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Preface

Geometric concepts often play an essential role in obtaining a profound under-
standing of many areas of analysis and mechanics, for instance, in the theory
of Fourier integral operators and in (semi)classical mechanics. This interaction
between geometry and analysis or mechanics is a very dominant and also unifying
theme in the publications of Hans Duistermaat. At the occasion of his 65th birthday,
leading investigators convened at Utrecht University, in August 2007, to discuss
recent developments along these lines and in other areas related to the scientific
interests of Duistermaat. This volume contains refereed contributions from most of
the speakers at this conference and, additionally, two from invited speakers who
were unable to attend.

During the preparation of the conference proceedings, Hans Duistermaat passed
away unexpectedly, on March 19, 2010. There is no doubt in our minds that
Duistermaat would have wished the publication of these proceedings as planned.
Accordingly, we decided to leave the format unchanged, but to add an overview of
Duistermaat’s scientific work as well as some reminiscences by V.W. Guillemin,
A. Weinstein, G. Heckman, and R.H. Cushman, as friends and co-authors.

The thirteen research articles published in this volume cover grosso modo three
different topics: pseudodifferential operators and (inverse) spectral problems, index
theory and localization, and group actions.

Pseudodifferential operators and (inverse) spectral problems. A characteriza-
tion of the local solvability for square systems of pseudodifferential operators is the
topic of the paper of N. Dencker, while J. Sjöstrand describes results on eigenvalue
distributions and Weyl laws for non-self-adjoint operators. F. Alberto Grünbaum
discusses matrix-valued polynomials satisfying differential equations both with
respect to the space and the spectral variables. There are three papers, by S. Vũ
Ngo.c, Y. Colin de Verdière and V.W. Guillemin, and Y. Colin de Verdière, respec-
tively, on the question to what extent the semiclassical spectrum of an operator
determines properties of the operator.
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Index theory and localization. In his article, J.-M. Bismut explains the relations
between refined versions of index theory on a manifold X and the localization
formulas of Duistermaat–Heckman on L X , the associated loop space. P.-E. Paradan
studies the local invariants associated to the Hamiltonian action of a compact torus
and obtains wall-crossing formulas between invariants attached to adjacent con-
nected components of regular values of the moment map. L. Boutet de Monvel,
E. Leichtnam, X. Tang, and A. Weinstein use equivariant Toeplitz operator calcu-
lus in order to give a new proof of the Atiyah–Weinstein conjecture on the index
of Fourier integral operators and the relative index of CR structures. L.C. Jeffrey
and B. McLellan consider the analog of nonabelian localization results of Beasley
and Witten when the gauge group G is the abelian group G = U(1). Finally,
E. Meinrenken explains how to define the quantization of q-Hamiltonian SU(2)-
spaces as push-forwards in twisted equivariant K -homology, and to prove the “quan-
tization commutes with reduction” theorem for this setting.

Group actions. On a symplectic manifold equipped with a Hamiltonian torus action
a real locus is defined to be a set of fixed points for an equivariant smooth anti-
symplectic involution. J.-C. Hausmann and T. Holm observe that certain
cohomological relations between such a real locus and the ambient manifold can
be explained in terms of a purely topological structure, rather than a symplectic
one. There is a close relationship between Mumford’s geometric invariant theory
(GIT) in algebraic geometry and the process of reduction in symplectic geometry.
F. Kirwan’s paper describes ways in which nonreductive compactified quotients,
which cannot be treated by means of classical GIT, can be studied using symplectic
techniques.

List of all speakers. Nalini Anantharaman (École Polytechnique, Palaiseau), Nicole
Berline (École Polytechnique, Palaiseau), Jean-Michel Bismut (Université Paris-
Sud), Yves Colin de Verdière (Université Grenoble), Richard Cushman (Utrecht
University), Nils Dencker (Lund University), F. Alberto Grünbaum (University
of California at Berkeley), Victor Guillemin (Massachusetts Institute of Tech-
nology), Tara Holm (University of Connecticut), Frances Kirwan (University of
Oxford), Eugene Lerman (University of Illinois at Urbana-Champaign), Jiang-
Hua Lu (University of Hong Kong), Eckhard Meinrenken (University of Toronto),
Richard Melrose (Massachusetts Institute of Technology), Paul-Emile Paradan
(Université Montpellier 2), Reyer Sjamaar (Cornell University), Gunther Uhlmann
(University of Washington at Seattle), San Vũ Ngo.c (Université Grenoble), Alan
Weinstein (University of California at Berkeley).

Acknowledgements. We are grateful to Ann Kostant and Tom Grasso for expert
editorial guidance and support. In addition, we thank all the authors for their fasci-
nating and well-prepared lectures as well as their contributions, while the referees
are also thanked for their valuable comments and suggestions. Main funding was
provided by the Mathematical Institute and the Faculty of Science, both of Utrecht
University. Additional financial support was provided by the Royal Netherlands
Academy of Arts and Sciences (KNAW), the Netherlands Organisation for Scientific
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Research (NWO), the Mathematical Research Institute (MRI), the Thomas Stieltjes
Institute for Mathematics, and by the research clusters Geometry and Quantum
Theory (GQT) and Nonlinear Dynamics of Natural Systems (NDNS+).

Utrecht Erik P. van den Ban
August 2010 Johan A.C. Kolk
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Avancée, Université Louis Pasteur, Strasbourg, 1973.

3. On Carleman estimates for pseudo-differential operators. In Colloque Interna-
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Hans Duistermaat (1942–2010)

Erik P. van den Ban∗ and Johan A.C. Kolk∗

On March 19, 2010, mathematics lost one of its leading geometric analysts, Johannes
Jisse Duistermaat. At age 67 he passed away, after a short illness following a
renewed bout of lymphoma the doctors thought they had controlled. “Hans,” as
Duistermaat was universally known among friends and colleagues, was not only
a brilliant research mathematician and inspiring teacher, but also an accomplished
chess player, very fond of several physical sports, and a devoted husband and
(grand)father. The remembrances and surveys that follow are from some of his many
colleagues, students, and friends. We hope that they adequately convey the impres-
sive breadth of Hans’s life and work.

Hans Duistermaat was born December 20, 1942, in The Hague. After the end of
World War II his parents moved to the Netherlands East Indies (Indonesia nowa-
days), where he spent a happy youth. Hans was a student at Utrecht University,
where he wrote his Ph.D. thesis on mathematical structures in thermodynamics.
The famous geometer Hans Freudenthal is listed as his advisor, but the topic was
suggested and the thesis directed by Günther K. Braun, professor in applied mathe-
matics, who tragically died one year before the defense of the thesis, in 1968.

Hans dropped the subject of thermodynamics, because the thesis had led to dis-
sent between mathematicians and physicists at Utrecht University. Nevertheless, this
topic exerted a decisive influence on his further development: in its study, Hans
had encountered contact transformations. These he studied thoroughly by reading
S. Lie, who had initiated their theory. In 1969–1970 he spent one year in Lund,
where L. Hörmander was developing the theory of Fourier integral operators (FIOs);
these are far-reaching generalizations of partial differential operators. Hans’s know-
ledge of the work of Lie turned out to be an important factor in the formulation
of this theory. Hans’s mathematical reputation was firmly established by a long
joint article with Hörmander concerning applications of the theory to linear par-
tial differential equations. In 1972 Duistermaat was appointed full professor at the
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Catholic University of Nijmegen, and in 1974 at Utrecht University, as the successor
to Freudenthal.

In these years, he continued to work on FIOs. At the Courant Institute in
New York he wrote a paper on Oscillatory integrals, Lagrange immersions and
unfolding of singularities, a survey of the subjects in the title that sets the agenda
for the study of singularities of smooth functions and their applications to distri-
bution theory. In some sense it is complementary to FIOs and parallel to work of
V.I. Arnol’d. Furthermore, together with V.W. Guillemin he composed an article
about application of FIOs to the asymptotic behavior of spectra of elliptic operators,
and its relation to periodic bicharacteristics; see the article by Guillemin for more
details. In these works one clearly discerns the red thread connecting most of Hans’s
achievements: on the basis of a complete clarification of the underlying geometry
deep and powerful results are obtained in the area of geometric analysis.

It is characteristic for Hans’s work that after a period of intense concentration on a
particular topic, he would move to a different area of mathematics, bringing thereby
acquired insights quite often to new fruition. Usually, this change was triggered by
a question of a colleague, but more frequently of one of his Ph.D. students. Hans
went to great efforts to accommodate the special needs of his students and help them
develop in their own way, not in his way. In particular, in several cases Hans was
willing and also able to guide students working on topics initiated by themselves.
Examples are the theses of P.H.M. van Mouche and M.V. Ruzhansky.

It was by questions of J.A.C. Kolk and G.J. Heckman that Hans became inter-
ested in the theory of semisimple Lie groups. With Kolk and V.S. Varadarajan he
published fundamental papers on harmonic analysis and the geometry of flag mani-
folds, with the method of stationary phase as the underlying theme. This work
also provided an impetus for the ground-breaking work with Heckman that cul-
minated in the Duistermaat–Heckman formula, which will be discussed separately
by Heckman.

In the thesis of E.P. van den Ban one finds the novel idea, suggested by Hans,
of taking the integrals representing the spherical eigenfunctions on a semisimple
Lie group, which are integrals over a real flag manifold, into integrals on real cycles
inside the complex flag manifold. This allowed application of the method of steepest
descent in order to study their asymptotics, generalizing the approach known in the
theory of hypergeometric functions.

One of Hans’s basic mathematical interests, to which he returned throughout his
life, was classical mechanics and its relations with differential equations. In this
case too, it was often through the work of his students S.J. van Strien, H.E. Nusse,
J.C. van der Meer, J. Hermans, B.W. Rink, and A.A.M. Manders that this topic was
taken up again. His activities in this area will be further discussed by his colleague
and co-author R.H. Cushman.

F.A. Grünbaum posed a problem that led to the joint article Differential equations
in the spectral parameter. It classifies second-order ordinary differential operators
of which the eigenfunctions also satisfy a differential equation in the spectral para-
meter. The classification is in terms of rational solutions of the Korteweg–de Vries
equation.
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Writing a review of the book Lie’s Structural Approach to PDE Systems by
O. Stormark led Hans to further study of that circle of ideas. The result was a paper
on the contact geometry of minimal surfaces as well as the thesis of P.T. Eendebak.

Together with A. Pelayo he wrote several papers about symplectic differential
geometry; furthermore, he directed the thesis of R. Sjamaar. In this part of mathe-
matics Hans was a very influential figure: witness his frequent contacts with other
leading investigators, such as Guillemin and A. Weinstein.

In the later part of his life, Hans had an intense interest in applications of mathe-
matics elsewhere in society. For instance, he was a consultant to Royal Dutch
Shell, which led to the thesis of C.C. Stolk on the inversion of seismic data. Inter-
action with mathematical economists during a conference at Erasmus University
in Rotterdam, where Hans had been invited to give an introduction to Riemannian
geometry, sparked his interest in barrier functions, used in convex programming.
He also collaborated with the geophysicist P. Hoyng in modeling the polarity
reversals of the earth’s magnetic field. The lengths of the time intervals between
the subsequent reversals form an irregular sequence with a large variation, which
make the reversals look like a (Poisson) stochastic process. Within a short period of
time he mastered the nontrivial stochastics needed in this problem.

The bibliography of Hans’s work contains eleven books. Fourier Integral
Operators gives an exposition of seminal results in the area of microlocal analy-
sis. The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator
is concerned with a direct analytic proof of the index theorem of Atiyah–Singer in
a special case of interest for symplectic differential geometry. Lie Groups, jointly
with Kolk, contains a new proof of Lie’s third theorem on the existence of a Lie
group associated to any Lie algebra. The construction of the group as the quotient
of a path space in the Lie algebra was the model for many important generalizations,
including the integration of Lie groupoids by M. Crainic and R.L. Fernandes.

Analysis of Ordinary Differential Equations (in Dutch), jointly with W. Eckhaus,
grew out of a set of lecture notes. Similarly, together with Kolk he authored Multi-
dimensional Real Analysis I: Differentiation and II: Integration (also published in a
China edition), and Distributions: Theory and Applications. The last book contains
a novel proof of the kernel theorem of L. Schwartz, which in turn is used to effi-
ciently derive numerous important results, and a treatment of theories of integration
and of distributions from a unified point of view. The last four books together form
a veritable “cours d’analyse mathématique.”

In the book Discrete Integrable Systems: QRT Maps and Elliptic Surfaces, QRT
(= Quispel, Roberts, and Thompson) maps are analyzed using the full strength
of Kodaira’s theory of elliptic surfaces. A complete and self-contained exposi-
tion is given of the latter theory, including all the proofs. Many examples of
QRT maps from the literature are analyzed in detail, with explicit formulas and
computer pictures. The interest in QRT maps was triggered by interaction with
J.M. Tuwankotta. Hans had the idea to use the technique of blowing up, which
he had previously encountered in the article Constant terms in powers of a Laurent
polynomial jointly with Wilberd van der Kallen.
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While Hans clearly exerted a substantial influence on mathematics through his
own research and that of his many Ph.D. students, the books written by him alone or
jointly traverse a wide spectrum of mathematical exposition, both in topic or level
of sophistication. But in this case again, there is a common characteristic: every
result, how hackneyed it may be, had to be fully understood and explained in its
proper context. In addition to this, when writing, he insisted that the original works
of the masters be studied. Frequently he expressed his admiration for the depth of
their treatment, but he could also be quite upset about incomplete proofs that had
survived decades of careless inspection. The last project that he was involved in
exemplifies this: in joint work with Nalini Joshi reliable proofs are provided of old
but also many new results concerning Painlevé functions.

The mode of writing preferred by Hans was top-down exposition: starting from
the general, descending to the more concrete. Yet, hidden under the façade of
a polished and sometimes quite abstract exposition, there usually was a detailed
knowledge of explicit and representative examples. Many of the notebooks he
left are filled with intricate calculations, which he performed with great precision
and unflagging concentration. Not surprisingly, he greeted the advent of formula
manipulation programs like Mathematica with great enthusiasm. Furthermore, Hans
put a high value on correct illustrations; in private, he could express annoyance about
misleading or ugly pictures. In the days of the programming language Pascal and
matrix printers, he spent a substantial amount of time in order to put a dot exactly
at the position he wanted: one of his favorite techniques for creating complicated
illustrations was by printing just a huge number of dots.

In addition to his patience and powers of concentration, he was capable of
grasping the essence of a problem and its solution with lightning speed. When this
happened during someone’s lecture, he usually mentioned this not critically, but
kindly and supportively.

As a teacher, Hans was quite aware that not every student was as gifted as
he. Despite the fact that he could ignore all restrictions of time and demanded
serious work from the students, he was very popular among them. Repeatedly
he gave unscheduled courses on their request. He was an honorary member of
A-Eskwadraat, the Utrecht Science Students’ Society. He shared this honor with
Nobel laureate G. ’t Hooft and with J.C. Terlouw, a nuclear physicist who pursued
a successful career in Dutch politics.

As an administrator, however, he was less successful. Although he served our
institute, the mathematical community, and the Royal Netherlands Academy of Arts
and Sciences in many different capacities, he was at his best with concrete issues that
could be solved rationally, not with situations that required intricate political maneu-
vering. For instance, he was very actively involved with the Scientific Programme
Indonesia–Netherlands, which was an initiative of the academy, aimed at the
selection and training of new researchers, the improvement of the supervising
infrastructure at Indonesian institutes, and the conduct of joint research activi-
ties. In addition, the task of refereeing manuscripts was taken very seriously by
Hans: many authors greatly benefited from his long e-mails. He was a member
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of a substantial number of selection committees, devoting considerable energy to
evaluating the candidates’ achievements and potential.

In 2004, Hans was honored with a special professorship at Utrecht University
endowed by the Royal Netherlands Academy of Arts and Sciences. This position
allowed him to focus exclusively on his research, without being distracted by
administrative obligations. The five years that followed were a happy period in
which his mathematics blossomed. Hans demonstrated by the breadth and depth
of his accomplishments that his chair was aptly named “pure and applied mathe-
matics.”

His mood was almost invariably one of equanimity; even in difficult situations,
he always tended to look for positive aspects. Immense concentration on a topic
of momentary interest was natural for him. In fact, on several occasions he con-
fessed that he had a “one-track mind,” which made it necessary to mentally exclude
disturbances. At times, however, this trait of character could be infuriating for his
colleagues.

Very remarkably, Hans had no personal vanity, neither in human nor in profes-
sional relations. About his own work he once expressed that he considered himself
lucky for having become well known for results he considered to be relatively
simple. Most of his more difficult work, which had been far more difficult to achieve,
had not received similar recognition. Honors did not mean much to Hans, although
he was at first surprised and then gratified by them. He gave himself without any
reservation to his friends and colleagues, always illuminating whatever was under
discussion with characteristic insights based on his wide knowledge of mathematical
and other topics.

In mathematics, Hans’s life was a search for exhaustive solutions to important
problems. This quest he pursued with impressive single-mindedness, persistence,
power, and success. We know that this is a very sketchy attempt to bring him to
life. In our minds, however, he is very vivid, one of the most striking among the
mathematicians we have met. We deeply mourn his loss; yet we can take comfort in
memories of many years of true and inspiring friendship.



Recollections of Hans Duistermaat

Victor W. Guillemin∗

The two paragraphs below are a few brief recollections of mine from the period
1973–1974, the two years in which Hans Duistermaat and I worked together on our
article “The spectrum of positive elliptic operators and periodic bicharacteristics”
(and for me the two most memorable and exciting years of that decade). In the
summer of ’73, Hans and I met for the first time at an AMS-sponsored conference
on differential geometry at Stanford and began to formulate the ideas that became
the wave trace part of our paper. Then in the fall of 1974 he made a long visit to MIT,
during which we firmed up these ideas and also proved the periodic bicharacteristic
results that became the second main part of our paper.

A little prehistory: In the early 1970s, Bob Seeley, David Schaeffer, Shlomo
Sternberg, and I ran a seminar at Harvard which was largely devoted to Hörmander’s
papers [1] and [2] and Hörmander–Duistermaat [3]. In particular, we spent a lot
of time going through [3], which was the first systematic application of micro-
local techniques to the problem of propagation of singularities. (Like analysts the
world over, we were amazed at how simple this subject becomes when viewed from
the perspective of the cotangent bundle.) Therefore, when I met Hans that summer
I was well primed to discuss with him the contents of these papers. However, what
initiated our collaboration was another memorable event from that conference: the
announcement by Marcel Berger of Yves Colin de Verdière’s result on the spectral
determinability of the period spectrum of a Riemannian manifold. I vividly remem-
ber sitting next to Hans at Berger’s lecture and our exchanging whispered comments
as it became more and more evident that what Yves had done was intimately related
to the things the two of us were currently thinking about. By the time the conference
ended we had formulated a trace theorem for FIOs which asserted that the singulari-
ties of the wave trace are supported on the period spectrum of P (and hence that
the wave trace gives one a simple means of accessing these data). As I mentioned
above, this result became the first part of our paper. The second part was based on
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an observation that Hans and I had made (each independently) that arose apropos of
a result of Hörmander’s in [1]. One of the most quoted results of Hörmander’s paper
is a generalization of a theorem of Avakumovic in which he obtains an “optimal”
error term in the Weyl law for an elliptic pseudodifferential operator P and shows
that this error term is indeed optimal by showing that this is the case if P is the
Laplace operator on the standard round sphere. I noticed that this can be related to
the fact that for the n-sphere the bicharacteristic flow associated with P is periodic.
(More explicitly, I noticed that if the bicharacteristic flow of an elliptic operator P is
periodic (i.e., P is Zoll) there has to be a clustering of eigenvalues about a lattice
which prevents a sharpening of the Weyl law and vice versa.) In proving this result
I made essential use of techniques developed in [3], so it was not surprising that
when I described it to Hans at Stanford, I found that he had been thinking along
similar lines. Moreover, it slowly began to dawn on us that the Hörmander example
was just the tip of the iceberg. Among other things we noticed that his optimal error
term could be replaced by a slightly better optimal error term (a big “O” could be
converted into a little “o”) if P was not Zoll, and also noticed that in this case the
Weyl law could be differentiated to give an equidistribution result for eigenvalues.
We also obtained a much sharper version of my clustering result: we showed that
the clusters are clearly demarcated eigenbands of fixed width. Subsequently Alan
Weinstein and Yves Colin de Verdière added a further dimension to this story by
discovering that when Zoll phenomena are present, these clusters satisfy their own
beautiful distribution law. Furthermore, Bill Helton discovered an extremely clean
and economical version of our result: Let A be set of numbers obtained by taking
all differences of pairs of eigenvalues, and let B be the cluster set of A. Then if the
bicharacteristic flow is periodic, B is an integer lattice and if not, it is the whole real
line.

At any rate, to conclude these reminiscences, by the spring of 1974, most of the
conjectures we had made at the Stanford meeting had been supplied with rigorous
proofs, although Hans continued, as was his wont, to tinker with them for the
next several months just to make sure that they were “best possible.” (No one
was going to be able to achieve instant immortality by slightly improving them.)
When Hans visited me in the fall the only unfinished piece of business was the
Zoll part of the paper, and that consumed all our energies for four intense weeks.
(One typical “Hans” memory from that time: One evening I return home late in
the evening exhausted in mind and spirit following a frustrating day in which the
two of us struggled without success to settle a delicate point about how large sets
of periodic bicharacteristics have to be for clustering to occur. At 2 o’clock in
the morning I get jarred awake by a phone call from Hans letting me know that
he’d settled it.) I remember the aftermath of Hans’s visit as a period of a slow,
painful decompression. Never before had I worked so intensely and so single-
mindedly on a project (and, for better or for worse, was destined never to do so
again).
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1. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218.
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Alan Weinstein

I first met Hans in the fall of 1972; my notes from his lecture in Princeton on “Non-
involutive operators” continue to make good reading. His work on ordinary differ-
ential equations was already well known to me; his study of periodic orbits for the
spring pendulum was the inspiration for the thesis of my first PhD student, Jair
Koiller.

Hans and his familty then stayed in Berkeley in the summer of 1973 while we
were attending the AMS Summer Institute in differential geometry at Stanford. I still
have a picture in my mind of our daughters, aged about 2 at the time, playing in the
sandbox in our backyard. As for mathematics, that was the time when contact with
Hans deepened my interest in Fourier integral operators. Although Hans was not a
co-author of Part 1 of the illustrious pair of papers by Hörmander, his influence is
clear (and he is the only person thanked by Hörmander in that article).

We met again at a 1974 meeting in Nice, and then spent a lot of time together
at the 1975 Nordic Summer School in Grebbestad, Sweden. Here I was totally
immersed in the world of microlocal analysis (and Hans was also immersed in the
nearby sea, which was too cold for anyone but him and the Finns in our group).
A Google search for Duistermaat and Grebbestad turns up exactly two results—
links to Hans’s famous paper on global action-angle coordinates and my own rather
obscure one on the order and symbol of a distribution.

This was just the beginning of Hans’s influence on me through his papers and our
frequent meetings. Other important influences were the 1972 NYU Lecture Notes
on Fourier Integral Operators, which I was very pleased to incorporate later on into
the Progress in Mathematics book series, where it remains one of the best places to
learn about this subject. Nowhere else is the symplectic geometry of this subject,
including the geometry of the Maslov class, so beautifully and concisely explained.
The book is also notable for a section at the end linking the homogeneous and
“asymptotic” theories of microlocal analysis.
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The wonderful 1975 work with Guillemin on spectrum and periodic bicharacter-
istics extended the work of Colin de Verdière and Chazarain and set the paradigm
for how such matters should be treated. During a visit by Hans to Berkeley, we tried
to understand how the Birkhoff normal form of a periodic orbit might be encoded
in the spectrum, but that project unfortunately remained unfinished.

A series of papers with Kolk and Varadarajan (1979, 1983) treated harmonic
analysis on noncompact semisimple Lie groups. Hans’s interest in Lie groups also
led to the book with Kolk (2000), based on a course which Hans taught at Berkeley,
among other places, and for which a manuscript circulated for many years before
publication. Their beautiful proof of Lie’s third theorem, constructing a Lie group
as a quotient of the paths in the Lie algebra, suggested to me that there should be a
similar construction going from Lie algebroids to groupoids. This was carried out in
fundamental work of Crainic and Fernandes whose influence continues to this day.

I last saw Hans in the summer of 2009, when I was in Utrecht for a PhD thesis
defense. I have a nice photo of the two of us in academic garb in the garden of the
cloister at the university. The photo was taken by Marius Crainic, but the setting was
carefully managed by Hans. Hans told me that he would be having a surgery later
that summer but did not sound particularly concerned; he was obviously hiding the
worst from me.

The remarks above cover only a tiny part of Hans’s life and work, but they show
that both his personal influence and “higher-order effects” have left a lasting mark
on mathematicians and mathematics. It was a shock to lose him so suddenly, and his
presence in our world will be sorely missed.
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Gert Heckman∗

I would like to share with you some recollections of Hans Duistermaat from the
period 1978–1981, during which he played a crucial role in my mathematical
development. In 1976 I had started my dissertation work under the guidance of
Gerrit van Dijk. In his thesis of 1962, the Russian mathematician Alexander Kirillov
had developed a very elegant geometric method, the so-called orbit method, for
understanding the representation theory of connected nilpotent Lie groups. In this
method the branching rule for understanding how an irreducible representation
decomposes under restriction to a subgroup has a very simple and elegant answer.

Gerrit suggested to me that I try to understand to what extent this orbit method
could shed new light on the representation theory of semisimple Lie groups, in
particular for the discrete series representations. In my first short paper from the
summer of 1978 I worked out a particular example for compact Lie groups. Accord-
ing to the customs of those days I sent it around to several potentially interested
people, and in return quickly received a reaction from Hans. My main result turned
out to be already in the literature, and in addition Hans sketched an alternative and
more elegant geometric proof. Aware of the fact that his letter might be intimidating
for me he wrote at the end: “It is maybe superfluous to emphasize that I do not write
you this proof out of pedantry, but rather as a sign of interest for your work, and I do
hope that it leads to a still better understanding of the whole situation.”

So my first little paper went into the wastebasket, but I was to receive some-
thing more valuable in return. I visited Hans regularly in Utrecht, and in June 1980
I defended my dissertation in Leiden with both Gerrit and Hans as thesis advisors.
I realize now how lucky I was to have these two complementary teachers: Gerrit with
his extensive knowledge of the work of Harish-Chandra, and Hans as the eminent
analyst and geometer.

In August 1980 I went to Boston, to spend two years as a postdoc at MIT, and
in September I lectured in the Lie groups seminar about my thesis work: how the
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orbit method for compact Lie groups describes the branching rules in an asymptotic
way, and how this leads to a convex polytope in which the multiplicities of the
branching rule have their support [9]. The talk was received well, most notably by
Victor Guillemin. Victor knew Hans well, and had great admiration for him. In 1975
they had written a beautiful article on the spectrum of elliptic operators on compact
manifolds [5]. Looking back at my time at MIT, I realize again how lucky I was to
be there during that period with Victor around.

That fall a number of new insights were unveiled regarding continuous symmetry
reduction in symplectic geometry through the work of Guillemin–Sternberg,
Atiyah–Bott, and Mumford. In these at first sight rather different contexts, namely
quantum mechanics, quantum field theory, and algebraic geometry, there was a
single fundamental underlying concept for the description of symmetry, namely that
of the geometry of the moment map (or momentum map as Hans preferred to call
it). I quote from a survey article by Bott from 1988 [4]:

In fact, it is quite depressing to see how long it is taking us collectively to truly sort out
symplectic geometry. I became aware of this especially when one fine afternoon in 1980,
Michael Atiyah and I were trying to work in my office at Harvard. I say trying, because the
noise in the neighboring office made by Sternberg and Guillemin made it difficult. So we
went next door to arrange a truce and in the process discovered that we were grosso modo
doing the same thing. Later Mumford joined us, and before the afternoon was over we saw
how Mumford’s stability theory fitted with the Morse theory. The important link here is
the concept of a moment map, which in turn is the mathematical expression of the relation
between symmetries of Lagrangians and conserved quantities; in short, what the physicists
call Noether’s theorem and which is one of their great paradigms.

In this quotation Bott refers to the results of fundamental publications by
Guillemin–Sternberg [7], [8], Mumford [12], Ness [13], Atiyah–Bott [1], and
Kirwan [10]. Since then, symplectic geometry has become a truly independent field
in its own right.

In the spring of 1981 Victor gave a course on symplectic geometry, with special
emphasis on the geometry of the moment map, and I learned the subject well. During
the month of August I went back to the Netherlands to visit family and friends. The
day before my return I was doing some last-minute work at MIT, when it occurred
to me that the rather complicated locally polynomial formulas for the multiplicities
could be explained by a linear variation of the symplectic form in the cohomology
of the reduced phase space, at least over the generic fiber. A nice idea, but I had
no clue how to prove it. A few days after my return I visited Hans, and we spent a
whole afternoon talking about symplectic geometry. I told him about my question,
and he listened attentively. That same evening he called me up at my parents’ house,
and with a piece of scratch paper on my lap I got an exposition of what later would
become our joint paper [6].

Our work was well received. Independently of one other, Berline–Vergne [3] and
Atiyah–Bott [2] placed it in the more general framework of equivariant cohomo-
logy. Our article was used later by Ed Witten in his work on two-dimensional
Yang–Mills theory [14]. More recently our theorem was used again by Mariyam
Mirzakhani in her computation of the Weil–Petersson volumes of the moduli space
of curves [11].
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In September 1982 I obtained a permanent position in Leiden as an assistant to
Gerrit van Dijk: a solid base from which to pursue mathematical work profession-
ally. I now appreciate very well the important role played by Hans during the early
stages of my career. It is not inconceivable that without him I would have become a
high-school teacher rather than a university professor of mathematics.

After this period of intensive contact from 1978 to 1981 our mathematical roads
diverged. Our personal relationship remained, however, and I cherish the memories
of the parties held for his 60th birthday and on the occasion of his royal decoration.

The sudden passing of Hans leaves behind a great emptiness, in the first place
for his wife Saskia, his daughters Kim and Maaike and his relatives, but also for the
many mathematicians with whom he collaborated. During the cremation ceremony
many affecting words were spoken about Hans. His sister Dineke told the story of
how, when she asked him as a student why he had chosen mathematics, Hans replied
that he had no other option, because his talent for mathematics was such a godsend.
I realize how very lucky I am that Hans shared this talent with me so generously.
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Classical mechanics and Hans Duistermaat

Richard H. Cushman∗

One of Hans’s favorite subjects was classical mechanics. As can be seen from
his list of publications, his interest in this area was wide-ranging. In order to
describe what he did, I will organize these papers, somewhat arbitrarily, into three
classes: (i) periodic solutions near an equilibrium point; (ii) monodromy in inte-
grable systems; (iii) other topics.

In [1] Hans studied the persistence of periodic solutions near an equilibrium point
of a two-degrees-of-freedom Hamiltonian system which is in 1 : 2 resonance. This
is the simplest situation in which a well-known theorem of Lyapunov on the per-
sistence of periodic solutions fails. Years later Hans returned to this subject in the
almost forgotten paper [4]. Here, using the theory of singularities of mappings which
are invariant under a circle action that fixes the origin, he proved a stability result
for the set of short-period periodic orbits near an equilibrium point of a resonant
Hamiltonian system of two degrees of freedom. In particular, he showed that this
set of periodic orbits is diffeomorphic to the set of critical points of rank one of
the energy-momentum mapping. Here the energy is the Hamiltonian of the Birkhoff
normal form of the original resonant Hamiltonian truncated at some finite order. The
momentum of the circle action is the quadratic terms of this normal form. As far as
I am concerned, this result is the definitive generalization of Lyapunov’s theorem.

Hans’s most important contribution to the geometric study of Hamiltonian
systems is his discovery of the phenomenon of monodromy in [3]. To describe what
monodromy is we look at a two-degrees-of-freedom Hamiltonian system on four-
dimensional phase space, which we assume is Euclidean space. We suppose that this
Hamiltonian system has another function, which is an integral, that is, is constant
on the motions of the original Hamiltonian system. Such a Hamiltonian system is
said to be completely integrable with integral map given by assigning to each point
in phase space the value of the Hamiltonian and the extra integral. If we assume
that the integral map is proper and each preimage of a point is connected, then
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the action-angle theorem shows that the preimage of a suitably small open 2-disk
in the set of regular values of the integral map is symplectically diffeomorphic to
a product of a 2-torus and 2-disk. Hans showed that this local theorem need not
hold globally. In particular, if we have a smooth closed, nonintersecting curve in
the set of regular values of the integral map, then the preimage of this curve in
phase space under the integral map is the total space of a 2-torus bundle, which
need not be diffeomorphic to a product of the closed curve and a 2-torus. To under-
stand what this global twisting is, we note that a 2-torus bundle over a circle may
be looked at as a product bundle over a closed interval with a typical fiber a 2-torus.
Here each of its two end 2-tori, which are Euclidean 2-space modulo the lattice of
points with integer coordinates, are glued together by an integer 2 × 2 matrix with
determinant 1. The monodromy of this 2-torus bundle is just this integer matrix.
If the monodromy is not the identity matrix, then the 2-torus bundle is not a pro-
duct bundle. In [3] Hans gave a list of geometric and analytic obstructions for local
action-angle coordinates to be global. Monodromy is just the simplest obstruction.
Monodromy would not be interesting if there were no two-degrees-of-freedom inte-
grable Hamiltonian systems having it. When Hans was starting to write [3], he asked
me to find an example of such a system. The next day I told him that the spherical
pendulum, which was studied by Christiaan Huygens in 1612, has monodromy and
gave him a proof. When writing up the paper Hans found a much simpler geomet-
ric argument to show that the spherical pendulum has monodromy. In [6] Hans and
I discovered that monodromy appears in the joint spectrum of the energy and angular
momentum operators of the quantized spherical pendulum. This discovery has now
been recognized as fundamental by chemists who study the spectra of molecules
and has led to a very active area of scientific research. In the early days, showing
that a particular integrable system had monodromy was not easy. In [8] Hans did
this for the Hamiltonian Hopf bifurcation.

In the middle 1990s Hans became interested in nonholonomically constrained
systems such as the disk or a dynamically symmetric sphere with its center of mass
not at its geometric center. Both are assumed to be rolling without slipping on a
horizontal plane under the influence of a constant vertical gravitational force. This
interest gave rise to [9]. In this paper Hans gave a simple geometric criterion for a
not necessarily Hamiltonian system to have monodromy. He showed that an oblate
ellipsoid of revolution rolling without slipping on a horizontal plane under the influ-
ence of a constant vertical gravitational force has a cycle of heteroclinic hyperbolic
equilibria whose local monodromies add up to the identity. This shows that it cannot
be made into a Hamiltonian system. The book [11] clearly indicates Hans’s contribu-
tions to the geometric study of nonholonomically constrained systems. Especially,
it contains a complete qualitative study of the motion of the rolling disk, some of
which was published in [10].

His remaining publications range from removing the incompleteness of the flow
of the Kepler problem for all negative energies at the same time, see [7], to showing
that the 1 : 1 : 2 resonance is nonintegrable by looking at its fourth-order normal
form. In two degrees of freedom, integrability cannot be decided by any finite-order
normal form. In the remaining paper on periodic linear Hamiltonian systems [2]
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Hans answered an old question of Bott’s about the Morse index of iterates of a
periodic geodesic. Bott showed that this index is the sum of the index of the periodic
geodesic and invariants of the real symplectic conjugacy class of the linear Poincaré
map. Hans gave an explicit formula for the Morse index.

Working with Hans and collaborating on our joint publications is at the core
of my mathematical career. It is hard for me to realize that he cannot answer my
questions anymore.
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Duistermaat–Heckman formulas
and index theory

Jean-Michel Bismut

To the memory of Hans Duistermaat

Le maı̂tre: Eh bien! Jacques, l’histoire de tes amours?
Jacques: Je ne sais où j’en étais. J’ai été si souvent interrompu
que je ferais tout aussi bien de recommencer.

Diderot, Jacques le fataliste

Abstract The purpose of this paper is to explain the relations between refined
versions of index theory on a manifold X and the localization formulas of
Duistermaat–Heckman on the loop space L X . Starting from Atiyah’s remark
exhibiting such a connection for the Atiyah–Singer index formula for the Dirac
operator acting on spinors, we ultimately explain the geometric counterpart on L X
to η-invariants, η̃-forms and holomorphic torsion.

Key words: Index theory and related fixed point theorems
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Introduction

The purpose of this paper is to explain the deep connections between the localization
formulas of Duistermaat–Heckman and index theory.

Let us first give the proper background to the subject. In [A85], Atiyah and Witten
discovered the remarkable fact that when translating the McKean–Singer formula
[MS67] for the index of the Dirac operator over spinors into the integral on the
loop space of a differential form, this form is equivariantly closed with respect to
the vector field generating the obvious action of S1 on the loop space. A formal
application of the localization formula of Duistermaat–Heckman [DH82, DH83]
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2 Jean-Michel Bismut

leads to the index theorem of Atiyah–Singer for this specific operator, essentially
without analysis. This application remains formal, because integration of differential
forms on an infinite dimensional manifold is not well-defined.

The merit of this approach is that it gives a geometric formula for the index
which preexists the index formula. This remark led us first to extend Atiyah’s
remark to general Dirac operators [B85], and also to start the project of building
up a dictionary between these two theories, so as to use whatever could be gained
from one theory to the other. It is this project that we will try to present here in some
detail.

Let us immediately mention that the specific approach which will be taken
here gives a partial and somewhat paradoxical view of the subject. Also we will
be led to overemphasize our own work. Nevertheless we felt such a perspective
could still be useful in a field which may look arduous and overly technical to the
outsider.

Let us give a few more details. Let X be a Riemannian manifold. It is well known
that the theory of the heat equation on X is equivalent to the theory of Brownian
motion over X . In particular the trace of the heat operator on X can be expressed as
the integral of a well-defined measure over the continuous loop space L0 X , which is
also called a path integral. Then S1 acts naturally on L X , and the measure integrated
over L0 X is S1-invariant. Passing from the trace of an operator to the integral of a
measure on the loop space is already passing from analysis to geometry. An impor-
tant formula in this context is the Feynman–Kac formula. Above all, Itô’s stochastic
calculus gave a tremendous input to a better understanding of the correspondence
between second order differential operators and path integrals.

From the point of view of physics, this correspondence can also be described as
passing from a Hamiltonian, or operator theoretic perspective, to a Lagrangian or
path integral formalism. As we shall see in the paper, this correspondence also has
some features of a nonlinear Fourier transform.

There are two new inputs in Atiyah’s point of view. On the operator side, there
is the Dirac operator DX , and its square, whose corresponding heat operator is used
in the McKean–Singer formula for the index Ind(DX+), valid for t > 0,

Ind(DX+) = Trs[exp(−t DX,2)]. (0.1)

In (0.1), Trs is our notation for the supertrace. On the geometric side, measures are
replaced by differential forms. Atiyah’s ideas give a cohomological perspective to
the Hamiltonian–Lagrangian correspondence. The main drawback is that this corre-
spondence is not well defined.

A well-known method to prove the index theorem for Dirac operators is to make
t → 0 in (0.1). Taking the local expansion of the heat kernel and its supertrace leads
to a proof of the local index theorem of Gilkey and Atiyah–Bott–Patodi [Gil84,
ABP73], via the mechanism of the ‘fantastic cancellations’ anticipated by McKean–
Singer [MS67]. Of course the local index theorem implies the index theorem, but it
is stronger. In the index formula for Dirac operators with boundary, Atiyah–Patodi–
Singer [APS75a, APS75b] exploited the local index theorem to establish their index
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theorem. On the other hand, many of the known proofs of the Duistermaat–Heckman
formulas rely on explicit choices of differential forms, and this explicit choice has
also a ‘local’ character.

In [B86b], we found that the heat equation method in index theory is by itself
the infinite-dimensional version of an easy proof of the localization formula in finite
dimensions, and that the ‘fantastic cancellations’ have a universal counterpart in the
finite-dimensional proof of the localization formula. This made not only equivariant
cohomology in infinite dimensions relevant in predicting the index theorem, but also
allowed refined local versions of the index formula and of the localization formula
to be put in one-to-one correspondence.

That such a correspondence possibly exists is interesting by itself. But one can
well imagine that since it relates objects of a fundamentally different nature, what-
ever information one can gain from one side can be passed to the other side, with
the important proviso that since integrals of differential forms on L X are not well
defined, any information one could get on that side would have to be translated back
in the real operator-theoretic world to make sense. A difficulty in using such a point
of view was that at the time the objects to be constructed did not exist on either side
of the correspondence.

The ultimate purpose of this paper is to describe this correspondence as a loop
space functor, mapping ordinary K -theory into the equivariant cohomology of the
loop space, and Hermitian K -theory into the secondary theory of currents naturally
associated with the localization formulas. Objects like η-invariants, holomorphic
torsion are shown to correspond to Chern–Simons or Bott–Chern currents on the
loop space. Also by transforming K -theoretic or analytic objects into geometric
objects, any statement related to the families index theorem or Riemann–Roch–
Grothendieck acquires a purely geometric flavour, which makes it accessible to a
geometric treatment; this in turn can be used to construct the proper analytic objects,
and also to anticipate how they should behave.

A powerful motivation for this study has been the program by Gillet–Soulé,
which led them to the proof of an arithmetic Riemann–Roch theorem [GSo92].
It turns out that the loop space functor provides a useful understanding of the
analytic objects that are natural in that theory.

Needless to say, the fact that the same object can be understood and analysed
from several points of view makes the object more interesting. What is offered here
is not an alternative or better view of objects which are otherwise known, but it is
another view, whose main drawback is that some of the objects are not always well
defined.

This paper is organized as follows. In Section 1, we review the Duistermaat–
Heckman localization formula and the construction of associated secondary currents.

In Section 2, we summarize simple results which connect the heat equation on a
manifold to measures on its loop space.

In Section 3, we develop Atiyah’s remarks, and also the connection between the
‘fantastic cancellations’ and the localization formula.
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Finally, in Section 4, we relate Hermitian K -theory to the theory of secondary
currents associated with the localization formula.

The author is indebted to a referee for carefully reading the manuscript.

1 The Duistermaat–Heckman formula

The purpose of this section is to present the Duistermaat–Heckman localization
formula, and to give a proof of the formula using explicit universal differential
forms. Secondary currents of Chern–Simons or Bott–Chern type are also attached
to the localization formula.

This section is organized as follows. In Subsection 1.1, we prove the localization
formula, using a form αt which will reappear in the whole paper.

In Subsection 1.2, we discuss the functorial aspects of the formula.
In Subsection 1.3, we give a transgressed version of the formula, and we con-

struct a current ε of Chern–Simons type, whose existence implies the localization
formula.

In Subsection 1.4, we give an integration along the fibre version of the formula.
In Subsection 1.5, we refine the integration along the fibre formula using the

currents ε.
In Subsection 1.6, we relate the question of the compatibility of the currents ε to

composition of projections via adiabatic limits.
In Subsection 1.7, we discuss the localization formula for complex manifolds.

In particular we obtain a current σ of Bott–Chern type, whose existence implies the
localization formula, and from which the current ε can also be obtained.

Finally, in Subsection 1.8, we discuss integration along the fibre for complex
manifolds.

1.1 The localization formula

Let X be a compact connected oriented manifold. Let T be a torus acting smoothly
on X , and let t be its Lie algebra. Let gT X be a T -invariant metric on T X . If f ∈ t,
let f X be the corresponding smooth vector field on X . If f ∈ t, then f X is a Killing
vector field.

Now we fix a K ∈ t. Let �·(X) be the vector space of smooth forms on X . Let
L K X denote the associated Lie derivative operator acting on the de Rham complex
(�·(X), d X ). The Cartan formula asserts that

L K X = [d X , iK X ]. (1.1)

In (1.1), iK X denotes interior multiplication by K X . Since d X and iK X are both odd
operators, the supercommutator appearing in (1.1) is actually an anticommutator.
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Put
d X

K = d X + iK X . (1.2)

Then (1.1) can be rewritten in the form

d X,2
K = L K X . (1.3)

Let �·K (X) be the vector space of smooth K X -invariant forms on X , i.e., of the
forms α which are such that

L K X α = 0. (1.4)

By (1.3), (1.4), we find that when acting on �·K (X),

d X,2
K = 0. (1.5)

The vector space �·K (X) is naturally Z2-graded, and d X
K acts as an odd operator on

�·K (X). Set
HK (X) = ker d X

K /d X
K �·K (X) . (1.6)

Then HK (X) is a Z2-graded vector space, which is called the equivariant coho-
mology associated with K . Forms vanishing under d X

K will be called equivariantly
closed forms.

Remark 1.1. Let S·(t∗) be the algebra of polynomials on t. If K is allowed to vary in
t, then dK acts naturally on �·(X)⊗ S·(t∗). By giving forms their classical grading
and polynomials in S·(t∗) twice their degree, �·(X)⊗ S·(t∗) acquires a Z-grading,
and d X

K is a differential, i.e., it increases the total degree by 1. The cohomology of
the complex (�·(X)⊗ S·(t∗), d X

K ) is the equivariant cohomology of X in the sense
of Cartan [Ca51a, Ca51b, GuSt99]. We will mostly disregard this point of view,
which is nevertheless intimately related to what is done here.

Let N be the number operator of �·(T ∗X). Then N defined the Z-grading of
�·(X). Note that if s ∈ R∗,

sN d X
K s−N = sd X

K/s2. (1.7)

It follows that HK (X) is unchanged when replacing K by t K , t > 0.
Let ∇T X be the Levi-Civita connection on T X , and let RT X be its curvature.

Since K X is a Killing vector field,∇T X· K X is an antisymmetric section of End(T X).
Since K X preserves ∇T X , we get easily

∇T X· ∇T X· K X + iK X RT X = 0. (1.8)

Let X K ⊂ X be the zero set of K X . Then X K is a totally geodesic submanifold
of X . Let i be the embedding of X K into X . Let NX K /X be the orthogonal bundle
to T X K in T X |X K . Then i∗ : (�·K (X) , d X

K ) → (�·(X K ), d X K ) is a morphism of
Z2-graded complexes. Witten [W82] has shown that this is a quasiisomorphism, i.e.,
the map i∗ : HK (X)→ H ·(X K ) is an isomorphism of Z2-graded vector spaces.
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By (1.8), we find that if U ∈ T X K ,

∇T X
U ∇T X K X = 0. (1.9)

Let∇NXK /X be the connection on NX K /X , which is the restriction of∇T X to NX K /X ,
and let RNX K /X be the curvature of the connection ∇NXK /X . We denote by JK the
restriction of ∇T X· K to NX K /X . By (1.9), JK is an antisymmetric parallel endomor-
phism of NX K /X , which is nondegenerate, so that NX K /X is of even dimension.

If V is an oriented Euclidean vector space of even dimension n, if A ∈ End(V )
is antisymmetric, let ωA be the 2-form on V such that if a, b ∈ V ,

ωA(a, b) = 〈a, Ab〉. (1.10)

By definition if η is the unit volume form defining the orientation of V , the Pfaffian
Pf[A] ∈ R is such that

ω
n/2
A

(n/2)!
= Pf[A]η. (1.11)

We can rewrite (1.11) in the form

[exp(ωA)]max = Pf[A]η. (1.12)

A basic property of the Pfaffian is that it is a square root of the determinant, i.e.,

det[A] = Pf2[A]. (1.13)

Then NX K /X is naturally oriented by JK , the orientation being such that

Pf[JK ] > 0. (1.14)

The orientation of NX K /X induces a corresponding orientation of X K .
Set

eK (NX K /X ,∇NXK /X ) = Pf

[

JK + RNX K /X

2π

]

. (1.15)

Then eK (NX K /X ,∇NX K /X ) is a closed even form on X K , whose cohomology class
eK (NX K /X ) does not depend on the connection ∇NXK /X . This class is called the
equivariant Euler class of NX K /X . Because of (1.14), the closed form e−1

K (NX K /X ,

∇NX K /X ) is well defined. We denote by e−1
K (NX K /X ) the corresponding even coho-

mology class on X K .
Of course the real vector bundle NX K /X splits according to the eigenvalues of JK .

The form eK (NX K /X ,∇NXK /X ) and the class eK (NX K /X ) can then be expressed as
a finite product over the eigenvalues of JK of the Euler forms or the Euler classes of
the corresponding components of NX K /X .

Let K X ′ be the 1-form on X which is dual to K X by the metric gT X . Since K X

is Killing,
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L K X K X ′ = 0, (1.16)

which by (1.3) can be rewritten as

d X
K [d X

K K X ′] = 0. (1.17)

The K X -invariant form d X
K K X ′ is d X

K -closed and d X
K exact. Of course

d X
K K X ′ = d X K X ′ + |K X |2, (1.18)

i.e., (1.18) is the sum of a 0-form and of a 2-form.
If U, V ∈ T X , we have the obvious formula,

d X K X ′(U, V ) = 2〈∇T X
U K , V 〉. (1.19)

Definition 1.2. For t > 0, set

αt = exp(−d X
K K X ′/2t). (1.20)

By (1.17),
d X

K αt = 0. (1.21)

The even form αt will play an essential role in the whole paper.

Now we state the localization formula of Duistermaat–Heckman [DH82, DH83]
and Berline–Vergne [BeV83].

Theorem 1.3. For any μ ∈ HK (X), the following identity holds:
∫

X
μ =

∫

X K

μ

eK (NX K /X )
. (1.22)

Proof. We will not reproduce the original proofs, although we will comment later on
the proof by Berline–Vergne. Here we will give our proof in [B86b, Theorem 1.3].

If β is a smooth form on X ,
∫

X
d Xβ = 0. (1.23)

Moreover, since iK X β cannot be of top degree, we also get
∫

X
iK X β = 0. (1.24)

By (1.23), (1.24), we obtain
∫

X
d X

K β = 0. (1.25)

We still denote by μ a smooth form on X which is d X
K closed and represents the

corresponding cohomology class. We claim that for any t > 0,
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∫

X
μ =

∫

X
αtμ. (1.26)

Indeed
α∞ = 1, (1.27)

so that (1.23) holds at t = +∞. Moreover, since d X
K αt = 0, d X

K μ = 0,

∂

∂ t

∫

X
αtμ = 1

2t2

∫

X
αt [d

X
K K X ′]μ = 1

2t2

∫

X
d X

K [αt K X ′μ] = 0. (1.28)

Therefore we have established (1.26).
Now we will make t → 0 in (1.26). By (1.18), it is clear that for ε > 0, if

Uε is an ε tubular neighbourhood of X K in X , then αt converges to 0 uniformly
on X \ Uε . Let π be the projection NX K /X → X K , and let Y be the tautological
section of π∗NX K /X on the total space NX K /X of NX K /X . Then JK Y is a fibrewise
Killing vector field on NX K /X . Let JK Y ′ be the corresponding fibrewise 1-form on
the fibres NX K /X . Using the connection∇NX K /X , we may consider JK Y ′ as a 1-form
on NX K /X , which vanishes horizontally. Let ωJK be the fibrewise 2-form associated
with JK as in (1.10). We can consider ωJK as a 2-form on NX K /X which vanishes
horizontally. Then one verifies easily that

dNX K /X JK Y ′ = −2ωJK + 〈RNX K /X Y, JK Y 〉. (1.29)

Equivalently,
dNX K /X JK Y ′ = −2ωJK − 〈JK RNXK /X Y, Y 〉. (1.30)

Also RNXK /X JK is a 2 form on X K with values in symmetric endomorphisms of
NX K /X . By (1.29), we get

−1

2
d
NXK /X

JK Y JK Y ′ = 1

2
〈JK (JK + RNXK /X )Y, Y 〉 + ωJK . (1.31)

We now take a geodesic coordinate system on the tubular neighbourhood Uε in
the directions normal to X K . This way we identify Uε to the ε-neighbourhood of X K

in NX K /X . For s > 0, let ks be the dilation of NX K /X , which is given by Y → sY .
Then one verifies easily that

k∗√
t

K X ′

t
= JK Y ′, (1.32)

so that as t → 0,

k∗√
t

d X
K K X ′

t
→ d

NX K /X

JK Y JK Y ′. (1.33)

From (1.33), it is not difficult to deduce the convergence of currents on X as t → 0,

αt → α0 = π∗[exp(−d
NX K /X

JK Y JK Y ′/2)]δX K . (1.34)
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By combining (1.26) and (1.34), we finally obtain
∫

X
μ =

∫

X
α0μ. (1.35)

Let us now evaluate α0. By (1.31), π∗[exp(−dJK Y JK Y ′/2)] is just a fibrewise
Gaussian integral, which produces the inverse of a square root of a determinant.
A simple computation leads to the formula

π∗[exp(−d
NXK /X

JK Y JK Y ′/2)] = 1

eK (NX K /X ,∇NX K /X )
, (1.36)

so that

α0 = δX K

eK (NX K /X ,∇NXK /X )
. (1.37)

By (1.35) and (1.37), we get (1.22). The proof of our theorem is completed.

Remark 1.4. By (1.34), α0 is the integral along the fibre of a d
NX K /X

JK Y -closed form on
NX K /X , which is just the form α1 on NX K /X which is associated with the fibrewise
Killing vector field JK Y . This reduces the proof of the localization formula to the
computation of a similar formula with integration replaced by integration along the
fibre, albeit of a very simple form. In Subsection 1.4, we will study an integration
along the fibre version of the localization formula. Still it is important to keep in
mind that the proof of the ordinary localization formula already incorporates some
version of integration along the fibre.

We will often refer to the convergence of currents in (1.34) to be a local
Duistermaat–Heckman formula.

Let J be the canonical complex structure on C 
 R2. Let K = −JY be the
obvious Killing vector field on R2. If ω is the canonical orientation form on R2,
then

exp(−dR2

K K ′/2) = exp(−|Y |2/2)(1+ ω). (1.38)

A tautological application of (1.22) leads to the Gaussian integration formula
∫

R2

1

2π
exp(−dR2

K K ′/2) = 1. (1.39)

Incidentally note that (1.39) has already been used in (1.36). Equation (1.39) will
reappear later in an infinite-dimensional context.

1.2 Functoriality of the Duistermaat–Heckman formula

Here, we will describe the compatibility of equation (1.22) to submersions. Indeed
let π : M → S be a T -equivariant submersion of smooth compact oriented
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T -manifolds, with compact oriented fibre X . If K ∈ t, let K M , K S be the corre-
sponding vector fields on M, S, so that π∗K M = K S . We use otherwise the notation
of Subsection 1.1.

Let π∗ denote integration of smooth forms along the fibre X . Note that

π∗d M
K = d S

K π∗. (1.40)

Let μ ∈ �·K (M) be such that d M
K μ = 0. By (1.40), we get

d S
K π∗μ = 0. (1.41)

Clearly,
∫

M
μ =

∫

S
π∗μ. (1.42)

Moreover, by Theorem 1.3, we get
∫

M
μ =

∫

MK

μ

eK (NMK /M)
,

∫

S
π∗μ =

∫

SK

π∗μ
eK (NSK /S)

. (1.43)

We will reconcile (1.42) and (1.43). Let M K = π−1SK . Then M K is a T -invariant
submanifold of M which fibres on SK , and the restriction of K M to M K is tangent
to the fibres X . Also MK is a submanifold of M K . By applying Theorem 1.3 on
M K , we get

∫

SK

π∗μ
eK (NSK /S)

=
∫

M K

μ

π∗eK (NSK /S)
=

∫

MK

μ

π∗eK (NSK /S)eK (NMK /M K )
.

(1.44)
Observe that the Euler class is multiplicative, so that

eK (NMK /M) = π∗[eK (NSK /S)]eK (NMK /M K ). (1.45)

Equation (1.45) ultimately explains the compatibility of (1.42) and (1.43).
There is a similar compatibility result to embeddings, which is more difficult to

explain. For more details, we refer to [B92a].

1.3 Transgression currents and localization

We make the same assumptions as in Subsection 1.1. Recall that the form αt on X
was defined in (1.20). Put

βt = K X ′

2t2
αt . (1.46)

Let ‖ ‖C1 be a norm on �·(X) associated with the uniform convergence of forms on
X together with their first derivatives.
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Theorem 1.5. The following identity holds:

∂

∂ t
αt = d X

K βt . (1.47)

There exists C > 0 such that for μ ∈ �·(X), t ∈]0, 1],
∣

∣

∣

∣

∫

X
(αt − α0)μ

∣

∣

∣

∣

≤ C
√

t‖μ‖C1 , (1.48)

∣

∣

∣

∣

∫

X
tβtμ

∣

∣

∣

∣

≤ C
√

t‖μ‖C1 .

Proof. Equation (1.47) follows from (1.20) and (1.21). The first equation in (1.48)
follows easily from the arguments in the proof of Theorem 1.3. Moreover, observe
that as t → 0,

k∗√
t

K X ′

t
→ JK Y ′. (1.49)

By proceeding as in the proof of Theorem 1.3, we get easily the second identity in
(1.48).

Remark 1.6. For more refined results involving microlocal convergence, we refer to
[B86b, Theorem 1.3] and to [B92a, Theorem 2.5].

Definition 1.7. Let ε be the current on X ,

ε = −
∫ +∞

0
βt dt . (1.50)

When t → +∞, the integral in (1.50) converges trivially, and as t → 0,
Theorem 1.5 should be used to make sense of the integral.

Theorem 1.8. The odd current ε is such that

d X
K ε = δX K

eK (NX K /X ,∇NX K /X )
− 1. (1.51)

Moreover, the wave-front set of ε is included in N∗X K /X . On X \ X K , we have the
identity,

ε = − K X ′

d X
K K X ′ . (1.52)

Proof. Equation (1.51) follows from Theorem 1.5 and from (1.50). The fact that
the wave-front set of ε is included in N∗X K /X follows from the arguments in [B86b,
B92a]. Finally, (1.52) is a consequence of (1.46) and (1.50).

Remark 1.9. If μ ∈ �·(X), then
∫

X
d X

K (εμ) = 0. (1.53)
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If d X
K μ = 0, then (1.53) takes the form

∫

X
(d X

K ε)μ = 0. (1.54)

By (1.51), (1.54), we get (1.22). The existence of ε is stronger than the localization
formula. The current ε is a current of Chern–Simons type.

Also observe that by (1.52), we have the obvious identity,

d X
K ε = −1 on X \ X K . (1.55)

Now equation (1.55) is an obvious consequence of (1.51). Still (1.51) is stronger
since it extends ε as a current on X . In fact from equation (1.52), one deduces that
ε is a L1 current on X .

Inspection of (1.52) shows that the restriction of the form ε to X \ X K is closely
related to a form used in Berline–Vergne [BeV83] in their proof of the localization
formulas. Indeed Berline–Vergne consider a K X -invariant 1-form a on X \ X K such
that iK X a = 1 on X \ X K , and define a form b on X \ X K by the formula

b = − a

d X
K a

. (1.56)

Of course we still have
d X

K b = −1 on X \ X K . (1.57)

By using Stokes formula on X \ X K , Berline–Vergne [BeV83] ultimately prove the
localization formulas.

1.4 Localization formulas and integration along the fibre

Let π : M → S be a submersion of smooth manifolds, with compact oriented fibre
X . Let T be a torus acting smoothly on M , and preserving the fibres X . If f ∈ t,
f M is now a smooth section of T X = T M/S, i.e., a vector field along the fibres X .
This is why we will use the notation f X instead of f M .

We now fix K ∈ t, and we use the notation of the previous subsections. It follows
from (1.40) that π∗ gives a map H ·K (M)→ H ·(S).

Let T H M be a T -invariant horizontal subbundle of T M , so that T M =
T H M ⊕ T X . Let gT X be a T -invariant metric on T X . Let K X ′ ∈ T ∗X be the
fibrewise 1-form associated with K X via the metric gT X . We will consider K X ′ as
a 1-form on M which vanishes on T H M . As in (1.16), we have

L K X K X ′ = 0. (1.58)

It is important to observe that if gT M is a T -invariant metric on M that restricts to
gT X on T X , and is such that T H M is orthogonal to T X with respect to gT M , then
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K X ′ is exactly an object of the type we already met in the proof of Theorem 1.3, by
simply replacing X by M and gT X by gT M in that proof.

As before, MK denotes the zero set of K X . Then MK is a submanifold of M ,
which fibres on S with compact fibre X K which embeds in the fibre X . Let NX K /X

be the orthogonal bundle to T X K in T X |MK with respect to gT X . We can identify
NX K /X to the normal bundle NMK /M .

By a construction given in [B86a], (T H M, gT X ) determine a unique Euclidean
connection on T X . This connection restricts to the Levi-Civita connection along
the fibre X . If gT M is a metric on M such that gT M restricts to gT X on T X , and
moreover T H M and T X are orthogonal in T M with respect to gT M , then ∇T X

is the projection of the Levi-Civita connection ∇T M on T M with respect to the
splitting T M = T H M ⊕ T X . Of course ∇T X is T -invariant. It is easy to see that
∇T X induces connections ∇T X K ,∇NXK /X on T X K , NX K /X .

We still define the closed form eK (NX K /X ,∇NXK /X ) on MK as in (1.15).
The form αt is still defined as in (1.20), the only difference being that K X ′ is

now defined as indicated at the beginning of the present subsection. The form αt is
a special case of the corresponding form in (1.20), when replacing X by M and gT X

by gT M .
In the sequel, we will denote by

∫

X the integration along the fibre, which was
previously denoted by π∗.

Let μ ∈ �·(M) be such that d M
K μ = 0. By (1.41),

∫

X μ is a closed form on S,
and its cohomology class only depends on the d M

K cohomology class of μ.
Now we state an extension of Theorem 1.3 which was established in [B86b,

Theorem 1.9].

Theorem 1.10. The following identity holds:
∫

X
μ =

∫

X K

μ

eK (NX K /X ,∇NX K /X )
mod d S�·(S). (1.59)

Proof. The proof is formally exactly the same as the proof of Theorem 1.3.
By proceeding formally as in (1.25) and using instead (1.40), we find that for

any t > 0,
∫

X
μ =

∫

X
αtμ mod d S�·(S). (1.60)

We define the current α0 as in (1.34), (1.37), i.e.,

α0 = δMK

eK (NX K /X ,∇NXK /X )
. (1.61)

As we saw in (1.34), when t → 0, we have the convergence of currents on M ,
αt → α0. Therefore when t → 0, we have the convergence of currents on S,

∫

X
αtμ→

∫

X K

μ

eK (NX K /X ,∇NX K /X )
. (1.62)

By (1.60), (1.62), we get (1.59).
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Remark 1.11. By proceeding as in [B90c, Theorems 5.1 and 5.4] and in [BGS90b,
Theorem 3.12], one can prove that as t → 0, αt → α0 microlocally with respect
to the topology of currents whose wave front set is included in N∗X K /X = N∗MK /M .
By [Ho85, Theorem 8.2.12], the convergence in (1.62) is a uniform convergence of
smooth forms and their derivatives on compact sets of S.

1.5 Transgression formulas and integration along the fibre

We make the same assumptions as in Subsection 1.4. Over M , we define the smooth
form βt as in (1.46). Let μ be a smooth d M

K -closed form on M . By equation (1.47),
we get

∂

∂ t

∫

X
αtμ = d S

∫

X
βtμ. (1.63)

As we saw in Remark 1.11, the estimates in (1.48) can be made microlocal in the
class of currents whose wave-front set is included in N∗X K /X . By using again the
results in [Ho85], we find that for t ∈]0, 1],

∣

∣

∣

∣

∫

X
(αt − α0)μ

∣

∣

∣

∣

≤ C
√

t, (1.64)

∣

∣

∣

∣

∫

X
tβtμ

∣

∣

∣

∣

≤ C
√

t .

In (1.64), the estimate is taken with respect to the sup norm of compact sets of
smooth forms and their derivatives of finite order. Also the constant C in (1.64)
depends explicitly on μ.

We still define the current ε on M by a formula similar to (1.50). Set

ϑ =
∫

X
εμ. (1.65)

Then ϑ is a current on S.

Theorem 1.12. The current ϑ is a smooth form on S, which is such that

d Sϑ =
∫

X K

μ

eK (NX K /X ,∇NXK /X )
−

∫

X
μ. (1.66)

Proof. The fact that ϑ is smooth follows from the microlocal estimates which were
described above. Equation (1.66) is a consequence of (1.40) and (1.51).
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1.6 Equivariant projections and adiabatic limits

We make again the same assumptions as in Subsection 1.2 and we use the corre-
sponding notation.

Let gT M be a T -invariant metric on T M, and let gT S be a T -invariant metric
on T S. Then gT M restricts to a T -invariant metric gT M K

on T M K . Let gT X be the
restriction of gT M to T X . Then the metric gT X |MK on T X |M K is also T -invariant.
The orthogonal bundle T H M K to T X |M K in T M K is also T -invariant.

The projection π : M K → SK verifies exactly the assumptions of Subsection 1.4.
In particular the torus T now acts along the fibres of this projection.

As we saw in Subsection 1.2, the formulas of Duistermaat–Heckman are com-
patible to functorial operations. Given our choice of metrics, there are associated
currents εM on M , εS on S and εM K

on M K . One can then ask to what extent these
currents are compatible. Analogues of natural identities relating similar currents
were established in [BGS90b]. In connection with Remark 1.4, for ε > 0, it is
natural to introduce the T -invariant metric gT M

ε on T M given by

gT M
ε = gT M + 1

ε
π∗gT S . (1.67)

and for t > 0, to replace gT M
ε by gT M

ε /t . Indeed by playing with the parameters
ε, t , we can obtain in this way a whole range of localization formulas. They are
associated with the smooth forms αε,t on M which are attached to the metric gT M

ε /t .
When ε → 0, two phenomena occur. The first is that localization is forced on M K .
But a second related phenomenon is that the fibres of π : M K → SK are further
and further apart.

Making ε → 0 is also called passing to the adiabatic limit.
We will not discuss refined identities on the currents ε much more in this paper.

Holomorphic analogues for their complex analogues are discussed in much detail in
the context of embeddings in [B92a].

1.7 Localization formulas and complex manifolds

We make the same assumptions as in Subsections 1.1 and 1.3. Also we assume that
X is a complex manifold, and that the torus T acts holomorphically on X . In the
sequel, T X denotes the holomorphic tangent bundle, and TR X is the real tangent
bundle. Let J be the complex structure of TR X , so that T X, T X are the eigenspaces
J that are associated with the eigenvalues i,−i . The de Rham operator d X splits as

d X = ∂
X + ∂ X . (1.68)

We fix K ∈ t. Let K X (1,0), K X (0,1) be the components of K X in T X, T X ,
so that
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K X = K X (1,0) + K X (0,1). (1.69)

Put

∂
X
K = ∂

X + iK X (1,0) , ∂ X
K = ∂ X + iK X (0,1) . (1.70)

Clearly,

d X
K = ∂

X
K + ∂ X

K . (1.71)

Moreover, since K X (1,0) is a holomorphic section of T X , using (1.3), we get

∂
X,2
K = 0, ∂ X,2

K = 0, [∂
X
K , ∂ X

K ] = L K X . (1.72)

By (1.72), we deduce that when acting on �·K (X),

[∂
X
K , ∂ X

K ] = 0. (1.73)

Let gT X be a T -invariant Hermitian metric on T X , let gTR X be the corresponding
Riemannian metric on T X , and let 〈, 〉 be the corresponding scalar product. Let ωX

be the associated Kähler form on X , i.e., if U, V ∈ TR X ,

ωX (U, V ) = 〈U, J V 〉. (1.74)

Then ωX is a (1, 1) form on X . Clearly,

L K X ωX = 0, (1.75)

which by (1.72) can also be written as

∂
X
K ∂ X

K ωX = −∂ X
K ∂

X
K ωX . (1.76)

Also observe that
K X ′ = (iK X (1,0) − iK X (0,1) )iωX . (1.77)

Now we assume that the metric gT X is Kähler, i.e., the form ωX is closed, so that

∂
X
ωX = 0, ∂ XωX = 0. (1.78)

By (1.77), (1.78), we get

K X ′ = (∂
X
K − ∂ X

K )iωX . (1.79)

By (1.71), (1.76), and (1.79), we obtain,

d X
K K X ′ = 2∂ X

K ∂
X
K iωX = −2∂

X
K ∂ X

K iωX . (1.80)

From (1.20), (1.80), we get the formula in [B90a, eqs. (14) and (15)],

αt = exp(∂
X
K ∂ X

K iωX/t). (1.81)
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Recall that βt was defined in (1.46). Set

γt = ωX

t
exp(∂

X
K ∂ X

K iωX/t). (1.82)

Now we have the result in [B90a, Proposition 5] and [B92a, Theorem 2.3].

Theorem 1.13. The following identities hold:

∂
X
K αt = 0, ∂ X

K αt = 0, (1.83)

βt = ∂ X
K − ∂

X
K

2i

γt

t
,

∂

∂ t
αt = d X

K βt = ∂
X
K ∂ X

K

i

γt

t
.

Proof. The first two identities follow from (1.21) and (1.71), or from (1.76) and
(1.81). By (1.46), (1.77), (1.79), (1.81), we obtain the third identity. The fourth
identity follows from (1.47) and from our third identity, or more directly from (1.81).

Note that X K is a complex submanifold of X . Also NX K /X is a holomorphic
Hermitian vector bundle on X K , and ∇NXK /X is the corresponding holomorphic
Hermitian connection.

By [B90a, eq. (40)] and [B92a, Theorem 2.7], as t → 0, the current γt has an
asymptotic expansion of the type,

γt = λ−1

t
+ λ0 +O(t). (1.84)

By Theorem 1.5,

λ−1 = ωX

eK (NX K /X ,∇NXK /X )
δX K . (1.85)

For s ∈ C, set

F(s) = 1

�(s)

∫ +∞

0
ts−1γt dt. (1.86)

Using the above results, one can easily prove that the current can be defined as a
meromorphic function of s ∈ C, Re(s) < 1, which is holomorphic at s = 0.

Set

σ = ∂

∂s
F(0). (1.87)

The following result was established in [B90a, Theorem 6] and in
[B92a, Theorem 2.12].

Theorem 1.14. The current σ is a sum of currents of type (p, p), whose wave-front
set is included in N∗X K /X,R. Moreover, it verifies the equations of currents on X,

∂
X
K ∂ X

K

i
σ = 1− δX K

eK (NX K /X ,∇NXK /X )
,

∂
X
K − ∂ X

K

2i
σ = ε. (1.88)
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Proof. The first equation in (1.88) follows from (1.48) and from the last identity in
(1.83). The second equation is a consequence of the third equation in (1.83).

Remark 1.15. Equation (1.88) indicates that the current σ is a current of Bott–Chern
type [BoC65]. For a general theory of Bott–Chern currents, we refer to Gillet–Soulé
[GSo90] and also to Bismut–Gillet–Soulé [BGS90b, BGS90a]. The paper [B92a]
is devoted to the study of the functorial behaviour of the current σ under complex
embeddings.

1.8 Complex manifolds and integration along the fibre

Here we make the same assumptions as in Subsections 1.4 and 1.5, while also
assuming M and S to be complex manifolds, and π : M → S to be holo-
morphic, and also that the action of the torus T on M is holomorphic. Here
T M, T X = T M/S, T S will denote the obvious holomorphic tangent bundles.

One can try to adapt the arguments we gave in Subsection 1.4 to obtain secondary
Bott–Chern forms on S by integration along the fibre of the currents σ of
Subsection 1.7.

It is not difficult to see that what is needed is a closed real 2 form ωM of type
(1, 1), whose restriction ωX to the fibres X induces a Kähler metric gT X along the
fibres X . Let T H M ⊂ T M be the orthogonal bundle to T X with respect to ωX .
If ωM,H is the restriction of ωM to T H

R M , we can write ωM in the form

ωM = ωM,H + ωX . (1.89)

Equations (1.81), (1.82) for αt , γt are now replaced by

αt = exp(∂
M
K ∂ M

K iωM/t), γt = 2πωM

t
exp(∂

M
K ∂M

K iωM/t). (1.90)

Note the form αt in (1.90) is a special case of the form αt which was considered in
Subsection 1.4.

Let μ be a smooth form on M which is a sum of forms of type (p, p), and such

that d M
K μ = 0, which is equivalent to ∂

M
K μ = 0, ∂ M

K μ = 0. Instead of (1.63), we
now have

∫

X
βtμ = ∂ S − ∂

S

2i

∫

X

γt

t
μ,

∂

∂ t

∫

X
αtμ = ∂

S
∂ S

i

∫

X

γt

t
μ. (1.91)

For s ∈ C, set

�(s) = 1

�(s)

∫ +∞

0
ts−1

∫

X
γtμ. (1.92)

Then for s ∈ C,�(s) < 1, �(s) is a smooth form on S which depends holomorphi-
cally on S. Of course, if we define the form F(s) on M as in (1.86), then
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�(s) =
∫

X
F(s)μ. (1.93)

Set

τ = ∂

∂s
�(0). (1.94)

If we define the current σ on M as in (1.87), then

τ =
∫

X
σμ. (1.95)

Also ∇N
X K /X is exactly the holomorphic Hermitian connection on NX K /X . More-

over, τ is a smooth form on S which is a sum of (p, p) forms, and which is such
that

∂
S
∂ S

i
τ =

∫

X
μ−

∫

X K

μ

eK (NX K /X , NX K /X )
. (1.96)

Finally, if we define ϑ as in (1.65), by (1.88), (1.95), we get

∂
S − ∂ S

2i
τ = ϑ. (1.97)

2 Heat equation and measures on the loop space

The purpose of this section is to review classical results connecting the trace of the
heat kernel on a Riemannian manifold to integrals over the continuous loop space
of the manifold of well-defined measures.

This section is organized as follows. In Subsection 2.1, we consider first the case
of finite-dimensional traces and corresponding integrals over a discrete loop space.

In Subsection 2.2, we relate the heat kernel on a Riemannian manifold to path
integrals.

Finally, in Subsection 2.3, we state the Feynman–Kac formula.

2.1 Finite-dimensional traces

Let V be a finite-dimensional real vector space of dimension n, let e1, . . . , en be a
basis of V . Let u ∈ End(V ), and let A = (a j

i ), 1 ≤ i, j ≤ n be the matrix of u with
respect to this basis. Then the trace Tr[u] is given by

Tr[u] =
n

∑

i=1

ai
i . (2.1)
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More generally, for q ∈ N,

Tr[uq+1] =
∑

1≤i0,...iq≤n

ai1
i0

ai2
i1

. . . ai0
iq

. (2.2)

Set
X = {1, 2, . . . , n}. (2.3)

Let μA
q+1 be the measure on Xq+1 such that

μA
q+1(i0, . . . , iq) = ai1

i0
ai2

i1
. . . ai0

iq
. (2.4)

Observe that Xq+1 should be thought of as a discrete version of a loop space.
Indeed (i0, . . . , iq) should be considered as the vertices of a graph, whose edges are
virtual lines connecting (i0, i1), (i1, i2), . . . , (iq , i0). The weight μA

q+1(i0, . . . , iq)
in (2.4) is the product of the weights of the ordered edges of this graph.

Then we can rewrite (2.3) in the form

Tr[uq+1] =
∫

Xq+1
dμA

q+1. (2.5)

Observe that identity (2.5) is just a tautological reformulation of (2.2).
Put Fq+1 = Z/(q + 1)Z. It will be convenient to view 0, . . . , q as describing the

elements of Fq+1. The set Xq+1 = {1, . . . , n}q+1 can be identified with the set of
maps from Fq+1 into X . The group Fq+1 acts on Xq+1, so that if j ∈ Fq+1,

j (i0, . . . , iq) = (i0+ j , . . . , iq+ j ). (2.6)

Then the measure μA
q+1 is obviously Fq+1-invariant.

Assume the a j
i to be nonzero. If v ∈ End(V ), if B = (b j

i ), 1 ≤ i, j ≤ n is the
associated matrix, then the measure μB

q+1 has a density d B
A,q+1 with respect to μA

q+1
which is given by

d B
A,q+1(i0, . . . , iq) =

bi1
i0

bi2
i1

. . . bi0
iq

ai1
i0

ai2
i1

. . . ai0
iq

. (2.7)

By (2.5), we get

Tr[vq+1] =
∫

Xq+1
d B

A,q+1dμA
q+1. (2.8)

2.2 The heat kernel on a compact Riemannian manifold

Let (X, gT X ) be a compact Riemannian manifold, with volume dx . Let �X be the
Laplace–Beltrami operator. For t > 0, let pt(x, y) be the smooth heat kernel on X
which is associated with the operator exp(t�X /2).
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Let L2 be the Hilbert space of square-integrable real functions on X . Then
exp(t�X/2) ∈ End(L2). We will consider pt(x, y) as an infinite-dimensional
matrix, indexed by couples (x, y), x, y ∈ X .

Clearly,

Tr[exp(t�X/2)] =
∫

X
pt(x, x)dx . (2.9)

For q ∈ N,
exp(t�X/2) = [exp(t�X/2(q + 1))]q+1. (2.10)

Equation (2.9) is equivalent to the identity

pt (x, y) =
∫

Xq
pt/(q+1)(x, x1) . . . pt/(q+1)(xq, y)dx1 . . . dxq . (2.11)

By (2.9), (2.11), we obtain

Tr[exp(t�X/2)] =
∫

Xq+1
pt/(q+1)(x0, x1) . . . pt/(q+1)(xq, x0)dx0 . . . dxq . (2.12)

Let dμt,q+1 be the positive measure on Xq+1,

dμt,q+1 = pt/(q+1)(x0, x1) . . . pt/(q+1)(xq, x0)dx0 . . . dxq . (2.13)

Then we can rewrite (2.12) in the form

Tr[exp(t�X/2)] =
∫

Xq+1
dμt,q+1. (2.14)

Equation (2.14) is a continuous analogue of (2.5).
Note that (2.14) does not depend on q . The underlying property of the mea-

sures μq+1 is that in an algebraic sense they form a compatible projective system of
measures. We now will make this idea more precise.

Indeed as in Subsection 2.1, we can replace Xq+1 by the associated set of virtual
graphs. However, we want to think of the edges connecting the pairs (xi , xi+1) as
being paths in X . An obvious possibility would pick a minimizing geodesic. How-
ever, except when these points are close to each other, the geodesic is in general
not unique. This can be partly compensated by the fact that as t → 0, pt (x, y)dy
converges to the Dirac mass at x .

If S1 = R/Z, let L0 X be the space of continuous functions from S1 into X . Note
that S1 acts on L0 X , so that if s ∈ S1,

ks x· = xs+·. (2.15)

Given q ∈ N, let πq : L0 X → Xq+1 be the map

πq x· = (x0, x1/(q+1), x2/(q+1), . . . , xq/(q+1)). (2.16)
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In view of the above, it is natural to raise the question of the existence of an
S1-invariant positive measure μt on L0 X whose image by the maps πq would just
be the μt,q+1.

The fact that this question has an obviously unique answer is a fundamental fact
which is produced from the theory of Brownian motion and of the stochastic differ-
ential equations. The corresponding measure μt is the Brownian loop measure of
parameter t . Brownian motion is a very complex and intriguing object of which we
will say very little, except that μt a.e., its paths are nowhere differentiable. Brownian
motion has locally a very erratic behaviour, whose physical manifestation is given
by the well-known observations by Brown of the motion of pollen in water.

A consequence of equation (2.14) is that

Tr[exp(t�X/2)] =
∫

L0 X
dμt . (2.17)

Equation (2.17) should be thought of as being the continuous analogue of the
discrete equation (2.5).

We have not yet explained the role of the metric gT X and of the operator �X in
the construction of μt . This is what we will do now.

Let C be the infinite constant

C =
+∞
∏

1

2k2π. (2.18)

By equation (2.13), using the gaussian approximation for pt(x, y) for t small and
d(x, y) ∼ √t , one arrives easily at the formal formula

dμt = Cn

(2π)n/2
exp

(

−
∫

S1
|ẋ |2ds/2t

) Dx

t∞/2
. (2.19)

In (2.19), Dx denotes formally the Lebesgue measure on L0 X . The normalizing
constant Cn in (2.19) can be found by inspection of the case where X is a torus.

There are several difficulties with (2.19). The first difficulty is that as we saw
before

∫

S1
|ẋ |2ds = +∞μt a.e.. (2.20)

The second difficulty is that there is no Lebesgue measure Dx on L0 X . The
third related difficulty is the denominator t∞/2, where∞ should be understood as
dim L X .

Such difficulties are unavoidable. Indeed it is well known that a Gaussian
measure on an infinite-dimensional Hilbert space gives 0 measure to this Hilbert
space. Although (2.19) does not mean anything, many of its consequences are
correct. We will use (2.19) repeatedly in the sequel.
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Let L X be the set of smooth maps s ∈ S1 → xs ∈ X . By (2.17), (2.19), we get

Tr[exp(t�X/2)] = Cn

(2π)n/2

∫

L X
exp

(

−
∫

S1
|ẋ |2ds/2t

) Dx

t∞/2
. (2.21)

Incidentally, note that without fear of a contradiction, we have replaced L0 X by L X
in (2.21).

In (2.20), we may replace S1 by S1
t = R/tZ. The effect is to make the factors t

disappear on the right-hand side of (2.19).
In physics terminology, integrals like the ones that appear in the right-hand

side of (2.17) and (2.21) are often called functional integrals, or path integrals.
An equality like (2.21) relates a quantity in a Hamiltonian form in the left-hand
side to another one in Lagrangian form on the right-hand side.

There is a Fourier transform quality to (2.21), as should be clear from the change
of t on the left-hand side to 1/t on the right-hand side. This is related to the clas-
sical correspondence in quantization p → i ∂

∂x , which is here only made point-
wise at every x ∈ X . There is indeed an implicit very strong relation between the
pseudodifferential calculus and the functional integral. Indeed the pseudodifferential
calculus enlarges the commutative algebra of smooth functions on X to a noncom-
mutative algebra of operators, the functional integral enlarges the space X to the
loop space L X . That these two enlargements turn out to be equivalent is more or
less expressed in (2.21).

In this context, one could ask what difference there is, if any, between classi-
cal pseudodifferential calculus and stochastic calculus, once one takes for granted
(2.17) and its formal version (2.21). The link is again Fourier transform, which maps
the operator-theoretic (or Hamiltonian) picture to the path integral (or Lagrangian)
picture. The main advantage of the Lagrangian picture is that it restores a geometric
quality to the formulas, even if this geometry is infinite dimensional, in which the
classical geometric intuition remains valid to a certain extent. As should be clear
later, this is even more true in the context of index theory.

The Fourier transform quality of (2.19) is not related to the fact one expresses
a trace as an integral over the loop space, which could be taken for granted for
algebraic reasons, but because the formal expression (2.19) for dμt reflects Fourier
transform, in the same way as the standard expression for the heat kernel on R.

In equation (2.21), as t → +∞, Tr[exp(t�X/2)] converges to 1 exponentially
fast, while from the right-hand side, we can easily formally derive the behaviour of
Tr[exp(t�X/2)] as t → 0. This is indeed typical of what happens with a Fourier
transform. It is vain to expect from the right-hand side of (2.21) anything explicit
concerning its behaviour as t → ∞, in particular because the ergodic phenomena
associated with long Brownian paths are difficult to describe in this formalism.
In a formula like (2.21), there is a dichotomy which makes that both sides give a
description of the same quantity which is relevant in different range of values of the
parameter t .
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2.3 The Feynman–Kac formula

Let V : X → R be a smooth function. The Trotter formula asserts that

Tr[exp(t (�X/2− V ))]

= lim
q→+∞Tr[(exp(t�X /2(q + 1)) exp(−tV/(q + 1)))q+1]. (2.22)

By proceeding as in (2.17) and using (2.22), we arrive at a version of the Feynman–
Kac formula, which asserts that

Tr[exp(t (�X/2− V ))] =
∫

L0 X
exp

(

−t
∫

S1
V (xs)ds

)

dμt . (2.23)

Equation (2.23) should be thought of as an infinite-dimensional version of (2.8).
By (2.19), we can rewrite formally (2.23) in the form

Tr[exp(t (�X/2− V ))]

= Cn

(2π)n/2

∫

L X
exp

(

−
∫

S1
|ẋ |2/2t − t

∫

S1
V (xs)ds

) Dx

t∞/2 . (2.24)

The considerations we made after equation (2.21) remain also valid for (2.24).
The conclusion is that we have been able to express traces of heat operators

as integrals on L0 X , such integrals being also called functional integrals or path
integrals. The loop space L0 X is the space in which the computations occur. The
measures on L0 X which appear naturally are S1-invariant.

3 Index theory and differential forms on the loop space

In this section, we exhibit the formal connections between the index theorem for the
Dirac operator and the localization formula over the loop space.

This section is organized as follows. In Subsection 3.1, we briefly review Clifford
algebras.

In Subsection 3.2, we introduce the Dirac operator.
In Subsection 3.3, we give the McKean–Singer heat equation formula for the

index of the Dirac operator, which depends on the time parameter t > 0.
In Subsection 3.4, we describe the ‘fantastic cancellations’ for the small time

asymptotics of the local supertrace of the heat kernel.
In Subsection 3.5, we give a formula for the heat kernel associated with the

square of the Dirac operator in terms of the scalar heat kernel.
In Subsection 3.6, via the McKean–Singer formula, we express the index as the

integral over the continuous loop space L0 X as a S1-invariant measure νt .



Duistermaat–Heckman formulas and index theory 25

In Subsection 3.7, along the lines of Atiyah [A85], we describe the action of S1

on the smooth loop space L X , and its generating vector field K .
In Subsection 3.8, we recall the fundamental remark of Atiyah and Witten [A85]

expressing the index of the Dirac operator acting on untwisted spinors as a formal
integral over L X of a d L X

K -closed form, which turns out to be the form αt , and we
show that a formal application of the localization formula leads directly to the index
formula of Atiyah–Singer.

In Subsection 3.9, we extend this remark to the case of general Dirac operators.
In Subsection 3.10, the fantastic cancellations in index theory are related to the

proof of the localization formula which was given in Subsection 1.1.
In Subsection 3.11, we show that making sense of equivariant localization

in infinite dimensions is as difficult as making sense of measures on infinite-
dimensional Hilbert spaces.

Finally, in Subsection 3.12, we sketch a Hamiltonian–Lagrangian correspon-
dence in index theory, which will be further elaborated in Section 4.

3.1 Clifford algebras

If A = A+ ⊕ A− is a Z2-graded algebra, if α, β ∈ A, the supercommutator
[α, β] ∈ A is bilinear in α, β and such that if α, β ∈ A±, then

[α, β] = αβ − (−1)deg(α)deg(β)βα. (3.1)

In (3.1), deg is 0 on A+ and 1 on A−.
If W = W+ ⊕ W− is a Z2-graded vector space, let τ = ±1 on W± be the

endomorphism defining the Z2-grading. The algebra End(W) is naturally Z2-graded,
the even (resp. odd) elements of End(W ) commuting (resp. anticommuting) with τ .
If A ∈ End(W ), we define its supertrace Trs[A] by the formula

Trs[A] = Tr[τ A]. (3.2)

Then Trs vanishes on supercommutators.
Let V be a real vector space of dimension n, which is equipped with a bilinear

symmetric form gV . The Clifford algebra c(V ) attached to (V , gV ) is the real alge-
bra generated over R by 1, e ∈ V , and the commutation relations for e, e′ ∈ V ,

ee′ + e′e = −2gV (e, e′). (3.3)

If gV = 0, then c(V ) is just the exterior algebra �·(V ). The Clifford algebra c(V )
is equipped with an increasing filtration

R = F0c(V ) ⊂ F1c(V ) · · · ⊂ Fnc(V ) = c(V ). (3.4)
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Let Gr· be such that Gri = Fi c(V )/Fi−1c(V ). Then

Gr· 
 �·(V ). (3.5)

From the above, it follows that c(V ) is a Z2-graded algebra.
Assume gV to be a scalar product. If n is even, let SV = SV+ ⊕ SV− be the

Z2-graded vector space of (V , gV ) spinors. Then SV is a c(V ) Clifford module.
More precisely we have the identification of Z2-graded algebras,

c(V )⊗R C 
 End(SV ). (3.6)

3.2 Spin manifolds and the Dirac operator

Let X be a compact oriented manifold of dimension n, and let gT X be a Riemannian
metric on T X . Let ∇T X be the Levi-Civita connection on T X , and let RT X be its
curvature.

Let c(T X) be the Clifford bundle of algebras associated with (T X, gT X ).
We will assume X to be even dimensional and spin. Let ST X = ST X+ ⊕ ST X− be

the Z2-graded vector bundle on (T X, gT X ) spinors. Let ∇ST X = ∇ST X+ ⊕ ∇ST X− be
the corresponding unitary connection on ST X = ST X+ ⊕ ST X− .

Let (E, gE ,∇E ) be a Hermitian vector bundle with unitary connection, and let
RE be the curvature of ∇E . Let ∇ST X⊗E be the unitary connection on ST X ⊗ E
which is induced by ∇ST X

,∇E . Note that ST X ⊗ E is a c(T X) Clifford module.
Let e1, . . . , en be an orthonormal basis of T X . The Dirac operator DX is given

by the formula

DX =
n

∑

i=1

c(ei)∇ST X⊗E
ei

. (3.7)

Then DX acts as an odd operator on C∞(X, ST X ⊗ E). We can write DX as a
matrix with respect to the splitting C∞(X, ST X ⊗ E) = C∞(X, ST X+ ⊗ E) ⊕
C∞(X, ST X− ⊗ E),

DX =
[

0 DX−
DX+ 0

]

. (3.8)

Put

c(RE) = 1

2

∑

1≤i, j≤n

c(ei )c(e j )RE (ei , e j ). (3.9)

The Lichnerowicz formula asserts that

DX,2 = −�H + S

4
+ c(RE ). (3.10)
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In (3.10), �H is the Bochner horizontal Laplacian, which is the obvious version of a
Laplacian acting on sections of a vector bundle, in which derivatives are replaced by
covariant derivatives, and S is the scalar curvature. The remarkable fact is that there
are no terms of length 4 in the Clifford bundle of algebras c(T X), their contribution
vanishes because of the circular identity on RT X .

3.3 The index of DX+ and the McKean–Singer formula

Since DX+ is an elliptic operator, it is Fredholm. Also since DX is formally self-
adjoint, DX− is the formal L2-adjoint of DX+ . In particular the index of DX+ is
given by

Ind(DX+) = dim ker(DX+)− dim ker(DX−). (3.11)

As is well known, the index DX+ is a homotopy invariant. In particular it does not
depend on the choice of metrics or connections which was made above.

Since DX,2 is elliptic of order 2, for t > 0, there is a heat kernel Pt (x, y) corres-
ponding to the operator exp(−t DX,2/2). In particular exp(−t DX,2/2) is trace class.

Also we have the Bianchi identity,

[DX , DX,2] = 0. (3.12)

Now we state the McKean–Singer formula [MS67].

Theorem 3.1. For any t > 0,

Ind(DX+) = Trs[exp(−t DX,2)]. (3.13)

Proof. Note that if P is the orthogonal projection operator on ker DX , as t → +∞,

exp(−t DX,2)→ P, (3.14)

where the convergence is taken in every possible sense. From (3.14), we find that as
t →+∞,

Trs[exp(−t DX,2)]→ Ind(DX+). (3.15)

It is enough to prove that the right-hand side of (3.13) does not depend on t > 0.
We will write the equations showing that the right-hand side of (3.13) does not
depend on t > 0. Note that since DX is odd,

DX,2 = 1

2
[DX , DX ]. (3.16)
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Using (3.16), we have

∂

∂ t
Trs[exp(−t DX,2)] = −Trs

[

1

2
[DX , DX ] exp(−t DX,2)

]

= −1

2
Trs[[DX , DX exp(−t DX,2)]] = 0. (3.17)

To get the last equality in (3.17), we used the fact that Trs vanishes on supercom-
mutators. This concludes the proof of (3.13).

Remark 3.2. The usual proof of (3.13) is to use the spectral decomposition of the
self-adjoint operator DX,2. However, (3.17) makes clear that self-adjointness has
little to do with (3.13). Indeed it is still true for any odd operator DX having the
same principal symbol as DX . Proving the analogue of (3.2) in finite dimensions is
also interesting.

Clearly,

Trs[exp(−t DX,2/2)] =
∫

X
Trs[Pt(x, x)]dx . (3.18)

By (3.13), (3.18), we obtain

Ind(DX+) =
∫

X
Trs[Pt (x, x)]dx . (3.19)

3.4 The fantastic cancellations

Since DX,2 is elliptic of order 2, general considerations show that for x ∈ X , as
t → 0, Pt (x, x) ∈ End(ST X ⊗ E)x has an asymptotic expansion of the form

Pt (x, x) = a−n/2(x)

tn/2 + a−n/2+1(x)

tn/2−1 +· · ·+a0(x)+a1(x)t+· · ·+ak(x)tk+ox(t
k),

(3.20)
the ak(x) depend only locally on the metrics and connections, and the expansion is
uniform in x . From (3.20), we get the asymptotic expansion as t → 0,

Trs[Pt (x, x)]

= b−n/2(x)

tn/2 + b−n/2+1(x)

tn/2−1 + · · · + b0(x)+ b1(x)t + · · · + bk(x)tk + ox (t
k),

(3.21)

and the bk are also local. From (3.19) and (3.21), we get

Ind(DX+) =
∫

X
b0(x)dx,

∫

X
bk(x)dx = 0 for k �= 0. (3.22)
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Equation (3.22) indicates that the global Ind(DX+) can be expressed as the integral
of a local expression.

Set
̂A(x) = x/2

sinh(x/2)
. (3.23)

We identify ̂A(x) with the corresponding multiplicative genus. We denote by
̂A(T X,∇T X ) the Chern–Weil representative of the characteristic class ̂A(T X)
which is associated with the connection ∇T X . Similarly ch(E,∇E ) is the Chern
character form for (E,∇E ).

In [MS67], McKean and Singer conjectured that fantastic cancellations would
occur so that (3.22) could be refined to be

bk(x) = 0 for k < 0, b0(x) = [̂A(T X,∇T X )ch(E,∇E )]max. (3.24)

Note that the expansion (3.20) always remain singular as t → 0. The term ‘fantastic
cancellations’ refers to the fact that the local vanishing of the singular terms occurs
only when taking the supertrace in (3.20).

The McKean–Singer conjecture was proved by Gilkey [Gil84] and Atiyah–Bott–
Patodi [ABP73]. From (3.22), (3.24), we get the Atiyah–Singer index theorem,

Ind(DX+) =
∫

X

̂A(T X)ch(E). (3.25)

A statement like (3.24) is called a local index theorem, because of the local char-
acter of the expansion in (3.4).

The local index theorem was given a new impulse by the work by physicists
[Al83] relating the index theorem to supersymmetry. Getzler [Ge86] gave a proof of
the local index theorem using a fruitful rescaling technique on the Clifford algebra,
a probabilistic proof was given in [B84a, B84b]. We refer to the book by Berline–
Getzler–Vergne [BeGeV92] for more details.

3.5 The heat kernel for DX,2 as a path integral

We will now use Feynman–Kac’s formula and the Itô calculus to express Pt (x, y)
in terms of pt(x, y).

A first point is that although the Brownian paths are nowhere differentiable, still,
it is possible to define parallel transport with respect to ∇ST X⊗E along them. To do
this, one can use Itô’s stochastic differential equations, and/or use the approximation
of Brownian motion by broken geodesics as outlined in Subsection 2.2, and show
that parallel transport passes to the proper limit.

Let x· be such a Brownian path, with x0. Consider the differential equation on
V· ∈ End(ST X ⊗ E)x0 ,
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dV

ds
= −V τ s

0 c(RE
xs

/2)τ 0
s , V0 = 1. (3.26)

In (3.26), τ 0
s denotes parallel transport from x0 to xs , and τ s

0 is its inverse. Let Pt
x,y

be the probability law of the Brownian motion starting at x and conditioned to be y
at time t . An application of the results mentioned above shows that

Pt (x, y) = pt(x, y)E Pt
x ,y

[

exp

(

−
∫ t

0
S(xs)ds/8

)

Vtτ
t
0

]

. (3.27)

In (3.27), E Pt
x,y is just expectation with respect to Pt

x,y .

3.6 The index as a well-defined path integral

For t > 0, let V t
s be the solution of (3.26), in which RE is replaced by t RE . Recall

that the positive measure μt on L0 X was defined in Subsection 2.2. Let νt be the
measure on L0 X ,

dνt = exp

(

−
∫ 1

0
t S(xs)ds/8

)

Trs[V
t
1τ 1

0 ]dμt . (3.28)

Proposition 3.3. For any t > 0,

Ind(DX+) = Trs[exp(−t DX,2/2)] =
∫

L0 X
dνt . (3.29)

Proof. Equation (3.29) follows from (3.13), (3.19) and (3.27).

Observe that by combining (2.19), (3.28) and (3.29), we get the formal equality,

Trs[exp(−t DX,2/2)]

= Cn

(2π)n/2

∫

L X
exp

(

−
∫

S1
|ẋ |2/2t

)

exp

(

−
∫ 1

0
t S(xs)ds/8

)

Trs[V
t
1 τ 1

0 ]
Dx

t∞/2 .

(3.30)

The remarkable fact about (3.29) is that the mass of νt is an integer, which
remains constant with t > 0, and more generally does not depend on the metrics or
connections that were used in its definition.

From a measure-theoretic point of view, the natural example one can give of a
measure whose mass remains constant is precisely the heat kernel pt(x, y), which
is such that

∫

X
pt (x, y)dy = 1. (3.31)
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One could think that (3.29) could just be a consequence of a heat equation on
L0 X , with dνt representing some sort of heat kernel on L0 X . Such a point of view
is untenable for many reasons on which we will not elaborate.

The remark of Atiyah and Witten in [A85] is that the constancy of (3.29), (3.30)
can be given a cohomological interpretation, at least at a formal level. This is what
we will explain next.

3.7 The loop space and the action of S1

Recall that L X is the smooth loop space of X . We will view L X as a smooth
manifold, disregarding the technicalities. If x· ∈ L X , the tangent space Tx·L X can
be identified with smooth periodic sections of T X along x·. If U, V ∈ Tx·L X , set

〈U, V 〉 =
∫

S1
〈Us , Vs〉ds. (3.32)

Then (3.32) defines a S1-invariant metric gT L X on T L X .
The smooth action of S1 on L X is generated by the vector field K , which is

given by
K (x·) = ẋ·. (3.33)

The vector field K is a Killing vector field. Its zero set L X K , which is the fixed
point set of the action of S1, is just given by

L X K = X. (3.34)

We will now use in this infinite-dimensional context the notation of Section 1.
Note that K ′, the 1-form dual to K , is such that if U ∈ T L X ,

K ′(U) =
∫

S1
〈U, dx〉. (3.35)

Let D
Ds denote the covariant derivative operator acting on T L X . This operator is

antisymmetric. One verifies easily that if U, V ∈ T L X ,

d L X K ′(U, V ) = 2
∫

S1

〈

D

Ds
U, V

〉

ds. (3.36)

Using the conventions in (1.10), we find that

ω D
Ds
= −d L X K ′

2
. (3.37)

Observe that

|K |2 =
∫

S1
|ẋ |2ds. (3.38)
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If V is an even-dimensional Euclidean oriented vector space, if A ∈ End(V ) is
antisymmetric, the Pfaffian Pf[A] was defined in (1.11). By (1.12), and by (1.13),
Pf[A] is a square root of det[A].

Since X is oriented, the parallel transport τ 1
0 on T X along a loop x· is an oriented

isometry. Therefore its eigenvalues are given by e±iθ j , 1 ≤ j ≤ n/2, with 0 ≤ θ j ≤
π . The eigenvalues of D

Ds are given by

2iπk ± iθ j , k ∈ Z, 1 ≤ j ≤ n/2. (3.39)

Let C ′ be the infinite constant,

C ′ =
+∞
∏

k=1

(4k2π2). (3.40)

By (3.39), we can write formally,

det

[

D

Ds

]

=
⎡

⎣

n/2
∏

j=1

C ′θ j

+∞
∏

k=1

(

1− θ2
j

4k2π2

)

⎤

⎦

2

. (3.41)

Equation (3.41) can also be rewritten in the form

det

[

D

Ds

]

= C ′n
⎡

⎣

n/2
∏

j=1

2 sin(θ j/2)

⎤

⎦

2

. (3.42)

Now we try to make sense of the Pfaffian Pf
[ D

Ds

]

. For this Pfaffian to be defined,
first we need L X to be even dimensional, at least formally. However, the nonzero
eigenvalues of D

Ds come by conjugate pairs. As to the zero eigenvalue, it corresponds
to the eigenvalue 1 of the parallel transport operator τ 0

1 acting on T X . Since X is
oriented, this space is even dimensional, which ultimately proves that L X is indeed
formally even dimensional. If X was instead odd dimensional, a similar argument
would show L X to be formally odd dimensional.

To define Pf
[ D

Ds

]

, a second requirement is that L X should be an oriented mani-
fold. As explained by Atiyah in [A85], it is equivalent to require det

[ D
Ds

]

to have a
smooth square root, which will then be precisely the Pfaffian Pf

[ D
Ds

]

. In any case,
if Pf

[ D
Ds

]

can we defined, from (3.42), we will get

Pf

[

D

Ds

]

= ±C ′n/2
n/2
∏

j=1

2 sin(θ j/2). (3.43)

Let g ∈ SO(V ), let ±θ j , 1 ≤ j ≤ n/2 be the angles of g. Then g has two lifts
in Spin(V ), which differ by a sign. Let g† be one of these lifts. Then g† acts on
SV = SV+ ⊕ SV− . We have the identity,
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Trs
SV

[g−1
† ] = ±

n/2
∏

i=1

(eiθ j /2 − e−iθ j /2) = ±i n/2
n/2
∏

j=1

2 sin(θ j/2). (3.44)

The sign in (3.44) is fixed by the fact that if A ∈ so(V ) has angles ±θ j with
respect to an oriented orthonormal basis of V , if g exponentiates A in SO(V ), and
g† exponentiates A in Spin(V ), the sign in (3.44) is +.

By comparing (3.42) and (3.44), and keeping in mind that Pf
[ D

Ds

]

should be a
square root of det

[ D
Ds

]

, we reach the conclusion that

Trs
ST X

[τ 1
0 ] = C ′−n/2i n/2Pf

[

D

Ds

]

. (3.45)

Equation (3.45) fixes the choice of the smooth square root Pf
[ D

Ds

]

of det
[ D

Ds

]

, and
proves the orientability of L X when X is spin.

There is nothing truly exotic in (3.42) or (3.45). Indeed det
[ D

Ds

]

can be defined
by a classical zeta function technique. Equation (3.42) is just a version of the
Cheeger–Müller theorem [Ch79, M78] establishing the equality of analytic and
Ray–Singer torsion.

3.8 The remark of Atiyah and Witten for the Dirac operator on
spinors

We still follow [A85]. We take E to be the trivial bundle R. Also we decide to ignore
the scalar curvature in equation (3.30).

Finally, we will use equation (1.12) in infinite dimensions. Namely, we will write

Pf

[

D

Ds

] Dx

t∞/2 = [exp(ω D
Ds

/t)]max. (3.46)

Identity (3.46) is questionable. Indeed (1.12) just evaluates the component of
exp(ωA) of top finite degree. In (3.30), the expansion (3.46) is infinite, the com-
ponent of infinite degree is not there. It is only by a renormalization procedure of
the type outlined in (3.39)–(3.45) that we can make sense of (3.46).

