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Preface

Geometric concepts often play an essential role in obtaining a profound under-
standing of many areas of analysis and mechanics, for instance, in the theory
of Fourier integral operators and in (semi)classical mechanics. This interaction
between geometry and analysis or mechanics is a very dominant and also unifying
theme in the publications of Hans Duistermaat. At the occasion of his 65th birthday,
leading investigators convened at Utrecht University, in August 2007, to discuss
recent developments along these lines and in other areas related to the scientific
interests of Duistermaat. This volume contains refereed contributions from most of
the speakers at this conference and, additionally, two from invited speakers who
were unable to attend.

During the preparation of the conference proceedings, Hans Duistermaat passed
away unexpectedly, on March 19, 2010. There is no doubt in our minds that
Duistermaat would have wished the publication of these proceedings as planned.
Accordingly, we decided to leave the format unchanged, but to add an overview of
Duistermaat’s scientific work as well as some reminiscences by V.W. Guillemin,
A. Weinstein, G. Heckman, and R.H. Cushman, as friends and co-authors.

The thirteen research articles published in this volume cover grosso modo three
different topics: pseudodifferential operators and (inverse) spectral problems, index
theory and localization, and group actions.

Pseudodifferential operators and (inverse) spectral problems. A characteriza-
tion of the local solvability for square systems of pseudodifferential operators is the
topic of the paper of N. Dencker, while J. Sjostrand describes results on eigenvalue
distributions and Weyl laws for non-self-adjoint operators. F. Alberto Griinbaum
discusses matrix-valued polynomials satisfying differential equations both with
respect to the space and the spectral variables. There are three papers, by S. Vi
Ngoc, Y. Colin de Verdiére and V.W. Guillemin, and Y. Colin de Verdiére, respec-
tively, on the question to what extent the semiclassical spectrum of an operator
determines properties of the operator.
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Index theory and localization. In his article, J.-M. Bismut explains the relations
between refined versions of index theory on a manifold X and the localization
formulas of Duistermaat—Heckman on L X, the associated loop space. P.-E. Paradan
studies the local invariants associated to the Hamiltonian action of a compact torus
and obtains wall-crossing formulas between invariants attached to adjacent con-
nected components of regular values of the moment map. L. Boutet de Monvel,
E. Leichtnam, X. Tang, and A. Weinstein use equivariant Toeplitz operator calcu-
lus in order to give a new proof of the Atiyah—Weinstein conjecture on the index
of Fourier integral operators and the relative index of CR structures. L.C. Jeffrey
and B. McLellan consider the analog of nonabelian localization results of Beasley
and Witten when the gauge group G is the abelian group G = U(1). Finally,
E. Meinrenken explains how to define the quantization of g-Hamiltonian SU(2)-
spaces as push-forwards in twisted equivariant K -homology, and to prove the “quan-
tization commutes with reduction” theorem for this setting.

Group actions. On a symplectic manifold equipped with a Hamiltonian torus action
a real locus is defined to be a set of fixed points for an equivariant smooth anti-
symplectic involution. J.-C. Hausmann and T. Holm observe that certain
cohomological relations between such a real locus and the ambient manifold can
be explained in terms of a purely topological structure, rather than a symplectic
one. There is a close relationship between Mumford’s geometric invariant theory
(GIT) in algebraic geometry and the process of reduction in symplectic geometry.
F. Kirwan’s paper describes ways in which nonreductive compactified quotients,
which cannot be treated by means of classical GIT, can be studied using symplectic
techniques.

List of all speakers. Nalini Anantharaman (Ecole Polytechnique, Palaiseau), Nicole
Berline (Ecole Polytechnique, Palaiseau), Jean-Michel Bismut (Université Paris-
Sud), Yves Colin de Verdiere (Université Grenoble), Richard Cushman (Utrecht
University), Nils Dencker (Lund University), F. Alberto Grinbaum (University
of California at Berkeley), Victor Guillemin (Massachusetts Institute of Tech-
nology), Tara Holm (University of Connecticut), Frances Kirwan (University of
Oxford), Eugene Lerman (University of Illinois at Urbana-Champaign), Jiang-
Hua Lu (University of Hong Kong), Eckhard Meinrenken (University of Toronto),
Richard Melrose (Massachusetts Institute of Technology), Paul-Emile Paradan
(Université Montpellier 2), Reyer Sjamaar (Cornell University), Gunther Uhlmann
(University of Washington at Seattle), San Vi Ngoc (Université Grenoble), Alan
Weinstein (University of California at Berkeley).

Acknowledgements. We are grateful to Ann Kostant and Tom Grasso for expert
editorial guidance and support. In addition, we thank all the authors for their fasci-
nating and well-prepared lectures as well as their contributions, while the referees
are also thanked for their valuable comments and suggestions. Main funding was
provided by the Mathematical Institute and the Faculty of Science, both of Utrecht
University. Additional financial support was provided by the Royal Netherlands
Academy of Arts and Sciences (KNAW), the Netherlands Organisation for Scientific
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Research (NWO), the Mathematical Research Institute (MRI), the Thomas Stieltjes
Institute for Mathematics, and by the research clusters Geometry and Quantum
Theory (GQT) and Nonlinear Dynamics of Natural Systems (NDNS+).

Utrecht Erik P. van den Ban
August 2010 Johan A.C. Kolk
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Hans Duister maat (1942—2010)

Erik P. van den Ban* and Johan A.C. Kolk*

On March 19, 2010, mathematics lost one of its leading geometric analysts, Johannes
Jisse Duistermaat. At age 67 he passed away, after a short illness following a
renewed bout of lymphoma the doctors thought they had controlled. “Hans,” as
Duistermaat was universally known among friends and colleagues, was not only
a brilliant research mathematician and inspiring teacher, but also an accomplished
chess player, very fond of several physical sports, and a devoted husband and
(grand)father. The remembrances and surveys that follow are from some of his many
colleagues, students, and friends. We hope that they adequately convey the impres-
sive breadth of Hans’s life and work.

Hans Duistermaat was born December 20, 1942, in The Hague. After the end of
World War |1 his parents moved to the Netherlands East Indies (Indonesia nowa-
days), where he spent a happy youth. Hans was a student at Utrecht University,
where he wrote his Ph.D. thesis on mathematical structures in thermodynamics.
The famous geometer Hans Freudenthal is listed as his advisor, but the topic was
suggested and the thesis directed by Giinther K. Braun, professor in applied mathe-
matics, who tragically died one year before the defense of the thesis, in 1968.

Hans dropped the subject of thermodynamics, because the thesis had led to dis-
sent between mathematicians and physicists at Utrecht University. Nevertheless, this
topic exerted a decisive influence on his further development: in its study, Hans
had encountered contact transformations. These he studied thoroughly by reading
S. Lie, who had initiated their theory. In 1969-1970 he spent one year in Lund,
where L. Hormander was developing the theory of Fourier integral operators (FIOs);
these are far-reaching generalizations of partial differential operators. Hans’s know-
ledge of the work of Lie turned out to be an important factor in the formulation
of this theory. Hans’s mathematical reputation was firmly established by a long
joint article with Hormander concerning applications of the theory to linear par-
tial differential equations. In 1972 Duistermaat was appointed full professor at the
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Catholic University of Nijmegen, and in 1974 at Utrecht University, as the successor
to Freudenthal.

In these years, he continued to work on FIOs. At the Courant Institute in
New York he wrote a paper on Oscillatory integrals, Lagrange immersions and
unfolding of singularities, a survey of the subjects in the title that sets the agenda
for the study of singularities of smooth functions and their applications to distri-
bution theory. In some sense it is complementary to FIOs and parallel to work of
V.I. Arnol’d. Furthermore, together with V.W. Guillemin he composed an article
about application of FIOs to the asymptotic behavior of spectra of elliptic operators,
and its relation to periodic bicharacteristics; see the article by Guillemin for more
details. In these works one clearly discerns the red thread connecting most of Hans’s
achievements: on the basis of a complete clarification of the underlying geometry
deep and powerful results are obtained in the area of geometric analysis.

Itis characteristic for Hans’s work that after a period of intense concentration on a
particular topic, he would move to a different area of mathematics, bringing thereby
acquired insights quite often to new fruition. Usually, this change was triggered by
a question of a colleague, but more frequently of one of his Ph.D. students. Hans
went to great efforts to accommodate the special needs of his students and help them
develop in their own way, not in his way. In particular, in several cases Hans was
willing and also able to guide students working on topics initiated by themselves.
Examples are the theses of P.H.M. van Mouche and M.V. Ruzhansky.

It was by questions of J.A.C. Kolk and G.J. Heckman that Hans became inter-
ested in the theory of semisimple Lie groups. With Kolk and V.S. Varadarajan he
published fundamental papers on harmonic analysis and the geometry of flag mani-
folds, with the method of stationary phase as the underlying theme. This work
also provided an impetus for the ground-breaking work with Heckman that cul-
minated in the Duistermaat—Heckman formula, which will be discussed separately
by Heckman.

In the thesis of E.P. van den Ban one finds the novel idea, suggested by Hans,
of taking the integrals representing the spherical eigenfunctions on a semisimple
Lie group, which are integrals over a real flag manifold, into integrals on real cycles
inside the complex flag manifold. This allowed application of the method of steepest
descent in order to study their asymptotics, generalizing the approach known in the
theory of hypergeometric functions.

One of Hans’s basic mathematical interests, to which he returned throughout his
life, was classical mechanics and its relations with differential equations. In this
case too, it was often through the work of his students S.J. van Strien, H.E. Nusse,
J.C. van der Meer, J. Hermans, B.W. Rink, and A.A.M. Manders that this topic was
taken up again. His activities in this area will be further discussed by his colleague
and co-author R.H. Cushman.

F.A. Griinbaum posed a problem that led to the joint article Differential equations
in the spectral parameter. It classifies second-order ordinary differential operators
of which the eigenfunctions also satisfy a differential equation in the spectral para-
meter. The classification is in terms of rational solutions of the Korteweg—de Vries
equation.
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Writing a review of the book Lie's Structural Approach to PDE Systems by
O. Stormark led Hans to further study of that circle of ideas. The result was a paper
on the contact geometry of minimal surfaces as well as the thesis of P.T. Eendebak.

Together with A. Pelayo he wrote several papers about symplectic differential
geometry; furthermore, he directed the thesis of R. Sjamaar. In this part of mathe-
matics Hans was a very influential figure: witness his frequent contacts with other
leading investigators, such as Guillemin and A. Weinstein.

In the later part of his life, Hans had an intense interest in applications of mathe-
matics elsewhere in society. For instance, he was a consultant to Royal Dutch
Shell, which led to the thesis of C.C. Stolk on the inversion of seismic data. Inter-
action with mathematical economists during a conference at Erasmus University
in Rotterdam, where Hans had been invited to give an introduction to Riemannian
geometry, sparked his interest in barrier functions, used in convex programming.
He also collaborated with the geophysicist P. Hoyng in modeling the polarity
reversals of the earth’s magnetic field. The lengths of the time intervals between
the subsequent reversals form an irregular sequence with a large variation, which
make the reversals look like a (Poisson) stochastic process. Within a short period of
time he mastered the nontrivial stochastics needed in this problem.

The bibliography of Hans’s work contains eleven books. Fourier Integral
Operators gives an exposition of seminal results in the area of microlocal analy-
sis. The Heat Kernel Lefschetz Fixed Point Formula for the Spin-c Dirac Operator
is concerned with a direct analytic proof of the index theorem of Atiyah—Singer in
a special case of interest for symplectic differential geometry. Lie Groups, jointly
with Kolk, contains a new proof of Lie’s third theorem on the existence of a Lie
group associated to any Lie algebra. The construction of the group as the quotient
of a path space in the Lie algebra was the model for many important generalizations,
including the integration of Lie groupoids by M. Crainic and R.L. Fernandes.

Analysis of Ordinary Differential Equations (in Dutch), jointly with W. Eckhaus,
grew out of a set of lecture notes. Similarly, together with Kolk he authored Multi-
dimensional Real Analysis|: Differentiation and Il: Integration (also published in a
China edition), and Distributions: Theory and Applications. The last book contains
a novel proof of the kernel theorem of L. Schwartz, which in turn is used to effi-
ciently derive numerous important results, and a treatment of theories of integration
and of distributions from a unified point of view. The last four books together form
a veritable “cours d’analyse mathématique.”

In the book Discrete Integrable Systems: QRT Maps and Elliptic Surfaces, QRT
(= Quispel, Roberts, and Thompson) maps are analyzed using the full strength
of Kodaira’s theory of elliptic surfaces. A complete and self-contained exposi-
tion is given of the latter theory, including all the proofs. Many examples of
QRT maps from the literature are analyzed in detail, with explicit formulas and
computer pictures. The interest in QRT maps was triggered by interaction with
J.M. Tuwankotta. Hans had the idea to use the technique of blowing up, which
he had previously encountered in the article Constant terms in powers of a Laurent
polynomial jointly with Wilberd van der Kallen.
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While Hans clearly exerted a substantial influence on mathematics through his
own research and that of his many Ph.D. students, the books written by him alone or
jointly traverse a wide spectrum of mathematical exposition, both in topic or level
of sophistication. But in this case again, there is a common characteristic: every
result, how hackneyed it may be, had to be fully understood and explained in its
proper context. In addition to this, when writing, he insisted that the original works
of the masters be studied. Frequently he expressed his admiration for the depth of
their treatment, but he could also be quite upset about incomplete proofs that had
survived decades of careless inspection. The last project that he was involved in
exemplifies this: in joint work with Nalini Joshi reliable proofs are provided of old
but also many new results concerning Painlevé functions.

The mode of writing preferred by Hans was top-down exposition: starting from
the general, descending to the more concrete. Yet, hidden under the facade of
a polished and sometimes quite abstract exposition, there usually was a detailed
knowledge of explicit and representative examples. Many of the notebooks he
left are filled with intricate calculations, which he performed with great precision
and unflagging concentration. Not surprisingly, he greeted the advent of formula
manipulation programs like Mathematica with great enthusiasm. Furthermore, Hans
put a high value on correct illustrations; in private, he could express annoyance about
misleading or ugly pictures. In the days of the programming language Pascal and
matrix printers, he spent a substantial amount of time in order to put a dot exactly
at the position he wanted: one of his favorite techniques for creating complicated
illustrations was by printing just a huge number of dots.

In addition to his patience and powers of concentration, he was capable of
grasping the essence of a problem and its solution with lightning speed. When this
happened during someone’s lecture, he usually mentioned this not critically, but
kindly and supportively.

As a teacher, Hans was quite aware that not every student was as gifted as
he. Despite the fact that he could ignore all restrictions of time and demanded
serious work from the students, he was very popular among them. Repeatedly
he gave unscheduled courses on their request. He was an honorary member of
A-Eskwadraat, the Utrecht Science Students’ Society. He shared this honor with
Nobel laureate G. ’t Hooft and with J.C. Terlouw, a nuclear physicist who pursued
a successful career in Dutch politics.

As an administrator, however, he was less successful. Although he served our
institute, the mathematical community, and the Royal Netherlands Academy of Arts
and Sciences in many different capacities, he was at his best with concrete issues that
could be solved rationally, not with situations that required intricate political maneu-
vering. For instance, he was very actively involved with the Scientific Programme
Indonesia—Netherlands, which was an initiative of the academy, aimed at the
selection and training of new researchers, the improvement of the supervising
infrastructure at Indonesian institutes, and the conduct of joint research activi-
ties. In addition, the task of refereeing manuscripts was taken very seriously by
Hans: many authors greatly benefited from his long e-mails. He was a member
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of a substantial number of selection committees, devoting considerable energy to
evaluating the candidates’ achievements and potential.

In 2004, Hans was honored with a special professorship at Utrecht University
endowed by the Royal Netherlands Academy of Arts and Sciences. This position
allowed him to focus exclusively on his research, without being distracted by
administrative obligations. The five years that followed were a happy period in
which his mathematics blossomed. Hans demonstrated by the breadth and depth
of his accomplishments that his chair was aptly named “pure and applied mathe-
matics.”

His mood was almost invariably one of equanimity; even in difficult situations,
he always tended to look for positive aspects. Immense concentration on a topic
of momentary interest was natural for him. In fact, on several occasions he con-
fessed that he had a “one-track mind,” which made it necessary to mentally exclude
disturbances. At times, however, this trait of character could be infuriating for his
colleagues.

Very remarkably, Hans had no personal vanity, neither in human nor in profes-
sional relations. About his own work he once expressed that he considered himself
lucky for having become well known for results he considered to be relatively
simple. Most of his more difficult work, which had been far more difficult to achieve,
had not received similar recognition. Honors did not mean much to Hans, although
he was at first surprised and then gratified by them. He gave himself without any
reservation to his friends and colleagues, always illuminating whatever was under
discussion with characteristic insights based on his wide knowledge of mathematical
and other topics.

In mathematics, Hans’s life was a search for exhaustive solutions to important
problems. This quest he pursued with impressive single-mindedness, persistence,
power, and success. We know that this is a very sketchy attempt to bring him to
life. In our minds, however, he is very vivid, one of the most striking among the
mathematicians we have met. We deeply mourn his loss; yet we can take comfort in
memories of many years of true and inspiring friendship.
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Victor W. Guillemin*

The two paragraphs below are a few brief recollections of mine from the period
1973-1974, the two years in which Hans Duistermaat and | worked together on our
article “The spectrum of positive elliptic operators and periodic bicharacteristics”
(and for me the two most memorable and exciting years of that decade). In the
summer of ’73, Hans and | met for the first time at an AMS-sponsored conference
on differential geometry at Stanford and began to formulate the ideas that became
the wave trace part of our paper. Then in the fall of 1974 he made a long visit to MIT,
during which we firmed up these ideas and also proved the periodic bicharacteristic
results that became the second main part of our paper.

A little prehistory: In the early 1970s, Bob Seeley, David Schaeffer, Shilomo
Sternberg, and | ran a seminar at Harvard which was largely devoted to Hérmander’s
papers [1] and [2] and Hormander—Duistermaat [3]. In particular, we spent a lot
of time going through [3], which was the first systematic application of micro-
local techniques to the problem of propagation of singularities. (Like analysts the
world over, we were amazed at how simple this subject becomes when viewed from
the perspective of the cotangent bundle.) Therefore, when | met Hans that summer
I was well primed to discuss with him the contents of these papers. However, what
initiated our collaboration was another memorable event from that conference: the
announcement by Marcel Berger of Yves Colin de Verdiére’s result on the spectral
determinability of the period spectrum of a Riemannian manifold. I vividly remem-
ber sitting next to Hans at Berger’s lecture and our exchanging whispered comments
as it became more and more evident that what Yves had done was intimately related
to the things the two of us were currently thinking about. By the time the conference
ended we had formulated a trace theorem for FIOs which asserted that the singulari-
ties of the wave trace are supported on the period spectrum of P (and hence that
the wave trace gives one a simple means of accessing these data). As | mentioned
above, this result became the first part of our paper. The second part was based on

Department of Mathematics, MIT, Cambridge, MA, U.S.A.
e-mail: vwg@mit.edu

*Reprinted with the kind permission of the Nieuw Archief voor Wiskunde.

XXiv



Recollections of Hans Duistermaat XXV

an observation that Hans and | had made (each independently) that arose apropos of
a result of Hormander’s in [1]. One of the most quoted results of Hormander’s paper
is a generalization of a theorem of Avakumovic in which he obtains an “optimal”
error term in the Weyl law for an elliptic pseudodifferential operator P and shows
that this error term is indeed optimal by showing that this is the case if P is the
Laplace operator on the standard round sphere. | noticed that this can be related to
the fact that for the n-sphere the bicharacteristic flow associated with P is periodic.
(More explicitly, I noticed that if the bicharacteristic flow of an elliptic operator P is
periodic (i.e., P is Zoll) there has to be a clustering of eigenvalues about a lattice
which prevents a sharpening of the Weyl law and vice versa.) In proving this result
I made essential use of techniques developed in [3], so it was not surprising that
when | described it to Hans at Stanford, | found that he had been thinking along
similar lines. Moreover, it slowly began to dawn on us that the Hérmander example
was just the tip of the iceberg. Among other things we noticed that his optimal error
term could be replaced by a slightly better optimal error term (a big “O” could be
converted into a little “0”) if P was not Zoll, and also noticed that in this case the
Weyl law could be differentiated to give an equidistribution result for eigenvalues.
We also obtained a much sharper version of my clustering result: we showed that
the clusters are clearly demarcated eigenbands of fixed width. Subsequently Alan
Weinstein and Yves Colin de Verdiére added a further dimension to this story by
discovering that when Zoll phenomena are present, these clusters satisfy their own
beautiful distribution law. Furthermore, Bill Helton discovered an extremely clean
and economical version of our result: Let A be set of numbers obtained by taking
all differences of pairs of eigenvalues, and let B be the cluster set of A. Then if the
bicharacteristic flow is periodic, B is an integer lattice and if not, it is the whole real
line.

At any rate, to conclude these reminiscences, by the spring of 1974, most of the
conjectures we had made at the Stanford meeting had been supplied with rigorous
proofs, although Hans continued, as was his wont, to tinker with them for the
next several months just to make sure that they were “best possible.” (No one
was going to be able to achieve instant immortality by slightly improving them.)
When Hans visited me in the fall the only unfinished piece of business was the
Zoll part of the paper, and that consumed all our energies for four intense weeks.
(One typical “Hans” memory from that time: One evening | return home late in
the evening exhausted in mind and spirit following a frustrating day in which the
two of us struggled without success to settle a delicate point about how large sets
of periodic bicharacteristics have to be for clustering to occur. At 2 o’clock in
the morning | get jarred awake by a phone call from Hans letting me know that
he’d settled it.) | remember the aftermath of Hans’s visit as a period of a slow,
painful decompression. Never before had | worked so intensely and so single-
mindedly on a project (and, for better or for worse, was destined never to do so
again).
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Alan Weinstein

| first met Hans in the fall of 1972; my notes from his lecture in Princeton on “Non-
involutive operators” continue to make good reading. His work on ordinary differ-
ential equations was already well known to me; his study of periodic orbits for the
spring pendulum was the inspiration for the thesis of my first PhD student, Jair
Koiller.

Hans and his familty then stayed in Berkeley in the summer of 1973 while we
were attending the AMS Summer Institute in differential geometry at Stanford. | still
have a picture in my mind of our daughters, aged about 2 at the time, playing in the
sandbox in our backyard. As for mathematics, that was the time when contact with
Hans deepened my interest in Fourier integral operators. Although Hans was not a
co-author of Part 1 of the illustrious pair of papers by Hormander, his influence is
clear (and he is the only person thanked by Hormander in that article).

We met again at a 1974 meeting in Nice, and then spent a lot of time together
at the 1975 Nordic Summer School in Grebbestad, Sweden. Here | was totally
immersed in the world of microlocal analysis (and Hans was also immersed in the
nearby sea, which was too cold for anyone but him and the Finns in our group).
A Google search for Duistermaat and Grebbestad turns up exactly two results—
links to Hans’s famous paper on global action-angle coordinates and my own rather
obscure one on the order and symbol of a distribution.

This was just the beginning of Hans’s influence on me through his papers and our
frequent meetings. Other important influences were the 1972 NYU Lecture Notes
on Fourier Integral Operators, which | was very pleased to incorporate later on into
the Progress in Mathematics book series, where it remains one of the best places to
learn about this subject. Nowhere else is the symplectic geometry of this subject,
including the geometry of the Maslov class, so beautifully and concisely explained.
The book is also notable for a section at the end linking the homogeneous and
“asymptotic” theories of microlocal analysis.
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The wonderful 1975 work with Guillemin on spectrum and periodic bicharacter-
istics extended the work of Colin de Verdiére and Chazarain and set the paradigm
for how such matters should be treated. During a visit by Hans to Berkeley, we tried
to understand how the Birkhoff normal form of a periodic orbit might be encoded
in the spectrum, but that project unfortunately remained unfinished.

A series of papers with Kolk and Varadarajan (1979, 1983) treated harmonic
analysis on noncompact semisimple Lie groups. Hans’s interest in Lie groups also
led to the book with Kolk (2000), based on a course which Hans taught at Berkeley,
among other places, and for which a manuscript circulated for many years before
publication. Their beautiful proof of Lie’s third theorem, constructing a Lie group
as a quotient of the paths in the Lie algebra, suggested to me that there should be a
similar construction going from Lie algebroids to groupoids. This was carried out in
fundamental work of Crainic and Fernandes whose influence continues to this day.

I last saw Hans in the summer of 2009, when | was in Utrecht for a PhD thesis
defense. | have a nice photo of the two of us in academic garb in the garden of the
cloister at the university. The photo was taken by Marius Crainic, but the setting was
carefully managed by Hans. Hans told me that he would be having a surgery later
that summer but did not sound particularly concerned; he was obviously hiding the
worst from me.

The remarks above cover only a tiny part of Hans’s life and work, but they show
that both his personal influence and “higher-order effects” have left a lasting mark
on mathematicians and mathematics. It was a shock to lose him so suddenly, and his
presence in our world will be sorely missed.
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Gert Heckman*

I would like to share with you some recollections of Hans Duistermaat from the
period 1978-1981, during which he played a crucial role in my mathematical
development. In 1976 | had started my dissertation work under the guidance of
Gerrit van Dijk. In his thesis of 1962, the Russian mathematician Alexander Kirillov
had developed a very elegant geometric method, the so-called orbit method, for
understanding the representation theory of connected nilpotent Lie groups. In this
method the branching rule for understanding how an irreducible representation
decomposes under restriction to a subgroup has a very simple and elegant answer.

Gerrit suggested to me that | try to understand to what extent this orbit method
could shed new light on the representation theory of semisimple Lie groups, in
particular for the discrete series representations. In my first short paper from the
summer of 1978 | worked out a particular example for compact Lie groups. Accord-
ing to the customs of those days I sent it around to several potentially interested
people, and in return quickly received a reaction from Hans. My main result turned
out to be already in the literature, and in addition Hans sketched an alternative and
more elegant geometric proof. Aware of the fact that his letter might be intimidating
for me he wrote at the end: “It is maybe superfluous to emphasize that | do not write
you this proof out of pedantry, but rather as a sign of interest for your work, and | do
hope that it leads to a still better understanding of the whole situation.”

So my first little paper went into the wastebasket, but | was to receive some-
thing more valuable in return. | visited Hans regularly in Utrecht, and in June 1980
I defended my dissertation in Leiden with both Gerrit and Hans as thesis advisors.
I realize now how lucky | was to have these two complementary teachers: Gerrit with
his extensive knowledge of the work of Harish-Chandra, and Hans as the eminent
analyst and geometer.

In August 1980 | went to Boston, to spend two years as a postdoc at MIT, and
in September | lectured in the Lie groups seminar about my thesis work: how the
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orbit method for compact Lie groups describes the branching rules in an asymptotic
way, and how this leads to a convex polytope in which the multiplicities of the
branching rule have their support [9]. The talk was received well, most notably by
Victor Guillemin. Victor knew Hans well, and had great admiration for him. In 1975
they had written a beautiful article on the spectrum of elliptic operators on compact
manifolds [5]. Looking back at my time at MIT, I realize again how lucky I was to
be there during that period with Victor around.

That fall a number of new insights were unveiled regarding continuous symmetry
reduction in symplectic geometry through the work of Guillemin-Sternberg,
Atiyah-Bott, and Mumford. In these at first sight rather different contexts, namely
quantum mechanics, quantum field theory, and algebraic geometry, there was a
single fundamental underlying concept for the description of symmetry, namely that
of the geometry of the moment map (or momentum map as Hans preferred to call
it). I quote from a survey article by Bott from 1988 [4]:

In fact, it is quite depressing to see how long it is taking us collectively to truly sort out
symplectic geometry. | became aware of this especially when one fine afternoon in 1980,
Michael Atiyah and | were trying to work in my office at Harvard. | say trying, because the
noise in the neighboring office made by Sternberg and Guillemin made it difficult. So we
went next door to arrange a truce and in the process discovered that we were grosso modo
doing the same thing. Later Mumford joined us, and before the afternoon was over we saw
how Mumford’s stability theory fitted with the Morse theory. The important link here is
the concept of a moment map, which in turn is the mathematical expression of the relation
between symmetries of Lagrangians and conserved quantities; in short, what the physicists
call Noether’s theorem and which is one of their great paradigms.

In this quotation Bott refers to the results of fundamental publications by
Guillemin-Sternberg [7], [8], Mumford [12], Ness [13], Atiyah-Bott [1], and
Kirwan [10]. Since then, symplectic geometry has become a truly independent field
in its own right.

In the spring of 1981 Victor gave a course on symplectic geometry, with special
emphasis on the geometry of the moment map, and | learned the subject well. During
the month of August | went back to the Netherlands to visit family and friends. The
day before my return | was doing some last-minute work at MIT, when it occurred
to me that the rather complicated locally polynomial formulas for the multiplicities
could be explained by a linear variation of the symplectic form in the cohomology
of the reduced phase space, at least over the generic fiber. A nice idea, but | had
no clue how to prove it. A few days after my return | visited Hans, and we spent a
whole afternoon talking about symplectic geometry. I told him about my question,
and he listened attentively. That same evening he called me up at my parents’ house,
and with a piece of scratch paper on my lap I got an exposition of what later would
become our joint paper [6].

Our work was well received. Independently of one other, Berline—Vergne [3] and
Atiyah—-Bott [2] placed it in the more general framework of equivariant cohomo-
logy. Our article was used later by Ed Witten in his work on two-dimensional
Yang—Mills theory [14]. More recently our theorem was used again by Mariyam
Mirzakhani in her computation of the Weil-Petersson volumes of the moduli space
of curves [11].
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In September 1982 | obtained a permanent position in Leiden as an assistant to
Gerrit van Dijk: a solid base from which to pursue mathematical work profession-
ally. I now appreciate very well the important role played by Hans during the early
stages of my career. It is not inconceivable that without him | would have become a
high-school teacher rather than a university professor of mathematics.

After this period of intensive contact from 1978 to 1981 our mathematical roads
diverged. Our personal relationship remained, however, and I cherish the memories
of the parties held for his 60th birthday and on the occasion of his royal decoration.

The sudden passing of Hans leaves behind a great emptiness, in the first place
for his wife Saskia, his daughters Kim and Maaike and his relatives, but also for the
many mathematicians with whom he collaborated. During the cremation ceremony
many affecting words were spoken about Hans. His sister Dineke told the story of
how, when she asked him as a student why he had chosen mathematics, Hans replied
that he had no other option, because his talent for mathematics was such a godsend.
I realize how very lucky | am that Hans shared this talent with me so generously.
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Classical mechanics and Hans Duister maat

Richard H. Cushman*

One of Hans’s favorite subjects was classical mechanics. As can be seen from
his list of publications, his interest in this area was wide-ranging. In order to
describe what he did, | will organize these papers, somewhat arbitrarily, into three
classes: (i) periodic solutions near an equilibrium point; (ii) monodromy in inte-
grable systems; (iii) other topics.

In [1] Hans studied the persistence of periodic solutions near an equilibrium point
of a two-degrees-of-freedom Hamiltonian system which is in 1 : 2 resonance. This
is the simplest situation in which a well-known theorem of Lyapunov on the per-
sistence of periodic solutions fails. Years later Hans returned to this subject in the
almost forgotten paper [4]. Here, using the theory of singularities of mappings which
are invariant under a circle action that fixes the origin, he proved a stability result
for the set of short-period periodic orbits near an equilibrium point of a resonant
Hamiltonian system of two degrees of freedom. In particular, he showed that this
set of periodic orbits is diffeomorphic to the set of critical points of rank one of
the energy-momentum mapping. Here the energy is the Hamiltonian of the Birkhoff
normal form of the original resonant Hamiltonian truncated at some finite order. The
momentum of the circle action is the quadratic terms of this normal form. As far as
I am concerned, this result is the definitive generalization of Lyapunov’s theorem.

Hans’s most important contribution to the geometric study of Hamiltonian
systems is his discovery of the phenomenon of monodromy in [3]. To describe what
monodromy is we look at a two-degrees-of-freedom Hamiltonian system on four-
dimensional phase space, which we assume is Euclidean space. We suppose that this
Hamiltonian system has another function, which is an integral, that is, is constant
on the motions of the original Hamiltonian system. Such a Hamiltonian system is
said to be completely integrable with integral map given by assigning to each point
in phase space the value of the Hamiltonian and the extra integral. If we assume
that the integral map is proper and each preimage of a point is connected, then
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the action-angle theorem shows that the preimage of a suitably small open 2-disk
in the set of regular values of the integral map is symplectically diffeomorphic to
a product of a 2-torus and 2-disk. Hans showed that this local theorem need not
hold globally. In particular, if we have a smooth closed, nonintersecting curve in
the set of regular values of the integral map, then the preimage of this curve in
phase space under the integral map is the total space of a 2-torus bundle, which
need not be diffeomorphic to a product of the closed curve and a 2-torus. To under-
stand what this global twisting is, we note that a 2-torus bundle over a circle may
be looked at as a product bundle over a closed interval with a typical fiber a 2-torus.
Here each of its two end 2-tori, which are Euclidean 2-space modulo the lattice of
points with integer coordinates, are glued together by an integer 2 x 2 matrix with
determinant 1. The monodromy of this 2-torus bundle is just this integer matrix.
If the monodromy is not the identity matrix, then the 2-torus bundle is not a pro-
duct bundle. In [3] Hans gave a list of geometric and analytic obstructions for local
action-angle coordinates to be global. Monodromy is just the simplest obstruction.
Monodromy would not be interesting if there were no two-degrees-of-freedom inte-
grable Hamiltonian systems having it. When Hans was starting to write [3], he asked
me to find an example of such a system. The next day | told him that the spherical
pendulum, which was studied by Christiaan Huygens in 1612, has monodromy and
gave him a proof. When writing up the paper Hans found a much simpler geomet-
ric argument to show that the spherical pendulum has monodromy. In [6] Hans and
I discovered that monodromy appears in the joint spectrum of the energy and angular
momentum operators of the quantized spherical pendulum. This discovery has now
been recognized as fundamental by chemists who study the spectra of molecules
and has led to a very active area of scientific research. In the early days, showing
that a particular integrable system had monodromy was not easy. In [8] Hans did
this for the Hamiltonian Hopf bifurcation.

