synchronization steps often unnecessarily
destroy and re-create elements, which damages parts of the models that
are not subject to the synchronization. In order to solve these issues, we
present a novel synchronization technique based on Triple Graph Gram-
mars with improvements regarding the reuse of model elements.

Keywords: Incremental Model Synchronization, Mechatronic System
Design, Triple Graph Grammars (TGG), Information Retainment in the
Target.

1 Introduction

The development of mechatronic systems, from modern household aids to trans-
portation systems, requires the close collaboration of multiple disciplines, such
as mechanical engineering, electrical engineering, control engineering, and soft-
ware engineering. Usually, in a first development phase, called conceptual design,
all disciplines collaborate in creating a discipline-spanning system model. In the
� This work was developed in the course of the Collaborative Research Center 614 –

Self-optimizing Concepts and Structures in Mechanical Engineering – University of
Paderborn, funded by the Deutsche Forschungsgemeinschaft.

�� supported by the International Graduate School Dynamic Intelligent Systems.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 144–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Preventing Information Loss in Incremental Model Synchronization 145

following refinement phase, engineers from each discipline develop discipline-
specific models in parallel, using different modeling languages and tools. As
changes during the refinement are likely to affect other disciplines, avoiding in-
consistencies during the refinement is crucial. Synchronizing changes among the
models is often done manually today, being prone to errors and inconsistencies.

To automatically synchronize the different models used during the develop-
ment, a concept is needed to bidirectionally propagate changes between the dif-
ferent models: if, for instance, the discipline-spanning system model is changed,
these changes must be propagated from this (source) model to the discipline-
specific (target) models. Bidirectional model transformation techniques are a
promising approach for such synchronization scenarios. However, existing syn-
chronization algorithms [4,5,18,8] are not sufficient for such a scenario: When
changes to a source model are propagated, often too many elements of the tar-
get models are unnecessarily deleted and recreated. This severely damages parts
of the target model which referenced the deleted elements. Such synchronization
issues arise in many model-based development scenarios: different models are
created for different purposes, and overlap in the information they contain, e.g.,
models for specification and models for testing. We present an improved synchro-
nization algorithm based on Triple Graph Grammars (TGGs) [14], a rule-based
formalism for declaratively specifying relations between models. This algorithm
prevents unnecessary deletions by providing flexible repair operations.

The paper is structured as follows. Sec. 2 describes the development of mecha-
tronic systems and introduces the example. In Sec. 3, we give a short introduc-
tion to TGGs and model synchronization approaches. The main contribution,
our improved synchronization algorithm, is described in detail in Sec. 4. Finally,
we summarize related work in Sec. 5 and conclude the paper in Sec. 6.

2 Development of Mechatronic Systems

Design guidelines for mechatronic systems, like VDI 2206 [17], or development
methods elaborated in the Collaborative Research Center (CRC) 614 “Self-Opti-
mizing Concepts and Structures in Mechanical Engineering” in Paderborn, pro-
pose that experts from all disciplines collaborate in a first development phase,
called the conceptual design. Together, they work out the principle solution, a
system model that captures all interdisciplinary concerns. A core part of this in-
terdisciplinary system model is the active structure, which shows how the system
is composed of different system elements, how they are hierarchically structured,
and how they affect each other by flows (e.g., information or energy flows).

The principle solution then serves as a basis for the discipline-specific refine-
ment phase. However, the principle solution rarely captures all interdisciplinary
concerns and, therefore, cross-disciplinary changes may become necessary dur-
ing the discipline-specific refinement phase. These changes then have to be prop-
agated among the discipline-specific models. This is realized by first updating
the interdisciplinary system model with the information relevant to other disci-
plines and then propagating these changes to the other affected discipline-specific

146 J. Greenyer, S. Pook, and J. Rieke

models. Gausemeier et al. [3] described such a process from a methodological view-
point, showing the applicability of model transformation techniques in general.

Let us consider an example in the following. One project which serves as a
case study for the CRC 614 is the RailCab.1 Its vision is that, in the future, the
schedule-based railway traffic will be replaced by small, autonomous RailCabs,
which transport passengers and goods on demand, being more energy efficient
by dynamically forming convoys. Fig. 1 shows the active structure of a RailCab.
This diagram kind is part of an interdisciplinary specification language that was
developed to model the principle solution of mechatronic systems [2]. In the fol-
lowing, we call this specification language the Mechatronic Modeling Language
(MML). We consider the refinement of this model in the discipline of software
engineering using Mechatronic UML. Mechatronic UML is a modeling language
for the development of distributed, safety-critical real-time systems, especially to
model the software architecture and the behavior of the system and its compo-
nents [1]. It allows us to specify hybrid components, which include both discrete
and continuous behavior, and dynamic reconfigurations of components.

RailCab
RailCab to

RailCab
communi-

cation module

configuration
control

hazard
detection

xleader,vleader

d*
convoy state

 detected
 hazards

 xleader,vleader

 dSafe

longitudinal dynamics controller

position
controller

velocity
controller

reference
generator

v*RailCab

position
observer

xRailCab,vRailCab

 F*

xRailCab,vRailCab

x*’

traction unit

SECEMEEE

CE

MEEECEMEEE

MEEE

SE

SECE

CE

CE

CE

SE

 F

system
element

join
information
flow
energy flow

SE

SE

SE

v*RailCab

port

SE relevance
annotation

Fig. 1. Parts of the active structure of the RailCab system

Let us take a closer look at the active structure. The longitudinal dynamics
controller is responsible for controlling the traction unit. The control strategy
for the velocity is reconfigured based on the current convoy state: Usually, a set-
point value for the speed, v∗RailCab, is used, calculated by the reference generator.
During convoy mode, the controllers are reconfigured so that the position con-
troller becomes active and the velocity is controlled based on the distance to the
leading RailCab. The basic reconfiguration behavior is described in the princi-
ple solution, but the details are implemented later during the discipline-specific
refinement. For details, we refer to Gausemeier et al. [3]. The small relevance
annotations at the top of each system element mark which system element is
relevant to which discipline (e.g., “SE” denotes Software Engineering). Thus,
these annotations define discipline-specific views on the active structure.

Inconsistencies may easily arise during the development. Consider the follow-
ing process as an example.

1 Neue Bahntechnik Paderborn/RailCab: http://www-nbp.uni-paderborn.de/

Preventing Information Loss in Incremental Model Synchronization 147

RailCab

d*
onvoy state

longitudinal dynamics controller

position
controller

velocity
controller

reference
generator

position
observer

xRailCab,vRailCab

F*x*’

traction unit

SECEMEEE

CE

MEEE

CEMEEE

CE

CE

CE

SE

SE

SE

SE

r

C

S

longitudinal dynamics controller

<<hybrid>>
reference
generator

<<controller>>
position

controller

<<hybrid>>
velocity

controller

xRailCab,
vRailCab

x*’

xleader,
vleader

DS

DS

DS

DS

v*RailCab

d*

v*RailCab

F*

rrr

p
oo

SSSSSEEECCCCCCCCCCEEEEEEEE

SSSSSSSSSEEEEEEE

SSSSEEEEEEEEEE

convoy
state

v*RailCab

v*RailCab
dddddd

nnnnnnvvvvvvvvvoooooo

deleted in step 3

transformation
in step 1

affected by step 4

<<hybrid>>

Reconfiguration

added in step 2

Fig. 2. Transition from the active structure to a Mechatronic UML component diagram

1. The discipline-specific models are generated from the principle solution by
different initial model transformations. Fig. 2 shows how different elements
of the active structure correspond to Mechatronic UML model elements.

2. The disciplines’ engineers start refining their models. E.g., the software
engineer defines behavior for components; especially he elaborates on the re-
configuration behavior for the longitudinal dynamics controller. This discipline-
specific information is typically not reflected back to the principle solution.

3. A flaw is identified within the original principle solution: the velocity con-
troller inside the longitudinal dynamics controller receives information about
the current convoy state, but this is unwanted and possibly misleading for
the engineers implementing it. So the principle solution is changed, and this
information flow and its ports are removed.

4. After the only discrete port of the velocity controller has been removed, the
corresponding component in Mechatronic UML must not be a hybrid compo-
nent anymore, but a simple controller component. (Controller components,
in contrast to hybrid components, are not further refined by the software
engineers, but entirely implemented by control engineering. Thus, it is just
a placeholder for controller code.) Therefore, the model synchronization up-
dates the software model and changes the hybrid component to a controller.

The main challenge in step 4 is that the model synchronization has to replace
some parts of the Mechatronic UML model, but in a way that the discipline-
specific information introduced in step 2 is not destroyed or becomes invalid.
Here, the reconfiguration chart developed in step 2 references the hybrid com-
ponent velocity controller. Deleting this hybrid component and recreating it as a
controller component would damage this reconfiguration chart, because the chart
would still reference the deleted hybrid component.

148 J. Greenyer, S. Pook, and J. Rieke

3 Triple Graph Grammars

Bidirectional model transformation techniques are a promising approach for au-
tomatically synchronizing the different models during the development. Model
synchronization is an intensively researched topic today, and several techniques
and approaches exist. Here, we use a concept called Triple Graph Grammars
(TGGs) [14]. TGGs are a rule-based formalism that allows us to specify how cor-
responding graphs or models can be produced “in parallel” by linking together
two graph grammar rules from two different graph grammars. More specifically,
a TGG rule is formed by inserting a third graph grammar rule to produce the so-
called correspondence graph that links the nodes of the other two graphs. TGGs
can be interpreted for different transformation and synchronization scenarios.
Before we describe these scenarios, let us consider the structure of TGG rules.

3.1 Triple Graph Grammar Rules

Fig. 3a illustrates a TGG rule, SystemElementToHybridComponent, which is taken
from a TGG that defines the mapping between MML and Mechatronic UML.

TGG rules are non-deleting graph grammar rules that have a left-hand side
(lhs) and a right-hand side (rhs) graph pattern. The nodes appearing on the
lhs and the rhs are called context nodes, displayed by white boxes. The nodes
appearing on the rhs only are called produced nodes, displayed by green boxes,
labeled by “++”. Accordingly, there are context edges, displayed by black arrows,
and produced edges, displayed by green arrows and “++” labels.

In TGGs, graphs are typed and attributed. When working with models and
meta-models in terms of MOF [11], this means that the host or instance model
contains objects and links that are instances of classes and references of a
given meta-model. Accordingly, the nodes and edges in the rules are typed
over the classes and references in a meta-model. Nodes are labeled in the form
“Name:Type”. For instance, the nodes in the left column of rule SystemElement-
ToHybridComponent are typed by the classes Package and SystemElement from
the MML meta-model. The edge is typed over the reference packagedElement.

The columns of a TGG rule describe model patterns of different meta-models
and are called domains. The left-column production states that when there is a

Fig. 3. a) SystemElementToHybridComponent, b) SystemElementToController

Preventing Information Loss in Incremental Model Synchronization 149

package in MML, we can add a system element and a link between them. The
right column of the rule represents the graph grammar production for creat-
ing components in packages in Mechatronic UML. In the middle, there is the
production of the correspondence structure between the models.

Our TGG rules further introduce the concept of attribute constraints and
application conditions (depicted by yellow, rounded rectangles in Fig. 3). At-
tribute constraints are attached to nodes and have expressions of the form
〈prop〉 = 〈expr〉, where 〈prop〉 is a property of the node’s type class, and 〈expr〉
is an OCL expression that must conform to the type of 〈prop〉. Node names can
be used as variables in the OCL expression. Attribute constraints constrain the
attribute value of an object, e.g., rule SystemElementToHybridComponent has two
constraints that express that the name of the component has to be equal to the
name of the opposite component. A rule application is not valid if the attributes
do not equal the specified values. Application conditions are OCL expressions
over model properties that evaluate to a Boolean value. A rule application is not
valid if an application condition evaluates to false. E.g., the constraints on the
left of the rule SystemElementToHybridComponent restrict the applicability to
cases where there are both continuous and discrete ports at the system element
and where the component is relevant to software engineering.

For the transformation from MML to Mechatronic UML, we defined a set
of TGG rules. Rule SystemElementToHybridComponent defines how system ele-
ments with both discrete and continuous information flows correspond to hybrid
components. Rule SystemElementToController (Fig. 3b) relates system elements
without discrete but with continuous flows to controller components.

3.2 Application Scenarios

We can interpret TGGs for different application scenarios. One application sce-
nario, called forward transformation, is to create one “target” graph correspond-
ing to a given “source” graph. In this case, a TGG rule is interpreted as follows:
First, the context pattern and the produced source domain pattern of the rule
are matched, adhering to the following conditions: First, the context pattern of
the rule must only be matched to bound model elements. Bound nodes and edges
are those that were previously matched by another rule application. Second, the
source produced pattern may only be matched to yet unbound parts in the source
model. If a matching respecting these conditions is found, the produced target
and correspondence patterns are created and bindings are created for the newly
matched and created elements.2 The backward direction works accordingly, re-
versing the notion of source and target. We refer to Greenyer and Kindler [6] for
further details on TGGs and the binding semantics.

Our TGG engine interprets attribute constraints (of the form 〈prop〉 = 〈expr〉)
as assignments in the target domain. If a TGG rule shall support both transfor-
mations directions, assignments must be specified for both directions.
2 In the following, we use the term binding when referring to a single node-to-object

or edge-to-link match, and matching for a set of those bindings (i.e., when a whole
pattern is matched to several elements).

150 J. Greenyer, S. Pook, and J. Rieke

3.3 Incremental Model Synchronization

In a situation where a triple of corresponding models is given and a change
occurs in one domain model, this change can be propagated by incrementally
updating only the affected parts of the model. Algorithms for this problem have
been described before [5,4,18,8]. In the following, we explain the shortcomings of
existing incremental synchronization approaches.

Giese and Wagner suggest the following approach [5]. When a change occurs
in the source model, the rule application(s) which are violated by the change
(i.e., there is no longer a valid match of the rule) are revoked. Second, all rule
applications that depend on the revoked rule(s) are also revoked. During that
process, the target model elements created by the revoked rule applications are
destroyed, and the source model elements become unbound. Finally, the trans-
formation is re-run for the unbound source model elements.

Giese and Hildebrandt present another algorithm [4]. When a change occurs
in the source model, it tries to repair the rule applications that are violated by
the change. For instance, if the change is a move of an element on the source side,
a rule application can be repaired by changing the link from the corresponding
(target-side) element to its old (target-side) parent such that it is now linked to
the new corresponding parent on the target side. These repairs are performed
by pre-generated repair operations that are derived from the rules. Only if such
a repair operation is not possible, the rule application is revoked. Then the
algorithm tries to apply another rule to these unbound source model elements.
However, these repair operations are only able to modify links; whenever it is not
possible to repair a rule application by changing a link, the rule must be revoked
and the target model elements are destroyed. In the following, we present an
example where this approach leads to the unwanted loss of information in the
target model. Our improved algorithm resolves this problem.

4 Improved Synchronization

As the deletion of elements should be prevented if possible, it is reasonable
not to immediately destroy elements when a rule application is revoked. Thus,
these elements are just marked for deletion by our improved synchronization
algorithm. The novelty of our algorithm is that it can reuse these removed objects
and links during later rule application by explicitly searching for matches in the
set of elements that are marked for deletion. Only if such a (deletion-marked)
element cannot be reused (i.e., bound again) by a new rule application, it will
be ultimately destroyed. The problem is that there may be several ways of how
the elements marked for deletion can be reused. A particular challenge is then
to determine the “best” way to reuse these elements.

The remainder of the section is structured as follows. First, we present an exam-
ple, and overview the improved synchronization algorithm. Then we give an ex-
tended example with different ways of reusing elements and we discuss heuristics
to determine which reusable pattern may be best. Finally, we discuss the details
of the partially reusable pattern search and conclude with a runtime evaluation.

Preventing Information Loss in Incremental Model Synchronization 151

4.1 Improved Synchronization Example

We assume that our models are in a consistent state, e.g., after an initial transforma-
tion as shown in Fig. 2. In particular, all elements are bound by a TGG rule applica-
tion. Then, as described in Sec. 2, the information flow convoy state to the system el-
ementvelocity controller is deleted,andwith it its correspondingport (crossed-out in
Fig. 4a). The rule applications that previously translated the information flow and
the information flow port are now structurally invalid3. Therefore, these rule appli-
cations are revoked, which means removing all its bindings and marking the (cor-
respondence and target) produced objects and links as deleted (denoted by dashed
lines in Fig. 4a). Additionally, the application of SystemElementToHybridCompo-
nent that mapped the velocity controller system element to a hybrid component be-
comes invalid because the constraint continuousPorts>0&&discretePorts>0 is
violated (as there is no discrete port any more). So, this rule application has to be
revoked by marking its produced part as deleted, too.

Fig. 4. Abstract syntax after rule revocation, a) after deleting a flow and the revocation
of rules, b) after applying the new rule (with reusing elements by repair operations)

We now try to apply new rules immediately, instead of first revoking depended
rule applications. In this case, SystemElementToController (see Fig. 3b) can be ap-
plied: Its context is matched onto the package objects in MML and UML and the
correspondence :Pack2Pack. As we are incrementally updating in forward direc-
tion, the produced source (MML) pattern (se:SystemElement) is matched onto
the velocity controller system element (as this element is now unbound due to
the revocation of SystemElementToHybridComponent). Also the constraints are
valid, as they require no discrete port. A normal rule application would simply
create the correspondence and target patterns. Instead, our improved synchro-
nization first searches for a pattern matching in the set of elements marked for
deletion. Two elements in this set can be reused: Starting the search from the
velocity controller system element, our algorithm finds and reuses the (deleted)
:SE2Comp correspondence and the velocity controller component.

No other previously deleted element can be reused by this rule. Unfortunately
the matching is not complete yet, as there are no existing objects to match the

3 We refrain from showing these TGG rules, as they simply translate one information
flow (resp. one information port) to one connector (resp. one port).

152 J. Greenyer, S. Pook, and J. Rieke

Controller, CodeDescriptor, and CodeContainer nodes of rule SystemElementTo-
Controller. The algorithm uses this partial pattern matching anyway. Now we
can apply the rule as follows. First, removing the “deleted” flag from everything
that has been reused and binding these elements again. Second, because the
match of the TGG rule is not yet complete, additional links and objects are
created as required for this rule. Unfitting links of single-valued references are
moved. This process is called repair operation.

Fig. 4b shows the situation after the rule application. The algorithm reused
the :SE2Comp correspondence and the velocity controller component (shaded in
Fig. 4b). It created new instances of Controller, CodeDescriptor, and CodeCon-
tainer, and set the appropriate links (dashed in Fig. 4b), as no reusable element
could be found for them. The Hybrid stereotype object could not be reused. Thus,
it is ultimately deleted (crossed-out in Fig. 4b).

By reusing the velocity controller component, which was previously marked
for deletion, a dangling edge from the model-specific reconfiguration specification
(hatched in Fig. 4a and 4b) is prevented. Additionally, any further model-specific
information that is attached to the component is also preserved. Furthermore, a
deletion and recreation of the component would have rendered the context for
the PortToPort rule invalid. Thus, the old synchronization algorithm would have
to revoke this and possibly further rule application.

4.2 Improved Synchronization Algorithm
In summary, our improved synchronization algorithm works as follows:
1. Iterate over all TGG rule applications in the order they were applied, and if

the application has become invalid due to changes in the source model
a. Remove the bindings of the produced graph, and mark the correspondence

and target produced elements previously bound to this graph as deleted.
b. If the same or other rules are applicable in the forward direction, i.e., the

context and the source produced graph match,
i. search for a pattern of elements marked for deletion that “best”

matches part of the rule’s correspondence/target graph structure.
ii. apply the rule by reusing this pattern, creating the remaining tar-

get/correspondence pattern, and enforcing attribute value constraints
Continue checking the next rule application or terminate if all applications
have been checked.

2. Finally, effectively destroy elements that are still marked for deletion.
The concept to “mark for deletion” allows us to remember the elements that
might be reusable. It is the basis for intelligently reusing model elements during
the synchronization, which is the main improvement over previous approaches.

In the example above there was only one possible partially reusable pattern,
but often there are several partial matchings that reuse more or less elements. In
fact, some partial matchings may reuse elements in an unintended way. There-
fore, we first calculate all possible partial matchings, and then choose the most
reasonable. In the following, we present an extended example in which two reuse
possibilities occur. Next, we discuss the implementation details of the partially
reusable pattern search, which computes the different reuse options (step 1b-i).

Preventing Information Loss in Incremental Model Synchronization 153

4.3 Selection of Elements to be Reused

The heuristic for the “best” partial matching is generally to take the partial
matching that reuses most elements. However, also considering existing corre-
spondence information can be vital, as we show in the following example. Let us
assume that we start with a consistent state, as in the previous example. First,
as before, the discrete port and its information flow are deleted from the MML
velocity controller. Second, for some reason the position controller’s relevance flag
for the software engineering discipline is removed. Therefore the application of
rule SystemElementToHybridComponent for the velocity controller and the applica-
tion of rule SystemElementToController for the position controller is revoked. The
result is shown in Fig. 5, with user deletions crossed-out and deletion-marked
elements depicted by dashed lines.

As explained before, rule SystemElementToController is now applicable at the
MML velocity controller. In addition to the partial pattern match described before
(see Fig. 4b), there is a second promising partial match now (marked with

√
s

in Fig. 5). It is found by the partial pattern matching search starting from the
context :Package object of Mechatronic UML. This partial match reuses the
deleted position controller component, its controller, code descriptor and code
container. However, the existing correspondence node does not fit (marked with
a �): It points to the MML position controller, but it must be connected to the
MML velocity controller (because the node se:SystemElement is already matched
to the velocity controller). Additionally, the attribute constraint must be repaired,
changing the component’s name to “velocity controller” (also marked with �).

Although this alternative partial matching reuses more elements than the
partial matching used in Fig. 4b, it is in fact an example where the reuse is un-
intended, because it creates a correspondence between the “wrong” elements. At
first glance, this may not seem to be a problem, because the change propaga-
tion will adapt all links and attribute values in the target model to satisfy the
constraints posed by the TGG. However, there may be elements in the target
model that are not subject to the transformation which reference these reused
elements. A “wrong” reuse means that these elements now reference completely
altered objects that have changed in meaning. Therefore, it is reasonable to favor
such partial matchings where a correspondence node is reused without changing

Fig. 5. “Wrong” partial pattern match

154 J. Greenyer, S. Pook, and J. Rieke

Fig. 6. Matching tree resulting from searching the produced pattern of SystemElement-
ToController in the set of deleted elements from Fig. 5

its correspondence links. In this way, only previously corresponding elements are
reused, typically resulting in the intended reuse of elements.

Note that in terms of the TGG semantics, it is not relevant in which way
existing elements are reused (or whether reused at all). Because of this fact, also
our synchronization algorithm does not change the TGG semantics, because
(a) when a rule is applied, reused objects and links will be modified so that
they fit the rules, and (b) at the end of a synchronization run, unused objects
marked for deletion will be actually destroyed, so they won’t interfere with other
rule applications. Therefore, after a successful transformation, every rule holds,
and no remainders of revoked rules exist. Thus, arguing informally, fundamental
TGG transformation properties like termination, correctness, completeness are
unaffected by our new algorithm. However, a formal proof that the algorithm
does not violate these properties has yet to be elaborated.

4.4 Partial Reusable Pattern Matching Algorithm

In the following, we describe the data structure we use for the partially reusable
pattern search and discuss how the algorithm searches for partial matchings.

All possible partial matchings are computed by creating a tree structure.
The root of this tree is a vertex which represents the matching of the context
and the source produced domain pattern (computed in step 1b). Each edge of
the tree represents a step of the pattern matching which binds a new node.
Each other vertex is labeled with a single node binding (a node-object tuple).
Additionally, it is labeled with its pattern matching depth, which is the depth
in the recursion of a depth-first pattern matching algorithm. Each vertex of the
tree therefore represents a (partial) matching of the rule, recursively defined by
the node binding of the vertex and those of its parent.

The resulting tree reflects the pattern matching search: When traversing the
rule, the algorithm adds a new child vertex for each successful pattern matching
step (i.e., whenever it finds a new candidate object for a node). Thus, a vertex
has more than one child when there are different possibilities to match a node.

Fig. 6 shows a part of the matching tree that is the result of a partial pattern
matching search of rule SystemElementToController (Fig. 3b) in the set of deleted

Preventing Information Loss in Incremental Model Synchronization 155

elements from Fig. 5. As described, the root of this tree contains the matching
of the context and the source produced domain pattern. The different bindings
of this matching are shown in the form “Node:NodeType → Object:ObjectType”,
where Node represent a node from the TGG rule and Object is the matched
object. The algorithm starts a search from every binding in the root. Let us
assume it first tries to match the TGG rule node pu:Package and finds the
not yet bound outgoing edge packagedElement to c:Component (Fig. 3b). The
algorithm now has two options on how to match this node: Both the objects
position controller and the velocity controller components match. So a new vertex
is created for both (the left one is marked with (i) in Fig. 6), each with depth = 1
(denoted as the circled number in the upper right corner of the vertices in Fig. 6).

The left subtree contains the “wrong” partial matching possibility (see Fig. 5):
The algorithm continues with matching the ct:Controller node to the controller
object and adding a vertex with depth = 2 for it (ii). Then, as there is no un-
bound node connected to the ct:Controller node, the search must be continued at
the previous node, decreasing the depth (iii). Here, the previous node is simply
the node of the parent vertex, c:Component. Next, the cd:CodeDescriptor (iv)
and the cc:CodeContainer (v) is matched. Again, as no unbound node connected
to cc:CodeContainer exists, the algorithm steps back in the pattern matching,
i.e., returns to the previous node, cd:CodeDescriptor (vi). There is also no un-
bound node connected to cd:CodeDescriptor. At this point, the previous node
is not the node of the parent vertex. Therefore, the previous node is identified
using the depth counter: we walk up the tree and select the first vertex v with
v.depth < currentV ertex.depth, which is c:Component (vii).

The :SE2Comp correspondence node matches (viii), but its link to the position
controller system element does not, because there is already a binding for the
node se:SystemElement that binds a different object. So this must be repaired if
this partial matching should be applied, denoted with the �. Furthermore, the
attribute constraint that ensures the equality of the system element’s and the
component’s name must be enforced by changing the name of the pc:Component
(again marked with a � at the first vertex (i) of the left subtree).

The right subtree represents the other partial matching from the previous
example, where the ct:Controller, cd:CodeDescriptor, and ct:CodeContainer nodes
could not be matched. Note that there are no real vertices for these unmatchable
nodes in the tree. They are depicted dashed in Fig. 6 only to illustrate the repair
operations needed to be performed to create a valid rule matching.

In fact, there is a third subtree (not shown in the figure). The search starts at
every node of the root’s matching (remember it contains bindings for all context
and produced source graph nodes). Thus, starting from the se:SystemElement
node, the algorithm would create this third subtree which contains the same
matching as the second subtree, just in opposite direction.

Every vertex of the matching tree represents a possible repair operation. The
number of reused elements is equal to the depth of a vertex in the tree (not
the value of the depth counter), not counting the “step back to” vertices. Thus,
using the root would not reuse deleted elements, but create the whole produced

156 J. Greenyer, S. Pook, and J. Rieke

pattern. Once the tree is computed, it has to be decided which of the several par-
tial matchings (i.e., which vertex of the tree) should be used. We have discussed
above that a reasonable heuristic is to select the partial matching which does
not damage reusable correspondences and which reuses most elements, i.e., will
require the least repair operations. In this way, it is likely that only previously
related elements are reused, which is probably the intention of the user.

Further details including the algorithm’s pseudocode can be found in [7].

4.5 Runtime Evaluation

With our improved synchronization, we intend to address the issue of informa-
tion loss during update operations, and focus less on performance improvements.
Some operations of our solution turn out to be relatively time-consuming. Espe-
cially, building a complete search tree is exponential in the number of nodes and
candidate objects (objects marked for deletion), but all techniques that calculate
different matchings resp. repair alternatives will suffer from the general complex-
ity of this problem. To estimate the performance impact, we implemented both
our algorithm and the one by Giese and Wagner [5] in our TGG Interpreter4.
Due to lack of space, we only give a short summary of the runtime evaluation
here. Detailed results can be found in [7].

In summary, our algorithm works best when there are only few altered ele-
ments, because then the number of candidate objects is small. There could even
be performance improvements when a large amount of revocations of dependent
rules is prevented. Overall, the prevention of information loss comes with a per-
formance decrease in most cases. However, in typical editing cases, the maximum
performance drop was only 30 % in comparison with the old algorithm.

In our examples, we observed that good partial matchings were often found
early in the partially reusable pattern search. Thus, additional heuristics could
be used to determine the quality of a partial matching already during the search.
When a good-quality matching is found, we could even decide to terminate the
search, possibly long before the complete matching tree is build up. Then we
may miss the intended way of reusing the elements, but we believe that there are
many examples where adequate heuristics could determine the “best” matching
early, improving the overall performance significantly. However, elaborating these
heuristics is planned for future work.

5 Related Work

Model synchronization has become an important research topic during the last
years. Several concepts of incremental updates, which are mandatory for pre-
serving model-specific information, have been proposed. However, as discussed
in this paper, simply updating incrementally can still be insufficient. To the best
of our knowledge, there are only few solutions that address these further issues.
4 http://www.cs.uni-paderborn.de/index.php?id=12842&L=1

Preventing Information Loss in Incremental Model Synchronization 157

As described in Sec. 4, the approach of Giese and Hildebrandt [4] is similar,
but their main focus is performance and not optimizing the reuse of elements.
Their approach is only able to cover cases similar to an element move (which
means essentially repairing edges). It does not allow for more complex scenarios:
either a rule application can be repaired by changing links or attributes value,
or the rule is revoked and all elements are unrecoverably deleted.

Körtgen [10] developed a synchronization tool for simultaneous evolution of
both models. She defines several kinds of damage types that may occur and gives
abstract repair rules for these cases. At runtime, these general repair rules are
used to derive concrete repair operations for a specific case. The synchronization
itself, however, is a highly user-guided process, even if changes are propagated
in just one direction. Our aim is to avoid unnecessary user interaction where
that is possible. For ambiguous cases, however, we would also like to incorporate
means for user interaction.

Xiong et al. [18] present a synchronization technique that also allows for the
simultaneous evolution of both models in parallel. Basically, they run a backward
transformation into a new source model, and then use model merging techniques
to create the updated final source model. The same is done in forward direction.
Other approaches (e.g., Jimenez [9]) also rely on model merging. In general,
using model merging techniques in combination with (possibly non-incremental)
transformations is another possibility to solve the issues discussed in this paper:
a simple transformation propagates changes from the source model to a working
copy of the target model. Then the model merger is responsible for merging the
changes in the target model. However, this puts additional requirements on the
model merger: first, it must identify “identical” elements without using unique
IDs, because these IDs change when elements are recreated in a transformation.
Second, discipline-specific information is lost in the working copy of the target
model during a simple transformation, but still contained in the original target
model. The model merger must be aware of this discipline-specific information
in order not to overwrite it unintentionally. As model merging techniques evolve,
it will be interesting to compare such techniques with our solution.

Another approach to the problem is using information on the editing op-
erations that took place on a model. Ráth et al. [13] propose a solution which
does not define the transformation between models any more, but maps between
model manipulation operations. The problem with this approach is that a model
transformation must be described in terms of corresponding editing operations,
which may be a tedious and error-prone task.

Varró et al. [15] describe a graph pattern matching algorithm similar to ours.
They also use a tree structure to store partial matchings. When (in-place) graph
transformation rules are applied, the matching tree is updated to reflect the
changed graph, allowing the pattern matching itself to be incremental.

QVT-Relations [12] has a “check-before-enforce” transformation semantics
which says that a pattern in the target model must be reused when there is
an exact match with the target rule pattern. Nothing is reused if only parts of
the target pattern can be matched. With this semantics, also QVT would delete

158 J. Greenyer, S. Pook, and J. Rieke

and re-create the Mechatronic UML component in the above example. Even if
we would change the semantics of QVT-Relations to allow for a better reuse of
elements, algorithms for this semantics would yet have to be developed. Such an
algorithm could use an approach similar to the one presented in this paper.

As mentioned before, performance was not in focus when developing the new
synchronization. Therefore, it is likely that the heuristics and the search can
still be improved. There exist several approaches for improving the performance
of pattern matching. Varró et al. [16] use model-sensitive search plans that are
selected during runtime. Especially when there are many elements marked for
deletion that can possibly be reused, a dynamically selected search plan could
also help increasing the performance in our case.

6 Conclusion and Future Work

We presented an improved incremental update mechanism that aims at min-
imizing the amount of unnecessarily deleted elements in the target model. In
this way, much of the discipline-specific information that is not covered by the
transformation can be preserved. The method is applicable not only for com-
paratively simple cases, like move operations, but also for more complex cases
which involve alternative rule applications. One advantage of the technique is
that it does not require the repair operations to be specified manually, but is a
general solution and independent of the meta-models and the TGG rules.

The technique cannot prevent every possible inconsistency or loss of informa-
tion. Therefore, are several improvements that plan to investigate in the future.
One extension is to involve the use if it is not clear how existing element have to
be reused. Furthermore, the heuristic presented in Sec. 4 can be improved. For
instance, we have described that the best partial match is the one that reuses
most correspondence nodes. But as different TGG rules may have different cor-
respondence node types, it is reasonable to reuse correspondence information
even if the types do not match (and thus the correspondence object as such can-
not be reused). Last, the technique presented here only considers one single rule
application when building the partial matching search tree. The algorithm could
be extended to find a best partial match over several rule applications and in
this way further increase the amount of elements that are reused. This basically
requires backtracking over rule applications.

The presented technique works only for changes in a single model. We are
currently working on extending our TGG approach to support scenarios where
two concurrently modified models must be synchronized.

References

1. Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML. In: Aßmann, U., Rensink, A., Aksit,
M. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 47–61. Springer, Heidelberg (2005)

Preventing Information Loss in Incremental Model Synchronization 159

2. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification technique for
the description of self-optimizing mechatronic systems. Research in Engineering
Design 20(4), 201–223 (2009)

3. Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.:
Management of Cross-Domain Model Consistency During the Development of Ad-
vanced Mechatronic Systems. In: Proc. of the 17th Int. Conference on Engineering
Design (ICED 2009) (2009)

4. Giese, H., Hildebrandt, S.: Efficient Model Synchronization of Large-Scale Models.
Tech. Rep. 28, Hasso Plattner Institute at the University of Potsdam (2009)

5. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (2009)

6. Greenyer, J., Kindler, E.: Comparing relational model transformation technolo-
gies: implementing Query/View/Transformation with Triple Graph Grammars.
Software and Systems Modeling (SoSyM) 9(1) (2010)

7. Greenyer, J., Rieke, J.: Improved algorithm for preventing information loss in
incremental model synchronization. Tech. Rep. tr-ri-11-324, Software Engineering
Group, Department of Computer Science, University of Paderborn (2011)

8. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for
the Evolution of Model-Driven Systems. In: Wang, J., Whittle, J., Harel, D., Reg-
gio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg
(2006)

9. Jimenez, A.M.: Change Propagation in the MDA: A Model Merging Approach.
Master’s thesis, University of Queensland (2005)

10. Körtgen, A.T.: Modellierung und Realisierung von Konsistenzsicherungswerkzeugen
für simultane Dokumentenentwicklung. Ph.D. thesis, RWTH Aachen University
(2009)

11. Object Management Group (OMG): Meta Object Facility (MOF) Core 2.0 Speci-
fication (2006), http://www.omg.org/spec/MOF/2.0/

12. Object Management Group (OMG): MOF Query/View/Transformation (QVT)
1.0 Specification (2008), http://www.omg.org/spec/QVT/1.0/

13. Ráth, I., Varró, G., Varró, D.: Change-driven model transformations. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 342–356. Springer, Heidelberg
(2009)

14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

15. Varró, G., Varró, D., Schürr, A.: Incremental Graph Pattern Matching: Data Struc-
tures and Initial Experiments. Graph and Model Transformation (2006)

16. Varró, G., Friedl, K., Varró, D.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. Electronic Notes in Theoretical
Computer Science 152 (2006)

17. Verein Deutscher Ingenieure: Design Methodology for Mechatronic Systems (2004)
18. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting Parallel Updates with

Bidirectional Model Transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 213–228. Springer, Heidelberg (2009)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 160–171, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An MDE-Based Approach for Solving Configuration
Problems: An Application to the Eclipse Platform

Guillaume Doux1, Patrick Albert2, Gabriel Barbier3, Jordi Cabot1,
Marcos Didonet Del Fabro4, and Scott Uk-Jin Lee5

1 AtlanMod, INRIA & EMN, Nantes
2 IBM France, Paris

3 Mia-software, Nantes
4 Universidade Federal do Paraná

5 CEA, LIST, Gif-sur-Yvette
{Guillaume.Doux,Jordi.Cabot}@inria.fr, AlbertPa@fr.ibm.com,

gbarbier@mia-software.com, marcos.ddf@inf.ufpr.br,
Scott.Lee@cea.fr

Abstract. – Most of us have experienced configuration issues when installing
new software applications. Finding the right configuration is often a challenging
task since we need to deal with many dependencies between plug-ins,
components, libraries, packages, etc; sometimes even regarding specific
versions of the involved artefacts. Right now, most configuration engines are
adhoc tools designed for specific configuration scenarios. This makes their
reuse in different contexts very difficult. In this paper we report on our
experience in following a MDE-based approach to solve configuration
problems. In our approach, the configuration problem is represented as a model
that abstracts all irrelevant technological details and facilitates the use of
generic (constraint) solvers to find optimal solutions. This approach has been
applied by an industrial partner to the management of plug-ins in the Eclipse
framework, a big issue for all the technology providers that distribute Eclipse-
based tools.

Keywords: Configuration, MDE, Eclipse, Plug-in, Cartography.

1 Introduction

Complex software systems are built by assembling components (components in a
broad sense, i.e. COTS, libraries, plug-ins,…) coming from different repositories.
This simplifies the development of the system but inevitably introduces an additional
complexity dimension due to the need of managing these components. Each
component can evolve independently and new releases can introduce/break
dependencies with other components.

In particular, this is becoming a huge problem in the Eclipse community where
new tools are built on top of several other plug-ins already available in the platform,
many times requiring a specific version of the plug-ins. Therefore, releasing a new
Eclipse tool implies a precise build definition for the tool that must be continuously
evolved.

 An MDE-Based Approach for Solving Configuration Problems 161

Therefore, technology providers commercializing Eclipse tools are looking for
solutions that help them to automate and optimize the build definitions for their tools
so that end-users do not need to suffer all these configuration problems. Right now,
this very costly and time-consuming task requires a dedicated engineer in the provider
company. This engineer needs to manually provide all the information regarding the
tool dependencies, the plug-ins that can satisfy those dependencies and also the
repositories where the plug-ins are available. Moreover, once everything is defined,
the generated build definition needs to be empirically tested. Clearly, for non-trivial
projects, this process does not scale.

In this paper, we propose to overcome this situation by means of using Model
Driven Engineering and Constraint Programming techniques to automate the
generation of build definitions. This work has been done in collaboration with two
industrial partners: Mia-Software1, a well-known technology provider in the Eclipse
community that leads several Eclipse projects and IBM that has contributed its
expertise in commercial constraint programming tools.

This paper is structured as follows. Section 2 discusses the motivations of our
solution in an industrial environment. Section 3 presents the overall approach used to
manage our Eclipse plug-ins configuration problem. Section 4 is focused on the
management of the configuration as a Constraint Satisfaction Problem (CSP) whereas
Section 5 describes the decision tree approach for finding configurations, and Section 6
illustrates the tool used to visualize the configurations. Section 7 presents the
implementation, a comparison between the resolution approach described and the
lessons learnt. Section 8 focuses on the related works and Section 9 concludes this
study.

2 Motivation: Industrial Challenge

This work has been motivated by the need of Mia-Software to configure and control
build definitions for its tools and to be able to update such definitions during the tool
lifecycle.

A second (and more complex) requirement is to be able to tailor build definitions
to different scenarios, such as targeting the minimal subset of elements to run the
application in a headless mode (using scripts on a server), or selecting only non-GPL
component to allow integration in proprietary applications.

The results of this work are being integrated in the MoDisco2 and EMF Facet3
Eclipse projects and in the custom developments the company builds internally for its
clients.

As an example, the MoDisco Eclipse project alone contains 94 plug-ins (without
the 30 test plug-ins) and depends directly or indirectly on around 920 additional plug-
ins. For the time being, the MoDisco project has a dedicated plug-in to configure the
build definition. This plug-in contains more than ten types of files to do so (ant files,
xml files, properties files, cspec files, cquery files, mspec files, rmap files, xsl files, sh
files and txt files). To be able to maintain all of these artifacts and to reproduce in a

1 Mia-Software: http://www.mia-software.com/
2 The MoDisco project: http://www.eclipse.org/MoDisco/
3 The EMF Facet project: http://www.eclipse.org/modeling/emft/facet/

162 G. Doux et al.

server environment the behavior of a development environment, a dedicated engineer
is now assigned to the task. To initially configure the build definition one full month
of the engineer was required. Unfortunately, due the continuous evolution of the
Eclipse platform this is not just a one-time effort. Every time there are new relevant
plug-in versions or a new release of the Eclipse platform available, two or three
additional days are spent in adapting the configuration (e.g. to update the locations of
update sites for dependencies). Furthermore, the correctness of the process cannot be
detected until the application is rebuilt again.

Therefore, MoDisco is clearly a tool that could benefit from the results of our
work. It is worth to note that this kind of complex dependencies scenario is not the
exception but the norm and thus, any tool that improves the current state of the art
could have a real impact on current industrial practices of Mia-Software and similar
technology providers.

3 Overall Approach

This section gives an overview of our Model Driven approach for solving Eclipse
plug-ins configuration problems. Adopting an MDE approach has several advantages.
First, it provides a homogeneous representation for all the technologies involved in
the solution. Secondly, it allows designers to deal with the problem at a higher-
abstraction level where some irrelevant details are omitted. And finally, the own
Eclipse platform is moving more and more towards the adoption of model-based
solutions (as the b3 Eclipse models used to define build generations) so an MDE
approach perfectly fits in this scenario.

Our approach follows a three step process (see Fig. 1).

Fig. 1. Overview of the Eclipse plug-ins build generation process

In the first step, a discovery phase allows the designer to express the requirements for
the tool/component/plug-in she wants to build and the possible locations (i.e.
repositories) where to find plug-ins that satisfy those requirements. The information
concerning these plug-ins such as the dependencies they need, the name, the version or
every other useful information is stored in a plug-in model conforming to the
metamodel presented in Figure 2. This metamodel allows the representation of the
different elements needed for the plug-ins configuration representation. The main entity

 An MDE-Based Approach for Solving Configuration Problems 163

of this metamodel is the Plugin class whereas the main relationship between
plug-ins is represented by the PluginDependency class. This class allows linking the
plug-ins according to their dependencies. A second set of entities and relations is
expressed with the JavaPackage and the JavaPackageDependencies classes. A
JavaPackageDependency element allows the representation of the relation between a
Plugin element and the imported JavaPackage elements. At this stage, we just have the
“raw data”, i.e. we have the candidate plug-ins but not yet the selected configuration.

This is done in the second step: a possible combination of the candidate plug-ins
(i.e. respecting all their dependencies) is created either manually (visualization
option), interactively (decision tree option) or automatically (constraint programming
option). When several configurations are possible, the final selection can be driven
by additional search criteria like newest versions of the plug-ins (default option),
license or cost. We propose these three different ways to obtain a configuration since
each one offers a different trade-off as explained later on. As a result of this step we
get a refined plug-in model with information from the selected configuration for the
build generation.

Fig. 2. Metamodel to represent the plug-ins

The last step is the generation of the final configuration file from the refined plug-
in model. In our case the configuration will be expressed as a b3 model but it could
easily be expressed as a Maven4 file or Ant5 script. The b3 Eclipse project focuses on

4 The Maven project, http://maven.apache.org/
5 The ANT project, http://ant.apache.org/

164 G. Doux et al.

the development of a new generation of Eclipse technology to help building and
assembling software. It proposes an approach using model driven engineering to
represent the different artifacts that are relevant for building applications. More
specifically, b3 proposes a metamodel to represent all of artifacts needed for the build,
and execution support for these build models. Therefore in our approach the
generation of the final configuration file is realized using model to model (or model to
text in the case of Maven and ANT) transformations.

4 Configuration as a CSP

Constraint Programming [8] is a declarative problem solving paradigm where the
programming process is limited to the definition of the set of requirements
(constraints). A constraint solver is in charge of finding a solution that satisfies the
requirements. Problems addressed by Constraint Programming are called constraint
satisfaction problems (CSPs). A CSP is represented by the tuple CSP = <V,D,C>
where V denotes the finite set of variables of the CSP, D the set of domains, one for
each variable, and C the set of constraints over the variables. A solution to a CSP is an
assignment of values to variables that satisfies all constraints, with each value within
the domain of the corresponding variable.

We can represent the problem of configuration of Eclipse plug-ins as a CSP. This
solution is a practical instantiation of the approach called Model Search [4].

The problem can be stated as follows: given a set of partially-connected Eclipse-
plug-ins and a set of constraints that must be satisfied, find one (or the optimal,
according to a given property) valid and executable build distribution. The constraints
may be of different nature. For instance, defining version dependencies between the
plug-ins, or specifying one desired vendor.

The constraints are written using OCL++. OCL++ is an adaptation of OCL (Object
Constraint Language) [6]. OCL++ simplifies OCL for writing CSP problems. For
instance, it enables writing multi-class invariants, which is a common construct in
CSP problems. It also enables writing optimization functions.

More specifically, the re-expression of a configuration Eclipse problem in terms of
a CSP is implemented as a chain of transformation operations over the initial plug-in
model. Since Existing CSP solvers cannot directly read EMF models and OCL++
constraints as input, we need to translate the input artifacts into the CP language
supported by the constraint solver of the ILOG OPL-CPLEX development bundle [7]
engine, which is OPL (Optimization Programming Language). The OPL engine
enables adding optimization functions, i.e., to find the best solution given an
optimization criterion. The main steps of the process are:

1. Transformation of the Eclipse plug-in metamodel and the constraints into the
OPL language.

2. Transformation of the input model into the OPL data format. The separation of
the input model and metamodels into two transformations enables having
independence between the problem specification (metamodels + constraints)
and the input models with the initial data to start the CP process.

3. Execution of the CSP engine. This operation is called model search. During this
phase the input model is extended with the solutions found by the engine.

 An MDE-Based Approach for Solving Configuration Problems 165

However, the result produced by the CP engine is expressed as sets of integers,
String and floats (the OPL output format).

4. Transformation of the output into a model conforming to the Eclipse plug-ins
metamodel.

To facilitate the execution of these different steps a predefined script in charge of
chaining the transformations is provided.

This approach combines the benefits of CSP with the advantages of expressing the
problem at the model level (e.g. writing the constraints in OCL++). Moreover, the
transformation chain makes the CP solver transparent to the user who provides and
receives models as input/output of the process. Clearly, it would be even better that
the transformation from the models to the CSP included an additional intermediate
step where the CSP is expressed as instance of a solver-independent CSP metamodel.
This would facilitate the utilization of different CSP solvers.

5 Decision Tree

Decision Trees is a strategy used in the field of Software Product Line (SPL) to
illustrate all possible product configurations in terms of decisions on variations. It
enables interactive configurations where user selects an appropriate decision for each
variation to configure a particular product. The main benefits of utilizing decision tree
in configuration are the clear presentation of all possible configurations and the ability
to customize the configuration by allowing each decision made on variation to be
based on different criteria. As only valid configurations are proposed in the decision
tree, the build engineer work becomes simpler and safer using this approach. On the
other hand, the strategy main limitation, compared to the CSP one, appears when
there are a large number of choice criteria involving an important number of choices
for the engineer. In that case, it can become difficult to manage efficiently a big
configuration.

In order to take advantage of these benefits, we adapt the concept of decision tree
and Sequoia, a UML based SPL tool embedded in Papyrus, to our configuration
challenge. The main difference with the CSP implementation is in the generation of
several build configurations instead of only one. This characteristic involves some
user interactions for the final configuration choice. The process of Eclipse plug-ins
configuration with Sequoia consists of different steps as described below:

1. Construction of the initial bundle model in UML – The initial bundle model
obtained from the discovery phase must be transformed into a UML model since
Sequoia is a UML specific tool. As in the Eclipse plug-ins problem, several versions
of the same plug-in can exist, and thus, a way to identify plug-ins conforming to the
same unique plug-in definition is needed. The plug-in definition can be seen as a
“formal” plug-in having several “instance” plug-ins, corresponding to the different
available version of this plug-in. In the transformation, formal plug-ins are defined as
classes to type all the instance plug-ins of the model. Then, plug-in locations are
defined as packages to group all plug-ins in the same location. Plug-in classes
include useful metadata such as version, price and license. Each possible instantiation
of the plug-in (i.e. different versions or vendors for the plug-in) instantiate these

166 G. Doux et al.

classes with the appropriate information to be considered during the configuration.
Dependencies for a plug-in are represented as a dependency relationship from the
depender plug-in to the dependee plug-in class.

2. Extraction of dependency constraints – Once the initial bundle model is
constructed in UML, the dependency constraints are extracted following the
specific profile defined in Sequoia. In addition, the extraction process can also
accommodate the dependencies with constraints on criteria by allocating all the
instances of the class that meet the constraints. For example, a dependency from
the plug-in instance 'a' to a plug-in class 'B' with the constraint limiting the version
of 'B' to be less than 3.0 will be converted into the set of dependencies from 'a' to
'b' with version 1.0 and 'b' with version 2.0.

3. Computation of dependency constraints – Once all dependencies are expressed
as constraints, Sequoia uses the formal verification tool Alloy Analyzer [8] to
produce all feasible configurations. The result of the calculation represents all
possible configuration of the plug-ins computed based on their dependencies and
represented in a textual format.

4. Decision tree creation – After the computation, the extracted dependency
constraints are analyzed against the textual result of the calculation to construct a
decision tree with decision nodes representing dependency constraints and its
resolution edges representing all the configuration decisions that satisfy that
dependency. In addition, values of various plug-in criteria are calculated and
indicated for each resolution edge. Users can use these values to make more
informed choices when interacting with the tree.

5. Transformation of decision tree into final bundle model – Finally, an Eclipse
plug-in configuration interactively generated from the decision tree is transformed
into a final bundle model.

6 Visualization

The visualization mechanism allows quickly checking if the obtained configuration
fits the user needs and, if several possible configurations have been produced, the user
can choose the one he prefers from the visualizations. For simple configuration
problems, the visualization of the plug-ins suffices to manually define the optimal
configuration. Nevertheless, this kind of approach cannot be used to manage
configurations involving an important number of elements, as the generated graph
becomes too complex to be understandable. As an example, a visualization of an
initial bundle model is shown Figure 3.

This visualization component relies on the cartography plug-in Portolan6.
Integration with Portolan is easy since Portolan uses a model driven approach for the
cartography analysis and visualization.

To visualize plug-in data we just need to link the plug-in metamodel with the
generic cartography metamodel provided with Portolan and, optionally, configure the
view definitions that filter the input data and specify how this data will be visualized.
The relationship between the plug-in and the cartography metamodels is done by

6 Portolan website: http://code.google.com/a/eclipselabs.org/p/portolan/

 An MDE-Based Approach for Solving Configuration Problems 167

defining the plug-in metaclasses as subclasses of the two main cartography
metaclasses (entity and relationship). Once this is done, transforming data conforming
to the plug-in metamodel to data conforming to the cartography metamodel is trivial
(it is mainly a simple copy transformation).

Fig. 3. Screenshot of the visualization tool

7 Implementation and Preliminary Results

The MDE-based approach presented here for solving Eclipse configuration problems
has been implemented as an Eclipse set of plug-ins that provide the discovery of
available plug-ins, the computation of possible dependencies, their visualization and
the final build generation services. These functionalities are briefly presented in this
section.

The discovery functionality is implemented as an Eclipse file creation wizard. This
wizard proposes the creation of a model which is conforming to our metamodel
dedicated to the Eclipse bundles representation (presented in Figure 2). To this aim, it
allows selecting several plug-ins present in the workspace and then choosing the
update sites that have to be considered when discovering candidate plug-ins for the
bundle model.

The connection with the configuration engines (both the CSP and the decision tree
versions) has been implemented as described in their respective sections. Also, as
indicated, the visualization service is implemented using a model driven cartography
tool called Portolan. A specific extension of Portolan has been designed for this study
to be able to visualize configuration models.

The build generation functionality takes the feedback from the previous
configuration plug-ins and generates a b3 model representing the selected
configuration. This is mainly done by executing an ATL transformation between the
internal model conforming to the plug-in metamodel (presented in Figure 2) and the
final b3 model conforming to the b3 metamodel. This b3 model will be processed by
the b3 engine to drive the build generation (by retrieving the needed plug-ins and
launching the different steps of the application build). An excerpt of the b3

168 G. Doux et al.

metamodel (Figure 4) presents the main elements used for the build generation. The
BeeModel class represents the build model root; this class contains references to the
BuildUnit and Repository elements used. In the model, a BuildUnit represents
something to build with b3, in our case it will be a bundle (in the general case, it can
also be a library or any other kind of component). The repositories reference of
BuildUnit allows knowing which repositories can be used for the build unit’s
resolution. The BuildUnitRepository class allows the declaration of a build unit
repository location in b3. A specific type of it is represented by the
BeeModelRepository class; this repository declaration refers to the BeeModel to use
for building the components contained in the repository.

Fig. 4. Representative Excerpt of the b3 Metamodel

Of course, other alternative implementations (e.g. Maven, ANT) of this service
could easily be provided using the own Eclipse extension mechanisms.

After the initial set of experiments we have been able to validate that all three
strategies (CSP, decision tress and purely visualization) can be used to solve the
configuration problem. Each one has its own trade-offs and is best suited to address a
specific kind of configuration problem. This is exactly the reason why we decided to
keep the three of them in the framework without clearly favoring any of them.

 An MDE-Based Approach for Solving Configuration Problems 169

The CSP-based approach is the best option when looking for a completely
automatic solution. It is also recommended when looking for a single solution
according to a specific criteria and when dealing with very complex problems (on
which human interaction is not feasible).

Decision trees is an intermediate solution. It does most part of the job
automatically (calculating all possible solutions) but still gives some flexibility to the
designer to influence the final choice.

Visualization per se is only useful for simple solutions as an aid for the designer
but it is a good complement to the other two as a visualization tool for the computer-
generated solutions.

Besides this, the realization of this project has also shown the benefits of MDE
when used as a tool for the unification of heterogeneous domain, such as the Eclipse
plug-ins and the constraint programming domains. By expressing both domains (i.e.
technical spaces) as models, we obtain a homogeneous representation that facilitates
the transformation/communication between them.

Nevertheless, these first experiments have also pointed out some challenges that
need to be addressed in the future. Reasoning tools usually suffer from scalability
problems and our scenario is not an exception. Sometimes user interaction is required
just because the search space is too big to get an answer from the solver in a
reasonable time and the designer must help to reduce it by providing additional
constraints to limit the search.

Also, our approach suffers from the lack of standards in the constraint
programming domain. Even if part of the transformation chain is generic, the last
steps are solver-dependent and need to be reimplemented if the development team
decides to use a different solver in the future.

We are now working in both aspects. For instance, regarding the second one we are
adopting the idea of a CSP solver-independent metamodel that abstracts until the last
step the specificities of the solver to use. The translation of the configuration
information present in a solver independent model into solver specific models
becomes easy to specify using model transformations and should permit to choose the
most appropriated solver for the configuration resolution.

8 Related Work

An alternative solution for plug-in management in Eclipse is called p2 [2]. This
solution proposes to use the metadata of the plug-ins to create a set of constraints that
are solved with the SAT solver SAT4j7. In this approach there is no explicit modeling
of the problem so designers cannot define additional constraints about the desired
characteristics of the solution (e.g. to get an optimal configuration). Moreover, since
the translation is adhoc cannot be reused. Besides this, this approach only focuses on
one of the alternative strategies we have explored.

Another interesting proposal is [1]. It proposes to use a model driven approach to
represent the configuration and available packages for FOSS distributions. These
models are then used to predict the effect of changes on the installed package base

7 Sat4j website: http://www.sat4j.org/

170 G. Doux et al.

(e.g. upgrades) on the system configuration. As our own work, this approach brings
the advantages of working at a higher abstraction level when compared with
approaches that rely on a direct manipulation of the available metadata. Nevertheless,
our approach is able to deal with a more general problem since we are able to create
the entire configuration and not only simulate/predict what would happen if
something changes.

The topic of translating models into other formalisms for an automatic analysis has
been explored in several previous approaches (e.g. [10-13]) but they mostly focus on
specific kinds of UML diagrams. Some of these techniques could be adapted to our
configuration models and integrated in our framework to provide additional analysis
capabilities.

9 Conclusions

This paper reports a collaboration between industrial and research partners to solve
configuration problems faced by technology providers using a combination of model-
driven engineering and constraint programming techniques.

We have focused on the specific configuration problems for tools developed on top
of the Eclipse platform that need to manage and solve a lot of plug-in dependencies.
This use case has been provided by Mia-software, a software editor specialized in the
application Model Driven approaches for the software lifecycle industrialization with
plenty of experience in the development of Eclipse projects.

As further work, we plan to generalize our framework to deal with configuration
problems in other domains. The core of the approach can be easily reused but specific
metamodels (e.g. Linux packages metamodel for Linux distributions configuration)
need to be developed for each specific application domain.

Acknowledgement. This work has been partially funded by ANR IdM++ project.

References

1. Cicchetti, A., Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Towards a
model driven approach to upgrade complex software systems. In: Maciaszek, L.A.,
González-Pérez, C., Jablonski, S. (eds.) ENASE 2008/2009. Communications in Computer
and Information Science, vol. 69, pp. 262–276. Springer, Heidelberg (2010)

2. Le Berre, D., Rapicault, P.: Dependency management for the eclipse ecosystem. In:
Proceedings of IWOCE 2009, International workshop on Open Component Ecosystems
(2009)

3. Gruber, O., Hargrave, B.J., McAffer, J., Rappicault, P., Watson, T.: The eclipse 3.0
platform: Adopting osgi technology. IBM Systems Journal 44(2) (2005)

4. Kleiner, M., Del Fabro, M.D., Albert, P.: Model Search: Formalizing and Automating
Constraint Solving in MDE Platforms. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F.
(eds.) ECMFA 2010. LNCS, vol. 6138, pp. 173–188. Springer, Heidelberg (2010)

5. EMF. Eclipse Modeling Project. Reference site, http://www.eclipse.org/emf
6. OCL 2.0 specification (2008), http://www.omg.org/spec/OCL/2.0/

 An MDE-Based Approach for Solving Configuration Problems 171

7. ILOG OPL-CPLEX development bundle (January 2010), http://www-01.ibm.com
/software/integration/optimization/cplex-dev-bundles/

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11(2), 256–290 (2002)

9. Apt, K.R.: Principle of Constraint Programming. Cambridge University Press, Cambridge
(2003)

10. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zurich (2006)
11. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of

UML/OCL models using constraint programming. In: ASE 2007, pp. 547–548 (2007)
12. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic to

maintain consistency between UML models. In: Stevens, P., Whittle, J., Booch, G. (eds.)
UML 2003. LNCS, vol. 2863, pp. 326–340. Springer, Heidelberg (2003)

13. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: Uml2alloy: A challenging model
transformation. In: ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems, pp. 436–450 (2007)

Incremental Updates for View-Based Textual Modelling

Thomas Goldschmidt1 and Axel Uhl2

1 ABB Corporate Research, Ladenburg, Germany
thomas.goldschmidt@de.abb.com

2 SAP AG, Walldorf, Germany
axel.uhl@sap.com

Abstract. Model-Driven Engineering (MDE) aims at improving the develop-
ment of software systems. Within this context textual concrete syntaxes for mod-
els are beneficial for many reasons. They foster usability and productivity because
of their fast editing style, their usage of error markers, autocompletion and quick
fixes. Several frameworks and tools from different communities for creating con-
crete textual syntaxes for models emerged during recent years. On the other side,
view-based modelling enables for different views on a central model which helps
modellers to focus on specific aspects. However, combining textual and view-
based modelling has not been tackled by research to a satisfying extent. Open
issues include the handling and synchronisation of partial and federated textual
views with the underlying model. In this paper we present an approach for con-
crete textual syntaxes that makes use of incremental parsing and transformation
techniques. Thus, we circumvent problems that occur when dealing with concrete
textual syntaxes in view-based modelling.

1 Introduction

Today Model-Driven Engineering (MDE) gains a considerable momentum in software
industries. MDE provides means to create, view and manipulate models at different
levels of abstraction as well as different development roles. An important part of a
modelling language apart from the metamodel itself is its concrete syntax. Today’s lan-
guages mostly have either a graphical or a textual concrete syntax. As a manifestation of
syntaxes, specialised views on a common underlying model may foster the understand-
ing and productivity [1] of model engineers. Recent work [2] even promoted view-based
aspects of modelling as core paradigm. For graphical concrete syntaxes view-based
modelling, which enables modellers to focus on specific aspects, is a state-of-the-art
technique. However, textual modelling does not yet profit from this paradigm.

A challenge that needs to be solved in order to develop a textual, view-based mod-
elling approach is the synchronisation of the textual representation with an underlying
model. Within partial views on a model, not all of the model’s information is repre-
sented in a single view. Only the combination of all views allows to give a complete
picture of the model. Thus, traditional textual modelling tools (see [3]) fail to support
view-based modelling as they will discard and re-create all model elements upon re-
parsing of the textual representation. As this representation may be incomplete, i.e.,
being a partial view, a complete reconstruction of such model elements is not possible.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 172–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Incremental Updates for View-Based Textual Modelling 173

Approaches for incremental parsing and the creation of development environments
including language specific editors have been developed in the compiler construction
community many years ago [4,5,6,7]. However, such incremental parsing techniques
focus on optimizing the performance of syntactic and semantic analysis and do not
consider the identity of elements that are constructed. This is also the way current tex-
tual modelling techniques [8,9] employ these techniques. An adoption to the specific
problems of view-based, textual modelling is still lacking. Other approaches [10], fol-
low a syntax directed editing1 approach, allowing only editing commands which are
atomic w.r.t. the underlying model. Thus keeping the model and its representation in
synch at all times. However, this restricts the freedom of editing to only write text that
is syntactically correct.

The approach presented in this paper is based on a view-based, textual modelling ap-
proach called FURCAS2[11] that combines textual syntaxes with view-based modelling.
In [12] we presented an approach that allows for the representation of models as textual
views. Now, within this paper we base on our existing work and present an approach
that implements the synchronisation from textual views to the underlying model.

The contribution of this paper is the following. By using incremental parsing tech-
niques and analysis of the changes that occurred since the last parsing we retain model
elements from the previous version of the model. This novel technique is not con-
strained by the atomicity of editing commands, as syntax directed approaches are. Thus,
allowing for more freedom for modellers when working with textual views. With the
presented approach we enable for multiple, partial views on an underlying model within
textual modelling.

The remainder of this paper is structured as follows. Section 2 deals with related work.
Some background information on FURCAS is presented in Section 3. Section 4 intro-
duces our running example. We describe the developed incremental update technique
in Section 5. A discussion on the validation of the approach is presented in Section 6.
Section 7 concludes and presents future work.

2 Related Work

Several approaches for defining concrete textual syntaxes for metamodels emerged from
the model-driven community [13,9,14] (see [3] for a complete list). An assumption
made by these approaches is that it is possible to re-create model elements from the
textual representation without losing information. As for view-based modelling, this
assumption does not hold, neither of them supports this paradigm.

The idea of having a tighter integration of concrete and abstract syntax was already
thoroughly researched in the compiler construction community several years ago. For
example, the IPSEN approach [5] introduced a tightly integrated software development
environment, including incremental update and storage of the abstract syntax elements
as leading entities. Also the generation of the environment including editors featuring

1 In syntax directed editing, the user is guided through the creation process using some kind
of completion menu. That means the only way to change the text is by invoking predefined
commands on the text. No free editing is possible.

2 Framework for UUID-Retaining Concrete to Abstract Syntax Mappings)

174 T. Goldschmidt and A. Uhl

Domain Model

A

B C

TextBlocks Decorator Model

Text-
block 1

Text-
block 2

Text-
block 3

Textual View

ModelElement A {

contains: ModelElement B;

importantReference B C;

}

View On Decorates

Fig. 1. Overview on the FURCAS decorator approach

syntax directed autocompletion and error checking could already be generated out of an
attributed grammar. Another approach that is based on this idea is the Cornell Language
Synthesizer (CLS) [6]. The incremental update processes of this approach were mainly
focused on reducing the effective compilation time of programs. Furthermore, the way
of editing within the CLS approach was completely restricted to syntax directed editing.

A more recent approach that works using the syntax-directed editing is the Meta
Programming System (MPS) [10] that allows to define languages that consist of syn-
tactical elements that look like dynamically-arranged table cells. This means that the
elements of the language are predefined boxes which can be filled with a value. MPS
follows the MVC updating approach that allows for direct editing of the underlying
model. This allows the editor to easily provide features such as syntax highlighting or
code completion. However, it is not possible to write code freely and save intermediate
inconsistent states. Furthermore, it is not possible to define partial or overlapping views
that go beyond the sheer hiding of the underlying UUIDs.

Previous work on FURCAS deals with a more specific problem definition of the
textual, view-based modelling problem [15], i.e., the retainment of UUIDs of model
elements in textual modelling. The UUID of a model element can be seen as a special
property that is hidden in the concrete representation of a model element. Thus, we can
consider all concrete syntaxes not showing the UUID as being partial. This work also
introduces ideas to classify the editing events in order to identify the users intention
when doing textual modelling. Furthermore, the textual view approach used by FUR-
CAS was defined in [12]. A tool-oriented view on FURCAS was presented in [11]. We
presented an initial idea on how to realise an incremental update process for textual
views in [16]. However, a detailed presentation of the approach is still missing.

3 Background on FURCAS

FURCAS employs a decorator approach for view-based textual modelling. This means
that an additional model called TextBlocks(TB)-Model annotates the underlying model
and tells the FURCAS editor how the model should be presented as text. This is com-
parable to the approach that is used in the Graphical Modelling Framework (GMF) that
decorates models with information on how to render them as diagrams. Figure 1 depicts
an overview on the decorator concept. It shows that the textual representation is only a
transient view based on the information stored in the domain model and the annotating
TextBlocks model.

Incremental Updates for View-Based Textual Modelling 175

FURCASTCSMOF

+template 1

+sequenceElements *

Element
(from Reflect)

DocumentNode
+version : Version

+otherVersions 0..*

TextBlock
+isComplete : Boolean

AbstractToken
+value : String

LexedToken OmittedToken UnlexedToken

TextBlockDefinition
(from Mapping)

+type1

+parent 1

+subNodes

0..*

+template

1

+alternatives

0..*

+sequenceElement

0..1 {ordered}

{ordered}

{ordered}

{ordered}

ReuseStrategy
+reuseInvariant : OclExp

+definitions* +reuseStrategy 0..1

Template

ConcreteSyntax

PrimitiveTemplate

ClassTemplate
+mode : String

+concreteSyntax 0..1
+templates *

Class
+referencedClass

1

StructuralFeature

+class 1

+structuralFeatures *

SequenceElement

Property

Alternative

+alternative 1

+sequenceElements *

PropertyElement

+referencedProperty1

LiteralElement

{ordered}

{ordered}

PropertyInit
+correspondingModelElements

*

+documentNodes
*

+weakSubNodes

*

Fig. 2. Simplified version of the TCS and TextBlocks metamodels

TCS: FURCAS is based on the Textual Concrete Syntax (TCS) approach published by
Jouault et al [13]. TCS is used to define the mappings between the domain metamodel
and its textual syntax. A simplified version of the TCS metamodel is shown in the TCS
package in figure 2. TCS is a template language that has a grammar-like structure in
which it defines rules (ClassTemplate) for the metamodel classes that should get a
textual syntax. Within these templates it is possible to define Alternatives, literals
(LiteralRef) as well as PropertyElements which serve as expansions to the
corresponding templates of the property’s type.

There are many more additional features that are not explained in this short overview,
we refer to [13] for a detailed description of the concepts of TCS. FURCAS extends the
mapping concepts of TCS by adding constructs that define how partial and overlapping
views as well as the construction of TextBlocks should be handled.

From such a syntax definition, we generate a parser grammar and from that a parser
implementation (we use ANTLR [17] as parser generator). This includes a lexer part as
well as a LL(1) parser with syntactic predicates.