In view of (3.37), we can rewrite (3.46) in the form

Pf

[

D

Ds

] Dx

t∞/2
= [exp(−d L X K ′/2t)]max. (3.47)

Now we take equation (3.30) in which we ignore the term containing the scalar
curvature, and in which we make V t

1 = 1, because E is trivial. Using (3.38), (3.45),
and (3.47), and comparing with the definition of αt given in (1.20), we can rewrite
(3.30) in the form
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Trs[exp(−t DX,2/2)] =
(

C√
C ′

)n

(−2iπ)−n/2
∫

L X
αt . (3.48)

Note that

C/
√

C ′ =
+∞
∏

k=1

k. (3.49)

Also by (1.21),
d L X

K αt = 0. (3.50)

We now proceed as Atiyah [A85]. Namely, we will use the localization for-
mula of Duistermaat–Heckman in Theorem 1.3, forgetting about the fact that L X
is infinite dimensional and noncompact. Since L X K = X , by (1.22) and (3.48), we
should get

Trs[exp(−t DX,2/2)] = (−2iπ)−n/2(C/
√

C ′)n
∫

X

1

eK (NX/L X )
. (3.51)

We will evaluate the right-hand side of (3.51). Indeed NX/L X is exactly the set of
fibre maps s ∈ S1 → fs ∈ T X such that

∫

S1 f ds = 0. The action of JK on NX/L X

is just d
ds . The Fourier series decomposition of f corresponds to the eigenvalue

decomposition of f with respect to JK . If RT X still denotes the curvature of ∇T X ,
we find easily that

eK (NX/L X ,∇NX/L X ) =
(+∞

∏

k=1

k

)n +∞
∏

k=1

det 1/2

[

1+ RT X,2

4k2π2

]

=
(+∞

∏

k=1

k

)n

̂A−1[RT X ]. (3.52)

By (3.48)–(3.52), we get

Trs[exp(−t DX,2/2)] =
∫

X

̂A(T X,∇T X ). (3.53)

Comparing with (3.13) and (3.25), we obtain the stunning fact that the above formal
arguments predict the Atiyah–Singer index theorem without analysis.

3.9 An extension to general Dirac operators

In [B85], we extended the remark of Atiyah to the case of a nontrivial twisting
bundle (E, gE ,∇E ). Without elaborating on the method, let us just say that (3.48)
takes now the form
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Trs[exp(−t DX,2/2)] =
(

C√
C ′

)n

(−2iπ)−n/2
∫

L X
αt ∧ c. (3.54)

We will briefly describe the construction of c.
Set m = dim E . Then E is associated with a U(m) principal fibre bundle P . Let

L E be the loop space of E over L X . More precisely given x ∈ L X , the fibre of L E
is the vector space of smooth sections of E parametrized by S1 over the given loop
x . Then L E is associated with a LU(m) fibre bundle L P over L X . The metric gE

and connection ∇E induce an obvious L2 metric on L E , and a unitary connection
∇L E .

The action of S1 on L X lifts to L E , and this action preserves the metric and the
connection. However, it does not induce a bundle automorphism of the fibre bundle
L P . Indeed for p ∈ P, g ∈ LU(m), if s ∈ S1, we have the identity

ks(pg) = ks pks g. (3.55)

Having a bundle automorphism would require that ks g ∈ LU(m) would simply be
g. This defect can be easily be cured by introducing instead the semidirect product
̂LU(m) = LU(m) � S1. The Lie algebra of ̂LU(m) is the Lie algebra of first order
differential operators on S1 of the type a d

ds + B, B ∈ Lu(m). When a = 1, these
are the u(m) connection forms over the trivial U(m)-bundle.

The point is now to construct a d L X
K -closed characteristic form on L X , which is

associated with the vector bundle (L E,∇L E ). Let ωE be the connection form on
P which is associated with ∇E , and let �E be its curvature. Given p ∈ L P , one
verifies easily that if �L E

K is the K -equivariant curvature of ∇L E , then

�L E
K =

d

ds
+ ωE

(

dp

ds

)

+�E . (3.56)

Then �L E
K is the sum of a 0-form and of a 2-form with values in ̂Lu(m).

To obtain a characteristic form, one needs to pick a gauge invariant analytic func-
tion. Now given an operator of the type d

ds + B, B ∈ Lu(m), an obvious gauge
invariant analytic function is the trace of the inverse of its monodromy. Namely, one
solves the differential equation over S1,

(

d

ds
+ B

)

g = 0, g0 = 1. (3.57)

Put
c = Tr[g−1

1 ]. (3.58)

Then c is gauge invariant function. Equivalently, we may consider the equation

d

ds
h − h B = 0, h0 = 1. (3.59)
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Then
c = Tr[h]. (3.60)

In view of (3.56) and (3.57), we should consider the differential equation
(

d

ds
+ ωE

(

dp

ds

)

+�E
)

g = 0, g0 = 1. (3.61)

Put
c = Tr[g−1

1 ]. (3.62)

Let τ 0
s denote parallel transport on E from x0 to xs along the path x· with respect

to the connection ∇E , and let τ s
0 be its inverse. If one prefers the description of c in

(3.59), (3.60), one should instead consider the differential equation

d

ds
W = Wτ s

0 REτ 0
s , W0 = 1. (3.63)

Then
c = Tr[W1τ

1
0 ]. (3.64)

It is this c which appears in the formal formula (3.54) for Trs[exp(−t DX,2/2)].
By construction,

d L X
K c = 0. (3.65)

By (3.50) and (3.65), we get

d L X
K (αt ∧ c) = 0. (3.66)

Let i be the embedding X → L X . Note that by (3.63), (3.64), we get

i∗c = Tr[exp(RE )], (3.67)

i.e., up to normalization, i∗c coincides with ch(E,∇E ).
A formal application of the Duistermaat–Heckman localization formula to (3.54)

leads to the identity,

Trs[exp(−t DX,2/2)] =
∫

X

̂A(T X)ch(E), (3.68)

which is again correct.

3.10 The fantastic cancellations and the localization formulas

What is truly remarkable in the above formal arguments is that they lead to the
Atiyah–Singer index formula without taking t → 0, as if algebra was taking over
analysis.
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From this point of view, we tried very hard to import in infinite dimensions any
of the proofs existing at the time of the localization formulas, until we realized
that the form αt was by itself a perfectly legitimate way of proving the localization
formulas also in finite dimensions. The formal argument of Atiyah was good enough
not only to predict in a formal way the right index formula, but also was producing
the remarkable form αt , which is the key to the proof of the localization formula
given in Theorem 1.3.

But the consequences are much vaster. Indeed, as we saw in the proof of
Theorems 1.3 and 1.5, in a finite-dimensional context, as t → 0, the current αt

on X converges to an explicit current α0 localized on X K , the existence of the limit
not being entirely trivial.

From [B86b] and from the above arguments, one finds that the fantastic cancel-
lations anticipated by McKean–Singer, which were described in Subsection 3.4, are
just the infinite dimensional manifestation of the fact that also in infinite dimen-
sions αt should converge as a current to α0. Understanding why this formal conver-
gence should imply the fantastic cancellations is an easy matter left to the inspired
reader.

From the above, we find that the localization formulas have provided a geometric
explanation to an important analytic fact, the fantastic cancellations of McKean–
Singer. Our project of importing to infinite dimensions any known proof of the
localization formulas has been fulfilled tautologically, by exporting instead the heat
equation method to finite dimensions. We will explore the consequences in the next
section.

3.11 Formal versus rigorous arguments

Applying the localization formulas to the right-hand side of (3.54) is questionable,
since we do not even know what form is ultimately integrated on L X . This form
should again be the component of infinite degree of the wedge product of αt and c,
which are themselves series of well-defined forms of finite degree.

However, let us point that part of the difficulty is intrinsically related to infinite
dimensions. Indeed let us assume that Xk, k ∈ N is a family of manifolds having
exactly the same properties as X in Subsection 1.1. In particular they are equipped
with an action of a torus T . Set

X =
+∞
∏

1

Xk . (3.69)

Then X is also equipped with an action of the torus T . Let pk : X → Xk be the
obvious projection. For k ∈ N, let μk be a d Xk

K -closed form on Xk . Set

μ =
+∞
∏

1

p∗k μk . (3.70)
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Note that the product (3.70) converges only if the product of the components of
degree 0 of the μk converges.

For simplicity assume that for any k ∈ N, μmax
k is nonnegative, and also that by

an application of Theorem 1.3, we would get
∫

Xk

μk = 1. (3.71)

Note that m = ∏+∞
1 μmax

k is a well-defined positive measure on X , and that

∫

X
dm = 1. (3.72)

One can apply the localization formula of Theorem 1.3 to each μk . However,
using this formula on the integral of μ over X is very difficult. Indeed if αk,t is the
form αt on Xk , then

αt =
+∞
∏

k=1

p∗kαk,t (3.73)

is in general not well defined, precisely because the product of the components of
degree 0 may well be 0, which forces the vanishing of the form αt .

As an example of the above situation, consider the case where Xk = C 
 R2 as
in Remark 1.4, and that the action of S1 is the one specified there. Take

μk = 1

2π
exp(−dR2

K K ′/2). (3.74)

By (1.39),
∫

R2
μk = 1. (3.75)

The product μ in (3.70) does not exist for two reasons. The first is the presence
of the factor 1/2π . But the second more fundamental reason is that the Gaussian
measure on an infinite-dimensional Hilbert space gives measure 0 to this Hilbert
space. Of course, this is another manifestation of the fact that there is no Lebesgue
measure in infinite dimensions, so that measures tend to be mutually singular.

The above provides an elementary version of the difficulties we have of making
sense of the right-hand side (3.54). If X is a torus, the difficulty is exactly the one we
had in defining μ from the μk in (3.70). For an arbitrary X , the problems are much
more severe, because one cannot give a natural finite-dimensional approximation of
the situation. Ultimately, to make sense of the right-hand side of (3.54), we need the
left-hand side.

3.12 Hamiltonian–Lagrangian correspondence and index theory

As we saw in (2.17) and in its formal counterpart (2.21), the trace of a scalar heat
kernel can be represented as the integral of a S1-invariant measure over L0 X or L X .
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In equation (3.30), we saw how to represent the supertrace of exp(−t DX,2/2)
as the integral of a S1-invariant measure on L0 X . In (3.54), we also gave a formal
expression of the same quantity as the integral of a d L X

K -closed differential form
over L X , of which the previous measure is supposed to represent the term of top
degree. Needless to say, having a d L X

K -closed form is much stronger than having a
S1-invariant measure. The price one has paid is that the formula one obtains remains
formal.

Still one can establish a dictionary between index theory and integration of dif-
ferential forms on loop spaces. Indeed DX,2 is itself the square of DX . In equa-
tion (3.30), this fact has been forgotten. One of the points of (3.54) is to resurrect
this fact in the path integral itself, that is in the Lagrangian, or Fourier transformed
picture of the Hamiltonian left-hand side.

Indeed we will start writing some elements of a dictionary between quantities
involving supertraces of heat operators of the type exp(−t DX,2/2) and integrals
over L X of differential forms.

Table 3.1 The Hamiltonian–Lagrangian correspondence

Supertraces of heat operators Integrals of differential forms on L X

Trs
∫

L X

DX d L X
K

DX,2 L K

Trs[[DX , A]] = 0
∫

L X d L X
K μ = 0

Local index theorem Local Duistermaat–Heckman formula

The fact that equations (3.17) and (1.25) correspond to each other under the above
dictionary reflects the amazing formal analogies in the proofs of the corresponding
results.

A final question we would like to address is whether the fact that the formula
(3.54) remains formal should necessitate further work to make integration of forms
on loop spaces and localization formulas on such spaces rigorous. From the pers-
pective of the present paper, the answer is left to the reader1.

4 From localization formulas to Hermitian K -theory

In Section 1, and more specifically in Subsections 1.2, 1.4, and 1.6, we showed that
the localization formulas are compatible to natural functorial operations.

1 The author’s point of view on this question is somewhat ambiguous. Indeed one could consider
that the fact that many of the consequences of the formal theory have ultimately proved to be
correct, and that new rigorous objects have been constructed as a consequence, represents the only
way of making the formal theory rigorous.
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In Section 3, we exhibited a correspondence that maps the index theory for the
Dirac operator on a manifold to equivariant integration on the loop space L X .
We also called this correspondence a Hamiltonian–Lagrangian correspondence,
which we assimilated to a Fourier transform.

The index theorem is part of a more general theory involving the K -theory func-
tor, the case of the index being the simplest case where the target space is just a
point.

We will now ask whether the above correspondence can be extended to the
possible functorial operations in both theories. Given the work which has been done
in the field, the answer is certainly positive. At the time, the main difficulty was
essentially that the objects involved in the correspondence were not even defined.
Still the possibility that such a correspondence could possibly exist was one moti-
vation for the discovery of the rigorous objects on the K -theory side, which would
correspond to their natural counterparts on the localization side. Also if one accepts
the fact that this is some sort of Fourier correspondence, part of the behaviour of the
rigorous objects to be was already encoded in their Fourier counterpart.

We will give here mostly facts, and little justification.
This section is organized as follows. In Subsection 4.1, we show that in the

Hamilton–Lagrangian correspondence, the families index theorem corresponds to
equivariant integration along the fibre. Quillen’s superconnections are needed in the
Hamiltonian side to make sense of the correspondence.

In Subsection 4.2, we refine the Hamiltonian–Lagrangian correspondence to the
local forms of the corresponding formulas. In this context, we show that the Getzler
operator [Ge86] in local index theory is the curvature of a natural superconnection.

In Subsection 4.3, we recall the construction of the η̃-forms in local families
index theory, and we show that they are formally related to the currents ε and ϑ of
Subsections 1.3 and 1.5.

In Subsection 4.4, we introduce the holomorphic torsion forms T , which
themselves refine on the η̃-forms, and we exhibit their relation to the forms τ of
Subsection 1.8.

In Subsection 4.5, we discuss the extension of the above formalism to Lefschetz
fixed point formulas.

Finally, in Subsection 4.6, we briefly consider the hypoelliptic Laplacian of [B05,
B08] from the point of view of the present paper.

4.1 Families index theorem and equivariant integration along the
fibre

In Subsection 1.4, we gave an integration along the fibre version of localization
formulas.

Clearly, the K -theoretic version of integration along the fibre should be the
families index theorem of Atiyah–Singer [AS71].
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Let π : M → S be a submersion of smooth manifolds with compact oriented
fibre X of even dimension n. We assume the vector bundle T X = T M/S to be spin.
Let gT X be a metric on T X . Let (E, gE ,∇E ) be a Hermitian vector bundle on M
with unitary connection.

Each fibre X carries a fibrewise Dirac operator DX . Set

Ind(DX+) = ker DX+ − ker DX− . (4.1)

Note that E ∈ K (M), and that the left-hand side of (4.1) is an element of K (S).
The right-hand side is a well-defined element of K (S) only if the dimensions of
ker DX+ remains constant, in which case (4.1) is a definition of the left-hand side.
In the general case, one can deform the operator DX so that the assumptions we just
made are correct.

Note here that by definition, the map π! : E ∈ K (M) → Ind(DX+) ∈ K (S) is
part of the K -theory functor which we mentioned before.

The Chern character maps K -theory to rational even cohomology. The Atiyah–
Singer families index theorem [AS71] asserts that

ch(π!(E)) = π∗[̂A(T X)ch(E)] in H even(S). (4.2)

Equation (4.2) is compatible with the obvious functorial operations.
If the base is a point, then (4.2) is just the index formula in (3.25). So it is legiti-

mate to ask whether the considerations of Section 3 can be extended to this more
general situation.

We will use the loop space functor M → L M . The map π : M → S induces
an equivariant map π : L M → LS. This new projection verifies precisely the
assumptions in Subsection 1.2, where M, S should be replaced by L M, LS. Note
that LSK = S, and that L M K = π−1S is the set of smooth loops in M which
project to points in S, and the fibres are L X , the loop space of a given fibre X .

One can anticipate that (4.2) should be related to the integration along the fibre
result of Theorem 1.10, when applied to the fibration π : L M K → S. This is
especially true in light of the considerations of Subsection 1.6, where functoriality
results for localization formulas under projections have been considered.

Let T H M be a horizontal vector bundle on M , so that T M = T H M⊕T X . Then
T H M lifts to a horizontal vector bundle T H L M K on L M K . Moreover, the metric
gT X induces a S1-invariant metric gT L X on T L X . Then we are precisely under the
assumptions of Subsection 1.4. Let αt be the d L M K

K -closed form on L M K which one
obtains as in that subsection. More precisely, let K ′ be the 1-form on L M K which
vanishes on T H L M K and coincides with the dual form to K along T L X . The form
αt is still given by (1.20), i.e.,

αt = exp(−d L M K

K K ′/2t). (4.3)

Also over L M , we define the form c attached to (E, gE ,∇E ) as in Subsection 3.9.
Let ϕ be the endomorphism of �even(S) given by α → (−2iπ)deg(α)/2α. For

t > 0, consider the form at on S,
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at = ϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
αt ∧ c. (4.4)

The integral in (4.4) is still formal. However, in degree 0, it is just the one in (3.54).
Still let us pretend that it makes sense. If we could use (1.60), (1.62) as well as the
considerations in Remark 1.11 and in (3.52) , then we would know the form at is
closed on S, that its cohomology class does not depend on t > 0, and moreover that
as t → 0, at converges smoothly to a0 given by

a0 =
∫

X

̂A(T X,∇T X )ch(E,∇E ). (4.5)

In (4.5), ∇T X is a Euclidean connection on T X , which is canonically attached
to (T H M, gT X ). However, a0 is precisely a canonical representative of the right-
hand side of (4.2). In degree 0, as we saw in (3.15), the behaviour of at (which
is constant. . . ) as t → +∞ is very easy to determine in the Hamiltonian picture.
In the Lagrangian picture (4.4), whatever information one can get as t → +∞ is
misleading for reasons already outlined in Subsection 2.2.

If we could determine the forms at rigorously in the operator-theoretic (or
Hamiltonian) picture, there is a chance that these forms would provide also a proof
of (4.2), simply because they would interpolate between the form a0 in (4.5) as
t → 0, which is a natural representative of the right-hand side of (4.2), and whatever
natural representative there is of the left-hand side as t → +∞, while remaining
constant in cohomology.

The construction of the corresponding operator-theoretic object is obtained via
Quillen’s theory of superconnections [Q85a]. We will motivate the introduction
of superconnections by discussing again adiabatic limits along the lines of Sub-
section 1.6. We will adopt the terminology of that subsection, except that of course
M there should be L M , MK should be M . . . Let gT M , gT S be Riemannian metrics
on T M, T S. For ε > 0, set

gT M
ε = gT M + 1

ε
π∗gT S . (4.6)

Here we will take T H M to be the orthogonal bundle to T X with respect to gT M .
Note that T H M is still the orthogonal bundle to T X with respect to gT M

ε . Making
ε → 0 is still called passing to the adiabatic limit.

As we saw in Subsection 3.7, the metrics gT M , gT M
ε induce corresponding

S1-invariant metrics on T L M , and gT S a S1-invariant metric on T LS. By (4.6),
we get

gT L M
ε = gT L M + 1

ε
gT L S, (4.7)

which is just (1.67) in the present context.
In Subsection 1.6, we explained how integration along the fibre localization

formulas could be related to adiabatic limits of ordinary localization formulas.
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To guess what should be the Hamiltonian counterpart to the form at , we will also
try adiabatic limits in the Hamiltonian formulation.

The metric gT X induces a corresponding symmetric bilinear form on T M whose
kernel is T H M . To make our arguments simpler, instead of (4.7), we will now set

gT L M
ε = gT X + 1

ε
π∗gT S . (4.8)

The point about the metric gT M
ε is that π is a Riemannian submersion with respect

to the metric gT M
ε .

We will also assume that T S is oriented, spin and even dimensional. Let ST S =
ST S+ ⊕ ST S− be the associated bundle of (T S, gT S) spinors. Set

ST M = π∗ST S
̂⊗ST X . (4.9)

Then ST M can be identified with the vector bundle of (T M, gT M
ε ) spinors.

Let DM
ε be the Dirac operator acting on C∞(M, ST M ⊗ E), which is associated

with gT M
ε and ∇E . First we will give an explicit formula for DM

ε .

Let ∇ST X
be the connection on ST X induced by the canonical connection ∇T X .

Let ∇T S be the Levi-Civita connection on (T S, gT S), and let ∇ST S
be the corres-

ponding connection on ST S . Let ∇ST M
be the connection on ST M which is induced

by these two connections.
Let T H be the curvature of the Diff(X) connection associated with T H M . Let

PT X be the projection T M = T H M ⊕ T X → T X . If U ∈ T S, let U H ∈ T H M be
the horizontal lift of U . If U, V ∈ T S,

T H (U, V ) = −PT X [U H , V H ]. (4.10)

Let f1, . . . , fm be an orthonormal basis of T S, and let f 1, . . . , f m be the corres-
ponding dual basis of T ∗S. Set

DH =
m

∑

i=1

c(ei )∇ST M⊗E,u
eH

i
, (4.11)

The upper index u on the right-hand side of indicates that we have taken into account
the variation of the volume form of X with respect to horizontal differentiation, so
as to make the operator DH self-adjoint. Then DH is a horizontal Dirac operator.
Put

c(T H ) = 1

2

∑

1≤α,β≤m

c( fα)c( fβ)c(T H ( f H
α , f H

β )). (4.12)

By [BC89, eq. (4.26)], DM
ε can be written in the form

DM
ε =
√

εDH + DX − ε
c(T H )

4
. (4.13)
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The structure of (4.13) is interesting. In particular the third term on the right-hand
side of (4.13) is intimately related with Leray’s spectral sequence.

As ε → 0, from a simple minded point of view, the operator DM
ε converges to

DX . However, in the case where M is product, i.e., M = S× X , one is immediately
tempted to do index theory over the base S.

The most direct way of what should be done is to use a Getzler rescaling [Ge86]
on (4.13) as ε → 0. However, let us give here a shortcut. The reader will have
noticed that to obtain the contribution of E to the index formula, in Lichnerowicz
formula for t DX,2 in (3.10), we just have to replace the Clifford variables

√
tc(ei)

by the exterior variables ei∧. So let us just do this in (4.13), while replacing t by ε.
Let � be the Z2-graded vector bundle on S of smooth sections of ST X ⊗ E along

the fibre X . If s is a smooth section of � on S, if U ∈ T S, put

∇�
U s = ∇ST X⊗E,u

U H s. (4.14)

Then equation (4.14) defines a unitary connection on �, whose curvature is a 2-form
on S with values in first order differential operators along the fibre X .

We take f1, . . . , fm as before except that we do not assume any more this basis
to be orthogonal. Then

∇� =
∑

1≤α≤m

f α∇�
fα . (4.15)

Set

cX (T H ) = 1

2

∑

1≤α,β≤m

f α f βc(T H ( fα, fβ)). (4.16)

The object we obtain from DM
ε by the above shortcut is given by the formula

A = ∇� + DX − cX (T H )

4
. (4.17)

This object does not depend any more on the metric gT S . It turns out that A is pre-
cisely a superconnection on the Z2-graded vector bundle � in the sense of Quillen
[Q85a], and is called the Levi-Civita superconnection [B86a]. When replacing gT X

by gT X/t , the corresponding object At is given by

At = ∇� +√t DX − cX (T H )

4
√

t
. (4.18)

We will not explain in detail Quillen’s theory of superconnections. Let us just
mention it is an extension of Chern–Weil theory. In the same way as the curvature
of a connection can be viewed as the square of the connection, the curvature of the
superconnection At is its square A2

t . Here it is a second order elliptic operator acting
along the fibre on �·(T ∗S)̂⊗�.

Put
at = ϕTrs[exp(−A2

t/2)]. (4.19)
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We have deliberately kept the same notation in (4.4) and (4.19), since at in (4.19) is
just the rigorous Hamiltonian version of (4.4). Then at is a smooth even form on S.

Let a0 be the real even closed form on S given by

a0 =
∫

X

̂A(T X,∇T X )ch(E,∇E ), (4.20)

The following result was established in [B86a], and is called the local families
index theorem.

Theorem 4.1. The even forms at are real, closed, and their cohomology class does
not depend on t > 0. More precisely,

[at ] = ch(π! E). (4.21)

As t → 0,
at = a0 +O(t). (4.22)

From Theorem 4.1, we recover the families index theorem of Atiyah–Singer
[AS71] in the form given in (4.2).

Let us note here that the local index theorem in (3.24) is a special case of the
local families index theorem, or more precisely of its proof. However, as explained
in [B98], the local families theorem can be viewed as the adiabatic limit of the local
index theorem.

Assume that the dimension of ker DX± is locally constant, so that ker DX is now

a smooth Z2-graded vector bundle on S. Let∇ker D X
be the orthogonal projection of

the connection ∇� on ker DX . Put

a∞ = ch(ker DX ,∇ker D X
). (4.23)

The following result was established by Berline and Vergne in [BeGeV92].

Theorem 4.2. As t →+∞,

at = a∞ +O(1/
√

t). (4.24)

Ultimately, we have established the following extension of (3.54),

at = ϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
αt ∧ c. (4.25)

Let us mention again that while the right-hand side of (4.25) predicts the behaviour
of (4.25) as t → 0, this right-hand side does not say anything on the behaviour of
(4.25) as t →+∞. Again this is natural from a Fourier perspective.

However, we will disregard this inconsistency, and extend (4.25) formally to
t = +∞, so that

a∞ = ϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
c. (4.26)
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Equation (4.26) has to be taken with care, even from a formal point of view. If the
bundle E was trivial, it would say that a∞ = 0, which is not the case in general.
Again the discrepancy comes from the fact that L X is not compact. We have actually
warned enough the reader on this question.

4.2 The local Getzler operator and superconnections

In Remark 1.4, we pointed out that in our proof of the localization formula in
Theorem 1.3, equation (1.36) for e−1

K (NX K /X ,∇NXK /X ) is obtained as the integral

along the fibre of a d
NXK /X

JK Y -closed form, demonstrating this way that some ver-
sion of the integral along the fibre is already present in the proof of the standard
localization formula.

If one admits that in infinite dimensions, such integrals along the fibre correspond
to superconnections, this indicates that there should be a superconnection version of
the local index theorem.

This we will briefly demonstrate, along the lines of [B90b]. We work temporarily
under the assumptions of Subsection 3.2. Let X be the total space of T X , and let
Y be the tautological section of the fibre T X on X . Let L be the operator along the
fibres of T X ,

L = −1

2

n
∑

i=1

(

∇ei +
1

2
〈RT X Y, ei 〉

)2

. (4.27)

In (4.27), the curvature RT X is still viewed as a 2-form on X . The operator L was
obtained by Getzler in [Ge86] in his proof of the local index theorem. Let q(Y, Y ′)
be the smooth kernel associated with the heat operator exp(−L). The critical fact is
that q(Y, Y ) does not depend on Y , and also that

q(0, 0) = ̂A(RT X ), (4.28)

which is the key formula leading to the proof of the local index theorem. Equa-
tion (4.28) follows from Mehler’s formula. It is a version of Lévy’s stochastic area
formula [L51]. Indeed Paul Lévy proved that if (x·, y·) is a 2-dimensional Brownian
bridge starting at (0, 0) at time 0 and ending at (0, 0) at time 1, for a ∈ R,

E

[

exp

(

ia

2

∫ 1

0
(xdy − ydx)

)]

= ̂A(a), (4.29)

from which (4.28) easily follows.
The reader should not have any difficulty in proving that (4.28) is exactly the

proper infinite-dimensional version of (1.36).
But more should be true. Indeed L should be the curvature of the Levi-Civita

superconnection A1/2 associated with the projection π : X → X , the metric along
the fibres gT X and the horizontal vector bundle determined by the connection∇T X .
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The fact that this turns out to be exactly the case was established in [B90b], by an
easy explicit computation. We can then write

̂A(T X,∇T X ) = exp(−A2
1/2)(0, 0). (4.30)

One of the merits of (4.30) is that it expresses ̂A(T X,∇T X ) as a sort of Chern
character form. Pursuing along these lines would take us too far.

4.3 η̃ forms and the currents ε

The results of Subsection 1.5 gives us a method to transgress the forms at in the
Lagrangian formalism. More precisely, we define the form βt on L M K as in (1.46).
Set

bt = ϕ
1√
2iπ

(−2iπ)−n/2(C/
√

C ′)n
∫

L X
βt ∧ c. (4.31)

Then the analogue of equation (1.63) is given by

∂

∂ t
at = d Sbt . (4.32)

In the same way, one constructs the current ε on L M K as in (1.50). By extending
(1.66) in infinite dimensions, we should get

d S 1√
2iπ

ϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
ε ∧ c = a0 − a∞. (4.33)

Of course (4.31) is still formal. On the Hamiltonian rigorous side, one should
recall that Quillen’s theory is an extension of Chern–Weil’s theory. Therefore from
the rigorous formula form at in (4.9), one can construct a rigorous odd form bt such
that (4.32) holds by an extension of the Chern–Simons transgression mechanism.
A tautological argument shows that the rigorous and non rigorous versions of bt

correspond.
Now we introduce the η̃ forms of Bismut–Cheeger [BC89]. Put

η̃ = −
∫ +∞

0
btdt . (4.34)

As the notation indicates, the integral converges on the right-hand side of (4.34).
Indeed one can derive the convergence from the proper application of Theorems 4.1
and 4.2.

By (4.32), we get
d S η̃ = a0 − a∞. (4.35)
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By the above, we have the formal identity,

η̃ = ϕ
1√
2iπ

(−2iπ)−n/2(C/
√

C ′)n
∫

L X
ε ∧ β. (4.36)

If we define the form ϑ as in (1.65) with μ replaced by c, then

η̃ = ϕ
1√
2iπ

(−2iπ)−n/2(C/
√

C ′)nϑ. (4.37)

We gave all the proper warnings concerning the interpretation of (4.36). However,
the consequences are quite interesting.

The forms η̃ are secondary objects from the point of view of K -theory. They are
related with differential characters of Cheeger–Simons [ChS85]. On the other hand,
the right-hand side is expressed in terms of integrals of currents on the loop space.

The forms η̃ have found many uses. In particular the component of degree
1 (constructed prior to the construction of the forms η̃) of η̃ was identified in
[BF86a, BF86b] as a connection form on the determinant bundle det(ker DX ).
Equation (4.35) in degree 2 is exactly the curvature theorem of [BF86b] for such
determinant bundles.

In the case where the fibres X are instead odd-dimensional, there is a corres-
ponding families index theorem of Atiyah–Singer, where the family of self-adjoint
operator DX is viewed as defining an element of K 1(S). Equation (4.2) is still
formally true. If ker DX is of locally constant dimension, one can define the forms
η̃, which are now even forms, as before, and they verify an analogue of (4.35), i.e.,

d S η̃ = a0. (4.38)

The component of degree 0 of η̃ is nothing else than the η-invariant of the fibres X in
the sense of Atiyah–Patodi–Singer [APS75a, APS76], which is a spectral invariant
of the operator DX . Equation (4.38) reduces to the variation formula of [APS76] for
the η-invariant.

On the other hand, as explained in Subsection 3.7, the fibres L X can now be
viewed as odd-dimensional. Ultimately, an analogue of identity (4.36) still holds in
this case. In particular the η-invariant of [APS76] can be expressed formally as the
integral of a secondary current on the corresponding loop space.

The importance of a formula like (4.36) should not be underestimated. Indeed
it expresses a ‘natural’ object from the point of view of K -theory as the integral
of another ‘natural’ object in equivariant integration theory, that is as a geometric
object.

In Subsection 1.6, we mentioned that the secondary currents ε are compatible to
natural functorial operations. When transferred to their infinite dimensional version,
the η̃-forms, these are exactly the results obtained in Bismut–Cheeger [BC89].

Similarly there are compatibility results of the currents ε to embeddings. For
corresponding results for η-invariants, we refer to [BZ93].
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4.4 Holomorphic torsion forms and Bott–Chern currents

Let us now assume that M and S are complex manifolds, and that π : M → S
is holomorphic with compact fibre X of real dimension n. Again T M, T X =
T M/S, T S denote the corresponding holomorphic tangent bundles. Let (E, gE) be
a holomorphic Hermitian vector bundle on M , and let ∇E be the associated holo-
morphic Hermitian connection. Let ch(E, gE ) be the Chern character form of E
which is associated with ∇E .

Let (�(0,·)(X, E |X ), ∂
X
) be the Dolbeault complex along the fibres X . Let ∂

X∗

be the fibrewise adjoint of ∂
X

.
We will explain the construction of the analytic torsion forms in Bismut–Gillet–

Soulé [BGSo88a] and Bismut–Köhler [BK92]. We will inspire ourselves from Sub-
sections 1.7 and 1.8.

First we try to reproduce formally the geometric situation of Subsection 1.8,
where of course we deal here with loop spaces.

Let ωM be a real closed (1, 1) form on M , whose restriction ωX to the compact
fibres X induces a Kähler metric gT X along the fibres. Let ∇T X be the holomorphic
Hermitian connection on T X which is associated with gT X . Let Td(T X, gT X ) be
the Todd form of T X associated with∇T X .

Let T H M ⊂ T M be the orthogonal bundle to T X with respect to ωM . Let ωM,H

be the restriction of ωM to T H
R M . We can write ωM in the form

ωM = ωM,H + ωX . (4.39)

In such a geometric situation, one can construct the strict analogue Bt of the
superconnection At/2 in (4.18). The superconnection Bt on �(0,·)(X, E |X ) can be
written in the form

Bt = ∇�(0,·)(X,E |X ) +√t(∂
X + ∂ X∗)− cV (T H )

2
√

2t
. (4.40)

Underlying the definition of Bt is the fact that the antiholomorphic exterior algebra
�·(T ∗X ) is a c(TR X) Clifford module, but we take this for granted.

Put
at = ϕTrs[exp(−B2

t )]. (4.41)

In [BGSo88a], it is shown that at is a real closed form on S which is a sum of (p, p)
forms. Let a0 be th form on S,

a0 =
∫

X
Td(T X, gT X )ch(E, gE). (4.42)

Let R·π∗E ∈ K (S) be the direct image of E by π . The obvious analogue of
Theorem 4.1 holds, simply because the above situation is a special case of the situa-
tion considered in Theorem 4.1. Of course π! E should be replaced here by R·π∗E .
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By [Hi74], X is spin if and only if the line bundle det(T X) has a square root.
In the sequel, the reader may assume X to be spin. If this is not the case, L X is
no longer formally orientable in the sense of Subsection 3.7. Still the path integrals
which appear in the sequel can easily be made sense of.

Let c be the form on L M K which is associated with the vector bundle
E ⊗ det1/2(T X) and its corresponding connection. Then the analogue of (4.25)
holds. The form ωM induces a S1-invariant closed (1, 1) form ωL M K

on L M K . The
vector bundle T H M lifts to a vector bundle T H L M K ⊂ T L M K , which is exactly
the orthogonal vector bundle to T L X in T L M K . Also the restriction ωL X of ωL M K

to T L X is the Kähler form of the S1-invariant Kähler metric on T L X which is
induced by gT X . If ωL M K ,H is the restriction of ωL M K

to T H
R L M K , we have the

identity,

ωL M K = ωL M K ,H + ωL X . (4.43)

The question is now to find an analogue of the double transgression equation
(1.91) for the forms at . In view of (1.90), we need to find the operator-theoretic
counterpart to the form γt in (1.90).

Let N V be the number operator on �(0,·)(X, E |X ), which acts by multiplication
by k on �(0,k)(X, E |X ). For t > 0, set

Nt = NV + i
ωM,H

t
− n/4. (4.44)

In (4.44), ωM,H is viewed as a section of π∗�(1,1)(T ∗R S). Using the dictionary sum-

marized in Table 3.1, it is not difficult to see that Nt lifts to the form ωL M K
on

L M K , and that the decomposition (4.44) of Nt just reflects the splitting of ωL M K
in

(4.43).
Set

ct = −ϕTrs[Nt exp(−B2
t )]. (4.45)

In [BGSo88a, Theorem 2.9], it is shown that

bt = (∂ S − ∂
S
)

4iπ
ct ,

∂

∂ t
at = ∂

S
∂ S

2iπ

ct

t
. (4.46)

No doubt the reader will have guessed that by using the dictionary we mentioned
before, we have the formal equality,

at = ϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
αt ∧ c,

bt = ϕ
1√
2iπ

(−2iπ)−n/2(C/
√

C ′)n
∫

L X
βt ∧ c, (4.47)

ct = −iϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
γt ∧ c.
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Under the path integral correspondence, (4.46) is exactly the counterpart to
(1.91). In this case, forms γt were guessed from (1.90), (1.91).

Assume now Rπ∗E to be locally free. The L2 metric induces a metric gRπ∗E on
Rπ∗E . Set

a∞ = ch(R·π∗E, gR·π∗E ). (4.48)

A nontrivial application of (4.24) shows that as t → +∞,

at = a∞ +O(1/
√

t). (4.49)

There is a similar result for ct .

Definition 4.3. For s ∈ C,�s < 1, set

R(s) = 1

�(s)

∫ +∞

0
ts−1(ct − c∞)dt . (4.50)

Then one finds easily that R(s) is a holomorphic function of s which extends holo-
morphically near s = 0. Set

T = ∂

∂s
R(s)|s=0. (4.51)

Now we state the result of [BGSo88a, Theorem 2.20] and [BK92, Theorem 3.9].

Theorem 4.4. The form T on S is real and is a sum of forms of type (p, p).
Moreover,

∂
S
∂ S

2iπ
T = a∞ − a0,

∂
S − ∂S

4iπ
T = η̃. (4.52)

Proof. The proof follows in particular from equations (4.46).

The forms T are called holomorphic analytic torsion forms.
Let τ be the form over S in (1.94), with μ = c. From (1.92), (1.95), (4.47),

(4.50), and (4.51), we get the formal equality

T = −iϕ(−2iπ)−n/2(C/
√

C ′)nτ. (4.53)

which, by (1.95), can also be rewritten in the form

T = −iϕ(−2iπ)−n/2(C/
√

C ′)n
∫

L X
σ ∧ c. (4.54)

The second equation in (4.52) is compatible with (1.97), (4.37) and (4.53).
The component of degree 0 of T , which we denote by T (0), is the Ray–Singer

holomorphic torsion [RS73] of the fibre X , which is a spectral invariant of the fibre,
used by Quillen [Q85b] to define the Quillen metric on the determinant of the coho-
mology. In degree 2, the first equation in (4.52) is just a consequence the curvature
Theorem of [BGSo88b] for Quillen metrics.
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Let us just outline a few applications of the above formal equalities. Since these
equalities are formal, ‘applications’ should be taken here with a touch of salt.

Indeed an important question in the theory of analytic torsion forms is to
understand their dependence on the given metrics. This was carried out in [BGSo88b,
BK92]. The corresponding question for the currents σ was dealt with in [B90a].

We already stressed the importance of studying the compatibility of the above
objects to functorial operations. For the forms T , in the case of submersions, this
was carried out in [BerB94, Ma99, Ma00].

For immersions, the corresponding problem for analytic holomorphic torsion
forms was studied in [BL91, B97], and for the currents σ in [B92a]. The proofs
of [BL91] and [B92a] were shown in [B92b] to be parallel. Of course it is very
difficult to show that the arguments one uses in the Lagrangian side can be made
rigorous and imported in the rigorous Hamiltonian side.

It is now time to extend further table 3.1 on the Hamiltonian–Lagrangian corres-
pondence, by incorporating what we learnt from the present section.

Table 4.1 The Hamiltonian–Lagrangian correspondence

Supertraces of heat operators Integrals of differential forms on L X

Trs
∫

L X

DX d L X
K

DX,2 L K

Trs[[DX , A]] = 0
∫

L X d L X
K μ = 0

Local index theorem Localization formula

Local families index Equivariant integration along the fibre

η-invariant and η̃-forms Currents ε

Holomorphic torsion forms T Bott–Chern forms τ

Note that the Ray–Singer analytic torsion in de Rham theory has a Lagrangian
counterpart which has been studied in [BGo04]. The finite-dimensional theory is
connected with a different kind of localization formulas.

4.5 Lefschetz formulas

The case of Lefschetz formulas can be also approached from the point of view of
infinite-dimensional localization. In this context given a compact Lie group G act-
ing isometrically on X , the action of G lifts to L X and commutes with the action of
S1. The relevant finite-dimensional localization formulas [B86b] now involve two
commuting Killing vector fields. Their extension to infinite dimensions was estab-
lished in [BGo00] and relate two versions of the holomorphic torsion forms to the
finite-dimensional Bott–Chern currents of Subsection 1.7.
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4.6 Towards the hypoelliptic Laplacian

We have already hinted that the Hamiltonian–Lagrangian correspondence, in spite
of the fact that it is not well-defined, can be of considerable help in guessing the
construction of new objects on the rigorous Hamiltonian side, and predicting their
properties.

In [B05, B08], we developed a theory of the hypoelliptic Laplacian. This is a
family of operators acting on the total space of the tangent or cotangent bundle
of the given Riemannian manifold X , which interpolates between the classical
Laplacian of X and the geodesic flow. Part of the construction was done first in the
Lagrangian formulation, by adequately modifying the differential d L X

K -closed forms
which appear in the path integrals so as to get the desired interpolation property in
the path integral formalism, and then to find the adequate object in the operator
formalism which would correspond to the deformed path integrals.
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a contact isomorphism X0 → X ′0. If H0, H
′
0 denote the spaces of CR functions

(or distributions) on X0, X ′0 (boundary values of holomorphic functions), S, S′ the

Szegő projectors,3 the map E0 : u �→ S′(u ◦ f −1
0 ) : H0→ H

′
0 is Fredholm (it is an

elliptic Toeplitz FIO). The index of E0 was introduced by C. Epstein [17, 18, 19, 20],
who called it the relative index of the two CR structures. A formula for the index was
proposed in [27]. A special case was established in [21], and a proof of this index
formula in the general case was given by C. Epstein in [19], based on an analysis
of the situation using the “Heisenberg-pseudodifferential calculus.” (Another proof
based on deformation quantization should also be possible, using the ideas in [23]
and [24].) In this paper we propose a simpler proof based on equivariant Toeplitz-
operator calculus, which gives a straightforward view. Our formula is described in
Section 4.4. It is essentially equivalent to the formula proposed in [27], which was
stimulated by a problem in the theory of Fourier integral operators, a subject in
which Hans Duistermaat was a pioneer [13].

It is awkward to keep track of the index in the setting of Toeplitz operators on X0
and X ′0 alone, because we are dealing with several Szegő projectors, and Toeplitz-
operator calculus controls the range H of a generalized Szegő projector at best up to
a vector space of finite rank.4

To make up for this, we use the ball ˜� ⊂ C × � defined by t t̄ < φ, where
t is the coordinate on C, φ is a smooth defining function (φ = 0, dφ �= 0 on
X0 = ∂�, φ > 0 inside; note that this is the opposite sign from the usual one)
chosen so that Log 1

φ is strictly plurisubharmonic, so that the boundary X = ∂˜� is
strictly pseudoconvex; such a defining function always exists; e.g., we can choose
φ strictly plurisubharmonic. Then X is a compact contact manifold with (positive)
action of the circle group U(1). We will identify X0 with the submanifold {0} × X0

of X .
We perform the same construction for �′: we will see that there exist an equi-

variant germ near X0 of an equivariant contact isomorphism f : X → X ′ extending
f0 such that t ′ ◦ f is a positive multiple of t , and an elliptic equivariant Toeplitz FIO
E extending E0, associated5 to the contact map f ; the holomorphic spaces H, H

′
split in Fourier components Hk , H

′
k on which the index is repeated infinitely many

times. This construction has the advantage of taking into account the geometry of
the two fillings �,�′, which obviously must come into the picture.

The final result can then be expressed in terms of an asymptotic version of the
relative index (G-index) of E , derived from the equivariant theory of M.F. Atiyah
and I.M. Singer [4]: the asymptotic index, described in Section 4.4, ignores finite-
dimensional spaces and is well defined for Toeplitz operators or Toeplitz systems; it
is also preserved by suitable contact embeddings.

The asymptotic equivariant trace and index are described in Sections 2 and 3.
The relative index formula is described and proved in Section 4 (Theorem 5).

3 The definition of S requires choosing a smooth positive density on X0; nothing of what follows
depends on this choice.
4 There is no index formula for a vector bundle elliptic Toeplitz operator, although there is one for
matrix Toeplitz operators, a straightforward generalisation of the Atiyah–Singer formula; cf. [7].
5 f is associated to E in the same manner as a canonical map is associated to an FIO.
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2 Equivariant trace and index

2.1 Equivariant Toeplitz Operators

Let G be a compact Lie group with Haar measure dg(
∫

dg = 1), g its Lie alge-
bra, and X a smooth compact cooriented contact manifold with an action of G; this
means that X is equipped with a contact form λ (two forms define the same coori-
ented contact structure if they are positive multiples of each other); G acts smoothly
on X and preserves the contact structure and coorientation, i.e., for any g the image
g∗λ is a positive multiple of λ; replacing λ by the mean

∫

g∗λ dg, we may suppose
that it is invariant. The associated symplectic cone � is the set of positive multiples
of λ in T ∗X , a principal R

+ bundle over X , a half-line bundle over X .
We also choose an invariant measure dx with smooth positive density on X , so

L2 norms are well defined. The results below will not depend on this choice.
It was shown in [10] that there always exists an invariant generalized Szegő pro-

jector S which is a self adjoint Fourier-integral projector whose microsupport is �,
mimicking the classical Szegő projector. The projector S extends or restricts to all
Sobolev spaces; for s ∈ R we will denote by H

(s) the range of S in the Sobolev
space H s(X), and by H the union.

A Toeplitz operator of degree m on H is an operator of the form f �→ TQ f =
SQ f , where Q is a pseudodifferential operator of degree m. Here we use pseudo-
differential operators in a strict sense, i.e., in any local set of coordinates the total
symbol has an asymptotic expansion q(x, ξ) ∼ ∑

k≥0 qm−k(x, ξ), where qm−k is
homogeneous of degree m − k with respect to ξ , and the degree m and k ≥ 0
are integers.6 A Toeplitz operator of degree m is continuous H

(s) → H
(s−m) for

all s. Recall that Toeplitz operators give rise to a symbolic calculus, microlocally
isomorphic to the pseudodifferential calculus, that lives on � (cf. [10]).

In particular, the infinitesimal generators of G (vector fields determined by
elements ξ ∈ g) define Toeplitz operators Tξ of degree 1 on H. An element P of
the universal enveloping algebra U(g) acts as a higher-order Toeplitz operator PX

(equivariant if P is invariant), and the elements of G act as unitary Fourier integral
operators, or “Toeplitz-FIO.”

H (with its Sobolev counterparts) splits according to the irreducible representa-
tions of G : H =̂

⊕

Hα .
Below we will use the following extended notions: an equivariant Toeplitz bundle

E is the range of an equivariant Toeplitz projector P of degree 0 on a direct sum H
N .

The symbol of E is the range of the principal symbol of P; it is an equivariant vector
bundle on X . Any equivariant vector bundle on X is the symbol of an equivariant
Toeplitz bundle (this also follows from [10]).

6 We will occasionally use as multipliers operators of degree m = 1
2 (or any other complex

number), with k still an integer in the expansion.
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2.2 G-trace

The G-trace and G-index (relative index in [4]) were introduced by M.F. Atiyah in
his joint work with I.M. Singer [4] for equivariant pseudodifferential operators on
G-manifolds. The G-trace of such an operator A is a distribution on G, describing
tr (g ◦ A). Here we adapt this to Toeplitz operators. Because the Toeplitz spaces
H and E are really defined only up to a finite-dimensional space, their G-traces or
indexes are ultimately defined only up to a smooth function, i.e., they are distribution
singularities on G (distributions mod C∞); they are described below, and renamed
“asymptotic G-trace or index.”

If E, F are equivariant Toeplitz bundles, there is an obvious notion of Toeplitz
(matrix) operator P : E → F, and of its principal symbol σd(P) (if it is of degree
d), a homogeneous vector-bundle homomorphism E → F over �. The operator P
is elliptic if its symbol is invertible; it is then a Fredholm operator E

s → F
s−d and

has an index which does not depend on s.
If E is an equivariant Toeplitz bundle and P : E → E is a Toeplitz operator of

trace class7 (deg P < −n), the trace function8 TrG
P (g) = tr (g ◦ P) is well defined;

it is a continuous function on G. It is smooth if P is of degree −∞ (P ∼ 0). If P is
equivariant, its Fourier coefficient for the representation α is 1

dα
tr P|Eα (with dα the

dimension of α, Eα the α-isotypic component of E).

Definition 1. We denote by char g ⊂ � the characteristic set of the G-action, i.e.,
the closed subcone where all symbols of infinitesimal operators Tξ , ξ ∈ g, vanish
(this contains the fixed-point set �G ). The base of char g is the set of points of X
where all Lie generators Lξ , ξ ∈ g, are annihilated by the contact form λ; in the
sequel we will usually denote it by Z ⊂ X .

The fixed-point set X G is the base of �G because G is compact (there is an
invariant section). The base Z contains the fixed-point set X G . Note that �G is
always a smooth symplectic cone and its base X G is a smooth contact manifold;
char g and Z may be singular.

The following result is an immediate adaptation of the similar result for pseudo-
differential operators in [4].

Proposition 1. Let P : E→ E be a Toeplitz operator, with P ∼ 0 near char g (i.e.,
its total symbol vanishes near char g). Then TrG

P = tr (g ◦ P) is well defined as a
distribution on G. If P is equivariant, we have, in the sense of distributions,

TrG
P =

∑ 1

dα
(tr P|Eα ) χα (1)

7 dim X = 2n − 1. The Toeplitz algebra is microlocally isomorphic to the algebra of pseudodiffer-
ential operators in n real variables, and operators of degree < −n are of trace class.
8 We still denote by g the action of a group element g through a given representation, for example
if we are dealing with the standard representation on functions, g f = f ◦ g−1, also denoted by
g∗ f , g∗−1 f , or g−1∗ f .
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where α runs over the set of irreducible representations, dα is the dimension, and
χα the character.

We have seen above that this is true if P is of trace class. For the general case,
let DG be a bi-invariant elliptic operator of order m > 0 on G (e.g., the Casimir of a
faithful representation, with m = 2). Since DG is in the center of U(g), the Toeplitz
operator DX : E→ E it defines is invariant, with characteristic set char g.

If P ∼ 0 near char g, we can divide it repeatedly by DX (modulo smoothing
operators) and get for any N ,

P = DN
X Q + R with R ∼ 0.

The degree of Q is deg P − Ndeg (DG), so it is of trace class if N is large enough.
We set TrG

P = DN
G TrG

Q + TrG
R : this is well defined as a distribution; the fact that this

does not depend on the choice of DG, N, Q, R is immediate.
Formula (1) for equivariant operators is obvious for trace class operators, and

the general case follows by application of DN
X and DN

G . Note that the series in the
formula converges in the sense of distributions, i.e., the coefficients have at most
polynomial growth.

Slightly more generally, let

(E, d) : · · · → E j
d−→ Ei+1 → · · ·

be an equivariant Toeplitz complex of finite length, i.e., E is a finite sequence Ek
of equivariant Toeplitz bundles, d = (dk : Ek → Ek+1) a sequence of Toeplitz
operators such that d2 = 0. If the (degree-zero) endomorphism P = {Pk} of the
complex E is ∼ 0 near char g, its supertrace TrG

P =
∑

(−1)kTrG
Pk

is well defined; it
vanishes if P = [P1, P2] is a supercommutator with one factor∼ 0 on char g.

2.3 G index

Let E0, E1 be two equivariant Toeplitz bundles. An equivariant Toeplitz operator
P : E0 → E1 is G-elliptic (relatively elliptic in [4]) if it is elliptic on char g, i.e., the
principal symbol σ(P), which is a homogeneous equivariant bundle homomorphism
E0 → E1, is invertible on char g. Then there exists an equivariant Q : E1 → E0
such that Q P ∼ 1E0, P Q ∼ 1E1 near char g. The G-index I G

P is defined as the
distribution TrG

1−Q P − TrG
1−P Q .

More generally,9 an equivariant complex E as above is G-elliptic if the principal
symbol σ(d) is exact on char g. Then there exists an equivariant Toeplitz operator
s = (sk : Ek → Ek−1) such that 1 − [d, s] ∼ 0 near char g([d, s] = ds + sd).

9 This reduces to the case of a single operator where the complex is concentrated in degrees 0
and 1.
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The index (Euler characteristic) is the supertrace I G
(E,d) = str (1 − [d, s]) =

∑

(−1) jTrG
(1−[d,s]) j

.
For any irreducible representation α, the restriction Pα : E0,α → E1,α is a

Fredholm operator with index Iα , (respectively the cohomology H ∗α of d |Eα is finite-
dimensional), and we have

I G
P =

∑ 1

dα
Iαχα

⎛

⎝respectively I G
(E,D) =

∑

j,α

(−1)

dα

j

dim H j
α χα

⎞

⎠ .

The G-index I G
A is obviously invariant under compact perturbation and deformation,

so it depends only on the homotopy class of σ(P) once E j has been chosen; it does
depend on a choice of E j (on the projector that defines it, or on the Szegő projec-
tor), because E j is determined by its symbol bundle only up to a finite-dimensional
space; this inconvenience is removed with the asymptotic index below.

It is sometimes convenient to notate an index as an infinite representation (mod
finite representations)

∑

nαχα . For the circle group U(1), all simple representations
are powers of the tautological representation, denoted by J , and all representations
occurring as indices have a generating series

∑

k∈Z
nk J k (mod finite sums). (2)

In fact, the positive and negative parts of the series have a weak periodicity property:
they are of the form P±(J±1)/

∏

i(1 − (J±1)ki ) for a suitable polynomial P± and
positive integers ki .10

Here in our relative index problem, only very simple representations of the form
m

∑∞
0 J k = m(1− J )−1 (for some integer m) will occur.

3 K-theory and embedding

A crucial point in the proof of the Atiyah–Singer index theorem [2] consists in show-
ing how one can embed an elliptic system A in a simpler manifold where the index
theorem is easy to prove, preserving the index and keeping track of the K-theoretic
element [A]. The new embedded system F+A is analogous to a derived direct image
(as in algebraic geometry), and the K-theoretic element [F+A] is the image of [A] by
the Bott homomorphism constructed out of R. Bott’s periodicity theorem (cf. [2]).

10 This notation represents the series expansion in positive powers of J±1; it is obviously abu-
sive but suggestive, especially if one thinks of the extension to a multidimensional torus; it also
represents a rational function whose poles are roots of 1, and whose Taylor series has integral
coefficients, of which the corresponding distribution on G is the boundary value from one or the
other side of the circle in the complex plane. Something similar occurs for any compact group;
cf. [4].
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Here we will do the same for Toeplitz operators. The direct image F+A is even
somewhat more natural, as is its relation to the Bott homomorphism (Section 3.4).
The direct image for elliptic systems does not preserve the exact index, since this
is not defined (because the Toeplitz space H is at best defined only mod a space of
finite rank); but it does preserve the asymptotic equivariant index.

3.1 A short digression on Toeplitz algebras

We use the following notation: for distributions, f ∼ g means that f − g is C∞; for
operators, A ∼ B (or A = B mod C∞) means that A− B is of degree−∞, i.e., has
a smooth Schwartz kernel. If M is a manifold, T •M denotes the cotangent bundle
deprived of its zero section; it is a symplectic cone with base S∗M = T •M/R+, the
cotangent sphere bundle.

As mentioned above, a compact contact G-manifold always possesses an invari-
ant generalized Szegő projector. More generally, if M is a G-manifold, � ⊂ T •M
an invariant symplectic cone, there exists an associated equivariant Szegő projec-
tor (cf. [10]). If � ⊂ T •M,�′ ⊂ T •M ′, and f : � → �′ is an isomorphism of
symplectic cones, there always exists an “adapted FIO” F which defines a Fredholm
map u �→ F̃u = S′(Fu) : H → H

′ and an isomorphism of the corresponding
Toeplitz algebras (A �→ F̃ AF̃−1, mod C∞).

One can choose F equivariant if f is. Indeed, any adapted FIO can be defined
using a global phase function φ on T •(M × M ′op) such that11

(1) φ vanishes on the graph of f , and dφ coincides with the Liouville form ξ ·dx−
η · dy there;

(2) Im φ 
 0, i.e., Im φ > 0 outside of the graph of f , and the transversal
Hessian is
 0; replacing φ by its mean gives an invariant phase; we may set
F f (x) = ∫

eiφa f (y)dy dη dξ , where the density a(x, ξ, y, η)dy dη dξ is a
symbol, invariant and positive elliptic (F is of Sobolev degree deg (a dy dη dξ)
− 3

4 (nx + ny) (cf. L. Hörmander [22]), so a is possibly of nonintegral degree if
we want F of degree 0). The transfer map from H to H

′ is S′FS.

If M is a manifold and X = S∗M , the cotangent sphere, X carries a canonical
Toeplitz algebra, viz. the sheaf ES∗M of pseudodifferential operators acting on the
sheaf μ of microfunctions. In general, if X is a contact manifold, we will denote by
EX (or just E) the algebra of Toeplitz operators on X . It is a sheaf of algebras on
X acting on μH = H mod C∞, which is a sheaf of vector spaces on X ; the pair
(EX , μH) is locally isomorphic to the pair of sheaves of pseudodifferential operators
acting on microfunctions. If X is a G-contact manifold, we can choose the Szegő
projector invariant, so G acts on EX and μX .

For a general contact manifold, EX is well defined up to isomorphism, indepen-
dently of any embedding, but no better than that. The corresponding Szegő projector

11 op in M ′op refers to the change of sign in the symplectic form on T ∗M ′.
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(not mod C∞) is defined only up to a compact operator (a little better than that; see
below).

3.2 Asymptotic trace and index

The symbol bundles E j of the Toeplitz bundles E j determine these only up to a
space of finite dimension (because, as mentioned above, both the projector defining
them, and the Szegő projector, are not uniquely determined by their symbols).
However, if E, E

′ are two equivariant Toeplitz bundles with the same symbol, there
exists an equivariant elliptic Toeplitz operator U : E → E

′ with quasi-inverse V
(i.e., V U ∼ 1E, U V ∼ 1E′ ). This may be used to transport equivariant Toeplitz
operators from E to E

′: P �→ Q = U PV . Then if P ∼ 0 on Z , Q = U PV and
V U P have the same G-trace, and since P ∼ V U P , we have TrG

P −TrG
Q ∈ C∞(G).

Definition 2. We define the asymptotic G-trace of P as the singularity of TrG
P (i.e.,

TrG
P mod C∞(G)).

The asymptotic trace vanishes if and only if the sequence of Fourier coefficients of
TrG

P is of rapid decrease, i.e., O(cα)−m for all m, where cα is the eigenvalue of DG

in the representation α. This is the case if P is of degree−∞.

Definition 3. We will say that a system P of Toeplitz operators is G-elliptic
(relatively elliptic in [4]) if it is elliptic on char g. When this is the case, the
asymptotic G-index (or ˜I G

P ) is defined as the singularity of I G
P . (We will still denote

it by I G
P if there is no risk of confusion.)

We denote by K G(X−Z) the equivariant K-theory with compact support. By the
excision theorem, K G(X − Z) is the same as K G

X−Z (X), the equivariant K-theory
of X with compact support in X − Z , i.e., the group of stable classes of triples
d(E, F, u), where E, F are equivariant G-bundles on X , and u an equivariant iso-
morphism E → F defined near the set Z (the equivalence relation is d(E, F, a) ∼ 0
if a is stably homotopic (near Z ) to an isomorphism on the whole of X ). The
asymptotic index is also defined for equivariant Toeplitz complexes, exact near
char g.

If u : E → F is a G-elliptic Toeplitz system or complex, its principal symbol
defines a homogeneous linear map on �, invertible on char g. Its restriction to any
equivariant section of � defines a K-theoretic element [u] ∈ K G(X − Z) (in case
of a complex, u defines the same K-theoretic element as u + u∗ : E

even → E
odd).

The asymptotic index depends only on the homotopy class of the principal symbol
σ(P), and since it is obviously additive, we get the following

Theorem 2. The asymptotic index of u depends only on the K-theoretic element [u].
It defines an additive map from K G(X − Z) to C−∞(G)/C∞(G), where Z is, as
above, the base of charg.
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Note that the sequence of Fourier coefficients tr Pα
dα

is in any case of polynomial
growth with respect to the eigenvalues of D or DX ; if P ∼ 0, it is of rapid decrease.
The coefficients Iα

dα
of the asymptotic index are integers, so they are completely

determined, except for a finite number of them, by the asymptotic index.

Remark. If V is a finite-dimensional representation of G and V ⊗ P or V ⊗ d
is defined in the obvious way, we have I G

V⊗P = χV I G
P (i.e., Index (V ⊗ P)α =

(V ⊗ Index P)α , except at a finite number of places).

For example, let G = SU2 acting on the sphere X of V = C
2 in the usual

manner, and E = Sm V the mth symmetric power. Then E × X is a G bundle with
the action g(v, x) = (gv, gx). The CR structure on the sphere gives rise to a first
Szegő projector S1(v · f ) = v · S( f ), where S is the canonical Szegő projector on
holomorphic functions. On the other hand, since X is a free orbit of G, the bundle
E × X is isomorphic to the trivial bundle E0 × X , where E0 is some fiber (i.e., the
vector space of homogeneous polynomials of degree m, with trivial action of G).
This gives rise to a second Szegő projector S0, not equal to the first, but giving the
same asymptotic index; we recover the fact that Sm V ⊗∑

Sk V ∼ (m + 1)
∑

Sk V
(= in degree≥ m).

3.3 E-modules

For the sequel, it will be convenient to use the language of E-modules. In the C∞
category, E is not coherent; general E-module theory is therefore not practical and
not usefully related to topological K-theory. We will just stick to the two useful
cases below (elliptic complexes or “good” modules).12 Note also that the notion
of ellipticity is slightly ambiguous; more precisely: a system of Toeplitz operators
(or pseudodifferential operators) is obviously invertible mod C∞ if its principal
symbol is, but the converse is not true. The notion of “good” system below partly
compensates for this; it is in fact indispensable for a good relationship between
elliptic systems and K-theory.

If M is an E-module (respectively a complex of E modules), it corresponds to
the system of pseudodifferential (respectively Toeplitz) operators whose sheaf of
solutions is Hom (M, μH); e.g., a locally free complex of (L, d) of E-modules
defines the Toeplitz complex (E, D) = Hom (L, H).

More generally we will say that an E-module M is “good” if it is finitely gene-
rated, equipped with a filtration M = ⋃Mk (i.e., EpMq =Mp+q ,

⋂Mk = 0)
such that the symbol grM has a finite locally free resolution. We write σ(M) =
M0/M−1, which is a sheaf of C∞ modules on the basis X ; since there exist
global elliptic sections of E , grM is completely determined by the symbol, as is
the resolution.

12 Things work better in the analytic category.
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A resolution of σ(M) lifts to a “good resolution” of M, i.e., a finite locally free
resolution13 of M.

It is standard that two resolutions of σ(M) are homotopic, and if σ(M) has
locally finite locally free resolutions it also has a global one (because we are work-
ing in the C∞ category on a compact manifold or cone with compact support, and
dispose of partitions of unity); this lifts to a global good resolution of M.

If M is “good,” it defines a K-theoretic element [M] ∈ KY (X) (where Y is
the support of σ(M)), viz. the K-theoretic element defined by the symbol of any
good resolution (this does not depend on the resolution, since any two such are
homotopic).

All this works just as well in the presence of a G-action (if the filtration etc. is
invariant).

As above (Section 2.2), the asymptotic G-trace TrG
A [using subscripts as before]

is well defined if A is an endomorphism of a good locally free complex of Toeplitz
modules. The same holds for a good module M: the asymptotic trace of A ∈
EndE(M) vanishing near char g is the asymptotic trace of any lifting of A to a
good resolution of M. (Such a lifting, vanishing near char g, exists and is unique up
to homotopy, i.e., modulo supercommutators.) Likewise, the asymptotic G-index of
a locally free complex exact on Z , or of a good E- module with support outside of
Z , is defined: it is the asymptotic G-trace of the identity.

Definition 3 of the asymptotic index (or Euler characteristic) extends in an
obvious manner to good complexes of locally free E-modules or to good E-modules.
The asymptotic G-index of such an object, when it is G-elliptic, depends only on
the K-theoretic element which it defines on the base.

Let us note that the asymptotic trace and index are still well defined for locally
free complexes or modules with a locally free resolution, not necessarily good; in
that case, what no longer works is the relation to topological K-theory on the base.

3.4 Embedding

If M is a manifold, � ⊂ T •M a symplectic subcone, the Toeplitz space H is the
space of solutions of a pseudodifferential system mimicking ∂̄b. If I ⊂ E is the
ideal generated by these operators (mod C∞), and M = E/I , we have μH =
Hom E (M, μ) (as a sheaf: f ∈ Hom (M, μ) �→ f (1); here as above μ denotes the
sheaf of microfunctions). For example, in the holomorphic situation, I is the ideal
generated by the components of ∂̄b.

We have End E (M) = [I : I ], the set of pseudodifferential operators a such that
Ia ⊂ I , acting on the right: if a ∈ [I : I ], the corresponding endomorphism of M
takes f (mod I ) to f a (mod I ); this vanishes if and only if a ∈ I . The map which
takes a ∈ [I : I ] to the endomorphism f �→ a f of H defines an isomorphism from

13 The converse is not true: if d is a locally free resolution of M, its symbol is not necessarily a
resolution of the symbol of M, if only because filtrations must be defined to define the symbol and
can be modified rather arbitrarily.
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End E (M) to the algebra of Toeplitz operators mod C∞. Thus M is an ET •M − E�

bimodule (where E� � EndM denotes the sheaf of Toeplitz operators mod C∞).
This extends immediately to the case in which T •M is replaced by an arbitrary

symplectic cone �′′ with base X ′′.14 The small Toeplitz sheaf μH can be realized
as Hom E ′′ (M, μH

′′), where M = E ′′/I and I ⊂ E ′′ is the annihilator of the Szegő
projector S of � (i.e., the null-sheaf of I in Hom E ′′(M, H

′′) = μH). IfP is a (good)
E-module, the transferred module is M ⊗E P , which has the same solution sheaf
(Hom E ′′(M⊗P, H

′′) = Hom E ′′ (P, Hom E (M, H
′′)) and Hom E ′′(M, H

′′) = H).
Thus the transfer preserves traces and indices.

The module M = E ′′/I is generated by 1 (mod I ) and has a natural filtration,
which is a good filtration, in the holomorphic case, the good resolution is dual to the
complex ∂̄b on (0, ∗) forms.

In general it always has a good locally free resolution, well defined up to homo-
topy equivalence. In a small tubular neighborhood of � one can choose this so that
its symbol is the Koszul complex on

∧

N ′ , where N ′ is the dual of the normal
tangent bundle of � equipped with a positive complex structure (as in the holo-
morphic case). The corresponding K-theoretic element [M] ∈ K G

X (X ′′) is pre-
cisely the element used to define the Bott isomorphism (with support Y ⊂ �)
K G

Y (�) → K G
Y (�′′). (Here, Y is some set containing the support of σ(M) and

the map is the product map: [E] �→ [M][E], where the virtual bundle [E] on � is
extended arbitrarily to some neighborhood of � in �′′.)15

For example, if �′′ is C
N\{0}, with Liouville form Im z̄ · dz and base the unit

sphere X ′′ = S
2N−1, H

′′ is the space of boundary values of holomorphic functions,
� ⊂ �′′ consists of the nonzero vectors in the subspace z1 = · · · = zk = 0, and
X ⊂ X ′′ is the corresponding subsphere, then H consists of the functions indepen-
dent of z1, . . . , zk , and I is the ideal spanned by the Toeplitz operators T∂1, . . . T∂k .
In this example the ideal I is generated by z̄1, . . . , z̄k , or by Tz̄ j , j = 1, . . . , k (on
the sphere we have T∂ j = (A+ N)Tz̄ j with A = T∑N

1 z j ∂ j
). The E-module M itself

has a global resolution with symbol the Koszul complex constructed on z̄1, . . . , z̄k .
What precedes works exactly as well in the presence of a compact group action.

If P is a good module with support outside of Z (or a complex with symbol exact
on Z), the transferred module has the same property (Z ⊂ Z ′′), and it has the same
G-index (the G-index of the complex Hom E (M, H) � Hom E ′′(M′′, H

′′)).
If X, X ′′ are (compact) contact G-manifolds, f : X → X ′′ an equivariant

embedding, P a good (G − E)-module with support outside of Z (the base of
char g in �), or a Toeplitz complex, exact on Z , the transferred module on X is
f+P =M⊗ f∗E ′ f∗P ′. This is exact outside of f (�) and has the same G-index as
P ; its K-theoretic invariant [P] is the image of [P] by the equivariant Bott homo-
morphism. The K-theoretic element [ f+P] ∈ K G

X−Z (X) is the image of [P] by

14 We use a double prime here because, eventually, we will be embedding two cones in a third one.
15 Toeplitz operators (mod C∞) live on � and their principal symbols are homogeneous functions
on �. However, the K-theoretic element [u] ∈ K G (X − Z) of a G-elliptic element lives on the
base X , so as the support of “good” E-modules or complexes, in contrast to what happens for
pseudodifferential operators.
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the Bott homomorphism (it is well defined, since f (Z) ⊂ Z ′′). Thus we have the
following Theorem.

Theorem 3. Let f : X → X ′′ be an equivariant embedding. The Bott homomor-
phism K G

X−Z (X)→ K G
X ′′−Z ′′(X ′′) commutes with the asymptotic G index.16

It is always possible to embed a compact contact manifold in a canonical contact
sphere with linear G-action. In fact, it is easier to work with the corresponding cones,
as follows:

Proposition 4. Let � be a G-cone (with compact base), λ a horizontal 1-form,
homogeneous of degree 1, i.e., ρ�λ = 0, and Lρλ = λ, where ρ is the radial
vector field, generating homotheties. Then there exists a homogeneous embedding
x �→ z(x) of � in a unitary representation space V c of G such that λ = Im z̄ · dz.

In the proposition, z(x) must be homogeneous of degree 1
2 . This applies of course

if � is a symplectic cone, λ its Liouville form. (The symplectic form is ω = dλ and
λ = ρ�ω.)

We first choose a smooth equivariant function y = (y j ), homogeneous of degree
1
2 , realizing an equivariant embedding of � in V − {0}, where V is a real unitary
G-vector space (this always exists if the base is compact (the coordinates z j on V
are homogeneous of degree 1

2 , so that the canonical form Im z̄ · dz is of degree 1)).
Then there exists a smooth function x = (x j ) homogeneous of degree 1

2 such that
λ = 2x · dy. We can suppose x equivariant, replacing it by its G-mean if need be.
Since y is of degree 1

2 we have 2ρ�dy = y, hence x · y = ρ�λ = 0. Finally, we get

λ = Im z̄ · dz with z = x + iy.

4 Relative index

As indicated in the introduction, we are considering the index of the Fredholm map
E0 : u �→ S′(u ◦ f −1

0 ) from H0 to H
′
0, where X0, X ′0 are the boundaries of two

smooth strictly pseudoconvex Stein manifolds �,�′, H, H
′ the spaces of CR distri-

butions (ker ∂̄b, equal to space of boundary values of holomorphic functions), S, S′
the Szegő projectors, and f0 a contact isomorphism X0 → X ′0.

As announced, we modify the problem and move to the larger boundaries X, X ′
of “balls” |t|2 < φ, |t ′|2 < φ′ in C×�, C×�′, on which the circle group acts (t �→
eiλt) (Section 4.1). We will see (Section 4.2) that the Toeplitz FIO E0 defines almost
canonically an equivariant extension F which is U(1)-elliptic, and Index (F|Hk ) =
Index (E0) for all k (Hk ⊂ H(X) is the subspace of functions f = tk g(x)), so that

16 As mentioned above, the interplay between the Bott isomorphism and embeddings of systems
of differential or pseudodifferential operators lies at the root of Atiyah–Singer’s proof of the index
theorem; it is described in M.F. Atiyah’s works [1, 2, 3, 4]; cf. also [11] in the context of holomor-
phic D-modules, close to the Toeplitz context.
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our relative index Index (E0) appears as an asymptotic equivariant index, easier to
handle in the framework of Toeplitz operators.

In Section 4.3 we will show that the whole situation can be embedded in a large
sphere, with action of U(1) as in the examples above. In the final result (Section 4.4)
the relative index appears as the asymptotic index of an equivariant U(1)-elliptic
Toeplitz complex on this large sphere. In general, the equivariant index (asymp-
totic or not) is rather complicated to compute, but in our case the U(1)-action
is quite simple.17 It reduces naturally to the standard Atiyah–Singer K-theoretic
index formula on a symplectic ball. The result is better stated in terms of K-theory
anyway, but it can be translated via the Chern character in terms of cohomology or
integrals. We give here a (rather clumsy) cohomological-integral translation, essen-
tially equivalent to the result conjectured in [27].

We will also see below (Section 4.2) that f0 has an almost canonical extension
f near the boundary, well defined up to isotopy, not holomorphic but symplectic.
We can then define a space Y by gluing together Y+, Y− by means of f . The space Y
is not a Hausdorff manifold, but it is symplectic and both Y+, Y− carry orientations
which agree on their intersection (as do the symplectic structures). We can further
choose differential forms ν± representatives of the Todd classes of Y± so that they
are equal near the boundary X0 (the symplectic structures agree, not the complex
structures, but they define the same Todd classes).

Theorem 5. The relative index (index of E0) is the integral
∫

Y (ν+ − ν−), where
ν± are representatives of Todd(Y±) as above, so that the difference has compact
support in Y − X0.

This will be explained in more detail below (Section 4.4). This formula is related
to the Atiyah–Singer index formula on the glued space Y , but is not quite the same,
since Y is not a symplectic manifold.

To prove the index theorem we will give an equivalent equivariant description of
the situation, where the index of E0 is repeated infinitely many times, and embed
everything in a large sphere where the index is given by the K-theoretic index char-
acter (Section 4.4).

4.1 Holomorphic setting

Let � be a strictly pseudoconvex domain (or Stein manifold), with smooth boundary
X0; �̄ = � ∪ X0 is assumed to be compact. We write ˜� ⊂ C × �̄ for the ball
|t|2 < φ, where φ is a defining function (φ = 0, dφ �= 0 on X0, φ > 0 inside). φ is
chosen so that the boundary X = ∂˜� is strictly pseudoconvex, i.e., Log 1

φ is strictly

plurisubharmonic (i.e., Im ∂̄∂ 1
φ 
 0).

The circle group U(1) acts on X by (t, x) �→ (eiλt, x). We choose as volume
element on X the density dθ dv, where dv is a smooth positive density on �

17 It is free on the support of the K-theoretic symbol of our complex.
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(t = eiθ |t|). This is a smooth positive density on X ; it is invariant by the action
of U(1) as are the Szegő projector S and its range H, the space of boundary values
of holomorphic functions.

The infinitesimal generator of the action of U(1) is ∂θ , and we denote by D the
restriction to H of 1

i ∂θ , which is a self-adjoint nonnegative Toeplitz operator; D is
the restriction of Tt T∂t .

The model case is the sphere S
2N+1 ⊂ C

N+1 with the action

(t = z0, z = (z1, . . . , zN )) �→ (eiθ t, z).

The Fourier decomposition of H,

H = ̂⊕k≥0 Hk (Hk = ker (D − k)),

corresponds to the Taylor expansion of holomorphic functions: the kth component
of f =∑

fk(x)tk ∈ H is fk tk .
H0 identifies with the set of holomorphic functions on X0 (it is the set of

boundary values of holomorphic functions on � with moderate growth at the bound-
ary, i.e., | f | ≤ c d(·, X0)

−N where c and N are constants, and d(·, X0) is the
distance to the boundary).

Remark. If f = tk g(x) with g continuous, in particular if f ∈ Hk , its L2(X)
norm is

‖ f ‖L2(X) =
π

k + 1

∫

�
φk+1|g(x)|2dv,

where as above, dv is the chosen as the smooth volume element on �. The restriction
of the Szegő projector to functions of the form tk g(x) is thus identified with the
orthogonal projector on holomorphic functions in L2(�, φk+1dv). Such sequences
of projectors were considered by F.A. Berezin [5] and further exploited by M. Englis
[14, 15, 16], whose presentation is closely related to the one used here.

For the sequel, it will be convenient to modify the factorisation D = t∂t .
We begin with the easy following result.

Lemma 6. Let D = P Q be any factorisation where P, Q are Toeplitz operators
and [D, P] = P. Then there exists a (unique) invariant invertible Toeplitz operator
U such that P = tU, Q = U−1∂t .

Indeed it is immediate that any homogeneous function a on σ such that 1
i ∂θa =

±a is a multiple mt of t (respectively of t̄), with m invariant. For the same reason
(or by successive approximations) a Toeplitz operator A such that [D, A] = ±A is
a multiple of Tt M (or M ′Tt ) Tt with M or M ′ invariant (respectively of T∂t , on the
right or on the left). Thus in the lemma above we have P = TtU, Q = U ′T∂t , where
U, U ′ are Toeplitz operators which necessarily commute with D, and are elliptic
and inverses of each other.

Note that D = P Q, [D, P] = P is equivalent to D = P Q, [Q, P] = 1.
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In particular, since D = D∗ = T ∗∂t
T ∗t , there exists a Toeplitz operator A such that

T∂t = AT ∗t ; A is elliptic of degree 1 (in fact invertible), positive since D = Tt AT ∗t
is self-adjoint≥ 0; it is also invariant: [D, A] = 0.

Definition 4. We will set T = Tt A
1
2 ; its symbol is denoted by σ(T ) = τ .

Note that τ is homogeneous of degree 1
2 , and T is of degree 1

2 , so it is not a
Toeplitz operator in our strict sense, but for multiplications and automorphisms
P �→ U PU−1 it is just as good. We have

T ∗ = A
1
2 T ∗t , [D,T ] = T · D = T T ∗ (3)

(for any other such factorisation D = B B∗ with [D, B] = B, B is of degree 1
2 , and

we have B = T U with U invariant and unitary; T is the unique Toeplitz operator
giving such a factorisation and such that T = Tt A′ with A′ a Toeplitz operator of
degree 1

2 , A′ 
 0).
In what precedes, all = signs can be replaced by ∼ (= mod C∞); we then get

local statements.
The symbol τ = σ(T ) is the unique homogeneous function of degree 1

2 such
that σ(D) = |τ |2, ∂θ τ = iτ, τ

t > 0.
We also have the following (easy) local result:

Lemma 7. Given any Toeplitz operator K (mod C∞) on H such that D ∼ KK∗,
[D,K] = K near the boundary, there exists a unique unitary equivariant Toeplitz
FIO F such that F |H0 ∼ Id , FT ∼ KF.

The geometric counterpart is this: given any function k on � homogeneous
of degree 1

2 such that σ(D) = kk̄ there exists a unique germ of homogeneous
symplectic isomorphism f such that f |�0 = Id , k ◦ f = τ . This is immediate
because the two Hamiltonian pairs Hτ , Hτ̄ , Hk, Hk̄ define real 2-dimensional folia-
tions, and an isomorphism � ∼ �0 × C near �0. Note that this would not work
if we replaced k, k̄ by two functions a, b such that σ(D) = ab, ∂θa = ia but not
b = ā, because then the “foliation” defined by the Hamiltonian vector fields Ha, Hb,
although it is formally integrable, is not real.

The operator statement follows, e.g., by successive approximations. Note that F
is completely determined by its restriction F0 if it commutes with T . In fact in E� ,
the commutator sheaf of T and T ∗ identifies with the inverse image of E�0 , at least
as far as the leaves of the Hamiltonian fields HT , HT ∗ define a fibration over �0: E�

is the (completed) tensor product of the Toeplitz algebra Toepl(T ,T ∗) generated by
T and T ∗ and this commutator: E� ∼ E�0 ⊗ Toepl(T ,T ∗) (in a neighborhood of
�0). In this statement, (T ,T ∗) cannot be replaced by (Tt , T∂t ), whose commutator
sheaf is defined only in the algebra of jets of infinite order along �0, because the
Hamiltonian leaves are complex, no longer real.

Note that in our case, the base of char g is the boundary X0 (the set of fixed
points), outside of which D is elliptic.
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4.2 Collar isomorphisms

Let now �′ be another strictly pseudoconvex domain (or Stein manifold) with
smooth boundary X ′. We do the similar constructions �̃′, H

′, and D′, . . . as in
the previous subsection. Let f0 : X0 → X ′0 be a contact isomorphism.

We define the Fourier Toeplitz operator E0 : u �→ S′(u ◦ f −1
0 ) : H→ H

′, which

is a Fredholm operator. It will be convenient to replace E0 by F0 = (E0 E∗0)− 1
2 E0,

which has the same index and is unitary mod C∞ (E0 E∗0 is an elliptic ≥ 0 Toeplitz

operator on H
′); (E0 E∗0)− 1

2 is defined to be 0 on ker E∗0 (mod C∞ would be
quite enough). As for ˜�, we construct a Toeplitz operator T ′ such that D′ =
T ′T ′∗, [D′T ′] = T ′, T−1

t T ′ 
 0.
Exactly as in Lemma 4.2, there exists a unique (unitary) Toeplitz FIO F , defined

near the boundary X0 and mod C∞, elliptic, such that F |H0 = F0, and FT ∼ T ′F
near the boundary (mod C∞).

The geometric counterpart is this: there exists a unique equivariant germ of
contact isomorphism f : X → X ′ (defined and invertible near the boundary) such
that f |X0 = f0, τ ′ = τ ◦ f .

We may extend F , using an invariant cut-off Toeplitz operator, so that it vanishes
(mod C∞) away from the boundary. There is an invariant FIO parametrix F ′, i.e.,
F ′F ∼ 1H, F F ′ ∼ 1H′ , near the boundary.

Proposition 8. For any k, Fk = F |Hk has an index, equal to Index F0.

Proof. Both F ′F and F F ′ are invertible on the boundary, so have a G-index;
the index of Fk = F |Hk is tr (1 − F ′F)k − tr (1 − F F ′)k . Now T , respectively
T ′, is an isomorphism Hk → Hk+1, respectively H

′
k → H

′
k+1, and we have

Index (Fk+1 A) = Index (A′Fk), so Index Fk+1 = Index Fk , i.e., the index does
not depend on k and is equal to Index E0.18

The asymptotic index is stable by embedding; here the index is constant, and the
asymptotic index of F (which is essentially a Toeplitz invariant) gives the index of
F0 itself.

4.3 Embedding

Theorem 9. Let f : X → X ′ be a collar isomorphism defined in some invariant
neighborhood of X0 in X. Then for large N there exist equivariant contact embed-
dings U : X → S

2N+1, U ′ : X ′ → S
2N+1 such that U = U ′ ◦ f near the boundary,

and tX , t ′X ′ map to positive multiples of tS2N+1 (as above, the contact sphere S
2N+1

is equipped with the U(1)-action (t, z) �→ (eiθ t, z)).

18 For a more general situation in which P is a Toeplitz operator elliptic on X0, or in which the
canonical Szegő projector is replaced by some other general equivariant one, we would get only
that the index Index (Pk) is constant for k 
 0. Here the fact that Index Pk = Index P0 is obvious
but important.
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As usual, it will be more comfortable to work with the symplectic cones. The
symplectic cone of X is � = R+ × X , where we choose the radial coordinate
invariant.

The symbol of D is τ̄ τ with τ/t > 0 as in Definition 4. The Liouville form
is Im (τ̄dτ ) + λ0, where λ0 is a horizontal form, i.e., the pull-back of a form on
�b = U(1)\� � R+ × �̄ (equivalently: ∂θ�λ0 = L∂θ λ0 = 0).

Lemma 4 provides an embedding x �→ zb(x) of �b in C
N ′ − {0} (with the trivial

action of U(1)). We now choose real functions ψ1, ψ2 invariant, homogeneous of
degree 0, such that ψ2

1+ψ2
2 = 1, with supp ψ1 contained in the domain of definition

of f and ψ2 vanishing near the boundary, and we construct a new embedding z in
three pieces: z = (z1, z2, z3) with z1 = ψ1z0, z2 = ψ2z0, z3 = 0 in C

N ′′ , N ′′ to be
defined below.

Since Im z̄ j z jψ j dψ j = 0 (z̄ j z j ψ j dψ j is real), we still have Im (z̄1 · dz1 + z̄2 ·
dz2) = (ψ2

1 + ψ2
2 )Im z̄0 · dz0 = Im z̄0 · dz0 inducing λ0. The first embedding is

U = (τ, v) : �→ C
1+N (N = 2N ′ + N ′′).

Similarly there exists an embedding x ′ �→ z ′0(x ′) of �′b in C
N ′′ − {0} (with the

trivial action of U(1)).
We replace this by z ′ = (z ′1, z ′2, z′3) with z′1 = ψ ′1z1 ◦ f −1, z′2 = 0, z ′3 = ψ ′3z′0,

where ψ ′1, ψ
′
3 again are invariant, homogeneous of degree 0, ψ ′21 + ψ ′23 = 1, and

supp ψ ′1 is contained in the domain of definition of f −1, ψ ′3 vanishes near the
boundary. This also defines an embedding U ′ = (a′, z′) : �′ → C

N+1; we have
U = U ′ ◦ f near the boundary, since ψ2, ψ

′
3 vanish there.

4.4 Index

We are now reduced to the case in which both U(1)-manifolds X, X ′ sit in a large
sphere S = S

2N+1 and coincide near the set of fixed points S0.
As in the preceding section, we can embed the U(1) sheaves μHX , μHX ′ as

sheaves of solutions of two good equivariant ES-modules MX ,MX ′ , and the iden-
tification F gives an equivariant Toeplitz isomorphism ˜F near X0 (we can make the
construction so that MX =MX ′, ˜F = Id near X0).

The asymptotic index then depends only on the difference element

d([MX ], [MX ′], σ (˜F)) ∈ K U(1)(S− S0).

Now U(1) acts freely on S − S0, with quotient space U(1)\(S − S0) the open
unit ball B2N ⊂ C

N . We have the following result.

Proposition 10. The pull-back map is an isomorphism K (B)→ K U(1)(S− S0).
We have K (B) ∼ Z, with generator the symbol of the Koszul complex kx at the

origin (or any point of the interior), whose index is 1.
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Its pull-back is the generator of K U(1)
S−S0

(S): the symbol is the same, but now acting

on H(S). Its index is
∑∞

0 J k, where (as in (2)) J is the tautological character of
U(1): J (eiλ) = eiλ.

The first assertion is immediate (cf. [4]): if G is a compact group acting freely on a
space Y , the pull-back defines an equivalence from the category of vector bundles
on G\Y to that of G-vector bundles on Y (an inverse equivalence is given by E �→
G\E), and this induces a bijection on K-theory (with supports).

The fact that kx defines the generator of K (B)(= K0(B)) is just a restatement of
Bott’s periodicity theorem. Its pull-back is then the generator of K U (1)(S− S0): the
corresponding complex of Toeplitz operators is then the standard Koszul complex,
acting on holomorphic functions, whose index is the space of holomorphic functions
of z0 = t alone.

Thus if [u] ∈ K U (1)(S − S0), its asymptotic index is m
∑∞

k=0 J k , where the
integer m is the value of the K-theoretic character K (B) on the element [uB] whose
pull-back is [u].

Let us now return to our index problem: we have constructed the difference
bundle d([MX ], [MX ′], σ (˜F)). We may replace MX ,MX ′ by good resolutions in
small equivariant tubular neighborhoods of X , respectively X ′, whose K-theoretic
symbol is the Bott element: the Koszul complex for a positive complex structure
on the normal symplectic bundle of X , respectively X ′. ˜F lifts to the resolutions
(uniquely up to homotopy), and the symbol of the lifting u is an isomorphism near
X0 (we can make the construction so that u = Id near X0), so our K-theoretic
element is [u] = d(βX , βX ′, u) (the equivariant K-theoretic element attached to the
double complex defined by u).

Theorem 11. Let m be the index of E0 we are investigating. Then, notation and
embeddings being as above,

(1) the asymptotic index of our equivariant extension ˜F is the asymptotic index of
the difference element [u] = d(βX , β ′X , u) ∈ K U(1)(S − S0), where u is the
symbol of ˜F (i.e., the identity map near S0, where X and X ′ coincide);

(2) the index m itself is the value of the index character of K (B) on the element
[uB] = d(β�, β�′, ū).

The first part has just been proved. The asymptotic index is∼ m(1− J )−1 for some
integer m.

To prove the second we go down to B2N . The bases of X, X ′ are the embeddings
Y+, Y− of �,�′ in B, which coincide near the boundary, and as above, the pull-back
is an isomorphism KY±(B) → K G

X±(S − S0). The Bott complexes βX± descend as
Bott elements βY± on B, realized as Koszul complexes of positive complex struc-
ture of the normal symplectic bundle;19 u descends as an isomorphism near the
boundary.

19 Note that Y± are symplectic submanifolds, not complex; but all positive complex structures are
homotopic.
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The index m we are looking for is the K-theoretic index character of the
difference element d(βY+, βY− , u). This can as usual be translated in terms of coho-
mology, or as an integral:

m =
∫

B

ω,

where ω is a differential form with compact support, representative of the Chern
character of our difference element d(βY+, βY−, u).

We can push this down further. The construction can be made so that u = Id near
the boundary; choose differential forms ω± with support in small tubular neighbor-
hoods of Y± so that they coincide near the boundary (as do the tubular neighbor-
hoods), so that ω is the difference ω+ − ω−.

The integral ν± of ω± over the fibers of the respective tubular neighborhoods is
then a representative of the Todd class of Y±; ν+ and ν− coincide near the boundary,
so that the difference ν+ − ν− has compact support in Y = Y+ ∪ Y−.

Finally, the index m is the integral
∫

Y (ν+ − ν−) as announced in Theorem 5.
The integral can also be thought of as the constant limit

∫

Y+,ε
ν+−

∫

Y−,ε
ν−, where

the subscript ε means that we have deleted the neighborhood φ < ε in Y+ and the
corresponding image in Y−.

4.5 Appendix

In this section we show how various symplectic extensions of f0 are related. It is a
little intriguing that although in our proof, the extension f must be chosen rather
carefully so that the asymptotic index of the corresponding Toeplitz FIO E is
(asymptotically) the index of E0, the final result, expressed as an integral on the
bases glued together by means of f near their boundaries, depends only on the
isotopy class of f , which is unique.

4.5.1 Contact isomorphisms and base symplectomorphisms

Let X be as above, with X0 the fixed-point set of codimension 2. Near the boundary,
X is identified with X = X0×C, and the base U(1)\X ∼ � identifies with X0×R+;
we have φ = t t̄ and the C-coordinate is t = √φ eiθ (it is smooth on X ). The contact
form is λX = Im (t̄ dt − ∂φ) = φ dθ + λ�, where λ� = −Im ∂φ is a smooth basic
form. The connection form is γ = dθ− λ�

φ , and the base � = X0×R+ is equipped
with the (basic) symplectic curvature form

μ = dγ

(

with γ = λ�

φ
, λ� = −Im ∂φ

)

.

We will still use the symplectic cone of X ; this is � = char g � R+ × X , with
Liouville form aλX and symplectic form its derivative, with the R+ coordinate a
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defined below. With the notation of Lemma 4, we have a = σ(A), i.e., σ(D) =
aφ = τ τ̄ , τ = t

√
a (as above, D = 1

i T∂θ denotes the infinitesimal generator of
rotations). We will also write in polar coordinates τ = ρ eiθ (ρ = √φ a).

Let F be a homogeneous equivariant symplectic transformation of �. Then F
preserves σ(D) = τ τ̄ , so we have necessarily F∗τ = u τ , with u invariant, |u| = 1.
Then F is completely determined by its restriction to the boundary, since it com-
mutes with the two real commuting Hamiltonian vector fields Re Hτ , Im Hτ , which
are linearly independent and transversal to �0.

Thus there is a one-to-one correspondence between unitary functions on the base
� and germs near �0 = char g of equivariant symplectomorphisms inducing Id on
char g, or equivalently of contact automorphisms of X inducing Id on X0.

If F is such a contact automorphism, the base map F� is obviously a diffeo-
morphism of � which induces Id on the boundary X0 and preserves the symplectic
form μ.

The converse is not true. If F� is a smooth symplectomorphism of � inducing
the identity on X0, we have F∗�(λ�

φ ) = λ�
φ +α with α a closed form. It is elementary

that α = c dφ
φ + β, where c is a constant and β is smooth on the boundary. Locally

on X0, F� lifts to X or �: the lifting is F : (x, τ ) �→ (x ′, τ ′ = τeiψ) (θ ′ = θ +ψ),
where ψ is a primitive of α (this is not smooth at the boundary, only continuous).
It is immediate that conversely, any α of the form above gives rise to such a contact
isomorphism with smooth base map. (On � the horizontal (invariant) coordinates
satisfy Hτeiψ f = 0; the horizontal part of the Hamiltonian Hτeiψ is −iτeiψ(∂ρ −
H 0

ψ) (with H 0
ψ = ψξ j ∂x j − ψx j ∂ξ j ); finally, ∂ρ − H 0

ψ is smooth, so the horizontal
coordinates (x ′, ξ) are determined by smooth differential equations.) Summing up:

Theorem 12. The map which to a germ of contact isomorphism F (near X0) assigns
the invariant unitary smooth function u such that F∗τ = τu is one-to-one (and
continuous). In particular, the homotopy class of F is determined by that of u (an
element of H 1(X, Z)).

The map which to a smooth germ of symplectomorphism F� (near X0) assigns
the closed one-form α = c dφ

φ + smooth is one-to-one; the group of such symplec-
tomorphisms is contractible. The contact lifting (which exists locally, and globally
if α is exact) is smooth on X0 if and only if c = 0.

The fact that this group is contractible (connected) simplifies the final result.
Namely, in the proof of Theorem 11 it was essential that the base map F� have
a smooth symplectic extension preserving τ > 0; for Theorem 5, however, any
symplectic F� will do, since these are all isotopic.

4.5.2 Example

(A smooth symplectic automorphism of the base does not lift to a smooth equi-
variant contact automorphism of the sphere.)

Let S be the unit sphere in C
N+1, with coordinates x0 = t, x1, . . . , xN .
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U(1) acts by t �→ eiθ t . The base is B = S/U(1), the unit ball of C
N .

The contact form is Im t̄ dt+λ = φ dθ+λ with λ =∑

x̄ j dx j , φ = t̄ t = 1− x̄ x .
The connection form is γ = dθ+ λ

φ ; its curvature is the symplectic form μ = d λ
φ

(on the interior of B).
Let FB be the diffeomorphism of B defined by x �→ x ′ = FB(x) = eciφx , c a

constant; this preserves φ, and the inverse is x = e−ciφ x ′. We have

F∗Bλ = Im (x̄(dx + ci x dφ)) = λ+ c(1− φ)dφ.

Since d(1− φ)dφ
φ = 0, FB is symplectic (F∗Bμ = μ).

But FB does not lift to a smooth equivariant contact automorphism of S: such a
lifting F must preserve the connection form, so it is of the form

t �→ e−iαt (θ �→ θ − α) with α = cLog φ − φ + const

(dα = c(1− φ) dφ
φ ), and this is not smooth at the boundary t = 0 if c �= 0.

Of course the reverse works: if F is a smooth equivariant contact automorphism
of the sphere S (or a germ of such near the fixed diameter S0), the base map FB is a
smooth symplectomorphism of the ball B (up to the boundary).

4.6 Final remarks

(1) The preceding construction applies in particular to the following situation: let
V , W be two compact manifolds, and f0 a contact isomorphism S∗V → S∗W .

We may suppose V real analytic; then S∗V is contact isomorphic to the bound-
ary of small tubular neighborhoods of V in its complexification. For example, if V
is equipped with an analytic Riemannian metric, and (x, v) �→ ex(v) denotes the
geodesic exponential map, the map (x, v) �→ ex(iv) is well defined for small v , and
for small ε it realizes a contact isomorphism of the tangent (or cotangent) sphere of
radius ε to the boundary of the complex tubular neighborhood of radius ε (cf. [6]).

The corresponding FIOs can be described as follows: as above, there exists a
complex phase (as in [25, 26]) function φ on T ∗W × T ∗V 0 such that (1) φ vanishes
on the graph of f0 and dφ = ξ.dx − η.dy there; (2) Im φ 
 0, i.e., it is positive
outside of the graph and the transversal Hessian is 
 0. Then φ is a global phase
function for FIO associated to f0 (φ is not unique, but obviously the set of such
functions is convex, hence contractible).

The elliptic FIOs we are interested in are those that can be defined by a positive
symbol (or a symbol isotopic to 1):

f �→ g(x) =
∫

eiφa(x, ξ, y, η) f (y)dy dη dξ with a > 0 on the graph.

The degree of such operators depends on the degree of a, but they all have the same
index, given by the formula above.
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(2) The formula above extends also to vector bundle cases: if E, E ′ are holo-
morphic vector bundles (or complexes of such) on �,�′, f0 a contact isomorphism
(∂�→ ∂�′) as above, and A a smooth (not holomorphic) isomorphism f0∗E → E ′
on the boundaries, the Toeplitz operator a �→ S′(A f0∗a) is Fredholm and its index
is given by the same construction as above. For this construction f0 needs to be
defined only where the complexes are not exact.

In particular let �,�′ have singularities (isolated singularities, since we still
want smooth boundaries): we can embed �,�′ in smooth strictly pseudoconvex
domains ˜�, ˜�′ of the same (higher) dimension; the contact isomorphism extends
at least in a small neighborhood of ∂� in ∂˜�. The coherent sheaves O�,O�′ have
global locally free holomorphic resolutions on ˜�, ˜�′; near the boundary these are
homotopy equivalent to a Koszul complex, hence equivalent.

The theorem above shows that the relative index is the K-theoretic character of
the difference virtual bundle d([O�], [O�′]) (vanishing near the boundary). Note,
however, that the virtual bundles [O�], [O�′] lie in the K-theory of ˜� with support
in �. This can be readily described in terms of cohomology classes on ˜�, etc., with
support in �, not on � itself (the relation between coherent holomorphic modules
and topological K-theory, or K-theory and cohomology, is not good enough when
there are singularities).
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15. Engliš, M. Weighted Bergman kernels and quantization. Comm. Math. Phys. 227 (2002),
211–241.
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A semi-classical inverse problem I: Taylor
expansions

Yves Colin de Verdière and Victor Guillemin

In memory of Hans Duistermaat

Abstract In dimension 1, we show that the Taylor expansion of a “generic” poten-
tial near a nondegenerate critical point can be recovered from the knowledge of the
semi-classical spectrum of the associated Schrödinger operator near the correspond-
ing critical value. Contrary to the work of previous authors, we do not assume that
the potential is even. The classical Birkhoff normal form does not contain enough
information to determine the potential, but the quantum Birkhoff normal form does.1

In a companion paper [5], the first author shows how the potential itself is, without
any analyticity assumption and under some mild genericity hypotheses, determined
by the semi-classical spectrum.
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1 Introduction
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Let us consider a (classical) Hamiltonian

H (x, ξ) = 1

2
ξ2 + V (x)

with V (0) = E0, V ′(0) = 0, V ′′(0) = ±1(3). We have

H (x, ξ) ≡ E0 +�± +
∞
∑

j=3

a j x j

with �± = 1
2(ξ2 ± x2). The Hamiltonian H can be quantized as a Schrödinger

operator Ĥ = − 1
2�

2 d2

dx2 + V (x) where the Taylor expansion of V at x = 0 is

E0 +∑∞
j=2 a j x j with a2 = ± 1

2 . This operator admits a semi-classical Birkhoff
normal form [8] (denoted the QBNF) at the origin of which the Weyl symbol is a
formal power series of the form

B ≡ �± +
∑

2 j+k≥2

b j,k�
2 j�k±. (1)

In this paper, we are interested in the following “inverse spectral problem”:
Does the QBNF, given in (1), of the Schrödinger operator determine the

Taylor series of V ?
We cannot hope for a positive answer, because V (x) and V (−x) give the same

QBNF. Moreover

Remark 1.1. The classical BNF does not suffice to determine the Taylor
expansion of V at x = 0.

Let y = f (x) = x + O(x2) be an analytic function whose local inverse near
0 is of the form x = y + g(y) with g an even function. Then the Hamiltonian
H f = 1

2 (ξ2 + f (x)2) is classically conjugate to �+ near the origin, in particular
all its trajectories are of period 2π : it is enough to show that the action integrals
I (E) = ∫

ξ2+ f (x)2≤2E dxdξ are the same; using the change of variable x = y+g(y),

we get I (E) = ∫

ξ2+y2≤2E(1 + g′(y))dydξ and using the fact that g′ is odd we get

the result. A simple example is V (x) = 1
2(
√

1+ 2x−1)2. This result is reminiscent
of the well-known result for Zoll surfaces in Riemannian geometry [2].

However, an even potential can be determined by the classical BNF, as a con-
sequence of a result of N. Abel [1]4.

Our main result is:

Theorem 1.2. The coefficients±a3 and a4 are determined from b0,2 and b1,0 by the
formulas

3 Assuming that V ′′(0) = ±1 does not affect the results below, because a2 = V ′′(0)/2 is known
from the first eigenvalue if a2 > 0 and from the density of states if a2 < 0.
4 We are grateful to Hans for pointing this out to us.
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a3 = ±
√

b1,0, a4 = 2

3
b0,2 + 5

2
b1,0.

If a3 does not vanish, all a j ’s are determined from the b0,k’s and the b1,k’s once
we have chosen the sign of a3.

This result is reminiscent of the much more sophisticated results by Zelditch on the
Kac problem [9]. If we use a (trivial) particular case of the result of [6], we get

Corollary 1.1. If we know the asymptotic expansions of the eigenvalues λn(�) for
all n′s of a Schrödinger operator near the minimum x = 0 of the potential and
V ′′(0) > 0, we know the value of V ′′′(0) and, if V ′′′(0) �= 0, the Taylor expansion
of the potential at that point.

In fact, we have the more precise result:

Corollary 1.2. From the knowledge of the N first eigenvalues of Ĥ modulo O(�2N ),
one can recover the Taylor expansion of V to order 2N.

A similar result holds for a local nondegenerate maximum of V using the
“density of states” techniques. This is the content of Section 10:

Corollary 1.3. If E0 is a nondegenerate local maximum of V and 0 is the only
critical point of V on the set V = E0, the knowledge of the semi-classical spec-
trum of Ĥ in some intervall ]E0, E1[ (or ]E1, E0[) determines V ′′′(0) and, provided
that V ′′′(0) �= 0, the Taylor expansion of V at x = 0.

and also in the case of a local minimum (Section 10.4):

Corollary 1.4. If E0 is a nondegenerate local minimum of V and 0 is the only
critical point of V on the set V = E0, the knowledge of the semi-classical spec-
trum of Ĥ in some interval ]E1, E2[, with E1 < E0 < E2, determines V ′′′(0) and,
provided that V ′′′(0) �= 0, the Taylor expansion of V at x = 0.

Knowing the semi-classical spectrum as a function of � seems to be a huge
amount of information. As was shown in [3], this is however the case for the
effective Hamiltonians driving the propagation of waves inside a stratified medium.

2 A counterexample for a general Hamiltonian

The QBNF of a general Hamiltonian, independent of �, H (x, ξ) = �± + O(3) is
not enough to know the Taylor expansion of H at the singular point. It is enough to
consider H = 1

2((ξ − 3x2)2 + x2) which is gauge equivalent to �+ by the gauge

transform u → ueix3
.
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3 Review of the Moyal product

The Moyal product is the product rule of symbols of Weyl quantized � DO’s; it is
given by

a � b ≡
∞
∑

j=0

1

j !