In the middle 1990s Hans became interested in honholonomically constrained
systems such as the disk or a dynamically symmetric sphere with its center of mass
not at its geometric center. Both are assumed to be rolling without slipping on a
horizontal plane under the influence of a constant vertical gravitational force. This
interest gave rise to [9]. In this paper Hans gave a simple geometric criterion for a
not necessarily Hamiltonian system to have monodromy. He showed that an oblate
ellipsoid of revolution rolling without slipping on a horizontal plane under the influ-
ence of a constant vertical gravitational force has a cycle of heteroclinic hyperbolic
equilibria whose local monodromies add up to the identity. This shows that it cannot
be made into a Hamiltonian system. The book [11] clearly indicates Hans’s contribu-
tions to the geometric study of nonholonomically constrained systems. Especially,
it contains a complete qualitative study of the motion of the rolling disk, some of
which was published in [10].

His remaining publications range from removing the incompleteness of the flow
of the Kepler problem for all negative energies at the same time, see [7], to showing
that the 1 : 1 : 2 resonance is nonintegrable by looking at its fourth-order normal
form. In two degrees of freedom, integrability cannot be decided by any finite-order
normal form. In the remaining paper on periodic linear Hamiltonian systems [2]
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Hans answered an old question of Bott’s about the Morse index of iterates of a
periodic geodesic. Bott showed that this index is the sum of the index of the periodic
geodesic and invariants of the real symplectic conjugacy class of the linear Poincaré
map. Hans gave an explicit formula for the Morse index.

Working with Hans and collaborating on our joint publications is at the core

of my mathematical career. It is hard for me to realize that he cannot answer my
questions anymore.
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Duistermaat—-Heckman formulas
and index theory

Jean-Michel Bismut

To the memory of Hans Duistermaat

Le maitre: Eh bien! Jacques, I’histoire de tes amours?
Jacques: Je ne sais ou j’en étais. J’ai été si souvent interrompu
que je ferais tout aussi bien de recommencer.

Diderot, Jacques le fataliste

Abstract The purpose of this paper is to explain the relations between refined
versions of index theory on a manifold X and the localization formulas of
Duistermaat-Heckman on the loop space LX. Starting from Atiyah’s remark
exhibiting such a connection for the Atiyah-Singer index formula for the Dirac
operator acting on spinors, we ultimately explain the geometric counterpart on L X
to n-invariants, #-forms and holomorphic torsion.

Key words: Index theory and related fixed point theorems

Mathematics Subject Classification (2010): 58J20

Introduction

The purpose of this paper is to explain the deep connections between the localization
formulas of Duistermaat—Heckman and index theory.

Let us first give the proper background to the subject. In [A85], Atiyah and Witten
discovered the remarkable fact that when translating the McKean-Singer formula
[MS67] for the index of the Dirac operator over spinors into the integral on the
loop space of a differential form, this form is equivariantly closed with respect to
the vector field generating the obvious action of St on the loop space. A formal
application of the localization formula of Duistermaat—-Heckman [DH82, DH83]
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leads to the index theorem of Atiyah-Singer for this specific operator, essentially
without analysis. This application remains formal, because integration of differential
forms on an infinite dimensional manifold is not well-defined.

The merit of this approach is that it gives a geometric formula for the index
which preexists the index formula. This remark led us first to extend Atiyah’s
remark to general Dirac operators [B85], and also to start the project of building
up a dictionary between these two theories, so as to use whatever could be gained
from one theory to the other. It is this project that we will try to present here in some
detail.

Let us immediately mention that the specific approach which will be taken
here gives a partial and somewhat paradoxical view of the subject. Also we will
be led to overemphasize our own work. Nevertheless we felt such a perspective
could still be useful in a field which may look arduous and overly technical to the
outsider.

Let us give a few more details. Let X be a Riemannian manifold. It is well known
that the theory of the heat equation on X is equivalent to the theory of Brownian
motion over X. In particular the trace of the heat operator on X can be expressed as
the integral of a well-defined measure over the continuous loop space L%X, which is
also called a path integral. Then St acts naturally on L X, and the measure integrated
over LOX is Sl-invariant. Passing from the trace of an operator to the integral of a
measure on the loop space is already passing from analysis to geometry. An impor-
tant formula in this context is the Feynman—Kac formula. Above all, 1td’s stochastic
calculus gave a tremendous input to a better understanding of the correspondence
between second order differential operators and path integrals.

From the point of view of physics, this correspondence can also be described as
passing from a Hamiltonian, or operator theoretic perspective, to a Lagrangian or
path integral formalism. As we shall see in the paper, this correspondence also has
some features of a nonlinear Fourier transform.

There are two new inputs in Atiyah’s point of view. On the operator side, there
is the Dirac operator DX, and its square, whose corresponding heat operator is used
in the McKean-Singer formula for the index Ind(Dﬁ), valid for t > 0,

Ind(DX) = Trs[exp(~tD*-2)]. (0.1)

In (0.1), Trs is our notation for the supertrace. On the geometric side, measures are
replaced by differential forms. Atiyah’s ideas give a cohomological perspective to
the Hamiltonian—Lagrangian correspondence. The main drawback is that this corre-
spondence is not well defined.

A well-known method to prove the index theorem for Dirac operators is to make
t — 0in (0.1). Taking the local expansion of the heat kernel and its supertrace leads
to a proof of the local index theorem of Gilkey and Atiyah—Bott—Patodi [Gil84,
ABP73], via the mechanism of the ‘fantastic cancellations’ anticipated by McKean—
Singer [MS67]. Of course the local index theorem implies the index theorem, but it
is stronger. In the index formula for Dirac operators with boundary, Atiyah—Patodi—
Singer [APS75a, APS75b] exploited the local index theorem to establish their index
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theorem. On the other hand, many of the known proofs of the Duistermaat—Heckman
formulas rely on explicit choices of differential forms, and this explicit choice has
also a ‘local’ character.

In [B86b], we found that the heat equation method in index theory is by itself
the infinite-dimensional version of an easy proof of the localization formula in finite
dimensions, and that the ‘fantastic cancellations’ have a universal counterpart in the
finite-dimensional proof of the localization formula. This made not only equivariant
cohomology in infinite dimensions relevant in predicting the index theorem, but also
allowed refined local versions of the index formula and of the localization formula
to be put in one-to-one correspondence.

That such a correspondence possibly exists is interesting by itself. But one can
well imagine that since it relates objects of a fundamentally different nature, what-
ever information one can gain from one side can be passed to the other side, with
the important proviso that since integrals of differential forms on L X are not well
defined, any information one could get on that side would have to be translated back
in the real operator-theoretic world to make sense. A difficulty in using such a point
of view was that at the time the objects to be constructed did not exist on either side
of the correspondence.

The ultimate purpose of this paper is to describe this correspondence as a loop
space functor, mapping ordinary K-theory into the equivariant cohomology of the
loop space, and Hermitian K -theory into the secondary theory of currents naturally
associated with the localization formulas. Objects like #-invariants, holomorphic
torsion are shown to correspond to Chern—-Simons or Bott—Chern currents on the
loop space. Also by transforming K-theoretic or analytic objects into geometric
objects, any statement related to the families index theorem or Riemann-Roch—
Grothendieck acquires a purely geometric flavour, which makes it accessible to a
geometric treatment; this in turn can be used to construct the proper analytic objects,
and also to anticipate how they should behave.

A powerful motivation for this study has been the program by Gillet-Soulé,
which led them to the proof of an arithmetic Riemann—Roch theorem [GS092].
It turns out that the loop space functor provides a useful understanding of the
analytic objects that are natural in that theory.

Needless to say, the fact that the same object can be understood and analysed
from several points of view makes the object more interesting. What is offered here
is not an alternative or better view of objects which are otherwise known, but it is
another view, whose main drawback is that some of the objects are not always well
defined.

This paper is organized as follows. In Section 1, we review the Duistermaat—
Heckman localization formula and the construction of associated secondary currents.

In Section 2, we summarize simple results which connect the heat equation on a
manifold to measures on its loop space.

In Section 3, we develop Atiyah’s remarks, and also the connection between the
“fantastic cancellations’ and the localization formula.
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Finally, in Section 4, we relate Hermitian K-theory to the theory of secondary
currents associated with the localization formula.
The author is indebted to a referee for carefully reading the manuscript.

1 The Duistermaat—Heckman formula

The purpose of this section is to present the Duistermaat—Heckman localization
formula, and to give a proof of the formula using explicit universal differential
forms. Secondary currents of Chern—-Simons or Bott—Chern type are also attached
to the localization formula.

This section is organized as follows. In Subsection 1.1, we prove the localization
formula, using a form o which will reappear in the whole paper.

In Subsection 1.2, we discuss the functorial aspects of the formula.

In Subsection 1.3, we give a transgressed version of the formula, and we con-
struct a current ¢ of Chern—Simons type, whose existence implies the localization
formula.

In Subsection 1.4, we give an integration along the fibre version of the formula.

In Subsection 1.5, we refine the integration along the fibre formula using the
currents .

In Subsection 1.6, we relate the question of the compatibility of the currents ¢ to
composition of projections via adiabatic limits.

In Subsection 1.7, we discuss the localization formula for complex manifolds.
In particular we obtain a current o of Bott—Chern type, whose existence implies the
localization formula, and from which the current e can also be obtained.

Finally, in Subsection 1.8, we discuss integration along the fibre for complex
manifolds.

1.1 The localization formula

Let X be a compact connected oriented manifold. Let T be a torus acting smoothly
on X, and let t be its Lie algebra. Let g7 * be a T -invariant metricon T X. If f € t,
let f X be the corresponding smooth vector field on X. If f < ¢, then f* is a Killing
vector field.

Now we fix a K € t. Let Q' (X) be the vector space of smooth forms on X. Let
Lk x denote the associated Lie derivative operator acting on the de Rham complex
(Q (X), d*). The Cartan formula asserts that

Lx = [d%,igx]. (1.1)

In (1.1), i« x denotes interior multiplication by K*. Since d* and i x are both odd
operators, the supercommutator appearing in (1.1) is actually an anticommutator.
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Put
di =d* +igx. (1.2)

Then (1.1) can be rewritten in the form
de? = Lgx. (1.3)

Let Q; (X) be the vector space of smooth K *-invariant forms on X, i.e., of the
forms a which are such that
Lgxa =0. (1.4)

By (1.3), (1.4), we find that when acting on Q (X),
dX?=o. (1.5)

The vector space Q (X) is naturally Z>-graded, and dﬁé acts as an odd operator on
Q (X). Set
Hi (X) = kerd /d Qi (X). (1.6)

Then Hk (X) is a Zp-graded vector space, which is called the equivariant coho-
mology associated with K. Forms vanishing under df(( will be called equivariantly
closed forms.

Remark 1.1. Let S*(t*) be the algebra of polynomialson t. If K is allowed to vary in
t, then dk acts naturally on Q' (X) ® S’ (t*). By giving forms their classical grading
and polynomials in S*(t*) twice their degree, Q' (X) ® S'(t*) acquires a Z-grading,
and df(( is a differential, i.e., it increases the total degree by 1. The cohomology of
the complex (Q'(X) ® S'(t*), dl)é) is the equivariant cohomology of X in the sense
of Cartan [Cabla, Ca51b, GuSt99]. We will mostly disregard this point of view,
which is nevertheless intimately related to what is done here.

Let N be the number operator of A (T*X). Then N defined the Z-grading of
Q' (X). Note that if s € R*,
sNdZs™N = sdé/sz. (1.7)
It follows that Hk (X) is unchanged when replacing K by tK,t > 0.
Let VT X be the Levi-Civita connection on T X, and let RT* be its curvature.

Since K X isa Killing vector field, VI XK X is an antisymmetric section of End(T X).
Since KX preserves VT X, we get easily

VIXVTXKX 4 i xRTX =0, (1.8)

Let Xk C X be the zero set of K*. Then X is a totally geodesic submanifold
of X. Leti be the embedding of Xk into X. Let Nx, ,x be the orthogonal bundle
to T Xk in T X|x,. Theni* : (Q, (X), dfé) — (' (Xk), d*K) is a morphism of
Z,-graded complexes. Witten [W82] has shown that this is a quasiisomorphism, i.e.,
themap i* : Hk (X) — H"(Xk) is an isomorphism of Z,-graded vector spaces.
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By (1.8), we find that if U € T Xk,
ViXvIXKX = 0. (1.9)

Let VNXk/x be the connection on Ny, /x, which is the restriction of VT X to N, /x,
and let RNXk/X be the curvature of the connection VNXk/X . We denote by Jk the
restriction of VI XK to Nx, /x. By (1.9), Jk is an antisymmetric parallel endomor-
phism of Nx, ,x, which is nondegenerate, so that Nx, ,x is of even dimension.

If V is an oriented Euclidean vector space of even dimension n, if A € End(V)
is antisymmetric, let wa be the 2-formon V such thatifa,b € V,

wa(a,b) = (a, Ab). (1.10)

By definition if # is the unit volume form defining the orientation of V, the Pfaffian
Pf[A] € R is such that

wn/Z
(n?Z)' = Pf[Aln. (1.11)
We can rewrite (1.11) in the form
[exp(wa)]™ = PI[A]7. (1.12)

A basic property of the Pfaffian is that it is a square root of the determinant, i.e.,
det[A] = Pf2[A]. (1.13)
Then Ny, /x is naturally oriented by Jk, the orientation being such that
Pf[Jk] > O. (1.14)

The orientation of Nx, ,x induces a corresponding orientation of Xk .
Set

(1.15)

Jk + RNxk/x
ek (Nxg /x, V%) = Pf [%] '
T

Then ek (Nx /x., vNxk/x) is a closed even form on X, whose cohomology class
ek (Nx,/x) does not depend on the connection vNxk/x, This class is called the
equivariant Euler class of N, ,x. Because of (1.14), the closed form egl(NxK/x,
vNxk /%) is well defined. We denote by egl(NxK/x) the corresponding even coho-
mology class on Xk .

Of course the real vector bundle Nx, ,x splits according to the eigenvalues of Jk .
The form ek (Nx, /x., VNXK/X) and the class ek (Nx, /x) can then be expressed as
a finite product over the eigenvalues of Jk of the Euler forms or the Euler classes of
the corresponding components of Nx, /x.

Let KX’ be the 1-form on X which is dual to KX by the metric g™ . Since KX
is Killing,
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LxxKX =0, (1.16)
which by (1.3) can be rewritten as
di[dEK*] = 0. (1.17)
The K *X-invariant form d X K* is d{ -closed and d ¥ exact. Of course
dR KX = d* KX 4+ |KX?, (1.18)

i.e., (1.18) is the sum of a 0-form and of a 2-form.
If U,V e T X, we have the obvious formula,

dXKX(U, V) = 2(VJ XK, V). (1.19)
Definition 1.2. Fort > 0, set
ar = exp(—d{ KX/ /20). (1.20)

By (1.17),
diar =0. (1.22)

The even form at will play an essential role in the whole paper.

Now we state the localization formula of Duistermaat—Heckman [DH82, DH83]
and Berline—\Vergne [BeV83].

Theorem 1.3. For any u € Hg (X), the following identity holds:

/ /XK eK(NXK/X) (1.22)

Proof. We will not reproduce the original proofs, although we will comment later on
the proof by Berline—\ergne. Here we will give our proof in [B86b, Theorem 1.3].
If # is a smooth form on X,

/ d*p=o0. (1.23)
X
Moreover, since iy x # cannot be of top degree, we also get
/ ikxp =0. (1.24)
X
By (1.23), (1.24), we obtain
/ dip=0. (1.25)
X

We still denote by i a smooth form on X which is dfé closed and represents the
corresponding cohomology class. We claim that for any t > 0,
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/X p= /X - (1.26)

oo = 1, (1.27)

Indeed

so that (1.23) holds at t = +oco. Moreover, since d{a; = 0,d 1 =0,

1
% o= 22/at[dx KX u /dK[ath’ﬂ]—o (1.28)
Therefore we have established (1.26).

Now we will make t — 0 in (1.26). By (1.18), it is clear that for ¢ > 0, if
U is an e tubular neighbourhood of Xk in X, then a; converges to 0 uniformly
on X \ U.. Let = be the projection Nx, ,x — Xk, and let Y be the tautological
section of 7 *Nx, ,x on the total space N, ,x of Nx, ,x. Then JkY is a fibrewise
Killing vector field on Nx, /x. Let Jx Y’ be the corresponding fibrewise 1-form on
the fibres Nx, ,x . Using the connection vNxk /X we may consider Jx Y’ as a 1-form
on N, /x, which vanishes horizontally. Let w;,, be the fibrewise 2-form associated
with Jk as in (1.10). We can consider ey, as a 2-form on N, ,x which vanishes
horizontally. Then one verifies easily that

ANV I Y = =2y, 4+ (RVKAXY, JcY). (1.29)

Equivalently,
dNX Ik Y = —2w, — (I RNXY,Y), (1.30)

Also RNxk/X Jx is a 2 form on Xk with values in symmetric endomorphisms of
Nx, /x. By (1.29), we get

1 W~ 1
=53 IKY = S0 QO + RMKOY, Y ) + ey (1.31)

We now take a geodesic coordinate system on the tubular neighbourhood U, in
the directions normal to Xk . This way we identify U, to the e-neighbourhood of Xk
in Nxy/x. Fors > 0, let ks be the dilation of Nx, ,x, which is given by Y — sY.
Then one verifies easily that

X7
*

=JkY’, (1.32)
so thatast — O, o x
drK”*

k%KT N df:XYK/X kY’ (1.33)

From (1.33), it is not difficult to deduce the convergence of currentson X ast — 0,

ar — ag = m.[exp(—d] XK/XJKY’/Z)]éxK. (1.34)
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By combining (1.26) and (1.34), we finally obtain

/X "y = /X aop. (1.35)

Let us now evaluate ag. By (1.31), z.[exp(—diy Ik Y'/2)] is just a fibrewise
Gaussian integral, which produces the inverse of a square root of a determinant.
A simple computation leads to the formula

Nx /X ’ 1
mi[exp(—d; K IkY'/2)] = , 1.36
*[ p( kY K /)] eK(NXK/x,VNXK/X) ( )
so that 5
ap = Xk (1.37)

ex (Nx /x, V)

By (1.35) and (1.37), we get (1.22). The proof of our theorem is completed.
Remark 1.4. By (1.34), g is the integral along the fibre of a dijYK/X -closed form on
Nx /x, which is just the form a1 on N, ,x which is associated with the fibrewise
Killing vector field Jk Y. This reduces the proof of the localization formula to the
computation of a similar formula with integration replaced by integration along the
fibre, albeit of a very simple form. In Subsection 1.4, we will study an integration
along the fibre version of the localization formula. Still it is important to keep in
mind that the proof of the ordinary localization formula already incorporates some
version of integration along the fibre.

We will often refer to the convergence of currents in (1.34) to be a local
Duistermaat—Heckman formula.

Let J be the canonical complex structure on C ~ R?. Let K = —JY be the
obvious Killing vector field on R2. If w is the canonical orientation form on R?,
then

exp(—dR*K'/2) = exp(=|Y 2/2)(1 + o). (1.38)
A tautological application of (1.22) leads to the Gaussian integration formula
1 R2y,/
—exp(—dg K'/2) =1. (1.39)
R2 27[

Incidentally note that (1.39) has already been used in (1.36). Equation (1.39) will
reappear later in an infinite-dimensional context.
1.2 Functoriality of the Duistermaat—-Heckman formula

Here, we will describe the compatibility of equation (1.22) to submersions. Indeed
let # : M — S be a T-equivariant submersion of smooth compact oriented
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T -manifolds, with compact oriented fibre X. If K e t, let KM, KS be the corre-
sponding vector fields on M, S, so that 7, KM = K S. We use otherwise the notation
of Subsection 1.1.

Let 7, denote integration of smooth forms along the fibre X. Note that

ﬂ*dK = dKﬂ'* (140)
Let 4 € Qi (M) be such thatd u = 0. By (1.40), we get

dg map = 0. (1.41)

/M "y = /S Tall. (1.42)

Moreover, by Theorem 1.3, we get

/ /MK EK(NMK/M) /S Tt = /SK ﬁsﬂws) (1.43)

We will reconcile (1.42) and (1.43). Let MK = 7 =1Sx. Then MX isa T -invariant
submanifold of M which fibres on Sk, and the restriction of KM to MK is tangent
to the fibres X. Also M is a submanifold of MX. By applying Theorem 1.3 on
MK we get

Clearly,

[ s Lo o= o
Jsk €k (Nsy/s)  Jmx m*ek (Nsy/s)  Jmy m*ek (Nsy/s)ek (Npy /mK)

(1.44)
Observe that the Euler class is multiplicative, so that

ek (Nmy /m) = 7 [ex (Ns /s)]ex (Npy /mK)- (1.45)

Equation (1.45) ultimately explains the compatibility of (1.42) and (1.43).
There is a similar compatibility result to embeddings, which is more difficult to
explain. For more details, we refer to [B92a].

1.3 Transgression currents and localization

We make the same assumptions as in Subsection 1.1. Recall that the form a¢ on X
was defined in (1.20). Put
K X7
,Bt = F(lt

Let || [|c: be a norm on Q'(X) associated with the uniform convergence of forms on
X together with their first derivatives.

(1.46)
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Theorem 1.5. The following identity holds:

0
aat = déﬁt (1-47)

There exists C > 0 such that for u € Q' (X),t €]0, 1],

'/x(at — ap) U
)/Xtﬁtﬂ

Proof. Equation (1.47) follows from (1.20) and (1.21). The first equation in (1.48)
follows easily from the arguments in the proof of Theorem 1.3. Moreover, observe
thatast — O,

< CVtlgllct, (1.48)

< CVtlulict.

KX/

By proceeding as in the proof of Theorem 1.3, we get easily the second identity in
(1.48).

Remark 1.6. For more refined results involving microlocal convergence, we refer to
[B86b, Theorem 1.3] and to [B92a, Theorem 2.5].

Definition 1.7. Let ¢ be the current on X,
+oo
e=— prdt. (1.50)
0
When t — +o0, the integral in (1.50) converges trivially, and as t — 0,
Theorem 1.5 should be used to make sense of the integral.

Theorem 1.8. The odd current ¢ is such that

OXk 1
eK(NXK/X) VNXK/X) .

die = (1.51)

Moreover, the wave-front set of ¢ is included in N, . On X'\ Xk, we have the
identity,

KX/
Proof. Equation (1.51) follows from Theorem 1.5 and from (1.50). The fact that

the wave-front set of ¢ is included in Ng , follows from the arguments in [B86b,
B92a]. Finally, (1.52) is a consequence of (1.46) and (1.50).

Remark 1.9. If x4 € Q'(X), then

(1.52)

/ dZ(ep) = 0. (1.53)
X
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If d¥ i« = 0, then (1.53) takes the form

/(dﬁég)ﬂ =0. (1.54)
X

By (1.51), (1.54), we get (1.22). The existence of ¢ is stronger than the localization
formula. The current ¢ is a current of Chern-Simons type.
Also observe that by (1.52), we have the obvious identity,

die =—1lonX \ Xk. (1.55)

Now equation (1.55) is an obvious consequence of (1.51). Still (1.51) is stronger
since it extends ¢ as a current on X. In fact from equation (1.52), one deduces that
gisalj currenton X.

Inspection of (1.52) shows that the restriction of the form ¢ to X \ Xk is closely
related to a form used in Berline—Vergne [BeV83] in their proof of the localization
formulas. Indeed Berline-Vergne consider a K X -invariant 1-forma on X \ Xk such
thatiyxa = 1on X \ Xk, and define a form b on X \ Xk by the formula

b= (156)
dga
Of course we still have
dib=—1lonX\ Xk. (1.57)

By using Stokes formula on X \ Xk, Berline—\Vergne [BeV83] ultimately prove the
localization formulas.

1.4 Localization formulas and integration along the fibre

Let z : M — S be a submersion of smooth manifolds, with compact oriented fibre
X. Let T be a torus acting smoothly on M, and preserving the fibres X. If f € ¢,
M is now a smooth section of T X = T M/S, i.e., a vector field along the fibres X.
This is why we will use the notation f X instead of fM.

We now fix K € t, and we use the notation of the previous subsections. It follows
from (1.40) that 7. gives a map Hy (M) — H'(S).

Let THM be a T-invariant horizontal subbundle of TM, so that TM =
THM @ TX. Let g"* be a T-invariant metric on TX. Let KX € T*X be the
fibrewise 1-form associated with KX via the metric g7 X. We will consider KX’ as
a 1-form on M which vanishes on THM. As in (1.16), we have

Lex KX =0. (1.58)

It is important to observe that if g™ M is a T -invariant metric on M that restricts to
g" X on T X, and is such that THM is orthogonal to T X with respectto g™ M, then
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K *” is exactly an object of the type we already met in the proof of Theorem 1.3, by
simply replacing X by M and g"* by g™ in that proof.

As before, My denotes the zero set of K*X. Then Mk is a submanifold of M,
which fibres on S with compact fibre Xk which embeds in the fibre X. Let Nx, /x
be the orthogonal bundle to T Xk in T X|w, with respect to g™ X. We can identify
Nx /x to the normal bundle Ny, /m.

By a construction given in [B86a], (THM, g"*) determine a unique Euclidean
connection on T X. This connection restricts to the Levi-Civita connection along
the fibre X. If g™ is a metric on M such that g™ ™ restricts to g™ * on T X, and
moreover THM and T X are orthogonal in TM with respect to g"M, then VTX
is the projection of the Levi-Civita connection VT™ on TM with respect to the
splitting TM = THM @ T X. Of course VT X is T-invariant. It is easy to see that
VT X induces connections VT XK, VNXik/X on T X, Ny /x

We still define the closed form ex (Nx, /x., VNXK/X) on Mg asin (1.15).

The form «y is still defined as in (1.20), the only difference being that K* is
now defined as indicated at the beginning of the present subsection. The form «; is
a special case of the corresponding form in (1.20), when replacing X by M and g™ X
by g™.

In the sequel, we will denote by [, the integration along the fibre, which was
previously denoted by 7.

Let u € Q' (M) be such that d,’é",u = 0. By (1.41), [y u is aclosed form on S,
and its cohomology class only depends on the d}“{' cohomology class of u.

Now we state an extension of Theorem 1.3 which was established in [B86b,
Theorem 1.9].

Theorem 1.10. The following identity holds:

H S -
= mod d>Q'(S). (1.59)
/X'u /XK eK(NxK/x,VNXK/X)

Proof. The proof is formally exactly the same as the proof of Theorem 1.3.
By proceeding formally as in (1.25) and using instead (1.40), we find that for
anyt > 0,

/ﬂ =/ atu mod d5Q'(S). (1.60)
X X
We define the current ag as in (1.34), (1.37), i.e.,

ag = M (1.61)

ek (Nx /x, VX))

As we saw in (1.34), when t — 0, we have the convergence of currents on M,
at — ag. Therefore whent — 0, we have the convergence of currents on S,

u
ot 1 —>/ . (1.62)
/;( Xk eK(NXK/XaVNXK/X)

By (1.60), (1.62), we get (1.59).
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Remark 1.11. By proceeding as in [B90c, Theorems 5.1 and 5.4] and in [BGS90b,
Theorem 3.12], one can prove thatast — 0, a; — ao microlocally with respect
to the topology of currents whose wave front set is included in N>*<K/>< = NR‘AK/M.
By [Ho85, Theorem 8.2.12], the convergence in (1.62) is a uniform convergence of
smooth forms and their derivatives on compact sets of S.

1.5 Transgression formulas and integration along the fibre

We make the same assumptions as in Subsection 1.4. Over M, we define the smooth
form p; as in (1.46). Let « be a smooth d&"—closed form on M. By equation (1.47),

we get
0

9 atu=d3/ﬂtu. (163)
ot Jx X

As we saw in Remark 1.11, the estimates in (1.48) can be made microlocal in the
class of currents whose wave-front set is included in N;K/X. By using again the
results in [Ho85], we find that for t €]0, 1],

)/X(at — op) U
/Xtﬁtﬂ < CWVht.

In (1.64), the estimate is taken with respect to the sup norm of compact sets of
smooth forms and their derivatives of finite order. Also the constant C in (1.64)
depends explicitly on u.

We still define the current ¢ on M by a formula similar to (1.50). Set

< CWA, (1.64)

9 =/Xgﬂ. (1.65)

Then ¥ is a currenton S.

Theorem 1.12. The current ¢ is a smooth form on S, which is such that

dsy =/ K —/ i (1.66)
Xk ek (Nx /x, Vxxy  Jx

Proof. The fact that «J is smooth follows from the microlocal estimates which were
described above. Equation (1.66) is a consequence of (1.40) and (1.51).
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1.6 Equivariant projections and adiabatic limits

We make again the same assumptions as in Subsection 1.2 and we use the corre-
sponding notation.

Let g™ be a T-invariant metric on TM, and let g7 be a T-invariant metric
on TS. Then g™M restricts to a T -invariant metric g™™" on TMK. Let g7 X be the
restriction of g™™ to T X. Then the metric g *Im on T X|y« is also T -invariant.
The orthogonal bundle THMX to T X|y« in TMK is also T -invariant.

The projectionz : MK — Sy verifies exactly the assumptions of Subsection 1.4.
In particular the torus T now acts along the fibres of this projection.

As we saw in Subsection 1.2, the formulas of Duistermaat—-Heckman are com-
patible to functorial operations. Given our choice of metrics, there are associated
currents eM on M, ¢S on S and M on MK One can then ask to what extent these
currents are compatible. Analogues of natural identities relating similar currents
were established in [BGS90b]. In connection with Remark 1.4, for ¢ > 0, it is
natural to introduce the T -invariant metric gJ ™ on T M given by

1
g™ = g™ Z”*gTS' (1.67)

and for t > 0, to replace g] ™ by g] M/t. Indeed by playing with the parameters
€, t, we can obtain in this way a whole range of localization formulas. They are
associated with the smooth forms a. + on M which are attached to the metric gET M/t
When € — 0, two phenomena occur. The first is that localization is forced on MK,
But a second related phenomenon is that the fibres of z : M K Sk are further
and further apart.

Making ¢ — 0 is also called passing to the adiabatic limit.

We will not discuss refined identities on the currents ¢ much more in this paper.
Holomorphic analogues for their complex analogues are discussed in much detail in
the context of embeddings in [B92a].

1.7 Localization formulas and complex manifolds

We make the same assumptions as in Subsections 1.1 and 1.3. Also we assume that
X is a complex manifold, and that the torus T acts holomorphically on X. In the
sequel, T X denotes the holomorphic tangent bundle, and Tr X is the real tangent
bundle. Let J be the complex structure of TR X, so that T X, T X are the eigenspaces
J that are associated with the eigenvalues i, —i. The de Rham operator d* splits as

dX = 3% + 0% (1.68)

We fix K e t. Let KX(L.0) KXO.D pe the components of KX in TX,TX,
so that
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KX = KX@0 4 gxOD, (1.69)
Put
=X =X . X X .
Ok =0 +ligxao, oK =07 +igxoy. (1.70)
Clearly,
=X
df =3y +ox. (1.71)

Moreover, since K * (10 is a holomorphic section of T X, using (1.3), we get
=0, 0X2=0, [k, 081 = Lgx. (1.72)
By (1.72), we deduce that when acting on €, (X),
[o%.a%] = 0. (1.73)

Letg" X be a T -invariant Hermitian metric on T X, let g "RX be the corresponding
Riemannian metric on T X, and let (, ) be the corresponding scalar product. Let o
be the associated Kahler formon X, i.e., if U,V € TrX,

o*(U,V) = (U, V). (1.74)
Then X isa (1, 1) form on X. Clearly,
Lgxo® =0, (1.75)
which by (1.72) can also be written as
anof X = —ofokw*. (1.76)

Also observe that
KX = (ixxwo — iKX(o,l))ia)X. a.77)

Now we assume that the metric g™ X is Kahler, i.e., the form «* is closed, so that
3" =0, %0 =0. (1.78)
By (1.77), (1.78), we get
KX = @k — ol)io”. (1.79)
By (1.71), (1.76), and (1.79), we obtain,
AKX = 2055 iw* = —25 ok iwX. (1.80)
From (1.20), (1.80), we get the formula in [B90a, egs. (14) and (15)],

ar = exp(@k o%iwX /b). (1.81)
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Recall that g; was defined in (1.46). Set

X
vt = wT exp(@x ki /1). (1.82)

Now we have the result in [B90a, Proposition 5] and [B92a, Theorem 2.3].

Theorem 1.13. The following identities hold:

Fxat =0, oXar =0, (1.83)
—X —X
ﬁt:a&(_aKﬂ i(ltzdxﬁtzaKaéﬂ
2t ot K it

Proof. The first two identities follow from (1.21) and (1.71), or from (1.76) and
(1.81). By (1.46), (1.77), (1.79), (1.81), we obtain the third identity. The fourth
identity follows from (1.47) and from our third identity, or more directly from (1.81).

Note that Xk is a complex submanifold of X. Also Ny, ,x is a holomorphic
Hermitian vector bundle on Xy, and VNXk/X is the corresponding holomorphic
Hermitian connection.

By [B90a, eq. (40)] and [B92a, Theorem 2.7], as t — 0, the current y; has an
asymptotic expansion of the type,

A
= Tl + Jo + O(b). (1.84)

By Theorem 1.5,

X

Aot = X - 1.85
P ek (N x. VoK) K (9

Fors e C, set
F(s) = 1 /+Oot51 dt (1.86)
CT6) Jo e '

Using the above results, one can easily prove that the current can be defined as a
meromorphic function of s € C, Re(s) < 1, which is holomorphicats = 0.
Set

o
o= ~F(0) (1.87)

The following result was established in [B90a, Theorem 6] and in
[B92a, Theorem 2.12].

Theorem 1.14. The current ¢ is a sum of currents of type (p, p), whose wave-front
setis included in N% . Moreover, it verifies the equations of currents on X,

= =X
OKOK  _ 4 Ixk aK—aféaz

i e (N x, VX6 2i

. (1.88)
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Proof. The first equation in (1.88) follows from (1.48) and from the last identity in
(1.83). The second equation is a consequence of the third equation in (1.83).

Remark 1.15. Equation (1.88) indicates that the current o is a current of Bott—Chern
type [BoC65]. For a general theory of Bott—Chern currents, we refer to Gillet-Soulé
[GS090] and also to Bismut-Gillet-Soulé [BGS90b, BGS90a]. The paper [B92a]
is devoted to the study of the functorial behaviour of the current & under complex
embeddings.

1.8 Complex manifolds and integration along the fibre

Here we make the same assumptions as in Subsections 1.4 and 1.5, while also
assuming M and S to be complex manifolds, and z : M — S to be holo-
morphic, and also that the action of the torus T on M is holomorphic. Here
TM, TX =TM/S, TS will denote the obvious holomorphic tangent bundles.

One can try to adapt the arguments we gave in Subsection 1.4 to obtain secondary
Bott—Chern forms on S by integration along the fibre of the currents o of
Subsection 1.7.