TextBlocks: The FURCAS package in figure 2 presents the TextBlocks metamodel.
It defines TextBlocks which represent the major building blocks of the decora-
tor model as well as several subtypes of AbstractToken which are used to store
format information and represent textual values. Both elements define references to
Elements of an underlying model and through this reference decide whether it ap-
pears in the textual representation. So-called TextBlockDefinition elements from the
connection between a TextBlock-Model and the concrete syntax definition. Therefore,
each TextBlock has a type which transitively referes to a Template of the syntax
definiton. For tokens, this connection is resembled by the sequenceElement prop-
erty which refers to the corresponding Property or LiteralRef elements of the
syntax. A more detailed explanation of the TextBlocks metamodel can be found in [12].

176 T. Goldschmidt and A. Uhl

4 Running Example

The syntax definition given in Figure 3 will serve as running example to explain the
update approach. It defines a view type for the representation a part of the example
metamodel also given in Figure 3. The view type is partial, some elements from the
metamodel (marked in grey) are not included in the textual syntax,

name : String

NamedElement

valueType : Boolean
abstract : Boolean
description : String

BusinessObject

Association

TypedElement

type

typedElement1

1

navigable : Boolean

AssociationEnd
ends
association1

2

TypeDefinition

lower : Integer
upper : Integer
ordered : Boolean
unique : Boolean

Multiplicity

bo

elementsOfType
0..*

1

syntax BusinessObjects {
 primitiveTemplate string for STRING;
 template BusinessObject :
 (valueType ? "valueType") "bo" name "{"
 elementsOfType "}"
 ;
 template TypeDefinition :
 typedElement ";"
 ;
 template AssociationEnd :
 [[--variant 1 with named/navigable local end
 name "<-" (ordered ? "ordered")
 association {{ navigable = true }}
 | --variant 2 with unnamed/non-navigable end
 (ordered ? "ordered")
 association {{ navigable = false}}
]]
 ;
 template Association :
 name "->" ends{forcedMult=1..1, mode=otherEnd}
 ;
 template AssociationEnd #otherEnd :
 (ordered? "ordered") name {{navigable = true}}
 ;
}

MethodSignature

output

signaturesWithOutput0..*

0..1

abstract : Boolean
description : StringMethodSignature

signatures 0..*0signatures ..*

unique : Boolean

output 0..1

signaturesWithOutputt0..*

Legend: not shown in concrete syntaxelement

Fig. 3. Example businessobjects metamodel and textual view definition

The given syntax allows to specify Associations between BusinessObjects.
These Associations may be navigable in both directions depending on whether a
name is specified for the local end (variant 1) or not (variant 2). The metamodel also al-
lows that a BusinessObject has signatures and other attributes that the syntax does
not show. This is to demonstrate the requirement for retaining partially viewed model
elements upon updates from the textual syntax, as not all information is contained in
the textual view.

An example instance (CustomerModel) of the business objects metamodel is given
in Figure 4. This example shows the textual representation, the corresponding Text-
Block-Model (CustomerView) as well as the relation of the TextBlock-Model to the
underlying domain model. There are two scenarios how this setting could have been
produced. First, the CustomerModel was pre-existing and a modeller opened it in the
FURCAS editor, which led to the creation of the CustomerView which serves as basis
for the FURCAS editor that shows the textual representation. In the second scenario, the
modeller started from an empty FURCAS editor and created the textual represenation
leading to an initial CustomerModel. Then the (or a different) modeller edited the model
in a different view adding all information that is not editable through the CustomerView.

As theTypeDefinitiondoes not have a syntax contribution of its own, the element
is included in the corresponding model elements of the respective AssociationEnd.
The elements and attributes marked in grey are not shown in the textual representation.
Therefore, simply re-creating all elements from the text would lead to loosing those

Incremental Updates for View-Based Textual Modelling 177

CustomerModel <<ObjectDiagram>>CustomerView
<<TextBlocksDiagram>>

bo Customer {
TBCustomer

ordered
TBcustomerEnd

CustomerHasAddress ->

TBCustomerHasAddress

address

TBAddressEnd

: TypeDefinition

CustomerHasAddress :
Association

customerEnd : AssociationEnd

elementyOfType

ends association

endsassociation

corresponding
ModelElements

Textual Representation

bo Customer {
 ordered
 CustomerHasAddress
 -> address
}

: TypeDefinition

type
typedElement

Address :
BusinessObject

elementsOfType

type typedElement

0 3 12

14

22 33

41 44

51

Legend for TextBlocksDiagram

TB TextBlock

Subnode Relationship

description = „This is a cust..“

Customer : BusinessObject calculate
Revenue() :
Signature

: TypeDefinition

output

sign...

calculate
Revenue() :
Signaturen...

: TypeDefinition

sigdescription = „This is a cust..“

unique = true

addressEnd : AssociationEnd

unique = true

Fig. 4. TextBlock-Model for the running example

elements and values. For example, just from re-parsing the text it is not known whether
the addressEnd element was unique or not.

5 Synchronisation from Textual View to Model

Given an existing TextBlock-Model for an underlying model a modeller can make mod-
ifications to the textual representation which are then directly reflected in the TextBlock-
Model. To be able to react to all possible editing events and perform the incremental
update to the model accordingly we first present a classification of such changes based
on their scope. According to these categories we define the incremental update ap-
proach in subsequent sections. The validation presented in Section 6, then elaborates
on the completeness of our approach based on these categories.

5.1 Classification of Changes to the Textual Representation of a Model

The incremental update approach is based on the possible modifications that a Text-
Block-Model may be subject to. We distinguishes between three different scopes of
changes to a TextBlock-Model tokens, blocks and regions.

A token is the smallest entity which can be affected by a change. For example, given
a token with the value “Customer”, a change on token level may affect the value to be
changed to “valueType Customer”. Still, depending on the rules for the lexical analysis
such a change may also lead to the creation of a new token, resulting in the tokens
“valueType” and “Customer”.

Changes on block level are modifications of more than one token at a time but still
belonging to a single root TextBlock. A TextBlock may include subblocks as well
as tokens. However, a change on block level must always include all subblocks and
(transitive) tokens of a given block. For example the deletion of the text “ordered Cus-
tomerHasAddress -> address” which conforms to one complete block of our running
example would be considered a change on block level. Thus, changes on block level are
creation/deletion/move move events of TextBlocks.

178 T. Goldschmidt and A. Uhl

Changes that occur on region level can span over more than one block but do not
include the whole block. For example, the cutting of the last three of four tokens of one
block including the first token and the first subblock of the subsequent block would be a
modification on region level. Changes that occur on region level but are not at the same
time only on block level or only on token level are changes to an inconsistent region.

5.2 Incremental Update Approach

The FURCAS incremental update process depicted in Figure 5 is, after reacting to a
modification event through the editor (0), divided into the following phases: (I) self-
versioning of TextBlocks , (II) incremental lexing, (III) incremental parsing, (IV) Text-
Block merging and (V) model update. The following sections will explain these phases
step by step in detail. We will explain each step using the running example.

(0) Modification
through editor

(I) Self versioning
of TextBlocks

(II) Incremental
lexing (III) Incremental parsing

(IV) Reuse tokens

(IIIb) Creation of parsed TextBlocks

(IIIc) Assignment of tokens

(V) Merge TextBlocks (VI) Update domain model(IIIa) Batch parsing

Fig. 5. Overview on the phases of the incremental textual view to domain model update process

(0) Modification Through Editor. The FURCAS text editor projects its underlying
TextBlock-Model to a textual view. By typing or deleting characters, the modeller pro-
duces events that are passed to the appropriated places in the TextBlock-Model. These
events can be denoted as Event(o, l, t). In this form the offset o denotes the index start-
ing from the first character of the text where the change occurred, the length l denotes
how many characters, starting from the character at o are overwritten and the text t
gives the set of characters to be replaced. Depending on the range of characters that are
overwritten, FURCAS determines the scope of the change according to the classification
presented in Section 5.1. For the elements in the determined scope, the self-versioning
phase is triggered.

(I) Self Versioning of the TextBlock-Model. To be able to analyse the changes to
the TextBlock-Model in later phases, we use a change history based on an in-place
versioning of the TextBlock-Model. The FURCAS meta-model (Figure 2) incorpo-
rates capabilities of so-called self-versioning documents [4]. Self-versioning documents
are characterised by the ability to navigate back and forth in the change history of a
document by means of the document itself. To achieve this in FURCAS, we use the
DocumentNodeHasVersions association for linking different versions of a Text-
Block or a token to each other. Each DocumentNode furthermore includes an attribute
version that determines the version of the node. Other versions of a node can be
retrieved by traversing the DocumentNodeHasVersions association transitively
until the desired version of a node is reached.

The different phases work on four different versions of nodes in a TextBlock-Model:

Reference is the version of the node in its last consistent state. This means that the
TextBlock-Model forms a consistent view on the underlying model. Thus, each

Incremental Updates for View-Based Textual Modelling 179

TextBlock has at least one link to a corresponding model element and all tokens
within the TextBlock are valid w.r.t. the lexer of the current syntax. Furthermore,
the type of the TextBlock, i.e., the corresponding TextBlockDefinition, is correctly
set. The same applies for tokens referring to the SequenceElements of the syntax.

Edited is the version after one or more editing events were received. Thus, this version
already contains the textual change information in a raw format, as it is just text
that is either placed in the value of the tokens at the targeted offset of the event.

Lexed is the version that the incremental lexer produces during the incremental lexing
process. In this version, tokens already get their lexical type assigned and thus are
valid tokens. However, the SequenceElements have not yet been assigned. Text-
Blocks are just copies of the edited version responsible for organising the tokens
into a tree structure.

Parsed is the version that the incremental parser produces during the incremental pars-
ing process. In this version, each TextBlock has its TextBlockDefinition and chosen
alternative assigned.

The self-versioning phase will create a new version for each token and/or TextBlock
within the scope of a given change event. Even if the scope of a change is limited to
a single token, the token’s parent TextBlock will also get a new version. Still, the new
TextBlock will then only have this single token as child. The versioning of these parent
TextBlocks is required for the comparison of the merge phase.

The self-versioning phase reacts to the different event types as follows. For token
level changes we simply update the targeted token accordingly. Note, that for deletion of
text, i.e., using events of the form Event(o, l > 0, “”), the targeted tokens will receive
an empty value and are in this way marked for deletion. Analogously, this applies for
changes on block level, meaning that all (transitive sub-)tokens of the targeted block will
get empty values. Finally, for changes on region level, self-versioning is performed up
to a common ancestor of the modified nodes. This may also be the root element of the
document. All tokens and TextBlocks directly affected by a change event are modified
as on block and token level, respectively.

Figure 6 shows the running example after the following two editing events: Event(0,
0, “valueType ”) and Event(12, 7, “customer <- ordered”). The tokens at the posi-
tions to where the editing events point are self-versioned into their edited version. The
self-versioning mechanism also creates edited versions for the TextBlocks that contain
the modified tokens. These TextBlocks then contain the edited tokens.

(II) Incremental Lexing. The incremental lexing process is based on an algorithm
presented by Wagner in [4]. Basically, this approach works as follows: In Wagner’s
approach the self versioned documents support the incremental lexing process. The in-
formation of the newer versions are compared to the reference versions. The outcome of
this comparison is then used to decide where new tokens have to be produced. Wagner
proofs that the lexing process is always optimal with respect to complexity. In FUR-
CAS, we reuse Wagner’s approach and extend it for the purpose of synchronising textual
views with their underlying model. The extension mainly consists in the adoption of the
approach to the TextBlock metamodel as well as the maintenance of the links between
TextBlocks, tokens and their corresponding model elements.

180 T. Goldschmidt and A. Uhl

CustomerView <<TextBlocksModel>>

TBcustomerEnd
reference

valueType˽boreference

TBCustomer
reference

Event(0, 0,
“valueType˽”)

Event(12, 7,
“customer˽
<-˽ordered”)

CustomerView <<TextBlocksModel>>

TBCustomer

bo Customer { }

reference

reference

ordered

address

CustomerHasAddress ->

;

TBcustomerEnd

TBCustomer2Address

TBinvoiceEnd

Customer { }

edited

TBcustomerEnd

TBCustomer2Address

reference

reference

edited

edited

reference ref.. ref..

reference reference

referencereference

reference

ref..

ref..

reference

valueType˽boedited ref.. ref..

customer˽<-˽orderedreference

customer˽<-˽orderededited
reference

[...]

Legend for TextBlocksModel (extended)

TB TextBlock Subnode Relationship

Subnode of Previous Version

editing event

phase transition

TBCustomer

Versions

Fig. 6. TextBlock-Model for the running example after the self versioning phase I

The incremental lexing process creates new tokens for the modified tokens based on
the lexical rules of the syntax. The incrementality of Wagner’s lexing approach ensures
that we only create new tokens where required.

For change events on token level, the new tokens will have the token of the edited
version as originating version. Thus, all new tokens created from a token in edited ver-
sion will reference that token in their otherVersions property. For block and region
level changes, the versioning links will resemble a fully meshed network between the
newly created lexed and the overwritten edited version. This ensures that in phase (IV),
all possibly reusable tokens can be reached from each of the lexed tokens. Note, that by
referencing the edited version, the versioning also transitively reaches the correspond-
ing reference version.

In the running example (depicted in Figure 7) a token “ordered”reference is modified
to “customer <- ordered”edited by the insertion of the new text “customer <-”. The
incremental lexer then creates three tokens “customer”lexed, “<-”lexed and “ordered”
lexed from that token. All three lexed tokens will then refer to “ordered”reference as
their reference and “customer <- ordered”edited as their edited version.

(III) Incremental Parsing. The incremental parsing process is, opposed to conven-
tional incremental parsing algorithms like [18], not based on pruning and grafting sub-
trees of the abstract syntax tree. Instead, in phase (IIIa) a conventional LL parser (see
Section 3) is used to parse the tokens coming from phase (II). During phase (IIIa) two
parallel phases (IIIb) and (IIIc) receive information about matched parse rules and con-
sumed tokens through callbacks from the parser. Based on the matched parse rules
of that parser FURCAS instantiates a new version, i.e., the parsed version, of the Text-
Block-Model. Most importantly, during this sub-phase, FURCAS assigns the TextBlock-
Definitions and chosen alternatives to the created TextBlocks. Sub-phase (IIIc) assigns
tokens consumed by the parser in phase (IIIa) to the TextBlocks created in phase (IIIb).
Furthermore, phase (IIIc) assigns the SequenceElements to which the tokens conform.

(IIIa) The Batch Parsing Process. The batch parsing process uses the the tokens as they
result from the lexed version of the TextBlock-Model. Thus, the parser only runs on

Incremental Updates for View-Based Textual Modelling 181

those parts of the TextBlock-Model which were affected by changes in previous phases.
However, this may require to call parse rules of common parents of the changed regions.
Calling the parser only on sub-trees of the TextBlock-Model is not a requirement of our
approach, we use this technique only to improve performance of the incremental update
process. Later phases would also work if the parser runs for the complete TextBlock-
Model. Therefore, this phase is also independent from the actual change scope and
works on token, block and region level alike.

(IIIb) Creation of the Parsed Version of a TextBlock-Model. During the parsing process
the parser instantiates TextBlock in their parsed version. Basis for the creation of this
blocks is the selection of parse rules the parser decides to take. Each generated parse
rule contains a parse action that identifies the template from which the rule was gen-
erated. This action attaches the corresponding TextBlockDefinition for that template to
the newly instantiated TextBlock. The same applies to the alternatives that the parse
rule chose during its execution.

(IIIc) Assignment of Tokens to Parsed TextBlocks. This phase assigns the consumed,
lexed version tokens to the new parsed version of the TextBlocks. For this assignment
we use the separate weakSubNodes property (see metamodel in Figure 2). Therefore,
these tokens still keep their original TextBlock (lexed version) as composite parent. The
combination of this assignment and the original assignment of tokens to their parent
TextBlocks then serves as basis for the merging phase (V).

(IV) Reuse Tokens. To be able to decide which modified parts of a TextBlock-Model
still represent the same decorated model element we need to analyse the semantics of
the performed modifications. This analysis starts on token level by identifying which
tokens from the reference version can be reused for the lexed version. A precondition for
the correct assignment of lexed tokens to their reference version correspondents is that
each token has its corresponding sequence element assigned. The sequence element
represents the location of an element within the syntax and therefore the meaning of
a token. As shown in the metamodel in Figure 2 a token has two properties that may
be subject to change, sequenceElement and value. Thus, there are different cases

CustomerView <<TextBlocksModel>>

TBcustomerEnd

CustomerView <<TextBlocksModel>>

TBcustomerEnd
reference

valueType˽boreference

TBCustomer
reference

Customer { }

edited

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType˽boedited ref.. ref..

customer˽<-˽orderedreference

customer˽<-˽orderededited
reference

reference

valueType˽boreference

TBCustomer
reference

TBCustomer

Customer { }

lexed

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType˽boedited ref.. ref..

customer˽<-˽orderedreference

customer˽<-˽orderededited
reference

valueType
lexed bolexed

TBcustomerEnd
edited

customer
lexed

ordered
lexed<-lexed

[...][...]

lexing

TBCustomer TBCustomer
lexed

Fig. 7. TextBlock-Model for the running example after the incremental lexing phase II

182 T. Goldschmidt and A. Uhl

that may qualify a token for reuse, each based on the values of these properties. Ordered
by priority, these cases, which we call reuse qualifiers, are:

1. The sequenceElement of both tokens is the same. Tokens may refer to the
same sequence element, thus having the same semantics, which qualifies for reuse.

2. Even if a token has a different sequence element, this sequence element may be a
corresponding sequence element in a different alternative that represents the same
property/literal (see running example in Figure 8). This also qualifies for reuse.

3. In the first two cases value may or may not have changed. However, if se-
quenceElement is different and not comparable through alternatives the token
may still have the same value which also qualifies for reuse.

If there are multiple candidate tokens that match these criteria FURCAS takes the
priority of the qualifiers into account. The token which matches the qualifier with the
highest priority wins. If there are multiple tokens matching the same property, the over-
all amount of matching qualifiers weighted by their priorities determines which token
to reuse. The following formula determines this reuse factor for a given token tok over
the set of reuse qualifiers Q where priority(q) gives the priority of a qualifier and
matchesq(tok) determins whether tok matches the qualifier q:

reuseFactor(tok) = Σ
q ∈ Q

{
10priority(q) if matchesq(tok)
0 else

For example, a token matching the priority 1 as well as 3 would have a reuse factor
of 10−1 + 0 + 10−3 = 0.101.

In the running example, Figure 8 depicts the reusability of the edited/reference to-
kens. For the first change event two candidates for token reusability exist. Both tokens,
valueType as well as bo, stem from the same reference version which originally
was bo. For the latter token several criteria for token reuse are fulfilled: The sequence
element for boreference is the same as bolexed because during the incremental parsing
phase assigned the sequence element for the literal bo to the lexed version of bolexed.
Additionally the value of the token is the same as before. Therefore, the reuse factor of
bolexed w.r.t. boreference is 0.101. Whereas the reuse factor for the valueType to-
ken is 0. Therefore, FURCAS will retain the versioning link for the bolexed token while
removing it from the valueType token. For the second change event there are three
candidates for token reuse customer, < − and ordered. Obviously the last token
is the one with the highest reuse factor as it matches qualifiers 2 and 3 which results
in a factor of 0.011 which is higher than those of the other tokens, which is 0. There-
fore, FURCAS will retain the versioning link of ordered whereas removing it from
the other two.

Note that, due to the fully meshed version connections of tokens for change events on
block and region level, all edited tokens in the scope of a change events are candidates
for reuse on these levels.

(V) TextBlock Merging. This phase merges the reference TextBlock-Model with its
parsed version. A TextBlock βlexed is considered mergeable for with a TextBlock
βparsed if both represent the same element in the underlying model and only differ

Incremental Updates for View-Based Textual Modelling 183

CustomerView <<TextBlocksModel>>

TBcustomerEnd
reference

TBCustomer
reference

TBCustomer

Customer { }

lexed

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType˽boedited ref.. ref..

customer˽<-˽orderededited
reference

valueType
lexed bolexed

TBCustomer
lexed

TBcustomerEnd
edited

customer
lexed

ordered
lexed<-lexed

bo reference

ordered
reference

[...]

template BusinessEntity :
 (isValueType ? "valueType") "bo" name
 "{" elementyOfType "}") ;

template AssociationEnd context:
[[
 name "<-" (isOrdered ? "ordered")
 association {{ navigable = true }}
|
 (isOrdered ? "ordered")
 association {{ navigable = false }}]] ;

Phase
III + IV

CustomerView <<TextBlocksModel>>

TBcustomerEnd
reference

TBCustomer
reference

TBCustomer

Customer { }

merged

TBcustomerEnd

TBCustomer2Address

edited

edited

reference

valueType˽boedited
ref.. ref..

customer˽<-˽orderededited
reference

valueType
lexed bolexed

TBCustomer
lexed

customer
lexed

ordered
lexed<-lexed

bo reference

[...]

TB1
parsed

TB2
parsed

TBcustomerEnd
edited

ordered
reference

type/template

type/template/
alternative

token
reuse

Legend for TextBlocksModel (extension)
weak subnodes syntax reference

Fig. 8. Application of phases III and IV to the running example

in changes that would still retain the identity of the element. Based on a computed
mergeability factor FURCAS will decide if and which TextBlock to merge.

Comparable to the reuse factor of tokens, the mergeability factor for TextBlocks is
based on the possibly modified properties of the TextBlock metaclass. For a TextBlock
this is its type (transitively referring to the template used to instantiate it), the Alter-
nativewithin its template, the mode of the template and finally the tokens assigned to
that TextBlock. The following list represents also the priority in which FURCAS checks
the candidate TextBlocks for mergeability.

1. The type and therefore the template of βlexed and βparsed are the same, which
means that b and bparsed were produced according to the same template within the
mapping definition.

2. The chosen alternatives within the same template. A TextBlock may be constructed
using a different alternative than its previous version while still being mergeable.
However, if there is more than one reuse candidate which only differ in the
chosen alternative of the same template, FURCAS will choose the one where the
chosen alternatives still match best. A best match of alternatives is determined
starting from the top level alternatives going down the sub alternatives. In the fol-
lowing example template Alts : [[top1,a | top1,b]] [[top2,a |
top2,b]] ;, there are two top level alternative sequences top1 and top2. Note
that in this case it is possible that for a TextBlock with alternativestop1,a, top2,a

there is TextBlock βparsed
1 that matchestop1,a,top2,b and one TextBlock βparsed

2

184 T. Goldschmidt and A. Uhl

that matches top1,b,top2,a. In this case the mergeability depends on the next
lower prioritised mergeability features.

3. It might by the case that through changes in the call hierarchy of the templates
a template with a different mode for the same class was triggered. However, the
element can still be considered the same and be mergeable with each other.

4. The number of tokens reachable through the weakAssignment association that
were reused within the TextBlock also impacts the mergeability. The more, tokens
βparsed reuses from βlexed the higher is the mergeability factor for this combina-
tion. If up to this point in the decision hierarchy two βparsed are still considered
equal the one with the higher number of reusable tokens is preferred.

The index in the list of mergeability properties also represents their priority when it
comes to the determination of the mergeability factor mf of TextBlocks. The com-
putation works the same way as the reusability factor for tokens. The βlexed with the
highest mf > 0 will be considered mergeable for a given βparsed. If there is no block
with mf > 0, FURCAS considers all old blocks for deletion.

The mergeability factor mf is computed as follows:

mergeabilityFactor(βlexed, βparsed) = Σ
q ∈ mergeabilityQualifiers⎧⎪⎨

⎪⎩
#(reusedTokens(βlexed, βparsed)) ∗ 10priority(q) if matchesq(β

parsed) ∧ q = 4

10priority(q) if matchesq(β
parsed)

0 else

For each pair of TextBlocks from the lexed and parsed versions within the same
scope, FURCAS performs the above mergability computation. The scope is defined de-
pending on the type of the change. For token level, all transitively connected TextBlocks
through the versioning links of its tokens are considered in one scope. For block level
the complete block from the lexed version including its transitive children determins
this scope. Finally, on region level, all TextBlocks transitively contained under the de-
termined common ancestor are considered for the reuse scope.

In the running example, the changes applied to the TextBlock-Model through the
different previous phases lead to the merging of two pairs of TextBlocks as illustrated
in Figure 8. In phase (III) FURCAS creates TextBlock TB1 and TB2 according to the
batch parser production rules and assigns the consumed tokens as weakSubnodes to
the newly created TextBlocks. After phase (IV) determined the reusable tokens, phase
(V) FURCAS computes the mergeability factor for all candidate TextBlocks. Thus, TB1

will have a mergeability factor of 10−1 +10−2 +0+(5∗10−4)+0 = 0.1104. As there
is no other merge candidate for this TextBlock, TB1 will be merged with TBCustomer.
The same applies for TB2 which has a mergeability factor of 10−1 + 0 + 0 + (2 ∗
10−4) + 0 = 0.1002 and the only candidate for merging is TBcustomerEnd.

(VI) Model Update. After the mergeable TextBlocks have been prepared in the Text-
Block merging phase, it is now possible to update the domain model according to the
mergeable and new TextBlocks. This is done by a model to model transformation which
uses as input both the reference TextBlock-model as well as the parsed version of the
TextBlock-model. The transformation will delete model elements for not-mergeable

Incremental Updates for View-Based Textual Modelling 185

reference TextBlocks, update properties for merged TextBlocks and create new model
elements for new, unmerged parsed TextBlocks.

The model update phase performs property update based on the changed or newly
created token values and subblock relationships. As each token as well as each Text-
Block refers to the corresponding sequence element in the syntax definition, which may
be a PropertyElement referring to a property from the metamodel, the property to
update, can easily be determined. The same applies for the model elements on which
to update the properties. These are the elements referenced by the TextBlocks’ cor-
respondingElements.

In the running example, this will result in setting the valueType property of
Customer to true and setting the name of the local AssociationEnd to “cus-
tomer” and its navigable property to true. Due to the mergeability decision in the
previous phase elements such as the addressEnd are retained even though their tex-
tual representation was completely overwritten. Thus, also their information, in this case
the unique = true attribute is retained. This shows the how view-based modelling
is supported by FURCAS’ incremental update approach.

6 Validation

The following main threats offend the validity of our approach: (I) We assumed that
all modifications handled by the incremental update process start from the threefold
classification of change scopes into token, block and region level. If a mapping from
textual change events to this kind of basic change scopes is not possible, our approach
may not be applicable. (II) Employing parsing techniques into the incremental update
approach while allowing arbitrary changes to the textual representation that the parser
should analyse may lead to errors in lexing, and parsing if the textual structure is not
syntactically correct. (III) The approach may prove unusable in practice as the update
approach takes to much time and modellers are blocked in their development efforts.
(IV) The restrictions on the language to be mappable to a LL(1) parser with syntactic
predicates may prevent language engineers from developing complex languages.

To address these threats, we discuss them in the following paragraphs.

Mapping Change Events to Change Scopes. As defined in Section 5.2 in phase (0),
changes made in a textual editor can be described as: Event(o, l, t), using the offset
o, the length l and the inserted text t. Using this structure, we can map every possible
editing event to our previously defined change scopes of a TextBlock-Model. Using the
following classification we classify a given event e in form Event(o, l, t) into one of
the scopes Eventtoken, Eventblock, Eventregion by applying function s:

s(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Eventtoken if l = 0
Eventtoken if l > 0 and there is a token τ so that offset(τ) = o and

length(τ) <= l

Eventblock if l > 0 and there is a TextBlock β so that offset(β) = o
and length(β) = l

Eventregion else

186 T. Goldschmidt and A. Uhl

Note that for a TextBlock having exactly one token cases 2 and 3 both match. To
resolve this FURCAS will chose case 3.

Some examples for editing events and their classification into these categories are
the following, including changes applied to the running example from Figure 4:

– Insertions of a sequence of characters of arbitrary length at specific position are
changes on token level, for example Event(12, 0, “ordered ”).

– Deletions of a sequence of characters at a specific position are changes on token
level, for example Event(14, 7, “”).

– Replacements of a sequence of characters within the boundary of a token are
changes token level, for example Event(3, 7, “Client”).

– Deletions of larger sequences of may also be on block level, for example Event(14,
37, “”) which deletes the block for the “CustomerHasAddress” association from the
textual representation.

– More disruptive changes, being replacements may span over multiple, but incom-
plete blocks and are therefore region-level changes. For example, Event(33, 18,
“Phone -> phone”) will overwrite parts of the TBCustomerHasAddress block as
well as the whole TBAddressEnd block.

Handling of Errors and Inconsistencies in the Lexing and Parsing Phases. If dur-
ing the batch parsing phase a parse error occurs, for example because no matching
template was found for a given modified stream of tokens, a TextBlock will be marked
as isComplete = false (see metamodel in Figure 2). As soon as the textual rep-
resentation of the inconsistent region is again in a parseable state a merge based on both
versions can be performed. This merge is based directly on the underlying model, as
there may be multiple representations overlapping on the model. And as these repre-
sentations may be partial a text based merge is not possible. The actual model merging
process is beyond the scope of this paper. However, there are multiple publications that
deal with that problem.

Parsing Performance for Complex Languages. In the case studies explained in the
subsequent paragraph we implemented complex, industrial languages with FURCAS.
When developing sample applications with those languages we measured the time
required for the incremental update process. The values ranged from 100ms up to 5
seconds. The latter parsing time made us investigate where the performance decrease
actually comes from. We identified the instantiation of new versions of larger parts of the
TextBlock-Model as one of the main cost factors w.r.t. parsing performance. To address
this issue we are currently investigating the use of light-weighted plain objects instead
of full blown model elements for the intermediate states of the TextBlock-Model.

Application to Practice. We applied our framework within multiple industrial case
study which we conducted at SAP AG in the area of business information systems.
Within this case study three different metamodels with eight different textual views for
a rather large metamodels were created. In total metamodel 1 has 34, metamodel 2 has
136 and metamodel 3 has 87 classes that are relevant for the mapping definitions. The
mapping definitions were partially overlapping to each other and in some parts only
showed a partial view on a common domain model. Based on this created language a

Incremental Updates for View-Based Textual Modelling 187

proof of concept application was built using the FURCAS editors. Within the third case
study we also let untrained (w.r.t. FURCAS) language engineers develop the language
mappings. In total we could implement each of the case studies using the FURCAS

approach. However, some language constructs required complex workarounds to fulfil
the requirements. To ease the development with FURCAS is a task for future work.

7 Conclusions and Future Work

In this paper we presented an approach that enables for textual modelling in combina-
tion with a view-based paradigm. We provided an incremental update process that al-
lows to retain model elements that take part in partial views upon changes to the textual
view representation. To evaluate our approach we implemented a prototype facilitat-
ing all features that were presented here which is available from the FURCAS website
[19]. Additionally the prototype was evaluated within several case studies conducted in
cooperation with the SAP AG.

Currently the transformations between the TextBlocks model and the domain model
are hand written. However, given the complexity of these transformations, their incre-
mental character as well as their operation on models we are currently experimenting
with several approaches (QVT-Relational as well as Triple-Graph-Grammars) that may
be suitable for expressing and executing these transformations. The idea is to automat-
ically generate a transformation from a mapping definition.

References

1. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: A
framework for integrating multiple perspectives in system development. International Journal
of Software Engineering and Knowledge Engineering 2 (1992)

2. Atkinson, C., Stoll, D., Bostan, P.: Supporting view-based development through orthographic
software modeling. In: ENASE, pp. 71–86. INSTICC Press (2009)

3. Goldschmidt, T., Becker, S., Uhl, A.: Classification of Concrete Textual Syntax Mapping
Approaches. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095,
pp. 169–184. Springer, Heidelberg (2008)

4. Wagner, T.A.: Practical Algorithms for Incremental Software Development Environments.
PhD thesis, University of California at Berkeley (1998)

5. Nagl, M. (ed.): Building tightly integrated software development environments: the IPSEN
approach. Springer-Verlag New York, Inc., New York (1996)

6. Teitelbaum, T., Reps, T.: The cornell program synthesizer: a syntax-directed programming
environment. Commun. ACM 24(9), 563–573 (1981)

7. Bahlke, R., Snelting, G.: The PSG - Programming System Generator. SIGPLAN Not. 20(7),
28–33 (1985)

8. Kats, L., Visser, E.: The Spoofax language workbench. Rules for declarative specification of
languages and IDEs. In: Proceedings of OOPSLA, pp. 444–463 (2010)

9. Foundation, E.: Eclipse XText Website (2010), http://www.eclipse.org/Xtext/
(last retrieved 2010-07-06)

10. Dimitriev, S.: Language oriented programming: The next programming paradigm. Onboard
Magazine 2 (2005)

188 T. Goldschmidt and A. Uhl

11. Goldschmidt, T., Becker, S., Uhl, A.: FURCAS: Framework for UUID-Retaining Concrete to
Abstract Syntax Mappings. In: Proceedings of the 5th European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA 2009) - Tools and Consultancy Track,
pp. 100–106. CTIT (2009)

12. Goldschmidt, T., Becker, S., Uhl, A.: Textual views in model driven engineering. In:
Proceedings of the 35th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, Los Alamitos (2009)

13. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In: GPCE 2006, pp. 249–254 (2006)

14. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and refinement
of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg (2009)

15. Goldschmidt, T.: Towards an incremental update approach for concrete textual syntaxes for
UUID-based model repositories. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008.
LNCS, vol. 5452, pp. 168–177. Springer, Heidelberg (2009)

16. Goldschmidt, T., Becker, S., Uhl, A.: Incremental Updates for Textual Modeling of Large
Scale Models. In: Proceedings of the 15th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2010), pp. 247–248. IEEE, Los Alamitos (2010)

17. Parr, T.: The Definitive ANTLR Reference. The Pragmatic Bookshelf (2007)
18. Cook, P., Welsh, J.: Incremental parsing in language-based editors: user needs and how to

meet them. Software: Practice and Experience 31, 1461–1486 (2001)
19. Goldschmidt, T., Uhl, A.: The FURCAS website (2011), http://www.furcas.org

(last retrieved 2011-01-20)

Easing Model Transformation Learning with
Automatically Aligned Examples�

Xavier Dolques1, Aymen Dogui2, Jean-Rémy Falleri3,
Marianne Huchard4, Clémentine Nebut4, and François Pfister5

1 INRIA, Centre Inria Rennes - Bretagne Atlantique,
Campus universitaire de Beaulieu, 35042 Rennes, France

xavier.dolques@inria.fr
2 Supélec Paris, France

aymen.dogui@supelec.fr
3 Université de Bordeaux, France

falleri@labri.fr
4 LIRMM, Université de Montpellier 2 et CNRS,

Montpellier, France
first.last@lirmm.fr

5 LGI2P, Ecole des Mines d’Alès, Nîmes, France
francois.pfister@mines-ales.fr

Abstract. Model Based Transformation Example (MTBE) is a recent
track of research aiming at learning a transformation from examples. In
most MTBE processes, a transformation example is given in the form of
a source model, a transformed model and links between source elements
and the corresponding transformed elements. Building the links is done
manually, which is a tedious task, while in many cases, they can be de-
duced from the examination of the source and transformed models, by
using relevant attributes, like names or identifiers. We exploit this char-
acteristic by proposing a semi-automatic matching operation, suitable
for discovering matches between the source model and the transformed
model. Our technique is inspired by and extends the Anchor-Prompt ap-
proach, and is based on the automatic discovery of pairs of anchors (pairs
of elements for which there is a strong assumption of matching) to sup-
port the whole matching discovery. An implementation of the approach
is provided for validation on a case study.

1 Introduction

Model transformations are the operational, often automated, part of Model
Driven Engineering (MDE), and several transformation languages have been
proposed to introduce useful concepts to develop transformations. The QVT
standard [1] has been proposed by the OMG to unify the field.

Writing a transformation requires two important skills: firstly a strong
knowledge in transformation languages and metamodeling and secondly a good
� This research was partially supported by the european project OPEES.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 189–204, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

190 X. Dolques et al.

comprehension of the semantics of the source and target domains. While trans-
formation developers have the first skill, the second one is usually owned by the
domain experts. This fact makes the development of a model transformation
difficult and time-consuming, because the transformation developers have to in-
teract, on abstract concepts of a specific domain, with the domain experts, so
as to obtain a correct transformation.

Two kinds of approaches have recently been introduced to assist the devel-
opment of model transformations. The first kind of approach operates at the
metamodel level [2,3] and exploits an alignment between the source and target
metamodels. It assumes (thus is efficient when) the source and target metamod-
els are very similar in their structure and terminology. The second approach,
Model Transformation By Example (MTBE), uses metamodels and models. It
aims at inferring either the transformation [4,5,6], or the result of a transforma-
tion [7], by using a set of transformation examples. In this paper we focus on
this second kind of approaches.

Applying MTBE requires to have transformation examples: a source model,
a transformed model and the links between source and transformed elements.
While having a source and a target model is quite easy (a domain expert can
create them), retrieving the links between the elements of these models is tedious
and time-consuming, because no mainstream metamodeling environment is ca-
pable of creating them when models are manually edited. Therefore, these links
are usually manually looked for and added. We believe that the major part of
these links can be automatically retrieved. Indeed, when the transformed model
is created, the names of the transformed elements are usually equal or very
similar to the ones of the source elements, maybe using different naming conven-
tions. Also, the underlying metamodels are different but often neighbors of an
element in the source model (understood as the instantiation of the metamodel)
are transformed into neighbors of the transformed element.

In this paper, after the context description (Section 2), we propose an approach
(Section 3), that combines string similarity and schema matching techniques to
automatically retrieve the links going from the elements of a source model to their
corresponding elements in the transformed model. This approach helps the trans-
formation developers to gather transformation examples, allowing them to benefit
from the MTBE approaches. We describe our tool and case study in Section 4. Re-
lated work is discussed in Section 5, and we conclude in Section 6.

2 Problem Statement

The MTBEprocess aims at inferring a rule-based transformation from transforma-
tion examples. A classical version of the process is presented in the l.h.s of Figure
1. The input of the process is a transformation example, defined by a source model,
a transformed (target) model and matching links between the two models. It re-
sults into transformation rules, deduced from the example, that can transform any
model conforming to the source metamodel to a model conforming to the target
metamodel. Several proposals for the MTBE engine can be used, e.g. [4,5,6].

Easing Model Transformation Learning with Automatically Aligned Examples 191

Fig. 1. The MTBE process: a simple view (l.h.s) and including assistance for matching
(r.h.s)

We illustrate this section and the rest of the paper with a classical example of
transformation from UML class model to entity-relationship model. The input
is thus an example of a UML model, and the corresponding transformed entity-
relationship model. Figures 2 and 3 give the used metamodels (in ecore format)
for UML class diagrams and entity-relationship models.

The chosen example models literary texts (novels or poetry), written by (and
with a foreword from) authors. Each text has one or several styles. The examples
are given with concrete syntax in Figures 4 and 5, and an excerpt is given with
abstract syntax in Figures 6 and 7 (in the form of an instance of the metamodels).
Though less readable, the abstract syntax is the one actually handled by the
tools. The presented excerpts show the authors writing texts but hide the poetry,
the style, and the fact that authors write a foreword for texts.

Fig. 2. A metamodel for UML class diagrams (drastic simplification of the
UML metamodel)

192 X. Dolques et al.

Fig. 3. A metamodel for Entity-Relationship models

Fig. 4. An example UML model for the UML2ER transformation

Author

firstName lastName

writes foreword for

writes Text

year

Style

Novel Poetry

title

(1,N)

(1,N)
(1,1)

(1,1)

(0,1) (0,1)

(1,1) (1,1)

(1,1) (0,N)

work

author

is a is a

has a

Fig. 5. An example of Entity-relation model for the UML2ER transformation

Easing Model Transformation Learning with Automatically Aligned Examples 193

Fig. 6. Excerpt of the UML example with abstract syntax

Fig. 7. Excerpt of the ER example with abstract syntax

The examples are quite easy to build, moreover they will be useful for testing
or documentation purposes. However, to feed the MTBE process, the transfor-
mation links have to be given. For example, one has to specify that the Author
class from Figure 4 has to be transformed into the Author entity from Figure
5, and that the inheritance link from Novel to Text has to be transformed into
an is_a relationship (and in fact using the abstract syntax shown in Figures 6
and 7: the generalization element has to be transformed into the is_a relation-
ship and the two linked roles). This is a tedious task, and only dedicated to the
MTBE process. Our purpose is to use string similarity and alignment methods
to generate part of those links. The resulting architecture for the MTBE process
is presented in the r.h.s of Figure 1. The links from the source model to the
transformed model are partly generated by a matching engine. The generated
links are checked by an expert. The matching engine takes source models and
target (transformed) models, and provides a candidate matching model (match-
ing links). This candidate matching model is proposed to an expert who validates
and fixes the matching model, producing the validated matching model which
composes (together with the source and target model) the transformation ex-
ample. Our aim is to assist the domain expert as far as possible, providing him
with an initial matching solution where nearly obvious matches are included.
For example, with the example of the literary texts, we discover all the “obvi-
ous” matchings (the class Text maps to the entity Text, the firstName property
maps to the firstName attribute, ...) and also more sophisticated mappings such

194 X. Dolques et al.

that: the generalization from Novel to Text maps to an is_a relationship and
the two roles text and novel. Even if the complete mappings are not discovered
(as explained in the case study, we have for the UML2ER example a precision
of 1.0 and a recall of 0.7), the generation of a partial mapping is a valuable help
in a MTBE process.

To sum up, we study a matching problem that considers two models that
on one hand come from two different metamodels (maybe very divergent), with
relations differently named and organized; and on the other hand contain a large
set of common underlying entities and a large set of similarly named entities,
due to the common underlying natural semantics.

3 The Model Matching Approach

The literature offers several approaches to build a matching between two struc-
tures [8,9]. Due to the specificities of our problem, we propose a tool inspired by
the Anchor-Prompt approach [10]. The original approach is a two-step process
designed to match ontologies. The first step is the discovery of matches with a
high confidence rate (anchors), while the second one propagates those anchors
so as to discover other matchings. Our approach follows the same two steps and
improves the second, they are described below.

3.1 Anchor Discovery

This first step consists in finding pairs of anchors, i.e. initial matchings. The
original Anchor-Prompt approach does not specify a process to discover pairs
of anchors. In our case, the target model is the result of the transformation of
the source model, and the entities and their values, are very close. Although the
source and target metamodels are different, it is common that model entities
have an identifying attribute (such as the name) and that this attribute value
does not change much during the transformation. In values, we can have slight
variations due to naming conventions: prefixes or suffixes can often be added,
but it is mostly improbable that both a prefix and a suffix is added so we assume
that they are not very different. A high confidence rate is needed for this subset
since the next step strongly depends on the quality of those pairs of elements.
Those matchings cannot be detected using types, as the two models may be
instances of different metamodels, thus we need to rely on some attribute values
of those elements, e.g. the attribute name of the UML metaclass NamedElement,
that we assume to remain nearly unchanged after transformation.

Let Attsrc and Atttgt be the sets of all the attributes of all the elements
respectively in the source and target models. Let P = Attsrc × Atttgt. We want
to extract M ⊂ P , a set of attribute pairs validating a matching test. From this
set M we generate a set of pairs of anchors A by replacing each attribute value
in the pairs of M by the entity containing this value. A general algorithm for
the anchor discovery is given in Figure 8.

Easing Model Transformation Learning with Automatically Aligned Examples 195

���� ������−�	
�����
 � �� � ������
 � � � � ��� � 	���� �����
 �
������
 � � � � ��� � 	���� �����
 �

��� � �
 � � � � ���	�
 �� 	 �
 �
� �� ������ ������ !
" �� �#��

 � � !
� �� �#��

 � � !
� � � �� 	 � 	� � $�

	 � #���� � �� 	 � %
����� � �� 	 � % � � � � � � �
���� "% �$$ � �� 	 � � !

� � � �� 	 � 	� " $�
�% �$$ � � �� 	 � %
����� % ��� 	 �
 � �� 	 � % � � � � � � % � � � 	 �
 � � !

Fig. 8. General process of anchor discovery

We tested several matching operations and we present here the most relevant:

– equality: the most obvious matching operation is the equality. If two el-
ements share exactly the same value, then they are likely to be matched.
But this test is worthless if we do not check the occurrence frequency of the
values matched. Indeed it appears in our tests that some values are not rel-
evant, such as stereotypes or cardinalities in class diagrams. Thus, another
condition for two attributes to be matched is that their value appears once
and only once in the source and target models. This matching operation
appears to be reliable as it brings a precision of 1 in most of our tests.

– substring: the drawback of the previous operation is that it may pass
through simple renaming transformations, that may add or delete a pre-
fix or a suffix. To tackle this issue after the equality test we check, if the
values are character strings, if one value is a substring of the other. As with
the previous operation, we must be cautious on the obtained results, and
check if the substring exists as an attribute value in the model that contains
the longest string value of the couple. This method is once again reliable in
most of the cases, and in our tests it always gave a precision of 1.

We also experimented with other matching operations that use the longest com-
mon substring or the Levenshtein distance, but our context implies that values in
the target model remain really close to values from the source model, even capital
or lowercase letters are important. To find highly reliable matchings we cannot
afford to use distance methods that may lower the precision of the matchings.

At the end of this step, for our example,A includes, among others, the pairs of an-
chors (Text:Class, Text:Entity)or(has a:Association, has a:Relationship).

3.2 Anchor Propagation

Considering the anchors as a nearly correct match, we propagate this informa-
tion on paths outgoing from an anchor and leading to another close anchor to
discover other potential matches. Indeed, we assume that on a path between two
anchors, even if the metamodels are different, when an entity e is close to another
entity f in the source model, it is likely that the entity which results from the
transformation of e is close to the entity which results from the transformation
of f . Due to the differences between the metamodels, the path between the two

196 X. Dolques et al.

entities is likely to be differently labeled. The process cannot be correct in all
the cases, because during the transformation some elements can be removed or
added, but it is likely to produce many correct matches.

Source and target models may be seen as two labeled graphs Gsrc and Gtgt,
in which a node represents an instance of a class from the metamodel, and an
edge represents an association between class instances (cf. graphs in Figures 6
and 7). We enumerate from the two graphs all the paths connecting two anchors
and whose length is less than a constant α.

We align the nodes from a path between two anchors a1 and a2 of Gsrc

with the nodes from a path between the anchors a′
1 and a′

2 if (a1, a
′
1) ∈ A and

(a2, a
′
2) ∈ A. For example we will align a path between Text:Class and has

a:Association with a path between Text:Entity and has a:Relationship.
One difference from the original Anchor-Prompt approach is in the alignment of
paths with different lengths, for which Anchor-Prompt only aligns pairs of paths
of identical length. This way the original approach leads to match elements that
are on the same position on the path. More generally, in our approach, when
aligning two paths, we consider each pair of nodes as shown in Figure 9, but not
with the same weight: we are giving the maximum weight to pairs of nodes that
are in the same position relatively to each node’s path length.

LetX andY be two lists of nodes, respectively fromGsrc andGtgt and represent-
ing two paths to be aligned. X and Y are starting by two anchors that are matched
together. Letx ∈ X and y ∈ Y . index(x) and index(y) are the position of the nodes
in the list starting from 1. The weight of the pair (x, y) is defined by:

W (x, y) = 1 −
∣∣∣∣ index(x)
length(X) + 1

− index(y)
length(Y) + 1

∣∣∣∣
For instance, W (x1, y1) = 1−∣∣1

6
− 1

4

∣∣ = 0.92 and W (x1, y2) = 1−∣∣1
6
− 2

4

∣∣ = 0.67,
showing that x1 is more likely to match with y1 rather than with y2.

We align eachpair of pathswhose extremities are anchors, incrementing the sim-
ilarity coefficient of a pair of elements each time the elements appear in two paths
to be aligned. The increment is computed depending on the weight of the pair.

x3 x4 x5

y3

x1 x2 a2

y2y1

a1 Gsrc

Gtgt

length : 5

length : 7

a2a1

X

Y ' '

Fig. 9. Aligning two paths

Easing Model Transformation Learning with Automatically Aligned Examples 197

At the end of the process we have a set of node pairs with similarity coef-
ficients. The similarity coefficients have no meaning if compared globally. If a
node appears only in one path between two anchors, then all the pairs contain-
ing this node will have a similarity coefficient that may be lower than ones with
nodes appearing in many paths between two anchors, making difficult to decide
which pairs are important. However, comparing the similarity coefficients of all
the pairs containing one node is more meaningful. Indeed, the pair with the
highest similarity coefficient is more likely to be a matching, so all the similarity
coefficients of this node should be compared relative to it.

Figure 10 shows in the case of the object of name “text” and type Property
in our example how it is deduced that its matching element in the target model
is the object of name “text” of type Role attached to the RelationShip named
“hasa”. We see that for all the matching links containing the Property “text”,
the highest similarity coefficient is obtained with the Role “text”, and none of
the other matching links pass over a threshold that, after some experiments, we
fixed at 80% of the highest value for an object. The same principle can be used
symmetrically for the Role “text” that validates the choice of this matching.

1.5

1.5

14.25

11

1.5

10.25

27Property
"text"

Role
"text"

Relationship
"Hasa"

Property
"forewordWritten"

Property
"style"

Class
"Text"

Relationship
"Hasa"

Role
"style"

Fig. 10. Filtering of the similarity coefficient

4 Case Study

This section presents the experimental results obtained with our approach. We
present the implementation used to run the experimentation, then the experi-
mental protocol and data, and the obtained results with their interpretation.

4.1 Tool Implementation

A tool called MANDARINE1 has been developed based on the approach de-
scribed above, with the objective of improving MTBE processes. It has been
1 Model AligNement Disseminating AttRibute INstances Equivalences

198 X. Dolques et al.

designed to be efficiently integrated with the approach described in [11] by using
a part of its metamodel but it can also be used as a standalone tool for an inte-
gration with another approach. It is based on the Eclipse Modeling Framework,
as it is a modeling facility widely adopted by the MDE community, and has been
implemented in JAVA.

The tool takes as input the source and target example models of the trans-
formation and returns the computed matchings between the models as a model
conforming to Matching Model, the metamodel described in Figure 12. This
metamodel is also used to describe the input of the MTBE process from [11].
Technically, the only requirement for the input models is that they must be
recognized by EMF as instances of an Ecore Model.

An informal representation of the architecture of the tool is provided in
Figure 11. The process of matching is split in two distinct steps: the first one imple-
ments the anchor discovery process from section 3.1 with the ability to choose the
matching operation between attributes. This step returns a Matching Model as a
result. The second part implements our adaptation of Anchor-Prompt from sec-
tion 3.2, where the maximum length of the considered paths and the threshold for
filtering the similarity coefficients may be passed as input with a Matching Model.
Although the two processes are designed to be launched one after another, they
are independently implemented to allow flexibility of use and further evolution.

The Matching Evaluation tool is the infrastructure to evaluate the discovered
matchings against an expert matchings, it will be discussed in Section 4.

Fig. 11. An architecture for the anchor-based matching tool

Easing Model Transformation Learning with Automatically Aligned Examples 199

Fig. 12. Metamodel describing the matching used in our tool

4.2 Testing Protocol and Metrics

As an extension of the tool previously described, we designed a testing platform
presented on the right hand side of Figure 11. This platform takes as input two
matching models, one created by an expert that gives a reference result and
that we will refer to as Aexpert, and another one automatically computed that
will be called Aauto and of which we want to measure the quality. Those two
models are then automatically compared according to several metrics. Model
matching being similar with schema matching or ontology matching, we propose
here to use metrics from those last two domains. We will especially refer to the
metrics described in [12]: precision, recall and overall. In the following we will
use Apositives = Aauto ∩ Aexpert as the set of matching links that are present in
both expert and automatically obtained matchings (see Figure 13).

Fig. 13. Schematic illustration of matching comparison

Precision. The precision calculates the ratio of correct matchings in Aauto over
the size of Aauto. Therefore this metric depends on the quantity of bad matchings
introduced by the approach. It is a rational number going from 0 (if all the
obtained matchings are wrong) to 1 (if there are no wrong matchings at all i.e.
Aauto ⊆ Aexpert). It is calculated by the formula: precision = |Apositives|

|Aauto|
Recall. The recall calculates the ratio of correct matchings in Aauto over the
number of correct matchings, i.e. the size of Aexpert. Therefore this metric de-
pends on the quantity of matchings from Aexpert missed by the approach. It is a
rational number going from 0 (if there are no matchings from Aexpert in Aauto) to
1 (if all the matchings from Aexpert have been discovered, i.e if Aexpert ⊆ Aauto).
It is calculated with the following formula: recall = |Apositives|

|Aexpert|

200 X. Dolques et al.

Overall. The overall combines precision and recall to quantify the needed effort
to go from Aauto to Aexpert, relatively to the size of the expert model. It is a
rational number bounded between −∞ and 1. Overall is 1 if precision = recall,
and 0 if the number of wrong matchings in Aauto added to the number of missing
matchings is equal to the size of Aexpert. If this number is greater than the size
of Aexpert then overall is a negative number. It is calculated with the following
formula: overall = 1 − (|Aauto|−|Apositives|)+(|Aexpert|−|Apositives|)

|Aexpert|

4.3 Data

We propose here to validate our approach by applying it on 22 model transfor-
mations2. The data used for this case study comes from several sources: home
made transformations, UML refactorings [13] and transformations from the ATL
zoo of transformations [14]. In the latter case, the models used as examples are
given with the transformation.

4.4 Results

The evaluation program has been applied twice for each transformation, first to
evaluate the anchor discovery result and then the whole process result. Precision
and recall have been measured in each case, and the overall has been calculated
from them. Figures 14, 15, and 16 present the obtained results. For the anchor
discovery step, we only show the results obtained with the substring similarity
metrics, since it is the one giving the best results. We can see in Fig. 14 that

 0

 0.2

 0.4

 0.6

 0.8

 1

delegation1

IntroducingInterface

IntroducePrim
aryKey

hideDelegate

Elim
inateRedundantInheritance

delegation2

EquivalenceAttributesAssociations

extractClass

Disaggregation

Book2Publication

Fam
ilies2Persons

um
l-er-iccs

um
l-er3

um
l-er

um
l-er2

UM
L2ClassDiagram

ToKM
3

Ecore2Class

JavaSource2Table

KM
32EM

F

associations-persons

KM
32Problem

em
f2km

3

precision anchor discovery
precision anchor discovery + propagation

Fig. 14. Precision measured on the case study

2 The detail of all the transformations is given at: http://www.lirmm.fr/%7Enebut/
Publications/ArticleSupplements/ECMFA2011/examples-casestudy.html

Easing Model Transformation Learning with Automatically Aligned Examples 201

 0

 0.2

 0.4

 0.6

 0.8

 1

delegation1

IntroducingInterface

IntroducePrim
aryKey

hideDelegate

Elim
inateRedundantInheritance

delegation2

EquivalenceAttributesAssociations

extractClass

Disaggregation

Book2Publication

Fam
ilies2Persons

um
l-er-iccs

um
l-er3

um
l-er

um
l-er2

UM
L2ClassDiagram

ToKM
3

Ecore2Class

JavaSource2Table

KM
32EM

F

associations-persons

KM
32Problem

em
f2km

3

recall anchor discovery
recall anchor discovery + propagation

Fig. 15. Recall measured on the case study

 0

 0.2

 0.4

 0.6

 0.8

 1

delegation1

IntroducingInterface

IntroducePrim
aryKey

hideDelegate

Elim
inateRedundantInheritance

delegation2

EquivalenceAttributesAssociations

extractClass

Disaggregation

Book2Publication

Fam
ilies2Persons

um
l-er-iccs

um
l-er3

um
l-er

um
l-er2

UM
L2ClassDiagram

ToKM
3

Ecore2Class

JavaSource2Table

KM
32EM

F

associations-persons

KM
32Problem

em
f2km

3

overall anchor discovery
overall anchor discovery + propagation

Fig. 16. Overall measured on the case study

the precision obtained is good, with a value of 1 in many cases, especially for the
anchor discovery process. It enforces our hypothesis that the anchor discovery
result can be considered as reliable. On the other hand, the recall values are
not as good, but it was expected as our approach intends to assist the matching
creation and not to completely automate it. It sometimes occurs that for a same
transformation, the propagation of the anchors degrades the precision, while
not increasing the recall. That shows that this step could be enhanced; ways
to enhance this step are given in conclusion. We can also see that one of the

202 X. Dolques et al.

transformation gives no results at all. This transformation, named JavaSource2
Table is an extraction of statistics from a Java program and therefore does not
keep the structure of the source model at all during the transformation.

The overall values are all positives, so if we consider adding or removing a
match as an atomic operation with the same cost, then in each case our approach
is decreasing the cost of matching two models completely by hand, in many cases
by half or more. However, with the good results obtained for the precision, the
correction operations of the matching model are mainly adding operations.

5 Related Work

Automating the discovery of mappings between database and XML schemas,
ontologies, or (meta)models has been thoroughly investigated. We encourage
the reader to refer to [8] or [9] for an in-depth description of the existing work.
Most of the main approaches such as [15,16,17,18,19] make the assumption that
the relations between the two models being compared are identical. The basic
idea exploited by these approaches is to compute first a similarity between the
elements using their names, and to compute then a similarity using the struc-
ture. To compute this second kind of similarity, they assume that the relations
between the elements have the same kind in the two compared models. In the
MDE terminology, it could be translated as: the models being compared have the
same meta-model. In our case the models being compared conform to two dif-
ferent meta-models. Therefore, a straightforward use of one of these techniques
may not exploit all the potential of those approaches. In [20], they use (among
other similarity calculations) the similarity flooding ([15]) and they construct
adequate propagation models that capture the semantics of the relationships.
These propagation models are nevertheless specific to the studied meta-models
(and their meta-meta-model(s)) and are designed by an expert.

Moreover, our alignment problem has two characteristics to exploit: since the
source and target models are supposed to be written by the same person, the
identifiers and names should be nearly identical. Second, since the target model
results from a transformation from the source model (this is a main difference
with approaches that study the meta-model matching), the structures of the two
models are supposed not to be radically different one from the other. That is why
we adapted another kind of approach [10]. Indeed, due to the first characteristic
of the problem, the anchors should be easy to detect, and due to the second
characteristic, the mapping algorithm exploiting the anchors should be efficient.

Concerning the context of application of our matching approach (model trans-
formation by example), several proposals [21,5,6,7] aim at inferring the rules of
a transformation or its result using a set of examples. In all these approaches, an
example consists at least of a source model, a transformed model, and the links
between the elements of these two models. None of those approaches include
an assistance to build those last links, and all of them would benefit from the
approach proposed in this paper.

Easing Model Transformation Learning with Automatically Aligned Examples 203

In [22], a By-Demonstration approach is proposed to generate model trans-
formations. It consists in building step by step examples of transformations,
following strong naming constraints. Thus examples are incrementally built, and
both the increments and the naming constraints allow links to be deduced and
rules to be inferred.

6 Conclusion

Model transformation by example (MTBE) is a promising approach to ease
the development of model transformations. Several proposals have been devel-
oped to make MTBE feasible. Those approaches take as input examples of a
transformation composed of source models, target (transformed) models, and
the transformation links from source model elements to target model elements.
While designing the source and target models is a simple and valuable task (the
models can later reused for documentation or testing purpose), making explicit
the transformation links is a tedious and error-prone task. In this paper, we
detailed an approach and a tool using text analysis and alignment techniques
to partly generate those links. Such a mapping engine provides valuable help to
the expert in charge of designing an example for an MTBE process. In order
to validate the proposed approach, we performed experiments on a set of model
transformations, and compared, based on metrics such as precision and recall, the
matchings generated by our matching tool to reference (manually built) match-
ings. The results obtained are promising: we obtain very good precision results
and fairly good recall results. The experiments also show that the propagation
step could be more efficient (loss of precision, for sometimes no gain in recall),
while the step of discovery of the anchors is sufficiently efficient (precision of
1, and sufficient recall). Future work will consist in enhancing the propagation
step, first integrating in it the similarity metrics between the values of elements
computed in the first step, and secondly taking into account attributes that are
not of String type, like cardinalities.

References

1. OMG: MOF QVT Final Adopted Specification. Object Modeling Group (2005)
2. Lopes, D., Hammoudi, S., Bézivin, J., Jouault, F.: Generating transformation defi-

nition from mapping specification: Application to web service platform. In: Pastor,
Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 309–325. Springer,
Heidelberg (2005)

3. Falleri, J.R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel matching for
automatic model transformation generation. In: Busch, C., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 326–340. Springer,
Heidelberg (2008)

4. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transforma-
tion generation by-example. In: HICSS 2007: Proc. of the 40th Annual Hawaii
International Conf. on System Sciences, p. 285b. IEEE Computer Society, Los
Alamitos (2007)

204 X. Dolques et al.

5. Balogh, Z., Varró, D.: Model transformation by example using inductive logic
programming. Software and Systems Modeling (2008) (appeared online)

6. Dolques, X., Huchard, M., Nebut, C.: From transformation traces to transformation
rules: Assisting model driven engineering approach with formal concept analysis.
In: Proceedings of ICCS 2009 Supplementary, pp. 15–29 (2009)

7. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model Transformation as an
Optimization Problem. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

8. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

9. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

10. Noy, N.F., Musen, M.A.: Anchor-prompt: Using non-local context for semantic
matching. In: Proc. of the Workshop on Ontologies and Information Sharing at
IJCAI 2001, Seattle, USA, pp. 63–70 (2001)

11. Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Learning transformation rules
from transformation examples: An approach based on relational concept analysis.
In: 14th IEEE International Enterprise Distributed Object Computing Conference
Workshops of EDOC 2010, pp. 27–32. IEEE Computer Society Press, Los Alamitos
(2010)

12. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS,
vol. 2593, pp. 221–237. Springer, Heidelberg (2003)

13. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley, Reading (2000)

14. ATL transformation zoo,
http://www.eclipse.org/m2m/atl/atlTransformations/

15. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: ICDE, pp. 117–
128. IEEE Computer Society, Los Alamitos (2002)

16. Do, H.H., Rahm, E.: Coma - a system for flexible combination of schema matching
approaches. In: VLDB, pp. 610–621. Morgan Kaufmann, San Francisco (2002)

17. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB, pp. 49–58. Morgan Kaufmann, San Francisco (2001)

18. Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A., Plex-
ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697.
Springer, Heidelberg (2004)

19. Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology Alignment with OLA.
In: Proc. of the 3rd EON Workshop, 3rd Int. Semantic Web Conf, pp. 333–337
(2004)

20. Fabro, M.D.D., Valduriez, P.: Towards the efficient development of model transfor-
mations using model weaving and matching transformations. Software and System
Modeling 8(3), 305–324 (2009)

21. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transfor-
mation generation by-example. In: HICSS, p. 285. IEEE Computer Society, Los
Alamitos (2007)

22. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by demon-
stration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 153–167.
Springer, Heidelberg (2010)

Code Generation for UML 2 Activity Diagrams

Towards a Comprehensive
Model-Driven Development Approach

Dominik Gessenharter and Martin Rauscher

Institute of Software Engineering and Compiler Construction,
Ulm University, Ulm Germany

{Dominik.Gessenharter,Martin.Rauscher}@uni-ulm.de

Abstract. Modeling static structure and modeling behavior are often
regarded as two distinct topics, however, in UML1 they are not. They
are even tightly coupled as can be seen e. g. by looking at attributes:
That an attribute holds values at runtime is defined within the Classes
language unit whereas the act of setting or getting a concrete value of
an attribute is defined in the Actions language unit.

Tool support for modeling static structure is far more advanced than
for modeling behavior. In particular, further model processing for activ-
ities like transformations or code generation is in a rudimentary stage.

In this paper, we present an approach for code generation for activi-
ties preceded by model transformations. Besides advancing model-driven
development to properly include behavior, our contribution also enhances
structural modeling by providing generation of code for accessing struc-
tural features based on the UML semantics of Actions.

Keywords: UML, Actions, Activities, Code Generation.

1 Introduction

“Modeling is the designing of software applications before coding. Model-
ing is an essential part of large software projects, and helpful to medium
and even small projects as well. (. . .) Models help us by letting us
work at a higher level of abstraction. A model may do this by hiding or
masking details, bringing out the big picture, or by focusing on different
aspects of the prototype.” [16]

This characterization of modeling is verbalized in the introduction to the proba-
bly most widely-used modeling language – OMG’s (Object Management Group)
UML, which currently is the de facto standard for modeling software systems.
“Built upon fundamental OO concepts including class and operation, it is a natu-
ral fit for object-oriented languages and environments.” [16] Object oriented pro-
gramming bases on objects which inherently couple data (values of attributes)
and methods for data manipulation.
1 Unified Modeling Language [18], http://www.uml.org

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 205–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

206 D. Gessenharter and M. Rauscher

UML supports structural modeling [18, §7] as well as behavioral modeling
by defining Actions [18, §11] and Behaviors. Actions are basic concepts provided
by UML whereas behaviors are user-defined. Since Activity [18, §12] is the only
behavior directly containing actions [2], it is essential for behavioral modeling.

The relation of classes, actions and activities can be seen in Fig. 1 showing the
semantic areas of UML as three distinct composite layers. Each layer depends on
lower layers, but not on upper ones. The bottom layer is structural. Actions are
the behavioral base for the higher-level behavioral formalisms of UML contained
in the top layer. Clearly mapping actions to the structural foundation makes it
easy to define the semantics of behavioral formalisms based on actions [4].

Fig. 1. A schematic of the UML semantic areas and their dependencies

Since modeling a system’s structure and behavior gives rise to automatic
generation of the full runnable code [11], UML is well suited for Model-Driven
Development (MDD). In Sect. 2, we discuss modeling using UML at a glance.
As for a comprehensive approach to MDD, tools are required supporting further
processing of models [3] including both, structure and behavior, we present our
code generation for static structures, Actions, and Activities in Sect. 3. To keep
the code generation process straight forward, a preceding model transformation
is used as in Sect. 4. We provide some results of an evaluation of our approach
in Sect. 5, followed by a discussion of our contribution and related work.

2 Modeling with UML

2.1 Structural Modeling

The predominant elements of structural models are Classes and Relationships
between classes, most often Generalizations and Associations. Property is used
to define the structure of classes and associations. According to its upper bound,
a property represents a single value or a collection of values when instantiated.

Another important feature available for classes only is Operation. It is a Be-
havioralFeature which may have a behavior associated [18, §13.2.22]. Calling an
operation at runtime results in executing its specified behavior, e. g. an activity,
a state machine or an OpaqueBehavior, i. e. a code fragment of any language.

2.2 Activities

UML defines the semantics of a number of specialized actions which serve as fun-
damental units of behavior specification. According to the UML metamodel [18]

Code Generation for UML 2 Activity Diagrams 207

and Bock [2], actions are directly contained only in activities. The sequence of
action executions is defined by control flows or object flows which additionally
provide input to actions from outputs of other actions (see Fig. 2(a)).

Our approach focuses on three concepts which make activities a very ex-
pressive formalism: ObjectFlow, concurrency, and InterruptibleActivityRegions.
Dedicated object flows are convenient as they clearly show the locations of data
creation and consumption and make activities well suited for modeling behav-
iors where object flows are extensively used. Concurrency may be a result of
either explicit or implicit modeling. Fig. 2(b) shows the use of a ForkNode and
a JoinNode for explicitly modeling concurrency and synchronization as well as
an implicit fork (outgoing flows of a) and an implicit join (incoming flows of
d). InterruptibleActivityRegions support aborting executions of actions which
are grouped inside the region. Since aborting an execution might prevent locked
resources from being released, aborting actions is risky.

(a) Simple control and object flows. (b) Implicit and explicit forks and joins

Fig. 2. Two examples of basic activities

2.3 Actions

Actions are the fundamental units of executable functionality. UML’s speci-
fication contains 37 concrete actions for various purposes. Specializations of
StructuralFeatureAction support insertion and removal of single attribute val-
ues, removal of all values of an attribute and the retrieval of attribute values.
Specializations of LinkAction provide similar functionality for links of associa-
tions. CallOperationAction causes a behavior which implements the operation
to execute, CallBehaviorAction directly invokes another behavior.

Besides graphical modeling, UML encourages the use of a surface action lan-
guage which encompasses both primitive actions and the control mechanisms
provided by behaviors. Furthermore it may introduce higher-level constructs
like e. g. a creation operation with initialization as a single unit as a shorthand
for the create action to create an object and further actions to initialize attribute
values and create objects for mandatory associations [18, §11, p.217].

Foundational UML (fUML) [19], a subset of UML, and the Action Language
for Foundational UML (Alf) [17] both have been specified by the OMG. Al-
though only very few new constructs have been introduced, using Alf may have
advantages compared to traditional graphical modelling.