(

�

2i

) j

{a, b} j

with

{a, b} j :=
j

∑

p=0

(

p

j

)

(−1)p∂
p
x ∂

j−p
ξ a∂

j−p
x ∂

p
ξ b.

We will also use the Moyal bracket,

[a, b]� = a � b − b � a.

We have
i

�

[a, b]� ≡
∞
∑

j=0

1

2 j + 1!

(

�

2i

)2 j

{a, b}2 j+1.

In particular, {a, b}1 = aξ bx − ax bξ is the Poisson bracket and

{a, b}3 = aξξξbx x x − 3aξξ xbx xξ + 3aξ x xbxξξ − ax x xbξξξ .

We have
i

�

[a, b]� ≡ {a, b}1 − �
2

24
{a, b}3 + �

4

1920
{a, b}5 + · · · .

4 The Weyl algebra

The “Weyl algebra” which consists of formal power series in � and (x, ξ),

W =
∞
∑

j=2

W j ,

where W j is the space of polynomials in (x, ξ) and � of total degree j where the
degree of xlξm

�
n is l + m + 2n. W is a graded algebra for the Moyal product: we

have W j � Wk ⊂ W j+k and hence i
�

[W j , Wk ]� ⊂ W j+k−2. Moreover, if we define
W+j as the subspace of W j which is generated by monomials of even degree in �,
we have

i

�

[W+j , W+k ]� ⊂ W+j+k−2;

we will define W+ = ∑∞
j=3 W+j which is a Lie algebra for the bracket �

i [·, ·]�.
W+ is the (formal) Lie algebra of FIO’s that are tangent to the identity at the the
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origin. The grading is obtained by looking at the action on the (graded) vector space
of symplectic spinors: if F ≡ ∑∞

j=0 �
j Fj (X) with F ∈ S(R), we define f�(x) =

�
− 1

2 F(x/�) whose microsupport is the origin. W+ acts on this space of functions
in a graded way as differential operators of infinite degree: if w ∈ W , w · f =
OP�(w)( f ).

5 Moyal versus functional QBNF

There are two different QBNF:

• The first is a Weyl symbol B ≡∑

b j,k�
2 j�k as before, and

• the second is an operator which is a formal power series of the harmonic
oscillator �̂ of the form B̂ ≡∑

̂b j,k�
2 j �̂k .

The second is the Weyl quantization of the first. So they are equivalent. The equi-
valence can be made explicit in both directions by computing OpWeyl(�

k) or the

Weyl symbol of �̂k . The functional form is useful in order to compute successive
approximations of the eigenvalues, while the Weyl form is easier to compute using
the Moyal product.

6 Useful lemmas

The following result is classical:

Lemma 6.1. The equation {�±, P}1 = Q where Q is a given homogeneous poly-
nomial of degree N has a solution P, a homogeneous polynomial of degree N,

• if N is odd,
• if N = 2N ′ is even and c±(Q) = 0, where c± is a linear form on the space of

homogeneous polynomials of degree N that satisfies c±(�N ′± ) = 1. In particular,

given Q, the equation {�±, P}1 = Q − c±(Q)�N ′± has a solution.

Remark 6.2. In the case �+, c+(Q)�N ′+ is the average of Q under the natural action
of S1 on homogeneous polynomials of degree 2N ′.

Definition 6.3. We will denote by 	±2N−1 the homogeneous polynomial of degree
2N − 1 that satisfies

{�±,	±2N−1}1 = x2N−1.

Lemma 6.4. We have

	±2N−1 = −
(

±x2N−2ξ + 2N − 2

3
x2N−4ξ3 + · · ·

)

.
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We can also check:

Lemma 6.5. The polynomials x2N ′ are not Poisson brackets of the form x2N ′ =
{�±, P}1, i.e., c±(x2N ′) �= 0.

7 The QBNF

In order to reduce to the QBNF, we will use automorphisms of W+ of the form

H → HS = exp(i S/�) � H � exp(−i S/�) = exp

(

i

�

ad(S)�
)

H

with S = S3 + S4 + · · · ∈ W+. We get

HS = H + i

�

[S, H ]� + · · · + 1

k!

(

i

�

)k
k brackets

︷ ︸︸ ︷

[S, [S, · · · , [ S, H ]�]� · · · ]� + · · · ,

which is a convergent formal power series whose k-th term is of degree ≥ k + 2.
The brackets will be calculated using the Moyal bracket. We remark that the terms
of degree 0 in � give the calculation of the classical BNF (denoted CBNF) where
the brackets are now just Poisson brackets.

8 The first terms

Let us consider V (x) = 1
2 x2+ ax3+ bx4+ · · · whose QBNF is �+ A�2+ B�

2+
O(6) where O(6) means terms of degree ≥ 6 in the Weyl algebra. Here we assume
� = 1

2 (ξ2 + x2). Our first result is:

Theorem 8.1.

A = −15

4
a2 + 3

2
b, B = a2.

The calculation: we start with S = S3 + S4, where S3(x, ξ) (resp. S4(x, ξ)) is a
homogeneous polynomial of degree 3 (resp. 4). There is no need to put terms in �

2

in S4 because they would be of the form c�
2 which is in the center. We then have

exp

(

i

�

[S, ·]�
)

H = �+ i

�

[S, H ]� + 1

2

(

i

�

)2

[S, [S, H ]�]� + 0(6).

By identification of terms of degree 3 and 4 and using the expression of the Moyal
bracket [·, ·]�:

i

�

[ f, g]� = { f, g}1 − 1

24
�

2{ f, g}3 + · · · ,



A semi-classical inverse problem I: Taylor expansions 87

we get the system of equations:

⎧

⎪

⎨

⎪

⎩

(3) ax3 + {S3,�}1 = 0

(4) bx4 + {S3, ax3}1 + {S4,�}1 + 1
2 {S3, {S3,�}1}1 − 1

24�
2{S3, ax3}3

= A�2 + B�
2

Using Equation (3), Equation (4) splits into 2 equations:
{

(4′) − 1
24{S3, ax3}3 = B

(4′′) bx4 + 1
2 {S3, ax3}1 + {S4,�}1 = A�2.

From Equation (3) and the formula for 	2N−1 given in Lemma 6.3, we get

S3 = −a

(

x2ξ + 2

3
ξ3

)

. (2)

From Equation (4′), we get B = a2. From Equation (4′′), we get the value of A.

9 The induction

We carry out the proof in the case of �+ and E0 = 0. The minus case is similar.
Let us start with

H ′ = �+ + a3x3 + · · · + a2N−2x2N−2

and S′ = S3 + S4 + · · · + S2N−2 with Sj ∈ W j , so that

exp

(

i

�

[S′, ·]�
)

H ′ = �+ + B4 + · · · + B2N−2 + R2N−1 + R2N + · · · (:= B ′),

with

• B2 j ∈ W+2 j a polynomial in �
2 and �+

• For n = 2N − 1 and n = 2N , Rn ∈ Wn .

In other words S′ generates the transformation that converts H ′ into its QBNF mod
O(2N − 1). The polynomials H ′ and S′ and the partial QBNF B ′ are known by
the induction hypothesis. We are now trying to get S′′ = S2N−1 + S2N so that
S = S′ + S′′ converts H = H ′ + ax2N−1 + bx2N into the QBNF mod O(2N + 1).
We will only consider the terms of degree 0 and 2 in �. So we can split every
polynomial Pj in W+j into Pj = P0

j + �
2 P2

j + · · · with P2
j of degree j − 4 in

(x, ξ).
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The equation to solve is

exp

(

i

�

[S′ + S′′, ·]�
)

(H ′ + ax2N−1 + bx2N )

= �+ + B4 + · · · + B2N−2 + B2N + O(2N + 1) (3)

with B2N = b0
2N�N+ + b2

2N �
2�N−2+ + · · · . We hope to recover a and b from b0

2N
and b2

2N using what we know already at this step. The left-hand side of Equation (3)
splits into

exp

(

i

�

[S′ + S′′, ·]�
)

(ax2N−1 + bx2N ) = ax2N−1 + bx2N

+ i

�

[S3, ax2N−1]� + O(2N + 1),

and

exp

(

i

�

[S′ + S′′, ·]�
)

H ′ = B ′ + i

�

[S′′,�+ + a3x3]�

+ 1

2

(

i

�

)2
(

[S2N−1, [S3,�+]�]� + [S3, [S2N−1,�+]�]�
)+ 0(2N + 1),

so that, we get

• In degree 2N − 1:

ax2N−1 + {S0
2N−1,�+}1 + R0

2N−1 = 0

{S2
2N−1,�+}1 + R2

2N−1 = 0.

We see that S2
2N−1 is known at this step, while S0

2N−1 is modulo known terms a
solution of

{�+, S0
2N−1}1 = ax2N−1.

This equation gives, always mod known terms:

S0
2N−1 = a	2N−1,

with 	2N−1 given by Definition 6.3.
• In degree 2N:

bx2N + i

�

([S3, ax2N−1]� + [S2N ,�+]� + [S2N−1, a3x3]�)

+ 1

2

(

i

�

)2

([S2N−1, [S3,�+]�]� + [S3, [S2N−1,�+]�]�)+ R2N

= B2N + O(2N + 1).
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The previous equation gives one equation in �
0 and one in �

2:

− degree 2N , hbar0

bx2N + {S3, ax2N−1}1 + {S0
2N ,�+}1 + {S0

2N−1, a3x3}1

+ 1

2
{S0

2N−1, {S3,�+}1}1 + 1

2
{S3, {S0

2N−1,�+}1}1 + R0
2N = b0

2N �N+ .

This can be simplified as

{�+, S0
2N }1 = −b0

2N�N+ + bx2N + a

2
{S3, x2N−1}1 + a3

2
{S0

2N−1, x3}1

+ R0
2N −

1

2
{S3, R0

2N−1}1 (4)

This gives b0
2N = βN b+ γN a3a modulo known terms. Moreover, Lemma 6.5

implies βN �= 0.
− degree 2N , hbar2

− 1

24
({S3, ax2N−1}3 + {S0

2N−1, a3x3}3)+ {S2
2N ,�+}1

+ 1

2
({S2

2N−1, {S3,�+}1}1 + {S3, {S2
2N−1,�+}1}1)

− 1

48
({S0

2N−1, {S3,�+}1}3 + {S3, {S0
2N−1,�+}1}3)+ R2

2N = b2
2N �N−2+

which can be simplified as

{�+, S2
2N }1 = −b2

2N�N−2+ − 1

48
(a{S3, x2N−1}3 + a3{S0

2N−1, x3}3)+ R2
2N ,

(5)
modulo known terms. This gives, using Lemma 6.1, b2

2N = δN aa3 modulo
known terms.

From Equation (5) and the expressions for S3 (Equation (2)) and 	2N−1

(Lemma 6.4), we get

{�+, S2
2N }1 = aa3

(N − 1)(2N2 − 4N + 3)

3
x2N−4 − b2

2N�N−2+ mod known terms

(6)
Because x2N−4 is not a Poisson bracket with �+ by Lemma 6.5, we get δN �= 0.

From the fact that βN and δN do not vanish, this concludes the induction
N − 1→ N .
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10 Getting the QBNF from the density of states in case of a local
extremum of the potential

10.1 �-dependent distributions

Let T� be an �-dependent Schwartz distribution on an open interval J .

Definition 10.1. The family T� is

• regular at the point E0 ∈ J if there exists a sequence of functions Tj which
are smooth in some neighbourhood K of E0 with j = j0, j0 + 1, . . . ( j0 ∈
Z), so that, for any f ∈ C∞o (K ), we have the asymptotic expansion T�( f ) ≡
∑+∞

j= j0
�

j
∫

J Tj (x) f (x)dx .
• right regular (resp. left regular) at the point E0 ∈ J if there exists E1 > E0 (resp.

E1 < E0) and a sequence of functions Tj which are smooth in some neighbour-
hood of E0 with j = j0, j0+1, . . . ( j0 ∈ Z), so that, for any f ∈ C∞o (]E0, E1[),
we have the asymptotic expansion T�( f ) ≡∑+∞

j= j0
�

j
∫

J Tj (x) f (x)dx .

We will use the following notations:

Definition 10.2. If T� is a family of distributions on J and E0 ∈ J , T+
�

(resp. T−
�

),
the right (resp left) singular part of T� is the equivalence class of T� modulo families
of distributions which are right-(resp. left-)regular at the point E0.

10.2 Density of states

Consider a smooth potential V : I → R where I is an open interval with 0 ∈ I
and lim infx→∂ I V (x) = E∞ > −∞ and let Ĥ be the Schrödinger operator with
potential V .

Definition 10.3. The density of states is the �-dependent Schwartz distribution T�

on ]−∞, E∞[ defined by

D�( f ) := Trace f (Ĥ).

Lemma 10.4. If J is an open subset of ]−∞, E∞[ that contains no critical values
of V , the density of states is regular at every point of J .

Proof. Let us denote by H = 1
2ξ2 + V (x) the symbol of the Schrödinger operator

Ĥ . The operator f (Ĥ) is a pseudodifferential operator whose symbol f �(H ) is
given (see [4]) by

f �(H ) = f (H )+
∑

j≥1, l≥1

�
2 j Pj,l(x, ξ) f (l)(H ),
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where the Pj,l ’s are smooth functions locally computable from the symbol H . It is
now enough to check that f → (2π�)−1

∫ ∫

Pj,l(x, ξ) f (l)(H )dxdξ is regular at
each point of J using the fact that H has no critical value in J .

10.3 Singularity of the density of states near a local maximum of
the potential

Let us assume that V (0) = E0 < E∞, V ′(0) = 0 and V ′′(0) < 0. Assume also that
0 is the unique critical point of V whose critical value is E0.

We have:

Theorem 10.5. If the QBNF of Ĥ is

B ≡ �− +
∑

2 j+k≥2

b j,k�
2 j�k−,

the density of states is right and left singular at the point E0 and one can recover the
full QBNF (the coefficients b j,k) from the right (resp. left) singular part D+

�
(resp.

D−
�

) of the density of states D� at E0.

In what follows, it is more convenient to use �− = xξ .

10.3.1 The singularity of the density of states and the QBNF

Lemma 10.6. If B is the QBNF of Ĥ , the singular part of the density of states is the
same as that of the family of distributions

G� : f → 1

2π�

∫ ∫

D
f �(B)dxdξ,

where f �(B) is the Weyl symbol of f (B̂) and D is the square max(|x |, |ξ |) ≤ 1.

Proof. Let 
 = OpWeyl(ω) be a compactly supported � DO whose Weyl symbol
ω is ≡ 1 near (0, 0). We have

D�( f ) = (2π�)−1
(∫ ∫

ω � f �(H )dxdξ +
∫ ∫

(1− ω) � f �(H )dxdξ

)

.

Using (the proof of) Lemma 10.4, the second term is a regular distribution. The
first term can be transformed using the QBNF: there exists an FIO U , microlocally
unitary, which transforms Ĥ into its QBNF and hence for every function f , we have

U� f (B̂)U = f (Ĥ)
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microlocally near the origin. In this way, we get

Trace(
 ◦ f (Ĥ)) ≡ Trace(
U � f (B̂)U).

Introducing 
1 := U
U� (a � DO whose Weyl symbol is ≡ 1 near the origin)
and using the commutativity of the trace, we have

Trace(
 ◦ f (Ĥ)) ≡ Trace(
1 ◦ f (B̂))).

It remains to check that, if 
1 = OpWeyl(ω1), f → ∫ ∫

(I×R)\D ω1 � f �(B)dxdξ is
regular.

10.3.2 Computing some singularities

Lemma 10.7. Let us consider the family of distributions

K�( f ) =
∫ ∫

D
f

⎛

⎝

∞
∑

j=0

�
2 j b j (xξ)

⎞

⎠ dxdξ

on ]E0, E1[ (we consider only the case E1 > E0, the other case is similar), where
the b j ’s are smooth on [E0, E1] and b0(u) ≡ E0 +∑∞

j=1 β j u j with β1 > 0. Then
K�( f ) admits an asymptotic expansion in powers of �:

K�( f ) ≡
∞
∑

j=0

K j ( f )�2 j

and the right singularities of K0, . . . , KN at the point E0 determine the Taylor
expansions of b0, . . . , bN at the origin.

Proof. Let us Taylor expand the integrand as

f

⎛

⎝

∞
∑

j=0

�
2 j b j(xξ)

⎞

⎠ ≡ f (b0(xξ))+ f ′(b0(xξ))

⎛

⎝

∞
∑

j=1

�
2 j b j (xξ)

⎞

⎠

+
∞
∑

k=2

1

k!
f (k)(b0(xξ))

⎛

⎝

∞
∑

j=1

�
2 j b j (xξ)

⎞

⎠

k

,

≡ f (b0(xξ))+
∞
∑

j=1

�
2 j

(

f ′(b0(xξ))b j (xξ)

+
∑

l

f (l)(b0(xξ))R j,l(xξ)

)

,

where the functions R j,l depend only on b1, . . . , b j−1.
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We have to prove the following 2 facts:

1. The right singularity of
∫ ∫

D
f (b0(xξ))dxdξ

determines the Taylor expansion of b0 at the origin.
2. The right singularity of

∫ ∫

D
f ′(b0(xξ))b j (xξ)dxdξ

determines the Taylor expansion of b j at the origin, assuming the Taylor expan-
sion of b0 is known.

Both are easy consequences of the following elementary calculus result:

∫ ∫

D
f ′(b0(xξ))b j (xξ)dxdξ ≡

∫ E1

E0

f ′(t)b j (c0(t))c
′
0(t)| log(t − E0)|dt

(modulo smooth distributions) where c0 is the inverse function of b0.

10.3.3 End of the proof of Theorem 10.5

We have

f �(B)(z0) =
∞
∑

j=0

1

2 j !
( f (2 j )(B(z0))(B − B(z0))

�2 j)(z0).

It is enough to check:

Lemma 10.8. If

f �(B) ≡ f (B)+
∞
∑

j=1

�
2 j

∑

l

f (2l)(B)R j,l,

the R j,l ’s depend only on b0, . . . , b j−1.

Proof. The �-powers of B − B(z0) evaluated at z0 start with terms in �
2 and the

bl’s, for l ≥ j have already an �
2 j in front of them!

So everything works as if f �(B) = f (B) and we are reduced to Lemma 10.7.
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10.4 The case of a local minimum

The same strategy applies, but now the density of states is right AND left regular,
with a jump singularity at the point E0.

We get:

Theorem 10.9. If the QBNF of Ĥ is

B ≡ �+ +
∑

2 j+k≥2

b j,k�
2 j�k+,

the density of states is singular at the point E0, and one can recover the full QBNF
(the coefficients b j,k) from the singular part of the density of states D� at E0.

The proof is very similar to the case of a local maximum. We have now a
“Heaviside singularity”, meaning that the density of states is right AND left regular,
but the functions Tj defined by

D�( f ) =
∞
∑

j=−1

∫

f Tj �
j

and their derivatives have jumps at the point E0. We have only to look at the
singularities of T : f → ∫

f (�+)dxdξ . We have T ( f ) = 2π
∫+∞

0 f (u)du, so
T = 2πY where Y is the Heaviside function.

11 Open problems

• Is the result still true if a3 = 0? This is the case modulo some global assumption
on V (see [5]). In fact in [5], it is shown that, modulo some genericity assump-
tions, the potential itself is determined from its semi-classical spectrum.

• Is the result still valid in any dimension? We think that the answer is no; at
least it does not work with the same arguments; let us assume that the quadratic
part of the Hamiltonian is H2 = ω1�1 + ω2�2 with �1 (resp. �2) harmonic
oscillators in x1 (resp. x2).

– Nonresonant case: ω1 and ω2 are independent over Z. In degree 4, the QBNF
has 4 unknown coefficients, an homogeneous polynomial of degree 2 in
(�1,�2) and the coefficient of �

2. On the other hand, V3(x1, x2)+V4(x1, x2)
has 9(> 4) coefficients. However, it is possible that higher terms in the QBNF
give other information ...

– Resonant case: ω1 = ω2. In degree 4, the classical BNF has already 9
coefficients (it is a polynomial of degree 4 on R

4 invariant by the circle action
generated by the flow of �1 +�2), this seems promising. However, we have
to take into account an O(2) action by isometries in R

2: on the one hand, we
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can only expect to determine the potential up to this action; on the other hand,
the QBNF is determined only up to action by SU (2).

12 Homogeneity properties of the QBNF

We have the following:

Theorem 12.1. The b j,k’s (coefficients of �
2 j�k in the QBNF) satisfy the following

homogeneity properties:

b j,k(ta3, t2a4, . . . , tnan+2, . . .) = t2(2 j+k)−2b j,k(a3, a4, . . .).

Proof. Let us consider

Ĥt = 1

2

(

−�
2 d2

dx2
+ x2

)

+ ta3x3 + · · · + tn−2anxn + · · · ,

and make the change of variable tx = y, �1 = t2
�. We get a new operator

t−2

[

1

2

(

−�
2
1

d2

dy2
+ y2

)

+ a3y3 + · · · + an yn + · · ·
]

.

The spectrum of the second one is then t−2 times that of the first one. This implies
the property.
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Abstract This paper is the continuation of our work with Victor Guillemin (previous
paper in this volume); Victor and I proved that the Taylor expansion of the poten-
tial at a generic non-degenerate critical point is determined by the semi-classical
spectrum of the associated Schrödinger operator near the corresponding critical
value. Here I show that, under some genericity assumptions, the potential of the
1D Schroedinger operator is determined by its semi-classical spectrum. Moreover,
there is an explicit reconstruction. This paper is strongly related to a paper of David
Gurarie (J. Math. Phys. 36:1934–1944 (1995)).
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1 Introduction

This paper is the continuation of [6], where Victor Guillemin and I proved
the following result: the Taylor expansion of a potential V (x) (x ∈ R) at a
non-degenerate critical point x0 of V , satisfying V ′′′(x0) �= 0, is determined by the
semi-classical spectrum of the associated Schrödinger operator near the correspond-
ing critical value V (x0). Here, I prove results which are stronger in some aspects:
the potential itself, without any analyticity assumption, but with some genericity
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conditions, is determined from the semi-classical spectrum. Moreover, my method
gives an explicit way to reconstruct the potential.

Inverse spectral results for Sturm–Liouville operators are due to Borg, Gelfand,
Levitan, Marchenko and others (see for example [12]). They need the spectra of the
differential operator with two different boundary conditions in order to recover the
potential. My results are different in several aspects:

• They are local using only the part of the spectrum included in some interval
]−∞, E[ in order to get V in the inverse image by V of this interval.

• They need only approximate spectra.
• They still apply if the operator is essentially self-adjoint.

After having completed the present work, I found that similar methods were
already used by David Gurarie [9] in order to recover a surface of revolution from
the joint spectrum of the Laplace operator and the momentum operator. In the
present paper, the genericity assumptions are weaker and more explicit:

• David Gurarie assumes that the potential is a Morse function with pairwise dif-
ferent critical values, while I assume only a weaker nondegeneracy condition (see
Section 10.1.1).

• His argument for the separation of spectra associated to the different wells is less
explicit than mine which uses the semi-classical trace formula (see Section 12.3).

• He does not say a word about the problem of a nongeneric symmetry defect and
explicit nonisomorphic potentials with the same semi-classical spectra (Section 7
and assumption 3 in theorem 5.1).

Semi classics has been used in inverse spectral problems since the seventies; for
a recent review, the reader could look at [14].

2 Motivation I: surfaces of revolution

Let us consider on a 2−sphere the metric of revolution

ds2 = dx2 + a4(x)dy2

with x ∈ [0, L] and y ∈ R/2πZ. We assume that a(0) = a(L) = 0, a(x) > 0 for
0 < x < L and a is smooth. The volume element is given by dv = a2(x)|dxdy|
and the Laplace operator by

� = − ∂2

∂x2
− 2a ′

a

∂

∂x
− 1

a4

∂2

∂y2
.

Using the change of function f = a F , we get the operator P = a�a−1 which is
formally symmetric with respect to |dxdy|:
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P = − ∂2

∂x2 +
a ′′

a
− 1

a4

∂2

∂y2 .

If F(x, y) = ϕ(x)exp(ily) with l ∈ Z, we define Ql as follows:

P F = l2(Qlϕ)eily,

and putting � = l−1, we get

Q�ϕ = −�
2ϕ′′ + (a−4 + �

2W )ϕ

with W = a′′
a . It implies that the knowledge of the joint spectrum of � and ∂y is

closely related to the spectra of Q� for � = 1/l with l ∈ Z\0. This relates our paper
to Gurarie’s result [9].

3 Motivation II: effective surface waves Hamiltonian

In our paper [3] Section 7, we started with the following acoustic wave equation1

{

utt − div(n gradu) = 0

u(x, 0, t) = 0
(1)

in the halfspace X = R
d−1
x ×] −∞, 0]z where n(z) : R− → R+ is a nonnegative

function that satisfies

0 < n0 := inf n(z) < n∞ := lim inf
z→−∞ n(z).

This equation describes the propagation of acoustic waves in a medium which is
stratified: the variations of the density are on much smaller scales vertically than
horizontally.2 This equation admits solutions of the form exp(i(ωt − xξ))v(z)
provided that v is an eigenfunction of the operator Lξ on the half line z ≤ 0 defined
as follows:

Lξ v := − d

dz

(

n(z)
dv

dz

)

+ n(z)|ξ |2v (2)

with Dirichlet boundary conditions and eigenvalue ω2. These solutions are expo-
nentially localized near the boundary provided ω2 is in the discrete spectrum of Lξ

contained in J :=]n0|ξ |2, n∞|ξ |2[.
Let us denote by λ1(ξ) < λ2(ξ) < · · · < λ j (ξ) < · · · the spectrum of Lξ in the

interval J and v j (ξ, z) the associated normalized eigenfunctions. The unitary maps

1 u = u(x, z, t) is the pressure, n = K/ρ with ρ the density and K > 0 the in-compressibility
assumed to be a constant. The acoustic wave equation is a simplification of the elastic wave
equation which holds if the medium is fluid.
2 In [3], we took a more complicated function n(x, z) = N(x, z/ε, z) with N smooth and ε small.
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from L2(∂ X) into L2(X) defined by

Tj (a) := (2π)−(d−1)

∫

Rd−1
â(ξ)v j (ξ, z)eixξ dξ,

with â(ξ) := ∫

Rd−1 a(x)e−ixξdx, satisfies

PTj = Tj Op(λ j ),

where P = −div(n gradu) with Dirichlet boundary conditions and Op(λ j ) is an
elliptic pseudodifferential operator of degree 2 and of symbol λ j . So that, for each
j = 1, . . ., we get an effective surface wave Hamiltonian with the Hamiltonian
λ j . The map T : ⊕∞j=1L2(∂ X) → L2(X) given by T = ⊕∞j=1Tj is an injective
isometry.

We see that the high frequency surface waves are associated to the semi-classical
spectrum of a Schrödinger type operator

L� = −�
2 d

dz

(

n(z)
d

dz

)

+ n(z),

with � = ‖ξ‖−1.
One can try to recover n(z) from the propagation of surface waves: this is

equivalent to get the operator L� from its semi-classical spectrum.

4 Schrödinger operators and spectra

The following notation will be used everywhere in this paper.
The interval I is defined by I =]a, b[ with −∞ ≤ a < b ≤ +∞. The poten-

tial V : I → R is a smooth function with −∞ < E0 := inf V < E∞ =
lim infx→∂ I V (x).

The Schrödinger operator Ĥ is any self-adjoint extension of the operator

−�
2 d2

dx2 + V (x) defined on C∞o (I ).

The discrete spectrum of Ĥ will be denoted by

λ1(�) < λ2(�) < · · · < λl(�) < · · · .
Lemma 4.1. The discrete spectra below E∞ are, modulo O(�∞), independent of
the boundary conditions.

This comes from the fact that the eigenfunctions are O(�∞) outside the wells; this
is proved, using semi-classical ellipticity, in [13], Section 2.9.

Using the previous lemma, we can assume that we work always with the Friedrichs
extension with initial domain (the closure of) C∞o (I ).
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The semi-classical limit is associated to the classical Hamiltonian H = ξ2+V (x)
whose dynamics is given by the vector field

X H = 2ξ
∂

∂x
− V ′(x)

∂

∂ξ

in the phase space T � I , the cotangent space of I with the canonical coordinates
(x, ξ).

Definition 4.1. Let us give E with E0 < E ≤ E∞ and a positive real number N .
We say that a sequence μl(�), l = 1, . . . is a semi-classical spectrum of Ĥ mod
o(�N ) in ] −∞, E[ if, we have for the l’s so that λl(�) < E , uniformly on every
compact K ⊂]−∞, E[,

λl(�) = μl(�)+ o(�N ).

In the paper [6], it was enough to know the asymptotic expansions of the λl ’s for
all l, but not uniformly in l in order to recover the Taylor expansion of V at the point
x0 where V reaches is minimum.

5 A theorem for one-well potentials

In what follows, E is given with E0 < E ≤ E∞.

Theorem 5.1. Let us assume that the potential V : I → R satisfies:

1. A single well below E: for any y < E, the sets Iy := {x |V (x) ≤ y} are compact
intervals. There exists an unique x0 so that V (x0) = E0 (= infx∈I V (x)). For
any y with E0 ≤ y < E, if we define the functions f± : [E0, E[→ R so that

Fig. 1 The potential V and the functions f+ and f−.
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the intervals Iy are defined by Iy = [ f−(y), f+(y)], we have V ′(x) < 0 for
f−(E−) < x < x0 and V ′(x) > 0 for x0 < x < f+(E−).

2. A genericity hypothesis at the minimum: there exists N ≥ 2 so that the N-th
derivative V (N)(x0) does not vanish.

3. A generic symmetry defect: if there exists x±, satisfying f−(E−) < x− < x0 <
x+ < f+(E+) and ∀n ∈ N, V (n)(x−) = (−1)nV (n)(x+), then V is globally
even with respect to x0 = (x−+ x+)/2 in the interval IE . This is true for example
if V is real analytic.

Then the spectra modulo o(�2) in the interval ]−∞, E[ of the Schrödinger operators
Ĥ�, for a sequence � j → 0+, determine V in the interval IE up to a symmetry-
translation V (x)→ V (c ± x).

6 One-well potentials: Bohr–Sommerfeld rules and a
pseudodifferential trace formula

It is a classical fact (see [4]) that the semi-classical spectrum (i.e., the spectrum up to
O(�∞)) of Ĥ� in the interval ]−∞, E[ is given by the “Bohr–Sommerfeld rules”:

�(�) = {μl(�)|E0 < μl(�) < E and S(μl(�)) = 2π�l},
where, for E0 < y < E , the function S = S�(y) :]E0, E[→ R admits the formal
series expansion

S(y) ≡ S0(y)+ �π + �
2S2(y)+ �

4S4(y)+ · · · (3)

(the formal series S will be called the semi-classical action and the remainder term
in the expansion is uniform in every compact sub-interval of ]E0, E[). We have

• S0(y) = ∫

γy
ξdx = ∫

H(x,ξ )≤y |dxdξ | with γy = {(x, ξ)|H (x, ξ) = y} oriented
according to the classical dynamics and

d S0

dy
(y) =

∫ f+(y)

f−(y)

dx√
y − V (x)

is the period T (y) of the trajectory of energy y for the classical Hamiltonian H ,
• If t is the time parametrization of γy (outside the caustic set {V (x) = y, ξ = 0},

we have dt = dx/2ξ ),

S2(y) = − 1

12

d

dy

∫

γy

V ′′(x)|dt |,
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which can be rewritten as

S2(y) = − 1

12

d

dy

(

∫ f+(y)

f−(y)

V ′′(x)dx√
y − V (x)

)

.

• For j ≥ 1, S2 j (y) is a linear combination of expressions of the form

(

d

dy

)n ∫

γy

P(V ′, V ′′, . . .)|dt |,

where dt is the differential of the time on γy .

In what follows, we will use only S0 and S2. It will be convenient to relate the
semi-classical action to the spectra by using the following trace formula:

Theorem 6.1 (� DO trace formula). Let f ∈ C∞o (]E0, E[) and F(y) :=
− ∫∞

y f (u)du, we have, with Z = T � I :

TraceF(Ĥ) = 1

2π�

(∫

Z
F(H )|dxdξ | − �

2
∫ E

E0

f (y)(S2(y)+ �
2S4(y)+ · · · )dy

)

+ O(�∞). (4)

Corollary 6.1. The functions S0, S2 : [E0, E[→ R are determined by the semi-
classical spectrum mod o(�2) in ]−∞, E[.

In fact, S0 is already given from the Weyl asymptotics:

#{λl(�) ≤ y} ∼�→0
S0(y)

2π�

.

The Weyl asymptotic formula can easily be deduced from the trace formula (4).

Remark 6.1. The previous trace formula can be seen as an extension to the semi-
classical setting of the famous “heat trace” method introduced by Mark Kac in [11]
and strongly developed by geometers as a tool in the inverse spectral problem for
the Laplace–Beltrami operator (see [2]): putting t = �

2 in the heat semi-group
exp(−t�), we get exp(−t�) = F(�2�) with F the exponential function. This
way, we get an identification of the previous expansion in powers of �

2 with the
heat trace expansion in powers of t .

We give now a proof of theorem 6.1.

Proof.

1. The case where F is compactly supported in J :
Defining F�(H ) by F(Ĥ) = OpWeyl(F�(H )), we know (see [8] lemma 4.2) that
with z0 = (x0, ξ0) and H0 = H (z0),
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F�(H )(z0) = F(H0)+ 1

2
F ′′(H0)(H − H0)

�2(z0)

+ 1

6
F ′′′(H0)(H − H0)

�3(z0)+ O(�4).

Computing the Moyal powers of H − H0 at the point z0 mod O(�4), we get

F�(H ) = F(H )− �
2
(

1

8
f ′(H )det(H ′′)+ 1

24
f ′′(H )H ′′(X H , X H )

)

+ O(�4).

Computing the trace of F(Ĥ) as 1/2π� the phase space integral of the symbol
F�(H ), we get:

Trace(F(Ĥ))

= 1

2π�

[

∫

Z
F(H )|dxdξ | − �

2

(

∫

J
f ′(y)

(

∫

γy

det(H ′′)|dt|
)

|dy| · · ·

+ 1

24

∫

J
f ′′(y)

(

∫

γy

H ′′(X H , X H )|dt |
)

|dy|
)]

+ O(�3).

Using Stokes formula, we have
∫

γy

H ′′(X H , X H )|dt | = −2
∫

H≤y
det(H ′′)|dxdξ |,

and the final result for S2(y) using an integration by part:

S2(y) = − 1

24

d

dy

∫

γy

det(H ′′)|dt |.

2. The harmonic oscillator case � = − 1
2

(

d2

dx2 + x2
)

:

TraceF(�) = 1

2

∑

n∈Z
F̃

((

n + 1

2

)

�

)

with F̃ even and coinciding with F on the positive axis. We get with the Poisson
summation formula:

TraceF(�) = 1

2π�

∫ ∫

F

(

x2 + ξ2

2

)

|dxdξ | + O(�∞).

Moreover,
∫

γy
V ′′|dt| is independent of y because the classical period of the

harmonic oscillator is constant.
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A more general argument holds if H = � in support of F ◦ H . It is based on the
identity

F�(�) = F(�)− �
2

8
F ′′(�)+ O(�4).

3. A deformation argument: Let us consider a new Hamiltonian K which coincides
with H in H−1(J ′) where J ′ ⊂ J and J ′ contains the support of f . Then we
have Trace(F(Ĥ)) ≡ Trace(F(K̂ )). This is because the symbols F�(H ) and
F�(K ) coincide with F(E0) in the domain bounded by H−1(J ′). Because the
right-hand sides of Equation (4) also coincide, we can choose a suitable K in
order to prove it. We will choose K , which has globally a single well and which
coincides with an harmonic oscillator near its minimum.

4. The final step: We can assume that K is as before with E0 = inf K , K is
harmonic in the energy interval [E0, E0 + α].
We split F = F0 + F1 where F1 is compactly supported in ]E0,+∞[ and F1

supported in ]−∞, E0+α[. Equation (4) is valid for F0 (case studied in 1.) and
for F1 (case of the harmonic oscillator).

Theorem 6.1 is closely related to (but a bit stronger) than what is proved in my
paper [4]. The trace formula contains implicitly the Maslov index; it is no more
valid if we replace �π by another value in the expansion of the semi-classical action
given in Equation (3).

7 Two potentials with the same semi-classical spectra

We introduced a genericity Assumption 3 on symmetry defects in Theorem 5.1.
Figure 2 shows two one-well potentials with the same semi-classical spectra mod
O(�∞). The fact that they have the same semi-classical spectra comes from the
description of Bohr–Sommerfeld rules in Section 6.

It would be nice to prove that they do NOT have the same spectra!

8 One-well potentials: the proof of Theorem 5.1

8.1 Some useful lemmas

Lemma 8.1. If V satisfies Assumption 2 in Theorem 5.1, we have

lim
y→(E0)+

∫

γy

V ′′(x)|dt| = π
√

2V ′′(x0).

This holds even if the minimum is degenerate.3

3 I do not know if this is still true without the genericity Assumption 2 in Theorem 5.1; it is the
only place where I use it.
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Fig. 2 The (graphs of the) two potentials are the same in the sets I I and I I I ; they are mirror
images of each other in I , the potential is even in the set I I .

The lemma is clear if V ′′(x0) > 0: the limit is then V ′′(x0) times the period of
small oscillations of a pendulum which is π

√

2/V ′′(x0).
Let us consider the case of an isolated degenerate minimum with V (x) = E0 +

a(x−x0)
N (1+o(1)) (a > 0, N > 2); we can check that the integral to be evaluated

is O((y − E0)
3
2− 3

N ) = o(1).

Lemma 8.2. We have

lim
y→E0

(

1

f ′+(y)
− 1

f ′−(y)

)

= 0.

Lemma 8.3. If x0 is the unique point where V (x0) = inf V = E0, the first eigen-
value of Ĥ� satisfies λ1(�) = E0 + �

√

V ′′(x0)/2+ o(�).

This is well known if V ′′(x0) > 0 and is still true otherwise by comparison: if
E0 ≤ V (x) ≤ A(x − x0)

2 with A > 0, near x0, then E0 < λ1(�) ≤ 2π�

√
A.

8.2 Rewriting V using F and G

We will denote by F = 1
2 ( f+ + f−) and G = 1

2 ( f+ − f−).

• The function F is smooth on ]E0, E[, continuous on [E0, E[ (smooth in the
non-degenerate case V ′′(x0) > 0 as a consequence of the Morse Lemma), with
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F(E0) = x0, and is constant if and only if V is even with respect to x0. More
generally, if F is constant on some interval, V is even on the inverse image of
that interval. We call F the parity defect.

Lemma 8.4. Under the Assumption 3 in Theorem 5.1, the function F ′ is deter-
mined up to ± by its square.

• The function G is smooth on ]E0, E[, continuous at y = E0. We have
G(E0) = 0. It is clear that, from F and G, we can recover the restriction of
V to IE .

8.3 How to get V from S0 and S2

Let us consider, for E0 < y < E ,

I (y) :=
∫ f+(y)

f−(y)

dx√
y − V (x)

and

J (y) =
∫ f+(y)

f−(y)

V ′′(x)dx√
y − V (x)

.

We have I (y) = d S0(y)/dy and S2(y) = −(1/12)d J (y)/dy. This implies that
S0, S2, and the limit J (E0) determine I and J . The limit J (E0) is determined
by V ′′(x0) (Lemma 8.1) which is determined by the first semi-classical eigenvalue
(Lemma 8.3). We can express I and J using F and G. Using the change of variables
x = f+(u) for x > x0 and x = f−(u) for x < x0, we get

I (y) = 2
∫ y

E0

G′(u)du√
y − u

J (y) =
∫ y

E0

d

du

(

1

f ′+(u)
− 1

f ′−(u)

)

du√
y − u

.

Fig. 3 The scheme of the proof.
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Using Abel’s result [1] (and the Appendix), we can recover G′ and

d

dy

(

1

f ′+(y)
− 1

f ′−(y)

)

= d

dy

(

2G ′

G′2 − F ′2

)

.

Using Lemma 8.2, we recover F ′2. The Assumption 3 implies that there exists an
unique square root to F ′2 up to signs. From that we recover G ′ and ±F ′ and hence
±F and G modulo constants. This gives V up to change of x into c± x .

9 Taylor expansions

From the previous section, we see that the semi-classical spectra determine F ′2 and
G even without assuming the hypothesis 3 of Theorem 5.1 on symmetry defect. It is
not difficult to see that, if V satisfies the hypothesis 2 of Theorem 5.1, the parity
defect F is a smooth function of y2/N . We have the following:

Lemma 9.1. Let us give two formal powers series a = ∑∞
j=0 a j t j and b =

∑∞
j=0 b j t j which satisfy a2 = b. The equation f 2 = b has exactly two solutions as

formal powers series: f = ±a.

From this lemma, we deduce

Theorem 9.1. Under the Assumptions 1 and 2 of Theorem 5.1, but without Assump-
tion 3, the Taylor expansion of V at a local minimum x0 is determined (up to mirror
symmetry) by the semi-classical spectrum modulo o(�2) in a fixed neighborhood
of E0.

In some aspects, this result is stronger than the one obtained in [6], but it requires
the knowledge of the semi-classical spectrum in a fixed neighborhood of E0, while,
in [6], we need only N semi-classical eigenvalues in order to get 2N terms in the
Taylor expansion.

10 A theorem for a potential with several wells

We will extend our main result to cases including that of Figure 4: a two-wells
potential with three critical values, E0 = 0, E1, and E2. We can take any boundary
condition at x = 0.
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Fig. 4 A 2 wells potential V .

10.1 The genericity assumptions

In what follows, we choose E so that E0 < E ≤ E∞ and define IE = {x |V (x) <
E}. The goal is to determine the restriction of V to IE from the semi-classical
spectrum in ]−∞, E[.

We need the following assumptions which are generically satisfied. We intro-
duce:

Definition 10.1. Two smooth functions f, g : J → R are weakly transverse if,
for every x0 so that f (x0) = g(x0), there exists an integer N such that the N-th
derivative ( f − g)(N)(x0) does not vanish.

10.1.1 Assumption on critical points

• For any point x0 so that V ′(x0) = 0 and V (x0) < E , there exists N ≥ 2 so that
the N-th derivative V (N)(x0) does not vanish.

• The critical values associated to different critical points are distinct.

The wells: Let us label the critical values of V below E∞ as E0 < E1 < · · · <
Ek < · · · < E∞ and the corresponding critical points by x0, x1, . . .. The critical
values can only accumulate at E∞ because the critical points are isolated.

Let us denote, for k = 1, 2, . . . by Jk =]Ek−1, Ek[.

Definition 10.2. A well of order k is a connected component of {x ∈ I |V (x) < Ek}.
Let us denote by Nk(≤ k) the number of wells of order k.

For any k, H−1(Jk) is an union of Nk topological annuli Ak
j and the map H :

Ak
j → Jk is a fibration whose fibers H−1(y)∩ Ak

j are topological circles γ k
j (y) that
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are periodic trajectories of the classical dynamics: if y ∈ Jk , H−1(y) = ∪Nk
j=1γ

k
j (y).

We will denote by T k
j (y) = ∫

γ k
j
|dt |, the corresponding classical periods. We will

often remove the index k in what follows.
We have the well-known:

Proposition 10.1. The semi-classical spectrum in Jk is the union of Nk spectra,
which are given by Bohr–Sommerfeld rules associated to actions Sk

j (y) given as in
Section 6.

This comes from the fact that the eigenfunctions are O(�∞) outside the wells. This
is proved in [13] Section 2.9; see also [10] for much more precise results including
estimates of the exponentially small “tunneling” effects.

10.1.2 A generic symmetry defect

If there exists x− < x+, satisfying V (x−) = V (x+) < E and, ∀n ∈ N, V (n)(x−) =
(−1)nV (n)(x+), then V is globally even on IE .

10.1.3 Separation of the wells

For any k = 1, 2, . . . and any j with 1 ≤ j < l ≤ Nk , the classical periods Tj (y)
and Tl(y) are weakly transverse in Jk .

10.2 Quartic potentials

If V is a polynomial of degree four with two wells like V (x) = x4 + ax3 + bx2

with b < 0, the periods of the two wells (between E1 and E2(= 0)) are identical.
This is because, on the complex projective compactification X E (with E < 0) of
ξ2+V (x) = E , the differential dx/ξ is holomorphic and the real part of X consists
of two homotopic curves in X E . One can check directly that all other actions S2 j ,
j ≥ 1 coincide; this is proved in [7] p. 191.

10.3 Statement of the result

Our result is:

Theorem 10.1. Under the three assumptions in Sections 10.1.1, 10.1.2, and 10.1.3,
V is determined in the domain IE := {x |V (x) < E} by the semi-classical spectrum
in ] −∞, E[ modulo o(�5/2) up to the following moves: IE is an union of disjoint
open intervals IE,α , each interval IE,α is defined up to translation and the restriction
of V to each IE,α is defined up to V (x)→ V (c − x).
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Remark 10.1. We need o(�5/2) in Theorem 10.1, while we needed only o(�2) for
the one-well case in Theorem 5.1. This is due to the way we are able to separate the
spectra associated to the different wells.

11 The semi-classical trace formula

The semi-classical trace formula, also known as the “Gutzwiller trace formula”,
is valid for a Schrödinger operator in any dimension (see [5] for a recent review).
In the one-dimensional case (and more generally in the “integrable” case), this
formula can be derived from the Bohr–Sommerfeld rules, via the Poisson summation
formula.

In this section, we will derive the semi-classical trace formula in dimension 1
from the Bohr–Sommerfeld rules.

Let us start with the following application of the Poisson summation formula:

Lemma 11.1. Let S : J → R be a smooth function with S′ > 0, then we have the
following identity as Schwartz distributions in J ; i.e., equality holds when applying
both sides to a test function φ ∈ C∞o (J ),

∑

l∈Z
δ(y − S−1(2π�l)) = 1

2π�

∑

m∈Z
eimS(y)/�S′(y). (5)

Let us insist that the identity (5) is valid for any fixed value of �.
We will now develop semi-classical approximations of the identity (5). Let us

start with:

Definition 11.1. Let D� be an �−dependent distribution on the interval J . We will
write D� = o(�N ) if for any �−pseudo-differential operator P = Op�(p) with
p ∈ C∞o (T � J ), we h5ave

‖P D�‖L2(J ) = o(�N ).

With the previous definition, we get:

Lemma 11.2. Let us give two sequences λl(�) and μl(�) in J so that

• μl(�) = λl(�)+ o(�N ) uniformly on every compact of J
• #{λl(�) ∈ K } = O(1/�) for any K compact subset of J ,

then
∑

l∈Z
δ(y − μl(�))− δ(y − λl(�)) = o(�N− 5

2 ).

Proof. Let us consider first the operator Q with symbol a(η)χ(y) with a ∈ C∞o (R)
and χ ∈ C∞o (J ). The L2 norm of Qu is equal to the L2 norm of a(η) times the
�−Fourier transform of χu. In our case, this is the L2 norm of
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a(η)
1√
2π�

∑

l∈Z
(χ(λl(�))e−iηλl (�)/�− χ(μl(�))e−iημl (�)/�),

which is o(�N− 5
2 ). Any other P is of the form P = P Q for some suitable Q. The

conclusion follows by the �−uniform L2 continuity of P .

Let us give another:

Definition 11.2. The L2-Microsupport of a family of distributions T� in the interval
I is the closed subset of T � I denoted MS(T�) given by

((x, ξ) /∈ MS(T�)) if and only if

(∃p ∈ C∞o (T � I ), p(x, ξ) �= 0 and Op�(p)T� = o(1)).

We get the following statement of the semi-classical trace formula for the general
statement:

Theorem 11.1. As distributions on Jk, we have, if μl(�) is a semi-classical spec-
trum modulo o(�5/2),

∑

l∈Z
δ(y − μl(�))) = 1

2π�

Nk
∑

j=1

∑

m∈Z
(−1)meimS j

0 (y)/�Tj (y)(1+ im�S j
2 (y))+ o(1).

(6)

This means that
∑

l∈Z δ(y − μl(�)) is mod(o(1)) a (locally finite in the cotangent
space) sum of the WKB functions

Zm, j = 1

2π�

(−1)meimS j
0 (y)/�Tj (y)(1+ im�S j

2 (y))

associated to the Lagrangian manifolds (the micro-support of Zm, j )

Lm, j := {(y, mTj (y))|y ∈ I }.
Proof. The trace formula is a consequence of Equation (5) applied to the spectra
given by the Bohr–Sommerfeld rules (see Section 6) and Lemma 11.2.

12 The case of several wells: the proof of Theorem 10.1

12.1 What can be read from Weyl’s asymptotics?

Lemma 12.1. Under Assumption 10.1.1, the singular (nonsmooth) points of the
function y → A(y) = ∫

H(x,ξ )≤y |dxdξ | in ]−∞, E[ are exactly the critical values
E0 < E1 < . . . (< E) of V . Moreover,
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• the function A(y) in smooth on ]Ek − c, Ek], with c > 0, if and only if xk is a
local minimum of V ,

• from the singularity of A(y) at Ek, on can read the value of V ′′(xk).

The function A(y) is determined by the semi-classical spectrum; this is a conse-
quence of the Weyl asymptotics:

#{λl(�) ≤ y} ∼�→0
A(y)

2π�

.

12.2 The scheme of the reconstruction

The proof is by “induction” on E .
We start by constructing the piece of V where V (x) < E1 using Theorem 5.1.
We then want to construct V where E1 ≤ V (x) < E2.
There are two cases:

1. x1 is not an extremum: We know then V in the interval {V (x) ≤ E1} by conti-
nuity. We can then extend the proof of Theorem 5.1 using the fact that we know,
using Section 12.4, the limits of

∫

γy
V ′′(x)|dt| and f ′±(y) as y → E+1 . We can

reduce to an Abel transform starting from E1 using, for E1 < y < E2,
∫

V (x)≤y
=

∫

V (x)≤E1

+
∫

E1≤V (x)≤y

where the first part is known from the knowledge of V (x) in {x |V (x) ≤ E1}.
2. x1 is a local minimum: Using the separation of spectra (Section 12.3) and

Theorem 5.1, we can construct the 2 wells of order 2 if we know V ′′(x1)
(lemma 12.1).

Fig. 5 The primitive periods as functions of y for the Example of Figure 4.
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We then proceed to the interval [E2, E3]. A new case arises when x2 is a local
maximum. Then we need to glue together the wells of order 2. This case works then
as before.

12.3 Separation of spectra

The main input of the proof of theorem 10.1 is the fact that the assumption 10.1.3
allows to split the semi-classical trace formulas in the interval Jk into the contribu-
tions of the Nk wells: from the spectra mod o(�5/2) in Jk , we will recover the WKB
functions Z1, j for j = 1, . . . , Nk .

Let the distributions D� =∑

l δ(y−μl(�)) be given modulo o(1) in the interval
J = Jk by Equation (6). The distributions D� are determined mod o(1) by the
semi-classical spectra mod o(�5/2). Let us denote by B the set defined by

B := {y ∈ Jk |∃ j �= l, Tj (y) = Tl(y)};
using assumption 10.1.3, we see that B is a discrete subset of Jk . Let us denote by
Z� the finite sum defined by the r.h.s of Equation (6) restricted to m = 1, i.e.,

Z� =
Nk
∑

j=1

Z1, j .

We have:

Lemma 12.2. Using the weak transversality assumption of Section 10.1.3, the set
B and the distributions Z� mod o(1) are determined by the distributions D�

mod o(1).

Proof. The difficulty is that there are possible cancellations in the trace formula: we
do not assume the weak transversality of the nonprimitive periods mTj .

Let us denote by τ1(y) = inf j Tj (y); the function τ1 is piecewise smooth. The
nonsmooth points belong to B . Let us take a maximal (open) interval K where τ1 is
smooth. On K , τ1 = Tj0 for a unique j0, and D� = Z1, j0 + o(1) near the graph L1

of τ1, meaning that
MS(D� − Z1, j0) ∩ L1 = ∅.

This is clear because the Lagrangian curves Lm, j for j �= j0 and for j = j0, m �= 1
are disjoint from L1. So, we can recover L1 as

L1 = {(y, η)|η = inf{η′ > 0, (y, η′) ∈ MS(D�)}}.
From Z1, j0, we recover, for any m ∈ Z, the Zm, j0’s, and we introduce a new

distribution D1
�

in K defined by
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D1
�
= D�−

∑

m∈Z
Zm, j0.

We do the same constructions with D1
�

in K : this allows us to split again K into
sub-intervals separated by points of B where Tj (y) = Tl(y) for some j �= l, j �=
j0, l �= j0 and to get a function τ2 and distributions D2

�
. After a finite number of

steps, the new distributions DN
�

is o(1). We have Nk = N , and B is the union of all
points of nonsmoothness of the τ j ’s.

We will need:

Lemma 12.3. There is an unique splitting of Z� as a sum

Z�(y) = 1

2π�

Nk
∑

j=1

(a j (y)+ �b j(y))eiS j (y)/�+ o(1),

where the S j ’s are smooth and the a j ’s do not vanish.

Proof. The L2-Microsupport of Z� is the union of the graphs of the S′j : this decom-
position is unique due to Assumption 10.1.3. Hence the decomposition of Z� as a
finite sum of smooth WKB functions is unique.

From the two previous lemmas, it follows that, with Assumption 10.1.3, the
spectrum in Jk modulo o(�5/2) determines the actions Sj and Sj,2(y).

12.4 Limit values of some integrals

Using the trick of Section 8.3, we can use Abel’s result (Section 13.4) once we know
the following limits (or asymptotic behaviors) as y→ E+j ( j = 0, 1, . . .):

• f j
±(y)

• ∫

H−1(y) V ′′(x)|dt | where H = ξ2 + V (x) is the classical Hamiltonian.

• f ′ j± (y)

All of them are determined by the knowledge of V in the set {x |V (x) ≤ E j }.
It is clear, except for the second one, we have:

Lemma 12.4. Let us assume that V satisfies assumption 1 of Section 10.1. If E j

is a critical value of V which is not a local minimum and τ (z) := ∫

H−1(E j+z)

V ′′(x)|dt| − ∫

H−1(E j−z) V ′′(x)|dt |, then limz→0+ τ (z) = 0.

Proof. We cut the integrals into pieces. One piece near each critical point, and
another piece far from them. Far from the critical points, the convergence is clear.
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• Local maximum: let us take a critical point where V (x) = E j − A(x − x0)
2N

(1+o(1)) with N ≥ 1 and A > 0. We use a smooth change of variable x = ψ(y)
with ψ(0) = x0 so that V (ψ(y)) = E j − y2N . We are reduced to check that

lim
ε→0+

(

∫ 1

0

W (y)dy
√

ε + y2N
−

∫ 1

ε1/2N

W (y)dy
√

y2N − ε

)

= 0,

assuming that W (y) = O(y2N−2).
• Other critical points: let us take a critical point where V (x) = E j +

A(x − x0)
2N+1(1+ o(1)) with N ≥ 1 and A > 0. We use the same method.

13 Extensions to other operators

13.1 The statement

Let us indicate in this section how to extend the previous results to the operator

L� = −�
2 d

dx

(

n(x)
d

dx

)

+ n(x)

which was introduced in Section 3. We want to recover the function n(x). Let us
sketch the one-well case for which we will get:

Theorem 13.1. Assuming that

• the function n(x) admits a non-degenerate minimum n(x0) = E0 > 0,
• the function n(x) has no critical values in ]E0, E1[ with E1 ≤ lim infx→∂ I n(x),
• the function n(x) has a generic symmetry defect as in Theorem 5.1,

then the function n is determined in {x |n(x) ≤ E1} by the semi-classical spectrum
of L� modulo o(�2).

The proof works along the same lines as that of Theorem 5.1 except that we get an
integral transform which is not exactly Abel’s transform.

13.2 The Weyl symbol and the actions

The Weyl symbol l of L can be computed, using the Moyal product, as l = ξ � n �
ξ + n. We get

l(x, ξ) = n(x)(1+ ξ2)+ �
2

4
n′′(x).
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The action S0 satisfies

d S0

dy
(y) = T (y) =

∫

n(x)≤y

dx√
n(x)(y − n(x))

.

The action S2 is given from [4] by

S2(y) = − 1

12

d

dy

∫

γy

(

yn′′ − 2
( y

n
− 1

)

n′2
)

|dt | − 1

4

∫

γy

n′′|dt |,

which we rewrite as

S2(y) = − 1

12

d

dy
J (y)− 1

4
K (y).

As in Sections 5 and 8.2, using n instead of V , we introduce the functions f±, F
and G.

13.3 Recovering G

We have

T (y) = 2
∫ y

E0

G′(z)√
z

dz√
y − z

.

The function T is the Abel transform, starting from E0, of the continuous function
G′(z)/√z (E0 is > 0). Using the inversion of Abel transform, we get G.

13.4 Recovering ±F

• The integral J:

J (y) =
∫ x+(y)

x−(y)

(

yn′′ − 2
( y

n
− 1

)

n′2
) dx√

n(y − n)

Using x = f±(y) as in Section 5 and

�(y) = 1

f ′+(y)
− 1

f ′−(y)
,

we get J (y) = (J�)(y), with

(J�)(y) =
∫ y

E0

(

y�′(u)− 2
( y

u
− 1

)

�(u)
) du√

u(y − u)
.
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• The integral K:

K (y) =
∫ y

E0

�′(u)
du√

u(y − u)

and

K (y) = 2
d

dy

∫ y

E0

�′(u)

√
y − u du√

u

which is rewritten as

K (y) = 2
d

dy
(K�)(y).

• An integral transform:

Lemma 13.1. If 0 < E0 < E1, the kernel of A := J + 6K on the space of continu-
ous function on [E0, E1] at most two-dimensional, and all functions in this kernel
are smooth.

Proof. We have

A�(y) =
∫ y

E0

(

(7y − 6u)�′(u)− 2
( y

u
− 1

)

�(u)
) du√

u(y − u)
. (7)

We compute T ◦ A with the operator T defined by Tψ(y) = ∫ y
E0

ψ(u)du√
y−u . We will

need the easy:

Lemma 13.2. We have
∫ y

E0

udu√
y − u

∫ u

E0

f (t)
dt√
u − t

= π

2

∫ y

E0

(t + y) f (t)dt,

and
∫ y

E0

du√
y − u

∫ u

E0

f (t)
dt√
u − t

= π

∫ y

E0

f (t)dt.

Applying the previous formulas, we get

T ◦ A (�)(y) = π

2

∫ y

E0

[

(t +y)

(

7�′(t)− 2
�(t)

t

)

+ 2(−6t�′(t)+ 2�(t))

]

dt√
t
.

Taking two derivatives:

π

y3/2

d2

dy2
((T ◦ A) �)(y) = y2�′′(y)+ 4y�′(y)−�(y).

From S2 and A�(E0), we get A�, then we get P(�) where Pφ = y2φ′′ +
4yφ′ − φ is a nonsingular linear differential equation (recall that E0 > 0). So, if
we know also �(E0) and the asymptotic behavior of �′(E0), we can get �. Let us
assume n′′(x0) = a > 0. Then we have:
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• A�(E0) = 2π
√

a E0
• �(E0) = 0
• �′(y) ∼ 4

√
a/
√

y − E0.

Appendix: Abel’s result

Let us consider the linear operator T that acts on continuous functions on [E0, E[
defined by

T f (x) =
∫ x

E0

f (y)dy√
x − y

.

Then T 2 f (x) = π
∫ x

E0
f (y)dy. This implies that T is injective! This is the content

of [1].
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(2005).
5. Yves Colin de Verdière. Spectrum of the Laplace operators and periodic geodesics: thirty years

after. Ann. Inst. Fourier 57:2429–2463 (2007).
6. Yves Colin de Verdière and Victor Guillemin. A semi-classical inverse problem I: Taylor

expansions. Geometric Aspects of Analysis and Mechanics: In Honor of the 65th Birthday
of Hans Duistermaat, (Eds) J. A. C. Kolk and Erik P. van den Ban, Birkhäuser, Boston, MA,
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On the solvability of systems of
pseudodifferential operators

Nils Dencker

In Honor of the Memory of Hans Duistermaat

Abstract This paper studies the solvability for square systems of classical pseudo-
differential operators. We assume that the system is of principal type, i.e., the
principal symbol vanishes of first order on the kernel. We shall also assume that
the eigenvalues of the principal symbol close to zero have constant multiplicity.
We prove that local solvability for the system is equivalent to condition (�) on the
eigenvalues of the principal symbol. This condition rules out any sign changes from
− to + of the imaginary part of the eigenvalue when going in the positive direction
on the bicharacteristics of the real part. Thus we need no conditions on the lower
order terms. We obtain local solvability by proving a localizable a priori estimate for
the adjoint operator with a loss of 3/2 derivatives (compared with the elliptic case).

Key words: Solvability, pseudodifferential operator, principal type, systems of
differential equations
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1 Introduction

In this paper we shall study the question of local solvability for square systems
of classical pseudodifferential operators P ∈ �m

cl (M) on a C∞ manifold M .
These are the pseudodifferential operators which have an asymptotic expansion in
homogeneous terms, where the highest order term is called the principal symbol.
We shall only consider operators acting on distributions D′(M, CN ) with values
in CN , but since the results are local and invariant under base changes, they
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immediately carry over to operators on sections of vector bundles. We shall assume
that P is of principal type, so that the principal symbol vanishes of first order on the
kernel, see Definition 2.1.

Local solvability for a N × N system P at a compact set K ⊆ M means that the
equation

Pu = v (1.1)

has a local weak solution u ∈ D′(M, CN ) in a neighborhood of K for all v ∈
C∞(M, CN ) in a subset of finite codimension. We say that P is microlocally
solvable at a compactly based cone K ⊂ T ∗M if there exists an integer N ,
such that for every f ∈ H loc

(N)(M, CN ), there exists u ∈ D′(M, CN ) so that

K
⋂

WF(Pu − f ) = ∅, see [14, Definition 26.4.3]. Here H(s) is the usual L2

Sobolev space and H loc
(s) is the localized Sobolev space, i.e., those f ∈ D′ such that

φ f ∈ H(s) for any φ ∈ C∞0 .
Hans Lewy’s famous counterexample [25] from 1957 showed that not all smooth

linear differential operators are solvable. It was conjectured by Nirenberg and
Treves [28] in 1970 that local solvability for principal type scalar pseudodifferen-
tial operators is equivalent to condition (�) on the principal symbol p, which means
that

Im(ap) does not change sign from− to +
along the oriented bicharacteristics of Re(ap) (1.2)

for any 0 	= a ∈ C∞(T ∗M). Recall that the operator is of principal type if dp 	= 0
when p = 0 with non-radial Hamilton vector field and the oriented bicharacteristics
are the positive flow-outs of the Hamilton vector field

HRe(ap) =
∑

j

∂ξ j Re(ap)∂x j − ∂x j Re(ap)∂ξ j

on Re(ap) = 0 (also called the semi-bicharacteristics of p). Condition (1.2) is
obviously invariant under symplectic changes of coordinates and multiplication with
nonvanishing factors. Thus the condition is invariant under conjugation of P with
elliptic Fourier integral operators. It actually suffices to check the condition with
some 0 	= a ∈ C∞ such that d(Re ap) 	= 0, see [14, Lemma 26.4.10]. Recall that p
satisfies condition (�) if p satisfies condition (�), and that p satisfies condition (P)
if there are no sign changes on the semi-bicharacteristics, that is, p satisfies both
condition (�) and (�).

The necessity of (�) for local solvability of scalar pseudodifferential operators
was proved by Moyer [27] in 1978 for the two-dimensional case, and by Hörmander
[13] in 1981 for the general case. The sufficiency of condition (�) for solvability
of scalar pseudodifferential operators in two dimensions was proved by Lerner [18]
in 1988. The Nirenberg–Treves conjecture was finally proved by the author [8],
giving solvability with a loss of two derivatives (compared with the elliptic case).
This has been improved to a loss of arbitrarily more than 3/2 derivatives by the
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author [9], and to a loss of exactly 3/2 by Lerner [24]. Observe that there only exist
counterexamples showing a loss of 1+ ε derivatives for arbitrarily small ε > 0, see
Lerner [19].

For partial differential operators, condition (�) is equivalent to condition (P).
The sufficiency of (P) for local solvability of scalar partial differential operators
with a loss of one derivative was proved in 1973 by Beals and Fefferman [1],
introducing the Beals–Fefferman calculus. In the case of operators that are not of
principal type, conditions corresponding to (�) are neither necessary nor sufficient
for local solvability, see [3].

For systems there is no corresponding conjecture for solvability. By looking at
diagonal systems, one finds that condition (�) for the eigenvalues of the principal
symbol is necessary for solvability. But when the principal symbol is not diago-
nalizable, condition (�) is not sufficient, see Example 2.14 below. It is not even
known if condition (�) is sufficient in the case when the principal symbol is C∞-
diagonalizable. We shall consider the case when the principal symbol has constant
characteristics; then the eigenvalue close to the origin has constant multiplicity, see
Definition 2.5. In that case, the eigenvalue is a C∞-function and condition (�) on
the eigenvalues is well defined. The main result of the paper is that classical square
systems of pseudodifferential operators of principal type having constant character-
istics are solvable (with a loss of 3/2 derivatives) if and only if the eigenvalues of the
principal symbol has non-radial Hamilton vector field and satisfies condition (�),
see Theorem 2.7.

2 Statement of results

We say that the system P ∈ �m
cl is classical if the symbol of P is an asymptotic sum

Pm + Pm−1 + · · · ∈ Sm
cl . Here Pj (x, ξ) ∈ S j is homogeneous of degree j in ξ ; and

Pm is called the principal symbol of P. Recall that the eigenvalues of the principal
symbol are the solutions to the characteristic equation

|Pm(x, ξ)− λ IdN | = 0,

where |A| is the determinant of the matrix. In the following, we shall denote by
Ker A the kernel and Ran A the range of the matrix A, and let w = (x, ξ). The
definition of principal type for systems is similar to the one for scalar operators.

Definition 2.1. We say that the N × N system P(w) ∈ C1 is of principal type at
w0 if

∂ν P(w0) : Ker P(w0) 
→ Coker P(w0) = CN / Ran P(w0) (2.1)

is bijective for some ν; here ∂ν P = 〈ν, d P〉 and the mapping (2.1) is given by
u 
→ ∂ν P(w0)u modulo Ran P(w0). We say that P ∈ �m

cl is of principal type at w0
if the principal symbol Pm(x, ξ) is of principal type at w0.
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Remark 2.2. If P(w) ∈ C1 is of principal type and A(w), B(w) ∈ C1 are invertible,
then AP B is of principal type. We also have that P is of principal type if and only
if the adjoint P∗ is of principal type.

In fact, Leibniz’s rule gives

d(AP B) = (d A)P B + A(d P)B + APd B (2.2)

and Ran(AP B) = A(Ran P) and Ker(AP B) = B−1(Ker P) when A and B are
invertible, which gives the invariance under left and right multiplication. Since
Ker P∗(w0) = Ran P(w0)

⊥ we find that P satisfies (2.1) if and only if

Ker P(w0)× Ker P∗(w0) � (u, v) 
→ 〈∂ν P(w0)u, v〉 (2.3)

is a nondegenerate bilinear form. Since 〈∂ν P∗u, v〉 = 〈∂ν Pv, u〉 we then obtain
that P∗ is of principal type.

Observe that only square systems can be of principal type since

Dim Ker P = Dim Coker P + M − N

if P is an N × M system. In general, if the system is of principal type and has
constant multiplicity of the eigenvalues, then there are no nontrivial Jordan boxes,
see Definition 2.3 and Proposition 2.10. Then we also have that the eigenvalues λ
are of principal type: dλ 	= 0 when λ = 0. When the multiplicity is equal to one,
this condition is sufficient. In fact, by using the spectral projection one can find
invertible systems A and B so that

AP B =
(

λ 0

0 E

)

with E invertible (N−1)×(N−1) system, and this system is obviously of principal
type.

Definition 2.3. Let A be an N×N matrix and λ an eigenvalue of A. The multiplicity
of λ as a root of the characteristic equation |A − λ IdN | = 0 is called the algebraic
multiplicity of the eigenvalue, and the dimension of Ker(A − λ IdN ) is called the
geometric multiplicity.

Observe that if the matrix P(w) depend continuously on a parameter w, then the
eigenvalues λ(w) also depend continuously on w. We will call such a continuous
function λ(w) of eigenvalues a section of eigenvalues of P(w).

Remark 2.4. If the section of eigenvalues λ(w) of the N × N system P(w) ∈ C∞
has constant algebraic multiplicity, then λ(w) ∈ C∞. In fact, if k is the multiplicity,
then λ = λ(w) solves ∂k−1

λ |P(w) − λ IdN | = 0 so λ(w) ∈ C∞ by the Implicit
Function Theorem.

This is not true for constant geometric multiplicity, for example P(t) = (

0 1
t 0

)

,
t ∈ R, has geometric multiplicity equal to one for the eigenvalues±√t . Observe the
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geometric multiplicity is lower or equal to the algebraic, and for symmetric systems
they are equal. We shall assume that the eigenvalues close to zero have constant
algebraic and geometric multiplicities by the following definition.

Definition 2.5. The N × N system P(w) ∈ C∞ has constant characteristics near
w0 if there exists an ε > 0, so that any section of eigenvalues λ(w) of P(w)
has both constant algebraic and geometric multiplicity when |λ(w)| < ε and
|w −w0| < ε.

Definition 2.5 is invariant under changes of bases: P 
→ E−1 P E where E is
an invertible system, since this preserves the multiplicities of the eigenvalues of
the system. It is also invariant under taking adjoints, since |P∗(w) − λ∗(w) Id | =
|P(w) − λ(w) Id | and Dim Ker(P∗(w)− λ∗(w) Id) = Dim Ker(P(w) − λ(w) Id).
The definition is not invariant under multiplication of the system with invertible
systems, even in the case when P(w) = λ(w) Id since A(w)P(w) = λ(w)A(w)
need not have constant characteristics.

Observe that generically the eigenvalues of a system have constant multiplicity,
but not necessarily when equal to zero. For example, the system

P(w) =
(

w1 w2

w2 −w1

)

is symmetric and of principal type with eigenvalues ±
√

w2
1 +w2

2, which have
constant multiplicity except when equal to 0.

Definition 2.6. Let the N × N system P ∈ �m
cl be of principal type and constant

characteristics. We say that P satisfies condition (�) or (P) if the eigenvalues of the
principal symbol satisfies condition (�) or (P).

Observe that the eigenvalue close to the origin is a uniquely defined C∞-
function of principal type by Definition 2.3 and Proposition 2.10. Thus, the semi-
bicharacteristics of the eigenvalues are well defined near the characteristic set
{w : |P(w)| = 0 }, so the conditions (�) and (P) on the eigenvalues are well
defined. Also well defined is the condition that the Hamilton vector field of an eigen-
value λ does not have the radial direction when λ = 0.

To get local solvability at a point x0 ∈ M we shall also assume a strong form of
the non-trapping condition at x0 for the eigenvalues λ of P:

λ = 0 =⇒ ∂ξλ 	= 0. (2.4)

This means that all nontrivial semi-bicharacteristics of λ are transversal to the
fiber T ∗x0

M , which originally was the condition for principal type of Nirenberg and
Treves [28]. Microlocally, in a conical neighborhood of (x, ξ) ∈ T ∗M , we can
always obtain (2.4) after a canonical transformation if the Hamilton vector field is
not radial. In the following, we shall use the usual L2 Sobolev norm ‖u‖(s) and the
L2 norm ‖u‖ = ‖u‖(0).
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Theorem 2.7. Let P ∈ �m
cl (M) be an N × N system of principal type and constant

characteristics near (x0, ξ0) ∈ T ∗M, such that the Hamilton vector field of an
eigenvalue λ does not have the radial direction when λ = 0. Then P is microlocally
solvable near (x0, ξ0) if and only if condition (�) is satisfied near (x0, ξ0), and then

‖u‖ ≤ C(‖P∗u‖(3/2−m) + ‖Ru‖ + ‖u‖(−1)) u ∈ C∞0 (M, CN ). (2.5)

Here R ∈ �1/2(M) is a K × N system such that (x0, ξ0) /∈ WF(R), which gives
microlocal solvability of P at (x0, ξ0) with a loss of at most 3/2 derivatives. If P is
of principal type and constant characteristics with eigenvalues satisfying condition
(�) and (2.4) near x0 ∈ M, then we obtain (2.5) with x 	= x0 in WF(R), which
gives local solvability of P at x0 with a loss of at most 3/2 derivatives.

As usual, WF(R) is the smallest smallest conical set in T ∗M\0 such that R ∈
�−∞ in the complement. The conditions in Theorem 2.7 are invariant under conju-
gation with scalar Fourier integral operators since they only depend on the principal
symbol of the system. They are also invariant under the base change: P 
→ E−1 P E
with invertible system E , since this preserves the multiplicities of the eigenvalues of
the principal symbol. The conditions of Theorem 2.7 are more or less necessary; of
course condition (�) is necessary even in the scalar case. Examples 2.14 and 2.15
show that we need both the condition of principal type and of constant multiplicity
in order to get this result.

We shall postpone the proof of Theorem 2.7 to Section 4. The proof of the
necessity is essentially the classical Moyer–Hörmander proof for the scalar case.
The proof of the sufficiency will be an adaption of the proof for the scalar case in [8],
using some of the ideas of Lerner [24]. In fact, since the normal form of the operator
will have a scalar principal symbol, the multiplier will essentially be the same as
in [8]. But since we lose more than one derivative in the estimate we also have to
consider the lower-order matrix-valued terms in the expansion of the operator. This
is done in Section 7 and is the main new part of the paper. In Section 3 we review the
Weyl calculus and state the estimates we will use in the proof of Theorem 2.7. But
we shall postpone the proof of the semiclassical estimate of Proposition 3.6 until
Section 7. In Section 4 we prove Theorem 2.7 by a microlocal reduction to a normal
form using the estimates in Section 3. In Section 5 we define the symbol classes and
weights we are going to use. In Section 6 we review the Wick quantization, intro-
duce the function spaces and the multiplier estimate that we will use for the proof
of Proposition 3.6. Finally, in Section 7 we prove Proposition 3.6 by estimating the
contributions of the lower order terms. The proof of Theorem 2.7 in Section 4 also
gives the following results.

Remark 2.8. If P is of principal type with constant characteristics satisfying
condition (P), then we get the estimate (2.5) with 3/2 replaced by 1. If P satisfies
condition (�) and some repeated Poisson bracket of the real and imaginary parts
of the eigenvalue close to the origin is nonvanishing, then we obtain a subelliptic
estimate for P with 3/2 replaced by k/k + 1 in (2.5) for some k ∈ Z+, see [14,
Chapter 27].
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The Poisson bracket of f and g is defined by { f, g } = H f g. Theorem 2.7
has applications to scalar non-principal type pseudodifferential operators by the
following result.

Theorem 2.9. Let Q ∈ �1
cl(M) be a scalar operator of principal type near

(x0, ξ0) ∈ T ∗M and let A j ∈ �0
cl(M), j = 1, . . . , N be scalar. Then the equation

Pu = QN u +
N−1
∑

j=0

A j Q j u = f (2.6)

is locally solvable near (x0, ξ0) if and only if σ(Q) satisfies condition (�) near
(x0, ξ0).

Proof. This is a standard reduction to a first-order system. For scalar u ∈ D′ we let
u j+1 = Q j u for 0 ≤ j < N . Then (2.6) holds if and only if U = t(u1, . . . , uN )
solves

P U = F, (2.7)

where

P =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Q −1 0 0 . . .

0 Q −1 0 . . .

0 0 Q −1 . . .

. . .

A0 A1 A2 . . . Q + AN−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and F = t (0, 0, . . . , f ). Now the equation (2.6) is locally solvable if and only if the
system (2.7) is locally solvable. In fact, to solve (2.7) we first put u1 = 0, u2 = − f1

and recursively u j+1 = Qu j − f j for 1 ≤ j < N . Then we only have to solve (2.6)
for u = v1 with f depending on f j , and add Q j−1v1 to u j . Now σ(P) = σ(Q) IdN

which is of principal type with constant characteristics, so it is locally solvable if
and only if Q satisfies condition (�) according to Theorem 2.7.

We shall conclude the section with some examples. But first we prove a result
about the characterization of systems of principal type.

Proposition 2.10. Assume that P(w) ∈ C∞ is an N × N system such that
|P(w0)| = 0 and there exists an ε > 0 such that the eigenvalue λ of P(w)
with |λ| < ε has constant algebraic multiplicity in a neighborhood of w0. Let
λ(w) ∈ C∞ be the unique eigenvalue for P(w) near w0 satisfying λ(w0) = 0
by Remark 2.4. Then P(w) is of principal type at w0 if and only if dλ(w0) 	= 0 and
the geometric multiplicity of the eigenvalue λ is equal to the algebraic multiplicity
at w0.

Thus, if P(w) is of principal type having constant characteristics, then all
sections of eigenvalues λ(w) are of principal type, and we have no nontrivial Jordan
boxes in the normal form. This means that for symmetric systems having constant
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characteristics it suffices that the eigenvalues are of principal type. If P(w) does not
have constant characteristics, then this is no longer true; in fact the eigenvalues need
not even be differentiable, see Example 2.15.

Observe that if P(w) is of principal type and has constant characteristics, then
P(w) − z IdN is of principal type for |z| � 1. In fact, the algebraic and geometric
multiplicities are constant for the eigenvalue λ and dλ 	= 0 when λ = 0.

Now the eigenvalue λ(w) in Proposition 2.10 is the unique C∞ solution to
∂k−1
λ |P(w) − λ IdN | = 0 according to Remark 2.4, where k is the algebraic multi-

plicity. Thus we find that dλ(w) 	= 0 if and only if

∂w∂k−1
λ |P(w) − λ IdN | 	= 0 when λ = λ(w).

We only need this condition for a symmetric system with constant multiplicity to be
of principal type.

Example 2.11. Let

P(w) =
(

w1 + iw2
2 w2

0 w1 + iw2
2

)

w = (w1, w2) ∈ R2,

then P is of principal type, has constant algebraic multiplicity of the eigenvalue
w1 + iw2

2 but not constant geometric multiplicity. In fact, ∂w1 P = Id2, P(w) has
nontrivial kernel only when w2 = 0, but the geometric multiplicity of the eigenvalue
is equal to one when w2 	= 0.

Example 2.12. Let

P = p(x, Dx ) IdN +B(x, Dx )+ P0(x, Dx ),

where p ∈ S1 is a scalar homogeneous symbol of principal type, B ∈ �1
cl with

nilpotent homogeneous principal symbol σ(B) and P0 ∈ �0
cl . Then p is the only

eigenvalue to σ(P) and P is of principal type if and only if σ(B) = 0 when p = 0
by Proposition 2.10.

Remark 2.13. Observe that the conclusion of Proposition 2.10 does not hold if the
algebraic multiplicity is not constant. For example,

P(w) =
(

w1 1

w2 w1

)

w = (w1, w2) ∈ R2

has determinant equal to w2
1 −w2 and eigenvalues w1 ±√w2, so the geometric but

not the algebraic multiplicity is constant near w2 = 0. Since

(

0 1

1 0

)

P(w) =
(

w2 w1

w1 1

)

we find that P(w) is of principal type at (0, 0) by invariance.
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Proof of Proposition 2.10. First we note that P(w) is of principal typ at w0 if and
only if

∂k
ν |P(w0)| 	= 0 k = Dim Ker P(w0) (2.8)

for some ν ∈ T (T ∗Rn). Observe that ∂ j |P(w0)| = 0 for j < Dim Ker P(w0).
In fact, by choosing bases for Ker P(w0) and Im P(w0) respectively, and extending
to bases of CN , we obtain matrices A and B so that

AP(w)B =
(

P11(w) P12(w)

P21(w) P22(w)

)

,

where |P22(w0)| 	= 0 and P11, P12 and P21 all vanish at w0. By the invariance, P is
of principal type if and only if ∂ν P11 is invertible for some ν, so by expanding the
determinant we obtain (2.8).

Now since the eigenvalue λ(w) has constant algebraic multiplicity near w0, we
find that

|P(w)− λ IdN | = (λ(w)− λ)me(w, λ)

near w0, where λ(w0) = 0, e(w, λ) 	= 0 and m ≥ Dim Ker P(w0) is the alge-
braic multiplicity. By putting λ = 0 we obtain that ∂

j
ν |P(w0)| = 0 if j < m and

∂m
ν |P(w0)| = (∂νλ(w0))

me(w0, 0) which proves Proposition 2.10.

The following example is an unsolvable system of principal type with real eigen-
values, but it does not have constant characteristics.

Example 2.14. Let

P =
(

Dx1 B(x, Dx )

−1 Dx1 + R(Dx )

)

, (2.9)

where R(ξ) = ξ2
2 /|ξ | and σ(B)(x, ξ) = ξ2 B0(x, ξ) with B0 ∈ S0 homogeneous

in ξ . The eigenvalues of the principal symbol σ(P) are ξ1 and ξ1+R(ξ) that are real
and coincide when ξ2 = 0. Since ∂ξ1σ(P) = Id2 and σ(B) vanish when ξ2 = 0, we
find that P is of principal type. If t 
→ Im B0(t, x ′, 0, 0, ξ ′′) changes sign at t = x1,
then P is not microlocally solvable at (x, 0, 0, ξ ′′); here x = (x1, x ′) = (x1, x2, x ′′)
and ξ ′′ 	= 0. In fact, the system PU = F with U = t(u1, u2) and F = t ( f1, f2) is
equivalent to the equation

Qu2 = (Dx1(Dx1 + R(Dx ))+ B(x, Dx ))u2 = f1 + Dx1 f2 (2.10)

if we put u1 = (Dx1 + R(Dx ))u2 − f2. Thus the system P is solvable if and
only if Q is solvable. That Q is not solvable follows from using the construction of
approximate solutions to the adjoint in [26], replacing Dx2 with R(Dx ).

We can also generalize this to the case where

R(ξ) = ξ k
2 |ξ |1−k

σ(B)(x, ξ) = ξ
j

2 B j (x, ξ) with j < k, B j ∈ S1− j homogeneous of degree 1 − j
in ξ , and satisfying the same conditions as B0. On the other hand, if σ(B)(x, ξ) =
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ξ
j

2 B j (x, ξ) with j ≥ k, then we can write

B(x, Dx ) ∼= A(x, Dx)R(Dx ) modulo �0

for some A ∈ �0, and then

(

1 −A

0 1

)

P

(

1 A

0 1

)

∼=
(

Dx1 0

0 Dx1 + R(Dx )

)

modulo �0

which is solvable. In fact, the principal symbol is on diagonal form with real
diagonal elements of principal type, giving L2 estimates of the adjoint that can be
perturbed by lower-order terms.

Finally, we have an example of an unsolvable operator which is diagonalizable
and self-adjoint, but not of principal type.

Example 2.15. Take real b(t) ∈ C∞(R), and define the symmetric system

P =
(

Dt + b(t)Dx (t − ib(t))Dx

(t + ib(t))Dx −Dt + b(t)Dx

)

= P∗ (t, x) ∈ R2.

Eigenvalues of σ(P) are b(t)ξ±√

τ 2 + (t2 + b2(t))ξ2 which are zero for (τ, ξ) 	= 0
only if t = τ = 0. The eigenvalues coincide for (τ, ξ) 	= 0 if and only if b(t) = t =
τ = 0. We have that

Q = 1

2

(

1 −i

1 i

)

P

(

1 1

−i i

)

=
(

Dt − i t Dx 2b(t)Dx

0 Dt + i t Dx

)

which is not locally solvable at t = 0 for any choice of b(t). In fact, Dt+i t Dx is not
locally solvable since condition (�) is not satisfied when ξ > 0. The eigenvalues of
the principal symbol σ(Q) are τ ± i tξ . By the invariance, P is of principal type if
and only if b(0) = 0. When b(t) 	= 0 we find that σ(P) is diagonalizable and self-
adjoint, but not of principal type. When b ≡ 0 the system is symmetric of principal
type, but does not have constant characteristics.

3 The multiplier estimates

In this section we shall prove multiplier estimates for microlocal normal forms of the
adjoint operator, which we shall use in the proof of Theorem 2.7. We shall consider
the model operators

P0 = (Dt + i F(t, x, Dx)) IdN +F0(t, x, Dx ), (3.1)

where F ∈ C∞(R,�1
cl(R

n)) is scalar with the real homogeneous principal symbol
σ(F) = f , and F0 ∈ C∞(R,�0

cl) is an N × N system. In the following, we shall
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assume that P0 satisfies condition (�):

f (t, x, ξ) > 0 and s > t =⇒ f (s, x, ξ) ≥ 0 (3.2)

for any t , s ∈ R and (x, ξ) ∈ T ∗Rn. This means that the adjoint P∗0 satisfies
condition (�) for the eigenvalue τ − i f (t, x, ξ). Observe that if χ ≥ 0, then χ f
also satisfies (3.2); thus the condition can be localized.

Remark 3.1. We may also consider symbols f ∈ L∞(R, S1(Rn)), that is,
f (t, x, ξ) is measurable and bounded in S1(Rn) for almost all t . Then we say that
P0 satisfies condition (�) if for every (x, ξ) condition (3.2) holds for almost all s,
t ∈ R.

Observe that, since (x, ξ) 
→ f (t, x, ξ) is continuous for almost all t , it suffices
to check (3.2) for (x, ξ) in a countable dense subset of T ∗Rn . Then we find that f
has a representative satisfying (3.2) for any t , s and (x, ξ) after putting f (t, x, ξ) ≡
0 for t in a null set.

In order to prove Theorem 2.7 we shall make a second microlocalization using
the specialized symbol classes of the Weyl calculus, and the Weyl quantization of
symbols a ∈ S ′(T ∗Rn) defined by

(awu, v) = (2π)−n
∫∫

exp (i〈x − y, ξ〉)a
(

x + y

2
, ξ

)

u(y)v(x) dxdydξ

u, v ∈ S(Rn)

Observe that Re aw = (Re a)w is the symmetric part and i Im aw = (i Im a)w the
antisymmetric part of the operator aw. Also, if a ∈ Sm

cl (R
n), then aw(x, Dx ) =

a(x, Dx) modulo �m−1
cl (Rn) by [14, Theorem 18.5.10]. The same holds for N × N

systems of operators.
We recall the definitions of the Weyl calculus: let gw be a Riemannean metric

on T ∗Rn, w = (x, ξ); then we say that g is slowly varying if there exists c > 0 so
that gw0(w −w0) < c implies

1/C ≤ gw/gw0 ≤ C,

that is, gw
∼= gw0 . Let σ be the standard symplectic form on T ∗Rn , gσ (w) the

dual metric of w 
→ g(σ (w)), and assume that gσ (w) ≥ g(w). We say that g is
σ temperate if it is slowly varying and

gw ≤ Cgw0(1+ gσ
w(w − w0))

N w, w0 ∈ T ∗Rn.

A positive real-valued function m(w) on T ∗Rn is g-continuous if there exists c > 0
so that gw0(w − w0) < c implies m(w) ∼= m(w0). We say that m is σ , g-temperate
if it is g-continuous and

m(w) ≤ Cm(w0)(1+ gσ
w(w − w0))

N w, w0 ∈ T ∗Rn.
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If m is σ , g temperate, then m is a weight for g and we can define the symbol classes:
a ∈ S(m, g) if a ∈ C∞(T ∗Rn) and

|a|gj (w) = sup
Ti 	=0

|a( j )(w, T1, . . . , Tj )|
∏ j

1 gw(Ti )1/2
≤ C j m(w) w ∈ T ∗Rn j ≥ 0,

(3.3)
which defines the seminorms of S(m, g). Of course, these symbol classes can also
be defined locally. For matrix-valued symbols, we use the matrix norms. If a ∈
S(m, g), then we say that the corresponding Weyl operator aw ∈ Op S(m, g). For
more results on the Weyl calculus, see [14, Section 18.5].

Definition 3.2. Let m be a weight for the metric g. We say that a ∈ S+(m, g) if
a ∈ C∞(T ∗Rn) and |a|gj ≤ C j m for j ≥ 1.

Observe that if a ∈ S+(m, g), then a is a symbol. In fact, since g ≤ gσ we find
by integration that

|a(w)− a(w0)| ≤ C1 sup
θ∈[0,1]

m(wθ)gwθ (w − w0)
1/2

≤ CN m(w0)(1+ gσ
w0

(w − w0))
N0 ,

where wθ = θw+ (1− θ)w0, which implies that m + |a| is a weight for g. Clearly,
a ∈ S(m + |a|, g), so the operator aw is well defined.

Lemma 3.3. Assume that m j is a weight for for the σ -temperate conformal metrics
g j = h j g� ≤ g� = (g�)σ and a j ∈ S+(m j , g j), j = 1, 2. Let g = (g1 + g2)/2 and
h2 = sup g1/gσ

2 = sup g2/gσ
1 . Then we find that h2 = h1h2 and

aw
1 aw

2 − (a1a2)
w ∈ Op S(m1m2h, g). (3.4)

We also obtain the usual expansion of (3.4) with terms in S(m1m2hk, g), k ≥ 1.

Observe that by Proposition 18.5.7 and (18.5.14) in [14] we find that g is
σ -temperate and g/gσ ≤ (h1 + h2)

2/4 ≤ 1.

Proof. As shown after Definition 3.2 we have that m j + |a j | is a weight for g j and
a j ∈ S(m j + |a j |, g j), j = 1, 2. Thus

aw
1 aw

2 ∈ Op S((m1 + |a1|)(m2 + |a2|), g)

is given by Proposition 18.5.5 in [14]. We find that aw
1 aw

2 − (a1a2)
w = aw with

a(w) = E

(

i

2
σ(Dw1 , Dw2)

)

i

2
σ(Dw1 , Dw2 )a1(w1)a2(w2)

∣

∣

w1=w2=w
,

where E(z) = (ez − 1)/z = ∫ 1
0 eθz dθ . We have that σ(Dw1 , Dw2)a1(w1)a2(w2) ∈

S(M, G) where
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M(w1, w2) = m1(w1)m2(w2)h
1/2
1 (w1)h

1/2
2 (w2)

and Gw1,w2(z1, z2) = g1,w1(z1) + g2,w2(z2). Now the proof of Theorem 18.5.5
in [14] works also when σ(Dw1 , Dw2) is replaced by θσ(Dw1 , Dw2 ), uniformly in
0 ≤ θ ≤ 1. By using Proposition 18.5.7 in [14] and integrating over θ ∈ [0, 1] we
obtain that a(w) has an asymptotic expansion in S(m1m2hk, g), which proves the
lemma.

Remark 3.4. The conclusions of Lemma 3.3 also hold if a1 has values in L(B1, B2)
and a2 has values in B1 where B1 and B2 are Banach spaces (see Section 18.6
in [14]).

For example, if { a j } j ∈ S(m1, g1) with values in �2, and b j ∈ S(m2, g2)
uniformly in j , then { aw

j bw
j } j ∈ Op(m1m2, g) with values in �2. Observe that

if {φ j } j ∈ S(1, g) is a partition of unity so that
∑

j φ2
j = 1 and a ∈ S(m, g), then

{φ j a } j ∈ S(m, g) has values in �2.

Example 3.5. The standard symbol class Sμ
�,δ defined by

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cαβ 〈ξ〉μ+δ|α|−�|β|

has σ -temperate metric if 0 ≤ δ ≤ � ≤ 1 and δ < 1.

In the proof of Theorem 2.7 we shall microlocalize near (x0, ξ0) and put h−1 =
〈ξ0〉 = 1+ |ξ0|. Then after doing a symplectic dilation: (x, ξ) 
→ (h−1/2x, h1/2ξ),
we find that Sk

1,0 = S(h−k, hg�) and Sk
1/2,1/2 = S(h−k , g�), k ∈ R, where

g� = (g�)σ is the Euclidean metric. We shall prove a semiclassical estimate for
a microlocal normal form of the operator.

Let ‖u‖ be the L2 norm on Rn+1, and (u, v) the corresponding sesquilinear inner
product. As before, we say that f ∈ L∞(R, S(m, g)) if f (t, x, ξ) is measurable
and bounded in S(m, g) for almost all t . The following is the main estimate that we
shall prove.

Proposition 3.6. Assume that

P0 = (Dt + i f w(t, x, Dx )) IdN +Fw
0 (t, x, Dx ),

where f ∈ L∞(R, S(h−1, hg�)) is real satisfying condition (�) given by (3.2),
and F0 ∈ L∞(R, S(1, hg�)) is an N × N system; here 0 < h ≤ 1 and g� =
(g�)σ are constant. Then there exists T0 > 0 and N × N symbols bT (t, x, ξ) ∈
L∞(R, S(h−1/2, g�)

⋂

S+(1, g�)) such that Im bT ∈ L∞(R, S(h1/2, g�)) uni-
formly for 0 < T ≤ T0, and

h1/2(‖bw
T u‖2 + ‖u‖2) ≤ C0T Im(P0u, bw

T u) (3.5)

for u(t, x) ∈ S(R × Rn, CN ) having support where |t| ≤ T ≤ T0. The constants
C0, T0 and the seminorms of bT only depend on the seminorms of f and F0.
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Remark 3.7. It follows from the proof that bT = ˜bT E∗E , modulo S(h1/2, g�),
where E ∈ S(1, hg�) is an invertible N × N system, ˜bT is scalar and |˜bT | ≤
C H−1/2. Here H is a weight for g� such that h ≤ H ≤ 1, and G = Hg� is
σ -temperate (see Claim 3.9, Definition 5.3 and Proposition 6.3).

Observe that it follows from (3.5) and the Cauchy–Schwarz inequality that

‖u‖ ≤ CT h−1/2‖P0u‖,
which will give a loss of 3/2 derivatives after microlocalization. Proposition 3.6 will
be proved in Section 7.

There are two difficulties present in estimates of the type (3.5). The first is that
bT is not C∞ in the t variables. Therefore one has to be careful not to involve bw

T
in the calculus with symbols in all the variables. We shall avoid this problem by
using tensor products of operators and the Cauchy–Schwarz inequality. The second
difficulty lies in the fact that we could have |bT | � h1/2, so it is not obvious that
cut-off errors can be controlled.

Lemma 3.8. The estimate (3.5) can be perturbed with terms in L∞(R, S(h1/2, hg�))
in the expansion of P0 for small T . Also, it can be microlocalized: if φ(w) ∈
S(1, hg�) is real valued and independent of t, then we have

Im(P0φ
wu, bw

T φwu) ≤ Im(P0u, φwbw
T φwu)+ Ch1/2‖u‖2

u(t, x) ∈ S(Rn+1, CN ) (3.6)

where φwbw
T φw satisfies the same conditions as bw

T .

Proof. In the following, we shall say that a system is real if it is a real mul-
tiple of the identity matrix. It is clear that we may perturb (3.5) with terms in
L∞(R, S(h1/2, g�)) in the expansion of P0 for small enough T . Now, we can also
perturb with real terms rw ∈ L∞(R, Op S(1, hg�)). In fact, if r ∈ S(1, hg�) is real
and B ∈ S+(1, g�) is symmetric modulo S(h1/2, g�), then

| Im(rwu, Bwu)| ≤ |([(Re B)w, rw]u, u)|/2+ |(rwu, (Im B)wu)| ≤ Ch1/2‖u‖2.
(3.7)

In fact, we have [(Re B)w, rw] ∈ Op S(h1/2, g�) by Lemma 3.3.
If φ(w) ∈ S(1, hg�), then

[P0, φ
w IdN ] = { f, φ }w IdN modulo L∞(R, Op S(h, hg�)),

where { f, φ } ∈ L∞(R, S(1, hg�)) is real valued. By using (3.7) with rw =
{ f, φ }w IdN and Bw = bw

T φw , we obtain (3.6) since bw
T φw ∈ Op S+(1, g�) is

symmetric modulo Op S(h1/2, g�) for almost all t by Lemma 3.3. Since Lemma 3.3
also gives that

φwbw
T φw = φw(bT φ)w = (bT φ2)w

modulo L∞(R, Op S(h1/2, g�)) we find that φwbw
T φw satisfies the same conditions

as bw
T .
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Claim 3.9. When proving the estimate (3.5) we may assume that

F0 = 〈dw f, R0〉 =
∑

j

∂w j f R0, j modulo L∞(R, S(h, hg�)), (3.8)

where R0, j ∈ L∞(R, S(h1/2, hg�)) are N × N systems, for all j .

Proof. By conjugation with (E±1)w ∈ Op S(1, hg�) we find that

(E−1)w P Ew = (E−1)w Ew(Dt + i f w) IdN +(E−1(Dt E + H f E + F0 E))w = ˜P

modulo L∞(R, S(h, hg� )). By solving

{

Dt E + F0 E = 0

E
∣

∣

t=0 = IdN

we obtain (3.8) for ˜P with 〈dw f, R0〉 = E−1 H f E . From the calculus we obtain that

Ew(E−1)w = 1 = (E−1)w Ew modulo Op S(T h, hg�)

uniformly when |t| ≤ T . Thus, for small enough T we obtain that (E±1)w is
invertible in L2. Since the metric hg� is trivially strongly σ -temperate in the
sense of [2, Definition 7.1], we find from [2, Corollary 7.7] that there exists
A ∈ L∞(R, S(1, hg�)) such that Ew Aw = 1. Thus, if we prove the estimate (3.5)
for ˜P and substitute u = Awv, we obtain the estimate for P with bT replaced by
((E−1)w)∗bw

T Aw. Since A = E−1 modulo S(h, hg�) we find from Lemma 3.3 as
before that the symbol of this multiplier is in S(h−1/2, g�)

⋂

S+(1, g�) and that it
is symmetric modulo S(h1/2, g�).

We shall see from the proof that if F0 is on the form (3.8), then bT = bT IdN is
real. Thus, in general the symbol of the multiplier will be on the form bT (E−1)∗E−1

modulo S(h1/2, g�) with invertible E and a real scalar bT . In the following, we shall
use the partial Sobolev norms:

‖u‖s = ‖〈Dx 〉su‖. (3.9)

We shall now prove the estimate that is going to be used in the proof of Theorem 2.7.

Proposition 3.10. Assume that

P0 = (Dt + i Fw(t, x, Dx )) IdN +Fw
0 (t, x, Dx )

with Fw ∈ L∞(R,�1
cl(R

n)) having the real principal symbol f satisfying condi-
tion (�) given by (3.2) and F0 ∈ L∞(R,�0

cl(R
n)) is an N × N system. Then there

exists T0 > 0 and N × N symbols BT (t, x, ξ) ∈ L∞(R, S1
1/2,1/2(R

n)) with

∇BT = (∂x BT , |ξ |∂ξ BT ) ∈ L∞(R, S1
1/2,1/2(R

n))
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and Im BT (t, x, ξ) ∈ L∞(R, S0
1/2,1/2(R

n)) uniformly for 0 < T ≤ T0, such that

‖Bw
T u‖2−1/2 + ‖u‖2 ≤ C0(T Im(P0u, Bw

T u)+ ‖u‖2−1) (3.10)

for u ∈ S(Rn+1, CN ) having support where |t| ≤ T ≤ T0. The constants T0, C0
and the seminorms of BT only depend on the seminorms of F and F0.

Since ∇BT ∈ L∞(R, S1
1/2,1/2) we find that the commutators of Bw

T with scalar

operators in L∞(R,�0
1,0) are in L∞(R,�0

1/2,1/2). This will make it possible to
localize the estimate. The idea to include the first term in (3.10) is due to Lerner
[24].

Proof that Proposition 3.6 gives Proposition 3.10. Choose real symbols {φ j

(x, ξ) } j and {ψ j (x, ξ) } j ∈ S0
1,0(R

n) having values in �2, such that
∑

j φ2
j = 1,

ψ j φ j = φ j and ψ j ≥ 0. We may assume that the supports are small enough so that
〈ξ〉 ∼= 〈ξ j 〉 in supp ψ j for some ξ j , and that there is a fixed bound on number of
overlapping supports. Then, after doing a symplectic dilation

(y, η) = (x〈ξ j 〉1/2, ξ/〈ξ j 〉1/2)

we obtain that Sm
1,0(R

n) = S(h−m
j , h j g�) and Sm

1/2,1/2(R
n) = S(h−m

j , g�) in

supp ψ j , m ∈ R, where h j = 〈ξ j 〉−1 ≤ 1 and g�(dy, dη) = |dy|2 + |dη|2 is
constant.

By using the calculus in the y variables, we find φw
j P0 = φw

j P0 j modulo

Op S(h j , h j g�), where

P0 j = (Dt + i(ψ j F)w(t, y, Dy)) IdN +(ψ j F0)
w(t, y, Dy)

= (Dt + i f w
j (t, y, Dy)) IdN +Fw

j (t, y, Dy) (3.11)

with f j = ψ j f ∈ L∞(R, S(h−1
j , h j g�)) satisfying (3.2), and Fj ∈ L∞(R,

S(1, h j g�)) uniformly in j . Then, by using Proposition 3.6 and Lemma 3.8 for

P0 j we obtain symbols b j,T (t, y, η) ∈ L∞(R, S(h−1/2
j , g�)

⋂

S+(1, g�)) such that

Im b j,T ∈ S(h1/2
j , g�) uniformly for 0 < T � 1, and

‖bw
j,T φw

j u‖2 + ‖φw
j u‖2 ≤ C0T (h−1/2

j Im(P0u, φw
j bw

j,T φw
j u)+ ‖u‖2) ∀ j

(3.12)
for u(t, y) ∈ S(R × Rn, CN ) having support where |t| ≤ T . Here and in the
following, the constants are independent of T .

By substituting ψw
j u in (3.12) and summing up, we obtain

‖Bw
T u‖2−1/2 + ‖u‖2 ≤ C0T (Im(P0u, Bw

T u)+ ‖u‖2)+ C1‖u‖2−1 (3.13)
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for u(t, x) ∈ S(R× Rn, CN ) having support where |t| ≤ T . Here

Bw
T =

∑

j

h−1/2
j ψw

j φw
j bw

j,T φw
j ψw

j =
∑

j

Bw
j,T ∈ L∞(R,�1

1/2,1/2)

so Im BT ∈ L∞(R,�0
1/2,1/2). In fact, since dψ j = 0 on supp φ j , we have

{φw
j [Pw

0 j , ψ
w
j ] } j ∈ �−1

1,0(R
n)

with values in �2 for almost all t . Also,
∑

j φ2
j = 1 so

∑

j φw
j φw

j = 1 modulo

�−1(Rn), and by the finite overlap of supports we find that

(〈Dx 〉−1/2 Bw
T )∗〈Dx 〉−1/2 Bw

T = (Bw
T )∗〈Dx 〉−1 Bw

T

=
∑

| j−k|≤K

(Bw
j,T )∗〈Dx 〉−1 Bw

k,T modulo �−2

for some K , which implies that

‖Bw
T u‖2−1/2 ≤ CK

(

∑

k

‖Bw
k,T u‖2−1/2 + ‖u‖2(−1)

)

.

We also have that 〈Dx 〉−1/2h−1/2
j ψw

j φw
j ∈ �0(Rn) uniformly, which gives

‖Bw
k,T u‖−1/2 ≤ C‖bw

k,T φw
k ψw

k u‖ ∀ k.

We find that ∇BT ∈ S1
1/2,1/2 since Lemma 3.3 gives

BT =
∑

j

h−1/2
j b j,T φ2

j ∈ S1
1/2,1/2 modulo S0

1/2,1/2,

where φ j ∈ S(1, h j g�) and b j,T ∈ S+(1, g�) for almost all t . For small enough T
we obtain (3.10) and the corollary.