It is not difficult to see that what is needed is a closed real 2 form w™ of type
(1, 1), whose restriction »* to the fibres X induces a Kahler metric g" X along the
fiores X. Let T"M < TM be the orthogonal bundle to T X with respect to w*.
If oM-H is the restriction of o™ to T M, we can write »™ in the form

oM = oM 4 X, (1.89)
Equations (1.81), (1.82) for at, y+ are now replaced by

2z oM

at = exp@p oMioM/t), = exp@y oaMioM/t).  (1.90)
Note the form a; in (1.90) is a special case of the form a; which was considered in
Subsection 1.4.

Let x be a smooth form on M which is a sum of forms of type (p, p), and such
that d¥ = 0, which is equivalent to 5'\KA/¢ = 0,0} u = 0. Instead of (1.63), we
now have

=S =S
95 -0 ”t 0 9705 [

_ - n,, < = [ Ly 1.91

/Xﬁt# o L Th ot Jy Ak M (1.91)
Fors € C, set

L[ (1.92)

D(s) = —/ - / . .
) r® Jo XVtﬂ

Thenfors € C,M(s) < 1, ®(s) is asmooth form on S which depends holomorphi-
cally on S. Of course, if we define the form F(s) on M as in (1.86), then
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D(s) :/ Fs)u. (1.93)

X

Set 5
= —®(0). 1.94
7= 20 (1.94)

If we define the current ¢ on M as in (1.87), then

T =/ ou. (1.95)

X

Also V)’E‘K/x is exactly the holomorphic Hermitian connection on Ny, ,x. More-
over, t is a smooth form on S which is a sum of (p, p) forms, and which is such

that s
670 u
—7 = — . 1.96
i /x# /xK ek (Nxy /x5 Nxy /%) (1.96)

Finally, if we define 9 as in (1.65), by (1.88), (1.95), we get

AN
2i

T ="1. (2.97)

2 Heat equation and measures on the loop space

The purpose of this section is to review classical results connecting the trace of the
heat kernel on a Riemannian manifold to integrals over the continuous loop space
of the manifold of well-defined measures.

This section is organized as follows. In Subsection 2.1, we consider first the case
of finite-dimensional traces and corresponding integrals over a discrete loop space.

In Subsection 2.2, we relate the heat kernel on a Riemannian manifold to path
integrals.

Finally, in Subsection 2.3, we state the Feynman—Kac formula.

2.1 Finite-dimensional traces

Let V be a finite-dimensional real vector space of dimension n, letes, ..., ey be a
basisof V. Letu € End(V), and let A = (aiJ), 1 <, j < n be the matrix of u with
respect to this basis. Then the trace Tr[u] is given by

Trlul = > al. (2.1)
i=1
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More generally, for g € N,

T = > ai'éai'f...ai'g. (2.2)
1<ip,...ig=<n
Set
X =1{1,2,...,n. (2.3)

Let :“c/i\+1 be the measure on X9*1 such that

pgialio, ..., iq) = &l .. .a;g. (2.4)
Observe that X9+1 should be thought of as a discrete version of a loop space.
Indeed (io, . . ., iq) should be considered as the vertices of a graph, whose edges are
virtual lines connecting (i, i1), (i1,i2), ..., (ig, i0). The weight y$‘+1(io, ..., ig)
in (2.4) is the product of the weights of the ordered edges of this graph.
Then we can rewrite (2.3) in the form

Tr{ud+! :/ duf . 2.5
[u™™] ars OHaHL (2.5)

Observe that identity (2.5) is just a tautological reformulation of (2.2).
PutFqy1 = Z/(q 4+ 1)Z. It will be convenientto view 0, .. ., q as describing the

elements of Fg41. The set X971 = {1,...,n}9*! can be identified with the set of
maps from Fq1 into X. The group Fq41 acts on X4+1 sothat if j € Fg+1,
J(Qo. .. iq) = (otj. ... ig4)). (26)

Then the measure :“c/?+1 is obviously Fq1-invariant.

Assume the aij to be nonzero. If v € End(V), if B = (bij), 1<i,j <nisthe
associated matrix, then the measure xg,, has adensity df , ,; with respect to g’ 4
which is given by

i1 iz io
48 4 1Cios o vig) = S0Pl 2.7)
' 3,y - .- 8
By (2.5), we get
Trq+1=/ df o adul . 2.8
[0"] _— Aq+1YHq+1 (2.8)

2.2 The heat kernel on a compact Riemannian manifold

Let (X, g"*X) be a compact Riemannian manifold, with volume dx. Let A* be the
Laplace—Beltrami operator. Fort > 0, let pi(X, y) be the smooth heat kernel on X
which is associated with the operator exp(t AX /2).
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Let L, be the Hilbert space of square-integrable real functions on X. Then
exp(tA%X/2) e End(L,). We will consider p¢(x,y) as an infinite-dimensional
matrix, indexed by couples (x, y), X,y € X.

Clearly,

Tr[exp(tAX/Z)]=/ pt(x, x)dx. (2.9)
X

Forg e N,
exp(t A% /2) = [exp(t AX /2(q + 1))]9*2. (2.10)

Equation (2.9) is equivalent to the identity

pt(X,y) =/><q Pt/(@q+1)(X, X1) . .. Pt/(q+1)(Xq, Y)dX1 ... dXq. (2.11)

By (2.9), (2.11), we obtain
Tr[exp(tAX/z)] = /xq+1 Pt/(q+1) (X0, X1) - - . Pt/(g+1)(Xq, X0)dXo ... dXq. (2.12)

Let dut,q+1 be the positive measure on XA+t

dut,g+1 = Pt/@+1) (X0, X1) - - - Pt/(g+1)(Xg> X0)dXo . . . dXgq. (2.13)

Then we can rewrite (2.12) in the form

Texp(tA* /2] = [ dungen. (2.14)

Equation (2.14) is a continuous analogue of (2.5).

Note that (2.14) does not depend on q. The underlying property of the mea-
sures z1q4-1 is that in an algebraic sense they form a compatible projective system of
measures. We now will make this idea more precise.

Indeed as in Subsection 2.1, we can replace X9+ by the associated set of virtual
graphs. However, we want to think of the edges connecting the pairs (Xj, Xj1+1) as
being paths in X. An obvious possibility would pick a minimizing geodesic. How-
ever, except when these points are close to each other, the geodesic is in general
not unique. This can be partly compensated by the fact that ast — 0, p¢(x, y)dy
converges to the Dirac mass at X.

If ST = R/Z, let L°X be the space of continuous functions from St into X. Note
that ST acts on LOX, so that if s € S1,

ksX. = Xs+.. (215)
Givenq € N, let 7q : LOX — X9*1 be the map

TgX. = (X0, X1/(q+1)> X2/(q+1)> - - - » Xq/(q+1))- (2.16)
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In view of the above, it is natural to raise the question of the existence of an
Sl-invariant positive measure ¢ on L9X whose image by the maps mq would just
be the ut g1

The fact that this question has an obviously unique answer is a fundamental fact
which is produced from the theory of Brownian motion and of the stochastic differ-
ential equations. The corresponding measure ¢ is the Brownian loop measure of
parameter t. Brownian motion is a very complex and intriguing object of which we
will say very little, except that u+ a.e., its paths are nowhere differentiable. Brownian
motion has locally a very erratic behaviour, whose physical manifestation is given
by the well-known observations by Brown of the motion of pollen in water.

A consequence of equation (2.14) is that

Trlexp(tAX /2)] = /LOX dut. (2.17)

Equation (2.17) should be thought of as being the continuous analogue of the
discrete equation (2.5).

We have not yet explained the role of the metric g™ * and of the operator A* in
the construction of . This is what we will do now.

Let C be the infinite constant

400
C =[] 2. (2.18)
1

By equation (2.13), using the gaussian approximation for pi(x, y) for t small and
d(x,y) ~ +/t, one arrives easily at the formal formula

cn i Dx

In (2.19), Dx denotes formally the Lebesgue measure on L°X. The normalizing
constant C" in (2.19) can be found by inspection of the case where X is a torus.

There are several difficulties with (2.19). The first difficulty is that as we saw
before

/1 1%|2ds = +oo ut ae.. (2.20)
S

The second difficulty is that there is no Lebesgue measure Dx on L°X. The
third related difficulty is the denominator t°/2, where oo should be understood as
dimLX.

Such difficulties are unavoidable. Indeed it is well known that a Gaussian
measure on an infinite-dimensional Hilbert space gives 0 measure to this Hilbert
space. Although (2.19) does not mean anything, many of its consequences are
correct. We will use (2.19) repeatedly in the sequel.
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Let L X be the set of smooth maps s € St — xs € X. By (2.17), (2.19), we get

co D
TrexptAX /2)] = (ZT)“/Z/LX exp (— /S1 |X|2ds/2t) t“% (2.21)

Incidentally, note that without fear of a contradiction, we have replaced LOX by L X
in (2.21).

In (2.20), we may replace S by St = R/tZ. The effect is to make the factors t
disappear on the right-hand side of (2.19).

In physics terminology, integrals like the ones that appear in the right-hand
side of (2.17) and (2.21) are often called functional integrals, or path integrals.
An equality like (2.21) relates a quantity in a Hamiltonian form in the left-hand
side to another one in Lagrangian form on the right-hand side.

There is a Fourier transform quality to (2.21), as should be clear from the change
of t on the left-hand side to 1/t on the right-hand side. This is related to the clas-
sical correspondence in quantization p — i%, which is here only made point-
wise at every x € X. There is indeed an implicit very strong relation between the
pseudodifferential calculus and the functional integral. Indeed the pseudodifferential
calculus enlarges the commutative algebra of smooth functions on X to a noncom-
mutative algebra of operators, the functional integral enlarges the space X to the
loop space L X. That these two enlargements turn out to be equivalent is more or
less expressed in (2.21).

In this context, one could ask what difference there is, if any, between classi-
cal pseudodifferential calculus and stochastic calculus, once one takes for granted
(2.17) and its formal version (2.21). The link is again Fourier transform, which maps
the operator-theoretic (or Hamiltonian) picture to the path integral (or Lagrangian)
picture. The main advantage of the Lagrangian picture is that it restores a geometric
quality to the formulas, even if this geometry is infinite dimensional, in which the
classical geometric intuition remains valid to a certain extent. As should be clear
later, this is even more true in the context of index theory.

The Fourier transform quality of (2.19) is not related to the fact one expresses
a trace as an integral over the loop space, which could be taken for granted for
algebraic reasons, but because the formal expression (2.19) for d ¢ reflects Fourier
transform, in the same way as the standard expression for the heat kernel on R.

In equation (2.21), ast — +oo, Tr[exp(t AX /2)] converges to 1 exponentially
fast, while from the right-hand side, we can easily formally derive the behaviour of
Trlexp(tA*/2)] ast — 0. This is indeed typical of what happens with a Fourier
transform. It is vain to expect from the right-hand side of (2.21) anything explicit
concerning its behaviour ast — oo, in particular because the ergodic phenomena
associated with long Brownian paths are difficult to describe in this formalism.
In a formula like (2.21), there is a dichotomy which makes that both sides give a
description of the same quantity which is relevant in different range of values of the
parameter t.
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2.3 The Feynman-Kac formula

LetV : X — R be a smooth function. The Trotter formula asserts that
Trlexp(t (A% /2 — V)]
=, lim Trl(exp(t A% /2(q + 1)) exp(—tV /(q + 1)))9+1]. (2.22)
—1+00

By proceeding as in (2.17) and using (2.22), we arrive at a version of the Feynman—
Kac formula, which asserts that

Trlexp(t(AX /2 — V)] = /LOX exp (—t /51 V(xs)ds) dut. (2.23)

Equation (2.23) should be thought of as an infinite-dimensional version of (2.8).
By (2.19), we can rewrite formally (2.23) in the form

Trlexp(t (A% /2 — V)]

cn D
_ W/Lx exp (—/S1 X122t —t/slwxs)ds) t“% (2.24)

The considerations we made after equation (2.21) remain also valid for (2.24).

The conclusion is that we have been able to express traces of heat operators
as integrals on L%X, such integrals being also called functional integrals or path
integrals. The loop space LOX is the space in which the computations occur. The
measures on L9X which appear naturally are St-invariant.

3 Index theory and differential forms on the loop space

In this section, we exhibit the formal connections between the index theorem for the
Dirac operator and the localization formula over the loop space.

This section is organized as follows. In Subsection 3.1, we briefly review Clifford
algebras.

In Subsection 3.2, we introduce the Dirac operator.

In Subsection 3.3, we give the McKean-Singer heat equation formula for the
index of the Dirac operator, which depends on the time parametert > 0.

In Subsection 3.4, we describe the ‘fantastic cancellations’ for the small time
asymptotics of the local supertrace of the heat kernel.

In Subsection 3.5, we give a formula for the heat kernel associated with the
square of the Dirac operator in terms of the scalar heat kernel.

In Subsection 3.6, via the McKean-Singer formula, we express the index as the
integral over the continuous loop space L°X as a S-invariant measure vy.



Duistermaat—Heckman formulas and index theory 25

In Subsection 3.7, along the lines of Atiyah [A85], we describe the action of St
on the smooth loop space L X, and its generating vector field K.

In Subsection 3.8, we recall the fundamental remark of Atiyah and Witten [A85]
expressing the index of the Dirac operator acting on untwisted spinors as a formal
integral over L X of a dkx—closed form, which turns out to be the form ¢, and we
show that a formal application of the localization formula leads directly to the index
formula of Atiyah—Singer.

In Subsection 3.9, we extend this remark to the case of general Dirac operators.

In Subsection 3.10, the fantastic cancellations in index theory are related to the
proof of the localization formula which was given in Subsection 1.1.

In Subsection 3.11, we show that making sense of equivariant localization
in infinite dimensions is as difficult as making sense of measures on infinite-
dimensional Hilbert spaces.

Finally, in Subsection 3.12, we sketch a Hamiltonian-Lagrangian correspon-
dence in index theory, which will be further elaborated in Section 4.

3.1 Clifford algebras

If A = Ay @ A_ is a Zp-graded algebra, if a, 8 € A, the supercommutator
[a, B] € Ais bilinear in a, § and such that if o, § € A, then

[o, B] = afp — (—1)%9@eeBD) g (3.1)

In(3.1),degisOon Ay andlon A_.

IfW = W, & W_ is a Zp-graded vector space, let z = +1onW. be the
endomorphism defining the Z,-grading. The algebra End(W) is naturally Z,-graded,
the even (resp. odd) elements of End(W) commuting (resp. anticommuting) with .
If A € End(W), we define its supertrace Trs[ A] by the formula

Trs[A] = Tr[z Al (3.2)

Then Trs vanishes on supercommutators.

Let V be a real vector space of dimension n, which is equipped with a bilinear
symmetric form gV. The Clifford algebra c(V) attached to (V, gV) is the real alge-
bra generated over R by 1, e € V, and the commutation relations fore, e’ € V,

ee’ +ee = —29" (e, €. (3.3)

If g¥ = 0, then c(V) is just the exterior algebra A* (V). The Clifford algebra c(V)
is equipped with an increasing filtration

R =F%(V) c Flc(V) - c F'c(V) =c(V). (3.4)
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Let Gr be such that Gr' = Fic(V)/Fi~1c(V). Then
Gr ~ A'(V). (3.5)

From the above, it follows that c(V) is a Z>-graded algebra.

Assume gV to be a scalar product. If n is even, let SV = SY @ SV be the
Z,-graded vector space of (V, gV) spinors. Then SV is a c(V) Clifford module.
More precisely we have the identification of Z,-graded algebras,

c(V) ®r C ~ End(SY). (3.6)

3.2 Spin manifolds and the Dirac operator

Let X be a compact oriented manifold of dimension n, and let g™ * be a Riemannian
metric on T X. Let VT X be the Levi-Civita connection on T X, and let RTX be its
curvature.

Let c(T X) be the Clifford bundle of algebras associated with (T X, g *).

We will assume X to be even dimensional and spin. Let ST* = STX @ STX pe
the Z,-graded vector bundle on (T X, gT*) spinors. Let vS'* = vS&* @ vST* pe
the corresponding unitary connection on STX = STX @ STX,

Let (E, gF, VF) be a Hermitian vector bundle with unitary connection, and let
RE be the curvature of VE. Let VS'*®E e the unitary connection on STX @ E
which is induced by V8™, VE. Note that STX ® E is a ¢(T X) Clifford module.

Letes, ..., e, be an orthonormal basis of T X. The Dirac operator DX is given

by the formula
n

DX = > c(envs  ®F. (3.7)
i—1
Then DX acts as an odd operator on C®(X, ST* ® E). We can write DX as a
matrix with respect to the splitting C*(X, ST ® E) = C®(X,SI* @ E) @
C®(X,STX @ E),

0 DX
D =] | (3.8)
DX 0
Put 1
c(RE) =2 D cleice)RE (i ej). (3.9)
2 “
1<i,j<n
The Lichnerowicz formula asserts that
S
DX2 = —AH 4+ = 4 ¢(RE). (3.10)

4
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In (3.10), A is the Bochner horizontal Laplacian, which is the obvious version of a
Laplacian acting on sections of a vector bundle, in which derivatives are replaced by
covariant derivatives, and S is the scalar curvature. The remarkable fact is that there
are no terms of length 4 in the Clifford bundle of algebras ¢(T X), their contribution
vanishes because of the circular identity on RT X,

3.3 The index of Dj_( and the McKean-Singer formula

Since Df is an elliptic operator, it is Fredholm. Also since DX is formally self-
adjoint, DX is the formal L-adjoint of DX. In particular the index of DX is
given by

Ind(D) = dimker(D%) — dimker(DX). (3.11)

As is well known, the index DZﬁ is a homotopy invariant. In particular it does not
depend on the choice of metrics or connections which was made above.
Since D*-2 is elliptic of order 2, fort > 0, there is a heat kernel P;(x, y) corres-
ponding to the operator exp(—t D*2/2). In particular exp(—t D*-2/2) is trace class.
Also we have the Bianchi identity,

[DX, D*?]=0. (3.12)
Now we state the McKean-Singer formula [MS67].
Theorem 3.1. Forany t > 0,
Ind(DX) = Trs[exp(—tD*:?)]. (3.13)
Proof. Note that if P is the orthogonal projection operator on ker DX, ast — +o0,
exp(—tD*?) > P, (3.14)

where the convergence is taken in every possible sense. From (3.14), we find that as
t — +o0o,
Trs[exp(—tD*-2)] — Ind(D2). (3.15)

It is enough to prove that the right-hand side of (3.13) does not depend ont > 0.
We will write the equations showing that the right-hand side of (3.13) does not
depend on't > 0. Note that since DX is odd,

1
DX2 = E[DX, DX]. (3.16)
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Using (3.16), we have
j—tTrs[exp(—th*z)] = —Trs E[DX, DX] exp(—tDX*z)}

- —%Trs[[DX, DX exp(—tD*?)]] = 0. (3.17)

To get the last equality in (3.17), we used the fact that Trs vanishes on supercom-
mutators. This concludes the proof of (3.13).

Remark 3.2. The usual proof of (3.13) is to use the spectral decomposition of the
self-adjoint operator D*-2. However, (3.17) makes clear that self-adjointness has
little to do with (3.13). Indeed it is still true for any odd operator DX having the
same principal symbol as DX. Proving the analogue of (3.2) in finite dimensions is
also interesting.

Clearly,
Trs[exp(—tD*?/2)] = / Trs[ Py (x, x)]dx. (3.18)
X

By (3.13), (3.18), we obtain

Ind(DY) = /X Trs[Py(x, x)]dx. (3.19)

3.4 The fantastic cancellations

Since D*-2 is elliptic of order 2, general considerations show that for x € X, as
t — 0, Pi(x, x) € End(STX ® E)y has an asymptotic expansion of the form

a_ X
* :4/2;_11( )+"’+aO(X)+3~1(X)t+'"+ak(X)tk+0x(tk),
(3.20)

the ax (x) depend only locally on the metrics and connections, and the expansion is
uniform in x. From (3.20), we get the asymptotic expansionast — 0,

a_n2(x)

Pt(X,X) = tn/z

TrS[Pt(Xa X)]

_ b_n/2(X) = b_nj2+1(x)

7z 21 D000 H L0+ -+ OO+ ok (),

(3.21)

and the by are also local. From (3.19) and (3.21), we get

Ind(Df):/xbo(x)dx, /xbk(x)dx:Ofork;éo. (3.22)
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Equation (3.22) indicates that the global Ind(Dﬁ) can be expressed as the integral
of a local expression.

Set
X/2

- sinh(x/2)"

We identify K(x) with the corresponding multiplicative genus. We denote by
AT X, VTX) the Chern-Weil representative of the characteristic class A(T X)
which is associated with the connection VT X. Similarly ch(E, VE) is the Chern
character form for (E, VE).

In [MS67], McKean and Singer conjectured that fantastic cancellations would
occur so that (3.22) could be refined to be

A(X) (3.23)

br(x) = 0 fork <0, bo(x) = [A(T X, VT *)ch(E, V)™, (3.24)

Note that the expansion (3.20) always remain singular ast — 0. The term ‘fantastic
cancellations’ refers to the fact that the local vanishing of the singular terms occurs
only when taking the supertrace in (3.20).

The McKean-Singer conjecture was proved by Gilkey [Gil84] and Atiyah—Bott—
Patodi [ABP73]. From (3.22), (3.24), we get the Atiyah-Singer index theorem,

Ind(D) =/ A(T X)ch(E). (3.25)
X

A statement like (3.24) is called a local index theorem, because of the local char-
acter of the expansion in (3.4).

The local index theorem was given a new impulse by the work by physicists
[AI83] relating the index theorem to supersymmetry. Getzler [Ge86] gave a proof of
the local index theorem using a fruitful rescaling technique on the Clifford algebra,
a probabilistic proof was given in [B84a, B84b]. We refer to the book by Berline—
Getzler—\Vergne [BeGeV92] for more details.

3.5 The heat kernel for D*>2 as a path integral

We will now use Feynman—Kac’s formula and the 1t6 calculus to express P¢(x, y)
in terms of p(x, y).

A first point is that although the Brownian paths are nowhere differentiable, still,
it is possible to define parallel transport with respect to VST ®E along them. To do
this, one can use 1td’s stochastic differential equations, and/or use the approximation
of Brownian motion by broken geodesics as outlined in Subsection 2.2, and show
that parallel transport passes to the proper limit.

Let x. be such a Brownian path, with xo. Consider the differential equation on
V. € End(ST* ® E)y,,
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dv
o=V 5c(RY /2)72, Vo = 1. (3.26)

In (3.26), zg 0 denotes parallel transport from xg to xs, and ro is its inverse. Let Pt
be the probablllty law of the Brownian motion starting at x and conditioned to be y
at time t. An application of the results mentioned above shows that

t
PL(X, y) = pi(x, y)E Py [exp (_/0 S(xs)ds/8) Vtré} ) (3.27)

In (3.27), E Py is just expectation with respect to P)E,y.

3.6 The index as a well-defined path integral

Fort > 0, let V! be the solution of (3.26), in which RE is replaced by tRE. Recall
that the positive measure ¢ on LOX was defined in Subsection 2.2. Let vt be the
measure on L%X,

1
dyy = exp(—/ tS(xs)ds/B)Trs[Vfr(}]dyt. (3.28)
0
Proposition 3.3. Forany t > 0,
Ind(DY) = Trs[exp(—tD*+?/2)] —/ duy. (3.29)
LOX

Proof. Equation (3.29) follows from (3.13), (3.19) and (3.27).
Observe that by combining (2.19), (3.28) and (3.29), we get the formal equality,

Trs[exp(—tD*+2/2)]

cn .
= W/LX exp (—/S1 |x|2/2t) exp(—/0 tS(xs)ds/8)Trs[Ver]too/2

(3.30)

The remarkable fact about (3.29) is that the mass of v; is an integer, which
remains constant with t > 0, and more generally does not depend on the metrics or
connections that were used in its definition.

From a measure-theoretic point of view, the natural example one can give of a
measure whose mass remains constant is precisely the heat kernel pi(x, y), which
is such that

/X pe(X, y)dy = 1. (3.31)
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One could think that (3.29) could just be a consequence of a heat equation on
LOX, with dv representing some sort of heat kernel on L9X. Such a point of view
is untenable for many reasons on which we will not elaborate.

The remark of Atiyah and Witten in [A85] is that the constancy of (3.29), (3.30)
can be given a cohomological interpretation, at least at a formal level. This is what
we will explain next.

3.7 The loop space and the action of St

Recall that L X is the smooth loop space of X. We will view LX as a smooth
manifold, disregarding the technicalities. If x. € L X, the tangent space Ty L X can
be identified with smooth periodic sections of T X along x.. If U,V € Ty L X, set

(U,V) = /1(US,VS)ds. (3.32)
S

Then (3.32) defines a S-invariant metric gT-X on TLX.
The smooth action of S* on LX is generated by the vector field K, which is
given by
K(x.)=X. (3.33)

The vector field K is a Killing vector field. Its zero set L Xk, which is the fixed
point set of the action of S, is just given by

LXk = X. (3.34)

We will now use in this infinite-dimensional context the notation of Section 1.
Note that K’, the 1-form dual to K, is such that if U € TL X,

K'(U) =/Sl(U,dx). (3.35)

Let % denote the covariant derivative operator acting on T L X. This operator is
antisymmetric. One verifies easily that if U,V € TLX,

D
dLXK’(U,V)=2/ <—U,V>ds. (3.36)
g1 Ds

Using the conventions in (1.10), we find that

LX K’
_ 4K (3.37)

w D
Ds 2

Observe that
|K|2=/ x|2ds. (3.38)
Sl
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If V is an even-dimensional Euclidean oriented vector space, if A € End(V) is
antisymmetric, the Pfaffian Pf[A] was defined in (1.11). By (1.12), and by (1.13),
Pf[A] is a square root of det[A].

Since X is oriented, the parallel transport 101 on T X along a loop x. is an oriented
isometry. Therefore its eigenvalues are given by e*% 1 < j <n/2, with0 < 0j <
7. The eigenvalues of S are given by

2izk +i6j, ke Z,1<j <n/2. (3.39)

Let C’ be the infinite constant,
+00
C' = [J@k?z?). (3.40)
k=1

By (3.39), we can write formally,

n/2 2 2
det[ ] HCQJH( yrem 2) . (3.41)
j=1

Equation (3.41) can also be rewritten in the form

n/2 2

D mn
det[D} C stm(ej/z) . (3.42)

=1

Now we try to make sense of the Pfaffian Pf [ 2 ]. For this Pfaffian to be defined,
first we need LX to be even dimensional, at least formally. However, the nonzero
eigenvalues of 5 come by conjugate pairs. As to the zero eigenvalue, it corresponds
to the elgenvalue 1 of the parallel transport operator rl acting on T X. Since X is
oriented, this space is even dimensional, which ultimately proves that L X is indeed
formally even dimensional. If X was instead odd dimensional, a similar argument
would show L X to be formally odd dimensional.

To define Pf[ ] a second requirement is that L X should be an oriented mani-
fold. As explained by Atiyah in [A85], it is equivalent to require det [ DS] to have a
smooth square root, which will then be precisely the Pfaffian Pf[ ] In any case,
if Pf[ 5] can we defined, from (3.42), we will get

D n/2
mj/2 : i
Pf[a} = +C" stun(ej/z). (3.43)
Let g € SO(V), let +0j,1 < j < n/2 be the angles of g. Then g has two lifts

in Spin(V), which differ by a sign. Let g+ be one of these lifts. Then g+ acts on
SV = SY @ SY. We have the identity,
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n/2 n/2
TrS [g7 Y] = £ [ @72 — e71%/2) = £i"2 T 25in(9; /2. (3.44)
i=1 i=1

The sign in (3.44) is fixed by the fact that if A € so(V) has angles 6 with
respect to an oriented orthonormal basis of V, if g exponentiates A in SO(V), and
g+ exponentiates A in Spin(V), the sign in (3.44) is +.

By comparing (3.42) and (3.44), and keeping in mind that Pf[ 2] should be a
square root of det [ & ], we reach the conclusion that

D
TS [¢d] = C'"/2i"/2pt [E] . (3.45)

Equation (3.45) fixes the choice of the smooth square root Pf [ 5- ] of det[ 5], and
proves the orientability of L X when X is spin.

There is nothing truly exotic in (3.42) or (3.45). Indeed det [%] can be defined
by a classical zeta function technique. Equation (3.42) is just a version of the
Cheeger—Miiller theorem [Ch79, M78] establishing the equality of analytic and
Ray-Singer torsion.

3.8 The remark of Atiyah and Witten for the Dirac operator on
spinors

We still follow [A85]. We take E to be the trivial bundle R. Also we decide to ignore
the scalar curvature in equation (3.30).
Finally, we will use equation (1.12) in infinite dimensions. Namely, we will write

D
Pf [E] % = [exp(w%/t)]max. (3.46)
Identity (3.46) is questionable. Indeed (1.12) just evaluates the component of
exp(wa) of top finite degree. In (3.30), the expansion (3.46) is infinite, the com-
ponent of infinite degree is not there. It is only by a renormalization procedure of
the type outlined in (3.39)—(3.45) that we can make sense of (3.46).

In view of (3.37), we can rewrite (3.46) in the form

D Dx _ LX 7 max
Pf [E} 02 = [exp(—d="K’/2t)]"™. (3.47)

Now we take equation (3.30) in which we ignore the term containing the scalar
curvature, and in which we make Vlt =1, because E is trivial. Using (3.38), (3.45),
and (3.47), and comparing with the definition of ot given in (1.20), we can rewrite
(3.30) in the form
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Trs[exp(—tD*-2/2)] = (%) (=2ix)~"/2 /L o (3.48)
Note that N
C/vVC =]k (3.49)
k=1

Also by (1.21),
d*ot = 0. (3.50)

We now proceed as Atiyah [A85]. Namely, we will use the localization for-
mula of Duistermaat—-Heckman in Theorem 1.3, forgetting about the fact that L X
is infinite dimensional and noncompact. Since L Xk = X, by (1.22) and (3.48), we
should get

Trs[exp(—tD*?/2)] = (=2iz)~"?(C/~/C')" / ! (3.51)

x ek (Nx/Lx)’

We will evaluate the right-hand side of (3.51). Indeed Nx ,_x is exactly the set of
fibre maps s € S — fs e T X such that fSl fds = 0. The action of Jk on Nx,Lx
is just adg The Fourier series decomposition of f corresponds to the eigenvalue
decomposition of f with respect to Ji. If RT X still denotes the curvature of VTX,
we find easily that

+o00 N too RTX,Z
N _ 1/2
ek (Nx/Lx, V7X/EX) —(H k) Hdet [1"' 4k2n2}

k=1 k=1

400 n
= (H k) ATRTX]. (3.52)

k=1
By (3.48)—(3.52), we get

Trs[exp(—tD*%/2)] = / ATX, VX, (3.53)
X

Comparing with (3.13) and (3.25), we obtain the stunning fact that the above formal
arguments predict the Atiyah—Singer index theorem without analysis.

3.9 An extension to general Dirac operators

In [B85], we extended the remark of Atiyah to the case of a nontrivial twisting
bundle (E, g&, VE). Without elaborating on the method, let us just say that (3.48)
takes now the form
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_D%:2 /9] — L)n o —n/2/
Trs[exp(—tD™*/2)] («/6 (—2ir) L ot A C. (3.54)
We will briefly describe the construction of c.

Setm = dim E. Then E is associated with a U(m) principal fibre bundle P. Let
L E be the loop space of E over L X. More precisely given x € L X, the fibre of LE
is the vector space of smooth sections of E parametrized by S* over the given loop
x. Then LE is associated with a LU(m) fibre bundle LP over L X. The metric g&
anIEjEconnection VE induce an obvious L, metric on LE, and a unitary connection
V=E,

The action of St on L X lifts to LE, and this action preserves the metric and the
connection. However, it does not induce a bundle automorphism of the fibre bundle
LP. Indeed for p € P, g € LU(m), if s € S, we have the identity

ks(pg) = ks pksg. (3.55)

Having a bundle automorphism would require that ksg € LU(m) would simply be
g. This defect can be easily be cured by introducing instead the semidirect product
LU(m) = LU(m) x SL. The Lie algebra of LU(m) is the Lie algebra of first order
differential operators on S of the type add—S + B, B € Lu(m). When a = 1, these
are the u(m) connection forms over the trivial U(m)-bundle.

The point is now to construct a d X -closed characteristic form on L X, which is
associated with the vector bundle (LE, VLE). Let »F be the connection form on
P which is associated with VE, and let QF be its curvature. Given p € LP, one
verifies easily that if QLE is the K -equivariant curvature of VL&, then

QLE = a4 + of (3—5) +QF. (3.56)
Then QLE is the sum of a 0-form and of a 2-form with values in Lu(m).

To obtain a characteristic form, one needs to pick a gauge invariant analytic func-
tion. Now given an operator of the type % + B, B € Lu(m), an obvious gauge
invariant analytic function is the trace of the inverse of its monodromy. Namely, one
solves the differential equation over S,

d
—+B)g=0 =1. 3.57
( i ) 9=0, do (3.57)
Put
¢ =Trlg;t. (3.58)
Then c is gauge invariant function. Equivalently, we may consider the equation
d
—h —-hB =0, ho =1. (3.59)

ds
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Then
¢ = Tr[h]. (3.60)
In view of (3.56) and (3.57), we should consider the differential equation
d e (dp E _ .
(& +o (E)ﬁ-g )g_O, go = 1. (3.61)
Put
¢ = Trlg; M. (3.62)

Let 0 denote parallel transport on E from xo to xs along the path x. with respect
to the connection VE, and let 75 be its inverse. If one prefers the description of ¢ in
(3.59), (3.60), one should instead consider the differential equation

d
W= WeSREZ, Wo = 1. (3.63)

Then
¢ = Tr{Wizg). (3.64)

It is this ¢ which appears in the formal formula (3.54) for Trs[exp(—tD*:2/2)].
By construction,
d-*Xc=o0. (3.65)

By (3.50) and (3.65), we get
dk*(ax Ac) = 0. (3.66)
Leti be the embedding X — L X. Note that by (3.63), (3.64), we get
i*c = Tr[exp(RE)], (3.67)
i.e., up to normalization, i *c coincides with ch(E, VF).

A formal application of the Duistermaat—Heckman localization formula to (3.54)
leads to the identity,

Trs[exp(—tD*-2/2)] = / A(T X)ch(E), (3.68)
X

which is again correct.

3.10 The fantastic cancellations and the localization formulas

What is truly remarkable in the above formal arguments is that they lead to the
Atiyah-Singer index formula without taking t — 0, as if algebra was taking over
analysis.