Fig. 3(a) shows an activity for setting the value of an attribute of the context
object, Fig. 3(b) shows the same activity in Alf. Here, the graphical notation is
more complex than a textual, code-like representation. The quicksort example of

208 D. Gessenharter and M. Rauscher

(a) Graphical UML notation.

1 activity SetName(in name: String)

2 {
3 this.name = name;

4 }
(b) Implementation in Alf

Fig. 3. Graphical vs. textual representation of an activity writing an attribute value

the Alf specification [17, pp. 366, 368] contrasts an Alf implementation of 10 lines
with a graphical representation consuming a whole page of this paper’s format.
Another advantage of Alf is that it can be seen which feature is updated. In the
graphical notation of UML, this detail is not presented.

But even though the level of abstraction differs between graphical represen-
tation and Alf, two problems are still unsolved: 1) behavioral modeling in UML
is based on very fine grained actions which are not suitable to reach a higher
level of abstraction or bringing out a big picture and 2) the poor tool support of
activities is not addressed by introducing another representation of activities.

2.4 Interplay of Structures, Actions and Behaviors

Behavioral models depend on structural models if actions access structural fea-
tures. They may also serve as an implementation of operations contained in
structural models. This is illustrated in Fig. 4: The metamodel is given on the
left, a concrete instance on the right. Gray shaded beams connect meta classes
with their instances in the model. The bold framed actions read and write are
instances of specializations of the bold framed StructuralFeatureAction.

Dashed lines pointing from StructuralFeatureActions to associated Structural
Features and from Operations to associated Activities represent instances of the
bold printed meta associations between the corresponding meta classes.

GetName
read

result:
String

self p: Person

*
1

Behavior

ActivityNode
StructuralFeature

Action

p: Person

SetName

write
result: Person

self
p: Person

p: Person

name:String

name: String
result: String

ModelMetamodelFeature

StructuralFeature

getName(): String
setName(String n)

Name: String

Person

*

1

0..1 *
BehavioralFeature

ActionActivity

Fig. 4. Dependencies and relationships between metamodel and model elements

Code Generation for UML 2 Activity Diagrams 209

3 Code Generation for UML Models

3.1 Implementing Structural Models

Our code generator handles classes with attributes, associations and association
classes based on the code patterns presented in our previous works [8]. For at-
tributes, methods for writing and reading values are generated. If an attribute’s
upper bound is 1, set and get methods are generated, for upper bounds greater
than 1, add, get and remove methods are generated. A get method returns a
single value or a set of values according to the attribute’s upper bound.

Associations are represented as dedicated classes managing a list of tuples
representing the links between instances. Association classes are implemented
by adding its features to the tuple representing the links.

Methods for creating or destroying links are contained in the implementation
class of an association but are only visible to classes participating the association.
Within these classes, get as well as set or add and removemethods are generated
according to the association end’s multiplicity, their visibility is determined by
the end’s visibility as shown in Fig. 5. The methods generated for association ends
delegate calls to the association implementation class which creates or destroys
tuples or arranges a result set of instances for get method calls.

(a) Class Diagram

1 public class employee{
2 private String name;

3 public void setName(String n){...}
4 public String getName(){...}
5 public void setCompany(Company c){...}
6 public Company getCompany(){...}
7 }
8 public class Company{
9 private void addEmployees(Employee e){...}

10 private void removeEmployees(Employee e){...}
11 private Employee[] getEmployees(){...}
12 }

(b) Implementation of classes Employee and Company

Fig. 5. An example of a structural model and its implementation. Note that for the
association employment no implementation is contained in Fig. 5(b).

3.2 Code Generation for Actions

Generating code for accessing attributes or associations is close to an implemen-
tation of actions. To fit to the specification, set, get, add, and remove methods
must be mapped to StructuralFeatureActions and LinkActions and thus be called
when an Action associated with the corresponding attribute is executed.

Actions are implemented as part of the static structure by inserting code into
those classes which are affected by an action, e. g. a StructuralFeatureAction is
implemented in the class owning the associated feature.

210 D. Gessenharter and M. Rauscher

In Sect. 2.3, we refer to the idea of using a surface action language. We avoid
the development of such a language as well as supporting an existing one by
using OpaqueActions for coupling models and code: for each OpaqueAction, an
equally named method within the activity’s context is called, i. e. code written
by the user when implementing the method. Within this code, methods to which
action executions are mapped can directly be called, i. e. actions can be used in
models as well as in code. Generated code is located in generated classes whereas
user written code is located in a subclass thereof. Thus, both kinds of code are
separated from each other while generated code is still accessible to the user.

3.3 Basic Token Flow Concept

The semantics of the abstract metaclass Action from FundamentalActivities de-
fines four steps of executing an action [18], of which the first is to create an action
execution. The creation of an execution requires all object flow and control flow
prerequisites to be satisfied, i. e. tokens must be available at all incoming edges.
The second step is the consumption of the tokens which are removed from the
original sources. The third step is executing the action until it terminates. After
termination, the last step is to offer tokens to all outgoing edges.

A sequence of actions a and b with a single flow from a to b as shown in
Fig. 6(a) is implemented as a sequence of statements (Fig. 6(b)).

Object flows may be implemented by explicitly using a variable or by nesting
calls, as shown for c and d in Fig. 6(b) and Fig. 6(c).

If multiple object flows exist between two actions, this still can be imple-
mented as a sequence of statements. Depending on the implementation language,
processing of the parameters requires appropriate techniques. Considering Java
which only supports a single return value and no out parameters, a class is re-
quired to hold the return values as shown in Fig. 6(b). The class XY has two
attributes representing the values of x and y, action e must create an instance
of that class and write its output to the attributes. Fig. 6(c) shows an alternative
implementation suitable for languages providing out parameters.

A basic flow, i. e. a flow from one action to another without any control nodes
in between, sequences actions so that two sequential statements calling the ac-
cording methods is a suitable implementation. Such sequences can be imple-
mented in a single thread and as threads may be executed concurrently, a flow
of multiple tokens can be implemented. For a proper implementation of the token
flow semantics, it is necessary to properly implement guards as well as control
nodes, as explained in the following.

3.4 Guards

If the guard of an edge does not hold, it prevents tokens from traversing that
edge. Applied to Fig. 6, if a guard is annotated to the edge from a to b (or c to
d or e to f respectively) the call of b() (d() or f()) is deferred as long as the
guard is not satisfied. A proper implementation requires to pause the execution
of code, if a guard prevents a token from flowing. This is important in particular

Code Generation for UML 2 Activity Diagrams 211

(a)

a(); b();

int x=c(); d(x);

XY xy = e();

f(xy.x, xy.y);

(b)

d(c());

int x; float y;

e(out x, out y); f(x,y);

(c)

Fig. 6. Three examples of sequences of actions and implementations

if concurrency occurs in an activity: The evaluation of a guard may depend on
other concurrently executed sequences of actions. An implementation using if
is insufficient as this does not cause the control flow of an application to pause.

Regarding Fig. 6, inserting while (!<guard>){;} after a();, c();, and
e(); pauses the activity execution. A more sophisticated approach is to let a
thread wait until the guard holds. As a waiting thread cannot evaluate the guard,
all waiting threads must be notified if a guard might evaluate to true. Therefore,
all actions writing values to attributes or variables contain code to notify waiting
threads which immediately re-evaluate guards. Depending on the result of this
evaluation, threads continue executing or waiting for another notification.

Besides deferring the execution of an action in a sequence of actions, guards
have a far more complex impact on the execution of actions if used in combination
with control nodes. This is discussed in detail later.

3.5 Token Flow at Control Nodes

UML defines four kinds of control nodes: DecisionNode, MergeNode, ForkNode,
and JoinNode. Before going into detail, we roughly give the implication of control
nodes. A DecisionNode is used to choose between multiple alternatives from
which only one may be taken. A ForkNode splits an incoming flow into multiple
concurrent outgoing flows. Multiple flows are combined to one single flow by a
MergeNode. A token arriving at one incoming edge results in a token flow on the
outgoing edge. When combining multiple flows with a JoinNode, a token must
be available at each incoming edge to emit a single token at the outgoing edge.

Tokens cannot rest at control nodes. A control token always flows from one
action to another action, a data token may flow to a central buffer. An exception
to this rule is the ForkNode, where tokens may be buffered. We discuss this in
detail when looking closer at fork nodes later.

Note that two or more incoming edges of an action represent an implicit
join, i. e. tokens must be offered to all incoming edges. This implicit join may be
made explicit either by modeling so or by a model transformation. Therefore, we
consider activities to be free of implicit joins. Analogously, two or more outgoing
edges represent an implicit fork. For the same reason as for implicit joins, we
consider all forks to be explicitly modeled.

212 D. Gessenharter and M. Rauscher

3.6 Code Generation Based on Token Flow Semantics

Generating code for sequences of actions is easy. When considering control nodes,
the situation gets more complex, depending on how complex flows are composed:
1) at most one control node is used in a flow from one action to another; 2) flows
may contain any quantity of control nodes, but the flow from the source to the
target is acyclic; 3) any quantity of control nodes and cycles may occur.

The code generation as presented in this paper is designed for activities where
flows contain at most one control node. However, it can be adapted to handle
more complex flows, but remarkable effort is required. We provide additional
information to this issue where necessary.

Our prototype is implemented in Java, but the general idea can be applied to
any other object oriented language supporting threads. Sequences of actions are
translated to sequences of method calls, each method being the implementation
of the corresponding action (see above). Between sequences, control nodes occur
so that at the end of each sequence, depending on the semantics of that control
node, subsequent sequence(s) to execute must be determined and started.

As sequences might be executed concurrently, they must be implemented as
dedicated threads. Separating the code for sequences in individual classes causes
a large number of classes being created. We prefer to include all code in one class
and to determine at runtime, which lines of code to execute. For this purpose,
an id is introduced which is used to identify the sequence to run, as indicated
by the grey boxes in Fig. 7. Setting the id to -1 causes the thread to terminate.

1 class ActThread extends Thread {
2 private int id = 1;

3 public ActThread(int id) {
4 this.id = id;}
5 public void run() {
6 while(id >= 0) {
7 switch(id) {
8 case 1: a();

9 new ActThread(2).start();

10 id = 3;

11 break;

12 case 2: b1();

13 b2();

14 id=4;

15 break;

16 case 3: c1();

17 c2();

18 id=4;

19 break;

20 case 4: d();

21 id = -1; } } } }

Fig. 7. An activity and the generated code for its implementation

Code Generation for UML 2 Activity Diagrams 213

Changing the id to another value causes the thread to execute another sequence
of actions. If two sequences are to be started concurrently, a new thread is created
with the appropriate id and the id of the current thread is changed according to
the other sequence (cf Fig. 7, ll. 9–10). If a thread needs input data due to an
object flow, id and data must be provided as parameters when creating it.

3.7 Token Flow at Control Nodes in Detail

Implementing a merge node is achieved by changing the value of id, as can be
seen in Fig. 7, line 14 and line 18.

A token arriving at a decision node may traverse any of the outgoing edges,
but only one of them. If guards are annotated to outgoing edges – what typically
is the case as these guards define the decision to take – the token may traverse
any edge the guard of which evaluates to true. If one of the outgoing edges is
labeled with an else guard as is in Fig. 8(a), at least one edge may always be
traversed. A suitable implementation is:

a(); if (x>0) id = ...; else id = ...;

Fig. 8(b) shows a situation in which none of the outgoing edges may be traversed
if x=0. The decision shown in Fig. 8(c) is non-deterministic if x=0. To consider
this while code generation requires an analysis of the guards which is difficult
as guards may be any boolean expression evaluated within the context of the
activity. We prefer to test guards of all edges for holding until a guard is found
that is satisfied. If none of the guards holds, the thread waits until receiving a
notification which is sent when attribute or variable values are changed.

while (true){

if (<guard1>) { id = ...; break; }

if (<guard2>) { id = ...; break; }

...

wait(); }

A very complex semantics is that of the fork node. A token offered to its incoming
edge is offered to the targets of its outgoing edges, if the corresponding guards
hold. If at least one token is accepted by a target, a copy of this token is buffered
at each outgoing edge which guard holds, but the target of which cannot accept
the token. An example for this is given later on the basis of Fig. 9. If at most
one control node appears between two actions, the implementation of the fork

(a) (b) (c)

Fig. 8. Three examples of the use of a DecisionNode

214 D. Gessenharter and M. Rauscher

(a)

while (!(<guard1>||<guard2>||...)){ wait(); }
if (<guard1>){ new ActThread(<id>).start(); }
if (<guard2>){ new ActThread(<id>).start(); }
...

(b)

Fig. 9. Use of fork and join nodes invalidating a simple fork node implementation

node is similar to that of the decision node as can be seen in Fig. 9(b). Items in
angle brackets must be replaced by actual values.

If a flow from one action to another contains more than one control node, not
only the guards of an edge determine whether a target action accepts a token.
Subsequent JoinNodes may prevent a token from flowing, too. An example is
given in Fig. 9(a).

A) If a token is offered only to the outgoing edge of a and x<0 holds, c cannot
accept that token as an additional token from b is required.

B) If a token is available at b but not at a, d is executed if x>0 and a token
is buffered at the edge from the fork node to the join node; if x<0, the offered
token at b cannot flow.

C) If tokens are available from a and b and x<0 holds, c is executed and no
token is buffered at the fork node as the guard of the edge to d fails.

D) If, under conditions of C), x>0 holds, d is executed and a token is buffered
at the fork node. As soon as x<0 holds, c is executed.

Note that the implementation of Fig. 9(b) is sufficient for a single fork node,
but not if a fork node is used together with other control nodes in the same flow.

A proper implementation considering token buffering must represent control
nodes as objects able to propagate tokens to subsequent control nodes and to
indicate consumption of tokens to precedent nodes.

The JoinNode is the most complex node with regard to implementation. Al-
though it is known which sequences must be executed before the join node is
reached, it is not known, which threads will be the first ones reaching the join
node. Our implementation of a join node is a class with lists of objects. Each
list represents an incoming edge. Whenever one of the sequences ending at the
join nodes terminates, a token is added to the appropriate list. After that, the
join implementation checks all lists and if each list contains at least one token
and all guards are satisfied, the next sequence is started and tokens are removed
from the lists.

3.8 Implementing InterruptibleActivityRegions

When entering an InterruptibleActivityRegion, i. e. before executing the first ac-
tion inside it, the current thread adds itself to a list of active threads inside the
region (Fig. 10(b), l. 2). When leaving the region, the thread removes itself from
the list as aborting the region no longer affects this thread (Fig. 10(b), l. 4). For
convenience, the list is managed by an object representing the group (ir1).

Code Generation for UML 2 Activity Diagrams 215

(a)

1 case 1: a();

2 ir1.add(this);

3 b();

4 ir1.remove(this);

5 c();

6 break;

(b)

1 case 2: x();

2 ir1.add(this);

3 y();

4 ir1.remove(this);

5 ir1.abort();

6 z();

7 break;

(c)

Fig. 10. Code for supporting InterruptibleActivityRegions

The implementation of a sequence which leaves the region via an edge inter-
rupting the region contains lines for adding and removing the thread in the list
as well (Fig. 10(c), ll. 2 and 4). For actually causing all actions inside the region
to be aborted, ir1.abort(); is called (Fig. 10(c), l. 6). The implementation of
that method might either kill all threads, sent a message requesting the threads
to terminate, or set a flag which is checked before new actions are executed.
One of the two latter options probably is preferable as killing threads – although
closer to the specification – is quite risky.

A proper implementation of interruptible regions requires, when interrupted,
to clear those lists of join nodes which represent edges having their source located
inside the region and fork nodes within the region to discard buffered tokens.

4 Preparing Models by Model Transformations

A model transformation can keep our code generation straight forward by ap-
plying three steps: 1) make implicit forks and joins explicit; 2) move sequences
such as shown in Fig. 6(a) to separate behaviors and replace them by CallBe-
haviorActions ; 3) if possible, replace multiple control nodes by a single one.

An activity and the result of the transformation is shown in Fig. 11. Note that
the two object flows between a1 and a2 are not handled as an implicit fork and
subsequent join since both flows can be implemented as in Fig. 6.

The transformation At of activity A only contains CallBehaviorActions which
implement simple sequences of actions. If A contained a CallBehaviorAction (say
action a2), it was moved to activity X . Consequently, each CallBehaviorAction
of At is mapped to a sequence of actions, each CallBehaviorAction occurring in a
sequence represents a call of another behavior. All control nodes sequencing the
sequences of actions remain in At. Thus, finding sequences is part of the trans-
formation whereas sequencing of sequences is part of the code generation. Both
conversions are solved purely programmatic by prototypically implementations.

Since all actions still persist – even though at a different location – mapping
actions of At to actions of A can easily be done if necessary e. g. for the develop-
ment of a debugger. In our approach, debugging is done by using our interpreter,
but adding debug information to the generated code in principle is possible.

216 D. Gessenharter and M. Rauscher

ZYX

At

A a1

b1

a2

b2 c

X

Y
Z

a1 a2 b1 b2 c

Fig. 11. Activity A and its transformation At with Activities X, Y , and Z

5 Evaluation

We consider the question of semantic correctness of model transformations and
code generation as well as a comparison of generated code and model interpreters.

This does not include a formal verification of the semantic correctness, but
our work is based on the formalization of the semantics of UML2 activities by
Sarstedt [20] which we compared to the fUML specification. Since fUML is a
subset of UML introducing additional constraints, its semantic is less complex.
E. g. for fork nodes, the influence of guards on token buffering is dropped as
fUML allows guards only at edges outgoing from a decision node.

The token flow formalization [20] serving as a foundation for our work is not
UML compliant with regard to token buffering at fork nodes. This issue is con-
sidered in this work and tests show that for all elements presented here, the
effects of generated code are equal to those of interpreters resulting from our
own previous work as well as to that of a reference implementation of fUML2.

An evaluation of our model transformation is done on a metalevel by the
following consideration: moving sequences of actions to activities which are as-
sociated to a CallBehaviorAction is equivalent to the mapping of fUML where
sequences of actions are moved into a structured node [19, §A.3.1].

Compared to Alf, UML activities are more expressive. E. g. in Alf, parallel
flows are always arranged in a block structure, i. e. Fig. 2(b) cannot be expressed
in Alf as in its syntax block statements may have a parallel annotation to force
concurrent execution and synchronization of these blocks. In UML, JoinNodes
wait for tokens on each incoming edge for synchronization. These tokens not
necessarily have to be a copy of the same source token built at a ForkNode.

For evaluation of our prototype, we modeled an information system for public
transportation of an imaginary city and generated code from that model. The
structural model consists of 17 classes, 14 associations and 3 association classes,

2 http://portal.modeldriven.org/content/fuml-reference-implementation-download

Code Generation for UML 2 Activity Diagrams 217

the behavioral model consists of a single activity of 14 Actions, 8 control flows
and 15 object flows. Applying our code generation approach, the output is 1700
lines of code for the structural model including the implementation of actions
and another 700 lines of code for the implementation of the activity.

The implementation of the static structure and of the behavior makes up more
than 75% of the entire project code excluding the GUI. If excluding behavior,
generated code amounts to only about 15%. For more details about the sample
project as well as its implementation, we refer to our previous work [9].

Another aspect worth evaluating are runtime characteristics and size of the
generated code. Numbers of these characteristics are only interesting if compared
to those of other approaches. We compare our code generation approach with
different kinds of activity interpreters: 1) an interpreter computing each token
flow step by propagating tokens along edges; 2) an enhanced interpreter using
lookup tables for flow computation – both results of our previous work – and 3)
the fUML reference implementation.

The code generated by our prototype executes faster than interpreters as ex-
pected since interpreting causes additional overhead whereas generated code may
be optimized by the compiler. The numerous console outputs of the fUML refer-
ence implementation were considered by adding console output to our code gen-
erator. Increasing complexity of models has fewer impact on the execution time
of generated code. However, our own interpreters allocate less memory than the
generated code if activities are complex; in case of small activities, memory alloca-
tion of generated code may be better as that of interpreters3. For a more detailed
comparison of generated code and interpreters, we refer to our previous work [10].

6 Discussion and Related Work

In UML, only actions provide access to structural features. Some tools, e. g.
Fujaba [25] provide access to attributes or even to associations by additional lines
of code [7], which is a proprietary add-on not based on the UML specification.
Such extra code can be seen as an implementation of actions if being mapped
to the actions they represent, thus becoming applicable for behavioral modeling.
Since Activities are the only behavior containing Actions, code implementing
actions must be called when executing corresponding actions in an activity.

Our eclipse based prototype uses UML2 of the Modeling Development Tools
(MDT) [5] and can be coupled with a compatible editor such as Eclipse UML2
Tools or Papyrus [26] in order to provide a user friendly modeling interface with
our model processing facilities. A survey giving a detailed analysis of current
tools [6] reveals, that support of activities w.r.t. modeling is well supported in
very few tools, e. g. Papyrus [26]. Further processing of activities, in particu-
lar their execution by interpreters or code generation is only rudimentary sup-
ported, if at all. If generating code for actions and compiling activities to code as
presented, for some essential modeling elements the execution semantics of ac-
tivities can be fully preserved when building applications from UML models.
3 fUML reference implementation is excluded from this comparison

218 D. Gessenharter and M. Rauscher

Activities are often associated with business processes. Our approach is prob-
ably not feasible for implementing business workflows. There are workflow en-
gines available to which such processes might be deployed. But activities can
also be used to describe short workflows were failover features with process state
preservation etc. is not needed. E. g. the workflow of purchasing a ticket required
to use a public transportation system: using a workflow engine for the process
of selecting a departure and a destination station, a departure or arrival time
and selecting a connection fitting the given constraints is oversized. For such
purposes, we consider generating code a good idea.

Some advantages of generating code are that we can profit from compiler tech-
nique benefits like code optimizations which would have to be re-implemented
in an interpreter if runtime characteristics of compiled code are desired. Not
building an interpreter but transforming activities to code and thus making the
Java virtual machine to the model interpreter is our goal.

Our approach supports implementations for accessing structural features and
maps it to corresponding actions, thus achieving the coupling of structures and
behaviors. By additionally accurately considering the subtleties of the UML to-
ken flow semantics, our approach supports behavioral modeling according to
the specification. However, as composing complex flows by combining multiple
control nodes between actions makes code generation very difficult – if not im-
possible – our approach is limited to a single control node between two actions.
This limitation may be dropped when implementing control nodes as dedicated
classes with methods for token propagation and token consumption.

Although other approaches dealing with code generation for activities exist,
these approaches most often focus on some special application in which code
generation for activities is only a minor part. UML based Web Engineering
(UWE) [12,13] is concerned with this issue, but even claiming being based on
standards, UWE only uses the notation but as can be seen in examples, the
semantics of implicit joins is not considered [13, pp. 171,176][14]. Blu Age [23]
which is based on executable UML suffers the same restriction.

Another approach for comprehensive MDD is implemented in UJECTOR.
Since the provided examples only consist of simple sequences of actions [22, pp.
30,34], we can not assess the value of code generation for activities of this tool.

Sulistyo and Prinz propose recursive modeling to obtain complete code [21],
but the introduced code patterns neither support concurrency nor a delay of
token flow due to not holding guards.

Bhattacharjee and Shyamasundar present an approach for validated code gen-
eration for activity diagrams [1]. Mapping activities to Esterel, a language sup-
porting concurrency, this approach overcomes limitations of the so far mentioned
works. However, even here some problems are not addressed, e. g. the fact that
it can not be statically decided which threads will be joined when reaching a
join node. A delay of a token flow due to not satisfied guard conditions as well
as the token buffering semantics of fork nodes are not considered.

Executable UML [15] gives detailed advice how to build executable UML mod-
els, but without addressing details of compiling models to code. BridgePoint[24]

Code Generation for UML 2 Activity Diagrams 219

is a tool based on executable UML, but modeling UML2 activities is not sup-
ported. Instead, Object Action Language (OAL) is used, which is less expressive
than Alf as concurrency is not supported on the same level. Deferring an activity
execution due to non satisfied guards is not possible in OAL, too. Thus, central
concepts which we address in this paper are not applicable there.

Summing up we can find the token flow semantics of activities being not
sufficiently implemented in current approaches or tools using more restrictive
formalisms such as subsets of the UML specification of activities or action lan-
guages. As explained, a decision node cannot be implemented only by using an
if-then-else statement. If the guard of each outgoing edge is not satisfied, the
decision is delayed until one guard holds. Suchlike effects of the token flow seman-
tics are very different to what programmers are used to and possibly therefore
often not considered – but dealing with them is the essence of this contribution.

7 Conclusion and Future Work

Since code for behavior amounts for over 50% of the complete code of our sample
project, better tool support for behaviors is a promising perspective. Further-
more, according to the specifiaction, activities couple behavior and structure.
Thus, for comprehensive MDD, supporting activities is indispensible. Runtime
characteristics of generated code show that including activities in an MDD ap-
proach by code generation offers some advantages which interpreters do not.

Our approach is currently limited with regard to a complex composition of
flows by using control nodes. Pushing this boundary by analyzing complex flows
which can – if matching special patterns – be implemented without explicit token
propagation is our next step. Depending on the limitations remaining after that,
a decision of whether implementing flows explicitly or not will be taken. A major
objection is, that generating code for token propagation may become close to
generating an interpreter which computes each step at runtime.

Apart from that, supporting additional modeling concepts like e. g. Stream-
ing of object flows are further steps to take. Even architectural aspects like
deployment raising the complexity of communication between instances might
be considered, thus integrating behavior, structure and other aspects of UML.

References

1. Bhattacharjee, A., Shyamasundar, R.: Validated Code Generation for Activity Di-
agrams. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 508–521.
Springer, Heidelberg (2005)

2. Bock, C.: UML 2 Activity and Action Models Part 2: Actions. Journal of Object
Technology 2(5), 41–56 (2003)

3. Broy, M.: Challenges in Automotive Software Engineering. Proceedings of the ICSE
2006, pp. 33–42 (2006)

4. Crane, M.L.: Slicing UML’s Three-layer Architecture: A Semantic Foundation
for Behavioural Specification. PhD thesis, Queen’s University, Kingston, Ontario,
Canada (January 2009)

220 D. Gessenharter and M. Rauscher

5. Eclipse Foundation, Inc. Eclipse Model Development Tools (MDT) (2011),
http://www.eclipse.org

6. Eichelberger, H., Eldogan, Y., Schmid, K.: A Comprehensive Analysis of UML
Tools, their Capabilities and their Compliance. Software Systems Engineering, In-
stitut für Informatik, Universität Hildesheim (2009)

7. Fujaba Associations Specification (2005), http://www.se.eecs.uni-kassel.de/

∼fujabawiki/index.php/Fujaba/ Associations/∼Specification
8. Gessenharter, D.: Implementing UML Associations in Java: A Slim Code Pattern

for a Complex Modeling Concept. In: RAOOL 2009: Proceedings of the Workshop
on Relationships and Associations in Object-Oriented Languages, pp. 17–24. ACM,
New York (2009)

9. Gessenharter, D.: Extending The UML Semantics for a Better Support of Model
Driven Software Development. In: Software Engineering Research and Practice,
pp. 45–51 (2010)

10. Gessenharter, D.: UML Activities at Runtime - Experiences of Using Interpreters
and Running Generated Code. In: Trujillo, J., Dobbie, G., Kangassalo, H., Hart-
mann, S., Kirchberg, M., Rossi, M., Reinhartz-Berger, I., Zimányi, E., Frasincar,
F. (eds.) ER 2010. LNCS, vol. 6413, pp. 275–284. Springer, Heidelberg (2010)

11. Harel, D.: From Play-In Scenarios to Code: An Achievable Dream. Computer 34,
53–60 (2001)

12. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering (2002)
13. Koch, N., Zhang, G., Baumeister, H.: UML-Based Web Engineering: An Approach

Based on Standards. In: Web Engineering: Modelling and Implementing Web Ap-
plications, pp. 157–191 (2008)

14. LMU: Ludwig-Maximilians-Universität München, Institute for Informatics
Programming and Software Engineering. UWE Examples (December 2009),
http://uwe.pst.ifi.lmu.de/exampleAddressBookWithContentUpdates.html

15. Mellor, S.J., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Longman Publishing Co., Inc., Boston (2002); Foreword
By-Jacoboson, Ivar

16. Object Management Group. Introduction to OMG’s Unified Modeling Language
(UML) (July 2005), http://www.omg.org/gettingstarted/what_is_uml.htm

17. Object Management Group. Action Language for Foundational UML (Alf),
Concrete Syntax for a UML Action Language, FTF Beta 1, OMG Document Num-
ber: ptc/2010-10-05 (2010)

18. Object Management Group. Unified Modeling Language (OMG UML), Superstruc-
ture Version 2.3 (2010), OMG Document Number: formal/2010-05-05

19. Object Management Group. Semantics of a Foundational Subset for Executable
UML Models (fUML), v1.0 (2011), OMG Document Number: formal/2011-02-01

20. Sarstedt, S.: Semantic Foundation and Tool Support for Model-Driven Develop-
ment with UML 2 Activity Diagrams. PhD thesis, Ulm University (2006)

21. Sulistyo, S., Prinz, A.: Recursive Modeling for Completed Code Generation. In:
Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven Archi-
tecture, BM-MDA 2009, pp. 6:1–6:7. ACM, New York (2009)

22. Usman, M., Nadeem, A.: Automatic Generation of Java Code from UML Diagrams
using UJECTOR. International Journal of Software Engineering and Its Applica-
tions 3(2), 21–37 (2009)

23. Blu Age Corp., Blu Age (2011), http://wiki.bluage.com/, §3.5.1
24. Mentor Graphics Corp., BridgePoint UML Suite (2010), http://www.mentor.com
25. FujabaDevelopmentGroup,FujabaToolSuite4.3.2 (2007),http://www.fujaba.de/
26. Papyrus, Open Source Tool (2011), http://www.papyrusuml.org

Tractable Model Transformation Testing

Martin Gogolla1 and Antonio Vallecillo2

1 Database Systems Group, University of Bremen, Germany
2 GISUM/Atenea Research Group, Universidad de Málaga, Spain

gogolla@informatik.uni-bremen.de, av@lcc.uma.es

Abstract. Model transformation (MT) testing is gaining interest as the
size and complexity of MTs grows. In general it is very difficult and
expensive (time and computational complexity-wise) to validate in full
the correctness of a MT. This paper presents a MT testing approach
based on the concept of Tract, which is a generalization of the concept
of Model Transformation Contract. A Tract defines a set of constraints on
the source and target metamodels, a set of source-target constraints, and
a tract test suite, i.e., a collection of source models satisfying the source
constraints. We automatically generate input test suite models, which
are then transformed into output models by the transformation under
test, and the results checked with the USE tool (UML-based Specification
Environment) against the constraints defined for the transformation. We
show the different kinds of tests that can be conducted over a MT using
this automated process, and the kinds of problems it can help uncovering.

1 Introduction

Model transformations are key elements of Model-driven Engineering (MDE).
They allow querying, synthesizing and transforming models into other models
or into code, and can also be composed in chains for building new and more
powerful model transformations.

As the size and complexity of model transformations grow, there is an increas-
ing need to count on mechanisms and tools for testing their correctness. This
is specially important in case of transformations with hundreds or thousands of
rules, for which manual debugging is no longer possible—but for which we still
need to check whether the produced models conform to the target metamodel,
or whether some essential properties are preserved by the transformation.

Testing model transformations is not an easy task and present numerous
challenges [1,2,3,4]. In the literature there are two main approaches to model
transformation testing (see also Section 5). In the first place we have the works
that aim at fully validating the behaviour of the transformation and its associ-
ated properties (confluence of the rules, termination, etc.) using formal methods
and their associated toolkits (see, e.g., [5,6,7,8,9,10,11]). The potential limita-
tions with these proposals lies in their inherent computational complexity, which
makes them inappropriate for fully testing large and complex model transfor-
mations. An alternative approach (proposed in, e.g., [12,13,14,15,16]) consists

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 221–235, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

222 M. Gogolla and A. Vallecillo

of trying to certify that a transformation works for a selected set of test input
models, without trying to validate it for the full input space. Although such a
certification approach cannot fully prove correctness, it can be very useful for
identifying bugs in a very cost-effective manner, and can deal with industrial-
size transformations without having to abstract away any of the structural or
behavioural properties of the transformations.

In this paper we will follow this latter approach, making use of some of the
concepts, languages and tools that have proved to be very useful in the case
of model validation [17]. In particular, we generalize model transformation con-
tracts [2,18] for the specification of the properties that need to be checked for
a transformation, and then apply the ASSL language [19] to generate input
test models, which are then automatically transformed into output models and
checked against the set of contracts defined for the transformation, using the
USE tool [20].

This paper is organized as follows. After this introduction, Section 2 describes
the context of our work and introduces the running example that will be used
throughout the paper to illustrate our approach. Section 3 presents our proposal
and describes the prototype we have developed as a proof-of-concept. Then,
Section 4 discusses the kinds of tests that can be conducted and how to perform
them. Finally, Section 5 compares our work with other related proposals and
Section 6 draws the final conclusions and outlines some lines for future work.

2 Context

2.1 Models and Metamodels

In MDE, models are defined in the language of their metamodels. In this paper
we consider that metamodels are defined by a set of classes, binary associations
between them, and a set of integrity constraints.

In Figure 1 we show our running example as handled by the tool USE [20].
The aim of the example is to transform a Person source metamodel shown in the
upper part of the class diagram into a Family target metamodel displayed in the
middle part. The source permits representing people and their relations (mar-
riage, parents, children) while the target focuses on families and their members.

Some integrity constraints are expressed as multiplicity constraints in the
metamodels, such as the ones that state that a family always has to have one
mother and one father, or that a person (either female or male) can be married
to at most one person.

There are other constraints that require specialized notations because they im-
plymore complex expressions. In this paperwewill useOCL [21] as the language for
stating constraints. In order to keepmatters simple,we havedecided to include only
one sourcemetamodel constraint (SMM) and one targetmetamodel constraint (TMM).
On the Person side (source), we require that, if two parents are present, they must
have different gender (SMM parentsFM). On the Family side (target), we require an
analogous condition (TMM mumFemale dadMale). Many further constraints (like
acyclicity of parenthood or exclusion of marriage between parents and children or
between siblings) could be stated for the two models.

Tractable Model Transformation Testing 223

Fig. 1. USE Screenshot

context Person inv SMM_parentsFM :
parent−>s ize ()=2 implies

parent−>select (oclIsTypeOf (Female))−>s ize ()=1 and
parent−>select (oclIsTypeOf (Male))−>s ize ()=1

context Family inv TMM_mumFemale_dadMale :
mother . gender = #female and father . gender = #male

2.2 Model Transformations

In a nutshell, a model transformation is an algorithmic specification (either
declarative or operational) of the relationship between models, and more specif-
ically the mapping from one model to another. A model transformation involves
at least two models (the source and the target), which may conform to the same
or to different metamodels. The transformation specification is often given by
a set of model transformation rules, which describe how a model in the source
language can be transformed into a model in the target language.

One of the challenges of model transformation testing is the heterogeneity of
model transformation languages and techniques [4]. This problem is aggravated
by the possibility of having to test model transformations which are defined as a
composition of several model transformations chained together. In our proposal
we use a black-box testing approach, by which a model transformation is just
a program that we invoke. The main advantages of this approach are that we
can deal with any transformation language and that we will be able to test the

224 M. Gogolla and A. Vallecillo

model transformation as-is, i.e., without having to transform it into any other
language, represent it using any formalism, or abstract away any of its features.

To illustrate our proposal we will use a running example of a model transfor-
mation that, given a Family model, creates a Person model. The goal is to show
how this transformation can be tested. For this place we asked some students to
write such a transformation, and the resulting code is shown below. It is written in
ATL [22], a hybrid model transformation language containing a mixture of declar-
ative and imperative constructs which is widely used in industry and academia.
module Persons2Families ;
create OUT : Families from IN : Persons ;

rule Father2Family {
from f : Persons ! Male (not f . child −> isEmpty ())
to fam : Families ! Family (

lastName <−f . name . substring (f . name . lastIndexOf (’� ’)+2,
f . name . size ())) ,

mb : Families ! Member (
firstName <− f . name . substring (1 , f . name . lastIndexOf (’� ’)) ,
age <− f . age , gender <− #male , famFather <− fam)

}
rule Mother2Family {
from m : Persons ! Female (not m . child −> isEmpty ())
to mb : Families ! Member (

firstName <− m . name . substring (1 , m . name . lastIndexOf (’� ’)) ,
age <− m . age , gender <− #female , famMother <− m . husband)

}
rule Son2Family {
from s : Persons ! Male (s . child −> isEmpty ())
to mb : Families ! Member (

firstName <− s . name . substring (1 , s . name . lastIndexOf (’� ’)) ,
age <− s . age , gender <− #male ,
famSon <−s . parent−>select (e | e . oclIsTypeOf (Persons ! Male)))

}
rule Daughter2Family {
from d : Persons ! Female (d . child −> isEmpty ())
to mb : Families ! Member (

firstName <−d . name . substring (1 , d . name . lastIndexOf (’� ’)) ,
age <− d . age , gender <− #female ,
famDaughter <− d . parent−>select (e | e . oclIsTypeOf (Persons ! Male)))

}

This transformation is defined in terms of four basic rules, each one responsible
for building the corresponding target model elements depending on the four kinds
of role a source person can play in a family: father, mother, son or daughter.
The attributes and references of every target element are calculated using the
information of the source elements. Target elements that represent families are
created with the last name of the father (in rule Father2Family).

3 Tracts for Model Transformations

3.1 Model Transformation Contracts

In Figure 2 we have displayed the central ingredients of our approach for trans-
formation testing: a source and target metamodel, the transformation T under
test, and a transformation contract, for short tract, which consists of a tract test
suite and a set of tract constraints. The test suite and its transformation result

Tractable Model Transformation Testing 225

Fig. 2. Building Blocks of a Tract

are shown with dashed lines and the different tract constraints with thick lines.
Five different kinds of constraints are present: the source and target class dia-
grams are restricted by source and target metamodels constraints, and the tract
imposes source, target, and source-target tract constraints. Such constraints are
expressed by means of OCL invariants. The context of these invariants is a class
representing a transformation tract, a so-called tract class. An example of a tract
class called mfdsTract is shown in Figure 1.

Assume a source model M being an element of the test suite and satisfying
the metamodel source and the tract source constraints is given. Then, the tract
essentially requires that the result T (M) of applying transformation T satisfies
the target metamodel and the target tract constraints and the pair (M ,T (M))
satisfies the source-target tract constraints. The source-target tract constraints
are crucial insofar that they can establish a correspondence between a source
element and a target element in a declarative way by means of a formula. Note
that this declarative correspondence between source and target has to be made
explicit in other transformation approaches like the triple graph grammar (TGG)
proposal [23] or the Epsilon framework [24]. In technical terms, a source tract
constraint is basically an OCL expression with free variables over source el-
ements, a target tract constraint has free variables over target elements, and
a source-target tract constraint possesses free variables over source and target
elements. Figure 3 gives an overview on the used concepts and their connection.

In Figure 2, the rectangles indicate possible overlap (resp. disjointness) of
source and target models. Basically, the tract — consisting of the test suite and
the three kinds of constraints — checks for the correctness of the transformation
in the sense that correct source models from the test suite are transformed to
correct target models, i.e., our approach checks that in Figure 2 the grey source
section is transformed into the grey target section. In general, there will be more
than one tract for a single transformation because particular source models are
constructed in the test suite which then induce particular tract constraints.

Let us go back to our example in Figure 1. The lower part of the class diagram
pictures the tract metamodel represented by the class mfdsTract where mfds is

226 M. Gogolla and A. Vallecillo

Fig. 3. Concepts in a Tract

a shortcut for mother-father-daughter-son expressing that our tract and our
testing (for demonstration purposes) concentrates on conventional families with
exactly one person in the respective role. The operations in class mfdsTract are
helper operations for formulating the tract constraints which are shown as invari-
ants on the left in the project browser. The five different kinds of constraints are
reflected by different prefixes for invariant names: SMM for source metamodel con-
straints, TMM for target metamodel constraints, SRC for source tract constraints,
TRG for target tract constraints, and SRC TRG for source-target tract constraints.

Note that concepts like father or mother are not explicitly present in the
Person metamodel (through attributes or association ends). Besides, please be
warned: both metamodels and their transformation seem simple, but intricate
complications live under the surface. Roughly speaking, the transformation must
(a) split one source attribute into two target attributes in different target classes;
(b) merge two source associations into one target class and four target associ-
ations; (c) map a source generalization hierarchy into a target attribute. The
following listing details the five OCL invariants that constitute the mfdsTract.

inv SRC_fullName_EQ_firstSepLast :
Person . allInstances−>forAll (p |

p . fullName=firstName (p) . concat (sep ()) . concat (lastName (p)))
inv SRC_allPersonInMfds :

l et allFs=Female . allInstances in let allMs=Male . allInstances in
Person . allInstances−>forAll (p |

Bag{ allFs−>exists (d | allMs−>exists (f , s | mfdsPerson (p , f , d , s))) ,
allFs−>exists (m , d | allMs−>exists (s | mfdsPerson (m , p , d , s))) ,
allFs−>exists (m | allMs−>exists (f , s | mfdsPerson (m , f , p , s))) ,
allFs−>exists (m , d | allMs−>exists (f | mfdsPerson (m , f , d , p)))} =

Bag{true , false , false , false })
inv TRG_oneDaughterOneSon :

Family . allInstances−>forAll (fam |
fam . daughter−>s ize ()=1 and fam . son−>s ize () =1)

inv SRC_TRG_mfdsPerson_2_mfdsFamily :
Female . allInstances−>forAll (m , d | Male . allInstances−>forAll (f , s |

mfdsPerson (m , f , d , s) implies
Family . allInstances−>exists (fam | mfdsFamily (fam , m , f , d , s))))

inv SRC_TRG_forPersonOneMember :
Female . allInstances−>forAll (p | Member . allInstances−>one (m |

p . fullName=fullName (m) and p . age=m . age and m . gender = #female and
(p . child−>notEmpty() implies (l et fam=m . famMother in

p . child−>s ize ()=fam . daughter−>union (fam . son)−>s ize ())) and
(p . parent−>notEmpty() implies m . famDaughter . isDefined ()) and
(p . husband . isDefined () implies m . famMother . isDefined ()))) and

Tractable Model Transformation Testing 227

Male . allInstances−>forAll (p | Member . allInstances−>one (m |
p . fullName=fullName (m) and p . age=m . age and m . gender = #male and
(p . child−>notEmpty() implies (l et fam=m . famFather in

p . child−>s ize ()=fam . daughter−>union (fam . son)−>s ize ())) and
(p . parent−>notEmpty() implies m . famSon . isDefined ()) and
(p . wife . isDefined () implies m . famFather . isDefined ())))

There are two source, one target, and two source-target tract constraints. The
source constraint SRC fullName EQ firstSepLast guarantees that one can decom-
pose the fullName into a firstName, a separator, and a lastName. The source
constraint SRC allPersonInMfds requires that every Person appears exactly once
in a mfdsPerson pattern. mfdsPerson patterns are described by the boolean op-
eration mfdsPerson which characterizes an isolated mother-father-daughter-son
pattern having no further links to other persons.

The constraint SRC allPersonInMfds is universally quantified on Person ob-
jects. Each Person must appear either as a mother or as a father or as a daughter
or as a son. This exclusive-or requirement is formulated as a comparison between
bags of Boolean values. From the four possible cases, exactly one case must be
true. Technically this is realized by requiring that the bag of truth values, which
arises from the evaluation of the respective sub-formluas, contains exactly once
the Boolean value true and three times the Boolean value false.

mfdsTract : : mfdsPerson (m : Person , f : Person , d : Person , s : Person) : Boolean=
Set{m , f , d , s}−>excluding (n u l l)−>s ize ()=4 and
m . oclIsTypeOf (Female) and f . oclIsTypeOf (Male) and
m . oclAsType (Female) . husband=f and
d . oclIsTypeOf (Female) and s . oclIsTypeOf (Male) and
m . child=Set{d , s} and f . child=Set{d , s} and
d . parent=Set{m , f} and s . parent=Set{m , f}

mfdsTract : :
mfdsFamily (fam : Family , m : Person , f : Person , d : Person , s : Person) : Boolean=
fam . lastName=lastName (m) and fam . lastName=lastName (f) and
fam . lastName=lastName (d) and fam . lastName=lastName (s) and
fam . mother . firstName=firstName (m) and
fam . father . firstName=firstName (f) and
fam . daughter . firstName=Bag{ firstName (d)} and
fam . son . firstName=Bag{ firstName (s)}

Both source constraints reduce the range of source models to be tested. The
target tract constraint TRG oneDaughterOneSon basically focusses the target on
models in which the multiplicity * on the daughter and son roles are changed
to the multiplicity 1. The first central source-target constraint SRC TRG mfds-

Person 2 mfdsFamily demands that a mfdsPerson pattern must be found in trans-
formed form as a mfds Family pattern in the resulting target model. The sec-
ond central source-target constraint SRC TRG forPersonOneMember requires that a
Person must be transformed into exactly one Member having comparable attribute
values and roles as the originating Person. Both source-target tract constraints
are central insofar that they establish a correspondence between a Person (from
the source) and a Family Member (from the target) in a declarative way by means
of a formula.

228 M. Gogolla and A. Vallecillo

3.2 Generating Test Input Models

The generation of source models for testing purposes is done by means of the
language ASSL (A Snapshot Sequence Language) [19]. ASSL was developed to
generate object diagrams for a given class diagram in a flexible way. Positive and
negative test cases can be built, i.e., object diagrams satisfying all constraints or
violating at least one constraint. ASSL is basically an imperative programming
language with features for randomly choosing attribute values or association
ends. Furthermore ASSL supports backtracking for finding object diagrams with
particular properties.

For the example, we concentrate on the generation of (possibly) isolated mfds
patterns representing families with exactly one mother, father, daughter, and
son in the respective role. The procedure genMfdsPerson shown below is param-
eterized by the number of mfds patterns to be generated. It creates four Person

objects for the respective roles, assigns attribute values to the objects, links the
generated objects in order to build a family, and finally links two generated mfds
patterns by either two parenthood links or one parenthood link or no parenthood
link at all. The decision is taken in a random way. For example, for a call to
genMfdsPerson(2) a generated model could look like one of the three possibilities
shown in Figure 4. Marriage links are always displayed horizontally, whereas
parenthood links are shown vertically or diagonally.

procedure genMfdsPerson (numMFDS : Integer) -- number of mfds patterns
var lastNames : Sequence(String) , m : Person . . . -- further variables

begin
-- -- variable initialization
lastNames := [Sequence{’ Kennedy ’ . . . ’ Obama ’ }] ; -- more
firstFemales := [Sequence{ ’ Jacqueline ’ . . . ’ Michelle ’ }] ; -- constants
firstMales := [Sequence{’John ’ . . . ’ Barrack ’ }] ; -- instead
ages := [Sequence{30 , 36 , 42 , 48 , 54 , 60 , 66 , 72 , 78}] ; -- of ...
mums := [Sequence { }] ; dads := [Sequence { }] ;

-- -- creation of objects
for i : Integer in [Sequence { 1 . . numMFDS }] begin

m :=Create (Female) ; f :=Create (Male) ; -- mother father
d :=Create (Female) ; s :=Create (Male) ; -- daughter son
mums := [mums−>append (m)] ; dads := [dads−>append (f)] ;

-- assignment of attributes
lastN :=Any ([lastNames]) ; firstN :=Any ([firstFemales]) ;
[m] . fullName := [firstN . concat (’� ’) . concat (lastN)] ; [m] . age :=Any([ages]) ;
firstN :=Any ([firstMales]) ;
[f] . fullName := [firstN . concat (’� ’) . concat (lastN)] ; [f] . age :=Any([ages]) ;
. . . -- analogous handling of daughter d and son s

-- creation of mfds links
Insert (Marriage , [m] , [f]) ;
Insert (Parenthood , [m] , [d]) ; Insert (Parenthood , [f] , [d]) ;
Insert (Parenthood , [m] , [s]) ; Insert (Parenthood , [f] , [s]) ;
-- -------- random generation of additional links between mfds patterns
-- ----------------------------- such links lead to negative test cases

flagA :=Any([Sequence{0 , 1 , 2 , 3}]) ; -- 0 none , 1 mother , 2 father , 3 both
i f [i>1 and flagA >0] then begin

i f [flagA=1 or flagA=3] then begin
flagB :=Any ([Sequence{0 , 1}]) ; -- 1 give daughter , 0 give son
i f [flagB=1] then begin

Insert (Parenthood , [mums−>at (i−1)] , [mums−>at (i)]) ; end
else begin

Tractable Model Transformation Testing 229

Insert (Parenthood , [mums−>at (i−1)] , [dads−>at (i)]) ; end ;
end ; . . .

end ;
end ;

Fig. 4. Three Possibilities for Linking Two mfds Patterns

3.3 Proof of Concept

The approach we have presented in this paper allows modellers to check the
behaviour of a transformation by specifying a set of tracts that should be fulfilled.
For each of these tracts we generate the tract test suite mentioned in the previous
section, i.e. the sample input models for the tract, and then we check that the
corresponding output models (i.e., the ones produced by the transformation)
fulfil the tract invariants.

As a proof-of-concept of our proposal we have built a prototype that allows
testing a transformation in an automated way, chaining three tools. In the first
place, the tract classes and their associated invariants are specified using USE.
The ASSL program that generates the tract test suite is also specified within
the USE environment, and then executed within it. The second tool is a script
that takes the input models generated by the ASSL procedure (which are in the
textual format that both ASSL and USE understand, .cmd), converts them into
the Ecore format so that they can be manipulated by ATL, invokes the ATL
transformation under test, and converts the resulting target model into the USE
.cmd format again (using an ATL query). Finally, the correctness of these output
models is checked against the OCL invariants specified in the transformation
tract using USE.

4 Analysis

Counting on mechanisms for specifying tract invariants on the source and target
metamodels, and on the relationship that should be established between them,

230 M. Gogolla and A. Vallecillo

has proved to be beneficial when combined with the testing process defined
above.

Transformation Code Errors: In the first place, we can look for errors due
to either bugs in the transformation code that lead to misbehaviours, or
to hidden assumptions made by the developers due to some vagueness in
the (verbal) specification of the transformation. These errors are normally
detected by observing how valid input models (i.e., belonging to the grey
area in the left hand side of Figure 1) are transformed into target mod-
els that break either the target metamodel constraints or the source-target
constraints. This is the normal kind of errors pursued by most MT testing
approaches.

Transformation Tract Errors: The second kind of errors can be due to the
tract specifications themselves. Writing the OCL invariants that comprise
a given tract can be as complex as writing the transformation code itself
(sometimes even more). This is similar to what happens with the specifi-
cation of the contract for a program: there are cases in which the detailed
description of the expected behaviour of a program can be as complex as
the program itself. However, counting on a high-level specification of what
the transformation should do at the tract level (independently of how it ac-
tually implements it) becomes beneficial because both descriptions provide
two complementary views (specifications) of the behaviour of the transfor-
mation. In addition, during the checking process the tract specifications and
the code help testing each other. In this sense, we believe in an incremen-
tal and iterative approach to model transformation testing, where tracts are
progressively specified and the transformation checked against them. The
errors found during the testing process are carefully analyzed and either the
tract or the transformation refined accordingly.

Issues due to Source-Target Semantic Mismatch: This process also helps
revealing a third kind of issues, probably the most difficult problems to cope
with. They are due neither to the transformation code nor the tract invari-
ant specifications, but to the semantic gap between the source and target
metamodels. We already mentioned that the metamodels used to illustrate
our proposal look simple but hide some subtle complications. For example,
one of the tracts we tried to specify was for input source models that repre-
sented three-generation families, i.e., mfds patterns linked together by par-
enthood relations (see Figure 5 representing a generated negative test case
failing to fulfill SRC allPersonInMfds; without the links (’Elizabeth Reagan’,

’Ronald Reagan’), (’Alta Reagan’, ’John Carter’), and (’Ronald Reagan’,

’John Carter’) we would obtain a valid mfds source model). This revealed
the fact that valid source models do not admit in general persons with grand-
children. More precisely, after careful examination of the problem we discov-
ered that such patterns are valid inputs for the transformation only if the
last name of all persons in the family is the same. This is because the trans-
formed model will consist of three families, where one of the members should
end up, for example, playing the role of a daughter in one family and the role

Tractable Model Transformation Testing 231

Fig. 5. Generated Negative Test Case with Linked mfds Patterns

of mother in the other. Since all members of a family should share the same
last name, and due to the fact that a person should belong to two families,
the last names of the two families should coincide.

Examples of these problems can also happen because of more restrictive
constraints in the target metamodel. For instance a family in the target
metamodel should have both a father and a mother, and they should share
the same last name. This significantly restricts the set of source models that
can be transformed by any transformation because it does not allow unmar-
ried couples to be transformed, nor families with a single father or mother.
Married couples whose members have maintained their last names cannot be
transformed, either. Another problem happens with persons with only a sin-
gle name (i.e., neither a first nor last name, but a name only), because they
cannot be transformed. These are good examples of semantic mismatches
between the two metamodels that we try to relate through the transforma-
tion. How to deal with (and solve) this latter kind of problems is out of the
scope of this paper, here we are concerned only with the detection of such
problems. A visual representation of some semantic differences between the
example metamodels is shown in Figure 6.

Being able to select particular patterns of source models (the ones defined for
a tract test suite) offers a fine-grained mechanism for specifying the behaviour
of the transformation, and allows the MT tester to concentrate on specific be-
haviours. In this way we are able to partition the full input space of the transfor-
mation into smaller, more focused behavioural units, and to define specific tests
for them. By selecting particular patterns we can traverse the full input space,
checking specific spots. This is how we discovered that the size of the grey area
in Figure 1 was much smaller than we initially thought, as mentioned above.

232 M. Gogolla and A. Vallecillo

Fig. 6. Semantic Differences between Source and Target Example Metamodels

This approach also opens up the possibility of testing the transformation with
invalid inputs, to check its behaviour. For example, we defined a tract where peo-
ple could have two male parents, being able to check whether the transformation
produced output models that violated the target metamodel constraints or not,
or just hanged. In this way we can easily define both positive and negative tests
for the transformation.

5 Related Work

There are several kinds of contributions that can be related to our work. In the
first place we have the works that define contracts for model transformations,
using different notations. One of the earlier works [18] introduces the concept of
“transformation contract” in a similar way to ours—although without incorpo-
rating test suites. However, the authors propose to specify contracts by means of
OCL operations, which causes many technical problems for writing contracts—as
the own authors discuss in their paper. Besides, they do not discuss any practical
way of using their contract specifications for model testing. The work in [2] also
proposes OCL for defining transformation contracts. Their ideas are also close
to [18] and to ours, but in their paper they just provide a general view of what
they think that could be done with model transformation contracts, but without
delving into the details about how to achieve it.

The proposal presented in [9] is also of interest. The authors show how to
derive some invariant-based verification properties that should be preserved by
the transformation (which are similar to our tracts) by analysing the internal
rules that compose a transformation. Although they follow a white-box approach
to model transformation testing, it could probably be combined with ours if their
approach could help us identify some more tracts for a transformation written
in any of the languages they deal with (TGG and QVT).

Tractable Model Transformation Testing 233

Other group of works (see, e.g., [5,6,7,8,10,11]) also use a white-box approach
to model-transformation testing, aiming at fully validating the behaviour of the
transformation (including other properties such as confluence of the rules, termi-
nation, etc.) using formal methods and their associated toolkits—which include,
e.g., Alloy, Maude, or graph rewriting techniques. Although more powerful than
our approach from a theoretical perspective, their computational complexity
generally makes them inappropriate for testing large model transformations. In
addition, the drawback of a white-box approach is that it is tightly coupled to
the transformation language and thus it would need to be adapted or completely
redefined for another transformation language [4].

Alternative approaches validate the transformation under test with only a
selected set of test input models, as we do in our approach, but focusing more
on how to generate input models [7,12,13,14,15,16] and how to reason about
some of the properties of the generated set (e.g, coverage). They can be related
to what we achieve with the ASSL language, although in this paper we have also
shown how these input suites can be integrated into a complete testing process
such as the one presented here. Complementing our current ASSL procedures
with some of the ideas and algorithms proposed in these works is something we
would like to explore as part of our future work.

6 Conclusions

In this paper we have introduced the concept of Tract, a generalization of model
transformation contracts, and showed how it can be used for model transfor-
mation black-box testing. A tract defines a set of constraints on the source and
target metamodels, a set of source-target constraints, and a tract test suite,
i.e., a collection of source models satisfying the source constraints. To test a
transformation T we automatically generate the input test suite models using
the ASSL language, and then transform them into their corresponding target
models. These models are checked with the USE tool against the constraints
defined for the transformation. The checking process can be automated, allow-
ing the model transformation tester to process a large number of models in a
mechanical way.

Although this approach to testing does not guarantee full correctness, it pro-
vides very interesting benefits. In particular, it can be useful for identifying bugs
in a cost-effective manner. Moreover, it allows dealing with industrial-size trans-
formations without having to transform them into any other formalism or to ab-
stract away any of its features. Furthermore, tracts provide a modular approach
to testing, allowing to partition the full input space of the transformation into
smaller, more focused behavioural units, and to define specific tests for them.
These are important advantages over other approaches that aim at proving full
correctness but at a higher-cost: their computational complexity normally make
them untractable.

There are several lines of work that we plan to address next. In particular, we
would like to study how to improve our proposal by incorporating some of the

234 M. Gogolla and A. Vallecillo

existing works on the effective generation of input test cases. We expect this to
help us enhance the definition of our tract test suites. Larger case studies will
be carried out in order to stress the applicability of our approach and to obtain
more extensive feedback. In this sense, we would like to conduct some empirical
studies on the effects of the use of tracts in the lifecycle of model transformations.
Concerning the tracts, we also plan to investigate some of their properties, such
as their composability, subsumption, refinement or coverage. Finally, we plan
to improve the current tool support for tracts, incorporating the creation and
maintenance of libraries of tracts, and the concurrent execution of the tests using
sets of distributed machines.

Acknowledgements. The authors would like to thank the anonymous for their
useful comments and suggestions, and to Lars Hamann, Mirco Kuhlmann, Fer-
nando López and Javier Troya for their help and support during the preparation
of the paper. This work is supported by Research Projects TIN2008-03107 and
P07-TIC-03184.

References

1. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transfor-
mation testing and version control in model driven software development. In:
OOPSLA/GPCE: Best Practices for Model-Driven Software Development, Con-
trol in Model Driven Software Development, pp. 219–236. Springer, Heidelberg
(2004)

2. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R.,
Ghosh, S., Fleurey, F., Traon, Y.L.: Model transformation testing chal-
lenges. In: Proc. of the ECMDA workshop on Integration of Model
Driven Development and Model Driven Testing, Barcelona, Spain (2006),
http://www.cs.colostate.edu/~france/publications/TransTesting.pdf

3. Stevens, P.: A landscape of bidirectional model transformations. In: Lämmel, R.,
Visser, J., Saraiva, J. (eds.) GTTSE II. LNCS, vol. 5235, pp. 408–424. Springer,
Heidelberg (2008)

4. Baudry, B., Ghosh, S., Fleurey, F., France, R., Traon, Y.L., Mottu, J.M.: Barriers
to systematic model transformation testing. Communications of the ACM 53(6),
139–143 (2010)

5. Baresi, L., Ehrig, K., Heckel, R.: Verification of model transformations: A case
study with BPEL. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006.
LNCS, vol. 4661, pp. 183–199. Springer, Heidelberg (2007)

6. Ehrig, H., Ehrig, K., Lara, J.D., Taentzer, G., Varró, D., Varró-Gyapay, S.:
Termination criteria for model transformation. In: Cerioli, M. (ed.) FASE 2005.
LNCS, vol. 3442, pp. 49–63. Springer, Heidelberg (2005)

7. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta
models. Software and Systems Modeling 8, 479–500 (2009)

8. Küster, J.M.: Definition and validation of model transformations. Software and
Systems Modeling 5(3), 233–259 (2006)

9. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and validation of declar-
ative model-to-model transformations through invariants. Journal of Systems and
Software 83(2), 283–302 (2010)

Tractable Model Transformation Testing 235

10. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
Alloy. In: Proc. of MODEVVA (2007),
http://www.cs.bham.ac.uk/~bxb/Papres/Modevva07.pdf

11. Troya, J., Vallecillo, A.: Towards a rewriting logic semantics for ATL. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 230–244. Springer, Heidelberg
(2010)

12. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: Proc. of the
17th International Symposium on Software Reliability Engineering (ISSRE 2006),
pp. 85–94 (2006)

13. Solberg, A., Reddy, R., Simmonds, D., France, R., Ghosh, S.: Developing dis-
tributed services using an aspect-oriented model driven framework. International
Journal of Cooperative Information Systems 15(4), 535–564 (2006)

14. Mottu, J.M., Baudry, B., Traon, Y.L.: Reusable MDA components: A testing-for-
trust approach. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 589–603. Springer, Heidelberg (2006)

15. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.L.: Qualifying input test data for
model transformations. Software and Systems Modeling 8(2), 185–203 (2009)

16. Küster, J.M., Abd-El-Razik, M.: Validation of model transformations – first expe-
riences using a white box approach. In: Auletta, V. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

17. Gogolla, M., Hamann, L., Kuhlmann, M.: Proving and visualizing OCL invariant
independence by automatically generated test cases. In: Fraser, G., Gargantini, A.
(eds.) TAP 2010. LNCS, vol. 6143, pp. 38–54. Springer, Heidelberg (2010)

18. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specifica-
tion of model transformation contracts. In: Proc. of the OCL and Model
Driven Engineering Workshop (2004), http://web.univ-pau.fr/∼ecariou/
papers/workshop-ocl-mde-uml2004-paper.pdf

19. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Software and Systems Modeling 4(4), 386–398
(2005)

20. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Science of Computer Programming 69, 27–34
(2007)

21. Object Management Group: Object Constraint Language (OCL) Specification.
Version 2.2. (2010), OMG Document formal/2010-02-01

22. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (2008)

23. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995)

24. Kolovos, D.S., Rose, L.M., Paige, R.F.: The Epsilon Book (2010),
http://www.eclipse.org/gmt/epsilon/doc/book/

Extending SysML with AADL Concepts for
Comprehensive System Architecture Modeling

Razieh Behjati1,2, Tao Yue1, Shiva Nejati1,
Lionel Briand1,2, and Bran Selic1,3

1 Simula Research Laboratory, Lysaker, Norway
2 University of Oslo, Oslo, Norway

3 Malina Software Corp., Ottawa, Canada
{raziehb,tao,shiva,briand,bselic}@simula.no

Abstract. Recent years have seen a proliferation of languages for de-
scribing embedded systems. Some of these languages have emerged from
domain-specific frameworks, and some are adaptions or extensions of
more general-purpose languages. In this paper, we focus on two widely-
used standard languages: the Architecture Analysis and Design Language
(AADL) and the Systems Modeling Language (SysML). AADL was born
as an avionics-focused domain-specific language and later on has been re-
vised to represent and support a more general category of embedded real-
time systems. SysML is an extension of the Unified Modeling Language
(UML) intended to support system engineering and modeling. We pro-
pose the ExSAM profile that extends SysML by adding AADL concepts
to it with the goal of exploiting the key advantages of both languages in a
seamless way. More precisely, by using ExSAM and any SysML modeling
environment, we will be able to both model system engineering concepts
and use AADL analysis tools where needed. We describe the ExSAM
profile through several examples and compare it with existing alterna-
tives. We have implemented ExSAM using IBM Rational Rhapsody and
evaluated its completeness and usefulness through two case studies.

Keywords: Integrated Control Systems (ICSs), Systems modeling
languages, Architecture modeling languages, Embedded control systems,
AADL, SysML.

1 Introduction

Many control applications are systems-of-systems, integrating various mechan-
ical, electronic, and software systems. The design of these systems, classified
as Integrated Control Systems (ICSs), depends more and more on effective so-
lutions that can address heterogeneity and interplay of physical and software
elements. In particular, design languages used for specifying ICSs should incor-
porate, in a consistent manner, essential concepts from multiple disciplines, such
as mechanical, electronic, and software engineering.

Model-Driven Engineering (MDE) approaches to system development have
been adopted in diverse domains, in particular, ICSs. This is because the use of

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 236–252, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Extending SysML with AADL Concepts 237

models has shown to be promising in addressing the above issues, as well as, in
handling the increasing complexity of ICSs, reducing their cost of construction,
and supporting efficient maintenance and evolution [17,15].

A number of modeling languages have been proposed to help engineers from
different disciplines to communicate and compare their perspectives, to reason
about properties of heterogeneous ICSs, and to develop optimized system-level
solutions by assessing multidisciplinary design trade-offs. Of particular interest
in our work are standardized languages, which are generally preferred by indus-
try because they can reduce training costs, and reduce the risk of vendor lock
in. In recent years, a number of modelling languages targeting ICSs have been
standardized, but, to the best of our knowledge, none of them provide the full
range required to deal effectively with the kinds of ICSs that we have encoun-
tered. Some of them, such as Systems Modeling Language (SysML) [7], focus
on the “big picture” requirements and architectural views, whereas others, such
as Architecture Analysis and Design Language (AADL) [14] address the more
detailed platform-oriented and physical aspects of such systems.

Consequently, we investigated the possibility of combining these two lan-
guages, SysML and AADL, since they are both widely used in industry with
adequate tool support. However, since it is generally preferable for system engi-
neers to work with a single internally consistent formalism within one modeling
environment, we chose to merge the two into a single unified language as a SysML
profile. Concrete objectives include the ability to use AADL analysis tools while
performing system engineering modeling in any SysML modeling environment.

SysML

Requirements, Traceability,
Parametric models, Interactions

Modes/State Machines,
Components/System Blocks,

Component Interactions/Block Flows

Quantitative Analysis,
Hardware-Software Component Categories,

Software to Hardware Binding

AADL
ExSAM

2

1

3

Fig. 1. The relationship between SysML, AADL, and
the combined profile ExSAM

Figure 1 illustrates the
relationship between the
capabilities of the two lan-
guages, showing that they
are mutually complemen-
tary. SysML, an extension
of Unified Modeling Lan-
guage (UML), version 2,
is a standardized language
for systems engineering.
In addition to retaining
much of UML, it also pro-
vides specialized support for requirements engineering, traceability, and precise
modeling of diverse physical phenomena. AADL, on the other hand, is oriented
towards the modeling of real-time embedded systems and includes a compre-
hensive catalogue of hardware and software elements common in such systems
and their characteristics, allowing relatively precise and dependable analyses of
different system properties such as performance, timing, or power consumption.

Although both SysML and AADL have extension mechanisms, in unifying the
two languages, we chose to extend SysML. This is because its extension mech-
anism (profiles) comes from UML, which is much more widespread and better
supported by tools, and which is also more powerful compared to that of AADL

238 R. Behjati et al.

(annexes). We propose a SysML profile, Extended SysML for Architecture Anal-
ysis Modeling (ExSAM), that combines all the modeling capabilities of AADL
and SysML (Figure 1). Specifically, ExSAM extends SysML to cover all AADL
concepts, by expressing these concepts using SysML constructs.

Since SysML and AADL both target modeling embedded software systems,
there are conceptual overlaps between them. Figure 1, level 2, represents an
overview of the overlapping constructs between these two languages. These con-
structs seemingly specify the same concepts, however they tend to have different
meanings, usages, or design rationales. In general, AADL has a well defined se-
mantics compared to SysML, which inherits the main bulk of its semantics from
UML with several semantic variation points. Hence, in the ExSAM profile, we
opt for the AADL semantics whenever the corresponding SysML elements are
not precisely defined or have a semantics different from that of AADL. We do so
by defining appropriate Object Constraint Language (OCL) [6] constraints. For
example, realization relation is used both in AADL and SysML. In AADL, real-
ization allows the reuse of attributes of physical components, whereas in SysML,
the physical attributes cannot be manipulated through realization relations be-
cause such attributes appear at the instance-level while realization is defined at
the block-level (UML class-level). Hence, to model AADL realization, SysML
realization must be extended and constrained (Section 3.1). In ExSAM, we have
made several such alignments to fully embed AADL constructs into SysML.

To evaluate the completeness and usefulness of ExSAM for ICSs, we have
applied it to two case studies: One is a benchmark case study and the other
is a large-scale, industrial case study. The first case study showed that ExSAM
was adequate to capture all the used AADL concepts. The second case study
showed that ExSAM was sufficient to satisfy the modeling needs of our industrial
partner, while AADL and SysML alone were not.