4 Proof of Theorem 2.7

In order to prove the theorem, we first need a preparation result so that we can get
the system on a normal form.

Proposition 4.1. Assume that P ∈ Sm
cl (M) is an N × N system of principal type

having constant characteristics near (x0, ξ0) ∈ T ∗M. Then there exist elliptic N×N
systems A and B ∈ S0

cl(M) such that
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Aw Pw Bw = Qw =
(

Qw
11 0

0 Qw
22

)

∈ �m
cl

microlocally near (x0, ξ0). We have that σ(Q11) = λ IdK where the section of eigen-
values λ(w) ∈ C∞ of P(w) is of principal type, and Qw

22 is elliptic.

Thus we obtain the system on a block form. Observe that if K = 0, then P
is elliptic at (x0, ξ0). Since P is of principal type we find by the invariance given
by (2.2) that Q is of principal type, so λ vanishes of first order on its zeros.

Proof. Since Pm has constant characteristics by the assumptions, we find that the
characteristic equation

|Pm(w)− λ IdN | = 0

has a unique local solution λ(w) ∈ C∞ of multiplicity K > 0. Since Pm(w) is
of principal type, Proposition 2.10 gives that dλ(w0) 	= 0 and the geometric multi-
plicity Dim Ker(Pm(w)−λ(w) IdN ) ≡ K in a neighborhood of w0 = (x0, ξ0). Since
the dimension is constant, we may choose a C∞-base for Ker(Pm(w)−λ(w) IdN ) in
a neighborhood of w0. By orthogonalizing it, extending to a orthonormal C∞-base
for CN and using homogeneity, we obtain orthogonal homogeneous E such that

E∗Pm E =
(

λ(w) IdK P12

0 P22

)

= ˜Pm = σ((Ew)∗Pw Ew).

Clearly Ker ˜Pm = { (z1, . . . , zN ) : z j = 0 for j > K } when λ = 0 and d ˜Pm

is equal to multiplication with dλ on Ker ˜Pm . Since ˜Pm is of principal type when
λ = 0, we find that Im ˜Pm

⋂

Ker ˜Pm = { 0 } at w0, which implies that P22 is
invertible. In fact, if it were not invertible, there would exist 0 	= z′′ ∈ CN−K

so that P22z′′ = 0; then

0 	= ˜Pm
t (0, z′′) = t (P12z′′, 0) ∈ Im ˜Pm

⋂

Ker ˜Pm ,

giving a contradiction. By multiplying ˜Pm from the left with
(

IdK −P12 P−1
22

0 IdN−K

)

we obtain P12 ≡ 0. Thus, we find that

Aw Pw Bw =
(

Qw
11 Qw

12

Qw
21 Qw

22

)

∈ �m
cl

where σ(Q11) = λ IdK , |σ(Q22)| 	= 0 and Q12, Q21 ∈ �m−1
cl . Choose a microlocal

parametrix Bw
22 ∈ �−m

cl to Qw
22 so that Bw

22 Qw
22 = Qw

22 Bw
22 = IdN−K modulo C∞

near w0. By multiplying from the left with
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(

IdK −Qw
12 Bw

22

0 IdN−K

)

∈ �0
cl ,

we obtain that Q12 ∈ S−∞. By multiplying from the right with

(

IdK 0

−Bw
22Qw

21 IdN−K

)

∈ �0
cl,

we obtain Q21 ∈ S−∞. Note that these multiplications do not change the principal
symbols of Q j j for j = 1, 2, which finishes the proof.

Proof of Theorem 2.7. Observe that since P satisfies condition (�) we find that the
adjoint P∗ satisfies condition (�). By multiplying with an elliptic pseudodifferen-
tial operator, we may assume that m = 1. Let P∗ have the expansion P1 + P0+ · · ·
where P1 = σ(P∗) ∈ S1; then it is clear that it suffices to consider w0 = (x0, ξ0) ∈
|P1|−1(0); otherwise P∗ ∈ �1

cl(M) is elliptic near w0 so (2.5) holds and P is
microlocally solvable. Now P∗ is of principal type having constant characteristics,
so we find by using Proposition 4.1 that

P∗ =
(

Qw
11 0

0 Qw
22

)

∈ �1
cl

microlocally near w0, where σ(Q11) = λ IdK with λ ∈ C∞ an eigenvalue of σ(P∗)
of principal type and Qw

22 is elliptic. Since Qw
22 is elliptic, it is trivially solvable,

so we only have to investigate the solvability of Qw
11. Now λ is of principal type

by the invariance, so if it does not satisfy condition (�), then the proof of [14,
Theorem 26.4.7] can easily be adapted to this case, since the principal part of the
operator is a scalar symbol times the identity matrix.

To prove solvability when condition (�) is satisfied, we shall prove that there
exists φ and ψ ∈ S0

1,0(T
∗M) such that φ = 1 in a conical neighborhood of (x0, ξ0),

and for any T > 0, there exists a K × N system RT ∈ S1/2
1,0 (M) with the property

that WF(Rw
T )

⋂

T ∗x0
M = ∅ and

‖φwu‖ ≤ C1
(‖ψw P∗u‖(1/2) + T‖u‖)+ ‖Rw

T u‖ + C0‖u‖(−1)

u ∈ C∞0 (M, CN ). (4.1)

Here ‖u‖(s) is the L2-Sobolev norm and the constants are independent of T . Then
for small enough T we obtain (2.5) and microlocal solvability, since (x0, ξ0) /∈
WF(1−φ)w. In the case where the eigenvalue satisfies condition (�) and (2.4) near
x0, we may choose finitely many φ j ∈ S0

1,0(M) such that
∑

φ j ≥ 1 near x0 and
‖φw

j u‖ can be estimated by the right-hand side of (4.1) for some suitable ψ and RT .
By elliptic regularity of {φ j } near x0, we then obtain the estimate (2.5) for small
enough T with x 	= x0 in WF(R).

Observe that in the case when λ satisfies condition (P), we obtain the esti-
mate (4.1) for P∗ = λ(x, Dx ) IdN with 3/2 replaced with 1 and C1 = O(T ) from
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the Beals–Fefferman estimate, see [1]. Since this estimate can be perturbed with
terms in �0

cl for small enough T we get the estimate and solvability in this case.
A similar argument gives subelliptic estimates if λ satisfies condition (�) and the
bracket condition, see [14, Chapter 27]. This gives Remark 2.8.

It remains to consider the case P1 = λ IdN , where λ satisfies condition (�). It is
clear that by multiplying with an elliptic factor we may assume that ∂ξ Re λ(w0) 	=
0, in the microlocal case after a conical transformation. Then, we may use Darboux’s
theorem and the Malgrange preparation theorem to obtain microlocal coordinates
(t, y; τ, η) ∈ T ∗Rn+1 so that w0 = (0, 0; 0, η0), t = 0 on T ∗x0

M and λ = q(τ + i f )

in a conical neighborhood of w0, where f ∈ C∞(R, S1
1,0) is real and homogeneous

satisfying condition (3.2), and 0 	= q ∈ S0
1,0, see Theorem 21.3.6 in [14]. By using

the Malgrange preparation theorem and homogeneity we find that

P0(t, x; τ, ξ) = Q−1(t, x; τ, ξ)(τ + i f (t, x, ξ)) IdN +F0(t, x, ξ),

where Q−1 is homogeneous of degree −1 and F0 is homogeneous of degree 0 in
the ξ variables. By conjugation with elliptic Fourier integral operators and using the
Malgrange preparation theorem successively on lower order terms, we obtain that

P∗ = Qw(Dt IdN +i (χ F)w)+ Rw (4.2)

microlocally in a conical neighborhood � of w0 as in the proof of Theorem 26.4.7′
in [14]. Here we find that F ∈ C∞(R, S1

1,0(R
n)) has the real principal symbol f IdN

satisfying (3.2), Q ∈ S0
1,0(R

n+1) has the principal symbol q IdN 	= 0 in � and

R ∈ S1
1,0(R

n+1) satisfies �
⋂

WF(Rw) = ∅. Also, χ(τ, η) ∈ S0
1,0(R

n+1) is equal
to 1 in � and |τ | ≤ C|η| in supp χ(τ, η). By cutting off in the t variable we may
assume that F ∈ L∞(R, S1

1,0(R
n)). Now, we can follow the proof of Theorem 1.4

in [10]. As before, we shall choose φ and ψ so that φ = 1 conical neighborhood
of w0, ψ = 1 on supp φ and supp ψ ⊂ �. Also, we shall choose

φ(t, y; τ, η) = χ0(t, τ, η)φ0(y, η)

where χ0(t, τ, η) ∈ S0
1,0(R

n+1), φ0(y, η) ∈ S0
1,0(R

n), t 	= 0 in supp ∂tχ0, |τ | ≤
C |η| in supp χ0 and |τ | ∼= |η| in supp ∂τ,ηχ0.

Since |σ(Q)| 	= 0 and R = 0 on supp ψ it is no restriction to assume that
Q ≡ IdN and R ≡ 0 when proving the estimate (4.1). Now, by Theorem 18.1.35
in [14] we may compose C∞(R,�m

1,0(R
n)) with operators in �k

1,0(R
n+1) having

symbols vanishing when |τ | ≥ c(1 + |η|); and we obtain the usual asymptotic
expansion in �

m+k− j
1,0 (Rn+1) for j ≥ 0. Since |τ | ≤ C|η| in supp χ and χ = 1 on

supp ψ , it suffices to prove (4.1) for P∗ = Dt + i Fw.
By using Proposition 3.10 on φwu, we obtain that

‖Bw
T φwu‖2−1/2 + ‖φwu‖2

≤ C0T (Im(φw P∗u, Bw
T φwu)+ Im([P∗, φw IdN ]u, Bw

T φwu))+ C1‖φwu‖2−1,
(4.3)
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where Bw
T ∈ L∞(R,�1

1/2,1/2(R
n)) is an N × N system with ∇BT ∈ L∞(R,

S1
1/2,1/2(R

n)), and ‖u‖s = ‖〈Dy〉su‖ is the partial Sobolev norm in the y variables.
Since |τ | ≤ C|η| in supp φ we find that ‖φwu‖−1 ≤ C‖u‖(−1) For any u, v ∈
S(Rn, CN ) we have that

|(v, Bw
T u)| = |(〈Dy〉1/2v, 〈Dy 〉−1/2 Bw

T u)| ≤ C(‖v‖21/2 + ‖Bw
T u‖2−1/2), (4.4)

where 〈Dy 〉 = 1+ |Dy |. Now φw = φwψw modulo �−2
1,0(R

n+1), and thus we find
from (4.4) that

|(φw P∗u, Bw
T φwu)| ≤ C(‖ψw P∗u‖21/2 + ‖u‖2 + ‖Bw

T φwu‖2−1/2) (4.5)

where the last term can be cancelled for small enough T in (4.3). We also have to
estimate the commutator term Im

(

[P∗, φw IdN ]u, Bw
T φwu

)

in (4.3). We find

[P∗, φw IdN ] = −(i∂tφ
w − { f, φ }w) IdN ∈ �0

1,0(R
n+1),

modulo �−1
1,0(R

n+1) by the expansion, where the error term can be estimated
by (4.4). Since φ = χ0φ0 we find that { f, φ } = φ0{ f, χ0 } + χ0{ f, φ0 }, where
φ0{ f, χ0 } = R0 ∈ S0

1,0(R
n+1) is supported when |τ | ∼= |η| and ψ = 1. Now

(τ + i f )−1 ∈ S−1
1,0(R

n+1) when |τ | ∼= |η|; thus by [14, Theorem 18.1.35] we find

that Rw
0 = Aw

1 ψw P∗ modulo �−1
1,0(R

n+1) where A1 = R0(τ+i f )−1 ∈ S−1
1,0(R

n+1).
As before, we find from (4.4) that

|(Rw
0 u, Bw

T φwu)| ≤ C(‖Rw
0 u‖21/2 + ‖Bw

T φwu‖2−1/2)

≤ C0(‖ψw P∗u‖2−1/2 + ‖Bw
T φwu‖2−1/2 + ‖u‖2−1/2), (4.6)

and also
|(∂tφ

wu, Bw
T φwu)| ≤ ‖Rw

1 u‖2 + ‖Bw
T φwu‖2−1/2,

where Rw
1 = 〈Dy〉1/2∂tφ

w ∈ �
1/2
1,0 (Rn+1); thus t 	= 0 in WF(Rw

1 ).
It only remains to estimate the term Im(({ f, φ0 }χ0)

wu, Bw
T φwu). Here

({ f, φ0 }χ0)
w = { f, φ0 }wχw

0 and φw = φw
0 χw

0 modulo �−1
1,0(R

n+1). As in (4.4)
we find that

|(Rwu, Bw
T v)| = |(〈Dy〉Rwu, 〈Dy 〉−1 Bw

T v)| ≤ C(‖u‖2 + ‖v‖2)

for R ∈ S−1
1,0(R

n+1); thus we find that

| Im(({ f, φ0 }χ0)
wu, Bw

T φwu)| ≤ | Im({ f, φ0 }wχw
0 u, Bw

T φw
0 χw

0 u)| + C‖u‖2.
The calculus gives Bw

T φw
0 = (BT φ0)

w and

2i Im
(

(BT φ0)
w{ f, φ0 }w

) = { BT φ0, { f, φ0 } }w = 0,
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modulo L∞(R,�0
1/2,1/2(R

n)) since ∇(BT φ0) ∈ L∞(R, S1
1/2,1/2(R

n)) and { f, φ0 }
is real. Thus, we obtain that

| Im({ f, φ0 }wχw
0 u, Bw

T φw
0 χw

0 u)| ≤ C‖χw
0 u‖2 ≤ C ′‖u‖2, (4.7)

and the estimate (4.1) for small enough T , which completes the proof of
Theorem 2.7.

5 The symbol classes and weights

In this section we shall define the symbol classes to be used. Assume that f ∈
L∞(R, S(h−1, hg�)) is scalar and satisfies (3.2). Here 0 < h ≤ 1 and g� = (g�)σ

are constant. It is no restriction to change h so that | f |g�

1 ≤ h−1/2, which we assume
in what follows. The results shall be uniform in the usual sense; i.e., they will only
depend on the seminorms of f in L∞(R, S(h−1, hg�)). Let

X+(t) = {w ∈ T ∗Rn : ∃ s ≤ t, f (s, w) > 0 } (5.1)

X−(t) = {w ∈ T ∗Rn : ∃ s ≥ t, f (s, w) < 0 }. (5.2)

Clearly, X±(t) are open in T ∗Rn , X+(s) ⊆ X+(t) and X−(s) ⊇ X−(t) when s ≤ t .
By condition (�) we obtain that X−(t)

⋂

X+(t) = ∅ and ± f (t, w) ≥ 0 when
w ∈ X±(t), ∀ t. Let X0(t) = T ∗Rn\(X+(t)

⋃

X−(t)) which is closed in T ∗Rn .
By the definition of X±(t) we have f (t, w) = 0 when w ∈ X0(t). Let

d0(t0, w0) = inf{ g�(w0 − z)1/2 : z ∈ X0(t0) } (5.3)

be the g� distance in T ∗Rn to X0(t0) for fixed t0; it is equal to +∞ in the case that
X0(t0) = ∅. By taking the infimum over z we find that w 
→ d0(t, w) is Lipschitz
continuous with respect to g� for fixed t when d0 <∞, i.e.,

sup
w 	=z∈T ∗Rn

|δ0(t, w)− δ0(t, z)|/g�(w − z)1/2 ≤ 1.

Definition 5.1. We define the signed distance function δ0(t, w) by

δ0 = sgn( f ) min(d0, h−1/2), (5.4)

where d0 is given by (5.3) and

sgn( f )(t, w) =
{

±1, w ∈ X±(t)

0, w ∈ X0(t)
(5.5)

so that sgn( f ) f ≥ 0.
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Remark 5.2. The signed distance function w 
→ δ0(t, w) given by Definition 5.1 is
Lipschitz-continuous with respect to the metric g� with Lipschitz constant equal to
1, for all t . We also find that t 
→ δ0(t, w) is nondecreasing, δ0 f ≥ 0, |δ0| ≤ h−1/2

and when |δ0| < h−1/2 we find that |δ0| = d0 is given by (5.3).

In fact, it suffices to show the Lipschitz-continuity of w 
→ δ0(t, w) on �X0(t),
and then it follows from the Lipschitz continuity of w 
→ d0(t, w) when d0 < ∞.
Clearly δ0 f ≥ 0, and since X+(t) is nondecreasing and X−(t) is nonincreasing
when t increases, we find that t 
→ δ0(t, w) is nondecreasing.

In the following, we shall treat t as a parameter which we shall suppress, and we
shall denote f ′ = ∂w f and f ′′ = ∂2

w f . We shall also in the following assume that
we have chosen g� orthonormal coordinates so that g�(w) = |w|2 and | f ′| ≤ h−1/2.

Definition 5.3. Let

H−1/2 = 1+ |δ0| + | f ′|
| f ′′| + h1/4| f ′|1/2 + h1/2

(5.6)

and G = Hg� .

Observe that 〈δ0〉 = 1+ |δ0| ≤ H−1/2 and

1 ≤ H−1/2 ≤ 1+ |δ0| + h−1/4| f ′|1/2 ≤ 3h−1/2 (5.7)

since | f ′| ≤ h−1/2 and |δ0| ≤ h−1/2. This gives that hg� ≤ 9G.

Definition 5.4. Let

M = | f | + | f ′|H−1/2+ | f ′′|H−1 + h1/2 H−3/2. (5.8)

Then we have that h1/2 ≤ M ≤ C3h−1.

The metric G and weight M have the following properties according to
Propositions 3.7 and 3.8 in [8] and Proposition 3.5 in [10].

Proposition 5.5. We find that H−1/2 is Lipschitz-continuous, G is σ -temperate such
that G = H 2Gσ and

H (w) ≤ C0 H (w0)(1+ Gw(w − w0)), (5.9)

We have that M is a weight for G such that M ≤ C H−1, f ∈ S(M, G), and

M(w) ≤ C1 M(w0)(1+ Gw0(w − w0))
3/2. (5.10)

Since G ≤ g� ≤ Gσ we find that the conditions (5.9) and (5.10) are stronger
than the property of being σ -temperate (in fact, strongly σ -temperate in the sense
of [2, Definition 7.1]). Note that f ∈ S(M, Hg�) for any choice of H ≥ h in
Definition 5.4. The following property of G is the most important for the proof.
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Proposition 5.6. Let H−1/2 be given by Definition 5.3 for f ∈ S(h−1, hg�). There
exists κ1 > 0 so that if 〈δ0〉 = 1+ |δ0| ≤ κ1 H−1/2, then

f = α0δ0, (5.11)

where κ1 M H 1/2 ≤ α0 ∈ S(M H 1/2, G), which implies that δ0 = f/α0 ∈
S(H−1/2, G).

This follows directly from Proposition 3.9 in [8]. Next, we shall define the
weight m to be used.

Definition 5.7. For (t, w) ∈ R× T ∗Rn we let

m(t, w) = inf
t1≤t≤t2

{ |δ0(t1, w)− δ0(t2, w)|

+max
(

H 1/2(t1, w)〈δ0(t1, w)〉2, H 1/2(t2, w)〈δ0(t2, w)〉2)/2
}

(5.12)

where 〈δ0〉 = 1+ |δ0|.
This weight essentially measures how much t 
→ δ0(t, w) changes between

the minima of t 
→ H 1/2(t, w)〈δ0(t, w)〉2, which will give restrictions on the
sign changes of the symbol. When t 
→ δ0(t, w) is constant for fixed w, we
find that t 
→ m(t, w) is equal to the largest quasiconvex minorant of t 
→
H 1/2(t, w)〈δ0(t, w)〉2/2, i.e., supI m = sup∂ I m for compact intervals I ⊂ R,
see [15, Definition 1.6.3].

The main difference between this weight and the weight in [8] is the use of
H 1/2〈δ0〉2 in the definition of m instead of H 1/2〈δ0〉, and this is due to Lerner [24].
The weight has the following properties according to Propositions 4.3 and 4.4
in [10].

Proposition 5.8. We have that m ∈ L∞(R × T ∗Rn),w 
→ m(t, w) is uniformly
Lipschitz-continuous, for all t , and

h1/2〈δ0〉2/6 ≤ m ≤ H 1/2〈δ0〉2/2 ≤ 〈δ0〉/2. (5.13)

There exists C > 0 so that

m(t0, w) ≤ Cm(t0, w0)(1+ |w − w0|/〈δ0(t0, w0)〉)3; (5.14)

thus m is a weight for g� .

The following result will be essential for the proof of Proposition 3.6 in Section 7,
and it follows from Proposition 4.5 in [10].

Proposition 5.9. Let the weight M be given by Definition 5.4 and m by Defini-
tion 5.7. Then there exists C0 > 0 such that

M H 3/2〈δ0〉2 ≤ C0m. (5.15)
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We have the following convexity property of t 
→ m(t, w), which will be
important for the construction of the multiplier.

Proposition 5.10. Let m be given by Definition 5.7. Then

sup
t1≤t≤t2

m(t, w) ≤ δ0(t2, w)− δ0(t1, w)+ m(t1, w)+m(t2, w) ∀w (5.16)

Proof. Since t 
→ δ0(t, w) is monotone, we find that

inf±(t−t0)≥0
(|δ0(t, w)− δ0(t0, w)| + H 1/2(t, w)〈δ0(t, w)〉2/2) ≤ m(t0, w). (5.17)

Let t ∈ [t1, t2], then by using (5.17) for t0 = t1, t2, and taking the infima, we
obtain that

m(t, w) ≤ inf
r≤t1<t2≤s

δ0(s, w) − δ0(r, w)+ H 1/2(s, w)〈δ0(s, w)〉2/2

+ H 1/2(r, w)〈δ0(r, w)〉2/2

≤ δ0(t2, w)− δ0(t1, w)+m(t1, w)+ m(t2, w)

which gives (5.16) after taking the supremum.

Next, we shall construct the pseudo-sign B = δ0 + �0, which we shall use in
Proposition 6.3 to construct the multiplier of Proposition 3.6.

Proposition 5.11. Assume that δ0 is given by Definition 5.1 and m is given by
Definition 5.7. Then for T > 0 there exists real-valued �T (t, w) ∈ L∞(R× T ∗Rn)
with the property that w 
→ �T (t, w) is uniformly Lipschitz-continuous, and

|�T | ≤ m (5.18)

T ∂t (δ0 + �T ) ≥ m/2 in D′(R) (5.19)

when |t| < T .

Proof. (We owe this argument to Lars Hörmander [17].) Let

�T (t, w) = sup
−T≤s≤t

(

δ0(s, w) − δ0(t, w)+ 1

2T

∫ t

s
m(r, w) dr − m(s, w)

)

(5.20)
for |t| ≤ T . Then

δ0(t, w)+ �T (t, w) = sup
−T≤s≤t

(

δ0(s, w) − 1

2T

∫ s

0
m(r, w) dr −m(s, w)

)

+ 1

2T

∫ t

0
m(r, w) dr,
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which immediately gives (5.19) since the supremum is nondecreasing. Since w 
→
δ0(t, w) and w 
→ m(t, w) are uniformly Lipschitz-continuous by Proposition 5.8,
we find by taking the supremum that w 
→ �T (t, w) is uniformly Lipschitz-
continuous. We find from Proposition 5.10 that

δ0(s, w)− δ0(t, w)+ 1

2T

∫ t

s
m(r, w) dr −m(s, w) ≤ m(t, w) −T ≤ s ≤ t ≤ T .

By taking the supremum, we obtain that −m(t, w) ≤ �T (t, w) ≤ m(t, w) when
|t| ≤ T , which proves the result.

6 The Wick quantization

In order to define the multiplier we shall use the Wick quantization, and we shall also
define the function spaces that we shall use. As before, we shall assume that g� =
(g�)σ and the coordinates are chosen so that g�(w) = |w|2. For a ∈ L∞(T ∗Rn) we
define the Wick quantization:

aWick(x, Dx )u(x) =
∫

T ∗Rn
a(y, η)�w

y,η(x, Dx)u(x) dydη u ∈ S(Rn), (6.1)

using the projections �w
y,η(x, Dx ) with Weyl symbol

�y,η(x, ξ) = π−n exp(−g�(x − y, ξ − η))

(see [7, Appendix B] or [20, Section 4]). We find that aWick: S(Rn) 
→ S ′(Rn) so
that (aWick)∗ = (a)Wick,

a ≥ 0 =⇒ (aWick(x, Dx )u, u) ≥ 0 u ∈ S(Rn) (6.2)

and ‖aWick(x, Dx )‖L(L2(Rn)) ≤ ‖a‖L∞(T ∗Rn), which is the main advantage with the
Wick quantization (see [20, Proposition 4.2]). Now if at(x, ξ) ∈ L∞(R × T ∗Rn)
depends on a parameter t , then we find that

∫

R
(aWick

t u, u)φ(t) dt = (AWick
φ u, u) u ∈ S(Rn), (6.3)

where Aφ(x, ξ) = ∫

R at(x, ξ)φ(t) dt . In fact, if a ∈ L1, then this follows from the
Fubini theorem; in general we obtain this by cutting off at on large sets in T ∗Rn

and using dominated convergence. We obtain from the definition that aWick = aw
0

where

a0(w) = π−n
∫

T ∗Rn
a(z) exp(−|w − z|2) dz (6.4)

is the Gaussian regularization; thus Wick operators with symmetric symbols have
symmetric Weyl symbols.
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We also have the following result about the composition of Wick operators
according to Proposition 5.2 in [10].

Remark 6.1. Let a(w), b(w) ∈ L∞, and let m1, m2 be bounded weights for g� .
If |a| ≤ m1 and |b′| = |∂b| ≤ m2, then

aWickbWick = (ab)Wick + rw (6.5)

with r ∈ S(m1m2, g�). In the case when a, b are real valued, |a| ≤ m1 and
|b′′| ≤ m2, we obtain that

Re(aWickbWick) =
(

ab − 1

2
a′ · b′

)Wick

+ rw (6.6)

with r ∈ S(m1m2, g�). Here a′ is the distributional derivative of a ∈ L∞ and b′ is
Lipschitz continuous, so the product is well defined in L∞.

If A ∈ L∞(T ∗Rn) is an M × N system, then we can define AWick by (6.1) on
u ∈ S(Rn, CN ). These operators have the same properties as the scalar operators,
but of course we need that M = N in order for (6.2) to hold.

In the following, we shall assume that G = Hg� ≤ g� is a slowly varying metric
satisfying

H (w) ≤ C0 H (w0)(1+ |w − w0|)N0 (6.7)

and that m is a weight for G satisfying (6.7) with H replaced by m. This means
that G and m are strongly σ -temperate in the sense of [2, Definition 7.1]. Recall the
symbol class S+(1, g�) defined by Definition 3.2.

Proposition 6.2. Assume that a ∈ L∞(T ∗Rn) is an N × N system such that
|a| ≤ Cm. Then aWick = aw

0 where a0 ∈ S(m, g�) is given by (6.4). If a ∈ S(m, G)

for G = Hg� , then a0 = a modulo symbols in S(m H, G). If |a| ≤ Cm and
a = 0 in a fixed G ball with center w, then a0 ∈ S(m H N , G) near w for
any N. If a is Lipschitz-continuous, then we have a0 ∈ S+(1, g�). If a(t, w) and
g(t, w) ∈ L∞(R × T ∗Rn) are N × N systems and ∂t a(t, w) ≥ g(t, w) in D′(R)
for almost all w ∈ T ∗Rn, then we find (∂t (aWick)u, u) ≥ (gWicku, u) in D′(R) for
u ∈ S(Rn, CN ).

Observe that the results are uniform in the metrics and weights. By localization
we find, for example, that if |a| ≤ Cm and a ∈ S(m, G) in a G neighborhood of w0,
then a0 = a modulo S(m H, G) in a smaller G neighborhood of w0. These results
are well known, but for convenience we give a short proof.

Proof. Since a is measurable satisfying |a| ≤ Cm, where m(z) ≤ C0m(w)
(1 + |z − w|)N0 by (6.7), we find that aWick = aw

0 where a0 = O(m) is given
by (6.4). By differentiating on the exponential factor, we find a0 ∈ S(m, g�).

If a = 0 in a G ball of radius ε > 0 and center at w, then we can write

πna0(w) =
∫

|z−w|≥εH−1/2(w)
a(z) exp(−|w − z|2) dz = O(m(w)H N (w))
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for any N even after repeated differentiation. If a ∈ S(m, G), then Taylor’s formula
gives

a0(w) = a(w)+ π−n
∫ 1

0

∫

T ∗Rn
(1− θ)〈a′′(w + θz)z, z〉e−|z|2 dzdθ,

where a′′ ∈ S(m H, G) because G = Hg� . Since m(w+ θz) ≤ C0m(w)(1+ |z|)N0

and H (w + θz) ≤ C0 H (w)(1+ |z|)N0 when |θ | ≤ 1, we find that a0(w) = a(w)
modulo S(m H, G). Now, the Lipschitz continuity of a means that ∂a ∈ L∞(T ∗Rn).
Since ∂a0(w) = π−n

∫

T ∗Rn ∂a(z) exp(−|w−z|2) dz, we obtain that a0 ∈ S+(1, g�).
For the final claim, we note that − ∫

a(t, w)φ′(t) dt ≥ ∫

g(t, w)φ(t) dt for all
0 ≤ φ ∈ C∞0 (R) and almost all w ∈ T ∗Rn , which by (6.2) and (6.3) gives

−
∫

(aWick(t, x, Dx )u, u)φ′(t) dt ≥
∫

(gWick(t, x, Dx )u, u)φ(t) dt

0 ≤ φ ∈ C∞0 (R)

for u ∈ S(Rn, CN ).

We shall compute the Weyl symbol for the Wick operator (δ0+�T )Wick, where �T

is given by Proposition 5.11. In the following we shall suppress the t variable.

Proposition 6.3. Let B = δ0+�0, where δ0 is given by Definition 5.1 and �0 is real
valued and Lipschitz-continuous, satisfying |�0| ≤ m, where m ≤ H 1/2〈δ0〉2/2 ≤
〈δ0〉/2 is a weight for g� . Then we find

BWick = bw,

where b = δ1 + �1 ∈ S(〈δ0〉, g�)
⋂

S+(1, g�) is real, δ1 ∈ S(H−1/2, g�)
⋂

S+(1, g�), and �1 ∈ S(m, g�)
⋂

S+(1, g�). Also, there exists κ2 > 0 so that
δ1 = δ0 modulo S(H 1/2, G) when 〈δ0〉 ≤ κ2 H−1/2, which gives b = δ0 modulo
S(H 1/2〈δ0〉2, g�). For any λ > 0 we find that |δ0| ≥ λH−1/2 and H 1/2 ≤ λ/3
imply that sgn(B) = sgn(δ0) and |B| ≥ λH−1/2/3.

Proof. Let δWick
0 = δw

1 and �Wick
0 = �w

1 . Since |δ0| ≤ 〈δ0〉 ≤ H−1/2, |�0| ≤
m ≤ 〈δ0〉/2 and the symbols are real-valued, we obtain from Proposition 6.2 that
b ∈ S(〈δ0〉, g�), δ1 ∈ S(H−1/2, g�) and �1 ∈ S(m, g�) are real-valued. Since δ0
and �0 are uniformly Lipschitz-continuous, we find that δ1 and �1 ∈ S+(1, g�) by
Proposition 6.2.

If 〈δ0〉 ≤ κ H−1/2 at w0 for sufficiently small κ > 0, then we find by the
Lipschitz-continuity of δ0 and the slow variation of G that 〈δ0〉 ≤ C0κ H−1/2

in a fixed G neighborhood ωκ of w0 (depending on κ). For κ � 1 we find
δ0 ∈ S(H−1/2, G) in ωκ by Proposition 5.6; thus δ1 = δ0 modulo S(H 1/2, G)
near w0 by Proposition 6.2 after localization.

When |δ0| ≥ λH−1/2 > 0 at w0, we find that

|�0| ≤ m ≤ 〈δ0〉/2 ≤ (1+ H 1/2/λ)|δ0|/2.
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We obtain that |�0| ≤ 2|δ0|/3 so sgn(B) = sgn(δ0) and |B| ≥ |δ0|/3 ≥ λH−1/2/3
when H 1/2 ≤ λ/3, which completes the proof.

Let m be given by Definition 5.7. Then m is a weight for g� according to
Proposition 5.8. We are going to use the symbol classes S(mk, g�), k ∈ R.

Definition 6.4. Let H (mk, g�), be the Hilbert space given by [2, Definition 4.1]
so that

u ∈ H (mk, g�) ⇐⇒ awu ∈ L2 ∀ a ∈ S(mk, g�) k ∈ R. (6.8)

We let ‖u‖k be the norm of H (mk, g�).

This Hilbert space has the following properties: S is dense in H (mk, g�), the
dual of H (mk, g�) is naturally identified with H (m−k, g�), and if u ∈ H (mk, g�),
then u = aw

0 v for some v ∈ L2(Rn) and a0 ∈ S(m−k , g�) (see [2, Corollary 6.7]).
It follows that aw ∈ Op S(mk, g�) is bounded:

u ∈ H (m j , g�) 
→ awu ∈ H (m j−k, g�) (6.9)

with bound only depending on the seminorms of a.
We recall Proposition 5.5 in [10], which shows that the topology in H (m1/2, g�)

can be defined by the operator mWick. Recall that m ≥ h1/2〈δ0〉2/6.

Proposition 6.5. Let B = δ0+�0, where δ0 is given by Definition 5.1 and |�0| ≤ m.
Then there exist positive constants c1, c2, and C0 such that

c1h1/2(‖BWicku‖2 + ‖u‖2) ≤ c2‖u‖21/2 ≤ (mWicku, u) ≤ C0‖u‖21/2

u ∈ S(Rn) (6.10)

The constants only depend on the seminorms of f in L∞(R, S(h−1, hg�)).

In the following, we let ‖u(t)‖ be the L2-norm of x 
→ u(t, x) ∈ CN in
Rn for fixed t , and (u(t), v(t)) the corresponding sesquilinear inner product. Let
B = B(L2(Rn), CN ) be the set of bounded operators L2(Rn, CN ) 
→ L2(Rn, CN ).
We shall use operators that depend measurably on t in the following sense.

Definition 6.6. We say that t 
→ A(t) is weakly measurable if A(t) ∈ B for all t and
t 
→ A(t)u is weakly measurable for every u ∈ L2(Rn, CN ), i.e., t 
→ (A(t)u, v) is
measurable for any u, v ∈ L2(Rn, CN ). We say that A(t) ∈ L∞loc(R,B) if t 
→ A(t)
is weakly measurable and locally bounded in B.

If A(t) ∈ L∞loc(R,B), then we find that the function t 
→ (A(t)u, v) ∈ L∞loc(R)

has weak derivative d
dt (Au, v) ∈ D′(R) for any u, v ∈ L2(Rn, CN ), given by

d

dt
(Au, v)(φ) = −

∫

(A(t)u, v)φ′(t) dt φ(t) ∈ C∞0 (R).
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If u(t), v(t) ∈ L∞loc(R, L2(Rn, CN )) and A(t) ∈ L∞loc(R,B), then

t 
→ (A(t)u(t), v(t)) ∈ L∞loc(R)

is measurable. We shall use the following multiplier estimate from [8].

Proposition 6.7. Let P = Dt + i F(t) with F(t) ∈ L∞loc(R,B). Assume that B(t) =
B∗(t) ∈ L∞loc(R,B), such that

d

dt
(Bu, u)+ 2 Re(Bu, Fu) ≥ (Mu, u) in D′(I ) ∀ u ∈ S(Rn, CN ), (6.11)

where M(t) = M∗(t) ∈ L∞loc(R,B) and I ⊆ R is open. Then we have

∫

(Mu, u) dt ≤ 2
∫

Im(Pu, Bu) dt (6.12)

for u ∈ C1
0(I,S(Rn, CN )).

Proof. Since B(t) ∈ L∞loc(R,B), we may for u, v ∈ S(Rn, CN ) define the regulari-
zation

(Bε(t)u, v) = ε−1
∫

(B(s)u, v)φ((t − s)/ε) ds = (Bu, v)(φε,t) ε > 0,

where φε,t (s) = ε−1φ((t − s)/ε) with 0 ≤ φ ∈ C∞0 (R) satisfying
∫

φ(t) dt = 1.
Then t 
→ (Bε(t)u, v) is in C∞(R) with derivative equal to d

dt (Bu, v)(φε,t) =
−(Bu, v)(φ′ε,t ). Let I0 be an open interval such that I0 � I . Then for small enough
ε > 0 and t ∈ I0 we find from condition (6.11) that

d

dt
(Bε(t)u, u)+2 Re(Bu, Fu)(φε,t) ≥ (Mu, u)(φε,t ) u ∈ S(Rn, CN ). (6.13)

In fact, φε,t ≥ 0 and supp φε,t ∈ C∞0 (I ) for small enough ε when t ∈ I0.
Now for u(t) ∈ C1

0(I0,S(Rn, CN )) and ε > 0 we define

Bε,u(t) = (Bε(t)u(t), u(t)) = ε−1
∫

(B(s)u(t), u(t))φ((t − s)/ε) ds. (6.14)

For small enough ε we obtain Bε,u(t) ∈ C1
0 (I0), with derivative

d

dt
Bε,u =

((

d

dt
Bε

)

u, u

)

+ 2 Re (Bεu, ∂t u)

since B(t) ∈ L∞loc(R,B). By integrating with respect to t, we obtain the vanishing
average

0 =
∫

d

dt
Bε,u(t) dt =

∫ ((

d

dt
Bε

)

u, u

)

dt +
∫

2 Re(Bεu, ∂t u) dt (6.15)
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when u ∈ C1
0(I0,S(Rn, CN )). We obtain from (6.13) and (6.15) that

0 ≥
∫∫

((M(s)u(t), u(t))

+ 2 Re(B(s)u(t), ∂t u(t)− F(s)u(t)))φ((t − s)/ε) dsdt/ε

By letting ε→ 0, we find by dominated convergence that

0 ≥
∫

(M(t)u(t), u(t)) + 2 Re(B(t)u(t), ∂t u(t)− F(t)u(t)) dt

since u ∈ C1
0(I0,S(Rn , CN )) and M(t), B(t), F(t) ∈ L∞loc(R,B). Here ∂t u −

Fu = i Pu and 2 Re(Bu, i Pu) = −2 Im(Pu, Bu), thus we obtain (6.12) for u ∈
C1

0(I0,S(Rn, CN )). Since I0 is an arbitrary open subinterval with compact closure
in I , this completes the proof of the proposition.

7 The lower bounds

In this section shall prove Proposition 3.6, which means obtaining lower bounds on

2 Im(P0u, bw
T u) = (∂t b

w
T u, u)+ 2 Re(Fwu, bw

T u),

where P0 = Dt IdN +i Fw(t, x, Dx ) with

F(t, w) = f (t, w) IdN +F0(t, w). (7.1)

Here f ∈ L∞(R, S(h−1, hg�)) is real-valued satisfying condition (�) given by
(3.2), F0 ∈ C∞(R, S(1, hg�)) and bw

T = BWick
T is the symmetric scalar operator

given by Propositions 5.11 and 6.3 for this f . Since Proposition 5.11 and Proposi-
tion 6.2 give lower bounds on the first term:

∂t b
w
T = ∂t BWick

T ≥ mWick/2T in L2 |t| ≤ T

it only remains to obtain comparable lower bounds on Re bw
T Fw by Proposition 6.5.

By Claim 3.9 we may also assume that

F0 = 〈dw f, R〉 =
∑

j

∂w j f R j modulo S(h, hg�) ∀ t, (7.2)

where R j ∈ S(h1/2, hg�) are N × N systems, ∀ j . Observe that since dw f ∈
S(M H 1/2, G), hg� ≤ 9G and h ≤ M H 1/2h1/2 by (5.8) we find that F0 ∈
S(M H 1/2h1/2, G) ⊆ S(1, G) and thus F ∈ S(M, G), G = Hg� .

In the following, the results will hold for almost all |t| ≤ T and will only depend
on the seminorms of f and F0. We shall suppress the t-variable and assume the
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coordinates chosen so that g�(w) = |w|2. In order to prove Proposition 3.6 we need
to prove the following result.

Proposition 7.1. Assume that F is given by (7.1)–(7.2) and B = δ0 + �0. Here
δ0 is given by Definition 5.1, �0 is real-valued and Lipschitz-continuous satisfying
|�0| ≤ m, where m ≤ 〈δ0〉/2 is given by Definition 5.7. Then we have

Re(BWick Fwu, u) ≥ (Cwu, u) ∀ u ∈ S(Rn, CN ) (7.3)

for some N × N system C ∈ S(m, g�).

Proof of Proposition 3.6. Let BT = δ0+�T , where δ0+�T is the pseudo-sign for f
given by Proposition 5.11 for 0 < T ≤ 1, so that |�T | ≤ m and

∂t (δ0 + �T ) ≥ m/2T in D′(]−T , T [
)

. (7.4)

If we put BT ≡ 0 when |t| > T , then BWick
T = bw

T where bT (t, w) ∈ L∞(R,

S(H−1/2, g�)
⋂

S+(1, g�)) uniformly by Proposition 6.3. We find by Proposi-
tion 6.2 and (7.4) that

((∂t BT )Wicku, u) ≥ (mWicku, u)/2T in D′(]−T , T [
)

(7.5)

when u ∈ S(Rn). We obtain from Proposition 6.5 that there exist positive constants
c1 and c2 so that

(mWicku, u) ≥ c2‖u‖21/2 ≥ c1h1/2(‖bw
T u‖2 + ‖u‖2) u ∈ S(Rn). (7.6)

Here ‖u‖1/2 is the norm of the Hilbert space H (m1/2, g�) given by Definition 6.4.
By Proposition 7.1, we find for almost all t ∈ [−T, T ] that

Re((BWick
T Fw)

∣

∣

t u, u) = (Cw(t)u, u) u ∈ S(Rn, CN ), (7.7)

here the N × N system C(t) ∈ S(m, g�) uniformly. We obtain from (6.9), (7.6) and
duality that there exists a positive constant c3 such that

|(Cw(t)u, u)| ≤ ‖u‖1/2‖Cw(t)u‖−1/2 ≤ c3‖u‖21/2 ≤ c3(m
Wicku, u)/c2 (7.8)

for u ∈ S(Rn, CN ) and |t| ≤ T . We find from (7.5)–(7.8) that

(∂t b
w
T u, u)+ 2 Re(Fwu, bw

T u) ≥ (1/2T − 2c3/c2)(m
Wicku, u) in D′(]−T , T [

)

for u ∈ S(Rn, CN ). By using Proposition 6.7 with P = Dt IdN +i Fw(t, x, Dx ),
B = bw

T and M = mWick/4T we obtain that

c1h1/2
∫

‖bw
t u‖2 + ‖u‖2 dt ≤

∫

(mWicku, u) dt ≤ 8T
∫

Im(P0u, bw
T u) dt
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if u ∈ S(R×Rn, CN ) has support where |t| < T ≤ c2/8c3. This finishes the proof
of Proposition 3.6.

Proof of Proposition 7.1. First we note that since BWick = bw ∈ Op S(〈δ0〉, g� ) by
Proposition 6.3 and h1/2〈δ0〉2 ≤ 6m by (5.13), we find BWickRw ∈ Op S(m, g�)
when R ∈ S(h1/2, g�). Since Im F = 1

2i (F − F∗) ∈ S(1, hg�) we find that

2 Re(BWicki (Im F)w) = i [bw, (Im F)w] ∈ Op S(h1/2, g�);
thus it suffices to consider symmetric F satisfying (7.2).

We shall localize in T ∗Rn with respect to the metric G = Hg� , and estimate the
localized operators. We shall use the neighborhoods

ωw0(ε) = {w : |w − w0| < εH−1/2(w0) } for w0 ∈ T ∗Rn . (7.9)

In the following we may assume that ε is small enough so that w 
→ H (w) and
w 
→ M(w) only vary with a fixed factor in ωw0(ε). Then by the uniform Lipschitz-
continuity of w 
→ δ0(w) we can find κ0 > 0 with the following property: for
0 < κ ≤ κ0 there exist positive constants cκ and εκ so that for any w0 ∈ T ∗Rn we
have

|δ0(w)| ≤ κ H−1/2(w) w ∈ ωw0(εκ) or (7.10)

|δ0(w)| ≥ cκ H−1/2(w) w ∈ ωw0(εκ). (7.11)

In fact, we have by Lipschitz-continuity that |δ0(w) − δ0(w0)| ≤ εκ H−1/2(w0)
when w ∈ ωw0(εκ). Thus, if εκ � κ we obtain that (7.10) holds when |δ0(w0)| �
κ H−1/2(w0) and (7.11) holds when |δ0(w0)| ≥ cκ H−1/2(w0).

Let κ1 be given by Proposition 5.6, κ2 by Proposition 6.3, and let εκ and cκ

be given by (7.10)–(7.11) for κ = min(κ0, κ1, κ2)/2. Using Proposition 6.3 with
λ = cκ we obtain that sgn(B) = sgn(δ0) and

|B| ≥ cκ H−1/2/3 in ωw0(εκ) (7.12)

if H 1/2 ≤ cκ/3 and (7.11) holds in ωw0(εκ).
Choose real symbols {ψ j (w) } j and {� j(w) } j ∈ S(1, G) with values in �2,

such that
∑

k ψ2
j ≡ 1, ψ j � j = ψ j , � j = φ2

j ≥ 0 for some {φ j (w) } j ∈ S(1, G)

with values in �2 so that

supp φ j ⊆ ω j = ωw j (εκ).

Recall that BWick = bw where b = δ1+�1 is given by Proposition 6.3. In particular,
δ1 ∈ S(H−1/2, G) when H 1/2 ≤ κ2/2 and (7.10) holds, since then 〈δ0〉 ≤ κ2 H−1/2.

Lemma 7.2. We find that A j = � j b Re F ∈ S(M H−1/2, g�)
⋂

S+(M, g� )
uniformly in j , and
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Re(bwFw) =
∑

j

ψw
j Aw

j ψw
j modulo Op S(m, g�), (7.13)

We have Aw
j = Re bwFw

j modulo Op S(m, g�) uniformly in j , where Fj = � j F.

Proof. Since b ∈ S(H−1/2, g�)
⋂

S+(1, g�), ψ j ∈ S(1, G) and Fj ∈ S(M, G)
we obtain that A j ∈ S(M H−1/2, g�)

⋂

S+(M, g� ) uniformly in j . Proposition 5.9
gives that

M H 3/2〈δ0〉2 ≤ Cm; (7.14)

thus we may ignore terms in Op S(M H 3/2〈δ0〉2, g�). Observe that since b ∈
S(H−1/2, g�), {ψk }k ∈ S(1, G) has values in �2 and Ak ∈ S(M H−1/2, g�)
uniformly, Lemma 3.3 and Remark 3.4 gives that the symbols of bw Fw, bwFw

j

and
∑

k ψw
k Aw

k ψw
k have expansions in S(M H j/2, g�). Also observe that in the

domains ω j where H 1/2 ≥ c > 0, we find from Remark 3.4 that the symbols
of

∑

k ψw
k Aw

k ψw
k , bw Fw

j and bw Fw are in S(M H 3/2, g�) giving the result in this

case. Thus, in the following, we shall assume that H 1/2� 1, and we shall consider
the neighborhoods where (7.10) or (7.11) holds.

If (7.11) holds, then we find that 〈δ0〉 ∼= H−1/2 so S(M H 1/2, g�) ⊆ S(m, g�) in
ω j by (7.14). Since b ∈ S+(1, g�) and A j ∈ S+(M, g�) we find from Lemma 3.3
and Remark 3.4 that the symbols of both Re bw Fw and

∑

k ψw
k Aw

k ψw
k are equal

to
∑

k ψ2
k Ak = Re bF modulo S(M H 1/2, g�) in ω j . We also find that the symbol

of Re bwFw
j is equal to A j modulo S(M H 1/2, g�), which proves the result in this

case.
Next, we consider the case when (7.10) holds with κ = min(κ0, κ1, κ2)/2 and

H 1/2 ≤ κ2/2 in ω j . Then 〈δ0〉 ≤ κ2 H−1/2 so b = δ1 + �1 ∈ S(H−1/2, G) +
S(m, g�) in ω j by Proposition 6.3. Now b is real and F is symmetric modulo
S(M H, G). Thus, by taking the symmetric part of bw Fw = δw

1 Fw + �w
1 Fw we

obtain from Lemma 3.3 that the symbol of Re(bw Fw−(bF)w) is in S(M H 3/2, G)+
S(M H m, g�) ⊆ S(m, g�) in ω j since M ≤ C H−1. Similarly, we find that
Aw

j = Re bwFw
j modulo S(m, g�). Since A j ∈ S(M H−1/2, G) + S(Mm, g� ) uni-

formly, we find that the symbol of
∑

k ψw
k Aw

k ψw
k is equal to Re bF modulo S(m, g�)

in ω j by Remark 3.4, which proves (7.13) and Lemma 7.2.

Next, we shall show that there exists N × N system C j ∈ S(m, g� ) uniformly,
such that

(Aw
j u, u) ≥ (Cw

j u, u) u ∈ S(Rn, CN ). (7.15)

Then we obtain from (7.13) and (7.15) that

Re(bwFwu, u) ≥
∑

j

(ψw
j Cw

j ψw
j u, u)+ (Rwu, u) u ∈ S(Rn, CN ),

where
∑

j ψw
j Cw

j ψw
j and Rw ∈ Op S(m, g�), which will prove Proposition 7.1.

Thus it remains to show that there exists C j ∈ S(m, g�) satisfying (7.15).
As before we are going to consider the cases when H 1/2 ∼= 1 or H 1/2 � 1,
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and when (7.10) or (7.11) holds in ω j = ωw j (εκ) for κ = min(κ0, κ1, κ2)/2.
When H 1/2 ≥ c > 0 we find that A j ∈ S(M H 3/2, g�) ⊆ S(m, g� ) uniformly
by (7.14) which gives the lemma with C j = A j in this case. Thus we may assume
that

H 1/2 ≤ κ4 = min(κ0, κ1, κ2, κ3)/2 in ω j (7.16)

with κ3 = 2cκ/3 so that (7.12) follows from (7.11).
First, we consider the case when H 1/2 ≤ κ4 and (7.11) holds in ω j . Since

|δ0(w)| ≥ cκ H−1/2(w), we find 〈δ0〉 ∼= H−1/2 in ω j . As before we may ignore
terms in S(M H 1/2, g�) ⊆ S(m, g�) in ω j by (7.14). Let f j = � j f , since sgn( f ) =
sgn(δ0) = sgn(B) in ω j by Proposition 6.3 we find that f j B ≥ 0. Since f j ∈
S(M, G), we find f w

j = f Wick
j modulo Op S(M H, G) by Proposition 6.2; thus we

may replace f w
j with f Wick

j . Since F0, j ∈ S(M H 1/2h1/2, G) by (7.2) we find that

BWick Fw
0, j ∈ Op S(M H 1/2, g�). Since |B| ≤ C H−1/2 and B ∈ S+(1, g�), we find

from (6.6) in Remark 6.1 that

Aw
j = Re BWick f Wick

j = (B f j )
Wick ≥ 0 in L2 modulo Op S(M H 1/2, g�)

which gives (7.15) in this case.
Finally, we consider the case when (7.10) holds with κ = min(κ0, κ1, κ2)/2 and

H 1/2 ≤ κ4 ≤ κ in ω j . Then 〈δ0〉 ≤ 2κ H−1/2 so we obtain from Proposition 5.6 that
δ0 ∈ S(H−1/2, G)

⋂

S(〈δ0〉, g�) in ω j . We have that bw = (δ0 + �0)
Wick = BWick,

where
|�0| ≤ m ≤ H 1/2〈δ0〉2/2 ≤ 〈δ0〉/2 (7.17)

by Propositions 5.8 and 5.11. Also, we find from Lemma 7.2 that Aw
j = Re BWick Fw

j

modulo Op S(m, g�).
Take χ(t) ∈ C∞(R) such that 0 ≤ χ(t) ≤ 1, |t| ≥ 2 in supp χ(t) and χ(t) = 1

for |t| ≥ 3. Let χ0 = χ(δ0), then 2 ≤ |δ0| and 〈δ0〉/|δ0| ≤ 3/2 in supp χ0. Thus

1+ χ0�0/δ0 ≥ 1− χ0〈δ0〉/2|δ0| ≥ 1/4. (7.18)

Since |δ0| ≤ 3 in supp(1− χ0) we find by (7.17) that

B = δ0 + χ0�0 = δ0(1+ χ0�0/δ0)

modulo terms that are O(H 1/2). Since |δ′0| ≤ 1 and

|χ0�0/δ0| ≤ χ0 H 1/2〈δ0〉2/2|δ0| ≤ 3H 1/2〈δ0〉/4

we find from (6.5) in Remark 6.1 that

BWick = δWick
0 BWick

0 modulo Op S(H 1/2〈δ0〉, g� ), (7.19)

where B0 = 1 + χ0�0/δ0 = O(1). Proposition 6.3 gives (χ0�0/δ0)
Wick ∈

Op S(H 1/2〈δ0〉, g�) and δWick
0 = δw

1 where δ1 ∈ S(H−1/2, g�) and δ1 = δ0 modulo
Op S(H 1/2, G) in ω j . Thus Lemma 3.3 and (7.19) gives
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BWick = δw
1 BWick

0 = δw
0 BWick

0 + cw BWick
0 modulo Op S(H 1/2〈δ0〉, g� ),

(7.20)
where c ∈ S(H−1/2, g�) such that supp c

⋂

ω j = ∅.
We find from Proposition 5.6 that f = α0δ0, where κ1M H 1/2 ≤ α0 ∈

S(M H 1/2, G), so Leibniz’s rule gives α
1/2
0 ∈ S(M1/2 H 1/4, G). Let f j = � j f

and

a j = α
1/2
0 φ j δ0 ∈ S(M1/2 H−1/4, G)

⋂

S(M1/2 H 1/4〈δ0〉, g�). (7.21)

Since � j = φ2
j we find a2

j = f j δ0 and the calculus gives

aw
j (α

1/2
0 φ j )

w = f w
j modulo Op S(M H, G). (7.22)

Since supp f j
⋂

supp c = ∅ we find that f w
j cw ∈ Op S(M H 3/2, g�). We also have

Re f w
j δw

0 = aw
j aw

j modulo Op S(M H 3/2, G). (7.23)

and Im f w
j δw

0 ∈ Op S(M H 1/2, G). We obtain from (7.20) and (7.22) that

f w
j BWick = f w

j (δw
0 BWick

0 + rw)

= f w
j δw

0 BWick
0 + aw

j rw
j modulo Op S(m, g�), (7.24)

where r ∈ S(H 1/2〈δ0〉, g� ). This gives

rw
j = (α

1/2
0 φ j )

wrw ∈ Op S(M1/2 H 3/4〈δ0〉, g� )

If Re A = 1
2(A + A∗), Im A = 1

2i (A − A∗) and B∗ = B then

Re(AB) = Re((Re A)B)+ i [Im A, B]/2.

By taking A = f w
j δw

0 and B = BWick
0 , we find from (7.23) that

Re( f w
j δw

0 BWick
0 ) = Re(aw

j aw
j BWick

0 ) modulo Op S(m, g�). (7.25)

In fact, B0 = 1 + χ0�0/δ0 and (χ0�0/δ0)
Wick ∈ Op S(H 1/2〈δ0〉, g�) by Proposi-

tion 6.2. Thus

[aw, Bw
0 ] = [aw, (χ0�0/δ0)

Wick] ∈ Op S(M H 3/2〈δ0〉, g� )

when a ∈ S(M H 1/2, G). Similarly, we find from (7.21) that

aw
j aw

j BWick
0 = aw

j (BWick
0 aw

j + sw
j ) modulo Op S(m, g�), (7.26)
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where s j = [aw
j , BWick

0 ] ∈ S(M1/2 H 3/4〈δ0〉, g� ). Next, we shall use an argument
by Lerner [24]. Since B0 ≥ 1/4 by (7.18) we find from (7.24)–(7.26) that

Re f w
j BWick ≥ 1

4
aw

j aw
j + Re aw

j Sw
j in L2 modulo Op S(m, g�) (7.27)

where Sj = r j + s j ∈ S(M1/2 H 3/4〈δ0〉, g�). Then by completing the square, we
find that

Re f w
j BWick ≥ 1

4
(aw

j +2Sw
j )∗(aw

j +2Sw
j ) ≥ 0 in L2 modulo Op S(m, g� ) (7.28)

since (Sw
j )∗Sw

j = S
w
j Sw

j ∈ Op S(M H 3/2〈δ0〉2, g�).

But we must also consider Re Fw
0, j BWick, where F0 satisfies (7.2) thus

F0, j = � j F0 ∈ S(M H 1/2h1/2, G). (7.29)

We shall prove that

Re Fw
0, j BWick = Re aw

j Rw
j modulo Op S(m, g�), (7.30)

where R j ∈ S(M1/2 H 3/4, g�), which can then be included in the term given by
Sj in (7.27). Since b = δ0 ∈ S(H−1/2, G) modulo S(H 1/2〈δ0〉2, g�) in ω j by
Proposition 6.3, we find that

Re Fw
0, j BWick = Re Fw

0, j b
w = (Re F0, j δ0)

w

modulo Op S(m, g�). We find from (7.21) that Im a j = 0, so

Re F0, j δ0 = Re φ2
j F0δ0 = a j R j ,

where

R j = Re φ j F0/α
1/2
0 ∈ S(M1/2 H 1/4h1/2, G) ⊆ S(M1/2 H 3/4, G).

This gives (Re F0, j δ0)
w = aw

j Rw
j modulo Op S(M H h1/2, G) ⊆ Op S(m, g�),

so we obtain (7.30). By adding R j to Sj in (7.27) and completing the square as
in (7.28), we obtain (7.15) in this case. This completes the proof of Proposition 7.1.

Remark 7.3. It follows from the proof of Proposition 7.1 that in order to obtain the
estimate (7.3) it suffices that the lower-order term F0 ∈ S(M H, g�) ⊆ S(1, g�).
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The Darboux process and a noncommutative
bispectral problem: some explorations and
challenges

F. Alberto Grünbaum∗

To Hans for the good times we had

Abstract The Darboux process, also known by many other names, played a very
important role in some extremely enjoyable joint work that Hans and I did many
years ago. I revisit a version of this problem in a case when scalars are replaced
by matrices, i.e., elements of a non-commutative ring. Many of the issues considered
here can be pushed to the case of a ring with identity, but my emphasis is on very
concrete examples involving 2×2 matrices. This paper could be seen as an invitation
for further work.

Key words: Darboux process, matrix-valued orthogonal polynomials
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1 The bispectral problem

Almost 30 years ago I was extremely lucky. I gave a talk at Berkeley where
I mentioned the following problem:

Find all nontrivial instances where a function ϕ(x, k) satisfies

L

(

x,
d

dx

)

ϕ(x, k) ≡ (−D2 + V (x))ϕ(x, k) = k2ϕ(x, k)

as well as

B

(

k,
d

dk

)

ϕ(x, k) ≡
(

M
∑

i=0

bi(k)

(

d

dk

)i
)

ϕ(x, k) = �(x)ϕ(x, k).
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All the functions V (x), bi(k),�(x) are, in principle, arbitrary except for smooth-
ness assumptions. Notice that here M is arbitrary (finite).

I was fortunate that Hans was in the audience, and about a week later he came up
with a tool to attack this problem. In a few weeks we started seeing a rich landscape
of examples and we were delighted to see the central role that the Darboux process
played in throwing light on our problem. After many months of intense work, mainly
by slow mail, we found ourselves with a rather nice picture.

The complete answer to the problem is given as follows:

Theorem 1 ([DG]). If M = 2, then V (x) is (except for translation) either c/x2

or ax, i.e., we have a Bessel or an Airy case. If M > 2, there are two families of
solutions.

(a) L is obtained from L0 = −D2 by a finite number of Darboux transformations
(L = AA∗ → L̃ = A∗A). In this case V is a rational solution of the Korteweg–
de Vries equation and all rational solutions of KdV decaying at infinity show up
in this fashion.

(b) L is obtained from L0 = −D2 + 1
4x2 after a finite number of rational Darboux

transformations.

It was later observed in [MZ] that in the second case one is dealing with rational
solutions of the Virasoro or master symmetries of KdV.

In case (a) the space of common solutions has dimension one; in case (b) it has
dimension two. One refers to these as the rank-one and rank-two situations. In [DG]
one finds several other equivalent descriptions of the solution such as those in terms
of the monodromy group of the equation.

Observe that the “trivial cases” in which M = 2 are self-dual in the sense that
one can get B by a simple replacement in L.

My reasons for raising the above problem could be traced back to an effort
to understand some work on “time- and band-limiting” that had led me to isolate
certain properties of well-known special function. For an example relating to ortho-
gonal polynomials see [G1]. For more up-to-date versions of this connection
between the bispectral problem and the issue of time- and band-limiting, see
[G2, G3, GY2].

The work with Hans gave rise to a large number of papers by other people, some
of which can be found in an arXiv version of this paper, containing a longer list
of references. Even that longer listing is far from complete, and I apologize for
the omissions. For another guide to some of the work inspired by [DG], see the
citations in MathScinet, MR 0826863.

It may be appropriate to observe that what we are calling the Darboux process
has been reinvented many times, including in the work of some rather well known
people; see for instance [Sc, IH]. Reference [YZ] talks about the Geronimus trans-
formation, from 1940, and its inverse the Christoffel transform. It is clear that the
first one (as noticed in [YZ]) has a lot in common with what we are calling the
Darboux transformation. See also [SVZ, Z].
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2 What is the main purpose of this paper?

Now that I have reviewed the basic facts of my joint work with Hans, it may be
appropriate to address openly the question in the title of this section.

In the rest of the paper I will mention a few analytical results on certain issues that
can be seen as an outgrowth of the work described in the previous section. However,
the main intention is to take the problem into a noncommutative situation and to
point out a number of avenues for further work. Nothing would make me happier
than seeing that some other workers in this field find these problems challenging
and worth pursuing.

In particular, and answering a pointed question from a very careful and construc-
tive referee, the role of the Darboux process which unlocked the whole story in the
scalar case (provided one starts at the correct starting potentials) is seen here to
be a useful tool to obtain interesting bispectral situations. I make no claim that all
instances of a bispectral situation in the noncommutative case can be organized
neatly by repeated applications of this (or natural extensions of this) process.

In raising this question and in many other ways the referee has been very helpful
in making this into a clearer and more readable paper.

In reference to topics that will appear in the next few sections it is important
to note that in the scalar case, repeated applications of the Darboux process may
take one outside the class of polynomials orthogonal with respect to a measure. One
can easily obtain polynomials that have only an orthogonality functional, such as
derivatives (of certain orders) of delta measures. The Darboux process when applied
as a tool in the matrix-valued case leads to very similar phenomena.

3 The Bochner–Krall problem

In a series of papers with Luc Haine, [GH1, GH2, GH3] and then with Luc and Emil
Horozov, see [GHH1, GHH2], we noticed that a large class of polynomials

pn(k)

that satisfy three-term recurrence relations in the variable n, as well as differential
equations in the variable k, can be obtained by an application of a similar Darboux
transformation starting from the so-called classical orthogonal polynomials of
Jacobi, Laguerre, and Hermite. In this case one goes from a tridiagonal matrix L0
(or a function of it) factorized as a product of two bidiagonal matrices,

L0 = AB,

to a new tridiagonal matrix
L = B A.

As indicated in [GH1], some form of this method is given in [MS1].
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In this case one runs into the Toda flows and its master symmetries. Further work
on these lines can be found in [GY1] and [GH4, GH5], and for a very nice survey
of all this material see [H2].

The origins of this line of work are contained in papers such as [Bo, Koo, Kra1].
As usual, tracing the roots of a problem is not easy, and I owe to my friend Mourad
Ismail a pointer to reference [R], where these issues were already looked at.

4 A matrix-valued version of the Darboux process for a
difference operator

Consider the block tridiagonal matrix

L0 =

⎛

⎜

⎜

⎝

B0 I

A1 B1 I

. . .
. . .

. . .

⎞

⎟

⎟

⎠

,

where all the matrices Ai , Bi are of size N × N and I denotes the N × N identity
matrix.

If we try to factorize this in the form

L0 = αβ,

where

α =

⎛

⎜

⎜

⎝

α0 I

0 α1 I

. . .
. . .

. . .

⎞

⎟

⎟

⎠

and

β =

⎛

⎜

⎜

⎝

I

β1 I

. . .
. . .

⎞

⎟

⎟

⎠

with all the matrices αi , βi of size N × N , and then define the matrix

L = βα,

we have that

L =

⎛

⎜

⎜

⎝

B̃0 I

Ã1 B̃1 I

. . .
. . .

. . .

⎞

⎟

⎟

⎠

,

where all the matrices Ãi , B̃i are of size N × N.
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This gives
B̃n = αn + βn, Ãn = βnαn−1, Ã1 = β1α0.

Under the appropriate invertibility conditions these relations can be rewritten in
terms of αn and βn as follows:

βn = Bn−1 − αn−1, αn = Anβ
−1
n ,

which then gives

B̃n = Bn − βn+1 + βn = Bn−1 − αn−1 + αn

and
Ãn = βn An−1β

−1
n−1 = α−1

n Anαn−1.

These expressions are valid for n = 2, 3, . . . in the case of Ãn, and for n = 1, 2, . . .
in the case of B̃n .

Above we take β0 = 0, so that B̃0 = α0 = B0 − β1. We also need to take,
as observed above, Ã1 = (B0 − α0)α0.

A moment’s thought gives that once L0 is given, the only free parameter is
the matrix α0. This all important difference with the scalar case will reappear in
Section 10.

Just as in [GH1], and in spite of the fact that one is dealing here with a semi-
infinite block tridiagonal matrix, it is possible to see the connection between this
construction and that in [MS1]. One puts

βn = −φnφ
−1
n−1

and then notices that this amounts to choosing φ in the null-space of L . Since L is
not doubly infinite, we seem to have lost some freedom in picking this subspace,
but this can be remedied as in [GH1] by considering L as a limit of an appropriate
doubly infinite matrix with a rich null-space.

5 Fancier versions of the Darboux process

It is well known that it is useful to extend the original method of Darboux consisting
in going from

L0 = AB

to
L = B A

in an appropriate way.
Notice that in the standard case we have

B L0 = L B.
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For those interested in the history of these developments, the celebrated book by
Darboux makes it clear that the process is not due to him but to Moutard. So much
for names and historical accuracy.

The new idea is to allow for an arbitrary banded matrix (or a differential operator)
U and to declare L a Darboux transform of L0 as long as we have

U L0 = LU.

In several of the uses of Darboux’s original method one needs to apply it
repeatedly, and this fancier version of the method takes care of that.

One should also keep in mind the results in [GHH1, GHH2, H2], where the usual
factorization followed by a reversal of the factors is applied not directly to L but to
a constant-coefficient polynomial in L .

I thank Jose Liberati for pointing out to me that at the very end of [GGRW] one
finds an application of the theory of quasideterminants (a notion that goes back to
Cayley) to obtain expressions for matrix-valued orthogonal polynomials in terms of
their matrix-valued moments. Many of these results, as well as others, have been
derived independently by making good use of the notion of Schur complements in
L. Miranian’s Berkeley thesis. The main new results are contained in [M]. In the
next section we give a very brief look into the theory of matrix-valued orthogonal
polynomials and a short guide to the literature that is relevant to us.

One should remark that this same theory of quasideterminants has been studied
in connection with a certain Darboux process for a matrix Schrödinger equation
in [GV]. In this case one needs to consider this fancier version. For a nice use of
quasideterminants in our context see [BL].

The matrix version of the Darboux process for the difference operator discussed
in the previous section could be extended in this fancier fashion too.

6 Matrix-valued orthogonal polynomials

Given a self-adjoint positive definite matrix-valued weight function W (x),
M.G. Krein, see [K1, K2], considers the skew-symmetric bilinear form defined for
any pair of matrix-valued functions P(x) and Q(x) by the matrix

〈P, Q〉 = 〈P, Q〉W =
∫

R

P(x)W (x)Q∗(x)dx,

where Q∗(x) denotes the conjugate transpose of Q(x).
Proceeding as in the case of a scalar valued inner product, Krein proves that there

exists a sequence (Pn)n of matrix polynomials, orthogonal with respect to W , with
Pn of degree n and monic.
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Krein goes on to prove that any sequence of monic orthogonal matrix-valued
polynomials (Pn)n satisfies a three-term recurrence relation

An Pn−1(x)+ Bn Pn(x)+ Pn+1(x) = x Pn(x), (1)

where P−1 is the zero matrix and P0 is the identity matrix. These coefficient matrices
enjoy certain properties: in particular, the An are nonsingular.

The equation above can be rewritten as

L Pn(x) = x Pn(x)

with a matrix L such as the one that has appeared in previous sections.
To place ourselves in the context of the bispectral problem we consider matrix-

valued polynomials (Pn)n satisfying not only the equation above but also “right-
hand side” differential equations of the form

Pn D = �n Pn for all n ≥ 0 (2)

with �n a matrix-valued eigenvalue and D a differential operator of order s with
matrix coefficients given by

D =
s

∑

i=0

∂ i Fi (x), ∂ = d

dx
,

which acts on P(x) by means of

P D =
s

∑

i=0

∂ i(P)(x)Fi (x).

This problem in the matrix case was raised first in [D] and then further studied in
[DG1, G10, GI, GPT1, GPT2, GPT3, GT] and in a few other places.

One can see that the differential operators that correspond to a fixed family of
polynomials form an associative algebra which in general is noncommutative; see
[CG2, GT, T]. The problem of exhibiting elements of this algebra that have a mini-
mal order will occupy us in a few examples in the next two sections. For early matrix
valued instances of the bispectral problem and related work see [Z1, Z2, Z3, Z4].

7 A few examples

Here we consider in detail a few examples of the matrix version of the basic Darboux
process described above.
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For λ > 3/2 consider the monic matrix-valued polynomials which are orthogonal
with respect to the weight matrix

W (x) = ((2− x)x)λ−3/2
(

1 x − 1
x − 1 1

)

, x ∈ [0, 2].

Let

L0 =

⎛

⎜

⎜

⎝

B0 I

A1 B1 I

. . .
. . .

. . .

⎞

⎟

⎟

⎠

be the corresponding block tridiagonal matrix with

Bn = 1

2

λ− 1

(n + λ)(n + λ− 1)
S + I,

An = n(n + 2λ− 2)

4(n + λ− 1)2 I.

Here S = (

0 1
1 0

)

and I = (

1 0
0 1

)

.
These polynomials can be seen to be joint eigenfunctions of a first-order

differential operator, an observation that was made for the special value λ = 1
in [CG1, CG2].

If α0 is an arbitrary matrix we can consider the monic polynomials that result
from one application of the Darboux process to the block tridiagonal matrix L0

with free matrix-valued parameter α0.
We can see that for an invertible symmetric α0, the new orthogonality weight is

given by

˜W (x) = (2− x)λ−3/2xλ−5/2
(

1 x − 1
x − 1 1

)

−
−22λBe

(

2λ−1
2 , 2λ−1

2

)

4(2λ− 3)

((

2λ− 2 −1
−1 2λ− 2

)

− (2λ− 3)α−1
0

)

δ0(x).

Here Be stands for the usual beta function.
We display below some examples that illustrate that for appropriate values of

λ the new polynomials are joint eigenfunctions of some higher order differential
operators, i.e., we get new bispectral situations. This appears to have little to do
with α0 being symmetric.

Example 1.

λ = 5/2, α0 =
(

5 2
3 1

)

.
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Here we find one differential operator D satisfying

Pn D = �n Pn

with

D =
4

∑

r=0

∂r Fr

and

F4 = (x − 2)2x2
(

1 −1
−1 1

)

,

F3 = 4(x − 2)x(3x − 2)

(

1 −1
−1 1

)

,

F2 = 24

5
x(7x − 9)

(

1 −1
−1 1

)

,

F1 = 8

5

(

5x + 6 −8x
−2(5x + 3) 1x3

)

,

F0 =
(− 8×11

5 −8

− 32
5 0

)

,

�n =
⎛

⎝

(n+2)(5n3+20n2+3n−44)
5 − 5n4+30n3+43n2−14n+40

5

− 5n4+30n3+43n2+2n+32
5

n(5n3+30n2+43n+26
5

⎞

⎠ .

There are no operators of lower order in the algebra.

Example 2.

λ = 7/2, α0 =
(

3 −1
5 7

)

.

Here the corresponding operator is given by

D =
6

∑

r=0

∂r Fr

with

F6 = (x − 2)3x3

15

(

1 −1
−1 1

)

,

F5 = 2(x − 2)2x2(5x − 4)

5

(

1 −1
−1 1

)

,
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F4 = 4(x − 2)x(5x2 − 8x + 2)

(

1 −1
−1 1

)

,

F3 = 16x(5x2 − 12x + 6)

(

1 −1
−1 1

)

,

F2 = 16x(131x − 148)

39

(

1 −1
−1 1

)

,

F1 = 32

19

(−4(2x − 7) 3(x − 6)

(9x − 28) −2(2x − 9)

)

,

F0 = 1

19

(−13× 32 −3× 64

11× 32 0

)

,

and we have
Pn D = �n Pn

with

�n =
(

19n6 + 285n5 + 1615n4 + 4275n3 + 2446n2

285

)

(

1 −1

−1 1

)

+ 1

285

(−12480n − 6240 10080n− 2880

12960n + 5280 −10560n

)

.

Example 3.

λ = 9/2, α0 =
(

1 0

0 0

)

.

In this case there is one operator of order eight whose corresponding �n is given by

�n =
(

(n − 3)(n + 6)(n + 7)(n + 8)αn −(n − 2)n(n + 7)(n + 8)βn

−(n + 1)(n + 6)γn (n − 1)n(n + 1)(n + 10)δn

)

with

αn = n4 + 10n3 + 59n2 + 170n + 840,

βn = n4 + 14n3 + 95n2 + 322n + 1080,

γn = n6 + 21n5 + 169n4 + 651n3 + 1198n2 + 840n − 20160,

δn = n4 + 18n3 + 143n2 + 558n + 1512.

Once again, this corresponds to the lowest-order differential operator possible in
the corresponding algebra.
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8 A few Jacobi-type examples

A different avenue for exploring the similarities as well as the differences between
the use of the Darboux process in the scalar and in the matrix-valued case is given
by the examples in this section.

First recall that in the scalar case it follows from groundbreaking results in [Koo]
and then further work in [KoKo1, Z, H2, GY1] that the polynomials orthogonal to
the weight μ(x) consisting of a Jacobi density plus two possible delta masses of
nonnegative strengths W, V at the ends of the interval, i.e.,

μ(x) = (1− x)α(1+ x)β +Wδ1(x)+ V δ−1(x),

satisfy differential equations when α and β satisfy certain natural integrality
conditions. We refer, along with other authors, to these polynomials as Koorn-
winder polynomials, not to be confused with some BCn extensions of Macdonald
polynomials, which are also due to the same author. If the weight at 1 is the only
one that is present, then the order is 2α + 4. If both delta weights are thrown in,
then the order is 2α + 2β + 6. The results can be obtained by an application of the
Darboux process as shown in [H2, GY1].

We consider now a small collection of situations analogous to those above.
The weight matrices will, as before, consist of a matrix weight density plus a pair

of deltas at the endpoints weighted by certain matrices W, V , i.e., we have

˜W (x) = (1− x)α(1+ x)β
(

1 x
x 1

)

+Wδ1(x)+ V δ−1(x).

For the first batch of examples we will assume that α, β are both 0. If V and W
coincide with the matrix

(

a 0
0 0

)

, then we find two linearly independent operators of
order 5 and one of order 6 as well as other operators of higher order. There are no
other operators of lower order.

If V is the matrix
(

a 0
0 0

)

and W is the matrix
(

0 0
0 b

)

or the matrix
(

b 0
0 0

)

, then
we find two linearly independent operators of order 6 as well as other operators of
higher order. There are no other operators of lower order.

More generally, if V is the matrix
(

a2 ab
ab b2

)

and W is the matrix
(

c2 cd
cd d2

)

, both

rank-deficient, then we have the same situation as in the last example.
In general if V and W are of the form

(

a b
b c

)

and
( d e

e f

)

, then the lowest-order
operator in the algebra is just one operator of order 8.

We come now to a different sort of example.
Assume that α and β (> −1) are arbitrary, but insist on picking W and V to be

arbitrary (and not necessarily equal) nonnegative multiples of the matrix
(

1 1
1 1

)

.
In this case there is a very nice second-order differential operator in the algebra

which is independent of the choice of the scalar factors that appear in front of the
matrix above to give W and V . There is no lower order operator in the algebra.
When the deltas are both missing, then the algebra contains an operator of order 1.



172 F. Alberto Grünbaum

The right-handed differential operator alluded to above is a scalar operator of
the usual Jacobi type, with coefficients (1 − x2) and (α + β − 1) − x(α + β + 3)
multiplied on the right by the matrix

( 1 −1
−1 1

)

.
The eigenvalue is −n(n + α + β + 2) multiplied by this same matrix.

9 An explicit differential operator

The paper [DG] contains a proof that in the continuous–continuous case, when all
operators in question are differential operators, the so-called ad-condition

adLm+1(�) = 0

is necessary and sufficient to have what has been called a bispectral situation, i.e., a
solution of the original problem tackled with Hans.

This condition gives a set of nonlinear equations that need to be solved in the
unknowns L,�.

It is important to see that this condition can be easily adapted to other situations,
including the present noncommutative one. This approach was taken up in [GI] and
in [GT]. In the second of these papers the “ad-condition” is shown to be equivalent,
once again, to bispectrality.

In general, finding the differential operators of lowest possible order that appear
in a bispectral situation is not easy. By repeated applications of the Darboux process
one may obtain elements of the corresponding algebra that are not necessarily of the
lowest possible order. This issue has surfaced in several different papers, starting
with [DG], and a nice account is given in [H2].

In [GT] one finds an explicit construction of a differential operator that results
from the condition

adLm+1(�) = 0.

The operator D is given by

D =
m

∑

r=0

∂r(P)
Sm−r

r !

with matrix coefficients Sk = Sk(x) given by

Sk = ((L − x I )m−k�P)0.

In particular, we display here some of the coefficients. The lowest one is

S0 = ((L − x I )m�P)0,

and at the other end,
Sm = (�P)0 = �0,
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and the operator D, of course, satisfies the desired condition

Pn D = �n Pn, n ≥ 0.

The subscript 0 above refers to the first entry of the corresponding “vector” with
matrix-valued entries.

10 Toda flows with matrix-valued time

As seen in [GH2], and certainly in other places too, repeated application of the scalar
Darboux process introduces “times and flows” that are related to the Toda flows.
Since these times appear as the free parameters in each application of the process,
it is only natural to raise the issue of “matrix-valued times” and the corresponding
flows. This is a vast and really unexplored area.

11 Electrostatics: Heine, Stieltjes, Darboux

In a remarkable paper that follows on earlier work of Heine, Stieltjes came up with a
nice electrostatic interpretation for the zeros of the Jacobi polynomials. Later work
of Stieltjes as well as of I. Schur and D. Hilbert showed similar interpretations in
the case of the Laguerre and Hermite polynomials.

In [G7, G8] I raise the possibility of some relation between the Darboux process,
where the orthogonality functional gets more and more complicated with every
application of the process, and the corresponding electrostatic interpretation of the
families of polynomials that appear along the way.

It would be interesting to see what if anything of this picture can be developed in
the matrix-valued case.

12 Markov chains

In [DRSZ, G4, G5, G6, G9, G11, GdI] one finds examples of interesting quasi-
birth-and-death processes that can be studied by exploiting their connection with
certain specific examples of matrix-valued orthogonal polynomials. In particular, in
[G5, G6, G11] one finds examples in which the recurrence of the process is related to
the presence of a matrix-valued delta weight at 1. Since the appearance of these delta
weights is one of the main characteristics of an application of the Darboux process,
one may wonder about a probabilistic interpretation of the relation that may exist
between two Markov chains whose transition probability matrices are related by a
Darboux transformation.
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13 Things that appear before their time

One of the most surprising phenomena uncovered in [DG] has to do with what
was called “the cusps,” namely degenerate situations that correspond to degenera-
cies of “higher-order operators” yielding “lower-order” ones. To put this in the
context of scalar-valued orthogonal polynomials, consider the simplest case of the
Koornwinder polynomials which are orthogonal to Lebesgue measure in [−1, 1]
plus a pair of delta masses at the endpoints of the interval. In this case one knows
that the corresponding orthogonal polynomials are the common eigenfunctions of a
sixth-order differential operator.

In the degenerate case in which the strength of the two delta masses agrees one
gets an operator of order four, and one can say that in a search according to the order
of these operators, this example, just like “the cusps” in [DG], appears before its
time.

We made a tentative exploration of the situation in the matrix-valued case, and
examples of this phenomenon are seen in Section 7.

14 The multivariable case

In this section we mention that in [G9] one finds a specific random walk introduced
by Hoare and Rahman, see [HR], which we show leads to a bispectral situation in
terms of polynomials of two variables. For more recent work see [GR]. I also want
to mention that in the multivariable case one finds a version of the Darboux process
to obtain interesting deformations of the two-dimensional Chebyshev measure; see
[GI1]. All of these phenomena can be studied in the case of matrix-valued orthogo-
nal polynomials.

15 Conclusion

It is clear that very little of the development that I have tried to outline here could
have happened were it not for my good fortune in teaming up with Hans at the
beginning of this journey. As a small token of gratitude for his influence on my own
work I offer to him, and to others, this collection of (mostly) open problems.
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[CG1] Castro, M. M. and Grünbaum, F. A., Orthogonal matrix polynomials satisfying first
order differential equations: a collection of instructive examples, J. of Nonlinear
Mathematical Physics, Supplement 2, Vol. 12 (2005), 63–76.
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[G5] Grünbaum, F. A., Block tridiagonal matrices and a beefed-up version of the Ehrenfest
urn model, Proceedings of the meeting in Odessa, Ukraine, 2007, in honor of
M. G. Krein.
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[GPT2] Grünbaum, F. A., Pacharoni, I., and Tirao, J. A., Matrix valued orthogonal polynomials
of the Jacobi type, Indag. Mathem. 14 3,4 (2003), 353–366.
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In honor of the memory of Hans Duistermaat

Abstract Duistermaat introduced the notion of real locus of a symplectic manifold,
and subsequently a variety of techniques have been generalized to these lagrangian
submanifolds. Together with Puppe, the authors of this paper generalized these
results to the topological category, introducing conjugation spaces. In this paper,
we review the definition and basic properties of conjugation spaces, and then give a
topological criterion for recognizing a conjugation space.
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1 Introduction

Duistermaat introduced the real locus of a Hamiltonian manifold [Du]. In this
and in others’ subsequent works [BGH, Go, GH, HH, Ho, OS, Sd], it has been
shown that many of the techniques developed in the symplectic category can be
used to study real loci, so long as the coefficient ring is restricted to the integers
modulo 2. As we will see, these results seem not necessarily to depend on the
ambient symplectic structure, but rather are topological in nature. This observation
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prompts the definition of conjugation space in [HHP]. We now give a brief survey
of the results in symplectic geometry that motivated the definition of a conjugation
space.

A symplectic manifold is a manifold M together with a 2-form ω ∈ �2(M) that
is closed (dω = 0) and nondegenerate (for each nonzero tangent vector X ∈ Tp M
there exists Y ∈ Tp M such that ωp(X, Y ) �= 0). Let G be a compact Lie group
acting on M preserving ω, g the Lie algebra of G, g∗ its dual, and 〈·, ·〉 : g∗ ×
g→ R the natural pairing. For each X ∈ g, we let X# denote the vector field on M
generated by the one-parameter subgroup exp(t X). We say that the G-action on M
is Hamiltonian if there is a moment map

� : M → g∗

that satisfies

1. ı X#ω = d〈�, X〉 for all X ∈ g; and
2. � is equivariant with respect to the given G action on M and the coadjoint action

of G on g∗.

The function �X = 〈�, X〉 is called the Hamiltonian function for the vector
field X#.

When G = T is a torus, the second condition on � requires that it be a
T -invariant map. In this special case, we have

Theorem 1.1 ([A], [GS]). If M is a compact Hamiltonian T -manifold, then �(M)
is a convex polytope. It is the convex hull of �(MT ), the images of the T -fixed
points.

More generally, Kirwan and many others have explored analogues for nonabelian
groups.

A by-product of Atiyah’s proof of Theorem 1.1 is that any of the Hamiltonian
functions �X is a perfect Morse function on M , in the sense of Bott, and for generic
X , the critical set is MT . More precisely,

H ∗(M;R) =
N

∑

i=1

H ∗−di (Fi ;R), (1)

where the Fi are the connected components of MT and di is the Morse–Bott index
of Fi . This statement is also true over Z, provided that the cohomology of each Fi

is torsion-free, or when the stabilizers of the torus action satisfy some additional
hypotheses.

Duistermaat introduced the concept of real locus to this framework [Du]. Let M
be a Hamiltonian T -manifold, and τ : M → M an antisymplectic involution that is
compatible with the action; that is, it satisfies

τ (t · p) = t−1 · τ (p),
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for all t ∈ T and p ∈ M . Then if it is nonempty, the submanifold Mτ of τ -fixed
points is a Lagrangian submanifold of M called the real locus of the involution. The
primary example of such an involution is the one induced by complex conjugation
on a complex projective variety defined over R. For example, if M = CPn equipped
with the Fubini–Study symplectic form and the standard T n action, then the real
locus for complex conjugation consists of the real points RPn , whence the name
real locus. The main results in [Du] generalize Theorem 1.1 and Atiyah’s Morse-
theoretic results.

Theorem 1.2 ([Du]). If M is a compact Hamiltonian T -manifold, and τ a smooth
compatible antisymplectic involution, then

1. The real locus has full moment image: �(Mτ ) = �(M) is a convex polytope;
and

2. When the coefficients are taken in Z2, components �X of the moment map are
perfect Morse functions on Mτ , in the sense of Bott, and for generic components
the critical set is Mτ ∩ MT .

We have the following immediate corollary, a real locus version of equation (1),
that generalizes classical results on real projective space and real flag varieties.

Corollary 1.3. If M is a compact Hamiltonian T -manifold, and τ a smooth com-
patible antisymplectic involution, then

H ∗(Mτ ;Z2) =
N

∑

i=1

H ∗−
di
2 ((Fi )

τ ;Z2). (2)

where the Fi are the connected components of MT and di is the Morse–Bott index
of Fi (in M).

Duistermaat’s work began a flurry of activity on properties of real loci.
We provide a brief account here; a more detailed record is available in [Sj]. Davis
and Januszkiewicz studied the real loci of toric and quasitoric varieties in their own
right [DJ], independent of Duistermaat’s work. The first author and Knutson analyze
a large class of examples of real loci in their account of planar and spatial poly-
gon spaces [HK]. O’Shea and Sjamaar generalized Kirwan’s nonabelian convexity
results to real flag manifolds and real loci [OS]. This has recently been extended by
Goldberg [Go].

Schmid and independently Biss, Guillemin, and the second author generalized
(2) to the equivariant setting: the idempotents T2 = {t ∈ T | t2 = 1} act on the real
locus, and many results in T -equivariant symplectic geometry may be generalized to
T2 equivariant geometry of real loci (with coefficients restricted to Z2) [BGH, Sd].
This work yields an explicit description of the T2-equivariant cohomology for the
fixed set of the Chevalley involution on certain coadjoint orbits, and on the real
locus of a toric variety, using localization methods. These results were strengthened
to include the fixed set of the Chevalley involution on all coadjoint orbits in [HHP].
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Following this, Goldin and the second author [GH] proved that there is a natural
involution on an abelian symplectic reduction of a symplectic manifold with invo-
lution. Moreover, the T2 equivariant cohomology of the original real locus surjects
onto the ordinary cohomology of the real locus of the symplectic reduction. This
includes a comprehensive description of toric varieties and their real loci from yet a
third perspective.

In all of these papers, a common theme is that there is a degree-halving isomor-
phism

H 2∗(M;Z2)→ H ∗(Mτ ;Z2).

As we now describe, this can be seen as part of a purely topological framework,
that of a conjugation space, introduced in [HHP]. The remainder of this article is
organized as follows. In Section 2, we review the definitions and properties of con-
jugation spaces. Our main theorem gives a criterion for recognizing when a topo-
logical space is a conjugation space; this is stated in Section 3, along with two
noteworthy corollaries. We then prove some basic facts in Section 4, and prove the
main theorems in Section 5.

Acknowledgments: The authors would like to thank Volker Puppe for many useful
discussions, in particular regarding Lemmas 4.7 and 4.8. We are grateful to the
referee for a very careful reading and valuable suggestions for improvements and
simplifications of the first version of this paper.

Note. For the remainder of the paper, the cohomology is taken with coefficients in
the field Z2: H ∗(X) = H ∗(X;Z2).

2 A review of conjugation spaces

Let X be a G-space for a topological group G. The equivariant cohomology H ∗G(X)
is defined as the (singular) cohomology of the Borel construction:

H ∗G(X) = H ∗(X ×G BG).

Hence, H ∗G(X) is a H ∗(BG)-algebra. When G = C is the group of order two,
BC = RP∞ and H ∗(BC) = Z2[u], with u a class in degree 1. Thus, H ∗C(X) is a
Z2[u]-algebra.

Let τ be a continuous involution on a space X . Let ρ : H 2∗
C (X) → H 2∗(X) and

r : H ∗C(X)→ H ∗C(X τ ) be the restriction homomorphisms, where C = {id, τ }.
A cohomology frame or an H ∗-frame for X is a pair (κ, σ ), where

(a) κ : H 2∗(X) → H ∗(X τ ) is an additive isomorphism dividing the degrees in
half; and

(b) σ : H 2∗(X)→ H 2∗
C (X) is an additive section of ρ.
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Moreover, κ and σ must satisfy the conjugation equation

r ◦σ(a) = κ(a)um + 	tm (3)

for all a ∈ H 2m(X) and all m ∈ N, where 	tm denotes any polynomial in the
variable u of degree less than m. An involution admitting a H ∗-frame is called
a conjugation. An even cohomology space (i.e. H odd(X) = 0) together with a
conjugation is called a conjugation space. Conjugation spaces were introduced in
[HHP] and studied further in [FP] and [Ol]. The main examples of conjugations
are given by the complex conjugation on flag manifolds, the Chevalley involution
on coadjoint orbits of compact Lie groups, and other natural involutions, e.g., on
toric manifolds or polygon spaces. We now enumerate some important properties of
conjugation spaces.

(a) If (κ, σ ) is an H ∗-frame, then κ and σ are ring homomorphisms [HHP, Theo-
rem 3.3]. The ring homomorphism κ also commutes with the Steenrod squares:
κ ◦Sq2i = Sqi ◦κ , [FP, Theorem 1.3].

(b) H ∗-frames are natural for τ -equivariant maps [HHP, Proposition 3.11].
In particular, if an involution admits an H ∗-frame, it is unique [HHP, Corol-
lary 3.12].

(c) For a conjugate-equivariant complex vector bundle η (“real bundle” in the sense
of Atiyah) over a conjugation space X , the isomorphism κ sends the total Chern
class of η to the total Stiefel–Whitney class of its fixed bundle.

Duistermaat’s Corollary 1.3 admits the following generalization, proved in [HHP,
Theorem 8.3].

Theorem 2.1. Let M be a compact symplectic manifold equipped with a Hamil-
tonian action of a torus T and a compatible smooth antisymplectic involution τ .
If MT is a conjugation space, then M is a conjugation space.

The proof of Theorem 2.1 involves properties of conjugations compatible with
T -actions which are interesting in their own right. The involution g �→ g−1 on the
torus T induces an involution on ET . Using this involution together with τ , we get
an involution on X × ET which descends to an involution, still called τ , on XT .
To a torus T is associated its 2-torus, i.e., the set of idempotent elements of T :

T2 = {g ∈ T |g2 = 1}.
The compatibility implies that T2 acts on X τ . The following lemma is proved in
[HHP, Lemma 7.3].

Lemma 2.2. (XT )τ = (X τ )T2 .

The following theorem is proved in [HHP, Theorem 7.5]. For a partial converse
of Theorem 2.3, see Proposition 5.2 in Section 5.

Theorem 2.3. Let X be a conjugation space together with a compatible action of a
torus T . Then the involution induced on XT is a conjugation.
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Using Lemma 2.2, one gets the following corollary of Theorem 2.3.

Corollary 2.4. Let X be a conjugation space together with a compatible T -action.
Then there is a ring isomorphism

κ̄ : H 2∗
T (X)

≈−→ H ∗T2
(X τ ).

3 Conjugation spaces and 1-skeleta

The new results in this paper consist of criteria to verify that an involution τ is a
conjugation, in the case that τ is compatible with an action of a torus T . They are
conditions on the equivariant 1-skeleton of the action of T on X and of the inherited
action of the associated 2-torus T2.

Let X be a topological space, together with a continuous action of a group G,
where G is a torus or a 2-torus (finite elementary abelian 2-group). We define the
G-equivariant i -skeleton SkG

i (X) of the G-action on X to be

SkG
i (X) = {x ∈ X |codim (Gx ⊂ G) ≤ i}, (4)

where Gx denotes the G-isotropy group of x . In (4), the “codimension” is inter-
preted as the codimension of a manifold if G is a torus, and the codimension of a
Z2-vector subspace if G is a 2-torus (and hence isomorphic to a Z2-vector space).
In particular, SkG

0 (X) is equal to the subspace X G of fixed points. An edge (of the
G-action) is the closure of a connected component of the set SkG

1 (X) − SkG
0 (X).

The word “edge” is inspired by Hamiltonian geometry: if X is a closed Hamiltonian
T -manifold, the edges are critical points of the moment map whose images are
1-dimensional faces of the moment polytope (including the so-called internal edges
of the polytope).

Let T be a torus and T2 the subgroup of idempotents. A T -action on a space
X induces a T2-action on X that satisfies SkT

i (X) ⊂ SkT2
i (X). For example,

X T ⊂ X T2 .
A continuous action of a topological group G on a space X is called good if X has

the G-equivariant homotopy type of a finite G-CW-complex. For instance, a smooth
action of a compact Lie group on a closed manifold is good. A continuous involution
τ is called good if the corresponding action of the cyclic group C = {id, τ } is good.

Let X be a topological space, and let τ be a continuous involution on X that is
compatible with a continuous action of a torus T . Then the involution τ preserves
the T -equivariant skeleta and sends each edge to a (possibly different) edge. More-
over, the real locus X τ = XC inherits an action of T2. Our main results are the
following.

Theorem 3.1 (Main theorem). Let X be an even cohomology space, together with
a good involution τ which is compatible with a good action of a torus T . Suppose
that
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(a) (X T , τ ) is a conjugation space.
(b) each edge of the T -action is preserved by τ and is a conjugation space.
(c) SkT

i (X) = SkT2
i (X) for i = 0, 1.

Then X is a conjugation space.

Recall that a T -action on a space X is called a GKM action if each edge is a
2-sphere on which T acts by rotation around some axis, via a nontrivial character
T → S1. One consequence of this assumption is that X T is discrete.

Corollary 3.2. Let X be an even cohomology space, together with a good involution
τ which is compatible with a good GKM action of a torus T , satisfying SkT

i (X) =
SkT2

i (X) for i = 0, 1. Suppose that τ acts trivially on XT and preserves each edge.
Then X is a conjugation space.

Corollary 3.3. Let X be an even cohomology space, together with a good involu-
tion τ which is compatible with a good action of a torus T , satisfying SkT

i (X) =
SkT2

i (X) for i = 0, 1. Suppose that

(a) (X T , τ ) is a conjugation space.
(b) each edge of the T -action is preserved by τ and is a Hamiltonian T -manifold on

which τ acts smoothly and is antisymplectic.

Then X is a conjugation space.

See Section 6 for comments about the condition SkT
i (X) = SkT2

i (X) for i = 0, 1.

4 Preliminaries

This section is devoted to the technical details that we will need in the proof of
Theorem 3.1.

4.1 Compatibility

Let X be a topological space endowed with a continuous involution τ which is
compatible with a continuous action of a torus T . Then the involution τ induces an
involution on the fixed-point set XT . In addition, the associated 2-torus T2 of T acts
on X τ and X τ ∩ X T ⊂ (X τ )T2 . Condition (c) of Theorem 3.1 will play an important
role.

Lemma 4.1. Suppose that SkT
i (X) = SkT2

i (X). Then SkT
i (X)τ = SkT2

i (X τ ).
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Proof. One has

SkT
i (X)τ = SkT

i (X) ∩ X τ ⊂ SkT2
i (X τ ) = X τ ∩ SkT2

i (X) = X τ ∩ SkT
i (X), (5)

which implies that SkT
i (X)τ = SkT2

i (X τ ).

4.2 Equivariantly formal spaces

Let X be a space with a continuous action of a compact Lie group G. The termino-
logy equivariant formality was first introduced in [GKM] for G a torus and complex
coefficients, and was later developed for other coefficients where the concept is seen
to be rather subtle; see [HHP, (2.3)] and [Fr, Section 8]. We define a G-space X to be
G-equivariantly formal (over Z2) if the map X → EG×G X is totally nonhomolo-
gous to zero. This means that the restriction homomorphism j∗ : H ∗G(X)→ H ∗(X)
is surjective. A space X with an involution τ is called τ -equivariantly formal if it is
C-equivariantly formal for the group C = {id, τ }. The following results are classi-
cal but may not perhaps be found in the literature with exactly our hypotheses. Let
R = H ∗G(pt); the map XG → BG gives a ring homomorphism p∗ : R → H ∗G(X),
making H ∗G(X) an R-module.

Proposition 4.2. Let X be a G-space. The following conditions are equivalent:

(i) X is G-equivariantly formal (over Z2).
(ii) The group G acts trivially on H ∗(X) and the Serre spectral sequence for the

cohomology of the fibration X → EG ×G X → BG collapses at the term E2.
(iii) There is an additive homomorphism σ : H ∗(X) → H ∗G(X) that satisfies

j∗◦σ = id and that p∗ ⊗ σ : R ⊗ H ∗(X) → H ∗G(X) is an isomorphism of
R-modules. In particular, H ∗G(X) is a free R-module.

(iv) The ring homomorphism H ∗G(X) → H ∗(X) descends to a ring isomorphism

H ∗G(X)⊗R Z2
≈−→ H ∗(X).

Proof. This proof is for mod-2 cohomology, but it works for the cohomology with
coefficients in any field.

(i) is equivalent to (ii): The ring homomorphism j∗ : H ∗G(X) → H ∗(X) is the
composition:

H ∗G(X)→→ E0,∗∞ ⊂ E0,∗
2 = H 0(BG; H ∗(X)) = H ∗(X)G ⊂ H ∗(X). (6)

If these inclusions are equalities, then j∗ is onto, which shows that (ii) implies (i).
Conversely, if j∗ is onto, this shows that H ∗(X)G = H ∗(X) and E0,∗∞ = E0,∗

2 .
Since the differentials are morphisms of R-modules, this implies that E∗,∗∞ = E∗,∗2
(see [McC, p. 148]). Hence (i) implies (ii).
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(i) implies (iii): Since j∗ is surjective, there exists a Z2-linear section σ of j∗.
Since G is a compact Lie group, H p

G(pt) is a finite-dimensional Z2-vector space for
all p. The Leray–Hirsch theorem [McC, Theorem 5.9] then implies that

p∗ ⊗ σ : R ⊗ H ∗(X)→ H ∗G(X)

is an isomorphism of R-modules. Note that this immediately implies that H ∗G(X) is
a free R-module.

(iii) implies (iv): The homomorphism j∗◦ p∗ : R → H ∗(X) coincides with the
projection R ⊗R Z2 = Z2. Therefore, j∗ factors through a ring homomorphism
j̄∗ : H ∗G(X) ⊗R Z2 → H ∗(X). On the other hand, j∗◦σ = id. Hence, one has a
commutative diagram

R ⊗ H ∗(X) −→ (R ⊗ H ∗(X))⊗R Z2 = H ∗(X)
p∗⊗σ ↓≈ ↓≈ ↓ id

H ∗G(X) −→ H ∗G(X)⊗R Z2
j̄∗−→ H ∗(X),

which proves that j̄∗ is an isomorphism.

(iv) implies (i): This implication is trivial.

Proposition 4.3. Let X be a good G-space which is G-equivariantly formal (over
Z2). Suppose that one of the following hypotheses holds:

(a) G is a torus and X G = X G2 .
(b) G is a 2-torus.

Then the restriction homomorphism H ∗G(X)→ H ∗G(X G) is injective.

Remark 4.4. In Case (a), Proposition 4.3 is false without the assumption X G = X G2 .
For example, consider the G = S1 action on X = S2 ⊂ C×R by g(z, t) = (g2z, t).
This has X G = {(0,±1)}. Let U+ = X − {(0,−1)} and U− = X − {(0,−1)}.
The intersection U+ ∩ U− is G-homotopy equivalent to the homogeneous space
G/G2, and then H ∗G(U+ ∩ U−) = H ∗(BG2). The Mayer–Vietoris sequence for
(X, U+, U−) then gives an exact sequence

0→ H 1(BG2)→ H 2
G(X)→ H 2

G(X G),

where H 1(BG2) = Z2. Proposition 4.3 (a) also follows from [FP3, Theorem 2.1].

Proof of Proposition 4.3: Let R(0) be the field of fractions of R, that is, R localized
at S = R − {0}. By our assumptions, the multiplicative set S is central in R. Let

X S = {x ∈ X |H ∗(BG)→ H ∗(BGx ) is injective},
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where Gx is the isotropy group of x . The localization theorem ([AP, Theorem 3.1.6],
[Al, Theorem 3.1.7]) asserts that the inclusion X S ⊂ X induces an isomorphism of
R(0)-vector spaces

S−1 H ∗G(X) ≈ S−1 H ∗G(X S). (7)

In Case (b), if Gx is a proper subgroup of G, then H 2(BG) → H 2(BGx) is not
injective; hence X S = X G . For Case (a), we use that for each x ∈ X , there is an

isomorphism ψx : G
≈−→ (S1)m such that ψx (Gx) = C1× · · · ×Cm , where C j is a

subgroup of S1. In order to have H 2(BG)→ H 2(BGx) injective, each C j should
be either S1 or a finite cyclic group of even order. Then X G ⊆ X S ⊆ X G2 = X G .
In all cases, we have that

S−1 H ∗G(X)→ S−1 H ∗G(X G ) (8)

is an isomorphism. Therefore, ker(H ∗G(X)→ H ∗G(X G)) is the R-torsion of H ∗G(X).
But the R-torsion vanishes because H ∗G(X) is a free R-module by Proposition 4.2.

Proposition 4.5. Let X be a good G-space. Suppose that Condition (a) or (b)
of Proposition 4.3 is satisfied. Then dimZ2 H ∗(X) ≥ dimZ2 H ∗(X G ) and X is
G-equivariantly formal if and only if equality holds.

Proof. As in the proof of Proposition 4.3, consider S = R − {0} and R(0) = S−1 R.
We apply S−1 to the terms of the Serre spectral sequence, following [Al, proof
of Corollary 3.10]. When G is a torus, it acts trivially on H ∗(X), which implies
that E∗,∗2 ≈ H ∗(BG; H ∗(X)) as an R-module and there is an isomorphism of
R(0)-vector spaces R(0)⊗Z2 H ∗(X) ≈ S−1 E2. Therefore, using equation (8), we get

dimZ2 H ∗(X) = dim R(0) (S−1 E2)

≥ dimR(0) (S−1 E∞)

= dimR(0)(S−1 H ∗G(X))

= dimR(0)(S−1 H ∗G(X G ))

= dimZ2(H ∗(X G )). (9)

By Proposition 4.2, the inequality in (9) is an equality if and only if X is equivari-
antly formal. Finally, when G is a 2-torus, Proposition 4.5 follows from [AP,
Theorem 3.10.4].