Duistermaat—Heckman formulas and index theory 37

From this point of view, we tried very hard to import in infinite dimensions any
of the proofs existing at the time of the localization formulas, until we realized
that the form o was by itself a perfectly legitimate way of proving the localization
formulas also in finite dimensions. The formal argument of Atiyah was good enough
not only to predict in a formal way the right index formula, but also was producing
the remarkable form at, which is the key to the proof of the localization formula
given in Theorem 1.3.

But the consequences are much vaster. Indeed, as we saw in the proof of
Theorems 1.3 and 1.5, in a finite-dimensional context, as t — 0, the current o
on X converges to an explicit current ag localized on Xk, the existence of the limit
not being entirely trivial.

From [B86b] and from the above arguments, one finds that the fantastic cancel-
lations anticipated by McKean-Singer, which were described in Subsection 3.4, are
just the infinite dimensional manifestation of the fact that also in infinite dimen-
sions a¢ should converge as a current to ag. Understanding why this formal conver-
gence should imply the fantastic cancellations is an easy matter left to the inspired
reader.

From the above, we find that the localization formulas have provided a geometric
explanation to an important analytic fact, the fantastic cancellations of McKean—
Singer. Our project of importing to infinite dimensions any known proof of the
localization formulas has been fulfilled tautologically, by exporting instead the heat
equation method to finite dimensions. We will explore the consequences in the next
section.

3.11 Formal versus rigorous arguments

Applying the localization formulas to the right-hand side of (3.54) is questionable,
since we do not even know what form is ultimately integrated on L X. This form
should again be the component of infinite degree of the wedge product of ot and c,
which are themselves series of well-defined forms of finite degree.

However, let us point that part of the difficulty is intrinsically related to infinite
dimensions. Indeed let us assume that Xy, k € N is a family of manifolds having
exactly the same properties as X in Subsection 1.1. In particular they are equipped
with an action of a torus T. Set

X =] X (3.69)

1

Then X is also equipped with an action of the torus T. Let px : X — Xk be the
obvious projection. Fork € N, let ux be a dék-closed form on Xy. Set

~+00
w=Tpin (3.70)
1
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Note that the product (3.70) converges only if the product of the components of
degree 0 of the u converges.

For simplicity assume that for any k € N, 4" is nonnegative, and also that by
an application of Theorem 1.3, we would get

/ ux = 1. (3.71)
Xk
Note that m = [ " is a well-defined positive measure on X, and that
/ dm = 1. (3.72)
X

One can apply the localization formula of Theorem 1.3 to each ug. However,
using this formula on the integral of x over X’ is very difficult. Indeed if ay 1 is the
form at on Xk, then

+o00
at = [ | piax. (3.73)
k=1

is in general not well defined, precisely because the product of the components of
degree 0 may well be 0, which forces the vanishing of the form a;.

As an example of the above situation, consider the case where Xk = C ~ R? as
in Remark 1.4, and that the action of S* is the one specified there. Take

= 5 (K /2), (3.74)
VA

By (1.39),
/R2 uk = 1. (3.75)

The product x in (3.70) does not exist for two reasons. The first is the presence
of the factor 1/2z. But the second more fundamental reason is that the Gaussian
measure on an infinite-dimensional Hilbert space gives measure 0 to this Hilbert
space. Of course, this is another manifestation of the fact that there is no Lebesgue
measure in infinite dimensions, so that measures tend to be mutually singular.

The above provides an elementary version of the difficulties we have of making
sense of the right-hand side (3.54). If X is a torus, the difficulty is exactly the one we
had in defining « from the u in (3.70). For an arbitrary X, the problems are much
more severe, because one cannot give a natural finite-dimensional approximation of
the situation. Ultimately, to make sense of the right-hand side of (3.54), we need the
left-hand side.

3.12 Hamiltonian—Lagrangian correspondence and index theory

As we saw in (2.17) and in its formal counterpart (2.21), the trace of a scalar heat
kernel can be represented as the integral of a S1-invariant measure over L°X or L X.
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In equation (3.30), we saw how to represent the supertrace of exp(—tD*-2/2)
as the integral of a S'-invariant measure on L°X. In (3.54), we also gave a formal
expression of the same quantity as the integral of a d,'zx-closed differential form
over L X, of which the previous measure is supposed to represent the term of top
degree. Needless to say, having a dkx—closed form is much stronger than having a
Sl-invariant measure. The price one has paid is that the formula one obtains remains
formal.

Still one can establish a dictionary between index theory and integration of dif-
ferential forms on loop spaces. Indeed D*-2 is itself the square of DX. In equa-
tion (3.30), this fact has been forgotten. One of the points of (3.54) is to resurrect
this fact in the path integral itself, that is in the Lagrangian, or Fourier transformed
picture of the Hamiltonian left-hand side.

Indeed we will start writing some elements of a dictionary between quantities
involving supertraces of heat operators of the type exp(—tD*-2/2) and integrals
over L X of differential forms.

Table 3.1 The Hamiltonian—-Lagrangian correspondence

Supertraces of heat operators | Integrals of differential forms on L X
Trs Jix
DX dLx
DX:2 Lk
Trs[[DX. Al =0 iy dkXu=0
Local index theorem Local Duistermaat—Heckman formula

The fact that equations (3.17) and (1.25) correspond to each other under the above
dictionary reflects the amazing formal analogies in the proofs of the corresponding
results.

A final question we would like to address is whether the fact that the formula
(3.54) remains formal should necessitate further work to make integration of forms
on loop spaces and localization formulas on such spaces rigorous. From the pers-
pective of the present paper, the answer is left to the reader?.

4 From localization formulas to Hermitian K-theory

In Section 1, and more specifically in Subsections 1.2, 1.4, and 1.6, we showed that
the localization formulas are compatible to natural functorial operations.

1 The author’s point of view on this question is somewhat ambiguous. Indeed one could consider
that the fact that many of the consequences of the formal theory have ultimately proved to be
correct, and that new rigorous objects have been constructed as a consequence, represents the only
way of making the formal theory rigorous.
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In Section 3, we exhibited a correspondence that maps the index theory for the
Dirac operator on a manifold to equivariant integration on the loop space LX.
We also called this correspondence a Hamiltonian—Lagrangian correspondence,
which we assimilated to a Fourier transform.

The index theorem is part of a more general theory involving the K -theory func-
tor, the case of the index being the simplest case where the target space is just a
point.

We will now ask whether the above correspondence can be extended to the
possible functorial operations in both theories. Given the work which has been done
in the field, the answer is certainly positive. At the time, the main difficulty was
essentially that the objects involved in the correspondence were not even defined.
Still the possibility that such a correspondence could possibly exist was one moti-
vation for the discovery of the rigorous objects on the K -theory side, which would
correspond to their natural counterparts on the localization side. Also if one accepts
the fact that this is some sort of Fourier correspondence, part of the behaviour of the
rigorous objects to be was already encoded in their Fourier counterpart.

We will give here mostly facts, and little justification.

This section is organized as follows. In Subsection 4.1, we show that in the
Hamilton—Lagrangian correspondence, the families index theorem corresponds to
equivariant integration along the fibre. Quillen’s superconnections are needed in the
Hamiltonian side to make sense of the correspondence.

In Subsection 4.2, we refine the Hamiltonian—Lagrangian correspondence to the
local forms of the corresponding formulas. In this context, we show that the Getzler
operator [Ge86] in local index theory is the curvature of a natural superconnection.

In Subsection 4.3, we recall the construction of the 7-forms in local families
index theory, and we show that they are formally related to the currents & and ¢ of
Subsections 1.3 and 1.5.

In Subsection 4.4, we introduce the holomorphic torsion forms T, which
themselves refine on the #-forms, and we exhibit their relation to the forms ¢ of
Subsection 1.8.

In Subsection 4.5, we discuss the extension of the above formalism to Lefschetz
fixed point formulas.

Finally, in Subsection 4.6, we briefly consider the hypoelliptic Laplacian of [BO5,
B08] from the point of view of the present paper.

4.1 Families index theorem and equivariant integration along the
fibre

In Subsection 1.4, we gave an integration along the fibre version of localization
formulas.

Clearly, the K-theoretic version of integration along the fibre should be the
families index theorem of Atiyah—Singer [AS71].
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Let z : M — S be a submersion of smooth manifolds with compact oriented
fibre X of even dimension n. We assume the vector bundle T X = T M/S to be spin.
Let g™ X be a metric on T X. Let (E, g5, VF) be a Hermitian vector bundle on M
with unitary connection.

Each fibre X carries a fibrewise Dirac operator DX . Set

Ind(DY) = ker DX — ker DX, (4.1)

Note that E € K(M), and that the left-hand side of (4.1) is an element of K (S).
The right-hand side is a well-defined element of K (S) only if the dimensions of
ker Djﬁ remains constant, in which case (4.1) is a definition of the left-hand side.
In the general case, one can deform the operator DX so that the assumptions we just
made are correct.

Note here that by definition, the map z; : E € K(M) — Ind(Dﬁ) e K(S) is
part of the K -theory functor which we mentioned before.

The Chern character maps K-theory to rational even cohomology. The Atiyah—
Singer families index theorem [AS71] asserts that

ch(zi(E)) = . [A(T X)ch(E)] in H&"(S). (4.2)

Equation (4.2) is compatible with the obvious functorial operations.

If the base is a point, then (4.2) is just the index formula in (3.25). So it is legiti-
mate to ask whether the considerations of Section 3 can be extended to this more
general situation.

We will use the loop space functor M — LM. Themap = : M — S induces
an equivariant map = : LM — LS. This new projection verifies precisely the
assumptions in Subsection 1.2, where M, S should be replaced by LM, LS. Note
that LSk = S, and that LMK = z~1S is the set of smooth loops in M which
project to points in S, and the fibres are L X, the loop space of a given fibre X.

One can anticipate that (4.2) should be related to the integration along the fibre
result of Theorem 1.10, when applied to the fibration 7 : LMK — S. This is
especially true in light of the considerations of Subsection 1.6, where functoriality
results for localization formulas under projections have been considered.

Let TH M be a horizontal vector bundle on M, sothat TM = THM @ T X. Then
T H M lifts to a horizontal vector bundle THLMX on LMK Moreover, the metric
g™ X induces a St-invariant metric g™ -* on T L X. Then we are precisely under the
assumptions of Subsection 1.4. Let a; be the dkMK -closed form on L M X which one
obtains as in that subsection. More precisely, let K’ be the 1-form on LMK which
vanishes on THLMK and coincides with the dual form to K along T LX. The form
ay is still given by (1.20), i.e.,

ar = exp(—dEM K’ /2t). (4.3)

Also over LM, we define the form c attached to (E, g&, VE) as in Subsection 3.9.
Let ¢ be the endomorphism of Q¢"(S) given by a — (—2ix)%9(*)/2¢. For
t > 0, consider the form a; on S,
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ar = w(—ZiE)_n/Z(C/x/C’)”/ at A C. (4.4)
LX

The integral in (4.4) is still formal. However, in degree 0, it is just the one in (3.54).
Still let us pretend that it makes sense. If we could use (1.60), (1.62) as well as the
considerations in Remark 1.11 and in (3.52) , then we would know the form ay is
closed on S, that its cohomology class does not depend ont > 0, and moreover that
ast — 0, a; converges smoothly to ag given by

aoz/ AT X, VT ¥)ch(E, VE). (4.5)
X

In (4.5), VT X is a Euclidean connection on T X, which is canonically attached
to (THM, g™ *). However, ag is precisely a canonical representative of the right-
hand side of (4.2). In degree 0, as we saw in (3.15), the behaviour of a; (which
is constant...) ast — o0 is very easy to determine in the Hamiltonian picture.
In the Lagrangian picture (4.4), whatever information one can get ast — +o0 is
misleading for reasons already outlined in Subsection 2.2.

If we could determine the forms a; rigorously in the operator-theoretic (or
Hamiltonian) picture, there is a chance that these forms would provide also a proof
of (4.2), simply because they would interpolate between the form ag in (4.5) as
t — 0, which is a natural representative of the right-hand side of (4.2), and whatever
natural representative there is of the left-hand side ast — +o0, while remaining
constant in cohomology.

The construction of the corresponding operator-theoretic object is obtained via
Quillen’s theory of superconnections [Q85a]. We will motivate the introduction
of superconnections by discussing again adiabatic limits along the lines of Sub-
section 1.6. We will adopt the terminology of that subsection, except that of course
M there should be LM, Mg should be M...Let g"™™, gT$ be Riemannian metrics
onTM,TS. Fore > 0, set

ngM ngM +§7T*gTS. (46)
Here we will take TH M to be the orthogonal bundle to T X with respect to g™™.
Note that TH M is still the orthogonal bundle to T X with respect to g/ M. Making
€ — 0 isstill called passing to the adiabatic limit.
As we saw in Subsection 3.7, the metrics g™, g/ M induce corresponding
Sl-invariant metrics on TLM, and g'S a Sl-invariant metric on TLS. By (4.6),
we get

1
gz'LM :gTLM_’_ZgTLS’ (4.7)

which is just (1.67) in the present context.
In Subsection 1.6, we explained how integration along the fibre localization
formulas could be related to adiabatic limits of ordinary localization formulas.
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To guess what should be the Hamiltonian counterpart to the form a;, we will also
try adiabatic limits in the Hamiltonian formulation.

The metric g7 X induces a corresponding symmetric bilinear form on T M whose
kernel is TH M. To make our arguments simpler, instead of (4.7), we will now set

1
ZLM :gTX+Z”*gTS' (4.8)

The point about the metric geT M is that z is a Riemannian submersion with respect
to the metric g/ M.

We will also assume that T S is oriented, spin and even dimensional. Let STS =
STS @ ST be the associated bundle of (T S, g7 5) spinors. Set

STM — z*sTS@sTX, (4.9)

Then STM can be identified with the vector bundle of (T M, g[ ™) spinors.

Let DM be the Dirac operator acting on C*(M, STM ® E), which is associated
with gT™ and VE. First we will give an explicit formula for DM.

Let VS™™ be the connection on ST induced by the canonical connection VTX.
Let VTS be the Levi-Civita connection on (T S, gT), and let V8™ be the corres-
ponding connection on STS. Let VS™ be the connection on STM which is induced
by these two connections.

Let TH be the curvature of the Diff(X) connection associated with THM. Let
PTX be the projection TM = THM @ TX — TX. IfU € TS, letU" € THM be
the horizontal liftof U. If U,V € TS,

THU,v)=-PTX[UH, vH. (4.10)

Let f1,..., fm beanorthonormal basis of TS, and let f1,..., f™ be the corres-
ponding dual basis of T *S. Set

m
™
DM = clenvy, “F, (4.11)
i=1 '
The upper index u on the right-hand side of indicates that we have taken into account
the variation of the volume form of X with respect to horizontal differentiation, so

as to make the operator D" self-adjoint. Then D" is a horizontal Dirac operator.
Put

c(TH)=% > cfetpemr (), /). (4.12)

1<a,p<m
By [BC89, eq. (4.26)], DLV' can be written in the form

c(TH)

DM = /eDH + DX — ¢ 7

(4.13)
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The structure of (4.13) is interesting. In particular the third term on the right-hand
side of (4.13) is intimately related with Leray’s spectral sequence.

As ¢ — 0, from a simple minded point of view, the operator DLV' converges to
DX. However, in the case where M is product, i.e., M = S x X, one is immediately
tempted to do index theory over the base S.

The most direct way of what should be done is to use a Getzler rescaling [Ge86]
on (4.13) as ¢ — 0. However, let us give here a shortcut. The reader will have
noticed that to obtain the contribution of E to the index formula, in Lichnerowicz
formula for tD*-2 in (3.10), we just have to replace the Clifford variables +/Tc(ej)
by the exterior variables el A. So let us just do this in (4.13), while replacing t by e.

Let Q be the Z,-graded vector bundle on S of smooth sections of ST X ® E along
the fibre X. If s is a smooth sectionof Qon S, if U € TS, put

Vis = VS, ©Es, (4.14)

Then equation (4.14) defines a unitary connection on Q, whose curvature is a 2-form
on S with values in first order differential operators along the fibre X.

We take f1,..., fmy as before except that we do not assume any more this basis
to be orthogonal. Then

ve= > frvi. (4.15)
1<a<m
Set 1
X Hy _ a H
(T )_51<Z,;:<mf fhe(TH(f,, fp)). (4.16)

The object we obtain from DM by the above shortcut is given by the formula

cX(TH)'

A=Ve4+DX—
" 4

(4.17)
This object does not depend any more on the metric g7 S. It turns out that A is pre-
cisely a superconnection on the Z,-graded vector bundle Q in the sense of Quillen
[Q85a], and is called the Levi-Civita superconnection [B86a]. When replacing g *
by g7 X /t, the corresponding object A; is given by

cX(TH)
4t

We will not explain in detail Quillen’s theory of superconnections. Let us just
mention it is an extension of Chern—\Weil theory. In the same way as the curvature
of a connection can be viewed as the square of the connection, the curvature of the
superconnection Ay is its square AZ. Here it is a second order elliptic operator acting
along the fibre on A" (T*S)®Q.

Put

Ar = V¢ + /IDX —

(4.18)

ay = pTrs[exp(—A? p)]. (4.19)
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We have deliberately kept the same notation in (4.4) and (4.19), since a; in (4.19) is
just the rigorous Hamiltonian version of (4.4). Then a; is a smooth even form on S.
Let ag be the real even closed form on S given by

ao:/ A(TX, VT¥)ch(E, VE), (4.20)
X

The following result was established in [B86a], and is called the local families
index theorem.

Theorem 4.1. The even forms a; are real, closed, and their cohomology class does
not depend on t > 0. More precisely,

[ai] = ch(m E). (4.21)

Ast — O,
ar = ag + O(t). (4.22)

From Theorem 4.1, we recover the families index theorem of Atiyah-Singer
[AS71] in the form given in (4.2).

Let us note here that the local index theorem in (3.24) is a special case of the
local families index theorem, or more precisely of its proof. However, as explained
in [B98], the local families theorem can be viewed as the adiabatic limit of the local
index theorem.

Assume that the dimension of ker DX is locally constant, so that ker DX is now

a smooth Z,-graded vector bundle on S. Let VX&' DX he the orthogonal projection of
the connection V2 on ker DX. Put

aso = ch(ker DX, vkerD™). (4.23)
The following result was established by Berline and Vergne in [BeGeV92].
Theorem 4.2. Ast — +o0,
ar = ax + O(1/V1). (4.24)

Ultimately, we have established the following extension of (3.54),
ay = gp(—zin)—“/z(C/@)”/ at AC. (4.25)
LX

Let us mention again that while the right-hand side of (4.25) predicts the behaviour
of (4.25) as t — 0, this right-hand side does not say anything on the behaviour of
(4.25) ast — +o0. Again this is natural from a Fourier perspective.

However, we will disregard this inconsistency, and extend (4.25) formally to
t = +o00, so that

aso = p(=2i7)"2(C/NCH" | . (4.26)
LX
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Equation (4.26) has to be taken with care, even from a formal point of view. If the
bundle E was trivial, it would say that a,, = 0, which is not the case in general.
Again the discrepancy comes from the fact that L X is not compact. We have actually
warned enough the reader on this question.

4.2 The local Getzler operator and superconnections

In Remark 1.4, we pointed out that in our proof of the localization formula in

Theorem 1.3, equation (1.36) for e, *(Nx, /x, V\Xk/X) is obtained as the integral

. N, . .
along the fibre of a d; >§(K/X—closed form, demonstrating this way that some ver-

sion of the integral along the fibre is already present in the proof of the standard
localization formula.

If one admits that in infinite dimensions, such integrals along the fibre correspond
to superconnections, this indicates that there should be a superconnection version of
the local index theorem.

This we will briefly demonstrate, along the lines of [B90b]. We work temporarily
under the assumptions of Subsection 3.2. Let X" be the total space of T X, and let
Y be the tautological section of the fibre T X on X'. Let £ be the operator along the
fibres of T X,

n 1 2
L=-Z (Vei + E(RTXY, ei)) : (4.27)

In (4.27), the curvature RT X is still viewed as a 2-form on X. The operator £ was
obtained by Getzler in [Ge86] in his proof of the local index theorem. Let q(Y, Y’)
be the smooth kernel associated with the heat operator exp(—L). The critical fact is
that q(Y, Y does not depend on Y, and also that

q(0,0) = A(R™™), (4.28)

which is the key formula leading to the proof of the local index theorem. Equa-
tion (4.28) follows from Mehler’s formula. It is a version of Lévy’s stochastic area
formula [L51]. Indeed Paul Lévy proved that if (x., y.) is a 2-dimensional Brownian
bridge starting at (0, 0) at time 0 and ending at (0, 0) at time 1, fora € R,

: 1
E [exp(?/o (xdy — ydx))} = K(a), (4.29)

from which (4.28) easily follows.

The reader should not have any difficulty in proving that (4.28) is exactly the
proper infinite-dimensional version of (1.36).

But more should be true. Indeed £ should be the curvature of the Levi-Civita
superconnection Ay /> associated with the projection = : X — X, the metric along
the fibres g™ X and the horizontal vector bundle determined by the connection VT X,



Duistermaat—Heckman formulas and index theory 47

The fact that this turns out to be exactly the case was established in [B90b], by an
easy explicit computation. We can then write

A(TX, V) = exp(—AZ ,)(0,0). (4.30)

One of the merits of (4.30) is that it expresses AT X, VTX) as a sort of Chern
character form. Pursuing along these lines would take us too far.

4.3 7 forms and the currents e

The results of Subsection 1.5 gives us a method to transgress the forms a; in the
Lagrangian formalism. More precisely, we define the form g, on LMK as in (1.46).
Set

1
bt = p ——=(—2iz)""?(C/v/C’ ”/ AC. 4.31
t wm( m) (C/VC) LXﬂt (4.31)
Then the analogue of equation (1.63) is given by
0 S
—at = . 4.32
ot at d bt ( 3 )

In the same way, one constructs the current ¢ on LMK as in (1.50). By extending
(1.66) in infinite dimensions, we should get

SL _9i.\—N/2 AN _ _
d mw( 2iz)""2(C//C) | EAC=20 8. (4.33)

Of course (4.31) is still formal. On the Hamiltonian rigorous side, one should
recall that Quillen’s theory is an extension of Chern-Weil’s theory. Therefore from
the rigorous formula form a; in (4.9), one can construct a rigorous odd form by such
that (4.32) holds by an extension of the Chern—Simons transgression mechanism.
A tautological argument shows that the rigorous and non rigorous versions of by
correspond.

Now we introduce the 7 forms of Bismut—-Cheeger [BC89]. Put

+00
7= —/ bedt. (4.34)
0

As the notation indicates, the integral converges on the right-hand side of (4.34).
Indeed one can derive the convergence from the proper application of Theorems 4.1
and 4.2.
By (4.32), we get
dS7 = ag — ase. (4.35)
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By the above, we have the formal identity,

1
7=9p——=(—2ix)""2(C//C’ “/ enp. 4.36
ani”( )(/)Lxﬂ (4.36)
If we define the form ¢ as in (1.65) with u replaced by c, then
1
7= —2iz)"2(C/v/CHM. 4.37

We gave all the proper warnings concerning the interpretation of (4.36). However,
the consequences are quite interesting.

The forms 7 are secondary objects from the point of view of K -theory. They are
related with differential characters of Cheeger—-Simons [ChS85]. On the other hand,
the right-hand side is expressed in terms of integrals of currents on the loop space.

The forms 7 have found many uses. In particular the component of degree
1 (constructed prior to the construction of the forms 7) of # was identified in
[BF86a, BF86b] as a connection form on the determinant bundle det(ker DX).
Equation (4.35) in degree 2 is exactly the curvature theorem of [BF86b] for such
determinant bundles.

In the case where the fibres X are instead odd-dimensional, there is a corres-
ponding families index theorem of Atiyah-Singer, where the family of self-adjoint
operator DX is viewed as defining an element of K1(S). Equation (4.2) is still
formally true. If ker DX is of locally constant dimension, one can define the forms
77, which are now even forms, as before, and they verify an analogue of (4.35), i.e.,

dS7 = ag. (4.38)

The component of degree 0 of 7 is nothing else than the »-invariant of the fibres X in
the sense of Atiyah—Patodi-Singer [APS75a, APS76], which is a spectral invariant
of the operator DX Equation (4.38) reduces to the variation formula of [APS76] for
the n-invariant.

On the other hand, as explained in Subsection 3.7, the fibres L X can now be
viewed as odd-dimensional. Ultimately, an analogue of identity (4.36) still holds in
this case. In particular the n-invariant of [APS76] can be expressed formally as the
integral of a secondary current on the corresponding loop space.

The importance of a formula like (4.36) should not be underestimated. Indeed
it expresses a ‘natural’ object from the point of view of K-theory as the integral
of another ‘natural’ object in equivariant integration theory, that is as a geometric
object.

In Subsection 1.6, we mentioned that the secondary currents ¢ are compatible to
natural functorial operations. When transferred to their infinite dimensional version,
the 7-forms, these are exactly the results obtained in Bismut—Cheeger [BC89].

Similarly there are compatibility results of the currents ¢ to embeddings. For
corresponding results for x-invariants, we refer to [BZ93].
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4.4 Holomorphic torsion forms and Bott—Chern currents

Let us now assume that M and S are complex manifolds, and that z : M — S
is holomorphic with compact fibre X of real dimension n. Again TM, TX =
TM/S, TS denote the corresponding holomorphic tangent bundles. Let (E, g&) be
a holomorphic Hermitian vector bundle on M, and let VE be the associated holo-
morphic Hermitian connection. Let ch(E, gF) be the Chern character form of E
which is associated with VE.

Let (Q©)(X, E|x),a ) be the Dolbeault complex along the fibres X. Let 3"

be the fibrewise adjoint of 3.

We will explain the construction of the analytic torsion forms in Bismut-Gillet—
Soulé [BGS088a] and Bismut—Kohler [BK92]. We will inspire ourselves from Sub-
sections 1.7 and 1.8.

First we try to reproduce formally the geometric situation of Subsection 1.8,
where of course we deal here with loop spaces.

Let M be a real closed (1, 1) form on M, whose restriction w* to the compact
fibres X induces a Kéhler metric g™ X along the fibres. Let VT X be the holomorphic
Hermitian connection on T X which is associated with g *. Let Td(T X, g" *) be
the Todd form of T X associated withv T X,

Let THM c T M be the orthogonal bundle to T X with respect to ™. Let o™-H
be the restriction of ™ to T M. We can write ™ in the form

oM = oM H 40X, (4.39)

In such a geometric situation, one can construct the strict analogue B; of the
superconnection A2 in (4.18). The superconnection Bt on QO (X, E|x) can be
written in the form

cV(TH)
22t

Underlying the definition of By is the fact that the antiholomorphic exterior algebra
A (T*X) is a c(TrX) Clifford module, but we take this for granted.
Put

By = VO VBN 4 G 4 X% - (4.40)

ar = pTrs[exp(—B?)]. (4.41)

In [BGS088a], it is shown that a; is a real closed form on S which is a sum of (p, p)
forms. Let ag be th formon S,

aoz/ Td(TX, g"*)ch(E, gF). (4.42)
X
Let Rz.E € K(S) be the direct image of E by =. The obvious analogue of

Theorem 4.1 holds, simply because the above situation is a special case of the situa-
tion considered in Theorem 4.1. Of course 71 E should be replaced here by R z.E.
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By [Hi74], X is spin if and only if the line bundle det(T X) has a square root.
In the sequel, the reader may assume X to be spin. If this is not the case, LX is
no longer formally orientable in the sense of Subsection 3.7. Still the path integrals
which appear in the sequel can easily be made sense of.
Let ¢ be the form on LMK which is associated with the vector bundle
E ® det?(T X) and its corresponding connection. Then the analogue of (4.25)
holds. The form o™ induces a St-invariant closed (1, 1) form @M* on LMK, The
vector bundle THM lifts to a vector bundle THLMX < TLMX, which is exactly
the orthogonal vector bundle to T LX in TLMK. Also the restriction X of w-M"
to TLX is the Kahler form of the Si-invariant Kahler metric on TLX which is
induced by gT*. If w-M"-H s the restriction of »-M"“ to TH LMK, we have the
identity,
wLMK zwLMK,H + ot (4.43)

The question is now to find an analogue of the double transgression equation
(1.91) for the forms at. In view of (1.90), we need to find the operator-theoretic
counterpart to the form y¢ in (1.90).

Let NV be the number operator on Q) (X, E|x), which acts by multiplication
by k on Q@K (X, E|x). Fort > 0, set

wM-H

Ni = NV +i

—n/a. (4.44)

In (4.44), ®M-H is viewed as a section of z* ALY (TES). Using the dictionary sum-
marized in Table 3.1, it is not difficult to see that N; lifts to the form »"M" on
LMK, and that the decomposition (4.44) of Ny just reflects the splitting of »“M" in

(4.43).
Set
ct = —pTrs[N exp(—B?)]. (4.45)
In [BGS088a, Theorem 2.9], it is shown that
=S =S
@5 -3 0 005 ¢t
bf = ———=¢y, —a = ———. 4.46
! 4iz ot ' T iz 1 (4.46)

No doubt the reader will have guessed that by using the dictionary we mentioned
before, we have the formal equality,

ar = p(=2iz)""?(C/v/C)" /LX ot AC,

1
by = o ——(—2iz)""2(C//CH" 4.47
t w«/ﬂ( iz)""4(C/~vC) LX/ftAc, (4.47)

ct =—i¢(—2in)*”/2(0/\/5)”/ ytAC
LX
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Under the path integral correspondence, (4.46) is exactly the counterpart to
(2.92). In this case, forms y; were guessed from (1.90), (1.91).
Assume now Rz, E to be locally free. The L, metric induces a metric gR”*E on
Rz, E. Set
ax = ch(R 74 E, gR ™F). (4.48)

A nontrivial application of (4.24) shows that ast — +oo0,
ar = ac + O(1/V1). (4.49)

There is a similar result for c;.

Definition 4.3. Fors € C, s < 1, set

1 +00 s—1
R(s) = TS)/O 571 (cy — Coo)dt. (4.50)

Then one finds easily that R(s) is a holomorphic function of s which extends holo-
morphically near s = 0. Set

2RO lsms. (451)

Now we state the result of [BGS088a, Theorem 2.20] and [BK92, Theorem 3.9].

T =

Theorem 4.4. The form T on S is real and is a sum of forms of type (p, p).
Moreover,

3°55 EAY

—T =aw — & T =
2irx o 0 din

(4.52)

=

Proof. The proof follows in particular from equations (4.46).

The forms T are called holomorphic analytic torsion forms.
Let z be the form over S in (1.94), with x = c. From (1.92), (1.95), (4.47),
(4.50), and (4.51), we get the formal equality

T = —ip(=2iz)""23(C/v/C) . (4.53)

which, by (1.95), can also be rewritten in the form
T= —i¢(—2in)—“/2(C/J6)”/ o AC. (4.54)
LX

The second equation in (4.52) is compatible with (1.97), (4.37) and (4.53).

The component of degree 0 of T, which we denote by T© is the Ray-Singer
holomorphic torsion [RS73] of the fibre X, which is a spectral invariant of the fibre,
used by Quillen [Q85b] to define the Quillen metric on the determinant of the coho-
mology. In degree 2, the first equation in (4.52) is just a consequence the curvature
Theorem of [BGS088b] for Quillen metrics.
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Let us just outline a few applications of the above formal equalities. Since these
equalities are formal, ‘applications’ should be taken here with a touch of salt.

Indeed an important question in the theory of analytic torsion forms is to
understand their dependence on the given metrics. This was carried out in [BGS088b,
BK92]. The corresponding question for the currents ¢ was dealt with in [B90a].

We already stressed the importance of studying the compatibility of the above
objects to functorial operations. For the forms T, in the case of submersions, this
was carried out in [BerB94, Ma99, Ma00].

For immersions, the corresponding problem for analytic holomorphic torsion
forms was studied in [BL91, B97], and for the currents ¢ in [B92a]. The proofs
of [BL91] and [B92a] were shown in [B92b] to be parallel. Of course it is very
difficult to show that the arguments one uses in the Lagrangian side can be made
rigorous and imported in the rigorous Hamiltonian side.

It is now time to extend further table 3.1 on the Hamiltonian—Lagrangian corres-
pondence, by incorporating what we learnt from the present section.

Table 4.1 The Hamiltonian—Lagrangian correspondence

Supertraces of heat operators | Integrals of differential forms on L X
rs Jix
DX dex
DX.2 Lk
Tr[[D*, A]l =0 Jix d}IZX/‘ =0
Local index theorem Localization formula
Local families index Equivariant integration along the fibre
n-invariant and 7-forms Currents ¢
Holomorphic torsion forms T Bott—Chern forms ¢

Note that the Ray-Singer analytic torsion in de Rham theory has a Lagrangian
counterpart which has been studied in [BG0o04]. The finite-dimensional theory is
connected with a different kind of localization formulas.

4.5 Lefschetz formulas

The case of Lefschetz formulas can be also approached from the point of view of
infinite-dimensional localization. In this context given a compact Lie group G act-
ing isometrically on X, the action of G lifts to L X and commutes with the action of
SL. The relevant finite-dimensional localization formulas [B86b] now involve two
commuting Killing vector fields. Their extension to infinite dimensions was estab-
lished in [BG000] and relate two versions of the holomorphic torsion forms to the
finite-dimensional Bott—-Chern currents of Subsection 1.7.
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4.6 Towards the hypoelliptic Laplacian

We have already hinted that the Hamiltonian—Lagrangian correspondence, in spite
of the fact that it is not well-defined, can be of considerable help in guessing the
construction of new objects on the rigorous Hamiltonian side, and predicting their
properties.

In [BO5, B08], we developed a theory of the hypoelliptic Laplacian. This is a
family of operators acting on the total space of the tangent or cotangent bundle
of the given Riemannian manifold X, which interpolates between the classical
Laplacian of X and the geodesic flow. Part of the construction was done first in the
Lagrangian formulation, by adequately modifying the differential d,'gx -closed forms
which appear in the path integrals so as to get the desired interpolation property in
the path integral formalism, and then to find the adequate object in the operator
formalism which would correspond to the deformed path integrals.
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Let Q, Q' be two bounded Stein domains (or manifolds) with smooth strictly
pseudoconvex boundaries Xo, X, (these are compact contact manifolds), and fo
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a contact isomorphism Xo — X;. If Hp, H, denote the spaces of CR functions
(or distributions) on Xo, X{ (boundary values of holomorphic functions), S, S’ the
Szegb projectors, the map Eg : u— S(uo fo_l) : Ho — Hy is Fredholm (it is an
elliptic Toeplitz FIO). The index of Eg was introduced by C. Epstein [17, 18, 19, 20],
who called it the relative index of the two CR structures. A formula for the index was
proposed in [27]. A special case was established in [21], and a proof of this index
formula in the general case was given by C. Epstein in [19], based on an analysis
of the situation using the “Heisenberg-pseudodifferential calculus.” (Another proof
based on deformation quantization should also be possible, using the ideas in [23]
and [24].) In this paper we propose a simpler proof based on equivariant Toeplitz-
operator calculus, which gives a straightforward view. Our formula is described in
Section 4.4. It is essentially equivalent to the formula proposed in [27], which was
stimulated by a problem in the theory of Fourier integral operators, a subject in
which Hans Duistermaat was a pioneer [13].