The reminder of the paper is organized as follows. We provide a brief intro-
duction to SysML and AADL in Section 2. In Section 3, we present ExSAM
and illustrate its use. We describe the tool support and an evaluation of ExSAM
through two case studies in Section 4. We compare ExSAM with other alterna-
tives in Section 5. Finally, we conclude the paper in Section 6.

2 Background

In this section, we provide a brief introduction to SysML (Section 2.1) and to
AADL (Section 2.2).

2.1 SysML

SysML is a modeling language with a graphical syntax developed and standard-
ized by the Object Management Group (OMG). It was designed to, among other
things, capture the interactions of software with physical entities, and is widely
used for systems engineering [16]. Compared to UML 2, SysML adds support
for systems engineering (e.g. through requirements engineering, and quantita-
tive analysis of physical aspects of the system), while removing many of UML’s

Extending SysML with AADL Concepts 239

object-oriented constructs. In ExSAM, we have particularly benefited from the
following SysML-specific constructs:

SysML blocks. Blocks are modular units of system descriptions in SysML and
are generalizations of the UML class concept. The notion of block in SysML
enables better expression of Systems engineering semantics compared to
UML, and particularly, reduces the UML bias towards software. Blocks and
their relationships are visualized in SyML block definition diagrams (bdds).
The definition of a block in SysML can be further detailed by specifying its
parts; ports, specifying its interaction points; and connectors, specifying the
connections among its parts and ports. This information is visualized using
SysML internal block diagrams (ibds).

SysML flows ports and SysML item flows. The SysML flow port concept
extends the UML port concept and is intended to describe an interaction
point for a block through which the block interacts with its environment
[18]. The rationale for having flow ports is that some interactions of a block
may not involve message passing or service calls, but rather phenomena such
as continuous or discrete energy flows. In particular, a block can have interac-
tion points over which it supplies or is supplied with electric power, fuel, air,
or any other kind of streaming input or output. SysML FlowPorts are typed
by FlowSpecifications, which specify the types of flows that can pass through
them. The SysML ItemFlow concept extends the UML InformationFlow con-
cept, which has the ability to be explicitly associated with Connectors via
the realizingConnector dependency [8]. This capability allows us to describe
the detailed implementation of an item flow through connectors and flows
realizing it.

2.2 AADL

AADL, is a modeling language originally designed for and used in avionics. It
was standardized by the Society of Automotive Engineers (SAE) and has been
used to describe software execution platforms (e.g., processors, memory, buses,
devices) as well as the physical environments of embedded software systems
(e.g., electronic and mechanical parts interacting with ICSs). In addition, AADL
supports the early prediction and analysis of critical system qualities – such as
performance, schedulability, and reliability [14].

In this section, we provide an overview of AADL using a domain model rep-
resenting the main AADL concepts and their relationships. We have developed
this domain model based on the AADL reference manual [14]. A fragment of
this domain model capturing the main AADL concepts is shown in Figure 2.
A complete domain model is available in [10]. Below, we discuss the concepts
shown in Figure 2 and illustrate them using the AADL example in Figure 3.

AADL provides abstractions for describing a system in terms of its compo-
nents, their interfaces, and the connectors between the interfaces. AADL provides
two mechanism for declaring components: using the component type construct,

240 R. Behjati et al.

Fig. 2. The core AADL concepts

which specifies a component by describing only its interface, or using the com-
ponent implementation construct, which specifies a component by describing
its internal structure. ComponentType and ComponentImpl in Figure 2, respec-
tively, represent these concepts. In Figure 3, lines 1-10 specify a component type
named redundant pattern, and lines 11-32 specify a component implementa-
tion named redundant pattern.primary backup. In AADL, components are
declared as a type or implementation within a particular component category
[14]. These core concepts are elaborated further below.

1 system redundant_pattern
2 features
3 indata: in data port;
4 outdata: out data port;
5 reinitialize: in event port;
6 flows
7 primary_flow: flow path indata -> outdata;
8 properties
9 Period => 20ms;
10 end redundant_pattern;

11 system implementation redundant_pattern.primary_backup
12 subcomponents
13 primary_system: system principal_functions;
14 backup_system: system principal_functions;
15 observer: process observer_pattern;
16 connections
17 in_nom:data port indata -> primary_system.indata in modes nominal;
18 in_fail: data port indata -> backup_system.indata in modes backup, reinit;
19 out_nom:data port primary_system.outdata -> outdata in modes nominal;
20 out_bk: data port backup_system.outdata -> outdata in modes backup, reinit;
21 indata_p: data port primary_system.outdata -� observer.indata_P;
22 indata_b: data port backup_system.outdata -� observer.indata_B;
23 flows
24 primary_flow: flow path indata -> in_nom -> primary_system.flow1 -> out_nom -> outdata;
25 modes
26 primary: initial mode;
27 backup: mode;
28 reinit: mode;
29 primary -[observer.primary_fail]-> backup;
30 backup -[reinitialize]-> reinit;
31 reinit -[observer.primary_ok] -> primary;
32 end redundant_pattern.primary_backup;

Fig. 3. An example AADL model

Extending SysML with AADL Concepts 241

Component categories. AADL provides ten component categories to define
the runtime nature of software, hardware, and composite components. Software
component categories are data, subprogram, thread, thread group and process.
Hardware component categories are memory, processor, bus and device. A special
component category named system indicates either a system consisting of sev-
eral software components only, or a system consisting of both hardware and soft-
ware components. In Figure 3, the component type redundant pattern (Line
1) and the component implementation redundant pattern.primary backup

(Line 11) both belong to the component category system.

Component types. A component type specifies the externally visible charac-
teristics of a component in terms of features, flow specifications, and property
value associations (Figure 2).

Features. Different types of features are used to specify the interfaces of a
component. Ports and port groups (collections of ports or other port groups)
are hardware features that represent the directional exchange of data, events,
or both. Subprograms, server subprograms, and their parameters are used
to specify the software features of a component. In Figure 3, lines 3-5 specify
the features of the component type redundant pattern.

Flow specifications. In a component type, flows are directional and designate
a source or a sink, which are features of a component, or a flow path, which
represents a flow through a component from one feature to another. Line 7
in Figure 3 declares a flow path connecting indata to outdata, which are
declared as features of the component type.

Property value associations. Property value associations are used to assign
a value or a list of values to properties. Note that these properties are defined
as part of the component categories. Line 9 in Figure 3 shows a property
value association.

Component implementations. As shown in Figure 2, component implemen-
tations refine component types by specifying subcomponents, interactions (con-
nections and call sequences), flow path implementations, property value associ-
ations and modes. In Figure 3, redundant pattern.primary backup imple-
ments the component type redundant pattern.

Subcomponents and interactions. Subcomponents in a component imple-
mentation can be other component types or component implementations.
Connections and call sequences are used to describe the interactions among
subcomponents. In Figure 3, subcomponents of the component implementa-
tion redundant pattern.primary backup are listed in lines 13-15. Con-
nections among these subcomponents are declared in lines 17-22.

Flow path implementations. A flow path implementation describes a se-
quence of paths through and connections among subcomponents within a
component implementation. This path is a realization of the corresponding
flow path declared in the component type declaration [14]. In Figure 3, the
flow path implementation declared in line 24 refines the flow path specifica-
tion declared in line 7.

242 R. Behjati et al.

Modes. An AADL component implementation declaration may contain the
declaration of modes and mode transitions. Modes represent alternative op-
erational states of a system or component [14]. Transition from one mode to
another is triggered by events. In Figure 3, lines 26-28 declare three modes
of redundant pattern.primary backup. In addition, lines 29-31 show the
mode transitions among these three modes.

In AADL, a mode is an explicit configuration of its contained elements,
e.g., subcomponents and connections. The in modes clause in the declaration
of a component implementation is used to specify the active elements in each
mode. The declarations of the connections in lines 17-20, in Figure 3, also
contain the specification of the modes these connections are active in.

3 Profile Description

In this section we describe how we extend SysML using a profile, ExSAM, with
the purpose of combining architecture design and analysis concepts of AADL
with the system modeling concepts of SysML. This profile is resulted from our
practice of mapping AADL to SysML and based on our observations of SysML
limitations in addressing important AADL concepts discussed in Section 2.2.
In this section, we briefly describe the most important features of ExSAM. A
complete description of the profile, and illustration of its usage is provided in
[10]. Here, we first describe the mapping for AADL components in Section 3.1.
In Section 3.2 we describe the mapping for AADL component extension and
generalizations. Section 3.3 is dedicated to the mapping of AADL modes. In
Section 3.4 we present the mapping for AADL bindings. Finally, in Section 3.5
we explain how we can use ExSAM to benefit from AADL analysis capabilities
for SysML models.

3.1 Mapping Component Types and Component Implementations

Recall from Section 2.2 that in AADL, component types and component im-
plementations describe a component, respectively, through its externally visible
interface and its internal structure. In ExSAM, we use SysML blocks to model
both AADL component types and AADL component implementations. To dis-
tinguish between component types and component implementations, we use two
newly defined stereotypes, «ComponentType» and «ComponentImpl», both ex-
tending SysML block as shown in Figure 41. SysML blocks extend UML classes,
and are chosen to model components because they can describe both structural
and behavioral features of a system or component. In addition, using blocks
for modeling components allows us to easily use other SysML constructs (e.g.
parts and ports) to model AADL constructs (e.g. subcomponents and ports)
associated with a component in a consistent and straightforward manner.
1 In Figures 4 and 7, the stereotypes in gray are introduced by us, and the rest are from

SysML. Also, in these two figures, a solid line ending in a filled triangle shows UML
extension and a solid line ending in a hollow triangle shows UML generalization.

Extending SysML with AADL Concepts 243

Fig. 4. Metamodel for mapping AADL concepts: component type and component
implementation

Asmentioned inSection2.2,AADLprovides tendifferent component categories.
In ExSAM, we dedicate to each AADL component category a stereotype with a set
of attributes representing the properties of the corresponding component category.
AADL property value associations are then automatically mapped to the values as-
signedto theattributesof stereotypesapplied toblocks. In the restof this section,we
refer to this set of stereotypes as category identifier stereotypes. In ExSAM, all cate-
gory identifier stereotypes generalize «ComponentType» and «ComponentImpl».
We apply two stereotypes to each block: one stereotype specifies whether it is a
component type («ComponentType») or a component implementation («Compo-
nentImpl»), and the other specifies its component category.

As shown in Figure 2, a component implementation in AADL can realize
and refine a component type specification by adding implementation details to
it, namely, by specifying its subcomponents, connections, modes, properties,
and flow paths. A realization relationship in AADL transfers all property value
associations from the component type to the component implementation, and
makes all features and flow specifications of the component type accessible from
the component implementation. In ExSAM, we capture this refinement using a
UML/SysML realization relationship between a block stereotyped by «Compo-
nentImpl» and a block stereotyped by «ComponentType». However, the seman-
tics of UML/SysML realization is different from that of AADL realization. For
example, it does not support the transfer of property value associations from the
block stereotyped by «ComponentType» to the block stereotyped by «Compo-
nentImpl». In addition, for the realization to be meaningful in this context, the
involved blocks should be stereotyped by the same category identifier stereotype.
In ExSAM, we have specialized and constrained UML/SysML realization using
«AADL_Realization» (Figure 4) to capture these detailed semantics. Each re-
alization relationship in an ExSAM model, should, therefore, be stereotyped by
«AADL_Realization» to represent an AADL realization.

Figure 5 shows an excerpt of the ExSAM model created for the AADL model
in Figure 3. In this model, a block named redundant pattern, stereotyped
by «ComponentType» and «System», represents the AADL component type
redundant pattern. The value of the attribute period, defined in «System», is
set to 20ms in this block. The other block, redundant patternPrimary backup,
realizes redundant pattern, and is stereotyped by «ComponentImpl» and
«System». Note that the realization relation between the two blocks is also
stereotyped by «AADL_Realization», which, as shown in Figure 5, ensures that
in redundant patternPrimary backup the value of period is 20ms.

244 R. Behjati et al.

Fig. 5. A fragment of the ExSAM model for the AADL model in Fig. 3. Hav-
ing «AADL_Realization» applied to the realization relation ensures that in redun-
dant_patternPrimary_backup the value of period is set to 20ms, which is the same
value as in redundant_pattern.

As mentioned in Section 2.2 and shown in Figure 2, a component type dec-
laration in AADL defines the interface of a component in terms of features and
flow specifications. In ExSAM, we use attributes and operations of a SysML
block to model AADL software features (e.g. subprograms and parameters), and
ports (i.e. SysML FlowPorts and UML StandardPorts) to model AADL hardware
features (e.g. ports). Specifically, for modeling an AADL port group in ExSAM,
we use a port typed by a SysML FlowSpecification.

In AADL, flow specifications are used to specify flow sources, flow sinks,
and flow paths that connect flow sources to flow sinks. Since, flow sources and
flow sinks are hardware features of a component, according to the mapping
specified earlier in this section, they are mapped to ports in ExSAM. To model
a flow path connecting a flow source to a flow sink, we use a SysML ItemFlow
connecting the two ports representing the flow source and the flow sink. For
example, in the ExSAM model created for the AADL model in Figure 3, there
is an ItemFlow named primary flow in the block named redundant pattern
connecting the ports representing indata and outdata (Figure 5). Note that
in SysML, ItemFlow is a stereotype that can be applied to both associations and
connectors. In this particular example, it is applied to a connector specifying
that there is a data transferring between two ports of a block.

Recall from Section 2.2 that in AADL, a component implementation specifies
the internal structure of a component through its subcomponents and the con-
nections among them. Subcomponents of an AADL component implementation
are naturally mapped to parts of a SysML block in ExSAM. The connections
among AADL subcomponents are then captured through SysML ports (owned
by the parts or by the encompassing block) and connectors connecting them.
SysML ibds are used to visualize this information.

As mentioned in Section 2.2, an AADL component implementation can de-
clare flow path implementations (e.g. line 24 in Figure 3) to refine and implement
the flow path specifications (e.g. line 7 in Figure 3) declared in the component
type that it implements. A flow path implementation involves connections that
specify a flow path starting from a flow source, passing through a number of
subcomponents and their specified flows and finally reaching the flow sink. In
ExSAM, an AADL flow path implementation is mapped to a set of connectors
that are associated to the ItemFlow representing the AADL flow path specifi-
cation, which is implemented by the flow path implementation. In addition, for
each flow path implementation we create an ibd in the ExSAM model to visu-
alize these connectors and the way they connect parts and ports, as shown in

Extending SysML with AADL Concepts 245

Fig. 6. An ibd in the ExSAM model created for the AADL model in Fig. 3. This ibd
shows the internal structure of redundant_patternPrimary_backup in the nominal mode.

Figure 6. The highlighted connectors in Figure 6, in nom, out nom, and flow1,
are used to realize the primary flow ItemFlow depicted in Figure 5.

We use ItemFlows to model flow path specifications because SysML ItemFlow
extends UML InformationFlow, which according to UML metamodel [8], can be
realized using a set of connectors named realizingConnectors. In our mapping,
the realizingConnectors of SysML ItemFlows are used to model AADL flow path
implementations.

A component implementation in AADL can also declare call sequences. In
ExSAM, we use SysML activities or interactions to model call sequences.

3.2 Extension and Generalization

As shown in Figure 2, in AADL, a component type can extend another com-
ponent type. A component type inherits all the features, flow specifications
and property value associations from its base component. Similarly, a compo-
nent implementation can extend another component implementation. A compo-
nent implementation inherits subcomponents, flow path implementations, call
sequences, modes and property value associations from its base component im-
plementation.

In an ExSAM model, we can use UML/SysML generalization to model the
extension relationships between AADL components. However, the semantics of
UML/SysML Generalization is different from that of AADL extension. For ex-
ample, using UML/SysML Generalization we cannot capture the inheritance
of property value associations. To address this semantic difference, in ExSAM,
we define a new stereotype named «AADL_Generalization» that specializes
UML/SysML Generalization and implements the semantics of AADL extension
using an OCL constraint. Such an OCL constraint specifies that: 1) a block
can extend another if they both have the same category identifier stereotype, 2)
if the blocks are component types, the sub block must inherit from its supper
block all the attributes, ports, item flows, and values assigned to the attributes
of the category identifier stereotype applied to its super block, 3) if the blocks
are component implementations, the sub block must inherit from its super block
all parts, item flows and their realizing connectors, interactions, modes, and val-
ues assigned to the attributes of the category identifier stereotype applied to its
super block.

246 R. Behjati et al.

3.3 Modes

As mentioned in Section 2.2, a component implementation can operate in several
modes. Each mode represents one configuration of the component. The compo-
nent can transit from one mode to another in response to the occurrence of an
event. In ExSAM, we use states to model modes and state machine transitions
to capture mode transitions. Such a state machine is associated with the block
- stereotyped by «ComponentImpl» - representing the component implemen-
tation with modal behavior. The association between «ComponentImpl» and
StateMachine in Figure 7 shows this.

Fig. 7. Metamodel for mapping AADL concepts: modes

In addition, in AADL, the in modes clause is used to specify the active sub-
components and connections in each mode. Notice that a state machine can only
model modes and the transitions among them, but have no way to link modes
(states in state machine) to their own structure, behavior, and/or constraints.
Therefore, to model the AADL in modes concept in ExSAM, we have introduced
a stereotype named «ModeParticipant». As shown in Figure 7, the «ModePar-
ticipant» stereotype has a relation to the UML State metaclass. This relation
shows the set of modes that an element stereotyped by «ModeParticipant» can
be active in. Notice that a «ModeParticipant» can be active in one or more
modes.

There are three different types of modes in AADL: (1) mode-specific structure
of subcomponents and connections, which describes alternative configurations of
active components and connections; (2) modal configurations of call sequences,
which describe alternative behavioral interactions of subcomponents; and (3)
mode-specific properties, which define alternative characteristics and behaviors
of the components. To support these modeling capabilities in ExSAM, we use the
«ModeParticipant» stereotype, which, as shown in Figure 7, extends the UML
metaclasses Property, Connector, Behavior, and Constraint. Being able to model
properties, including parts and ports, as well as connectors as mode participants
allows us to precisely model the mode specific structure in each state. Similarly
stereotyping behaviors, including interactions and activities as mode participants
allows us to precisely specify AADL behaviors, e.g. call sequences, and associate
them to the appropriate state.

Extending SysML with AADL Concepts 247

Figure 6 shows an excerpt of the ExSAM model depicting an ibd for the inter-
nal structure of the component redundant pattern.primary backup (Figure
3) in the nominal mode. In this ibd the part named primary system repre-
sents the subcomponent primary system in the AADL model. Note that the
other subcomponents are not shown in this ibd, since the purpose of this ibd
is to visualize only the elements that are involved in the mode nominal. The
part primary system is stereotyped by «System» to show its component cat-
egory. Figure 8 shows another ibd, which is used to visualize the active part
and connectors (e.g. backup system, in fail, out bk) in the backup mode.
Table 1, lists model elements of Figures 6 and 8 that are stereotyped by «Mode-
Participant». For each element in the table, the modes in which that element is
active are indicated using �. Note that this information is not shown in Figures
6 and 8 to minimize cluttering the figures.

Fig. 8. An ibd visualizing the part and connectors that are active in the backup mode

Table 1. Mode participants and their active modes

indata in_fail backup_system out_bk outdata in_nom primary_system out_nom
nominal � � � � � �
backup � � � � � �
reinit � � � � � �

Note that in the development of ExSAM, we were restricted by the design
choices of SysML, including the fact that only a subset of UML constructs are
imported into SysML. The most interesting UML concepts that are, in our opin-
ion, missing in SysML are Collaboration and CollaborationUse, which can be
used to capture AADL modes in UML. The solution we proposed in this sec-
tion, however, uses the «ModeParticipant» stereotype and applies it to several
metaclasses, mentioned above, to precisely convey the semantics of AADL modes
in ExSAM models.

3.4 Mapping for Bindings

An important aspect of AADL is the ability to model the deployment of soft-
ware components to hardware components. In AADL it is done through value
associations to specific properties of certain, deployable component categories.

248 R. Behjati et al.

For example, in AADL to model that process FlightDirector is deployed to
the processor named Xeon solo, in the component FlightDirector we set
the value of the property bound processor to Xeon solo.

In order to model this information in ExSAM, we use SysML allocation rela-
tionships. For example, in the example mentioned above, we add a dependency
stereotyped by SysML «allocate» to the model, connecting the block representing
FlightDirector to the block representing Xeon solo. Note that this mapping is
an exception to the general rule on mapping property value associations (Section
3.1), which is done through values assigned to the attributes of stereotypes. This is
because allocation is an important piece of information in ICSs, and it is crucial to
explicitly capture and visualize it using dependencies stereotyped by «allocate».

3.5 Support for AADL Analysis

As mentioned in Section 2.2, AADL supports quantitative analysis of non-
functional properties as well as early prediction of critical systems qualities.
In order to take advantage of the analysis capabilities of AADL, we can use
ExSAM to extract the fragment of a SysML or an ExSAM model that conforms
to AADL. One can then transform this fragment to AADL using the mappings
specified in ExSAM, and apply AADL analysis tools to the result of transfor-
mation. Note that the only modeling elements of SysML that are translatable to
AADL are those in level 2 of Figure 1 because these are the only concepts that
have corresponding elements in AADL.

4 Application and Evaluation of the Profile

The ExSAM profile presented in Section 3 is implemented and its applicability
and usefulness are evaluated through two case studies. The first case study,
presented in Section 4.1, is taken from the Carnegie Mellon Software Engineering
Institute (SEI) report [13] on applying AADL to analyze an avionics system
design. The purpose of this case study is to evaluate the ability of ExSAM in
capturing all the AADL concepts. The next case study, presented in Section 4.2,
is a real industrial case study, in which we applied ExSAM to model one of the
Subsea Production Systems of FMC Technologies [3]. The goal of this case study
is to evaluate the ability of ExSAM in addressing the modeling requirements of
large, distributed, integrated control systems (ICSs).

We have implemented ExSAM as a set of stereotypes and constraints using
IBM Rational Rhapsody Architect for Systems Engineers, version 7.5.1 [4], which
supports SysML.

4.1 The Avionics Case Study

In the first case study, we used ExSAM to model an avionics system. The AADL
model for this system is presented in [13] and is accessible from [1]. An avionics
system typically consists of a collection of hardware and software components
that controls the flight, navigation, and radio communication [13].

Extending SysML with AADL Concepts 249

The SysML features used in this case study are bdds and ibds to show the
blocks, their relationships, and their internal structures. In addition, the model
consists of a total of six SysML FlowSpecifications for modeling AADL port
groups and 49 blocks for capturing the components. The blocks are all stereo-
typed by either «ComponentType» or «ComponentImpl». In addition, each
block is stereotyped by one of the category identifier stereotypes specified in Sec-
tion 3.1. There are 10 realization relationships that are stereotyped by the newly
proposed «AADL_Realization», and four generalization relationships that are
stereotyped by «AADL_Generalization». The ExSAM model and diagrams cre-
ated for this case study are provided in our technical report [10].

From the above description, we can conclude that the developed ExSAM
model captured all the features and details in the AADL model for the avionics
system. As expected, many aspects of the AADL model required that we use
ExSAM features since SysML turned out to be insufficient.

4.2 The FMC Case Study

As a typical integrated control system, one of the subsea control systems of FMC
Technologies (henceforth referred to simply as FMC) is selected as the industrial
case study in this work. FMC is a leading global provider of technology solutions
for the energy industry. One of the key technologies of FMC subsea systems is the
Subsea Production System (SPS), which is used for managing and improving oil
production fields. The main component of the system is the Subsea Control Mod-
ule (SCM), which contains electronics and instrumentation for safe and efficient
operation of subsea valves, chokes, etc. FMC subsea systems are large-scale, inte-
grated and distributed systems of systems connected through high speed electric
and fiber-optic network communication links. In this case study, we focused on
FMC SPS, which according to the characteristics listed above, is a typical, com-
plex ICS, which is representative in terms of modeling requirements. Based on the
characteristics of SPS and results of the detailed domain analysis we conducted,
the main requirements for modeling the architecture of such complex ICSs are:
– Req-1) For a particular installation, we need to model how the SPS is config-

ured into a deployable product by capturing how its software and hardware
components are connected and what roles they play,

– Req-2) For a particular installation, we must specify the software deployment
across distributed hardware computing resources, which in our case consists
of many instances of the SCM,

– Req-3) We need to model the behavior of the SPS in several possible modes of
operation. For example, the SPS can be operated by different topside control
modules, requiring operation in different control modes. It can also operate
in the maintenance mode or the normal operation mode. In each mode,
we need to identify which hardware and software components are actively
operating, and identify constraints and behavior related to this mode.

– Req-4) We need to specify requirements and link them to the SPS archi-
tecture and design. This is very important to support safety inspection and
certification in the maritime and energy sectors.

250 R. Behjati et al.

– Req-5) The hardware characteristics on which the software will be deployed
need to be specified to facilitate the actual configuration of the SPS and to
enable performance and resource consumption analysis.

In addition, there are practical considerations that should be accounted for.
FMC wishes to use well-supported commercial tools with graphical notations
for modeling SPS.

We applied ExSAM to model the architecture of the FMC SPS. In the model, we
have a total of 13 bdds, 15 ibds, two state machine diagrams for describing modes
and mode transitions, three sequence diagrams and two activity diagrams for de-
scribing behaviors. We used, 104 blocks stereotyped by category identifier stereo-
types of ExSAM to model different components of the system. In this model, 43
realization relationships are stereotyped by «AADL_Realization», and 18 gener-
alization relationships are stereotyped by «AADL_Generalization». Deployment
of software to processors, and processors to underlying hardware for one part of the
system is modeled using seven SysML allocation links, and is visualized in an ibd.

The description of the ExSAM model for the FMC case study suggests that
SysML provides the basis for achieving the above requirements with its block con-
cept, various diagram types (e.g., ibd, bdd, state machine diagram), and allocation
modeling capabilities.SysMLblocks,bddsand ibds cantogetherbeusedtodescribe
an FMC product through its physical and logical elements, their relationships, and
internal structures, addressingReq-1. As pointed in Req-2, an important modeling
requirement for theFMCcasestudy is tocapturesoftwaredeploymenttodistributed
hardware computing resources. In the ExSAM model, this is done through SysML
allocations, which are equivalent to AADL bindings. Req-4 can be fulfilled using
SysML requirements modeling capability, including the specification of require-
ments, their relationships (e.g., decomposition), and the traceability links between
requirements or between them and other model elements.

In addition to the above, the FMC case study illustrated that SysML alone
does not have the necessary mechanisms to satisfy Req-3 and Req-5, while
ExSAM does. Using the «ModeParticipant» stereotype and its association to
UML State metaclass (Figure 7), ExSAM can explicitly identify the compo-
nents that are currently active in a mode and also link each mode to its own
behavior, structure, and/or constraints (Section 3.3). Regarding Req-5, using
newly introduced stereotypes and their attributes in ExSAM (e.g., «Memory»,
«Device») allows us to capture the hardware characteristics of the SPS such that
system configuration can be facilitated and performance and resource consump-
tion analysis can then be supported.

As mentioned earlier in this section, one practical consideration at FMC is the
need for well-supported commercial modeling tools. To the best of our knowledge,
however, AADL lacks professional tool support and a well-defined, complete
graphical notation. AADL tool support is restricted to only one commercial tool
and a few open-source ones. In contrast, SysML is supported by an increasing
number of commercial (e.g. [2,4,5]) and open source tools justifying our choice for
using SysML as the basis for ExSAM. In addition, AADL has no mechanisms
to model requirements and traceability. However, AADL has some important

Extending SysML with AADL Concepts 251

features such as modes, and detailed component categories that are missing
from SysML, thus justifying their reuse in ExSAM.

In sum, ExSAM brings missing features from AADL into SysML so that we
can benefit from both AADL and SysML strengths. We applied ExSAM to model
the architecture of the FMC SPS, which is a typical and complex ICS, and is
representative in terms of architecture modeling requirements in ICSs domain.
According to the two domain experts who reviewed the resulting architecture
models, ExSAM is able to fulfill the five requirements mentioned above.

5 Related Work

MARTE is a UML profile for modeling real-time and embedded systems [9].
The two approaches presented in [9] and [12], that have used MARTE to cre-
ate AADL-like models, suggest that MARTE is an interesting alternative to
ExSAM. MARTE can indeed be extended with AADL-like constructs, as we
did with SysML. However, in this work we chose to focus on SysML because
of its wide acceptance in a wide spectrum of industrial sectors, as well as its
support for systems engineering through features such as traceable requirements
and parametric diagrams.

Combining SySML and MARTE is another alternative to bring together
SysML’s systems engineering constructs and MARTE’s ability in specifying
non-functional aspects, thus enabling quantitative analysis. The combination
of SySML and MARTE is currently investigated and discussed in [11] in the
context of four usage scenarios. A comparison of ExSAM with such alternatives
would be interesting but is out of the scope of this paper.

6 Conclusion and Future Work

The increasing complexity of integrated control systems demands more effective
design languages that can address, in a consistent manner, the heterogeneity
resulting from the multidisciplinary nature of such systems.

In this paper, we describe how we combined two highly complementary stan-
dard modeling languages, SysML and AADL, to provide a common modeling
language (in the form of the ExSAM profile) for specifying embedded systems
at different abstraction levels, and from different stakeholder perspectives.

In Section 3, we specified ExSAM, which extends SysML with AADL-like
concepts. The applicability and usefulness of ExSAM were investigated through
two case studies. One benchmark case study showed that ExSAM can fully
cover all AADL aspects and one large-scale industrial case study, performed in
collaboration with an industrial partner developing integrated control systems,
showed that ExSAM could successfully address all their modeling requirements,
whereas neither SysML nor AADL could do so in isolation.

Future work will include the development of tool support for translating
ExSAM models into AADL models by abstracting away the ExSAM constructs

252 R. Behjati et al.

that fall in level 1 of Figure 1 (i.e., requirements, traceability, parametric mod-
els, interactions). The resulting AADL models can therefore be analyzed using
AADL analysis tools.

Acknowledgments

This work was supported by a grant from Det Norske Veritas (DNV) and Simula
Research Laboratory, Norway, in the context of the ModelME! project. We are
grateful to FMC Technologies Inc. for their support and help on performing the
industrial case study.

References

1. Aadl model for the avionics case study, http://aadl.sei.cmu.edu/aadl/
downloads/Models/IntegratedModel10292007.zip

2. Enterprise Architect Tool, http://www.sparxsystems.com/
3. FMC Technologies, Inc., http://www.fmctechnologies.com/
4. IBM Rational Rhapsody Architect for Systems Engineers, http://www-01.

ibm.com/software/rational/products/rhapsody/sysarchitect/
5. MagicDraw SysML Plugin, http://www.magicdraw.com/sysml
6. OMG Object Constraint Language, http://www.omg.org/spec/OCL/2.2/
7. OMG Systems Modeling Language, http://www.omgsysml.org/
8. UML 2.0 Superstructure Specification (August 2005)
9. A UML profile for MARTE: Modeling and analysis of real-time embedded systems

(May 2009)
10. Behjati, R., Yue, T., Nejati, S., Briand, L., Selic, B.: An AADL-based SysML

profile for architecture level systems engineering: Approach, metamodels, and
experiments. Technical Report 2011-03, Simula Research Laboratory (2011),
http://vefur.simula.no/~raziehb/ExSAM-11.pdf

11. Espinoza, H., Cancila, D., Selic, B., Gérard, S.: Challenges in combining sysML and
MARTE for model-based design of embedded systems. In: Paige, R.F., Hartman,
A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 98–113. Springer,
Heidelberg (2009)

12. Faugere, M., Bourbeau, T., de Simone, R., Gérard, S.: MARTE: Also an UML
profile for modeling AADL applications. In: IEEE International Conference on
Engineering of Complex Computer Systems, pp. 359–364 (2007)

13. Feiler, P.H., Gluch, D., Hudak, J.J., Lewis, B.A.: Embedded system architecture
analysis using SAE AADL. Technical report, CMU/SEI (2004)

14. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design
Language (AADL): An Introduction. Technical report, CMU/SEI (2006)

15. Nunes, N.J., Selic, B., da Silva, A.R., Álvarez, J.A.T. (eds.): UML Satellite
Activities 2004. LNCS, vol. 3297. Springer, Heidelberg (2005)

16. Schafer, W., Wehrheim, H.: The challenges of building advanced mechatronic
systems. In: FOSE 2007, pp. 72–84 (2007)

17. Weigert, T., Weil, F.: Practical experience in using model-driven engineering to
develop trustworthy computing systems. In: IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 208–217 (2006)

18. Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design.
Morgan Kaufmann Publishers Inc., San Francisco (2008)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 253–269, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Analyzing Variability:
Capturing Semantic Ripple Effects

Andreas Svendsen1,2, Øystein Haugen1, and Birger Møller-Pedersen2

1 SINTEF, Pb. 124 Blindern, 0314 Oslo, Norway
2 Department of Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway

{andreas.svendsen,oystein.haugen}@sintef.no,
birger@ifi.uio.no

Abstract. This paper shows how to incrementally analyze how variability
described in the Common Variability Language (CVL) affects the semantics of
a model in a domain-specific language (DSL). CVL is a generic language for
modeling variability. Using Alloy for definition of semantics we perform
analysis to capture the elements in the model, which are semantically affected
by applying the variabilities specified by the CVL model. An extension to the
CVL editor is provided to automate the analysis. To illustrate the approach, we
combine CVL with the Train Control Language (TCL) to capture how the
semantics of TCL models are affected when applying CVL to them. We show
how the analysis can be applied e.g., for testing.

Keywords: Language composition, model analysis, semantic modifications,
Alloy, Common Variability Language, Train Control Language.

1 Introduction

Software product line engineering aims to define the commonalities and variabilities
between software systems. A software product line can often be realized by using
model transformations to transform a product line model into product models. The
model transformation typically defines a transformation of a model by the means of a
set of rules based on a description of variability. In general, structural modifications
are explicitly expressed by the transformation, while the operational semantics of the
model are implicitly modified. When a model is transformed, other applications, de-
pending on the semantics of the model, may need to be modified accordingly. E.g., if
thorough testing of a model (through test cases) has been performed, and the model is
transformed, how will the semantic ripple effects of the transformed model affect the
test cases and their results?

The Common Variability Language (CVL) [6] is a generic language for modeling
variability in base models (a model defined by a domain-specific language (DSL)). A
CVL model has one-way references to the base model, describing how the base model
elements can vary. The base model is thus oblivious of the added variability by the
CVL model. Executing a CVL model (with resolution of the variabilities) yields a
model transformation from the base model to another model (the product model) in
the same DSL, where the structure of some of the base model elements is modified.

254 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

In this paper we discuss how we can capture the semantic ripple effects when using
CVL for modeling the variability in a model in a DSL and executing the CVL model
with resolutions of the variabilities. We use the Alloy Analyzer to formally combine
CVL with the base language, to perform the analysis. As an example base DSL we
use the Train Control Language (TCL) [18] [5], which enables the modeling of train
stations. We look at a concrete example where we transform a two-track station into a
three-track station, to see how the operational semantics of the two-track station is
affected by the transformation. The approach is evaluated by integrating the analysis
with the CVL editor, and by performing the analysis on the example.

The contribution of this paper is as follows: We give a formalization of CVL and a
formalization of the base language TCL, including the operational semantics. In addi-
tion we discuss how these already existing languages can be combined in Alloy, such
that analysis of how CVL models affect the operational semantics of TCL models can
be performed. We also discuss how this can be used to examine whether test cases
related to the base model ought to be modified and re-run after a CVL transformation.

The outline of the paper is as follows: Section 2 describes the background for this
work, including an introduction to CVL and TCL, and the challenges leading to the
need for formal analysis. Section 3 introduces the formal language Alloy and Section
4 presents how CVL and TCL are combined formally in Alloy. Section 5 illustrates
analysis that can be performed by Alloy to capture the semantic ripple effects of CVL
models. Finally, Section 6 gives some related work before Section 7 concludes and
gives some indications of future work.

2 Background

2.1 Common Variability Language

CVL is a language for modeling variability in models in any DSL where separate
variability models define variability on a base model, and resolution models define
how this variability should be resolved to form specific product models [10]. CVL
includes concepts for abstraction, to be able to model e.g. feature diagrams, and con-
cepts for concrete specification of how base model elements, in form of concrete
repository objects, should be substituted with other model elements to form product
models with the required features. CVL has three kinds of substitutions: Fragment
substitution, reference substitution and value substitution. A fragment substitution
replaces a placement fragment, which is a set of base model elements, with a
replacement fragment, which is another set of base model elements. A reference sub-
stitution replaces a reference with another reference (redirect a reference). A value
substitution replaces an attribute value in the model with another value. CVL has been
developed as an Eclipse plug-in based on Eclipse Modeling Framework (EMF) [4]
and Graphical Modeling Framework (GMF) [9], and allows definitions of variability
of models in DSLs defined in Ecore. MOFScript [15] is used to perform the model
transformation from a base model to product models.

For the purpose of the analysis presented later, we will in this paper use a
simplified version of CVL, with minimal support for abstraction, and only fragment
substitution with its placement and replacement fragment. However, reference and
value substitutions can be obtained by a fragment substitution, though in a less
convenient way. Thus, we will not lose generality relative to the full CVL.

 Analyzing Variability: Capturing Semantic Ripple Effects 255

The metamodel for the simplified CVL is illustrated in Fig. 1. A CVLModel con-
tains a variability specification, which is specialized into composite variability, frag-
ment substitution, placement fragment and replacement fragment. Composite variabil-
ity allows a hierarchy of variability specifications, while fragment substitution binds
(through ToBinding and FromBinding) a placement fragment and a replacement
fragment, thereby replacing the placement fragment with the replacement fragment.

Fig. 1. Simplified CVL metamodel

A placement fragment defines a set of base model elements (objects in the model
repository) to be replaced, by recording all references into and out of this fragment of
elements. References going to the fragment are recorded by ToPlacement, which
stores the element outside and the elements inside the fragment (see Fig. 2 and Fig.
3). References going out of the fragment are recorded by FromPlacement, storing the
elements outside the fragment. Similarly, references into and out from a replacement
fragment are recorded by ToReplacement and FromReplacement. Notice that a
placement stores the context for where a replacement can be added, while a replace-
ment stores the elements to be added to the placement context. Fig. 2 illustrates the
references from CVL into the base model (ModelElement) and Fig. 3 illustrates how a
fragment substitution binds a placement fragment with a replacement fragment to
form a new product model.

As illustrated in Fig. 3, executing a CVL model involves substituting placements
with replacements, by modifying the recorded references. E.g., the reference from A
to C is bound to, and thus substituted with, the reference to H. Notice that CVL ex-
plicitly models where the variability is, and no algorithm for e.g. pattern matching is
used. This will ease the possibility for performing the analysis presented later. For
specification of the full CVL language and tool support, we refer to [6] for further
information. A case study of CVL is given in [19].

256 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

Fig. 2. CVL references to base model

Fig. 3. A fragment substitution replaces a placement fragment with a replacement fragment

2.2 Train Control Language

As our base language we will use TCL, which is a DSL for modeling train stations.
TCL has been developed in cooperation with ABB, Norway, to automate the devel-
opment of interlocking source code, used to control signaling systems on train sta-
tions. TCL is defined by a metamodel (see Fig. 4), and is developed as an Eclipse
plug-in using EMF and GMF. The TCL generator, transforming a station model into
source code, is written in MOFScript.

The top concept of the metamodel is station, containing all the other concepts. A
train route is a route that a train is given before it can move into or out of the station.
The train route is divided into track circuits, which consists of a certain amount of
tracks where a train can be located. A track can either be a line segment or a switch,
which are connected by endpoints. Each train route starts and ends at an endpoint,
which is connected to a signal. This signal will only give a clear signal (green light) if
the requested route is safe. The concrete syntax of TCL is illustrated in Fig. 5.

Intuitively, a train will stop at a signal giving red light. The train will then request a
route. Given that no conflicting train routes are already allocated, and no track circuits
in the route are occupied, the train can be given the route and get a clear signal. As the
train moves through the route, each visited track circuit will be occupied and freed
afterwards. For further information about TCL, we refer to [18] and [5].

 Analyzing Variability: Capturing Semantic Ripple Effects 257

Fig. 4. TCL metamodel excerpt

Fig. 5. TCL concrete syntax

2.3 Need for Analysis of CVL Models

Since the train domain is safety-critical, testing is a big part of the development of
new train stations. A huge amount of resources is used to ensure that a station is well
tested against some predefined criteria. Examples of such test cases can be to place
trains on certain tracks, and let another train try to allocate a route using these tracks.
If the amount of time and resources used to test these stations can be reduced, the cost
and time-to-market can be drastically reduced.

Instead of modeling each station manually, CVL offers the possibility to specify
the modifications from an existing station more formally, in such a way that the new
station model can be transformed from an existing base station model. However,
applications depending on the existing model (e.g., test cases) will often need to be
redesigned (and retested) to apply to the new station model. By analyzing the seman-
tic ripple effects of the CVL model, we can foresee how these applications should be
modified as well. [16] presents some initial thoughts in this area, and based on this
work, we present an approach for analyzing CVL models to find semantic ripple
effects of these models.

To perform analysis of CVL models, we need a formal representation of CVL and
of the base language to which CVL is applied. Due to its fully automatic analyzer and
uniform notation, we use Alloy to specify these languages and to automate the
analysis. This approach builds directly upon the work by Kelsen and Ma [14]
presenting how to formalize modeling languages using Alloy.

258 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

3 Alloy

Alloy is a light-weight declarative constraint-solving language offering automatic and
incremental analysis through relational calculus and first-order logic [13]. Unlike
traditional theorem proving techniques, Alloy gives fully automatic analysis ranging
over a finite space of cases. Thus, Alloy guarantees that the analysis is complete and
correct up to a given scope (which bounds the number of elements of each type).
However, the small scope hypothesis ensures that if there is a solution to a request,
this solution will be in a scope of small size [2].

A system can be defined in Alloy using signatures, where a signature defines a
type. A type hierarchy can be realized by letting a signature extend another signature.
Signatures can contain fields, which refer to other signatures. Global constraints for
the system may be added as facts. Parameterized constraints can be defined as predi-
cates, which will evaluate to true only if all the contained constraints are evaluated to
true. Predicates can thus be used as operations, where it constrains some behavior.
Alloy also allows assertions, where an assertion is a claim that some constraints must
hold.

There are two kinds of analysis performed by the Alloy Analyzer: either search
for a solution that satisfies a predicate, or search for a counter-example to an asser-
tion. The Alloy Analyzer performs these analyses automatically by populating the
signatures with elements up to the given scope, to find either a solution or a counter-
example. If an analysis does not give any solution or counter-example, there may not
be any solution or counter-example within the scope, or the constraints
(facts/predicates) may over-constrain the model. The Alloy model can therefore be
built stepwise based on the feedback from the Alloy Analyzer.

4 Combining CVL and TCL in Alloy

TCL and CVL are two DSLs that are already operational in Eclipse, where we have
combined models of CVL with models of TCL to describe product lines of TCL mod-
els [19]. In this paper we use an example with a two-track station as our TCL base
model. We add a CVL model on top of this base model to substitute the second track
with another two-track, yielding a three-track station. Fig. 6 illustrates the CVL model
on the right side, which defines a fragment substitution on the TCL model on the left
side. By selecting the placement fragment, the TCL editor highlights the model ele-
ments to be substituted (red color) and the model elements that are involved in this
substitution (orange color). Notice that the two rows of rectangles represent the train
routes and the track circuits. The naming of train routes and track circuits follows the
convention from the train domain, where names are based on the related signal. The
result of executing the CVL model is a three-track station (see Fig. 7).

 Analyzing Variability: Capturing Semantic Ripple Effects 259

Fig. 6. CVL (right) on TCL (left) in Eclipse

Fig. 7. A three-track station is the result of executing the CVL model

4.1 Formalizing TCL

The formalization of TCL involves three Alloy models; static model, dynamic model
and instance model (see Fig. 8). The TCL static model gives the static semantics for
the TCL language. This model represents the concepts of TCL (e.g., train routes, track
circuits, etc.) as signatures, the references between the model elements as fields and
additional constraints as facts. As an example, in the TCL metamodel (Fig. 4) a train
route is contained by Station and has references to track circuit, start endpoint and
end endpoint, with cardinality 1..*, 1 and 1 respectively. Fig. 9 illustrates how this
train route is defined in the Alloy model: as a signature, with trackCircuits, start, end
and direction as fields with the appropriate cardinalities. In addition, two constraints
are defined on this signature. The first constraint states that the train route has to be
referred from one Station element. The second constraint ensures that no model can
be instantiated with a train route starting and ending at the same endpoint.

260 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

Fig. 8. Alloy specification divided into six models

Fig. 9. Definition of a train route with additional constraints

When Alloy searches for solutions or counter-examples, it will try to populate the
signatures with elements satisfying all constraints. Thus, with the static semantics of
TCL the Alloy Analyzer instantiates an arbitrary TCL model. However, the purpose
of our analysis is to perform analysis on a given model in the base language. There-
fore, we force Alloy to instantiate the model instance that has been created in the TCL
editor. Our approach for instantiating such a model is to extend the static model with
a TCL instance model, extending each concept with its instances. Fig. 10 illustrates
the train route instance “BI2”, which extends train route and constrains the fields to
refer other instances. Constraining all the concepts in such a manner, gives the Alloy
Analyzer only one valid instance. Thus, the instance model imports the static model in
order to extend its elements (see Fig. 8). In this paper, this particular instance model is
a model of a two-track station (illustrated in Fig. 6).

The dynamic TCL model contains the dynamic (operational) semantics of TCL.
We have simplified the TCL dynamic semantics for the purpose of applying analysis.
We will omit some elements and only concentrate on the core elements for train
movement. Intuitively, our dynamic semantics for TCL is as follows: A train has to
allocate a train route before it is allowed to enter or exit the station. The train route
will only be given to the train if no other conflicting train routes are already allocated.
If the train gets the route, it can move and occupy one track after another. When it

 Analyzing Variability: Capturing Semantic Ripple Effects 261

one sig tr_BI2 extends TrainRoute{} {#trackCircuits = 2}
fact {all tr:tr_BI2, st:Station2T | tr in st.trainRoutes}
fact {all tr:tr_BI2, e:ep_TCE1 | e in tr.start}
fact {all tr:tr_BI2, e:ep_TCE4 | e in tr.end}
fact {all tr:tr_BI2, tc:tc_B | tc in tr.trackCircuits}
fact {all tr:tr_BI2, tc:tc_01 | tc in tr.trackCircuits}
fact {all tr:tr_BI2, dir:Right | dir in tr.direction}

Fig. 10. Definition of a train route instance

reaches its destination, the train route is freed. If the train is entering the station, it will
try to allocate the subsequent route to exit the station. Several trains can move at the
same time, as long as train routes are not mutually conflicting.

The dynamic model, representing the TCL operational semantics, constrains how
the elements defined by the TCL static model can behave by defining a state machine.
Since the static model elements are defined as abstract types, and the instance model
defines subtypes of them, the dynamic semantics can constrain the static model ele-
ments while the Alloy Analyzer will use the instance elements in the solution. There-
fore, we import the instance model, but specify how the static elements can behave.
We also import the Alloy library util/ordering[State] to get a set of ordered states.
The State signature contains fields referring to sets of trains, train routes, tracks for
storing the current location of the trains and their status. For instance, there are four
sets of trains; initial trains that have not yet arrived at the station, idle trains that have
arrived but are waiting for a train route, moving trains that have a train route and are
currently moving, and final trains that have left the station.

To be able to simulate the movement of trains, the Alloy model contains three
predicates that act as operations; newTrain, allocateRoute and moveTrain. The predi-
cate newTrain describes the movement of a train from the initial train set to the idle
train set and the location of the train on either side of the station. The predicate allo-
cateRoute defines the allocation of a route to an idle train if this satisfies all con-
straints for route allocation, and the movement of the train from the idle train set to
the moving train set. The predicate moveTrain describes the movement of a train one
track for each transition, and movement of the train either to the idle train set or the
final train set when it reaches its destination.

Fig. 11 illustrates how we obtain the Alloy models. The static TCL model is pro-
duced by traversing the metamodel of TCL and generating the proper signatures,
fields and constraints. The dynamic TCL model is manually produced. The TCL in-
stance model (in Alloy) is fully transformed from a TCL model. This ensures that
other Alloy instances of TCL can be generated automatically from a TCL model cre-
ated in the TCL editor. We refer to [17] for more information about how to perform
analysis on station models.

4.2 Formalizing CVL and Relation to Base Language

We follow the same principles when formalizing CVL, dividing it into a static model,
an instance model and an analysis model. The CVL static model contains signatures
for the elements in the CVL metamodel, associations as fields with proper

262 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

cardinalities and additional constraints. The CVL static model also imports the TCL
static model to define the reference to TCL model elements. In CVL the references to
the base model are realized through boundary elements (see Fig. 2), which are refer-
ring to ModelElements (EObjects in the Eclipse implementation). We follow this
strategy for the Alloy model by introducing a signature as a supertype to the TCL
elements. This is illustrated in Fig. 9, where a train route extends Element. Fig. 12
illustrates how the references to the base model in the boundary element ToPlacement
(see Fig. 2) are realized in Alloy.

Fig. 11. Development of the Alloy models

Fig. 12. CVL boundary element refers the base model through Element

The CVL instance model constrains the CVL model such that the Alloy Analyzer
only finds one instance of it. Similar to the TCL instance model, the CVL instance
model imports the CVL static model and extends the static elements. In addition it
imports the TCL instance model, to constrain the connection to the TCL model (see
Fig. 8). In this paper, the CVL instance model contains a fragment substitution which
replaces a track with another two-track fragment, yielding a three-track station.

As illustrated in Fig. 11, the CVL static model is obtained by traversing the CVL
metamodel and generating the Alloy signatures, fields and constraints. Notice that the
same transformation is used here as for TCL, since it is written generally for Ecore
models. The CVL analysis model is produced manually, and will be further discussed
in Section 5. The CVL instance model is fully transformed from a CVL model. As for
TCL, this ensures that other instances of CVL models can be generated automatically
from CVL models created in the CVL editor.

 Analyzing Variability: Capturing Semantic Ripple Effects 263

4.3 Optimizing the Instance Models

When performing analysis by using Alloy, we notice that when the base model grows,
and thus the scope of number of Element (root of base model, see Fig. 9), the time
needed to perform the analysis increases rapidly. Typical TCL models range from
about 50 to more than 100 model elements. The approach followed in this paper
specifies a general language, and specializes this language into an instance model by
constraining how the instance model elements are connected. This will force the Al-
loy Analyzer to populate all possible instances, and discard the ones that violate the
constraints.

Instead of using constraints to specify our instance, we optimize the instance mod-
els by defining fixed functions defining relations between the instance model ele-
ments. The optimization considerably improves the analysis time to about 1/10 of
original time (SAT solving time can be variable), such that the approach scales better.

5 Analyzing Semantic Ripple Effects

We have created a formal model for the TCL and CVL languages, for models in these
languages and for the behavior of the TCL models. We can now write analyses of
these models to be executed by the Alloy Analyzer. Our motivation for this work is to
analyze the semantic ripple effects of a CVL transformation. The CVL model speci-
fies explicitly which base model elements should be substituted for other elements,
meaning that the modifications of the static semantics of the model are obvious.
However, whether the transformed TCL model will have semantic ripple effects still
needs to be investigated, and this is the target for our analysis.

The operational semantics of a TCL model is defined by the set of all traces defin-
ing legal train movement through the model. Following the STAIRS approach [11]
these traces can be formalized and possibly refined. Positive traces then define the
intended train movement, while negative traces define unintended train movement.
Fig. 13 illustrates a trace defining train movement of one train from the left through
the main track, by describing the movement of the train T1 on the tracks. Note that
the trace also explicitly defines the position of the switches in the route, which is
either in normal (for main track) or divert (for second track) position. For explanation
of the composition of line segments and switches, see Fig. 14.

Fig. 13. Positive trace defining train movement from left through the main track

In the CVL analysis model we have written assertions to check whether the CVL
transformation will affect the traces of the TCL model. Fig. 15 illustrates a simple
assertion claiming that no base model element inside or referring to the placement
fragment is included in any trace of the TCL operational semantics. The boundary
elements record which elements are inside the fragment (red elements in Fig. 6) and
which elements are involved (orange elements in Fig. 6).

264 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

To evaluate and automate this analysis we have extended the CVL editor with
menu options to perform the analysis (see Fig. 16). The menu allows the user to ex-
port the Alloy models, perform analysis to get a list of affected elements and do cus-
tom analysis by providing a file containing the custom analysis. Choosing to perform
analysis (to get the affected elements) involves executing the Alloy Analyzer with the
assertion in Fig. 15, which will yield a counter-example with the first affected ele-
ment. This analysis is then reiterated, excluding the discovered element, until there
are no more affected elements.

Fig. 14. Composition of LineSegments and Switches

Fig. 15. Check if the TCL dynamic semantics is affected by the modified elements

Fig. 16. Performing analysis in the CVL editor

Applying the assertion in Fig. 15 on the example, the Alloy Analyzer gives us
counter-examples indicating that the following elements are affected: Train routes
BII1, N1, O1, AII1 and tracks (line segments and switches) LS6, V2, V1 (see Fig.
17). The analysis also gives the affected attribute names given by the boundary ele-
ments and which elements they refer to. E.g. switch V1 is affected on the attribute
divert, which is referring to track circuit endpoint TCE5. Notice that these train routes

 Analyzing Variability: Capturing Semantic Ripple Effects 265

are the routes entering and leaving the second track of the station. The line segment
LS6 is placed on the second track, while switches V2 and V1 are located on each side
of it. From this we observe that train movement to and from the main track is not
affected by the transformation, unlike train movement to and from the second track.

The affected line segment LS6 is placed on the second track, and analysis of the
replacement fragment is necessary to determine whether the transformation will affect
the traces including this line segment. E.g., the line segment can be replaced by two
line segments, changing the trace through the second track. Furthermore, we observe
that switches V2 and V1 are affected with the divert property, stating that if the traces
do not include this attribute, they cannot change. Therefore, even though these
switches are indicated to be affected, there is no possibility that the traces using the
normal position will be affected. In other words, the analysis shows that all traces
through the main track of the station are not affected by the change, while it requires
further analysis of the replacement fragment to determine the effect on the traces
through the second track. Similarly, it requires further analysis of the replacement
fragment to verify the additional traces through the third track.

Fig. 17. The result of the analysis

As discussed in Section 2.3, the train domain is a safety-critical domain. Therefore
testing the behavior of the station is a big and time-consuming part of the develop-
ment. When a station is well tested, manually implementing a similar station will
require all the tests to be modified and executed again. However, if the new station
can be expressed in CVL with the well-tested station as a base model, we can perform
analysis on how the operational semantics of the base model has been affected. Then
we can determine whether the test cases also have been affected. A test case in TCL
involves testing a particular train movement using either positive traces (a successful
train movement) or negative traces (a disastrous train movement). An example of
such a test case, given by a positive trace, is illustrated in Fig. 13, showing a success-
ful train movement from left through the main track. Fig. 18 illustrates a negative
trace where train T1 moves from left into the main track followed by movement of
train T2 from right into the main track.

266 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

Fig. 18. Negative trace defining two trains moving into the main track

For the two-track station there are test cases which test whether train routes enter-
ing the station to the main track can be allocated if there are trains located on this
track, and similar for the second track of the station. Based on the analysis performed
we know that the test cases involving train movement through the main track are not
affected, and a re-test of these on the transformed station can be avoided. The train
routes to the second track have, however, been affected by the transformation, and we
cannot safely determine whether a re-test can be avoided. E.g., the analysis has con-
firmed that the test case (negative trace) in Fig. 18 involving the main track will yield
the same result for the three-track station as for the two-track station, causing a re-test
to be redundant. Since there are large numbers of such test cases, testing all possible
combinations, the analysis performed can reduce the effort needed to perform testing.

Another issue is the completeness of the test cases for the transformed model. In
our example the transformed model contains three tracks. However, the test cases
testing the base model are designed for only two tracks, leaving all train movement to
and from the third track, and the behavior of the added model elements, untested.
Careful analysis of the replacement fragment and the current test cases can give in-
formation of how to add new test cases testing the added functionality. Such analysis
may reveal whether a CVL substitution yields a refinement of the traces representing
the test cases. In this case, it may be possible to determine that even more traces will
remain unaffected and whether new traces can be established based on the already
existing ones. Further information is given in Section 7 as future work.

Notice that transformations on base models with relatively small changes (modeled
in CVL models) are quite common. In this kind of situation, such incremental analysis
of the CVL models has a potential of reducing the total amount of analysis necessary.

6 Related Work

Kelsen and Ma [14] present a comparison between traditional techniques and an Al-
loy approach for formalizing modeling languages. Their findings state that the Alloy
approach enables automatic analysis and a uniform notation. They claim that this
approach is more accessible and has the potential of making formal analysis of model-
ing languages more widely adopted. Our approach is based on the work by Kelsen
and Ma, and we use an Alloy formalization of CVL and TCL to perform the presented
analysis.

Several approaches use Alloy to perform analysis on product line models and
model transformations. Baresi and Spoletini [3] propose an approach for using Alloy
to analyze graph transformation systems. They check reachability of paths, whether
sequences of rules are valid, etc. Anastasakis et al. [1] describe an approach for using
Alloy to analyze a model transformation and the well-formedness of the target model.
Gheyi et al. [8] specify a theory for feature models in Alloy. The Alloy Analyzer is
used to check well-formedness and refactoring rules. Our approach analyzes how the

 Analyzing Variability: Capturing Semantic Ripple Effects 267

semantics of the base model is affected by a transformation instead of analyzing the
well-formedness of the transformation itself.

Uzuncaova et al. [20] [21] present an approach using incremental test generation to
test product line models represented by feature models. Each feature of a program is
defined as an Alloy formula, which is used to generate incremental tests. Instead of
incrementally building tests, we use the description of variability on a model to decide
the semantic ripple effect, and thus which test cases which need to be reconsidered.

Fraser et al. [7] present and evaluates methods to identify obsolete test cases using
model-checkers. In this approach, only test cases that are related to the model changes
are selected for the updated test case suite, avoiding a retest of the unaffected test
cases. This is similar to the approach discussed in this paper; using the Alloy Ana-
lyzer (model finder) to obtain the updates in operational semantics, to observe
whether test cases are affected. However, unlike their approach, we analyze the CVL
model (representing the differences), without comparing the base model with the
transformed model. This may be more efficient and result in more accurate results.

In [12] Jackson presents a case study where Alloy is used to model railway safety.
The main purpose of this case study was to show that Alloy can analyze a structural
aspect. The formalization of this railway system is quite similar to the formalization
of the operational semantics of TCL. However, TCL includes more elements and is
more complex, e.g., bidirectional train movement on a track, because it is modeling
an actual train system.

7 Conclusion and Future Work

This paper presented an approach for discovering modification in operational seman-
tics in CVL transformations. We gave a formalization (both static and dynamic) of the
Train Control Language using the light-weight formal language Alloy. We then for-
malized the Common Variability Language and connected it to TCL. Analysis for
discovering semantic ripple effects when applying CVL was conducted. A discussion
about the purpose of this analysis, for use with test case evolution, was also given, in
which we discovered that re-testing of some test cases can be avoided. Thus, we ob-
served that by using CVL to follow an incremental approach of developing station
models and performing analysis, the cost of testing the stations can be reduced.

As current and future work we will extend the analysis of the CVL models in order
to obtain more precise information about the semantic ripple effects. This includes
further analysis of the replacement fragments, which is needed for this approach to
further support evolution of test cases. Such analysis can reveal whether more of the
traces are unaffected, and if they represent a refinement of the existing traces. Addi-
tional traces can then be determined to be unaffected, causing a re-test of test cases
based on these traces to be redundant.

In addition extending the CVL formalization to include other CVL concepts will be
investigated. CVL concepts for abstraction will then allow specification of SPLs.

A case study comparing this incremental approach with redesigning station models
from scratch is also important future work.

268 A. Svendsen, Ø. Haugen, and B. Møller-Pedersen

Acknowledgements. The work presented here has been developed within the MoSiS
project ITEA 2 – ip06035 and the Verde project ITEA 2 – ip8020 parts of the Eureka
framework.

References

1. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of Model Transformations Via Alloy.
In: Baudry, B., Faivre, A., Ghosh, S., Pretschner, A. (eds.) 4th International Workshop on
Model Driven Engineering, Verification and Validation, in conjunction with MoDELS
2007, Nashville, TN, USA. Springer, Heidelberg (2008)

2. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the Small Scope Hypothe-
sis. MIT CSAIL MIT-LCS-TR-921 (2003)

3. Baresi, L., Spoletini, P.: On the Use of Alloy to Analyze Graph Transformation Systems.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006.
LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006)

4. EMF, Eclipse Modeling Framework (Emf), http://www.eclipse.org/modeling
/emf/

5. Endresen, J., Carlson, E., Moen, T., Alme, K.-J., Haugen, Ø., Olsen, G.K., Svendsen, A.:
Train Control Language - Teaching Computers Interlocking. In: Computers in Railways XI
(COMPRAIL 2008), Toledo, Spain (2008)

6. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A., Zhang, X.: A
Generic Language and Tool for Variability Modeling, SINTEF, Oslo, Norway, Technical
Report SINTEF A13505 (2009)

7. Fraser, G., Aichernig, B.K., Wotawa, F.: Handling Model Changes: Regression Testing
and Test-Suite Update with Model-Checkers. Electronic Notes in Theoretical Computer
Science 190, 33–46 (2007)

8. Gheyi, R., Massoni, T., Borba, P.: A Theory for Feature Models in Alloy. In: First Alloy
Workshop, Portland, United States, pp. 71–80 (2006)

9. GMF, Eclipse Graphical Modeling Framework (Gmf), http://www.eclipse.org/
modeling/gmf/

10. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., and Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: SPLC 2008, Limerick, Ireland
(2008)

11. Haugen, Ø., Husa, K., Runde, R., Stølen, K.: Stairs Towards Formal Design with
Sequence Diagrams. Software and Systems Modeling 4, 355–357 (2005)

12. Jackson, D.: Micromodels of Software. In: Broy, M., Pizka, M. (eds.) Models, Algebras
and Logic of Engineering Software, pp. 351–384. IOS Press, Amsterdam (2003)

13. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press,
Cambridge (2006)

14. Kelsen, P., Ma, Q.: A Lightweight Approach for Defining the Formal Semantics of a
Modeling Language. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 690–704. Springer, Heidelberg (2008)

15. Oldevik, J.: Mofscript Eclipse Plug-In: Metamodel-Based Code Generation. In: Eclipse
Technology Workshop (EtX) at ECOOP 2006, Nantes (2006)

16. Svendsen, A.: Application Reconfiguration Based on Variability Transformations, School
of Computing, Queen’s University, Kingston, Canada, Technical Report 2009-566 (2009)

 Analyzing Variability: Capturing Semantic Ripple Effects 269

17. Svendsen, A., Møller-Pedersen, B., Haugen, Ø., Endresen, J., Carlson, E.: Formalizing
Train Control Language: Automating Analysis of Train Stations. In: Comprail 2010,
Beijing, China (2010)

18. Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.-J., Haugen, O.:
The Future of Train Signaling. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 128–142. Springer, Heidelberg (2008)

19. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, Ø., Møller-Pedersen, B.,
Olsen, G.K.: Developing a Software Product Line for Train Control: A Case Study of Cvl.
In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 106–120. Springer, Heidel-
berg (2010)

20. Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: Testing Software Product Lines
Using Incremental Test Generation. In: Proceedings of the 2008 19th International Sympo-
sium on Software Reliability Engineering, pp. 249–258. IEEE Computer Society, Los
Alamitos (2008)

21. Uzuncaova, E., Khurshid, S., Batory, D.: Incremental Test Generation for Software
Product Lines. IEEE Trans. Softw. Eng. 36, 309–322 (2010)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 270–281, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Integrating Design and Runtime Variability Support
into a System ADL

Marie Ludwig1, Nicolas Farcet1,
Jean-Philippe Babau2, and Joël Champeau3

1 Thales Communications, 148 boulevard de Valmy
92704 Colombes Cedex, France

{marie.ludwig,nicolasfarcet}@fr.thalesgroup.com
2 LISyC, UBO, UEB, 20 avenue Le Gorgeu

29200 Brest, France
jean-philippe.babau@univ-brest.fr
3 LISyC, ENSTA Bretagne, 2 rue François Verny

29200 Brest, France
joel.champeau@ensta-bretagne.fr

Abstract. As the complexity of modern large systems or System of Systems in-
creases, it becomes challenging to capture their whole dimension and to identify
their key aspects. Architecture models provide a legible description of the
system, and help describing its properties in a representation shared and
understood by most stakeholders. In our case, we intend to evaluate system ar-
chitectures through model execution. Since evolutionary design and configura-
tion are key challenges of such systems, variability needs a way to be expressed
in architecture models. Variability can be solved either at design time (derive a
system from the family), or at runtime (reconfigure the system). This paper pre-
sents our experience in integrating variability aspects in a system architecture
description Domain-Specific Language.

Keywords: Systems of Systems, architecture modelling, variability.

1 Introduction

Architecting and engineering large systems or Systems of Systems [1] face multiple
complexity issues. During the early stages of enterprise1 architecting, there is a need
for a gradual understanding of its structure and confidence in its ability to fulfill its
missions and satisfy its objectives. Model-Based Systems Engineering (MBSE) ap-
proaches [2], which are currently mainly used in IT enterprises, emphasize the use of
an architecture model to provide a legible description of the studied system, shared
and understood by most of the stakeholders.

In [3], we presented an approach to use architecture modelling as a support for sys-
tem architects as well as business experts for the design and evaluation of enterprise

1 In the remaining of the paper, we will use ‘enterprise’ as a generic term comprising large

systems and systems of systems.

 Integrating Design and Runtime Variability Support into a System ADL 271

architecture in the early stages of architecting. This approach is based on rapid proto-
typing and short and incremental design / simulation loops using an executable archi-
tecture model. In our case, by executable model we mean an architecture model that
can be simulated as a whole (i.e. by taking into account all its aspects) without model
transformation. In particular, we execute operational processes in correlation with
enterprise operational entities, services, roles, and command and control organizations.

According to Maier’s criteria for identifying Systems of Systems [1], evolutionary
design is an inherent challenge to such systems: for example they have to adapt to
unpredictable environments and evolving missions, enable dynamic collaborations,
master critical services chains, and mitigate vulnerabilities. Running an architecture
model in a convincing way thus requires the ability to express the possible reconfigu-
rations and variations of the enterprise.

Based on ongoing works on Variability and Product Line engineering [5][6][8][9],
this paper presents the integration in an enterprise architecture metamodel of concepts
and activities dedicated to variability description and reconfiguration at runtime. In
particular, we will focus on using variability as a support for the reconfiguration of
sub-systems. Section 2 introduces the background of the project. Section 3 presents
the variability challenges in this context, while Section 4 addresses the approach and
implementation we adopted. Section 5 exposes an overview of related works and
Section 6 concludes with future works and perspectives.

2 Background

To support rapid prototyping and iterative analysis of architecture models, we have
designed a modelling framework and tools. The corresponding approach is based on
the execution of semi-formal models and is part of a process named IDEA, bridging
wider Concept Development & Experimentation (CD&E) and system engineering
through architecting [3].

Because the proposed tools are intended to be used by stakeholders that may be op-
erational experts with limited abilities in modelling, we had to go for a Domain-
Specific Language (DSL) instead of using a general purpose language such as the
UML. The DSL underlying metamodel is based on a core set of architectural concepts
chosen for their simplicity and expressiveness for the participants of CD&E sessions.
This metamodel will be referred to as the IDEA Metamodel in the rest of this paper.
The specific models conforming to this metamodel will be referred to as IDEA Models.

From a technological point of view, our tool suite has been developed using the
Microsoft .NET framework. The metamodel has been designed with the DSL Tools
add-in for Visual Studio 2010, and the model execution engine is based on a set of
.NET technologies – principally Windows Workflow Foundation (WF) and Windows
Communications Foundation (WCF).

2.1 IDEA Metamodel Overview

The core concepts of the IDEA metamodel are close or similar to the ones described
in the Architecture Frameworks such as the NATO Architecture Framework (NAF)
[13]. They are meant to describe what the enterprise is supposed to do

272 M. Ludwig et al.

(e.g. capabilities), how it can achieve its goals (e.g. collaborations) and who performs
the tasks (e.g. humans or systems). A synthetic view of the core concepts and their
relationships is presented in Fig.1.