Lemma 4.6. Let X be a topological space, together with a good involution τ which
is compatible with a good action of a torus T . Suppose that X is T -equivariantly
formal, XT is τ -equivariantly formal, and XT = X T2 . Then X is τ -equivariantly
formal and X τ is T2-equivariantly formal.

Proof. In what follows, dim denotes dimZ2 . By our hypotheses, Proposition 4.5,
and Lemma 4.1, we have
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dim H ∗(X) = dim H ∗(X T ) = dim H ∗((X T )τ )

= dim H ∗((X τ )T2) ≤ dim H ∗(Xτ ) ≤ dim H ∗(X),

which implies that

dim H ∗(X τ ) = dim H ∗(X) and dim H ∗((Xτ )T2) = dim H ∗(X τ ). (10)

Lemma 4.6 thus follows from Proposition 4.5.

4.3 The image of the 1-skeleton

We shall need the following two lemmas, first proved by Chang and Skjelbred for
rational cohomology and torus action [CS].

Lemma 4.7. Let X be a topological space endowed with a good action of a 2-torus
G. Suppose that X is G-equivariantly formal. Then the restriction homomorphisms
on the mod-2 cohomology, H ∗G(X) → H ∗G(X G ) and H ∗G(SkG

1 (X)) → H ∗G(X G),
have same image.

Proof. Using the equivalence (i)⇔ (iii) in Lemma 4.2, we know that H ∗G(X) is a
free H ∗G(pt)-module. By [Hs, Corollary, p. 63], the homomorphism

H ∗G(X, X G )→ H ∗G(SkG
1 (X), X G )

is injective. The H ∗G-sequences of the pairs (X, X G ) and (SkG
1 (X), X G ) are part of

a commutative diagram

0 �� H ∗G(X)

��

�� H ∗G(X G )

=
��

�� H ∗+1
G (X, X G )

��

��

�� 0

H ∗G(SkG
1 (X)) �� H ∗G(X G ) �� H ∗+1

G (SkG
1 (X), X G ) �� 0.

Therefore, the injectivity of the last vertical arrow implies the lemma.

The following lemma follows from [FP3, Theorem 2.1].

Lemma 4.8. Let X be a topological space endowed with a good action of a torus
T . Suppose that X is T -equivariantly formal and that SkT

i (X) = SkT2
i (X) for

i = 0, 1. Then the restriction homomorphisms on the mod-2 cohomology, H ∗T (X)→
H ∗T (X T ) and H ∗T (SkT

1 (X))→ H ∗T (X T ), have same image.
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5 Proof of the main results

The main theorem will follow from two propositions.

Proposition 5.1. Let X be an even cohomology space, together with a good invo-
lution τ which is compatible with a good action of a torus T . Suppose that Condi-
tions (a), (b), and (c) of the main theorem are satisfied. Then XT is a conjugation
space.

Proof. The proof is decomposed into three steps.

Step 1. XT is τ -equivariantly formal. For G a topological group and k ∈ N, we
consider the G-principal bundle G → Ek G → Bk G obtained as the kth step in the
Milnor construction. If X is a G-space, the associated bundle with fibre X gives a
bundle X → XG,k → BkG, where XG,k = Ek G ×G X .

For a torus T of dimension n, BkT ≈ (CPk )n . The involution τ (g) = g−1

on T gives an involution τ on Bk T which makes Bk T a conjugation space with
(BkT )τ ≈ (RPk )n ≈ Bk T2.

We first prove that XT ,k is τ -equivariantly formal. Since X and BkT are even
cohomology spaces, the spectral sequence of X → XT ,k → Bk T degenerates at the
E2-term and H ∗(XT ,k) ≈ H ∗(X)⊗H ∗(Bk T ). As a consequence, dim H ∗(XT ,k) =
dim H ∗(X)·dim H ∗(Bk T ) <∞. We have assumed that X is τ -equivariantly formal,
and the fact that X is an even cohomology space implies that X is T -equivariantly
formal. So we may apply Lemma 4.6 to deduce

dim H ∗(XT ,k) = dim H ∗(X) · dim H ∗(BkT )

= dim H ∗(X τ ) · dim H ∗(Bk T2). (11)

Lemma 4.6 also implies that X τ is T2-equivariantly formal, and so we have the
following commutative diagram:

H ∗((X τ )T2)
ρτ

T2 �� ��

��

H ∗(Xτ )

=
��

H ∗((X τ )T2,k)
ρτ

T2 ,k �� H ∗(Xτ )

which shows that ρτ
T2,k is surjective and thus H ∗((X τ )T2,k) ≈ H ∗(X τ )⊗H ∗(Bk T2).

As in Lemma 2.2, we may prove that (XT ,k)
τ = (X τ )T2,k , and so

dim H ∗((XT ,k)
τ ) = dim H ∗((X τ )T2,k) = dim H ∗(Xτ ) · dim H ∗(Bk T2). (12)

Combining (11) and (12) gives dim H ∗(XT ,k) = dim H ∗((XT ,k)
τ ), and together

with Proposition 4.5, this implies that XT ,k is equivariantly formal.
Now given n ∈ N, there exists k ∈ N such that H n(XT ) ≈ H n(XT ,k). The

commutative diagram
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H n(XT )
ρ ��

≈
��

H n(X)

=
��

H n(XT ,k)
ρk �� �� H n(X)

shows that ρ is surjective in degree n. This can be done for each n, so XT is
equivariantly formal.

Step 2. Construction of the ring isomorphism κT : H 2∗(XT ) → H ∗((XT )τ ).
By Lemma 2.2, it is equivalent to construct a ring isomorphism

κT : H 2∗
T (X)→ H ∗T2

(X τ ).

By Corollary 2.4, such an isomorphism κfix : H 2∗
T (X T )→ H ∗T2

((X T )τ ) exists, since

X T is a conjugation space. Since (X T )τ = (X τ )T2 by Lemma 4.1, we may view κfix

as a map from H 2∗
T (X T ) to H ∗T2

((Xτ )T2). Let us consider the following diagram:

H 2∗
T (X)

q �� H 2∗
T (X T )

κfix≈
��

H ∗T2
(X τ )

qτ

�� H ∗T2
((X τ )T2).

(13)

By Proposition 4.3, the restriction homomorphisms q and qτ are injective. There-
fore, in order to construct κT : H 2∗

T (X) → H ∗T2
(X τ ), it is enough to show that

Aτ = κfix(A), where A = image(q) and Aτ = image(qτ ).
Let N be the 1-skeleton of X . Enumerate the edges E1, . . . , En of X and define

Êi = Ei ∪ X T = Ei � (X T − ET
i ) . (14)

For 1 ≤ k ≤ n, define Nk = Ê1 ∪ · · · ∪ Êk . Thus Nk ∩ Ek+1 = X T , and the
(equivariant) Mayer–Vietoris sequence fits into a commutative diagram:

H ∗T (Nk+1)

��

�� H ∗T (Nk )⊕ H ∗T (Êk+1)

��

�� H ∗T (X T )

≈
��

0 �� H ∗T (X T )
diag �� H ∗T (X T )⊕ H ∗T (X T )

+ �� H ∗T (X T ) �� 0

The bottom row is clearly exact (we do not need the usual sign because of the Z2

coefficients). We may conclude that the image of H ∗T (Nk+1) into H ∗T (X T ) is the
intersection of the image of H ∗T (Nk) with that of H ∗T (Êk+1). Since N = Nn , this,
together with Lemma 4.8, shows that
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Image(H ∗T (N)→ H ∗T (X T )) =
n

⋂

i=1

Image(H ∗T (Êi)→ H ∗T (X T )). (15)

In the same way, using Lemma 4.7, we have that

Image(H ∗T2
(Nτ )→ H ∗T2

((X τ )T2)) =
n

⋂

i=1

Image(H ∗T2
(Êτ

i )→ H ∗T2
((Xτ )T2)). (16)

By naturality, an H ∗-frame preserves the connected components. Since X T is a
conjugation space, so is any union of its connected components. The disjoint union
decomposition of (14) implies that Êi is a conjugation space for each i . Hence,

κfix(Image(H ∗T (Êi)→ H ∗T (X T ))) = Image(H ∗T2
(Êτ

i )→ H ∗T2
((X τ )T2)).

Using (15) and (16), this implies that Aτ = κfix(A).

Step 3. Construction of a section σT : H ∗(XT ) → H ∗C(XT ) so that (κT , σT ) is an
H ∗-frame for (XT , τ ). Let (κfix, σfix) be the H ∗-frame for X T . The desired section
σT will fit in the commutative diagram

H ∗(XT )

q
��

σT

�� H ∗C(XT )

qC
��

�� rT ��ρT�� H ∗C((XT )τ )

qτ
C

��

H ∗((XT )τ )[u]
≈��

qτ [u]
��

H ∗((X T )T )
σfix

�� H ∗C((X T )T ) �� rfix ��ρfix�� H ∗C((X T )T )τ ) H ∗(((X T )T )τ )[u]
≈��

where the vertical arrows are induced by the inclusion X T ↪→ X (the notation
coincides with that of diagram (13)). We must justify that the last two vertical arrows
are injective. But using the identifications

H ∗((XT )τ ) = H ∗((X τ )T2) = H ∗T2
(Xτ )

and

H ∗(((X T )T )τ ) = H ∗(((X T )τ )T2) = H ∗T2
((X T )τ ) = H ∗T2

((X τ )T2),

the map qτ [u] coincides with the homomorphism H ∗T2
(X τ ) → H ∗T2

((Xτ )T2)

induced by the inclusion (X τ )T2 ↪→ Xτ .
Note that we just need to construct a section σT : H ∗(XT )→ H ∗C(XT ) such that

qC ◦σT = σfix ◦q. Indeed, if a ∈ H 2m(XT ), the conjugation equation for (κfix, σfix)
implies

qτ
C ◦rT ◦σT (a) = rfix ◦σfix ◦q(a) = κfix ◦q(a)um + 	tm .

Since qτ
C is injective, this implies that

rT ◦σT (a) = ãum + 	tm,
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with ã ∈ H m((XT )τ ) satisfying qτ (ã) = κfix(a). By construction of κT , one has
qτ ◦κT (a) = κfix◦q(a). Since qτ is injective, this implies that ã = κT (a). Hence
the pair (κT , σT ) automatically satisfies the conjugation equation and is therefore an
H ∗-frame.

We construct an additive section σT inductively. Consider the statement Hm : for
k ≤ m, there exists a section σT : H 2k(XT ) → H 2k

C (XT ) of ρT such that qC ◦σT =
σfix ◦q. Statement H0 is clearly satisfied: we may assume without loss of generality
that X is arc-connected; and we may then define σT (1) = 1, where 1 ∈ H 0(−) is
the unit of H ∗(−). Now assume by induction that Hm−1 holds. The space XT is
τ -equivariantly formal by Step 1, so there exists a section σ0 : H 2m(XT ) →
H 2m

C (XT ) of ρT . We have ρfix ◦qC ◦σ0 = q . Therefore, for any a ∈ H 2m(XT ), we
know that qC ◦σ0(a) ≡ σfix ◦q(a) modulo ker ρfix. This kernel is the ideal generated
by u. Since H odd

C ((X T )T ) = 0, only even powers of u occur and moreover

qC ◦σ0(a) = σfix ◦q(a)+
m

∑

i=0

σfix(b2m−2i)u
2i , (17)

where b2 j are classes in H 2 j((X T )T ) depending on the choice of σ0. We will modify
σ0 by successive steps until b2 j = 0 for all j = m, m − 1, . . . , 0.

The conjugation equation for (κfix, σfix) implies

rfix ◦qC ◦σ0(a) = κfix ◦q(a)um + 	tm(a)+
m

∑

i=0

(κfix(b2m−2i)u
m+i + 	tm−i (b2m−2i)).

(18)
Since qτ

C is injective, this implies that

rT ◦σ0(a) = c0u2m + 	tm , (19)

with c0 ∈ H 0((XT )τ ) satisfying qτ (c0) = κfix(b0). Since κT is an isomorphism,
there exists c̃0 ∈ H 0(XT ) with κT (c̃0) = c0. Define a new section

σ1 : H 2m(XT )→ H 2m
C (XT )

of ρT by σ1(a) = σ0(a) + σT (c̃0)u2m . By the induction hypothesis, qC ◦σT (c̃0) =
σfix ◦q(c̃0). By construction of κT , one has qτ ◦κT = κfix ◦q. Therefore,

rfix ◦qC ◦σ1(a) = rfix ◦qC ◦σ0(a)+ rfix(qC ◦σT (c̃0))u
2m

= rfix ◦qC ◦σ0(a)+ rfix(σfix ◦q(c̃0))u
2m

= rfix ◦qC ◦σ0(a)+ κfix ◦q(c̃0))u
2m

= rfix ◦qC ◦σ0(a)+ qτ ◦κT (c̃0))u
2m

= rfix ◦qC ◦σ0(a)+ qτ (c0)u
2m
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= rfix ◦qC ◦σ0(a)+ κfix(b0)u
2m

= κfix ◦q(a)um + 	tm(a)

+
m−1
∑

i=0

(κfix(b2m−2i)u
m+i + 	tm−i (b2m−2i )).

The injectivity of rfix implies that equation (17) is replaced by

qC ◦σ1(a) = σfix ◦q(a)+
m−1
∑

i=0

σfix(b2m−2i )u
2i . (20)

We thus have modified σ0 so that b0 = 0. Now, using as above the injectivity of qτ
C ,

this permits us to transform (19) into

rT ◦σ1(a) = c1u2m−1 + 	tm−1, (21)

with c1 ∈ H 1((XT )τ ) satisfying qτ (c1) = κfix(b0). Again, write c1 = κT (c̃1) with
c̃1 ∈ H 2(XT ) and define a new section σ2 : H 2m(XT ) → H 2m

C (XT ) of ρT by
σ2(a) = σ1(a) + σT (c̃1)u2m−2. Proceeding as above, we prove that if we replace
σ1 by σ2 in (20), the summation index runs only until m − 2, i.e., b0 = b2 = 0.
If we continue as long as possible, we finally get σm : H 2m(XT )→ H 2m

C (XT ) with
b0 = b2 = · · · = b2m = 0. Extending σT in degree 2m by σm proves that the
statement Hm holds. So by induction, we have constructed the desired section σT .

The second proposition is a partial converse of Theorem 2.3.

Proposition 5.2. Let X be an even cohomology space, together with a good invo-
lution τ which is compatible with a good action of a torus T . Suppose that X T is
τ -equivariantly formal and that XT = X T2 . Then X is a conjugation space if and
only if XT is a conjugation space.

Proof. The “only if” part is the content of Theorem 2.3. For the converse, let us
assume that XT is a conjugation space.

We first construct the ring isomorphism κ : H 2∗(X) → H ∗(X τ ). We know that
X is T -equivariantly formal because it is an even cohomology space. By part (iv)
of Proposition 4.2, the ring epimorphism ψ : H 2∗

T (X) →→ H 2∗(X) descends to an
isomorphism

H 2∗
T (X)⊗H2∗

T (pt) Z2
≈−→ H 2∗(X). (22)

By Lemma 4.6, X τ is T2-equivariantly formal, and so Proposition 4.2 again tells us
that the ring epimorphism ψτ : H ∗T2

(X τ ) →→ H ∗(Xτ ) descends to a graded ring
isomorphism

H ∗T2
(X τ )⊗H∗T2

(pt) Z2
≈−→ H ∗(X τ ). (23)

By Corollary 2.4, the ring isomorphism κT : H 2∗
T (X)

≈−→ H ∗T2
(X τ ) is an isomor-

phism of modules over the ring isomorphism H 2∗
T (pt) → H ∗T2

(pt). Therefore, it
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descends to a graded ring isomorphism κ : H 2∗(X)
≈−→ H ∗(X τ ). With this defini-

tion, the equation
ψτ ◦κT = κ ◦ψ (24)

is satisfied.
We now construct the section σ : H ∗(X) → H ∗C(X) so that (κ, σ ) is an

H ∗-frame. Consider the commutative diagram

H ∗(XT )

ψ
��

σT
�� H ∗C(XT )

ψC
��

�� rT ��ρT�� H ∗C((XT )τ )

ψτ
C

��
H ∗(X)

σ
��

s

��

�
�
�

H ∗C(X) �� r ��ρ�� H ∗C(X τ ).

Since X is T -equivariantly formal, we may choose an additive section s : H ∗(X)→
H ∗(XT ) of ψ and define σ : H ∗(X) → H ∗C(X) by σ = ψC ◦σT ◦s. The linear map
σ is an additive section of ρ, and for a ∈ H 2m(X), we have

r ◦σ(a) = r ◦ψC ◦σT ◦s(a)

= ψτ
C ◦rT ◦σT ◦s(a)

= ψτ
C (κT ◦s(a)um + 	tm)

= (ψτ
C ◦κT )◦s(a) um + 	tm

= (κ ◦ψ)◦s(a) um + 	tm

= κ(a)um + 	tm .

From the fourth to the fifth line, we have used the fact that ψτ
C ◦κT = κ ◦ψ .

This comes from equation (24), using that under the identifications H ∗C((XT )τ ) =
H ∗((XT )τ )[u] and H ∗C(X τ ) = H ∗(Xτ )[u], ψτ

C is the obvious polynomial extension
of ψτ . Therefore, the conjugation equation is satisfied and (κ, σ ) is an H ∗-frame
for X .

Proof of the main theorem: Theorem 3.1 follows directly from Propositions 5.1
and 5.2.

Proof of Corollary 3.2: The hypotheses imply that the restriction of τ to an edge E ,
which is a 2-sphere, is conjugate to a reflection (through an equatorial plane). This
follows from the classical result that a continuous involution on S2 is topologically
conjugate to a linear one; see, e.g., [CK, Theorem 4.1]. Therefore, each edge is a
conjugation 2-sphere in the sense of [HHP, Example 3.6]. Hence, each edge is a
conjugation space, and the hypotheses of Theorem 3.1 are satisfied.

Proof of Corollary 3.3: By [HHP, Remark 3.1], τ preserves each arc-connected
component of X T . In consequence, for each edge E of X , hypothesis (a) of
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Corollary 3.3 implies that ET is a conjugation space. By Theorem 2.1, each edge is
then a conjugation space. The hypotheses of Theorem 3.1 are therefore satisfied.

6 Remarks

6.1 A case when the skeleta differ

The following example shows that the condition SkT
0 (X) = SkT2

0 (X) does not imply

that SkT
1 (X) = SkT2

1 (X), even for spaces like those occurring in Corollary 3.2 or 3.3.
We consider the Hamiltonian action of S1 on S2 ⊂ C×R given by g·(z, t) = (gz, t),
compatible with the involution (z, t)τ = (z̄, t). Points of S2 will be denoted by x ,
y, etc. Let p± = (0,±1) be the north and south poles. Let T = S1 × S1 act on
X = S2 × S2 by

(g, h) · (x, y) = (gh · x, gh−1 · y).

The fixed-point sets for T and T2 are equal, SkT
0 (X)τ = SkT2

0 (Xτ ), each consisting
of the four points {p±}×{p±}. By Proposition 4.5, X is T -equivariantly formal and
Xτ is T2-equivariantly formal.

The T -equivariant 1-skeleton is a graph of four 2-spheres

SkT
1 (X) = {(x, y)|x = p± or y = p±}.

Therefore, X is a GKM space. On the other hand, SkT
1 (X) �= SkT2

1 (X), since

SkT2
1 (X) = X . Moreover, SkT

1 (X)τ �= SkT2
1 (X τ ) because SkT2

1 (X τ ) = X τ . It would
be interesting to know whether the conclusion of Lemma 4.8 holds for the T -space
X (a question raised by the referee).

6.2 The relationship to previous work

The condition SkT
i (X) = SkT2

i (X) for i = 0, 1 of our main theorems is already
implicitly present in earlier papers [Sd, BGH] that deal with GKM Hamiltonian
manifolds. In [Sd], one requires that for each point of x ∈ XT , the characters
involved in the 2-spheres adjacent to x are pairwise independent over Z2. In [BGH,
p. 373], the authors require that X T = X T2 and that “the real locus of the one-
skeleton is the same as the one-skeleton of the real locus.” In general, these condi-
tions are weaker than SkT

i (X) = SkT2
i (X) for i = 0, 1 (see Lemma 4.1), but they are

equivalent hypotheses for Hamiltonian GKM manifolds. To see this, we may work
with the local normal coordinates about a T -fixed point. In this model the T -action
and the involution are linear.
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1 Introduction

This article studies the nonabelian localization results of Beasley and Witten in
[BW], and considers the analogue of these results when the gauge group G is the
abelian group G = U(1). In the finite dimensional case, Duistermaat and Heckman
studied the stationary phase approximation for integrals of the form

∫

M
eitμY (x)β(x),

where β(x) = ωl

l!(2π)l , (M, ω, G, μ) is a Hamiltonian G-space, and Y is an element

of the Lie algebra of G and μY the component of the moment map in the direction
of Y . They proved that the stationary phase approximation in this case is exact, and
in the special case of isolated fixed points they obtained the (abelian) localization
formula

∫

M
eitμY (x)β(x) =

(

i

t

)l
∑

p∈MY

eitμY (p)

√

detLp(Y )
,

where MY = {p ∈ M|YM (p) = 0} is the fixed-point set of the vector field generated
by Y .

The case of U(1) Chern–Simons theory is another situation in which the
stationary phase approximation is exact. In [BW], Beasley and Witten study Chern–
Simons gauge theory on a Seifert manifold X , with a gauge group G that is
nonabelian, compact, connected, simply connected, and simple. These assumptions
imply that the principal G-bundle over X

G
� � �� P

��
X

is trivial. This is not the case for G = U(1), for which some of these assumptions
are not valid.

The authors of [BW] then apply the technique of nonabelian localization to the
Chern–Simons path integral

Z X (k) =
∫

M
DA exp

[

i
k

4π

∫

X
Tr

(

A ∧ d A + 2

3
A ∧ A ∧ A

)]

. (1)

Here M is the moduli space of all connections on X ; through localization, the
authors of [BW] reformulate the partition function as an integral over the space of
gauge equivalence classes of flat connections. They are able to compute this parti-
tion function in terms of topological data on the moduli space of flat connections,
M0, in several cases, specifically related to SU(2).
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Some results for the U(1) Chern–Simons theory are already known; see [M] and
[MPR]. We study the results of Manoliu in [M], where the partition function for
U(1) Chern–Simons theory has been calculated independently, and compare her
results to those of [BW]. Manoliu studies U(1) Chern–Simons theory for arbitrary
3-manifolds; on the other hand, Beasley and Witten study Chern–Simons theory for
simple simply connected gauge groups G for Seifert 3-manifolds (manifolds which
are the total space of a circle bundle over a 2-manifold or a 2-dimensional orbifold).
As noted above, one of the main differences of the U(1) theory from the setting
of [BW] is the fact that there exist nontrivial principal U(1)-bundles over X . This
difference occurs explicitly in the expression for the partition function in the U(1)
case. Manoliu gives the following formula for the Chern–Simons partition function
in [M]:

Z X = km X

|Tors H 2(X, Z)|
∑

p∈Tors H2(X,Z)

σX,p

∫

M0

(TX )1/2, (2)

where TorsH 2(X, Z) is the torsion subgroup of H 2(X, Z) and is isomorphic to
H 1(X, R/Z). Note that a principal U(1)-bundle P → X has flat connections if
and only if the first Chern class c1(P)—if nonzero—is a torsion class in H 2(X, Z).
The sum over p passes over different topological types for the bundle over the
3-manifold X . We have calculated the dependence of the results of both [BW] and
[M] on the Chern–Simons parameter k. In our comparison we are looking only at the
component of the partition function that comes from the contribution of the trivial
bundle P = U(1) × X in the partition function of [M], since the results of [BW]
apply only to this case. For groups G which are simply connected, all G-bundles
over three-manifolds are trivial, whereas this is not true for U(1) bundles.

We compare the expressions for the Chern–Simons partition functions found by
Beasley–Witten and by Manoliu in their respective situations. Both partition func-
tions are expressed as integrals of top-degree differential forms over the moduli
space M of gauge equivalence classes of flat connections over the 3-manifold.
We restrict to G = U(1), and compare

• the power of k appearing in the integrand;
• the integrand (in both cases it is the symplectic volume form).

Proposition 1.1. The U(1) Chern–Simons partition function from (5.17) of [M] and
the specialization of Beasley and Witten’s Chern–Simons partition function (5.172)
of [BW] to G = U(1) are both proportional to

k(2g−1)/2
∫

U(1)2g
ωg

(for the symplectic form ω on U(1)2g).

An important ingredient in our study of the partition functions is the appearance
of the Reidemeister torsion (R-torsion) in [M]. We provide a section devoted specifi-
cally to the R-torsion, and also study the relationship of the R-torsion to the
symplectic volume of M0.
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2 k-dependence

In this section we compare the results of [BW] and [M] for the k-dependence of their
partition functions. In particular, we look at eq. (5.172) of [BW], and eq. (5.17)
of [M], and derive their respective dependences on the Chern–Simons coupling
constant k.

Let us begin with [M]. Equation (5.17) of [M] reads

Z X = kmX

|Tors H 2(M, Z)|
∑

p∈Tors H2(M,Z)

σX,p

∫

M0

(TX)1/2 (3)

= km X
∑

p∈Tors H2(M,Z)

∫

M0,p

σX,p(TX )1/2 (4)

= km X

∫

M0

σX (TX )1/2, (5)

where

m X = 1

2
(dim H 1(X, R)− dim H 0(X, R)). (6)

Here if p corresponds to a trivial bundle P = U(1)×X , then σX,p(A) = eikC S(A)

is the Chern–Simons function of the connection A, raised to the power k. We note
that if P is a trivial bundle and A is a critical point for the Chern–Simons functional,
then d A = 0, so σX,p(A) = 1.

The k dependence comes only from the factor kmX . The value of m X is as follows.
Since X is connected, dim H 0(X, R) = 1. The values of dim H 1(X, R) are stated
in [FS]; for completeness we provide a short proof.

Proposition 2.1 ([FS]).

dim H 1(X, R) =
{

2g, n ≥ 1,

2g + 1, n = 0,

where n is the degree of the U(1)-bundle X, and g is the genus of the base space �:

U(1)
� � �� X

��
�

Proof. By the universal coefficient theorem (UCT),

H 1(X, R) � Hom(H1(X, Z), R), (7)
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i.e., the UCT implies that

0→ Ext(H0(X, Z), R)→ H 1(X, R)→ Hom(H1(X, Z), R)→ 0

is exact. Also
Ext(H0(X, Z), R) � Ext(Z, R) � 0,

since Z is free.
Thus we compute Hom(H1(X, Z), R). By Hurewicz,

H1(X, Z) � π1(X)

[π1(X), π1(X)]
.

We assume that X is a Seifert fibered manifold which fibers over a 2-manifold rather
than over an orbifold, since this is the setting of (5.172) of [BW]. Hence we have
the following presentation of π1(X)([O1]):

π1(X) �
〈

ap, bp, h|[ap, h] = [bp, h] = 1,

g
∏

p=1

[ap, bp] = hn

〉

,

where g is the genus of the base space � of our Seifert fibered 3-manifold X ,

U(1)
� � �� X

��
�

and n = c1(X) is the Chern number of the U(1)-bundle X . The generator h arises
from the generic fiber over �. Observe that in the abelianization of π1(X) the
following relation is satisfied:

g
∏

p=1

[ap, bp] = hn . (8)

We have

[π1(X), π1(X)] =
〈

[ap, bp]|
g

∏

p=1

[ap, bp] = hn

〉

(9)

and therefore

π1(X)

[π1(X), π1(X)]
= 〈ap, bp, h|[ap, bp] = hn = 1〉 (10)

=
g

⊕

p=1

〈ap〉
g

⊕

p=1

〈bp〉
⊕

( 〈h〉
〈hn〉

)

,
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where ap, bp, h now represent equivalence classes in the abelianization and
〈ap〉 � Z, 〈bp〉 � Z, 〈h〉〈hn〉 � Z/nZ � Zn . Thus,

π1(X)

[π1(X), π1(X)]
�

{

Z
2g × Zn, n ≥ 1,

Z
2g+1, n = 0.

(11)

Finally, we have

H 1(X, R) � Hom(H1(X, Z), R) � Hom

(

π1(X)

[π1(X), π1(X)]
, R

)

�
{

Hom(Z2g × Zn, R), n ≥ 1,

Hom(Z2g+1, R), n = 0,
(12)

�
{

R
2g, n ≥ 1,

R
2g+1, n = 0.

(13)

In conclusion,

dim H 1(X, R) =
{

2g, n ≥ 1,

2g + 1, n = 0.
(14)

We will restrict ourselves to the case n 	= 0 because this is assumed in [BW]. Thus
we obtain the k dependence

Z X ∼ k
2g−1

2 .

Now consider the k dependence for (5.172) of [BW]. For this computation we
assume that all work leading to (5.172) is relevant to the case of a trivial principal
U(1)-bundle over X . We note that the main difference between our case (with a
U(1) gauge group) and the case studied in [BW] is that [BW] assume that their
gauge group G is compact, connected, simply connected, and simple. In particular,
they can conclude that their principal G-bundle

G
� � �� P

��
X

is trivial. However, U(1) is neither simply connected nor simple, and there exist non-
trivial principal U(1)-bundles over X . It is surprising that our results show that [BW]
(5.172) is still valid in the U(1) case, although we could not infer this from Beasley
and Witten’s calculation because our situation does not satisfy the hypotheses of
[BW].
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Consider eq. 5.172 of [BW]:

Z X := Z(ε)|
˜M0

(15)

= 1

|�| exp
(

− ıπ

2
η0

)

∫

˜M0

̂A( ˜M0) exp

[

1

2πε

+ 1

2
c1(T ˜M0)+ ın

4π2εr
�

]

.

Here

• ˜M0 is a smooth component of the moduli space of irreducible flat connections
on a Seifert manifold X (we assume that our Seifert manifold X is a smooth line
bundle of degree n over �);

• � = Z(G) is the center of G;
• η0 = − n dim G

6 ;

• ̂A( ˜M0) = ∏dim ˜M0
j=1

x j /2
sinh(x j /2) , where x j (1 ≤ j ≤ n) are the Chern roots of

T ˜M0. so that c(T ˜M0) =∏n
j=1(1+ x j), x j ∈ H 2( ˜M0, Z);

• 
 is the symplectic form on ˜M0;
• εr = 2π

k+̂cg
, where ĉg is the dual Coxeter number of G;

• � ∈ H 4( ˜M0) is the cohomology class corresponding to the degree-4 element
−(φ, φ)/2 in the equivariant cohomology H 4

G(pt) (for φ ∈ g using the Cartan
model of equivariant cohomology); � can also be described in terms of the
universal bundle U:

C
� � ��

U

��
Jac(�)× �

In other words,

� = −1

2
c1(U)2|pt.∈�,

where Jac(�) is the Jacobian of �.

The overall constant � does not make sense for G = U(1), since it is infinite.
We disregard the overall constant in front of the integrand in Z(ε)|

˜M0
. Looking

only at the k dependence, we consider Z(ε)|
˜M0

, ignoring overall multiplicative
constants:

Z(ε)|
˜M0
∼

∫

˜M0

̂A( ˜M0) exp

[

1

2πε

+ 1

2
c1(T ˜M0)+ ın

4π2εr
�

]

. (16)

Note that ˜M0 � U(1)2g×Zn by Proposition 2.2 of [M], and since we are restricting
to the trivial bundle case, we identify ˜M0 � U(1)2g as the connected component
corresponding to p = 0.

The first thing we observe is that � = 0 in our case. This follows, since the
universal bundle U for U(1)-bundles is the classical Poincaré line bundle, and
the Poincaré line bundle is normalized to have degree d = 0 when restricted to
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the Jacobian of �. Since c1(U) = d[�] ∈ H 2(�), this implies c1(U) = 0, and
hence � = 0. Also, since ˜M0 � U(1)2g, we know that

c( ˜M0) = c(T ˜M0) =
g

∏

i=1

c(Li ) =
g

∏

i=1

(1+ xi ),

where
Li = T �i , and xi = c1(Li) ∈ H 2(�i , Z),

where �i � (U(1))2. Then the tangent bundles T�i are trivial, and hence

xi = c1(T �i ) = 0.

Thus

̂A( ˜M0) =
dim ˜M0

∏

j=1

x j/2

sinh(x j/2)
= 1. (17)

Clearly, c1(T ˜M0) = 0 as well, and we arrive at

Z(ε)|
˜M0
∼

∫

˜M0

exp

[

1

2πε



]

. (18)

Recalling that ε = 2π
k , we have

Z(ε)|
˜M0
∼

∫

˜M0

exp[k
] =
∫

˜M0

kg
g/g! = kgVol
( ˜M0).

Thus the U(1) Chern–Simons partition function computed from eq. 5.172 of [BW] is

Z X := Z(ε)|
˜M0
∼ kg . (19)

There is a difference of k1/2 between the two cases, since Z X ∼ kg for Beasley–

Witten, whereas Z X ∼ k
2g−1

2 for Manoliu. Let us analyze this difference further.
In the case of [M], this extra factor of k−1/2 appears because the dimension of the
stabilizer of the gauge group action (for U(1) gauge groups) is dim(H 0(X, R)) = 1.

A similar phenomenon occurs in Yang–Mills theory at the higher nonflat critical
points of the Yang–Mills action. As observed in Section 4.3 of [BW] (for example
equation (4.45)), there is a factor of k1/2 in the Yang–Mills partition function coming
from the fact that the gauge group G does not act locally freely on the locus of
nonflat Yang–Mills solutions. This k1/2 factor comes from the U(1) stabilizer at a
nonflat Yang–Mills solution. U(1)-Chern–Simons theory also has a U(1) stabilizer
at all points, the subgroup of constant gauge transformations with values in U(1).
This accounts for the extra factor of k−1/2 in the Chern–Simons partition function
in Manoliu’s paper.

In fact, Beasley and Witten recast the Chern–Simons partition function as a
Yang–Mills partition function (see (3.61) in [BW]). In the computation of (5.172)
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of [BW] it is assumed that one is localizing at an irreducible flat connection, and
therefore the isotropy group of A, �A = {u ∈ G|u(A) = A}, is finite. Hence
there is no factor of k1/2 in [BW] (5.172) because the dimension of the stabilizer is
zero.

The extra factor of k−1/2 also appears in [JKKW] (see Section 9, Example 46).
This article treats integrals of the same form as [BW] (3.61) over symplectic mani-
folds equipped with Hamiltonian group actions. When the group acts locally freely
at the zero locus of the moment map, it is shown in [JK] that the integral is a poly-
nomial in ε = 2π/k. When the group acts with nontrivial stabilizer at points in
the zero locus of the moment map, the partition function is a polynomial in

√
ε but

not in ε.

3 Reidemeister torsion and symplectic volume

We would like to show that the remainder of the calculation in [M] involving the
Reidemeister torsion yields the symplectic volume as above. In this section we
review Reidemeister torsion (R-torsion) and provide some relevant examples.

The R-torsion is an invariant for a CW-complex and a representation of its funda-
mental group. Before we define the R-torsion, we recall the definition of the torsion
of a chain complex. Let

C∗ = (0→ Cn
dn−→ Cn−1

dn−1−−→ · · ·C1
d1−→ C0 → 0)

be a chain complex over F (either R or C). Let Zi denote the cycles of this complex,
Bi denote the boundaries, and Hi the homology. Let {ci} be a basis of Ci and let c be
the collection {ci}i≥0. We call a pair (C∗, c) a based chain complex, c the preferred
basis of C∗, and ci the preferred basis of Ci . Let hi be a basis of Hi .

We construct another basis as follows. By the definitions of Zi , Bi , and Hi , the
following two split exact sequences exist:

0→ Zi → Ci
di−→ Bi−1 → 0,

0→ Bi → Zi → Hi → 0.

Let ˜Bi−1 be a lift of Bi−1 to Ci and ˜Hi a lift of Hi to Zi . Then we can decompose
Ci as follows:

Ci = Zi ⊕ ˜Bi−1 = Bi ⊕ ˜Hi ⊕ ˜Bi−1 = di+1 ˜Bi ⊕ ˜Hi ⊕ .˜Bi−1.

Choose a basis bi for Bi . We write ˜bi+1 = {˜bi+1
j }ni

j=1 for a lift of bi and ˜hi =
{˜hi

j }mi
j=1 for a lift of hi . By construction, the set {˜bi ∪di+1(˜bi+1)∪˜hi } forms another

ordered basis of Ci . Denote this basis by {˜bidi+1(˜bi+1)˜hi }. The definition of the
R-torsion, Tor(C∗, c, h), is as follows:
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Tor(C∗, c){h} = (−1)|C∗| ·
n

∏

i=1

[˜bidi+1(˜b
i+1)˜hi/ci ](−1)i+1 ∈ F

∗, (20)

where [˜bidi+1(˜bi+1)˜hi/ci ] denotes the determinant of the change of basis matrix
from the basis {ci} to the basis {˜bidi+1(˜bi+1)˜hi }. An alternative definition is to equip
our complex C∗ with volumes μi ∈ (∧maxCi )

∗, one for each i , and then to define

Tor(C∗, μ){h} =
∧

i even μi [˜bi ∧ di+1(˜bi+1)∧˜hi ]
∧

i odd μi [˜bi ∧ di+1(˜bi+1) ∧˜hi ]
, (21)

where we take ˜bi = ∧ni
j=1

˜bi
j , di+1˜bi+1 = ∧ni

j=1di+1˜b
i+1
j , and ˜hi = ∧mi

j=1
˜hi

j . The
torsion is an element

Tor(C∗, μ) ∈ ⊗2i+1[∧maxH2i+1(C∗)]⊗2i [∧maxH2i(C∗)]∗.

The latter definition specializes to the former definition when we choose the
canonical volumes associated to a choice of preferred basis c for C .

It is well known (see, e.g., [F]) that the torsion is independent of the choices
of bi and of the choices of lifts ˜bi , ˜hi . In the case that our complex C∗ is acyclic,
we define

Tor(C∗, μ) =
∧

i even μi [˜bi ∧ di+1(˜bi+1)]
∧

i odd μi [˜bi ∧ di+1(˜bi+1)]
∈ R
∗. (22)

We will be interested in a specific chain complex C∗. In particular, let N be a cell
complex, and ρ a representation of π1(N) in G. The Lie algebra g is acted on by
π1(N) under the composition of the adjoint action of G and the representation ρ. Let
gρ denote g with the π1(N)-module structure from ρ. Let ˜N denote the universal
cover of N . Since the fundamental group π1(N) acts on ˜N by covering transfor-
mations, the chain complex C∗(˜N ) also has a natural π1(N)-module structure. The
chain complex of interest is then C∗(N, gρ), defined as the quotient of C∗(˜N )⊗ g
under the equivalence

σ ⊗ X ∼ σa ⊗Ad(ρ(a))−1 X, (23)

where a ∈ π1(N), σ ∈ C∗(˜N ), and X ∈ g. The usual differential on C∗(˜N ) is
compatible with the equivalence relation, and thus descends to a differential δρ on
C∗(N, gρ). By dualizing one obtains the corresponding cochain complex C∗(N, gρ)
with differential dρ = δ∗ρ . We have the following lemma.

Lemma 3.1 ([JW]). Suppose h ∈ G. If ρ and hρh−1 are conjugate representations
of π1(N) in G, then the map Ad(h) : g → g induces an isomorphism of the chain
complexes C∗(N, gρ) and C∗(N, ghρh−1 ). Hence one obtains a natural isomorphism
between the cohomology groups

H i(C∗(N, gρ))
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and
H i(C∗(N, ghρh−1 )).

We will mainly be interested in the zeroth and first cohomology groups of this
complex. We recall the following result.

Proposition 3.2 ([JW]). Let [ρ] ∈ Hom(π1(N), G)/G. The choice of a particular
ρ ∈ Hom(π1(N), G) in the conjugacy class [ρ] identifies the Zariski tangent space
at ρ of the space Hom(π1(N), G)/G with the first cohomology group H 1(N, gρ).

Furthermore, the Lie algebra of the isotropy group of ρ (the subgroup of G fixing
the representation ρ under conjugation) is H 0(N, gρ).

Using the definition of the R-torsion in (21) above, we may define volumes on
C∗(N, gρ) using the metric on g. We take {σ i

j ⊗ Xk} to be an orthonormal basis

of C∗(N, gρ), where σ i
j are the i -cells in the universal cover ˜N and the Xk are an

orthonormal basis of g. This volume is well defined, since the adjoint representation
is an orthogonal representation of G, and hence compatible with the equivalence
relation (23). The torsion is then an element of

Tor(C∗(N, gρ), μ) ∈ ⊗2i+1[∧max H2i+1(N, gρ)]⊗2i [∧max H2i(N, gρ)]∗.

Since H i(N, gρ) � Hi(N, gρ)∗, the torsion may be identified with an element

Tor(C∗(N, gρ), μ) ∈ ⊗2i+1[∧max H 2i+1(N, gρ)]∗ ⊗2i [∧max H 2i(N, gρ)]. (24)

The isomorphisms in Lemma 3.1 identify the torsion Tor(C∗(N, gρ)) with
Tor(C∗(N, ghρh−1 ), so the torsion descends to an equivalence class τ (N, ρ)
depending only on the conjugacy class [ρ] ∈ Hom(π1(N), G)/G.

It is instructive to consider the case that N is a genus-g surface �g .

Example 3.1. From the relation (24) above, we see that the torsion τ (�g; ρ) of a
surface �g takes values in

∧max H 1(�g, gρ)∗ ⊗ ∧max H 2(�g, gρ)⊗∧max H 0(�g, gρ).

By Poincaré duality, H 2(�g, gρ) is canonically dual to H 0(�g, gρ), so we have

τ (�g; ρ) ∈ ∧max H 1(�g, gρ)∗.

Observe that H 1(�g, gρ) is a symplectic vector space (the tangent space to the
moduli space of gauge equivalence classes of flat connections on �g) with the
symplectic form given by the cup product H 1(�g, gρ) ⊗ H 1(�g, gρ) →
H 2(�g, R) � R. One can show that in fact, the torsion may be identified with
the symplectic volume on H 1(�g, gρ). A rigorous proof of this is given in [W].

The case of interest to us here is that of N a Seifert manifold and G = U(1). In this
case, the torsion τ (N; ρ) takes values in

∧max H 1(N, gρ)∗ ∧max H 3(N, gρ)∗ ⊗ ∧max H 2(N, gρ)⊗∧max H 0(N, gρ),
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where by Poincaré duality H 3(N, gρ) is canonically dual to

H 0(N, gρ) � R

and H 1(N, gρ) is canonically dual to H 2(N, gρ). Note that

H 0(N, gρ) � R

once we choose a basis, because we are working with U(1). Thus,

τ (N; ρ) ∈ (∧max H 1(N, gρ)∗)⊗2,

or
√

τ (N; ρ) ∈ ∧max H 1(N, gρ)∗.

When N is two-dimensional we observed above (see [W]) that the torsion can be
identified with the symplectic volume on H 1(�, gρ).

We recall our previous results in equation (18), where we observed that for the
gauge group U(1) the Chern–Simons partition function Z X was proportional to the
symplectic volume. In the case G = U(1), for a Seifert manifold U(1)→ N → �,
we would also like to see that

√
τ (N) is proportional to the symplectic volume on

the moduli space U(1)2g × Zn .
Writing this more concisely, we want to see that

√

τ (N) = C · ωg, (25)

where C ∈ R
∗ is some nonzero constant. Here ω ∈ 
2(U(1)2g × Zn);R) is the

symplectic form on U(1)2g × Zn , i.e., the symplectic form on each of the n disjoint
copies of U(1)2g. We introduce the notation a = (ρ, m) ∈ U(1)2g × Zn. Here
ωa(α, β) := ∫

� α ∧ β , for α, β ∈ H 1(N, ga) � H 1(�, gρ) � Ta(U(1)2g × Zn).

Here the last equality follows from Proposition 3.2. Also
√

τ (N) ∈ 
2g(U(1)2g ×
Zn;R), i.e., we define

√
τ (N)a := √τ (N; a), ∀a ∈ U(1)2g × Zn as a section of

the top exterior power of T ∗(U(1)2g × Zn)]. To summarize, both the torsion and
the symplectic volume are volume elements on U(1)2g × Zn and the Lie group
structure of U(1) means that the tangent bundle is trivial, and there is a natural
basis vector given by a generator of the Lie algebra of U(1). In terms of this basis
vector, we note that the definition of the torsion does not depend on the choice of
a point in U(1)2g × Zn , since the differential of the chain complex is simply the
exterior derivative. For nonabelian groups the differential is the twisted differential
dA = d + Ad(A), which does depend on the choice of a flat connection A. If the
group is abelian, dA reduces to the exterior derivative d, and it does not depend on A.

It will be sufficient to identify
√

τ (N) and ωg at a single point of the moduli
space U(1)2g × Zn , since we will show that

√
τ (N) and ω are invariant under left

multiplication, i.e., invariant under the action,

La : U(1)2g × Zn → U(1)2g × Zn

defined by La : b �→ a · b for a ∈ U(1)2g × Zn .
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First, we show that
√

τ (N) is invariant under this action. As discussed above,
the torsion does not depend on the choice of point a = [A] ∈ U(1)2g × Zn

corresponding to a flat connection A. By construction, the torsion is independent
of a.

We identify H 1(N, R) � H 1(N, d), viewed as differential 1-forms, with
Ta(U(1)2g × Zn) in the following way. The generators of H 1(N, R) come from
generators of the cohomology for U(1), one for each generating loop of the funda-
mental group π1(N). The tangent space to the moduli space U(1)2g × Zn at a then
has 2g generators

{

∂
∂φi a

}2g
i=1. Since the definition of τ (N) is independent of a, where

∂
∂φi is the vector field on the i th copy of U(1) in U(1)2g × Zn , we have that

(d La)b
∂

∂φi
a
= ∂

∂φi
a·b

, ∀b ∈ U(1)2g × Zn, 1 ≤ i ≤ 2g. (26)

We conclude that L∗aτ (N) = τ (N), ∀a ∈ U(1)2g×Zn , i.e., τ (N) is invariant under
the action of U(1)2g × Zn on itself.

The next thing that we will show is that ω, the Goldman-Atiyah-Bott symplectic
form on the moduli space, is invariant under the action of U(1)2g × Zn on itself.
This can be seen directly. Consider

(L∗aω)a

(

∂

∂φi
,

∂

∂θ j

)

= ωa·a
(

(d La)a

(

∂

∂φi

)

, (d La)a

(

∂

∂φ j

))

= ωa·a
(

∂

∂φi
,

∂

∂φ j

)

= ωa

(

∂

∂φi
,

∂

∂φ j

)

.

Thus,
L∗aω = ω, ∀a ∈ U(1)2g × Zn,

i.e., ω is invariant under the action of U(1)2g × Zn on itself.
Now we can prove our original claim. Let e denote the identity element of

U(1)2g × Zn . Then at the point e,
√

τ (N) and ωg must agree up to a nonzero
multiplicative constant:

√

τ (N)|e = C · ωg|e
for some C ∈ R

∗. By left invariance, we therefore have

√

τ (N)|a = C · ωg|a, ∀a ∈ U(1)2g × Zn .

Thus,
√

τ (N) = C · ωg.
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Abstract To a Hamiltonian action of a compact Lie group K on a symplectic mani-
fold X , the symplectic implosion construction of Guillemin, Jeffrey and Sjamaar
associates a stratified symplectic space X impl with a Hamiltonian action of the maxi-
mal torus T of K such that, if ζ lies in a fixed positive Weyl chamber in the dual
of the Lie algebra of T , then the symplectic reduction of X by K at level ζ can be
canonically identified with the symplectic reduction of X impl by T at level ζ . More-
over X impl can be obtained as the symplectic quotient by K of the product of X
and the universal symplectic implosion (T ∗K )impl, and (T ∗K )impl can be naturally
identified with the canonical affine completion of G/Umax where G is the complexi-
fication of K and Umax is a maximal unipotent subgroup of G (or equivalently
the unipotent radical of a Borel subgroup of G). Thus if X is a projective variety
with a linear G-action, the symplectic implosion X impl can be identified with the
nonreductive GIT quotient G//Umax.

In this paper the symplectic implosion construction is generalised so that if U is
the unipotent radical of any parabolic subgroup P of G then the associated gene-
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1 Introduction

There is a close relationship between Mumford’s geometric invariant theory (GIT)
in (complex) algebraic geometry and the process of reduction in symplectic geo-
metry. GIT was developed to construct quotients of algebraic varieties by reduc-
tive group actions and thus to construct and study moduli spaces [27, 28]. When a
moduli space (or a compactification of a moduli space) over C can be constructed
as a GIT quotient of a complex projective variety by the action of a complex re-
ductive group G, then it can be identified with a symplectic reduction by a maxi-
mal compact subgroup K of G, and techniques from symplectic geometry can be
used to study its topology (for example [2, 15, 16, 19, 20, 21, 22]). Many moduli
spaces arise as quotients of algebraic group actions, but the groups concerned are
not necessarily reductive, so that classical GIT does not apply and different meth-
ods need to be used to construct the quotients (cf., e.g., [18, 24]). Nonetheless, in
suitable situations GIT can be generalised to allow us to construct GIT-like quo-
tients (and compactified quotients) for these actions [7, 23]. This paper describes
some ways in which such nonreductive compactified quotients can be studied using
symplectic techniques closely related to the “symplectic implosion” construction of
Guillemin, Jeffrey, and Sjamaar [14].

More precisely, suppose that U is a maximal unipotent subgroup of a complex
reductive group G acting linearly (with respect to an ample line bundle L) on a
complex projective variety X , and suppose that the linear action of U on X extends
to a linear action of G. Then the ring of invariants

⊕

k≥0 H 0(X, L⊗k )U is finitely
generated and the enveloping quotient X//U (in the sense of [7]) is the projective
variety Proj(

⊕

k≥0 H 0(X, L⊗k)U ) associated to the ring of invariants. Moreover,
if K is a maximal compact subgroup of G, and X is given a suitable K -invariant
Kähler form, then X//U can be identified with the imploded cross-section X impl of
X by K in the sense of the symplectic implosion construction of Guillemin, Jeffrey,
and Sjamaar [14]. Note that here U is the unipotent radical of a Borel subgroup of
G. The aim of this paper is to generalise symplectic implosion to give a symplectic
construction for GIT-like (compactified) quotients by the unipotent radical U of any
parabolic subgroup P of a complex reductive group G, when the action extends to
an action of G. Hence we obtain a “moment map” description of such compactified
quotients of projective varieties by unipotent radicals of parabolics which is analo-
gous to the description of a reductive GIT quotient Y//G as a symplectic quotient
μ−1(0)/K , where K is a maximal compact subgroup of G and μ is a moment map.

The layout of the paper is as follows. Section 2 reviews classical GIT and
its relationship with symplectic geometry, while Section 3 reviews symplectic
implosion from [14] and extends its construction to cover quotients by unipotent
radicals of parabolics. Section 4 gives a brief description of the results of [7, 23] on
nonreductive actions and the construction of compactified quotients (more details
and a much more leisurely introduction to nonreductive GIT can be found in [7]) and
finally relates them to symplectic implosion. A simple example when G = SL(2;C)
is worked out in detail at the very end of the paper in Example 4.8.
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1.1 Index of notation

Notation is introduced in this paper as follows:

μ, k, Kζ §2.1

ÔL(X), X//G, X ss, X s (for reductive actions) §2.2

X impl, T, t, t∗+, W, [Kζ , Kζ ],�, B, Umax, G/Umax
aff

,�,�∗+, Vλ,�, ι,w0 §3.1

Bop, U op
max, V (T )

λ , v� ,F , α∨, S, X̃ impl §3.1

U, P, L(P), K (P), SP , R+, R(SP ), Q(P), k(P), z(P), G/U
aff

, X//U, E(P) §3.2

V (P)
� , V K (P)

� , v
(P)
� , v

(P)
�,λ, π

K (P)
, t∗(P)+,F (P), k

(P)∗
+ , Kζ (P), v

(P)
σ , X K ,K (P)

impl §3.2

˜

X K ,K (P)

impl , G̃/U
aff

§3.3

X ss, X s, Xnss, Xns, X//U, G ×U X , X s̄, X ss §4.1

Û , X̂//U , L̂ε = L̂(N)
ε ,X , X̃ , X̃//U §4.2

2 Symplectic reduction and geometric invariant theory

The GIT quotient construction in complex algebraic geometry is closely related to
the process of reduction in symplectic geometry.

2.1 Symplectic reduction

Suppose that a compact, connected Lie group K with Lie algebra k acts smoothly
on a symplectic manifold X and preserves the symplectic form ω. Let us denote the
vector field on X defined by the infinitesimal action of a ∈ k by x �→ ax . Recall that
a moment map for the action of K on X is then a smooth map μ : X → k∗ which
satisfies

dμ(x)(ξ) · a = ωx (ξ, ax)

for all x ∈ X , ξ ∈ Tx X , and a ∈ k. Equivalently, if μa : X → R denotes the
component of μ along a ∈ k defined for all x ∈ X by the pairing μa(x) = μ(x) · a
between μ(x) ∈ k∗ and a ∈ k, then μa is a Hamiltonian function for the vector
field on X induced by a. We shall assume that any moment map μ : X → k∗ is
K -equivariant with respect to the given action of K on X and the coadjoint action
of K on k∗. If the stabiliser Kζ of ζ ∈ k∗ acts freely on μ−1(ζ ) then μ−1(ζ ) is
a submanifold of X and the symplectic form ω induces a symplectic structure on
the quotient μ−1(ζ )/Kζ , which is the Marsden–Weinstein reduction, or symplectic
reduction, at ζ of the action of K on X . The quotient μ−1(ζ )/Kζ also inherits a
symplectic structure when the action of Kζ on μ−1(ζ ) is not free, but in this case it
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is likely to have singularities (although these will be only orbifold singularities if ζ
is a regular value of μ, or equivalently if Kζ acts on μ−1(ζ ) with finite stabilisers).
The case ζ = 0 is of particular importance; μ−1(0)/K is often called the symplectic
quotient of X by the action of K .

Now let X be a nonsingular connected complex projective variety embedded in
complex projective space P

n , and let G be a complex Lie group acting on X via a
complex linear representation ρ : G → GL(n + 1;C). By an appropriate choice of
coordinates on P

n we may assume that ρ maps a maximal compact subgroup K of
G into the unitary group U(n+ 1). Then the Fubini–Study form ω on P

n restricts to
a K -invariant Kähler form on X , and there is a moment map μ : X → k∗ defined
(up to multiplication by a constant scalar factor depending on the convention chosen
for the normalisation of the Fubini–Study form) by

μ(x) · a =
¯̂xtρ∗(a)x̂

2πi‖x̂‖2 (1)

for all a ∈ k, where x̂ ∈ C
n+1 − {0} is a representative vector for x ∈ P

n and
the representation ρ : K → U(n + 1) induces ρ∗ : k → u(n + 1) and dually
ρ∗ : u(n + 1)∗ → k∗.

In this situation there are two possible quotient constructions: the symplectic
reduction μ−1(0)/K in symplectic geometry and the GIT quotient X//G in alge-
braic geometry described below. In fact these give us the same space, at least up to
homeomorphism (and diffeomorphism away from the singularities).

2.2 Mumford’s geometric invariant theory

Let X be a complex projective variety and let G be a complex reductive group acting
on X . Recall that over C a linear algebraic group G is reductive if and only if it is
the complexification of a maximal compact subgroup K . The simplest nontrivial
example is the complexification C

∗ of the circle S1, and more generally GL(n;C)
is the complexification of the unitary group U(n) and thus is reductive. In contrast
the additive group of complex numbers C

+ has no nontrivial compact subgroups and
so is not reductive; the same is true of any complex linear algebraic group U which
is unipotent (that is, U is isomorphic to a closed subgroup of the group of strictly
upper triangular matrices in GL(n;C) for some n). In some sense reductive and
unipotent groups sit at the opposite extremes of a spectrum, and any linear algebraic
group H has a unique maximal unipotent normal subgroup U (its unipotent radical)
such that the quotient group H/U is reductive.

Geometric invariant theory needs an extra ingredient in addition to the action of
G on X , which is a linearisation of the action, that is, a line bundle L on X and a
lift of the action of G to L . The line bundle L is usually taken to be ample, and then
very little generality is lost by assuming that for some projective embedding

X ⊆ P
n
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the action of G on X extends to an action on P
n given by a representation

ρ : G → GL(n + 1),

and taking for L the hyperplane line bundle OPn (1) on P
n .

A categorical quotient of a variety X under an action of G is a G-invariant
morphism φ : X → Y from X to a variety Y such that any other G-invariant
morphism φ̃ : X → Ỹ factors as φ̃ = χ ◦ φ for a unique morphism χ : Y → Ỹ [28,
Chapter 2, §4]. An orbit space for the action is a categorical quotient φ : X → Y
such that each fibre φ−1(y) is a single G-orbit, and a geometric quotient is an orbit
space φ : X → Y which is an affine morphism such that

(i) if U is open in Y then

φ∗ : O(U)→ O(φ−1(U))

induces an isomorphism of O(U) onto O(φ−1(U))G , and
(ii) if W1 and W2 are disjoint closed G-invariant subvarieties of X then their images

φ(W1) and φ(W2) in Y are disjoint closed subvarieties of Y .

When G acts linearly on X as above there is an induced action of G on the
homogeneous coordinate ring

ÔL(X) =
⊕

k≥0

H 0(X, L⊗k) ∼= C[x0, . . . , xn]/IX , (2)

where IX is the ideal in C[x0, . . . , xn] generated by the homogeneous polynomials
vanishing on X . The subring ÔL(X)G consisting of the elements of ÔL(X) left
invariant by G is a finitely generated graded complex algebra because G is reductive,
and so we can define the GIT quotient X//G to be the projective variety
Proj(ÔL(X)G ) associated to ÔL(X)G [27]. The inclusion of ÔL(X)G in ÔL(X)
determines a rational map q from X to X//G, but in general there will be points of
X ⊆ P

n where every G-invariant polynomial vanishes and so this map will not be
well defined everywhere on X . Hence we define the set X ss of semistable points in
X to be the set of those x ∈ X for which there exists some f ∈ ÔL(X)G not vanish-
ing at x , and then the rational map q restricts to a surjective G-invariant morphism
from the open subset X ss of X to the quotient variety X//G, which is a categorical
quotient for the action of G on X ss. This restriction q : X ss → X//G is not neces-
sarily an orbit space: when x and y are semistable points of X we have q(x) = q(y)
if and only if the closures OG (x) and OG (y) of the G-orbits of x and y meet in X ss.
Topologically X//G is the quotient of X ss by the equivalence relation ∼ such that
if x and y lie in X ss then x ∼ y if and only if OG(x) and OG (y) meet in X ss.

A stable point of X (“properly stable” in the terminology of [27]) is a point
x of X ss with a G-invariant neighbourhood in X ss such that every G-orbit in this
neighbourhood is closed in X ss and has dimension dim G. If U is any G-invariant
open subset of the set X s of stable points of X , then q(U) is an open subset of X//G
and the restriction q|U : U → q(U) of q to U is an orbit space for the action of
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G on U , so that it makes sense to write U/G for q(U); in fact U/G is a geometric
quotient for the action of G on U . In particular there is a geometric quotient X s/G
for the action of G on X s, and X//G can be thought of as a compactification of
X s/G:

X s ⊆ X ss ⊆ X
open open

⏐

⏐

�

⏐

⏐

�

X s/G ⊆ X//G = X ss/ ∼
open

(3)

Remark 2.1. X s, X ss, and X//G are unaltered if for any k > 0 the line bundle L
is replaced by L⊗k with the induced action of G, so it is sometimes convenient to
allow fractional linearisations L⊗�/m .

The subsets X ss and X s of X are characterised by the following properties (see
Chapter 2 of [27] or [28]).

Proposition 2.2 (Hilbert–Mumford criteria).

(i) A point x ∈ X is semistable (respectively stable) for the action of G on X if and
only if for every g ∈ G the point gx is semistable (respectively stable) for the
action of a fixed maximal (complex) torus of G.

(ii) A point x ∈ X with homogeneous coordinates [x0 : . . . : xn] in some coordinate
system on P

n is semistable (respectively stable) for the action of a maximal
(complex) torus of G acting diagonally on P

n with weights α0, . . . , αn if and
only if the convex hull

Conv{αi : xi 
= 0}
contains 0 (respectively contains 0 in its interior).

The GIT quotient X//G is homeomorphic to the symplectic quotient μ−1(0)/K ,
and the subsets X ss and X s of X can be described using the moment map μ at (1)
above. More precisely [19], any x ∈ X is semistable if and only if the closure of its
G-orbit meets μ−1(0), while x is stable if and only if its G-orbit meets

μ−1(0)reg = {x ∈ μ−1(0)|dμ(x) : Tx X → k∗ is surjective},
and the inclusions of μ−1(0) into X ss and of μ−1(0)reg into X s induce homeomor-
phisms

μ−1(0)/K → X//G

and
μ−1(0)reg/K → X s/G.

Thus the moment map picks out a unique K -orbit in each stable G-orbit, and also
in each equivalence class of strictly semistable G-orbits, where x and y in X ss are
equivalent if the closures of their G-orbits meet in X ss (that is, if their images under
the natural surjection q : X ss → X//G agree).
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Remark 2.3. It follows from the formula (1) that if we change the linearisation of the
G-action of X by multiplying by a character χ : G → C

∗ of G, then the moment
map is modified by the addition of a central constant cχ in k∗, which we can identify
with the restriction to k of the derivative of χ .

Example 2.4. Let G = SL(2;C) act on X = (P1)4 via Möbius transformations and
let K be the maximal compact subgroup SU(2) of G. If we identify P

1 with the unit
sphere S2 in R

3 then there is a moment map

μ : X = (S2)4 → k∗ ∼= R
3

given by μ(x1, x2, x3, x4) = x1 + x2 + x3 + x4. Thus μ−1(0) consists of con-
figurations of four points on S2 which are balanced in the sense that their centre of
gravity lies at the origin, while μ−1(0)\μ−1(0)reg consists of the configurations in
which two points coincide at some p ∈ S2 and the other two points coincide at the
antipodal point−p. The open subset

X s = {(x1, x2, x3, x4) ∈ (P1)4 : x1, x2, x3, x4 distinct}
of X = (P1)4 has a geometric quotient which, using the cross-ratio, can be identified
with

P
1 − {0, 1,∞},

and this in turn can be identified with μ−1(0)reg/K . In addition,

X ss = {(x1, x2, x3, x4) ∈ (P1)4 : at most two of x1, x2, x3, x4 coincide}
has a categorical quotient X//G ∼= X ss/∼∼= P

1 in which the points 0, 1,∞ each
represent three strictly semistable G-orbits in X : one G-orbit consisting of con-
figurations in which two points xi and x j coincide at some p ∈ P

1 and the other
two points xk and xm coincide at a distinct point q ∈ P

1, a second consisting of
configurations in which xi and x j coincide at some p ∈ P

1 and the other two points
xk and xm are distinct from each other and from p, and the third consisting of con-
figurations in which xk and xm coincide at a some point q ∈ P

1 while xi and x j are
distinct from each other and from q . The first of these orbits is closed in X ss and lies
in the closure of each of the other two orbits.

3 Symplectic implosion and quotients by nonreductive groups

Ways in which classical GIT might be generalised to actions of nonreductive affine
algebraic groups on algebraic varieties were studied in [7] (see also [23]) building
on earlier work such as [8, 9, 10, 11, 35]. Every affine algebraic group H has a
unipotent radical U � H such that H/U is reductive, so we can concentrate on
unipotent actions. It is shown in [7] that when a unipotent group U acts linearly
(with respect to an ample line bundle L) on a complex projective variety X , then
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X has invariant open subsets X s ⊆ X ss, consisting of the “stable” and “semistable”
points for the action, such that X s has a geometric quotient X s/U and X ss has a
canonical “enveloping quotient” X ss → X//U , which restricts to X s → X s/U ,
where X s/U is an open subset of X//U . However, in contrast to the reductive case,
the natural map from X ss to X//U is not necessarily surjective, and indeed its image
is not necessarily a subvariety of X//U , so this does not in general give us a cate-
gorical quotient of X ss. Furthermore, X//U is in general only quasiprojective, not
projective, though when the ring of invariants ÔL(X)U = ⊕

k≥0 H 0(X, L⊗k )U is

finitely generated as a C-algebra then X//U is the projective variety Proj(ÔL(X)U ).
In order to obtain a compactification X//U of the enveloping quotient X//U

when the ring of invariants ÔL(X)U is not finitely generated, and to understand its
geometry even when X//U = X//U is itself projective, we can transfer the problem
of constructing a quotient for the U -action to the construction of a quotient for an
action of a reductive group G which contains U as a subgroup, by finding a reductive
envelope. This is a projective completion

G ×U X

of the quasiprojective variety G ×U X (which is the quotient of G × X by the free
action of U acting diagonally on the left on X and by right multiplication on G),
with a linear G-action on G ×U X extending the induced G-action on G ×U X ,
such that the U -invariants on X lying in a suitable set (see Definition 4.3 below)
extend to G-invariants on G ×U X . If the linearisation on G ×U X is ample, then
the classical GIT quotient

G ×U X//G

is a compactification X//U of X//U , and hence also of its open subset X s/U if
X s 
= ∅. Moreover, if X s̄ and X s̄s denote the open subsets of X consisting of
points of X which are stable and semistable for the G-action on G ×U X under
the inclusion

X ↪→ G ×U X ↪→ G ×U X ,

then
X s̄ ⊆ X s ⊆ X ss ⊆ X s̄s.

Note, however, that X s̄, X s̄s, and X//U depend in general on the choice of reductive
envelope G ×U X with its linear G-action, whereas X s, X ss, and X//U depend only
on the linear action of U on X .

Just as GIT quotients by complex reductive groups are closely related to
symplectic reduction, so quotients by suitable unipotent groups (in particular maxi-
mal unipotent subgroups of complex reductive groups) are closely related to the
construction called symplectic implosion [14], which we will discuss below.
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3.1 Symplectic implosion for a maximal unipotent subgroup

Let (X, ω) be a symplectic manifold on which a compact connected Lie group K
acts with a moment map μ : X → k∗, where k is the Lie algebra of K . Let us
choose an invariant inner product on k and use it to identify k∗ with k. Let T be
a maximal torus of K with Lie algebra t ⊆ k and Weyl group W = NK (T )/T ,
and let t∗+ ∼= t∗/W ∼= k∗/Ad∗(K ) be a positive Weyl chamber in k∗. The imploded
cross-section [14] of X is then

X impl = μ−1(t∗+)/ ≈, (4)

where x ≈ y if and only if μ(x) = μ(y) = ζ ∈ t∗+ and x = ky for some k ∈
[Kζ , Kζ ]. Here Kζ denotes the stabiliser Kζ = {k ∈ K : (Ad∗k)ζ = ζ } of ζ under
the coadjoint action of K on k∗, and [Kζ , Kζ ] is its commutator subgroup. If � is
the set of faces of t∗+ then

X impl =
∐

σ∈�

μ−1(σ )

[Kσ , Kσ ]
= μ−1((t∗+)◦) �

∐

σ∈�
σ 
=(t∗+)◦

μ−1(σ )

[Kσ , Kσ ]
, (5)

where Kσ = Kζ for any ζ ∈ σ . The topology on X impl is the quotient topology
induced from μ−1(t∗+), and X impl also inherits a symplectic structure. More pre-
cisely, it is stratified by the locally closed subsets μ−1(σ )/[Kσ , Kσ ], each of which
is the symplectic reduction by the action of [Kσ , Kσ ] of a locally closed symplectic
submanifold

Xσ = Kσμ−1

⎛

⎝

⋃

τ∈�,τ̄⊇σ

τ

⎞

⎠

of X (and locally near every point, X impl can be identified symplectically with the
product of the stratum and a suitable cone in the normal direction). The induced
action of T on X impl preserves this symplectic structure and has a moment map

μX impl : X impl → t∗+ ⊆ t∗

inherited from the restriction of μ to μ−1(t∗+). If ζ ∈ t∗+, the symplectic reduction
of X impl at ζ for this action of T is the symplectic reduction of X at ζ for the action
of K :

μ−1
Ximpl

(ζ )

T
= μ−1(ζ )

T · [Kζ , Kζ ]
= μ−1(ζ )

Kζ
. (6)

The universal imploded cross-section is the imploded cross-section

(T ∗K )impl = K × t∗+/ ≈ (7)
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of the cotangent bundle T ∗K ∼= K × k∗ with respect to the K -action induced from
the right action of K on itself; it inherits an action of K × T from the left action of
K on itself and the right action of T on K . Any other imploded cross-section X impl
can be constructed as the symplectic quotient of the product X × (T ∗K )impl by the
diagonal action of K [14, Theorem 4.9].

In fact (T ∗K )impl is always a complex affine variety, and its symplectic structure
is given by a Kähler form. Indeed, let G = Kc be the complexification of K and
let B be a Borel subgroup of G with G = K B and K ∩ B = T . If Umax ≤ B
is the unipotent radical of B (and hence a maximal unipotent subgroup of G), then
Umax is a Grosshans subgroup of G [12]: that is, the quasiaffine variety G/Umax can
be embedded as an open subset of an affine variety in such a way that its comple-
ment has (complex) codimension at least two. This means that the ring of invariants
O(G)Umax is finitely generated (see for example [12]), and by [14, Proposition 6.8],
there is a natural K × T -equivariant identification

(T ∗K )impl ∼= Spec(O(G)Umax)

of the canonical affine completion Spec(O(G)Umax) of G/Umax with (T ∗K )impl.
It follows that if X is a complex projective variety on which G acts linearly with
respect to a very ample line bundle L, and ω is an associated K -invariant Kähler
form on X , then the symplectic quotient X impl of X × (T ∗K )impl by K can be
identified with the GIT quotient (X × Spec(O(G)Umax)))//G. Moreover,

ÔL(X)Umax ∼= (ÔL(X)⊗O(G)Umax)G

is finitely generated, and if we define the GIT quotient X//Umax to be the projective
variety Proj(ÔL(X)Umax) associated to the ring of invariants ÔL(X)Umax then

X//Umax = Proj(ÔL(X)Umax) ∼= (X × Spec(O(G)Umax)))//G ∼= X impl. (8)

The proof in [14, Section 6] that (T ∗K )impl is homeomorphic to the canonical
affine completion

G/Umax
aff = Spec(O(G)Umax)

of G/Umax runs as follows. First it is possible to reduce to the case that K is semi-
simple and simply connected, by regarding K as the quotient by a finite central

subgroup of Z(K ) × [̃K , K ], where Z(K ) is the centre of K and [̃K , K ] is the
universal cover of the commutator subgroup [K , K ] of K .

Following [14, Section 6], if K is a semisimple, connected, and simply connected
compact group let � = ker(exp |t) be the exponential lattice in t, and let �∗ =
HomZ(�, Z) be the weight lattice in t∗, so that �∗+ = �∗ ∩ t∗+ is the monoid of
dominant weights. For λ ∈ �∗+ let Vλ be the irreducible G-module with highest
weight λ, and let

� = {�1, . . . ,�r }
be the set of fundamental weights, which forms a Z-basis of �∗ and a minimal
set of generators for �∗+. Recall that V ∗λ = Vιλ is the irreducible G-module with
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highest weight ιλ, where ι : t∗ → t∗ is the involution given by ιλ = −w0λ and w0
denotes the element of the Weyl group W of G such that w0Umaxw

−1
0 = U op

max is the
unipotent radical of the Borel subgroup Bop of G which is opposite to B ≥ U in the
sense that B ∩ Bop is the complexification Tc of T and Umax ∩U op

max is the identity
subgroup. We have an isomorphism of G-modules

O(G)Umax ∼=
⊕

λ∈�∗+
V ∗λ ∼=

⊕

λ∈�∗+
Vιλ, (9)

where G acts on itself on the left and Umax acts on G on the right. Note that Tc
normalises Umax and this isomorphism (9) becomes an isomorphism of G × Tc-
modules if we let Tc act on Vλ with weight −λ so that it acts on V ∗λ with weight λ
(see [12, Section 12]). Equivalently we have an isomorphism of G × Tc-modules

O(G)Umax ∼=
⊕

λ∈�∗+
V (T )

λ ⊗ V ∗λ , (10)

where V (T )
λ is the irreducible Tc-module with weight λ, and by [12, Theorem 12.9]

this isomorphism extends to an isomorphism of G × G-modules

O(G) ∼=
⊕

λ∈�∗+
Vλ ⊗ V ∗λ . (11)

In particular, the algebra O(G)Umax is generated by its finite-dimensional vector
subspace

⊕

�∈�
V ∗� ∼=

⊕

�∈�
V (T )

� ⊗ V ∗� .

The inclusion of this finite-dimensional subspace into O(G)Umax induces a closed

G×Tc-equivariant embedding of G/U
aff
max = Spec(O(G)Umax) into the affine space

E =
⊕

�∈�
V�
∼=
⊕

�∈�
(V (T )

� )∗ ⊗ V�,

sending the identity coset Umax in G/Umax ⊆ G/U
aff
max to a sum

∑

�∈�
v�

of highest-weight vectors v� ∈ V�
∼= (V (T )

� )∗ ⊗ V� . Under this embedding
G/Umax is identified with G EUmax , where EUmax is the subspace of E consisting of
vectors fixed by Umax. We give E a flat Kähler structure ωE via the unique K × T -
invariant Hermitian inner product on E which satisfies ‖v� ‖ = 1 for each � ∈ �.
Then by [14, Proposition 6.8] there is a K × T -equivariant map F : K × t∗+ → E
defined on t∗+ by
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F(1, λ) = 1√
π

r
∑

j=1

√

λ(α∨j )v� j , (12)

where α∨ = 2α/(α · α) and

S = {α1, . . . , αr }
is the set of simple roots corresponding to the fundamental weights {�1, . . . ,�r }
(so that �i ·α∨j = δi j for i, j ∈ {1, . . . , r}); moreover,F induces a homeomorphism

from (T ∗K )impl to G/Umax
aff

whose restriction to each stratum μ−1(σ )/[Kσ , Kσ ]
of (T ∗K )impl is a symplectic isomorphism onto its image.

Remark 3.1. Let M be any compact Kähler manifold on which the complexified
torus Tc acts in such a way that T preserves the Kähler structure and has a moment
map μT : M → t∗. In [1, Theorem 2] Atiyah shows

(a) that the image μT (Ȳ ) under the torus moment map μT of the closure Ȳ in M of
the Tc-orbit Y = Tcm of any m ∈ M is a convex polytope P whose vertices are
the images under μT of the connected components of Ȳ ∩MT , where MT is the
T -fixed-point set in M ,

(b) that the inverse image in Ȳ of each open face of P consists of a single Tc-orbit,
and

(c) that μT induces a homeomorphism of Ȳ /T onto P .

In fact Atiyah’s proof shows that if Y = exp(i t) is the orbit of m ∈ M under
the subgroup exp(i t) of Tc then μT restricts to a homeomorphism from Ȳ onto P ,
and the inverse image in Ȳ of each open face of P consists of a single exp(i t)-
orbit.

We can apply this to the compactification M = P(C⊕ E) of the affine space E .
The moment map μE

T : E → t∗ for the T -action on E with its chosen flat Kähler
structure is given (up to multiplication by a positive constant) by

∑

�

u� �→
∑

�

‖u�‖2�

when u� ∈ V� for � ∈ �, while the moment map μ
P(C⊕E)
T : P(C⊕ E)→ t∗ for

the T -action on P(C⊕ E) with the induced Fubini–Study Kähler structure is given
(up to multiplication by a positive constant) by

[

z :
∑

�∈�
u�

]

�→
∑

� ‖u�‖2�
|z|2 +∑�∈� ‖u� ‖2

when z ∈ C and u� ∈ V� for � ∈ � are not all zero. Comparing these two
moment maps on E (regarded as an open subset of P(C⊕ E) in the usual way) we
see that the image under μE

T of the closure Ȳ in E of the exp(i t)-orbit Y in E of the
vector

∑

�∈� v� corresponding to the identity coset Umax in G/Umax is the cone in
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t∗ spanned by the half-lines R+� for � ∈ �, which is of course the positive Weyl
chamber t∗+. We also find that the restriction

μE
T |Ȳ : Ȳ → t∗+ (13)

is a homeomorphism, and it is easy to check that the map F : t∗+ → E of [14,
Proposition 6.8] defined at (12) above can be identified with the composition of the
inverse (μE

T |Ȳ )−1 : t∗+ → Ȳ of (13) and the inclusion of Ȳ in E . From this it
can be deduced that its K × T -equivariant extension F : K × t∗+ → E induces a

bijection from (T ∗K )impl onto the closure G/Umax
aff

of G(
∑

�∈� v� ) ∼= G/Umax

in E using

(i) the Iwasawa decomposition

G = K exp(i t)Umax

of G, which tells us that G/Umax
aff = K Ȳ = F(K × t∗+), and

(ii) Lemma 6.2 of [14], which shows that for each face σ of t∗+ the stabiliser in K
of

∑

�∈σ
v�

is [Kσ , Kσ ].

Guillemin, Jeffrey, and Sjamaar also construct a K × T -equivariant desingulari-

sation ˜(T ∗K )impl for the universal imploded cross-section (T ∗K )impl ∼= G/Umax
aff

and a partial desingularisation X̃ impl for X impl. In [14, Section 7] they show that if
the action of K on X has principal face the interior (t∗+)◦ of t∗+ (where the principal
face is the minimal open face σ of t∗+ such that μ(X) ∩ t∗+ is contained in σ̄ ), then

X̃ impl can be identified with the symplectic quotient of X× ˜(T ∗K )impl by the induced
action of K (and they observe without proof that the same is true for any principal

face). Moreover, ˜(T ∗K )impl can be identified as a Hamiltonian K -manifold with the
homogeneous complex vector bundle

G̃/Umax
aff = G ×B EUmax (14)

over the flag manifold G/B , where the restriction to G×EUmax of the multiplication
map G × E → E induces a birational G-equivariant morphism

pUmax : G̃/Umax
aff → G/Umax

aff = (T ∗K )impl ⊆ E .

Note that the fixed-point set EUmax of Umax in E is the closure in E of the Tc-orbit
of
∑

�∈� v� . If λ0 ∈ t∗ is regular dominant and ε > 0 is sufficiently close to
0, and if ω0 is the Kähler form on G/B given by regarding G/B as the coadjoint
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K -orbit through ελ0, then p∗Umax
ωE + q∗ω0 is a Kähler form on G̃/Umax

aff
, where

q : G ×B E → G/B is the projection.
It is also shown in [14, Section 7] that the partial desingularisation X̃ impl can

alternatively be obtained from X impl via a symplectic cut with respect to the
T -action and the polyhedral cone ελ0+τ̄ , where τ is the principal face of X , λ0 ∈ τ ,
and ε > 0 is sufficiently close to 0; that is, X̃ impl is the symplectic reduction at ελ0
for the diagonal T -action on the product of X impl and the symplectic toric manifold
associated to the polyhedron−τ̄ (see [25, 26]).

3.2 Symplectic implosion for the unipotent radical of a parabolic
subgroup

Now suppose that U is the unipotent radical of a parabolic subgroup P of the
complex reductive group G. Recall (see, e.g., [4, 33]) that a parabolic subgroup
of G is a closed subgroup which contains some Borel subgroup, and its unipotent
radical is its unique maximal normal unipotent subgroup; thus by replacing P with
a suitable conjugate in G if necessary, we can assume that P contains the Borel
subgroup B of G and U ≤ Umax. Then P = U L(P) ∼= U � L(P), where the
Levi subgroup L(P) of P contains the complex maximal torus Tc of G, and we can
assume in addition that L(P) is the complexification of its intersection

K (P) = L(P) ∩ K = P ∩ K

with K . For some subset SP of the set S of simple roots, P is the unique parabolic
subgroup of G which contains B such that the root space g−α for α ∈ S is contained
in the Lie algebra of P if and only if α ∈ SP . The Lie algebra of L(P) is generated
by the root spaces gα and g−α for α ∈ SP together with the Lie algebra tc = t⊗R C

of the complexification Tc of T . In addition, the Lie algebra of U is

u =
⊕

α∈R+
gα 
⊆Lie(L(P))

gα, (15)

where R+ is the set of positive roots for G, while the Lie algebra of P is

p = tc ⊕
⊕

α∈R(SP)

gα, (16)

where R(SP ) is the union of R+ with the set of all roots which can be written
as sums of negatives of the simple roots in SP . If we identify S with the set of
vertices of the Dynkin diagram of K then the Dynkin diagram of the semisimple part
Q(P) = [K (P), K (P)] of K (P) is the subdiagram given by leaving out the vertices
which do not belong to SP . We can decompose k(P) = LieK (P) and t as
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k(P) = [k(P), k(P)]⊕ z(P) and t = t(P) ⊕ z(P),

where [k(P), k(P)] is the Lie algebra of Q(P) = [K (P), K (P)], while t(P) is the Lie
algebra of the maximal torus T (P) = T ∩ [K (P), K (P)] of Q(P), and z(P) is the Lie
algebra of the centre Z(K (P)) of K (P). As before let Bop = TcUop

max be the Borel
subgroup of G, with unipotent radical U op

max, which is opposite to B in the sense that
B ∩ Bop = Tc and Umax ∩ U op

max = {1}, and let ι : t∗ → t∗ be the involution given
by ιλ = −w0λ, where w0 denotes the element of the Weyl group W of G such that
w0Umaxw

−1
0 = U op

max.
By [13, Theorem 2.2] U is a Grosshans subgroup of G, and so, just as in the

case U = Umax, the ring of invariants O(G)U is finitely generated and G/U has a
canonical affine completion

G/U ⊆ G/U
aff = Spec(O(G)U ) (17)

such that the complement of G/U in G/U
aff

has codimension two.

Remark 3.2. When U = Umax the Iwasawa decomposition

G = K exp(i t)Umax

enables us to identify G/Umax with K exp(i t). More generally we have an analogous
decomposition

G = K ×K (P) P = K ×K (P) L(P)U = K ×K (P) K (P) exp(ik(P))U

= K exp(ik(P))U, (18)

which enables us to identify G/U with K exp(ik(P)).

Let X be a complex projective variety on which G acts linearly with respect to
a very ample line bundle L, and let ω be an associated K -invariant Kähler form on
X . Then it follows by the Borel transfer theorem (see, e.g., [5] Lemma 4.1) that

ÔL(X)U ∼= (ÔL(X)⊗O(G)U )G

is finitely generated, and the associated projective variety

X//U = Proj(ÔL(X)U )

is isomorphic to the GIT quotient (G/U
aff × X)//G. Just as in the case U = Umax,

if we have a suitable K -invariant Kähler form on G/U
aff

, then we will be able

to identify X//U with a symplectic quotient of G/U
aff × X by K , and obtain a

symplectic description of X//U analogous to symplectic implosion, with G/U
aff

playing the role of the universal imploded cross-section (T ∗K )impl. As is observed
in [14, Section 6], the easiest case is that in which K is semisimple and simply
connected (for example when K = SU(r + 1)); for general compact connected K
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one can reduce to this case by considering the product K̃ of the centre of K and
the universal cover of its commutator subgroup [K , K ], and expressing K as K̃/ϒ ,
where ϒ is a finite central subgroup of K̃ .

Therefore, as in the previous subsection, let K be a semisimple, connected, and
simply connected compact group, let � = ker(exp |t) be the exponential lattice in t,
and let �∗ = HomZ(�,Z) be the weight lattice in t∗, so that �∗+ = �∗ ∩ t∗+ is the
monoid of dominant weights. For λ ∈ �∗+ let Vλ be the irreducible G-module with
highest weight λ, and let � = {�1, . . . ,�r } be the set of fundamental weights,
forming a Z-basis of �∗ and a minimal set of generators for �∗+. Recall that we
have an isomorphism of G × G-modules

O(G) ∼=
⊕

λ∈�∗+
Vλ ⊗ V ∗λ ∼=

⊕

λ∈�∗+
Vλ ⊗ Vιλ (19)

which restricts to an isomorphism of G × Tc-modules

O(G)Umax ∼=
⊕

λ∈�∗+
V (T )

λ ⊗ V ∗λ ∼=
⊕

λ∈�∗+
V ∗λ , (20)

which is generated as an algebra by its finite-dimensional vector subspace

E∗ =
⊕

�∈�
V ∗�,

giving us a closed G × Tc-equivariant embedding of G/U
aff
max = Spec(O(G)Umax)

into the affine space E equipped with a flat Kähler structure. We have seen how

Guillemin, Jeffrey, and Sjamaar identify (T ∗K )impl with G/U
aff
max equipped with the

Kähler structure obtained from this embedding in E . To extend their construction to

G/U
aff

when U is the unipotent radical of a parabolic subgroup P ≥ B as above,
we first observe from the proof of [13, Theorem 2.2] that O(G)U is generated by any
finite-dimensional L(P)-invariant (or equivalently K (P)-invariant) vector subspace
of

O(G) ∼=
⊕

λ∈�∗+
Vλ ⊗ V ∗λ ∼=

⊕

λ∈�∗+
Vλ ⊗ Vιλ

which contains
E∗ =

⊕

�∈�
V ∗� ∼=

⊕

�∈�
V (T )

� ⊗ V ∗� .

Here as above V (T )
� is the irreducible Tc-module with weight � , while K (P) = K ∩

L(P) = K ∩ P is a maximal compact subgroup of the Levi subgroup L(P) = K (P)
c

of P, and K (P) acts on O(G) via left multiplication on G.
Let E(P) be the dual of the smallest K (P)-invariant subspace (E (P))∗ of O(G)

containing E∗; then (E (P))∗ is fixed pointwise by U , since K (P) normalises U and
U is a subgroup of Umax, which fixes E pointwise. The inclusion of (E(P))∗ in

O(G)U ⊆ O(G) induces a closed L(P) × G-equivariant embedding of G/U
aff =
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Spec(O(G)U ) into the affine space E(P), whose projection to E induces the embed-

ding of G/U
aff
max described in the previous subsection.

The subspace (E (P))∗ decomposes under the action of K × K (P) as a direct sum
of irreducible K × K (P)-modules

(E (P))∗ =
⊕

�∈�
(V (P)

� )∗,

where (V (P)
� )∗ is the smallest K×K (P)-invariant subspace of O(G) containing V ∗� .

As in [12, Section 12] we have

(V (P)
� )∗ ∼= V K (P)

� ⊗ V ∗� ,

where V K (P)

� is the irreducible K (P)-module with highest weight � , so

E (P) =
⊕

�∈�
V (P)

� =
⊕

�∈�
(V K (P)

� )∗ ⊗ V� . (21)

Moreover, if v
(P)
� is the vector in V (P)

�
∼= (V K (P)

� )∗ ⊗V� representing the inclusion

of V K (P)

� in V� then the embedding of G/U ⊆ G/U
aff

in E(P) induced by the

inclusion of (E(P))∗ in O(G)U takes the identity coset U to
∑

�∈� v
(P)
� . Let

V K (P)

� =
⊕

λ∈�∗�
V K (P)

�,λ

be the decomposition of V K (P)

� into weight spaces with weights λ ∈ t∗ under the

action of the maximal torus T of K (P). Then V (P)
� decomposes as a K × T -module

into a sum of irreducible K × T -modules

V (P)
�
∼=
⊕

λ

V� ⊗ (V K (P)

�,λ )∗ (22)

and v
(P)
� = ∑

λ v
(P)
�,λ, where v

(P)
�,λ ∈ V� ⊗ (V K (P)

�,λ )∗ represents the inclusion of

V K (P)

�,λ in V� . In particular, v
(P)
�,� is a highest-weight vector for the action of K ×

K (P) on V (P)
� .

Remark 3.3. The embedding of G/U ⊆ G/U
aff

in E(P) induced by the inclusion
of (E (P))∗ in O(G)U takes the identity coset to

∑

�∈� v
(P)
� . From the decompo-

sition G = K exp(ik(P))U (see Remark 3.2 above) and the compactness of K it

follows that the closure G/U
aff

of the G-orbit of
∑

�∈� v
(P)
� in E (P) is given by

the K -sweep

G/U
aff = K

(

exp(ik(P))
∑

�∈�
v

(P)
�

)
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of the closure in E (P) of the exp(ik(P))-orbit of
∑

�∈� v
(P)
� . Similarly the closure

in E (P) (or equivalently in the linear subspace
⊕

�∈�(V K (P)

� )∗⊗V K (P)

� of E (P)) of

the L(P)-orbit of
∑

�∈� v
(P)
� (which is a free orbit since U ∩ L(P) = {1}) is given

by K (P)
(

exp(ik(P))
∑

�∈� v
(P)
�

)

. Note alse that k(P) =⋃k∈K (P) Ad(k)t and so

exp(ik(P)) =
⋃

k∈K (P)

k exp(i t)k−1. (23)

Let SP = {α1, . . . , αr(P)} ⊆ S = {α1, . . . , αr } be the set of simple roots for the
root system of (K (P), T ) with corresponding positive Weyl chamber

t∗+,P = {ζ ∈ t∗ : ζ · α ≥ 0 for all α ∈ SP } = t
(P)∗
+ ⊕ z(P)∗,

where z(P) is the Lie algebra of the centre Z(K (P)) ≤ T of K (P) and t
(P)∗
+ is the

positive Weyl chamber for the semisimple part

Q(P) = [K (P), K (P)]

of K (P) with respect to the maximal torus T (P) = T ∩ [K (P), K (P)] of Q(P) and
simple roots given by restricting SP to T (P). If � · α = 0 for all α ∈ SP (or equi-
valently if � = � j for j > r(P)) then � ∈ z(P)∗ and V K (P)

� is one-dimensional;

in this situation Q(P) acts trivially on V K (P)

� and we have V K (P)

� = V K (P)

�,� with

V K (P)

�,λ = 0 if λ 
= � , and vK (P)

� = vK (P)

�,� , while vK (P)

�,λ = 0 if λ 
= � . On the

other hand, if j ≤ r (P) then � = � j restricts to a fundamental weight for Q(P)

and V K (P)

� = V Q(P)

� is the irreducible Q(P)-module with highest weight � |Q(P) on
which Z(K (P)) acts as scalar multiplication by � |Z(K (P)).

There is a unique K × K (P)-invariant Hermitian inner product on E(P) =
⊕

�∈� V (P)
� satisfying ‖v(P)

�,� ‖ = 1 for each � ∈ �, which is obtained from
K -invariant Hermitian inner products on the irreducible K -modules V� and their
restrictions to K (P)-invariant Hermitian inner products on the irreducible K (P)-
modules V (P)

� . This gives E (P) a flat Kähler structure which is K × K (P)-invariant.

Remark 3.4. Recall that

E(P) =
⊕

�∈�
V (P)

� =
⊕

�∈�
(V K (P)

� )∗ ⊗ V� ,

where V K (P)

� ⊆ V� , and the embedding of G/U ⊆ G/U
aff

in E (P) induced by

the inclusion of (E(P))∗ in O(G)U takes the identity coset U to
∑

�∈� v
(P)
� , where

v
(P)
� ∈ V (P)

�
∼= (V K (P)

� )∗ ⊗ V� represents the inclusion of V K (P)

� in V� . Thus

∑

�∈�
v(P)
� ∈

⊕

�∈�
(V K (P)

� )∗ ⊗ V K (P)

� ⊆ E (P),
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where
⊕

�∈�(V K (P)

� )∗⊗V K (P)

� is invariant under the action of the subgroup K (P)×
K (P) of K ×K (P) on E (P), and indeed is invariant under the action of L(P)× L(P).
If we identify (V K (P)

� )∗ ⊗ V K (P)

� with End(V K (P)

� ) equipped with the Hermitian
structure

〈A, B〉 = Trace(AB∗)

in the standard way, then v
(P)
� is identified with the identity map in End(V K (P)

� ). If V
is any Hermitian vector space then the moment map for the action of the product of
unitary groups U(V ) × U(V ) on End(V ) by left and right multiplication is given
(up to a nonzero real scalar) by

A �→ (i AA∗, i A∗A)

(cf. [29, Section 3.3]). Thus the moment map for the action of K (P) × K (P) on

⊕

�∈�
(V K (P)

� )∗ ⊗ V K (P)

�
∼=
⊕

�∈�
End(V K (P)

� )

is given (up to multiplication by a nonzero real scalar) by

∑

�∈�
A� �→

(

π K (P)

(

∑

�∈�
i A� A∗�

)

, π K (P)

(

∑

�∈�
i A∗� A�

))

, (24)

where π K (P)
: u
(⊕

�∈� V K (P)

�

)∗ → (k(P))∗ is the projection induced by the inclu-

sion of K (P) as a subgroup of the unitary group U
(⊕

�∈� V K (P)

�

)

. In particular, if

g belongs to the complexification L(P) of K (P) and g� : V K (P)

� → V K (P)

� is the

action of g on V K (P)

� , then

g
∑

�∈�
v(P)
� =

∑

�∈�
g�

and the moment map for the left K (P)-action sends this to

π K (P)

(

∑

�∈�
ig� g∗�

)

∈ k(P).

Using the decomposition k(P) = [k(P), k(P)] ⊕ z(P) we can decompose π K (P)
:

u
(⊕

�∈� V K (P)

�

)∗ → (k(P))∗ as

π K (P) = π [K (P),K (P)]⊕π Z (K (P)) : u

(

⊕

�∈�
V K (P)

�

)∗
→ [k(P), k(P)]∗⊕z(P)∗. (25)

If g = yz with y ∈ [L(P), L(P)] = Q(P)
c and z ∈ Z(L(P)) = Z(K (P))c, then the

K (P)-moment map above sends g
∑

�∈� v
(P)
� to
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π [K (P),K (P)]

⎛

⎝

∑

1≤ j≤r(P)

iy� j y∗� j

⎞

⎠+ π Z(K (P))

⎛

⎝

∑

1≤ j≤r

i z� j z
∗
� j

⎞

⎠

∈ [k(P), k(P)]∗ ⊕ z(P)∗.

It follows by the arguments of [29, Section 3] (in particular Proposition 3.10) that
the T (P)

c -orbit of
∑

�∈� v
(P)
� is mapped diffeomorphically onto t(P) by the moment

map

y
∑

�∈�
v(P)
� �→ πT (P)

⎛

⎝

∑

1≤ j≤r(P)

iy� j y∗� j

⎞

⎠ (26)

for the action of T (P) on E(P), since its image in the projective space P(E (P)) is
mapped diffeomorphically by the associated moment map onto the convex hull of
the set {w� : � ∈ �,w ∈ W (P)}, where W (P) is the Weyl group of Q(P) =
[K (P), K (P)] (cf. Remark 3.1).

Now consider the moment map μE (P)

T for the restriction to T of the K (P)-action
on E (P). This is given (up to multiplication by a positive constant) by

∑

�,λ

u�,λ �→
∑

�,λ

‖u�,λ‖2λ

when u�,λ ∈ V K (P)

�,λ for � ∈ � and λ ∈ �∗� ⊆ �∗. The embedding of G/U ⊆
G/U

aff
in E (P) induced by the inclusion of (E (P))∗ in O(G)U takes the coset of

t ∈ Tc to
∑

�,λ

λ(t)−1v
(P)
�,λ,

so the value taken by this moment map on the coset tU of t = t1t2 ∈ Tc, where
t1 ∈ T (P)

c and t2 ∈ Z(L(P)) = Z(K (P))c, is given by

∑

�,λ

|λ(t)|−2‖v(P)
�,λ‖2λ =

r(P)
∑

j=1

|� j (t2)|−2
∑

λ

|λ(t1)|−2‖v(P)
� j ,λ
‖2λ

+
r
∑

j=r(P)+1

|� j (t2)|−2‖v(P)
� j ,� j

‖2� j , (27)

where the j th sum over λ runs over all the weights of the irreducible K (P)-module
V K (P)

� j
with highest weight � j . When we decompose t∗ as t(P)∗ ⊕ z(P)∗ this has

component
r
∑

j=1

|� j (t2)|−2‖v(P)
� j
‖2� j |Z (K (P) in z(P)∗
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and
r(P)
∑

j=1

|� j (t2)|−2
∑

λ

|λ(t1)|−2‖v(P)
� j ,λ
‖2λ|T (P) in t(P)∗.

Definition 3.5. Let t∗(P)+ be the cone

t∗(P)+ =
⋃

w∈W (P)

Ad∗(w)t∗+

in t∗, where W (P) is the Weyl group of Q(P) = [K (P), K (P)] (which is a subgroup
of the Weyl group W of K ).

Lemma 3.6. The restriction to the closure exp(i t)
∑

�∈� v
(P)
� of the exp(i t)-orbit

in E (P) of
∑

�∈� v
(P)
� of the moment map μE (P)

T for the action of T on E (P)

is a homeomorphism onto the cone t∗(P)+ in t∗. Its inverse provides a continuous
injection

F (P) : t∗(P)+ → G/U
aff ⊆ E (P) (28)

such that μE(P)

T ◦F (P) is the identity on t∗(P)+. Moreover, exp(i t)
∑

�∈� v
(P)
� is the

union of finitely many exp(i t)-orbits, each of the form

F (P)(σ ) = exp(i t)
∑

�∈�,λ∈�∗�∩σ̄
v

(P)
�,λ,

where σ is an open face of t∗(P)+.

Proof. This follows by applying the results of [1] to the compactification P(C ⊕
E (P)) of the affine space E (P), as in Remark 3.1, and observing that the convex hull
of the weights λ of the T -action on the K (P)-module V K (P)

� is the convex hull of
{w� : w ∈ W (P)}, and thus the convex hull of the half-lines R+λ for λ ∈ �� with
� ∈ � is the cone t∗(P)+.

Lemma 3.7 (cf. [29, Lemma 3.12]). The image of the closure Tc
∑

�∈� v
(P)
� of

the Tc-orbit in E (P) of
∑

�∈� v
(P)
� under the K (P)-moment map μE (P)

: E (P) →
(k(P))∗ ∼= k(P) is contained in t.

Proof. The orthogonal complement to t in k(P) is [k(P), t], and if ζ ∈ t and ξ ∈ k(P)

and t ∈ Tc then by Remark 3.4,

μE (P)

(

t
∑

�∈�
v(P)
�

)

· [ξ, ζ ] =
∑

�∈�
Trace(i [ξ, ζ ]t� t∗� )

=
∑

�∈�
Trace(iξ [ζ, t� t∗� ]) = 0,

since [ζ, t� t∗� ] = 0.
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Corollary 3.8. The restriction of the K (P)-moment map μE (P)
: E (P) → (k(P))∗ to

the closure

exp(ik(P))
∑

�∈�
v

(P)
�

of the exp(ik(P))-orbit in E (P) of
∑

�∈� v
(P)
� is a homeomorphism from

exp(ik(P))
∑

�∈� v
(P)
� onto the closed subset

k
(P)∗
+ = Ad∗(K (P))t∗(P)+

of k(P)∗. Moreover, exp(ik(P))
∑

�∈� v
(P)
� is the union of finitely many exp(ik(P))-

orbits which correspond under this homeomorphism to the open faces of k
(P)∗
+ .

Proof. We have already observed that the restriction of the T -moment map μE (P)

T :
E(P)→ t∗ to the closure

exp(i t)
∑

�∈�
v

(P)
�

of the exp(i t)-orbit of the image
∑

�∈� v
(P)
� of the identity coset U under the

embedding of G/U in E(P) is a homeomorphism from this closure onto the cone
t∗(P)+. Since μE (P)

T is the projection of μE (P)
onto t∗, it follows immediately from

Lemma 3.7 above that the restriction of μE(P)
: E(P) → (k(P))∗ ∼= k(P) to this

closure exp(i t)
∑

�∈� v
(P)
� is a homeomorphism onto the cone t∗(P)+ when t∗ is

identified with t ⊆ k(P) via the restriction of the fixed invariant inner product on
k. Replacing the maximal torus T with kT k−1 for any k ∈ K (P), it follows that

the restriction of μE(P)
: E (P) → (k(P))∗ to the closure k exp(i t)k−1

∑

�∈� v
(P)
�

of the exp(iAd(k)t)-orbit of the image
∑

�∈� v
(P)
� of the identity coset U under

the embedding of G/U in E (P) is a homeomorphism onto the cone Ad∗(k)t∗(P)+.

Putting these homeomorphisms together for k ∈ K (P), we get a homeomorphism
M from

Z =
{

(k N (P)
T , x) ∈ K (P)/N (P)

T × E(P) : x ∈ k exp(i t)k−1
∑

�∈�
v

(P)
�

}

,

where N (P)
T is the normaliser of T in K (P), to

K (P) ×
N (P)

T
t∗(P)+ = {(k N (P)

T , ξ) ∈ K (P)/N (P)
T × k(P)∗|ξ ∈ Ad∗(k)t∗(P)+},
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which fits into a diagram

Z → K (P) ×
N(P)

T
t∗(P)+

α
⏐

⏐

�

⏐

⏐

�β

exp(ik(P))
∑

�∈� v
(P)
� → ⋃

k∈K (P) Ad∗(k)t∗(P)+ = k
(P)∗
+

(29)

where the first horizontal map is the homeomorphism M and the second is μE (P)
.

Since the image of α is dense and K (P) is compact, it follows that α is surjec-
tive. Moreover, β is surjective, and β(k N (P)

T , ξ) = β(k ′N (P)
T , ξ ′) if and only if

Ad∗(k−1)ξ lies in an open face σ of t+ such that k ′k−1 ∈ K (P)
σ , in which case

α(M−1(k N (P)
T , ξ)) = α(M−1(k N (P)

T , ξ)). Thus

μE (P)
: exp(ik(P))

∑

�∈�
v

(P)
� → k

(P)∗
+

is a continuous bijection, which is a homeomorphism since K is compact and M is
a homeomorphism.

The inverse of μE(P)
: exp(ik(P))

∑

�∈� v
(P)
� → k

(P)∗
+ gives us a continuous

K (P)-equivariant map

F (P) : k
(P)∗
+ → G/U

aff ⊆ E(P)

extending (28) such that μE(P)

T ◦ F (P) is the identity on k
(P)∗
+ . This in turn extends

to a continuous K × K (P)-equivariant map

F (P) : K × k
(P)∗
+ → G/U

aff
, (30)

which is surjective since G/U
aff = K (exp(ik(P))

∑

�∈� v
(P)
� ) by Remark 3.3.

Definition 3.9. If ζ ∈ k
(P)∗
+ = Ad∗(K (P))t∗(P)+ = Ad∗(K (P))t∗+ let ζ = Ad∗(k)ξ

with k ∈ K (P) and ξ ∈ t∗+, and let σ0 be the open face of t∗+ containing ξ . Let σ0(P)
be the open face of t∗+ whose closure is

σ0(P) = {ζ ∈ t∗ : ζ · α = 0 for all α ∈ Rσ0\R(P)},
where R and R(P) are the sets of roots of K and K (P), and

Rσ0 = {α ∈ R : ζ · α = 0 for all ζ ∈ σ0},
so that σ0(P) is an open subset of the open face containing σ0 of the cone t∗(P)+.

Finally, let Kζ (P) = kKξ k−1, where Kξ (P) = Kσ0(P) is the stabiliser under the
adjoint action of K of any element of σ0(P).
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Note that Kζ (P) ≤ Kζ for any ζ ∈ k
(P)∗
+ .