It is awkward to keep track of the index in the setting of Toeplitz operators on Xg
and X; alone, because we are dealing with several Szeg6 projectors, and Toeplitz-
operator calculus controls the range H of a generalized Szeg6 projector at best up to
a vector space of finite rank.*

To make up for this, we use the ball Q ¢ C x Q defined by tf < ¢, where
t is the coordinate on C, ¢ is a smooth defining function (¢ = 0,d¢ # 0 on
Xo = 0Q,¢ > 0 inside; note that this is the opposite sign from the usual one)
chosen so that Log % is strictly plurisubharmonic, so that the boundary X = aQ is
strictly pseudoconvex; such a defining function always exists; e.g., we can choose
¢ strictly plurisubharmonic. Then X is a compact contact manifold with (positive)
action of the circle group U (1). We will identify Xq with the submanifold {0} x Xg
of X.

We perform the same construction for Q': we will see that there exist an equi-
variant germ near Xg of an equivariant contact isomorphism f : X — X’ extending
fo such thatt’ o f is a positive multiple of t, and an elliptic equivariant Toeplitz FIO
E extending Eo, associated® to the contact map f; the holomorphic spaces H, H’
split in Fourier components H, Hj on which the index is repeated infinitely many
times. This construction has the advantage of taking into account the geometry of
the two fillings Q, ', which obviously must come into the picture.

The final result can then be expressed in terms of an asymptotic version of the
relative index (G-index) of E, derived from the equivariant theory of M.F. Atiyah
and 1.M. Singer [4]: the asymptotic index, described in Section 4.4, ignores finite-
dimensional spaces and is well defined for Toeplitz operators or Toeplitz systems; it
is also preserved by suitable contact embeddings.

The asymptotic equivariant trace and index are described in Sections 2 and 3.
The relative index formula is described and proved in Section 4 (Theorem 5).

3 The definition of S requires choosing a smooth positive density on Xo; nothing of what follows
depends on this choice.

4 There is no index formula for a vector bundle elliptic Toeplitz operator, although there is one for
matrix Toeplitz operators, a straightforward generalisation of the Atiyah-Singer formula; cf. [7].

5 f is associated to E in the same manner as a canonical map is associated to an FIO.
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2 Equivariant trace and index

2.1 Equivariant Toeplitz Operators

Let G be a compact Lie group with Haar measure dg(/ dg = 1), g its Lie alge-
bra, and X a smooth compact cooriented contact manifold with an action of G; this
means that X is equipped with a contact form 1 (two forms define the same coori-
ented contact structure if they are positive multiples of each other); G acts smoothly
on X and preserves the contact structure and coorientation, i.e., for any g the image
0« is a positive multiple of 4; replacing 4 by the mean [ g.4 dg, we may suppose
that it is invariant. The associated symplectic cone X is the set of positive multiples
of 2 in T*X, a principal R* bundle over X, a half-line bundle over X.

We also choose an invariant measure dx with smooth positive density on X, so
L2 norms are well defined. The results below will not depend on this choice.

It was shown in [10] that there always exists an invariant generalized Szegd pro-
jector Swhich is a self adjoint Fourier-integral projector whose microsupport is X,
mimicking the classical Szegd projector. The projector S extends or restricts to all
Sobolev spaces; for s € R we will denote by H(® the range of S in the Sobolev
space H3(X), and by H the union.

A Toeplitz operator of degree m on H is an operator of the form f — Tof =
SQf, where Q is a pseudodifferential operator of degree m. Here we use pseudo-
differential operators in a strict sense, i.e., in any local set of coordinates the total
symbol has an asymptotic expansion q(x, &) ~ > .- Om—k(X, &), where gm—k is
homogeneous of degree m — k with respect to &, and the degree m and k > 0
are integers.® A Toeplitz operator of degree m is continuous H®® — H®=™ for
all s. Recall that Toeplitz operators give rise to a symbolic calculus, microlocally
isomorphic to the pseudodifferential calculus, that lives on X (cf. [10]).

In particular, the infinitesimal generators of G (vector fields determined by
elements ¢ € g) define Toeplitz operators T of degree 1 on H. An element P of
the universal enveloping algebra U (g) acts as a higher-order Toeplitz operator Px
(equivariant if P is invariant), and the elements of G act as unitary Fourier integral
operators, or “Toeplitz-FI10.”

H (with its Sobolev counterparts) splits according to the irreducible representa-
tionsof G : H = @ H,.

Below we will use the following extended notions: an equivariant Toeplitzbundle
IE is the range of an equivariant Toeplitz projector P of degree 0 on a direct sum HN.
The symbol of EE is the range of the principal symbol of P; it is an equivariant vector
bundle on X. Any equivariant vector bundle on X is the symbol of an equivariant
Toeplitz bundle (this also follows from [10]).

6 We will occasionally use as multipliers operators of degree m = % (or any other complex
number), with k still an integer in the expansion.
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2.2 G-trace

The G-trace and G-index (relative index in [4]) were introduced by M.F. Atiyah in
his joint work with I.M. Singer [4] for equivariant pseudodifferential operators on
G-manifolds. The G-trace of such an operator A is a distribution on G, describing
tr (g o A). Here we adapt this to Toeplitz operators. Because the Toeplitz spaces
H and E are really defined only up to a finite-dimensional space, their G-traces or
indexes are ultimately defined only up to a smooth function, i.e., they are distribution
singularities on G (distributions mod C°); they are described below, and renamed
“asymptotic G-trace or index.”

If E, F are equivariant Toeplitz bundles, there is an obvious notion of Toeplitz
(matrix) operator P : E — IF, and of its principal symbol o4 (P) (if it is of degree
d), a homogeneous vector-bundle homomorphism E — F over X. The operator P
is elliptic if its symbol is invertible; it is then a Fredholm operator ES — FS—9 and
has an index which does not depend on s.

If E is an equivariant Toeplitz bundle and P : E — [ is a Toeplitz operator of
trace class’ (deg P < —n), the trace function® Tr% (g9) =tr(g o P) is well defined,;
it is a continuous function on G. It is smooth if P is of degree —oo (P ~ 0). If P is
equivariant, its Fourier coefficient for the representation « is itr Plg, (withd, the
dimension of «, E, the a-isotypic component of E).

Definition 1. We denote by charg C X the characteristic set of the G-action, i.e.,
the closed subcone where all symbols of infinitesimal operators Tg, & € g, vanish
(this contains the fixed-point set £©). The base of char g is the set of points of X
where all Lie generators Lg, ¢ € g, are annihilated by the contact form 4; in the
sequel we will usually denote it by Z c X.

The fixed-point set X© is the base of X© because G is compact (there is an
invariant section). The base Z contains the fixed-point set X©. Note that =€ is
always a smooth symplectic cone and its base X© is a smooth contact manifold;
char g and Z may be singular.

The following result is an immediate adaptation of the similar result for pseudo-
differential operators in [4].

Proposition 1. Let P : E — [E be a Toeplitz operator, with P ~ 0 near char g (i.e.,
its total symbol vanishes near char g). Then Trg = tr (g o P) iswell defined as a
distribution on G. If P iseguivariant, we have, in the sense of distributions,

1
TE =2 & (rPIg,) 1 ©)

7dim X = 2n — 1. The Toeplitz algebra is microlocally isomorphic to the algebra of pseudodiffer-
ential operators in n real variables, and operators of degree < —n are of trace class.

8 We still denote by g the action of a group element g through a given representation, for example
if we are dealing with the standard representation on functions, gf = f o g1, also denoted by
g.f,g*1f org 1*f.
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where a runs over the set of irreducible representations, d, is the dimension, and
X« the character.

We have seen above that this is true if P is of trace class. For the general case,
let Dg be a bi-invariant elliptic operator of order m > 0 on G (e.g., the Casimir of a
faithful representation, with m = 2). Since Dg is in the center of U (g), the Toeplitz
operator Dx : [E — E it defines is invariant, with characteristic set char g.

If P ~ 0 near charg, we can divide it repeatedly by Dx (modulo smoothing
operators) and get for any N,

P=DYQ+R withR~0.

The degree of Q is deg P — Ndeg (Dg), so it is of trace class if N is large enough.
We set Trg = D Trg + Tr3: this is well defined as a distribution; the fact that this
does not depend on the choice of Dg, N, Q, R is immediate.

Formula (1) for equivariant operators is obvious for trace class operators, and
the general case follows by application of D>'\<l and Dg‘. Note that the series in the
formula converges in the sense of distributions, i.e., the coefficients have at most
polynomial growth.

Slightly more generally, let

(E,d):-- = Ej E)Ei+1—>~-~

be an equivariant Toeplitz complex of finite length, i.e., I is a finite sequence Ex
of equivariant Toeplitz bundles, d = (dx : Ex — [Ex4+1) a sequence of Toeplitz
operators such that d2 = 0. If the (degree-zero) endomorphism P = {P} of the
complex E is ~ 0 near char g, its supertrace Tr§ = Z(—l)kTrg( is well defined; it
vanishes if P = [Py, P.] is a supercommutator with one factor ~ 0 on char g.

2.3 G index

Let Eg, [E1 be two equivariant Toeplitz bundles. An equivariant Toeplitz operator
P : Eg — E; is G-elliptic (relatively elliptic in [4]) if it is elliptic on char g, i.e., the
principal symbol ¢ (P), which is a homogeneous equivariant bundle homomorphism
Eo — Eji, is invertible on char g. Then there exists an equivariant Q : E; — Eg
such that QP ~ 1g,, PQ ~ 1, near charg. The G-index IFG, is defined as the
distribution Tr$_op — Trf .

More generally,® an equivariant complex IE as above is G-elliptic if the principal
symbol o (d) is exact on char g. Then there exists an equivariant Toeplitz operator
S = (s : Ex — Ek_1) such that 1 — [d, s] ~ 0 near char g([d, s] = ds + sd).

9 This reduces to the case of a single operator where the complex is concentrated in degrees 0
and 1.
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The index (Euler characteristic) is the supertrace I&’d) = str(l —[d,s]) =

iT/G

2CDMG ., | - |
For any irreducible representation a, the restriction P, : Eo, — E1, isa

Fredholm operator with index |, (respectively the conomology H.s of d |, is finite-

dimensional), and we have

(1)}
d,

. _
G i c [
15=> aw(a respectively | & p) = dimH} xq

j.a

The G-index I,S’ is obviously invariant under compact perturbation and deformation,
so it depends only on the homotopy class of ¢ (P) once Ej has been chosen; it does
depend on a choice of I£j (on the projector that defines it, or on the Szeg6 projec-
tor), because I is determined by its symbol bundle only up to a finite-dimensional
space; this inconvenience is removed with the asymptotic index below.

It is sometimes convenient to notate an index as an infinite representation (mod
finite representations) > n, x,. For the circle group U (1), all simple representations
are powers of the tautological representation, denoted by J, and all representations
occurring as indices have a generating series

Z i JX (mod finite sums). 2
keZ

In fact, the positive and negative parts of the series have a weak periodicity property:
they are of the form Py (J*%)/ [, (1 — (J*1H)%) for a suitable polynomial Py and
positive integers k;.1°

Here in our relative index problem, only very simple representations of the form
m>¢° J¥=m(1 — J)~ 1 (for some integer m) will occur.

3 K-theory and embedding

A crucial point in the proof of the Atiyah—-Singer index theorem [2] consists in show-
ing how one can embed an elliptic system A in a simpler manifold where the index
theorem is easy to prove, preserving the index and keeping track of the K-theoretic
element [ A]. The new embedded system F,. A is analogous to a derived direct image
(as in algebraic geometry), and the K-theoretic element [ F;. A] is the image of [ A] by
the Bott homomorphism constructed out of R. Bott’s periodicity theorem (cf. [2]).

10 This notation represents the series expansion in positive powers of J=1: it is obviously abu-
sive but suggestive, especially if one thinks of the extension to a multidimensional torus; it also
represents a rational function whose poles are roots of 1, and whose Taylor series has integral
coefficients, of which the corresponding distribution on G is the boundary value from one or the
other side of the circle in the complex plane. Something similar occurs for any compact group;
cf. [4].
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Here we will do the same for Toeplitz operators. The direct image F; A is even
somewhat more natural, as is its relation to the Bott homomorphism (Section 3.4).
The direct image for elliptic systems does not preserve the exact index, since this
is not defined (because the Toeplitz space H is at best defined only mod a space of
finite rank); but it does preserve the asymptotic equivariant index.

3.1 A short digression on Toeplitz algebras

We use the following notation: for distributions, f ~ g means that f — g is C*; for
operators, A ~ B (or A = B mod C*°) means that A— B is of degree —o0, i.e., has
a smooth Schwartz kernel. If M is a manifold, T*M denotes the cotangent bundle
deprived of its zero section; it is a symplectic cone with base S*M = T*M /R, the
cotangent sphere bundle.

As mentioned above, a compact contact G-manifold always possesses an invari-
ant generalized Szeg6 projector. More generally, if M is a G-manifold, ¥ c T*M
an invariant symplectic cone, there exists an associated equivariant Szeg6 projec-
tor (cf. [10]). f = c T*M, X' c T*M’,and f : £ — X’ is an isomorphism of
symplectic cones, there always exists an “adapted FIO” F which defines a Fredholm
map u — Fu = S(Fu) : H — H’ and an isomorphism of the corresponding
Toeplitz algebras (A — FAF~1, mod C*).

One can choose F equivariant if f is. Indeed, any adapted FIO can be defined
using a global phase function ¢ on T*(M x M’°P) such that!!

(1) ¢ vanishes on the graph of f, and d¢ coincides with the Liouville form &-dx —
n - dy there;

(2) Im¢ > 0, ie, Im¢ > 0 outside of the graph of f, and the transversal
Hessian is >> 0; replacing ¢ by its mean gives an invariant phase; we may set
Ff(x) = fei¢af (y)dydzn d¢&, where the density a(x, &, y, n)dydyd¢ is a
symbol, invariant and positive elliptic (F is of Sobolev degree deg (ady d# d¢)
— %(nx +ny) (cf. L. Hormander [22]), so a is possibly of nonintegral degree if
we want F of degree 0). The transfer map from H to H' is SFS.

If M is a manifold and X = S*M, the cotangent sphere, X carries a canonical
Toeplitz algebra, viz. the sheaf Es+p of pseudodifferential operators acting on the
sheaf x of microfunctions. In general, if X is a contact manifold, we will denote by
Ex (or just &£) the algebra of Toeplitz operators on X. It is a sheaf of algebras on
X acting on uH = H mod C°°, which is a sheaf of vector spaces on X; the pair
(Ex, nH) is locally isomorphic to the pair of sheaves of pseudodifferential operators
acting on microfunctions. If X is a G-contact manifold, we can choose the Szeg8
projector invariant, so G acts on £x and ux.

For a general contact manifold, Ex is well defined up to isomorphism, indepen-
dently of any embedding, but no better than that. The corresponding Szegd projector

11 op in M’°P refers to the change of sign in the symplectic form on T*M’.
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(not mod C°) is defined only up to a compact operator (a little better than that; see
below).

3.2 Asymptotic trace and index

The symbol bundles E; of the Toeplitz bundles [Ej determine these only up to a
space of finite dimension (because, as mentioned above, both the projector defining
them, and the Szegd projector, are not uniquely determined by their symbols).
However, if E, E" are two equivariant Toeplitz bundles with the same symbol, there
exists an equivariant elliptic Toeplitz operator U : E — [’ with quasi-inverse V
(i.e.,, VU ~ 1g, UV ~ 1g/). This may be used to transport equivariant Toeplitz
operators fromEto E: P — Q = UPV. Thenif P ~0on Z, Q = UPV and
VU P have the same G-trace, and since P ~ VU P, we have Tr§ — Trg € C*(G).

Definition 2. We define the asymptotic G-trace of P as the singularity of Trg (i.e.,
Tr$ mod C*(G)).

The asymptotic trace vanishes if and only if the sequence of Fourier coefficients of
TrS is of rapid decrease, i.e., O(c,)~™ for all m, where c, is the eigenvalue of Dg
in the representation .. This is the case if P is of degree —ooc.

Definition 3. We will say that a system P of Toeplitz operators is G-élliptic
(relatively elliptic in [4]) if it is elliptic on charg. When this is the case, the
asymptotic G-index (or 18) is defined as the singularity of 1S. (We will still denote
it by IS if there is no risk of confusion.)

We denote by K ©(X — Z) the equivariant K-theory with compact support. By the
excision theorem, K& (X — Z) is the same as K§(3_Z(X), the equivariant K-theory
of X with compact support in X — Z, i.e., the group of stable classes of triples
d(E, F, u), where E, F are equivariant G-bundles on X, and u an equivariant iso-
morphism E — F defined near the set Z (the equivalencerelationisd(E, F,a) ~ 0
if a is stably homotopic (near Z) to an isomorphism on the whole of X). The
asymptotic index is also defined for equivariant Toeplitz complexes, exact near
charg.

Ifu:E — TFisa G-elliptic Toeplitz system or complex, its principal symbol
defines a homogeneous linear map on X, invertible on char g. Its restriction to any
equivariant section of X defines a K-theoretic element [u] € K&(X — Z) (in case
of a complex, u defines the same K-theoretic element as u + u* : E&ve" — [odd),
The asymptotic index depends only on the homotopy class of the principal symbol
o (P), and since it is obviously additive, we get the following

Theorem 2. The asymptotic index of u depends only on the K-theoretic element [u].
It defines an additive map from K€ (X — Z) to C~>(G)/C>(G), where Z is, as
above, the base of char g.
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Note that the sequence of Fourier coefficients "dp is in any case of polynomial

growth with respect to the eigenvalues of D or Dy; if P ~ 0, it is of rapid decrease.
The coefficients . T of the asymptotic index are integers, so they are completely
determined, except for a finite number of them, by the asymptotic index.

Remark. If V is a finite-dimensional representation of G and V ® P or V ® d
is defined in the obvious way, we have 13, = xvIS (i.e., Index (V ® P), =
(V ® Index P),, except at a finite number of places).

For example, let G = SU, acting on the sphere X of V. = C? in the usual
manner, and E = S™V the mth symmetric power. Then E x X is a G bundle with
the action g(v, X) = (gv, gx). The CR structure on the sphere gives rise to a first
Szeg0 projector S (v - f) = v - S(f), where Sis the canonical Szeg8 projector on
holomorphic functions. On the other hand, since X is a free orbit of G, the bundle
E x X is isomorphic to the trivial bundle Eq x X, where Eg is some fiber (i.e., the
vector space of homogeneous polynomials of degree m, with trivial action of G).
This gives rise to a second Szeg6 projector S, not equal to the first, but giving the
same asymptotic index; we recover the fact that STV @ 3 KV ~ (m+1) > SV
(= in degree > m).

3.3 £-modules

For the sequel, it will be convenient to use the language of £-modules. In the C*
category, £ is not coherent; general £-module theory is therefore not practical and
not usefully related to topological K-theory. We will just stick to the two useful
cases below (elliptic complexes or “good” modules).!? Note also that the notion
of ellipticity is slightly ambiguous; more precisely: a system of Toeplitz operators
(or pseudodifferential operators) is obviously invertible mod C* if its principal
symbol is, but the converse is not true. The notion of “good” system below partly
compensates for this; it is in fact indispensable for a good relationship between
elliptic systems and K-theory.

If M is an £-module (respectively a complex of £ modules), it corresponds to
the system of pseudodifferential (respectively Toeplitz) operators whose sheaf of
solutions is Hom (M, uH); e.g., a locally free complex of (L, d) of £-modules
defines the Toeplitz complex (E, D) = Hom (L, H).

More generally we will say that an £-module M is “good” if it is finitely gene-
rated, equipped with a filtration M = |J M (i.e., EpMq = Mpiq, [ Mk = 0)
such that the symbol gr M has a finite locally free resolution. We write o (M) =
Mo/ M_1, which is a sheaf of C>* modules on the basis X; since there exist
global elliptic sections of &£, gr M is completely determined by the symbol, as is
the resolution.

12 Things work better in the analytic category.
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A resolution of o (M) lifts to a “good resolution” of M, i.e., a finite locally free
resolution®® of M.

It is standard that two resolutions of o (M) are homotopic, and if o (M) has
locally finite locally free resolutions it also has a global one (because we are work-
ing in the C® category on a compact manifold or cone with compact support, and
dispose of partitions of unity); this lifts to a global good resolution of M.

If M is “good,” it defines a K-theoretic element [M] € Ky(X) (where Y is
the support of o (M)), viz. the K-theoretic element defined by the symbol of any
good resolution (this does not depend on the resolution, since any two such are
homotopic).

All this works just as well in the presence of a G-action (if the filtration etc. is
invariant).

As above (Section 2.2), the asymptotic G-trace Tr(/i [using subscripts as before]
is well defined if A is an endomorphism of a good locally free complex of Toeplitz
modules. The same holds for a good module M: the asymptotic trace of A €
End £(M) vanishing near charg is the asymptotic trace of any lifting of A to a
good resolution of M. (Such a lifting, vanishing near char g, exists and is unique up
to homotopy, i.e., modulo supercommutators.) Likewise, the asymptotic G-index of
a locally free complex exact on Z, or of a good £- module with support outside of
Z, is defined: it is the asymptotic G-trace of the identity.

Definition 3 of the asymptotic index (or Euler characteristic) extends in an
obvious manner to good complexes of locally free £-modules or to good £-modules.
The asymptotic G-index of such an object, when it is G-elliptic, depends only on
the K-theoretic element which it defines on the base.

Let us note that the asymptotic trace and index are still well defined for locally
free complexes or modules with a locally free resolution, not necessarily good; in
that case, what no longer works is the relation to topological K-theory on the base.

3.4 Embedding

If M is a manifold, £ c T*M a symplectic subcone, the Toeplitz space H is the
space of solutions of a pseudodifferential system mimicking dp. If | C & is the
ideal generated by these operators (mod C*°), and M = &/I, we have uH =
Hom ¢ (M, u) (asasheaf: f € Hom (M, u) — f(1); here as above u denotes the
sheaf of microfunctions). For example, in the holomorphic situation, | is the ideal
generated by the components of &,

We have End ¢ (M) = [I : 1], the set of pseudodifferential operators a such that
la C |, acting on the right: if a € [I : I], the corresponding endomorphism of M
takes f (mod I) to fa (mod I); this vanishes if and only if a € |. The map which
takes a € [I : I] to the endomorphism f — af of H defines an isomorphism from

13 The converse is not true: if d is a locally free resolution of M, its symbol is not necessarily a
resolution of the symbol of M, if only because filtrations must be defined to define the symbol and
can be modified rather arbitrarily.
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End ¢ (M) to the algebra of Toeplitz operators mod C*°. Thus M isan Etey — Ex
bimodule (where €5 >~ End 5 denotes the sheaf of Toeplitz operators mod C°).

This extends immediately to the case in which T*M is replaced by an arbitrary
symplectic cone £” with base X”.1* The small Toeplitz sheaf xH can be realized
as Hom gv (M, uH"), where M = £”/1 and | c £” is the annihilator of the Szeg6
projector Sof X (i.e., the null-sheaf of I in Hom ¢» (M, H") = pxH). If P is a (good)
E-module, the transferred module is M ®¢ P, which has the same solution sheaf
(Hom ¢» (M ®P,H") = Hom g» (P, Hom ¢ (M, H")) and Hom g/ (M, H”) = H).
Thus the transfer preserves traces and indices.

The module M = £”/1 is generated by 1 (mod 1) and has a natural filtration,
which is a good filtration, in the holomorphic case, the good resolution is dual to the
complex &, on (0, %) forms.

In general it always has a good locally free resolution, well defined up to homo-
topy equivalence. In a small tubular neighborhood of = one can choose this so that
its symbol is the Koszul complex on A N’, where N’ is the dual of the normal
tangent bundle of X equipped with a positive complex structure (as in the holo-
morphic case). The corresponding K-theoretic element [M] € K (X”) is pre-
cisely the element used to define the Bott isomorphism (with support Y c X)
K$(E) — K?(Z”). (Here, Y is some set containing the support of ¢ (M) and
the map is the product map: [E] — [M][E], where the virtual bundle [E] on X is
extended arbitrarily to some neighborhood of = in =)

For example, if £” is CN\{0}, with Liouville form Imz - dz and base the unit
sphere X” = $2N-1 H" is the space of boundary values of holomorphic functions,

¥ C X’ consists of the nonzero vectors in the subspace z; = --- = z« = 0, and
X c X" is the corresponding subsphere, then H consists of the functions indepen-
dentof z3, ..., z, and | is the ideal spanned by the Toeplitz operators Tp,, ... Tp,.
In this example the ideal | is generated by 71, ..., Z, or by Tz, j=1,....k(on
the sphere we have T;; = (A+ N)Tz with A=T N Zjaj). The £-module M itself
has a global resolution with symbol the Koszul complex constructed on 7y, . . ., Z.

What precedes works exactly as well in the presence of a compact group action.
If P is a good module with support outside of Z (or a complex with symbol exact
on Z), the transferred module has the same property (Z c Z”), and it has the same
G-index (the G-index of the complex Hom ¢ (M, H) ~ Hom g~ (M”, H")).

If X, X” are (compact) contact G-manifolds, f : X — X’ an equivariant
embedding, P a good (G — &)-module with support outside of Z (the base of
charg in X), or a Toeplitz complex, exact on Z, the transferred module on X is
fiP=M®yte P Thisis exact outside of f (%) and has the same G-index as
P; its K-theoretic invariant [P] is the image of [P] by the equivariant Bott homo-
morphism. The K-theoretic element [, P] € K)%_Z(X) is the image of [P] by

14 We use a double prime here because, eventually, we will be embedding two cones in a third one.

15 Toeplitz operators (mod C*) live on T and their principal symbols are homogeneous functions
on . However, the K-theoretic element [u] € KC(X — Z) of a G-elliptic element lives on the
base X, so as the support of “good” £-modules or complexes, in contrast to what happens for
pseudodifferential operators.
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the Bott homomorphism (it is well defined, since f(Z) c Z”). Thus we have the
following Theorem.

Theorem 3. Let f : X — X” be an equivariant embedding. The Bott homomor-
phismK$ 5 (X) — K$,_,,(X") commutes with the asymptotic G index.16

It is always possible to embed a compact contact manifold in a canonical contact
sphere with linear G-action. In fact, it is easier to work with the corresponding cones,
as follows:

Proposition 4. Let ¥ be a G-cone (with compact base), A a horizontal 1-form,
homogeneous of degree 1, i.e,, pu4 = 0, and L,4 = 4, where p is the radial
vector field, generating homotheties. Then there exists a homogeneous embedding
X = z(x) of T inaunitary representation space V¢ of G suchthat 1 = Imz - dz.

In the proposition, z(x) must be homogeneous of degree % This applies of course
if X is a symplectic cone, A its Liouville form. (The symplectic form is w = d1 and
A=pow.)

We first choose a smooth equivariant function y = (yj), homogeneous of degree
%, realizing an equivariant embedding of X in V — {0}, where V is a real unitary
G-vector space (this always exists if the base is compact (the coordinates z; on V
are homogeneous of degree % so that the canonical form Imz - dz is of degree 1)).
Then there exists a smooth function x = (xj) homogeneous of degree % such that
A = 2x - dy. We can suppose x equivariant, replacing it by its G-mean if need be.
Since y is of degree % we have 2p_.dy = vy, hence x - y = pi = 0. Finally, we get

A=1Imz.-dz withz=x+1y.

4 Relative index

As indicated in the introduction, we are considering the index of the Fredholm map
Eo:ur~ Suo fo‘l) from Hp to Hf, where Xo, X{ are the boundaries of two
smooth strictly pseudoconvex Stein manifolds Q, ', H, H' the spaces of CR distri-
butions (ker ép, equal to space of boundary values of holomorphic functions), S,
the SzegG projectors, and fq a contact isomorphism Xo — Xj.

As announced, we modify the problem and move to the larger boundaries X, X’
of “palls” [t|? < ¢, |t'|2 < ¢ in Cx Q, Cx ', onwhich the circle group acts (t
€'“t) (Section 4.1). We will see (Section 4.2) that the Toeplitz FIO Eg defines almost
canonically an equivariant extension F which is U (1)-elliptic, and Index (F g, ) =
Index (Eo) for all k (Hyx c H(X) is the subspace of functions f = tkg(x)), so that

16 As mentioned above, the interplay between the Bott isomorphism and embeddings of systems
of differential or pseudodifferential operators lies at the root of Atiyah-Singer’s proof of the index
theorem; it is described in M.F. Atiyah’s works [1, 2, 3, 4]; cf. also [11] in the context of holomor-
phic D-modules, close to the Toeplitz context.
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our relative index Index (Ep) appears as an asymptotic equivariant index, easier to
handle in the framework of Toeplitz operators.

In Section 4.3 we will show that the whole situation can be embedded in a large
sphere, with action of U (1) as in the examples above. In the final result (Section 4.4)
the relative index appears as the asymptotic index of an equivariant U (1)-elliptic
Toeplitz complex on this large sphere. In general, the equivariant index (asymp-
totic or not) is rather complicated to compute, but in our case the U (1)-action
is quite simple.1” It reduces naturally to the standard Atiyah-Singer K-theoretic
index formula on a symplectic ball. The result is better stated in terms of K-theory
anyway, but it can be translated via the Chern character in terms of cohomology or
integrals. We give here a (rather clumsy) cohomological-integral translation, essen-
tially equivalent to the result conjectured in [27].

We will also see below (Section 4.2) that fp has an almost canonical extension
f near the boundary, well defined up to isotopy, not holomorphic but symplectic.
We can then define a space Y by gluing together Y., Y_ by means of f. The space Y
is not a Hausdorff manifold, but it is symplectic and both Y., Y_ carry orientations
which agree on their intersection (as do the symplectic structures). We can further
choose differential forms v representatives of the Todd classes of Y. so that they
are equal near the boundary Xo (the symplectic structures agree, not the complex
structures, but they define the same Todd classes).

Theorem 5. The relative index (index of Ep) is the integral fY(v+ —v_), where
vy are representatives of Todd(Y+) as above, so that the difference has compact
supportinY — Xo.

This will be explained in more detail below (Section 4.4). This formula is related
to the Atiyah—Singer index formula on the glued space Y, but is not quite the same,
since Y is not a symplectic manifold.

To prove the index theorem we will give an equivalent equivariant description of
the situation, where the index of Ey is repeated infinitely many times, and embed
everything in a large sphere where the index is given by the K-theoretic index char-
acter (Section 4.4).

4.1 Holomorphic setting

Let Q be a strictly pseudoconvex domain (or Stein manifold), with smooth boundary
Xo; Q = QU Xp is assumed to be compact. We write Q c C x Q for the ball
t|> < ¢, where ¢ is a defining function (¢ = 0, d¢ # 0on Xo, ¢ > 0 |n5|de) ¢ is
chosen so that the boundary X = o is strictly pseudoconvex, i.e., Log 2 3 is strictly

plurisubharmonic (i.e., Im aa > 0).

The circle group U (1) acts on X by (t,x) — (€*t, x). We choose as volume
element on X the density d@ do, where dv is a smooth positive density on Q

17 1t is free on the support of the K-theoretic symbol of our complex.
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(t = €?t]). This is a smooth positive density on X; it is invariant by the action
of U (1) as are the Szegd projector Sand its range H, the space of boundary values
of holomorphic functions.

The infinitesimal generator of the action of U (1) is dp, and we denote by D the
restriction to H of %ag, which is a self-adjoint nonnegative Toeplitz operator; D is
the restriction of T; T,.

The model case is the sphere S2N+1 = CN+1 with the action

t=2,2=(z1,...,2n)) —~ (€%, 2).
The Fourier decomposition of H,
H=&k0Hkx (Hk=ker(D -k,

corresponds to the Taylor expansion of holomorphic functions: the kth component
of f = fi(x)tk e His fitk.

Hp identifies with the set of holomorphic functions on Xg (it is the set of
boundary values of holomorphic functions on Q with moderate growth at the bound-
ary, i.e.,, |f| < cd(-, Xo)~™N where c and N are constants, and d(-, Xo) is the
distance to the boundary).

Remark. If f = tXg(x) with g continuous, in particular if f e Hy, its LZ(X)
norm is

T
Ifleo0 = 357 /Q P (x| dv,

where as above, do is the chosen as the smooth volume element on Q. The restriction
of the Szeg6 projector to functions of the form tKg(x) is thus identified with the
orthogonal projector on holomorphic functions in L2(<Q, ¢"+1du). Such sequences
of projectors were considered by F.A. Berezin [5] and further exploited by M. Englis
[14, 15, 16], whose presentation is closely related to the one used here.

For the sequel, it will be convenient to modify the factorisation D = té.
We begin with the easy following result.

Lemma6. Let D = PQ be any factorisation where P, Q are Toeplitz operators
and [D, P] = P. Then there exists a (unique) invariant invertible Toeplitz operator
U suchthat P = tU, Q = U 15.

Indeed it is immediate that any homogeneous function a on ¢ such that ilaga =
+a is a multiple mt of t (respectively of f), with m invariant. For the same reason
(or by successive approximations) a Toeplitz operator A such that [D, A] = A s
a multiple of TtM (or M'T;) Tt with M or M’ invariant (respectively of Tj,, on the
right or on the left). Thus in the lemma above we have P = TtU, Q = U’'T,,, where
U, U’ are Toeplitz operators which necessarily commute with D, and are elliptic
and inverses of each other.

Note that D = PQ, [D, P] = P isequivalentto D = PQ, [Q, P] = L.
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In particular, since D = D* = TZT;", there exists a Toeplitz operator A such that
Ta = AT Als elliptic of degree 1 (in fact invertible), positive since D = Ty AT*
is self-adjoint > 0; it is also invariant: [D, A] = 0.

Definition 4. We will set 7 = TtA%; its symbol is denoted by ¢ (7) = z.