Fig. 1. IDEA Enterprise Architecture metamodel core concepts and relationships

Enterprise Entities Organization. Enterprise Entities represent the actors who
achieve the tasks the enterprise is intended to realize. In particular, the systems com-
posing a system of system are seen as Enterprise Entities. Enterprise Entities can be
physical (such as vehicles) or logical (such as groups like patrols). The structure of
the Enterprise Entities organization is based on several kinds of decomposition rela-
tionships, whose properties, behaviors and operational meanings are different depend-
ing on the kind of entity being decomposed. For the sake of simplicity, in this paper
all these kinds of relationships will be equally referred to using the generic term En-
terprise Entity decomposition relationship.

In order to introduce flexibility and modularity in the architecture model, all func-
tional and collaborative aspects (operational processes, service interactions…) are
assigned to Roles. Indeed, Roles supports the selection of role players while retaining
the same collaboration scheme.

Model execution. While the general structure of the IDEA Metamodel is based on the
Prototype Language paradigm [19], the elements used for the execution are based on
a type / instance dichotomy. Most IDEA Metamodel concepts can be used to create
either type or instance model elements. For example, the same Enterprise Entity con-
cept is used to model a type of Entity – e.g. a police patrol car – and an instance de-
rived from this type – e.g. a specific unmarked police car.

Processes are defined to describe and simulate the operational behaviors of the En-
tities. During model execution, each Enterprise Entity instance performs one or more
Process(es) instance(s) in the context of a Role instance.

Due to collaborations defined between Roles, the Processes of different Entities
may interact with each other (e.g. synchronize or exchange information or products).
A Process may also contain Activities dedicated to the modification of an instance

 Integrating Design and Runtime Variability Support into a System ADL 273

element in the model, for example changing an interaction between two entity in-
stances. The modifications such an Activity can perform are constrained by the con-
sistency rules inherent to the metamodel and to the specification of the corresponding
type element.

3 Variability Challenges in IDEA Models

A priori, all elements of an enterprise architecture model are potential subjects to
variation. However, in our case the models are not intended to be exhaustive architec-
ture descriptions, but to be used for rapid prototyping by stakeholders who may not be
familiar with modelling. Therefore, for model simplicity and legibility reasons, we
decided to allow defining variability only for a subset of elements. In this paper, we
will focus on variability related to the operational Enterprise Entities organization.

Fig. 2. IDEA Model lifecycle stages

3.1 Variability during the Model Lifecycle

As illustrated on Fig.2, the lifecycle of an IDEA architecture model is based on four
stages:

– Design-Time – The user identifies the system Capabilities, Processes and Ser-
vices, defines the type of Entities and their organization, and creates the map
of the collaborating Roles.

– Instantiation – The user instantiates the Entities and Roles that will be de-
ployed for the simulation.

– Deployment – The Entities are located on a simulated operation theatre. If
relevant, they might consequently be attributed geographical properties.

– Run-Time – The Processes are simulated. Their execution takes into account
all relevant operational context information available in the model (e.g. the
condition of the entities).

– Reconfiguration may occur if a Process being executed modifies the model.
– After a simulation, the model can be refined or completed through a new

cycle.

274 M. Ludwig et al.

Design and Runtime Configuration. While the description of the variability will
usually be done at Design-Time, the resolution may need to be solved at different
stages of the model lifecycle.

Solving variability at Design-Time during the Instantiation produces configurations
likely to be un-modifiable for the remaining of the entity lifecycle, and thus usually
concerns lower granularity-leveled elements such as vehicles. In the remaining of the
paper, we will use the term Design Configuration to mention a configuration resulting
from variability resolution at Design-Time.

Solving variability at runtime is a way of performing Reconfiguration. As resulting
configurations can still change again during the simulation, the Entity needs to keep
track of all possible configurations compliant to its type. In the remaining of the pa-
per, we will use the term Runtime Configuration to mention a configuration resulting
from variability resolution at runtime.

3.2 Use Case Presentation

The examples used in this paper will be based on a simplified use case close to one of
our current industrial projects in the domain of public safety.

Fig. 3. Design Configuration: the example of Patrol Car equipments

(i) Design Configuration Example. A set of Enterprise Entities belong to the same
product family. The model has to describe their common and variable characteristics
in terms of sub-system decomposition.

In the domain of public safety, we consider several types of police cars that may
embed different kinds of equipments depending on the type of mission they have been
designed for. All these equipments are physically attached to the car and are un-
removable and un-exchangeable in the duration of an operation: the equipment set of
an instantiated police car from this family represents a Design Configuration.

In this model, Patrol Cars are equipped with a Two-Way Radio, and possibly a
Mobile Data Terminal. They also embed either both Beacons and a Vehicle Tracking
System, or a Speed Recognition Device. This example will be referred to as Example
(i) in the following of the paper. It is illustrated in Fig.3 using the FODA Feature

 Integrating Design and Runtime Variability Support into a System ADL 275

Diagram notation [10] and the notation for cardinalities in Feature Diagrams proposed
by Riebisch et al. in [7].

(ii) Runtime Configuration Example. In case of a given operational event, an op-
portunist collaborative group of Enterprise Entities has to be constituted from already
deployed Entities to face the situation. Defining the way the enterprise is intended to
respond to such a situation – i.e. what is the structure of the opportunist organization
in terms of interactions and which processes it will perform – is one of the usual goals
of enterprise architecture prototyping.

In the domain of public safety, we consider the example of a Surveillance Patrol
who detects a suspicious package near a station and calls for reinforcement. Depend-
ing on the location of the threat, the supervision of the mission is either done by the
Station Security HQ or by the Police HQ. A collaborative group composed of the
Patrol, the HQ in charge of the supervision and a Demining Squad is created to han-
dle the threat. This scenario will be referred to as Example (ii) in the following of the
paper. Fig.4 illustrates the composition of the group and the Roles played by its
members, using the same base notation as Fig.3.

Fig. 4. Runtime Configuration: the example of a suspicious package alert response group

4 Approach and Implementation

Recent approaches to variability support for DSL frequently prone to separate the
variability-related metamodel from the domain metamodel [6][8][9]. In our case,
variability is intended to be used to model different operational configurations for
some particular aspects of the enterprise (e.g. the Enterprise Entity organization), and
thus we considered its expression as part of the domain itself.

In the case of Mandatory and Optional equipment specifications, cardinalities
alone are sufficient – mandatory equipments being affected a (1..1) cardinality and
optional equipments a (0..1). In Example (ii) there is a need for a variation point con-
cept that supports the information that the Entity chosen between the Police HQ and
the Station Security HQ will play the Operation Supervision Role.

276 M. Ludwig et al.

Solving the variability expressed by such a variation point means substituting the
chosen variant to the variation point, which involves the redirection of all relevant
links it had to other model elements (especially links to played Roles). Therefore the
variation point shall be able to contain all relevant structural information to enable a
seamless substitution.

This approach to variation modelling is close to the substitution considered as the
simplest form of operation in the variability language proposed by Fleurey et al. [9].
While in their case the variability language is generic and designed to work with any
other language defined by a metamodel, in our case simplicity concerns lead us to
integrate the substitution mechanism directly in the IDEA Metamodel.

Fig. 5. Abstract Entity in the IDEA Metamodel

4.1 The Abstract Entity concept

We introduced a dedicated concept named Abstract Entity that represents a location in
the enterprise organization where an Enterprise Entity may be substituted for another.
For a given Abstract Entity, the substitution options are restrained to an identified set
of Enterprise Entities referred to as its Variants.

When introducing variability in a model, it cannot always be inferred whether it
will have to be resolved at Design-Time or at Runtime. For example, modelling dif-
ferent types of car useable for a same kind of police patrol could be either solved at
Design-Time by directly instantiating a patrol with a multi-purpose car, or being left
unsolved until, at Runtime, a process decides which type of car is more suitable in the
patrol for the current mission. The same concept Abstract Entity shall be able to sup-
port both Design and Runtime Configurations.

 Integrating Design and Runtime Variability Support into a System ADL 277

Fig. 6. Example (i) – Using IDEA Abstract Entities

4.2 Design Configurations

The car equipment alternative in Example (i) can be modeled using an Abstract
Entity, with the two Specific Equipment sets as its variants. The indication that the
alternative is intended to be solved at Design-Time can be added as an attribute on the
Abstract Entity.

An instance from the type Patrol Car modeled as presented on Fig.6 does not
contain an Abstract Entity anymore: the Patrol Car directly embeds either a Speed
Recognition Device or the Equipment Package. The specific instance illustrated on
the figure has also been created without the optional Mobile Data Terminal
equipment.

278 M. Ludwig et al.

Fig. 7. Example (ii) – Using IDEA Abstract Entities

4.3 Runtime Configurations

Operational behaviors are captured in IDEA models by processes, i.e. series of activi-
ties performed to achieve a given task. At runtime, Entities execute Processes in the
context of collaborating operational Roles.

IDEA process toolbox includes activities providing functionalities to undertake ac-
tions on the structure of the enterprise, also called System of System Management
Activities (SoSM Activities). The conditions to be realized to trigger the reconfigura-
tion performed by SoSM Activities are identified and evaluated using the usual proc-
ess decision activities. The main SoSM Activities related to the Enterprise Entities are
Entity Instantiation, Role Restaffing and Abstract Entity Configuration.

– The execution of an Entity Instantiation Activity creates a new Enterprise En-
tity instance of a given type defined in the model. The instantiation is propa-
gated along some of the Enterprise Entities decomposition relationships, for
example the embedding relationship of an Equipment on a Vehicle. If one of
these relationships targets an Abstract Entity, the Abstract Entity is instanti-
ated but not configured. This default behavior can be customized.

– The execution of a Role Restaffing Activity changes the Enterprise Entity in-
stance role player for a given Role instance.

– The execution of an Abstract Entity Configuration Activity sets or changes the
Variant that stands for a given Abstract Entity instance.

In the case of the two latter, the new Entity is chosen either manually by the
simulation operator or by an algorithm that takes into account the simulation context.

 Integrating Design and Runtime Variability Support into a System ADL 279

Modelling the type of Response Group as introduced in Example (ii) can be done
using an Abstract Entity as illustrated in Fig.7.

At runtime, the reconfiguration process is triggered by an operational event simu-
lating the discovery of the suspicious package. The reconfiguration itself first implies
instantiating a Response Group, where the Operation Supervision Role is initially
played by an HQ Abstract Entity instance. After evaluating the location of the threat
to choose the actual HQ Entity in charge, this Abstract Entity instance is deleted and
replaced by an instance of the actual HQ Entity – for example, a Police HQ instance.
The role-playing link between the Abstract Entity and the Operation Supervision Role
is redirected to the Police HQ instance. Fig.8 schematizes the sequence of SoSM
Activities used for this reconfiguration process.

Fig. 8. Example (ii) – Reconfiguration process overview

5 Related Works

Variability in Systems Engineering. Variation has been primarily studied in the
context of Software Product Line engineering. As highlighted in [4], handling vari-
ability is not limited to Product Lines, but is an essential concern when dealing with
most systems and systems of systems, at all stages of their lifecycle. Model-Based
Systems Engineering (MBSE) approaches have a need for modelling mechanisms to
cope with variability in software as well as physical systems.

OMG language System Modelling Language (SysML) [12] is a general-purpose
systems engineering modelling language widely used for MBSE applications.
Krueger et al. handled variability in SysML models using the variation point notion
provided by the IBM Rational Rhapsody/Gears Bridge [14], and successfully applied
it in the industrial domain of wind turbines [15].

The multiple viewpoints paradigm, widely used in MBSE, permits a separated rep-
resentation of the different concerns of a system. The MOVIDA (MOdelling VIews
and Decision support for Architects) project tackles the problem of dealing with vari-
ability in multi-views engineering [16]. Their approach proposes the use feature mod-
els to model families of views, each view being a model of the system relevant to a
given concern and designed with a DSL. The project also includes the specification
and realization of a tool-suite that supports modelling variability of views and product
derivation.

280 M. Ludwig et al.

Runtime Variability. Runtime variability have been identified as a major ongoing
challenge for modern Software Product Lines in the future Common Variability Lan-
guage (CVL) OMG specification [11]. The objective of the CVL is to enable the
specification of the variability in software product line models, variability being de-
scribed as a model separate from the base model on which it applies. In particular, the
language should support variability resolution resulting in alterations at runtime of an
executing product.

The challenge of runtime adaptation is also being addressed in many software en-
gineering domains, in various contexts and granularity levels. Software systems that
have to dynamically adapt their behavior to their context execution are referred to as
Dynamic Adaptive Systems (DAS). In [17], Acher et al. investigate the use of feature
models as a support for DAS adaptive configuration. The proposed approach is based
on modelling both the DAS and its context, and capture adaption through the inter-
relations of the two models. In [18], Navas et al. leverage the specific issues raised by
evolution at execution time for resource-constrained embedded system, and propose a
component-based approach to manage it.

6 Conclusion

This paper presents an approach and implementation to integrate variability aspects
into a metamodel dedicated for executable enterprise architecture models. Modelling
variability in the enterprise organization is used to produce Enterprise Entities con-
figurations at design-time as well as reconfigure them at runtime. The introduction of
an Abstract Entity point of variation combined with the use of cardinalities has proven
successful in expressing our needs. Future work includes achieving a better support
for the specification of variation constraints. The approach and tools based on this
metamodel are also going to be used in additional industrial business cases.

References

1. Maier, M.W.: Architecting Principles for System of Systems. INCOSE Systems
Engineering Journal 1(4), 267–284 (1998)

2. International Council on Systems Engineering (INCOSE): Systems Engineering Vision
2020. Technical Report INCOSE-TP-2004-004-02 (2007)

3. Ludwig, M., Farcet, N.: Evaluating Enterprise Architectures through Executable Models.
In: 15th ICCRTS – International Command and Control Research and Technology
Symposium (2010)

4. Hilliard, R.: On Representing Variation. In: ECSA 2010 – Proceedings of the Fourth
European Conference on Software Architecture Companion Volume (2010)

5. Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models at Runtime to
Support Dynamic Adapatation. Computer, 46–53 (October 2009)

6. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-M.:
Weaving Variability into Domain Metamodels. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 690–705. Springer, Heidelberg (2009)

 Integrating Design and Runtime Variability Support into a System ADL 281

7. Riebisch, M., Böllert, K., Streitferdt, D., Philippow, I.: Extending Feature Diagrams With
UML Multiplicities. In: IDPT 2002 – 6th World Conference on Integrated Design &
Process Technology (2002)

8. Haugen, Ø., Møller-Pedersen, B., Oldevil, J., Olsen, G.K., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: 12th International Software
Product Line Conference (2008)

9. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A., Zhang, X.: A
Generic Language and Tool for Variability Modeling. SINTEF Report A13505 (2009)

10. Kang, K, Cohen, S., Hess, J., Novak, W, Peterson, S.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study, report CMU/SEI-90-TR-21, Software Engineering Institute
(1990)

11. OMG Common Variability Language (CVL), http://www.omgwiki.org/
variability/doku.php

12. OMG System Modeling Language (SysML), http://www.omgsysml.org
13. NATO Architecture Framework (NAF), http://www.nhqc3s.nato.int/
14. Krueger, C.W., Bakal, M.: Systems and Software Product Line Engineering with SysML,

UML and the IBM Rational Rhapsody / BigLever Gears Bridge. IBM White Paper (2009)
15. Trujillo, S., Garate, J.M., Lopez-Herrejon, R.E., Mendialdua, X., Rosado, A., Egyed, A.,

Krueger, C.W., de Sosa, J.: Coping with Variability in Model-Based Systems Engineering:
An Experience in Green Energy. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.)
ECMFA 2010. LNCS, vol. 6138, pp. 293–304. Springer, Heidelberg (2010)

16. Gouyette, M., Barais, O., Le Noir, J., Jézéquel, J.-M.: Managing Variability in
Multi-Views Engineering. Journées Lignes de Produits (2010)

17. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.-P.: Modeling Context
and Dynamic Adaptations with Feature Models. In: MODELS 2009 – 12th International
Conference on Model Driven Engineering Languages and Systems, Models@run.time
Workshop (2009)

18. Navas, J.F., Babau, J.-P., Pulou, J.: A Component-Based Run-Time Evolution Infrastruc-
ture for Resource-Constrained Embedded Systems. In: GPCE 2010 (2010)

19. Ungar, D., Chambers, C., Chang, B-W., Hölze, U.: Organizing Programs Without Classes.
Lisp and Symbolic Computation 4(3) (1991)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 282–298, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Domain-Specific Model Verification with QVT

Maged Elaasar1,3, Lionel Briand2, and Yvan Labiche3

1 IBM Canada Ltd, Rational Software, Ottawa Lab
770 Palladium Dr., Kanata, ON. K2V 1C8, Canada

melaasar@ca.ibm.com
2 Simula Research Laboratory & U. of Oslo,

Martin Linges v 17, Fornebu, P.O.Box 134, 1325 Lysaker, Norway
briand@simula.no

3 Carleton University, Department of Systems and Computer Engineering
1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada

labiche@sce.carleton.ca

Abstract. Model verification is the process of checking models for known
problems (or anti-patterns). We propose a new approach to declaratively specify
and automatically detect problems in domain-specific models using QVT
(Query/View/Transformation). Problems are specified with QVT-Relations
transformations from models where elements involved in problems are identi-
fied, to result models where problem occurrences are reported in a structured
and concise manner. The approach uses a standard formalism, applies generi-
cally to any MOF-based modeling language and has well-defined detection
semantics. We apply the approach by defining a catalog of problems for a par-
ticular but important kind of models, namely metamodels. We report on a case
study where we used the catalog to verify recent revisions of the UML meta-
model. We detected many problem occurrences that we analyzed and helped re-
solve in the (latest) UML 2.4 revision. As a result, the metamodel was found to
have improved dramatically by the experts defining it.

Keywords: Smell, Anti-Pattern, Specification, Detection, UML, MOF, QVT.

1 Introduction

Model-driven engineering (MDE) is a software methodology that is based on the use
of models as a primary form of expression. In such methodology, models get defined
and keep evolving continuously to cope with changing system requirements. Models
are defined as instances of a metamodel, a higher-level model that describes the ab-
stract syntax of a modeling language, which can either be general-purpose like UML
[1] or domain-specific (DSML) like BPMN [2]. Metamodels are themselves defined
using a DSML called the Meta Object Facility (MOF) [3] that is standardized by the
Object Management Group (OMG). A MOF-based metamodel consists of a set of
metaclasses, their attributes and relationships, plus constraints governing their integ-
rity. Metamodel constraints are often specified using the Object Constraint Language
(OCL) [4] that is based on first-order predicate logic and set semantics.

 Domain-Specific Model Verification with QVT 283

Model verification is an integral process of MDE that is concerned with checking
models to find occurrences of known problems. Problems can be of different kinds: a)
syntactic problems specified by the well-formedness constraints of metamodels and
their extensions (e.g., UML profiles are extensions of UML); b) semantic problems
describing poor design choices that are known to have a negative impact on some
aspect (e.g., implementability, maintainability, usability, performance) of models; c)
convention problems, which are violations to methodological, organizational or
project-specific conventions (e.g., naming conventions).

Verifying (large) models manually is a time and resource consuming activity that is
also error-prone (some problems are complex, cross-cutting many model elements). A
better approach is to automate model verification. Such an approach should first allow
problems to be specified declaratively (leading to concise and maintainable specifica-
tions) using a generic (i.e., adaptable to any DSML), flexible (i.e., supporting arbi-
trary, complex problems) and standard (i.e., familiar and portable) formalism. Second,
it should also allow problems to be detected automatically (using their specifications)
and directly (involving no data conversion) in models. Finally, it should allow prob-
lem occurrences to be reported in a concise (i.e., easy to inspect) and structured (i.e.,
showing all role bindings) manner. Several approaches ([14] to [24]) have been pro-
posed in the literature. However, none of them satisfies all of the aforementioned
requirements (more details in Section 2).

In this paper, we present three contributions. First, we propose adopting the pQVT
approach, which has been used for design pattern specification and detection in [5],
for model verification. Similar to a design pattern, a problem is composed of inter-
related and constrained model elements playing unique roles in a given context. Only
this time, the context is problematic and the detection leads to finding problem (vs.
pattern) occurrences. We show how pQVT can be used to specify and detect arbitrary
problems of any MOF-based DSML. Problems get specified with a QVT-Relations
(QVTr) [6] transformation from input models (conforming to a MOF-based meta-
model), where elements involved in problems are identified, to result models (con-
forming to the pResults metamodel [5]), where problem occurrences are reported in a
structured and concise manner. pQVT uses a standard declarative formalism and
provides powerful reuse semantics, allowing for modularizing problem specifications
and handling of problem variants. Thanks to QVTr’s well-defined execution seman-
tics, problems are detected by simply running the transformations, producing concise
result models containing any detected problem occurrences.

Second, we investigate the power of our approach by defining a catalog of prob-
lems for a specific DSML, namely MOF. We chose to study MOF as it is used to
define many popular metamodels (e.g., UML and BPMN) that tend to have a large
number of issues [7]. The catalog has 113 problems in different categories: syntactic
(based on MOF well-formedness rules), semantic (based on metamodeling idioms and
best practices) and convention (based on conventions used for standard metamodels).

Third, we report on a case study where we specified the catalog with pQVT. The
approach was found to be very adequate for expressing such a large and complex
catalog in a modular and concise manner. We then used the specification to detect
problems with recent revisions (2.2, 2.3 and 2.4 beta) of the standard UML meta-
model. We detected and analyzed hundreds of problem occurrences, reported them to
the UML 2.4 revision task force (RTF), and helped resolve 53% of them in the final

284 M. Elaasar, L. Briand, and Y. Labiche

UML 2.4 revision. We also assessed the performance of the catalog and found its
detection scaling very well (finishing in under a minute), given the size of the catalog
and the complexity of the UML metamodel.

The rest of this paper is structured as follows: Section 2 highlights related work;
the detection of problems with pQVT is described in Section 3; Section 4 presents a
catalog of problems for MOF-based metamodels; a case study where the catalog was
used to verify the UML metamodel is discussed in Section 5; Section 6 enumerates
the limitations and future works; finally, the conclusions are given in Section 7.

2 Related Work

In the literature of model verification, a problem is often described as one of two
kinds. The first is a bad smell [8], which is a symptom that possibly indicates a deeper
problem. The second is an anti-pattern [9], which is a bad solution to a recurring de-
sign problem (as opposed to a good pattern like in [10]). Over the years, many smells
and anti-patterns got defined. For example, Fowler [8] provided 22 code smells and
Brown et al. [11] described 40 anti-patterns (e.g., Blob). Language-specific problems
have also been studied. Huzar et al. [12] overviewed consistency problems for UML.
Koehler and Vanhatalo [13] specified process anti-patterns for BPMN.

Several approaches to specify and detect problems have been proposed in the lit-
erature. Travassos et al. [14] introduced manual reading techniques to detect code
smells. However, manual approaches do not scale for large systems. Dhambri [15]
presented a semi-automatic approach that was a compromise between automatic de-
tection, which is efficient but loses track of context, and manual inspection that is
slow and subjective. Still, semi-automatic approaches cannot scale with large models.

Marinescu [16] presented an automatic metric-based approach to detect deviations
from good design patterns. Metric values were compared against thresholds. One
problem here is that the choice of metrics and thresholds are always controversial.
Munro [17] tried to address this by empirically justifying his choices.

Some approaches used logic systems. Trcka et al. [18] used temporal logic (CTL*)
to formalize data-flow anti-patterns and used solvers to detect them. Correa et al. [19]
encoded smells in Prolog and detected them using an inference engine. Unlike
pQVT’s ability to work on models directly, these approaches need pre-processing to
convert data (e.g., models) first into suitable representations. In this case, they get
converted into predicates so that solvers can operate on them. This conversion is ex-
pensive and makes live integration with modeling tools harder.

Moha et al. [20] proposed a rule-based DSL to specify smells with a way to gener-
ate detection algorithms from rules. They obtained good precision and recall. The
work was later extended by Khomh et al. [21] to convert specifications into Bayesian
Belief Networks, which allowed specifying probabilities on different rules, improving
results as they get sorted based on confidence. However, their DSL only allowed
checking pre-defined constructs and focused on structural aspects of software only. In
contrast, pQVT leverages OCL and thus has a higher expressive power and uses a
generic detection algorithm that works by interpreting problem specifications.

Graph-based techniques have also been used. Meyer [22] converted code into Ab-
stract Syntax Graph (ASG) representation and specified anti-patterns as template

 Domain-Specific Model Verification with QVT 285

ASG graphs to match. Feng et al. [23] represented code using an XML schema for
software and defined anti-patterns as template XML documents to match. These tech-
niques also involve converting data first into another representation before detection
becomes possible. For pQVT, models are already graphs of model elements allowing
QVTr transformations to process them directly without conversion.

OCL has also been used. Enckevort [24] defined rules for UML class diagrams us-
ing OCL constraints and used them to check models. One problem with OCL is the
way problem occurrences are reported. Since constraints are written in the context of
one metaclass, reporting is limited to elements of that metaclass violating the con-
straints. Other interesting elements involved in the problem cannot be reported on
simultaneously. In contrast, pQVT produces result models with occurrences reporting
all interesting roles. Also, as an extension to OCL, pQVT provides a more declarative
syntax and complexity management features that simplifies problem specification.

In summary, approaches in previous works are not fully adequate or practical to
specify arbitrary problems for MOF-based DSMLs and automate their detection. We
believe our pQVT approach has a combination of capabilities that make it an adequate
solution to this important problem. It is declarative, leverages a standard formalism
(QVTr), applies consistently to any MOF-based DSML, has complexity management
facilities, inspects models directly (no conversion needed), has well-defined detection
semantics, uses an interpreted (vs. code-generated) detection algorithm, and produces
strucured and concise result reports.

3 Problem Detection with pQVT

pQVT is a pattern specification and detection approach that was previously defined in
[5]. In this paper we show how pQVT can be used for model verification as well. The
approach is depicted in Fig. 1. Modeling problems are specified with a QVTr trans-
formation from an input model (conforming to any MOF-based metamodel), where
model elements involved in problems are identified, to a result model (conforming to
pResults, Section 3.5), where problem occurrences are reported in a concise and struc-
tured manner. In the remainder of this section, we use an example modeling problem
to illustrate the process of problem specification and detection with pQVT. First, we
define a general template for problem specification with pQVT. Then, we use it to
gradually specify the details of a modeling problem, including specifying problem
roles, a problem occurrence, and problem variants if any.

Fig. 1. Modeling problem detection with pQVT

286 M. Elaasar, L. Briand, and Y. Labiche

3.1 Example Problem

The example problem is one of the UML well-formedness rules: a UML class should
not define a new owner property when it already has a required one. The problem is
depicted by the class diagram in Figure 2-left, where the class Owned is composed by
two classes Owner1 and Owner2, resulting in having two owner properties: owner1
and owner2, respectively. According to UML semantics, an object can have a maxi-
mum of one owner reference at a time. Since owner1 is required (has a multiplicity of
1), an Owned object must have reference to its owner through owner1, which makes
owner2 either impossible to satisfy (if it is required) or not useful (if it is optional).
Figure 2-right shows a simplified subset of the UML metamodel that defines the
concepts in the example problem.

Fig. 2. The example problem (left) and a simplified subset of UML metamodel (right)

1 transformation Catalog (dsml:DSML, presults:pResults) {
2 top relation Problem {
3 checkonly domain dsml role:Type {/*problem role*/};
4 enforce domain presults c:Category {/*problem occurrence*/};
5 when {/*extra constraints*/}
6 }
7 }

Fig. 3. A template for problem specification using pQVT

3.2 Specification Template

A template for problem specification using pQVT is shown in Fig. 3. A problem cata-
log is specified with a QVTr transformation (line 1) between two models: an input
dsml model (conforming to some MOF-based DSML), where problems are detected,
and an output presults model (conforming to pResults, Section 3.5), where problem
occurrences are reported. Each problem in the catalog is specified with a top relation
(line 2) declaring two kinds of variables: one or more checkonly domain variables
(line 3) specifying the problem roles (their types and constraints) to detect in the dsml
model, and a single enforce domain variable (line 4) specifying a problem occurrence
to report in the presults model. A relation can optionally have a when clause (line 5)
specifying extra constraints for the problem.

The semantics of problem detection with pQVT is based on the execution seman-
tics of QVTr. When a transformation is executed, each top relation (specifying a
problem) tries to find all combinations of elements in the input dsml model that

 Domain-Specific Model Verification with QVT 287

satisfy the constraints of the checkonly domain variables (the problem roles) and those
in the when clause (extra problem constraints). For each such combination of ele-
ments, the top relation creates the elements specified by the enforce domain variable
(the problem occurrence) in the presults model.

1 transformation Metamodeling (uml:UML, presults:pResults) {
2 top relation ClassWithRequiredOwnerDefinesAnotherOwner {
3 checkonly domain uml Owned:Class {
4 associationEnd = owner1:Property {},
5 associationEnd = owner2:Property {}
6 };
7 checkonly domain uml owner1:Property {
8 lower = 1
9 };
10 checkonly domain uml owner2:Property {};
11 when {
12 owner1 <> owner2;
13 owner1.otherEnd.aggregation = AggregationKind::composite;
14 owner2.otherEnd.aggregation = AggregationKind::composite;
15 owner2.subsettedProperty->excludes(owner1);
16 }
17 }
18 property Property::otherEnd : Property =
19 self.association.memberEnd->any(e | e <> self);
20 property Class::associationEnd : Set(Property) =
21 Property.allInstances()->collect(e | e.otherEnd.type = self);
22 }

Fig. 4. The specification of the example problem using pQVT

3.3 Problem Specification

Since the example problem is about the well-formedness of a UML model, a problem
catalog is specified, in Figure 4, with a QVTr transformation (line 1) between an
input uml model and an output presults model. The problem itself is defined with a
top relation (line 2) within the catalog.

3.4 Role Specification

Identifying Roles. The problem description is used to identify the significant roles
played by model elements in the problem. In the example problem, such roles are the
Owned class and the owner1 and owner2 properties. The problem roles are therefore
defined with checkonly domain variables (lines 3, 7 and 10) typed with corresponding
metaclasses from UML (Class for owner and Property for owner1 and owner2).

Adding Constraints. Adding more constraints to the roles enhances their precision.
Simple constraints in the form of ‘attribute=value’ can be nested within the domain
variable declarations. This is used to specify any expected values for roles’ attributes
(e.g., attribute lower of role owner1 has a value of 1 to indicate it is required in line 8)
or to specify role interrelations (e.g., properties owner1 and owner2 are related to
class Owned through the attribute associationEnd in lines 4-5). Other constraints,
more complex than simply ‘attribute=value’, are specified (in OCL) in the relation’s
when clause (e.g., a constraint requiring properties owner1 and owner2 to be distinct
in line 12; two constraints requiring them to be ends of composition associations in

288 M. Elaasar, L. Briand, and Y. Labiche

lines 13-14; and a constraint excluding the valid case of property owner1 being a
subset of property owner2 in line 15). Some constraints may be complex or used sev-
eral times in a transformation, in which case QVTr provides reuse facilities to sim-
plify the transformation. One such facility is a property (an enhancement proposed in
[5]) that is initialized with an OCL expression in the context of some DSML meta-
class (e.g., Property::otherEnd in lines 18-19 gives the other member end across an
association, and Class::associationEnd in lines 20-21 gives the properties accessible
from a class over its associations). Those facilities can then be used in constraints
across the transformation (e.g., lines 4, 5, 13, 14).

Relaxing Constraints. If a constraint is over restrictive, it may not get satisfied for
some valid elements. Such constraint needs to be relaxed (removed or generalized).
On the other hand, an overly loose constraint may get satisfied for some invalid ele-
ments. In practice, it takes some experimentation to reach an acceptable balance.
While there is no generic way for generalizing constraints, role interrelationships may
be generalized by making them transitive. For example, in Figure 5, three transitive
properties are defined: allAssociationEnds (lines 12-13) allowing owner1 to be an
owner of class Owned or any of its super classes (line 3); allSubsettedProperties
(lines 14-16) allowing owner1 to be directly or transitively subsetted by owner2 (line
8); and allRedefinedProperties (lines 17-19) allowing the exclusion of the valid case
of owner2 hiding owner1 by directly or transitively redefining it (line 9).

1 top relation ClassWithRequiredOwnerDefinesAnotherOwner {
2 checkonly domain uml Owned:Class {
3 allAssociationEnds = owner1:Property {},
4 associationEnd = owner2:Property {}
5 };
6 ...
7 when {...
8 owner2.allSubsettedProperties->excludes(owner1);
9 owner2.allRedefinedProperties->excludes(owner1);
10 }
11 }
12 property Class::allAssociationEnds : Set(Property) =
13 self.associationEnd->union(self.superClass.allAssociationEnds);
14 property Property::allSubsettedProperties : Set(Property) =
15 self.subsettedProperty->union(
16 self.subsettedProperty.allSubsettedProperties);
17 property Property::allRedefinedProperties : Set(Property) =
18 self.allRedefinedProperty->union(
19 self.redefinedProperty.allRedefinedProperties);

Fig. 5. A more general specification of the example problem using pQVT

Fig. 6. pResults metamodel (left) and an example pResults model (right)

 Domain-Specific Model Verification with QVT 289

3.5 Problem Occurrence Specification

Problem detection may result in a set of problem occurrences. An occurrence is a
unique mapping of roles to model elements playing those roles in a problem. The
pQVT approach defines the pResults metamodel (Figure 6-left) to compactly repre-
sent occurrences of a given problem as a tree of RoleBinding objects under one prob-
lem (Pattern) object. At every level in the tree, role bindings map a unique role to a
set of elements playing this role in an input model. A unique problem occurrence is a
complete branch in the tree from a root to a leaf role binding. Related problem occur-
rences are grouped together under one Category object. Figure 6-right shows an ex-
ample pResults model with occurrences pointing to elements in an input model.

In a pQVT problem specification, a pResuls problem occurrence is specified (Fig-
ure 7) as an enforce domain variable c:Category (line 1) that nests p:Pattern (line 2)
that nests a rb:RoleBinding corresponding to each problem role (lines 3-5). The ele-
ment attribute of each RoleBinding variable is assigned to the corresponding role’s
checkonly domain variable (e.g., rb1’s element in line 3 is assigned to variable Owned
declared in line 3 of Figure 4).

1 enforce domain presults c:Category{ name=’UML Problems’,
2 pattern= p:Pattern{ name=’ClassWithRequiredOwnerDefinesAnother’,
3 root = rb1:RoleBinding{ name=’Owned’, element=Owned,
4 child = rb2:RoleBinding{ name=’owner1’, element=owner1,
5 child = rb3:RoleBinding{ name=’owner2’, element=owner2
6 }}}}};

Fig. 7. The specification of a problem occurrence for the example problem using pQVT

1 top relation ProblemWithVariants {
2 checkonly domain dsml role:Type {/*problem role*/};
3 when {/*extra conditions*/};
4 where { Variant1(role1, role2, ...);
5 Variant2(role2, role2, ...); }
6 }
7 relation Variant1 {
8 checkonly domain dsml role:Type {/*problem role*/};
9 enforce domain presults c:Category {/*problem occurrence*/};
10 when {/*extra constraints*/};
11 }

Fig. 8. Specification of a problem and its variants with pQVT

3.6 Variant Specification

Some problems may have variants (versions with slightly different roles and/or con-
straints). Specifying all variants ensures that all possible problem occurrences are
detectable. However, specifying variants with separate top relation(s) is not efficient
as it leads to duplication. Instead, a different problem specification template, shown in
Figure 8, is used. In this template, the common roles (line 2) and constraints (line 3)
are specified with a top relation, while the specific roles (line 8) and constraints (line
10) of each variant are specified with non-top relation(s) that get composed in the top
relation’s where clause (line 4-5). A where clause extends a relation by composing
other relations. Recall that a relation tries to find all combination of elements

290 M. Elaasar, L. Briand, and Y. Labiche

matching its checkonly domain variables. Now for each such combination, it calls the
composed relations in the where clause. Each call binds variables from a composing
relation to the domain variables of a composed relation. This further constrains the
common roles of a problem by the extra constraints of variants. Notice also that the
enforce domain variable is moved to the variant relation (line 9) so that problem
occurrences are only reported when all constraints for a variant have been satisfied.

4 Catalog of Metamodeling Problems

In the previous section, we showed how the pQVT approach can be used to specify
problems of MOF-based DSMLs, using a UML problem as an example1. In this sec-
tion, we present a catalog of problems we defined for another DSML, namely MOF
itself. We chose to study MOF because we noticed, through our involvement with
OMG standards, that MOF-based metamodels tend to have a large number of problem
occurrences (called issues in [7]). Obviously, some of these occurrences are symp-
toms of the complexity of designing a metamodel, which requires expertise. However,
many other occurrences are rather due to ambiguities in MOF (and its UML founda-
tion), the lack of documented metamodeling idioms and best practices, the lack of
formally-specified conventions or simply human error.

An obvious mitigation is to use tool support to help with checking metamodels.
Unfortunately, a large number of metamodels are defined using UML tools as op-
posed to MOF tools and only get converted to MOF as a post-processing step. The
drawback is that most of these tools only implement constraints that are explicitly
defined in the UML specification. They do not implement other constraints that are
informally implied by the UML semantics or those that are MOF-specific. In fact, this
was one of the motivations for dropping MOF’s own metamodel in MOF 2.4 and
using the UML metamodel directly, albeit with extra well-formedness constraints.

This led us to consider defining a catalog of MOF 2.4-based metamodeling
problems. The catalog defines a total of 113 problems in four categories: UML
well-formedness (33 problems), MOF well-formedness (32 problems), semantic (33
problems) and convention (15 problems). Well-formedness problems are based on
constraints of the UML and MOF specifications. Semantic problems are based on
metamodeling idioms and best practices. Convention problems are based on conven-
tions used in developing standard metamodels. In the rest of this section, we elaborate
on the strategy followed for defining each category. For brevity, we only show the
subset of problems for which we actually detected occurrences in the case study in
Section 5. A larger set of problems is provided online [26].

4.1 Well-Formedness Problems

UML Well-formedness. As mentioned above, MOF 2.4 uses the metamodel of UML
2.4, which is a general-purpose modeling language. Our first challenge was to identify
the subset of the UML 2.4 metamodel that is relevant for metamodeling and collect its
constraints. First, we identified a set of concrete UML metaclasses and their

1 Approaches that work at the metamodel level apply equally to DSMLs and UML.

 Domain-Specific Model Verification with QVT 291

non-derived (direct and inherited) properties that have counterparts in MOF. We then
compared it to the set that was actually used in defining two standard metamodels
(UML 2.4 and BPMN 2.0) with UML. We noticed some differences that we had to
reconcile. For example, UML used a Generalization element to specify inheritance
between classes, while MOF used a direct super class reference. Finally, we validated
the subset with key members of the MOF revision task force to ensure accuracy.
Table 1 shows the metaclasses in this subset.

The next step was to collect the constraints that are relevant to this subset of meta-
classes in UML. Some constraints were explicitly identified in the UML specification,
while others had to be recovered from the described semantics. Based on those
constraints, we defined 33 problems. Table 2 shows a subset of those problems. An
example problem (UML2) is a classifier with an attribute hiding (as opposed to rede-
fining) a similarly named one in a general classifier. Another example (UML8) is a
property with an explicit default value even through it is derived.

Table 1. The concrete UML metaclasses used for defining metamodels

Association
Class
Comment
Constraint
DataType
ElementImport

Enumeration
EnumerationLiteral
Generalization
InstanceValue
LiteralBoolean
LiteralReal

LiteralInteger
LiteralString
LiteralUnlimitedNatural
OpaqueExpression
Operation
Package

PackageImport
PackageMerge
Parameter
PrimitiveType
Property

Table 2. UML well-fomedness problems (excerpt)

UML1
UML2
UML3
UML4
UML5
UML6
UML7
UML8

Class With Required Owner Property Defines Another Owner
Classifier Has Attribute Not Redefining Inherited One With Same Name
Comment Has No Annotated Elements
Constraint Expression Has Parse Errors
Constraint Has No Constrained Elements
Namespace Has Indistinguishable Members
Property Has Invalid Default Value
Property Is Derived But Has Default Value

Table 3. MOF well-fomedness problems (excerpt)

MOF1
MOF2
MOF3
MOF4
MOF5
MOF6
MOF7
MOF8

Association Does Not Have Two Member Ends
Element Is Not Allowed In Metamodel
Enumeration Has Operations
Multiplicity Element Is Multi Valued But Has Default Value
Named Element Has No Name
Named Element Is Not Public
Parameter Has Effect
Typed Element Has No Type

292 M. Elaasar, L. Briand, and Y. Labiche

MOF Well-formedness. Some constraints are specific to MOF and we collected
them from the MOF 2.4 specification [3]. Since the UML metaclasses used for
metamodeling (Table 3) have more features and richer semantics than is needed for
MOF, these constraints are meant to prevent usage of those features and semantics
unrelated to MOF. We then defined 32 problems corresponding to those constraints.
Figure 3 shows a subset of those problems. An example (MOF1) is a class flagged as
active since this has no meaning in a metamodel. Another example (MOF2) checks if
a UML element is allowed to be in a metamodel. Notice that we only defined
problems for the Complete-MOF (CMOF) variant since it is more relevant to the case
study in Section 5. The Essential-MOF (EMOF) variant is more constrained and
hence would need a bigger set of problems.

4.2 Semantic Problems

This category of problems defines situations that are well-formed according to the
semantics of UML/MOF but could be problematic when implementing and/or using
the metamodel. We collected 33 smells from experience defining metamodels over
the years. Table 4 shows a subset of those smells. An example (SEM6) is a classifier
having generalizations that are already implied by other generalizations, leading to
redundancy. Another example (SEM14) is an operation not being flagged as a query
(i.e., has no side effects). Operations are typically defined in a metamodel to facilitate
querying models, especially by OCL expressions. Therefore, we need to check
whether defining an operation as a non-query operation is really intended. Another
example (SEM20) is a property that is required but has no default value, forcing
modelers to specify a value for it every time in a model.

Table 4. Semantic problems (excerpt)

SEM1
SEM2
SEM3
SEM4
SEM5
SEM6
SEM7
SEM8
SEM9
SEM10
SEM11
SEM12
SEM13
SEM14
SEM15
SEM16
SEM17
SEM18
SEM19
SEM20

Association Has Asymmetric Redefinition
Association Has Asymmetric Subsetting
Association Is Bidirectional With Asymmetric Derived Ends
Association IsDerived Conflicts With Ends IsDerived
Classifier Has Ambiguous Non-Owned End
Classifier Has Redundant Generalizations
Classifier Is Abstract With One Direct Subtype
Constraint Has Trivial Expression
Constraint References Non Context Element Only
Multiplicity Element Has Redundant Lower Bound
Multiplicity Element Has Redundant Upper Bound
Namespace Has Identical Constraints
Operation Could Be Converted To Derived Attribute
Operation Is Not Query
Property Has Different Name Than Redefined Property
Property Has Redundant Subsetting
Property Is Composite And Typed By Data Type
Property IsDerived Conflicts With IsReadOnly
Property Is Optional With Default Value
Property Is Required With No Default Value

 Domain-Specific Model Verification with QVT 293

4.3 Convention Problems

This category defines problems that are violations to common conventions adopted
when defining metamodels. One may find these conventions specified explicitly as
part of metamodel specifications or one may find them implicitly applied. We have
collected 15 such conventions and specified their violations as problems. Table 5
shows a subset of those problems. Some problems (CON2/3/6/7/8/9) are violations to
naming conventions. Others (CON4/5) are violations to documentation conventions.
Yet others (CON1/10/11/12) tighten some loose UML semantics like requiring
association’s member ends to be in a particular order.

Table 5. Convention problems (excerpt)

CON1
CON2
CON3
CON4
CON5
CON6
CON7
CON8
CON9
CON10
CON11
CON12

Association Member Ends Are Reversed
Association Has Non-Default Name
Classifier Name Is Part Of General Classifier Name
Named Element Has No Documentation When It Should
Named Element Has Multiple Documentations
Named Element Is Not Alphabetic
Named Element Starts With Upper Case
Operation Has Return Parameter Not Named “result”
Property Is Boolean But Does Not Start With “is”
Property Is Derived With No Derivation Constraint
Property Derivation Constraint Does Not Reference Property
Typed Element Has Default Value Literal With Type Set

5 Case Study

In this section, we report on a case study where we specified the catalog of meta-
model problems presented above (Section 4) with pQVT (Section 3) and used it to
verify recent revisions of the UML metamodel (defined with CMOF). The case study
had three objectives. First, we wanted to assess the ability of pQVT to express a com-
plex catalog of problems. Second, we wanted to assess the effectiveness of pQVT at
detecting valid problem occurrences. The occurrences we detected in the standard
UML metamodels were analyzed and results were shared with the UML Revision
Task Force (RTF), which judged their validity. In fact, pQVT was used in realistic
conditions to actually improve the UML 2.4 metamodel. Third, we wanted to evaluate
the performance of pQVT on realistically large models to assess its scalability. The
UML metamodel with about 680 classes, 623 properties and 128 operations, can be
considered complex and representative of real-life metamodels.

5.1 pQVT Expressiveness

Due to the large number (113) of problems in the catalog (section 4), we cannot show
all their pQVT specifications here. Instead, we collected some metrics in in Table 6
to help the reader assess the effort involved. We chose to specify each category of
problems in a separate QVTr transformation to make them more manageable. Each
problem was specified using a top relation for a total of 122 relations (four problems

294 M. Elaasar, L. Briand, and Y. Labiche

had variants, thus needed some extra non-top relations). Problem specifications had a
total of 207 roles with a range of 1-6 roles each. UML and semantic problems in-
volved more roles (~2) on average than MOF and convention problems (~1.5). The
specifications also had a total of 324 constraints with a range of 1-11 constraints each.
This means an average of 2.86 per problem and 1.56 per role, indicating that the
specifications were generally concise. Constraints also varied in complexity with 64%
specified using the form ‘property=value’ (i.e., nested in variable declarations) and
36% using other forms (i.e, in when clauses), indicating that the specifications were
generally simple. Furthermore, 20% of constraints were simplified by using (13) que-
ries and (16) derived properties that we defined in a reusable library and imported in
the transformations. The above analysis suggests that pQVT had the expressive power
and facilities needed to adequately specify such a large catalog of problems.

Table 6. Metrics of the metamodeling catalog specified with pQVT

Roles Constraints Category
(Problems)

Relations
Avg. Total Avg. Total In when Simplified

UML (33) 37 2.09 69 3.39 112 37 40
MOF (32) 32 1.56 50 1.59 51 22 3
Semantic (33) 36 2.03 67 3.18 105 34 20
Convention (15) 17 1.4 21 3.73 56 24 1

5.2 pQVT Effectiveness

We used the specified catalog to verify the (most recent) 2.2, 2.3 and 2.4 revisions of
the standard UML metamodel. Recall that MOF 2.4 requires metamodels to be de-
fined in UML. Therefore, we obtained those revisions from OMG as UML models.
For each revision, we detected many problem occurrences: 2558 (2.2), 2120 (2.3) and
786 (2.4). A complete report is available online [26]. For 2.4, we first checked a beta
revision and then based on our findings we reported problem occurrences (issues) to
the UML RTF and helped resolve some of them. Finally, we checked the official 2.4
revision. Table 7 shows the number of occurrences of the identified problems. Our
first observation is that the quality of the UML 2.x metamodel has been improving
over revisions, which is expected given the mandate of the RTF to address issues with
the metamodel. Specifically, the total number of problem occurrences has decreased
by 17% from 2.2 to 2.3 and by 63% from 2.3 to 2.4. When we checked the beta revi-
sion of 2.4, we detected 1670 occurrences (omitted from Table 7 for brevity). This is
a 21% reduction from 2.3 but, more importantly, a 53% reduction between the beta
and official revisions of 2.4. Given that most of the metamodel changes between these
two revisions (i.e., those in change ballot 11 [27]) were to address issues raised by
this case study using pQVT, it shows the usefulness of automated model verification
and more specifically, the effectiveness of pQVT in realistic conditions, where a stan-
dard metamodel is being revised by an official task force.

Nevertheless, different categories of the catalog varied according to the ratio of the
detected occurrences getting resolved, as follows: UML (28%), MOF (100%), seman-
tic (65%) and convention (65%). While MOF occurrences fared well given that they
are not controversial, UML ones did not do as well because one of the problems

 Domain-Specific Model Verification with QVT 295

(UML4: constraints have parse errors) had a relatively large number of occurrences
that required significant effort to resolve. More generally, some occurrences did not
get resolved for one of the following reasons: a) the RTF ran out of time and deferred
them to a future revision (e.g., UML4/8, SEM8/16/18, CON4/5); b) the cost of fixing
them now (e.g., on tool migration) outweighed the value (e.g., SEM5/7/13/15,
CON3/6/7/9); c) they were judged as exceptions to the rules (e.g., SEM3/19/20,
CON2). An example of the latter is some associations detected in CON2 with non-
default names, as the naming convention would have given them ambiguous names.

Table 7. Total number of detected problem occurrences in three revisions of UML

Prob. 2.2 2.3 2.4 Prob. 2.2 2.3 2.4 Prob. 2.2 2.3 2.4
UML1 5 58 0 SEM1 23 25 0 SEM17 6 6 0
UML2 1 1 0 SEM2 208 203 0 SEM18 21 23 11
UML3 0 7 0 SEM3 6 6 6 SEM19 4 4 2
UML4 200 190 185 SEM4 37 38 0 SEM20 0 0 1
UML5 3 3 0 SEM5 1 160 151 CON1 43 0 0
UML6 12 0 0 SEM6 1 0 0 CON2 306 10 9
UML7 3 3 0 SEM7 4 4 4 CON3 1 1 1
UML8 14 14 14 SEM8 207 208 232 CON4 7 10 6
MOF1 1 0 0 SEM9 0 1 0 CON5 58 58 62
MOF2 1 1 0 SEM10 179 186 0 CON6 5 5 5
MOF3 1 1 0 SEM11 478 483 0 CON7 5 5 6
MOF4 2 2 0 SEM12 4 4 0 CON8 122 126 0
MOF5 443 141 0 SEM13 53 55 58 CON9 7 7 7
MOF6 17 0 0 SEM14 3 0 0 CON10 19 19 0
MOF7 9 9 0 SEM15 4 8 24 CON11 9 11 0
MOF8 3 3 0 SEM16 0 0 2 CON12 22 22 0

5.3 pQVT Performance

We used the tool Medini-QVT [25] (with our performance tune-ups [5] like cashing
query results) to specify and execute the QVTr transformations. We also used our
pResults model viewer [5] to inspect and analyze problem occurrences. The detection
was performed on a laptop with 2.4 GHz core 2 duo processor and 3G of memory
running Windows XP. We recorded the average time for running each problem cate-
gory on the UML metamodel (all revisions were in the same range). The times were
as follows: UML (22s), MOF (8s), semantic (15s) and convention (5s). This means
that it takes under a minute to run the whole catalog, which is very efficient and rea-
sonable to repeat frequently as the analyzed model is evolving. We note that the UML
category takes a bit longer due to problem UML4, which parses OCL expressions of
constraints verifying their syntax.

6 Limitations and Future Work

The pQVT approach to model verification has some limitations and can still be im-
proved further. For example, problem specifications could be made more portable, i.e.

296 M. Elaasar, L. Briand, and Y. Labiche

not tied to a particular DSML. We plan to resolve this issue by investigating trans-
formation genericity, where a generic DSML is defined for a problem domain and
used to specify problems. Separate mappings can then be defined between such
DSML and the real DSMLs. Another improvement could be to augment a problem
specification with a way to auto-correct a problem occurrence. Another area to im-
prove is the presentation of problem occurrences, which are currently not ordered. We
plan to investigate ways to calculate importance scores for occurrences and order
them accordingly, making inspection much more effective. Another possibility is to
define a dedicated graphical pattern specification DSML whose models can be used to
generate pQVT transformations along with all their boilerplate and idioms. Another
possible work is to specify problems of other popular DSMLs, including UML pro-
file-based ones, which could be interesting as some DSMLs are defined with UML
profiles rather than MOF-based metamodels. Other case studies are also necessary to
validate the flexibility and performance of the approach reported in this paper.

7 Conclusion

Model verification is an integral process of MDE concerned with checking models for
known problems. Automating model verification is important as the process is re-
source intensive and error prone. This paper presents an approach (called pQVT) to
automate the detection of problems in MOF-based models. pQVT specifies problems
with a QVTr transformation from models conforming to a MOF-based DSML, where
elements playing roles in problems are identified, to result models where problem
occurrences are reported. The approach is declarative, leverages a standard formalism,
applies to any MOF-based DSML, has well-defined detection semantics, has powerful
reuse and modularization semantics and produces concise and detailed results.

In addition, the paper presents a catalog of 113 problems for MOF 2.4-based
metamodels split into four categories: UML well-formedness, MOF well-formedness,
semantic and convention. The catalog was formally specified using pQVT, which was
found to be both adequate and concise. It was then used to detect problem occurrences
in recent revisions of the standard UML metamodel. A large number of occurrences
were detected and analyzed. Results show that pQVT is effective at finding real prob-
lems in realistic models as it led to a 53% reduction of the problem occurrences de-
tected in the UML 2.4 metamodel, which were all verified and agreed upon by the
UML RTF (a large majority of the identified problems resulted in changes, as we
explained earlier). Finally, the case study shows that pQVT has a good performance
as it could execute the entire catalog of problems on the complex UML metamodel in
about one minute clearly demonstrating this is a scalable, practical technology.

Acknowledgements

The authors would like to thank the following individuals for helping review the case
study: Steve Cook (Microsoft), Nicolas Rouquette (JPL) and Pete Rivett (Adaptive).

 Domain-Specific Model Verification with QVT 297

References

1. Unified Modeling Language (UML), Infrastructure v2.4. OMG ptc/2010-11-03
2. Business Process Modeling and Notation (BPMN) v2.0. OMG dtc/2010-06-05
3. Meta Object Facility (MOF) Core v2.4. OMG ptc/2010-12-08
4. Object Constraint Language (OCL) v2.2. OMG formal/2010-02-01
5. Elaasar, M., Briand, L., Labiche, L.: An Approach to Detecting Design Patterns in

MOF-Based Domain-Specific Models with QVT. Technical Report SCE-10-02, Carleton
University (November 2010) (submitted for publication)

6. Query/View/Transformation (QVT) v1.0. OMG formal/2008-04-03
7. OMG issues database, http://www.omg.org/issues/
8. Fowler, M.: Refactoring: Improving the Design of Existing Code, 1st edn (June 1999)
9. Koenig, A.: Patterns and Antipatterns. J. of OO Programming 8(1), 46–48 (1995)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software (1995)

11. Brown, W., Malveau, R., Brown, W., McCormick III, H., Mowbray, T.: Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis. 1st edn (1998)

12. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.-L.: Consistency Problems in
UML-Based Software Development. In: Jardim Nunes, N., Selic, B., Rodrigues da Silva,
A., Toval Alvarez, A. (eds.) UML Satellite Activities 2004. LNCS, vol. 3297, pp. 1–12.
Springer, Heidelberg (2005)

13. Koehler, J., Vanhatalo, J.: Process Anti-patterns: How to Avoid the Common Traps of
Business Process Modeling. IBM WebSphere Developer Technical Journal (Febraury
2007)

14. Travassos, G., Shull, F., Fredericks, M., Basili, V.: Detecting Defects in Object-Oriented
Designs: Using Reading Techniques to Increase Software Quality. In: Proc. of OOPSLA
1999, pp. 47–56 (1999)

15. Dhambri, K., Sahraoui, H., Poulin, P.: Visual Detection of Design Anomalies. In: Proc. of
CSMR 2008, pp. 279–283 (2008)

16. Marinescu, R.: Detection Strategies: Metrics-Based Rules for Detecting Design Flaws. In:
Proc. of the ICSM 2004, pp. 350–359 (2004)

17. Munro, M.: Product Metrics for Automatic Identification of ”Bad Smell” Design Problems
in Java Source-Code. In: Proc. of the 11th Int’l Soft. Metrics Symposium, p. 15 (2005)

18. Trcka, N., Aalst, W., Sidorova, N.: Data-Flow Anti-patterns: Discovering Data-Flow
Errors in Workflows. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 425–439. Springer, Heidelberg (2009)

19. Correa, A., Werner, C., Zaverucha, G.: Object oriented design expertise reuse: An
approach based on heuristics, design patterns and anti-patterns. In: Frakes, W.B. (ed.)
ICSR 2000. LNCS, vol. 1844, pp. 336–352. Springer, Heidelberg (2000)

20. Moha, N., Gueheneuc, Y.-G., Duchien, L., Le Meur, A.-F.: DECOR: A Method for the
Specification and Detection of Code and Design Smells. TSE 36(1) (January/February
2010)

21. Khomh, F., Vaucher, S., Gueheneuc, Y.-G., Sahraoui, H.: A Bayesian Approach for the
Detection of Code and Design Smells. In: Proc. of ICSQ 2009, pp. 305–314 (2009)

22. Meyer, M.: Pattern-based Reengineering of Software Systems. In: Proc. of WCRE 2006,
pp. 305–306 (October 2006)

23. Feng, T., Zhang, J., Wang, H., Wang, X.: Software Design Improvement through
Anti-patterns Identification. In: Proc. of ICSM 2004, p. 534 (2004)

298 M. Elaasar, L. Briand, and Y. Labiche

24. Enckevort, T.: Refactoring UML Models: Using OpenArchitectureWare to measure UML
model quality and perform pattern matching on UML models with OCL queries. In: Proc.
of OOPSLA 2009, pp. 635–646 (2009)

25. Medini QVT: A Toolset for Model to Model Transformations, http://projects
.ikv.de/qvt

26. Elaasar, M., Briand, L., Labiche Y.: Metamodeling Anti-Patterns (2010), https://
sites.google.com/site/metamodelingantipatterns

27. UML Revision Task Force Wiki, http://www.omgwiki.org/uml2-rtf

A SysML Profile for Development and Early

Validation of TLM 2.0 Models

Vaibhav Jain, Anshul Kumar, and Preeti R. Panda

Indian Institute of Technology Delhi, India
{vjain,anshul,panda}@cse.iitd.ac.in

Abstract. Use of UML for SoC design has recently generated new in-
terest and several UML profiles for SystemC have been developed for this
purpose. These profiles, however, do not focus on transaction level mod-
eling (TLM). The TLM 2.0 standard introduces interoperability rules for
the correct behavior of component models. The important challenge is to
identify and debug errors in the system model occurring due to violation
of these rules. In TLM model development based on SystemC or SystemC
profiles these rules are usually checked during simulation stage. However,
several of these rules are static in nature and can be checked before sim-
ulation. In this paper, we present a TLM profile based on SysML and
show that it can facilitate in TLM model development and also helps
in early validation of TLM 2.0 models by introducing checking of static
TLM rules during design phase. Our approach, in effect, contributes to
reducing the overall debugging efforts.

Keywords: SoC Design, TLM, UML Profile, Model Validation, MBE.

1 Introduction

UML and UML based methodologies have received significant interest from SoC
community in recent times. UML, based on meta-modeling mechanism, offers
customization towards a specific domain in the form of UML profiles, which pro-
vides a light-weight approach towards high-level modeling and can be seen as an
effective way of modeling in the specialized domains like SoC design.

Initially, UML standards were not mature enough to be used for real-time and
embedded systems domain. However, UML 2.0 standard provided a new direc-
tion towards UML based high-level modeling of embedded systems, especially
for SoC design. The earlier attempts towards establishing UML as an entry level
language for SoC design are reported in [5].

UML, togetherwithOMG’smodel drivenarchitecture (MDA), offers automated
code generation from UML models towards a suitable target language. For SoC de-
sign, the system description language, SystemC, has emerged as the most appro-
priate target language for UML based modeling of SoCs. The initial contribution
towardsusingUMLwithSystemCina systemdesignprocesswasmadebyPauwel et
al. [7]. They suggested a UML based design methodology for executable SystemC

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 299–311, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

300 V. Jain, A. Kumar, and P.R. Panda

models using structural diagrams only. Work of Nguyen et al. [2] contributed to-
wards SystemC code generation from behavior diagrams like state diagrams but
was limited in using SystemC stereotypes and full code generation capabilities.

Later, industry and academia suggested several UML profiles targeted towards
embedded systems domain. The work by Riccobene et al. [1], proposed a UML pro-
file for SystemC supporting structural and behavioral modeling capabilities and
suggested a UML-based SoC design flow supporting HW/SW codesign. In another
development, the UML profile for SoC [12] targets SoC design based on SystemC
and focuses on the structural modeling. Recently, a synthesis extension to SystemC
and SysML profile was proposed for SystemC models towards HW/SW co-
simulation and co-synthesis [8]. OMG’s recent efforts on system modeling lead to
SysML profile [14] providing system modeling capabilities for domain-neutral ap-
plications. The role of SysML and its application in context of SoC design was high-
lighted in [6] andSystemCcode generation fromSysMLwasproposedbyPrevostini
et al. [4]. In another development MARTE profile [16] enhances UML capabilities
for modeling RTES and can be used during UML based virtual platform develop-
ment of SoCs.

Transaction level modeling (TLM) has now become an important aspect of SoC
design, with TLM 2.0 as the current standard [11]. However, none of the SystemC
profiles mentioned above includes TLM constructs, though examples of TLM us-
age have been reported [2,8]. TLM 2.0 introduces new TLM concepts and specifies
a large number of rules to ensure correct operation and interoperability of TLM
models. Without a proper TLM profile, the usual approach to verify TLM models
against these rules is to use protocol checkers [17] at simulation time. However, sev-
eral of these rules are static in nature and can be checked before simulation.

In this paper, we propose a TLM profile and show that it can facilitate checking
of static TLM rules. Our strategy is based on SysML profile for TLM. We have de-
veloped this profile to support structural and behavioral modeling using the TLM
2.0 standard and to support full SystemCcode generation.Weaimatfinding the er-
rors in the systemmodel as early aspossible in order to reduce the overall debugging
time and efforts.This is achievedby incorporating all the TLM 2.0 rules that canbe
statically checked as modeling constraints using the profile. These constraints are
expressed using OCL (Object Constraint Language) [15].

This paper is organized as follows. Section 2 gives an overview of TLM 2.0 and
the interoperabilityrules.Section3 introducesourSysMLprofile forTLM.Section4
presentsTLMmodel validationaspectbasedonourmodeling approachandSection
5 presents a modeling example demonstrating its application and results of experi-
ments performed in this work. Section 6 closes with conclusions and future work.

2 TLM 2.0 and Rules for Interoperability

TLM captures abstract models of SoC by separating the communication and
computation parts of it using well-defined interfaces. Interoperability problems
can occur during TLM simulation mainly caused during interactions of
non-compliant high-level components. Recently, TLM 2.0 standard [11] was in-
troduced which especially takes care of interoperability issues. TLM 2.0 provides

A SysML Profile for Development and Early Validation of TLM 2.0 Models 301

an interoperability layer which constitutes a generic payload1 and a set of pro-
tocols ensuring data consistency among different communicating subsystems.

TLM 2.0 provides a strict framework to model the interactions between blocks
as shown in Fig.1. A TLM 2.0 model may consists of a number of TLM modules like
initiators, interconnects and targets. An initiator starts a transaction through ini-
tiator port, an interconnect which acts as a bridge/router and consists of initiator
andtargetsocketsandatargetcomponentwhichservicesmemory-basedread/write
transaction requests through target sockets. The communication between these
components takes place along the forward and backward paths. TLM 2.0 also of-
fers different modeling styles, namely loosely-timed(LT) and approximately-timed
(AT), based on the preciseness of timing information of transactions. These mod-
eling styles can be used in conjunction with the different TLM abstraction levels.

Forward Path

Backward Path

First Initiator
/Target Pair

Initiator TargetInterconnect

Initiator
Socket

Interconnect
Target Socket

Interconnect
Initiator Socket

Target
Socket

Forward Path

/Target Pair
Second Initiator

Start
Point

End
Point

Communication Path

Backward Path

Fig. 1. TLM 2.0 Framework used for System Model

We observe that the TLM rules can be broadly categorized as suggestive rules
and restrictive rules. The suggestive rules are more like guidelines to be followed
during implementation of a system model for achieving the expected behavior of
the transaction. For example, “b transport may call wait, directly or indirectly”
suggests the scope or usability of b transport method. On the other hand, the
restrictive rules, enforce modeling restrictions on a TLM concept, and can be
further classified as static and dynamic rules. We have identified 24 such static
rules in the TLM 2.0 standard.

A static rule enforces restriction on a TLM concept related to its structure and
its application. For example, the rules concerning the initiator socket connection
or the methods that can be realized by an initiator module can be considered as
structural rules. The dynamic rules enforce restrictions on a running instance of
a TLM concept and applicable during simulation time. For example, “For base
protocol, the forward and backward paths should pass through exactly the same
sequence of components and sockets in opposing order”. Clearly, the rule requires
dynamic checks (simulation time) because paths are established at run time.

All these rules ensure the interoperability among high-level component mod-
els. But, identifying and debugging errors in the system model is a major
1 A standard transaction object.

302 V. Jain, A. Kumar, and P.R. Panda

problem. A TLM model based on SystemC or developed using SystemC profile
may fail to take into account static rules. In order to confirm this, we handcrafted
an example of TLM 2.0 model having violation of each of the 24 static rules.
The model was compiled and tested to find the stage at which various violations
were detected. Table 1 shows results of this experiment. It was found that only 6
of the violations were detected at compile time, elaboration time and simulation
time and the majority of the rules were ignored.

Table 1. TLM Rule Checking Report

Stage Violation Example
Count

Compile Time 2 Two sockets must share the same BUSWIDTH

Elaboration Time 2 initiator socket must be connected to target socket
Simulation Time 2 b transport should not be called from a method

Ignored 18 Initiator can not realize b transport method

3 A SysML Profile for TLM 2.0

A UML Profile is a set of extensions to UML using the built-in extension fa-
cilities provided by UML. A UML profile is developed by extending the UML
metamodel [13] and introducing domain specific concepts into it, mainly in form
of stereotypes. A stereotype represents an extension to the UML metaclasses
and may be parametrized with properties known as tagged values. A stereotype
may also contain constraints written in OCL, specifying the structure and/or
behavior restrictions of a stereotype in a well-formed model.

Our profile for TLM is based on the SysML 1.1 specification [14] and TLM 2.0
specification [11] as shown in the Fig.2. While developing the profile, we have taken
the best of SysML and UML SystemC profiles [1]. The key strength of SysML lies
in its physical modeling capabilities. SysML provides Block Definition Diagrams
and Internal Block Definition Diagrams which are more suitable in representing
TLMmodels in comparison to theUMLdiagrams.TheUMLSystemCprofile offers
structure andbehaviormodeling capabilitieswhich canhelp in full codegeneration.

TLM 2.0 Interoperability Profile
<<profile>>

TLM 1.0 Profile
<<profile>>

<<merge>>

<<import>> <<import>>

SystemC Profile SysML Profile
<<profile>><<profile>>

<<import>>

Fig. 2. TLM Profile Relationship with Other Profiles

A SysML Profile for Development and Early Validation of TLM 2.0 Models 303

The TLM profile imports the existing UML SystemC and SysML profiles. We
have also introduced a TLM 1.0 profile and merged it with the TLM 2.0 profile.
Thus, our TLM profile supports constructs and semantics ofTLM 1.0 and TLM 2.0
standards. Table 2 shows examples of the stereotypes defined in the TLM profile
corresponding to TLM 2.0 concepts.

Table 2. TLM Profile Stereotypes

TLM Stereotypes Base Stereotype(s) Referenced
Concepts Profile

Modules �Initiator� �Block� SysML
�Interconnect� �sc module� SystemC
�Target�

Sockets �tlm initiator socket� �FlowPort� SysML
�tlm target socket� �sc port� SystemC

. . .

Interfaces �tlm blk forward if� �sc interface� SystemC
�tlm non blk fw if�

. . .

Transport �b transport� �sc method� SystemC
Methods �nb transport fw�

. . .
TLM Path �tlm block fw path� �sc connector� SystemC

�tlm nb fw path�
. . .

Payload Object �tlm generic payload� �ItemFlow� SysML

TLM Phase �tlm phase� �Enumeration� UML

.

A TLM stereotype either specialize a SysML stereotype or SystemC stereo-
type or both as base stereotypes. For example, Fig.3(a) shows TLM modules
introduced as stereotypes in the TLM profile using an extension to the stereo-
types sc module and block defined respectively in the SystemC and SysML pro-
files. Fig.3(b) shows a hierarchy of TLM initiator socket stereotypes. Overall,
the profile contains 38 stereotypes; each of them corresponds to a TLM concept.