Lemma 3.10 (cf. [14, Lemma 6.2]). Let σ be an open face of t∗(P)+ and let

v(P)
σ =

∑

�∈�
λ∈Ad∗(W (P))�∩σ̄

v
(P)
�,λ.

If ζ ∈ σ then the stabiliser of v
(P)
σ in K is [Kζ (P), Kζ (P)].

Proof. Recall that t∗(P)+ =
⋃

w∈W (P) Ad∗(w)t∗+, so there is an element w0 of the

Weyl group W (P) of Q(P) = [K (P), K (P)] such that Ad∗(w0)ζ ∈ t∗+ and Ad∗(w0)σ
contains an open face σ0 of t∗+ with σ0 an open subset of σ . First assume that ξ =
Ad∗(w0)ζ lies in σ0. Then if � ∈ � and w ∈ W (P) we have Ad∗(w)� ∈ σ̄ if and
only if Ad∗(w)� lies in the linear subspace of t∗ spanned by �∩ σ̄ = �∩ σ0, and
since ξ ∈ σ0, this happens if and only if Kξ ≤ wK� w−1, so that

⋂

�∈�
λ=w�∈W (P)�∩σ̄

wK� w−1 = Kξ .

As in the proof of [14, Lemma 6.2] we find that if w ∈ W (P), the stabiliser in
G = Kc of [v(P)

�,w� ] ∈ P((V K (P)

� )∗ ⊗ V� ) is wP� w−1, where P� is the parabolic

subgroup of G associated to � , and thus the stabiliser in K of v
(P)
σ is the conjugate

by w0 of
⎧

⎪

⎪

⎨

⎪

⎪

⎩

k ∈
⋂

�∈�
λ=w�∈W (P)�∩σ̄

wK� w−1 : λ̃(g) = 1 for all λ̃ ∈ �∗ ∩ σ̄

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= {k ∈ Kξ : λ̃(g) = 1 for all λ̃ ∈ �∗ ∩ σ̄ } = [Kξ , Kξ ] = [Kσ0, Kσ0 ]. (31)

In general, if ξ = Ad∗(w0)ζ lies in t∗+ ∩ Ad∗(w0)σ then there is a unique open
face σ0 of t∗+ containing ξ . Let σ0(P) be as in Definition 3.9; then σ̄ ∩ t∗+ = σ0(P),

and so by the previous paragraph the stabiliser of v
(P)
σ in K is

w0[Kσ0(P), Kσ0(P)]w
−1
0 = [Kζ (P), Kζ (P)].

Thus we extend the definition of the imploded cross-section X impl to a K (P)-

imploded cross-section X K ,K (P)

impl as follows.

Definition 3.11. Let (X, ω) be a symplectic manifold on which K acts with a
moment map μ : X → k∗. As before let

k
(P)∗
+ = Ad∗(K (P))t∗(P)+ = Ad∗(K (P))t∗+ = Ad∗(Q(P))t∗+ ⊆ k(P)∗ (32)



Symplectic implosion and nonreductive quotients 237

be the sweep of t∗+ under the coadjoint action of K (P) on k∗, and let �(P) be the set

of open faces of k
(P)∗
+ . If ζ ∈ k(P)∗ let Kζ (P) be defined as in Definition 3.9. The

K (P)-imploded cross-section of X is

X K ,K (P)

impl = μ−1(k
(P)∗
+ )/ ≈K (P) ,

where x ≈K (P) y if and only if μ(x) = μ(y) = ζ ∈ k
(P)∗
+ and x = κy for some

κ ∈ [Kζ (P), Kζ (P)].
The universal K (P)-imploded cross-section is the K (P)-imploded cross-section

(T ∗K )K ,K (P)

impl = K × k
(P)∗
+ / ≈K (P)

for the cotangent bundle T ∗K ∼= K × k∗ with respect to the K -action induced from
the right action of K on itself.

Theorem 3.12. The map F (P) : K × k
(P)∗
+ → G/U

aff
of (30) induces a K × K (P)-

equivariant homeomorphism

(T ∗K )K,K (P)

impl = K × k
(P)∗
+ / ≈K (P)→ G/U

aff ⊆ E (P).

Moreover, under this identification of K × k
(P)∗
+ / ≈K (P) with G/U

aff ⊆ E (P), the
moment map for the action of K × K (P) on E (P) is induced by the map (K ×
k
(P)∗
+ )/ ≈K (P)→ k∗ × k(P)∗ given by

(k, ζ ) �→ (Ad∗(k)(ζ ), ζ )).

Proof. By Lemma 3.10,F (P) induces a continuous map (T ∗K )K,K (P)

impl → G/U
aff ⊆

E(P), which is surjective since G/U
aff = K (exp(ik(P))

∑

�∈� v
(P)
� ) by Remark 3.3.

The map (K × k
(P)∗
+ )/ ≈K (P)→ k∗ × k(P)∗ given by

(k, ζ ) �→ (Ad∗(k)(ζ ), ζ ))

is the composition of F (P) : K × k
(P)∗
+ → G/U

aff
with the restriction to

G/U
aff ⊆ E(P) of the moment map μE (P)

for the action of K × K (P) on E (P).
Moreover,F (P) is continuous and surjective and restricts to a homeomorphism from

exp(ik(P))
∑

�∈� v
(P)
� to k

(P)∗
+ by Corollary 3.8. If F (P)(k1, ζ1) = F(P)(k2, ζ2)

then it follows by applying μE (P)
that (Ad∗(k1)(ζ1), ζ1) = (Ad∗(k2)(ζ2), ζ2) and

therefore ζ1 = ζ2 and k1k−1
2 ∈ Kζ1 = Kζ2 . Thus

F (P)(1, ζ1) = (k−1
1 , 1)F (P)(k1, ζ1) = (k−1

1 , 1)F (P)(k2, ζ2)

= (k−1
1 k2, 1)F (P)(1, ζ2) = (k−1

1 k2, 1)F (P)(1, ζ1).
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Since ζ1 = ζ2 ∈ k
(P)∗
+ = Ad∗(K (P))t∗(P)+, we can write ζ1 = ζ2 = Ad∗(k0)(ζ ),

where ζ ∈ t∗(P)+ and k0 ∈ K (P), so

F (P)(1, ζ ) = (1, k−1
0 )F (P)(1, ζ1) = (k−1

1 k2, k−1
0 )F (P)(1, ζ1)

= (k−1
1 k2, 1)F (P)(1, ζ ).

By Lemma 3.6,F (P)(1, ζ ) lies in the exp(i t)-orbit of
∑

�∈�,λ∈�∗�∩σ̄ v
(P)
�,λ, where σ

is the open face of t∗(P)+ containing ζ . Hence by Lemma 3.10, k−1
1 k2 ∈

[Kζ (P), Kζ (P)], and thus F (P) induces a continuous bijection (T ∗K )K ,K (P)

impl →
G/U

aff ⊆ E (P). Since K is compact and so the map (K×k
(P)∗
+ )/ ≈(P)→ k∗×k(P)∗

given by (k, ζ ) �→ (Ad∗(k)(ζ ), ζ )) is proper, this continuous bijection is a homeo-
morphism.

Remark 3.13. If K (P) = T and ζ ∈ k
(P)∗
+ then Kζ (P) = Kζ , and so XKimplT is

the standard imploded cross-section X impl of [14]. On the other hand, if K (P) = K

then Kζ (P) is conjugate to T and [Kζ (P), Kζ (P)] is trivial for all ζ ∈ k
(P)∗
+ , so

XKimplK = T ∗K .

Of course G/U
aff

inherits a K × K (P)-invariant Kähler structure as a complex

subvariety of E(P). The subvariety G/U
aff

(which is in general singular) is stratified

by the (finitely many) G-orbits in G/U
aff

, and the K ×K (P)-invariant Kähler struc-
ture on E(P) restricts to a K × K (P)-invariant symplectic structure on each stratum,

which gives G/U
aff

a stratified symplectic structure. Under the homeomorphism

(T ∗K )K,K (P)

impl → G/U
aff

of Theorem 3.12 these strata correspond to the locally
closed subsets

K × Ad∗(K (P))σ

≈K (P)
∼= K (P) ×Kσ∩K (P)

(

K × σ

≈K (P)

)

∼= K (P) ×Kσ∩K (P)

(

K × σ

[Kσ(P), Kσ(P)]

)

of (T ∗K )K ,K (P)

impl , where σ ∈ � runs over the open faces of t∗+. So the homeo-

morphism (T ∗K )K ,K (P)

impl → G/U
aff

of Theorem 3.12 induces a stratified K ×
K (P)-invariant symplectic structure on the universal K (P)-imploded cross-section

(T ∗K )K,K (P)

impl . As in [14] the induced symplectic structure on

K (P) ×Kσ∩K (P)

(

K × σ

[Kσ(P), Kσ(P)]

)
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can be described directly, and can be expressed in terms of the symplectic reduction
by the action of the subgroup [Kσ(P), Kσ(P)] of K on a locally closed symplectic
submanifold of T ∗K (cf. [14, Section 2]).

Using this symplectic structure on (T ∗K )K ,K (P)

impl we obtain the following
corollary.

Corollary 3.14. Let K act on a symplectic manifold X with moment map μ : X →
k∗. Then the symplectic quotient of G/U

aff×X = (T ∗K )K ,K (P)

impl ×X by the diagonal

action of K can be identified via F (P) with X K ,K (P)

impl .

Remark 3.15. In particular, if X is a projective variety with a linear action of the

complexification G of K , then X K,K (P)

impl can be identified with the GIT quotient of

G/U
aff × X by the diagonal action of G.

It follows from Corollary 3.14 that if (X, ω) is any symplectic manifold on which

K acts with moment map μ : X → k∗ then X K,K (P)

impl inherits a stratified K × K (P)-
invariant symplectic structure

X K,K (P)

impl =
⊔

σ∈�

μ−1(σ )

≈K (P)

= μ−1((k
(P)∗
+ )◦) �

⊔

σ∈�
σ 
=(t∗+)◦

K (P) ×Kσ∩K (P)

(

μ−1(σ )

[Kσ(P), Kσ(P)]

)

(33)

with strata indexed by the set � of open faces of t∗+, which are locally closed

symplectic submanifolds of X K ,K (P)

impl . The induced action of K (P) on X K ,K (P)

impl pre-
serves this symplectic structure and has a moment map

μ
X K ,K (P)

impl

: X K ,K (P)

impl → k
(P)∗
+ ⊆ k(P)∗

inherited from the restriction of μ to μ−1(k
(P)
+ ).

Remark 3.16. In order to identify G/U
aff

with (T ∗K )K ,K (P)

impl we made the assump-
tion that K is semisimple and simply connected. However, the construction of

X K ,K (P)

impl makes sense whenever K is a compact connected Lie group with a Hamil-

tonian action on the symplectic manifold X , and as in [14] we can identify G/U
aff

with (T ∗K )K ,K (P)

impl in this more general situation by expressing K as the quotient of
the product of its centre Z(K ) and the universal cover of [K , K ] by a finite central

subgroup. We then get an identification of X K ,K (P)

impl with the symplectic quotient of

G/U
aff × X by K in the general case.
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3.3 Wonderful compactifications, symplectic cuts, and partial
desingularisations

Recently, Paradan [29] introduced a generalisation of the technique of symplectic
cutting (originally due to Lerman [25]) which is valid for a (not necessarily abelian)
compact connected group K and is motivated by the wonderful compactifications of
De Concini and Procesi. He defines a K -adapted polytope in t∗ to be a W -invariant
Delzant polytope P in t∗ whose vertices are regular elements of the weight lattice
�∗. If {λ1, . . . , λN } are the dominant weights lying in the union of all the closed
one-dimensional faces ofP, then there is a G×G-equivariant embedding of G = Kc
into

P

(

N
⊕

i=1

V ∗λi
⊗ Vλi

)

associating to g ∈ G its representation on
⊕N

i=1 Vλi . The closure X (P ,K ) of the
image of G in this projective space is smooth and has moment map

μPK×K : X (P ,K )→ k∗ × k∗,

whose image is

μPK×K (X (P ,K )) = {(Ad∗(k1)ξ,−Ad∗(k2)ξ) : ξ ∈ P, k1, k2 ∈ K }.
The symplectic cut X(P ,K ) defined by Paradan of a symplectic manifold X under
a Hamiltonian K -action with respect to such a K -adapted polytope P is given by
the symplectic quotient of X (P ,K ) × X by K , so that if X is a complex projective
variety with a linear K -action then X(P ,K ) is the GIT quotient

X(P ,K ) = (X (P ,K ) × X)//G,

where G = Kc. Then X(P ,K ) inherits a Hamiltonian K -action with moment map

μ
X

(P ,K ) : X(P,K )→ k∗ whose image is

μ
X

(P ,K ) (X(P ,K )) = μ(X) ∩ Ad∗(K )(P).

Moreover, if UP = Ad∗(K )(P◦), where P◦ is the interior of P , then (μ
X

(P ,K ) )−1

(UP ) is an open dense subset of X(P ,K ) which is K -equivariantly diffeomorphic to

the open subset μ−1(UP ) of X . This diffeomorphism is a quasisymplectomorphism
in the sense that there is a homotopy of symplectic forms taking the symplectic form

on (μ
X

(P ,K ) )−1(UP ) to the pullback of the symplectic form on μ−1(UP ).
Recall from [14, Section 7] that if Pε is the polyhedral cone−(ελ0+ t∗+), where

λ0 is a generic element of μ(X)∩t∗+ and 0 < ε � 1, then the imploded cross-section
X impl = XKimplT has a partial desingularisation
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X̃ impl = (X impl)(Pε ,T ),

which is the symplectic reduction of X (−t∗+,T ) × X impl at ελ0. Similarly, just as
in [14], if P ≥ B is a parabolic subgroup of G = Kc with maximal compact
subgroup K (P) = K∩P and unipotent radical U , then we can construct a K×K (P)-

equivariant desingularisation
˜

(T ∗K )K,K (P)

impl for the universal imploded cross-section

(T ∗K )K,K (P)

impl
∼= G/U

aff
and a partial desingularisation

˜

X K ,K (P)

impl for X K ,K (P)

impl , which

can be identified with the symplectic quotient of X × ˜

(T ∗K )K,K (P)

impl by the induced

action of K . Moreover,
˜

(T ∗K )K ,K (P)

impl can be identified as a Hamiltonian K -manifold
with

G̃/U
aff = G ×P

(

L(P)
∑

�∈�
v

(P)
�

)

= K ×K (P)

(

L(P)
∑

�∈�
v

(P)
�

)

, (34)

where L(P)
∑

�∈� v
(P)
� is the closure in E(P) (or equivalently in the linear subspace

⊕

�∈�
(

V K (P)

�

)∗⊗V K (P)

� of E (P)) of the L(P)-orbit (or equivalently the P-orbit) of
∑

�∈� v
(P)
� , and the restriction to G × L(P)

∑

�∈� v
(P)
� of the multiplication map

G × E (P)→ E(P) induces a birational G-equivariant morphism

pU : G̃/U
aff → G/U

aff = (T ∗K )K ,K (P)

impl ⊆ E (P).

It follows from Theorem 3.5 of [29] that L(P)
∑

�∈� v
(P)
� ) is a nonsingular

subvariety of

⊕

�∈�

(

V K (P)

�

)∗ ⊗ V K (P)

� ⊆ P

(

C⊕
⊕

�∈�

(

V K (P)

�

)∗ ⊗ V K (P)

�

)

.

If λ0 ∈ μ(X)∩ t∗+ ∩ z(P)∗ is generic and ε > 0 is sufficiently close to 0, and if ωε is
the Kähler form on G/P given by regarding G/P as the coadjoint K -orbit through

ελ0, then p∗UωE(P) + q∗Pωε is a Kähler form on G̃/U
aff

, where qP : G ×P E(P)→
G/P is the projection.

The partial desingularisation
˜

X K,K (P)

impl can alternatively be obtained from X K ,K (P)

impl

via a symplectic cut following Paradan [29]. Let W (P) be the Weyl group of the
compact subgroup K (P) of K ; then we have an identification

˜

X K ,K (P)

impl = (X K ,K (P)

impl

)

(Pε ,K (P))
, (35)

where the cut is with respect to the K (P)-action and the polyhedral cone Pε =
−(ελ0 + t∗(P)+). If we wish we can cut with respect to a suitable W (P)-invariant
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Delzant polytope Pε in this cone which is large enough that its complement does
not meet the compact subset μ(X), but then the identification (35) is not quite sym-
plectic according to Paradan’s construction; as in Remark 3.1 we have to distinguish
between the flat Kähler metric on

⊕

�∈�

(

V K (P)

�

)∗ ⊗ V K (P)

� ⊆ E (P)

and the Fubini–Study metric on

⊕

�∈�

(

V K (P)

�

)∗ ⊗ V K (P)

� ⊆ P

(

C⊕
⊕

�∈�

(

V K (P)

�

)∗ ⊗ V K (P)

�

)

⊆ P(C⊕ E(P)).

4 Nonreductive geometric invariant theory

The last section discussed a generalisation of symplectic implosion which is closely
related to a GIT-like quotient construction for a linear action of the unipotent radical
U of a parabolic subgroup P of a complex reductive group G on a complex variety
X . This section will recall from [7] a version of GIT for nonreductive group actions
and then relate it to symplectic implosion.

4.1 Background

Let H be an affine algebraic group, with unipotent radical U (that is, U is the
unique maximal normal unipotent subgroup of H ), acting linearly on a complex
projective variety X with respect to an ample line bundle L . If we wish to generalise
Mumford’s GIT to this nonreductive situation, the first problem to be faced is that
the ring of invariants

ÔL(X)H =
⊕

k≥0

H 0(X, L⊗k)H

is not necessarily finitely generated as a graded complex algebra, so that
Proj(ÔL(X)H ) is not well defined as a projective variety. Note, however, that in
the case considered in Section 3 in which the unipotent radical U of a parabolic
subgroup of a reductive group G acts linearly on X and the linear action extends
to G, then the ring of invariants is finitely generated. Even when ÔL(X)H is not
finitely generated Proj(ÔL(X)H ) does make sense as a scheme, and the inclusion of
ÔL(X)H in ÔL(X) gives us a rational map of schemes q from X to Proj(ÔL(X)H ),
whose image in Proj(ÔL(X)H ) is constructible (that is, a finite union of locally
closed subschemes).

We will consider only the case that H = U is unipotent, since H/U is always
reductive and classical GIT allows us to deal with quotients by reductive groups.
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A more leisurely introduction to nonreductive GIT and details and proofs of the
results quoted below can be found in [7].

Definition 4.1 (See [7]). Let I = ⋃

m>0 H 0(X, L⊗m)U and for f ∈ I let X f be
the U -invariant affine open subset of X where f does not vanish, with O(X f ) its
coordinate ring. The (finitely generated) semistable set of X is

X ss = X ss,fg =
⋃

f ∈I fg

X f

where I fg consists of f ∈ I such that O(X f )
U is finitely generated. The set of

(locally trivial) stable points is

X s = X lts =
⋃

f ∈I lts

X f ,

where I lts is the set of f ∈ I such that O(X f )
U is finitely generated, and q :

X f −→ Spec(O(X f )
U ) is a locally trivial geometric quotient. The set of naively

semistable points of X is the domain of definition

Xnss =
⋃

f ∈I

X f

of the rational map q , and the set of naively stable points of X is

Xns =
⋃

f ∈I ns

X f ,

where I ns consists of those f ∈ I such that O(X f )
U is finitely generated, and

q : X f −→ Spec(O(X f )
U ) is a geometric quotient.

The enveloped quotient of X ss is q : X ss → q(X ss), where q(X ss) is a dense
constructible subset (but not necessarily a subvariety) of the enveloping quotient

X//U =
⋃

f ∈I ss,fg

Spec(O(X f )
U )

of X ss.

Lemma 4.2 ([7, 4.2.9 and 4.2.10]). The enveloping quotient X//U is a quasi-
projective variety, and if ÔL(X)U is finitely generated then it is the projective
variety Proj(ÔL(X)U ).

Let G be a complex reductive group with U as a closed subgroup, and let G ×U
X denote the quotient of G × X by the free action of U defined by h(g, x) =
(gh−1, hx), which is a quasiprojective variety by [30, Theorem 4.19]. There is an
induced G-action on G×U X given by left multiplication of G on itself. If the action
of U on X extends to an action of G, there is an isomorphism of G-varieties
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G ×U X ∼= (G/U)× X (36)

given by [g, x] �→ (gH, gx). When U acts linearly on X with respect to a very
ample line bundle L inducing an embedding of X in P

n , and G is a subgroup of
SL(n+ 1;C), then there is a very ample G-linearisation (which we will also denote
by L) on G ×U X via the embedding

G ×U X ↪→ G ×U P
n ∼= (G/U)× P

n,

and using the trivial bundle on the variety G/U , which is quasiaffine by [12,
Corollary 2.8]. For large enough m we can choose a G-equivariant embedding of
G/U in C

m with a linear G-action to get a G-equivariant embedding of G ×U X
in C

m × P
n ⊆ P

m × P
n ⊆ P

nm+m+n , and the G-invariants on G ×U X are
given by

⊕

m≥0

H 0(G ×U X, L⊗m)G ∼=
⊕

m≥0

H 0(X, L⊗m)U = ÔL(X)U . (37)

Definition 4.3 ([7, Section 5.2]). A finite separating set of invariants for the linear
action of U on X is a collection of invariant sections { f1, . . . , fn} of positive tensor
powers of L such that if x, y are any two points of X then f (x) = f (y) for all
invariant sections f of L⊗k and all k > 0 if and only if

fi (x) = fi (y) ∀i = 1, . . . , n.

If G is any reductive group containing U , a finite separating set S of invariant
sections of positive tensor powers of L is a finite fully separating set of invariants
for the linear U -action on X if

(i) for every x ∈ Xs there exists f ∈ S with associated G-invariant F over G×U X
(under the isomorphism (37)) such that x ∈ (G×U X)F and (G×U X)F is affine;
and

(ii) for every x ∈ X ss there exists f ∈ S such that x ∈ X f and S is a generating set
for O(X f )

U .

By [7, Remark 5.2.3] this definition is in fact independent of the choice of G.
A G-equivariant projective completion G ×U X of G ×U X , together with

a G-linearisation with respect to a line bundle L which restricts to the given
U -linearisation on X , is a reductive envelope of the linear U -action on X if every
U -invariant f in some finite fully separating set of invariants S for the U -action on
X extends to a G-invariant section of a tensor power of L over G ×U X . If L is
ample on (G ×U X ) it is an ample reductive envelope.

There always exists an ample reductive envelope for any linear U -action on a
projective variety X , at least if we replace the line bundle L with a suitable positive
tensor power of itself (see [7, Proposition 5.2.8]).



Symplectic implosion and nonreductive quotients 245

Definition 4.4. Let X be a projective variety with a linear U -action and a reductive
envelope G ×U X . Let i : X ↪→ G ×U X and j : G ×U X ↪→ G ×U X be the
inclusions, and G ×U X

s
and G ×U X

ss
the stable and semistable sets for the linear

G-action on G ×U X . Then the set of completely stable points of X with respect to
the reductive envelope is

X s̄ = ( j ◦ i)−1(G ×U X
s
)

and the set of completely semistable points is

X ss = ( j ◦ i )−1(G ×U X
ss
).

Theorem 4.5 ([7, 5.3.1]). Let X be a normal projective variety with a linear
U-action, for U a connected unipotent group, and let (G ×U X , L) be any ample
reductive envelope. Then there is a diagram

X s̄ ⊆ X s ⊆ Xns ⊆ X ss ⊆ X ss = Xnss

↓ ↓ ↓ ↓ ↓
X s̄/U ⊆ X s/U ⊆ Xns/U ⊆ X//U ⊆ G ×U X//G

where all the inclusions are open and the first three vertical maps provide quasi-
projective geometric quotients of the stable sets X s̄, X s, and Xns by the action
of U. The fourth vertical map is the enveloping quotient q : X ss → X//U
defined in Definition 4.1 and X//U is an open subvariety of the projective variety
G ×U X//G.

Note, however, that even when ÔL(X)U is finitely generated so that

X//U = Proj(ÔL(X)U ) = G ×U X//G,

the maps q : X ss → X//U and X ss → G ×U X//G are not necessarily surjective,
and their images are in general only constructible subsets and not subvarieties.

4.2 Some examples of reductive envelopes

Now let us assume that U = (C+)r , where C
+ is the additive group of complex

numbers and r is any positive integer.

Remark 4.6. Each affine algebraic group H over C has a unipotent radical U , which
is the unique maximal normal unipotent subgroup of H and has a reductive quo-
tient group R = H/U (see, e.g., [4, 33] for more details). Given a linear action of
H on a projective variety X with respect to an ample line bundle L, we can hope
to quotient first by the action of U , and then by the induced action of the reduc-
tive group H/U , provided that the unipotent quotient (or compactified quotient) is
sufficiently canonical to inherit an induced linear action of H/U . For example, if
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the algebra of invariants ÔL(X)U is finitely generated then the enveloping quotient
X//U = Proj(ÔL(X)U ) is a projective variety with an induced linear action of
H/U on an induced ample line bundle on X//U , and then classical GIT allows us
to construct X//H = Proj(ÔL(X)H ) as a GIT quotient (X//U)//(H/U) of X//U
by the reductive group H/U ; even when ÔL(X)U is not finitely generated, the
same is true for Proj(ÔL(X)U

m ), where m is a sufficiently large positive integer and
ÔL(X)U

m is the subalgebra of ÔL(X)U generated by invariant sections of L⊗ j for
1 ≤ j ≤ m. Moreover, the unipotent radical U has canonical sequences of normal
subgroups such that each successive subquotient is isomorphic to (C+)r for some
r (for example by taking the ascending or descending central series of U ), so we
can hope to quotient successively by unipotent groups of the form (C+)r , and then
finally by the reductive group R. Therefore the case U ∼= (C+)r for some r is less
special than it might appear at first sight.

Note that when U = (C+)r we have Aut(U) ∼= GL(r;C); let

Û = C
∗

� U

be the semidirect product, where C
∗ is the centre of Aut(U). The centre of Û is

finite and meets U in the trivial subgroup, so U is isomorphic to a closed subgroup
of the reductive group G = SL(C⊕ u) via the inclusion

U ↪→ Û → Aut(Û)→ GL(LieÛ) = GL(C⊕ u),

where u is the Lie algebra of U and Û is identified with its group of inner
automorphisms. Then U is the unipotent radical of a parabolic subgroup P of
G = SL(r + 1;C), where P is the stabiliser of the r -dimensional linear sub-
space u of C ⊕ u, so we are in the situation of Section 3.2 above. The parabolic
P = U � GL(r;C) in G = SL(r + 1;C) has Levi subgroup GL(r;C) embedded
in SL(r + 1;C), since

g �→
(

g 0

0 det g−1

)

.

Note that

G/U ∼= {α ∈ (Cr )∗ ⊗ C
r+1|α : C

r → C
r+1 is injective}

with the natural G-action gα = g ◦ α. Since the injective linear maps from C
r to

C
r+1 form an open subset in the affine space (Cr )∗ ⊗ C

r+1, whose complement
has codimension two, we see directly in this case that U = (C+)r is a Grosshans
subgroup of G = SL(r + 1;C) and hence that

O(G)U ∼= O(G/U) ∼= O((Cr )∗ ⊗ C
r+1)

is finitely generated [12] with

G/U
aff = SpecO(G)U = (Cr )∗ ⊗ C

r+1.
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Now suppose that the linear action of U = (C+)r on X extends to a linear action
of G = SL(r + 1;C), giving us an identification of G-spaces

G ×U X ∼= (G/U)× X

as at (36) via [g, x] �→ (gH, gx). Then (as in the Borel transfer theorem [5,
Lemma 4.1])

ÔL(X)U ∼= ÔL(G ×U X)G ∼= [O(G/U)⊗ ÔL(X)]G (38)

is finitely generated [13] and we have a reductive envelope

G ×U X = P(C⊕ ((Cr)∗ ⊗ C
r+1))× X

with
G ×U X//G ∼= X//U = Proj(ÔL(X)U ),

where we choose for our linearisation on G ×U X the line bundle

L(N) = OP(C⊕((Cr )∗⊗Cr+1))(N)⊗ L

with N > 0 sufficiently large (see [23, Section 4.1]). This reductive envelope is
ample and so satisfies Theorem 4.5; in addition, by [23, Section 4.1(6)] we have

X s̄ = X s and X ss = X ss. (39)

Thus we have a diagram

X s ⊆ X ss

↓ ↓
X s/U ⊆ X//U = G ×U X//G

but the enveloping quotient map q : X ss → X//U = G ×U X//G is not neces-
sarily surjective, so in contrast to the reductive situation we cannot describe X//U
topologically as the quotient of X ss by an equivalence relation.

In order to describe X//U topologically (and geometrically) it is useful to
consider the linear action of the Levi subgroup GL(r;C) ≤ P on the closure
P ×U X = P(C⊕ ((Cr )∗ ⊗ C

r )) × X of P ×U X ∼= L(P) × X in G ×U X =
P(C⊕ ((Cr )∗ ⊗ C

r+1))× X . We have

G ×U X ∼= G ×P (P ×U X),

where P/U ∼= GL(r;C) and G/P ∼= P
r is projective, so G ×P (P ×U X ) is a

projective completion of G ×U X . The induced linearisation of the action of G on
G ×P (P ×U X ) is not ample: if we regard G ×P (P ×U X) as a subvariety in the
obvious way of
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G ×P (G ×U X ) = G ×P (P(C⊕ ((Cr )∗ ⊗ C
r+1))× X)

∼= (G/P)× P(C⊕ ((Cr )∗ ⊗C
r+1))× X

∼= P
r × P(C⊕ ((Cr )∗ ⊗ C

r+1))× X

then the birational morphism

G ×P (P ×U X)→ G ×U X ∼= P(C⊕ ((Cr )∗ ⊗ C
r ))× X

given by [g, y] �→ gy extends to the projection

P
r × P(C⊕ ((Cr )∗ ⊗ C

r+1))× X → P(C⊕ ((Cr )∗ ⊗ C
r+1)) × X

and the induced line bundle is the restriction to G ×P (P ×U X) of
OP(C⊕((Cr )∗⊗Cr+1))(N) ⊗ L. However, if ε ∈ Q ∩ (0,∞), the tensor product

L̂ε = L̂(N)
ε of this line bundle with the pullback via the morphism

G ×P (P ×U X )→ G/P ∼= P
r

of the fractional line bundle OPr (ε) provides an ample fractional linearisation for
the action of G on G ×P (P ×U X ) with, when ε is sufficiently small, an induced
surjective birational morphism

X̂//U =def G ×P (P ×U X )//L̂ε
G → G ×U X//G = X//U, (40)

which is an isomorphism over

(G ×U X s̄)/G ∼= X s̄/U = X s/U.

This line bundle L̂ε can be thought of as the bundle G×P (OP(C⊕((Cr )∗⊗Cr ))(N)⊗L)

on G ×P (P ×U X), where now the P-action on OP(C⊕((Cr )∗⊗Cr ))(N) ⊗ L is no
longer the restriction of the G-action on the line bundle OP(C⊕((Cr )∗⊗Cr+1))(N)⊗ L
but has been twisted by ε times the character of P which restricts to the determinant
on GL(r;C).

Since GL(r;C) = P/U has a central one-parameter subgroup C
∗, we can

modify the linearisation of any linear actions of P and GL(r;C) by multiplying
by ε times the standard character det of GL(r ;C) for any ε ∈ Q. By the Hilbert–
Mumford criteria (Proposition 2.2 above) we have

P ×U X
ss,P,ε ⊆ P ×U X

ss,GL(r;C),ε ⊆ P ×U X
ss,SL(r;C)

, (41)

where P ×U X
ss,GL(r;C),ε

and P ×U X
ss,SL(r;C)

(independent of ε) denote the
GL(r ;C)-semistable and SL(r;C)-semistable sets of P ×U X after twisting the
linearisation by ε times the character det of GL(r;C); this character is of course
trivial on SL(r;C). It turns out (see [23, Section 4.1(11)]) that if ε is chosen appro-
priately (close to −N/2, where N is as in the choice of linearisation above) then
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P ×U X
ss,GL(r;C),ε = (P(C⊕ ((Cr )∗ ⊗ C

r ))× X)ss,GL(r;C),ε = GL(r;C)× X,
(42)

and so quotienting we get

P ×U X//
L̂(N)
−N/2

GL(r;C) ∼= X. (43)

Therefore

X =def P ×U X//SL(r;C) = (P(C⊕ ((Cr )∗ ⊗ C
r ))× X)//SL(r;C) (44)

is a projective variety with a linear action of C
∗ = GL(r;C)/SL(r;C), which we

can twist by ε times the standard character of C
∗, such that when ε = −N/2 we get

X //−N/2C
∗ ∼= X, (45)

while for ε > 0 sufficiently small we have a surjection from an open
subset (X //εC

∗)ŝs of X //εC
∗ onto X̂//U , and hence onto X//U (see [23, Proposi-

tion 4.6]). More precisely, let (X //εC
∗)ŝ be the open subset P ×U X

s,P,ε
/

GL(r ;C) of

P ×U X
s,GL(r;C),ε

/GL(r ;C) = (P ×U X
s,GL(r;C),ε

/SL(r;C)/C
∗

= X s,ε/C
∗ ⊆ X //εC

∗

and let X ŝs,ε = π−1((X//εC
∗)ŝs) andX ŝ,ε = π−1((X//εC

∗)ŝ), where π : X ss,ε →
X //εC

∗ is the quotient map, so that

(X//εC
∗)ŝ = X ŝ,ε/C

∗. (46)

In this construction we can replace the compactification P(C⊕ ((Cr )∗ ⊗ C
r )) of

GL(r ;C) by its wonderful compactification ˜P(C⊕ ((Cr )∗ ⊗ C
r )) given by blowing

up P(C⊕ ((Cr )∗ ⊗ C
r )) = {[z : (zi j )

r
i, j=1]} along the (proper transforms of the)

subvarieties defined by

z = 0 and rank(zi j ) ≤ �

for � = 0, 1, . . . , r and by
rank(zi j ) ≤ �

for � = 0, 1, . . . , r − 1 [17]. The action of SL(r;C) on ˜P(C⊕ ((Cr )∗ ⊗C
r )),

linearised with respect to a small perturbation of the pullback of OP(C⊕((Cr )∗⊗Cr ))

(1), satisfies

˜
P(C⊕ ((Cr )∗ ⊗ C

r ))ss = ˜
P(C⊕ ((Cr)∗ ⊗ C

r))s
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and
˜P(C⊕ ((Cr )∗ ⊗ C

r ))//SL(r;C) ∼= P
1.

If we take P ×U X to be

˜P(C⊕ ((Cr )∗ ⊗ C
r ))× X

instead of P(C⊕ ((Cr )∗ ⊗ C
r ))× X , and define

X̃ = ˜P(C⊕ ((Cr )∗ ⊗ C
r ))× X//SL(r;C), (47)

then the properties of X given above are satisfied by X̃ , and if X is nonsingular then

X̃//U =def G ×P ( ˜P(C⊕ ((Cr )∗ ⊗ C
r ))× X)//G

is a partial desingularisation of X//U and a compactification of X s/U . Indeed, it is
shown in [23, Proposition 4.6] (combined with [23, Remark 4.8]) that if ε > 0 is

sufficiently small then the natural rational map from X̃//εC
∗ to X̃//U restricts to

surjective morphisms

(X̃//εC
∗)s̃s→ X̃//U → X//U

and
(X̃ //εC

∗)s̃ → X s/U.

Using the theory of variation of GIT [6, 32, 34], we can relate the quotient X̂//εC
∗

to X̃ //N/2C
∗ ∼= X via a sequence of flips which occur as walls are crossed between

the linearisations corresponding to ε and to −N/2. Thus we have a diagram

(X̃//εC
∗)s̃ ⊆ (X̃//εC

∗)s̃s ⊆ X̃ //εC
∗ ← − → X = X̃//−N/2C

∗
↓ ↓ flips

X s/U ⊆ X̃//U
|| ↓

X s/U ⊆ X//U

(48)

where the vertical maps are all surjective, and the inclusions are all open.

Remark 4.7. The construction of a reductive envelope described here is valid only
if the action of U = (C+)r on X extends to an action of G = SL(C ⊕ u) (which
is a rather special situation when the ring of invariants ÔL(X)U is always finitely
generated). Moreover, at least a priori this construction may depend on the choice
of the extension of the U -action to a G-action, although G ×U X//G = X//U =
Proj(ÔL(X)U ) depends only on the linearisation of the U -action on X . However,
it is shown in [23] that we can associate to a linear U -action on X a family of
projective varieties Ym (one for every sufficiently large positive integer m), each of
which contains X and has an action of G = SL(C⊕ u) and a G-linearisation on an
ample line bundle LYm , which restricts to the given linearisation of the U -action on
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X and is such that every U -invariant in a finite fully separating set of U -invariants
on X extends to a U -invariant on Ym . Then we can embed X in the G-variety

P(C⊕ ((Cr )∗ ⊗ C
r+1))× Ym

as {ι} × X , where ι ∈ (Cr )∗ ⊗ C
r+1 ⊆ P(C⊕ ((Cr )∗ ⊗ C

r+1)) is the
standard embedding of C

r in C
r+1. The closure of G X ∼= G ×U X in

P(C⊕ ((Cr )∗ ⊗ C
r+1)) × Ym will provide us with a reductive envelope G ×U X

(which is, however, not necessarily ample), and we can study the closures of the

images of X s/U in Ym//U = Ym//U and its partial desingularisation Ỹm//U
constructed as above.

4.3 Symplectic implosion for U = (C+)r ≤ SL(r + 1; C) actions

Let X be a complex projective variety on which the complexification G = SL(r +
1;C) of K = SU(r + 1) acts linearly with respect to a very ample line bundle L ,
and let U = (C+)r be the unipotent radical of the parabolic P = GL(r;C)U as in
the previous subsection. As before, let T be the maximal torus of K consisting of
the diagonal matrices in K , and let B be the upper triangular Borel subgroup of G.
In the notation of Section 3.2 we have L(P) = GL(r;C) and K (P) = U(r ). We can
identify the Lie algebra k(P) = u(r) of K (P) with the product [k(P), k(P)]⊕ z(P) of
the Lie algebras of its semisimple part Q(P) = [K (P), K (P)] = SU(r) and its centre
Z(K (P)) ∼= S1. If we identify t∗ with

{ζ = (ζ1, . . . , ζr+1) ∈ R
r+1 : ζ1 + · · · + ζr+1 = 0}

in the usual way so that

t∗+ = {ζ = (ζ1, . . . , ζr+1) ∈ t∗ : ζ1 ≥ ζ2 ≥ · · · ≥ ζr+1},
then

t∗(P)+ = {ζ = (ζ1, . . . , ζr+1) ∈ t∗ : ζ j ≥ ζr+1 for j = 1, . . . , r} (49)

and
z(P)∗ = {ζ = (ζ1, . . . , ζr+1) ∈ t∗ : ζ1 = · · · = ζr }. (50)

Moreover, k
(P)∗
+ can be identified with the set of skew-Hermitian matrices in

su(r + 1)∗ of the form

ζ =
(

ξ 0

0 iλr+1

)

, (51)

where ξ is a skew-Hermitian r×r matrix with all its eigenvalues of the form iλ with
λ ∈ R and λ ≥ λr+1. If all the eigenvalues iλ of ξ satisfy λ > λr+1 then Kζ (P)
is conjugate to T and [Kζ (P), Kζ (P)] is trivial. In general, Ad∗(K (P))ζ contains a
matrix of the form
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(

ξ 0

0 iλr+1 I j

)

(52)

for some j ∈ {0, 1, . . . , r}, where ξ is a skew-Hermitian (r − j)× (r − j) matrix
with all its eigenvalues of the form iλ with λ ∈ R and λ > λr+1, and I j is the j × j
identity matrix. Then Kζ (P) is conjugate in K (P) = U(r) to the product of a torus
and the unitary group U( j) embedded in K = SU(r + 1) as

A �→
⎛

⎜

⎝

Ir− j 0 0

0 A 0

0 0 det A−1

⎞

⎟

⎠
,

and the face σ of k
(P)∗
+ to which ζ belongs is determined by j and the partition

π ∈ �r− j given by the eigenvalues iλ of ζ with λ > λr+1. Thus [Kζ (P), Kζ (P)] ∼=
SU( j) and the universal K (P)-imploded cross-section is

(T ∗K )K ,K (P)

impl =
r
⊔

j=0

(K × k
(P)∗
+, j,π )/ ≈K (P)

= (K × k
(P)∗
+ )◦ �

r
⊔

j=1

⊔

π∈� j

(K × k
(P)∗
+, j )/ ≈K (P)

= (K × k
(P)∗
+ )◦ �

r
⊔

j=1

⊔

π=(π1,...,π�)∈� j

U(r)×(U(π1)×···×U(π�)×U( j ))

× ((K × k
(P)∗
+, j,π )/SU( j )). (53)

Here k
(P)∗
+, j consists of all ζ ∈ su(r + 1)∗ of the form (51) with ξ a skew-Hermitian

r × r matrix with all its eigenvalues of the form iλ with λ ∈ R and λ ≥ λr+1 and
exactly j of its eigenvalues equal to iλr+1, and k

(P)∗
+, j,π consists of all ζ ∈ k

(P)∗
+, j of

the form (51) such that the partition of r − j determined by the eigenvalues of ζ of
the form iλ with λ > λr+1 is π . Moreover, if (k1, ζ1) and (k2, ζ2) lie in K × k

(P)∗
+, j

then (k1, ζ1) ≈K (P)
(k2, ζ2) if and only if there is some κ ∈ K (P) such that

ζ1 = ζ2 = κ

(

ξ 0

0 iλr+1 I j

)

κ−1

and κ−1k1k−1
2 κ ∈ [Kζ (P), Kζ (P)] ∼= SU( j). Thus (T ∗K )K ,K (P)

impl is isomorphic to

G/U
aff = (Cr )∗ ⊗ C

r+1 via

(k, ζ ) �→ k ◦ F(ζ ),
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where if ζ is at (51) then F(ζ ) : C
r → C

r ⊆ C
r+1 is the linear map represented by

the unique r×r Hermitian positive definite matrix α satisfying iα∗α = ξ−iλr+1 Ir .
Let ω be a K -invariant Kähler form on X , given in some choice of coordinates

by the Fubini–Study form on the projective space into which the very ample line
bundle L embeds X . Then we know that

ÔL(X)U ∼= (ÔL(X)⊗O(G)U )G

is finitely generated, and the associated projective variety

X//U = Proj(ÔL(X)U )

is isomorphic to the GIT quotient (G/U
aff × X)//G, which as in Section 3.2 can

be identified with a symplectic quotient of G/U
aff × X by K , and thus with the

K (P)-imploded cross-section

X K ,K (P)

impl = μ−1(k
(P)∗
+ )/ ≈K (P)

of X , where x ≈K (P) y if and only if μ(x) = μ(y) = ζ ∈ k
(P)∗
+ and x = κy for

some κ ∈ [Kζ (P), Kζ (P)]. Equivalently

X K ,K (P)

impl = μ−1((k
(P)∗
+ )◦) �

r
⊔

j=1

μ−1(k
(P)∗
+, j )/ ≈K (P)

= μ−1((k
(P)∗
+ )◦) �

r
⊔

j=1

⊔

π=(π1,...,π�)∈� j

U(r)×(U(π1)×···×U(π�)×U( j ))

× (μ−1(k
(P)∗
+, j,π ∩ t∗+)/SU( j)), (54)

since [Kζ (P), Kζ (P)] ∼= SU( j) if ζ ∈ k
(P)∗
+, j .

The desingularisation
˜

(T ∗K )K ,K (P)

impl of (T ∗K )K ,K (P)

impl is given by

˜

(T ∗K )K ,K (P)

impl = (K × k
(P)∗,ε
+ )/ ≈K (P)

ε , (55)

where k
(P)∗,ε
+ = Ad∗(K (P))(ελ0 + t∗(P)+) for 0 < ε � 1 and λ0 =

diag(1, 1, . . . , 1,−r) ∈ t∗(P)+ ∩ z(P)∗, and if (k1, ζ1) and (k2, ζ2) lie in K × k
(P)∗,ε
+, j ,

then (k1, ζ1) ≈K (P)

ε (k2, ζ2) if and only if there is some κ ∈ K (P) ∼= U(r) such that

ζ1 = ζ2 = κ

(

ξ 0

0 iλr+1 I j

)

κ−1
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and κ−1k1k−1
2 κ lies in the maximal torus Tj of [Kζ (P), Kζ (P)] ∼= SU( j) which

is its intersection with T . The partial desingularisation
˜

X K ,K (P)

impl of X K ,K (P)

impl is the

symplectic quotient of
˜

(T ∗K )K ,K (P)

impl × X by the diagonal action of K ; as a stratified
symplectic space, it is given by

˜

X K ,K (P)

impl = μ−1((k
(P)∗,ε
+ )◦) �

r
⊔

j=1

⊔

π=(π1,...,π�)∈� j

U(r)×(U(π1)×···×U(π�)×U( j ))

× (μ−1(ελ0 + k
(P)∗
+, j,π ∩ t∗+)/Tj ),

and it can also be identified with the partial desingularisation X̃//U described in
Section 4.2.

Example 4.8. Let U = C
+ act linearly on a projective space P

n, and suppose that
coordinates have been chosen so that the natural generator of Lie(C+) = C has
Jordan normal form with blocks of sizes k1+1, . . . , ks+1, where

∑s
j=1(k j +1) =

n+ 1. The C
+ action extends to an action of G = SL(2;C) by identifying C

+ with
the group of upper triangular matrices

{(

1 a

0 1

)

: a ∈ C

}

≤ SL(2;C)

and C
n+1 with

⊕s
j=1 Symk j (C2), where Symk(C2) is the kth symmetric power of

the standard representation C
2 of G = SL(2;C). We have

G/C
+ ∼= C

2\{0} ⊆ C
2 ⊆ P

2 = G/C
+

and thus P
n//C

+ is the GIT quotient Proj(C[x0, . . . , xn]C
+
) ∼= (P2 × P

n)//G with
respect to the linearisation OP2(N)⊗OPn (1) on P

2 × P
n for N a sufficiently large

positive integer. Since (P2)ss,G = C
2 and N is large, we have

(P2 × P
n)ss,G ⊆ C

2 × P
n = (G ×C+ P

n) � ({0} × P
n),

and if semistability implies stability then

P
n//C

+ = (Pn)s,U/C
+ � ({0} × P

n)//SL(2;C).

In this example the parabolic subgroup P of G = SL(2;C) is its standard (upper
triangular) Borel subgroup with B/C

+ = C
∗ = P

1 and

B ×C+ P
n = P

1 × P
n,

while G ×B B/C
+ = G ×B P

1 is the blowup of P
2 at the origin 0 ∈ C

2 ⊆ P
2.

Similarly G×B (B ×C+ P
n) is the blowup of G ×C+ P

n ∼= P
2×P

n along {0}×P
n,



Symplectic implosion and nonreductive quotients 255

and its quotient X̃//U is the blowup of P
n//C

+ along its “boundary”

P
n//SL(2;C) ∼= ({0} × P

n)//SL(2;C) ⊆ (P2 × P
n)//SL(2;C) = P

n//C
+.

From the point of view of symplectic geometry we have

P
n//C

+ ∼= (Pn)impl = μ−1((t∗+)◦) � μ−1(0)

SU(2)
= μ−1(0,∞) � μ−1(0)

SU(2)
,

where t∗+ is identified with (0,∞) in the usual way, and

˜
P

n//C
+ ∼= ˜(Pn)impl = μ−1(ε,∞) � μ−1(ε)

S1

for 0 < ε � 1.
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Quantization of q-Hamiltonian SU(2)-spaces

Eckhard Meinrenken

Dedicated to Hans Duistermaat on the occasion of his 65th
birthday

Abstract We will explain how to define the quantization of q-Hamiltonian SU(2)-
spaces as push-forwards in twisted equivariant K -homology, and prove the
“quantization commutes with reduction” theorem for this setting. As applications,
we show how the Verlinde formulas for flat SU(2)- or SO(3)-bundles are obtained
via localization in twisted K -homology.

Key words: Moment maps, moduli spaces, twisted K -theory

Mathematics Subject Classification (2010): 53D30, 19L50

1 Introduction

The theory of q-Hamiltonian G-spaces was introduced ten years ago in the paper
Lie group valued moment maps [1]. The motivation was to treat Hamiltonian loop
group actions with proper moment maps in a purely finite-dimensional framework,
obtaining for instance a finite-dimensional construction of the moduli space of flat
G-bundles over a surface. Many of the standard constructions for ordinary Hamil-
tonian group actions on symplectic manifolds carried over to the new setting, but
often with nontrivial “twists.” For example, all q-Hamiltonian G-spaces M carry a
natural volume form [5], which may be viewed informally as a push-forward of the
(ill-defined) Liouville form on the associated infinite-dimensional loop group space.
This volume form admits an equivariant extension (but for a nonstandard equivariant
cohomology theory) [3], and the total volume may be computed by localization
techniques, just as in the usual Duistermaat–Heckman theory [18].
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One problem that had remained open until recently is how to define a “quanti-
zation” of q-Hamiltonian spaces. In contrast to the Hamiltonian theory, the 2-form
on a q-Hamiltonian space is usually degenerate. Hence, there is no obvious notion
of a compatible almost complex structure, and the usual quantization as the equi-
variant index of a Spinc-Dirac operator [16] is no longer possible. In [31], rather
than trying to construct such an operator, we define the quantization more abstractly
as the push-forward of a K -homology fundamental class [M]. This fundamental
class is canonically defined as an element in twisted equivariant K -homology of
M . Our construction defines a push-forward of this element to the twisted equivari-
ant K -homology of a Lie group. The Freed–Hopkins–Teleman theorem [20, 19]
identifies the latter with the fusion ring Rk(G) (Verlinde algebra), at an appropriate
level-k. We take the resulting element Q(M) ∈ Rk(G) to be the “quantization” of
our q-Hamiltonian space. As in the usual Hamiltonian theory [22, 21, 30], the quan-
tization procedure satisfies a “quantization commutes with reduction” principle.

In the present paper, we will preview this quantization of q-Hamiltonian G-spaces
for the simplest of simple compact Lie groups G = SU(2). Much of the general
theory simplifies in this special case—for example, there is a fairly simple proof of
the q-Hamiltonian “quantization commutes with reduction” theorem. As an appli-
cation, we explain, following [4], how the SU(2)-Verlinde formulas are obtained in
our theory. In the last section, we will show how to derive Verlinde-type formulas
for moduli spaces of flat SO(3)-bundles. The paper will be largely self-contained,
except for certain details that are better handled with the techniques from [31].

Notation. We fix the following notation and conventions for the Lie group SU(2).
The group unit will be denoted by e, and the nontrivial central element by c =
diag(−1,−1). We define an open cover by contractible subsets

SU(2)+ = SU(2)\{c}, SU(2)− = SU(2)\{e} (1)

with intersection the set SU(2)reg of regular elements. We take the maximal torus T
to consist of the diagonal matrices, isomorphic to U(1) by the homomorphism

j : U(1)→ T, z �→ diag(z, z−1).

The Weyl group W = Z2 acts on T by permutation of the diagonal entries, or
equivalently on U(1) by z �→ z−1. We let � ⊂ t be the integral lattice (kernel of
exp |t) and �∗ ⊂ t∗ its dual, the (real) weight lattice. For any μ ∈ �∗ we denote by
t �→ tμ the corresponding homomorphism T → U(1); the resulting 1-dimensional
representation of T is denoted by Cμ. The weight lattice is generated by the element
ρ ∈ �∗ such that Cρ is the defining representation of U(1). The corresponding
positive root is α = 2ρ. We will identify su(2)∗ ∼= su(2) using the basic inner
product

ξ · ξ ′ = 1

4π2
tr(ξ†ξ ′), ξ, ξ ′ ∈ su(2).
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Similarly we identify t ∼= t∗ using the induced inner product. Under this
identification, � = 2�∗, with generators α = 2π i diag(1,−1) and ρ = iπ
diag(1,−1).

For any subset A ⊂ t, we define TA = exp(A) = {exp ξ | ξ ∈ A}. Any conju-
gacy class in SU(2) passes through a unique point in T[0,ρ], so that [0, ρ] labels the
conjugacy classes. We will frequently use the equivariant diffeomorphism,

T(0,ρ) × SU(2)/T → SU(2)reg, (t, gT ) �→ Adg(t). (2)

2 The fusion ring Rk(SU(2))

In this section, we review three simple descriptions of the level-k fusion ring
(Verlinde algebra) Rk(G) for the case G = SU(2). The fusion ring may be identified
with the set of irreducible projective representations of the loop group L SU(2) at
level-k [36], but we will not need that interpretation here.

2.1 First description

Let R(SU(2)) be the representation ring of SU(2), viewed as the ring of virtual
characters. For m = 0, 1, 2, . . . let χm ∈ R(SU(2)) be the character of the (m + 1)-
dimensional irreducible representation of SU(2). These form a basis of R(SU(2))
as a Z-module, and the ring structure is given by

χmχm′ = χm+m′ + χm+m′−2 + · · · + χ|m−m′ |.

For k = 0, 1, 2, . . ., the level-k fusion ring (or Verlinde algebra) is a quotient

Rk(SU(2)) = R(SU(2))/Ik(SU(2))

by the ideal Ik(SU(2)) generated by the character χk+1. Additively, the ideal is
spanned by the characters χk+1, χ2k+3, χ3k+5, . . ., together with all characters of
the form χl ′ − (−1)rχl , where l ∈ {0, . . . , k}, and l ′ is obtained from l by r reflec-
tions across the set of elements k+1, 2k+3, 3k+5, . . . . It follows that as an abelian
group, Rk(SU(2)) is free with generators τ0, . . . , τk the images of χ0, . . . , χk . For
example, if k = 4, m = 3, m′ = 4 we have

χ3χ4 = χ1 + χ3 + χ5 + χ7 ⇒ τ3τ4 = τ1 + τ3 + 0− τ3 = τ1.

For any given level-k, the element τk ∈ Rk(SU(2)) defines an involution of the
group Rk(SU(2)),

τl �→ τlτk = τk−l .
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2.2 Second description

Let q be the (2k + 4)th root of unity

q = e
iπ

k+2 .

Then Ik(SU(2)) ⊂ R(SU(2)) may be described as the ideal of all characters
vanishing at all points j (qs), for s = 1, . . . , k + 1. Put differently, letting

Tk+2 = {t ∈ T | t2k+4 = e}
be the cyclic subgroup generated by j (q), Ik(SU(2)) is the vanishing ideal of Tk+2∩
SU(2)reg = T reg

k+2. Hence, for any t ∈ T reg
k+2 the evaluation map evt : R(SU(2))→ C

descends to an evaluation map

evt : Rk(SU(2))→ C, τ �→ τ (t) = evt (τ ).

For the basis elements one obtains, by the Weyl character formula,

τl( j (qs)) = q(l+1)s − q−(l+1)s

qs − q−s
.

The orthogonality relations

k+1
∑

s=1

|qs − q−s |2
2k + 4

τl( j (qs))τl′ ( j (qs)) = δl,l′ (3)

allow us to recover τ ∈ Rk(SU(2)) from the values τ ( j (qs)) for s = 1, . . . , k. The
coefficients in this sum may alternatively be written as

|qs − q−s |2
2k + 4

=
(

k

2
+ 1

)−1

sin2
(

πs

k + 2

)

.

2.3 Third description

The third way of describing the fusion ring is to write down the structure constants
relative to the basis τ0, . . . , τk . The level-k fusion coefficient N (k)

l1,l2,l3
for 0 ≤ li ≤ k

is the multiplicity of τ0 in the triple product τl1τl2τl3 . The fusion coefficients are
invariant under permutations of the li , and have the additional symmetry property
N (k)

l1,l2,l3
= N (k)

l1,k−l2,k−l3
(coming from τk−l = τkτl). One has

τl1τl2 =
k
∑

l3=0

N (k)
l1,l2,l3

τl3 .
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Let 
 ⊂ [0, 1]3 be the Jeffrey–Weitsman polytope, cut out by the inequalities

u3 ≤ u1 + u2, u1 ≤ u2 + u3, u2 ≤ u3 + u1, u1 + u2 + u3 ≤ 2.

Suppose Ci , i = 1, 2, 3, are conjugacy classes of elements exp(uiρ). As shown by
Jeffrey–Weitsman [27, Proposition 3.1], the set {g1g2g3| gi ∈ Ci } contains e if and
only if (u1, u2, u3) ∈ 
. Similarly,

N (k)
l1 ,l2,l3

=
{

1 if l1 + l2 + l3 even,
(

l1
k , l2

k , l3
k

)

∈ 
,

0 otherwise.

3 The twisted equivariant K -homology of SU(2)

We will follow the approach to twisted K -homology via Dixmier–Douady bundles.

3.1 G-Dixmier–Douady bundles

Suppose G is a compact Lie group, acting on a (reasonable) topological space
X . A G-Dixmier–Douady bundle over X is a G-equivariant bundle A → X of
∗-algebras, with typical fiber K(H) the compact operators on a separable Hilbert
space H, and structure group Aut(K(H)) = PU(H) the projective unitary group.
Here H is allowed to be finite-dimensional. A Morita isomorphism between two
such bundles A1,A2 → X is a G-equivariant bundle of (A2 − A1)-bimodules
E → X such that E is locally modeled on the (K(H2) − K(H1))-bimodule
K(H1,H2) of compact operators from H1 to H2. We write

A1 �E A2.

One then also has A2 �Eop A1, where the opposite bimodule Eop is modeled
on K(H2,H1). Any two Morita isomorphisms E, E ′ between A1,A2 differ by a
G-equivariant line bundle J , given as the bundle of bimodule homomorphisms:

J = HomA2−A1(E, E ′), E ′ = E ⊗ J.

Two equivariant Morita isomorphisms E, E ′ will be called equivalent if this line
bundle is equivariantly trivial. By the Dixmier–Douady theorem [14] (extended
to the equivariant case by Atiyah–Segal [6]), the Morita isomorphism classes of
G-Dixmier–Douady bundles A → X are classified by an equivariant Dixmier–
Douady class DDG(A) ∈ H 3

G(X, Z). Put differently, the Dixmier–Douady class is
the obstruction to an equivariant Morita trivialization C �E A, i.e., an equivariant
Hilbert space bundle E with an isomorphism A ∼= K(E).
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Remark 3.1. For G = {e} the Dixmier–Douady class is realized as a Čech
cohomology class, as follows: Choose a cover {Ua} of M with Morita trivializa-
tion C �Ea A|Ua . On overlaps, the Ea are related by “transition line bundles”:

Jab = HomA(Ea, Eb), Eb = Ea ⊗ Jab.

On triple overlaps, one has a trivializing section θabc of Jab ⊗ Jbc ⊗ Jca . Taking
Ua sufficiently fine, the Jab are all trivial, and a choice of trivialization makes
θabc into a collection of U(1)-valued functions defining a Čech cocycle. A different
choice of trivialization of the Jab changes the cocycle by a coboundary. The class
DD(A) equals the cohomology class of θ , under the isomorphism H 2(X, U(1)) =
H 3(X, Z).

3.2 The Dixmier–Douady bundle over SU(2)

We will now give a fairly explicit construction of an equivariant Dixmier–Douady
bundle representing the generator of H 3

SU(2)(SU(2), Z) = Z, using the cover (1).
Let H be any SU(2)-Hilbert space with the property that H contains all T -weights
with infinite multiplicity. (A possible choice is H = L2(SU(2)) with the left regular
representation.) As a consequence, there exists a T -equivariant unitary isomorphism

H→ H⊗ Cρ (4)

(given by a collection of isomorphisms of the μ-weight spaces with the (μ − ρ)-
weight spaces). Let

E± = SU(2)± ×H
with the diagonal SU(2)-action. By (2), any SU(2)-equivariant bundle over SU(2)reg
is uniquely determined by its restriction to a T -equivariant bundle over T(0,ρ). Let
J → SU(2)reg be the equivariant line bundle such that J |T(0,ρ) = T(0,ρ) × Cρ . The
isomorphism (4) defines a T -equivariant isomorphism

E−|T(0,ρ) → E+|T(0,ρ) ⊗ J |T(0,ρ),

which extends to an SU(2)-equivariant isomorphism E−|SU(2)reg → E+|SU(2)reg ⊗ J .
This then defines an isomorphism K(E−)|SU(2)reg → K(E+)|SU(2)reg , which we use
to glue K(E±) to a global bundle A. The bundle A represents the generator of
H 3

SU(2)(SU(2), Z) = Z. Since H 2
SU(2)(SU(2), Z) = 0, any other Dixmier–Douady

bundle A′ representing the generator is related to A by a unique (up to equi-
valence) Morita isomorphism. Again, this can be made quite explicit: Let E ′± be
Morita trivializations of A′, with transition line bundle J ′. Then the Morita A−A′
bimodule is obtained by gluing K(E ′+, E+) with K(E ′−, E−), where the isomorphism
over SU(2)reg is defined by the choice of an equivariant isomorphism J ′ ∼= J (the
latter is unique up to homotopy).
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3.3 The equivariant Cartan 3-form on SU(2)

The equivariant Dixmier–Douady bundle A → SU(2) may be viewed as a
“prequantization” of the generator of equivariant Cartan 3-form on SU(2).
To explain this viewpoint, we need some notation. For any manifold M with an
action of a Lie group G, we denote by ξM ∈ X(M), ξ ∈ g, the generating vector
fields for the infinitesimal g-action. That is, ξM ( f ) = ∂

∂u |u=0(exp(−uξ))∗ f for
f ∈ C∞(M). We let (
•G(M), dG ) denote the complex of equivariant differential
forms


k
G(M) =

⊕

2i+ j=k

(Sig∗ ⊗
 j (M))G ,

with equivariant differential (dGγ )(ξ) = dγ (ξ) − ι(ξM )γ (ξ). For G compact, its
cohomology is identified with Borel’s equivariant cohomology H k

G(M, R).
Let θ L , θ R ∈ 
1(SU(2), su(2)) be the Maurer–Cartan forms on SU(2). The

Cartan 3-form η ∈ 
3(SU(2)) is given in terms of the basic inner product · on
su(2) by

η = 1

12
θ L · [θ L, θ L ].

It is d-closed, and has an equivariantly closed extension ηSU(2) ∈ 
3
SU(2)(SU(2)),

ηSU(2)(ξ) = η − 1

2
(θ L + θ R) · ξ.

Let � ∈ 
2(su(2)) be the invariant primitive of exp∗ η defined by the de Rham
homotopy operator for the radial homotopy. The image of the (nonclosed) 2-form
dμ − 1

2 exp∗(θ L + θ R) under the homotopy operator is zero, since its pull-back to
any line through the origin vanishes. Hence

exp∗ ηSU(2) = dSU(2)(� − μ), (5)

where the “identity function” μ : g → g is viewed as an element of su(2)∗ ⊗

0(su(2)).

Lemma 3.2. For any G-manifold with a closed equivariant 3-form γ ∈ 
3
G(M),

all G-orbits S ⊂ M acquire unique invariant 2-forms ωS ∈ 
2(S)G such that
dGωS = i∗Sγ .

The straightforward proof is left to the reader. As special cases, we obtain 2-forms
ωC on the conjugacy classes C ⊂ SU(2) and ωO on the adjoint orbits O ⊂ su(2)
such that

dSU(2)ωC = −ι∗CηSU(2), dSU(2)ωO = ι∗O(dμ).

Under the identification of su(2) with its dual, ωO is just the usual symplectic form
on coadjoint orbits. Suppose C = exp(O). Then (5) and the uniqueness part of the
lemma imply

i∗O� = ωO − (exp |O)∗ωC . (6)
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Let V ⊂ su(2) be the open ball of radius 1√
2
. We have diffeomorphisms

exp± : V ∼= SU(2)±,

where exp+ is the restriction of the exponential map, and exp− = lc ◦ exp+ is its
left translate by the central element c. The inverse maps will be denoted by

log± : SU(2)± → V ⊂ su(2).

Let �± = log∗±� ∈ SU(2)±. Then d�± = η over SU(2)±. Furthermore, by
equation (5) we have, over SU(2)±,

dSU(2)(�± − log±) = ηSU(2). (7)

Over SU(2)reg, both �± are primitives of η; hence their difference is closed.
To determine this closed 2-form, recall (cf. equation (2)) that SU(2)reg ∼= T(0,ρ) ×
SU(2)/T . Let

� : SU(2)reg→ SU(2)/T

be the projection to the second factor, and identify SU(2)/T with the (co)adjoint
orbit O = SU(2) · ρ.

Lemma 3.3. One has �− − �+ = �∗ωO over SU(2)reg, where O is the adjoint
orbit of the element ρ.

Proof. By (7) we have

dSU(2)(�− −�+ − (log− − log+)) = 0

over SU(2)reg. Thus, log+ − log− serves as a moment map for the closed invariant
2-form �− −�+. We claim that

log+ − log− = ιO ◦�.

Since both sides are SU(2)-equivariant, it suffices to compare the restrictions
to T(0,ρ) ⊂ SU(2)reg. Indeed, log+(exp(uρ)) = uρ and log− exp(uρ) =
log(exp(u − 1)ρ) = (u − 1)ρ, so the difference is (log+ − log−)(exp(uρ)) = ρ
as needed. This gives

0 = dSU(2)(�− −�+ + ιO ◦�) = dSU(2)(�− −�+ − �∗ωO).

In particular, �− −�+ − �∗ωO is annihilated by all contractions with generating
vector fields for the conjugation action. It is hence enough to show that its pull-back
to T(0,ρ) is zero. Indeed, by applying the homotopy operator to exp∗T ι∗T ηSU(2) = 0,
we see that ι∗t� = 0, which implies that �± pull back to 0 on T .

The 2-form ωO is the curvature form curv(∇) of the line bundle SU(2)×T Cρ , for
the unique invariant connection ∇ on this bundle. Let J = �∗(SU(2)×T Cρ) carry
the pull-back connection ∇J . The identities
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�− −�+ = curv(∇J ), d�± = η

say that (∇J ,�±) is a “gerbe connection” in the sense of Chatterjee–Hitchin
[12, 24], with η as its 3-curvature. Similarly, (∇J ,�± − log±) is an equivariant
gerbe connection, with equivariant 3-curvature ηSU(2).

We conclude this section with an easy proof of the fact that η integrates to
1. Observe that ∂V = V\V is the (co)adjoint orbit O of the element ρ. It has
symplectic volume

∫

O ωO = 1 by the well-known formula for volume of coadjoint
orbits [11, Corollary 7.27]. Since C := expO = {c}, we have ωC = 0. Hence
equation (6) together with Stokes’s theorem gives

∫

SU(2)
η =

∫

V
d� =

∫

O
ι∗O� =

∫

O
ωO = 1.

3.4 Twisted K-homology

Let G be a compact Lie group acting on a compact G-space X . Given a G-Dixmier–
Douady bundle A → X , one defines (following J. Rosenberg [37]) the twisted
K -homology group

K G
0 (X,A) = K 0

G(�(X,A)),

where the right-hand side denotes the K -homology group of the (G − C∗)-algebra
of sections of A. (For K -homology of C∗-algebras, see [23, 28].) The twisted
K -homology is a covariant functor: If � : X1 → X2 is an equivariant map of com-
pact G-spaces, together with an equivariant Morita isomorphismA1 �E �∗A2, one
obtains a push-forward map

�∗ : K G
0 (X1,A1)→ K G

0 (X2,A2).

It is possible to work out many examples of twisted equivariant K -homology groups
simply from its formal properties such as excision, Poincaré duality, and so on. For
A = C one obtains the untwisted K -homology groups. One has a ring isomorphism

K G
0 (pt) = R(G),

where the ring structure on the left-hand side is realized as push-forward under
pt× pt → pt. The following is the simplest nontrivial case of the Freed–Hopkins–
Teleman theorem [20]. This special case may be proved by an elementary
Mayer–Vietoris argument; see Freed [19].

Theorem 3.4. Let SU(2) act on itself by conjugation, and let A → SU(2) be the
basic Dixmier–Douady bundle. For all levels k = 0, 1, 2, . . ., the R(SU(2))-module
homomorphism

R(SU (2)) ∼= K SU(2)
0 (pt)→ K SU(2)

0 (SU(2),Ak+2)
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given as push-forward under the inclusion of the group unit pt → SU(2) is onto,
with kernel the level-k fusion ideal Ik(SU(2)). It hence defines a ring isomorphism,

Rk(SU(2)) ∼= K SU(2)
0 (SU(2),Ak+2).

3.5 The K-homology fundamental class

Recall that for n even, the complex Clifford algebra C l(n) = C l(Rn) admits a
unique (up to isomorphism) irreducible ∗-representation. Concretely, the identifica-
tion R

n ∼= C
n/2 gives a Clifford action on the standard spinor module S = ∧C

n/2.
This realizes the Clifford algebra as a matrix algebra, C l(n) = End(S). Given
A ∈ SO(n) there exists a unitary transformation U ∈ U(S), unique up to a scalar,
such that A(v) · U(z) = U(v · z) for v ∈ R

n, z ∈ S. The set of such implementers
U forms a closed subgroup of U(S), denoted by Spinc(n), and the map taking U to
A makes this group into a central extension

1→ U(1)→ Spinc(n)→ SO(n)→ 1.

If M is an oriented Riemannian G-manifold of even dimension n, then its Clifford
algebra bundle C l(T M) is a G-equivariant bundle of complex matrix algebras.
It is thus a G-Dixmier–Douady bundle. Its Dixmier–Douady class is the third
integral equivariant1 Stiefel–Whitney class, W 3

G(M) ∈ H 3
G(M, Z). As pointed

out by Connes [13] and Plymen [35], an equivariant Spinc-structure on M is
exactly the same thing as an equivariant Morita trivialization of C l(T M). Indeed,
given an equivariant lift PSpinc

(M) → PSO(M) of the SO(n)-frame bundle to
the group Spinc(n), the Morita trivialization is defined by the bundle of spinors
S = PSpinc

(M) ×Spinc(n) S. Conversely, given an equivariant Morita trivialization
C l(T M) �S C, one obtains a lift of the structure group: The fiber of the bundle
PSpinc

(M) at m ∈ M is the set of pairs (A, U), where A : Tm M → R
n is an ori-

ented orthonormal frame, and U : Sm → S is a unitary isomorphism intertwining
the Clifford actions of v ∈ Tm M and A(v) ∈ R

n .
The Clifford bundle C l(T M) is naturally a C l(T M) − C l(T M) bimodule.

Using the canonical antiautomorphism of C l(T M), it may also be viewed as a
module over C l(T M)⊗C l(T M), defining a Morita trivialization of the latter. Given
any Spinc-structure S, one obtains a Hermitian line bundle

L := L(S) = HomC l(T M)⊗C l(T M)(C l(T M),S ⊗ S)

1 We remark that for G compact and simply connected, the vanishing of W 3
G (M) is equivalent to

the vanishing of the nonequivariant Stiefel–Whitney class W 3(M), since the map H 3
G(M, Z) →

H 3(M, Z) is injective (cf. [29]).
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called the Spinc-line bundle. Twisting S by a line bundle L changes the Spinc-line
bundle as follows:

L(S ⊗ L) = L(S)⊗ L2.

For any equivariant Spinc-structure on an even-dimensional manifold, the class of
the Spinc-Dirac operator defines a fundamental class in equivariant K -homology.
In the absence of a Spinc-structure, there is still a fundamental class, but as an
element

[M] ∈ K G
0 (M, C l(T M))

in twisted K -homology.2 For an explicit construction of [M], see Kasparov [28].
Below, we will construct elements of Rk(SU(2)) = K SU(2)

0 (SU(2),Ak+2) as push-
forwards of [M] under SU(2)-equivariant maps � : M → SU(2). In order to define
such a push-forward, we need an equivariant Morita isomorphism

C l(T M) �E �∗Ak+2.

We will explain how such a “twisted Spinc-structure” arises for prequantized
q-Hamiltonian SU(2)-spaces. The counterpart to the Spinc-line bundle is the Morita
isomorphism �∗A2k+4 �K C given by

K = HomC l(T M)⊗C l(T M)(C l(T M), (E ⊗ E)op).

4 q-Hamiltonian SU(2)-spaces

4.1 Basic definitions

Let G be a compact Lie group, with Lie algebra g. Given an invariant inner product
B on its Lie algebra, define the equivariant Cartan 3-form

η
(B)
G (ξ) = 1

12
B(θ L , [θ L , θ L ])− 1

2
B(θ L + θ R, ξ).

A q-Hamiltonian G-space (relative to the inner product B) is a triple (M, ω,�),
where M is a G-manifold, ω is an invariant 2-form, and � : M → G is an equi-
variant smooth map, called the moment map, such that

(i) dGω = −�∗η(B)
G ,

(ii) ker ω ∩ ker(d�) = 0 everywhere.

Remark 4.1. If G = T is a torus, this is just the usual definition of a symplectic
T -space with torus-valued moment map. Indeed, Condition (i) in this case says that
dω = 0 and ωm(ξM (m), v) = −B(θT (dm�(v)), ξ) for all ξ ∈ g, v ∈ Tm M .

2 More precisely, one has to view C l(T M) as a Z2-graded Dixmier–Douady bundle, and work
with the twisted K -homology for such Z2-graded bundles.
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Hence it implies ker(ω) ⊂ ker(d�), whence (ii) simplifies to ker(ω) = {0}. For
general G, a similar argument shows that ker(ωm) is spanned by all ξM (m) such
that Ad�(m) ξ + ξ = 0.

Basic examples of q-Hamiltonian G-spaces are the conjugacy classes C ⊂ G,
with moment map the embedding. The double D(G) = G × G, with G acting
by conjugation and with moment �(a, b) = aba−1b−1, is another example. The
2-form is

ω = 1

2
a∗θ L · b∗θ R + 1

2
a∗θ R · b∗θ L + 1

2
(ab)∗θ L · (a−1b−1)∗θ R,

where, for example, a−1b−1 denotes the map (a, b) �→ a−1b−1. If G′ is the quotient
of G by a finite subgroup of Z(G), then the moment map, action, and 2-form on
D(G) descends to D(G ′), so that D(G′) is again a q-Hamiltonian G-space.

Given two q-Hamiltonian G-spaces (Mi , ωi ,�i ), i = 1, 2, their product M1 ×
M2 with the diagonal G-action, moment map �1�2, and 2-form ω1 + ω2 +
1
2 B(�∗1θ L ,�∗2θ R) is again a q-Hamiltonian G-space. This is called the fusion prod-
uct of M1, M2. The symplectic quotient of a q-Hamiltonian G-space is M//G =
�−1(e)/G. Similarly to the Hamiltonian theory, e is a regular value of � if and only
if G acts locally freely on �−1(e), and in this case M//G is a symplectic orbifold.
(If e is a singular value, then M//G is a singular symplectic space as defined in [39].)
More generally, given a conjugacy class C one can define a symplectic quotient

M//CG = (M × C)//G.

It was shown in [1] that moduli spaces of flat G-bundles over compact oriented
surfaces �r

h of genus h with r boundary circles, with boundary holonomies in
prescribed conjugacy classes C j , are symplectic quotients

M(�r
h , C1, . . . , Cr ) = (D(G)× · · · × D(G)

︸ ︷︷ ︸

h times

×C1 × · · · × Cr )//G.

We now specialize to q-Hamiltonian SU(2)-spaces (M, ω,�), with B the basic
inner product. Put M± = �−1(SU(2)±), and let

ω0,± = ω +�∗�±,

�0,± = log± ◦�.

Then
dSU(2)(ω0,± −�0,±) = dSU(2)(ω +�∗(�± − log±)) = 0.

That is, ω0,± is closed, with �0,± as a moment map. Using condition (ii) above one
can show [1] that ω0,± are nondegenerate, i.e., symplectic. Thus, (M±, ω0,±,�0,±)
are ordinary (symplectic) Hamiltonian SU(2)-spaces. In particular, M± are even-
dimensional, with a natural orientation. If M is compact and connected, then the
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spaces M± are connected. (This follows from the convexity properties and the fiber
connectivity of group-valued moment maps [1].)

Conversely, (M, ω,�) is determined by the pair of Hamiltonian SU(2)-spaces
(M±, ω0,±,�0,±). This correspondence reduces many properties of q-Hamiltonian
spaces to standard facts about ordinary Hamiltonian spaces. It is also used to con-
struct q-Hamiltonian spaces, as in the following example.

4.2 Example: The 4-sphere

The following construction of a q-Hamiltonian structure of S4 is taken from [5].
An independent construction due to Hurtubise–Jeffrey [26] was later generalized by
Hurtubise–Jeffrey–Sjamaar [25] to define the structure of a q-Hamiltonian SU(n)-
space on S2n , for any n.

Let C
2 carry the standard SU(2)-action and the standard symplectic structure

ω0 = i
2 (dz1 ∧ dz1 + dz2 ∧ dz2). The moment map for the SU(2)-action can be

written, for z �= 0, as

�0(z) = −iπ2‖z‖2 P(z)+ iπ2‖z‖2(I − P(z)),

where P(z) is the projection operator,

P(z) = ‖z‖−2
(

z1

z2

)(

z1

z2

)†

= 1

‖z‖2
(

|z1|2 z1z2

z1z2 |z2|2
)

.

Hence,
exp(�0(z)) = e−iπ2‖z‖2 P(z)+ eiπ2‖z‖2(I − P(z)).

Let V ⊂ su(2) be the open ball of radius 1√
2

(cf. Section 3.3). We have ‖�0(z)‖ =
1√
2
π‖z‖2, so that

S4± := �−1
0 (V ) = {z ∈ C

2|π‖z‖2 < 1}.

Define a diffeomorphism F of the annulus 0 < π‖z‖2 < 1 by

F(z1, z2) = (−z2, z1)
√

1
π‖z‖2 − 1.

Then F is equivariant, with π‖F(z)‖2 = 1−π‖z‖2. Gluing the charts S4± under F ,
one obtains a 4-sphere S4 with an action of SU(2).

Put �+ = exp �0 and �− = lc ◦ exp �0 = − exp �0. The diffeomorphism F
satisfies P(F(z)) = I − P(z), and therefore,

�+(F(z)) = exp(�0(F(z))) = − exp(�0(z)) = �−(z).
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Hence �± glue to a global equivariant map � : S4 → SU(2). Similarly, the 2-forms
ω± = ω0 + �∗0� glue3 to a global invariant 2-form ω ∈ 
2(S4), defining a
q-Hamiltonian SU(2)-space (S4, ω,�).

Remark 4.2. The space S4 carries an involution I : S4 → S4, given in charts by
complex conjugation. It has the equivariance property I (g · x) = I (g) · I (x) relative
to the involution of SU(2) given by complex conjugation of matrices, I (A) = A.
The involution satisfies I ∗ω = −ω and I∗� = �. The fixed-point set of the
involution is a 2-sphere S2 ⊂ S4. The theory of anti-involutions of q-Hamiltonian
G-spaces was developed in recent work of Schaffhauser [38], who established an
analogue of the convexity results of Duistermaat [15] and O’Shea–Sjamaar [33] in
this context.

Remark 4.3. It is well known that the complement of the zero section in T ∗(S2) is
SU(2)-equivariantly symplectomorphic to the complement of the origin in C

2. One
may thus modify the construction above, and obtain examples in which the fiber over
e or over c (or both) is a 2-sphere rather than a point. The four examples obtained
in this way are the complete list of 4-dimensional q-Hamiltonian SU(2)-spaces with
surjective moment map.

5 Cross-sections

Let (M, ω,�) be a q-Hamiltonian SU(2)-space. By the q-Hamiltonian cross-section
theorem [1], the preimage

Y = �−1(T(0,ρ)) (8)

is a q-Hamiltonian T -space (Y, ωY ,�|Y ), with 2-form ωY = i∗Y ω. In particular, ωY
is symplectic. Letting �Y : Y → (0, ρ) ⊂ t with exp �Y = �|Y , it is immediate
that (Y, ωY ,�Y ) is an ordinary Hamiltonian T -space. We have

Mreg = M+ ∩ M− = SU(2)×T Y

and
T M|Y = T Y ⊕ t⊥,

where the second summand is embedded by the generating vector fields. This
splitting is ω-orthogonal, and the 2-form on Y × t⊥ is given at y ∈ Y , with
g = �(y) ∈ T(0,ρ), by (ξ1, ξ2) �→ 1

2((Adg −Adg−1)ξ1, ξ2). Note that since the
pull-back of �± to T(0,ρ) is zero, the 2-forms ω0,± both pull back to ωY . Similarly

�0,+|Y = �Y = �0,−|Y + ρ.

3 To check that these 2-forms agree on the overlap S4
reg = S4+ ∩ S4−, it suffices to consider their

pull-back to symplectic cross-sections as in Section 5.



Quantization of q-Hamiltonian SU(2)-spaces 271

That is, (Y, ωY ,�Y ) may also be viewed as the symplectic cross-section of M±.
(To be precise, in the case of M−, it is the opposite cross-section, given as the
preimage of (−∞, 0) ⊂ t under �0,−.) The 2-forms on the bundles Y × t⊥ induced
by ω0,± are

(ξ1, ξ2) �→ adμ± ξ1 · ξ2,

where μ+ = �0,+(y) and μ− = �0,−(y).
The space Y is only a “partial” cross-section for M , since it leaves out the subsets

�−1(e), �−1(c). On the other hand, the “full” cross-section Ỹ = �−1(T[0,ρ])
is usually not a manifold, let alone symplectic. However, following Hurtubise–
Jeffrey–Sjamaar [25] one can “implode” Ỹ to obtain a symplectic T -space X , which
is a symplectic orbifold under regularity conditions. As a topological space, the
imploded cross-section is a quotient space

X = �−1(T[0,ρ])/ ∼,

where the equivalence relation divides out the SU(2)-action on both �−1(e) and
�−1(c). We have a decomposition of X into three symplectic spaces,

X = (M// SU(2)) ∪ Y ∪ (M//c SU(2)). (9)

The action of T ⊂ SU(2) on �−1(T[0,ρ]) descends to an action on X , and the map
�−1(T[0,ρ])→ [0, ρ] ⊂ t descends to a T -equivariant map

�X : X → t.

Let
X+ = (M// SU(2)) ∪ Y, X− = Y ∪ (M//c SU(2)),

so that X± are the imploded cross-sections of M±. View M± as Hamiltonian SU(2)-
spaces with 2-forms ω0,±, and let C

2 carry the standard structure as a Hamiltonian
SU(2)-space.

Proposition 5.1. Suppose SU(2) acts locally freely (respectively freely) on �−1(e),
�−1(c). Then the imploded cross-section X admits a unique structure of a symplec-
tic orbifold (respectively symplectic manifold) such that the open subsets X± are
symplectic quotients,

X± = (M± × C
2)// SU(2).

Furthermore,

a. The restriction of �X to X± is smooth, and is a moment map for the action of
T ∼= U(1).

b. The Hamiltonian T -space (Y, ωY ,�Y ) is embedded as an open symplectic sub-
manifold of X.

c. M// SU(2) is a symplectic suborbifold (respectively submanifold), with normal
bundle �−1(e)×SU(2) C

2. The U(1) action on the normal bundle is with weights
(−1,−1).
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d. M//c SU(2) is a symplectic suborbifold (respectively submanifold), with normal
bundle �−1(c)×SU(2) C

2. The U(1)-action on the normal bundle is with weights
(1, 1).

Thus, X is obtained by gluing the Hamiltonian imploded cross-sections for
(M±, ω0,±,�0,±). For the case G = SU(2), the imploded cross-sections con-
struction was introduced by Eugene Lerman as an SU(2)-counterpart of symplec-
tic cutting. Its basis properties for Hamiltonian SU(2)-spaces are described in [30,
Appendix], and directly imply the properties for q-Hamiltonian SU(2)-spaces.

Remark 5.2. More intrinsically, the imploded cross-section can directly be con-
structed as a q-Hamiltonian symplectic quotient X = (M × S4)// SU(2). This is
the approach taken in [26, 25]. However, in this paper we will have more use for the
construction in terms of ordinary Hamiltonian quotients.

6 The canonical “twisted Spinc-structure”

Choose invariant almost complex structures on M±, which are compatible with ω0,±
in the sense that each tangent space is isomorphic to C

n/2 with the standard complex
structure and standard symplectic form. The almost complex structure defines spinor
modules

S0,± = ∧CT M± → M±
for the Clifford bundles C l(T M)|M± , where the notation ∧C denotes the complex
exterior powers of T M± relative to the given complex structure. On the overlap
M+ ∩ M− = Mreg, the two spinor bundles differ by HomC l(T M)(S0,+,S0,−).

Proposition 6.1. The line bundle HomC l(T M)(S0,+,S0,−) is equivariantly isomor-
phic to the pull-back �∗(J⊗2).

Proof. An SU(2)-invariant almost complex structure on Mreg = SU(2) ×T Y is
equivalent to a T -invariant complex structure on the bundle T M|Y = T Y ⊕ t⊥.
This bundle carries two symplectic structures, defined by the 2-forms ω0,± on M±.
Pick a T -invariant compatible structure on the bundle T Y . Its sum with the complex
structure on t⊥, coming from the identification t⊥ ∼= Cα , is compatible with ω0,+.
Similarly its sum with the complex structure on t⊥, coming from the identification
t⊥ ∼= C−α , is compatible with ω0,−. The corresponding spinor bundles S̃0,±|Y → Y
are related by a twist by a T -equivariant line bundle, corresponding to the change of
the complex structure on t⊥ to its opposite. Clearly, this is the line bundle Y ×Cα =
Y × (Cρ)2:

S̃0,−|Y = S̃0,+|Y ⊗ (Y × (Cρ)2).

Extending to Mreg, and using the definition of J → SU(2)reg we obtain

S̃0,− = S̃0,+ ⊗�∗ J 2.
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But S̃0,± are equivariantly isotopic to S0,±, since any two choices of equivariant
compatible almost complex structures are isotopic. Hence we also have S0,− ∼=
S0,+ ⊗�∗ J 2, or equivalently HomC l(T M)(S0,+,S0,−) ∼= �∗ J 2.

Equivalently, we can express this result as follows:

Proposition 6.2. For any q-Hamiltonian SU(2)-space (M, ω,�), there is a distin-
guished (up to equivalence) SU(2)-equivariant Morita isomorphism

�∗A2 �S C l(T M). (10)

Proof. Let F± → SU(2)± define Morita trivializations C �F± A2. Fix iso-
morphisms F− ∼= F+ ⊗ J 2 and S0,− ∼= S0,+ ⊗ �∗ J 2 on intersections. The
desired Morita C l(T M)−�∗A2 bimodule S is then obtained by gluing the bundles
S± = HomC(�∗F±,S0,±), using that

HomC(�∗F−,S0,−) ∼= HomC(�∗(F+ ⊗ J 2),

S0,+ ⊗�∗ J 2) = HomC(�∗F+,S0,+)

on the intersection.

We refer to the Morita isomorphism (10) as the canonical twisted Spinc-structure
of a q-Hamiltonian manifold.

Remark 6.3. In particular, we see that the third integral Stiefel–Whitney class of any
q-Hamiltonian SU(2)-space satisfies

W 3(M) = 2�∗x,

where x ∈ H 3(SU(2), Z) is the generator. Since this is a 2-torsion class, it follows
that 4�∗x = 0. The fact that �∗x is torsion is a consequence of the condition
dω = −�∗η. The more precise statement relies on the minimal degeneracy condi-
tion ker(ω) ∩ ker(d�) = 0.

7 Prequantization of q-Hamiltonian SU(2)-spaces

Suppose (M, ω,�) is a q-Hamiltonian SU(2)-space. The conditions dω = −�∗η
and dη = 0 mean that the pair (ω,−η) defines a cocycle for the relative de Rham
complex4 
•(�). For k > 0, we define a level-k prequantization of (M, ω,�) to
be a lift of the class k[(ω,−η)] ∈ H 3(�, R) to a class in H 3(�, Z).

4 Recall that for any morphism of cochain complexes F• : C• → C̃•, the relative cohomo-
logy H •(F) is the cohomology of the algebraic mapping cone (C̃k−1 ⊕ Ck , d), with differential
d(x, y) = (F(y) − dx, dy). In our case F = �∗, acting on differential forms or on singular
cochains, and we write H (�, ·) for the relative cohomology.
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Remark 7.1. One can similarly define an equivariant level-k prequantization to be
an integral lift of k[(ω,−ηSU(2))] ∈ H 3

SU(2)(�, R). However, the equivariance is
automatic: Indeed, for any simply connected compact Lie group G and any G-space
M one has H p

G(M, Z) = H p(M, Z) for p ≤ 2, and if � : M → G is an equivariant
map one has H p

G(�, Z) = H p(�, Z) for p ≤ 3. See, e.g., [29].

Lemma 7.2. If (M, ω,�) admits a level-k prequantization, then the set of such pre-
quantizations is a principal homogeneous space under the group Tor(H 2(M, Z)) of
flat line bundles over M.

Proof. Clearly, the set of prequantizations is a principal homogeneous space under
Tor(H 3(�, Z)). Since H 3(SU(2), Z) = Z has no torsion, Tor(H 3(�, Z)) lies in the
image of the map H 2(M, Z) → H 3(�, Z) in the long exact sequence for relative
cohomology. But this map is injective since H 2(SU(2), Z) = 0, and hence restricts
to an isomorphism of the torsion subgroups.

The class k[(ω,−η)] is integral if and only if it takes integer values on all relative
3-cycles; that is, for every smooth singular 2-cycle � ∈ C2(M), and every smooth
singular 3-chain � ∈ C3(SU(2)) bounding �(�), we must have

k

(∫

�
η+

∫

�
ω

)

∈ Z. (11)

(Given �, it is actually enough, by the integrality of η, to check the condition for
some � bounding �(�).) If H 2(M, R) = 0, there is a much simpler criterion [29]:
Let x ∈ H 3(SU(2), Z) be the generator. Since �∗[η] = 0, the class �∗x is torsion.
If H 2(M, R) = 0, then (M, ω,�) is prequantizable at level-k if and only if

k�∗x = 0. (12)

Proposition 7.3. The conjugacy class C of t ∈ T[0,ρ] ⊂ SU(2) is prequantizable at
level-k if and only if t = exp( n

k ρ) for some n ∈ {0, 1, . . . , k}.
Proof. It is enough to check criterion (11) for � = C. Write t = exp(uρ) with
u ∈ [0, 1]. Let O be the adjoint orbit of uρ, so that C = �(O). As above, let
V ⊂ su(2) be the open ball of radius 1√

2
. Then O is the boundary of Vu = uV , and

we compute, with � = �(Vu),
∫

�
η =

∫

Vu

exp∗ η =
∫

Vu

d� =
∫

O
i∗O� =

∫

O
ωO −

∫

C
ωC .

Hence

k

(∫

�
η +

∫

C
ωC
)

= k
∫

O
ωO,

which is an integer if and only if the orbit through kuρ is integral, i.e., ku ∈ Z.

Proposition 7.4. The 4-sphere S4 and the double D(SU(2)) are prequantizable
at any integer level-k. More generally, this is the case for any q-Hamiltonian
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SU(2)-space (M, ω,�) with vanishing second homology. The double D(SO(3))
(viewed as a q-Hamiltonian SU(2)-space) is prequantizable at level-k if and only if
k is even.

The condition for D(SO(3)) was first obtained by Derek Krepski [29].

Proof. In each of these examples we have H 2(M, R) = 0; hence it suffices to find
all k such that k�∗x = 0. For M = S4, one has �∗x = 0, since H 3(S4, Z) =
0. For M = D(SU(2)), one again has �∗x = 0, by the properties of x under
group multiplication and inversion (Mult∗ x = pr∗1 x + pr∗2 x, Inv∗ x = −x .) For
M = D(SO(3)), one checks that the torsion subgroup of H 3(M, Z) is Z2, so that
M is prequantizable at either all levels or at all even levels. We claim that M is not
prequantizable at level 1. To see this, consider the symplectic submanifold T ′×T ′ ⊂
D(SO(3)), where T ′ is the maximal torus in SO(3) given as the image of T . For the
symplectic volume one finds (see Section 11.1 below)

vol(T ′ × T ′) = 1

4
vol(T × T ) = 2

4
= 1

2
.

By criterion (11), with � = T ′ × T ′ and � = ∅, the prequantized levels k must
satisfy k

∫

� ω ∈ Z; hence they must be even.

Finally, we remark that if (Mi , ωi ,�i) are prequantized at level-k, then their fusion
product M1 × M2 inherits a prequantization at level-k.

For an ordinary Hamiltonian SU(2)-space (M, ω0,�0), a prequantization is an
integral lift of the class of the equivariant symplectic form. More generally, by a
level-k prequantization of such a space we mean a prequantization of (M, kω0,
k�0). Geometrically, the lift is realized as the equivariant Chern class of an equi-
variant prequantum line bundle over M .

Proposition 7.5. A level-k prequantization of a q-Hamiltonian SU(2)-space
(M, ω,�) is equivalent to a pair of level-k prequantizations of the Hamiltonian
SU(2)-spaces (M±, ω0,±,�0,+), with the property that the prequantum line bundles
L± → M± satisfy

L− ∼= L+ ⊗�∗ J k

on the overlap Mreg = M+ ∩ M−.

Proof. Let �± : M± → SU(2)± be the restrictions of �. Since SU(2)+, SU(2)−
retract onto e, c respectively, the long exact sequences in relative cohomology give

isomorphisms H 2(M±, ·) ∼=−→ H 3(�±, ·), and a commutative diagram

H 3(�, Z) −−−−→ H 3(�±, Z) ∼= H 2(M±, Z)
⏐

⏐

�

⏐

⏐

�

H 3(�, R) −−−−→ H 3(�±, R) ∼= H 2(M±, R)
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The lower horizontal map is given on k[(ω,−η)] by

k[(ω,−η)] �→ k[ω± +�∗±�±] = k[ω0,±].

To give a parallel discussion of the upper horizontal map, let Ck(·, R) =
Hom(Ck(·), R) denote the complex of smooth singular cochains, with coefficient
in the ring R. We have two natural cochain maps,

Ck(·, Z)→ Ck(·, R)← 
k(·).
Let ηZ ∈ C3(SU(2), Z) be a smooth singular cocycle whose image in C3(SU(2), R)
is cohomologous to the image of η, and let �Z± ∈ C2(SU(2)±, Z) be primitives of
the restriction of ηZ to SU(2)±. Let σZ ∈ C2(M, Z) be such that dσZ = −k�∗ηZ,
and such that [(σZ, kηZ)] ∈ H 3(�, Z) represents the lift of k[(ω,−η)] given by
the prequantization. The upper map in the commutative diagram above is given on
[(σZ, kηZ)] by

[(σZ, kηZ)] �→ [σZ± + k�∗�Z± ].

Hence [σZ± + k�∗�Z± ] ∈ H 2(M±, Z) are integral lifts of k[ω0,±]. Let L± → M±
be the corresponding SU(2)-equivariant prequantum line bundles, so that

c1(L±) = [σZ± + k�∗�Z± ].

On the overlap Mreg = M+ ∩ M−, the difference between the 2-cocycles
σZ± + �∗�Z± is k�∗(�Z−|SU(2)reg − �+

Z
|SU(2)reg). The 2-cochain �Z−|SU(2)reg −

�Z+|SU(2)reg ∈ C2(SU(2)reg, Z) is closed, and its cohomology class is an integral
lift of [�−|SU(2)reg − �+|SU(2)reg] = �∗[ωO] ∈ H 2(SU(2)reg, R). Hence it repre-
sents the Chern class c1(J ). We have shown that

c1(L−|Mreg)− c1(L+|Mreg) = k�∗c1(J )

and consequently L−|Mreg
∼= L+|Mreg ⊗�∗ J k . Conversely, given a pair of prequan-

tum line bundles L± with this property, we may retrace the steps of this proof to
obtain an integral lift of [k(ω,−η)].

In particular, we see that if (M, ω,�) is prequantized at level-k, and e is a regular
value of �, then the symplectic quotient M// SU(2) inherits a level-k prequantiza-
tion. The corresponding prequantum line bundle over M// SU(2) is L+// SU(2) =
L+|�−1(e)/ SU(2).

The prequantization result may be expressed in terms of Morita trivializations:

Proposition 7.6. A level-k prequantization of a q-Hamiltonian SU(2)-space
(M, ω,�) gives rise to a Morita isomorphism

C �E �∗Ak .

Proof. Pick Morita trivializations C �F± Ak over SU(2)±, with F− ∼= F+ ⊗ J k

on the overlap. The prequantum line bundles L± → M± defined by the level-k
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prequantization satisfy L− ∼= L+ ⊗�∗ J k on the overlap. Hence the Hilbert space
bundles

E± := HomC(L±,�∗F±)

(where HomC denotes continuous bundle homomorphisms) glue to give the desired
Morita isomorphism.

Proposition 7.7. Suppose (M, ω,�) is a level-k prequantized q-Hamiltonian
SU(2)-space. Assume that e, c are regular values of �. Then the imploded cross-
section (X, ωX ,�X ) inherits a level-k prequantization.

Proof. Let (M±, ω0,±,�0,±) carry the corresponding prequantum line bundles with
L− = L+ ⊗ �∗ J k on the overlap. Since X± = (M± × C

2)// SU(2) are ordinary
Hamiltonian quotients, we obtain prequantizations of the Hamiltonian T -spaces
(X±, ωX ,�X ). The prequantum line bundles L X± satisfy L X±|Y ∼= L±|Y ; hence

L X−|Y = L X+ |Y ⊗�∗Y J k = L X+|Y ⊗ Ckρ .

We conclude that L X+ and L X− ⊗ C−kρ patch to define a global T -equivariant
prequantum line bundle L X → X .

8 Quantization of q-Hamiltonian SU(2)-spaces

We are now in a position to define the quantization of prequantized q-Hamiltonian
SU(2)-spaces. We begin with a quick overview of the quantization of ordinary
Hamiltonian G-spaces (M, ω,�). Choose an invariant almost complex structure
on M , compatible with the symplectic form. Such an almost complex structure is
unique up to equivariant homotopy, and hence the isomorphism class of the result-
ing equivariant Spinc-structure given by a G-equivariant spinor bundle S is inde-
pendent of this choice. We obtain a Morita isomorphism C l(T M) �Sop C. Given a
prequantum line bundle L → M , one can twist by L to obtain a new Spinc-structure
S ⊗ L−1, hence a Morita isomorphism

C l(T M) �Sop⊗L C.

This allows us to define a push-forward map relative to p : M → pt,

p∗ : K G
0 (M, C l(T M))→ K G

0 (pt) = R(G),

and to set Q(M) = p∗([M]) ∈ R(G). (For G = {e}, this is just an integer.) Equiva-
lently, Q(M) may be viewed as the equivariant index of the Spinc-Dirac operator for
the Spinc-structure S⊗ L−1. The quantization procedure for Hamiltonian G-spaces
is compatible with products:

Q(M1 × M2) = Q(M1)Q(M2). (13)



278 Eckhard Meinrenken

For any g ∈ G, the value of the equivariant index Q(M) at g may be computed
by Atiyah–Segal’s localization theorem. On the other hand, one has the Guillemin–
Sternberg quantization commutes with reduction property: Let Q(M)G ∈ Z be the
multiplicity with which the trivial representation occurs in Q(M). Then [30, 32]

Q(M)G = Q(M//G).

Here the index Q(M//G) is well defined if 0 is a regular value of � and the G-action
on �−1(0) is free. If the action is only locally free, then M//G is an orbifold and
the quantization is defined by the index theorem for orbifolds. In the general case,
if 0 is not a regular value and M//G is a singular space, Q(M//G) may be defined
by partial desingularization of the singular symplectic quotient [32].

Suppose now that (M, ω,�) is a compact q-Hamiltonian SU(2)-space, prequan-
tized at level-k. By combining the Morita isomorphisms �∗A2 �S C l(T M) from
Proposition 6.2 and C �E �∗Ak from Proposition 7.6 we obtain a Morita isomor-
phism

C l(T M) �Sop⊗E �∗Ak+2.

This defines a push-forward map in K -homology,

K SU(2)
0 (M, C l(T M))→ K SU(2)

0 (SU(2),Ak+2) ∼= Rk(SU(2)).

Definition 8.1. Let (M, ω,�) be a compact q-Hamiltonian SU(2)-space,
prequantized at level-k. We define the quantization Q(M) ∈ Rk(SU(2)) to be the
push-forward of the K -homology fundamental class [M] ∈ K SU(2)

0 (M, C l(T M)),

Q(M) = �∗([M]).

The properties of this quantization procedure for q-Hamiltonian spaces are very
similar to those for the Hamiltonian case: In particular, the analogue to the “quan-
tization commutes with products” property (13) holds, with the left-hand side
involving the fusion product of q-Hamiltonian spaces, and the right-hand side the
product in Rk(SU(2)). However, while (13) is rather obvious in the Hamiltonian
theory, its q-Hamiltonian counterpart is a nontrivial fact (proved in [31]). In what
follows, we will focus on “localization” and “quantization commutes with reduc-
tion” for q-Hamiltonian SU(2)-spaces.

9 Localization

We mentioned in Section 2.2 that any τ ∈ Rk(SU(2)) is determined by its values
τ (t) at elements t ∈ T reg

k+2. For a level-k prequantized q-Hamiltonian SU(2)-space
(M, ω,�), the number Q(M)(t) may be computed by localization to the fixed-
point set Mt of t . By equivariance, and since t is regular, the moment map takes the
fixed-point set to the maximal torus T = SU(2)t .
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Proposition 9.1. The restriction Ak+2|T admits a Tk+2-equivariant Morita triviali-
zation,

C �G Ak+2|T .

This Morita trivialization is uniquely determined (up to equivalence) by requiring
that G|e extend to an SU(2)-equivariant Morita trivialization of Ak+2|e.

Proof. Choose SU(2)-equivariant Morita trivializations C �F± Ak+2|SU(2)± such
that on the overlap, F− ∼= F+ ⊗ J k+2. Restrict to T -equivariant Morita trivializa-
tions over

T ∩ SU(2)+ = T(−ρ,ρ), T ∩ SU(2)− = T(0,2ρ).

The intersection T(−ρ,ρ)∩T(0,2ρ) has two connected components, T(0,ρ) and T(ρ,2ρ).
The restrictions of J k+2 to the two components are

J k+2|T(0,ρ) = T(0,ρ) × C(k+2)ρ,

J k+2|T(ρ,2ρ) = T(ρ,2ρ) × C−(k+2)ρ .

Let
G+ = F+|T(−ρ,ρ) , G− = F−|T0,2ρ ⊗C(k+2)ρ.

Then G− ∼= G+ over T(0,ρ), while G− = G+ ⊗ C2(k+2)ρ over T(ρ,2ρ). But Tk+2 is
exactly the subgroup of T acting trivially on C2(k+2)ρ . That is, the bundles G± glue
to define a Tk+2-equivariant Morita trivialization

C �G Ak+2|T .

By construction, G|e extends to the unique (up to equivalence) SU(2)-equivariant
trivialization F+|e of A|e. Any other Tk+2-equivariant Morita trivialization differs
from G by twist with a Tk+2-equivariant line bundle. Since dim T = 1, we have
H 2

Tk+2
(T ) = H 2

Tk+2
(pt); hence such a line bundle is detected by its restriction to e.

Since only the trivial Tk+2-representation extends to an SU(2)-representation, the
proof is complete.

Remark 9.2. The last part of the proof relied on dim T = 1. Indeed, the correspond-
ing statement for higher rank groups is trickier [31].