Note that 7 is homogeneous of degree % and 7 is of degree i, so it is not a

Toeplitz operator in our strict sense, but for multiplications and automorphisms
P — UPULitis just as good. We have

T* = AIT¥, [D,7T]=7-D=TT"* 3)

(for any other such factorisation D = BB* with [D, B] = B, B is of degree % and
we have B = 7U with U invariant and unitary; 7 is the unique Toeplitz operator
giving such a factorisation and such that 7 = T; A’ with A’ a Toeplitz operator of
degree 3, A > 0).

In what precedes, all = signs can be replaced by ~ (= mod C*°); we then get
local statements.

The symbol ¢ = ¢(7) is the unique homogeneous function of degree % such
that o (D) = |7|%, 69T =i T, T >0.

We also have the following (easy) local result:

Lemma 7. Given any Toeplitz operator K (mod C*) on H such that D ~ KK*,
[D, K] = K near the boundary, there exists a unique unitary equivariant Toeplitz
FIO F suchthat F|y, ~ Id, FT ~ KF.

The geometric counterpart is this: given any function k on £ homogeneous
of degree % such that o (D) = kk there exists a unique germ of homogeneous
symplectic isomorphism f such that |y, = Id, ko f = 7. This is immediate
because the two Hamiltonian pairs H,, Hz, Hi, Hy define real 2-dimensional folia-
tions, and an isomorphism £ ~ X x C near Xg. Note that this would not work
if we replaced k, k by two functions a, b such that ¢ (D) = ab, dpa = ia but not
b = &, because then the “foliation” defined by the Hamiltonian vector fields Ha, Hp,
although it is formally integrable, is not real.

The operator statement follows, e.g., by successive approximations. Note that F
is completely determined by its restriction Fp if it commutes with 7. In factin &y,
the commutator sheaf of 7" and 7 identifies with the inverse image of €5, at least
as far as the leaves of the Hamiltonian fields Hz, H7 define a fibration over Xg: €3
is the (completed) tensor product of the Toeplitz algebra Toepl(7, 7*) generated by
7 and 7™ and this commutator: £x ~ Ex, ® Toepl(7, 7*) (in a neighborhood of
Xo). In this statement, (7', 7*) cannot be replaced by (Tt, T, ), whose commutator
sheaf is defined only in the algebra of jets of infinite order along X, because the
Hamiltonian leaves are complex, no longer real.

Note that in our case, the base of charg is the boundary Xq (the set of fixed
points), outside of which D is elliptic.
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4.2 Collar isomorphisms

Let now Q" be another strictly pseudoconvex domain (or Stein manifold) with
smooth boundary X’. We do the similar constructions ', H', and D’, ... as in
the previous subsection. Let fo : Xo — X{, be a contact isomorphism.

We define the Fourier Toeplitz operator Eg : u +— S'(uo fo_l) . H — H’, which

is a Fredholm operator. It will be convenient to replace Eq by Fo = (Eg Eg‘)—% Eo,

which has the same index and is unitary mod C* (EoEj is an elliptic > 0 Toeplitz

operator on H'); (EoEg)_% is defined to be 0 on ker Ej (mod C* would be

quite enough). As for Q, we construct a Toeplitz operator 7’ such that D’ =
T'T* [DT=T,T, 7 > 0.

Exactly as in Lemma 4.2, there exists a unique (unitary) Toeplitz FIO F, defined
near the boundary Xo and mod C, elliptic, such that F g, = Fo,and F7 ~ 7'F
near the boundary (mod C°).

The geometric counterpart is this: there exists a unique equivariant germ of
contact isomorphism f : X — X’ (defined and invertible near the boundary) such
that f|x, = fo, 7/ =70 f.

We may extend F, using an invariant cut-off Toeplitz operator, so that it vanishes
(mod C*°) away from the boundary. There is an invariant FIO parametrix F’, i.e.,
F'F ~ 1, FF’ ~ 1y, near the boundary.

Proposition 8. For any k, Fx = F|p, hasanindex, equal to Index Fo.

Proof. Both F’'F and FF’ are invertible on the boundary, so have a G-index;
the index of Fx = Flg, istr(1 — F'F)x — tr (1 — FF')x. Now T, respectively
7', is an isomorphism Hy — Hyi,1, respectively Hy — H{(+1, and we have
Index (Fk+1A) = Index (A'Fy), so Index Fx+1 = Index Fy, i.e., the index does
not depend on k and is equal to Index Eg.18

The asymptotic index is stable by embedding; here the index is constant, and the
asymptotic index of F (which is essentially a Toeplitz invariant) gives the index of
Fo itself.

4.3 Embedding

Theorem 9. Let f : X — X’ be a collar isomorphism defined in some invariant
neighborhood of Xg in X. Then for large N there exist equivariant contact embed-
dingsU : X — $?N+1 U’ : X’ — §2N+1 guchthat U = U’ o f near the boundary,
and tx, t},, map to positive multiples of tgen 41 (as above, the contact sphere S2N+1
is equipped with the U (1)-action (t, z) — (€t, 2)).

18 For a more general situation in which P is a Toeplitz operator elliptic on Xg, or in which the
canonical Szeg6 projector is replaced by some other general equivariant one, we would get only
that the index Index (Py) is constant for k >> 0. Here the fact that Index Py = Index Py is obvious
but important.
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As usual, it will be more comfortable to work with the symplectic cones. The
symplectic cone of X is ¥ = R4 x X, where we choose the radial coordinate
invariant.

The symbol of D is 7 ¢ with z/t > 0 as in Definition 4. The Liouville form
is Im (zdz) + Ao, where g is a horizontal form, i.e., the pull-back of a form on
Tp=U@\Z ~ Ry x Q (equivalently: 8p_ig = Lg, Ao = 0).

Lemma 4 provides an embedding X — zp(x) of p in CN" — {0} (with the trivial
action of U (1)). We now choose real functions w1, w2 invariant, homogeneous of
degree 0, such that q/f + y/22 = 1, with supp w1 contained in the domain of definition
of f and w2 vanishing near the boundary, and we construct a new embedding z in
three pieces: z = (z1, 22, z3) With z1 = w170, 20 = w229, 23 = 0in CN", N” to be
defined below.

Since Imzjzjyjdyj = 0(zZjzj wjdy;j is real), we still have Im (zy - dzy + 75 -
dz) = (y/f + wzz)lmz‘o -dzyp = ImZy - dzg inducing Ag. The first embedding is
U=(r,0): 2 — CHN(N=2N + N").

Similarly there exists an embedding X' — z)(x) of { in CN" — {0} (with the
trivial action of U (1)).

We replace this by 2 = (7}, 2, ) with z; = yjz1 0 f71,2, = 0,2, = y}7,
where w7, y; again are invariant, homogeneous of degree 0, q/’i + .,/§ =1, and
supp y; is contained in the domain of definition of f-1 w4 vanishes near the
boundary. This also defines an embedding U’ = (&,7) : £’ — CN*L: we have
U = U’ o f near the boundary, since v, y; vanish there.

4.4 Index

We are now reduced to the case in which both U (1)-manifolds X, X’ sit in a large
sphere S = S2N+1 and coincide near the set of fixed points So.

As in the preceding section, we can embed the U (1) sheaves uHx, uHy: as
sheaves of solutions of two good equivariant Es-modules M x, M., and the iden-
tification F gives an equivariant Toeplitz isomorphism F near Xo (we can make the
construction so that My = My, F = Id near Xo)-

The asymptotic index then depends only on the difference element

d([Mx], [Mx]1, o (F)) e KYD(S - sp).

Now U (1) acts freely on S — Sp, with quotient space U (1)\(S — Sp) the open
unit ball B,y < CN. We have the following result.

Proposition 10. The pull-back map is an isomorphism K (B) — KY @ (S — Sp).
We have K (B) ~ Z, with generator the symbol of the Koszul complex ky at the
origin (or any point of the interior), whose index is 1.
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Its pull-back isthe generator of Ké’_%)o (S): the symbol isthe same, but now acting

on H(S). Itsindex is >"¢° JX, where (asin (2)) J is the tautological character of
U): J(e*) =ée*,

The first assertion is immediate (cf. [4]): if G is a compact group acting freely on a
space Y, the pull-back defines an equivalence from the category of vector bundles
on G\Y to that of G-vector bundles on Y (an inverse equivalence is given by E —
G\E), and this induces a bijection on K-theory (with supports).

The fact that ky defines the generator of K (B)(= Kg(B)) is just a restatement of
Bott’s periodicity theorem. Its pull-back is then the generator of KY® (S — Sp): the
corresponding complex of Toeplitz operators is then the standard Koszul complex,
acting on holomorphic functions, whose index is the space of holomorphic functions
of zyg =t alone.

Thus if [u] € KYD(S — Sp), its asymptotic index is m> 52, J¥, where the
integer mis the value of the K-theoretic character K (B) on the element [ug] whose
pull-back is [u].

Let us now return to our index problem: we have constructed the difference
bundle d([Mx], [Mx'], o (F)). We may replace Mx, Mx: by good resolutions in
small equivariant tubular neighborhoods of X, respectively X’, whose K-theoretic
symbol is the Bott element: the Koszul complex for a positive complex structure
on the normal symplectic bundle of X, respectively X’. F lifts to the resolutions
(uniquely up to homotopy), and the symbol of the lifting u is an isomorphism near
Xo (we can make the construction so that u = Id near Xg), so our K-theoretic
elementis [u] = d(fx, fx/, u) (the equivariant K-theoretic element attached to the
double complex defined by u).

Theorem 11. Let m be the index of Ey we are investigating. Then, notation and
embeddings being as above,

(1) the asymptotic index of our equivariant extension F is the asymptotic index of
the difference element [u] = d(Bx, B, u) € KYD (S — Sp), where u is the
symbol of F (i.e., the identity map near Sg, where X and X’ coincide);

(2) the index m itself is the value of the index character of K (B) on the element

[up] = d(Ba. S, 0).

The first part has just been proved. The asymptotic index is ~ m(1 — J)~* for some
integer m.

To prove the second we go down to B,y . The bases of X, X’ are the embeddings
Y., Y_ of Q, Q' in B, which coincide near the boundary, and as above, the pull-back
is an isomorphism Ky, (B) — Kgi (S — Sp). The Bott complexes fx_ descend as
Bott elements Sy, on B, realized as Koszul complexes of positive complex struc-
ture of the normal symplectic bundle;*® u descends as an isomorphism near the
boundary.

19 Note that Y4 are symplectic submanifolds, not complex; but all positive complex structures are
homotopic.
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The index m we are looking for is the K-theoretic index character of the
difference element d(fv, , fy_, u). This can as usual be translated in terms of coho-

mology, or as an integral:
m=[ o
B

where o is a differential form with compact support, representative of the Chern
character of our difference element d(fy,, fy_, u).

We can push this down further. The construction can be made so that u = Id near
the boundary; choose differential forms w. with support in small tubular neighbor-
hoods of Y. so that they coincide near the boundary (as do the tubular neighbor-
hoods), so that w is the difference w; — w_.

The integral vy of wy over the fibers of the respective tubular neighborhoods is
then a representative of the Todd class of Y.; v, and v_ coincide near the boundary,
so that the difference v — v_ has compact supportin Y = Y, U Y_.

Finally, the index m is the integral [, (v — v_) as announced in Theorem 5.

The integral can also be thought of as the constant limit fY v4—Jy_ v—, where
the subscript e means that we have deleted the nelghborhood ¢ <ein Y+ and the
corresponding image in Y_.

4.5 Appendix

In this section we show how various symplectic extensions of fq are related. It is a
little intriguing that although in our proof, the extension f must be chosen rather
carefully so that the asymptotic index of the corresponding Toeplitz FIO E is
(asymptotically) the index of Ep, the final result, expressed as an integral on the
bases glued together by means of f near their boundaries, depends only on the
isotopy class of f, which is unique.

4.5.1 Contact isomorphisms and base symplectomor phisms

Let X be as above, with Xg the fixed-point set of codimension 2. Near the boundary,
X is identified with X = X x C, and the base U (1)\ X ~ Q identifies with Xo xR ;
we have ¢ = tf and the C-coordinateist = /& € (it is smooth on X). The contact
formis Ax = Im (fdt — 0¢) = ¢ dd + /IQ, where g = —Imd¢ is a smooth basic
form. The connection formis y = df — ¢ and the base Q = Xg x R, is equipped
with the (basic) symplectic curvature form

AQ

¢ b
We will still use the symplectic cone of X; thisis ¥ = charg >~ R, x X, with

Liouville form alx and symplectic form its derivative, with the R, coordinate a

w=dy (With y = Ao = —|ma¢) .
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defined below. With the notation of Lemma 4, we have a = o (A), i.e.,, 6(D) =
ap = t7,t = ti/a (as above, D = %Tag denotes the infinitesimal generator of
rotations). We will also write in polar coordinates z = p €¢ (p = /g a).

Let F be a homogeneous equivariant symplectic transformation of . Then F
preserves o (D) = 77, so we have necessarily F,.z = u 7, with u invariant, |u| = 1.
Then F is completely determined by its restriction to the boundary, since it com-
mutes with the two real commuting Hamiltonian vector fields Re H,, Im H,, which
are linearly independent and transversal to Xo.

Thus there is a one-to-one correspondence between unitary functions on the base
Q and germs near g = char g of equivariant symplectomorphisms inducing Id on
char g, or equivalently of contact automorphisms of X inducing Id on Xp.

If F is such a contact automorphism, the base map Fg is obviously a diffeo-
morphism of Q which induces Id on the boundary Xg and preserves the symplectic
form u.

The converse is not true. If Fq is a smooth symplectomorphism of Q inducing
the identity on Xp, we have Fg’i(%ﬂ) = %ﬂ +a with a a closed form. It is elementary
that a = c%"s + £, where c is a constant and £ is smooth on the boundary. Locally
on Xo, Fq liftsto X or X: the liftingis F : (X, 7) — (X', 7/ = z€'¥) (0’ = 0 + y),
where  is a primitive of a (this is not smooth at the boundary, only continuous).
It is immediate that conversely, any « of the form above gives rise to such a contact
isomorphism with smooth base map. (On X the horizontal (invariant) coordinates
satisfy H,qy f = 0; the horizontal part of the Hamiltonian H, g, is —i€¥ (3, —
HS) (with HS = e 0x; — yx;0z); finally, 0, — Hg is smooth, so the horizontal
coordinates (x’, &) are determined by smooth differential equations.) Summing up:

Theorem 12. The map which to a germof contact isomorphism F (near Xp) assigns
the invariant unitary smooth function u such that F*z = zu is one-to-one (and
continuous). In particular, the homotopy class of F is determined by that of u (an
element of H1(X, 7)).

The map which to a smooth germ of symplectomorphism Fq (near Xg) assigns
the closed one-form o = ¢ 92 + smooth is one-to-one; the group of such symplec-
tomorphisms is contractible. The contact lifting (which exists locally, and globally
if o is exact) is smooth on X if and only if ¢ = 0.

The fact that this group is contractible (connected) simplifies the final result.
Namely, in the proof of Theorem 11 it was essential that the base map Fq have
a smooth symplectic extension preserving r > 0; for Theorem 5, however, any
symplectic Fo will do, since these are all isotopic.

45.2 Example
(A smooth symplectic automorphism of the base does not lift to a smooth equi-

variant contact automorphism of the sphere.)
Let S be the unit sphere in CN*1, with coordinates xg = t, Xy, . .., XN.
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U(1) actsby t — €?t. The base is B = S/U (1), the unit ball of CN.

The contact formis Imtdt+4 = ¢df+ A with 1 = > Xjdxj, ¢ = {t = 1 —Xx.

The connection formis y = df+ %; its curvature is the symplectic form u = d;—g
(on the interior of B).

Let Fg be the diffeomorphism of B defined by x - x’ = Fg(x) = €%¢x, ca
constant; this preserves ¢, and the inverse is x = e %¢x’. We have

Fi2 = Im(X(dx + cixdg)) = 2 + c(1 — #)dg.

Since d(1 — ¢)‘{7¢_= 0, g is symplectic (F§u = ). _
But Fg does not lift to a smooth equivariant contact automorphism of S: such a
lifting F must preserve the connection form, so it is of the form

t>e ' (@ 0—a) witha =clLogep — ¢ + const

(da =c(1 - gzﬁ)%‘?”), and this is not smooth at the boundary t = 0 if ¢ # 0.

Of course the reverse works: if F is a smooth equivariant contact automorphism
of the sphere S (or a germ of such near the fixed diameter Sp), the base map Fg is a
smooth symplectomorphism of the ball B (up to the boundary).

4.6 Final remarks

(1) The preceding construction applies in particular to the following situation: let
V, W be two compact manifolds, and fg a contact isomorphism S*V — S*W.

We may suppose V real analytic; then S*V is contact isomorphic to the bound-
ary of small tubular neighborhoods of V in its complexification. For example, if V
is equipped with an analytic Riemannian metric, and (X, ») — ex(v) denotes the
geodesic exponential map, the map (x, v) — ex(iv) is well defined for small », and
for small ¢ it realizes a contact isomorphism of the tangent (or cotangent) sphere of
radius e to the boundary of the complex tubular neighborhood of radius € (cf. [6]).

The corresponding FIOs can be described as follows: as above, there exists a
complex phase (as in [25, 26]) function ¢ on T*W x T*V? such that (1) ¢ vanishes
on the graph of fo and d¢ = &.dx — 5.dy there; (2) Im¢ > 0, i.e., it is positive
outside of the graph and the transversal Hessian is >> 0. Then ¢ is a global phase
function for FIO associated to fp (¢ is not unique, but obviously the set of such
functions is convex, hence contractible).

The elliptic FIOs we are interested in are those that can be defined by a positive
symbol (or a symbol isotopic to 1):

f > g(x) = /ei¢a(x,§, y, n) f (y)dydndé  witha > 0 on the graph.

The degree of such operators depends on the degree of a, but they all have the same
index, given by the formula above.
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(2) The formula above extends also to vector bundle cases: if E, E’ are holo-
morphic vector bundles (or complexes of such) on Q, Q’, fo a contact isomorphism
(6Q — 0Q') as above, and A a smooth (not holomorphic) isomorphism fo.E — E’
on the boundaries, the Toeplitz operator a — S'(Afpsa) is Fredholm and its index
is given by the same construction as above. For this construction fo needs to be
defined only where the complexes are not exact.

In particular let Q, Q' have singularities (isolated singularities, since we still
want smooth boundaries): we can embed Q, Q' in smooth strictly pseudoconvex
domains Q, ' of the same (higher) dimension; the contact isomorphism extends
at least in a small neighborhood of 6Q in 9Q. The coherent sheaves Oq, O have
global locally free holomorphic resolutions on Q, Q'; near the boundary these are
homotopy equivalent to a Koszul complex, hence equivalent.

The theorem above shows that the relative index is the K-theoretic character of
the difference virtual bundle d([Oq], [Oq]) (vanishing near the boundary). Note,
however, that the virtual bundles [Oq], [Oq/] lie in the K-theory of Q with support
in Q. This can be readily described in terms of cohomology classes on Q, etc., with
support in Q, not on Q itself (the relation between coherent holomorphic modules
and topological K-theory, or K-theory and cohomology, is not good enough when
there are singularities).
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Let us consider a (classical) Hamiltonian
( 1.,
H(x, <) = ¢ +V(x)

with V (0) = Eg, V/(0) =0, V”(0) = +1(%). We have

o0
H(x, &) = Eo+ Qs+ »_ajx]
=3

with Q1 = (&2 £ x?). The Hamiltonian H can be quantized as a Schrodinger
operator H = —%hzdd—; + V(x) where the Taylor expansion of V at x = 0 is
Eo + X5, ajx) with a = £3. This operator admits a semi-classical Birkhoff
normal form [8] (denoted the QBNF) at the origin of which the Weyl symbol is a
formal power series of the form

B=Q. + z bj,kﬁszki. 1)
2j+k=>2

In this paper, we are interested in the following “inverse spectral problem”:

Does the QBNF, given in (1), of the Schrodinger operator determine the
Taylor seriesof V?

We cannot hope for a positive answer, because V (x) and V (—x) give the same
QBNF. Moreover

Remark 1.1. The classical BNF does not suffice to determine the Taylor
expansion of V at x = 0.

Lety = f(x) = x + O(x?) be an analytic function whose local inverse near
0 is of the form x = y + g(y) with g an even function. Then the Hamiltonian
Hi = %(52 + f(x)?) is classically conjugate to Q near the origin, in particular
all its trajectories are of period 2z : it is enough to show that the action integrals
I(E) = f§2+f(x)2<2E dxd¢ are the same; using the change of variable x = y+g(y),
we get | (E) = f52+y2§2E(l + g/(y))dyd¢ and using the fact that g’ is odd we get
the result. A simple example is V (x) = %(«/1 + 2x —1)2. This result is reminiscent
of the well-known result for Zoll surfaces in Riemannian geometry [2].

However, an even potential can be determined by the classical BNF, as a con-
sequence of a result of N. Abel [1]*.

Our main result is:

Theorem 1.2. The coefficients a3 and a4 are determined fromby 2 and by o by the
formulas

3 Assuming that V”(0) = +1 does not affect the results below, because a = V”(0)/2 is known
from the first eigenvalue if ap > 0 and from the density of states if a, < 0.

4 We are grateful to Hans for pointing this out to us.
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2 5
a3 = £/b1o, a4 = §b0,2 + §b1,0~

If a3 does not vanish, all a;’s are determined fromthe b i’s and the by k’s once
we have chosen the sign of as.

This result is reminiscent of the much more sophisticated results by Zelditch on the
Kac problem [9]. If we use a (trivial) particular case of the result of [6], we get

Corollary 1.1. If we know the asymptotic expansions of the eigenvalues i, (k) for
all n’s of a Schrodinger operator near the minimum x = 0 of the potential and
V”(0) > 0, we know the value of V"”(0) and, if V"’ (0) # 0, the Taylor expansion
of the potential at that point.

In fact, we have the more precise result:

Corollary 1.2. Fromthe knowledge of the N first eigenvaluesof H modulo O (/2N),
one can recover the Taylor expansion of V to order 2N.

A similar result holds for a local nondegenerate maximum of V using the
“density of states” techniques. This is the content of Section 10:

Corollary 1.3. If Eg is a nondegenerate local maximum of V and 0 is the only
critical point of V onthe set V = Ep, the knowledge of the semi-classical spec-
trumof H in someintervall ]Eq, E1[ (or ]E1, Eo[) determines V" (0) and, provided
that V" (0) # 0, the Taylor expansion of V at x = 0.

and also in the case of a local minimum (Section 10.4):

Corollary 1.4. If Ep is a nondegenerate local minimum of V and 0 is the only
critical point of V onthe set V = Ep, the knowledge of the semi-classical spec-
trum of H in someinterval ]E1, Ey[, with E1 < Eq < Ey, determines V" (0) and,
provided that V"7 (0) # 0, the Taylor expansion of V at x = 0.

Knowing the semi-classical spectrum as a function of i seems to be a huge
amount of information. As was shown in [3], this is however the case for the
effective Hamiltonians driving the propagation of waves inside a stratified medium.

2 A counterexample for a general Hamiltonian

The QBNF of a general Hamiltonian, independent of 2, H(x,¢) = Q1+ + OQ) is
not enough to know the Taylor expansion of H at the singular point. It is enough to
consider H = %((;3— 3x%)2 + x2) which is gauge equivalent to Q. by the gauge
transform u — ue’*".
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3 Review of the Moyal product

The Moyal product is the product rule of symbols of Weyl quantized ¥ DO’s; it is

given by
S 1 (hY
axb= ZF (Z) {a, b};
j=0
with _
i _ _
{a,b}j=>" ( p) (—DPaxal Paoy Pafb.
p=o \
We will also use the Moyal bracket,

[a,b]*=axb—Dbxa.

We have .
i > 1 h\?)
—[a,b]" = — | = b}oii1.
h[aa ] Jzzlozj F11 (2|) {as }2]+l
In particular, {a, b}; = azbyx — axbg is the Poisson bracket and

{a, b}z = ageebyxx — 3acexbxxe + 3aexxbxee — axxxbege.

We have
2 4

i . n? I
h[a,b] = {a,b}1 24{a,b}e,+—1920{61,b}5+ :

4 The Weyl algebra

The “Weyl algebra” which consists of formal power series in i and (X, &),
o0
W=>"w,
j=2

where W; is the space of polynomials in (x, &) and A of total degree j where the
degree of X! ¢MAM is | + m 4 2n. W is a graded algebra for the Moyal product: we
have Wj « Wk C W« and hence £[Wj, Wk]* C Wj k2. Moreover, if we define
W]-Jr as the subspace of Wj which is generated by monomials of even degree in 7,
we have

i

we will define W+ = 37774 Wj+ which is a Lie algebra for the bracket ’Ii[ I
W is the (formal) Lie algebra of FIO’s that are tangent to the identity at the the
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origin. The grading is obtained by looking at the action on the (graded) vector space
of symplectic spinors: if F = Z(j)o:o i Fj(X) with F e S(R), we define fx(x) =

h3 F (x/h) whose microsupport is the origin. W™ acts on this space of functions
in a graded way as differential operators of infinite degree: if w € W, w - f =
OPp(w)(T).

5 Moyal versus functional QBNF

There are two different QBNF:

e The firstis a Weyl symbol B = 3 bj 1% QX as before, and

e the second is an operator which is a formal power series of the harmonic
oscillator & of the form B = 3" bj kh?1 QK.

The second is the Weyl quantization of the first. So they are equivalent. The equi-

valence can be made explicit in both directions by computing OpWeyl(Qk) or the

Weyl symbol of Q¥. The functional form is useful in order to compute successive
approximations of the eigenvalues, while the Weyl form is easier to compute using
the Moyal product.

6 Useful lemmas

The following result is classical:

Lemma 6.1. The equation {Q., P}; = Q where Q is a given homogeneous poly-
nomial of degree N has a solution P, a homogeneous polynomial of degree N,

e if N isodd,
e if N = 2N’ isevenandcy(Q) = 0, where c. isalinear ljorm on the space of
homogeneous polynomials of degree N that satisfiesc.. (QY') = 1. In particular,

given Q, theequation {Q, P}1 = Q — ci(Q)Qf has a solution.

Remark 6.2. In the case Q. c+(Q)QE’ is the average of Q under the natural action
of St on homogeneous polynomials of degree 2N'.

Definition 6.3. We will denote by Z;tN_l the homogeneous polynomial of degree
2N — 1 that satisfies
(Qx, Ty g =x*N"h

Lemma 6.4. We have

2N -2
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We can also check:

Lemma 6.5. The polynomials x2N" are not Poisson brackets of the form x2N' =
{Qy, P1,ie, ce(x®V) #£0.

7 The QBNF
In order to reduce to the QBNF, we will use automorphisms of W+ of the form
H — Hs=exp(i S/h) x H xexp(—i S/h) = exp (Iﬁad(S)*) H

with S= S+ S +--- € W, We get

k brackets

i k/_)—\ *7x *
) SIS - [SHIT T+,

i 1
Hs=H+ —-[SH]"+ -+ ==
S + h[ , HT -+ k! ( =
which is a convergent formal power series whose k-th term is of degree > k + 2.
The brackets will be calculated using the Moyal bracket. We remark that the terms
of degree 0 in A give the calculation of the classical BNF (denoted CBNF) where
the brackets are now just Poisson brackets.

8 Thefirst terms

Let us consider V (x) = 2x2+ax®+bx*+ - .. whose QBNF is Q + AQ? + BAiZ +
O(6) where O(6) means terms of degree > 6 in the Weyl algebra. Here we assume
Q = (&2 + x2). Our first result is:

Theorem 8.1.
15

3
A= a’+ =b, B=a’
4 +2

The calculation: we start with S = S + &, where S(x, &) (resp. S(x,¢)) is a
homogeneous polynomial of degree 3 (resp. 4). There is no need to put terms in /2
in S because they would be of the form ci? which is in the center. We then have

. . )
exp ('ﬁ[s, -]*) H=Q+ 'ﬁ[s, HT" + % (%) [S.[S, HT'T" + 0(6).

By identification of terms of degree 3 and 4 and using the expression of the Moyal
bracket [-, -]*:

i * 1 2
ﬁ[f’g] _{fag}1_24h {fag}3+)
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we get the system of equations:

B)ax® +{$, Q)1 =0
(@) bx* + (S, ax®hy + (S, Q)1 + 3{Ss. (S, Q11 — 5 1S, ax®ls
= AQ? + BH?
Using Equation (3), Equation (4) splits into 2 equations:
4" — (S, ax®z =B
(@") bx* + 3{Ss, ax®h1 + (S, Qh = AQZ.

From Equation (3) and the formula for Xon—_1 given in Lemma 6.3, we get
2 2.3

From Equation (4'), we get B = a2. From Equation (4”), we get the value of A.

9 Theinduction

We carry out the proof in the case of Q. and Eg = 0. The minus caseis similar.
Let us start with

H =Q, +ax®+ - +an_ox?N2

and S =S+ S+ -+ SN2 with §) € W, so that

[
exp (%[S’, -]*) H =Q4 +Bs+---+Bon2+ Ren-1+ Ren 4 --- (= B),

with

e Bpj € W, apolynomial in 7 and Q.
e Forn=2N—-1andn=2N, Ry ¢ W,.

In other words S’ generates the transformation that converts H’ into its QBNF mod
O(2N — 1). The polynomials H’" and S and the partial QBNF B’ are known by
the induction hypothesis. We are now trying to get S" = Sn_1 + SN S0 that
S= S+ S’ converts H = H' + ax?N~1 4 bx2N into the QBNF mod O(2N + 1).
We will only consider the terms of degree 0 and 2 in 4. So we can split every
polynomial P;j in W.* into P = PO+ h?P? + ... with P? of degree j — 4 in
(X, &).
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The equation to solve is
exp (IE[S/ + S'/’ ]*) (H/ + axZN_l + bXZN)
=Q, +B4+---+Ban2+ Boan+O@2N +1) 3)

with Bon = b3 QY + b2 #2QN "2 4 ... We hope to recover a and b from b9,
and b%N using what we know already at this step. The left-hand side of Equation (3)
splits into

exp (Iﬁ[g + 9, .]*) @3N 4 px®Ny = ax?N-1 4 py@N

i
+ +[Ss, ax®N=11 £ O@2N +1),
and

exp (%[S’ + 9, ~]*) H =B + IE[S/, Q, +ax’®”
1 I 2 *Tk *Tx
+507 ([SN-1, [S8, Q4T T + [S8, [SN-1, Q4+ ]T") + 02N + 1),
so that, we get
e Indegree2N — 1:
N 4 (1 Q1+ Ry =0
{SN_1.Q+h + Ry =0.

We see that S5, _, is known at this step, while S, is modulo known terms a
solution of

{Q+7 ngl}l = aXZN_1~
This equation gives, always mod known terms:
Sn_1 = aZan-1,
with Zon-1 given by Definition 6.3.
e Indegree2N:

bx2N + %([&, NI 4 (SN, Q4T+ [SNe1, X3

1

N
T3 (Iﬁ) ([S&N-1, [S8, Q4T T + [Ss, [SN-1, Q+]T) + Ren

= Bon + O(2N + 1).
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The previous equation gives one equation in ° and one in /2

— degree2N, hbar®
bx?N + (S, ax®N Ty + (S, Qi1+ {Sh_1s @)

1 1
+ (SN 1 1S5, Qihih + S(S5, (S 1, Qudh + Roy = by @l

This can be simplified as

(Q4, D = bl +bx?N +

g{sg, x2N-1y, 4 %{SSN_l, X3

1
+ R(QJN - E{S\Sa RgN,1}1 (4)

This gives ng = fNnDb+ ynasa modulo known terms. Moreover, Lemma 6.5
implies SN # 0.
— degree 2N, hbar?

1
-5, S, ax?N g+ (1. ax)s) + (S, Qe h
1
+ 5({8§N_1, (S, Qi + (S, {SEn_1» Q1 J1h)

1
— 25 SN (55, Qs + (S5 (S0 Qi k) + Ry = b3 Q) 2

which can be simplified as

_ 1 _
(Q, Syl = —b5QE T — 2@, " s + asiSn 1. XNe) + R,
5)
modulo known terms. This gives, using Lemma 6.1, b%N = Jnaaz modulo
known terms.

From Equation (5) and the expressions for S (Equation (2)) and Xan-—1
(Lemma 6.4), we get

(N —1)(2N* —4N +3) w2N—4

{Q;, S\ )1 = aag 3

- ngQJ'\r‘_Z mod known terms
(6)
Because x2N~* is not a Poisson bracket with Q by Lemma 6.5, we get oy # 0.

From the fact that fn and oy do not vanish, this concludes the induction
N—-1— N.
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10 Getting the QBNF from the density of statesin case of alocal
extremum of the potential

10.1 h-dependent distributions

Let T be an h-dependent Schwartz distribution on an open interval J.

Definition 10.1. The family Ty is

e regular at the point Eg € J if there exists a sequence of functions T; which
are smooth in some neighbourhood K of Eg with j = jo, jo+ 1,... (jo €
Z), so that, for any f e Cg§°(K), we have the asymptotic expansion Tx(f) =
SIS A [ T00 feodx.

e rightregular (resp. left regular) at the point Eq € J if there exists E; > Eg (resp.
E: < Ep) and a sequence of functions T; which are smooth in some neighbour-
hood of Eq with j = jo, jo+1,...(jo € Z), sothat, forany f € C5°(JEo, E1[),
we have the asymptotic expansion Ty (f) = ZLO?O R[5 Ti(x) f (x)dx.

We will use the following notations:

Definition 10.2. If Ty, is a family of distributions on J and Eg € J, Tg (resp. T;.),
the right (resp left) singular part of Ty is the equivalence class of T modulo families
of distributions which are right-(resp. left-)regular at the point Ep.

10.2 Density of states

Consider a smooth potential V : | — R where | is an open interval with 0 € |
and liminfy_ 5 V(X) = Ex > —oo and let H be the Schrédinger operator with
potential V.

Definition 10.3. The density of states is the h-dependent Schwartz distribution Ty,
on ] — oo, Exo[ defined by

Dy(f) := Trace f (H).

Lemma 10.4. If J isan open subset of ] — 0o, Ex[ that contains no critical values
of V, the density of statesisregular at every point of J.

Proof. Let us denote by H = %62 + V(x) the symbol of the Schrodinger operator

H. The operator f(H) is a pseudodifferential operator whose symbol f*(H) is
given (see [4]) by

f*(Hy=f(H)+ > P xo)fOH),

j=1,1=1
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where the Pj’s are smooth functions locally computable from the symbol H. Itis
now enough to check that f — 2z k)~ [ [ Py (x,&) f O (H)dxd¢ is regular at
each point of J using the fact that H has no critical value in J.