[Class]
sc_module

<<stereotype>>

−derivedFrom

[Class]

<<stereotype>>

−derivedFrom
<<stereotype>> <<stereotype>>

Interconnect Target
<<stereotype>>

Initiator

Block

(a) TLM Modules Stereotype

<<stereotype>>
tlm_initiator_socket

simple_initiator_socket
<<stereotype>>

multi_passthrough_initiator_socket
<<stereotype>>

simple_initiator_socket_tagged
<<stereotype>>

(b) Stereotypes for Initiator socket types

Fig. 3. Example of TLM Stereotypes Structure

304 V. Jain, A. Kumar, and P.R. Panda

4 TLM Model Validation

The UML based model-driven development offers a unique advantage of perform-
ing model validation earlier in the design phase in comparison to other system
development strategies. The model validation helps in rectifying the errors found
in the model during design phase, absence of which could lead to spending more
efforts and time in debugging errors in the system.

The UML based model validation ensures that during model construction, one
can check that a model complies with the defined constraints and ensure that no
broken cross-model reference exists. It involves checking a UML model against
the UML rules as well as any constraint defined in the model expressed in the
OCL. OCL can be used to express additional constraints on UML models that
cannot be expressed or very difficult to express using UML diagrams alone. A
constraint is basically an expression typically specifying an invariant condition
that must hold for the system being modeled or a query over a object described
in a model. These constraints can be added either directly to a model element
or can be grouped and can be stored as global constraints.

UML modeling tools supporting OCL allow application-specific rules to be
expressed as OCL constraints in a model and support validation of a UML
model against such OCL constraints. In our view, an OCL expression for a TLM
rule can be built in the following steps:

– Examining semantics of a TLM rule.
– Identifying the relevant part of the UML metamodel corresponds to TLM

stereotype.
– Constructing an OCL expression from the UML metamodel.

4.1 Expressing TLM Rules in OCL

A TLM rule can be expressed as an OCL constraint and can be added to a stereo-
type representing a TLM concept in the profile. For example, let us closely exam-
ine the semantics of a TLM rule stating “An Initiator can not realize b transport
method”. In TLM context, an Initiator module may consists of a set of methods.
According to the rule, none of these methods should be of type b transport.
Similarly, a TLM rule “b transport should not be called from method process”
illustrates that a b transport method should be called either as a sc thread or a
sc cthread context but not as a sc method context.

Now, after examining the semantics of a TLM rule we need to express that rule
into OCL. For that, we need to identify a stereotype in the profile representing a
TLM concept on which that rule is applicable. Finally, we need to examine the
part of the UML metamodel which consists of the stereotype definition declared
in the TLM profile to get an OCL expression for that rule.

In the context of the TLM rule mentioned above, we note that in the TLM
profile, an Initiator stereotype represents a TLM concept of an Initiator module.
An Initiator stereotype is derived from a SysML Block stereotype and a SystemC
profile’s sc module stereotype. Both the stereotypes extend a UML metaclass
Class as shown in the Fig.4.

A SysML Profile for Development and Early Validation of TLM 2.0 Models 305

<<Block>> <<sc_module>>

<<Initiator>>

Class Operation

name:b_transport
Stereotype

+isKindOf

+class

+base_class

0..1 *

+ownedOperation

self
(OCL)

+extends

Fig. 4. Classes Diagram of Kernel package of UML metamodel

A UML metaclass Class owns a UML metaclass Operation and its attribute
ownedOperation returns an ordered set of operations which are declared in a
Class instance. An Operation metaclass is also derived from a metaclass Type.
In this example, a Type classifier is represented by a Stereotype metaclass. In
OCL, each classifier defined within a UML model represents a distinct OCL
type. Now, in order to check whether the operation is of type b transport we can
use an OCL operator OCLIsKindOf to confirm this.

In OCL, self refers to the object of the classifier which is the context of the
expression. In an OCL expression, the dot(.) is used to define the value of a
property which could be an attribute, an association end or an operation of an
object. So, finally the OCL expression can be written as

self.base Class.ownedOperation → forAll(e|e.oclIsKindOf(b transport))

Table 3. Examples of TLM Rules expressed as OCL Constraints

Constraint TLM Rule OCL Constraint
Element
Initiator Initiator can not realize

b transport method
self.base Class.ownedOperation→forAll
(e|not e.oclIsKindOf (b transport))

b transport b transport should not
be called from method
process

self.base StateMachine.class.extension
→exists(e|e.ownedEnd.type.name
<>’sc method’)

nb trans fw nb transport fw should
be realized by Target

self.base Operation.featuringClassifier
→exists (e|e.oclIsKindOf(Target))

nb bw path nb transport bw shall be
called on backward path

self.realizingMessage→forAll(e|
e.ownedEnd.type.name=’nb trans bw’)

tlm dbg tlm dbg shall not call
wait directly

self.base StateMachine.region.
subvertex→select(oclIsKindOf(State))
→ forAll(s:State|s.oclIsKindOf(wait))

306 V. Jain, A. Kumar, and P.R. Panda

All OCL constraints representing TLM static rules are added into the TLM
profile. Table 3 shows examples of TLM static rules expressed as OCL constraints
incorporated into the proposed profile.

5 Implementation and Case Study

Fig.5 shows our UML based framework for TLM 2.0 model development, valida-
tion and code generation. We have developed a TLM profile for model validation
and an XSL stylesheet for code generation. For modeling and validation purpose,
we have used Magicdraw, a UML modeling tool [9]. However, our approach does
not restrict to a particular modeling tool and it can be used with any UML
modeling tool supporting SysML and OCL. The tool provides support for model
validation and generates a validation report in case a TLM model violates any of
the static rules. For code generation, we have used an Extensible Stylesheet Lan-
guage Transformation (XSLT) technique [3]. The modeling tool saves a TLM 2.0
model in XML format compliant with Extensible MetaData Interchange(XMI)
format. We also used an XSLT processor, Saxon 9 [10], which processes XML
documents using our XSLT stylesheets and generates executable SystemC code.

Validation
Report

Document
XML XSL

StyleSheet

SystemC Code
(.h,.cpp files)

Processor
Saxon 9

Model
TLM 2.0

saves

Magicdraw
Tool

validates

TLM Profile

XSL Stylesheet

TLM Stereotypes (OCL Constraints)
TLM Rules

Fig. 5. A UML based Framework for TLM 2.0 Model development and validation

5.1 A Digital Photo Frame : Case Study

To illustrate the use of the TLM profile, we have developed a TLM model for
a Digital photo frame (DPF) SoC. Fig.6 shows the system model of DPF. The
system contains a CPU which acts as an initiator and sends requests for display-
ing images to the JPEG Decoder. The JPEG Decoder acts as an initiator and
a target, and uses LT coding style. It forwards a request to the Memory to get
the encoded JPEG image stored there. The Memory uses LT style and responds
with the image data to the JPEG Decoder. The JPEG Decoder decodes the im-
age and sends a write request to the Display controller. The Display controller
follows AT 1-phase coding style. There is a system bus, which uses LT coding
style and acts as interconnect between initiators and targets.

A SysML Profile for Development and Early Validation of TLM 2.0 Models 307

LT Style

AT 1−Phase Style

System Bus

Memory

CPU JPEG Decoder

Display
Controller

Target Port

Initiator Port

Fig. 6. TLM Model Example (A Digital Photo Frame)

Fig.7 shows system block diagram depicting the relationship among different
modules represented as SysML blocks. There is a top level SystemC module sc top
which contains all of these modules. Fig.8 shows the connectivity between all the
modules using internal block definition diagram. The Display controller uses AT-1
phase coding style and therefore uses a non-blocking interface and methods while
CPUand JPEGDecoder use LT coding style and use blocking transport interfaces.
The information item, gp, a generic payload, is used between each pair of modules.

«block»
«Target»

Display_Controller

«block»
«Initiator»
«Target»

JPEG_Decoder

«block»
«Interconnect»

Bus

«block»
«Target»

Memory

«block»
«Initiator»

CPU

«block»

sc_top

DC1CPU1 JD1 MEM1Bus1

Fig. 7. Block Definition of DPF

Bus1 : Bus

initiator_socket[0]

initiator_socket[1] initiator_socket[2]

target_socket[0] target_socket[1]

DC1 : Display_Controller

target_socket

JD1 : JPEG_Decoder

initiator_socket target_socket

MEM1 : Memory

target_socket

CPU1 : CPU

initiator_socket

«tlm_non_blocking_bw_path»
«tlm_non_blocking_fw_path»

gp

gp gp«tlm_blocking_path»

Fig. 8. Internal Block Diagram of DPF

308 V. Jain, A. Kumar, and P.R. Panda

Fig.9 depicts the behavior of CPU’s Initiator thread process captured in a
UML statemachine. The thread reads a payload object from a request port, and
sends memeory read/write request to the target by calling b transport method.
Then, it waits for the response from the target. If the transaction response is
“OK”, then it synchronizes itself with the target by waiting for a delay set by
target and then writes the transaction object to a response port.

get_response_status = transaction_ptr-> get_response_status()do /

Response Status

transaction_ptr = request_in_port->read()do /

Read Transaction

response_out_port->write(transaction_ptr)do /

Write Transaction

tlm_generic_payload *transaction_ptrdo /

Initialization

initiator_socket->b_transport()do /

Transport Call

«wait»

[delay]

«if»

«while»

«endif»

«endwhile»

[gp_status = TLM_OK_RESPONSE]

[true]

Fig. 9. Behavioral View of DPF representing CPU Initiator’s Thread

5.2 TLM Static Rules Validation

Now, with the help of the UML modeling tool, Magicdraw, a TLM model de-
signed using proposed TLM profile can be validated against all TLM static rules
expressed as OCL constraints. During model validation, the tool reports the vio-
lations of the OCL constraints found in the model. In order to demonstrate this,
we took the DPF model but we deliberately introduced some violations in the
model. The tool highlights all the model elements of the TLM 2.0 model which
violate TLM static rules as shown in the Fig.10.

Table 4 shows the outcome of the model validation performed on this model.
For example, one of the error messages, states that “Initiator must have a tlm
initiator socket”. According to TLM standard, for the correct behavior of the
system, an Initiator module must have a tlm initiator socket which is missing
from the CPU module.

A SysML Profile for Development and Early Validation of TLM 2.0 Models 309

+nb1(t:tlm_gp,p:tlm_phase,
d:sc_time)

<<nb_transport_bw>>

<<Target>>
Memory

+b(t:tlm_gp,d:sc_time)
<<b_transport>>

<<Initiator>>
JPEG_Decoder

+nb(t:tlm_gp,p:tlm_phase,

<<Initiator>>
CPU

d:sc_time)

<<nb_transport_bw>>

<<tlm_nb_fw_path>>

<<tlm_block_fw_path>>
<<tlm_target_socket>>

Fig. 10. Example of a Model violating TLM Rules

Table 4. Result of Model Validation performed on a model shown in Fig.10

Model Element Error Message

CPU[Model] Initiator must be a Block classifier

JPEG Decoder[Model] Initiator realizes blocking transport call

Path[CPU-Memory] Initiator socket missing on non-blocking forward path

Memory[Model] Target realizes non-blocking backward call

Path[CPU-JPEG Decoder] Initiator and Target socket missing on blocking path

5.3 Code Generation

For generation of executable SystemC code, as discussed earlier, we have used an
XSLT approach where an XSLT processor parses an XMI document based on the
XSLT rules specified in a XSL stylesheet. We have developed a XSL Stylesheet
which contains XSLT rules organized in the form of templates.

Fig.11 shows an example of the code generated for the CPU’s initiator thread
process as shown in Fig.9. Table 5 shows the code generation statistics for the
executable TLM model of DPF.

void lt_initiator::initiator_thread(void){

tlm_generic_payload *transaction_ptr;

while(true) {

transaction_ptr=request_in_port->read();

sc_time delay = SC_ZERO_TIME;

initiator_socket->b_transport(*transaction_ptr,delay);

gp_status = transaction_ptr->get_response_status();

if(gp_status == TLM_OK_RESPONSE)

wait(delay);

response_out_port->write(transaction_ptr);

}

}

Fig. 11. Code Generation Example for Fig.9

310 V. Jain, A. Kumar, and P.R. Panda

Table 5. Code Generation Statistics for DPF

Model Size Code Generation

Model Element Used Diagrams Used LOC Time(s)
Blocks/Classes 20 BDD 1
Operations 28 IBD 2 515 3.796
Ports 11 SM 16
Class Instances 5

6 Conclusions and Future Work

This paper described a UML based approach for model development and early
validation of TLM 2.0 models based on a TLM profile. The TLM profile based
on UML/SysML provides the foundation for the model validation and the exe-
cutable SystemC based TLM models. Moreover, our approach enables modeling
and code generation of TLM 2.0 models at different abstraction levels. We re-
ported the TLM model development approach through an example of Digital
Photo Frame SoC. Our work also demonstrated that with the early validation
of TLM 2.0 models based on static rules we can reduce the overall debugging
efforts. Although UML behavior modeling in general, requires much efforts from
a designer viewpoint, but reusing the same behavior again can save overall de-
signer’s efforts. We plan to extend the UML based model validation aspect to
include dynamic validation of TLM models and look at the possibility of incor-
porating the model refinement aspect in the current framework.

References

1. Riccobene, E., et al.: SystemC/C-based model-driven design for embedded systems.
ACM Trans. Embedded Comput. Syst. 8(4) (2009)

2. Nguyen, K., Sun, Z., Thiagarajan, P., Wong, W.: Model-Driven SoC Design via
Executable UML to SystemC. In: Proc. of 25th Real-Time Systems Symposium
(RTSS 2004) (December 2004)

3. Prevostini, M., Zamsa, E.: SysML Profile for SoC Design and SystemC
Transformation. Tech Report, ALaRI, Faculty of Informatics, University of Lugano
(2007)

4. Raslan, W., Sameh, A.: Mapping SysML to SystemC. Forum on specification and
Design Languages. In: FDL 2007 (2007)

5. Martin, G., Müller, W.: UML for SOC Design. Springer, New York (2005)
6. Vanderperren, Y., Dehaene, W.: SysML and Systems Engineering Applied to

UML-Based SoC Design. In: 2nd UML-SoC Workshop at 42nd DAC, USA (2005)
7. Pauwels, M., et al.: A Design Methodology for the Development of a Complex SOC

Using UML and Executable System Models. In: Proc. of FDL (2002)
8. Mischkalla, F., He, D., Müller, W.: Closing the gap between UML-based modeling,

simulation and synthesis of combined HW/SW systems. In: Design, Automation
and Test in Europe, DATE 2010 (March 2010)

9. The MagicDraw tool, http://www.nomagic.com
10. The Saxon Processor, http://www.saxonica.com

A SysML Profile for Development and Early Validation of TLM 2.0 Models 311

11. Open SystemC Initiative (OSCI). TLM 2.0 Language Reference Manual
12. Object Management Group (OMG). UML Profile for SoC v1.1 Specification
13. Object Management Group (OMG). UML 2.0 Superstrcuture and Infrastructure

Specification
14. Object Management Group (OMG). SysML v1.2 Specification
15. Object Management Group (OMG). UML 2.2 OCL Specification
16. Object Management Group (OMG). UML Profile for MARTE specification
17. TLM 2.0 Compliance Checker, Jeda Technologies,

http://www.jedatechnologies.net

Taming the Confusion of Languages

Rolf-Helge Pfeiffer and Andrzej Wąsowski

IT University of Copenhagen, Denmark
{ropf,wasowski}@itu.dk

Abstract. Large software systems are composed of diverse artifacts. The rela-
tions between these artifacts are usually not formalized, if the artifacts use dif-
ferent modeling or programming languages. This hinders component-oriented
development, as interfaces of exchangeable components do not capture hidden
artifact dependencies. We present GenDeMoG, a tool that allows for mining
inter-component dependencies beyond those explicitly specified. GenDeMoG is
a generic generator-generator parameterized with a high-level system model con-
taining dependency specifications. So, unlike the language interface mechanisms,
GenDeMoG is not restricted to any given kind of links. We apply GenDeMoG to
a realistic case study—an open source enterprise system, OFBiz. The experiment
confirms that the stereotypical opinion about unknown dependencies across arti-
fact types is indeed correct. Just 22 specifications allowed GenDeMoG to uncover
1737 undocumented inter-component dependencies among OFBiz components.

1 Introduction

A modern enterprise system is heterogeneous—it combines development artifacts, ex-
pressed in various languages. These artifacts are aggregated into larger reusable entities,
called components. However, when forming a system, the artifacts are not merely put
together to form components, but they are interrelated via references or other depen-
dencies. Depending on the language and the provided mechanisms, such references
are either direct or indirect. Direct references are string-based references expressed by
using the same datum in different locations. If at one place the datum changes, the ref-
erence is broken. Indirect references are established between artifacts at runtime; for
example in adapter calls, such like when a Java method is calling a Prolog rule.

The larger the number of languages used at development time, the more artifacts con-
taining references to artifacts in other languages appear. Further, since not all languages
are general purpose (GPLs), many artifacts cannot use adapters to interact with code in
other languages, instead they refer to other code artifacts directly. Usually such direct
references are implicit, in the sense that their semantics is hidden in the execution plat-
form (an interpreter, business logics, etc.). In contrast, explicit references exploit meta-
data of the referenced datum, for example document structure like in unified resource
locators (URI). Either type of references result in dependencies between artifacts.

The proliferation of references across languages and across components causes a
number of problems for software developers:

– Since inter-language dependencies are usually implicit, they require substantial
domain knowledge for a developer to correctly perform simple evolution steps.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 312–328, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Taming the Confusion of Languages 313

– Implicit dependencies may cross the borders of system’s aggregation structure:
components get coupled tighter together. When this happens, it is often not ex-
plicitly recorded in component interfaces.

– Errors caused by broken dependencies are most often only exposed at runtime;
so detection of any errors requires thorough testing of the modified code—while,
at least in principle, errors caused by dangling references between static artifacts,
could easily be caught at compile time.

The first objective of this paper is to present GenDeMoG—a tool that allows for speci-
fying inter-component dependency patterns for artifacts in heterogeneous systems. Gen-
DeMoG automatically reveals the hidden dependencies using these patterns. The tool
is generic. It is neither tied to certain languages nor applications. It is also non-invasive,
in the sense, that it does not require that the related artifacts are modified.

Our second objective is to use GenDeMoG to analyze a larger realistic case study for
the presence of unspecified dependencies, and their interaction with component struc-
ture of the system. We use OFBiz [10], an open-source enterprise automation software
project, as the subject in this study. OFBiz is a component-based system comprising
a multitude of heterogeneous languages, both general purpose languages (GPLs) like
Java, and domain-specific languages (DSLs). We research OFBiz applications, that is
programs running on the OFBiz framework. Such applications are again component-
based and heterogeneous. Therefore, we identified 22 exemplary dependency patterns
using 7 languages specific to OFBiz. GenDeMoG automatically revealed 1737 inter-
component dependencies of the kind specified by these patterns.

The main findings of these study are that:

– There indeed exists a large number of references between OFBiz components not
specified in the component description mechanism (see e.g., Fig. 1)—even though
the mechanism provides for specifying such.

– These dense and circular references couple the components tightly together. This
confirms the qualitative understanding (see Section 2) that evolution or refactoring
of OFBiz component structure is difficult in practice.

A useful by-product of this work is an initial meta-model of Java 5 implemented in
Xtext [14]. Since we could not find a pre-existing Xtext specification of Java, we adapted
an existing ANTLR grammar, and optimized it to decrease the number of model el-
ements created in each type, so that pattern matching, which relies on these types,
is more efficient. The new Java model is available online together with GenDeMoG
(http://www.itu.dk/~ropf/download/gendemog.html).

We further motivate the problem of unspecified references across languages and com-
ponents using the OFBiz example in Sect. 2. In Sect. 3 GenDeMoG is introduced.
Sect. 4 describes the experimental case study of applying GenDeMoG to OFBiz. We
end with a discussion of future work (Sect. 5), related work (Sect. 6) and conclusion.

2 Background and Rationale

Software systems are implemented using many interrelated artifacts, expressed in multi-
ple languages. We shall now investigate this architectural phenomenon by surveying the

314 R.-H. Pfeiffer and A. Wąsowski

example of the OFBiz project. OFBiz is a component-based framework on top of which
OFBiz applications are run. A standard OFBiz distribution includes 11 application core
components delivering key functionalities: accounting, commonext, content, humanres,
manufacturing, marketing, order, party, product, securityext, and workeffort.

Each application component contains a component descriptor, by convention in a file
named ofbiz-component.xml, expressed in a domain specific language using an XML
syntax. The descriptor defines the visibility of artifacts, their types, etc. Fig. 1 presents a
fragment of the descriptor for the order component, which supports functionality around
management of customer orders. The component descriptor informs the framework about
the existence and location of data models and initialization data (entity-resource) or about
the existence and location of business logic (service-resource). Further it declares whether
a component is a web application (webapp) and allows for the specification of a set of
components that it depends on (depends-on). The latter, however, is not used in the above
example, nor anywhere else in core application components of OFBiz.

Implementation artifacts are expressed using DSLs and GPLs. Dependencies be-
tween heterogeneous artifacts are expressed using string-based references, since the lan-
guages themselves do not support heterogeneous interface descriptions—i.e., only few
languages allow for expressing relations between language elements within the same
language in a managed manner. That is, the wish to separate concerns by expressing
development artifacts in different DSLs and GPLs and the lack of a uniform managed
mechanism to describe relations between artifacts creates a confusion of languages.

Fig. 2 shows an example of an inter-language, inter-component, string-based depen-
dency between a Java method call and an entity definition. A dependency (reference)
goes from a class FinAccountHelper in the order component to the file entitymodel.xml
in the accounting component (both red in the Figure). This reference, as many other
similar, is not captured by the interface specification of Fig. 1.

Dependencies that cross component boundaries are problematic since they increase
coupling and make components hard to exchange or remove, when customizing OFBiz.
Still, OFBiz contains no mechanism for specification of inter-component dependen-
cies, which could help developers by reporting violations of dependencies, or merely by
documenting dependencies. The following quotes (original spelling) from the developer

<ofbiz-component name="order"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://ofbiz.apache.org/dtds/ofbiz-component.xsd">
<resource-loader name="main" type="component"/>
<classpath type="jar" location="build/lib/*"/>
<classpath type="dir" location="config"/>
...
<entity-resource type="model" ... location="entitydef/entitymodel.xml"/>
...
<entity-resource type="data" ... location="data/OrderTypeData.xml"/>
...
<service-resource type="model" loader="main" location="servicedef/services.xml"/>
...
<service-resource type="eca" loader="main" location="servicedef/secas.xml"/>
...
<webapp name="order" title="Order" ... location="webapp/ordermgr"

base-permission="OFBTOOLS,ORDERMGR" mount-point="/ordermgr"/>
</ofbiz-component>

Fig. 1. An excerpt of the Order component descriptor

Taming the Confusion of Languages 315

<entity entity-name="FinAccount" package-name="org.ofbiz.accounting.finaccount"
title="Financial Account Entity">
<field name="finAccountId" type="id-ne"></field>
<field name="finAccountTypeId" type="id"></field>
<field name="statusId" type="id"></field>
...

</entity>

public static boolean validatePin(GenericDelegator delegator,
String finAccountId, String pinNumber) {

GenericValue finAccount = null;
try {
finAccount = delegator.findByPrimaryKey("FinAccount",

UtilMisc.toMap("finAccountId", finAccountId));
} ...

Fig. 2. An inter-language cross-component string-based dependency: the marked string literals in
the Java method validatePin refer to objects specified in the XML file on top (both red)

mailing lists show that indeed implicit coupling of components is an issue in practice
(Note, these quotes are to motivate our work. We did not perform a systematic research
on the OFBiz mailing lists):

Hansen: I am looking for information regarding the inter-dependency among all ofbiz
components . . . Is there any effective way to know this kind of information. So that I can
safely remove those components I do not want without affecting the functionalities of
the other components that I want to keep

skip@theDevers: I recently used just the party manager in a project and deleted all the
rest. Took a couple of days replacing/commenting out the dependencies. . .

Hansen: It would be usuful to have such information (something like rpm dependency
list) handy especially for those application components as they are supposed to be less
dependent on other components comparing to framework components.

[http://ofbiz.135035.n4.nabble.com/component-dependency-td153157.html]

Mustansar Mehmood: My company(a service company) is considering ofbiz as their
ERP/CRM/accounts Receivable system but Ofbiz seems to have a few things that my
company will not be using for instance E commerce or Manufacturing/. How do we
removed those applications ? and keep it running stable. . .

Divesh Dutta: You can not remove the any of the complete application. Each module is
related to another module one or other way. . .

cjhorton: Generally, because of dependancies you don’t want to ’remove’ a component,
but rather just ’hide’ it as talked about in the links above. . .

[http://ofbiz.135035.n4.nabble.com/Removing-applications-from-

OfBiz-td160666.html#a160669]

Our long term research agenda is to support smooth evolutions of systems with interre-
lated artifacts. We recognize that this cannot be solved without taking project specifics
into account. Thus in this paper we present a generic tool, which parameterized with a
project-specific model of a software system with its dependencies, is able to reveal un-
specified relations between implementation artifacts across components. In the second
part of the paper we will use this tool to further explore the nature of dependencies in
an example of a mature business application, such as OFBiz.

316 R.-H. Pfeiffer and A. Wąsowski

3 GenDeMoG

This section introduces GenDeMoG a generic tool for mining an inter-component de-
pendency graph of heterogeneous component-based software systems. GenDeMoG’s
architecture and other important aspects are described.

The central artifact to GenDeMoG is a Component Descriptor Model (CDM). A
CDM provides an external description of a component-based software system under
analysis. It states which languages are used by development artifacts, what components
are formed by which artifacts and, most importantly, includes the language-level pat-
terns that describe the conditions for dependencies between development artifacts. A
CDM comprises the following three sections:

Type definitions. In our work we use the terms types and languages synonymously.
Types are defined by a path to a languages meta-model assigned to an alias. The
alias is required to be equal to the meta-models name. GenDeMoG generally pro-
vides 2 different means of importing a language to the framework. These are first
XSD meta-models and second EMF meta-models. Each language definition has to
refer to its meta-meta-model.

Component List. Components are specified by a unique name. This may be a relative
path to a folder containing the components artifacts or any other name. Each com-
ponent declares a list of artifacts it contains. Artifacts are specified by a unique path,
with respect to a single CDM. Each artifact refers further to its meta-model or the
language it is instance of.

Pattern Definitions. Dependency patterns are defined by specifying a key pattern, and
a reference pattern with respect to the corresponding language definitions. Patterns
are specified using the EMF expression language that is used for writing model
transformers and code generators in Xtend and Xpand [13,12] respectively. Key
patterns always start with the keyword possibleKey and reference patterns with
the keyword possibleReference and may be followed by navigations to cer-
tain model sub-elements, see the dependency pattern in Fig. 3. The second element
of both pattern specifications is the respective model element type. This states the
type of the possibleKey and possibleReference model element respec-
tively. Finally, the language for key and reference patterns is specified. A separate
boolean expression over key- and reference patterns defines under which condition
a key and a reference pattern are in relation.

Obviously, GenDeMoG’s CDM is directly tied to the meta-model hierarchy [28,16]. All
used languages in a software system are defined to be instances of the same meta-meta-
language (M3) (Ecore [11]). This allows for the definition of dependency patterns on
meta-model level (M2) or language level. All artifacts are specified as models (on level
M1) that are instances of the corresponding meta-model or languages stated in the type
definitions.

key pattern: "possibleKey.entityName" typeOf "EntityType" in iof entitymodel
reference pattern: "possibleReference.relEntityName"

typeOf "RelationType" in iof entitymodel
dependency relation: "_keyPattern_ == _refPattern_"

Fig. 3. Example pattern

Taming the Confusion of Languages 317

In a nutshell, a CDM lists all languages used or of interest in the software system
under analysis, it lists which artifacts form components and most importantly, which
language constructs induce inter-component dependencies.

Supported Languages. Since GenDeMoG allows for mining inter-component
dependencies for heterogeneous languages, it is crucial to provide a mechanism for
including new languages. As mentioned above all languages are based on the Ecore
meta-meta-model. XSD-based language definitions can either be automatically or man-
ually converted to Ecore-based language definitions. In the experiment (Sect. 4) we use
6 XSD-based language definitions and one Ecore-based definition. The Ecore-based
Java 5 model is an initial implementation setting up on XText. Generally, there are
multiple sources for predefined languages such as e.g., EMFText Syntax Zoo [3] (cur-
rently, 88 languages), the Atlant Ecore Zoo [2] (currently, 304 languages), the MoDisco
Project Page [9] (currently for Java and XML documents).

Dependency Patterns. GenDeMoG mines Key-Reference dependencies. That is, there
is a key, the definition of a certain piece of information that may be referenced. Further-
more, there are references, which are pieces of information that specify the referenced
keys. In GenDeMoG such pieces of information are model elements. A key and a ref-
erence are in relation, if and only if the boolean constraint that specifies their relation
evaluates to true. That is, there are no keys and references without a relation.

Dependency patterns are defined between two language elements of a certain type
(type) each which in turn belongs to a certain language (in iof). Each key and ref-
erence pattern may be defined more precisely by an optional refine statement. It may
be used to provide another boolean expression that needs to evaluate to true. Key pat-
terns are referenced in the dependency patterns using the key word _keyPattern_.
Reference patterns are referenced in the dependency patterns using the key word
refPattern. A dependency pattern, with substituted _keyPattern_ and
refPattern, is a boolean expression that evaluates to true if a dependency be-
tween a key and a reference exists. Since GenDeMoG is a generator-generator, the
dependency patterns get transformed to dependency graph generator code that contains
a boolean function call for the dependency relation, see Fig. 4, corresponding to the
dependency relation in Fig. 3. The language for describing key and reference patterns
is the Eclipse Modeling Framework (EMF) expression language [4].

GenDeMoG’s Architecture. GenDeMoG is a generator-generator. “ [It] compiles a
query into a special-purpose search program, whose task is only to answer the given
query. . . . the input to the program generator is a general query answerer, and the out-
put is a ’compiler’ from queries into search programs.” [25] The queries in our case
are the dependency patterns. The ’compiler’ is the ext_gen model transformer. It takes
the dependency pattern queries from a CDM and generates graph_gen as special pur-
pose search program, which in turn is a model transformer again. The following is a
description of GenDeMoG’s architecture using the compiler notation from [25]:

cached Boolean check(EntityType possibleKey, RelationType possibleReference) :
possibleKey.entityName == possibleReference.relEntityName;

Fig. 4. Automatically generated code corresponding to the pattern in Fig. 3

318 R.-H. Pfeiffer and A. Wąsowski

graph_gen = �ext_gen�xpand [cdm, fst_wf] (1)

snd_wf = �wf_gen�xpand [cdm] (2)

dep_model = �graph_gen�xtend [{artifacts}, snd_wf] (3)

Entities in �·� describe semantic units, i.e., programs in a certain language (denoted as
subscript) that are executed consuming the arguments in [·]. Workflows (fst_wf, snd_wf)
are programs that execute model generators and model transformers in a specified order.
The first workflow calls the ext_gen code generator on the CDM. That means, that the
generator-generator gets instantiated to the concrete generators for patterns. The second
workflow takes the generated concrete generators and runs them on the corresponding
artifacts in order to generate the dependency graph. Thus, workflows are programs that
have a coordinating function and we denote them as arguments to model generators and
transformers. The generated dependency model is an instance of the meta-model shown
in Fig. 5. Such a dependency graph (Tengsl1 model) contains a representation for each
component, containing artifacts, which in turn may contain key elements and references
to keys.

Fig. 5. Metamodel for the mined inter-component dependency graph

4 Experiment

We will now demonstrate GenDeMoG by applying it to a real-world medium-sized soft-
ware system analysis scenario. This way we will extract an inter-component dependency
graph for the subject system, which we will further analyze.

The Experiment Subject. OFBiz is an industrial-strength open source enterprise au-
tomation software project licensed under the Apache License Version 2.0. By open
source enterprise automation we mean: Open Source ERP, Open Source CRM, Open
Source E-Business / E-Commerce, Open Source SCM, Open Source MRP, Open Source
CMMS/EAM, and so on [10]. In this experiment we have used OFBiz ver. 9.04, available
at http://svn.apache.org/repos/asf/ofbiz/branches/release09.04.

OFBiz’ source tree contains 6522 files, including 1122 Java source code files, 365
Groovy files, 1283 XML files, and files in various other languages. Out of 6522 files,
2289 are related to the framework only, and 1539 are owned by the 11 core applica-
tion components. The tree contains more than 388000 lines in XML models, and in
excess of 310 KLOC of Java code. The OFBiz project uses not less than 33 domain

1 Tengsl: Icelandic for relationship.

Taming the Confusion of Languages 319

specific languages and relies on about a dozen standards or open technologies. More
than 2000 email addresses are subscribed to the OFBiz mailing list, most of these tech-
nically oriented participants ranging from core developers to technically skilled users
who customize and deploy OFBiz. The project website lists (February 2011) several
large customers, including internationally known brands such as telecom operators or
large airlines and a multitude of smaller ones. All in all, OFBiz is a fairly representative
example of an industrial quality modern enterprise system.

In this paper we focus on dependencies in OFBiz applications across the core compo-
nents, i.e., inter-component dependencies. To customize an application the mentioned
components can either be modified, removed, or extended and expanded by new com-
ponents. We note that in case of OFBiz, the framework follows the same architectural
principle as the applications built on top of it.

A typical application relies on the following 25 DSLs: componentLoader, jndiConfig,
ofbizComponent, ofbizContainer, ofbizProperties, datafiles, entityConfig, entityEca,
entitygroup, entitymodel, fieldtypemodel, simpleMethods, securityConfig, serviceConfig,
serviceEca,serviceGroup,serviceMca,services, testSuite, regions,siteConf,widgetForm,
widgetMenu,widgetScreen, andwidgetTree.On top of theGPLssuch likeJavaandGroovy
[6], the FreeMarker Template Language (FTL) [5], and JavaServer Pages (JSP) [7] are
used. DSLs are used to describe data models, visual application parts, and together with
GPLs they are used to specify the controller level, i.e., required logics, following the
model-view-controller design pattern.

The Experiment Set-up. The objective of this experiment is two-fold. First, we want
to show that a large number of dependencies—precisely, direct references—exists be-
tween components and languages in a mature system like OFBiz. Second, we want to
demonstrate effectiveness of GenDeMoG while revealing the dependencies. We do not
aim at revealing all not specified dependencies—since this would require a substantial
domain knowledge.

We are interested in dependencies within and across architectural layers. Since
OFBiz follows the model-view-controller design pattern the interesting component
boundaries can be divided in the following 6 categories: model–model, model–view,
view–view, view-controller, controller–controller, and controller—model. We have iden-
tified patterns describing dependencies in each of these. The dependencies have been
identified by studying available documentation, in particular the developer guide book
[24]. We have stopped searching for more dependencies as soon as we accumulated rep-
resentatives for all categories (in total 22 dependency patterns, 19 inter-language and
3 intra-language patterns). Fig. 6 shows these categories by black edges—thickness of
the edge, and the numeric labels, reflect how many dependency patterns we were able
to find on each of the boundaries. Note that due to the inherent incompleteness of the
collection method this does not mean that proportions between dependencies in OFBiz
are precisely as indicated in the figure. The diagram merely shows the characteristics of
our selected sample set, and it does show qualitatively that there exist dependencies on
each of these boundaries.

The dependency mining algorithm is applied to 642 artifacts (relevant for the pat-
terns) belonging to the 11 core application components of OFBiz.

320 R.-H. Pfeiffer and A. Wąsowski

Model Controller

View

entitymodel - entitymodel (2)

entitymodel - simpleMethods (6)
entitymodel - java (7)

entitymodel - servies (1) services - simpleMethods (1)

widgetScreen - entitymodel (1)
widgetForm - entitymodel (1)

widgetScreen - widgetScreen (1)

widgetForm - siteConf (2)

Fig. 6. Amount of dependency patterns between the parts of the MVC architecture

Fig. 7 shows an excerpt of the CDM used for this experiment. The complete model
showing all included languages, components, artifacts and dependency patterns is avail-
able online at http://www.itu.dk/~ropf/download/gendemog.html.

1 project ofbiz at "/ofbiz_9_4"
2 ...
3 type entitymodel metamodel ".../dtd/entitymodel.xsd" typeOf XSD,
4 type simpleMethods metamodel ".../dtd/simple-methods.xsd" typeOf XSD,
5 type java3 metamodel ".../lang/xtext/Java3.ecore" typeOf Ecore
6 -P "dk.itu.sdg.lang.xtext.java3.Java3Package"
7

8 component accounting at "/ofbiz/applications/accounting" {
9 artefact "/.../accounting/.../entitymodel.xml" typeOf entitymodel,

10 ...
11 artefact "/.../accounting/.../TaxAuthorityServices.xml" typeOf simpleMethods,
12 ...
13 artefact "/.../accounting/.../UtilAccounting.jxmi" typeOf java3,
14 ...
15 }
16 ...
17 component order at "/ofbiz/applications/order" {
18 artefact "/.../order/.../entitymodel.xml" typeOf entitymodel,
19 artefact "/.../order/.../entitymodel_view.xml" typeOf entitymodel,
20 ...
21 artefact "/.../order/.../PurchaseOrderTest.jxmi" typeOf java3,
22 artefact "/.../order/.../SalesOrderTest.jxmi" typeOf java3,
23 ...
24 }
25 ...
26 /* entitymodel <-> entitymodel */
27 key pattern: "possibleKey.field.name" typeOf "EntityType" in iof entitymodel
28 reference pattern: "possibleReference.relation" typeOf "EntityType"
29 in iof entitymodel
30 dependency relation:
31 "_refPattern_.select(e|e.relEntityName == possibleKey.entityName).size > 0
32 && _keyPattern_.intersect(_refPattern_.keyMap.fieldName).size > 0"
33 ...
34 /* entitymodel <-> java */
35 ...
36 key pattern: "possibleKey.entityName" typeOf "EntityType" in iof entitymodel
37 reference pattern: "possibleReference" typeOf "PrimaryVarCall"
38 refine "_refPattern_.name.name.last() == (’getRelatedOne’) &&
39 !_refPattern_.eContents.typeSelect(Arguments).isEmpty &&
40 !_refPattern_.eAllContents.typeSelect(PrimaryLiteral).isEmpty" in iof java3
41 dependency relation: "_refPattern_.eAllContents.typeSelect(PrimaryLiteral)
42 .select(e|e.literal == ’\"’+_keyPattern_+’\"’).size > 0" ...

Fig. 7. An excerpt of the CDM for the experiment

Taming the Confusion of Languages 321

Let us survey Fig. 7 to provide further details. A CDM is defined per software system
or projectwhere the projects root folder is specified (at), see line 1. Used languages
(type) are declared, see lines 3-6, by giving them a unique name, a path to their lan-
guage specification (metamodel) or additionally their language package (see line 6),
and stating the languages meta-meta-model (typeOf). Lines 8-24 show an excerpt of
two component specifications (component) via a unique name, a path to the compo-
nent’s root folder (at), an finally the contained artifacts. Each artifact (artefact) is
specified by a path to the artifacts location and the type of the language it is instance
of (typeOf). Note, to minimize GenDeMoG’s memory footprint, the experiment is
run with preprocessed Java source code files. That is, a separate preprocessing step con-
verted the textual Java files to an Ecore-based model representation (jxmi, e.g., line
13). Lines 26-42 show the declaration of two dependency patterns. We will have a closer
look to the second one. Model elements that might be keys (key pattern:) are spec-
ified by a pattern to a model element, the model element’s type (typeOf), and the type
declaring language (in iof). The same holds for the specification of a reference ele-
ment. In both are possibleKey and possibleReference reserved keywords. In
case that a lot of model elements match the pattern definition with the corresponding
type, it is possible to further refine the matching model element set (refine). By a
boolean expression over key and reference patterns, are dependency relations defined
(dependency relation:). In dependency relations and refine declarations are
possibleKey, possibleReference, _keyPattern_, and _refPattern_
reserved keywords.

Results and Analysis. A check for one pattern (out of the 22) over the 642 relevant
artifacts takes about 2-3 minutes time on a 2GHz Intel Core 2 Duo Mac Book with
2GB 1067MHz DDR3 RAM.

Our 22 patterns, reveal in total 1737 inter-component dependencies (the number of
elements of type ReferenceElement as per Fig. 5). These 1737 dependencies have 635
unique target elements (KeyElements). Remember, that since the list of patterns is highly
incomplete, this number is a strict lower bound on the actual number of interactions
between core application components in OFBiz!

It turns out that the density of dependencies varies a lot for patterns. This is visual-
ized in Fig. 8. For example pattern number zero, leftmost in the figure, uncovers 700
dependencies, to 132 elements, while pattern number five applies rarely, uncovering
only 4 dependencies to 3 key elements.

Fig. 9 shows qualitatively how dependencies are split across the components. Ver-
tices represent components. There is an edge between two vertices if there is at least
one dependency between the components in the given direction (arrow-heads point to-
wards owners of target key elements). The only component that is independent from the
remaining ones, as far the 22 dependency patterns are considered, is securityext. Note,
that commonext depends on no component but is required by four others.

The graph contains a large number of cycles, and it is clear that each component de-
pends on a handful of others. Also each has a few dependent ones. The median number
of components depending on a given node is 6, while the median number of components
on which a node depends is 5. This confirms quantitatively that problems indicated
in the mailing list discussions (see Sect. 2) are well grounded—clearly it must be a

322 R.-H. Pfeiffer and A. Wąsowski

Fig. 8. Number of dependencies (vertical axis) for each pattern (horizontal axis). Number of key
elements are shown in the bubbles. Grey bubbles are intra-language patterns.

humanres

content

commonext

accounting

party

product
order

manufacturing

workeffort

marketing

securityext

Fig. 9. Inter-component dependencies aggregated from the mined dependency graph

challenge to remove, replace or modify a component. Indeed, we have been able to
confirm this coupling using merely 22 patterns!

Despite the fact that the component descriptions (ofbiz-component.xml) allow to spec-
ify component dependencies, none of the uncovered dependencies has been explicitly
declared by developers. It turns out that this specification mechanism is not used in
practice. This motivates further research in automatic dependency maintenance tools
such as GenDeMoG.

Fig. 10 summarizes distribution of keys (referred elements) and references (referring
elements) over the languages. Not surprisingly the biggest amount of keys is defined
in the entitymodel DSL, which is used to define the data model. The large numbers of
references outgoing from entitymodel (881) is caused by a large number of relations
between the various concepts in the data model. This is natural in a data processing
system. Also data modeling patterns were the easiest to identify for non-experts, so it
is expected that we included some of these. As we have seen in Fig. 6—the model part

Taming the Confusion of Languages 323

Fig. 10. Distribution of keys and references per language

of the architecture (containing the entitymodel language) has participated in the biggest
share of our patterns, so it is expected that it generates most dependencies.

Finally, we have classified the dependencies that we have observed, in order to un-
derstand the circumstances in which they emerge. We observe three main categories of
dependency patterns (and thus of the mined dependencies):

1. A relation provides a mechanism for distributed information specification within a
language. For example, the relation mechanism of the entitymodel language allows
specifying relations between data tables across artifact boundaries.

2. A call is an inter-language mechanism, where at least one language has runtime
semantics and thus can call certain other code blocks or variables. For example, a
Java method call that consumes a name of a data table as a parameter.

3. A value source is an inter-language mechanism that provides missing values to a
template—for example, when displaying the value of a data field in a view.

Threats to validity. The main external threat is that OFBiz is not a representative exam-
ple of an enterprise systems. We have tried to argue that it has many of typical character-
istics of such systems. Moreover, we have informally confirmed that indeed it resembles
commercial systems a lot, through personal communication with engineers in the ERP
industry. The main reason to use OFBiz in this experiment is the unrestricted access to
its source code, which would be difficult for other products (and would also make our
results difficult to reproduce or compare in future).

The main internal threat lies in the selection of the 22 dependency patters. First, that
they might be incorrect. Second, that they are not complete. We addressed the latter
issue by deciding not to draw any conclusions about completeness. This allowed us to
mitigate the former, by only focusing on the most obvious patterns, that can be extracted
from the best available documentation [24].

Furthermore, GenDeMoG’s algorithm can contain errors. Besides the usual testing
effort aiming at establishing trust in the implementation we have manually verified that
indeed the dependencies have been correctly matched by manually inspecting all of
them for two selected patterns. This step has shown that 100% of dependencies have
been mined correctly (no false positives). Since the mining program is automatically
generated, our confidence that it operates correctly for other patterns is high.

Finally, the taxonomy of dependency kinds presented above is by design not com-
plete, but only covers the categories that actually appeared in our 22 patterns.

324 R.-H. Pfeiffer and A. Wąsowski

5 Discussion and Future Work

Currently, GenDeMoG allows for the following:

– Non-invasive description of component-based software systems capturing used lan-
guages, components and contained artifacts.

– The definition of inter-component dependency patterns on the language level.
– Automatic generation of programs for mining inter-component dependencies.

GenDeMoG itself relies on Eclipse Modeling Framework (EMF) technologies, such as
the model transformation language Xtend, the code generation language Xpand, and
the DSL development framework Xtext.

It is specific to GenDeMoG that new languages may be included as Ecore-based
models, i.e., all languages are described using the same meta-meta-language. This al-
lows for the definition of dependency patterns on language level using one language,
in this case Xtend. Importantly, this makes GenDeMoG a generic tool, i.e., applicable
to a wide range of software systems. To demonstrate GenDeMoG’s general applicabil-
ity we have created a meta-model for Java 5 and used it in the experiment. Currently,
GenDeMoG’s CDM supports language dependency patterns that relate single language
elements to each other. In future, we will investigate if relating single language elements
is sufficiently expressive for general cases, or if language dependency patterns need to
be more expressive.

One could consider relying on another meta-meta-model than Ecore, such as the Ker-
nel Metameta-Model (KM3) [26]. Then, GenDeMoG’s model transformations could be
implemented using ATL [1], QVT [8], or the VIATRA2 [15] framework. The particular
choice of modeling and model transformation technologies is not essential for the de-
sign idea behind GenDeMoG. In future, it would be interesting to investigate, whether
the technologies selected were the most efficient possible for the use case. Since models
become very large for large artifacts, we intend to continue improving the tool’s perfor-
mance. Also, further work is required to integrate GenDeMoG better into the IDE.

GenDeMoG only mines cross-component dependencies so far. It is however ex-
tremely easy to extend it so that intra-component dependencies are also searched—we
have made preliminary attempts in that direction. Nevertheless, we have decided to fo-
cus on the cross-component dependencies, as they pose a much more pressing issue.

All in all, we spent two man-month for implementing GenDeMoG, setting-up the
experiment, and for identifying the dependency patterns. We did not meassure more
precisely how much time we spent on reading documentation and reading source code.
The working time necessary to apply GenDeMoG to other software systems, i.e., to
identify the corresponding dependency patterns, depends on the degree of experience a
developer has with development of the system under scope.

Since GenDeMoG is generic with respect to the software systems under analysis its
applicability is tied to the amount of language definitions readily available. Especially
GPL definitions can be reused across projects. Hence we aim for providing definitions
for languages such as Groovy, JSP, and FTL.

Taming the Confusion of Languages 325

6 Related Work

The closest work to GenDeMoG is [20], which presents the PAMOMO tool. PAMOMO
uses patterns on models for defining traces or constraints between Ecore-based models.
PAMOMO only allows for pattern definition, whereas GenDeMoG supports modeling
entire software projects, where the used languages, components, contained artifacts, and
the dependency patterns are provided together. On top of that, we provide experimental
data: we assess the tools performance applying it to a mature system, and analyzing
the data that it can provide. No experimental data on a realistic case study is available
in [20]. It would be interesting to investigate how PAMOMO patterns scale compared
to dependency patterns in our CDM.

Macromodels [29] have been proposed to capture the meaning of relationships be-
tween models. The reference key relationship captured in the dependency graph of Gen-
DeMoG (Fig. 5) could be defined in macromodels as well. Contrary to macromodels,
we do not aim at assigning different types to dependencies. We believe, plain reference
key relations are the most generic dependencies. Therefore, only those should be sup-
ported by a generic tool, such as GenDeMoG.

Similarly to macromodels, GenDeMoG allows to relate models that present different
views of the system to each other. We provide evidence for this in Sect. 4. Both macro-
models and megamodels [27] provide a framework, which allows for manual specifi-
cation of different relations. We provide automatic mining facilities to automatically
reveal dependencies.

The AM3 tool (http://eclipse.org/gmt/am3/, [27]) allows capturing and han-
dling of traceability links between models across languages. A megamodel contains
links between interrelated model elements and models. Our dependency model (Fig. 5)
resembles megamodels in the sense that it is noninvasive: it captures dependency infor-
mation without modifying the artifacts in question. Megamodels have been designed
with DSLs in mind. GenDeMoG strives to support both DSLs and GPLs, recognizing
that a truly heterogeneous system, like OFBiz, contains all kinds of artifacts. Again, we
extend [27], by considering a substantial realistic case study. On the other hand it would
be interesting, to see whether there are any performance gains in integration of AM3
into GenDeMoG.

Mahé [30] uses megamodels in reverse engineering for an existing software system,
TopCased. Unlike, GenDeMoG, which is generic, his tool is geared towards specific
kind of patterns and platforms. Since GenDeMoG is parameterized with models it al-
lows for a more precise and concrete software system definition.

Favre et. al. describe a scenario of reverse engineering a software system written in
C and COBOL [19]. They deploy the Obeo Reverse engineering tool that treats source
code as models. They create a single model for the entire software system. This model
is subsequently transformed, e.g., to a visual representation of the system. The main
commonality between Favre et. al., the Reuseware framework [22], the MoDisco [17]
toolkit, and GenDeMoG is that code artifacts are abstracted to Ecore-based models and
further transformations are applied to these models and not directly to the source code.
Reuseware and MoDisco both provide a meta-model for the Java GPL. We decided
to implement and deploy our own Ecore-based Java model using XText. We did not
reuse MoDisco’s Java model since we are interested in a model per compilation unit

326 R.-H. Pfeiffer and A. Wąsowski

and MoDisco generates one model per project from the abstract syntax tree. Our Java
model is grammar based, i.e., a parser is generated out of a grammar that builds a Java
model independently from the Java abstract syntax tree. We did not chose EMFText’s
Java model [21], since it could not be used to read the OFBiz code base.

GenDeMoG and SmartEMF [23] both abstract XML-based DSLs to Ecore models.
They both use the same case study—the OFBiz project. However, SmartEMF requires
using Prolog to express inter-model dependencies, and it does not handle reference to
GPLs. Also we did not focus on customizations of OFBiz applications, but more on
OFBiz applications seen as component-based systems.

Mélusine [18] is a DSL composition environment, which captures the forward-
development of a software system. In contrast, GenDeMoG is concerned with
existing, perhaps legacy, heterogeneous software systems, where languages are already
inter-related and the hidden dependencies need to be revealed.

7 Conclusion

We have presented GenDeMoG, a generic generator-generator which allows for the non-
invasive description of component-based software systems and patterns which describe
language structures that result in inter-component dependencies. In particular, GenDe-
MoG allows for the definition of dependency patterns between artifacts in a hetero-
geneous system, including dependencies across boundaries between GPLs and DSLs.
GenDeMoG is available online, and as a generic tool, it can be readily instantiated for
other projects.

Furthermore, we have conducted an experiment, applying GenDeMoG to an indus-
trial strength, mature case study, the OFBiz project. We are not aware of any previously
published experiment that characterizes adverse impact of inter-model references on
architecture in systems based on multiple modeling languages. The experiment has con-
firmed the informal impression, that it is difficult to manipulate OFBiz components—
this is likely caused by a quite tight and circular coupling between core application
components. It has also confirmed that a large number of implicit dependencies exist
in the system, even though, the internal component specification mechanism of OFBiz,
does support explicit specification of such. This is an indicator, that, perhaps, expecta-
tions that developers would maintain such dependencies manually are futile.

Acknowledgments. We would like to thank Peter Sestoft for the help on formalizing
GenDeMoG’s architecture description.

References

1. ATL - A Model Transformation Technology (January 2011),
http://www.eclipse.org/atl/

2. AtlantEcore Zoo (January 2011),
http://www.emn.fr/z-info/atlanmod/index.php/Ecore

3. EMFText Concrete Syntax Mapper (January 2011),
http://www.emftext.org/index.php/EMFText

Taming the Confusion of Languages 327

4. Expression Language Documentation (January 2011),
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.
xpand.doc/help/r10_expressions_language.html

5. FreeMarker (January 2011), http://freemarker.org/
6. Groovy - An agile dynamic language for the Java Platform (January 2011),

http://groovy.codehaus.org/
7. JavaServer Pages Overview (January 2011),

http://www.oracle.com/technetwork/java/overview-138580.html
8. Model To Model (M2M) (January 2011), http://www.eclipse.org/m2m/
9. MoDisco (January 2011), http://www.eclipse.org/MoDisco/

10. OFBiz The Apache Open for Business Project (January 2011),
http://ofbiz.apache.org/

11. Package org.eclipse.emf.ecore (January 2011),
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/
org/eclipse/emf/ecore/package-summary.html

12. Xpand (January 2011), http://wiki.eclipse.org/Xpand
13. Xtend documentation (January 2011),

http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.
xpand.doc/help/Xtend_language.html

14. Xtext - Language Development Framework (January 2011),
http://www.eclipse.org/Xtext/

15. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.: Incremen-
tal Evaluation of Model Queries over EMF Models. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 76–90. Springer, Heidelberg (2010)

16. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework. In: Pro-
ceedings of the 16th IEEE International Conference on Automated Software Engineering,
ASE 2001, p. 273. IEEE Computer Society, Washington, DC, USA (2001)

17. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a Generic and Extensible Frame-
work for Model Driven Reverse Engineering. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE 2010, pp. 173–174. ACM, New York
(2010)

18. Estublier, J., Vega, G., Ionita, A.D.: Composing Domain-Specific Languages for Wide-Scope
Software Engineering Applications. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 69–83. Springer, Heidelberg (2005)

19. Favre, J.M., Musset, J.: Rétro-ingénierie dirigée par les métamodèles : Concepts, Outils,
Méthodes (June 2006)

20. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From Theory to Practice.
In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 376–391. Springer, Heidelberg (2010)

21. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between Modelling
and Java. In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp.
374–383. Springer, Heidelberg (2010)

22. Henriksson, J., Johannes, J., Zschaler, S., Aßmann, U.: Reuseware – Adding Modularity to
your Language of Choice. In: Proc. of TOOLS EUROPE 2007: Special Issue of the Journal
of Object Technology (2007)

23. Hessellund, A., Czarnecki, K., Wasowski, A.: Guided Development with Multiple Domain
Specific Languages. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 46–60. Springer, Heidelberg (2007)

24. Howell, R.: Apache OFBiz Development: The Beginner’s Tutorial. Packt Publishing (2008)
25. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program

Generation (1993)

328 R.-H. Pfeiffer and A. Wąsowski

26. Jouault, F., Vanhooff, B., Bruneliere, H., Doux, G., Berbers, Y., Bezivin, J.: Inter-DSL
Coordination Support by Combining Megamodeling and Model Weaving. In: Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC 2010, pp. 2011–2018. ACM,
New York (2010)

27. Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel Specification. In: Gorrieri, R.,
Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer, Heidelberg
(2006)

28. Oei, J.L.H., van Hemmen, L., Falkenberg, E., Brinkkemper, S.: The Meta Model Hierarchy:
A Framework for Information Systems Concepts and Techniques (1992)

29. Salay, R., Mylopoulos, J., Easterbrook, S.: Using Macromodels to Manage Collections of
Related Models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS,
vol. 5565, pp. 141–155. Springer, Heidelberg (2009)

30. Vincent, M., Jouault, F., Bruneliere, H.: Megamodeling Software Platforms: Automated
Discovery of Usable Cartography from Available Metadata

Table-Driven Detection and Resolution of

Operation-Based Merge Conflicts with Mirador

Stephen C. Barrett, Patrice Chalin, and Greg Butler

Concordia University, Montreal, Quebec, Canada
{ste_barr,chalin,gregb}@cs.concordia.ca

Abstract. Decision tables are a useful technique for implementing com-
plex decision logic, and a concise communication device. Model merging
is a process that can greatly benefit from the flexibility of control, rapid-
ity of change, and understandability of purpose that tables engender.

Heretofore, users have been cut off from the inner workings of merge
tools. Among its many features, our model merging tool, Mirador, opens
the process of merging to inspection and manipulation. The tool’s sup-
port for user modification of the decision table rules that drive its conflict
detection and resolution, as well as the possibility of adding customized
table conditions and actions is the focus of this paper.

Keywords: Mirador, model merging, state-based merging, operation-
based merging, decision table, conflict detection, conflict resolution.

1 Introduction

To a great extent, the success of software model-driven engineering (MDE) de-
pends on the exploitation of automation [1], and nowhere is the necessity for
automation more acute than in the case of concurrent development: modeling in
parallel inevitably leads to model divergence and conflicts. Consequently, there
is a great need for further research into, and development of tools that perform
the synchronization and merging of models [2]. Typically merging:

1. requires a great deal of knowledgable human input [3],
2. can quickly overwhelm the user with non-relevant information [3],
3. performs only minimal detection of merge conflicts [4];
4. offers inadequate choices for conflict resolution [5];
5. cannot use semantics for conflict detection or resolution [6]; and
6. exhibits counter-intuitive behavior [3].

We believe that the unique features of our model merging tool Mirador (Sect. 3),
make the following theoretical and practical contributions with regard to the
above issues:

• A hybrid approach to leverage state and operation-based merging (Sect. 3).
• A distinction between direct and indirect merge conflicts (Sect. 4).

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 329–344, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

330 S.C. Barrett, P. Chalin, and G. Butler

• Techniques for visualizing change and conflict dependencies, and breaking
their cycles in order to preserve operation order and merge context for less
cluttered and more intuitive merge sessions (Sect. 5).

• A decision table-driven conflict detection and automatic resolution mecha-
nism that injects semantics into the merge process (Sect. 6).

• The addition of “both” and “rename” options for conflict resolution (Sect. 6).

2 Background

Multiple developers working in parallel inevitably alter the same artifacts, neces-
sitating reconciliation. Under MDE the artifacts to be reconciled are models, and
it is up to model merging tools to bring new versions of these diverging replicas
(i.e., initial copies of a base model) into agreement. If the common ancestor of
two versions to be merged is available, the merge can be three-way, which, since
it addresses the so-called add-delete problem, is used extensively [7].

2.1 Approaches to Merging

If it relies solely on a comparison of the final states of replica-versions, a merge
tool is state-based. The schematic of Fig. 1a depicts the merging of left and right
versions of a common source model after extraction of their differences.

These differences comprise the changes made to the replicas. They are selected
for their contributions to a more complete merge, forming an update set that is
eventually applied to the source version. As many of the changes as possible are
assimilated by the set, with those that induce inconsistencies or conflicts being
omitted. For these, special algorithms may be invoked to remove the merge
errors, but, more usually, the user is asked to do so. State-based merging is in
general easier to implement, and does not require change operation recording.

Rather than having to reconstruct its updates from artifact difference as a
state-based tool must do, a history, or operation-based, tool has access to the
historical traces of change operations executed in modifying the replica-versions
to be merged. The operations are of a finer grain than those produced by a
straightforward “diff” of artifact states.

Source

Merged version

Left
version

Right
version

> �
•
•
•
< �

� >
•
•
•

 � <

diff

Select and order differ-
ences to avoid conflict.

Source

Left
version

Right
version

Run trace against
source to create
merged version.

Add

Change

Delete

Add

Add

Delete

Merged
operational

trace
a) b)

Fig. 1. State and operation-based, three-way merges

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 331

The operations from two sequences of model changes are being intertwined in
Fig. 1b to create a merged operational trace. To avoid merge errors, operations
may be included or omitted, kept in order, reordered, or interleaved. The result-
ing merged trace is then run against the common source to generate the merged
version of the inputs. Operation-based merging makes context available to the
process, but requires tight coupling with a change recording unit.

2.2 The Merge as a Transformation

Each change applied to a given model can be thought of as a function, or an
operation, on that model that yields a new model. Or, alternately, as a trans-
formation that takes the model and transforms it into another version of itself.
A sequence of such operations then, may be functionally composed into a single
transformation T . Applying T to some initial model MI conforming to some
metamodel MMI will then produce a final model MF conforming to some meta-
model MMF : TMI = (T1 ◦ . . . ◦ Tn−1 ◦ Tn)MI = MF ,

where Ti is one in a sequence of subtransformations of T .
An operation-based merge then, can be thought of as a particular path traced

out on a grid of subtransformations of the left and right models [8]. The paths of
this transformation grid that result in a consistent model are known as weaves.
A path with an operation whose preconditions cannot be met suffers from an
inconsistency and will fail. Weaves that terminate at the same node, but produce
different outcomes are in conflict.

A node that hosts the same model for every one of its weaves is conflict-free
and said to be single-valued. On the other hand, a node that hosts more than one
model is in conflict and said to be multiple-valued. The first conflict encountered
will lay out a border of multiple-valued nodes across the transformation grid
called the frontier set [8]. It is the boundary at which operation-based merging
can no longer effortlessly acquire conflict-free subtransformations.

It is often possible to re-route around inconsistencies. Conflicts however, being
semantic in nature, must be resolved by: arbitrarily picking one change over the
other, employing heuristics, or appealing to the user. The further the frontier set
can be pushed out from the origin, the later such merge decisions can be made,
and the more context there will be to make them.

Contradictory operations are at the root of conflicts, and are manifest as non-
commutative operations. If subtransformations T1 and T2 commute globally, i.e.,
T1 ◦ T2 = T2 ◦ T1, or locally when operating on a removed section S, i.e., (T1

◦ T2)S = (T2 ◦ T1)S, then the operations will not conflict. Checking operation
commutativity then, is an appropriate way of detecting merge conflicts [9].

3 Merge Workflow in Mirador

Mirador is a stand-alone Java application being developed at Concordia Uni-
versity for the merging of software models. The tool takes a hybrid tack to the

332 S.C. Barrett, P. Chalin, and G. Butler

problem of merging, using state-based techniques in the front part of its work-
flow, and transitions to operation-based activities for the back part. It is these
later phases that concern us most, but all will be described briefly.
Model Normalization and Denormalization. The first thing Mirador does is to
decouple itself from the originating modeling tool or change recording unit [10].
It does this by converting all input models to a state-based, normal-form, which
currently is Ecore. A denormalizing phase performs the reverse conversion on
the merged outcome of the workflow.
Model Differencing. Next, a differencing calculation determines how each replica-
version differs from its base model, identifying what elements have changed, and
in what way. One difference is obtained between the base model and its left
version, and another between the base and its right version. This is in prepa-
ration for transitioning back to operation-based activity, and is in contrast to
the classic state-based approach, which performs a difference between the two
replica-versions.

To make differences first class artifacts, we extend Ecore with the difference
metamodel (MMD) of Cicchetti et al. [11], with two minor modifications. From
each ENamedElement class of Ecore an Altered (instead of Changed), Added,
and Deleted class are derived. Thus class EClass becomes the supertype for
MMD classes AlteredEClass, DeletedEClass and AddedEClass. We also add
a copy constructor to the Altered classes to ease building the difference model.
Model Comparison. A state-based comparison of the models to be merged is then
made, the intent being to establish correspondence between their elements [12].
Identifiers can only partially determined this, as elements added separately to the
versions will not possess comparable IDs. Some other model element matching
strategy must be used. Mirador supports up to seven such strategies—including
two user-defined ones—which may be selectively loaded at start-up time [13].
Operation Extraction. To bridge from state-based to operation-based work re-
quires knowing what change operations were executed in modifying the replicas.
Unfortunately, this information is obliterated by the merger’s state-based front
end, and must be reconstructed.

The difference metamodel makes this a fairly straightforward process. Each
Added or Deleted element in a difference model results in an add or a delete
operation, respectively. The Altered elements however, require a comparison of
the updated element with its original in order to see exactly how they differ, and
then the creation of an alter operation for each difference noted.
Conflict Detection. The order of element changes, and the conflicts between
them are identified with the before(a, b) predicate where operation a must come
before operation b. A conflict exists if before(a, b) = before(b, a) = true.

A two part decision table is used to determine the predicate outcome. First,
changes to the same model (same-side changes) are tested only for ordering, as
changes derived from model state cannot be in conflict. Then changes to opposite
models (cross-side changes) are tested for ordering and conflicts. This applica-
tion of before produces a partially ordered collection of individual and conflicting
pairs of changes—a merged trace, or transformation, of change operations.

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 333

Any freedom in the ordering is exploited to move conflicts as close to the end
of the transformation as permitted by the inter-dependencies. Syntactic conflicts
that consist of operations that are not actually in contradiction (e.g., deletes of
the same model element) are filtered out by rules of the cross-side decision table.
This is a form of semantic conflict detection [9], because it considers both the
meaning of an update, and the effect the update will have on the targeted item.

Conflict Resolution and Merging. This phase uses another decision table to at-
tempt to resolve any conflicts contained in the trace of change operation received
from the preceding phase. All changes and conflicts, whether resolved or not, are
presented to the user in the form of a merge plan—a visualization of the merged
model transformation, the recommendations of which the user is free to change.

The plan is an ordered list, so application of its changes to the base model
is progressive, and therefore, intuitive. Also, since conflicts have been placed
as far down the list as dependencies allow, any manual resolution occurs in the
context of the most complete merge attainable given the conflicts. Finally, unlike
other tools, which always treat conflicting changes as being mutually exclusive,
Mirador can recommend—if the semantics of its updates warrant it—that both
sides of a conflict be executed.

Model Patching. Applying a change of the merge plan effectively transforms,
or patches, a copy of the base model with the change. The changes must be
executed sequentially, but can be applied individually or en masse. Applying the
entire plan will patch the base model up to the first unresolved conflict, skipping
over any rejected changes. Application will also halt on an inconsistency error,
which can occur if a change’s precondition is among the rejected changes. Each
application updates a view of the merged model.

4 Conflicts and the Change Plane

In Figure 2 we orient the transformation grid of [8] to resemble the classic merge
diamond, with nodes representing models, and edges primitive change opera-
tions, or subtransformations. The changes along the axes comprise transforma-
tions TL and TR, which transform the base model MB into left and right versions
of itself. To follow a path from MB to another node is to execute the sequence
of changes that lie on the path, transforming MB at each step. Hence, each
node hosts a set of models produced by all the paths that reach it. We term
this surface of subtransformations and potential models, the change plane. The
populated plane of Fig. 2 will serve as a running example for the paper.

The essence of merging is to blend the subtransformations of the change plane
into a single transformation incorporating as many changes from both sides as
possible, which when applied to MB yield a consistent model. Absent any con-
flicts, TL and TR may simply be combined in whole. Otherwise a final transfor-
mation must be cobbled together subtransformation by subtransformation, with
moving forward over an edge being to accept the change the edge represents,
and not traversing an edge being to reject its change.

334 S.C. Barrett, P. Chalin, and G. Butler

L3 delete "to_add" in C3

R5 delete datatype URL

L2 add class C1

R3 add class C1

R1 alter "script" type

Le
ft

R
ig

ht

L4 delete "add" in C3

single-valued
multiple-valued, direct
multiple-valued, indirect

L 5

L 4

L 3

L 2

L 1
R
1

R
2

R
3

R
4

R
5

TL TR

MB

ML MR

MF

R4 alter C3 subclasses C1

L5 alter "sz" to "size"

L1 alter C3 subclasses C2

R2 alter "sz" lower bound

Fig. 2. Change plane overlaid with subtransformations of left and right replica-versions

Nodes marked by solid black dots are single-valued—the same model is pro-
duced by whatever path is followed to reach them (disallowing backward travel)—
and are without conflict. The rest are multiple-valued, and in conflict. But not
all conflicts are created equal, prompting us to make a distinction between direct
and indirect multiple-valued types.

If the subtransformations that terminate at a node do not commute, we say
that their operations are in direct conflict. Suppose model matching determines
that changes L2 and R3 create the same element. If the added classes are not
identical, the operations will not commute and will be in direct conflict. Then,
L3 and R3, which do commute, will conflict, because the “upstream” L2, R3 pair
cause node L3, R3 to host two models, making it (indirectly) multiple-valued.

In fact, every node reached by a path that passes through a direct conflict
node will suffer from its conflict. This spillover is what produces the frontier set:
the upper tier of multiple-valued nodes running across the plane. A direct conflict
is analogous to that of the keystone in an arch: pull the keystone, and the other
stones fall; resolve a direct conflict, and its indirect ones vanish. This analogy
tells us that instead of 14 conflicts, we need only resolve the 2 key conflicts.