Proposition 9.3. Suppose � : M → SU(2) is an equivariant map, and that we
are given an equivariant Morita isomorphism C l(T M) �E �∗Ak+2. Then, for
all regular elements t ∈ T ∩ SU(2)reg, and any component of the fixed-point set
F ⊂ Mt , the restriction T M|F inherits a distinguished Tk+2-equivariant Spinc-
structure.

Proof. By equivariance, and since t is regular, � restricts to a map �F : F →
SU(2)t = T . Hence we have Tk+2-equivariant Morita isomorphisms

C ��∗G �∗(Ak+2|T ) �Eop|F C l(T M|F ).
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But a Morita trivialization of a Clifford algebra bundle is equivalent to a Spinc-
structure.

Let LF → F be the Spinc-line bundle associated to this Spinc-structure on T M|F .

Remark 9.4. The line bundle LF may be described as follows. From C l(T M) �E
�∗Ak+2 we obtain a Morita trivialization,

C � C l(T M)⊗ C l(T M) �E⊗E �∗A2k+4.

Over M±, we have another Morita trvialization of �∗A2k+4 coming from the defin-
ing Morita trivializations of A over U±. The two Morita trivializations are related
by line bundles L± → M±, with L− = L+ ⊗ �∗J−(2k+4) on the overlap.
The restriction of J 2k+4 to T is Tk+2-equivariantly trivial, and LF is the Tk+2-
equivariant line bundle obtained by gluing L±|F∩M± .

Using Proposition 9.3 we see that even though M does not come with a Spinc-
structure, the fixed-point contributions from the usual Atiyah–Segal–Singer theorem
[8, 7, 9] are well defined. Indeed one has, the following result.

Theorem 9.5 (Localization). Suppose (M, ω,�) is a compact q-Hamiltonian
SU(2)-space, prequantized at level-k. For all t ∈ T reg

k+2, the number Q(M)(t) is
given as a sum of fixed-point contributions,

Q(M)(t) =
∑

F⊂Mt

Q(νF )(t),

where Q(νF )(t) is defined using the Tk+2-equivariant Spinc-structure on T M|F .

The proof of Theorem 9.5 is parallel to the proof of the localization formula in
Atiyah–Segal [7]; details will be given in [31]. In the cohomological form of the
index theorem, the fixed-point contributions Q(νF ) are given as integrals of certain
characteristic classes over F (cf. [16, 4]),

Q(νF )(t) = (σ (LF )(t))1/2
∫

F

̂A(F) exp( 1
2 c1(LF ))

DR(νF , t)
.

Here ̂A(F) is the ̂A-class, and DR(νF , t) is given on the level of differential
forms by

DR(νF , t) = e
iπ
4 rankR(νF )det1/2

R

(

1− t−1e
1

2π curvR(νF )
)

,

with curvR(νF ) ∈ 
2(F, o(νF )) the curvature form for an invariant Riemannian
connection. The expression in parentheses lies in 
(F, End(νF )), with zeroth-order
term the identity, and the (positive) square root of its determinant is well defined.
Finally, LF is the line bundle associated to the Spinc-structure on T M|F , the phase
factor σ(LF )(t) ∈ U(1) is given by the action of t on L|F , and σ(LF )(t)1/2 is a
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suitable choice of square root.5 If F ⊂ M+, the Spinc-structure on T M|F is defined
by the almost complex structure on M+, twisted by the line bundle L+. Hence, the
fixed-point contribution can be written in “Riemann–Roch” form as

Q(νF )(t) = σ(L+|F )(t)
∫

F

Td(F) ch(L+|F)

D(νF,+, t)
,

where D(νF,+, t) is the equivariant characteristic class

D(νF,+, t) = detC
(

1− t−1e
i

2π curvC(νF,+)
)

,

with curvC(νF,+) the curvature form for an invariant Hermitian connection, and
σ(L+|F )(t) the phase factor defined by the action of t on L+|F . There is a similar
formula for the case F ⊂ M−:

Q(νF )(t) = −t(k+2)ρσ (L−|F )(t)
∫

F

Td(F) ch(L−|F )

D(νF,−, t)
.

If t = j (qs) with s = 1, . . . , k + 1, we have

−t(k+2)ρ = (−1)s−1.

This sign factor may be traced back to our choice of Morita trivialization of Ak+2|T ,
which was chosen to be compatible with the SU(2)-equivariant Morita trivialization
of Ak+2|e (rather than that of Ak+2|c).

Remark 9.6. A detailed check of the equivalence of the “Spinc” and “Riemann–
Roch” forms of the fixed-point contribution may be found in [4, Section 2.3].
In general, it is quite possible that F is contained neither in M+ nor in M−: this
happens for instance for M = D(SO(3)), as discussed in the final section of this
paper.

Remark 9.7. The right-hand side of the localization formula appears in [4], as a
“working definition” of the quantization of a q-Hamiltonian space. However, in [4] it
was not understood how to view this expression as the localization of an appropriate
equivariant object on M .

5 The square root is determined as follows. Let Sx be the fiber of the spinor module at any given
x ∈ F . Choose a Tk+2-invariant complex structure on Tx M , compatible with the orientation.
Let c1, . . . , cn/2 ∈ U(1) be the eigenvalues (with multiplicities) for the action of t on Tx M , and
u ∈ U(1) the action of t on the line HomC l(Tx M)(∧CTx M,Sx ). Then

σ(LF )(t)1/2 = u
∏

cr �=1

c1/2
r ,

using the square roots of cr �= 1 with positive imaginary part.
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10 Quantization commutes with reduction

Suppose (M, ω,�) is a compact q-Hamiltonian SU(2)-space, with a prequantiza-
tion at level-k. For each l = 0, . . . , k, let Cl be the conjugacy class of the element
exp( l

k ρ). If SU(2) acts freely (respectively locally freely) on �−1(Cl), then

M//Cl SU(2) = (M × Cl)// SU(2) ∼= �−1(Cl)/ SU(2)

is a smooth symplectic manifold (respectively orbifold), with a level-k prequantiza-
tion from M . The Riemann–Roch numbers

Q(M//Cl SU(2)) ∈ Z

are thus defined. If SU(2) does not act locally freely, it is still possible to define the
Riemann–Roch numbers using a partial desingularization, as in [32].

Theorem 10.1 (q-Hamiltonian quantization commutes with reduction). Let
(M, ω,�) be a level-k prequantized q-Hamiltonian SU(2)-manifold, and Q(M) ∈
Rk(SU(2)) its quantization. Let N(l) ∈ Z be the multiplicity of τl in Q(M). Then

N(l) = Q(M//Cl SU(2)),

where the right-hand side denotes the level-k quantization of the symplectic
quotient.

A general proof of this result, for arbitrary simply connected groups, can be found in
[4]. Here we will present a much simpler approach for the rank-1 case. It is modeled
after a similar proof for the Hamiltonian case [30, Appendix].

Proposition 10.2. Let (M, ω,�) be a level-k prequantized q-Hamiltonian SU(2)-
space. Suppose SU(2) acts (locally) freely on �−1(e),�−1(c), so that the imploded
cross-section (X, ωX ,�X ) is a smooth Hamiltonian T -space, with a prequantiza-
tion at level-k. Let NX (l), l ∈ Z, be the multiplicity function for the Hamiltonian
T -space X, and N(l), 0 ≤ l ≤ k, that for the q-Hamiltonian SU(2)-space M. Then

NX (l) =
{

N(l) if 0 ≤ l ≤ k,

0 otherwise.

Proof. We will consider only the case that SU(2) acts freely on �−1(e),�−1(c).
The fact that NX (l) vanishes unless 0 ≤ l ≤ k is an easy special case of the
Hamiltonian “quantization commutes with reduction” theorem; see, e.g., [17]. The
statement is thus equivalent to showing that Q(M) is the image, under the induction
map Rk(T )→ Rk(SU(2)), of tρQ(M)(t) ∈ R(T ) (restricted to Tk+2). That is, we
have to show that for all t = j (z), with z ∈ {q, q2, . . . , qk+1},

Q(M)(t) = tρ Q(X)(t) − t−ρ Q(X)(t−1)

tρ − t−ρ
= Q(X)(t)

1− t−2ρ
+ Q(X)(t−1)

1− t2ρ
.
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The equivariant index theorem expresses Q(M)(t) as a sum of fixed-point contri-
butions, Q(νF )(t), as explained above. Since SU(2) acts freely on �−1(e),�−1(c),
the fixed-point manifolds F are all contained in Mreg; hence we may work with the
Riemann–Roch form of the fixed-point contributions. By regularity, �(F) ⊂ T reg.
Thus, either F ⊂ Y , or the image of F under the Weyl group action lies in Y . That
is, all fixed-point manifolds come in pairs F, F ′, with F ∈ Y and F ′ its image under
the action of the nontrivial Weyl group element. We have

Q(νF ′)(t) = Q(νF )(t−1).

Now, since F ⊂ Y , it also appears as a fixed-point set in X . The normal bundle of
F in M splits as a direct sum of its normal bundle νX

F in X and the normal bundle
of Y in M , the latter being T -equivariantly isomorphic to Cα = C2ρ . Hence, the
fixed-point contributions are related by

Q(νF )(t) = Q(νX
F )(t)

1− t−2ρ
, Q(νF ′)(t) = Q(νX

F )(t−1)

1− t2ρ
.

Summing over all fixed-point components F ⊂ Y t , one obtains all contributions to
the fixed-point formula for X , except the contributions from F = M// SU(2) and
F = M//c SU(2). From the explicit description of the normal bundle of M// SU(2)
as �−1(0)×SU(2) C

2, and the identity, for ξ ∈ su(2),

det(1− z−1e−ξ ) = z−2 det(1− zeξ ) = z−2 det(1− ze−ξ ),

we obtain
D(νX

M// SU(2), z−1) = z−2 D(νX
M// SU(2), z).

Hence, the two terms for F = M// SU(2) cancel in the fixed-point formula for X .
Similarly, the two contributions from F = M//c SU(2) cancel.

Proof of Theorem 10.1. We have seen that N(l) = NX (l). From the “quantization
commutes with reduction theorem” for Hamiltonian U(1)-spaces [17], we know
that NX (l) is the Riemann–Roch number of the level-k quantization of a symplectic
quotient of X :

NX (l) = Q
(

�−1
X

(

iπl

k

)

/ U(1)

)

= Q(M//Cl SU(2)).

One obtains the multiplicities N(l) by the orthogonality relations (3). Writing
N(l) = Q(M//Cl SU(2)) we obtain

Q(M//Cl SU(2)) =
k+1
∑

s=1

|qs − q−s |2
2k + 4

τl( j (qs)) Q(M)( j (qs)).
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11 Examples

Using the localization formula, we can compute the quantizations Q(M) ∈
Rk(SU(2)) for our basic examples. Recall that τn, n = 0, . . . , k, are the basis
elements of Rk(SU(2)).

11.1 The double

We begin with the q-Hamiltonian SU(2)-space D(SU(2)). Recall that this space is
prequantizable at any integer level k ≥ 1.

Proposition 11.1. The level-k quantization of the double D(SU(2)) is given by

Q(D(SU(2)) =
[ k

2 ]
∑

j=0

(k + 1− 2 j)τ2 j .

Here [x] denotes the largest integer less than or equal to x. Equivalently,

Q(D(SU(2))( j (qs)) = 2k + 4

|qs − q−s |2
for s = 1, . . . , k + 1.

Proof. We first verify the equivalence of the two formulas. Using the known
formulas for products of τn’s, one finds that

[ k
2 ]
∑

j=0

(k + 1− 2 j)τ2 j =
k
∑

n=0

(τn)
2.

Write z = qs . Then

k
∑

n=0

(τn( j (z)))2 = − 1

|z − z−1|2
k
∑

n=0

(zn+1 − z−(n+1))2

= 1

|z − z−1|2
k
∑

n=0

(2− z2(n+1) − z−2(n+1)) = 2k + 4

|z − z−1|2 ,

where the sum is evaluated as a geometric series (using zk+2 = (−1)s). We next
compare this result to the fixed-point computation for M = D(SU(2)) (the following
computation may be found in [4]). Since the action of SU(2) on M = SU(2)×SU(2)
is by conjugation on each factor, and j (z) is a regular element, its fixed-point set is
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M j (z) = T × T =: F.

Note that �(F) = {e}, in particular F ⊂ M+. The induced symplectic structure on
F is the standard symplectic structure on T × T , defined by the inner product:

ωF = pr∗1 θT · pr∗2 θT ,

where pri : T × T → T are the two projections. The symplectic volume of F is

vol(F) =
∫

T×T
ωF =

(∫

T
θT

)

·
(∫

T
θT

)

= α · α = 2.

The Spinc-line bundle LF comes from the level-(k + 2) Morita isomorphism
C l(T M) � �∗Ak+2,

C � C l(T M)⊗ C l(T M) � �∗A2k+4;
hence it is isomorphic to the (2k + 4)th power of the level-1 prequantum line
bundle over F . (We are using that H 2(M, Z) = 0.) Hence 1

2 c1(LF ) = (k + 2)ωF .
By considering the action at x = (e, e) ∈ F , one checks that ζ(LF )(t) = 1. Indeed,
the Spinc-structure on Tx M extends to an SU(2)-equivariant Spinc-structure, and the
corresponding representation of SU(2) on LF |x is necessarily trivial. The normal
bundle to F in M is a trivial bundle

νF = su(2)/t⊕ su(2)/t = C⊕ C
−,

with T acting by weight 2 on the first summand and −2 on the second summand.
Hence

ζF (t)1/2

DR(νF , t)
= 1

|(1− z2)(1− z−2)| =
1

|z − z−1|2 .

Since finally ̂A(F) = 1, the fixed-point contribution is

χ(νF , j (z)) =
∫

F

e(k+2)ωF

|z − z−1|2 =
2k + 4

|z − z−1|2 ,

as claimed.

Recall now that M(�h) = D(SU(2))h// SU(2) is the moduli space of flat SU(2)-
bundles over a surface of genus h. Using that quantization commutes with products,
we have Q(D(SU(2))h) = Q(D(SU(2)))h . Together with the quantization com-
mutes with reduction principle we hence obtain the Verlinde formula for this moduli
space (cf. [40]):

Q(M(�h)) =
k+1
∑

s=1

(

|qs − q−s |2
2k + 4

)1−h

=
k+1
∑

s=1

(

2 sin2( sπ
k+2 )

k + 2

)1−h

.



286 Eckhard Meinrenken

11.2 Conjugacy classes

We have seen that the conjugacy classes C ⊂ SU(2) admitting a level-k prequanti-
zation are precisely those of elements exp( n

k ρ) with 0 ≤ n ≤ k.

Proposition 11.2. The level-k quantization of the conjugacy class C = SU(2) ·
exp( n

k ρ) is given by
Q(C) = τn. (14)

Equivalently, for s = 1, . . . , k + 1,

Q(C)( j (qs)) = qs(n+1) − q−s(n+1)

qs − q−s
. (15)

Proof. The equivalence of the two formulations follows from the discussion in
Section 2.2. Write z = qs . If n < k, then �(C) ⊂ SU(2)+. The symplectic form on
C = C+ identifies C with the coadjoint orbit of n

k ρ, and the level-k prequantization
corresponds to the usual (level-1) prequantization of the orbit through nρ. Written
in Riemann–Roch form, the fixed-point contributions for the conjugacy class are
just the same as those for the coadjoint orbit, given by (15). If n = k, the conjugacy
class C coincides with the central element {c}. Since zk+2 = (−1)s we have

χk(z) = zk+1 − z−(k+1)

z − z−1
= zk+2 − z−(k+2)z2

z2 − 1
= −(−1)s,

which on the other hand is also the fixed-point contribution for Q(C)( j (z)), for
C ∈ �−1(SU(2)−). This gives (15) for n = k.

As a consequence, we may compute the level-k quantization of

M(�r
h; C1, . . . ,Cr ) = D(SU(2))h × C1 × · · · × Cr ,

where Ci , i = 1, . . . , r , are conjugacy classes of elements exp( li
k ρ) with 0 ≤ li ≤ k.

One obtains

Q(M(�r
h; C1, . . . , Cr )) =

k+1
∑

s=1

(

|qs − q−s |2
2k + 4

)1−h

τl1(q
s) · · · τlr (q

s).

For h = 0 and r = 3, the right-hand side of this formula consists of the fusion
coefficients. That is,

Q(M(�3
0 : C1, C2, C3)) = N (k)

l1,l2,l3
.
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11.3 The 4-sphere

Recall that the q-Hamiltonian space S4 admits a unique prequantization for all k.

Proposition 11.3. The level-k quantization of the 4-sphere is given by

Q(S4) =
k
∑

n=0

τn.

Equivalently, for s = 1, . . . , k + 1,

Q(S4)( j (qs)) =
{

2 |1− q−s |−2, s odd,

0, s even.

Proof. Write z = qs . We first verify the equivalence of the two formulas:

k
∑

n=0

τn( j (q(z)) = 1

z − z−1

k
∑

n=0

(zn+1 − z−(n+1))

= 1

z − z−1

(

z − zk+2

1− z
− z−1 − z−(k+2)

1− z−1

)

.

If s is even, then zk+2 = 1 and the two terms cancel. If s is odd, then zk+2 = −1
and we obtain, writing (z − z−1) = (1− z−1)(z + 1), that

k
∑

n=0

τn( j (z)) = 2

(1− z−1)(1− z)
= 2

|1− z−1|2 .

The fixed-point set of t consists of the “north pole” �−1(e) and the “south pole”
�−1(c). By construction, S4± are identified with open balls in C

2, with the standard
SU(2)-action. Hence the weights for the T ⊂ SU(2)-action are+1,−1 respectively,
and the fixed-point formulas give (using j (z)(k+2)ρ = zk+2 = (−1)s)

Q(S4)( j (z)) = 1

(1− z)(1− z−1)
− (−1)s 1

(1− z)(1− z−1)
,

as needed.

11.4 Moduli spaces of flat SO(3)-bundles

The symplectic quotient
D(SO(3))h// SO(3)
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of an h-fold product of D(SO(3))’s (viewed as q-Hamiltonian SO(3)-spaces) is the
moduli space of flat SO(3)-bundles over a surface of genus h. It has two connected
components, given as symplectic quotients of D(SO(3))h , where D(SO(3)) is now
viewed as a q-Hamiltonian SU(2)-space:

D(SO(3))h// SO(3) = D(SO(3))h// SU(2) ∪ D(SO(3))h//c SU(2). (16)

The two components correspond to the trivial and the nontrivial SO(3)-bundles over
the surface. To obtain Verlinde numbers for these moduli spaces, we need to work
out the quantization of the q-Hamiltonian SU(2)-space D(SO(3)).

We have seen that D(SO(3)) is prequantizable at level-k if and only if k is
even. The different prequantizations form a principal homogeneous space under the
torsion subgroup of H 2(D(SO(3)), Z). In fact, this group is all torsion, and

H 2(D(SO(3)),Z) = H 2
Z2×Z2

(D(SU(2)),Z)

= H 2
Z2×Z2

(pt, Z)

= Hom(Z2 × Z2, U(1)).

Letting Cφ denote the 1-dimensional representation given by φ ∈ Hom(Z2 ×
Z2, U(1)), this group acts by tensoring with the flat line bundle

D(SU(2))×Z2×Z2 Cφ.

Let T ′ = T/Z2 be the maximal torus in SO(3), and N(T ) ⊂ SU(2), N(T ′) ⊂
SO(3) the normalizers. Similarly, for elements a, b, . . . of SU(2) we denote by
a ′, b′, . . . their images in SO(3).

Lemma 11.4. For any t ∈ Treg ⊂ SU(2), the fixed-point set of its action on SO(3) =
SU(2)/Z2 is T ′ = T/Z2 unless t2 = c, in which case it is N(T ′) = N(T )/Z2.

Proof. For a ∈ SU(2), the element a′ is fixed under Adt if and only if a is fixed
up to a central element, i.e., tat−1a−1 ∈ Z(SU(2)). If this central element is e, this
just means that a ∈ T . If the central element is c, then at−1a−1 = t−1c shows
that a ∈ N(T ) represents the nontrivial Weyl element w, and c = tw(t−1) = t2.
We have thus shown that the fixed-point set of a regular element t is the image of T
in SO(3), unless t2 = c, in which case it is the image of the normalizer N(T ).

Let us consider the fixed contributions of any t = j (qs), s = 1, 2, . . . , k + 1, for
the q-Hamiltonian space D(SO(3)), for k even. Note that t2 = c ⇔ s = k/2 + 1,
and so we have to consider two cases:

Case 1. s �= 1 + k
2 , i.e., t2 �= c. Then D(SO(3))t = T ′ × T ′ =: F is connected,

and its moment map image is {e}. Since SU(2) acts trivially on the fiber of L+ at
(e′, e′) ⊂ F , the action of t on L+|F is trivial. Hence the fixed-point contribution is
just 1/4 that of the corresponding fixed-point manifold in D(SU(2)):
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χ(νF , t) = 1

4

2k + 4

|qs − q−s |2 =
1

4 sin2( πs
k+2 )

(

k

2
+ 1

)

.

Case 2. s = 1+ k
2 , i.e., t2 = c and qs = i . Then D(SO(3))t = N(T ′)× N(T ′) has

four connected components, indexed by the elements of u = (u1, u2) ∈ W × W =
Z2 × Z2. Choose

n =
(

0 1

−1 0

)

∈ N(T )

as a lift of the nontrivial Weyl group element, and let n′ ∈ N(T ′) be its image. Then
each fixed-point component Fu has a base point

xu ∈ {(e′, e′), (n′, e′), (e′, n′), (n′, n′)}
with the property �(xu) = e. For any given choice of the prequantization, one finds
that the contribution of the component labeled by u = (u1, u2) is of the form6

χ(νFu , t) = λ(u)

4

2k + 4

|qs − q−s |2 =
λ(u)

4

(

k

2
+ 1

)

,

where λ(u) ∈ U(1) is given by the action of t on L+|mu . For u = (1, 1), this
phase factor is λ(u) = 1 as above. The total fixed-point contribution is obtained by
summing over all u = (u1, u2):

Q(D(SO(3))(qk/2+1) =
(

k

2
+ 1

)

∑

u

λ(u)

4
.

Let χ ∈ Rk(SU(2)) be defined by

χ =
k/2
∑

j=0

(−1) jτ2 j = τ0 − τ2 + τ4 + · · · + (−1)k/2τk . (17)

Using the orthogonality relations for level-k characters, one finds that

χ(qk/2+1) = k

2
+ 1, χ(qs) = 0 for s �= k/2+ 1.

From the localization contributions, we see that

Q(D(SO(3))) = 1

4

⎛

⎝Q(D(SU(2)))+
∑

u �=(1,1)

λ(u) χ

⎞

⎠ .

It remains to understand the sum
∑

u �=(1,1) λ(u).

6 The computation is similar to that in Section 11.1. In particular, the symplectic volume of the
2-torus Fu may be computed by working out ωFu in coordinates; one obtains vol(Fu) = 1/2. See
[2] for more general calculations along these lines.
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Lemma 11.5. For every even k and any φ ∈ Hom(Z2 × Z2, U(1)), the space
D(SO(3)) admits a unique prequantization at level-k with the property that

λ(u) = (−1)k/2φ(u)

for all u �= (1, 1).

Proof. Changing the prequantization by φ ∈ Hom(Z2 × Z2, U(1)) changes λ(u)
to λ̃(u) = λ(u)φ(u). This shows uniqueness. For existence, we have to find a pre-
quantization with λ(u) = (−1)k/2 for u �= (1, 1). In fact, it is enough to find such
a prequantization for k = 2. (The general case will then follow by taking the k/2th
power of the prequantization at level 2.)

For k = 2, and any of the four possible prequantizations, write

Q(D(SO(3))) =
2
∑

l=0

N(l)τl .

The localization formulas for q, q2, q3 give equations

N(0)+√2N(1) + N(2) = 1,

N(0) − N(2) = 1

2
+ 1

2

∑

u �=(1,1)

λ(u),

N(0)−√2N(1) + N(2) = 1.

The first and third equations give N(1) = 0 and N(0) + N(2) = 1. In particular,
N(0) − N(2) is an odd integer. The second equation shows that

∑

u �=(1,1) λ(u) is a
real number. A change of prequantization produces a sign change of exactly two of
the λ(u)’s with u �= (1, 1). Since

∑

u �=(1,1) λ̃(u) is again a real number, it follows
that all λ(u) are real, and hence equal to ±1. The number of λ(u)’s equal to −1
must be odd, or else the second equation would give that N(0)+ N(2) = 0 or = 2,
contradicting that N(0)−N(2) is odd. Hence, either all three λ(u)’s with u �= (1, 1)
are equal to−1, or exactly one of them equals−1 and the other two are equal to+1.
The resulting four cases must correspond to the four prequantizations. In particular,
there is a unique level-2 prequantization such that λ(u) = −1 for all u �= (−1,−1).

Let δφ,1 be equal to 1 if φ = 1, equal to 0 otherwise. Then
∑

u φ(u) = 4δφ,1, i.e.,
∑

u �=(1,1) φ(u) = −1+ 4δφ,1. It follows that

Q(D(SO(3))) = 1

4
(Q(D(SU(2)))+ (−1)k/2(−1+ 4δφ,1) χ).

From the known expansions of Q(D(SU(2))) (Proposition 11.1) and χ (equa-
tion (17)) in the basis τ j , we finally obtain the following theorem:

Theorem 11.6. For k even, let D(SO(3)) carry the level-k prequantization labeled
by φ ∈ Hom(Z2 × Z2, U(1)). Then
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Q(D(SO(3))) = 1

4

k/2
∑

j=0

(k + 1− 2 j + (−1) j+k/2(−1+ 4δφ,1))τ2 j .

Equivalently, for s = 1, . . . , k + 1,

Q(D(SO(3)))( j (qs)) =
⎧

⎨

⎩

1
4 sin−2 ( πs

k+2

) ( k
2 + 1

)

, s �= k
2 + 1,

1
4 (1+ (−1)k/2(−1+ 4δφ,1))

( k
2 + 1

)

, s = k
2 + 1.

Dividing into the various subcases, the formula reads

Q(D(SO(3))) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

( k
4 + 1

)

τ0 +
( k

4 − 1
)

τ2 + k
4 τ4 +

( k
4 − 2

)

τ6 + · · · ,
φ = 1, k = 0 mod 4,

k
4τ0 + k

4τ2 +
( k

4 − 1
)

τ4 +
( k

4 − 1
)

τ6 + · · · ,
φ �= 1, k = 0 mod 4,

( k−2
4

)

τ0 +
( k−2

4 + 1
)

τ2 +
( k−2

4 − 1
)

τ4 +
( k−2

4

)

τ6 + · · · ,
φ = 1, k = 2 mod 4,

( k−2
4 + 1

)

τ0 +
( k−2

4

)

τ2 +
( k−2

4

)

τ4 +
( k−2

4 − 1
)

τ6 + · · · ,
φ �= 1, k = 2 mod 4.

Using this result, in combination with “quantization commutes with reduction,” it
is now straightforward to compute the quantizations (Verlinde numbers) for the
moduli spaces (16). Note that there are many different prequantizations, since one
can choose a different φ for each factor. The case with boundary (markings) is still
more complicated, and will be discussed elsewhere.

Remark 11.7. For k = 0 mod 4, the result above was proved about eight years
ago in joint work [2] with Anton Alekseev and Chris Woodward. Pantev [34] and
Beauville [10] had earlier obtained similar results using techniques from algebraic
geometry.
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Abstract In this article, we study the local invariants associated to the Hamil-
tonian action of a compact torus. Our main results are wall-crossing formulas
between invariants attached to adjacent connected components of regular values of
the moment map.
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1 Introduction

Let (M,�) be a compact connected symplectic manifold with the Hamiltonian
action of a compact torus T and moment map � : M → t∗. Let us assume that
the action is effective. We are interested here in two global invariants:

1. the Duistermaat–Heckman measure DH(M), which is the pushforward by � of
the Liouville volume form,

2. the Riemann–Roch characters RR(M, L⊗k ), k ≥ 1, which are virtual represen-
tations of T . Here the data (M,�,�) is prequantized by a Kostant–Souriau line
bundle L.

Let �∗ ⊂ t∗ be the weight lattice of T . For every couple (μ, k) ∈ �∗ ×Z
>0, we

denote by m(μ, k) ∈ Z the multiplicity of the weight μ in RR(M, L⊗k ).
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CNRS:UMR5149, Université Montpellier II, France
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One striking property of the moment map is that its image �(M) is a convex
polytope in t∗. In fact, as noted for example in [17] or [20], each component of the
set of regular values of � is either an open convex polytope contained in �(M) or
the open subset cext = t∗\�(M).

Let us fix a connected component c of regular values of �. A celebrated theorem
of Duistermaat and Heckman [15] tells us that the measure DH(M) is equal to a
polynomial DHc times a Lebesgue measure on the open subset c. Note that DHcext

is the zero polynomial.
The “quantization commutes with reduction” theorem [28, 29] shows that there

exists a periodic polynomial1 mc : �∗ ×Z→ Z which coincides with the multipli-
city map m : �∗×Z

>0 → Z on the cone of t∗×R generated by c×{1}. The periodic
polynomial mc is defined by a Kawasaki–Riemann–Roch formula on a symplectic
quotient Ma = �−1(a)/T , where a ∈ c. As a corollary, we get that DHc is the
semiclassical limit of mc: one has

lim
k→+∞

mc(kμ, k)

kd
= 1

(2π)d
DHc(μ) (1.1)

for every μ ∈ �∗. Here d = 1
2 dimMa .

We have seen that the global invariants DH(M), RR(M, L⊗k ), k ≥ 1, give rise
to a family of local invariants DHc, mc, where c runs over the connected component
of regular values of �.

This paper is concerned with the differences DHc+ − DHc− and mc+ − mc− in
the case that c± are two adjacent connected components of regular values of �. Let
� ⊂ t∗ be the hyperplane that separates c±. Some continuity properties are known:

1. the polynomial DHc+ − DHc− is divisible by a certain power of the equation of
the hyperplane � (see [17] and [12]);

2. the periodic polynomial mc+ −mc− vanishes on

{(μ, k) ∈ �∗ × Z |μ ∈ k�}. (1.2)

See [29].

In this paper, we compute explicitly the difference DHc+ − DHc− , and we show
that mc+ − mc− vanishes also on some translates of (1.2).

Let us introduce some notation. We denote by T� ⊂ T the subtorus of dimension
1 that has for Lie algebra the one-dimensional subspace t� which is orthogonal to
the hyperplane �. Let β ∈ t� be the primitive element of the coweight lattice
ker(exp : t→ T ) which is pointing in the direction from c− to c+.

We make the choice of a decomposition T = T/T� × T�, where T/T� denotes
a subtorus of T . At the level of Lie algebras, we have then t = (t/t�) ⊕ t� and
t∗ = (t/t�)∗ ⊕ t∗�: hence ξ + (t/t�)∗ = � for any ξ ∈ �. We denote by S(t)
the algebra of polynomials on the vector space t∗. We will consider the polynomial
DHc+ − DHc− ∈ S(t) relatively to the decomposition

1 See Definition 3.1 for the notion of “periodic polynomial.”
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S(t) =
⊕

j∈N
S(t/t�)β j .

Let us choose (and fix once and for all) ξ ∈ � in the relative interior of c+ ∩ c−
in �. We consider the family F of connected components Z ⊂ MT� such that
ξ ∈ �(Z) ⊂ �. It is easy to see that F does not depend of the choice of ξ : we have
c+ ∩ c− ⊂ �(Z) for all Z ∈ F . For each Z ∈ F , we denote by

�Z : Z → (t/t�)∗

the restriction of the map � − ξ to the symplectic submanifold Z . The map �Z
is a moment map relative to the Hamiltonian action of T/T� on Z . Let DH(Z)
be Duistermaat–Heckman measure on (t/t�)∗ associated to the moment map �Z .
Since 0 is a regular value of �Z , we may consider the Duistermaat–Heckman poly-
nomial

DH0(Z) ∈ S(t/t�)

such that DH(Z)(a′) = DH0(Z)(a′)Pa′ in a neighborhood of 0 ∈ (t/t�)∗. Here da′
is the natural Lebesgue measure on (t/t�)∗, derived from the Lebesgue measure on
t∗ and dβ on t∗�.

For Z ∈ F , we consider the symplectic reduction

Zξ = �−1
Z (0)/(T/T�)

and the normal bundle NZ of Z in M . Note that NZ inherits the structure of a
symplectic vector bundle, together with a Hamiltonian vector bundle action of the
circle T� on it. Let 2dZ be the dimension of Zξ and let 2rZ be the (real) rank of NZ .
We prove in Section 2 the following.

Theorem A. We have

(DHc+ − DHc−)(a) =
∑

Z∈F
DZ (a − ξ), a ∈ t∗,

where each polynomial DZ ∈ S(t) admits the following decomposition:

DZ = βrZ−1

det1/2
Z

(−Lβ

2π

)

(

DH0(Z)

(rZ − 1)!
+

dZ
∑

k=1

βkQZ ,k

)

.

Each polynomial QZ ,k belongs to S(t/t�) and is of degree less than dZ − k. The

term det1/2
Z

(−Lβ

2π

) ∈ Z is the Pfaffian of the infinitesimal action of −β
2π on the fibers

of the normal bundle NZ .

Theorem A generalizes previous results of Guillemin–Lerman–Sternberg [17]
and Brion–Procesi [12]. In Section 2.4 we give the precise definition of the polyno-
mials QZ ,k .
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Suppose now that M is prequantized by a Kostant–Souriau line bundle L . The
hyperplane � is defined by the equation

〈a, β〉
2π
− r� = 0, a ∈ t∗, (1.3)

for some r� ∈ Z. The bundle NZ decomposes as the sum of two polarized sub-
bundles N±,β

Z . Let s±Z ∈ N be the absolute value of the trace of 1
2πLβ on N±,β

Z .
Note that the integer s+Z + s−Z is larger than half of the codimension of Z in M .

We prove in Section 3.5 the following theorem.

Theorem B. Let s± := infZ∈F s±Z . We have mc+(μ, k) = mc−(μ, k) when

−s− <
〈μ, β〉

2π
− kr� < s+. (1.4)

Note that the symplectic orbifolds Zξ , Z ∈ F form the connected component of
the symplectic reduction

M�
ξ := (�−1(ξ) ∩ MT�)/(T/T�).

We have the following refinement of Theorem B.

Theorem C. If M�
ξ is connected, the inequalities (1.4) are optimal, i.e., there exist

(μ, k) such that 〈μ,β〉
2π − kr� = ±s± and mc+(μ, k) �= mc−(μ, k).

In Section 4 we apply Theorem B to the particular cases in which M is an integral
coadjoint orbit of a compact Lie group G. In Section 4.4, we study more precisely
the case G = SU(n): here our result specifies some results of Billey–Guillemin–
Rassart [10].

In Section 5, we obtain a strong version of Theorem B in the case of an action of
a torus T on a complex vector space C

d . The quantization of this action is in some
sense the vector space Pol(Cd) of complex polynomials on C

d . The T -multiplicities
of Pol(Cd) are given by a partition function NR : �∗ → N. It was observed in [13,
35] that there exists a finite decomposition of the vector space t∗ in conic chambers
such that NR is a periodic polynomial on each piece.

Let c± be two adjacent chambers, and let Pc± be the corresponding periodic
polynomials computing NR on each chamber. The main result of Section 5 is the
formula (5.6), which depicts the periodic polynomial Pc+ − Pc− as a convolution of
distributions. Recently,2 Boyal–Vergne [11] and De Concini–Procesi–Vergne [14]
proposed different proofs of this formula.

2 Our present paper is a revised version of the preprint math.SG/0411306.



Wall-crossing formulas in Hamiltonian geometry 299

Acknowledgments
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Notation

Throughout the paper T will denote a compact, connected abelian Lie group, and t
its Lie algebra. The integral lattice � ⊂ t is defined as the kernel of exp : t → T ,
and the real weight lattice �∗ ⊂ t∗ is defined by �∗ := hom(�, 2πZ). Every
μ ∈ �∗ defines a 1-dimensional T -representation, denoted by Cμ, where t =
exp X acts by tμ := ei〈μ,X〉. We denote by R(T ) the ring of characters of finite-
dimensional T -representations. We denote by R−∞(T ) the set of generalized char-
acters of T . An element χ ∈ R−∞(T ) is of the form χ = ∑

μ∈�∗ aμ Cμ, where
μ �→ aμ,�∗ → Z has at most polynomial growth.

The symplectic manifolds are oriented by their Liouville volume forms. If (Z , oZ )
is an oriented submanifold of an oriented manifold (M, oM ), we take on the fibers
of the normal bundle N of Z in M , the orientation oN satisfying oM = oZ · oN .

2 Duistermaat–Heckman measures

Let (M,�) be a connected symplectic manifold of dimension 2n equipped with a
Hamiltonian action of a torus T , with Lie algebra t. The moment map � : M →
t∗ satisfies the relations �(X M ,−) + d〈�, X〉 = 0, X ∈ t, where X M(m) :=
d
dt |t=0e−t X · m is the vector field generated by the infinitesimal action of X ∈ t.

We assume in this section that � is a proper map, and that the generic stabilizer

M of T on M is finite.

The Duistermaat–Heckman measure DH(M) is defined as the pushforward by
� of the Liouville volume form �n

n! on M . For every f ∈ C∞(t∗) with compact

support one has
∫

t∗ DH(M)(a) f (a) = ∫

M f (�)�n

n! . Equivalently,

DH(M)(a) =
∫

M
δ(a −�)

�n

n!
, a ∈ t∗.

We can define DH(M) in terms of equivariant forms as follows. Let A(M) be
the space of differential forms on M with complex coefficients. We denote by
A−∞temp(t, M) the space of tempered generalized functions over t with values in

A(M), and by M−∞
temp(t

∗, M) the space of tempered distributions over t∗ with

values in A(M). Let F : A−∞temp(t, M) → M−∞
temp(t

∗, M) be the Fourier transform
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normalized by the condition that F(X �→ ei〈ξ,X〉) is equal to the Dirac distribution
a �→ δ(a − ξ).

Let �t(X) = � − 〈�, X〉 be the equivariant symplectic form. We have then
F(e−i�t ) = e−i�δ(a −�) and so

DH(M) = (i)n
∫

M
F(e−i�t ). (2.1)

2.1 Equivariant cohomology and localization

We first recall the Cartan model of equivariant cohomology with polynomial coeffi-
cients and the extension to generalized coefficients defined by Kumar and Vergne
[26]. We then give a brief account of the method of localization developed in
[30, 31],

Let M be a manifold provided with an action of a compact connected Lie group
K with Lie algebra k. Let d : A(M) → A(M) be the exterior differentiation. Let
Ac(M) be the subalgebra of compactly supported differential forms. If V is a vector
field on M we denote by c(V ) : A(M) → A(M) the contraction by V . The action
of K on M gives a morphism X → X M from k to the Lie algebra of vector fields
on M .

We consider the space of K -equivariant maps k→ A(M), X �→ η(X), equipped
with the derivation (Dη)(X) := (d − c(X M))(η(X)), X ∈ k. Since D2 = 0, one
can define the cohomology space ker D/ImD. The Cartan model [7, 21] considers
polynomial maps, and the associated cohomology is denoted by H∗K (M). Kumar
and Vergne [26] studied the cohomology spaces H±∞K (M) obtained by taking C±∞
maps. Recall the construction H−∞K (M).

The space C−∞(k,A(M)) of generalized functions on k with values in the
space A(M) is, by definition, the space Hom(mc(k),A(M)) of continuous C-linear
maps from the space mc(k) of smooth compactly supported densities on k to the
space A(M), both endowed with the C∞-topologies. We define A−∞K (M) :=
C−∞(k,A(M))K as the space of K -equivariant C−∞-maps from k to A(M).

The differential D defined on C∞(k,A(M)) admits a natural extension to
C−∞(k,A(M)) and D2 = 0 on A−∞K (M) [26]. The cohomology associated to
(A−∞K (M), D) is called the K -equivariant cohomology with generalized coeffi-
cients and is denoted by H−∞K (M). The subspace A−∞K ,c (M) := C−∞(k,Ac(M))K

is stable under the differential D, and we denote by H−∞K ,c (M) the associated
cohomology. When M is oriented, the integration over M gives rise to a map
∫

M : H−∞K ,c (M)→ C−∞(k)K .
Localization procedure. Let λ be a K -invariant 1-form on M and let

�λ : M → k∗ (2.2)

be the K -equivariant map defined by 〈�λ(m), X〉 = λ(X M )m . Then Dλ(X) =
dλ − 〈�λ, X〉. The localization procedure developed in [30, 31] is based on the
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existence of an inverse [Dλ]−1 of the K -equivariant form Dλ. It is an equivariantly
closed element of A−∞K (M\�−1

λ (0)) defined by the integral

[Dλ]−1(X) = i
∫ ∞

0
e−i t Dλ(X)dt . (2.3)

An open subset U ⊂ M is called adapted to λ if U is K -invariant and if (∂U) ∩
�−1

λ (0) = ∅. In [31], we associate to an open subset U adapted to λ the following
equivariantly closed form with generalized coefficients:

PUλ = χU + dχU [Dλ]−1λ. (2.4)

Here χU ∈ C∞(M) is a K -invariant function supported in U which is equal to 1 in
a neighborhood of U ∩�−1

λ (0). The cohomology class defined by PUλ in H−∞K (M)

does not depend of χU . In particular, PUλ = 0 in H−∞K (M) if U ∩ �−1
λ (0) = ∅.

If U ∩ �−1
λ (0) is compact, we take χU with compact support. Then PU

λ defines a
cohomology class in H−∞K ,c (M).

2.2 Localization of DH(M)

We return to the situation of a Hamiltonian action of a torus T on a symplectic mani-
fold (M, ω). We need two auxiliary data: a T -invariant Riemannian metric on M ,
denoted by (·, ·)M , and a scalar product (·, ·) on t∗ which induces an identification
t∗ � t.

Let H be the Hamiltonian vector field of the function −1
2 ‖�‖2 : M → R. For

m ∈ M we have Hm = (�(m))M |m . Then for every ξ ∈ t∗, the Hamiltonian vector
field of −1

2 ‖�− ξ‖2 is H − ξM , and we consider the T -invariant 1-form

λξ = (H− ξM , ·)M (2.5)

with corresponding map �λξ : M → t∗ (see (2.2)). Here �−1
λξ

(0) coincides with

the subset Cr(‖� − ξ‖2) ⊂ M of critical points of the function ‖� − ξ‖2, and
m ∈ Cr(‖�− ξ‖2) if and only if (�(m)− ξ)M vanishes at m [30, 31].

Definition 2.1. Let Pξ ∈ H−∞T ,c (M) be the cohomology class defined by PUλξ
, where

U is a T -invariant relatively compact neighborhood of �−1(ξ) such that U ∩
Cr(‖�− ξ‖2) = �−1(ξ).

The cohomology class Pξ will be used to localize the Duistermaat–Heckman
measure. For every ξ ∈ t∗, we define the distribution DHξ (M) by

DHξ (M) = (i)nF
(∫

M
Pξ e−i�t

)

. (2.6)
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Here we can put the Fourier transform outside the integral because Pξ is compactly
supported on M . For any ξ ∈ t∗, let rξ > 0 be the smallest nonzero critical value of
the function ‖�− ξ‖2. As a particular case of Proposition 3.8 in [31], we have

Proposition 2.2. Let ξ be any point in t∗. The equality

DH(M) = DHξ (M)

of distributions on t∗ holds in the open ball B(ξ, rξ ) ⊂ t∗.

We will now use this proposition, first to recover the classical result of Duister-
maat and Heckman [15] concerning the polynomial behavior of DH(M) on the open
subset of regular values of � and then to determine the difference taken by DH(M)
between two adjacent regions of regular values.

2.3 Polynomial behavior

We recall now the computation of the cohomology class Pξ when ξ is a regular value
of �, which is given in [30, Section 6] for the torus case (see [31, Section 3.1] for the
case of the Hamiltonian action of a compact Lie group). First recall the following
basic result, which shows that ξ �→ DHξ (M) is locally constant on the open subset
of regular values of �.

Lemma 2.3 ([33]). If ξ and ξ ′ belong to the same connected component of regular
values of �, we have Pξ = Pξ ′ in H−∞T ,c (M).

If we combine Lemma 2.3 with Proposition 2.2, we see that for any connected
component c of regular values of �, we have

DH(M)(a) = DHξ (M)(a), a ∈ c,

for any ξ ∈ c. We have to compute DHξ (M) when ξ is a regular value of �.
We consider the T -principal bundle �−1(ξ) → Mξ := �−1(ξ)/T with cur-

vature form ωξ ∈ H2(Mξ ) ⊗ t. The orbifold Mξ carries a canonical symplectic
2-form �ξ . We denote by

Kirξ : H∞T (M)→ H∗(Mξ )

the Kirwan morphism. For any ψ ∈ C∞(t) and η ∈ H∞T (M) we have Kirξ (ηψ) =
Kirξ (η)ψ(ωξ ), where the characteristic class ψ(ωξ ) is the value of the differential

operator eωξ ( ∂
∂ X |0) against ψ . By [31, Proposition 3.11], we know that the integral

∫

t

∫

M
Pξ (X)η(X)ψ(X)d X
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is equal to
(−2iπ)dim T vol(T, d X)

|
M |
∫

Mξ

Kirξ (η)ψ(ωξ ) (2.7)

for every equivariant class η ∈ H∞T (M). Here vol(T, d X) is the volume of T for
the Haar measure compatible with d X , and |
M | is the cardinal of 
M (note that the
generic stabilizer of T on �−1(ξ) is 
M ). In other words, for every η ∈ H∞T (M)
we have the following equality of generalized functions on t∗ supported at 0:

∫

M
Pξ (X)η(X) = (−2iπ)dim T

|
M |
∫

Mξ

Kirξ (η)eωξ ( ∂
∂ X |0)vol(T,−). (2.8)

For η = e−i�t we have Kirξ (η) = e−i(�ξ−〈ξ,ωξ 〉), and a small computation
shows that

F(

eωξ (
∂

∂ X |0)vol(T,−)
)

(a) = e−i〈a,ωξ 〉 da

(2π)dim T
, a ∈ t∗. (2.9)

Here da is the Lebesgue measure on t∗ normalized by the condition vol(T, d X) = 1
for the Lebesgue measure d X on t, which is dual to da.

Finally (2.6), (2.8), and (2.9) give

DHξ (M)(a) = (i)d

|
M |
∫

Mξ

e−i(�ξ+〈a−ξ,ωξ 〉) da

= 1

|
M |
∫

Mξ

(�ξ + 〈a − ξ, ωξ 〉)d

d!
da, (2.10)

where 2d = dimMξ .

Definition 2.4. For any connected component c of regular values of � we denote by

DHc the polynomial function a �→ 1
|
M |

∫

Mξ

(�ξ+〈a−ξ,ωξ 〉)d

d! , where ξ is any point
of c.

With the help of Proposition 2.2 we recover the classical result of Duistermaat
and Heckman [15] stating that the measure DH(M) is locally polynomial3 on the
open subset of regular values of �, and its value at a regular element ξ is equal to
the symplectic volume of the reduced space Mξ (times |
M |−1). More precisely,
we have shown that for a connected component c of regular values of � we have

DH(M)(a) = DHc(a)da, a ∈ c. (2.11)

3 It is a polynomial times a Lebesgue measure on t∗.
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2.4 Wall-crossing formulas

Consider now two connected regions c± of regular values of � separated by a
hyperplane � ⊂ t∗. In this section we compute the polynomial DHc+ − DHc− .
It generalizes previous results of Guillemin–Lerman–Sternberg [17] and Brion–
Procesi [12].

Let ξ+, ξ− be respectively two elements of c+ and c−. We know from (2.2),
(2.10), and Definition 2.4 that

(DHc+ − DHc−)(a)da = (i )nF
(∫

M
(Pξ+ − Pξ−)e

−i�t

)

(a), a ∈ t∗. (2.12)

We recall now the computation of the cohomology class Pξ+ − Pξ− ∈ H−∞T ,c (M)
done in [33]. We use the notation defined in the introduction.

Definition 2.5. We denote by M� the union of the connected component Z of the
fixed point set MT� , for which we have �(Z) ⊂ �. Let M�

o be the T -invariant open
subset of M� where T/T� acts locally freely.

For a connected component Z ⊂ M�, one has either c+ ∩ c− ⊂ �(Z) or c+ ∩
c− ∩ �(Z) = ∅, due to the fact that for any ξ in relative interior of c+ ∩ c− in �,
and any m ∈ �−1(ξ), the stabilizer tm ⊂ t is either equal to t� or reduced to {0}.

The symplectic manifold M� carries a Hamiltonian action of T/T� with moment
map �|M� : M� → � equal to the restriction of � on M�.

Let ξ be a point in the relative interior of c+ ∩ c− in �. From the previous
discussion, we know that ξ is a regular value of �|M� , i.e., �−1(ξ) ∩ MT� is a
submanifold of M�

o . Following Definition 2.1 we associate to ξ the cohomology
class

P�
ξ ∈ H−∞T/T�,c(M�

o ).

Let H∗(M�
o )bas be the subalgebra of H∗(M�

o ) formed by the T -basic elements.
Since the T�-action on M�

o is trivial, we have a canonical product operation

H−∞T/T�,c(M�
o )× C−∞(t�,H∗(M�

o )bas)
∧−→ H−∞T ,c (M�

o ). (2.13)

Proposition 2.6 ([33]). There exists a generalized function supported at 0, δ� ∈
C−∞(t�,H∗(M�

o )bas), such that

Pξ+ − Pξ− = (i�)∗(P�
ξ ∧ δ�) in H−∞T ,c (M).

Here (i�)∗ : H−∞T ,c (M�
o ) → H−∞T ,c (M) is the direct image map relative to the

inclusion i� : M�
o ↪→ M.

We will now give the precise definition of δ�. The decomposition T = T� ×
T/T� and the trivial action of T� on M�

o give a canonical isomorphism

j� : H∗T (M�
o )

∼−→ S(t∗�)⊗H∗T/T�
(M�

o ),
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where S(t∗�) is the algebra of complex polynomial functions on t�. Since the
T/T�-action on M�

o is locally free, we have the Chern–Weil isomorphism

cv� : H∗T/T�
(M�

o )
∼−→ H∗(M�

o )bas.

Let N� be the T -equivariant normal bundle of M� in M , and let

Eul(N�) ∈ H∗T (M�)

be the T -equivariant Euler class of N�. Now we consider the restriction of Eul(N�)
on the open subset M�

o ⊂ M�, which we see through the isomorphism cv� ◦ j�
as an element of S(t∗�) ⊗ H∗(M�

o )bas (for simplicity we keep the same nota-
tions Eul(N�) for this element). Following [30], we define inverses Eul−1

±β(N�) ∈
C−∞(t�,H∗(M�

o )bas) by

Eul−1
±β(N�)(X) = lim

s→+∞
1

Eul(N�)(X ± i sβ)
. (2.14)

Here β ∈ t� is chosen so that 〈ξ+ − ξ−, β〉 > 0.

Definition 2.7. The generalized function δ� ∈ C−∞(t�,H∗(M�
o )bas) is defined by

δ� := Eul−1
β (N�)− Eul−1

−β(N�). (2.15)

Since the polynomial Eul(N�) is invertible in a smooth manner on t�\{0}, the
generalized function δ� is supported at 0.

Let ξ be a point in the relative interior of c+∩c− in �. We consider the symplectic
reduction

M�
ξ := (M� ∩�−1(ξ))/(T/T�).

If we restrict δ� to the submanifold M� ∩�−1(ξ) we get the generalized function

δ�
ξ ∈ C−∞(t�,H∗(M�

ξ )).

Now we are able to compute the right-hand side of (2.12). Let ω�
ξ ∈ H2(M�

ξ )⊗
t/t� be the curvature of the T/T�-principal bundle M� ∩ �−1(ξ) → M�

ξ . Let

|S�
ξ | be locally constant function on M� ∩ �−1(ξ), which is equal to the cardinal

of the generic stabilizer of T/T�. Let l = dim T . From (2.8) and Proposition 2.6
we have

∫

M
(Pξ+ − Pξ−)(X)e−i�t (X)

=
∫

M�
o

P�
ξ (X ′)δ�(X ′′)e−i�t (X ′+X ′′)

= (−2iπ)l−1

|S�
ξ |

∫

M�
ξ

eω�
ξ ( ∂

∂ X ′ |0)vol(T/T�,−)Kir�
ξ (e−i�t )(X ′′)δ�

ξ (X ′′). (2.16)
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In the last equation the notation is the following:

1. X = X ′ + X ′′ with X ′ ∈ t/t� and X ′′ ∈ t�,
2. the Kirwan map Kir�

ξ : H∞T (M)→ C∞(t�,H∗(M�
ξ )) is the composition of the

restriction H∞T (M) → H∞T (M� ∩�−1(ξ)) with the Chern–Weil isomorphism

H∞T (M� ∩�−1(ξ))
∼−→ C∞(t�,H∗(M�

ξ )).

A direct computation gives that Kir�
ξ (�t)(X ′′) = ��

ξ − 〈ξ, ω�
ξ + X ′′〉, where

��
ξ is the induced symplectic form on the reduced space M�

ξ . If we take the Fourier
transform in (2.16) we get

(DHc+ −DHc−)(a)da

= (i)n+1−l

|S�
ξ |

(

∫

M�
ξ

e−i(��
ξ +〈a′,ω�

ξ 〉) da′Ft�(δ�
ξ )(a′′)

)

(a − ξ)

=
∑

Z∈F

(i)n+1−l

|SZ
ξ |

(

∫

Zξ

e−i(�Z
ξ +〈a′,ωZ

ξ 〉) da′Ft�(δZ
ξ )(a′′)

)

(a − ξ), (2.17)

where a = a′ + a′′ with a′ ∈ (t/t�)∗ and a′′ ∈ (t�)∗. In (2.17), we write
∫

M�
ξ
=

∑

Z∈F
∫

Zξ
, where the sum is taken over the set F of connected components Z of

M� that intersect �−1(ξ). We take then

Zξ = (Z ∩�−1(ξ))/(T/T�).

The 2-forms ��
ξ , ω�

ξ , the generic stabilizer S�
ξ , the vector bundle N�, and the gene-

ralized function δ�
ξ restrict to each component Z : we denote them respectively by

�Z
ξ , ωZ

ξ , SZ
ξ , NZ , δZ

ξ .
We recall now the computation of the Fourier transform of the inverses

Eul−1
±β(NZ ) := Eul−1

±β(N�)|Z that is given in [30, Proposition 4.8]. We consider

a T -invariant scalar product on the fibers of the bundle N� . Let R ∈ A2(M�
o ,

so (N�))bas be the curvature of a T -invariant and T/T�-horizontal Euclidean
connexion on N�: we denote by RZ ∈ A2(Z , so(NZ ))bas the restriction of R to
a component Z ∈ F . The curvature commutes with the infinitesimal action LX

of X ∈ t� and with the complex structure Jβ = Lβ(−L2
β)1/2 on N� defined by

β ∈ t�.
We denote by S• the symmetric algebra of the complex vector bundle (N�, Jβ).

We keep the same notation for the restriction of S• on the submanifolds Z , �−1(ξ)∩
M�, and for the induced orbifold vector bundle on the reduced spaces Zξ and M�

ξ .
For each k ∈ N, we denote by TrSk the trace operator defined on the complex
endomorphisms of Sk . For a complex endomorphism A of N�, we denote by A⊗k

the induced endomorphism on Sk . For any X ∈ t�, the complex endomorphism
L−1

X RZ is symmetric. Hence the trace TrSk ((L−1
X RZ )⊗k) is a basic real differential
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form of degree 2k on Z which does not depend of the choice of complex structures
(Jβ or J−β ).

Let β∗ ∈ t∗� the dual of β ∈ t�.

Proposition 2.8 ([30]). For a smooth function f on t∗� with compact support we
have

∫

t∗�
Ft�(Eul−1

β (NZ ))(a′′) f (a′′) = ∫∞
0 PZ (t) f (tβ∗)dt, where PZ is the poly-

nomial on R defined by

PZ (t) = (2πi)rZ

det1/2
Z (Lβ)

⎛

⎝

trZ−1

(rZ − 1)!
+

dim(Z )/2
∑

k=1

(i )kαk
trZ−1+k

(rZ − 1+ k)!

⎞

⎠ . (2.18)

Here αk = TrSk ((L−1
β RZ )⊗k) ∈ A2k(Z)bas, det1/2

Z (Lβ) is the Pfaffian of Lβ on NZ ,
and rZ = rkC(NZ ).

One checks then that
∫

t∗�
Ft�(Eul−1

−β(NZ ))(a′′) f (a′′) =
∫ ∞

0
−PZ (−t) f (−tβ∗)dt

= −
∫ 0

−∞
PZ (t) f (tβ∗)dt.

Hence the distribution Ft�(δZ ) is equal to PZ (β)dβ. From now on we fix β as the
primitive element of t� ∩ � which is pointing out c−. Then dβ and dβ∗ are (dual)
Lebesgue measures on t∗ and t. We have vol(T�, dβ∗) = 1.

Let RZ
ξ be the restriction of the curvature RZ to the submanifold Z ∩ �−1(ξ).

Since RZ is T/T�-basic, TrSk ((L−1
β RZ

ξ )⊗k) can be seen as a real differential form

of degree 2k on the orbifold Zξ = (Z ∩�−1(ξ))/(T/T�).
Each connected component Z of M� is a T/T� Hamiltonian manifold: we take

for moment map �Z : Z → (t/t�)∗ the restriction of � − ξ to Z . Hence 0
is a regular value of �Z . Let DH0(Z) be the polynomial function on (t/t�)∗ =
{a ∈ t∗|〈β, a〉 = 0} such that DH(Z)(a′) = DH0(Z)(a′)da′ near 0. Finally, (2.17)
together with the Proposition 2.8 gives the following theorem.

Theorem 2.9. We have (DHc+ − DHc−)(a) = ∑

Z∈F DZ (a − ξ), a ∈ t∗, where
each polynomial DZ ∈ S(t) admits the following decomposition:

DZ = βrZ−1

det1/2
Z

(−Lβ

2π

)

(

DH0(Z)

(rZ − 1)!
+

dZ
∑

k=1

βkQZ ,k

)

. (2.19)

The polynomials QZ ,k ∈ S(t/t�) are defined by

QZ ,k(a
′) = (−1)k

(rZ − 1+ k)!|SZ
ξ |

∫

Zξ

(�Z
ξ + 〈a ′, ωZ

ξ 〉)dZ−k

(dZ − k)!
TrSk ((L−1

β RZ
ξ )⊗k).

Here 2dZ = dimZξ and 2rZ = dim M − dim Z.



308 Paul-Emile Paradan

Remark 2.10.

• The polynomial DHc+ −DHc− is divisible by the factor a �→ 〈a− ξ, β〉r−1 with
r = infZ∈F rZ . If �∩�(M) is not a facet of the polytope �(M) we have rZ ≥ 2
for all connected components Z ∈ F ; hence r − 1 ≥ 1.

• Suppose now that c+ is a connected component of regular values of � at the
edge of the polytope �(M). Then �(M) ∩ � is a facet of the polytope �(M).
Here Z = �−1(�) is a connected component of the fixed-point set MT� . In this
situation we have DHc+ = DZ , where the polynomial DZ is defined by (2.19).

3 Quantum version of Duistermaat–Heckman measures

We suppose here that the Hamiltonian T -manifold (M, ω,�) is prequantized by a
T -equivariant Hermitian line bundle L over M , which is equipped with a Hermitian
connection ∇ satisfying the Kostant formula

L(X)− ∇X M = i〈�, X〉, X ∈ t. (3.1)

The former equation implies that the first Chern class of L is equal to
[

�
2π

]

. In this
section we suppose that M is compact and we still assume that the generic stabilizer

M of T on M is finite. The quantization of (M,�) is defined as the Riemann–
Roch character RR(M, L) ∈ R(T ), which is computed with a T -equivariant almost
complex structure on M compatible with � [32]. For k ≥ 1, we consider the tensor
product L⊗k . Its Riemann–Roch character RR(M, L⊗k ) decomposes as

RR(M, L⊗k) =
∑

μ∈�∗
m(μ, k) Cμ. (3.2)

Let us recall the well-known properties of the map m: �∗×Z
>0 → Z. When μ

k is
a regular value of �, the “quantization commutes with reduction” theorem [28, 29]
tells us that

m(μ, k) = RR(M μ
k
,Lμ,k ), (3.3)

whereLμ,k = (L⊗k |�−1( μ
k )⊗C−μ)/T is an orbifold line bundle over the symplectic

orbifold M μ
k
= �−1

(μ
k

)

/T . In particular, if μ
k does not belong to �(M) we have

m(μ, k) = 0. When μ
k ∈ �(M) is not necessarily a regular value of �, one proceeds

by shift desingularization. If ξ ∈ �(M) is a regular value of � close enough to μ
k

then (3.3) becomes
m(μ, k) = RR(Mξ ,Lμ,k

ξ ), (3.4)

where Lμ,k
ξ = (L⊗k |�−1(ξ) ⊗C−μ)/T (for a proof see [29, 32]).

Definition 3.1. A function f : � → Z defined over a lattice � � Z
r is called

periodic polynomial if
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f (x) =
p

∑

i=1

ei
〈α j ,x〉

N Pj (x), x ∈ �,

where α1, . . . , αp ∈ �∗, N ≥ 1, and the functions P1, . . . , Pp are polynomials with
complex coefficients.

Remark 3.2. Let C be a cone with nonempty interior in the real vector space �⊗Z R.
Any periodic-polynomial function f : � → Z is completely determined by its
restriction on C ∩�.

Let c ⊂ t∗ be a connected component of regular values of �. In [29] Meinrenken
and Sjamaar proved that there exists a periodic polynomial function mc : �∗×Z→
Z such that mc(μ, k) = m(μ, k) for every (μ, k) in the cone

Cone(c) = {(ξ, s) ∈ t∗ ×R
>0 | ξ ∈ s · c}. (3.5)

Consider now two adjacent connected regions c± of regular values of � separated
by a hyperplane � ⊂ t∗. When � does not contain a facet of the polytope �(M),
Meinrenken and Sjamaar proved also that

mc+(μ, k) = mc−(μ, k) = m(μ, k) (3.6)

for every (μ, k) ∈ Cone(c+) ∩ Cone(c−) = Cone(c+ ∩ c−) ⊂ Cone(�).
The main purpose of this section is to prove that (3.6) extends to a “strip” con-

taining Cone(�).
Let β ∈ � be the primitive orthogonal vector to the hyperplane � ⊂ t∗ which is

pointing out of c−. Then � = {ξ ∈ t∗| 〈ξ,β〉
2π = r�} for some r� ∈ Z, Cone(�) =

{(ξ, s) ∈ t∗ × R
≥0| 〈ξ,β〉

2π − sr� = 0}, and c− ⊂ {ξ ∈ t∗| 〈ξ,β〉
2π < r�}.

Let T� be the subtorus of T generated by β. Let N� be the normal vector bundle
of MT� in M . The almost complex structure on M induces a complex structure J
on the fibers of N�. We have a decomposition N� = ∑

s Ns
�, where Ns

� = {v ∈
N�|Lβv = s Jv}. We write N� = N+,β

� ⊕ N−,β
� , where

N±,β
� =

∑

±s>0

Ns
�. (3.7)

Definition 3.3. For every connected component Z ⊂ MT� we define s±Z ∈ N

respectively as the absolute value of the trace of 1
2πLβ on N±,β

� |Z .

Note that s+Z + s−Z is larger than half of the codimension of Z in M . We prove in
Section 3.5 the following theorem.

Theorem 3.4. We have mc+(μ, k) = mc−(μ, k) for all (μ, k) ∈ �∗ × Z such that

−s− <
〈μ, β〉

2π
− k r� < s+ . (3.8)
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The numbers s−, s+ ∈ N are defined as follows. We take s± = infZ s±Z , where the
minimum is taken over the connected components Z of MT� for which c+ ∩ c− ⊂
�(Z).

Similar results were obtained by Billey–Guillemin–Rassart [10] in the case of M
a coadjoint orbit of SU(n), and by Szenes–Vergne [36] in the case of M a complex
vector space. See Sections 4.4 and 5, where we study these two particular cases in
detail. In Proposition 3.25, we give also a criterion which says when the inequalities
in (3.8) are optimal. This criterion is satisfied when there is only one component Z
of MT� such that c+ ∩ c− ⊂ �(Z). Then (3.8) is optimal and s+ + s− is larger than
half of the codimension of Z in M .

The following easy lemma (see Lemma 7.3. of [32]) gives some basic informa-
tion about the integer s±Z .

Lemma 3.5. Let (M,�,�) be a compact Hamiltonian T -manifold equipped with a
T -invariant almost complex structure compatible with �. Consider a nonzero vector
γ ∈ t and let Z be a connected component of the fixed-point set Mγ . Let N be the
normal vector of Z in M and let N−,γ be the negative polarized normal bundle (see
(3.7)). Then N−,γ = 0 if and only if the function 〈�, γ 〉 : M → R takes its maximal
value on Z.

This lemma ensures that s± ≥ 1 in Theorem 3.4 when � ∩�(M) is not a facet
of the polytope �(M).

Consider the situation in which � ∩ �(M) is a facet of the polytope �(M), so
that c+ ∩ �(M) = ∅; hence mc+ = 0. If we apply Lemma 3.5 with γ = β, we
obtain N−,β = 0, and so s− = 0. In this situation we get the following corollary.

Corollary 3.6. Let c− be a connected component of regular values at the edge of
the polytope �(M). Then �(M)∩� is a facet of �(M). Let β ∈ � be the primitive
orthogonal vector to the hyperplane � ⊂ t∗ which is pointing out of c−. Here Z =
�−1(�) is a connected component of the fixed-point set MT� . We have mc−(μ, k) =
0 for all (μ, k) ∈ �∗ × Z such that

0 <
〈μ, β〉

2π
− kr� < s+Z . (3.9)

Here s+Z ∈ N is larger than half of the codimension of Z in M, and the inequalities
(3.9) are optimal.

The rest of this section is dedicated to the proof of Theorem 3.4. We start by
reviewing some of the results of [32].

3.1 Elliptic and transversally elliptic symbols

We work in the setting of a compact manifold M equipped with a smooth action of
a torus T .
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Let p : TM → M be the projection, and let (·, ·)M be a T -invariant Riemann-
ian metric. If E0, E1 are T -equivariant vector bundles over M , a T -equivariant
morphism σ ∈ 
(TM, hom(p∗E0, p∗E1)) is called a symbol. The subset of all
(m, v) ∈ TM where σ(m, v) : E0

m → E1
m is not invertible is called the characteris-

tic set of σ , and is denoted by Char(σ ).
Let TT M be the following subset of TM:

TT M = {

(m, v) ∈ TM, (v, X M (m))M = 0 for all X ∈ k
}

.

A symbol σ is elliptic if σ is invertible outside a compact subset of TM (Char(σ )
is compact), and is transversally elliptic if the restriction of σ to TT M is invertible
outside a compact subset of TT M (Char(σ )∩TT M is compact). An elliptic symbol
σ defines an element in the equivariant K -theory of TM with compact support,
which is denoted by KT (TM), and the index of σ is a virtual finite-dimensional
representation of T [3, 4, 5, 6].

A transversally elliptic symbol σ defines an element of KT (TT M), and the index
of σ is defined as a trace class virtual representation of T (see [1] for the analytic
index and [8, 9] for the cohomological one). Observe that any elliptic symbol of TM
is transversally elliptic; hence we have a restriction map KT (TM) → KT (TT M),
and a commutative diagram

KT (TM) ��

IndexT
M

��

KT (TT M)

IndexT
M

��
R(T ) �� R−∞(T ) .

(3.10)

Using the excision property, one can easily show that the index map IndexT
U :

KT (TTU) → R−∞(T ) is still defined when U is a T -invariant relatively compact
open subset of a T -manifold (see [32, Section 3.1]).

3.2 Localization of the Riemann–Roch character

We suppose now that the compact T -manifold M is equipped with a T -invariant
almost complex structure J . Let us recall the definitions of the Thom symbol
Thom(M, J ) and of the Riemann–Roch character [32].

Consider a T -invariant Riemannian metric q on M such that J is orthogonal
relative to q, and let h be the Hermitian structure on TM defined by h(v,w) =
q(v,w) − ıq(Jv,w) for v,w ∈ TM . The symbol

Thom(M, J ) ∈ 
(TM, hom(p∗(∧even
C

TM), p∗(∧odd
C

TM)))

at (m, v) ∈ TM is equal to the Clifford map

Clm(v) : ∧even
C

Tm M −→ ∧odd
C

Tm M, (3.11)
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where Clm(v) ·w = v ∧w− ch(v) ·w for w ∈ ∧•
C

Tx M . Here ch(v) : ∧•
C

Tm M →
∧•−1Tm M denotes the contraction map relative to h. Since the map Clm(v) is
invertible for all v �= 0, the symbol Thom(M, J ) is elliptic.

The Riemann–Roch character RR(M,−) : KT (M) → R(T ) is defined by the
relation

RR(M, E) = IndexT
M(Thom(M, J )⊗ p∗E). (3.12)

The important point is that for any T -vector bundle E , Thom(M, J ) ⊗ p∗E corre-
sponds to the principal symbol of the twisted Spinc Dirac operator DE [16]; hence
RR(M, E) ∈ R(T ) is also defined as the (analytical) index of the elliptic operator
DE .

Consider now the case of a compact Hamiltonian T -manifold (M, ω,�). Here J
is a T -invariant almost complex structure compatible with �: (v,w) �→ �(v, Jw)
that defines a Riemannian metric on M . As in Section 2.2, we make the choice of a
scalar product (·, ·) on t∗ (which induces an identification t∗ � t) and we consider
for any ξ ∈ t∗ the function −1

2 ‖�− ξ‖2 : M → R and its Hamiltonian vector field
H− ξM .

Definition 3.7. For any ξ ∈ t∗ and any T -invariant open subset U ⊂ M we define
the symbol Thomξ (U) by the relation

Thomξ (U)(m, v) := Thom(M, J )(m, v − (H − ξM )(m)), (m, v) ∈ TU .

The characteristic set of Thomξ (U) corresponds to {(m, v) ∈ TU, v =
(H− ξM)(m)}, the graph of the vector field H− ξM over U . Since H− ξM belongs
to the set of tangent vectors to the T -orbits, we have

Char(Thomξ (U)) ∩ TTU = {(m, 0) ∈ TU | (H− ξM )(m) = 0}
∼= {m ∈ U, d‖�− ξ‖2m = 0}.

Therefore the symbol Thomξ (U) is transversally elliptic if and only if

Cr(‖�− ξ‖2) ∪ ∂U = ∅. (3.13)

Definition 3.8. When (3.13) holds we say that the couple (U, ξ) is good.

Definition 3.9. Let (U, ξ) be a good couple. For any T -vector bundle E → M , the
tensor product Thomξ (U)⊗ p∗E belongs to KT (TTU) and we denote by

RRξ
U (M, E) ∈ R−∞(T )

its index.

Proposition 3.10. Let (U, ξ) be a good couple.

• If U possesses two T -invariant open subsets U1,U2 such that U1 ∩ U2 ∩
Cr(‖� − ξ‖2) = ∅ and (U1 ∪ U2) ∩ Cr(‖� − ξ‖2) = U ∩ Cr(‖� − ξ‖2),
then the couples (U1, ξ) and (U2, ξ) are good and
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RRξ
U (M,−) = RRξ

U1(M,−) + RRξ

U2(M,−).

In particular, RRξ
U (M,−) = RRξ

U 1(M,−) if U1 is an open subset of U such that

U1 ∩ Cr(‖�− ξ‖2) = U ∩ Cr(‖�− ξ‖2).
• If ξ ′ ∈ t∗ is close enough to ξ , then (U, ξ ′) is good and

RRξ
U (M,−) = RRξ ′

U (M,−).

Proof. The first point is a direct consequence of the excision property (see Proposi-
tion 4.1. in [32]).

Let us prove the second point. Consider now the scalar product

φ(s) := (H − ξ s
M ,H− ξM)M ,

where ξ s = sξ ′+(1−s)ξ, s ∈ [0, 1]. Each φ(s) is a smooth function on M . We have
φ(s) = ‖H− ξM‖2+ s((ξ− ξ ′)M ,H− ξM) and then the following inequality holds
on M:

φ(s) ≥ ‖H − ξM‖2(‖H− ξM‖ − s‖ξM − ξ ′M‖). (3.14)

Since ∂U is compact, we have the following inequalities on it: ‖H− ξM‖ ≥ c1 > 0
and ‖X M‖ ≤ c2‖X‖ for any a ∈ t. So (3.14) implies the following inequality on
∂U :

φ(s) ≥ c1(c1 − s‖ξ − ξ ′‖) for s ∈ [0, 1].

So if ξ ′ is close enough to ξ , we have ‖H− ξ s
M‖ ≥ c3 > 0 on ∂U for any s ∈ [0, 1].

We have first to prove that the couple (U, ξ s) is good for any s ∈ [0, 1]. We see then
that the family of transversally elliptic symbols Thomξ s (U), s ∈ [0, 1], defines a
homotopy between Thomξ (U) and Thomξ ′(U). Hence Thomξ (U) = Thomξ ′(U) in
KT (TTU).

The first point of Proposition 3.10 shows that RRξ
U (M,−) depends closely on the

intersection U ∩ Cr(‖�− ξ‖2). In particular, RRξ
U (M,−) = 0 when U ∩ Cr(‖�−

ξ‖2) = ∅. Recall that

Cr(‖�− ξ‖2) =
⋃

γ∈Bξ

Mγ ∩�−1(γ + ξ), (3.15)

where Bξ ⊂ t∗ is a finite set [24].

Definition 3.11. For any ξ ∈ t∗ and γ ∈ Bξ , we denote simply by

RRξ
γ (M,−) : KT (M)→ R−∞(T )

the map RRξ
U (M,−), where U is a T -invariant open neighborhood of Mγ ∩

�−1(γ + ξ) such that Cr(‖�− ξ‖2) ∩ U = Mγ ∩�−1(γ + ξ).

Proposition 3.10 ensures that the maps RRξ
γ (M,−) are well defined, and for any

good couple (U, ξ) we have
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RRξ
U (M,−) =

∑

γ∈Bξ∩�(U )

RRξ
γ (M,−). (3.16)

If we take U = M , we have RRξ
U (M,−) = RR(M,−) =∑

γ∈Bξ
RRξ

γ (M,−) (see
[32, Section 4]).

3.3 Periodic polynomial behavior of the multiplicities

We suppose here that the Hamiltonian T -manifold (M,�,�) is prequantized by a
T -complex line bundle L satisfying (3.1) for a suitable invariant connection. In this
section we will characterize the periodic polynomial behavior of the multiplicities
m(μ, k) with the help of the localized Riemann–Roch character RRξ

0(M,−).
Let us introduce some vocabulary. We say that two generalized characters χ± =

∑

μ∈�∗ a±μ Cμ coincide on a region D ⊂ t∗ if a+μ = a−μ for every μ ∈ D ∩ �∗.
A generalized character χ =∑

μ aμ Cμ is supported on a region D ⊂ t∗ if aμ = 0
for μ /∈ D. A weight μ ∈ �∗ occurs in χ =∑

μ aμ Cμ if aμ �= 0.
For ξ ∈ t∗, we define rξ > 0 as the smallest nonzero critical value of the function

‖�− ξ‖, and we denote by B(ξ, rξ ) the open ball of center ξ and radius rξ .

Theorem 3.12 ([32]). For any ξ ∈ t∗, the generalized character RRξ
0(M, L⊗k )

coincides with RR(M, L⊗k ) on the open ball k · B(ξ, rξ ).

The arguments of [32] for the proof of this theorem will be needed later, so we
recall them. Let ξ ∈ t∗. We start with the decomposition

RR(M, L⊗k ) =
∑

γ∈Bξ

RRξ
γ (M, L⊗k ). (3.17)

We recall now, for a nonzero γ ∈ Bξ , the localization of the map RRξ
γ on the fixed-

point set Mγ [32].
Let N be the normal bundle of Mγ in M . The almost complex structure on M

induces an almost complex structure on Mγ and a complex structure on the bundles
N and NC := N ⊗ C. Following (3.7), we define the γ -polarized complex vector
bundles N+,γ and (NC)+,γ .

The manifold Mγ is a symplectic submanifold of M equipped with an induced
Hamiltonian action of T ; its moment map is the restriction of � on Mγ . Following
Definition 3.11, we have on Mγ a localized Riemann–Roch character RRξ

γ (Mγ ,−).
On Mγ , the Hamiltonian vector fields of the functions ‖�−ξ‖2 and |�− (ξ+γ )‖2
coincide; hence

RRξ
γ (Mγ ,−) = RRξ+γ

0 (Mγ ,−). (3.18)
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We prove in [32, Theorem 5.8] that

RRξ
γ (M, E) =

∑

k∈N
(−1)lRRξ

γ (Mγ , E |Mγ ⊗ det(N+,γ )⊗ Sk (N+,γ
C

)) (3.19)

for every T -vector bundle E . Here l is the locally constant function on Mγ equal to
the complex rank of N+,γ .

Proposition 3.13 ([32], Section 5). Let N be the T -vector bundle N with the oppo-
site complex structure on the fibers. The sum (−1)l ∑

k∈N det(N+,γ )⊗ Sk (N+,γ
C

) is

an inverse of ∧•
C

N, which we denote by [∧•
C

N ]−1
γ .

If we use the notation of Proposition 3.13 and (3.18), the localization (3.19) can
be rewritten as

RRξ
γ (M, E) = RRξ+γ

0 (Mγ , E |Mγ ⊗ [∧•
C

N ]−1
γ ). (3.20)

Let i : Tγ ↪→ T be the inclusion of the subtorus generated by γ . Let F be a
T -vector bundle on Mγ .

Lemma 3.14 ([32], Lemma 9.4.). A weight μ ∈ �∗ occurs in RRξ
γ (Mγ , F) only if

i∗(μ) occurs as a weight for the Tγ -action on the fibers of F ⊗ [∧•
C

N ]−1
γ .

Since the Tγ weights on the bundles N+,γ
C

and N+,γ are polarized by γ , the
localization (3.19) gives the following:

Corollary 3.15. For a nonzero γ ∈ Bξ , the generalized character RRξ
γ (M, L⊗k ) is

supported on the half-space {a ∈ t∗|(γ, a − k(ξ + γ )) ≥ 0}.
Since the condition (γ, a− k(ξ + γ )) ≥ 0 implies that ‖a− kξ‖ ≥ k‖γ ‖ ≥ krξ ,

the last proposition shows that every weight of the open ball k · B(ξ, rξ ) does not

occur in RRξ
γ (M, L⊗k ). This last remark together with (3.17) proves Theorem 3.12.

For the localized Riemann–Roch character RRξ
0(M,−) we have the following

lemma, which is very similar to Lemma 2.3.

Lemma 3.16. Let c ⊂ t∗ be a connected component of regular values of �. For

every ξ, ξ ′ ∈ c, we have RRξ
0(M,−) = RRξ ′

0 (M,−).

Proof. We have to show that the map ξ �→ RRξ
0(M,−) is locally constant on c.

Let ξ ∈ c and take an open neighborhood U of �−1(ξ) small enough that the sta-
bilizer Tm = {t ∈ T | t · m = m} is finite for every m ∈ U . We see then that
U ∩ Cr(‖� − ξ ′‖2) = �−1(ξ ′) and ∂U ∩ Cr(‖� − ξ ′‖2) = ∅ if ξ ′ is close enough

to ξ : hence RRξ ′
0 (M,−) = RRξ ′

U (M,−) for ξ ′ close enough to ξ . The second point
of Proposition 3.10 finishes the proof.
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When ξ is a regular value of �, the localized Riemann–Roch character
RRξ

0(M,−) has been computed in [32] as follows. Let RR(Mξ ,−) be the
Riemann–Roch map defined on the orbifold Mξ = �−1(ξ)/T by means of an
almost complex structure compatible with the induced symplectic structure. For
every T -vector bundle E → M we define the following family of orbifold vector
bundles over Mξ :

Eμ
ξ := (E|�−1(ξ) ⊗ C−μ)/T, μ ∈ �∗. (3.21)

For every T -vector bundle E on M , we proved in [32, Section 6.2] the following
equality in R−∞(T ):

RRξ
0(M, E) =

∑

μ∈�∗
RR(Mξ , Eμ

ξ ) Cμ. (3.22)

This decomposition was first obtained by Vergne [37] when T is the circle group
and when M is Spin. The number RR(Mξ , Eμ

ξ ) ∈ Z is then equal to the T -invariant

part of the index RRξ
0(M, E)⊗ C−μ.

Remark 3.17. Let t → tλ be a character of T . Suppose that a subgroup H ⊂ T acts
trivially on M and with the character t ∈ H → tλ on the fibers of the T -vector
bundle E . Then H acts with the character t ∈ H → tλ−μ on RRξ

0(M, E) ⊗ C−μ,
and then RR(Mξ , Eμ

ξ ) �= 0 only if tλ−μ = 1 for every t ∈ H . So the sum in (3.22)
can be restricted to λ+�∗H , where �∗H is the sublattice of �∗ formed by the element
α ∈ �∗ satisfying tα = 1, ∀ t ∈ H .

This remark applies also to the usual character RR(M, E) =∑

μ∈�∗ mμCμ. The
multiplicity mμ ∈ Z is equal to the (virtual) dimension of the T -invariant part of
RR(M, E)⊗ C−μ. With the same hypothesis as above we see that mμ �= 0 only if
μ ∈ λ+�∗H .

Let 
M be the generic stabilizer for the action of T on M . Consider a weight
αo such that 
M acts on the fibers of L with the character t �→ tαo . We define the
sublattice �(M, L) ⊂ �∗ × Z by

�(M, L) := {(μ, k) ∈ �∗ × Z|kαo − μ ∈ �∗
M
}. (3.23)

We know then that m(μ, k) = 0 if (μ, k) /∈ �(M, L).

Proposition 3.18. Let c be a connected component of regular values of � and let
Cone(c) be the corresponding cone in t∗ × R

>0 (see (3.5)). Let ξ ∈ c. For any
(μ, k) ∈ Cone(c) ∩�(M, L) we have

m(μ, k) = RR(Mξ ,Lμ,k
ξ ), (3.24)

where
Lμ,k

ξ = (L⊗k |�−1(ξ) ⊗ C−μ)/T . (3.25)
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Proof. Let (μ, k) ∈ Cone(c) and let ξ ′ = μ
k ∈ c. We know from Theorem 3.12

that the generalized character RRξ ′
0 (M, L⊗k ) coincides with RR(M, L⊗k ) on the

open ball k · B(ξ ′, rξ ′) = B(μ, krξ ′). So m(μ, k) is equal to the μ-multiplicity in

RRξ ′
0 (M, L⊗k ). Take now any ξ ∈ c. We know from Lemma 3.16 that RRξ

0(M,−) =
RRξ ′

0 (M,−), and (3.22) shows that the μ-multiplicity in RRξ
0(M, L⊗k ) is equal to

RR(Mξ ,Lμ,k
ξ ).

Definition 3.19. Take ξ ∈ c. The map mc : �∗ × Z→ Z is defined by the equation

mc(μ, k) = RR(Mξ ,Lμ,k
ξ ), (3.26)

where Lμ,k
ξ is the orbifold line bundle defined by (3.25).

In other words, the map mc is defined by the following equality in R−∞(T ):

∑

μ∈�∗
mc(μ, k) Cμ = RRξ

0(M, L⊗k ),

for all k ∈ Z. From Remark 3.17, we know that mc is supported on the sublattice
�(M, L) defined in (3.23).

We will now exploit the Riemann–Roch theorem for orbifolds due to Kawasaki
[23] to show that the map mc is a periodic polynomial.

3.4 Riemann–Roch–Kawasaki theorem

First we recall how the Riemann–Roch character RR(Mξ , Eξ ) is defined when ξ is
a regular value of � and Eξ = E|�−1(ξ)/T is the reduction of a complex T -vector
bundle E over M . The number RR(Mξ , Eξ ) ∈ Z is defined as the T -invariant part
of the index of a transversally elliptic operator DE on �−1(ξ). Since the index of
DE depends only of the class of its symbol σ(DE ) in KT (TT �−1(ξ)), it is enough
to define the transversally elliptic symbol σ(DE ). Since the action of T on �−1(ξ)
is locally free, V := TT �−1(ξ) is a vector bundle. It carries a canonical symplectic
structure on the fibers, and we choose any compatible complex structure making V
into a Hermitian vector bundle. At (m, v) ∈ T�−1(ξ), the map σ(DE )(m, v) is the
Clifford action

Clm(v1)⊗ IdEm : (∧even
C

Vm)⊗ Em −→ (∧odd
C

Vm)⊗ Em .

where v1 ∈ Vm is the V -component of the vector v ∈ Tm�−1(ξ). We explain
now the formula of Kawasaki for RR(Mξ , Eξ ) when ξ ∈ �(M) is a regular value
of � [23].

Let F be the collection of the finite subgroups of T that are stabilizers of points
in M . Consider the orbit type stratification of �−1(ξ) and denote by Sξ the set
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of its orbit type strata. Each stratum S is a connected component of the smooth
submanifold

�−1(ξ)HS := {m ∈ �−1(ξ)|StabT (m) = HS} (3.27)

for a unique HS ∈ F. The orbifold Mξ decomposes as a disjoint union ∪S∈Sξ
S/T

of smooth components, and each quotient S/T is a suborbifold of Mξ . The generic
stabilizer 
M of T on M is also the generic stabilizer of T on the fiber4 �−1(ξ),
and is associated to an open and dense stratum Smax.

Suppose that E → M is a Hermitian T -vector bundle. On each suborbifold S/T ,
we get the orbifold complex vector bundle

ES := E|S/T . (3.28)

We define twisted characteristic classes Ch−(ES) and D−(ES) by

Chγ (ES) := Tr
(

γ ES · e i
2π R(ES)

)

, γ ∈ HS, (3.29)

and
Dγ (ES) := det

(

1− (γ ES )−1 · e− i
2π R(ES)

)

, γ ∈ HS. (3.30)

Here R(ES) ∈ A2(S/T, End(ES)) is the curvature of a horizontal Hermitian
connection on E|S , and γ �→ γ ES is the linear action of HS on the fibers of E|S .

Let NS be the normal bundle of S in �−1(ξ). The symplectic structure on M
induces a symplectic form �S on each suborbifold S/T , and a symplectic structure
on the fibers of the bundle NS . Choose a compatible almost complex structure on
S/T , and a compatible complex structure on the fibers of NS making the tangent
bundle of S/T and NS := NS/T into Hermitian vector bundles. Consider a
Hermitian connexion on T(S/T ), with curvature R(S/T ), and let

Todd(S/T ) = det

(

(i/2π)R(S/T )

1− e−(i/2π)R(S/T )

)

(3.31)

be the corresponding Todd forms. As in (3.30), we associate to the complex orbi-
fold vector bundle NS , the twisted form D−(NS), which is a map form HS to
Aeven(S/T ). The 0-degree part of Dγ (NS) is equal to det(1 − (γNS)−1); hence
Dγ (NS) is invertible in Aeven(S/T ) when γ belongs to

H o
S = {γ ∈ HS| det(1− (γNS )−1) �= 0}. (3.32)

Note that H o
S corresponds to the set of γ ∈ HS for which S is a connected compo-

nent of (�−1(ξ))γ .

4 Since a neighborhood of �−1(ξ) in M is T -equivariantly diffeomorphic to �−1(ξ)× t∗.
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Theorem 3.20 (Kawasaki). The number RR(Mξ , Eξ ) ∈ Z is given by the formula

RR(Mξ , Eξ ) =
∑

S∈Sξ

1

|HS|
∑

γ∈Ho
S

∫

S/T

Todd(S/T )Chγ (ES)

Dγ (NS)
. (3.33)

We now exploit Theorem 3.20 to show that the map mc : �∗ × Z → Z defined
by (3.26) is a periodic polynomial. We need the classical computation of the first
Chern class of the line bundle

Lμ,k
S = (L⊗k ⊗ C−μ)|S/T . (3.34)

The curvature form ωξ ∈ H 2(Mξ )⊗ t of the principal T -bundle �−1(ξ) →Mξ

restricts to a curvature form ωS ∈ H 2(S/T )⊗ t on each stratum.

Lemma 3.21. The first Chern class of the line bundle Lμ,k
S is given by

c1(Lμ,k
S ) = 1

2π
(k�S − 〈kξ − μ,ωS〉).

For a stratum S, we consider αS ∈ �∗ such that γ ∈ HS �→ γ αS corresponds to
the action of HS on the fibers of L |S . Finally, we have the decomposition

mc(μ, k) =
∑

S∈Sξ

PS(μ, k), (3.35)

where

PS(μ, k) = 1

|HS|
∑

γ∈Ho
S

γ kαS−μ

∫

S/T

Todd(S/T )

Dγ (NS)
e

1
2π (k�S−〈kξ−μ,ωS 〉). (3.36)

When S is the principal open dense stratum Smax, the map PS is

Pmax(μ, k) =
∑

γ∈
M
γ kαo−μ

|
M |
∫

Mξ

Todd(Mξ )e
1

2π (k�ξ−〈kξ−μ,ωξ 〉). (3.37)

The term
∑

γ∈
M
γ kαo−μ

|
M | is equal to 1 when (μ, k) belongs to the lattice �(M, L) (see
(3.23)), and is equal to 0 in the other cases. From (3.36) we see that PS is a periodic

polynomial of degree less than dim(S/T )
2 , and for S = Smax we have on �(M, L),

Pmax(μ, k) = 1

(2π)d

∫

Mξ

(k�ξ − 〈kξ − μ,ωξ 〉)d

d!
+ O(d − 1), (3.38)

where d = dimMξ

2 and O(d − 1) denotes a polynomial of degree less than d − 1.
If we use the polynomial DHc defined in Section 2 we can conclude our computa-
tions with the following:
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Proposition 3.22. The map mc is a periodic polynomial of degree d = dimMξ

2
supported on �(M, L). For (μ, k) ∈ �(M, L) we have

mc(μ, k) = |
M | kd

(2π)d
DHc

(μ

k

)

+ O(d − 1),

where O(d − 1) means a periodic polynomial of degree less than d − 1.

3.5 Wall-crossing formulas for the mc

Let c+ and c− be two adjacent connected components of regular values of �
separated by a hyperplane �. The aim of this section is to compute the periodic
polynomial mc+ −mc− .

We consider two points ξ± ∈ c± such that ξ = 1
2 (ξ++ξ−) belongs to the relative

interior of c+ ∩ c− in �. We suppose furthermore that ξ+ − ξ− is orthogonal to
�. Using the identification t∗ � t given by the scalar product, the vector γ =
1
2 (ξ+ − ξ−), seen as a vector of t�, belongs5 to R

>0β . We noticed in Section 2.4
that for all m ∈ �−1(ξ) the stabilizer tm is equal either to t� or to {0}. Then there
exists an open T -invariant neighborhoodU of �−1(ξ) in M such that for all m ∈ U
either tm := {0}, or tm = t� and �(m) ∈ �.

One can see easily that the couple (U, ξ) is good and the second point of
Proposition 3.10 tells us that

RRξ
U (M,−) = RRξ−

U (M,−) = RRξ+
U (M,−) (3.39)

when ξ± are close enough to ξ . Since U ∩ Cr(‖� − ξ‖2) = �−1(ξ), we have
RRξ

U (M,−) = RRξ
0(M,−). If ξ± are close enough to ξ we have

U ∩ Cr(‖�− ξ±‖2) = �−1(ξ±)
⋃

Mγ ∩�−1(ξ). (3.40)

The former decomposition is due to (3.15) and to the fact that the stabilizer of t on U
is equal either to t� or to {0}. Notice that ξ−+γ = ξ++γ = ξ . The decomposition
(3.40) gives

RRξ±
U (M,−) = RRξ±

0 (M,−)+ RRξ±∓γ (M,−), (3.41)

where RRξ−
γ (M,−) (respectively RRξ+−γ (M,−)) is the Riemann–Roch character

localized on Mγ ∩�−1(ξ) by the vector field H− (ξ−)M (respectively H− (ξ+)M ).
Now (3.39) and (3.41) prove the following result.

Proposition 3.23. If ξ± are close enough to �, we have

RRξ+
0 (M,−)− RRξ−

0 (M,−) = RRξ−
γ (M,−)− RRξ+−γ (M,−).

5 β is the primitive vector of t� ∩� pointing out of c−.
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We know from Proposition 3.18 that mc±(μ, k) is equal to the μ-multiplicity of

T in RRξ±
0 (M, L⊗k ). Hence mc+(μ, k) − mc−(μ, k) is equal to the μ-multiplicity

of T in RRξ−
γ (M, L⊗k )− RRξ+−γ (M, L⊗k).

Let N� be the normal bundle of MT� in M , and let [∧•
C

N� ]−1
±β be the polarized

inverses of ∧•
C

N� (see Proposition 3.13). Since ξ = ξ+ − γ = ξ− + γ and γ ∈
R

>0β , the localization (3.20) gives

RRξ−
γ (M, L⊗k ) =

∑

Z∈F
RRξ

0(Z , L⊗k |Z ⊗ [∧•
C

NZ ]−1
β ),

RRξ+−γ (M, L⊗k ) =
∑

Z∈F
RRξ

0(Z , L⊗k |Z ⊗ [∧•
C

NZ ]−1
−β).

Finally, mc+(μ, k)−mc−(μ, k) =∑

Z∈F AZ (μ, k), where AZ (μ, k) is equal to
the μ-multiplicity of T in

RRξ
0(Z , L⊗k |Z ⊗ [∧•

C
NZ ]−1

−β)− RRξ
0(Z , L⊗k |Z ⊗ [∧•

C
NZ ]−1

β ). (3.42)

Let β ′ ∈ t∗� ∩�∗, which is defined by the relation 〈β ′, β〉 = 2π , so that �∗t� =
Zβ ′. Concerning the T�-weights we have

1. The T�-weight on L⊗k |Z is equal to kr�β ′.
2. The T�-weight on det(N+,±β

Z ) is ±s±Z β ′, where s±Z ∈ N is the absolute value of
the trace of 1

2πLβ on N+,±γ
Z .

3. The T�-weights on S>0(N+,β
Z ) (respectively S>0(N+,−β

Z )) are of the form pβ ′
with p > 0 (respectively p < 0).

Now Lemma 3.14 shows that if a weight μ occurs in RRξ
0(Z , L⊗k |Z ⊗

[∧•
C

NZ ]−1
β ), we have i∗(μ) = (kr� + s+Z + p)β ′ with p ≥ 0, and then

〈μ, β〉
2π

− kr� ≥ s+Z .

Similarly, if a weight μ occurs in RRξ
0(Z , L⊗k |Z ⊗ [∧•

C
NZ ]−1

−β), we have

〈μ, β〉
2π

− kr� ≤ −s−Z .

Finally, AZ (μ, k) = 0 when −s−Z < 〈μ,β〉
2π − kr� < s+Z . We have proved the

following theorem.

Theorem 3.24. Let s± = infZ s±Z , where the infimum is taken over the connected
components Z of MT� for which c+ ∩ c− ⊂ �(Z). For every (μ, k) ∈ �∗ × Z, we
have mc+(μ, k) = mc−(μ, k) if

−s− <
〈μ, β〉

2π
− kr� < s+. (3.43)
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Sometimes the inequalities (3.43) are optimal.

Proposition 3.25.

• Consider the connected components Z ∈ F for which s+Z is minimal. Among

them consider the subsetF+ where dim(Z) is maximal. If the integers rkC(N+,β
Z ),

Z ∈ F+ have the same parity, then the condition 〈μ,β〉
2π − kr� < s+ is optimal in

(3.43).
• In the same way, consider the connected components Z ∈ F for which s−Z is

minimal. Among them consider the subset F− where dim(Z) is maximal. If the
integers rkC(N+,β

Z ), Z ∈ F+, have the same parity, then the condition −s− <
〈μ,β〉

2π − kr� is optimal in (3.43).

Remark 3.26. The last proposition applies when there is a unique connected com-
ponent Z of MT� for which c+ ∩ c− ⊂ �(Z).

Proof. We consider only the first point, since the other point works similarly.
We restrict our attention to the couples (μ, k) such that 〈μ,β〉

2π − kr� = s+. They
are of the form

μ = (kr� + s+)β ′ + μ2 (3.44)

with μ2 ∈ �∗t/t� . Let us denote by D(μ2, k) the restriction of mc+(μ, k)−mc−(μ, k)
to the set of couples (μ, k) parametrized by (3.44). We want to prove that D(μ2, k)
is not identically equal to zero.

From the previous discussion one knows that

D(μ2, k) =
∑

Z , s+Z =s+
(−1)rkC(N+,β

Z )DZ (μ2, k), (3.45)

where DZ (μ2, k) is the μ-multiplicity of T in

RRξ
0(Z , L⊗k |Z ⊗ det(N+,β

Z )).

Let us make a few remarks concerning the maps RRξ
0(Z ,−) : KT (Z) →

R−∞(T ). Since T� acts trivially on Z , the decomposition T = T/T�× T� induces
a canonical isomorphism KT (Z) � KT/T�(Z) ⊗ R(T�); i.e., every T -equivariant
vector bundle E → Z decomposes as

E =
∑

μ1∈Zβ ′
Eμ1 ⊗Cμ1 . (3.46)

Here each Eμ1 is a T/T�-equivariant vector bundle on Z , and Cμ1 denotes the
one-dimensional T�-representation associated to μ1 ∈ �∗t� .

For every T -equivariant vector bundle E → Z , the character RRξ
0(Z , E) is

equal to the T -equivariant index of the T -transversally elliptic symbol Thomξ (V)⊗
p∗(E), where V is a small neighborhood of �−1(ξ) ∩ Z in Z (see Definition 3.9).
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Since the T� action is trivial on Z , the symbol Thomξ (V) is also T/T� transversally
elliptic and the action of T� is trivial on it. We have then

RRξ
0(Z , E) =

∑

μ1∈Zβ ′
RRξ

0(Z , Eμ1)⊗ Cμ1 , (3.47)

where the character RRξ
0(Z , Eμ1) ∈ R−∞(T/T�) is computed by Theorem 3.22

applied to the Hamiltonian T/T�-manifold Z . For every T -vector bundle E → Z
we define the family Eμ1,μ2

ξ , μ1 ∈ Zβ ′, μ2 ∈ �∗t/t� , of orbifold vector bundles over

the reduced space Zξ = Z ∩�−1(ξ)/(T/T�) by

Eμ1,μ2
ξ := (Eμ1 ⊗ C−μ2)|�−1(ξ)∩Z/(T/T�). (3.48)

Finally, (3.22) and (3.47) give the following:

RRξ
0(Z , E) =

∑

μ1∈Zβ ′

∑

μ2∈�∗t/t�
RR(Zξ , Eμ1,μ2

ξ )⊗ Cμ1
︸︷︷︸

∈ R(T�)

⊗ Cμ2
︸︷︷︸

∈ R(T/T�)

=
∑

μ∈�∗
RR(Zξ , Eμ1,μ2

ξ ) Cμ. (3.49)

In (3.49) we write μ ∈ �∗ as a sum of μ1 ∈ Zβ ′ with μ2 ∈ �∗t/t� , so that
Cμ ∈ R(T ) is equal to the tensor product Cμ1 ⊗ Cμ1 .

When the vector bundle E → Z is the line bundle L := L⊗k |Z ⊗ det(N+,β
Z ) we

have L = L
jβ ′ ⊗ C jβ ′ for j = kr� + s+. Finally, we have

DZ (μ2, k) = RR(Zξ , L
(kr�+s+)β ′,μ2
ξ ).

Now we use the results of Section 3.4 to study the map

DZ : �∗t/t� × Z −→ Z. (3.50)

Let 
Z ⊂ T/T� be the generic stabiliser of T/T� on a component Z . Let
αZ , δZ ∈ �∗t/t� be such that the action of 
Z on the fibers of L |Z and det(N+,β

Z ) are

respectively t → tαZ and t → tδZ . From Remark 3.17 we know that the map (3.50)
is supported on the subset

�Z := {(μ2, k) ∈ �∗t/t� × Z | tkαZ+δZ+μ2 = 1, ∀ t ∈ 
Z }. (3.51)

The only difference with the computations done in Section 3.4 is the line bundle
det(N+,β

Z ). But this does not change the global behaviour of the map (3.50) on �Z :
it is a periodic polynomial map of degree dZ = dim(Zξ )/2, and we have

DZ (μ2, k) = 1

(2π)dZ

∫

Zξ

(k�Zξ
− 〈kξ − μ2, ωZξ

〉)dZ

dZ !
+ O(dZ − 1) (3.52)

for all (μ2, k) ∈ �Z .
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Suppose now that all the signs (−1)rkC(N+,β
Z ) coincide when Z ∈ F+. From

(3.45), we get that D(μ2, k) does not vanish for large values of (μ2, k).

4 Multiplicities of group representations

Let K be a semisimple compact Lie group with Lie algebra k, and let T be a maximal
torus in K with Lie algebra t. In this section we denote by (−,−) the scalar product
on k induced by the Killing form, and we keep the same notation for the induced
scalar products on t∗ and on t.

Let �∗ ⊂ t∗ be the weight lattice, and let R ⊂ �∗ be the set of roots for the
action of T on k ⊗ C: we denote by �∗R the sublattice of �∗ generated by R.
We choose a system of positive roots R+ ⊂ R, and we denote by t∗+ the corre-
sponding Weyl chamber.

The irreducible representations of K are parametrized by the set �∗+ = �∗ ∩ t∗+.
For λ ∈ �∗+ we denote by Vλ the irreducible representation of K with highest weight
λ. Here we are interested in the T -multiplicities in Vλ|T . Let m : �∗ ×�∗+ → N be
the map defined by

Vλ|T =
∑

μ∈�∗
m(μ, λ) Cμ (4.1)

for every λ ∈ �∗+.

Definition 4.1. For every λ ∈ �∗+, we denote by mλ : �∗ × Z
>0 → N the map

defined by mλ(μ, k) = m(μ, kλ). So mλ(μ, k) is equal to the multiplicity of Cμ in
Vkλ|T .

4.1 Borel–Weil Theorem

First we recall the realization of the K -representation Vλ given by the Borel–Weil
theorem. The coadjoint orbit K · λ is equipped with the Kirillov–Kostant–Souriau
symplectic form �, which is defined by

�(X M , YM )m = 〈m, [X, Y ]〉, for m ∈ K · λ and X, Y ∈ k. (4.2)

The action of K on K · λ is Hamiltonian with moment map K · λ ↪→ k∗ equal
to the inclusion. The action of T on K · λ is also Hamiltonian with moment map
� : K · λ → t∗ equal to the composition of the inclusion K · λ ↪→ k∗ with the
projection map k∗ → t∗.

There exists a unique K -invariant complex structure on K · λ compatible with
the symplectic form. In this situation the Kostant–Souriau prequantum line bundle
over K · λ is

C[λ] = K ×Kλ Cλ.



Wall-crossing formulas in Hamiltonian geometry 325

Here we use the canonical identification K/Kλ � K · λ, [k] �→ k · λ, where Kλ is
the stabilizer of λ in K . The line bundle C[λ] over the complex manifold K ·λ carries
a canonical holomorphic structure. If one works with the symplectic form k�, for
an integer k ≥ 1, the corresponding Kostant–Souriau prequantum line bundle is
C
⊗k
[λ] = K ×Kλ Ckλ = C[kλ].