10.3 Singularity of the density of states near a local maximum of
the potential

Let us assume that V (0) = Eg < Ex, V/(0) = 0and V”(0) < 0. Assume also that
0 is the unique critical point of VV whose critical value is Ep.
We have:

Theorem 10.5. If the QBNF of H is
B=Q_ + Z bj,khszE,
2j+k>2

the density of statesisright and left singular at the point Eq and one can recover the
full QBNF (the coefficients bj k) from the right (resp. left) singular part D;.L* (resp.
D;,) of the density of states Dy, at Eo.

In what follows, it is more convenient to use Q_ = x¢.

10.3.1 Thesingularity of the density of statesand the QBNF

Lemma 10.6. If B isthe QBNF of H, the singular part of the density of statesisthe
same as that of the family of distributions

1 *
Gp: f — %//Df (B)dxde,

where f*(B) isthe Weyl symbol of f(é) and D isthe square max(|x|, |£]) < 1.

Proof. Let IT = Opyygy (@) be a compactly supported ¥ DO whose Weyl symbol
w is = 1 near (0, 0). We have

Dn(f) = (zh)~* (//w*f*(H)dxdé—i-//(l—w)* f*(H)dxdg“).

Using (the proof of) Lemma 10.4, the second term is a regular distribution. The
first term can be transformed using the QBNF: there exists an FIO U, microlocally
unitary, which transforms H into its QBNF and hence for every function f, we have

U*f(B)U = f(H)
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microlocally near the origin. In this way, we get
Trace(IT o f(H)) = Trace(ITU* f (B)U).

Introducing IT; := UIIU* (a ¥ DO whose Weyl symbol is = 1 near the origin)
and using the commutativity of the trace, we have

Trace(Il o f(H)) = Trace(Il; o f(B))).

It remains to check that, if IT1 = Opyyey(@1), f — ff(l KR)\D @1 * f*(B)dxd¢ is
regular.

10.3.2 Computing some singularities

Lemma 10.7. Let us consider the family of distributions

Kn(f)=//D f (thibj(x¢)> dxd¢
j:O

on ]Eo, E1[ (we consider only the case E; > Eop, the other case is similar), where
the bj’s are smooth on [Eo, E1] and bo(u) = Eo + 3372, #jul with f1 > 0. Then
Ky (f) admits an asymptotic expansion in powers of #:

Kn(f) =D Kj(f)n?
j=0

and the right singularities of Ko, ..., Ky at the point Eg determine the Taylor
expansionsof by, . .., by at theorigin.

Proof. Let us Taylor expand the integrand as

f (Z h2ib; (xé))

j=0

f(bo(x&)) + f'(bo(x¢)) <Z ol (Xf))

=1

k
9] 1 o0 .
2 10k (Z b, <xf>> :
k=2

j=1

= f(bo(x$) + > 17! (f’(bo<x§>)b,- (x¢)

+>° f(”(bo(x{))Rj,l(Xf))’
|

where the functions R; | depend only on by, ..., bj_1.
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We have to prove the following 2 facts:

/ /D f (bo(x¢))dxd

determines the Taylor expansion of by at the origin.
2. The right singularity of

1. The right singularity of

/ /D  (bo (xE))b; (x)dxdE

determines the Taylor expansion of bj at the origin, assuming the Taylor expan-
sion of bg is known.

Both are easy consequences of the following elementary calculus result:

E1
/ /D F(bo(x&))bj (x)dxdE = /E /(t)b (co(t))ch (1) log(t — Eo)|dt

(modulo smooth distributions) where ¢g is the inverse function of by.

10.3.3 End of the proof of Theorem 10.5

We have

o0

1 ; )
f*(B)(z0) = ﬁ(f“”(ES(zo»(B — B(20))?)(20).
j=0 """

It is enough to check:
Lemma10.8. If
o0 .
f*(B) = f(B)+ > 11 > 1@ (B)R;,,
j=1 [
the Rj,’sdepend only on by, ..., bj_1.

Proof. The x-powers of B — B(zo) evaluated at zp start with terms in 12 and the
by’s, for| > j have already an /2! in front of them!

So everything works as if f*(B) = f(B) and we are reduced to Lemma 10.7.
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10.4 The case of alocal minimum

The same strategy applies, but now the density of states is right AND left regular,
with a jump singularity at the point Eg.
We get:

Theorem 10.9. If the QBNF of H is

B=Q,+ > bj?lak,
2j+k>2

the density of statesis singular at the point Eg, and one can recover the full QBNF
(the coefficients bj k) from the singular part of the density of states Dy, at Eo.

The proof is very similar to the case of a local maximum. We have now a
“Heaviside singularity”, meaning that the density of states is right AND left regular,
but the functions T; defined by

Dy(f) = Z/ijhj

=1

and their derivatives have jumps at the point Eg. We have only to look at the
singularities of T : f — [ f(Qy)dxd¢. We have T(f) = 2z 0+°° f (u)du, so
T = 2zY where Y is the Heaviside function.

11 Open problems

e Istheresult still trueif ag = 0? This is the case modulo some global assumption
on V (see [5]). In fact in [5], it is shown that, modulo some genericity assump-
tions, the potential itself is determined from its semi-classical spectrum.

e Istheresult still valid in any dimension? We think that the answer is no; at
least it does not work with the same arguments; let us assume that the quadratic
part of the Hamiltonian is Hy = w1Q1 + w2Q2 with Qq (resp. Q2) harmonic
oscillators in x1 (resp. x2).

— Nonresonant case: w1 and wy are independent over Z. In degree 4, the QBNF
has 4 unknown coefficients, an homogeneous polynomial of degree 2 in
(Q1, Q) and the coefficient of #2. On the other hand, Va(x1, X2) + Va(X1, X2)
has 9(> 4) coefficients. However, it is possible that higher terms in the QBNF
give other information ...

— Resonant case: w1 = wo. In degree 4, the classical BNF has already 9
coefficients (it is a polynomial of degree 4 on R* invariant by the circle action
generated by the flow of Q1 + Q)), this seems promising. However, we have
to take into account an O(2) action by isometries in R?: on the one hand, we
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can only expect to determine the potential up to this action; on the other hand,
the QBNF is determined only up to action by SU (2).

12 Homogeneity properties of the QBNF

We have the following:

Theorem 12.1. The bj i’s (coefficients of /21 QX in the QBNF) satisfy the following
homogeneity properties:

bj k(tas, t?au, ..., t"an42, ...) = t*@ 0 "2p; | (ag, au, .. ).

Proof. Let us consider

| d?
He= S —h—— + %% ) +tasx® + - +t"2agx" + -,
2 dx

and make the change of variable tx =y, %3 = t>h. We get a new operator

1 d?
t? [5(—ﬁ§d—y2+y2)+a3y3+~-~+any”+~}-

The spectrum of the second one is then t=2 times that of the first one. This implies

the property.
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paper in this volume); Victor and | proved that the Taylor expansion of the poten-
tial at a generic non-degenerate critical point is determined by the semi-classical
spectrum of the associated Schrédinger operator near the corresponding critical
value. Here | show that, under some genericity assumptions, the potential of the
1D Schroedinger operator is determined by its semi-classical spectrum. Moreover,
there is an explicit reconstruction. This paper is strongly related to a paper of David
Gurarie (J. Math. Phys. 36:1934-1944 (1995)).
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This paper is the continuation of [6], where Victor Guillemin and | proved
the following result: the Taylor expansion of a potential V(x) (x € R) at a
non-degenerate critical point xq of V, satisfying V" (xg) # 0, is determined by the
semi-classical spectrum of the associated Schrodinger operator near the correspond-
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conditions, is determined from the semi-classical spectrum. Moreover, my method
gives an explicit way to reconstruct the potential.

Inverse spectral results for Sturm—Liouville operators are due to Borg, Gelfand,
Levitan, Marchenko and others (see for example [12]). They need the spectra of the
differential operator with two different boundary conditions in order to recover the
potential. My results are different in several aspects:

e They are local using only the part of the spectrum included in some interval
] — oo, E[ in order to get V in the inverse image by V of this interval.

e They need only approximate spectra.

e They still apply if the operator is essentially self-adjoint.

After having completed the present work, | found that similar methods were
already used by David Gurarie [9] in order to recover a surface of revolution from
the joint spectrum of the Laplace operator and the momentum operator. In the
present paper, the genericity assumptions are weaker and more explicit:

e David Gurarie assumes that the potential is a Morse function with pairwise dif-
ferent critical values, while | assume only a weaker nondegeneracy condition (see
Section 10.1.1).

e His argument for the separation of spectra associated to the different wells is less
explicit than mine which uses the semi-classical trace formula (see Section 12.3).

e He does not say a word about the problem of a nongeneric symmetry defect and
explicit nonisomorphic potentials with the same semi-classical spectra (Section 7
and assumption 3 in theorem 5.1).

Semi classics has been used in inverse spectral problems since the seventies; for
a recent review, the reader could look at [14].

2 Motivation |: surfaces of revolution

Let us consider on a 2—sphere the metric of revolution
ds? = dx? + a*(x)dy?

with x € [0, L] and y € R/2x Z. We assume that a(0) = a(L) = 0, a(x) > 0 for
0 < x < L and a is smooth. The volume element is given by do = a?(x)|dxdy]
and the Laplace operator by

Using the change of function f = aF, we get the operator P = aAa~! which is
formally symmetric with respect to [dxdy|:
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o2 a’ 1
P=—— 4+ -
ox2 a  a%oy?

If F(x,y) = p(x)exp(ily) with | € Z, we define Q) as follows:
PF =1?(Qip)e',
and putting & = 171, we get
Qrp = —h2p" + @+ h*W)p

with W = %ﬁ. It implies that the knowledge of the joint spectrum of A and oy is
closely related to the spectra of Qy, for &~ = 1/1 with | € Z\0. This relates our paper
to Gurarie’s result [9].

3 Motivation |l: effective surface waves Hamiltonian

In our paper [3] Section 7, we started with the following acoustic wave equation®
utt — div(n gradu) = 0
[ 1)

uix,0,t)=0

in the halfspace X = Rﬂ‘lx] — 00, 0]; where n(z) : R_ — Ry is a nonnegative
function that satisfies

0 <ng:=infn(z) <ny = Iziminfn(z).
——00

This equation describes the propagation of acoustic waves in a medium which is
stratified: the variations of the density are on much smaller scales vertically than
horizontally.2 This equation admits solutions of the form exp(i(wt — x&))o(z)
provided that v is an eigenfunction of the operator L on the half line z < 0 defined
as follows:

_ a4 do 2
Lev = e (n(z)dz) +n@)|¢%0 2

with Dirichlet boundary conditions and eigenvalue w?. These solutions are expo-
nentially localized near the boundary provided w? is in the discrete spectrum of L
contained in J :=]Jng|¢12, Neo |€][.

Let us denote by 11(¢) < 42(&) < --- < 4j(£) < --- the spectrum of L in the
interval J and v (&, z) the associated normalized eigenfunctions. The unitary maps

L u = u(x, z,t) is the pressure, n = K /p with p the density and K > 0 the in-compressibility
assumed to be a constant. The acoustic wave equation is a simplification of the elastic wave
equation which holds if the medium is fluid.

2 In [3], we took a more complicated function n(x, z) = N(x, z/¢, z) with N smooth and & small.
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from L2(6X) into L2(X) defined by
Ti@ = o) Y [ s e,
Rd-

With 4(&) i= [re-1 a(x)e~*<dx, satisfies

PTj =T;Op(4j),

where P = —div(n gradu) with Dirichlet boundary conditions and Op(4j) is an
elliptic pseudodifferential operator of degree 2 and of symbol 4;. So that, for each
j = 1,..., we get an effective surface wave Hamiltonian with the Hamiltonian

4j. Themap T : ij:le(aX) — L%(X) givenby T = @32, Tj is an injective
isometry.

We see that the high frequency surface waves are associated to the semi-classical
spectrum of a Schrodinger type operator

d d
Ly = —hZE (n(z)E) +n(2),

with & = ||€]| L.
One can try to recover n(z) from the propagation of surface waves: this is
equivalent to get the operator L from its semi-classical spectrum.

4 Schrodinger operatorsand spectra

The following notation will be used everywhere in this paper.

The interval | is defined by |1 =]a, b[ with —co < a < b < +4o0. The poten-
tial V : I — R is a smooth function with —co < Eg = infV < Eyn =
liminfy_ o V (X).

The Schrodinger operator H is any self-adjoint extension of the operator

—hz% + V (x) defined on C°(I).

The discrete spectrum of H will be denoted by
A1(h) < Za2(h) < --- < A (h) < ---.

Lemma 4.1. The discrete spectra below E, are, modulo O (%), independent of
the boundary conditions.

This comes from the fact that the eigenfunctions are O (7°°) outside the wells; this
is proved, using semi-classical ellipticity, in [13], Section 2.9.

Using the previous lemma, we can assume that we work always with the Friedrichs
extension with initial domain (the closure of) C$°(1).
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The semi-classical limit is associated to the classical Hamiltonian H = ¢24V (x)
whose dynamics is given by the vector field

0 0
Xy =26— —V'(X)—
H fax ( )aé
in the phase space T*I, the cotangent space of | with the canonical coordinates
(x, ).

Definition 4.1. Let us give E with Eg < E < E and a positive real number N.
We say that a sequence u(h),l = 1, ... is a semi-classical spectrum of H mod
o(iN) in ] — oo, E[ if, we have for the I’s so that 4; (k) < E, uniformly on every
compact K C] — oo, E[,

2(h) = wi(h) + o(BN).

In the paper [6], it was enough to know the asymptotic expansions of the 4;’s for
all'I, but not uniformly in | in order to recover the Taylor expansion of V at the point
Xo where V reaches is minimum.

5 A theorem for one-well potentials

In what follows, E is given with Eg < E < E.
Theorem 5.1. Let us assume that the potential V : | — R satisfies:

1. Asinglewell below E: forany y < E, the sets Iy := {x|V (x) < y} are compact
intervals. There exists an unique Xo so that V (xo) = Eg (= infye; V (x)). For
any y with Eg < y < E, if we define the functions fi : [Eo, E[— R so that

£.)

<V

SO

Fig. 1 The potential V and the functions f, and f_.
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the intervals Iy are defined by Iy = [f_(y), f1(y)], we have V'(x) < 0 for
f_(E-) <x <xpand V'(x) > 0forxg < x < fr(E-).

2. A genericity hypothesis at the minimum: there exists N > 2 so that the N-th
derivative V (N) (xg) does not vanish.

3. A generic symmetry defect: if there exists x4, satisfying f_(E_) < x_ < Xg <
X, < f(Ep)yandvn e N, VW(x_) = (=1)"V(x,), then V is globally
even with respect to xo = (X— +x4)/2 in the interval Ig. This is true for example
if V is real analytic.

Then the spectra modulo o(h?) in the interval ]—oo, E[ of the Schridinger operators
Hp, for a sequence ij — 0T, determine V in the interval Ig up to a symmetry-
translation V (x) — V (¢ £ Xx).

6 One-well potentials: Bohr—Sommerfeld rulesand a
pseudodifferential trace formula

Itis a classical fact (see [4]) that the semi-classical spectrum (i.e., the spectrum up to
O (h*)) of Hy, in the interval ] — oo, E[ is given by the “Bohr-Sommerfeld rules”:

Z(h) ={m(M)|Eo < wi(h) < E and S(u1(h)) = 2z hl},

where, for Eg < y < E, the function S = Sy(y) :]Eo, E[— R admits the formal
series expansion

S(y) = So(y) + hr + hSa(y) + h*Sa(y) + - - - @)

(the formal series S will be called the semi-classical action and the remainder term
in the expansion is uniform in every compact sub-interval of JEq, E[). We have

o So(y) = fyy fdx = fH(x,i)gy ldxd&| with yy = {(x, &)|H (x, ) = y} oriented
according to the classical dynamics and

dﬁ(y) _/f+(y) dx
dy fy) Y —VX)

is the period T (y) of the trajectory of energy y for the classical Hamiltonian H,
o Iftis the time parametrization of yy (outside the caustic set {V (x) =y, & =0},
we have dt = dx/2¢),

1d
= ——— V//
S2(y) 12dy /yy ()dt],
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which can be rewritten as

S = -2 /‘f“” v/ (0dx
2Y)__].Zdy f_(y) «/y—V(X) '

e For j =1, Sj(y) is a linear combination of expressions of the form

(i)n/ PV, V", .. Jldt],
dy 7y

where dt is the differential of the time on yy.

In what follows, we will use only Sp and S,. It will be convenient to relate the
semi-classical action to the spectra by using the following trace formula:

Theorem 6.1 (¥ DO trace formula). Let f € C§°(JEo, E[) and F(y) =
— J;7 f(u)du, we have, with Z = T*I:

A 1 2 E 2
TraceF(H)zﬁ(/Z F(H)Idxdé‘l—h/ f(y)(Sa(y) + 54(y)+~-~)dy)

Eo

+ O(h™). (4)

Corollary 6.1. The functions Sp, Sz : [Eo, E[— R are determined by the semi-
classical spectrum mod o(42) in] — oo, E[.

In fact, Sp is already given from the Weyl asymptotics:

S
# () < ¥) ~noo %

The Weyl asymptotic formula can easily be deduced from the trace formula (4).

Remark 6.1. The previous trace formula can be seen as an extension to the semi-
classical setting of the famous “heat trace” method introduced by Mark Kac in [11]
and strongly developed by geometers as a tool in the inverse spectral problem for
the Laplace-Beltrami operator (see [2]): putting t = 72 in the heat semi-group
exp(—tA), we get exp(—tA) = F(h2A) with F the exponential function. This
way, we get an identification of the previous expansion in powers of 42 with the
heat trace expansion in powers of t.

We give now a proof of theorem 6.1.

Proof.

1. The case where F is compactly supported in J:
Defining F*(H) by F(H) = Opyey (F*(H)), we know (see [8] lemma 4.2) that
with zo = (X0, $o) and Ho = H (20),
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1
F*(H)(20) = F(Ho) + 5 F"(Ho)(H — Ho)**(z0)
1 " *3 4
+5F (Ho(H — Ho)™(z0) + O (7).
Computing the Moyal powers of H — Hg at the point zg mod O (%i%), we get
1 1
F*(H) = F(H) — #? (§ f'(H)det(H") + 24 f"(H)H"(XH, XH))

+ O(h%).

Computing the trace of F(H) as 1/2z h the phase space integral of the symbol
F*(H), we get:

Trace(F(H))

= —1 2 ’ 1
=5 |:/z F(H)|dxd&| — A (/J f (y)(/yy det(H )|dt|)|dy|...
1 4 " 3
+ﬂ/J f (Y>(/WH (XH,XH)|dt|)|dy|)} +0(R).

Using Stokes formula, we have
[ Xt = <2 [ det(Hjdxdzl,
7y H<y
and the final result for Sp(y) using an integration by part:

1d

- = 1
Sa(y) = 24dy/yy det(H")|dt].

2. The harmonic oscillator case Q = —1 (C;% + xz):

TraceF (Q) = %Z F ((n + %) h)
nez

with F even and coinciding with F on the positive axis. We get with the Poisson
summation formula:

1 X2+ &2 5
TraceF(Q)_%//F( 5 )|dxd§|+0(h ).

Moreover, fyy V”|dt| is independent of y because the classical period of the
harmonic oscillator is constant.
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A more general argument holds if H = Q in support of F o H. It is based on the

identity
2
F*(Q) = F(Q) — %F”(Q) + O(HY.

3. Adeformation argument: Let us consider a new Hamiltonian K which coincides
with H in H=%(J’) where J’ ¢ J and J’ contains the support of f. Then we
have Trace(F(H)) = Trace(F(K)). This is because the symbols F*(H) and
F*(K) coincide with F(Eg) in the domain bounded by H ~1(J’). Because the
right-hand sides of Equation (4) also coincide, we can choose a suitable K in
order to prove it. We will choose K, which has globally a single well and which
coincides with an harmonic oscillator near its minimum.

4. The final step: We can assume that K is as before with E; = infK, K is
harmonic in the energy interval [Eg, Eg + a].

We split F = Fg + F1 where F; is compactly supported in ]Eg, +oof and F1
supported in ] — oo, Eg + a[. Equation (4) is valid for Fy (case studied in 1.) and
for F1 (case of the harmonic oscillator).

Theorem 6.1 is closely related to (but a bit stronger) than what is proved in my
paper [4]. The trace formula contains implicitly the Maslov index; it is no more
valid if we replace Az by another value in the expansion of the semi-classical action
given in Equation (3).

7 Two potentials with the same semi-classical spectra

We introduced a genericity Assumption 3 on symmetry defects in Theorem 5.1.
Figure 2 shows two one-well potentials with the same semi-classical spectra mod
O (h®°). The fact that they have the same semi-classical spectra comes from the
description of Bohr—-Sommerfeld rules in Section 6.

It would be nice to prove that they do NOT have the same spectra!

8 One-well potentials: the proof of Theorem 5.1

8.1 Some useful lemmas

Lemma 8.1. If V satisfies Assumption 2 in Theorem 5.1, we have

lim /V”(x)|dt|=n,/2V”(x0).
7y

y—(Eo)+

This holds even if the minimum is degenerate.®

3 | do not know if this is still true without the genericity Assumption 2 in Theorem 5.1; it is the
only place where I use it.
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1
4 !
\ 1
\ / =
\ / ;
\ /
\ s
7
Fig. 2 The (graphs of the) two potentials are the same in the sets Il and I11; they are mirror

images of each other in I, the potential is even in the set I 1.

The lemma is clear if V”(xp) > 0: the limit is then V" (xg) times the period of
small oscillations of a pendulum which is z,/2/V” (Xo).

Let us consider the case of an isolated degenerate minimum with V (x) = Eg +
a(x—xo)N(1+0(1)) (@ > 0, N > 2); we can check that the integral to be evaluated

is O((y — Eg)2~ %) = o(1).
Lemma 8.2. We have

lim (L L) 0
y=EB \fLy) L))
Lemma8.3. If o is the unique point where V (xo) = infV = Eo, the first eigen-
value of Hy, satisfies 11(h) = Eg 4+ h/V"(X0)/2 + 0o(h).

This is well known if V”(xg) > 0 and is still true otherwise by comparison: if
Eo < V(x) < A(X — Xg)? with A > 0, near Xo, then Eg < A1(%) < 2z hvA.

8.2 Rewriting V using F and G
We will denote by F = (4 + f_)and G = 3(f, — f).

e The function F is smooth on ]Eg, E[, continuous on [Eg, E[ (smooth in the
non-degenerate case V" (xp) > 0 as a consequence of the Morse Lemma), with
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F(Ep) = Xo, and is constant if and only if V is even with respect to xo. More
generally, if F is constant on some interval, V is even on the inverse image of
that interval. We call F the parity defect.

Lemma 8.4. Under the Assumption 3 in Theorem 5.1, the function F’ is deter-
mined up to + by its square.

e The function G is smooth on ]Ep, E[, continuous at y = Egp. We have
G(Ep) = 0. It is clear that, from F and G, we can recover the restriction of
V to lg.

8.3 HowtogetV from Hand S

Let us consider, for Eg <y < E,

fr(y) dx
| = _—
&2 /f(y) VY =V (X)

J( ) fr(y) V//(X)dX
= [0 Lon
i)y VY —VX)

We have 1(y) = dSp(y)/dy and Sp(y) = —(1/12)dJ(y)/dy. This implies that
Sop, Sz, and the limit J(Eqg) determine | and J. The limit J(Ep) is determined
by V”(xo) (Lemma 8.1) which is determined by the first semi-classical eigenvalue
(Lemma 8.3). We can express | and J using F and G. Using the change of variables
x = fi(u) forx > xgand x = f_(u) for x < Xo, we get

I(y) = 2/Ey G (wydu

0 y—u

and

Y d 1 1 du
O Z/Eo du ( A0 fL(u)) N

1), $,(v)

YDO t fi 1 \ Abel ’
O trace formula Ly +F,G

A

E,, V'(x,) Vuptoa '
symmetry-translation

Fig. 3 The scheme of the proof.
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Using Abel’s result [1] (and the Appendix), we can recover G” and

d 1 1 _d 2G’
dy \fL(y) fL(y)) dy\G2-F2)’
Using Lemma 8.2, we recover F’2. The Assumption 3 implies that there exists an

unique square root to F’2 up to signs. From that we recover G’ and +F’ and hence
+F and G modulo constants. This gives V up to change of x into ¢ & x.

9 Taylor expansions

From the previous section, we see that the semi-classical spectra determine F2 and
G even without assuming the hypothesis 3 of Theorem 5.1 on symmetry defect. It is
not difficult to see that, if V satisfies the hypothesis 2 of Theorem 5.1, the parity
defect F is a smooth function of y?/N. We have the following:

Lemma 9.1. Let us give two formal powers series a = Z?O:o ajtj and b =

® bitl which satisfy a2 = b. The equation f2 = b has exactly two solutions as
j=0"%] q y
formal powers series: f = +a.

From this lemma, we deduce

Theorem 9.1. Under the Assumptions 1 and 2 of Theorem 5.1, but without Assump-
tion 3, the Taylor expansion of V at a local minimum Xg is determined (up to mirror
symmetry) by the semi-classical spectrum modulo o(%?) in a fixed neighborhood
of Ep.

In some aspects, this result is stronger than the one obtained in [6], but it requires
the knowledge of the semi-classical spectrum in a fixed neighborhood of Eg, while,
in [6], we need only N semi-classical eigenvalues in order to get 2N terms in the
Taylor expansion.

10 A theorem for a potential with several wells

We will extend our main result to cases including that of Figure 4: a two-wells
potential with three critical values, Eg = 0, E1, and E». We can take any boundary
conditionat x = 0.
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Fig. 4 A 2 wells potential V.

10.1 The genericity assumptions

In what follows, wechoose E sothat Eg < E < Ey and define Ig = {X|V (X) <
E}. The goal isto determine the restriction of V to Ig from the semi-classical
spectrumin] — oo, E[.

We need the following assumptions which are generically satisfied. We intro-
duce:

Definition 10.1. Two smooth functions f,g : J — R are weakly transverse if,
for every xp so that f(Xo) = g(Xo), there exists an integer N such that the N-th
derivative (f — g))(xo) does not vanish.

10.1.1 Assumption on critical points

e For any point xg so that V/(xg) = 0 and V (xg) < E, there exists N > 2 so that
the N-th derivative V (N) (xq) does not vanish.
e The critical values associated to different critical points are distinct.

Thewells: Let us label the critical values of V below E,, as Eg < E1 < -+ <
Ex < --- < Ew and the corresponding critical points by Xg, X1, . ... The critical
values can only accumulate at E, because the critical points are isolated.

Let us denote, fork = 1,2, ... by Jx =]Ek_1, Ex[.

Definition 10.2. A well of order k is a connected componentof {x € I |V (x) < Ek}.

Let us denote by Nk (< k) the number of wells of order k.
For any k, H=1(Jy) is an union of Nk topological annuli A‘]? and the map H :

A'J? — Jx is a fibration whose fibers H ~1(y) N A'J? are topological circles yjk(y) that
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are periodic trajectories of the classical dynamics: if y € Jx, H1(y) = U:.“ilyjk(y).
We will denote by Tjk(y) = fy_k |dt], the corresponding classical periods. We will

often remove the index k in what follows.
We have the well-known:

Proposition 10.1. The semi-classical spectrum in Jg is the union of Ny spectra,
which are given by Bohr—-Sommerfeld rules associated to actions S'j‘(y) given as in
Section 6.

This comes from the fact that the eigenfunctions are O (A°°) outside the wells. This
is proved in [13] Section 2.9; see also [10] for much more precise results including
estimates of the exponentially small “tunneling” effects.

10.1.2 A generic symmetry defect

If there exists x_ < x, satisfying V(x_) =V (x;) < Eand,Vn e N, VW (x_) =
(—=D)"V ™M (x,), then V is globally even on Ig.

10.1.3 Separation of the wells

Foranyk =1,2,...andany j with1 < j < I < N, the classical periods Tj(y)
and T, (y) are weakly transverse in Jx.

10.2 Quartic potentials

If V is a polynomial of degree four with two wells like V (x) = x* + ax3 + bx?
with b < 0, the periods of the two wells (between E1 and E2(= 0)) are identical.
This is because, on the complex projective compactification Xg (with E < 0) of
£2 4V (x) = E, the differential dx /¢ is holomorphic and the real part of X consists
of two homotopic curves in Xg. One can check directly that all other actions Syj,
j > 1 coincide; this is proved in [7] p. 191.

10.3 Statement of the result

Our result is:

Theorem 10.1. Under the three assumptions in Sections 10.1.1, 10.1.2, and 10.1.3,
V is determined in the domain Ig := {x|V (x) < E} by the semi-classical spectrum
in ] — oo, E[ modulo o(/°/2) up to the following moves: Ig is an union of disjoint
openintervals Ig , each interval Ig , is defined up to translation and the restriction
of V to each Ig , is definedup to V(x) — V(c — x).
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Remark 10.1. We need o(7%/?) in Theorem 10.1, while we needed only o(%?) for
the one-well case in Theorem 5.1. This is due to the way we are able to separate the
spectra associated to the different wells.

11 The semi-classical trace formula

The semi-classical trace formula, also known as the “Gutzwiller trace formula™,
is valid for a Schrodinger operator in any dimension (see [5] for a recent review).
In the one-dimensional case (and more generally in the “integrable” case), this
formula can be derived from the Bohr—-Sommerfeld rules, via the Poisson summation
formula.

In this section, we will derive the semi-classical trace formula in dimension 1
from the Bohr—Sommerfeld rules.

Let us start with the following application of the Poisson summation formula:

Lemmall.l. Let S : J — R be a smooth function with S’ > 0, then we have the
following identity as Schwartz distributions in J; i.e., equality holds when applying
both sides to a test function ¢ € C3°(J),

1

20y =87 @anh) = = > M WIs/(y). )
leZ mez

Let us insist that the identity (5) is valid for any fixed value of #.
We will now develop semi-classical approximations of the identity (5). Let us
start with:

Definition 11.1. Let Dy, be an h—dependent distribution on the interval J. We will
write D, = o(hN) if for any h—pseudo-differential operator P = Opy,(p) with
p € Cg°(T*J), we h5ave

IPDpllL2(g) = 0(A").
With the previous definition, we get:

Lemma 11.2. Let us give two sequences (k) and w (k) in J so that

o u1(h) = A1 (h) + o(AN) uniformly on every compact of J
e #{A1(h) € K} = O(1/h) for any K compact subset of J,

then 5
S5y — wi(h)) = Sy — () = o(AN2).

leZ

Proof. Let us consider first the operator Q with symbol a(#) x (y) with a € C5°(R)
and y € CZ(J). The L2 norm of Qu is equal to the L2 norm of a(y) times the
h—Fourier transform of yu. In our case, this is the L2 norm of
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a(n) —len DO G (e AT — (g (e ea /R,
leZ

which is o(hN‘%). Any other P is of the form P = P Q for some suitable Q. The
conclusion follows by the A—uniform L2 continuity of P.
Let us give another:

Definition 11.2. The L2-Microsupport of a family of distributions T in the interval
| is the closed subset of T*I denoted MS(Ty) given by

((x, &) ¢ MS(Tp)) if and only if
@p e CE(T71), p(x, <) # 0and Opy(p) Ty = 0(1)).

We get the following statement of the semi-classical trace formula for the general
statement:

Theorem 11.1. As distributions on J, we have, if x| (h) is a semi-classical spec-
trum modulo o(1°/?),

Nk

1 L .
D00 — ) = 7= > 3" (~H"eM BT () (A + imhS](y) + 0(L).
(6)

leZ j=1meZ
This means that >",_, o(y — w1 (h)) is mod(o(1)) a (locally finite in the cotangent
space) sum of the WKB functions

1 ims] .
Znj = ﬁ(—1)me'msc‘><Y>/"1TJ- (y)(L +imhs) (y))

associated to the Lagrangian manifolds (the micro-support of Zp j)

Lm,j = {(y,mTj(y)ly € I}.

Proof. The trace formula is a consequence of Equation (5) applied to the spectra
given by the Bohr—-Sommerfeld rules (see Section 6) and Lemma 11.2.

12 The case of several wells: the proof of Theorem 10.1

12.1 What can be read from Weyl’s asymptotics?

Lemma 12.1. Under Assumption 10.1.1, the singular (honsmooth) points of the
functiony — A(y) = [, .E)<y |[dxd¢|in ] — oo, E[ are exactly the critical values
Eo < E1 <...(< E)of V. Moreover,
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e the function A(y) in smooth on JEx — ¢, Ex], with ¢ > 0, if and only if x is a
local minimum of V,

o from the singularity of A(y) at Ex, on can read the value of V" (xk).

The function A(y) is determined by the semi-classical spectrum; this is a conse-
quence of the Weyl asymptotics:

A
B = ¥) ~10 2.

12.2 The scheme of the reconstruction

The proof is by “induction” on E.
We start by constructing the piece of V where V (x) < E1 using Theorem 5.1.
We then want to construct V where E; < V(X) < Eoa.
There are two cases:

1. x1 is not an extremum: We know then V in the interval {V (x) < E1} by conti-
nuity. We can then extend the proof of Theorem 5.1 using the fact that we know,
using Section 12.4, the limits of fyy V7 (x)ldt] and fL(y)asy — EI“. We can
reduce to an Abel transform starting from E1 using, for E1 <y < Ep,

[
V(x)<y V(xX)<E; Ei<sV(x)=<y

where the first part is known from the knowledge of V (x) in {x|V (x) < E1}.
2. x1 is a local minimum: Using the separation of spectra (Section 12.3) and

Theorem 5.1, we can construct the 2 wells of order 2 if we know V”(x1)
(lemma 12.1).

T4

=V

0 E, E, E

0

Fig. 5 The primitive periods as functions of y for the Example of Figure 4.
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We then proceed to the interval [E2, E3]. A new case arises when x; is a local
maximum. Then we need to glue together the wells of order 2. This case works then
as before.

12.3 Separation of spectra

The main input of the proof of theorem 10.1 is the fact that the assumption 10.1.3
allows to split the semi-classical trace formulas in the interval Ji into the contribu-
tions of the Ny wells: from the spectra mod 0(%°/?) in Jk, we will recover the WKB
functions Z jfor j =1,..., Nk.