5 Conflict Matrix and Change Partitioning

The change plane uncovers conflicts, but not the dependencies needed to order
change operations. That is the purpose of the techniques of this section. Un-
avoidably, references are made to decision table concepts and specifics not to be
introduced until the next section. We ask the reader’s indulgence.

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 335

5.1 Visualizing Relations with the Conflict Matrix

A tabular layout of the relations between change operations is helpful for deter-
mining execution order. Applying before to the changes of the running example
in Fig. 3 yields the accompanying conflict matrix. Where a < or ∧ points to
which of a cell’s operations is to receive positional preference. Going against the
wedge, the third row reads, “L3 is preferred to L4,” as does going down the third
column. The notation makes the symmetry along the diagonal of the matrix ev-
ident. A careful comparison will reveal that the conflicts of the matrix (marked
by ‘×’) coincide with the direct conflicts of the change plane.

L1 L2 L3 L4 L5 R1 R2 R3

L1

L2

L3

L4

<

<

L5

R1

R2

R3

Le
ft

R
ig

ht

×

L2 add class C1

L5 alter "sz" to "size"

L1 alter C3 subclasses C2

R5 delete datatype URL

R3 add class C1

R1 alter "script" type

R4 alter C3 subclasses C1

×
R2 alter "sz" lower bound

L4 delete "add()" in C3

L3 delete "to_add" in C3

R4 R5

R4

R5

×
×

<

<

<

<

Fig. 3. Conflict matrix after application of before predicate to all element pairs

Quadrants II and IV depict same-side changes, and quadrants I and III, cross-
side ones. Change L3 deletes the parameter to_add from operation add(), which
is in turn deleted by L4. Because the parameter is contained by the operation,
this delete-delete pair matches rule 3 of Table 1. The rule stipulates that the
inner delete operation (L3) must be done before the outer one (L4).

Since same-side changes cannot be in conflict, there is no ambiguity over what
before means in quadrants II and IV: an operation must come before another if
it satisfies a precondition (e.g., executing L4 first would cause L3 to fail for lack
of a target). If no decision table rules are asserted for a change pair, there are
no preconditions to satisfy, and the operations may be performed in any order.

Across models the meaning is not so clear. For instance, changes L1 and R4

attempt to give class C3 different superclasses. Assuming single inheritance, the
operations clash. But there is no a priori reason for L1 to come before R4, or R4

before L1. Still, to flag a conflict, both must assert a preference. The answer is
to write the cross-side rules of before to take a selfish “me first” (or “last” in the
case of an overwrite) attitude. In this case, rule 7 of Table 2 claims priority for
L1 in one direction, and for R4 in the other direction, flagging a conflict.

Changes L2 and R3 conflict by rule 1, because the added classes are deemed to
be the same model element (albeit with different IDs). If no conflict were raised,
the model would end up with two classes of the same name. This duplicate

336 S.C. Barrett, P. Chalin, and G. Butler

element problem is a common occurrence among tools that rely solely on IDs
for matching. Rule 7 also finds L5 and R2 to be in conflict for altering the same
element, but rule 4 of Table 3 discovers that they alter different properties, and
therefore causes both changes of the conflict to be executed.

5.2 Breaking Cycles with Conflict Partitioning

The dependencies uncovered during conflict detection (e.g., Fig. 4a) can make
determining the execution order of change operations difficult, or if cycles are
involved, impossible. To remedy this, conflict partitioning gathers conflicting
changes into collectively exhaustive and mutually exclusive blocks.

This is easily accomplished by: 1) putting each pair of conflicting opera-
tions into a block with a double-headed arrow between them, 2) putting non-
conflicting operations into their own block, and 3) adding single-headed arrows
between blocks to reflect the ordering of the changes they contain as dictated
by the conflict matrix. This procedure produces the partitioning of Fig. 4b.

R3

L3 L4a) b)

L5R1 R5

L3 L4 R4 L1

L2 L5R1 R5

L1 R4

L2 R3

Fig. 4. a) Change dependencies, b) partitioned into mutually exclusive conflict blocks

Dependency cycles like in Fig. 5a require additional steps. Partitioning by
conflict produces the blocks of Fig. 5b. The arrows signify that the upper conflict
blocks are dependent on the bottom conflict—they require either L2 or R2 as
a target for their operations. The transitive R1–R3–R2 relation now makes the
L1–L2 relation superfluous, so it may be discarded.

L2

L1 R1

R3

b) c) d)

L1 R1 L1 R1 L1 R1

L2 R3

L2 R2

L2

R3

R2

L2

R2

R3

a) R2

Fig. 5. a) Original change dependencies, b) non-exclusive conflicts, c) exclusive con-
flicts using a composite block, d) with conflicts collapsed

Though exhaustive, this partitioning is not mutually exclusive (L2 is in two
blocks). Putting the changes of the troubled blocks into a single composite block,
as in Fig. 5c, fixes the non-exclusivity at the expense of reconstructing the cycle.
It is broken by collapsing the conflicts between individual operations into a single

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 337

conflict between dependency chains. In Fig. 5d the chain of R3–R2 is treated as a
single operation. Collapsing conflicts lowers merge complexity at a slight loss in
resolution choices—the closed nature of dependency chains precludes selecting
certain combinations of operations. Usually however, the choices lost are illegal
(e.g., accepting L2 over R3, and R2 over L2), and will not be missed.

6 Mirador Decision Tables

Decision tables provide an overview of control flow that is easy to comprehend,
making for flexible and rapid program changes [14]. In Mirador, tables direct
conflict detection (i.e., before predicate evaluation) and resolution. Three user
levels are supported: the turnkey user who relies on the built-in tables; the
motivated user who tweaks table rules; and the practitioner of “domain specific
merging” who replaces the tables entirely with their own set.

6.1 Table Specification

Rather than use its built-in tables, Mirador can load tables from user-specified
files. One such file is shown in Table 1. The main components are: conditions,
actions, and rules. The names of the [Conditions] section correspond to func-
tions to be evaluated, and those of the [Actions] section to procedures to be
executed. [Table] simply provides a name and delimits tables in the same file.

Each column of desired condition outcomes forms a rule. Rules are evaluated
from left to right, and condition results from top to bottom. Evaluation ends
when a pattern is matched, or the rules have been exhausted. Conditions con-
stitute the table’s domain, restricting these to predicates gives a value range of
true (‘Y’), false (‘N’), or don’t care (‘-’). This is a limited-entry type table, so
the rule mask technique may be used for pattern matching [15].

A rule selects a condition for testing by placing a ‘Y’ or an ‘N’ opposite the
condition’s name. Conditions with a ‘-’ are ignored. To satisfy a rule, all of its
tested conditions must return the expected value. Once satisfied, a rule fires,
executing the procedures of the [Actions] section directly beneath the rule, in
numerical order. Actions not to be executed are marked with a ‘0’.

6.2 Conflict Detection and the before Predicate

To test change commutativity Lippe and van Oosterom define a before predi-
cate [8]. Applied to two changes, the test imposes an ordering if one operation
must come before the other. While adequate in preventing inconsistencies be-
tween operations on the same replica, before is lacking when it comes to working
across replicas. This is because it is often the second operation of an pair that
has the last word, so to speak, on the outcome. For example, if two changes re-
name the same (i.e., matched) attribute, the second change will prevail, making
perhaps an after predicate more appropriate.

Rather than add a new predicate, we choose to keep the original one, but
extend its semantics somewhat. Instead of implying precedence, we interpret

338 S.C. Barrett, P. Chalin, and G. Butler

before to mean that an operation has a preferred position with respect to another
operation, or that it has a contrary purpose. This interpretation avoids same-side
inconsistencies, but also raises cross-side conflicts when appropriate.

Table 1 is used by Mirador to test same-side changes for ordering. All pairings
of same-side operations, except the mirror pairs, are evaluated against this table’s

Table 1. Decision table for evaluating the before predicate of same-side model changes

[Table]
before_same // Evaluates before(op1, op2) for same side change operations.

// +-------------- Element is added to a container that itself is added.
// | +----------- Added class element is target of an added reference.
// | | +-------- Element is deleted from a container that is deleted.
// | | | +----- Altered class subtypes added class.
// | | | | +-- Catch-all rule, invokes linked decision table.
// | | | | |

[Conditions] // Rule# 1 2 3 4 5
on_same_side - - - - N
op1_is_add Y Y - Y -
op1_is_delete - - Y - -
op1_is_alter - - - - -
op1_is_class - Y - Y -
op2_is_add Y Y - - -
op2_is_delete - - Y - -
op2_is_alter - - - Y -
op2_is_reference - Y - - -
op2_is_class - - - Y -
op1_contains_op2 Y - - - -
op2_contains_op1 - - Y - -
op2_is_ref_to_op1 - Y - - -
op2_subclasses_op1 - - - Y -
aux_match - - - - Y // Invokes auxiliary table, before cross.

[Actions]
do_true 1 1 1 1 1 // Put op1 before op2.

Table 2. Decision table for evaluating the before predicate of cross-side model changes

[Table]
before_cross // Evaluates before(op1, op2) for cross side change operations.

[Conditions] // Rule# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
elements_match Y Y Y Y N N Y Y Y - - - - - - - - Y N -
op1_is_add Y Y - Y - - - Y N - Y Y - - - - Y - Y -
op1_is_delete - - Y - Y - - - N Y - - Y Y - Y - Y - -
op1_is_alter - - - - - Y Y - N - - - - - Y - - - - -
op1_is_class - - - - - - - - - - - - - - - Y - - - -
op1_is_reference - - - - - - - - - - - - - - - - Y - Y -
op1_updates_match - - - - - Y - - - - - - - - - - - - - -
op2_is_add Y - Y - - - - N Y Y - Y - - - Y - - Y -
op2_is_delete - Y - - - Y - N - - Y - Y - Y - Y Y - -
op2_is_alter - - - Y Y - Y N - - - - - Y - - - - - -
op2_is_class - - - - - - - - - - - - - - - - Y - - -
op2_is_reference - - - - - - - - - - - - - - - Y - - Y -
op2_updates_match - - - - Y - - - - - - - - - - - - - - -
op1_contains_op2 - - - - - - - - - Y - Y Y Y - - - - - -
op2_contains_op1 - - - - - - - - - - Y - - - Y - - - - -
op1_is_ref_to_op2 - - - - - - - - - - - - - - - - Y - - -
op2_is_ref_to_op1 - - - - - - - - - - - - - - - Y - - - -
names_are_same - - - - - - - - - - - - - - - - - - Y -
containers_match Y - - - - - - - - - - - - - - - - - Y -

[Actions]
do_true 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
do_false 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 339

rules. If a pair of operations happen to satisfy a rule, the sole action, do_true
will return a true value indicating that op1 claims positional preference over op2.

Rule 1 ensures that op1 will be executed before op2 and prevent an inconsis-
tency, if the element added by the first change contains the element added by
the second. Similarly, rule 2 fires if the class being added by op1 is a target of the
reference added by op2. Rule 3 is effectively the reverse of rule 1: op1 is before
op2 if both targets are being deleted and the first’s target is contained by the
second’s. Rule 4 was added to handle the subclassing of a newly added class, as
in the running example. Note that there is no need to test on_same_side for
these rules, because it is implied by the nature of the tested conditions.

As the right-most rule is the last one tested, it can be used as a default,
or catch-all. Thus, all cross-side operation pairs will fire rule 5, and execute
condition aux_match, which is not a condition at all, but a jump to an auxiliary
table containing the cross-side rules (Table 2). This table chaining makes it
possible to modularize the tables, and can be extended to any depth.

6.3 Conflict Resolution

Once the change operations have been extracted from the difference models and
arranged into a single trace, the models are essentially merged. All that remains
is to resolve their key conflicts. The rules for doing this are found in Table 3.

The add C1 conflict (L2, R3) of Fig 3 is resolved by rule 2, which finds through
the updates_are_equal condition that all properties of the added elements are
equivalent, so which change to execute is arbitrary—the settable do_master
action makes the choice. There is no rule to handle the alter C3 conflict (L1, R4),
so it matches the catch-all rule 6 which returns false, signifying that a user
decision is required. Rule 1, though not invoked by the example, is interesting:
it will first rename the elements involved in a name clash of non-overlapping

Table 3. Decision table for resolving cross-side model conflicts

[Table]
resolve // Executes resolve(conflict_block)

[Conditions] // Rule# 1 2 3 4 5 6
conflict_is_simple Y Y Y Y Y -
conflicts_match N - - - - -
left_is_add Y Y - - - -
left_is_delete - - Y - - -
left_is_alter - - - Y Y -
right_is_add Y Y - - - -
right_is_delete - - Y - - -
right_is_alter - - - Y Y -
updates_are_equal - Y - - Y -
update_same_property - - - N - -
conflict_with_name Y - - - - -

[Actions]
do_rename 1 0 0 0 0 0 // Rename conflicting objects
do_master 0 1 1 0 1 0 // Execute master side change
do_left 2 0 0 1 0 0 // Execute left side change
do_right 3 0 0 2 0 0 // Execute right side change
do_false 0 0 0 0 0 1 // Signify conflict is unresolved

340 S.C. Barrett, P. Chalin, and G. Butler

changes before executing both changes. This is appropriate when two references
of a class have the same role name, but target different classes.

After auto-resolution Mirador rearranges the change trace to, in effect, push
out the frontier set. Then a merge plan like that of Fig. 6 is presented to the user
for final approval. From here it is possible to modify automatic merge actions,
execute all resolved changes, observe their effects on the merge (not shown), and
resolve conflicts in the context of an almost fully merged model. Choices are
made by highlighting a conflict, and pressing the “Left” or “Right” button. The
user may also “Accept” or “Reject” individual changes. “Apply” will execute all
changes up to and including the highlighted one. Execution stops if either an
unresolved conflict or an error is encountered.

Fig. 6. Change operations in a merge plan after partitioning and auto-resolution

The presentation is primitive, but the merged operational trace of the running
example (prior to change application) can be discerned in the figure: the deletion
of to_add (L3) occurs before deletion of its method add (L4); the alteration of
class C3 (R4) is placed after the creation of class C1 (R3) on which it depends,
dragging its conflicting change (L1) with it. Three conflicts can be seen at the
bottom of the plan. The first (L2, R3), since its changes accomplish the same
thing, has been arbitrarily resolved to the left. The changes of the second (L5,
R2) alter the same element, but in a non-conflicting way, so both are selected
for execution. And the third (L1, R4) is still conflicted over which should be the
supertype of class C3—C2 or C1.

The middle column of symbols indicate the current status of the changes:
Single and conflicting changes

< (>) - execute left (right) change
<< (>>) - left (right) change executed

! - error executing change
Single changes only

X - change rejected
Conflicting changes only

< > - execute both changes
<< >> - both changes executed

X - unresolved conflict

Through use of a configuration file, merges may be done without any inter-
action, save pressing the “Finish” button. This will match the elements, auto-
resolve conflicts, order changes, and apply non-conflicting changes to the base
model. The tool may also be run from the command line, sans GUI, to support
what Bendix et al. refer to as batch merging [16].

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 341

6.4 Customizing Rules, Conditions, and Actions

Making decision table definitions accessible opens Mirador’s conflict handling to
modification through rule changes. It is also possible to add new table conditions
or actions. The former takes adding a new TableCondition object in which
the testCondition() method is overridden, while the latter involves a new
TableAction that overrides doAction(). The objects must then be registered
with the appropriate decision table, and provided with labels to identify them
to the parser. Below are code fragments to illustrate both customizations.

/** Decision condition to test for changes on same side of merge. */
public TableCondition on_same_side_ =

new TableCondition("on_same_side", new ConditionTest() {
@Override public boolean testCondition(Object... objs) {
return ((AtomicChangeOp) objs[0]).getMergeSide()

== ((AtomicChangeOp) objs[1]).getMergeSide();
}

});

/** Decision action simply sets return code of result object to true. */
public TableAction do_true_ = new TableAction("do_true") {

@Override public boolean doAction(ActionSet steps, Object... objs) {
steps.setMergeSide(MergeSide.BASE);
steps.setResult(Tristate.TRUE);
return true;

}
};

7 Related Work

State-based merging relies on static models, and is exemplified by Unison [4] and
Rational Rose, where operation-based tools like IceCube [17] analyze dynamic
traces of replica changes. Renewed interest in operation-based merging is typ-
ified by Koegel et al. [18], and Schmidt et al. who argue for transaction based
merging [19].

Lippe and van Oosterom put forth operation-based merging as a means for
managing changes to object-oriented databases [8]. They described a merge as a
weave of primitives in a transformation grid with two types of nodes, related op-
eration commutation to conflict detection, and proposed three merge algorithms
that hinged on the use of a before predicate. In Mirador we have reorient their
grid, and add another dimension for matching strategies. We make a distinction
between direct and indirect multiple-valued nodes, with the former identifying
key conflicts. We also clarify the definition of before so as not to miss conflicts.

Lippe and van Oosterom did not concern themselves with model element
matching, and others like Pottinger and Bernstein take it as a given [20]. But
properly matching elements is vital to successful merging. Many tools like Ra-
tional Software Architect insist on unique element identifiers [3]. More flexible
ideas are offered by Xing and Stroulia who heuristically measure name and
structural similarity for matching [5], or Kolovos who furnishes a general com-
parison language [21] for which Mirador has a specialized evaluator. SiDiff, a
similarity-based differencing engine described by Schmidt and Gloetzner [22],

342 S.C. Barrett, P. Chalin, and G. Butler

offers a framework for building comparison tools, which, like Mirador, can use
multiple strategies to compare models, but only one per type.

Another framework Kompose, consists of a metamodel specific matching por-
tion, and a generic merging potion [23]. The merge operation is state-based, and
has little overlap with our work. Its conflicts must be explicitly resolved by the
user, where Mirador can recognize and resolve conflicts. The matching operation,
which relies on specialized signatures of element type and equality tests, has the
potential to use different matching strategies, but only one per type, whereas we
support up to seven. Kompose makes the common assumption that its way of
matching is the only way, and as with most tools, cannot be overridden.

8 Conclusion and Future Work

This paper has presented an abbreviated overview of the Mirador model merging
tool’s workflow. Its hybrid nature, reliance on a difference metamodel, and use
of multiple matching strategies were touched upon. Details of its decision table
mechanism with respect to conflict detection and resolution were provided, and
illustrated with a running example. Explanations of its use of several conceptual
devices—change plane, conflict matrix, and conflict partition—were also given.

Our work mitigates the merging difficulties enumerated in the introduction
(issue number in parenthesis). The necessity for large amounts of human in-
put (1) stems from the tool asking the user to step in whenever difficulty is
encountered, which can inundate the user with irrelevant details (2). Mirador:

• Resolves many conflicts. The ability to rapidly enhance decision tables with
rules, and, if need be, new conditions and actions increases this potential.

• Reduces the number of conflicts through recognition of key conflicts, and the
collapsing of conflicts in cycles.

• Orders changes to make context available and merging more intuitive.

Poor element matching can lead to surprising merge outcomes (6), and inappro-
priate matches result in missed or false conflicts (3). Mirador:

• Opens element matching up for user inspection and manipulation.
• Employs up to seven matching strategies, in order to make the best pairings.
• Allows customized scripts and similarity evaluators to improve matching.

Because semantics are not taken into account (5), a tool may miss more involved
conflicts or raise false ones. The same deficiency also precludes their automatic
resolution, which in the case of a false conflict, may mean executing both changes,
a choice most tools do not provide (4). Mirador:

• Detects and resolves conflicts through decision tables, which can take se-
mantics into account, and are amenable to modification.

• Uses semantics to filter out syntactic pseudo conflicts.
• Automatically resolves five classes of conflicts.

Table-Driven Detection and Resolution of Operation-Based Merge Conflicts 343

• Adds “both” and “rename” to the normal conflict resolution options of “left,”
“right,” “accept” and “reject.”

Work remains to be done on Mirador: normalization only supports Ecore and
Fujaba models; the change application panel is crude, and batch mode reports
rudimentary; the decision tables are still being refined with new rules, conditions,
and actions as situations are discovered; and the sometimes subtle interaction
of rules points to a need for tool support, or the use of a rule engine like the
Epsilon Merging Language [24]. Replacement of the Ecore based normal-form by
UML2 [25] will allow Mirador to merge model types other than class diagrams.

References

1. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

2. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE
Comput. 39(2), 25–31 (2006)

3. Barrett, S., Chalin, P., Butler, G.: Model merging falls short of software engineering
needs. In: MoDSE 2008: Internat. Workshop on Model-Driven Software Evolution
(April 2008)

4. Pierce, B.C., Vouillon, J.: What’s in Unison? A formal specification and reference
implementation of a file synchronizer. Technical Report MS-CIS-03-36, University
of Pennsylvania, Philadelphia, PA, USA (February 2004),
http://www.cis.upenn.edu/~bcpierce/papers/unisonspec.pdf

5. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differ-
encing. In: ASE 2005: 20th IEEE/ACM Internat. Conf. on Automated Software
Engineering, pp. 54–65. ACM, New York (November 2005)

6. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing model conflicts in dis-
tributed development. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg (2008)

7. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. on Softw.
Eng. 28(5), 449–462 (2002)

8. Lippe, E., van Oosterom, N.: Operation-based merging. ACM SIGSOFT Softw.
Eng. Notes 17(5), 78–87 (1992)

9. Saito, Y., Shapiro, M.: Replication: Optimistic approaches. Technical Report HPL-
2002-33, Hewlett-Packard Laboratories (March 2002),
http://www.hpl.hp.com/techreports/2002/HPL-2002-33.pdf

10. Barrett, S., Chalin, P., Butler, G.: Decoupling operation-based merging from model
change recording. In: ME 2010: Internat. Workshop on Models and Evolution
(October 2010)

11. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: A metamodel independent approach
to difference representation. Journal of Object Technology 6(9), 165–185 (2007),
http://www.jot.fm/contents/issue_2007_10/paper9.html

12. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference computation of large mod-
els. In: ESEC-FSE 2007: 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 295–304. ACM, New York (September 2007)

344 S.C. Barrett, P. Chalin, and G. Butler

13. Barrett, S., Butler, G., Chalin, P.: Mirador: a synthesis of model matching strate-
gies. In: IWMCP 2010: Internat. Workshop on Model Comparison in Practice (July
2010)

14. Pooch, U.W.: Translation of decision tables. ACM Comput. Surv. 6(2), 125–151
(1974)

15. King, P.J.H.: Conversion of decision tables to computer programs by rule mask
techniques. Commun. ACM 9(11), 796–801 (1966)

16. Bendix, L., Koegel, M., Martin, A.: The case for batch merge of models issues and
challenges. In: ME 2010: Internat. Workshop on Models and Evolution (October
2010)

17. Kermarrec, A.M., Rowstron, A., Shapiro, M., Druschel, P.: The IceCube approach
to the reconciliation of divergent replicas. In: PODC 2001: 20th Annual ACM
Sympos. on Principles of Distributed Computing, pp. 210–218. ACM, New York
(August 2001)

18. Koegel, M., Helming, J., Seyboth, S.: Operation-based conflict detection and res-
olution. In: CVSM 2009: Workshop on Comparison and Versioning of Software
Models, pp. 43–48. IEEE Computer Society, Los Alamitos (2009)

19. Schmidt, M., Wenzel, S., Kehrer, T., Kelter, U.: History-based merging of models.
In: CVSM 2009: Internat. Workshop on Comparison and Versioning of Software
Models, pp. 13–18. IEEE Computer Society, Los Alamitos (May 2009)

20. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences.
In: VLDB 2003: 29th Internat. Conf. on Very Large Data Bases, VLDB Endow-
ment, pp. 862–873 (September 2003)

21. Kolovos, D.S.: Establishing correspondences between models with the epsilon com-
parison language. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 146–157. Springer, Heidelberg (2009)

22. Schmidt, M., Gloetzner, T.: Constructing difference tools for models using the
SiDiff framework. In: ICSE 2008: Companion of the 30th Internat. Conf. on Soft-
ware Engineering, pp. 947–948. ACM, New York (May 2008)

23. Fleurey, F., Baudry, B., France, R., Ghosh, S.: A generic approach for
automatic model composition. In: MoDELS 2007: 11th Internat. Workshop
on Aspect-Oriented Modeling, Berlin, Germany, pp. 7–15. Springer, Heidelberg
(September 2007)

24. Kolovos, D.S., Rose, L., Paige, R.F., Polack, F.A.: The Epsilon Book. Website of
the Epsilon subproject of the Eclipse GMT project (2010),
http://www.eclipse.org/gmt/epsilon/doc/book

25. UML2. Website of the UML2 subproject of the Eclipse MDT project (May 2010),
http://www.fujaba.de/home.html

Improving Naming and Grouping in UML

Antonio Vallecillo

GISUM/Atenea Research Group, Universidad de Málaga, Spain
av@lcc.uma.es

Abstract. The package is one of the basic UML concepts. It is used both to
group model elements and to provide a namescope for its members. However,
combining these two tasks into a single UML concept can become not only too
restrictive but also a source of subtle problems. This paper presents some im-
provements to the current UML naming and grouping schemata, using the ideas
proposed in the reference model of Open Distributed Processing (ODP). The ex-
tensions try to maintain backwards compatibility with the existing UML con-
cepts, while allowing more flexible grouping and naming mechanisms.

1 Introduction

The UML [1] is probably the most widely used modeling notation nowadays. It is
currently applied for the specification of many different kinds of systems and is sup-
ported by a wide range of tools. However, UML is far from being a perfect nota-
tion. It has grown too much to accommodate too many concepts and languages. The
need for backwards compatibility with previous versions, and the OMG’s design-by-
committee approach to standardization have not helped much either. This has resulted
in a large, complex and brittle metamodel for UML, which represents a challenge for all
its stakeholders—in particular for its users and for the UML tool builders. More impor-
tantly, some of its basic concepts were probably developed with some restricted usages
in mind. The problem is that they are now challenged by the new MDE requirements,
which are stretching these concepts beyond their original intent.

In this paper we are concerned with the limitations of one of the basic UML con-
cepts, the Package, which is used in UML to group model elements and to provide a
namescope for its members. Although combining these two goals into a single UML
concept can be appropriate in some cases, in general its proves to be too restrictive for
organizing model elements in a flexible way because it ties elements with names, and
names with packages. Thus, the UML grouping mechanism only allows non-overlapping
classifications of model elements, and there is no easy way to implement federated mod-
eling [2]. Furthermore, the two operations associated to these objectives (PackageMerge
and PackageImport) become jeopardized by the limitations of UML packaging. For
instance, name resolution does not work well under the presence of PackageImport,
something critical in the case of OCL expressions and constraints [3]. Several semantic
problems have also been reported for PackageMerge in [4,5].

This paper proposes some improvements of the current UML naming and grouping
mechanisms, trying to respect backwards compatibility with the existing concepts. Im-
port and merge operations will also be re-defined using the new concepts presented in

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 345–360, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

346 A. Vallecillo

this paper. Our proposal is based on existing international standards of Open Distributed
Processing (ODP) [6,7]. ODP offers a set of mature and well-defined concepts and so-
lutions for coping with the inherent complexity of the specification of large distributed
applications. In particular, we base our proposal on the ODP Naming standard [8], and
on the organizational concepts defined in the ODP foundations [6, Part 2].

The structure of this paper is as follows. After this introduction, section 2 provides
a summary of the Package element and the import and merge relationships defined in
UML 2. Section 3 presents the problems that we have detected with them. Section 4
introduces our proposal and the concepts and mechanisms that we have defined to ad-
dress these problems. Then, section 5 discusses how our proposal can extend the current
UML notation. Finally, section 6 compares our work with other related proposals, and
section 7 draws some conclusions.

2 The UML Package and Its Related Operations

The package is the mechanism available in UML for grouping modeling elements (in-
cluding other packages) and it also provides a namespace for its members. A namespace
is an element in a UML model that contains a set of elements that can be identified by
name [1, clause 7.3.34]. The namespace is a named element itself. A package owns its
members, with the implication that if a package is removed from a model, so are the
elements owned by the package.

There are two package operations related to grouping and naming: PackageImport
and PackageMerge. A package import is a relationship that identifies a package whose
members are to be imported by a namespace. It allows the use of unqualified names
to refer to package members from other namespaces [1, clause 7.3.39]. Owned and
imported elements have a visibility that determines whether they are available outside
the package.

Conceptually, a package import is equivalent to individually importing each mem-
ber of the imported namespace using the ElementImport operation, which identifies an
element in another package. This allows the element to be referenced using its name
without any qualifier, as if they were owned elements. Elements defined in an enclosing
namespace are also available using their unqualified names in the enclosed namespaces.

When importing an element it is possible to use an alias for it (to, e.g., avoid name
clashes), and to decide whether the imported element can be further imported or not by
other packages (the visibility of the imported element has to be either the same or more
restricted than that of the referenced element).

Element importation works by reference, i.e., it is not possible to add features to the
element import itself, although it is possible to modify the referenced element in the
namespace from which it was imported [1, clause 7.3.15]. In case of name clashes with
internal elements, the imported elements are not added to the importing namespace,
and the name of those elements must be qualified in order to be used. In case of a name
clash with an outer name in the importing namespace, the outer name is hidden, and the
unqualified name refers to the imported element (the outer name can be accessed from
this moment on using its qualified name). If more than one element with the same name
is imported to a namespace as a consequence of multiple element or package imports,
the elements are not added to the importing namespace.

Improving Naming and Grouping in UML 347

A package merge defines how the contents of one package (the source) are extended
by the contents of another package (the target) [1, clause 7.3.40], combining them to-
gether. Thus, the contents of the receiving package are (implicitly) modified and become
the result of the combination of the two packages. In other words, the receiving pack-
age and its contents represent both the operand and the results of the package merge,
depending on the context in which they are considered.

PackageMerge is normally used to integrate the features of model elements defined
in different packages that have the same name and are intended to represent the same
concept. It is extensively used in the definition of the UML metamodel, allowing an
incremental definition of the metaclasses by which each concept is extended in incre-
ments, with each increment defined in a separate merged package. By selecting which
increments to merge, it is possible to obtain a custom definition of a concept for a spe-
cific end [1]. In terms of semantics, there is no difference between a model with explicit
package merges, and a model in which all the merges have been performed.

The resulting model contains the duplicate-free union of the two merged packages,
matching elements by names and types, and joining together all their features (proper-
ties, references, operations, constraints, etc.). In case of any kind of conflicts, the merge
is considered ill-formed and the resulting model that contains it is invalid.

The result of combining the merge and import operations is also defined in UML.
Importing a receiving package of a merge will import the combined contents of the
merge (because the receiving package contains the result of the merge operation), while
importing a merge package (i.e., the target of the merge) will only import its contents.
In case of an element import owned by the receiving package of a merge, it will be
transformed into a corresponding element import in the resulting package. Imported
elements are not merged (unless there is also a package merge to the package owning
the imported element or its alias).

3 Current Limitations of the UML Package

As we mentioned above, the fact that the same concept (the Package) provides at the
same time the grouping and naming mechanisms for the UML language, together with
the complex semantics of import and merge operations, may lead to some problems and
restrictions. These are described in this section.

3.1 Ownership of Packaged Elements

In UML, a package owns its grouped elements [1]. This imposes a hierarchical decom-
position of the model elements into a tree structure (not a graph), in which a model
element can belong to at most one package.

Although the use of tree structures greatly simplifies the handling and grouping of
modelelements, it becomesastrong limitation if amodelerwants to group modelelements
according to different classifications, each one using a different criteria. For example, we
could organize our model elements depending on whether they represent structural or
behavioural features of the system being modeled (e.g., the software architecture in one
package, the specification of the interactions in another). Another organization can divide
the model elements depending on whether they represent internal elements of the system,

348 A. Vallecillo

or part of the interfaces with other systems. We could also classify the model elements
depending on their level of criticality, or the project phase they belong to. Forcing one
organizational structure is not acceptable: normally there is no single classification that
fits all conceptual dimensions in which modeling elements can be organized.

A proper grouping schema for organizing models should be able to allow modeling
elements to belong, in principle, to more than one group.

3.2 Naming Schema

A UML package also provides a namespace for its members. In UML, a namespace is
an element that owns a set of elements that can be identified by name.

The fact that UML elements may have at most one name can be a strong limitation
in some contexts, for example in heterogeneous federated environments. In such cases
there is no single global naming schema in which only one selected naming convention
applies to all entities, and there is no single authority that administers all names. We
cannot ignore the existing independently developed naming schemes already in use, or
the ones currently being proposed.

Moreover, there are many situations in which the name of an element depends on the
context in which it is used, so names cannot be fixed and absolute.

A proper naming schema should be able to accommodate these different naming
schemata and allow their interconnection, while at the same time maintaining name
unambiguity in each context of use.

3.3 Name Resolution

Another problem of the current UML naming schema has to do with name resolution,
due to the semantics of ElementImport operation. The situation gets even worse under
the presence of PackageImport and PackageMerge operations, as mentioned in [3].

This is a critical issue for those languages, such as OCL [9], that provide navigation
facilities to refer to specific model elements. The environment of an OCL expression de-
fines what model elements are visible and can be referred to from the expression. Such
references are done by name, using either single names or package-qualified names.
In principle the UML and OCL naming schemata are aligned, although it is not com-
pletely clear whether they are fully compatible or not, specially when import or merge
operations are in place with their complex rules and with aliasing. MOF languages also
have complex visibility rules, again aggravated by the importing relationships that can
exist on a model. For example, the same package can have two distinct interpretations
depending on its role as a source or as a target of a package merge or import rela-
tionship. The context-sensitive interpretation of a package has subtle implications for
the name resolution of OCL constraints in the context of a package with two distinct
interpretations about its extent [3].

There are other problematic situations that can lead to undesirable consequences, due
to the potential side-effects of the import operation. For example, suppose a package P
containing a constraint C that refers to a class A in an outer package. If P now imports
another package Q that contains a class named A, the name resolution rules will hide
the old class A and resolve name A to the newly imported class. This could easily break

Improving Naming and Grouping in UML 349

the constraint or, even worse, inadvertently change its behaviour. Another undesirable
situation can happen if package P contains another constraint C’ that refers to a class B,
which does not exist in P but is imported from package R. If the newly imported package
Q also contained a class named B, the semantics of the import operation would make
the name B unresolvable (because multiple imports of the same name are not allowed),
and hence constraint C’ would not work any more. An additional problem with these
side-effects is that most tools do not give any warning to the user about them.

3.4 PackageMerge Problems

The PackageMerge operation presents several problems mainly due to its complex se-
mantics, as initially pointed out in [4]. The work in [5] provides a thorough analysis
of this operation and its problems, proposing a set of solutions for those that can be
resolved, and identifying those that cannot. PackageMerge is not a simple operation,
and in fact, the UML documentation discourages its use by casual system modelers. It
is said to be intended for expert metamodelers to help them define their metamodels
using a modular approach, which allows adding features to existing classes by merging
them with others that define the extensions.

Furthermore, to our knowledge there is no general tool support for it. At least we do
not know of any UML modeling tool that allows you drawing a �merge� dependency
between two packages and then changes the receiving one according to the result of
the operation (as it happens with UML Generalization, despite the fact that the UML
manual mentions that these two operations should behave similarly in that way).

4 The Proposal

4.1 A More Flexible Grouping Schema

In order to allow a more flexible grouping schema for modeling elements, we will adopt
one of the concepts defined in ODP, the group. A group is “a set of objects with a par-
ticular relationship that characterizes either the structural relationship among objects,
or an expected common behaviour” [6, Part 2, clause 10.1].

Figure 1 shows our proposal of a new grouping schema for UML model elements.
The central element is the Group, which is related1 to a set of GroupableElements that
represent the model elements that can be grouped together. The characterizing relation
that defines the criteria that the members should fulfil to belong to the group is expressed
by an optional UML constraint. All groupable elements (including groups) are named
elements (see section 4.2). There is also another constraint (not shown here) that forbids
cycles in the membership relation, that is, we do not allow groups to contain themselves
or to contain other groups that contain them.

Figure 1 also shows how the Package becomes just an specialization of a Group, in
which the members belong to exactly one package (itself). Our proposal allows model

1 The Membership relationship is represented here by an association, although other UML mod-
ellers would have used an aggregation. Given the loose semantics of the UML aggregation, we
have preferred to use an association.

350 A. Vallecillo

Package

{self.member->forAll(m | m.group->includes(self) and
m.group->select(oclIsTypeOf(Package))->size()<=1)}

GroupableElement

Group

Constraint

+uid : URI

ModelElement

NamedElement

Membership

+member 0..*

+group 0..*

+characterizingRelation0..1

Fig. 1. A new grouping schema for UML model elements

elements to belong to several groups, hence supporting overlapping organizations of
model elements. This grouping schema is similar to the classification schema used by
Google Gmail, which associates labels to mail messages. Such labels act as groups
that identify the relations that characterize their member elements. Any Gmail message
may have several associated labels, one for each of the groups it belongs to. Selecting
a particular label lists all the member messages associated to that label. Similarly, our
model elements can be associated to more than one group, avoiding the tyranny of the
dominant classification currently required by UML.

4.2 A More Powerful Naming Schema

Our proposed naming schema is based on the ODP Naming standard [8], which pro-
vides a context-relative naming schema for large, open, federated and heterogeneous
systems and environments. In a context-relative naming scheme, multiple naming con-
texts can apply to entities in different domains. These naming contexts can be related to
one another, hence allowing us to refer from one naming context to an entity in another.

To achieve this we need to introduce an intermediate level of indirection between an
entity and its name, which is given by a Naming Action.

Figure 2 shows the main elements of the proposed naming schema, representing
in a class diagram the core part of the ODP naming schema tailored to our specific
environment. The elements in that diagram correspond to the concepts defined in [8]:

NamingContext

{self.namingAction->isUnique(entity),
self.namingAction->isUnique(name)}

NamedElement
+uid : URI

ModelElement
NamingAction

Namespace

Identifier
+name

1 0..*

+entity

10..*

+term 0..* 0..*

Fig. 2. A new naming schema for UML model elements

Improving Naming and Grouping in UML 351

– A name is is a term which, in a given naming context, refers to an entity. In this
paper we will assume that names are represented by Strings, although it would be
possible to use other representations such as symbols, images, icons, etc.

– An identifier is an unambiguous name, in a given naming context.
– A namespace is a set of terms, usable as names, generated by a naming convention.
– A naming context establishes a relation between names and entities (in our case,

model elements that are subject to naming). Such a relation is composed by a set of
pairs “(name,entity)” that defines how the entities are named in this particular con-
text. Such pairs are represented by naming actions. The fact that naming contexts
are also named entities enables the relationship between naming contexts.

– A naming action is an action that associates a term from a name space with a given
entity. All naming actions are relative to a naming context.

Note that for simplicity in this paper we do not allow direct synonyms (entities with
several names) nor homonyms (names associated to several entities) within the same
naming context, as expressed by the two constraints in the NamingContext class. These
constraints could be relaxed to take into account not only the names but also the element
types when comparing elements, although in this paper we will use just names.

A very simple and common example of the use of multiple naming contexts can be
found in mobile phones. Every person assigns a name to each number in his/her mobile
phone’s contact list, hence defining a unique naming context. For example, the name
I have assigned in my cellular phone to my wife’s phone number (“wife”) is different
from the name that each of my children have assigned to it (“mum” and “mammy”,
respectively). But we all refer to the same number. Analogously, the same name “ICE”
is normally used in all phones to refer to the number to call in case of an emergency,
although this number is different for almost everyone. In our terminology, each phone
defines a naming context, and each entry in a phone’s contact list is nothing but a naming
action in that context.

Another example of naming contexts can be found in natural languages. Figures 3
and 4 show two examples of this, using our representation in UML. The first one shows
how two model elements are named in the English context. The second figure shows
one element being named in six different contexts (only the naming actions are shown,
with the references to the related elements shown in their slots).

English : NamingCon text

e1 : NamedElement

e0 : NamedElement

a1 : NamingAction

a0 : NamingAction

"dog" : Identifier

"cat" : Identifier

Fig. 3. An example of a naming context with two entities and their associated names

352 A. Vallecillo

entity = e1
name = "canis lupus familiaris"
namingContext = Biology

a5 : NamingAction

entity = e1
name = "inu"
namingContext = Japanese

a3 : NamingAction

entity = e1
name = "befzger"
namingContext = Swabian

a4 : NamingAction

entity = e1
name = "perro"
namingContext = Espanol

a2 : NamingAction

entity = e1
name = "dog"
namingContext = English

a1 : NamingAction

entity = e1
name = "chien"
namingContext = French

a6 : NamingAction

e1 : NamedElement

Fig. 4. An example of multiple names for an entity in several naming contexts

The fact that a naming context can be itself named in another context implies an
interesting level of indirection by nesting naming contexts. In this way entities that
belong to more that one nested domain may be referred to using different names. For
example, figure 5 shows how the entity called “dog” in English and “perro” in Spanish,
can also be called “Inglés::dog” in the Spanish naming context, because the English
context is called “Inglés” in Spanish. Similarly, from the English context a dog can be
called both a “dog” and a “Spanish::perro”. (We are using “::” as separator for composing
names.)

entity = English
name = "Ingles"
namingContext = Espanol

a9 : NamingAction

e1 : NamedElementa1 : NamingAction a2 : NamingAction

English :
NamingContext

Espanol :
NamingContext

"Ingles" :
Identifier

"dog" :
Identifier

"perro" :
Identifier

Fig. 5. An example of multiple names for an entity in several naming contexts

4.3 Name Resolution

As defined in ODP, name resolution is the process by which, given a name and an initial
naming context, an association between a name and the entity designated by the name
can be found. In general this is a difficult process, because it can potentially match
multiple elements. In our current proposal naming contexts do not allow synonyms, so
the name of every model element is unique in that context. Then we assume that its
name will be the only one defined by the appropriate naming action. The following
operation resolve() implements name resolution:

Improving Naming and Grouping in UML 353

c o n t e x t Identifier : : resolve (C : NamingContext) : NamedElement
body : s e l f . namingAction−>any (namingContext = C) .entity

Of course, this operation can evaluate to UndefinedValue if the name does not corre-
spond to any model element in the context (for instance, “bfgtrr”.resolve(English). This
can be checked by operation canResolve():

c o n t e x t Identifier : : canResolve (C : NamingContext) : Boolean
body : s e l f . namingAction−>e x i s t s (namingContext = C)

The opposite operation name(), that given a model element and a context returns a
name, is not so simple. We could naively think of the following operation:

c o n t e x t NamedElement : : name (C : NamingContext) : Identifier
body : s e l f . namingAction−>any (namingContext = C) .name

However, it can also be the case of a model element that is not named in a given
context C, but there is another context D in which the element is named (as, say, “x”),
and the context D is named “d” in C. Then, the element can be indirectly named in
context C as “d::x”. Thus, finding the name of an element which is not directly named in
a naming context may result in 0, 1 or more names for the element (depending on how
many other contexts define a name for it). This is also a complex process because it may
involve cycles (if context D names context E and context E names D) which need to be
detected to avoid infinite names. Besides, names in general federated schemata can have
different incompatible naming conventions. Here we propose a simple approach when
looking for names, returning the first one we find if the name can be resolved in the
naming context, either directly or indirectly in other referenced naming contexts. For a
discussion of the general process for name resolution, the interested reader is referred
to the ODP Naming standard [8].

4.4 Putting It All Together

Figure 6 shows the complete picture of our proposal. Once we have individually defined
the grouping and naming mechanisms, the question is how to combine them.

We mentioned in section 4.1 that a Group is a NamedElement (see also figure 1), and
therefore it can be addressed by its name, being part of the naming schema. Moreover,
it is natural to expect that a group provides a naming context for their member elements
(although not in an exclusive way, as the UML Package does). Thus we have defined a
relationship between Group and NamingContext that establishes how the group assigns
names to its members. A Group is related to one NamingContext, the one that provides
unambiguous names to its members. The cardinality at the other end of the association
means that a NamingContext can provide names for more than one group. That is, sev-
eral groups can of course share the same naming context for assigning names to their
members.

The following constraint forces all members of a group to be named in the naming
context associated to the group. If we want a group with elements from different naming
contexts, it is just a matter of creating a naming context that imports them (see 5.1).

c o n t e x t Group inv AllMembersNamed :
s e l f .namingContext . namingAction .entity−>i n c l u d e s A l l (s e l f .member)

354 A. Vallecillo

Group
{self.namingContext. namingAction.entity->

 includesAll(self.member),
self.subgroups()->excludes(self)}

NamingContext
{self.namingAction->isUnique(entity),
self.namingAction->isUnique(name)}

GroupableElementNamedElement

+uid : URI
ModelElement

NamingAction

Namespace

Constraint

Identifier

1 0..*

+term 0..*

Membership

+member 0..*

+group 0..*

0..*
+name
1 0..*

+entity
10..*

+characterizingRelation 0..1

Fig. 6. A summary of the proposed combined naming and grouping schemata

5 Back to the Future

Let us discuss in this section how our proposal can fit with the current UML language
and its Package element. In section 4.1 we already mentioned that a package can be
considered a special kind of group, whose members belong to exactly one group (itself).
We showed this in figure 1, where Package inherits from Group.

Figure 7 provides more details, showing how our proposal can extend the current
UML PackageableElement metaclass and its relation with Package. We can see how
PackageableElement inherits from GroupableElement, as Package inherits from Group.
Similarly, the composition relation between a package and its members is just a subset
of the Membership association.

Regarding the provision of a namescope to its members, in the current version of
UML, metaclass NamedElement contains an attribute called name (of type String) with
the name of that element. In our proposal this attribute has been moved to a property
called name of the naming action that assigns a name to an element in a given context,
which plays the same role. Still it is obvious to derive the value of the name attribute
for a PackageableElement using the relationship between its owner package (which is
a Group) and the associated NamingContext.

Package
{self.member->forAll(m | m.group->includes(self) and

m.group->select(oclIsTypeOf(Package))->size()=1)}

+/name : Identifier
PackageableElementGroupableElement

Group

Membership

+member 0..*

+group 0..*

{subsets Membership}

+member 0..*

Fig. 7. Extensions to current UML metaclasses

Improving Naming and Grouping in UML 355

c o n t e x t PackageableElement : : name : Identifier
d e r i v e : s e l f .name (s e l f .group .namingContext))

Furthermore, the following invariant should hold for packages and their members:

c o n t e x t Package in v :
s e l f .member−>f o r A l l (m | m .name = m .name (s e l f . namingContext))

Note that, in that invariant, the operation name() is always defined for the context
associated to the Package, because the AllMembersNamed constraint holds.

Finally, the selection of a concrete syntax for the new Group element is outside the
scope of this paper, although any variation of the concrete syntax of the UML Package
that showed that overlapping is possible could work well. For simplicity we will use the
UML symbol for Package, stereotyped as �group� to represent groups.

Packages and groups can be used together in a specification. In fact, we think that
they provide their best advantages when combined together because each one has its
own specific goal. Thus, a very few packages can be responsible for owning the mod-
eling elements, managing their lifecycles and also providing the basic naming contexts
for them. Groups become very useful for organizing the model elements according to
different categories and/or views in a flexible and structured way.

5.1 Redefining Package Import

The two importing operations in UML are defined by ElementImport and PackageImport
relationships. Their goal is to be able to use unqualified names to refer to external mem-
bers that belong to other packages [1, clause 7.3.39].

The need for such importing operations in UML is due to the strong coupling in UML
between names and elements, and between elements and packages. In our proposal
we have loosened these relationships, decoupling names from elements, and elements
from their groups. Therefore, to use an unqualified name to refer to an entity from a
group, in our proposal it is enough to add its name to the naming context associated
to the group.2 The following operation specifies this action. It returns a boolean value
indicating whether the operation has succeeded or not.

c o n t e x t NamingContext : :
import (n : Identifier , e : NamedElement) : Boolean

p os t : i f (s e l f . namingAction .name−>e x c l u d e s (n)
and s e l f .namingAction .entity−>e x c l u d e s (e))

then r e s u l t = true and s e l f .namingAction−>
i n c l u d e s (na | na .name = n and na . entity = e)

e l s e r e s u l t = (n .resolve (s e l f) = e)
e n d i f

This operation checks whether the name or the entity already exist in the naming
context, but are not related to each other, and if not, a naming action that relates them
is added. Otherwise the operation returns false, meaning that the operation has failed.

2 This operation reflects what normally happens in natural languages when they adopt a term
from other languages if they do not have a precise name for a given entity. In English, examples
of these names include expresso, siesta, baguette or bonsai, to name a few.

356 A. Vallecillo

This operation also provides the possibility of importing a complete NamingContext,
because a naming context is itself a NamedElement.

Despite it now being an operation on naming contexts, we could also define the
corresponding operation import() on groups:

c o n t e x t Group : : import (n : Identifier , e : NamedElement) : Boolean
body : s e l f . namingContext .import (n ,e)

Then, if we had a group A that imports the names of the member elements of a group
B (via an �import� relation), the semantics of this operation is now given by the OCL
expression A.import(B). Note that this operation has a possible side-effect if several
groups share the same naming context: if one group imports an element, it becomes
imported to all the groups. However, this is not a problem because of the difference
between importing one element and including it as a member of a group. Importing an
element allows referring to it by its name, i.e., it is an operation on naming contexts and
not on groups. Including an element (using operations include() or union(), for instance)
means adding it to the set of members of the group. Elements can be added by iden-
tifier, name or both. We show here the include() operation using identifiers. The other
operations are similar. Remember that constraint AllMembersNamed requires included
elements to be named in the corresponding naming context.

c o n t e x t Group : : include (n : Identifier)
pre : n .canResolve (s e l f .namingContext)
p os t : s e l f . member−>i n c l u d e s (n .resolve (s e l f .namingContext))

One of the benefits of having a well-defined semantics of all these operations spec-
ified in OCL, is that they can now be easily implemented and checked by UML mod-
eling tools. Moreover, the fact that these operations return a boolean value indicating
whether a conflict has been found or not during the import operation allow modeling
tools to warn users about conflicts—in contrast to current UML PackageImport and
ElementImport operations, which do not warn the users about their side-effects in case
of conflicts. This is of special importance in large models with many elements, possibly
developed by different people in different locations, in which name conflicts can easily
pass unnoticed.

The way in which the conflicts are resolved falls outside the scope of this paper, and
depends on what we want the import() operation to do in case of name clashes. To illus-
trate this issue, let us suppose two groups One and Two, each of them with a different
naming context, and with four elements that globally refer to six entities {e1, ..., e6}.
This is informally shown in figure 8, where dependencies represent graphically the
naming contexts of these two groups before the import operation:

One.namingContext = {(A, e1), (B, e2), (C, e3), (D, e4), ...}
Two.namingContext = {(A, e1), (B, e3), (C, e5), (E, e6), ...}
If we want group One to import the names of Two (for calculating the union of both,

for example), two conflicts appear for names B and C, each of them with a particular
kind of problem. It is clear that after the import operation the resulting naming context
of One will contain naming actions {(A, e1), (D, e4), (E, e6)}. However, the way to
resolve the other two names and how to create a new name for the sixth entity depends
solely on the user, who should decide what to do with the clashes.

Improving Naming and Grouping in UML 357

«group»
Two

A B C E

«group»
One

A B C D

e5 e6e2e1 e4e3

Fig. 8. An example of two overlapping groups

Is it worth noting that in our proposal one could, as an alternative, just name the
contexts in each other, and thus avoid the import operation altogether.

5.2 Merging Groups

Decoupling the names from the entities they refer to allows to uncover a semantic dis-
tinction between the import and merge operations. While the former deals with the
names of the model elements, the latter deals with the elements themselves (as it hap-
pened with include and union operations). In fact, several elements of the UML pack-
ages to be merged are expected to share names, because they are supposed to represent
the same entities but from different perspectives. In theory a package merge is just
aimed at the extension of the receiving package with the duplicate-free union of the two
packages. This should work in a similar way as the Generalization. However, when it
comes to the details the situation gets really complex. The handling of the constraints
on the model elements and the potential inconsistences between conflicting require-
ments on the elements to merge complicates the semantics of this operation (see the
good discussion presented in [5]). In addition, Generalization works on classes, while
PackageMerge works on packages, i.e., sets of model elements. This is a subtle but
crucial difference that introduces further problems. Finally, the side-effects of this op-
eration on the receiving package (whose elements are implicitly, but not explicitly mod-
ified) complicates the naming operations and the navigation of elements, as mentioned
above.

We propose a different approach to group (and thus package) merging, based on the
creation of a new group whose members are the result of the merge. These elements
can be either previous elements (if they are not modified by the merge—for instance
those that belong to just one of the groups) or newly created elements, resulting from
the individual merges. On the one hand this approach allows the use of a more powerful
merge operation between individual elements, such as the ones proposed for merging
DB schema, generic model merging or ontology merging defined by Pottinger and Bern-
stein in [10], the class merging operation as defined in MetaGME [11], or the epsilon
merge operation [12]. On the other hand, this approach allows groups and elements to
maintain their properties and avoids undesirable side-effects. The fact that each group
can have its own naming context solves the problem of finding names to the new entities
created after the merge: they maintain in the new context the names they had before.

358 A. Vallecillo

Figure 9 shows how the new operation works on the two groups described in figure 8.
We can see that the resulting group has 5 elements (and not six as it would happen if
instead of merging we had used the union operation), named {A..E}. The elements these
names refer to is specified by the resulting naming context:

«group»
«mergedGroup»

OneMergesTwo
A B C D E

«group»
Two

A B C E

«group»
One

A B C D

e3*e5e2*e3

e1 e2 e5 e6e3 e4

«merge»

{result = OneMergesTwo }

Fig. 9. Merging the two models

OneMergesTwo.namingContext = {(A, e1), (B, e2 ∗e3), (C, e3 ∗e5), (D, e4), (E, e6)}
Name A refers to the same element e1 in groups One and Two and therefore it remains

the same in the resulting group. Names D and E become part of the result without
changes because they belong only to one of the two groups to merge. Names B and C
are part of the resulting group, but they now refer to the elements obtained by merging
e2 with e3 and e3 with e5, respectively (whose ids we have called e2*e3 and e3*e5).
As mentioned before, the way in which these elements are calculated from the original
ones is outside the scope of the paper. In general, any merging algorithm can do the job,
although the simplest way would be to use one based on multiple inheritance such as
the one described in [11].

A new tag definition (result) of stereotype �merge� on the dependency identifies
the group that receives the result of the merge. Such a group should not exist be-
forehand, and is created to accommodate the merge. The new group is stereotyped
�mergedGroup� precisely to indicate that it is the result of a merge. This stereotype
has two tag definitions (named receivingGroup and mergeGroup, not shown in the dia-
gram), that refer to the two groups involved in the merge operation.

This merge operation does not provide full backwards compatibility with the original
PackageMerge operation, in order to avoid some of its problems. The new operation
does not have any side-effects, and also is flexible w.r.t. the way in which the elements
are merged. Furthermore, it is worth noting that modifying the members of a group as
a result of a merge operation does not make sense in this new context, because a group
does not own its members—it only provides references to them. One could still define

Improving Naming and Grouping in UML 359

another semantics for this operation that behaved as the previous one in the case of
packages (which own their members).

6 Related Work

This proposal is influenced by the naming concepts developed by ISO/IEC for the RM-
ODP framework [8], which in turn come from the ANSA project in the nineties [13].
These concepts were defined to cope with the heterogeneity of naming schemata ex-
isting in any open distributed system, with possible federated applications, and prove
to be very useful for providing a more flexible naming schema to UML—required to
enable, for example, federated modeling with UML.

There have always been several currents in the modeling community to improve
UML. Probably the most active proposals now come from the OMG’s UML revision
task force that works on the definition of UML 3; from the group working on fUML [14]
for a proper and well-founded subset of the UML 2 metamodel—which provides a
shared foundation for higher-level UML modeling concepts; and from the OMG’s Ar-
chitecture Ecosystem SIG [2], whose goal is to manage the alignments between dif-
ferent OMG recommendations (such as UML and SysML, or UML and BPMN), and
also aims at achieving federated modeling [15]. The proposal presented here aims at
contributing to the work of these groups.

The merging of groups and packages is influenced by our previous work on combin-
ing Domain Specific Visual Languages [16]. Model merging can provide a solution to
language combination in some cases, and package merge is one of the possible ways to
achieve model merge. Regarding the way the individual elements are merged, we allow
the use of any of the existing algorithms, such as the ones described in [10,11,12].

7 Conclusions

In this work we have presented a proposal for new UML naming and grouping mech-
anisms, which are currently provided in UML by the single concept Package. Our
proposal addresses some of the limitations that the UML mechanisms have, because
UML tightly couples elements with names, and names with packages. Our proposal
allows elements to belong to more than one group, and to have more than one name
in different contexts; it can accommodate different naming schemata and permit their
interconnection while maintaining name unambiguity in each context; and enables the
proper definition of grouping and naming operations such as import. One of the major
advantages of our proposal is that it tries to respect as much as possible the current ver-
sion of UML, extending it for backwards compatibility. A second major strength is that
it is faithfully based on international standards (by ISO/IEC and ITU-T), making use
of mature ideas which are developed with the consensus of major international parties
and organizations. Plans for future work include dealing with synonyms and with UML
inheritance as part of naming context.

360 A. Vallecillo

Acknowledgements. The author would like to thank Peter Linington, Martin Gogolla
and Pete Rivett for their very useful comments and criticisms on earlier versions of
this paper, and to the anonymous reviewers for their helpful suggestions. This work is
supported by Spanish Research Projects TIN2008-03107 and P07-TIC-03184.

References

1. Object Management Group. Unified Modeling Language 2.3 Superstructure Specification
(May 2010), OMG doc. formal/2010-05-05

2. Object Management Group. Architecture Ecosystem Special Interest Group (December
2009), http://www.omgwiki.org/architecture-ecosystem/

3. Chimiak-Opoka, J.D., Demuth, B., Silingas, D., Rouquette, N.F.: Requirements analysis for
an integrated OCL development environment. In: Proc. of the OCL Workshop at MODELS
2009. ECEASST, vol. 24 (2009)

4. Zito, A., Diskin, Z., Dingel, J.: Package merge in UML 2: Practice vs. Theory? In: Wang,
J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 185–199.
Springer, Heidelberg (2006)

5. Dingel, J., Diskin, Z., Zito, A.: Understanding and improving UML package merge. Software
and System Modeling 7, 443–467 (2008)

6. ISO/IEC. RM-ODP. Reference Model for Open Distributed Processing, ISO/IEC 10746,
ITU-T Rec. X.901-X.904 (1997)

7. ISO/IEC. Information technology – Open distributed processing – Use of UML for ODP
system specifications, ISO/IEC IS 19793, ITU-T X.906 (2008)

8. ISO/IEC. Information Technology — Open Distributed Processing — Naming Framework,
ISO/IEC IS 14771, ITU-T Rec. X.910 (1999)

9. Object Management Group. Object Constraint Language (OCL) Specification. Version 2.2
(February 2010), OMG doc. formal/2010-02-01

10. Bernstein, P.A., Pottinger, R.A.: Merging models based on given correspondences. In: Proc.
of VLDB 2003, Berlin, Germany, pp. 862–873 (2003)

11. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: Proc. of the Work-
shop on Domain Specific Modeling at OOPSLA 2006, pp. 123–139 (2006)

12. Kolovos, D., Rose, L., Paige, R.: The Epsilon book, U. York (2010),
http://www.eclipse.org/gmt/epsilon/doc/book/

13. van der Linden, R.: The ANSA naming model. Architecture report APM.1003.01, ANSA
(July 1993), http://www.ansa.co.uk/ANSATech/93/Primary/100301.pdf

14. Object Management Group. Semantics of A Foundational Subset For Executable UML Mod-
els (fUML). Version 1.0 – Beta 3 (June 2010), OMG doc. ptc/2010-03-14

15. Casanave, C.: Requirements for Federated Modeling. White paper. Model Driven Solutions
(January 2011), http://bit.ly/dUGiVf

16. Vallecillo, A.: On the combination of domain specific modeling languages. In: Kühne, T.,
Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 305–320.
Springer, Heidelberg (2010)

Aspect-Oriented Model Development at

Different Levels of Abstraction

Mauricio Alférez1, Nuno Amálio2, Selim Ciraci3, Franck Fleurey4,
Jörg Kienzle5, Jacques Klein2, Max Kramer6, Sebastien Mosser7,

Gunter Mussbacher8, Ella Roubtsova9, and Gefei Zhang10

1 Universidade Nova de Lisboa, Portugal
mauricio.alferez@di.fct.unl.pt

2 University of Luxembourg
{nuno.amalio,jacques.klein}@uni.lu

3 University of Twente, The Netherlands
ciracis@ewi.utwente.nl
4 SINTEF IKT, Norway

Franck.Fleurey@sintef.no
5 McGill University, Canada
Joerg.Kienzle@mcgill.ca

6 Karlsruhe Institute of Technology, Germany
max.kramer@student.kit.edu
7 INRIA Lille - Nord Europe
sebastien.mosser@inria.fr

8 SCE, Carleton University, Canada
gunter@sce.carleton.ca

9 Open University of the Netherlands and
Munich University of Applied Sciences, Germany
ella.roubtsova@ou.nl,ella.roubtsova@hm.edu
10 Ludwig-Maximilians-Universität München and

arvato systems, Germany
gefei.zhang@pst.ifi.lmu.de

Abstract. The last decade has seen the development of diverse aspect-
oriented modeling (AOM) approaches. This paper presents eight different
AOM approaches that produce models at different level of abstraction.
The approaches are different with respect to the phases of the devel-
opment lifecycle they target, and the support they provide for model
composition and verification. The approaches are illustrated by mod-
els of the same concern from a case study to enable comparing of their
expressive means. Understanding common elements and differences of
approaches clarifies the role of aspect-orientation in the software devel-
opment process.

Keywords: Aspect-oriented modeling, localization of concerns,
composition, verification, localization of reasoning.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 361–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

362 M. Alférez et al.

1 Introduction

Separation of concerns is a key software engineering principle that helps to re-
duce complexity, improve reusability, and simplify evolution. Aspect-oriented
software development (AOSD) takes traditional support for separating concerns
a step further by allowing developers to modularize their descriptions along more
than one dimension [14].

Drawing inspiration from aspect-oriented programming research, AOM brings
the aspect-orientation to design, analysis and requirements phases of software
development. Aspect-oriented modeling (AOM) approaches, in particular, aim
to provide means for
– localizing of crosscutting concerns at the level of models to guarantee trace-

ability of concerns across the software development lifecycle and reuse of
different realizations of a concern within and across software models;

– verification of models with crosscutting concerns;
– localizing of reasoning on models of concerns about the behaviour of the

whole model.
This paper surveys a set of AOM approaches working at different levels of ab-
straction. The aim is to compare the techniques of localization of aspects and the
techniques of reasoning on aspect models and identify research challenges in AOM.
Section 2 identifies the abstraction level of each of eight different AOM approaches
and illustrates each of the approacheswith a model of the same concern. All chosen
approaches have demonstrated their scalability by taking the challenge of mod-
elling the case study of a crisis management system (CMS) [8]. Section 3 discusses
the approaches and identifies future directions for AOM research.

2 AOM at Different Levels of Abstraction

2.1 Authentication Concern

The description of the authentication concern is taken from the requirements
for a Crisis Management System [8]. This concern is modelled and used for
correctness analyses in all compared AOM approaches.
The system authenticates users on the basis of the access policies when they first access
any components or information. If a user remains idle for 30 minutes or longer, the system
shall require them to re-authenticate.

Use Case: AuthenticateUser
Scope: Car Crash Crisis Management System
Primary Actor: None
Secondary Actor: CMSEmployee
Intention: The intention of the System is to authenticate the CMSEmployee to allow access.

Main Success Scenario:
1. System prompts CMSEmployee for login id and password.
2. CMSEmployee enters login id and password into System.
3. System validates the login information. Use case ends in success.

Extensions:
2a. CMSEmployee cancels the authentication process. Use case ends in failure.
3a. System fails to authenticate the CMSEmployee.
3a.1 Use case continues at step 1.
3a.1a CMSEmployee performed three consecutive failed attempts.

Use case ends in failure.

AOMD at Different Levels of Abstraction 363

2.2 Feature Abstractions

In Variability Modelling Language for Requirements (VML4RE) [1] the Authen-
tication concern is localized as one reusable feature identified by its name “Au-
thentication”(Figure 1). Feature model visualizes the dependencies between the
Authentication feature and the Session Handling and Administration features.
Authentication requires the UserAdministration feature because the system au-
thenticates users on the basis of access policies associated to them. Feature model
also identifies Authentication as an optional feature.

The VML4RE specification is a good starting point for concern modelling.
Different requirements models can be created to describe the features, using
notations of UML2.0 or approaches presented in this overview. For example,
if the Authentication feature is selected for a specific product according to the
VML4RE specification in Figure 1, the requirements specification will include
the specification concern called “Authentication” in the chosen specification no-
tation (e.g. a use case specification or a sequence diagram). Also, according to
combinations of more than one feature it is possible to apply concerns that mod-
ify or add new parts in the requirements specifications. Features do not specify
system internals, they only capture requirements for a system, so the verification
of the system’s behaviour and any reasoning about it are not applicable at the
level of feature modelling.

Session Handling

Authentication

CrisisManagement System

…

Administration …

UserAdministration
requires

Optional feature Mandatory feature

VML4RE Specification:

…

Crisis Management System Feature Model:

variant for “Authentication” {
includeConcern “Authentication”

}
…

Fig. 1. VML4RE model

2.3 Use Cases

At the level of use case modelling the Authentication use case is described step by
step. As it is recognized as a reusable unit, it should contain pointcut designators
(instructing where, when, and how to invoke the advice) and join points (defining
places in the model where an advice should be inserted) [13]. Such concepts do
not exist in conventional use case notations.

Aspect-oriented User Requirements Notation (AoURN) [12] supports conven-
tional concepts of use case and workflow modelling techniques but also enables
localizing of aspects. The primary goal of AoURN is to model any functional or
non-functional concern of the system under development that can be expressed
with scenarios.

Fig. 2 depicts the AoURN scenario model for the Authentication concern. The
authentication scenario starts at the authenticate start point and ends either at

364 M. Alférez et al.

Fig. 2. AoURN model

the authenticated or fail end point. Various conditions are checked: the User
may have to enter credentials, and the System may authenticate or block the
User. The pointcut stub RequiresAuthentication represents all locations where
the Authentication concern is to be applied. At one glance, it is apparent that
the concern is to be applied before these locations since the concern-specific be-
haviour occurs before the pointcut stub. In this case, a simple sequential compo-
sition is desired, but AoURN scenario models can be composed in many different
ways (e.g., as alternatives, optionally, in parallel, in loops, or in an interleaved
way). The composition rules are exhaustive in that their expressiveness is only
restricted by the AoURN scenario language itself.

Patterns define the actual locations where the concern is to be applied: in
this case, each time there is an interaction between an actor and the System as
shown in the two sub-models above the User component. The variable $User
defined in the patterns allows the concern to reuse the matched component.

AoURN models involve neither detailed data nor message exchanges. This
makes them well suited for the early stages of the software development pro-
cess. AoURN scenario definitions can be analyzed, enabling regression-testing
of the scenario model. AoURN combines aspect-oriented modeling with goal-
oriented modelling allowing to model the reasons for choosing a concern using
goal models.

Use cases identify abstract actions coming from the environment and abstract
responses of the system, driving the system from one state to another, but do not
capture system local storage and the internal behavior. While it is possible to
validate use case models, system verification and local reasoning on aspects about
the whole system behaviour are not applicable at the level of use cases. Further
system specification involves choices. Actions may become operations, messages,
or events recognized by objects and aspects. Depending on these choices, different
modelling techniques may be used.

AOMD at Different Levels of Abstraction 365

2.4 Classes and Sequence Diagrams

Reusable Aspect Models (RAM) [7] describes the structure and behaviour of a
concern using class, state and sequence diagrams. Fig. 3 shows how the structural
view of the Authentication concern associates Session objects with |Authentica-
table objects.

The Authentication behavior is described in state views and message views.
State views detail the method invocation protocol of objects using state dia-
grams. Message views specify the message passing between objects using se-
quence diagrams. For example, the login message view in Fig. 3 shows how a
session object is instantiated upon a successful login attempt. The requireLogin
message view demonstrates how method invocations of |methodRequiringLogin of
an |Authenticatable object are disallowed if no session is currently established. To
apply the authentication aspect, the mandatory instantiation parameters must
be mapped to model elements of the base model. For instance, to enable user
authentication, the mapping |Authenticatable → User, |methodRequiringLogin
→ * *(..) would ensure that no public method of a User object can be invoked
before the user authentication.