Let Hq(K ·λ, C
⊗k
[λ] ) be the qth cohomology group of the sheaves of holomorphic

sections of C
⊗k
[λ] over K · λ. The Borel–Weil theorem tells us that

H0(K · λ, C
⊗k
[λ] ) = Vkλ (4.3)

and
Hq(K · λ, C

⊗k
[λ] ) = 0 for q ≥ 1. (4.4)

If RRK (K · λ,−) : KK (K · λ) → R(K ) is the K -equivariant Riemann–Roch
character defined by the compatible complex structure, (4.3) and (4.4) give

RRK (K · λ, C
⊗k
[λ] ) = Vkλ in R(K ). (4.5)

Now if we denote by RR(K · λ,−) : KT (K · λ) → R(T ) the T -equivariant
Riemann–Roch character, we have Vkλ|T = RR(K ·λ, C

⊗k
[λ] ). The multiplicity func-

tion mλ : �∗+ × N
∗ → N is characterized by the relation

RR(K · λ, C
⊗k
[λ] ) =

∑

μ∈�∗
mλ(μ, k) Cμ, in R(T ), (4.6)

for k ≥ 1.
The sublattice �∗R of �∗ generated by the roots is characterized by the (finite)

center Z(K ) of K as follows. For α ∈ �∗ we have

λ ∈ �∗R⇐⇒ tλ = 1, ∀t ∈ Z(K ), (4.7)

and for t ∈ T we have t ∈ Z(K ) ⇐⇒ tλ = 1,∀λ ∈ �∗R. The finite abelian group
�∗/�∗R is then naturally identified with the dual of Z(K ). We have the following
well-known fact.

Lemma 4.2. The multiplicity map mλ is supported on the sublattice �λ = {(μ, k) ∈
�∗ × Z|μ− kλ ∈ �∗R}.
Proof. The center Z(K ) of K acts trivially on K · λ and with the character t ∈
Z(K ) �→ tkλ on the fibers of the line bundle C

⊗k
[λ] . Since mλ(μ, k) is equal to the

dimension of the T -invariant subspace of RR(K ·λ, C
⊗k
[λ] )⊗C−μ, we have following

Lemma 3.17 that mλ(μ, k) �= 0 only if tμ−kλ = 1, ∀t ∈ Z(K ). We conclude then
with (4.7).

In this section we study the periodic polynomials

mλ
c : �∗ × Z −→ Z. (4.8)
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defined for every connected component c ⊂ t∗ of regular values of the moment
map � : K · λ→ t∗. We know that mλ

c is also supported on the sublattice �λ (see
Section 3.3).

In order to apply Theorem 3.24 to the periodic polynomials mλ
c , we have to

compute the critical values of the moment map � : K · λ→ t∗.

4.2 Critical points of � : K · λ → t∗

Let {α1, . . . , αdim T } be the simple roots of the set R+ of positive weights. The
fundamental weights �k, 1 ≤ k ≤ dim T , are defined by the conditions

2
(�i , α j )

|α j |2 = δi, j for all 1 ≤ i, j ≤ dim T . (4.9)

Recall that the fundamental weights generate the lattice �∗alg of algebraic integral
elements of t∗. We have �∗ ⊂ �∗alg and equality holds only if K is simply con-
nected.

Let W be the Weyl group of (K , T ). We will look at

G = {σ ·�i |σ ∈ W, 1 ≤ i ≤ dim T } (4.10)

as a subset of t modulo the identification t � t∗ given by the scalar product. The
singular points of � have the following nice description. This result first appeared
in Heckman’s thesis [22].

Proposition 4.3 ([22, 17]). The set of critical points of � : K · λ→ t∗ is the union
of the fixed-point set (K · λ)β, β ∈ G. For each β ∈ G we have

(K · λ)β =
⋃

σ∈W

K β · σλ,

where K β is the stabilizer subgroup of β in K .

The fixed points of the action of T on K · λ characterize the image of � com-
pletely: �(K · λ) is the convex polytope

conv(W · λ) := convex hull of W · λ. (4.11)

This result was first proved by Kostant [25]. This is a particular case of the convex-
ity theorem of Atiyah, Guillemin, and Sternberg [2, 18]. From Proposition 4.3, we
know that the singular values of � : K · λ→ t∗ are the convex polytopes

conv(Wβ · σλ), β ∈ F , σ ∈ W/Wβ , (4.12)
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where Wβ is the stabilizer6 of β in W , i.e., Wβ is the Weyl group of (K β, T ). Each
convex polytope conv(Wβ · σλ) lies in the hyperplane

�β,σ = {ξ ∈ t∗|(ξ − σλ, β) = 0}. (4.13)

We will use the following lemma.

Lemma 4.4.

• K β · σλ = K β · σ ′λ if and only if σλ ∈ Wβσ ′λ,
• conv(Wβ · σλ) ∩ conv(Wβ · σ ′λ) �= ∅ if and only if �β,σ = �β,σ ′ .

Proof. The first point follows from the fact that the intersection of a coadjoint orbit
K β · μ, μ ∈ t∗, with t∗ is equal to Wβ · μ.

It is sufficient to prove the second point for β = �i . The half-line R
>0�i is

an edge of the Weyl chamber. It is well known that the following vector subspaces
coincide:

• the line R�i ,
• the vector subspace of K �i -invariant elements of k∗,
• the vector subspace of W i -invariant elements of t∗.

Each convex polytope conv(W i · σλ) contains the W i -invariant element

1

|W i |
∑

τ∈W i

τ · σλ,

which is equal to the intersection of the hyperplane �β,σ with the line R�i . Hence,
if �β,σ = �β,σ ′ , the intersection conv(Wβ · σλ) ∩ conv(Wβ · σ ′λ) contains a
W i -invariant element, and then is not empty.

Definition 4.5. An element λ ∈ �∗+ is generic if for every fundamental root �i and
any σ, σ ′ ∈ W , we have

�β,σ �= �β,σ (4.14)

whenever the submanifolds K β · σλ and K β · σ ′λ are not equal.

This condition of genericity imposes that (σλ,�i ) �= (σ ′λ,�i ) when σλ /∈
W iσ ′λ.

Example 4.6. Consider the case of SU(4). Take the coadjoint orbit trough λ =
(2, 1,−1,−2), and σ, σ ′ such that σλ = (2,−2, 1,−1) and σ ′λ = (1,−1, 2,−2).
Take the fundamental weight �2 = 1

2 (1, 1,−1,−1). In this case λ is not “generic,”
since σλ /∈ W iσ ′λ but (σλ,�2) = 0 = (σ ′λ,�2).

6 When β = �i , we denote by W i the stabilizer of �i in W .
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4.3 Main theorems

Let c+ and c− be two adjacent connected components of regular values of � :
K · λ → t∗. The intersection c+ ∩ c+ is contained in a hyperplane orthogonal to
β ∈ F .

Definition 4.7. Let A(c+, c−) be the set of all [σ ] ∈ W/Wβ such that the convex
polytope conv(Wβ · σλ) contains c+ ∩ c+.

Then
⋃

[σ ]∈A(c+,c−)

K β · σλ

is the union of the connected components of (K · λ)β that intersect �−1(ξ) when
ξ ∈ c+ ∩ c+.

Remark 4.8. When λ is a regular element of t∗, all polytopes conv(Wβ · σλ) are
of codimension 1. When λ is “generic” (see Definition 4.5), the set A(c+, c−) is
reduced to one element.

The multiplicity function mλ : �∗ × Z
>0 → N is invariant under the action of

the Weyl group: mλ(σμ, k) = mλ(μ, k) for every σ ∈ W . The set of connected
components of regular values of � is also invariant under the action of W .

So, for the rest of this section we restrict our attention to case that c+ and c− are
separated by a hyperplane orthogonal to a fundamental weight β = �i : the vector
�i is pointing out of c−. We denote by K i the stabilizer of �i in K .

Consider [σ ] ∈ A(c+, c−) and let K i · σλ be the corresponding connected com-
ponent of (K · λ)β . The tangent space of K · λ at σλ is the following K σλ-module:

Tσλ(K · λ) =
∑

(α,σλ)>0

kα, (4.15)

where kα ⊂ k⊗C is the one-dimensional complex subspace associated to the weight
α ∈ R. In the same way, the tangent space of K i ·σλ at σλ is the K i ∩K σλ-module
defined by

Tσλ(K i · σλ) =
∑

(α,σλ)>0
(α,�i )=0

kα. (4.16)

Finally, the normal bundle of K i · σλ � K i/(K i ∩ K σλ) in K · λ is Nσ,i =
K i ×K i∩K σλ Nσ,i , where

Nσ,i =
∑

(α,σλ)>0
(α,�i ) �=0

kα. (4.17)

For an element μ ∈ t∗, we have μ =∑dim T
i=1 [μ]k αk , where

[μ]k = 2
(�k, μ)

|αk |2 ∈ R.

Note that [μ]k ∈ Z when μ belongs to the lattice �∗R.
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Definition 4.9. For [σ ] ∈ A(c+, c−) we define the positive integers

s±σ,i = ±
∑

(α,σλ)>0
±(α,�i )>0

[α]i .

Note that s+σ,i + s−σ,i is larger than half of the codimension of K i · σλ in K · λ.

Theorem 4.10. Let c+ and c− be two adjacent connected components of regular
values of � : K · λ → t∗ separated by a hyperplane orthogonal to a fundamental
weight �i : we denote by ri the common value [ξ ]i for all ξ in this hyperplane.
Let mλ

c± : �∗ × Z −→ Z be the corresponding periodic polynomials which are
supported on the sublattice �λ := {(μ, k)|μ ∈ kλ+�∗R}.

For all (μ, k) ∈ �λ, we have mλ
c+(μ, k) = mλ

c−(μ, k) when the integer [μ]i−kri
satisfies

−s−i < [μ]i − kri < s+i . (4.18)

Here the positive integers s±i are defined by

s±i = inf
[σ ]∈A(c+,c−)

s±σ,i . (4.19)

When A(c+, c−) is reduced to one element σ , for example if λ is “generic,” the
integer s+i + s−i is larger than half of the codimension of K i · σλ in K · λ.

Another way to express the result of Theorem 4.10 is to introduce, as in [36] the
convex polytope

�(c+, c−) =
⋂

σ∈A(c+,c−)

⎛

⎝

∑

(α,σλ)>0

[0, 1[ α

⎞

⎠ . (4.20)

Let � be the hyperplane which separates c+ and c−. Equation (4.18) is equivalent
to saying that

mλ
c+(μ, k) = mλ

c−(μ, k) if μ ∈ k�+�(c+, c−). (4.21)

Proof. Theorem 4.10 is a direct consequence of Theorem 3.24. The main differ-
ence between them is the decomposition of the lattice supporting the periodic
polynomials. In the former we use the decomposition �∗ = �∗t� ⊕ �∗t/t� asso-
ciated to the choice of a subtorus T/T�. Here we use the decomposition �∗R =
Zαi ⊕∑

k �=i Zαk . Note first that for (μ, k) ∈ �λ, we have μ− σλ ∈ �∗R and then
[μ− σλ]i = [μ]i − kri is an integer.

We start as after Proposition 3.23: mλ
c+(μ, k) − mλ

c−(μ, k) is equal to the
μ-multiplicity in

∑

σ∈A(c+,c−) A−σ − A+σ , where

A±σ = RRξ
0(K i · σλ, C

⊗k
[λ] ⊗ [∧•

C
Nσ,i ]−1∓�i

). (4.22)



330 Paul-Emile Paradan

Here ξ belongs to the relative interior of c+ ∩ c+, the line bundle C
⊗k
[λ] is equal to

K i ×K i∩K σλ Ckσλ, and [∧•
C
Nσ,i ]−1±�i

corresponds to (−1)rkC(N±σ,i ) times

K i ×K i∩K σλ (det(N±σ,i )⊗ S•((Nσ,i ⊗C)±)),

with
N±σ,i =

∑

(α,σλ)>0
±(α,�i )>0

kα

and
(Nσ,i ⊗ C)± =

∑

(α,σλ) �=0
±(α,�i )>0

kα.

Now we can apply Remark 3.17 with the subgroup H ⊂ T equal to the center
Z(K i ) of K i : an element γ ∈ �∗ belong to

∑

k �=i Zαk if and only if tγ = 1 for all

t ∈ Z(K i).
The group Z(K i) acts trivially on the manifolds K i · σλ, and with the characters

associated to the weights

kσλ+
∑

(α,σλ)>0
(α,�i )>0

α + δ with (δ,�i ) ≥ 0

on the bundle C
⊗k
[λ] ⊗ [∧•

C
Nσ,i ]−1

�i
, and with the characters associated to the weights

kσλ+
∑

(α,σλ)>0
(α,�i )<0

α + δ with (δ,�i ) ≤ 0

on the bundle C
⊗k
[λ] ⊗ [∧•

C
Nσ,i ]−1−�i

. Now, the μ-multiplicity in A±σ is not equal to 0
only if

kσλ+
∑

(α,σλ)>0
±(α,�i )>0

α + δ − μ ∈
∑

k �=i

Zαk with ± (δ,�i ) ≥ 0. (4.23)

Condition (4.23) implies that [μ]i ≥ k[σλ]i + s+σ,i or [μ]i ≤ k[σλ]i − s−σ,i . Finally,

we have to prove that mλ
c+(μ, k) = mλ

c−(μ, k) if

−s−σ,i < [μ]i − k[σλ]i < s+σ,i

for all σ ∈ A(c+, c−).
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4.4 The case of SU(n)

Let T be the maximal torus of SU(n) consisting of the diagonal matrices. The dual
t∗ can be identified with the subspace x1 + · · · + xn = 0 of R

n . The roots are
R = {ei − e j |1 ≤ i �= j ≤ n}, and we will choose the positive ones to be
R+ = {ei − e j |1 ≤ i < j ≤ n}. The simple roots are then αi = ei − ei+1, for
1 ≤ i ≤ n − 1, and for these simple roots, the fundamental weights are

�k = 1

n
(n − k, n − k, . . . , n − k
︸ ︷︷ ︸

k times

,−k,−k, . . . ,−k
︸ ︷︷ ︸

n−k times

), 1 ≤ k ≤ n − 1. (4.24)

Consider now the coadjoint orbit Oλ for λ ∈ t∗. Let � : Oλ → t∗ be the moment
map associated to the Hamiltonian action of T on Oλ. The center of SU(n), which
we denote by Zn corresponds to the set of matrices z I with zn = 1. Recall the
following well-known fact.

Lemma 4.11. Let ξ be a regular value of � : Oλ→ t∗. Then for every m ∈ �−1(ξ)
the stabilizer subgroup Tm := {t ∈ T | t ·m = m} is equal to Zn.

Proof. Since ξ is a regular value, we know that Tm is finite for every m ∈ �−1(ξ).
The dual of the Lie algebra su(n) decomposes as su(n)∗ = t∗ ⊕∑

α∈R+ su(n)∗α ,
where su(n)∗α � C−α as a T -module. For m ∈ �−1(ξ), we have m = m0 +
∑

α∈R+ mα with mα ∈ su(n)∗α, and then Tm = ∩mα �=0 ker(t �→ tα). So the lattice
�∗m generated by the set {α ∈ R+ |mα �= 0} is a subgroup of �∗R with �∗R/�∗m
finite. We have to show that �∗m = �∗R. For this purpose we introduce the following
equivalence relation on {1, . . . , n}:

i ∼ j ⇐⇒ ei − e j ∈ �∗m .

Suppose that {1, . . . , n}/ ∼ is not reduced to a point. Let C1 and C2 be two distinct
equivalent classes and let β = (β1, . . . , βn) be the element of t∗ defined by βi =

1
|C1| if i ∈ C1, βi = −1

|C2| if i ∈ C2, and βi = 0 in the other cases. We see then that
(β, α) = 0 for all α ∈ �∗m , which is in contradiction with the fact that �∗R/�∗m is
finite. We have proved that ei − e j ∈ �∗m for all i, j ∈ {1, . . . , n}.

We are in the particularly nice situation in which the symplectic reduction
(Oλ)ξ = �−1(ξ)/T is a smooth manifold for every regular value ξ .

Suppose now that λ is a positive weight, and let c be a connected component of
regular values of � : Oλ → t∗. We know that mλ

c : �∗ × Z −→ Z is supported on
the sublattice �λ := {(μ, k)|μ ∈ kλ+�∗R}.

Corollary 4.12. The map mλ
c : �λ −→ Z is a polynomial of degree (n−1)(n−2)

2 −dλ,
where dλ is the number of positive roots orthogonal to λ.

Proof. Take ξ ∈ c. Following Proposition 3.18, the periodic polynomial mλ
c is

defined by mλ
c(μ, k) = RR((Oλ)ξ ,Lk

ξ,μ) for all (μ, k) ∈ �λ. Here (Oλ)ξ =
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�−1(ξ)/T is a smooth manifold, and the line bundleLk
ξ,μ = (L⊗k |�−1(ξ)⊗C−μ)/T

is also smooth, since the center Zn acts trivially on L⊗k |�−1(ξ) ⊗ C−μ. Now the

Atiyah–Singer integral formula for the Riemann–Roch number RR((Oλ)ξ ,Lk
ξ,μ)

shows that mλ
c is a polynomial of degree dim(Oλ)ξ

2 = dim Oλ
2 −(n−1) = (n−1)(n−2)

2 −
dλ.

Now we rewrite Theorem 4.10 for the group SU(n). Let λ = (λ1 ≥ · · · ≥ λn) be
a positive weight and let c+ and c− be two adjacent connected components of regular
values of � : Oλ → t∗ separated by a hyperplane orthogonal to a fundamental
weight �i . The vector �i is pointing out of c−, and let (�i , ξ) − ri = 0 be the
equation of this hyperplane. We consider the linear map

Q(ξ, t) := (�i , ξ)− tri .

The hyperplane {Q = 0} ⊂ t∗ × R separates Cone(c+) and Cone(c−).
The conditions (ek−el, σλ) > 0 and (ek−el ,�i ) > 0 are respectively equivalent

to λσ(k) > λσ(l) and k ≤ i < l. For SU(n), the number [α]i is equal to 0, 1, or −1
for any roots α and any i = 1, . . . , n − 1. Hence for every σ ∈ A(c+, c−), the
integers s−σ,i , s+σ,i ≥ 0 introduced in Definition 4.9 are equal to

s+σ,i = rkC(N+σ,i ) = �{k ≤ i < l such that λσ(k) > λσ(l)}, (4.25)

s−σ,i = rkC(N−σ,i ) = �{k ≤ i < l such that λσ(k) < λσ(l)}, (4.26)

and the sum s+σ,i + s−σ,i is equal to half of the codimension of K i · σλ in K · λ, that

is, s+σ,i + s−σ,i = i (n − i)− dim(K σλ/K i ∩ K σλ)/2.
Now we make precise the results of [10].

Theorem 4.13.

• The polynomial mλ
c− −mλ

c+ : �λ → Z is divisible by the linear factors

(Q − s−i + 1), (Q − s−i + 2), . . . , Q, . . . , (Q + s+i − 2), (Q + s+i − 1),

where s±i = inf[σ ]∈A(c+,c−) s±σ,i .

• The linear factors (Q − s−i ) and (Q − s+i ) do not divide mλ
c− −mλ

c+ .

Proof. The first part is the translation of Theorem 4.10. We have just to prove that
the linear factors (Q − s−i ) and (Q − s+i ) do not divide mλ

c− −mλ
c+ . This point is a

direct application of Proposition 3.25. The only fact we use here is that rkC(N±σ,i ) =
s±σ,i . So the number rkC(N±σ,i ) is constant for all σ ∈ A(c+, c−) for which s±σ,i = s±i .

We now rewrite Theorem 4.13 in the particular case that A(c+, c−) contains
just one element. This happens when λ is a “generic” positive weight (see Defini-
tion 4.5), or when c+ does not intersect �(Oλ). Here a positive weight λ =
(λ1 ≥ · · · ≥ λn) is “generic” if for every pair of permutations σ, σ ′ and any
k = 1, . . . , n − 1, we have
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k
∑

i=1

λσ(i) �=
k

∑

i=1

λσ ′(i)

when (λσ(1), . . . , λσ(n)) /∈ Sk ×Sn−k (λσ ′(1), . . . , λσ ′(n)).

Corollary 4.14. Let λ be a regular weight. Let c+ and c− be two adjacent connected
components of regular values of � : Oλ → t∗ and suppose that A(c+, c−) contains
just one element σ . Then the polynomial mλ

c− − mλ
c+ : �λ → Z is divisible by the

i (n − i) linear factors

(Q − s−i + 1), (Q − s−i + 2), . . . , q, . . . , (Q + s+i − 2), (Q + s+i − 1),

where s±i = s±σ,i are defined by (4.25) and (4.26). Moreover, the linear factors

(Q − s−i ) and (Q − s+i ) do not divide mλ
c− −mλ

c+ .

5 Vector partition functions

Let T be a torus with Lie algebra t and let �∗ ⊂ t∗ be the weight lattice. Let
R = {α1, . . . , αd } be a subset of not necessarily distinct elements of �∗ which are
in an open half-space of t∗. We associate with the collection R a function

NR : �∗ −→ N

called the vector partition function associated to R. By definition, for a weight μ,
the value NR(μ) is the number of solutions of the equation

d
∑

j=1

k jα j = μ, k j ∈ Z
≥0, j = 1, . . . , d. (5.1)

Let C(R) ⊂ t∗ be the closed convex cone generated by the elements of R, and
denote by �∗R ⊂ �∗ the sublattice generated by R. Obviously, NR(μ) vanishes if μ
does not belong to C(R) ∩�∗R .

Suppose now that R generates the vector space t∗. Following [36], we will call
a vector singular with respect to R if it is in a cone C(ν) generated by a sub-
set ν ⊂ R of cardinality strictly less than dim T . The connected components of
t∗\{singular vectors} are called conic chambers. The periodic polynomial behavior
of NR on closures of conic chambers of the cone C(R) is proved in [35]. We have
the following refinement due to Szenes and Vergne [36]. Let us introduce the convex
polytope

�(R) =
d

∑

j=1

[0, 1]α j . (5.2)
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We observe that c − �(R) is a neighborhood of c for any conic chamber c of the
cone C(R). We have the following qualitative result.

Theorem 5.1 ([36]). Let c be a conic chamber of the cone C(R). There exists a
periodic polynomial Pc on �∗ such that for each μ ∈ c−�(R), we have

NR(μ) = Pc(μ).

In Section 5.4 we will give another proof of Theorem 5.1.
Let c± ⊂ t∗ be two adjacent conic chambers separated by the hyperplane � =

{ξ ∈ t∗|〈ξ, β〉 = 0}. Here β ∈ t is chosen so that c± ⊂ {ξ ∈ t∗| ± 〈ξ, β〉 > 0}. The
aim of this section is to give a wall-crossing formula for the periodic polynomial
Pc+ − Pc− .

Note that the vector space � is generated by R ∩�. We polarize the elements of
R that are outside �. We define

R′ = {ε jα j |〈α j , β〉 �= 0 and ε j = sign 〈α j , β〉}, (5.3)

δ± =
∑

±〈α j ,β〉>0

α j , (5.4)

and
r± = �{ j | ± 〈α j , β〉 > 0}. (5.5)

We now look at the vector space � equipped with the subset R ∩ � ⊂ �∗ ∩
�, which lies entirely in an open half-space. Let NR∩� : �∗ ∩ � → N be the
corresponding vector partition function. It is easy to see that c+ ∩ c− is contained in
the closure of a conic chamber c′ ⊂ � relative to R ∩�. Following Proposition 5.1
there exists a periodic polynomial Pc′ on �∗ ∩� such that for each μ ∈ c′ ∩�∗, we
have

NR∩�(γ ) = Pc′(γ ).

Let NR′ : �∗ → N be the vector partition function associated to the polarized
set of weight R′ (see (5.3)). The main result of this section is the following.

Theorem 5.2. The periodic polynomial Pc+ − Pc− : �∗ → Z satisfies

Pc+ (μ)− Pc− (μ) =
∑

γ∈�∗∩�
D(μ − γ )Pc′(γ ), μ ∈ �∗, (5.6)

where D : �∗ → Z is defined by

D(μ) = (−1)r−NR′(μ+ δ−)− (−1)r+NR′(−μ− δ+).

The proof of Theorem 5.2 will be given in Section 5.5.

Corollary 5.3. Pc+(μ) = Pc−(μ) for all the weights μ ∈ �∗ satisfying the
condition
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−〈δ+, β〉 < 〈μ, β〉 < −〈δ−, β〉.
These inequalities are optimal, since

(Pc+ − Pc−)(−δ− + γ ) = (−1)r− Pc′(γ )

and
(Pc+ − Pc−)(−δ+ + γ ) = (−1)1+r+Pc′(γ )

for all γ ∈ �∗ ∩�.

Proof. In (5.6), the term D(μ − γ )Pc′(γ ) does not vanish only if μ − γ ∈
−δ− +C(R′) or −(μ− γ ) ∈ δ+ +C(R′) for some γ ∈ C(R ∩�). These two con-
ditions impose respectively that 〈μ, β〉 ≥ −〈δ−, β〉 and 〈μ, β〉 ≤ −〈δ+, β〉. If one
takes μ = −δ− + γ with γ ∈ �∗ ∩ �, (5.6) becomes (Pc+ − Pc− )(−δ− + γ ) =
∑

γ ′∈�∗∩� D(−δ− + γ − γ ′)Pc′(γ ′) with

D(−δ− + γ − γ ′) = (−1)r−NR′ (γ − γ ′)− (−1)r+NR′(δ
− − δ+ − γ + γ ′).

Since the cone C(R′) intersects � only at {0}, NR′ (γ − γ ′) = 0 if γ �= γ ′. Since
〈δ− − δ+, β〉 < 0, we always have NR′(δ− − δ+ − γ + γ ′) = 0. We get finally
that (Pc+ − Pc−)(−δ− + γ ) = (−1)r−Pc′(γ ). One can show in the same way that

(Pc+ − Pc−)(−δ+ + γ ) = −(−1)r+Pc′(γ ).

5.1 Quantization of C
d

We consider the complex vector space C
d equipped with the canonical symplectic

form � = i
2

∑d
i=1 dz j∧dz j . The standard complex structure J on C

d is compatible
with �. Let T be a torus, let α j ∈ t∗, j = 1, . . . , d, be weights of T , and let T act
on C

d as
t · (z1, . . . , zd) = (t−α1 z1, . . . , t−αd zd). (5.7)

The action of T preserves the symplectic form �, and the moment map associated
with this action is

�(z) = 1

2

d
∑

i=1

|z j |2α j . (5.8)

The prequantization data (L, 〈, 〉,∇) on the Hamiltonian T -manifold (Cd ,�,�)
is a trivial line bundle L with a trivial action of T equipped with the Hermitian

structure 〈s, s′〉z = e
−|z|2

2 ss′ and the Hermitian connexion ∇ = d − θ , where θ =
1
2

∑d
i=1 z j dz j .

The quantization of the Hamiltonian T -manifold (Cd ,�), which we denote by
QT (Cd), is the Bargman space of entire holomorphic functions on C

d which are L2

integrable with respect to the Gaussian measure e
−|z|2

2 �d .
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We suppose now that the set of weights R = {α1, . . . , αd } is polarized by
η ∈ t, which means that 〈α j , η〉 > 0 for all j . The T -representation QT (Cd) is
then admissible, and we have the following equality in R−∞(T ):

QT (Cd) =
∑

μ∈�∗
NR(μ) Cμ, (5.9)

where NR : �∗ → N is the vector partition function associated to R. In other words,
the generalized character of QT (Cd) coincides with the generalized character of
the symmetric algebra S•(Cd), where C

d means C
d with the opposite complex

structure.
For the remaining part of Section 5, we assume that the set of weights R =

{α1, . . . , αd } is polarized, and generates the vector space t∗. The first assumption is
equivalent to the fact that the moment map � : C

d → t∗ is proper, and the second
assumption is equivalent to the fact that the generic stabiliser of T on C

d is finite.
Notice that the vectors of t∗ which are singular with respect to R correspond to the
singular values of �.

In the next section we will show that QT (Cd), viewed as an element of R−∞(T ),
can be realized as the index of transversally elliptic symbols on C

d . Then we will
apply the techniques developed in Section 3. The main difference here is that we
work with the noncompact manifold C

d .

5.2 Transversally elliptic symbols on C
d

Let p : TC
d → C

d be the canonical projection. We consider the Thom symbol

Thom(Cd) ∈ 
(TC
d , hom(p∗(∧even

C
TC

d), p∗(∧odd
C

TC
d)))

associated to the standard Hermitian structure on C
d . Obviously the symbol

Thom(Cd) is not elliptic, since its characteristic set is equal to the zero section
in TC

d (hence is not compact).
Now we deform the symbol Thom(Cd ) in order to obtain transversally elliptic

symbols. Since C
d can be realized as an open subset of a compact T -manifold, we

have a well-defined index map

IndexT
Cd : KT (TT C

d) −→ R−∞(T ).

Definition 5.4. For any η ∈ t, we define the symbol Thomη(Cd) by

Thomη(Cd)(z, v) = Thom(Cd)(z, v − ηCd (z)), (z, v) ∈ TC
d ,

where ηCd is the vector field on C
d generated by η.

The symbols Thomη(Cd) were studied in [32]. It is easy to see that Thomη(Cd)
is transversally elliptic if and only if the vector subspace (Cd)η is reduced to {0},



Wall-crossing formulas in Hamiltonian geometry 337

i.e., if 〈α j , η〉 �= 0 for all j = 1, . . . , d. We prove in Proposition 5.4 of [32]
that

IndexT
Cd (Thomη(Cd)) = S•(Cd) in R−∞(T ), (5.10)

when 〈α j , η〉 > 0 for all j = 1, . . . , d.
In order to compute the multiplicities NR(μ) of QT (Cd) we introduce the

following transversally elliptic symbols. Take a scalar product b(·, ·) on t∗, and
denote by ξ �→ ξb, t∗ � t the induced isomorphism. For each ξ ∈ t∗, the Hamil-
tonian vector field of the function −1

2 ‖�− ξ‖2b is the vector field

z �→ ((�(z)− ξ)b)Cd (z),

which we denote Hb − ξb
Cd .

Definition 5.5. For any ξ ∈ t∗ and any scalar product b(·, ·) on t∗, we define the
symbol Thomξ,b(C

d) by

Thomξ,b(C
d)(z, v) = Thom(Cd)(z, v − (Hb − ξb

Cd )(z)), (z, v) ∈ TC
d .

Let Char(Thomξ,b(C
d)) ⊂ TC

d be the characteristic set of Thomξ,b(C
d).

We know that Char(Thomξ,b(C
d))∩TT C

d is equal to the critical set Cr(‖�− ξ‖2b)
of the function ‖�− ξ‖2b : C

d → R (see Section 3.2). A straightforward computa-
tion gives that z ∈ Cr(‖�− ξ‖2b) if and only if

b(�(z)− ξ, α j ) z j = 0 for all j = 1, . . . , d. (5.11)

The former relation implies in particular that b(�(z)− ξ,�(z)) = 1
2

∑

j b(�(z)−
ξ, α j ) |z j |2 = 0. Hence ‖�(z)‖2b = b(�(z), ξ), which implies

‖�(z)‖b ≤ ‖ξ‖b. (5.12)

Take now η ∈ t such that 〈α j , η〉 > 0 for all j , and let ηb ∈ t∗ be such that
(ηb)

b = η. We have then

Cη‖z‖2 ≤ 〈�(z), η〉 = b(�(z), ηb) ≤ ‖�(z)‖b‖ηb‖b, (5.13)

where Cη = 1
2 inf j 〈α j , η〉, and z �→ ‖z‖2 is the usual Hermitian form on C

d . With
(5.11) and (5.13) we get the following.

Lemma 5.6. The critical set Cr(‖�− ξ‖2b) ⊂ C
d is contained in the ball of radius

‖ξ‖b ‖ηb‖b
Cη

,

where η ∈ t is such that Cη = 1
2 inf j 〈α j , η〉 > 0.

We have then proved that the symbols Thomξ,b(C
d ) are transversally elliptic.
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Proposition 5.7. The class of the transversally elliptic symbol Thomξ,b(C
d) in

KT (TT C
d) does not depend of the data ξ, b, and is equal to the class defined by

Thomη(Cd), where η ∈ t is chosen so that 〈α j , η〉 > 0 for all j .

Proof. By Lemma 5.6, we know that for any scalar product b(·, ·) on t∗, the char-
acteristic set of Thom0,b(C

d) intersects TT C
d at {0}. If b0 and b1 are two scalar

products on t∗, we consider the family bt = tb1 + (1 − t)b0, 0 ≤ t ≤ 1, of scalar
products on t∗. Hence Thom0,bt (C

d), t ∈ [0, 1], defines a homotopy of transver-
sally elliptic symbols. We have proved that Thom0,b0(C

d) = Thom0,b1(C
d) in

KT (TT C
d) for any ξ ∈ t∗.

Fix now the scalar product b and an element ξ ∈ t∗. For any t ∈ [0, 1] the
characteristic set of Thomtξ,b(C

d) intersects TT C
d in the ball of radius

‖ξ‖b ‖ηb‖b
Cη

.

Hence Thomtξ,b(C
d), t ∈ [0, 1], defines a homotopy of transversally elliptic

symbols: Thomξ,b(C
d) = Thom0,b(C

d) in KT (TT C
d). We have proved that the

class of the transversally elliptic symbol Thomξ,b(C
d) in KT (TT C

d) does not
depend on the data ξ, b.

Since the weights α j lie entirely in an open half-space of t∗, there exists a scalar
product b+(·, ·) on t∗ for which we have

b+(αi , α j ) > 0

for all i, j = 1, . . . , d . Let Hb+ be the Hamiltonian vector field of the function
−1
2 ‖�‖2b+ , and let ηCd be the vector field on C

d generated by η ∈ t such that
〈α j , η〉 > 0 for all j . A straightforward computation gives that

(Hb+(z), ηCd (z)) > 0 (5.14)

for all nonzero z ∈ C
d . Consider now the following family of symbols on C

d :

σt (z, v) = Thom(Cd)(z, v − (tHb+ + (1− t)ηCd )(z)), (z, v) ∈ TC
d ,

so that σ0 = Thomη(Cd) and σ1 = Thom0,b+(C
d). The inequality (5.14) shows that

Char(σt ) ∩ TT C
d = {0} for all t ∈ [0, 1]. Hence σt , t ∈ [0, 1], defines a homotopy

of transversally elliptic symbols: Thomη(Cd) = Thom0,b+(C
d) in KT (TT C

d).

For the remaining part of this paper we fix a scalar product on t∗, and we consider
the family of transversally elliptic symbols Thomξ (C

d), ξ ∈ t∗ (to simplify, we do
not mention the scalar product in the notation). Proposition 5.7 and (5.10) imply the
following.

Proposition 5.8. For every ξ ∈ t∗, QT (Cd) is equal to the generalized character
IndexT

Cd (Thomξ (C
d)).

Now we apply the techniques developed in Section 3 in order to compute the
multiplicities of IndexT

Cd (Thomξ (C
d)).
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5.3 Localization in a noncompact setting

As in Section 3.2 we start with a definition.

Definition 5.9. For any ξ ∈ t∗ and any T -invariant relatively compact open subset
U ⊂ C

d we define the symbol Thomξ (U) by the relation

Thomξ (U)(z, v) := Thom(Cd)(z, v − (H− ξCd )(z)) (z, v) ∈ TU .

The symbol Thomξ (U) is transversally elliptic when Cr(‖� − ξ‖2) ∩ ∂U = ∅
(the couple (U, ξ) is called good) and we denote by

RRξ
U (Cd) ∈ R−∞(T )

its index. Proposition 3.10 is still valid here. In particular, for a good couple (U, ξ),

we have RRξ ′
U (Cd) = RRξ

U (Cd) if ξ ′ is close enough to ξ . Consider now the decom-
position

Cr(‖�− ξ‖2) =
⋃

γ∈Bξ

(Cd)γ ∩�−1(γ + ξ).

Here Bξ ⊂ t∗ is finite set, since C
d has a finite number of stabilizers. Since 0 ∈

(Cd)γ and z �→ 〈�(z), γ 〉 is constant on (Cd)γ , we have

(γ + ξ, γ ) = 0 (5.15)

for all γ ∈ Bξ .

Definition 5.10. For any ξ ∈ t∗ and γ ∈ Bξ , we denote simply by

RRξ
γ (Cd) ∈ R−∞(T )

the generalized character RRξ
U (Cd), where U is a T -invariant relatively compact

open neighborhood of (Cd)γ ∩�−1(γ + ξ) such that Cr(‖�− ξ‖2)∩U = (Cd)γ ∩
�−1(γ + ξ).

Since RRξ

Cd (C
d) is equal to QT (Cd) (see Proposition 5.8), part (a) of Proposi-

tion 3.10 ensures that we have the decomposition

QT (Cd) =
∑

γ∈Bξ

RRξ
γ (Cd ).

Let c ⊂ t∗ be a conic chamber of the cone C(R), and take ξ in c. Then ξ is a
regular value of the moment map � : C

d → t∗ defined in (5.8). Let �ξ be the sym-
plectic structure on the orbifold (Cd)ξ = �−1(ξ)/T that is induced from �. The
orbifold (Cd)ξ is also equipped with a complex structure Jξ that is induced from the
standard complex structure on C

d , in such a way that the orbifold ((Cd)ξ ,�ξ , Jξ ))
is a Kähler orbifold. If ξ belongs to the lattice �∗, the reduced space (Cd)ξ is the
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Kähler toric variety corresponding to the polytope
{

s ∈ (R≥0)d |∑ s j α j = ξ
}

of
R

d . For every μ ∈ � we consider the holomorphic orbifold line bundle

Lξ,μ = (�−1(ξ)× C−μ)/T

on (Cd)ξ .

Definition 5.11. The periodic polynomial Pc : �∗ → Z associated to the conic
chamber c is given by

Pc(μ) = RR((Cd)ξ ,Lξ,μ), (5.16)

where the right-hand side is the Riemann–Roch number associated to the holomor-
phic orbifold line bundle Lξ,μ.

Another way to define the periodic polynomial Pc is to consider the generalized
character RRξ

0(C
d) for ξ ∈ c: here γ = 0 parametrizes the component �−1(ξ) of

Cr(‖�− ξ‖2). By (3.22) we have

RRξ
0(C

d) =
∑

μ∈�∗
Pc(μ) Cμ in R−∞(T ). (5.17)

By Lemma 3.16, we know that RRξ ′
0 (Cd) = RRξ

0(C
d) when ξ, ξ ′ are two elements

of c: hence the polynomial Pc does not depend on the choice of ξ in c.

5.4 Proof of Theorem 5.1

Consider a weight μ ∈ (c−�(R)) ∩�∗ of the form μ = ξ ′ −∑

j t jα j with ξ ′ ∈ c
and t j ∈ [0, 1]. We start with the decomposition

QT (Cd) =
∑

γ∈Bξ ′
RRξ ′

γ (Cd).

Since NR(μ) and Pc(μ) are respectively the multiplicities of Cμ in QT (Cd) and

in RRξ ′
0 (Cd), the proof will be complete if we show that the multiplicity of Cμ in

RRξ ′
γ (Cd) is equal to zero when γ �= 0.

Consider a nonzero element γ in Bξ ′ . For the character RRξ ′
γ (Cd) the localization

(3.20) gives

RRξ ′
γ (Cd) = RRξ ′+γ

0 ((Cd)γ )⊗ [∧•
C

N ]−1
γ , (5.18)

where N =∑

(α j ,γ ) �=0 C−α j corresponds to the normal bundle of (Cd)γ in C
d . The

inverse [∧•
C

N ]−1
γ is equal to (−1)l

Cδ(γ ) ⊗ S•(N+,γ
C

), where

δ(γ ) = −
∑

(α j ,γ )<0

α j .
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Since γ acts trivially on (Cd )γ , all the weights μ′ ∈ �∗ that appear in

RRξ ′+γ
0 ((Cd)γ ) satisfy (μ′, γ ) = 0. Since the weights of N+,γ

C
are polarized by

γ , we see from (5.18) that all the weights μ′ ∈ �∗ that appear in RRξ ′
γ (Cd ) must

satisfy
(μ′, γ ) ≥ (δ(γ ), γ ). (5.19)

Consider now the weight μ = ξ ′−∑

j t jα j . Since ξ ′ ∈ c, the equality (5.15) implies
(ξ ′, γ ) < 0 and then

(μ, γ ) = (ξ ′, γ )
︸ ︷︷ ︸

<0

+
∑

(α j ,γ )>0

−t j (α j , γ )

︸ ︷︷ ︸

≤0

−
∑

(α j ,γ )<0

t j (α j , γ ) < −
∑

(α j ,γ )<0

(α j , γ ).

So we have proved that (μ, γ ) < (δ(γ ), γ ); hence the multiplicity of Cμ in

RRξ ′
γ (Cd) is equal to zero.

5.5 Proof of Theorem 5.2

Let c± be two adjacent conic chambers separated by the hyperplane � = {ξ ∈
t∗|〈ξ, β〉 = 0}. Here β is pointing out of c−.

We consider two points ξ± ∈ c± such that ξ = 1
2 (ξ+ + ξ−) ∈ � belongs to

the conic chamber c′. We suppose also that the orthogonal projections of ξ± on �
are equal to ξ . We know that Pc+(μ) − Pc−(μ) is equal to the μ-multiplicity of

RRξ+
0 (Cd)− RRξ−

0 (Cd). Proposition 3.23 tells us that

RRξ+
0 (Cd)− RRξ−

0 (Cd) = RRξ−
γ (Cd)− RRξ+−γ (Cd),

where γ ∈ R
>0β is such that ξ− + γ = ξ+ − γ = ξ . The localization (3.20) gives

then

RRξ−
γ (Cd)− RRξ+−γ (Cd) = RRξ

0((C
d)β)⊗ ([∧•

C
N ]−1

β − [∧•
C

N ]−1
−β). (5.20)

Let Pc′ : �∗ ∩�→ Z be the periodic polynomial map which coincides with the
vector partition function NR∩� on c′ ∩�∗. If we work with the vector space (Cd)β

equipped with the Hamiltonian action of T/T�, (3.22) gives the following equality
in R−∞(T/T�):

RRξ
0((C

d)β) =
∑

γ∈�∗∩�
Pc′(γ )Cγ . (5.21)

A straightforward computation gives

[∧•
C

N ]−1
β = (−1)r− ∑

μ∈�∗
NR′ (μ+ δ−)Cμ (5.22)
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and
[∧•

C
N ]−1
−β = (−1)r+ ∑

μ∈�∗
N−R′ (μ+ δ+)Cμ, (5.23)

where r±, δ±, R′ are defined in (5.3), (5.4), and (5.5). Since N−R′ (μ) = NR′(−μ),
the equations (5.21), (5.22), and (5.23) show that the right-hand side of (5.20) is
equal to

∑

μ∈�∗

∑

γ∈�∗∩�
D(μ)Pc′ (γ )Cμ+γ

with D(μ) = (−1)r−NR′ (μ+δ−)−(−1)r+NR′ (−μ−δ+). Finally, we have proved
that Pc+ (μ)− Pc−(μ) =∑

γ∈�∗∩� D(μ− γ )Pc′(γ ).
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Boston, 1996.



Wall-crossing formulas in Hamiltonian geometry 343

17. V. GUILLEMIN, E. LERMAN, and S. STERNBERG, Symplectic fibrations and multiplicity
diagrams. Cambridge University Press 1996.

18. V. GUILLEMIN and S. STERNBERG, Convexity properties of the moment mapping, Invent.
Math. 67, 1982, pp. 491–513.

19. V. GUILLEMIN and S. STERNBERG, Geometric quantization and multiplicities of group rep-
resentations, Invent. Math. 67, 1982, pp. 515–538.

20. V. GUILLEMIN and S. STERNBERG, Birational equivalence in the symplectic category, Invent.
Math. 97, 1989, pp. 485–522.

21. V. GUILLEMIN and S. STERNBERG, Supersymmetry and equivariant de Rham theory. With
an appendix containing two reprints by Henri Cartan. Mathematics Past and Present. Springer-
Verlag, Berlin, 1999.

22. G. J. HECKMAN, Projections of orbits and asymptotic behavior of multiplicities for compact
Lie groups, PhD thesis, University of Leiden, 1980.

23. T. KAWASAKI, The Riemann–Roch theorem for complex V-manifolds, Osaka J. Math. 16,
1979, pp. 151–157.

24. F. KIRWAN, Cohomology of quotients in symplectic and algebraic geometry, Princeton Univ.
Press, Princeton, 1984.

25. B. KOSTANT, On convexity, the Weyl group and the Iwasawa decomposition, Annales Scien-
tifiques de l’E. N. S. 6, 1973, pp. 413–455.

26. S. KUMAR and M. VERGNE, Equivariant cohomology with generalized coefficients,
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Eigenvalue distributions and Weyl laws for
semiclassical non-self-adjoint operators in
2 dimensions

Johannes Sjöstrand

Dedicated to Hans Duistermaat

Abstract In this note we compare two recent results about the distribution of
eigenvalues for semiclassical pseudodifferential operators in two dimensions. For
classes of analytic operators A. Melin and the author [6] obtained a complex Bohr–
Sommerfeld rule, showing that the eigenvalues are situated on a distorted lattice.
On the other hand, with M. Hager [4] we showed in any dimension that Weyl
asymptotics holds with probability close to 1 for small random perturbations of
the operator. In both cases the eigenvalues distribute to leading order according to
smooth densities, and we show here that the two densities are in general different.

Key words: Weyl law, random
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1 Introduction

In a classical paper by J.J. Duistermaat and L. Hörmander [1], one very interest-
ing application is about (pseudo)differential operators with principal symbol p such
that the Poisson bracket {p, p} vanishes on the zero set p−1(0) and the differentials
of the real and imaginary part of p are independent there, so that the zero set is
a codimension-2 submanifold of the cotangent space. The authors gave interesting
existence results under noncompactness assumptions on the bicharacteristic folia-
tion. In my thesis under the direction of L. Hörmander my task was to study the
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case {p, p} �= 0 on the zero set of the symbol, and in a subsequent paper with
Duistermaat [2] we introduced and studied certain microlocal projections onto the
kernel and the cokernel of the operator. The full history of this subject can be traced
back to the famous counterexample of Hans Lewy to local solvability and sub-
sequent work by Hörmander and others, and there is also quite a rich recent history.

There has been a renewed interest in non-self-adjoint operators and the related
notion of pseudospectrum, promoted by L.N. Trefethen, E.B. Davies, M. Zworski,
and others. Again the Poisson bracket i−1{p, p} plays an important role as a source
of pseudospectral behaviour, including spectral instability. (We observe here that
the above Poisson bracket is equal to the principal symbol of the commutator of the
corresponding (pseudo)differential operator and its adjoint.) We refer to the surveys
[8, 9], where further references can be found.

Possibly, as a reaction to these developments, the author participated in two
projects:

• With A. Melin [6] we discovered for a fairly wide and stable class of non-self-
adjoint semiclassical pseudodifferential operators in dimension 2 with analytic
symbols that the individual eigenvalues in certain regions can be determined
by a Bohr–Sommerfeld quantization rule defined in terms of certain complex
Lagrangian tori (close to the real domain). The underlying idea is here to change
the Hilbert space norm by means of exponential weights in such a way that the
operator becomes (more) normal.

• M. Hager [3] considered certain non-self-adjoint h-pseudodifferential operators
in dimension 1 with small multiplicative random perturbations and showed that
with probability tending to 1 when h → 0, the eigenvalues distribute according
to the classical Weyl law, well known in the context of self-adjoint operators
for almost a century. The same type of result was subsequently obtained in any
dimension by Hager and the author [4] for a certain class of nonmultiplicative
random perturbations and recently also for multiplicative random perturbations
in any dimension by the author [10].

In the present note we shall compare the resulting distributions of eigenvalues in
dimension 2. More precisely, let P have leading symbol p and satisfy the assump-
tions of [6] in the slightly strengthened form of Theorem 1 below. Then for generic
p the density of eigenvalues of P according to [6] is different from the one for small
random perturbations of P as in [4]. This means that the random perturbations will
change radically the asymptotic distribution of eigenvalues. The intuitive explana-
tion of this phenomenon is that the result of [6] depends on the geometry in the
complex domain, while the random perturbation destroys analyticity, and hence the
eigenvalue distribution should be given in terms of the real phase space, where the
Weyl law is the natural candidate.

The corresponding phenomenon in one dimension is similar and easier. Here
the (expected and sometimes well established) general situation is that the eigen-
values of an analytic pseudodifferential operator are confined to curves possibly
with branch points, determined by complex Bohr–Sommerfeld rules, while the Weyl
law for random perturbations will distribute the eigenvalues in the image by p of
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the real phase space. For example, if P = (h Dx )
2 + i x2, p(x, ξ) = ξ2 + i x2, the

eigenvalues will be confined to eiπ/4[0,+∞[, while those of random perturbations
of P will spread inside the first quadrant= p(T ∗R).

We next describe the main result of [6]. Let p(x, ξ) be bounded and holomorphic
in a tubular neighborhood of R4 in C4 = C2

x ×C2
ξ . (The assumptions near∞ can be

varied in many ways and we can let p belong to some more general symbol space
as long as we have the appropriate form of ellipticity near infinity; cf. (2) below.)
Assume that

R4 ∩ p−1(0) �= ∅ is connected, (1)

for simplicity. Also assume that

on R4 we have |p(x, ξ)| ≥ 1/C, for |(x, ξ)| ≥ C, (2)

for some C > 0, and

d	p(x, ξ), d
p(x, ξ) are linearly independent for all (x, ξ) ∈ p−1(0)∩ R4. (3)

It follows that p−1(0) ∩ R4 is a compact (2-dimensional) surface.
Also assume that

|{	p,
p}| is sufficiently small on p−1(0) ∩ R4. (4)

By “sufficiently small” we mean that |{	p,
p}| < δ for some δ > 0 that will
depend on all constants (implicit or explicit) that are required to express the other
conditions above uniformly.

In [6] we showed that p−1(z) ∩ R4 is a real torus for z ∈ neigh (0, C) (i.e.,
some neighborhood of 0 in C) and that there exists a smooth 2-dimensional torus
�(z) ⊂ p−1(z) ∩ C4 close to p−1(z) ∩ R4 such that σ|�(z) = 0 and I j (z) ∈ R,
j = 1, 2. Here I j (z) := ∫

γ j (z) ξ · dx are the actions along two fundamental cycles

γ1(z), γ2(z) ⊂ �(z) and σ =∑2
1 dξ j ∧ dx j is the complex symplectic (2,0)-form.

Moreover, �(z), I j (z) depend smoothly on z ∈ neigh (0).
The main result of [6], valid under slightly more general assumptions than the

ones above, is then the following

Theorem 1. Under the above assumptions, there exist a neighborhood V of 0 ∈ C,
θ0 ∈ ( 1

2 Z)2, θ j ∈ C∞(V ;R2), and θ(z; h) ∼ θ0 + θ1(z)h + θ2(z)h2 + · · · in
C∞(V ;R2) such that for z ∈ V and for h > 0 sufficiently small, z is an eigenvalue
of P = pw(x, h Dx ) iff

(I1(z), I2(z))

2πh
= k − θ(z; h), for some k ∈ Z2. (BS)

Here pw(x, h D) denotes the Weyl quantization of the symbol p(x, hξ).

Let us also assume that

the map z �→ I (z) := (I1(z), I2(z)) is a diffeomorphism from V to I (V ). (5)
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This assumption is satisfied if we strengthen (4) by assuming that |{	p,
p}| is
sufficiently small on p−1(z) for all z ∈ neigh(0, C) and choose V small enough. The
eigenvalues near 0 will then form a distorted lattice, and we introduce the leading
spectral density function 0 < ω(z) ∈ C∞(V ) by

d I1(z) ∧ d I2(z) = ±ω(z)d	z ∧ d
z, (6)

where the sign is chosen so that ω becomes positive. Then from Theorem 1 it follows
that for every W � V with smooth boundary, the number of eigenvalues in W
satisfies

N(W ; h) = 1

(2πh)2

(∫

W
ω(z)L(dz)+ o(1)

)

, h → 0. (7)

Here L(dz) = d	z d
z denotes the Lebesgue measure.
Now we turn to the results in [3, 4, 10]. Again the unperturbed operator is of the

form P = pw(x, h Dx ), where the complex-valued smooth symbol should belong
to a suitable symbol class and satisfy an ellipticity condition at infinity which guar-
antees that the spectrum of P in a given open set 
 � C is discrete. The perturbed
operator is of the form Pδ = P+ δQω, where the parameter δ is small, say bounded
from above by some positive power of h and from below by e−h−α

for some suitable
value α ∈]0, 1]. Under some additional assumptions on the type of random pertur-
bation and about nonconstancy of the symbol p, it is shown in the cited works that
with a probability that tends to 1 when h → 0, the number of eigenvalues of Pδ in
W � 
 obeys

Nδ (W ; h) = 1

(2πh)n
(vol(p−1(W ))+ o(1)) (8)

uniformly for W in a class of subsets of 
 with uniformly smooth boundary. (In the
case of multiplicative perturbations, an additional symmetry assumption on the
symbol is imposed which cannot be completely eliminated.)

Notice that this result can be formulated as in (7) with the density ω replaced
by the Weyl density w(z)L(dz), defined to be the direct image of the symplectic
volume element under the map p, so that

∫

f (z)w(z)L(dz) =
∫∫

f (p(x, ξ))dx dξ, f ∈ C∞0 (V ). (9)

In the two-dimensional case there are situations (for instance in the case of the
symbol p(x, ξ) = 1

2 ((x2
1 + ξ2

1 ) + i(x2
2 + ξ2

2 )) − const and small perturbations of
that symbol) where Theorem 1 applies to P and the results of [4, 7] apply to small
random perturbations, and it is then of interest to compare the spectral densities.
We shall see that ω(z) = w(z) in the integrable case when {	p,
p} ≡ 0 but that
these quantities are different in general.

Theorem 2. Under the assumptions (1)–(5) we have generically that w �≡ ω.
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In other words, if w ≡ ω, then there are arbitrarily small perturbations of P
within the class of operators as in the theorem for which w �≡ ω.

2 The integrable case

In this section, we strengthen the assumption (4) to

{	p,
p} ≡ 0. (10)

It is then well known by the Liouville–Mineur–Arnold theorem (see [11]) that
there exists a real symplectic diffeomorphism κ : neigh (η = 0, T ∗T2) →
neigh (p−1(0) ∩R4, R4) (i.e., from a neighborhood of {η = 0} in T ∗T2 to a neigh-
borhood of p−1(0) ∩ R4 in R4) such that

p ◦ κ = p̃(η) (11)

is independent of y, where T2 = (R/2πZ)2 and T ∗T2 � T2
y × R2

η.

In this case �(z) is simply the real Lagrangian torus p−1(z) ∩ R4 and

I j (z) = 2πη j + I j (0), p̃(η) = z. (12)

It follows that up to composition with κ , we get the same quantities ω(z), w(z) if
we do the computation directly on T ∗T2 for p̃(η), and we restrict the attention to
that case and drop the tilde.

From (12) and (6) we get

ω(z)

(2π)2 =
∣

∣

∣

∣

det
∂(η1, η2)

∂(	p,
p)

∣

∣

∣

∣

, p(η) = z. (13)

From (9), we get for f ∈ C∞0 (V ):

∫

f (z)w(z)L(dz) =
∫∫

f (p(y, η))dy dη

= (2π)2
∫

f (p(η))dη

= (2π)2
∫

f (z)

∣

∣

∣

∣

det
∂(η1, η2)

∂(	p,
p)

∣

∣

∣

∣

L(dz),

which shows that w(z) also satisfies (13), so

w(z) = ω(z), z ∈ V , (14)

in the completely integrable case (10).
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3 The general case

In this section we shall prove Theorem 2 by means of calculations similar to those
in [5]. Let p satisfy the assumptions (1)–(5). Let Gt (x, ξ) for t ∈ neigh (0, R)
be a smooth family of functions that are holomorphic and uniformly bounded in
a fixed tubular neighborhood of R4. Possibly after decreasing the neighborhood of
t = 0 we get a smooth family of canonical transformations κt from a fixed tubular
neighborhood of R4 onto a neighborhood of R4, by solving the Cauchy problem

d

dt
κt(ρ) = (κt )∗(î HGt )(ρ), κ0(ρ) = ρ, (15)

where

HGt =
∂Gt

∂ξ

∂

∂x
− ∂Gt

∂x

∂

∂ξ

is the holomorphic Hamilton field (of type (1, 0)) and we identify i HGt with the

corresponding real vector field î HGt := i HGt + i HGt .
Put pt = p ◦ κt . Then (possibly after further shrinking the neighborhood of

t = 0) pt will satisfy the assumptions (1)–(5), and since κt are complex canonical
transformations, we also know that

ωt = ω is independent of t . (16)

In order to prove Theorem 2, it suffices to prove the following result.

Theorem 3. For every neighborhood V of 0 ∈ C, we can find a family Gt as above
such that every neighborhood of t = 0 will contain a t for which wt �≡ w in V . Here
wt denotes the Weyl density of pt , defined as in (9).

Remark 1. Actually, we shall prove the theorem in all dimensions (replacing 2 by
any 0 < n ∈ N) for any p �≡ 0 that is bounded and holomorphic in a tubular
neighborhood of R2n in C2n that satisfies (2) and for which p−1(0) ∩ R2n �= ∅. Let
wt(z)L(dz) be the measure defined as in (9) with p = p0 replaced by pt = p ◦ κt .

Proof. For f ∈ C∞0 (V ;R) we get

∫

f (z)
∂wt (z)

∂ t
L(dz) = d

dt

∫

f (z)wt (z)L(dz)

= d

dt

∫∫

f (pt(x, ξ))dx dξ

=
∫∫ (

∂ f

∂z
(pt)

∂pt

∂ t
+ ∂ f

∂z
(pt)

∂ pt

∂ t

)

dx dξ.

Here, we have
∂pt

∂ t
= i HGt pt ,
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and using that f is real,

∫

f (z)
∂wt (z)

∂ t
L(dz) = 2	

(

i
∫∫

∂ f

∂z
(pt)HGt ptdx dξ

)

= −2	
(

i
∫∫

∂ f

∂z
(pt)Hpt (Gt )dx dξ

)

= 2	
(

i
∫∫

Hpt

(

∂ f

∂z
(pt)

)

Gt dx dξ

)

= 2	
(

i
∫∫

(

∂2 f

∂z2
Hpt (pt)+ ∂2 f

∂z∂z
Hpt (pt )

)

Gt dx dξ

)

= 2	
(

∫∫

∂2 f

∂z∂z
(pt)i {pt , pt}Gt dx dξ

)

=
∫∫

(� f )(pt ){	pt ,
pt}	Gt dx dξ. (17)

If {	p,
p} = i
2 {p, p} does not vanish identically, there are points arbitrarily close

to p−1(0) where it does not vanish and we can choose f ∈ C∞0 (V ;R) (where V
is any fixed neighborhood of 0 ∈ C) such that (� f )(p){	p,
p} does not vanish
identically. We can then choose G = G0 independent of t with the properties above
so that

∫

f (z)

(

∂

∂ t

)

t=0
wt(z)L(dz) =

∫∫

(� f )(p){	p,
p}	G dx dξ �= 0.

We get the conclusion of Theorem 3 in this case.
If {	p,
p} ≡ 0, we choose G real and independent of t in (17) and differentiate

that identity once with respect to t at t = 0 to get

∫

f (z)

(

∂2wt

∂ t2

)

t=0

L(dz) =
∫∫

(� f )(p)

(

∂

∂ t

)

t=0

(

i

2
{pt , pt}

)

G dx dξ

=
∫∫

(� f )(p)
i

2
({i HG p, p} + {p, i HG p})G dx dξ

= −1

2

∫∫

(� f )(p)(Hp HpG + Hp HpG)G dx dξ.

Here we integrate by parts and use that Hp p = 0, Hp p = 0, to get

∫

f (z)

(

∂2wt

∂ t2

)

t=0

L(dz) =
∫∫

(� f )(p)|HpG|2dx dξ.
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Again we see that we can find f ∈ C∞0 (V ;R) and G = G0 as above, so that the
last integral is �= 0. The conclusion in the theorem follows in this case also.
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San Vũ Ngo.c

Hans Duistermaat’s enthusiasm and taste for good mathematics
and mathematical writings were contagious, and have been a
great source of inspiration for me.
This article is dedicated to his memory.

Abstract We prove, under some generic assumptions, that the semiclassical
spectrum modulo O(�2) of a one-dimensional pseudodifferential operator
completely determines the symplectic geometry of the underlying classical system.
In particular, the spectrum determines the Hamiltonian dynamics of the principal
symbol.

Key words: Inverse spectral theory, semiclassical spectral asymptotics, symplectic
classification, microlocal analysis, pseudodifferential operators, Bohr-Sommerfeld
rules
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1 Introduction

In this article I would like to advocate an inverse spectral theory for pseudodiffer-
ential operators. What does this mean? One of the most famous inverse spectral
problems, made fashionable by Kac’s very entertaining article [12], with a mind-
catching title “Can one hear the shape of a drum?”1 was about the Laplace operator
on a bounded domain � ⊂ R

n . Frequencies ν, solutions to the eigenvalue problem

1

2
�u = ν2u, u = 0 on ∂�,
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1 Kac attributes the problem to Bochner and the title to Bers.
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may be viewed as harmonics that can be heard when the interior of the “membrane”
� vibrates freely. The question was whether the knowledge of all frequencies
completely determines � (up to isometry, of course). As Kac mentioned, this ques-
tion appears naturally in the context of quantum mechanics, for a particle trapped
in a hard potential well. An important observation in Kac’s paper was the relevance
of the Weyl law, which let us find the volume (or area when n = 2) of � from the
asymptotic behaviour of large eigenvalues.

Counterexamples are now known: there are nonisometric shapes in R
2 that

produce different frequencies [10]. Nonetheless, this fact should not let us think
that the problem has become obsolete. The seemingly simple case of a convex,
bounded domain � ∈ R

2 with analytic boundary is still open; the closest result,
in the presence of symmetry, is due to Zelditch, see [24, 23, 27].

Understanding this problem requires putting it in a wider perspective. A natural
variant of Kac’s problem is whether the spectrum of the Laplace operator �g on
a compact Riemannian manifold (M, g) determines the metric g. Although here
again, counterexamples have been known for a long time [15], our understand-
ing remains relatively poor. Recent work by Zelditch and Guillemin suggests that
microlocal tools are quite relevant for all these questions. This, in turn, is a hint that
more general operators than the Laplacian could be dealt with similarly.

From a quantum-mechanical viewpoint, Kac’s situation is quite extreme. A more
natural setting would involve a particle “trapped” by a smooth potential well.
No more boundary problems, but instead a Schrödinger operator on R

n ,

P = −�
2

2
�+ V (x).

Of course now the potential function V should be recovered from the spectrum of P.
This inverse spectral problem has been much studied, but only very recently have
microlocal tools similar to those used by Guillemin and Zelditch been applied to
it [11, 6, 3].

Here, I would like to shift again the initial problem one step further away.
Instead of the Laplacian, or the Schrödinger operator, why not consider any (elliptic)
differential operator, or even, while we’re at it, any pseudodifferential operator?
Of course, since there is no longer a domain �, no potential function V , the sensible
question is, what should we try to recover from the spectrum?

The inverse spectral problems I have mentioned here can all be understood as
semiclassical limits. From a quantum object, the spectrum, one wants to recover
classical observables such as the metric g, or the potential V . These quantities, in
turn, fully determine the classical dynamics of the system. For general pseudo-
differential operators, semiclassical analysis still shows the strong relationship
between the classical dynamics and the quantum spectrum, so I believe that the
most natural “object” that we should try to recover from the spectrum is pre-
cisely this classical dynamics. This, precisely, amounts to determining the principal
symbol of the operator. In fact, if we keep in mind Weyl’s asymptotics, this sounds
fairly natural, for it is well known that Weyl’s asymptotics extend to arbitrary
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pseudodifferential operators, provided that we compute phase space volumes defined
by energy ranges given by the principal symbol [22, 16].

As in the Riemannian case, one should take into account a symmetry group acting
on the classical data. For general pseudodifferential operators, there is only one
available: the group of symplectomorphisms, acting on the phase space M . This is
a much bigger group than the group of Riemannian isometries, in accordance with
the fact that the space of principal symbols C∞(M) is much bigger than the space
of Riemannian metrics, or potential functions.

Acknowledgements

I would like to thank the referee for suggesting several simplifications of the proofs.
I am also grateful to Michael Van Valkenburgh who pointed out a mistake in the
proof of Theorem 4.2.

2 The setting

Since we aim at recovering the classical dynamics from the spectrum, we are going
to work in the setting of semiclassical pseudodifferential operators, which we recall
here. Throughout this work, we consider only the one-dimensional theory. It would
be very interesting to have higher-dimensional results, but it is not expected that
such precise results would persist. However, a reasonable challenge would be to
undertake a similar study for the completely integrable case.

The classes �d(m) of semiclassical pseudodifferential operators that we use are
standard. Let M = T ∗R = R

2
(x,ξ ). Let d and m be real numbers. Let Sd(m) be the

set of all families (p(·; �))�∈(0,1] of functions in C∞(M) such that

∀α ∈ N
2, |∂α

(x,ξ ) p(x, ξ; �)| ≤ Cα�
d (1+ |x |2 + |ξ |2)m

2 , (1)

for some constant Cα > 0, uniformly in �. Then �d(m) is the set of all (unbounded)
linear operators P on L2(R) that are �-Weyl quantisations of symbols p ∈ Sd(m):

(Pu)(x) = (Opw
�
(p)u)(x) = 1

2π�

∫

R2
e

i
�
〈x−y,ξ 〉 p

(

x + y

2
, ξ; �

)

u(y)|dy dξ |.

The number d in (1) is called the �-order of the operator. Unless specified, it will
always be zero here. In this work all symbols are assumed to admit a “classical”
asymptotic expansion in integral powers of � (that is to say, in the ladder
(Sd (m))d∈Z,d≥d0 for some d0 ∈ Z). The leading term in this expansion is called
the principal symbol of the operator.
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Thus, the Schrödinger operator P = −�
2

2 � + V on R is a good candidate,
of �-order zero, whenever V has at most polynomial growth.

We use in this article the standard properties of such pseudodifferential operators.
In particular, the composition sends �d(m)×�d ′(m′) to �d+d ′(m+m ′). Moreover,
all P ∈ �0(0) are bounded: L2(R)→ L2(R), uniformly for 0 < � ≤ 1.

An operator P ∈ �(m) is said to be elliptic at infinity if there exists a constant
C > 0 such that the principal symbol p satisfies

|p(x, ξ)| ≥ 1

C
(|x |2 + |ξ |2)m/2

for |x |2 + |ξ |2 ≥ C .
If P has a real-valued Weyl symbol, then it is a symmetric operator on L2 with

domain C∞0 (R). If furthermore the principal symbol is elliptic at infinity, then P is
essentially self-adjoint (see for instance [8, Proposition 8.5]).

Finally, when P ∈ �0(m) is self-adjoint and elliptic at infinity, then for any
f ∈ C∞0 (R), the operator f (P) defined by functional calculus satisfies f (P) ∈
∩k∈N(�0(−km)). See for instance [8] or [17] for details.

The advantage of the semiclassical theory is that it allows us to use richer versions
of Weyl’s asymptotics. Instead of considering the limit of large eigenvalues, we fix
a bounded spectral window I = [E0, E1] ⊂ R and study the asymptotics of all
eigenvalues in I , as �→ 0.

Definition 2.1. We say that Assumption A(P,J , I ) holds whenever:

1. P is a self-adjoint pseudodifferential operator in �0(m) with principal symbol
p, elliptic at infinity.

2. J ⊂ [0, 1] is an infinite subset with zero as an accumulation point.
3. There exists a neighbourhood J of I such that p−1(J ) is compact in M .

When m > 0, the properness condition 3 is implied by condition 1. If Assumption
A(P,J , I ) holds, we denote by 
�(P, I ) the spectrum of P = P(�) in I (includ-
ing multiplicities). We denote by 
(P,J , I ) the family of all {
�(P, I ); � ∈ J }.
It is well known that 
�(P, I ) is discrete for � small enough (see, e.g., [17,
Théorème 3.13], in a slightly different setup).

Proposition 2.2. Let P be a self-adjoint pseudodifferential operator in �(m), with
principal symbol p, elliptic at infinity. Let J ⊂ R be a closed interval such that
p−1(J ) is compact. Then for any open interval I ⊂ J there exists �0 > 0 such that
the spectrum of P in I is discrete for � ≤ �0.

Proof. Let f ∈ C∞0 (J ) be equal to 1 on I . Then by pseudodifferential func-
tional calculus, f (P) is compact for � small enough (see for instance [8, p. 115]).
Therefore, denoting by �I the spectral projector on I , we have that �I = �I f (P)
is compact. This implies that �I has finite rank: the spectrum in I is discrete.

The goal of this article is to recover the dynamics of the Hamiltonian p in the
region p−1(I ) for any operator P for which Assumption A(P,J , I ) holds, for
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some subset J ⊂ [0, 1]. Of course if we can do it for an arbitrary compact interval
I ⊂ R, we recover the full dynamics of p.

It turns out that under some genericity conditions, these inverse spectral problems
are fairly easy, compared to the general multidimensional problems alluded to in the
introduction, in the sense that they require only a few terms in the asymptotics of
the spectrum. Having this in mind, for α ∈ R we denote by 
(P,J , I )+O(�α) the
equivalence class of all 
�(P, I ) modulo �

α . Our main result is Theorem 5.2, but
we also state several intermediate results that require weaker hypotheses.
An informal statement of Theorem 5.2 is as follows.

Theorem 2.3 (Theorem 5.2). Let Assumption A(P,J , I ) hold, and set
M = p−1(I ). Suppose that p�M is a Morse function. Assume that the graphs of
the periods of all trajectories of the Hamiltonian flow defined by p�M, as functions
of the energy, intersect generically.

Then the knowledge of 
(P,J , I ) + O(�2) determines the dynamics of the
Hamiltonian system p�M.

In fact, we determine completely the Hamiltonian p up to symplectic equivalence.
Perhaps the most difficult step, for which Weyl’s asymptotics are not enough,
is the seemingly simple problem of counting the number of connected components
of p−1(E), for a regular energy E ∈ I (Theorem 4.2).

Although we state everything for pseudodifferential operators defined on R,
it is most probable that all results extend to the case of pseudodifferential operators
defined on a one-dimensional compact manifold equipped with a smooth density,
and to the case of Toeplitz operators on two-dimensional symplectic manifolds.

The plan of the paper follows a fairly logical progression. Since we always work
modulo symplectomorphisms, it is not reasonable to look for a formula that would
give the principal symbol p. Instead we will try to recover as many symplectic
invariants as possible from the spectrum, so that given two spectra, we should be
able to tell whether they come from isomorphic systems.

Thus, the geometric object under study is a proper map p : M → R, where M
is a symplectic 2-manifold. The simplest symplectic invariants of this map are in
fact topological invariants, and are dealt with in Sections 3 and 4. Indeed, it follows
from the action-angle theorem that as soon as E ∈ R is a regular value of p, then
the fibres of p consist of a finite number of closed loops, each one diffeomorphic to
a circle. Therefore, we need to be able to detect

1. whether an energy E ∈ R is a regular or critical value of p; this is done in
Section 3 (Theorem 3.1);

2. when E is a regular value, the number of connected components of the fibre
p−1(E); Section 4.1 discusses this point (Theorem 4.2).

Putting these results together, we are able to recover the topological type of the
singular fibration (Theorem 4.5). Then in Section 5, relying on the classification
result of Dufour–Molino–Toulet [9, 18] (and some additional argument) we finally
manage to recover the symplectic geometry of the system (Theorem 5.2).
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3 Singularities

In order to detect whether a given energy E0 ∈ R is a critical value of p, it is
enough to know the spectrum of P in a small ball around E0, at least under some
nondegeneracy conditions.

Recall that a function f : M → R is said to have a nondegenerate critical point
m ∈ M when d f (m) = 0 and the Hessian f ′′(m) is a nondegenerate quadratic form.
Since M has dimension 2, there are only two cases:

1. Elliptic case: there are local symplectic coordinates (x, ξ) in Tm M such that
f ′′(m)(x, ξ) = C(x2 + ξ2), for some constant C �= 0.

2. Hyperbolic case: there are local symplectic coordinates (x, ξ) in Tm M such that
f ′′(m)(x, ξ) = Cxξ , for some constant C �= 0.

We refer to each of these two cases as the type of the singularity m.

Theorem 3.1. Let I be an interval containing E0 in its interior, and let Assumption
A(P,J , I ) hold. Assume also that p has only nondegenerate critical values in I ,
and that any two critical points with the same singularity type cannot have the same
image by p. Then from the knowledge of 
(P,J , I ) +O(�2) one can infer

1. whether E0 is a critical value of p;
2. in case E0 is a critical value, the type of the singularity.

Proof. We use Weyl’s asymptotics, which can be obtained from a semiclassical
trace formula as in [7, 3]: of E1 ∈ I , then the number of eigenvalues of P in
[E0, E1] is equivalent, as �→ 0, to

1

2π�

∫

p−1([E0,E1])
dx dξ.

We fix E0 and consider the behaviour of the “action” function

A(E1) :=
∫

p−1([E0,E1])
dx dξ.

Since p−1(E0) is compact, it follows from the action-angle theorem that if E0 is a
regular value of p, then A is smooth in a neighbourhood of E0. If E0 is an elliptic
critical value, then one of the Liouville tori in p−1(E), for E close to E0 (on one
side of E0) degenerates to a point in the way that a harmonic oscillator energy level
does at the origin. Then the function A admits a discontinuous derivative at E0. All
of this follows from the local normal form of elliptic singularities. Finally, if E0 is
a hyperbolic singularity, we can also use the local normal form at the singularity,
which tells us that two Liouville tori coalesce into a unique one. In this case, A(E)
behaves like (E − E0) ln |E − E0|, and thus its derivative diverges to ±∞.

Another approach to this theorem is to consider the density of states in small
regions around E0, which can be proved using Bohr–Sommerfeld rules. In fact,
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Bohr–Sommerfeld rules are arguably too strong for the following proposition, but
we use them here because we will have to refer to them later.

Proposition 3.2. Let γ ∈ (0, 1), and for E ∈ I ,

ρ�(E) = �
1−γ #(
�(P, B(E, �

γ ))).

Then for any E ∈ I , the limit ρ(E) = lim�→0 ρ�(E) exists (in [0,+∞]), and

1. if E is a regular value of p, then ρ is smooth at E;
2. if E is an elliptic critical value of p, then ρ is discontinuous;
3. if E is a hyperbolic critical value of p, then ρ(E) = +∞.

Proof. In case E is a regular value, the result follows directly from Weyl’s
asymptotics as before, or from the semiclassical Bohr–Sommerfeld rules as in [19].
Let us recall the Bohr–Sommerfeld approach. There exists an ε > 0 such that
the eigenvalues of P inside [E − ε, E + ε] modulo O(�∞) are the union (with
multiplicities) of a finite number of spectra σk , k = 1, . . . , N , where N is the
number of connected components of p−1(E), and each σk is determined by quasi-
modes microlocalised on the corresponding component. Precisely, the elements of
σk are given by the solutions λ to the equation

g(k)(λ; �) ∈ 2π�Z, (2)

where the function g(k) admits an asymptotic expansion of the form

g(k)(λ; �) ∼ g(k)
0 (λ)+ �g(k)

1 (λ)+ �
2g(k)

2 (λ)+ · · · (3)

with smooth coefficients g j . Moreover, if we denote by Ck(λ) the kth connected
component of p−1(λ), in such a way that the family (Ck(λ)) is smooth in the variable
λ, then g(k)

0 is the action integral:

g(k)
0 (λ) =

∫

Ck(λ)
ξdx . (4)

From (2) it follows that for � small enough,

#(σk ∩ B(E, ε)) = (2π�)−1|g(k)(E + ε; �)− g(k)(E − ε; �)| + δ,

where δ ∈ [−1, 1] is here to take care of the appropriate integer part of the right-
hand side. Hence

#(σk ∩ B(E, ε)) = (2π�)−1

∣

∣

∣

∣

∣

2ε
∂g(k)

0 (E)

∂ E
+O(ε2)+O(�)

∣

∣

∣

∣

∣

+ δ.
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With ε = �
γ , this gives

#(σk ∩ B(E, �
γ )) = �

γ−1

π

∣

∣

∣

∣

∣

∂g(k)
0 (E)

∂ E

∣

∣

∣

∣

∣

+O(�2γ−1)+O(1).

Summing up all contributions for k = 1, . . . , N , we get the first claim of the
theorem, with

ρ(E) = 1

π

∣

∣

∣

∣

∣

∂g(k)
0 (E)

∂ E

∣

∣

∣

∣

∣

.

The second claim can be proved in a similar way, using Bohr–Sommerfeld rules
for elliptic singularities [21]. For our purposes, a Birkhoff normal form as in [2]
would even be enough, since we deal with energy intervals of size O(�γ ). Here
again there exists an ε > 0 such that the eigenvalues of P inside [E − ε, E + ε]
modulo O(�∞) are the union (with multiplicities) of a finite number of spectra
σk corresponding to the various connected components of p−1(E). The difference
is that not all components need have critical points. In fact, by assumption only
one component may have an elliptic critical point. Let us call σk the corresponding
spectrum, and Ck(λ) the corresponding family of connected components. Since an
elliptic critical point is a local extremum for p, the sets Ck(λ) are empty for all λ in
one of the halves of the interval [E − ε, E + ε]. Without loss of generality, one can
assume that Ck(λ) = ∅, ∀λ ∈ [E − ε, E[. Then Ck(E) is just a point, while Ck(λ) is
a circle for all λ ∈ ]E, E + ε].

The Bohr–Sommerfeld rules for elliptic singularities say that the elements of σk
are the solutions λ to an equation of the form

e(k)(λ; �) ∈ 2π�N, (5)

where the function e(k) admits an asymptotic expansion exactly as g(k) above (3).
What is more, it is equally true that the principal term is an action integral:

e(k)(E) = 0, e(k)
0 (λ) =

∫

Ck (λ)
ξ dx, ∀λ ∈ [E, E + ε].

Calculating along the same lines as above, we find, for the quantity

ρ
(k)
�

(λ) := �
1−γ #(σk ∩ B(λ, �

γ ))),

the following limits:

1. when λ ∈ [E − ε, E[, lim�→0 ρ
(k)
�

(λ) = 0;

2. when λ ∈ ]E, E + ε, E], lim�→0 ρ
(k)
�

(λ) = 1
π

∣

∣

∣

∂e(k)
0 (λ)

∂λ

∣

∣

∣;

3. lim�→0 ρ
(k)
�

(E) = 1
2π

∣

∣

∣

∂e(k)
0 (E)

∂E

∣

∣

∣;

Finally, let E be a hyperbolic critical value for p. Weyl asymptotics for such
a situation have been worked out in [1], and the singular Bohr–Sommerfeld rules
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have been established in [4]. Using the latter result it can be proven as in [13] that
the number of semiclassical eigenvalues generated by a hyperbolic fixed point, in a
neighbourhood of size ε = �

γ of the critical value, is of order ε| ln �|/�. Therefore,
since there may be only one hyperbolic point in p−1(0), it follows from this estimate
and the results we just proved above for the regular and the elliptic cases that

ρ�(E) ≥ C| ln �|,
for some constant C > 0. This gives ρ(E) = +∞.

Remark 3.3. It is probable that the nondegeneracy condition can be avoided. It is
known quite generally that Weyl asymptotics hold for critical energies [25]. Thus,
in all cases, we recover the action integral as the integrated density of states. It would
remain to show that the behaviour of the action integral completely determines the
singularities of p. This is easy in the Schrödinger case p = ξ2 + V (x).

4 Topology

As we already mentioned above, once the singular fibres of p have been excluded,
the topology is easy to understand. The map p becomes a locally trivial fibration
whose fibres are disjoint unions of circles.

Thus, if E0 is a regular value of p, the semiglobal problem around E0 just
amounts to counting the number of connected components of p−1(E0).

The topology of singular fibres strongly depends on the type of singularity. Under
the nondegeneracy assumption, the topology of the singular foliation in a neighbour-
hood of a singular fibre is essentially determined by the type of the singularity, and
thus by Theorem 3.1.

4.1 Connected components

Let I be a compact interval of regular values of p. As above, we denote by Ck(λ),
for k = 1, . . . , N and λ ∈ I , the smooth families of connected components of
p−1(λ). Each Ck(λ) is globally invariant by the Hamiltonian flow generated by p.
Thus, this flow is periodic on Ck(λ). Let |τk(λ)| �= 0 be its primitive period (the sign
is determined by the formula below). It follows from the action-angle theorem that
τk is a smooth function of λ. In fact, it is well known that the period is the derivative
of the action, and we have already met this quantity in the proof of Proposition 3.2.
Using the action integral (4), we get

τk(λ) = ∂g(k)
0 (λ)

∂λ
.
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Notice again that τk never vanishes on I .

Definition 4.1. We say that a point (λ, t) ∈ (I × R
∗) is resonant whenever there

exist (k, j ) and (k ′, j ′) in {1, . . . , N} × Z
∗, with k �= k′, such that

jτk(λ) = j ′τk′(λ) = −t .

Theorem 4.2. Let I be an interval of regular values of p, and let Assumption
A(P,J , I ) hold. Assume also that the set of resonant points in I × R is discrete.
Then the number N of connected components of p−1(λ), λ ∈ I , is determined by
the spectrum 
(P,J , I )+O(�2).

Before proving the theorem, let us just remark that the leading term of Weyl’s
asymptotics is not sharp enough for this. Indeed, it gives only the density ρ
(Proposition 3.2):

ρ(λ) = 1

π

N
∑

k=1

|τk(λ)|. (6)

From this one cannot distinguish, for example, one component with period τ from
two components with periods |τ1| + |τ2| = |τ |.

Observe also that the condition on resonant points is not adapted to systems with
symmetries. For instance, a Schrödinger operator with a symmetric double well has
two components with equal periods.

Proof of Theorem 4.1. We introduce the period lattice Lk(I ):

Lk(I ) : = {(λ, t) ∈ I ×R; exp(tXp)is periodic on Ck(λ)}
= {(λ, jτk(λ)); λ ∈ I, j ∈ Z}

and L(I ) = ⋃N
k=1 Lk(I ). The set L(I ) is a union of smooth graphs that may

intersect. The intersection points for t �= 0 are precisely the resonant points.
In order to prove the theorem, we split the argument into two steps. The first one

is to prove that 
(P,J , I ) + O(�2) determines L(I ). The second step consists in
showing why the knowledge of L(I )—and the assumption on the set of resonant
points—allows us to count the number N of connected components.

Step 1. Returning to the Bohr–Sommerfeld rules discussed in the proof of
Proposition 3.2, we recall that the spectrum of P modulo O(�∞) is the super-
position of the spectra σk generated by Ck , for k = 2, . . . , N . For each k,
σk has a periodic structure that makes it close to an arithmetic progression. Thus,
a simple and naive idea to distinguish between the different periodic structures is
to perform a frequency analysis, via a Fourier transform. Because we have at our
disposal only a truncated sequence of eigenvalues (those that belong to I ), we need
to introduce a cut-off. Let I ′ � I and let χ ∈ C∞(R) have compact support in the
interior of I and be equal to 1 on I ′. We introduce the spectral measure

D0(λ; �) =
∑

E∈
� (P,I )

χ(E)δE (λ),
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where δE is the Dirac distribution at E . The quantity we want to investigate is its
Fourier transform. Since the mean spacing between consecutive eigenvalues is of
order �, we use a corresponding scale for the time variable t , and thus introduce

Z(t; �) =
∑

E∈
� (P,I )

χ(E)e−it E/�.

The function Z is called the partition function. In fact, the idea we have just
described is very well known in the semiclassical context, and is part of the general
formalism of trace formulas. We can consider the Schrödinger group U(t; �) =
exp(−i t P/�), and then Z(t; �) = Trace(χ(P)U(t; �)). It is well known that
χ(P)U(t; �) is a Fourier integral operator, whose canonical transformation is the
classical flow of p. Moreover, its trace is a Lagrangian (or WKB) distribution
associated with the Lagrangian manifold of periods

�p = {(E, τ ) ∈ R
2; ∃z ∈ p−1(E), exp(τXp)(z) = z} = L(I ′).

Such a result would almost finish the proof of Step 1. In fact, this statement exists
in many versions, depending on various possible situations and hypotheses. For this
reason we are not using it here as is, but instead resort once again to the Bohr–
Sommerfeld rules, which is arguably the easiest way to go.

We can split the partition function as

Z(t; �) =
N

∑

k=1

∑

E∈σk

χ(E)e−it E/�.

Then from (2) one can introduce c �→ f (k)(c; �) as the inverse of λ �→ g(k)(λ; �),
which exists for � small enough, and write

Z(t; �) =
∑

j∈Z
ϕt (2π� j; �) (7)

(which, as before, is a finite sum) with

ϕt (c; �) :=
N

∑

k=1

χ( f (k)(c; �))e−it f (k)(c;�)/�. (8)

Note that ϕt (·; �) ∈ C∞0 (R). By the Poisson summation formula,

Z(t; �) = 1

2π�

∑

j∈Z
ϕ̂t ( j/�) (9)
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(which, in contrast to (7), is a truly infinite sum) with

1

2π�

ϕ̂t( j/�) = 1

2π�

∫

R

e−icj/�ϕt(c)dc =
N

∑

k=1

Zk(t; j, �) (10)

and

Zk(t; j, �) = 1

2π�

∫

e−i�−1(cj+t f (k)(c;�))χ( f (k)(c; �))dc.

Let us now fix j and consider Zk as a function of t . Returning to the spectral
variable λ = f (k)(c; �) we can write

Zk(t; j, �) = 1

2π�

∫

e−itλ/�e−i jg(k)(λ;�)/�χ(λ)
∂g(k)(λ; �)

∂λ
dλ.

= F�,λ �→t

(

e−i jg(k)(λ;�)/�χ(λ)
∂g(k)(λ; �)

∂λ

)

.

Thus Zk is the semiclassical Fourier transform of a compactly supported WKB

function with phase function λ �→ − jg(k)
0 (λ). Since ∂g(k)(λ;�)

∂λ = τk(λ) + O(�),
its associated lagrangian submanifold is defined by the equation

t = − jτk(λ). (11)

More precisely, since the amplitude of this WKB function is τk(λ)χ(λ)+O(�), and
τk does not vanish in the support of χ , the semiclassical wavefront-set of Zk(·; j, �)
is, for fixed j ∈ Z,

WF�(Zk) = {(λ, t) ∈ R
2; t = − jτk(λ), χ(λ) �= 0}.

Let us now turn to the behaviour of Z(t, �) for positive times. For this we
consider the localisation of Z modulo O(�∞). Let t0 > 0, ε > 0, and let
ρ ∈ C∞0 (B(t0, ε)). There is no solution to (11) in the support of ρ for | j | outside
the interval

Ik(ε) :=
(

t0 − ε

supJ |τk| ,
t0 + ε

infJ |τk |
)

.

Making explicit the nonstationary phase argument, we can write, for any � ∈ N,

Zk(t; j, �) =
(

�

j i

)� ∫

e−i�−1(cj+t f (k)
0 (c;�))L�(a(c; �))dc,

where L is the linear differential operator defined by

(Lu)(c) = d

dc

⎛

⎜

⎝

u(c)

1+ t
j

∂ f (k)
0

∂c

⎞

⎟

⎠
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and a(·; �) ∈ C∞0 (I ) admits an asymptotic expansion in nonnegative powers of �,

in the C∞ topology. Let b(c) = (

1+ t
j

∂ f (k)
0

∂c

)−1. Then b is uniformly bounded on I
for | j | > (t0 + ε)/ infJ |τk |, and for any � ∈ N

∗, there exists a positive constant C�,

independent of j and �, such that
∣

∣

∣

d�b
dc�

∣

∣

∣ ≤ C�/j . Therefore, there exist constants

C̃� > 0 such that
|L�(a)| ≤ C̃�,

and we get, again when | j | > (t0 + ε)/ infJ |τk |,

|ρ(t)Zk(t; j, �)| ≤ C̃�

(

�

j

)�

.

Thus, for � ≥ 2,
∑

| j |> t0+ε
infJ |τk |

|ρ(t)Zk(t; j, �)| ≤ C̃��
�.

This shows that only a finite (independent of �) number of terms contributes to
ρ(t)Z(t; �) modulo O(�∞). Thus the (non)stationary phase approximations are
jointly valid. Therefore Z(t; �) microlocally vanishes at any point that does not
belong to L(I ); this can be written

WF�(Z(·; �)) ⊂ L(I ).

More precisely,

WF�(ρZ(·; �)) ⊂ {(λ, jτk(λ)); λ ∈ I, | j | ∈ Ik(ε), k = 1, . . . , N}.
Moreover, at a non-resonant point (λ, jτk(λ)), no other period j ′τk′ can contribute,
and thus Z(·; �) is a lagrangian distribution microlocally equal to Zk(·; j, �). Since
the set of resonant points is discrete, and WF�(Z) is closed in T ∗ I , we must have
WF�(Z(·; �)) = L(I ), which finishes the proof of the first step.

Step 2. We are now left with a simple geometric inverse problem: given the set of
periods L(I ), how can one recover the number N of connected components?

Our strategy is to recover the fundamental periods |τ1|, . . . , |τN |. First of all,
by Weyl’s asymptotics (6), one obtains the a priori bound |τk(λ)| ≤ πρ(λ). Let
R := maxJ πρ. Then by assumption, the set of resonant points inside I×]0, R] is
finite; therefore, one can always find a smaller, nonempty interval Ĩ ⊂ I such that
there is no resonant point at all in Ĩ×]0, R].

We extract the periods τk from L1 := L( Ĩ )∩ ( Ĩ×]0, R]) inductively, as follows.

1. Consider a point (λ1, τ1) ∈ L1 with “minimal height” τ1 : ∀(λ, τ ) ∈ L1, τ1 ≤ τ .
2. By the nonresonance assumption, the connected component of (λ1, τ1) in L1 is

the graph of a smooth function of the interval Ĩ . We denote this function by
λ �→ τ1(λ).
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3. Consider the set

L2 := L1\{(λ, jτ1(λ)); λ ∈ Ĩ , j ∈ Z
∗}.

Again by the nonresonance assumption, L1 remains a union of nonintersecting
smooth graphs.

4. If L1 is empty, then N = 1. Otherwise, start again by replacing L0 by L1, and
so on. If Lk is empty, then N = k − 1.

Remark 4.3. If we disregard symmetry issues, our assumption on the resonant set is
quite weak. For instance, one can allow the crossing of two periods to be flat (all
derivatives are equal at a point λ), simply because we put ourselves in a region with
no crossing at all. However, it is easy to prove Step 2 with even weaker assumptions.
For instance, it may work even if there are some open intervals of values of λ which
admits resonant pairs. It would be interesting to know whether Step 1 could hold in
this case as well. It would then involve subprincipal terms in the Bohr–Sommerfeld
expansion.

4.2 Singular fibres

As we already mentioned, the following result comes for free.

Theorem 4.4. Let Assumption A(P,J , I ) hold, and let E0 ∈ I be a nondegene-
rate critical value of p. Assume also that p−1(E0) contains only one critical point.
Then from the knowledge of 
(P,J , I )+O(�2) one can determine the topology of
the singular foliation induced by p, in a saturated neighbourhood of p−1(E0).

Proof. Under these assumptions, the topology of the singular foliation induced by
p in a saturated neighbourhood of p−1(E0) is known to be completely characterised
by the type of the singularity [9, 26], which is determined by Theorem 3.1. For the
convenience of the reader, we briefly recall the two possible cases.

1. The elliptic case. The singular fibre p−1(E0) is just a point and the foliation is
homeomorphic to the one given by the Hamiltonian H (x, ξ) = x2 + ξ2.

2. The hyperbolic case. The singular fibre is a circle with a transversal self-
intersection (the figure eight). It separates a saturated neighbourhood into three
connected parts: two on one side, and one on the other side. It is homeomor-
phic to the foliation given by the Hamiltonian H (x, ξ) = ξ2 + x4 − x2, in a
neighbourhood of H−1(0).

4.3 Global topology

We say that a Hamiltonian system p on the symplectic 2-manifold M is topologi-
cally equivalent to the Hamiltonian system p̃ on M̃ if there is a homeomorphism
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ϕ : M → M̃ such that
p = p̃ ◦ ϕ.

Notice that this implies that ϕ respects the foliation, fibre by fibre. In particular,
p and p̃ have the same set of regular values and the same set of critical values.
If I is an open interval, then two Hamiltonian systems p and p̃ are called topologi-
cally equivalent over I when they are topologically equivalent when restricted to the
symplectic manifolds p−1(I ), ( p̃)−1(I ).

We call the topological type of a Hamiltonian system the equivalence class of
topologically equivalent systems.

Theorem 4.5. Let Assumption A(P,J , I ) hold, and assume that p has only non-
degenerate critical values in some neighbourhood of I , such that any two critical
points with the same singularity type cannot have the same image by p. Let
c1 < · · · < cn be the critical values of p in I . Suppose that in each interval
(ci , ci+1), i = 1, . . . , n − 1, there exists a nonempty subinterval Ii such that
the set of resonant points in Ii × R is discrete in R

2. Then the knowledge of

(P,J , I ) + O(�2) determines the topological type of the Hamiltonian system
p over I .

Proof. Upon a possible enlargement of I , one may assume that I = (E0, E1)
for regular values E0, E1. Using symplectic cutting [14] or surgery [26], one may
replace the phase space R

2 by a compact symplectic manifold where p−1(I ) is
embedded. Then we apply the result of [9] that says that the topological type of
p on M is determined by its Reeb graph: the set of leaves of the foliation, as a
topological 1-complex. This graph is characterised by the relative positions of criti-
cal values, and the number of fibres between two consecutive critical values. The
former is determined by the spectrum in I thanks to Theorem 3.1, while the latter is
determined for each i = 1, . . . , n− 1 by the spectrum in Ii , thanks to Theorem 4.2.
This gives the topological type of p, up to some homeomorphism of the Reeb graph
itself. But since we know the precise values of p at singularities, we can in fact
assume that this homeomorphism is the identity.

5 Symplectic geometry

The tools we have used so far give us the periods of the classical Hamiltonian
system, which is of course much more than mere topological information. We show
here that it is indeed sufficient to recover the full dynamics of the systems.

We say that a Hamiltonian system p on the symplectic 2-manifold M is
symplectically equivalent to the Hamiltonian system p̃ on M̃ if there is a smooth
symplectomorphism ϕ : M → M̃ such that

p = p̃ ◦ ϕ.
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Thus, the dynamics of p on the level set {p = E} is transported via ϕ to the
dynamics of p̃ on the level set { p̃ = E}.

We call the symplectomorphism type of a Hamiltonian system the equivalence
class of symplectically equivalent systems. As before, one may restrict this equiva-
lence to an interval I of values of p and p̃.

Definition 5.1. Let (λ, t) ∈ I × R be a resonant point for p. Thus

jτk(λ) = j ′τk′(λ) = −t

for some j, j ′, k �= k ′. We say that this resonance is weakly transversal if there
exists an integer n ∈ N

∗ such that the nth derivatives of the periods are not equal:

jτ (n)
k (λ) �= j ′τ (n)

k′ (λ).

Theorem 5.2. Let Assumption A(P,J , I ) hold, and suppose that p has only non-
degenerate critical values in some neighbourhood of I , such that any two criti-
cal points with the same singularity type cannot have the same image by p. Let
c1 < · · · < cn be the critical values of p in I . Suppose that for each interval
Ji := (ci , ci+1), i = 1, . . . , n − 1, the set of resonant points in Ji × R is discrete.
Finally, assume that all such resonant points are weakly transversal.

Then the knowledge of 
(P,J , I ) + O(�2) determines the symplectic type of
the Hamiltonian system p over I .

Proof. We use the symplectic classification of [9, 18] using weighted Reeb graphs.
Under our assumptions, the Reeb graph has vertices of degrees 1 and 3. A vertex of
degree 1, a bout, corresponds to an elliptic critical value, while a vertex of degree 3,
called a bifurcation point, corresponds to a hyperbolic critical value. At a bifurca-
tion point we can distinguish one particular edge, called the trunk, corresponding to
the side of the figure 8 with only one connected component. The two other edges
are called the branches. A weighted Reeb graph is a Reeb graph each of whose
edges is associated with a positive real number, its length, and such that each of
the two branches of each bifurcation point is associated with a formal Taylor series
(i.e., a sequence of real numbers). The hypotheses of the theorem allow for deter-
mining the topological Reeb graph via Theorem 4.5. Thus, the next step of the proof
is to show how the numbers that constitute the weighted Reeb graph can be
recovered from the spectrum. The final step is to obtain the symplectic equivalence
in the sense that we have just defined above.

The lengths

Let Ck(Ji), for k = 1, . . . , N , be the connected components of p−1(Ji ). Let Kk,i ∈
C∞(Ck(Ji)) be an action variable for the regular Lagrangian fibration p�Ck(Ji); it is
unique up to a sign and an additive constant. By definition the length of the edge
corresponding to the set of leaves in Ck(Ji) is
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�k,i :=
∣

∣

∣ lim
c→ci

Kk,i (c)− lim
c→ci+1

Kk,i (c)
∣

∣

∣. (12)

In learned terminology, this is the Duistermaat–Heckman measure of Ji for the
S1-action defined by Kk,i , or equivalently, it is the affine length of Ji endowed with
its natural integral affine structure given by p�Ck (Ji).

It follows from the local models for elliptic and hyperbolic singularities that this
length is always finite. This is obvious at elliptic singularities, where the action
has the form x2 + ξ2. At a hyperbolic singularity m, one can introduce a foliation
function q such that in some local symplectic coordinates around m, q = xξ , and
q > 0 on the branches, while q < 0 on the trunk. Then the Duistermaat–Heckman
measure has the form

{

dμ j (q) = (ln q + g j (q))dq on each branch ( j = 1, 2),

dμ(q) = (2 ln |q| + g(q))dq on the trunk,
(13)

with some smooth functions g, g1, g2 satisfying

∀p, g(p)(0) = g(p)
1 (0)+ g(p)

2 (0).

In this form, the Taylor series of the functions g, g1, g2 at the origin are uniquely
defined [18, 20].

Using the proof of Theorem 4.2, from the spectrum in I we can recover the
periods τk(λ), k = 1, . . . , N , for λ in any interval in Ji where the graphs of the
periods τk don’t cross. At a crossing the difficulty is to put the labels k correctly,
so that the connected components Ck(λ) remain in the same Ck(Ji ) when λ varies.
This can be overcome precisely thanks to the weak resonant assumption at each
crossing, because each τk is C∞ in Ji . This was the main issue. Now, fixing a point
λi ∈ Ji , the action variable Kk,i we can compute by the formula

Kk,i (λ) :=
∫ λ

λi

τk(λ)dλ, λ ∈ Ji .

This gives the length of Ck(Ji ) via equation (12).

The Taylor series at the bifurcation points

By definition, the sequences of numbers associated with a bifurcation point in the
Reeb graph are the Taylor series of the functions g1, g2 (defined in equation (13)) at
the origin.

Let us show how to recover the Taylor series of g from the spectrum. The proce-
dure is completely analogous for g1 and g2.

Thus, we consider a hyperbolic critical value ci+1. We want to express the
Duistermaat–Heckman measure on the trunk in terms of the principal symbol
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p. By a theorem of Colin de Verdire and Vey [5], there exist local symplectic
coordinates (x, ξ) at the hyperbolic point, and a smooth, locally invertible function
f : (R, ci+1)→ (R, 0) such that

f (p) = xξ = q.

For notational purposes, one may assume that f ′(ci+1) > 0, which amounts to
saying that the trunk is sent by p to λ < ci+1. Then from (13), for λ close to ci+1,
λ < ci+1,

dμ(λ) = (2 ln | f (λ)| + g ◦ f (λ)) f ′(λ)dλ.

On the other hand, if the connected component corresponding to the trunk is Ck(Ji ),
one has by definition of the Duistermaat–Heckman measure dμ(λ) = τk(λ)dλ.
Therefore

τk(λ) = f ′(λ)(2 ln | f (λ)| + g ◦ f (λ)) = 2 f ′(λ) ln |λ− ci+1| + h(λ),

for some smooth function h at λ = ci+1. There, using Taylor’s formula, we have
written f (λ) = α(λ− ci+1)+ (λ− ci+1)

2 f̂ (λ), with α > 0 and f̂ smooth at ci+1,
and hence

h(λ) = 2 f ′(λ) ln |α + (λ− ci+1) f̂ (λ)| + f ′(λ)g ◦ f (λ). (14)

This shows that h is smooth for λ close to ci+1.
It is easy to see that any smooth function φ in a neighbourhood of the origin

such that φ(t) ln t extends to a smooth function at t = 0 must be flat. Hence the
knowledge of τk(λ) for λ < ci+1 completely determines the Taylor series of f ′(λ)
(and hence f (λ)) at λ = ci+1.

Then one can recover the Taylor series of h using

h(λ) = τk(λ)− 2 f ′(λ) ln |λ− ci+1|, ∀λ < ci+1.

Finally, from (14) and the fact that f is locally invertible, one can recover the
Taylor series of g at the origin.

Symplectic equivalence

We have proved that the weighted Reeb graph is determined by the spectrum.
By Toulet’s classification [9, 18], if two such systems (M, p) and (M, p̃) have the
same weighted Reeb graph, there exists a symplectomorphism ϕ : M → M̃ such
that p and p̃ ◦ ϕ define the same singular foliation on M (ϕ induces a homeomor-
phism of the leaf space, fixing the vertices). If we assume that the operators P and
P̃ have the same spectrum (modulo �

2) and satisfy the requirements of the theorem,
then we also know that p and p̃ ◦ ϕ share the same set of critical values ci . The fact
that p and p̃◦ϕ define the same foliation implies that for each connected component
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Ck(Ji ), there exists a smooth, invertible function f : Ji → Ji such that

p = f ◦ p̃ ◦ ϕ on Ck(Ji). (15)

Since the singular fibres at the ends of Ck(Ji ) are fixed by ϕ, f must be increasing,
and thus extends to a homeomorphism of Ji .

As we already saw, the spectrum also determines the periods at a given energy
E = λ. Hence for λ ∈ Ji , τk(λ) = τ̃k(λ). Since τk is integrable at ci+1, we can
define action integrals for λ < ci+1 as

Kk,i (λ) :=
∫ λ

ci+1

τk(λ)dλ, K̃k,i (λ) :=
∫ λ

ci+1

τ̃k(λ)dλ.

We have Kk,i (λ) = K̃k,i (λ). On the other hand, the action is a symplectic invariant
of the foliation. From (15) on can compute the action on the curve ϕ(Ck( f (λ))) =
C̃k(λ) : Kk,i ( f (λ)) = K̃k,i (λ)+ const. Therefore

Kk,i (λ) = Kk,i ( f (λ)).

Since τk does not vanish in Ji , Kk,i is strictly monotonic on Ji . Therefore

f (λ) = λ, ∀λ ∈ Ji .

Thus p = p̃ ◦ ϕ on each Ck , and by continuity

p = p̃ ◦ ϕ on M.

This finishes the proof of the theorem.
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18. A. Toulet. Classification des systèmes intégrables en dimension 2. PhD thesis, Université de

Montpellier II, 1996.
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20. S. Vũ Ngo. c. On semi-global invariants for focus–focus singularities. Topology, 42(2):

365–380, 2003.
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