Fig. 3. RAM model

366 M. Alférez et al.

To reuse structure and behavior of low-level aspect models in models that
provide more complex functionality, the RAM approach supports the creation
of complex aspect dependency chains. Blocking authentication and timed au-
thentication are modeled by reusing the aspects Authentication, Blockable and
Timing (see bottom of Fig. 3).

GrACE (Graph-based Adaptation, Configuration and Evolution) approach ex-
presses the base and concerns models as class and sequence diagrams. The speci-
fication also contains an activator action and the execution constraint, a sequence
of method invocations, expressed with Computational Tree Logic (CTL). With
this input, GrACE simulates the execution and the composition of the input
diagrams starting from the activator action. The end result of this is the execu-
tion tree where each branch is a possible composition showing all the methods
invoked in it [5]. Then, a verification algorithm verifies whether the input execu-
tion constraints is violated or not. In case it is violated, a feedback is provided
to the user. In this way, the user can verify the behavior of the concerns in the
composed model. For simulation, GrACE specializes graph-based model checking
by defining a model called Design Configuration Model (DCM) for representing
UML based AOMs with graphs, and modeling OO- and AspectJ-like execution
semantics with graph-transformation rules over this model.

GrACE uses the mapping from Theme/UML [6] to a Domain Specific Lan-
guage. Hence, the concerns are modeled as “themes” in Theme/UML. Fig. 4
presents an excerpt from the sequence diagram of the theme Authenticate, which
defines a pointcut to the template method fireStart. The advice for this point-
cut is defined in the method beforeInvoke(), which checks if the user is already
authenticated.

Fig. 4. GrACE:Sequence diagrams

AOMD at Different Levels of Abstraction 367

The themes are converted to DCMs for verification. GrACE toolset includes
a prototype tool which automates the conversion from Theme/UML to DCM.
Fig. 5 shows the graph-based DCM of the theme Authenticate. The node labeled
AspectType with the attribute name AuthenticateUser represents the template
class AuthenticateUser. The node with the attribute toMethod set to fireStart
that is connected to the aspect type node represents the template parameter of
the theme Authenticate.

Fig. 5. GrACE:DSM Authenticate

To illustrate composition of aspects, Fig. 6 presents an excerpt of the execution
tree generated from the simulation of the base model and the theme Authenticate
shown in Fig 4. At state S5, this excerpt starts with the dispatch of the method

Fig. 6. GrACE:Execution tree

368 M. Alférez et al.

Server.ScenarioBroadCastEvent(). In the activation bar of this method, the first
action is a call action. Hence, the transformation rule findDecl matches at state S6
and identifies ScenarioOutSideEvent.fireStart() as the receiver of the call. Because
the aspectAuthenticateUser defines a pointcut to this method, the transformation
rule formBeforeJoinPoint matches and gives the execution to the advice.

2.5 Classes and State Machines

A UML Behaviour State Machine (BSM) usually presents behaviour of one clas-
sifier. Aspects extend the behaviour specified for classifiers. HiLA modifies the se-
mantics of BSM allowing classifiers to apply additional or alternative behaviour.
The High-Level Aspects (HiLA) approach [15] introduces AspectJ-like constructs
into UML state machines. The basic static structure usually contains one or more
classes. Each base state machine is attached to one of these classes and specifies
its behavior. HiLA offers two kinds of aspects to modify such a model. Static
aspects directly specify a model transformation of the basic static structure of
the base state machines. Dynamic (high-level) aspects only apply to state ma-
chines and specify additional or alternative behaviour to be executed at certain
“appropriate” points of time in the base machines execution.

Fig. 7 presents the scenario of the Authentication concern. Modeling with
HiLA is a top-down process. The main success scenario of a (behavioral) con-
cern is modeled in the base machine: first the user enters his credentials (Enter-
Credentials), which are then validated (in stateAuthenticate). The extension for
authentication failures is modeled with the pattern whilst (stereotype whilst).
State Authenticate is active. If the current event is wrong (tagged value “trigger
= wrong”, then the advice is executed, which forces the base machine to go to
state EnterCredentials, where the user can try again.

The history-based extension, which allows the system to accept at most three
trials to log in is modeled in Three Trials. The history property f3 counts how
often its pattern, which specifies continuous sequences containing three and no)
final state occurrences, are contained in the execution history so far. The pointcut
selects the points of time just before state EnterCredentials gets active. If f3 = 1 ,
is satisfied, which means that the user has already tried to log in three times
unsuccessfully and now tries to authenticate again, the advice takes the base

Authenticate Authenticate [3]

[0]

f3 =
Credentials

Enter
«before»

«pointcut»«history»

«aspect»
ThreeFails

[f3>=1]
/ fail goto Final

[else]«advice»

«whilst»
{trigger = wrong}

Authenticate

Credentials
Enter

/ authenticated
ok

goto EnterCredentials

«aspect»
CredentialsWrong

«pointcut»

«advice»

Fig. 7. HiLA model

AOMD at Different Levels of Abstraction 369

machine to the final state (label goto Final), and ends in failure (signal fail).
Otherwise the advice does not do anything.

Aspects are composed together by the weaving process. Additional behaviors
defined by whilst aspects are woven as additional transitions. History-awareness
is achieved by entry actions to keep track of states activation; before (and after)
aspects are woven into transitions selected by the pointcut.

HiLA uses formal methods of model validation. The application of aspects to
BSM results in another UML state machine which is analyzed using the model
checking component of Hugo/RTmodel checking tools. Hugo/RT translates the
state machine and the assertions into the input language of a back-end model
checker SPIN. SPIN then verifies the given properties presented in Linear Tem-
poral Logic.

2.6 Services

The Adore framework1 is an approach to support aspect-oriented business pro-
cesses modeling, using the orchestration of services paradigm.

Models describing business–driven processes (abbreviated as orchestrations,
defined as a set of partially ordered activities) are composed with process frag-
ments (defined using the same formalism) to produce a larger process. Fragments
realize models with little behavior and describe different aspects of a complex
business process. Adore allows a business expert to model these concerns sep-
arately, and use automated algorithms to compose them.

Using Adore, designers can define composition units (abbreviated as compo-
sition) to describe the way fragments should be composed with orchestrations.
The merge algorithm used to support the composition mechanism[11] computes
the set of actions to be performed on the orchestration to automatically produce
the composed process. When the engine detects shared join points, an automatic
merge algorithm is triggered to build a composed concern. Adore also provides
a set of logical rules to detect conflicts inside orchestrations and fragments (e.g.,
non-deterministic access to a variable, interface mismatch, lack of response under
a given condition set).

We represent in Fig.8 the initial orchestration dealing with the authentication
concern. It represents the base success scenario, as described in the requirements.
To model blocking the user after 3 failed attempts, we use the fragment depicted
in Fig.9. The composition algorithm produces the final behavior by integrating
the fragment into the legacy orchestration.

2.7 Mixins

A Protocol Model [10] of a system is a set of protocol machines (PMs) that are
composed to model the behavior of the system. Fig. 10 shows a protocol model
of the security concern composed from PMs Employee Main, Clock, Singleton,
Password Handler and Want Time Out.
1 http://www.adore-design.org

370 M. Alférez et al.

Fig. 8. Orchestration:cms:authUser

Fig. 9. Authentication concern in an Adore model

The specification of a PM is described in a textual file as it is shown below
for machine Employee Main.

BEHAVIOUR Employee Main
ATTRIBUTES Employee Name: String, !Employee Status: String,

(Security Password: String), Max Tries: Integer
STATES created, deleted
TRANSITIONS @new*!Create Employee=created,

created*Session Event=created,
created*!Set Password=created,
created*Log In=created, created*Log Out=created,
created*Time Out=created, created*Reset=created,
created*Delete Employee=deleted

EVENT Create Employee
ATTRIBUTES Employee: Employee Main,

Employee Name: String,Security Password: String,
Max Tries: Integer

EVENT Delete Employee
ATTRIBUTES Employee: Employee Main

AOMD at Different Levels of Abstraction 371

EVENT Set Password
ATTRIBUTES Employee: Employee Main,
Security Password: String, Max Tries: Integer

EVENT Log In
ATTRIBUTES Employee:: Employee Main, Password:String

EVENT Log Out
ATTRIBUTES Employee: Employee Main

EVENT Time Out
ATTRIBUTES Employee: Employee Main

GENERIC OUT
MATCHES Time Out, Log Out

Clock

Create Clock

Increment time

created

TimeNow :=timeNow

TimeNow:=
timeNow+10

Set Password,[Security
Password],
Log In[Password] ,
Session Event, Reset,
Out

Employee Main

Password := Log In.Password;
Last Event Time := Clock..Time Now
Tries := Tries + 1;

some

Singleton

none

Create Clock

active

Want Time Out

inactive
Time Out

Password Handler

uninitialized

logged Out trying

Log InLog In

Set Password

logged Inviolation

Reset
Session Event,,
Log Out

if (Security Password = “”) return “uninitialised”;
else if (Tries = 0) return “logged Out”;
else if (Tries < 4 && Password = Security Password)
return “logged In”;
else if (Tries > 2) return “violation”;
else return “trying”;
GENERIC Out={Time Out, Log Out}

If (Clock.TmeNow – Last Event Time> 30) return “inactive;”;
else return "active “

Last Ime Event
:=timeNow

created deleted
Delete
EmployeeCreate

Employee

Password
Handler.Tries:=0

If (Clock.allInstances ().number=0 return “none”;
else return “some”;

Last Event Time
:=Clock.TimeNow

Password.Handler.Tries :=0

Block Access
[Security
Password=“”]

Fig. 10. Protocol Model of the Authentication Concern

The graphical presentation is a secondary artefact; it does not contain all the
elements of the specification. The specification of a PM includes its local storage
and the alphabet of event types. The local storage is represented as a set of its
attributes. For example, attribute Password Handler.Tries for the PM Employee
Main. Each event type is specified by metadata. For example, event Set Password
contains attribute Security Password: String.

An event instance comes from the environment and it is atomic. Instances
of PMs are created with happening of events. PM instances can be included
into other PMs. A PM instance behaves so that it either accepts or refuses an
event from its alphabet, depending on its state and the state of other included
machines. Events that are not in its alphabet are ignored. To evaluate the state
a machine may read, but not alter, the local storage of the included machines.

The complete system is composed using CSP parallel composition [4] extended
by McNeile [10] for machines with data. This composition techniques serves as a

372 M. Alférez et al.

natural weaving algorithm for aspects. The alphabet of the composed machine
is the union of the alphabets of the constituent machines; and the local storage
of the composed machine is the union of the local storages of the constituent
machines. When presented with an event the composed machine will accept it if
and only if all its constituent machines, that have this event in their alphabet,
accept it. If at least one of such machines refuses the event it is refused by the
composed machine. The concept of event refusal is critical to implement CSP
composition for composition of protocol machines. This allows for modelling of
the situation when events occur and the system cannot accept them.

Join points are often events. Password Handler specifies join points for the
Authentication concern. A Session Event is accepted if the Password Handler is
in state logged in, when both machines Employee Main and Password Handler
may accept it.

Quantification on events is defined by generalized events, e.g. event Out =
{LogOut, T imeOut}. Quantification on states is defined as derived states. State
abstractions specified with derived states are allowed to be used in join point
specifications. For example, the state logged In is derived as “If (Tries <= 4
&& Password = Security Password)”, and as a result the generic event Out
representing events Time Out and Log Out becomes possible.

The CSP composition based algorithm is used for aspect weaving and simula-
tion. It produces system traces from parts of traces of aspects with te Modelscope
tool. This algorithm guarantees that the order of accepted events in traces of
aspects is not changed in the result of their composition (see the proof in [9]).
The aspect interference of composed aspects may block some traces of aspects,
but it will not change the order of events in them. This property of local reason-
ing [9] provided by the PM approach prevents appearance of invasive aspects
and eases the reuse and evolution of protocol models.

2.8 Contracts

The Visual Contract Language (VCL) [2,3] takes an approach to behaviour mod-
elling that is based on design by contract. A VCL model is organized around pack-
ages, which are reusable units encapsulating structure and behaviour. Packages
represent either a traditional module or an aspect. VCL’s package composition
mechanisms allow larger package to be built from smaller ones.

Figure 11 presents the VCL package Authentication, which localizes part of the
authentication concern.Authentication extends packageUsers. State structures of
a package are defined in the package’s structural diagram (SD); together they define
the package’s state space. The SD of packageAuthentication (Fig. 11(b)) says that
a User of package Users2 is associated with a Session through the relational-edge
HasSession. In addition, thediagram includes an invariantHasSessionIfLoggedIn,
stating that each session must be associated with a user that is logged-in [3]. Fig-
ure 11(c) gives the global behaviour diagram of package Authentication with the
global observe operation UserIsLoggedIn, which says whether a user is logged-in
or not; this is described using a VCL assertion diagram (Fig. 11(d)).
2 A blob defines a set of objects.

AOMD at Different Levels of Abstraction 373

Authentication

Users

(a) Package Dia-
gram

HasSession

0..11
SessionUser

HasSessionIffLoggedIn

Users

(b) Structural Diagram

UserIsLoggedIn

(c) Behaviour Diagram

IsLoggedIn

cu? : User

cu?
status

loggedIn

(d) Assertion Diagram
for IsLoggedIn

Fig. 11. VCL package Authentication, addressing the authentication concern

Authentication operations (Login and Logout) are defined in VCL package
AuthenticationOps, which extends package Authentication (Fig. 12). Opera-
tions that perform state changes are defined in contract diagrams, composed of
a pre- and a post-condition. Figure 12(c) shows two contract diagrams for blob
User. Operation LoginOk says in the pre-condition that a login is successful if
the password given as input (pw?) matches the password of the user being au-
thenticated (u?.pw); post-condition says that the status of the user is loggedIn,
the number of passwords misses is 0, and the operation reports success (value
loginOk) to its environment (output r!). Operation Logout says that provided
the user status is logged in (pre-condition), then the user status is changed to
logged-out (post-condition).

Figure 13 presents package Authorisation, which puts two aspects together:
Authentication and AccessControl (see [3]). This package defines the observe
operation UserLoggedInAndHasPerm, which checks whether a user is logged
in and has the right permissions to execute some task; this puts together the
observe operations UserHasPerm of AccessControl and UserIsLoggedIn of
Authentication. VCL’s contracts and assertions are modules that can be com-
bined using logical operators.

Aspects are composed using join extension, which is illustrated in Fig. 14.
In join extension, there is a contract that describes the joining behaviour of
an aspect (a join contract) that is composed with a group of operations placed

AuthenticationOps

Authentication

(a) Package Diagram

Login Logout

(b) Behaviour Diagram

u?

loggedOut

status

pw?
pw

u? 0
pwMisses

loginOkr!

u? : User

pw? : Password

r!: LoginResult

LogInOk Logout

u? : User

status

u?

loggedIn

status

u?

loggedOut

loggedIn

status

(c) Contract Diagrams

Fig. 12. VCL package AuthenticationOps, addressing the authentication concern

374 M. Alférez et al.

Authorisation

Authentication

AccessControl

(a) Package Diagram

UserLoggedInAndHasPerm

(b) Behaviour Diagram

UserLoggedInAndHasPerm

cu? : User

UserHasPerm

t? : Task

AccessControl

Authentication UserIsLoggedIn

(c) Assertion Diagram of opera-
tion UserLoggedInAndHasPerm

Fig. 13. VCL package Authorisation

CrisisWithAspects

AuthorisationCCCMSCrisisWithJI

LoggingCCCMS SessionMgmtCCCMS

(a) Package Diagram
AuthorisationOp

CrisisOp

LoggingOp

CrisisOp

All CrisisWithJI

SessionMgmtOp

Join

(b) Behaviour Diagram

↑CrisisOp

UserLoggedInAndHasPerm [t?/t!]

AuthorisationCCCMS

AuthorisationOp

cu? : User

(c) Join Contract AuthorisationOp

Fig. 14. VCL package CrisisWithAspects

in a join-box. All operations of package CrisisWithJI are conjoined with join
contracts LoggingOp, SessionMgmtOp and AuthorisationOp. Join contract
AuthorisationOp specifies the extra behaviour of the Authorisation concern by
adding an extra pre-condition to all operations of package CrisisWithJI; this
specifies that the users executing operations of package CrisisWithJI must be
logged-in and have the required permissions to execute that task.

VCL is designed with a formal Z semantics and so it has the potential for
verification and global reasoning using theorem proving.

3 Discussion and Conclusion

Our overview shows how aspect-orientation is used at different levels of abstrac-
tion. All approaches achieved localization of concerns and better traceability of
requirements in models.

AOMD at Different Levels of Abstraction 375

Table 1. AOM approaches at different levels of abstraction

Abstraction Localization Verification Localization
of concerns of reasoning

Features VML4RE n.a. n.a.

Use cases AoURN n.a. n.a.

Classes, sequence diagrams RAM. GrACE + -

Classes, state machines HiLA + -
Services, orchestration Adore rule based -

Mixins Protocol Modelling + +

Contracts VCL + -

Each abstraction level supports its own composition technique and this tech-
nique defines the possibilities of reasoning on models. The modelling techniques
that use the same composition techniques as programs, i.e. sequential composi-
tional composition, alternative, cycle and inheritance have an execution tree as
a result of model composition and need to use verification techniques for model
analysis. The modelling techniques that use the ideas of design by contract need
to rely on theorem proving for system analysis. In general, the localization of
reasoning on aspects cannot be achieved with these composition forms as it
cannot be achieved in programs [13]. The result of composition has to be an-
alyzed to ensure correctness of behaviour. The modelling techniques with the
mixins semantics and the CSP composition (used also in some programming
languages [13]) localize reasoning on aspects and objects, and the behaviour
of aspects survives in the result of composition. So, the choice of composition
semantics is the major challenge of the AOM research.

The models in the presented approaches show that using aspects in models
always increases fragmentation of models. This simplifies model construction,
but does not simplify model understanding. However, fragmentation of complex
models of real size applications is unavoidable. The experience of the presented
approaches shows that any investment into tool support, allowing for search in
sets of model fragments and model simulation, improves model understanding
and transforms the fragmentation into an advantage.

References

1. Alférez, M., Santos, J., Moreira, A., Garcia, A., Kulesza, U., Araújo, J., Amaral,
V.: Multi-View Composition Language for Software Product Line Requirements.
In: van den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969,
pp. 103–122. Springer, Heidelberg (2010)

2. Amálio, N., Kelsen, P.: Modular Design by Contract Visually and Formally using
VCL. In: VL/HCC 2010 (2010)

3. Amálio, N., Kelsen, P., Ma, Q., Glodt, C.: Using VCL as an Aspect-Oriented
Approach to Requirements Modelling. TAOSD VII, 151–199 (2010)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

376 M. Alférez et al.

5. Ciraci, S., Havinga, W.K., Aksit, M., Bockisch, C.M., van den Broek, P.M.: A
Graph-Based Aspect Interference Detection Approach for UML-Based Aspect-
Oriented Models. Technical Report TR-CTIT-09-39, Enschede (September 2009)

6. Clarke, S., Walker, R.J.: Generic Aspect-Oriented Design with Theme/UML. In:
Aspect-Oriented Software Development, pp. 425–458. Addison-Wesley, Reading
(2005)

7. Kienzle, J., Abed, W.A., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD 2009, pp. 87–98. ACM Press, New York (March 2009)

8. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis Management Systems: a Case Study for
Aspect-Oriented Modeling. TAOSD 7, 1–22 (2010)

9. McNeile, A., Roubtsova, E.: CSP Parallel Composition of Aspect Models. In: AOM
2008, pp. 13–18 (2008)

10. McNeile, A., Simons, N.: Protocol Modelling. A Modelling Approach that Supports
Reusable Behavioural Abstractions. SoSyM 5(1), 91–107 (2006)

11. Mosser, S., Blay-Fornarino, M., Riveill, M.: Web Services Orchestration Evolution:
A Merge Process For Behavioral Evolution. In: Morrison, R., Balasubramaniam,
D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 35–49. Springer, Heidelberg
(2008)

12. Mussbacher, G., Amyot, D.: Extending the User Requirements Notation with
Aspect-oriented Concepts. In: Reed, R., Bilgic, A., Gotzhein, R. (eds.) SDL 2009.
LNCS, vol. 5719, pp. 115–132. Springer, Heidelberg (2009)

13. Filman, R., Elrad, T., Clarke, S., Akşit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley, Reading (2004)

14. Tarr, P., Ossher, H., Harrison, W., Stanley, J., Sutton, M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: ICSE 1999 (1999)

15. Zhang, G., Hölzl, M.: HiLA: High-Level Aspects for UML State Machines. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg
(2010)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 377–378, 2011.
© Springer-Verlag Berlin Heidelberg 2011

MBSDI 2011
3rd International Workshop on

Model-Based Software and Data Integration

Ralf-Detlef Kutsche1 and Nikola Milanovic2

1 TU Berlin and Fraunhofer FIRST, Germany
rkutsche@cs.tu-berlin.de

2 Model Labs GmbH, Germany
nikola.milanovic@modellabs.de

1 Goals

... to continuously develop the community of partners from academia and industry
in the area of model-based software and data integration...

Our workshop, after the success of MBSDI 2008 (Berlin) and 2009 (Sydney), will be
the third of its kind, directly addressing collaborative development of methodologies
and tools for Model-Based Software and Data Integration (MBSDI). Our additional
focus in the 2011 issue of MBSDI will be the emerging field of domain modeling and
domain ontologies, as an important aid in (semi-) automated understanding software
and data components and their potentials for integration. DSLs and, particularly,
Domain Specific Modeling Languages (DSMLs) will be a special focus area in
MBSDI 2011.

2 Description of the Workshop

Integration of data from heterogeneous and distributed sources, and, at the same time,
integration of software components, subsystems and systems, in order to achieve full
interoperability, is one of the major challenges and research areas in software industry
since decades, as well as the most significant IT cost driving factor. Thus, an
increasing need and market pressure to reduce time-to-market and cost of integration
solutions is present everywhere.

The reason for the ever growing relevance of software integration is the dynamic
nature of today’s business operations, where fast enterprise decision making is
essential. However, the relevant data and functions, based on which decisions should
be made, are distributed over many heterogeneous and autonomous systems.
Retrieving this data and processing it, in order to generate the added value services,
requires an expensive and tedious software development process. In the previous
years, it could be demonstrated that model-based software engineering (MBSWE)
offers not only the methodology but also standardized (meta)tools and platforms for
enterprise-wide and cross-enterprise integration of software solutions with the
ultimate goal of (semi)automatic generation of added-value such as business
intelligence components and others.

378 R.-D. Kutsche and N. Milanovic

Contributions with a strong theoretical and technical background, as well as
contributions focusing on domain knowledge and practical/industrial experience, both
are in the center of our interest. Particularly, software and data integration solutions in
the context of health care, education, production/logistics, finance and publishing are
welcome, as they coincide with the focus domains of our research initiative. However,
to extend this spectrum, other application domains, like e.g. automotive or avionics,
are most welcome, too.

3 Topics

The MBSDI 2011 topics include the areas listed below:

- Models and Metamodels in Software and Data Integration
- Domain Specific Modeling Languages
- Domain (Ontology) Engineering
- Model Management: Consistency, Merging and Evolution/Synchronization
- Model & Artifact Repositories
- Model Transformation: Languages, Frameworks
- Integration (Meta-)Tools, and Tool Integration
- ECLIPSE-based Modeling Frameworks
- Software Interoperability: Middleware Platforms & Standards
- Integration/Composition of Software Components, Systems & Services
- Data & Information Integration (Matching, Merging, Federation)
- Semantic Integration using Ontologies
- Service Oriented Architecture: Concepts for Systems Integration
- SLA, Negotiation, Orchestration
- Performance and Dependability Aspects of Data and Software Integration
- Component and Service Interaction Patterns
- Runtime Environments and Software Monitoring
- Standards for Software & Information Modeling
- Model-Based Software Evolution & Migration
- Domain Ontologies in Integration Scenarios
- Business Processes and Software Integration in Concrete Applications
- Cross-Enterprise Business Integration/ Collaboration
- Integrated Domain Applications, as e.g. in the Domains of Health Care,
 Education, Publishing, Finance, Production/Logistics, Automotive, Avionics etc.

MELO 2011 - 1st Workshop on Model-Driven
Engineering, Logic and Optimization

Jordi Cabot1, Patrick Albert2, Grégoire Dupé3,
Marcos Didonet del Fabro4, and Scott Lee5

1 AtlanMod research team
INRIA - École des Mines de Nantes

2 Ilog Research Project
IBM France

3 Mia-Software
4 Univ. Federal do Paraná

5 CEA-List
Jordi.Cabot@inria.fr, Albertpa@fr.ibm.com,

gdupe@mia-software.com, marcos.ddf@inf.ufpr.br,
Scott.Lee@cea.fr

Abstract. The main goal of this workshop is to bring together two different
communities: the Model-Driven Engineering (MDE) community and the logic
programming community, to explore how each community can benefit from the
techniques of the other. Are both communities friends or foes?

1 Model-Driven Engineering, Logic and Optimization: Friends or
Foes?

The widesepread application of MDE in all kinds of domains (e.g. critical sytems, soft-
ware product lines, embedded systems,...) has triggered the need of new techniques to
solve optimization, visualization, verification, configuration,... problems at the model
level. Instead of reinventing the wheel, most of these problemes could be solved by reex-
pressing the modeling problem as a logic programming problem. As an example, verifi-
cation (satisfiability) of large static models can be addressed by reexpressing the model
as a constraint satisfaction problem to be solved by state-of-the-art constraint solvers.

Similarly, logic programming can benefit from the integration of MDE principles. As
in any other domain, introduction of MDE would help to raise the abstraction level at
which the problem is described (e.g. by providing domain-specific languages that allow
non-technical users to specify the problem using a vocabulary closer to the domain),
improve the separation of concerns by using different model-based views of the problem
at different levels of detail, achieve tool independence (e.g. by following a typical PIM-
PSM separation where, for instance, at the PIM level we could define tool-independent
logic programming metamodels), increase reusability, ...

The main goal of this workshop is to bring together these two different commu-
nities: the Model-Driven Engineering (MDE) community and the logic programming
community in a first joint workshop to explore how each community can benefit from

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 379–380, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

380 J. Cabot et al.

the techniques of the other. We refer to the logic programming community in a broad
sense (i.e. including Constraint Logic Programming, Answer-Set Programming but also
ontology and semantic web aspects). The growing interest in the bidirectional relation-
ship between MDE and logic-based techniques makes us believe that both communities
could benefit a lot from having a workshop where to exchange experiences and research
lines on these topics.

2 Relevant Topics

Topics of interest for the workshop include:

– Modeling and generation of constraint problems,
– Interoperability between constraint technical spaces,
– Constraint metamodels,
– Constraint Independent Model-Platform Independent Model-Platform Specific

Model for Constraint Logic Programming,
– Domain Specific Languages for Constraint Logic Programming,
– Semantics of Business Vocabularies and Business Rules (SBVR),
– Business Process Modeling Notation(BPMN),
– MDE in satisfaction and planning problems,
– Model Checking,
– Model Optimization,
– Using Constraint Programming or Operational Research to compute Software

Product Line solutions,
– Using MDE to represent Software Product Line problems and solutions,
– Comparing combination of MDE and Constraint Programming/Operational

Research for Software Product Line.

3 Organization

The workshop will attract researchers with an MDE and/or logic programming back-
ground and interested in the use of new techniques (either MDE or logic-based) to im-
prove current research problems in their domain. Technical papers (full papers, short pa-
pers and position papers) describing original solutions, empirical evaluation papers and
experience/industrial papers presenting problems or challenges encountered in practice
are welcome.

All papers will be reviewed by an international programme committee: Raphael
Chenouard (Ecole Centrale de Nantes, France), Robert Clarisó (Open University of
Catalonia, Spain), Sophie Demassey (Ecole des Mines de Nantes, France), François
Fage (INRIA, France), Sebastien Gerard (CEA-List, France), Alfonso Pierantonio (Uni-
versity of L’Aquila, Italy), Antonio Ruiz-Cortés (University of Seville, Spain), Daniel
Varró (Budapest University of Technology and Economics, Hungary), Jules White (Vir-
ginia Tech, USA)

Accepted papers are published online in the workshop web page. It is planned that
the final versions of accepted papers will be published as online proceedings on the
CEUR Workshop Proceedings publication service

The Third Workshop on

Behaviour Modelling - Foundations and
Applications

Ella Roubtsova1, Ashley McNeile2, Ekkart Kindler3, and Mehmet Aksit4

1 Open University of the Netherlands and
Munich University of Applied Sciences, Germany
ella.roubtsova@ou.nl,ella.roubtsova@hm.edu

2 Metamaxim Ltd,UK
ashley.mcneile@metamaxim.com

3 Technical University of Denmark
eki@imm.dtu.dk

4 TU Twente, The Netherlands
aksit@ewi.utwente.nl

Recent trends in software system development point to the growing importance
of behaviour modelling.

These trends are:

– The growing role of business process management and workflow;
– The growing importance of Service-Orientation as an architectural princi-

ple, with consequent emphasis on well defined interaction between software
components;

– The importance of interfaces, contracts and service level agreements in defin-
ing and managing of behaviour integration both within and across organi-
zational boundaries;

– The growing variety of business intelligence applications and their increasing
complex behavioural requirements.

To meet the challenges presented by these trends we must be able to determine
which behaviour modelling techniques are applicable to a given situation, and
be able to use multiple techniques in combination. This requires suitable and
simple compositional semantics so that the various models used to describe the
behaviour of a complex system can be put together. Behaviour modelling attracts
more attention as the research community understands that behaviour modelling
concepts are different from programming concepts and can be used to create
programming languages of the next generation.

The Third Workshop on Behaviour Modelling - Foundations and Applications
brings together experts from academia and industry who are interested in

– Evaluation of goals and application area of different modelling techniques;
– Direct execution of behavioural models;
– Code generation from behavioural models;

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 381–382, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

382 E. Roubtsova et al.

– Usability results of different modelling techniques;
– Lessons learned from case studies with emphasis on what such cases show

about how modelling can be improved;
– Composition and decomposition of behavioural models;
– Combination of different behaviour modelling approaches;
– Application of formal reasoning to behavioural models.

This workshop is already the third one in this serie. The first workshop took
place in 2009 in the University of Twente, Enschede, the Netherlands [1]. The
second workshop was organized in University of Pierre & Marie Curie, Paris,
France, in 2010 [2]. The goal of the workshop serie is to make contributions in
the area of software and systems behaviour modelling to address the demands
of todays systems and applications requirements.

The first two workshops examined:

– the use Abstract State Machines for service modelling;
– some limitations of UML based behavioural approaches for needs of real-

time modelling, interactive business process modelling, service-orientation
and aspect-orientation;

– transformation of the UML models into formal modelling approaches
(Coloured Petri Nets, pi-calculus);

– compositional behaviour modelling in business processes;
– the application of Design-by-Contract approach to modelling of collaborated

distributed services;
– the use of Protocol Contracts for modelling of choreography of collaborated

distributed services
– the application of Business Rules Modelling approaches for behaviour mod-

elling of services.

The conclusion that may be drawn from the set of the papers presented at two
workshops [1,2] is that the modelling of interaction and integration of system
models is the most problematic aspect of behaviour modelling approaches. The
challenge now is to increase understanding of these issues in the modelling com-
munity as a whole, so that we can work together towards better solutions. The
Third Workshop on Behaviour Modelling - Foundations and Applications contin-
ues to examine how to analyze and classify system behaviour modelling semantics
and how to use and combine behaviour modelling approaches effectively.

References

1. BM-MDA 2009: Proceedings of the First International Workshop on Behaviour
Modelling in Model-Driven Architecture. ACM, New York (2009) ISBN 978-1-60558-
503-1

2. BM-FA 2010: Proceedings of the Second International Workshop on Behaviour
Modelling: Foundation and Applications. ACM, New York (2010) ISBN 978-1-60558-
961-9

Process-Centred Approaches for Model-Driven

Engineering (PMDE) – First Edition

Reda Bendraou1, Redouane Lbath2,
Bernard Coulette2, and Marie-Pierre Gervais3

1 LIP6, Université Pierre & Marie Curie, France
reda.bendraou@lip6.fr

2 Université Pierre de Toulouse le Mirail, France
Lbath@univ-tlse2.fr, Bernard.Coulette@univ-tlse2.fr

3 LIP6, Université Paris Ouest, France
marie-pierre.gervais@lip6.fr

Abstract. On one hand, the process engineering community has devel-
oped a large background on how to specify, to execute and to improve
processes. On the other hand, the model-driven engineering community
brings new techniques for easing the construction of languages and ap-
plications, editors and compilers. The goal of the PMDE workshop is
to bring together experts from both communities to discuss the comple-
mentarity of these domains and how they can be combined together for
a better software productivity and reliability. The workshop will invite
contributions from both academia and the industry and will present the
emerging research topics with their main challenges.

1 Introduction

Despite the benefits brought by the Model-Driven Engineering approach, the
complexity of today’s applications is still hard to master. Building complex and
trustworthy software systems in the shortest time-to- market remains the chal-
lenging objective that competitive companies are facing constantly. A more chal-
lenging objective for these companies is to be able to formalize their development
processes in order to analyze them, to simulate and execute them, and to reason
about their possible improvement.

The PMDE Workshop aims to gather researchers and industrial practitioners
working in the field of Model- Based Engineering, and more particularly on the
use of processes to improve software reliability and productivity.

The PMDE workshop will invite papers presenting research results or work-in-
progress in all areas of process- based approaches for model-driven engineering,
including:

– Modelling software and systems processes for model-driven engineering
– Domain-Specific Languages (DSL) for modelling software and systems pro-

cesses
– Transformation-based process modelling: structural and behavioural aspects

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 383–384, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

384 R. Bendraou et al.

– MDE Process patterns: modelling and application
– MDE Process patterns for reuse: definition, search methods, application of

patterns
– Process models refactoring and composition
– Process lines and MDE
– Verification of process models
– MDE process enactment and simulation
– MDE Process resource management
– Process metrics for model-driven engineering
– Management of distributed MDE processes
– MDE process evolution: static evolution, process models refactoring, dy-

namic process evolution, process deviations management
– Process-centred MDE tools
– Description of case studies based on MDE processes, experimentations on

real projects, empirical studies

2 Submissions and Selection Process

We ask for papers in PDF format and not exceeding 10 pages in the LNCS
style. The paper should present original research work related to the above-
cited topics and should not be published or submitted simultaneously to other
workshops, conferences or journals. Industrial papers are welcome. Each paper
will be blindly reviewed by three members of the program committee.

3 Program committee

– Colin Atkinson (University of Mannheim, Mannheim, Germany)
– Behzad Bordbar (University of Birmingham, UK)
– Jacky Estublier (University of Grenoble, France)
– Christian Haerdt (EADS, Germany)
– JasonXabierMansell (TECNALIA- ICT/EuropeanSoftware Institute,Spain)
– Larrucea Uriarte Xabier (TECNALIA - ICT/European Software Institute,

Spain)
– Leon J. Osterweil (University of Massachusetts, USA)
– Richard Paige (University of York, UK)
– Kakade Rupesh (General Motors Technical Centre, India)
– Garousi Vahid (University of Calgary Alberta, Canada)

4 Workshop Organizers

– Bendraou Reda (LIP6, France)
– Lbath Redouane (IRIT, France)
– Coulette Bernard (IRIT, France)
– Gervais Marie-Pierre (LIP6, France)

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 385–386, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Third International Workshop on Model-Driven
Product Line Engineering (MDPLE 2011)

Goetz Botterweck1, Andreas Pleuss1,
Julia Rubin2, and Christa Schwanninger3

1 Lero, University of Limerick, Ireland
{goetz.botterweck,andreas.pleuss}@lero.ie

2 IBM Research, Haifa, Israel
mjulia@il.ibm.com
3 Siemens CT, Germany

christa@kircher-schwanninger.de

Abstract. MDPLE workshop series focuses on exploring the present and the fu-
ture of Model-Driven Software Product Line Engineering techniques. The main
goal of MDPLE is to bring together researchers and industrial participants in
order to discuss current research in Model-Driven Product Line Engineering
and to identify emerging research topics. The workshop aims to foster the dis-
cussion between experts with background in model-driven engineering and ex-
perts from software product line domain.

The third edition of MDPLE is held in conjunction with the Seventh Euro-
pean Conference on Modeling Foundations and Applications (6-9th of June,
2011, Birmingham, UK).

Keywords: Product line engineering, software product lines, variability man-
agement, model-driven development.

1 Introduction

The fundamental premise of product line engineering (PLE) is that the investment in a
family of products pays off later by allowing systematic, efficient derivation of prod-
ucts. This should be auto-mated as much as possible, which can be achieved via
model-driven engineering (MDE) techniques.

Research in PLE and MDE has many intersections. PLE leverages MDE to specify
variability, domain concepts, configurations and more. (Semi-) automated product
derivation requires mappings between the models on different abstraction layers and
model transformations to derive an implementation from a configuration.

In addition, latest research shows the increasing need for concepts to deal with very
large and evolving systems. Product lines can no longer rely on an immutable scope
but need to be considered as evolving systems which can span over organizational
boundaries. Thus, there is a need to apply and investigate latest concepts from MDE
like model-driven evolution and co-evolution, consistency management, multi-
paradigm modeling, etc.

386 G. Botterweck et al.

In this workshop we aim to bring together researchers and practitioners to foster
the exchange of concepts and ideas between them to address these challenges. We are
interested in the application of concepts from MDE to Product Line Engineering,
including: modelling of software product lines; variability modelling; evolution of
product lines; complexity handling and scalability; automated and interactive tool-
support; aspect-oriented approaches; multiple binding time and run-time variability;
advanced approaches and process models (e.g., multiple product lines and organisa-
tions); integrated handling of multiple models; and variability-aware validation
approaches.

2 Submissions and Selection Process

 We accepted two types of submissions: (1) regular papers (max. 12 pages) presenting
original research and/or experience reports and (2) short papers (max. 6 pages) de-
scribing ongoing research, new results, and future trends. We explicitly encouraged
submission of case studies and experience reports from industry where such
techniques have been applied in industrial practice and on a larger scale.

All papers submitted to the workshop must be unpublished original work and must
not have been submitted anywhere else for publication. Submissions were selected
based on the relevance to the workshop topics and the suitability to trigger discus-
sions.

3 Program Committee

David Benavides, University of Seville, ES; Manfred Broy, TU Munich, DE; Deepak
Dhungana, Siemens CT, AT; Laurence Duchien, Lille University, FR; Ulrich W.
Eisenecker, University of Leipzig, DE; Paul Grünbacher, JKU Linz, AT; Herman
Hartmann, Univ. of Groningen, NL; Patrick Heymans, Univ. of Namur - FUNDP,
BE; Jaejoon Lee, University of Lancaster, UK; Richard Paige, University of York,
UK; Klaus Pohl, University Duisburg-Essen, DE; Andreas Rummler, SAP Research,
DE; Klaus Schmid, University of Hildesheim, DE; Tim Trew, independent, UK;
Frank van der Linden, Philips, NL; Andrzej Wasoswki, IT University Copenhagen,
DK; and the workshop organizers.

4 Workshop Organizers

Goetz Botterweck, Lero, Univ. of Limerick, IE
Andreas Pleuss, Lero, Univ. of Limerick, IE
Julia Rubin, IBM Haifa Research Lab, IL
Christa Schwanninger, Siemens CT, DE

Agile Development with

Domain Specific Languages

Bernhard Rumpe, Martin Schindler,
Steven Völkel, and Ingo Weisemöller

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

1 Introduction

An increasing number of software development projects uses domain specific
languages (DSLs) at least at one stage. Such languages allow domain experts
to take part in the product development, and they can often contribute to im-
proved efficiency. As a drawback, the development of a DSL is a complex and
error-prone software development process itself, which causes additional efforts
and costs. Moreover, the actual software product and the DSL are often devel-
oped concurrently, and the requirements for the DSL may change according to
the needs of developers of the actual product. Therefore, we have to address
two interdependent development processes: the product development process, in
which we may need to react on requirement changes by the customer quickly,
and the language development process, in which we want to define an adaptable
and extensible DSL.

In this tutorial, we sketch preliminary considerations about the use of DSLs,
important methods and techniques that are crucial for defining the language, and
basic technologies for code generation. In our tutorial, we also introduce concepts
for the modular definition of DSLs, quality assurance, and the integration of a
DSL into software development processes. Both our tutorial and this summary
build on our tutorial Generative Software Development presented at the ICSE
2010, respectively on the corresponding summary [4].

2 Usage of DSLs in Software Development Processes

There is already a considerable number of successfully applied domain specific
languages. In the requirements and analysis phase, requirements specification
languages that are close to natural languages have been introduced. Architectural
description languages and the UML play an important role in system design.
Matlab/Simulink is a wide spread language for the implementation of electronic
control units in the automotive industry.

The development of a domain specific language and the corresponding tools is
a software development process itself, which may be expensive and error-prone.
Therefore, the introduction of a DSL is particularly useful in the development

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 387–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

388 B. Rumpe et al.

of large and complex products [1]. In smaller development processes, the im-
provements in terms of efficiency and software quality may not be sufficient to
compensate the initial costs that are caused by the DSL development. If in con-
trast the complexity, size and lifetime of the software product are sufficiently
large, the development of high-quality languages and language instances can
substantially contribute to a more efficient and valuable software system.

3 Development of Domain Specific Languages

The development of precise DSLs and accompanying tools like MontiCore [3] con-
tain concepts of metamodels or grammars (syntax), context conditions (static
analysis and quality assurance) as well as possibilities to define the semantics of
a language. Instances of most DSLs can be mapped to models in different lan-
guages or executable programs by model transformations and code generators.
The growing number and complexity of DSLs is addressed by concepts for the
modular and compositional development of languages and their tools.

As a first step the language has to be defined precisely. This includes a de-
scription of the valid words of the language, which is determined by its syntax
and by context conditions. These are often described by means of context free
grammars, attribute grammars, symbol tables and constraints.

The language definition also includes a description of the semantics of the
language [2]. This is often implemented by means of transformations, with code
generators as an outstandingly important special case. In the case of executable
models, the target language is often a general purpose language such as Java or
C++, and the runtime semantics of the source model are the runtime semantics
of the generated code. Most model-to-text-transformations are implemented by
means of template languages such as Freemarker. Transformations can be exe-
cuted locally on the developer’s machine, or remote as a transformation service,
where the latter reduces the technical efforts required for using a DSL.

In addition to the language definitions, developers need tools to describe and
transform models in the DSL, and the process must be adopted to the usage
of the new language. Moreover, measures for quality assurance of documents in
the language are required. Once these steps in language and tool development
have been completed, the DSL is ready to be used in other software development
processes.

References

1. Deursen, A., Klint, P.: Little Languages: Little Maintenance? Journal of Software
Maintenance: Research and Practice 10, 75–92 (1998)

2. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics“?
Computer 37(10), 64–72 (2004)

3. MontiCore Website, http://www.monticore.de/
4. Rumpe, B., Schindler, M., Völkel, S., Weisemöller, I.: Generative software

development. In: Proceedings of the 32nd International Conference on Software En-
gineering (ICSE 2010), vol. 2, pp. 473–474. ACM, New York (March 2010), tutorial
summary

Incremental Evaluation of Model Queries over

EMF Models: A Tutorial on EMF-IncQuery�

Gábor Bergmann, Ákos Horváth,
István Ráth, and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tudósok krt. 2, Budapest, Hungary
{bergmann,ahorvath,rath,varro}@mit.bme.hu

Keywords: incremental pattern matching, EMF, model query.

1 Introduction

Model driven development platforms such as the industry leader Eclipse Mod-
eling Framework (EMF) greatly benefit from pattern matching, as it supports
various usecases including model validation, model transformation, code genera-
tion and domain specific behaviour simulation. Pattern matching is a search for
model elements conforming to a given pattern that describes their arrangement
and properties, e.g. finding a violation of a complex well-formedness constraint
of a domain specific modeling language.

Two major issues arise in pattern matching: (i) it can have significant impact
on runtime performance and scalability; and (ii) it is often tedious and time
consuming to (efficiently) implement manually on a case-by-case basis. The latter
is typically addressed by a declarative query language (e.g., EMF Query, OCL)
processed by a general-purpose pattern matching engine.

2 EMF-IncQuery

The current tutorial introduces a declarative model query framework over EMF
called EMF-IncQuery [1], using the graph pattern formalism (from the theory of
graph transformations) as its query language and relying on incremental pattern
matching for improved performance. Graph patterns represent conditions (or con-
straints) that have to be fulfilled by a part of the instance model. A basic graph
pattern consists of structural constraints prescribing the existence of nodes (EOb-
jects) and edges (EReference and EAttribute instances) of a given type. Additional
features include pattern composition, negation, and attribute constraints.

The advantage of declarative query specification is that it achieves (effective)
pattern matching with much less time-consuming, manual coding effort than
� This work was partially supported by the SecureChange (ICT-FET-231101)

European Research Project.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 389–390, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

390 G. Bergmann et al.

ad-hoc model traversal. While EMF-IncQuery is not the only technology pro-
viding declarative queries over EMF (think of EMF Query or MDT-OCL), it
has a distinguishing feature, namely incremental pattern matching.

In case of incremental pattern matching, matches of a pattern are explicitly
stored and remain available for immediate retrieval throughout the lifetime of
the EMF ResourceSet. Even when the EMF model is modified, these caches are
continuously and automatically kept up-to-date using the EMF Notification API.
This maintenance happens without additional coding, and works regardless how
the model was modified (graphical editor, programmatic manipulation, loading
a new EMF resource, etc.). In many scenarios this technique provides significant
speed-up at the cost of increased memory consumption.

Additionally, some shortcomings of EMF are mitigated by capabilities of EMF-
IncQuery, such as cheap enumeration of all instances of a type regardless where
they are located in the resource tree. Another such use is navigation of EReferences
in the opposite direction, without having to augment the metamodel with an EOp-
posite, which is problematic if the metamodel is beyond our control.

While EMF-IncQuery might not be the tool best suited for every single
model query problem, it offers some great and unique features in a range of use
cases, some of which will be demonstrated in the tutorial.

3 Tutorial

In this tutorial, we give an overview of the EMF-IncQuery system, demonstrat-
ing how the technology can be applied, and discuss gains and trade-offs. We will
show how cheap pattern matching can have significant performance advantages
in a number of scenarios, such as model validation (model editors can continu-
ously evaluate complex well-formedness constraints and give efficient, immediate
feedback), model transformation (determining the applicability of declarative
transformation rules), and simulation of dynamic domain-specific models (iden-
tifying the possible model evolutions). These will be illustrated using a case
study of on-the-fly well-formedness constraint evaluation in UML models.

Our target audience includes experts already working with EMF based query
or model transformation technologies like EMF Query or ATL and program-
mers/educators who wish to learn about a new EMF based query technology.
The tutorial will build on a basic understanding of EMF and graph patterns to
explain these technicalities and will focus on a software engineer’s viewpoint on
using our framework.

Reference

1. Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Incremental evaluation of
model queries over EMF models. In: Petriu, D., Rouquette, N., Haugen, O.
(eds.) MODELS 2010. LNCS, vol. 6394, pp. 76–90. Springer, Heidelberg (2010),
http://viatra.inf.mit.bme.hu/incquery

Integrated Model Management with Epsilon

Dimitrios S. Kolovos, Richard F. Paige,
Louis M. Rose, and James Williams

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, United Kingdom

{dkolovos,paige,louis,jw}@cs.york.ac.uk

Abstract. This paper provides a summary of the contents of the
ECMFA 2011 tutorial titled ”Integrated Model Management with Ep-
silon”. The aim of the tutorial is to provide an overview of the princi-
ples, practices and standards related to MDE and present the Epsilon
model management platform, which provides an extensible architecture
and set of consistent and interoperable task-specific model management
languages and tools for automating a wide range of MDE operations.

1 Goals and Structure

Model-Driven Engineering (MDE) raises models to first-class development arte-
facts, used throughout the systems engineering lifecycle. MDE inherently relies
on automated model management; an MDE process can involve different kinds of
model management operations such as model-to-model and model-to-text trans-
formation, model validation, comparison, merging, refactoring and evolution.
The aim of the tutorial is to provide an overview of the principles, practices and
standards related to MDE and present the Epsilon model management plat-
form1, a mature and well-established component of the Eclipse GMT project,
which provides an extensible architecture and set of consistent and interopera-
ble task-specific model management languages and tools for automating a wide
range of MDE operations.

The tutorial will be structured as follows; the order in which content is listed
is the approximate order of planned presentation. We envision the tutorial to be
split in two parts; items 1-5 below will be covered in the morning session, while
items 6-8 will be covered in the afternoon session.

1. Introduction to Model-Driven Engineering: a brief overview of the principles,
practices, standards, and tools relevant to MDE. These include standards
such as the OMGs MDA and UML, and tools such as Eclipse EMF and
GMF.

2. Model Management and its Relationship to MDE: the basic principles of
model management, including the need for repositories and MDE tool chains,
which support a variety of MDE scenarios.

1 http://www.eclipse.org/gmt/epsilon/

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 391–392, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

392 D.S. Kolovos et al.

3. Requirements for Model Management: where we give an overview of typical
scenarios for model management from both a customers perspective, and
from a technology perspective. Example scenarios include updating, query-
ing, transforming, and analysing models.

4. The Epsilon Platform: an introduction to the principles, motivation, archi-
tecture, and development tools of the Epsilon platform. A demonstration
of the basic functionality of the platform within Eclipse will be given. The
focus will be on describing the infrastructure through which different drivers
(supporting different modelling technologies) and language reuse is achieved.

5. Epsilon Languages and Tools: detailed presentation of the fundamental lan-
guages and development tools of Epsilon, including:
– the base navigation and modification language, the Epsilon Object Lan-

guage;
– the Epsilon Transformation Language, for model-to-model transforma-

tion;
– the Epsilon Comparison Language, for model comparison;
– the Epsilon Merging Language, for model merging;
– the Epsilon Validation Language, for model validation;
– the Epsilon Wizard Language, for model refactoring, refinement, and

update;
– the Epsilon Generation Language, for model-to-text transformation;
– the Epsilon Flock language, for model evolution;
– EuGENia, for constructing GMF-based graphical editors for Domain

Specific Languages;
– model management workflows in Epsilon, via integration with Ant.

Short demonstrations of the languages, with examples, will be provided. As
well, a discussion on the process and techniques used to develop additional
languages will be presented.

6. Case Studies: a selection of case studies and applications of Epsilon.
7. Future Evolution and Development: an outlook to future developments,

plans, and applications of Epsilon, including an overview of other interesting
applications within the MDE community.

2 Objectives

At the end of the tutorial, participants will:

– understand the challenges of large-scale MDE, and the need for scaleable
model management technology;

– appreciate the benefits and side-effects of using a platform of integrated
languages (Epsilon) for model management.

– understand the basic tasks of model management, and how Epsilon con-
tributes solutions;

– obtain some basic familiarity with the languages of the Epsilon platform,
and how they can be used to solve realistic problems.

R.B. France et al. (Eds.): ECMFA 2011, LNCS 6698, pp. 393–394, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Creating Domain-Specific Modelling Languages
That Work: Hands-On

Juha-Pekka Tolvanen

MetaCase
Ylistönmäentie 31, FI-40500 Jyväskylä, Finland

jpt@metacase.com

Abstract. A horrible lie exists in our industry today: it says that defining a
graphical DSL is difficult and time intensive. In this tutorial, we will lay bare
this fallacy and demonstrate how simple and quick it is to create domain-
specific modelling languages and their generators. Through a hands-on
approach, we define a modelling language and related generators in a few
hours. More than just a technical exercise, we will show how this reflects
industry experiences in various domains and companies.

Keywords: Domain-specific modelling, domain-specific language,
metamodeling, code generation, language workbench.

1 Tutorial Description

Domain-Specific Languages and Model-Driven Development have moved from
scattered successes, through industry hype, to increasingly widespread practical use.
Well-attested benefits include raising the level of abstraction, improving productivity,
and improving quality [1, 2]. The main questions are no longer what or why, but
where and how.

This tutorial will teach participants about Domain-Specific Modelling (DSM) and
code generation, where they can best be used (and where not), and how to apply them
effectively to improve software development. The main part of the tutorial applies a
hands-on approach in which participants define a domain-specific modelling language
and related generators. We will focus on creating modelling languages that enable
true model-driven engineering in which working code is generated from models:

• The language is based on the concepts of the problem domain, not the solution
domain

• The scope of the language is narrowed down to a particular domain
• The language minimizes the effort needed to create, update and check the models
• The language supports communication with users and customers

At the end of the tutorial participants will have implemented several versions of the
language - each time raising the level of abstraction. More than just a technical
exercise, we will show how this reflects industry experiences in various domains,
including telecom, consumer electronics and home automation.

394 J.-P. Tolvanen

2 Tutorial Requirements

2.1 Required Equipment

For the hands-on part it is recommended that everyone has a personal laptop, but it is
also possible to work in pairs. Language creation can be done in any technology or
tool that is available for the participants. For the rest organizers will provide tools [3]
for language creation (supporting the following operating systems: Windows
XP/Vista/7, Mac OS X Snow Leopard (or Panther/Tiger with X11 support installed),
Linux (any contemporary basic distribution should work, but Ubuntu and SuSE are
the recommended ones).

2.2 Pre-requisites

Participants should have experience on using at least one modelling and/or code
generation tool. Experience on using some metamodeling tools is not needed.

3 Tutorial Goals

Participants will learn how to define modelling languages that enable full code
generation from models. In addition to demonstrating industrial cases, during
collaborative group work session participants will apply the principles of language
and generator creation in practice: We seek in good design abstractions, capture them
to a metamodel and define the language including constrains and concrete syntax. At
the end of the session participants will try the language they created to model some
applications.

References

1. Sprinkle, J., Mernik, M., Tolvanen, J.-P., Spinellis, D.: What Kinds of Nails Need a
Domain-Specific Hammer? IEEE Software, 15-18 (July/August 2009)

2. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling full code generation. Wiley,
Chichester (2008)

3. MetaCase, MetaEdit+ Workbench 4.5 SR1 User’s Guide (2009), http://www.
metacase.com/support/45/manuals/

Author Index

Aksit, Mehmet 381
Albert, Patrick 160, 379
Alférez, Mauricio 361
Al-Hilank, Samir 19
Ali, Shaukat 115
Amálio, Nuno 361

Babau, Jean-Philippe 270
Bajwa, Imran S. 132
Ballagny, Cyril 3
Barbier, Franck 3
Barbier, Gabriel 160
Barrett, Stephen C. 329
Behjati, Razieh 236
Bendraou, Reda 383
Bergmann, Gábor 389
Blanc, Xavier 85
Botterweck, Goetz 385
Briand, Lionel 115, 236, 282
Butler, Greg 329

Cabot, Jordi 160, 379
Cariou, Eric 3
Chalin, Patrice 329
Champeau, Joël 270
Ciraci, Selim 361
Colombo, Pietro 97
Combemale, Benôıt 35
Coulette, Bernard 383

da Silva, Marcos Aurélio Almeida 85
Delande, Olivier 85
Del Fabro, Marcos Didonet 160, 379
Dogui, Aymen 189
Dolques, Xavier 189
Doux, Guillaume 160
Drexler, Johannes 19
Dupé, Grégoire 379

Elaasar, Maged 282
Ellner, Ralf 19
Exertier, Daniel 85

Falleri, Jean-Rémy 189
Farcet, Nicolas 270

Feugas, Alexandre 3
Fleurey, Franck 361

Gervais, Marie-Pierre 383
Gessenharter, Dominik 205
Gogolla, Martin 221
Goldschmidt, Thomas 172
Gonnord, Laure 35
Greenyer, Joel 144

Haugen, Øystein 253
Horváth, Ákos 389
Huchard, Marianne 189

Jain, Vaibhav 299
Jung, Martin 19
Jürjens, Jan 52

Khendek, Ferhat 97
Kienzle, Jörg 361
Kindler, Ekkart 381
Kips, Detlef 19
Klein, Jacques 361
Kolovos, Dimitrios S. 391
Kramer, Max 361
Kumar, Anshul 299
Kutsche, Ralf-Detlef 377

Labiche, Yvan 282
Lavazza, Luigi 97
Lbath, Redouane 383
Lee, Mark G. 132
Lee, Scott Uk-Jin 160, 379
Le Noir, Jerome 85
Ludwig, Marie 270

Marchal, Löıc 52
McNeile, Ashley 381
Mens, Tom 69
Milanovic, Nikola 377
Møller-Pedersen, Birger 253
Mosser, Sebastien 361
Mussbacher, Gunter 361

Nebut, Clémentine 189
Nejati, Shiva 236

396 Author Index

Ochoa, Mart́ın 52

Paige, Richard F. 391
Panda, Preeti R. 299
Pfeiffer, Rolf-Helge 312
Pfister, François 189
Philippsen, Michael 19
Pinna Puissant, Jorge 69
Pleuss, Andreas 385
Pook, Sebastian 144

Ráth, István 389
Rauscher, Martin 205
Rieke, Jan 144
Rose, Louis M. 391
Roubtsova, Ella 361, 381
Rubin, Julia 385
Rumpe, Bernhard 387
Rusu, Vlad 35

Schäfer, Wilhelm 1
Schindler, Martin 387

Schmidt, Holger 52
Schwanninger, Christa 385
Selic, Bran 236
Svendsen, Andreas 253

Tolvanen, Juha-Pekka 393

Uhl, Axel 172

Vallecillo, Antonio 221, 345
Van Der Straeten, Ragnhild 69
Varró, Dániel 389
Völkel, Steven 387

W ↪asowski, Andrzej 312
Weisemöller, Ingo 387
Williams, James 391

Yue, Tao 115, 236

Zhang, Gefei 361

	Cover
	Lecture Notes in Computer Science 6698
	Modelling Foundations
and Applications
	ISBN 9783642214691
	Preface
	Conference Organization
	Table of Contents
	Keynote
	Building Advanced Mechatronic Systems

	Model Execution
	Contracts for Model Execution Verification
	Introduction
	Verifying Model Execution through Contracts
	Contracts and Model Transformation Contracts
	Model Execution as Model Transformations
	An Approach for Verifying Model Execution

	Execution of UML State Machines
	Extension of the UML Meta-model
	MOCAS: A UML State Machine Execution Engine

	Execution Contracts on UML State Machines
	Automatic Meta-model Modification
	Specification of the run to Completion Operation

	Related Works
	Conclusion
	References

	A FUML-Based Distributed Execution Machine for Enacting Software Process Models
	Introduction
	FUML Architecture
	Distributed Execution Machine Architecture
	Shared Access to the Execution Model
	Synchronized Access to the Execution Model
	Human Interaction
	Instantiation

	Evaluation
	Exemplary SDP
	Test Setup

	Related Work
	Conclusion and Future Work
	References

	A Generic Tool for Tracing Executions Back to a DSML’s Operational Semantics
	Introduction
	Running Example
	The xSPEM Language and Its Operational Semantics
	Prioritized Time Petri Nets
	A Transformation from xSPEM to PrTPN
	An Illustration of Our Back-Tracing Algorithm

	A Generic Tool for Tracing Executions in Kermeta
	Generic Implementation Using Executable Metamodeling
	Tool Specialization for a Given Example Using Aspect-Oriented (Meta)Modeling

	Formalizing the Problem
	Transition Systems and Execution Matching
	The Back-Tracing Problem
	Back-Tracing Algorithm

	Related work
	Conclusion and Future Work
	References

	Model Analysis
	Incremental Security Verification for Evolving UMLsec models
	Introduction
	UMLseCh: Supporting Evolution of UMLsec Models
	Description of the Notation
	Complex Substitutive Elements

	Verification Strategy
	Application to <<secure dependency>>
	Tool Support
	Related Work
	Conclusion
	References

	Assessing the Kodkod Model Finder for Resolving Model Inconsistencies
	Introduction
	Related Work
	Background
	Inconsistency Resolution Using Kodkod
	Specification of Models
	Inconsistency Resolution

	Case Study
	Cases
	Timing Results

	Threats to Validity
	Discussion and Future Work
	Conclusion
	References

	Operation Based Model Representation: Experiences on Inconsistency Detection
	Introduction
	Praxis: An Operation Based Model Representation Strategy
	Praxis
	PraxisRules: The Consistency Rules DSL for Praxis

	Case Study
	Industrial Context
	Objectives and Planning
	Environment
	Results and Evaluation

	Conclusion
	References

	Methodology
	Generating Early Design Models from Requirements Analysis Artifacts Using Problem Frames and SysML
	Introduction
	The Analysis Process
	Structural Analysis
	Problem Decomposition
	Sub-problem Analysis
	Sub Problem Composition

	The Design Process
	Blackboard Generation
	Knowledge Source Generation
	Composing the Architecture of the System

	Related Work
	Conclusions
	References

	Automated Transition from Use Cases to UML State Machines to Support State-Based Testing
	Introduction
	Related Work
	Background
	Running Example
	RUCM
	UCMeta

	Approach
	Transformation Rules
	Transition to State Machine Diagrams for Automated Test Generation

	Tool Support
	Evaluation, Discussion, and Future Work
	Conclusion
	References

	Transformation Rules for Translating Business Rules to OCL Constraints
	Introduction
	SBVR Constraints
	OCL Constraints

	SBVR to OCL Transformation
	Mapping SBVR Rules to UML Model
	Mapping SBVR Rules into OCL Constraints

	Tool Support
	Experiments and Results
	Related Work
	Conclusion
	References

	Model Management (1)
	Preventing Information Loss in Incremental Model Synchronization by Reusing Elements
	Introduction
	Development of Mechatronic Systems
	Triple Graph Grammars
	Triple Graph Grammar Rules
	Application Scenarios
	Incremental Model Synchronization

	Improved Synchronization
	Improved Synchronization Example
	Improved Synchronization Algorithm
	Selection of Elements to be Reused
	Partial Reusable Pattern Matching Algorithm
	Runtime Evaluation

	Related Work
	Conclusion and Future Work
	References

	An MDE-Based Approach for Solving Configuration Problems: An Application to the Eclipse Platform
	Introduction
	Motivation: Industrial Challenge
	Overall Approach
	Configuration as a CSP
	Decision Tree
	Visualization
	Implementation and Preliminary Results
	Related Work
	Conclusions
	References

	Incremental Updates for View-Based Textual Modelling
	Introduction
	Related Work
	Background on FURCAS
	Running Example
	Synchronisation from Textual View to Model
	Classification of Changes to the Textual Representation of a Model
	Incremental Update Approach

	Validation
	Conclusions and Future Work
	References

	Transformations
	Easing Model Transformation Learning with Automatically Aligned Examples
	Introduction
	Problem Statement
	The Model Matching Approach
	Anchor Discovery
	Anchor Propagation

	Case Study
	Tool Implementation
	Testing Protocol and Metrics
	Data
	Results

	Related Work
	Conclusion
	References

	Code Generation for UML 2 Activity Diagrams
	Introduction
	Modeling with UML
	Structural Modeling
	Activities
	Actions
	Interplay of Structures, Actions and Behaviors

	Code Generation for UML Models
	Implementing Structural Models
	Code Generation for Actions
	Basic Token Flow Concept
	Guards
	Token Flow at Control Nodes
	Code Generation Based on Token Flow Semantics
	Token Flow at Control Nodes in Detail
	Implementing InterruptibleActivityRegions

	Preparing Models by Model Transformations
	Evaluation
	Discussion and Related Work
	Conclusion and Future Work
	References

	Tractable Model Transformation Testing
	Introduction
	Context
	Models and Metamodels
	Model Transformations

	Tracts for Model Transformations
	Model Transformation Contracts
	Generating Test Input Models
	Proof of Concept

	Analysis
	Related Work
	Conclusions
	References

	Variability Analysis and ADLs
	Extending SysML with AADL Concepts for Comprehensive System Architecture Modeling
	Introduction
	Background
	SysML
	AADL

	Profile Description
	Mapping Component Types and Component Implementations
	Extension and Generalization
	Modes
	Mapping for Bindings
	Support for AADL Analysis

	Application and Evaluation of the Profile
	The Avionics Case Study
	The FMC Case Study

	Related Work
	Conclusion and Future Work
	References

	Analyzing Variability: Capturing Semantic Ripple Effects
	Introduction
	Background
	Common Variability Language
	Train Control Language
	Need for Analysis of CVL Models

	Alloy
	Combining CVL and TCL in Alloy
	Formalizing TCL
	Formalizing CVL and Relation to Base Language
	Optimizing the Instance Models

	Analyzing Semantic Ripple Effects
	Related Work
	Conclusion and Future Work
	References

	Integrating Design and Runtime Variability Support into a System ADL
	Introduction
	Background
	IDEA Metamodel Overview

	Variability Challenges in IDEA Models
	Variability during the Model Lifecycle
	Use Case Presentation

	Approach and Implementation
	The Abstract Entity concept
	Design Configurations
	Runtime Configurations

	Related Works
	Conclusion
	References

	Domain-Specific Modelling
	Domain-Specific Model Verification with QVT
	Introduction
	Related Work
	Problem Detection with pQVT
	Example Problem
	Specification Template
	Problem Specification
	Role Specification
	Problem Occurrence Specification
	Variant Specification

	Catalog of Metamodeling Problems
	Well-Formedness Problems
	Semantic Problems
	Convention Problems

	Case Study
	pQVT Expressiveness
	pQVT Effectiveness
	pQVT Performance

	Limitations and Future Work
	Conclusion
	References

	A SysML Profile for Development and Early Validation of TLM 2.0 Models
	Introduction
	TLM 2.0 and Rules for Interoperability
	A SysML Profile for TLM 2.0
	TLM Model Validation
	Expressing TLM Rules in OCL

	Implementation and Case Study
	A Digital Photo Frame : Case Study
	TLM Static Rules Validation
	Code Generation

	Conclusions and Future Work
	References

	Taming the Confusion of Languages
	Introduction
	Background and Rationale
	GenDeMoG
	Experiment
	Discussion and Future Work
	Related Work
	Conclusion
	References

	Model Management (2)
	Table-Driven Detection and Resolution of Operation-Based Merge Conflicts with Mirador
	Introduction
	Background
	Approaches to Merging
	The Merge as a Transformation

	Merge Workflow in Mirador
	Conflicts and the Change Plane
	Conflict Matrix and Change Partitioning
	Visualizing Relations with the Conflict Matrix
	Breaking Cycles with Conflict Partitioning

	Mirador Decision Tables
	Table Specification
	Conflict Detection and the before Predicate
	Conflict Resolution
	Customizing Rules, Conditions, and Actions

	Related Work
	Conclusion and Future Work
	References

	Improving Naming and Grouping in UML
	Introduction
	The UML Package and Its Related Operations
	Current Limitations of the UML Package
	Ownership of Packaged Elements
	Naming Schema
	Name Resolution
	0=X1PackageMerge Problems

	The Proposal
	A More Flexible Grouping Schema
	A More Powerful Naming Schema
	Name Resolution
	Putting It All Together

	Back to the Future
	Redefining Package Import
	Merging Groups

	Related Work
	Conclusions
	References

	Aspect-Oriented Model Development at Different Levels of Abstraction
	Introduction
	AOM at Different Levels of Abstraction
	Authentication Concern
	Feature Abstractions
	Use Cases
	Classes and Sequence Diagrams
	Classes and State Machines
	Services
	Mixins
	Contracts

	Discussion and Conclusion
	References

	Workshop Summaries
	MBSDI 2011 3rd International Workshop on Model-Based Software and Data Integration
	Goals
	Description of the Workshop
	Topics

	MELO 2011 - 1stWorkshop on Model-Driven Engineering, Logic and Optimization
	Model-Driven Engineering, Logic and Optimization: Friends or Foes?
	Relevant Topics
	Organization

	The Third Workshop on Behaviour Modelling - Foundations and Applications
	Process-Centred Approaches for Model-Driven Engineering (PMDE) – First Edition
	Introduction
	Submissions and Selection Process
	Program committee
	Workshop Organizers

	Third International Workshop on Model-Driven Product Line Engineering (MDPLE 2011)
	Introduction
	Submissions and Selection Process
	Program Committee
	Workshop Organizers

	Tutorial Summaries
	Agile Development with Domain Specific Languages
	Introduction
	Usage of DSLs in Software Development Processes
	Development of Domain Specific Languages
	References

	Incremental Evaluation of Model Queries over EMF Models: A Tutorial on EMF-IncQuery
	Introduction
	EMF-IncQuery
	Tutorial
	Reference

	Integrated Model Management with Epsilon
	Goals and Structure
	Objectives

	Creating Domain-Specific Modelling Languages That Work: Hands-On
	Tutorial Description
	Tutorial Requirements
	Required Equipment
	Pre-requisites

	Tutorial Goals
	References

	Author Index