Let the distributions Dy, = >°; d(y — w1 (h)) be given modulo o(1) in the interval
J = J by Equation (6). The distributions Dy, are determined mod o(1) by the
semi-classical spectra mod 0(4°/2). Let us denote by B the set defined by

Bi={ye ki3] #I, Tij(y)=Ti(y)k

using assumption 10.1.3, we see that B is a discrete subset of Ji. Let us denote by
Z, the finite sum defined by the r.h.s of Equation (6) restrictedtom = 1, i.e.,

Nk
Zp=Y 71
j=1
We have:

Lemma 12.2. Using the weak transversality assumption of Section 10.1.3, the set
B and the distributions Z; mod o(1) are determined by the distributions Dy,
mod 0(1).

Proof. The difficulty is that there are possible cancellations in the trace formula: we
do not assume the weak transversality of the nonprimitive periods mTj.

Let us denote by 71(y) = infj Tj(y); the function 71 is piecewise smooth. The
nonsmooth points belong to B. Let us take a maximal (open) interval K where 71 is
smooth. On K, 71 = Tj, for a unique jo, and Dy = Z1 j, 4+ 0(1) near the graph L
of 71, meaning that

MS(Dp, — Z1,jp) N L1 = 4.

This is clear because the Lagrangian curves Ly j for j # joandfor j = jo, m # 1
are disjoint from L 1. So, we can recover L1 as

L1 ={(y, n)ln=inf{y" >0, (y, #') € MS(Dp)}}.

From Z j,, we recover, for any m € Z, the Zp_j,’s, and we introduce a new
distribution D, in K defined by
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Dy =Dn— D Zm.jo-

mezZ

We do the same constructions with D}i in K: this allows us to split again K into
sub-intervals separated by points of B where Tj(y) = Ti(y) forsome j # 1, j #
jo, | # jo and to get a function 7, and distributions D,%L. After a finite number of

steps, the new distributions D,’;‘ is0(1). We have Nx = N, and B is the union of all
points of nonsmoothness of the zj’s.

We will need:

Lemma 12.3. There is an unique splitting of Z; as a sum

Nk
1 is:
Zn(y) = 5= 2_@j(y) + bj(y)e'I V" + (1),
j=1

where the S;’s are smooth and the a;’s do not vanish.

Proof. The L2-Microsupport of Zy, is the union of the graphs of the S] : this decom-
position is unique due to Assumption 10.1.3. Hence the decomposition of Z; as a
finite sum of smooth WKB functions is unique.

From the two previous lemmas, it follows that, with Assumption 10.1.3, the
spectrum in Jx modulo 0(/%/2) determines the actions Sj and Sj2(y).

12.4 Limit values of someintegrals

Using the trick of Section 8.3, we can use Abel’s result (Section 13.4) once we know
the following limits (or asymptotic behaviors) as y — Efr(j =0,1,...):

o fl(y)
° fH_l(y)V”(x)|dt| where H = ¢2 4 V (x) is the classical Hamiltonian.

o f(y)

All of them are determined by the knowledge of V in the set {x|V (x) < Ej}.
It is clear, except for the second one, we have:

Lemma 12.4. Let us assume that V satisfies assumption 1 of Section 10.1. If Ej
is a critical value of V which is not a local minimum and 7(z) = [,;-1

V7 (x)|dt] — fH,l(Ejfz)V”(x)|dt|, then lim,_, g+ 7(z) = 0.

i+2)

Proof. We cut the integrals into pieces. One piece near each critical point, and
another piece far from them. Far from the critical points, the convergence is clear.
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e Local maximum: let us take a critical point where V (x) = Ej — A(x — X0)?N
(1+0(1))with N > 1and A > 0. We use a smooth change of variable x = y (y)
with w(0) = xg so that V (w(y)) = Ej — y2N . We are reduced to check that

lim /1 Widy [t Windy Y,
e=>0"\Jo e+ y2N  Jeren (Jy2N g ’
assuming that W (y) = O (y2N—2).

e Other critical points: let us take a critical point where V(x) = Ej +
A(x — Xx0)®N*1(1 + o(1)) with N > 1 and A > 0. We use the same method.

13 Extensionsto other operators

13.1 The statement

Let us indicate in this section how to extend the previous results to the operator

Ly=—h Ix (n(x)&) +n(x)

which was introduced in Section 3. We want to recover the function n(x). Let us
sketch the one-well case for which we will get:

Theorem 13.1. Assuming that

e the function n(x) admits a non-degenerate minimum n(Xg) = Eg > 0,
e the function n(x) has no critical values in JEq, E1[ with E1 < liminfy_ 5 n(x),
e the function n(x) has a generic symmetry defect as in Theorem 5.1,

then the function n is determined in {x|n(x) < E1} by the semi-classical spectrum
of £, modulo o(%2).

The proof works along the same lines as that of Theorem 5.1 except that we get an
integral transform which is not exactly Abel’s transform.

13.2 The Weyl symbol and the actions

The Weyl symbol | of £ can be computed, using the Moyal product, as| = & xn %
¢ +n. We get

2
106 =)@+ )+ o).
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The action Sy satisfies

dx

dSp
0y =T(y) = S
gy V=T /n(x)fy NGELI))

The action S; is given from [4] by

Sa(y) = _11_2(% ’ (yn” -2 (% — 1) n’z) |dt| — %/yy n”|dt|,

which we rewrite as

1d

1
Sa(y) = —EEJ(Y) - ZK(Y)

As in Sections 5 and 8.2, using n instead of V, we introduce the functions f., F
and G.

13.3 Recovering G

We have
YG'(z) dz

Eo \/Z VY —1Z )
The function T is the Abel transform, starting from Eg, of the continuous function
G’(2)/4/7 (Eq is > 0). Using the inversion of Abel transform, we get G.

T(y)=2

13.4 Recovering £F

e Theintegral J:

x+(y) B ) d
= [ 2 )

Using x = f.(y) as in Section 5 and

1

1
*W =y T oy

we get J(y) = (J®@)(y), with

(TO)(y) = /E C(yo'w -2(Y 1) ow) %
0
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e Theintegral K:

du
K(y>=/E ®'(u )?(y_u)
and T d
K(y)—z—/EQ()” = !

which is rewritten as q
Ky)=2—(Ko )
() = 2, (KO)(y)

e Anintegral transform:

Lemma 13.1. If 0 < Ep < Eq, the kernel of A := 7 + 6K on the space of continu-
ous function on [Eg, E1] at most two-dimensional, and all functions in this kernel
are smooth.

Proof. We have

AD(Y) = /Ey (ay - 6wy’ w) -2 (% ~1) o) % )
0

We compute T o A with the operator T defined by Ty (y) = fy “’(”)d“ . We will
need the easy:

Lemma 13.2. We have

Y udu u dt T [Y
f(t z—/ t+ ftdt,
/EO = L 0= =g L et

/y du [t " £t
=T .
Eo\/y_u Eo \/u_t Eo

Applying the previous formulas, we get

and

ToA(D)(Y) = —/ |:(t +Y) (7(I) ) — (D(t)) + 2(—6td'(t) + 2<I>(t)):| th

Taking two derivatives:

T 2

d
Wd_yz((T o A) D)(y) = Y20 (y) + 4y d'(y) — d(y).

From S; and A®(Eg), we get A®, then we get P(®) where P = y2¢” +
4y¢’ — ¢ is a nonsingular linear differential equation (recall that Eg > 0). So, if
we know also @ (Ep) and the asymptotic behavior of ®'(Eg), we can get ®@. Let us
assume n”(xg) = a > 0. Then we have:
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e AD(Ep) =2x+/akyg
e ®(Ep) =0

o '(y) ~4ya/Vy - Eo.

Appendix: Abel’sresult

Let us consider the linear operator T that acts on continuous functions on [Eg, E[
defined by

Tf(x):/EX 7f(y)dy'

o VXY

Then T2 f(x) == féo f (y)dy. This implies that T is injective! This is the content
of [1].
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On the solvability of systems of
pseudodifferential operators

Nils Dencker

In Honor of the Memory of Hans Duistermaat

Abstract This paper studies the solvability for square systems of classical pseudo-
differential operators. We assume that the system is of principal type, i.e., the
principal symbol vanishes of first order on the kernel. We shall also assume that
the eigenvalues of the principal symbol close to zero have constant multiplicity.
We prove that local solvability for the system is equivalent to condition (V') on the
eigenvalues of the principal symbol. This condition rules out any sign changesfrom
— to + of theimaginary part of the eigenvalue when going in the positive direction
on the bicharacteristics of the real part. Thus we need no conditions on the lower
order terms. We obtain local solvability by proving alocalizablea priori estimate for
the adjoint operator with aloss of 3/2 derivatives (compared with the elliptic case).

Key words: Solvability, pseudodifferential operator, principal type, systems of
differential equations

Mathematics Subject Classification (2010): Primary: 35A01; Secondary: 35505,
47G30, 58340

1 Introduction

In this paper we shall study the question of local solvability for square systems
of classical pseudodifferential operators P € ¥{(M) on a C* manifold M.
These are the pseudodifferential operators which have an asymptotic expansion in
homogeneous terms, where the highest order term is called the principal symbol.
We shall only consider operators acting on distributions D’ (M, CN) with values
in CN, but since the results are local and invariant under base changes, they
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immediately carry over to operators on sections of vector bundles. We shall assume
that P isof principal type, so that the principal symbol vanishes of first order onthe
kernel, see Definition 2.1.
Local solvability foraN x N system P at acompact set K € M meansthat the
equation
Pu=o (1.1

has a local weak solution u € D’(M, CN) in a neighborhood of K for al v €
C>®(M, CN) in a subset of finite codimension. We say that P is microlocaly
solvable at a compactly based cone K C T*M if there exists an integer N,
such that for every f e H(R5(M,CN), there exists u € D'(M,CN) so that
K NWF(Pu — f) = ¢, see [14, Definition 26.4.3]. Here H(s is the usua L2
Sobolev space and H('s")C isthe localized Sobolev space, i.e., those f € D’ such that
¢f € H) forany ¢ € Ci°.

Hans Lewy’sfamous counterexample[25] from 1957 showed that not all smooth
linear differential operators are solvable. It was conjectured by Nirenberg and
Treves [28] in 1970 that local solvability for principal type scalar pseudodifferen-
tial operatorsis equivalent to condition (W) on the principal symbol p, which means
that

Im(ap) does not change sign from — to +

along the oriented bicharacteristics of Re(ap) (1.2

forany 0 # a € C*°(T*M). Recall that the operator is of principal typeif dp # 0
when p = 0 with non-radial Hamilton vector field and the oriented bicharacteristics
are the positive flow-outs of the Hamilton vector field

Hre(ap) = 2 0 Re(@p)dy; — ox; Re(@p)a;
j

on Re(ap) = 0 (aso caled the semi-bicharacteristics of p). Condition (1.2) is
obviously invariant under symplectic changes of coordinatesand multiplication with
nonvanishing factors. Thus the condition is invariant under conjugation of P with
elliptic Fourier integral operators. It actually suffices to check the condition with
some 0 # a € C* such that d(Reap) # 0, see[14, Lemma26.4.10]. Recall that p
satisfies condition (V) if P satisfies condition (¥), and that p satisfies condition (P)
if there are no sign changes on the semi-bicharacteristics, that is, p satisfies both
condition (‘¥) and (‘).

The necessity of (W) for local solvability of scalar pseudodifferential operators
was proved by Moyer [27] in 1978 for the two-dimensional case, and by Hormander
[13] in 1981 for the general case. The sufficiency of condition (W) for solvability
of scalar pseudodifferential operatorsin two dimensionswas proved by Lerner [18]
in 1988. The Nirenberg—Treves conjecture was finally proved by the author [8],
giving solvability with a loss of two derivatives (compared with the elliptic case).
This has been improved to a loss of arbitrarily more than 3/2 derivatives by the
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author [9], and to aloss of exactly 3/2 by Lerner [24]. Observe that there only exist
counterexamples showing aloss of 1 + ¢ derivativesfor arbitrarily small ¢ > 0, see
Lerner [19].

For partial differential operators, condition (V) is equivalent to condition (P).
The sufficiency of (P) for local solvability of scalar partia differential operators
with a loss of one derivative was proved in 1973 by Beals and Fefferman [1],
introducing the Beal s-Fefferman calculus. In the case of operators that are not of
principal type, conditions corresponding to (¥) are neither necessary nor sufficient
for local solvability, see[3].

For systems there is no corresponding conjecture for solvability. By looking at
diagonal systems, one finds that condition (V') for the eigenvalues of the principal
symbol is necessary for solvability. But when the principal symbol is not diago-
nalizable, condition (V) is not sufficient, see Example 2.14 below. It is not even
known if condition (V) is sufficient in the case when the principal symbol is C*°-
diagonalizable. We shall consider the case when the principal symbol has constant
characteristics; then the eigenvalue close to the origin has constant multiplicity, see
Definition 2.5. In that case, the eigenvalue is a C*°-function and condition (¥) on
the eigenvaluesis well defined. The main result of the paper is that classical square
systems of pseudodifferential operators of principal type having constant character-
isticsare solvable (with aloss of 3/2 derivatives) if and only if the eigenvaluesof the
principal symbol has non-radial Hamilton vector field and satisfies condition (),
see Theorem 2.7.

2 Statement of results

We say that thesystem P € ¥ isclassical if the symbol of P isan asymptotic sum
Pn+ Pm-1+--- € §]. Here Pj(x,¢) € S/ is homogeneous of degree j in¢&; and
Pm is called the principal symbol of P. Recall that the eigenvalues of the principal
symbol are the solutions to the characteristic equation

|Pm(x,&) —Aldy [ =0,

where |A| is the determinant of the matrix. In the following, we shall denote by
Ker A the kernel and Ran A the range of the matrix A, and let w = (X, ¢). The
definition of principal type for systemsis similar to the one for scalar operators.

Definition 2.1. We say that the N x N system P(w) € Clisof principal type at
wo if

8, P(wo) : Ker P(wg) > Coker P(wp) = CN/ Ran P(wo) (2.2)
is bijective for some v; here ,P = (v, dP) and the mapping (2.1) is given by

u — 6, P(wo)u modulo Ran P(wo). We say that P € P} is of principal typeat wo
if the principal symbol Py (X, &) isof principal type at wo.
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Remark 2.2. If P(w) e Ctisof principal typeand A(w), B(w) € Ct areinvertible,
then APB is of principal type. We also havethat P is of principal typeif and only
if the adjoint P* is of principal type.

Infact, Leibniz'srule gives
d(APB) = (dA)PB + A(dP)B + APdB (2.2

and Ran(APB) = A(RanP) and Ker(APB) = B~1(Ker P) when A and B are
invertible, which gives the invariance under left and right multiplication. Since
Ker P*(wg) = Ran P(wp)* wefind that P satisfies (2.1) if and only if

Ker P(wg) x Ker P*(wp) > (U, v) = (8, P(wo)u, v) (2.3

is a nondegenerate bilinear form. Since (6, P*u,») = (9, Pv, u) we then obtain
that P* is of principal type.
Observe that only square systems can be of principal type since

DimKer P = DimCoker P+ M — N

if Pisan N x M system. In generad, if the system is of principal type and has
constant multiplicity of the eigenvalues, then there are no nontrivial Jordan boxes,
see Definition 2.3 and Proposition 2.10. Then we also have that the eigenvalues A
are of principal type: d4 # 0when 2 = 0. When the multiplicity is equal to one,
this condition is sufficient. In fact, by using the spectral projection one can find
invertible systems A and B so that

APB = A0
~\0 E
with E invertible (N — 1) x (N — 1) system, and this system is obviously of principal
type.

Definition 2.3. Let Abean N x N matrix and 4 an eigenvalueof A. Themultiplicity
of 1 asaroot of the characteristic equation |A — A 1dy | = Oiscalled the algebraic
multiplicity of the eigenvalue, and the dimension of Ker(A — A1dy) is called the
geometric multiplicity.

Observethat if the matrix P (w) depend continuously on a parameter w, then the
eigenvalues A (w) also depend continuously on w. We will call such a continuous
function A(w) of eigenvalues a section of eigenvalues of P(w).

Remark 2.4. If the section of eigenvalues 1(w) of the N x N system P(w) € C*
has constant algebraic multiplicity, then 1(w) € C*. Infact, if k isthe multiplicity,
then 1 = A(w) solves 8X 1|P(w) — Z1dn | = 050 A(w) € C* by the Implicit
Function Theorem.

Thisis not true for constant geometric multiplicity, for example P(t) = (? (1))
t € R, hasgeometric multiplicity equal to onefor the eigenvalues +./t. Observethe



Solvability 125

geometric multiplicity islower or equal to the algebraic, and for symmetric systems
they are equal. We shall assume that the eigenvalues close to zero have constant
algebraic and geometric multiplicities by the following definition.

Definition 2.5. The N x N system P(w) € C* has constant characteristics near
wo if there exists an ¢ > 0, so that any section of eigenvalues 1(w) of P(w)
has both constant algebraic and geometric multiplicity when |A(w)|] < & and
[w — wo| < &.

Definition 2.5 is invariant under changes of bases; P — E~1PE where E is
an invertible system, since this preserves the multiplicities of the eigenvalues of
the system. It is aso invariant under taking adjoints, since |P*(w) — A*(w) Id| =
[P(w) — A(w) 1d| and DimKer(P*(w) — A*(w) 1d) = DimKer(P(w) — A(w) 1d).
The definition is not invariant under multiplication of the system with invertible
systems, even in the case when P(w) = A(w)Id since A(w)P(w) = A(w)A(w)
need not have constant characteristics.

Observe that generically the eigenvalues of a system have constant multiplicity,
but not necessarily when equal to zero. For example, the system

P(w) = (Zl _wufl)

is symmetric and of principa type with eigenvalues +,/w? + w3, which have
constant multiplicity except when equal to 0.

Definition 2.6. Let the N x N system P € ¥ be of principal type and constant
characteristics. We say that P satisfies condition (W) or (P) if the eigenvalues of the
principal symbol satisfies condition (V) or (P).

Observe that the eigenvalue close to the origin is a uniquely defined C*°-
function of principal type by Definition 2.3 and Proposition 2.10. Thus, the semi-
bicharacteristics of the eigenvalues are well defined near the characteristic set
{w : |P(w)] = 0}, so the conditions (¥) and (P) on the eigenvalues are well
defined. Also well defined isthe condition that the Hamilton vector field of an eigen-
value 4 does not have the radial direction when 2 = 0.

To get local solvability at apoint Xg € M we shall also assume a strong form of
the non-trapping condition at xg for the eigenvalues 4 of P:

A=0 = §:1 #£0. (2.4)

This means that all nontrivial semi-bicharacteristics of 1 are transversal to the
fiber T M, which originally was the condition for principal type of Nirenberg and
Treves [28]. Microlocally, in a conical neighborhood of (x,¢&) € T*M, we can
always obtain (2.4) after a canonical transformation if the Hamilton vector field is
not radial. In the following, we shall use the usual L2 Sobolev norm llulls) andthe
L2 norm ||ul| = [|ull)-
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Theorem 2.7. Let P € ¥J'(M) bean N x N system of principal type and constant
characteristics near (xp, &) € T*M, such that the Hamilton vector field of an
eigenvalue 1 does not have the radial direction when 2 = 0. Then P ismicrolocally
solvable near (xo, &) if and only if condition (V) is satisfied near (xo, o), and then

lull < CUIP*ull@/2-m) + IRUl + lull—1))  ueCFM,CN). (25

Here R € Y1/2(M) isa K x N system such that (xo, &) ¢ WF(R), which gives
microlocal solvability of P at (xo, &o) with aloss of at most 3/2 derivatives. If P is
of principal type and constant characteristics with eigenval ues satisfying condition
(V) and (2.4) near xg € M, then we obtain (2.5) with x # xp in WF(R), which
giveslocal solvability of P at xp with aloss of at most 3/2 derivatives.

As usual, WF(R) is the smallest smallest conical set in T*M\0 such that R €
¥~ in the complement. The conditionsin Theorem 2.7 are invariant under conju-
gation with scalar Fourier integral operators since they only depend on the principal
symbol of the system. They are also invariant under the base change: P — E~1PE
with invertible system E, since this preservesthe multiplicities of the eigenvalues of
the principal symbol. The conditions of Theorem 2.7 are more or less necessary; of
course condition (W) is necessary even in the scalar case. Examples 2.14 and 2.15
show that we need both the condition of principal type and of constant multiplicity
in order to get this result.

We shall postpone the proof of Theorem 2.7 to Section 4. The proof of the
necessity is essentially the classical Moyer—Hormander proof for the scalar case.
The proof of the sufficiency will be an adaption of the proof for the scalar casein[8],
using some of theideas of Lerner [24]. In fact, since the normal form of the operator
will have a scalar principal symbol, the multiplier will essentially be the same as
in [8]. But since we lose more than one derivative in the estimate we also have to
consider the lower-order matrix-valued terms in the expansion of the operator. This
isdonein Section 7 and isthe main new part of the paper. In Section 3 wereview the
Wey! calculus and state the estimates we will use in the proof of Theorem 2.7. But
we shall postpone the proof of the semiclassical estimate of Proposition 3.6 until
Section 7. In Section 4 we prove Theorem 2.7 by amicrolocal reduction to anormal
form using the estimates in Section 3. In Section 5 we define the symbol classes and
weights we are going to use. In Section 6 we review the Wick quantization, intro-
duce the function spaces and the multiplier estimate that we will use for the proof
of Proposition 3.6. Finally, in Section 7 we prove Proposition 3.6 by estimating the
contributions of the lower order terms. The proof of Theorem 2.7 in Section 4 also
givesthe following results.

Remark 2.8. If P is of principal type with constant characteristics satisfying
condition (P), then we get the estimate (2.5) with 3/2 replaced by 1. If P satisfies
condition (¥) and some repeated Poisson bracket of the real and imaginary parts
of the eigenvalue close to the origin is nonvanishing, then we obtain a subelliptic
estimate for P with 3/2 replaced by k/k + 1 in (2.5) for somek € Z., see[14,
Chapter 27].
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The Poisson bracket of f and g is defined by { f,g} = H¢g. Theorem 2.7
has applications to scalar non-principal type pseudodifferential operators by the
following result.

Theorem 29. Let Q € lIJé(M) be a scalar operator of principal type near
(X0, %) € T*M andlet Aj € ¥ (M), j =1, ..., N bescalar. Then the equation

N—-1
Pu=QNu+ > AjQlu=f (2.6)

j=0

is locally solvable near (xo, &) if and only if ¢(Q) satisfies condition (V) near
(X0, 0)-

Proof. Thisisastandard reduction to afirst-order system. For scalar u € D’ we let
Uj+1 = Qlufor0 < j < N. Then (2.6) holdsif and only if U = '(ug, ..., un)
solves

PU = F, (2.7)

where

Ao A1 A2 ... Q+ An-2

and F =1(0,0,..., f). Now the equation (2.6) islocally solvableif and only if the
system (2.7) islocally solvable. In fact, to solve (2.7) wefirstput uy = 0, up = — f1
andrecursively uj 1 = Quj — fj for 1 < j < N. Thenwe only haveto solve (2.6)
for u = 07 with f dependingon fj, and add Q' ~v1 touj. Now ¢ (P) = o (Q) Idy
which is of principal type with constant characteristics, so it is locally solvable if
and only if Q satisfies condition (W) according to Theorem 2.7.

We shall conclude the section with some examples. But first we prove a result
about the characterization of systems of principal type.

Proposition 2.10. Assume that P(w) € C* isan N x N system such that
|P(wp)] = 0 and there exists an ¢ > 0 such that the eigenvalue . of P(w)
with |A] < & has constant algebraic multiplicity in a neighborhood of wg. Let
Aw) € C* be the unique eigenvalue for P(w) near wo satisfying A(wgp) = 0
by Remark 2.4. Then P(w) is of principal type at wo if and only if dA(wo) # 0and
the geometric multiplicity of the eigenvalue A isequal to the algebraic multiplicity
at wo.

Thus, if P(w) is of principal type having constant characteristics, then all
sections of eigenvalues A (w) are of principal type, and we have no nontrivial Jordan
boxes in the normal form. This means that for symmetric systems having constant
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characteristicsit sufficesthat the eigenvaluesare of principal type. If P(w) does not
have constant characteristics, then thisis no longer true; in fact the eigenval ues need
not even be differentiable, see Example 2.15.

Observe that if P(w) is of principa type and has constant characteristics, then
P(w) — zldy isof principal type for |z| « 1. Infact, the algebraic and geometric
multiplicities are constant for the eigenvalue 1 and dA # Owhen 4 = 0.

Now the eigenvalue A(w) in Proposition 2.10 is the unique C*> solution to
6'/1‘_1| P(w) — A 1dn | = 0 according to Remark 2.4, where k is the algebraic multi-
plicity. Thuswe find that d1(w) # 0 if and only if

0w HP(w) — Aldny | #0  when i = A(w).

We only need this condition for a symmetric system with constant multiplicity to be
of principal type.

Example2.11. Let
w1 +i w% w2 2
P(w) = . w = (w1, w2) € R4,
0 w1+ w5

then P is of principal type, has constant algebraic multiplicity of the eigenvalue
w1y + i wg but not constant geometric multiplicity. In fact, 6,,, P = 1d2, P(w) has
nontrivial kernel only when w, = 0, but the geometric multiplicity of the eigenvalue
is equal to one when w> # 0.

Example2.12. Let
P= p(Xa DX) IdN +B(X) DX) + PO(X, DX))

where p € St isa scalar homogeneous symbol of principal type, B € ‘Pé with
nilpotent homogeneous principal symbol ¢ (B) and Py € \Pg . Then pisthe only
eigenvalueto o (P) and P is of principal typeif and only if 6(B) = Owhen p=10
by Proposition 2.10.

Remark 2.13. Observe that the conclusion of Proposition 2.10 does not hold if the
algebraic multiplicity is not constant. For example,

1
P(w) = (wl ) w = (w1, wp) € R?
w2 w1

has determinant equal to wf — wy and eigenvalues w1 + /w32, S0 the geometric but
not the algebraic multiplicity is constant near w2 = 0. Since

0 1 wy w1
(1 o)rer=(ir %)

we find that P(w) isof principa typeat (0, 0) by invariance.
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Proof of Proposition 2.10. First we note that P(w) is of principal typ at wo if and
only if
oX|P(wo)| #0  k = DimKer P(wo) (2.8)

for some v € T(T*R"). Observe that 8/|P(wg)| = 0 for j < DimKer P(wo).
Infact, by choosing bases for Ker P(wg) and Im P (wg) respectively, and extending
to bases of CN, we obtain matrices A and B so that

P11(w) Plz(w))
Por(w) Pao(w))’

where | Po2(wo)| # 0 and P11, P12 and P»; all vanish at wg. By theinvariance, P is
of principal typeif and only if 9, P11 is invertible for some v, so by expanding the
determinant we obtain (2.8).

Now since the eigenvalue A(w) has constant algebraic multiplicity near wg, we
find that

Ammsz(

[P(w) — Aldn | = (A(w) — 1)Me(w, 1)

near wo, where A(wo) = 0, e(w, 1) # 0and m > DimKer P(wp) is the age-
braic multiplicity. By putting 4 = 0 we obtain that 6} |P(wo)| = 0if j < mand
oM P(wo)| = (0yA(wo))™e(wo, 0) which proves Proposition 2.10.

The following exampleis an unsolvable system of principal type with real eigen-
values, but it does not have constant characteristics.

P _ (DX1 B(Xa DX) ) , (29)
—1 Dy, + R(Dx)

Example 2.14. Let

where R(¢) = 522/|§| and o (B)(X, &) = &Bo(x, &) with By € S° homogeneous
in¢&. Theeigenvaluesof the principal symbol ¢ (P) are & and & + R(E) that arereal
and coincidewhen & = 0. Since ¢, 6 (P) = Idz and ¢ (B) vanish when & = 0, we
find that P isof principal type. If t — Im Bo(t, x’, 0, 0, ¢”) changessignatt = xi,
then P isnot microlocally solvableat (x, 0, 0, &”); herex = (X1, X’) = (X1, X2, X”)
and &” # 0. Infact, the syssem PU = F withU = Y(ug, up) and F = t(fy, fp) is
equivalent to the equation

Quz = (Dx,(Dx,; + R(Dx)) + B(X, Dx))uz = f1 + Dy, f2 (2.10)

if we put up = (Dx; + R(Dx))uz — fo. Thus the system P is solvable if and
only if Q issolvable. That Q is not solvable follows from using the construction of
approximate solutions to the adjoint in [26], replacing Dy, with R(Dy).

We can aso generalize this to the case where

R(¢) = &X|¢| X

a(B)(x,¢) = @-’Zj Bj(x,&) with j <k, Bj € St~ homogeneous of degree 1 — |
in ¢, and satisfying the same conditions as Bp. On the other hand, if o (B)(X, &) =



130 Nils Dencker
fzj Bj (x, &) with j > k, then we can write
B(x, Dx) = A(X, Dy)R(Dx)  modulo ¥°

for some A € 0, and then

1 —A 1 A Dy, 0 0
P = modulo ¥
0 1 0 1 0 Dy, + R(Dyx)

which is solvable. In fact, the principal symbol is on diagonal form with real
diagonal elements of principal type, giving L2 estimates of the adjoint that can be
perturbed by lower-order terms.

Finally, we have an example of an unsolvable operator which is diagonalizable
and self-adjoint, but not of principal type.

Example 2.15. Takereal b(t) € C*°(R), and define the symmetric system

_ ( De+b(®Dx  (t —ib(t)Dx

_ p* 2
(t +ib(t))Dx —Dt+b(t)DX)_P (t,x) e RS

Eigenvaluesof o (P) areb(t)é++/72 + (t2 + b2(t))¢é2 whicharezerofor (z, &) # 0
only if t = ¢ = 0. The eigenvalues coincidefor (z,¢) # Oif andonly if b(t) =t =
7 = 0. We have that

1/1 —i P 1 1 Dt —itDx  2b(t)Dy
Q_Z(l i) (—i i)_( 0 Dt+itDX)
whichisnot locally solvableat t = 0for any choiceof b(t). Infact, Dt +it Dy isnot
locally solvable since condition (V) is not satisfied when ¢ > 0. The eigenval ues of
the principal symbol ¢ (Q) are r £ ité. By the invariance, P is of principal type if
and only if b(0) = 0. When b(t) # 0 we find that ¢ (P) is diagonalizable and self-

adjoint, but not of principal type. When b = 0 the system is symmetric of principal
type, but does not have constant characteristics.

3 The multiplier estimates

In this section we shall provemultiplier estimatesfor microlocal normal formsof the
adjoint operator, which we shall use in the proof of Theorem 2.7. We shall consider
the model operators

where F € C®(R, ‘Pé (R™)) is scalar with the real homogeneous principal symbol
o(F) = f,and Fop € C®°(R,¥J) isan N x N system. In the following, we shall
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assume that Py satisfies condition (¥):
f(t,x,&) >0 ands>t = f(5,%x,¢)>0 (3.2

forany t, s € R and (x,¢) € T*R". This means that the adjoint P; satisfies
condition (W) for the eigenvalue = — i f (t, x, ¢). Observe that if y > O, then x f
also satisfies (3.2); thus the condition can be localized.

Remark 3.1. We may also consider symbols f e L%(R,SYR")), that is,
f(t,x,&)is measurablgand bounded in SL(R™) for almost @l t. Then we say that
Po satisfies condition (W) if for every (X, &) condition (3.2) holds for aimost al s,
teR.

Observe that, since (x, &) — f(t, x, &) iscontinuousfor ailmost al t, it suffices
to check (3.2) for (x, ¢) in a countable dense subset of T*R". Then we find that f
has a representative satisfying (3.2) for any t, s and (x, &) after putting f (t, X, &) =
Ofortinanull set.

In order to prove Theorem 2.7 we shall make a second microlocalization using
the specialized symbol classes of the Weyl calculus, and the Weyl quantization of
symbolsa € &'(T*R") defined by

X+y

(@u,v) = (22)" / epi(x -y, &)a (T 5) U(y)5(x) dxdydé

u,o € S(RM

Observe that Rea®” = (Rea)™ isthe symmetric part andi Ima®” = (i Ima)® the
antisymmetric part of the operator a®. Also, if a € SJ'(R"), then a*(x, Dx) =
a(x, Dyx) modulo lI’g“l(R”) by [14, Theorem 18.5.10]. The same holdsfor N x N
systems of operators.

We recall the definitions of the Weyl calculus: let g,, be a Riemannean metric
on T*R", w = (X, &); then we say that g is slowly varying if there existsc > 0 so
that g, (w — wo) < cimplies

1/C < dw/9uw, < C,

that is, g, = gu,- Let o be the standard symplectic form on T*R", g° (w) the
dual metric of w +— g(o(w)), and assume that g° (w) > g(w). We say that g is
o temperateif itis slowly varying and

Oo < COuo(1+ 0% (w — wo))N  w, wo € T*R™.
A positive real-valued function m(w) on T*R" is g-continuousif thereexistsc > 0
S0 that gy, (w — wo) < cimpliesm(w) = m(wo). We say that mis o, g-temperate
if it is g-continuous and

m(w) < Cm(wo)(1+ g% (w — wo))N  w, wo € T*R".
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If miso, g temperate, then misaweight for g and we can definethe symbol classes:
ae S(m,g)ifae C®(T*R") and

(1) .
a , 11,0, T .
|a|?(w) = sup &l (w, Ty Dl < Cjm(w) we T*R" i>0,

T2  []] 9u(T)Y2

(3.3

which defines the seminorms of S(m, g). Of course, these symbol classes can also

be defined locally. For matrix-valued symbols, we use the matrix norms. If a €

S(m, g), then we say that the corresponding Weyl operator a* € Op S(m, g). For
more results on the Weyl calculus, see[14, Section 18.5].

Definition 3.2. Let m be a weight for the metric g. We say that a € S™(m, g) if
ae C®(T*R" and|a? < Cjmfor j > 1.

Observethat if a € ST (m, g), then a isasymbol. In fact, since g < g we find
by integration that

la(w) — a(wo)| < C1 sUp M(wy)Gu, (w — wo)*/?
0e[0,1]

< CnM(wo)(L + g5, (w — wo))"°,

where wy = fw + (1 — 0)wo, whichimpliesthat m+ |a| isaweight for g. Clearly,
a € S(m+ |al, g), so the operator a” iswell defined.

Lemma 3.3. Assume that mj isa weight for for the o -temperate conformal metrics
g = hjg? < ¢’ = (¢%)” andaj € ST(mj, gj), j =1,2. Letg= (g1 + g2)/2 and
h? = supg1/g3 = supgo/g] . Then we find that h? = hih, and

a’ay — (a1ap)® € Op S(mymzh, g). (3.4
We also obtain the usual expansion of (3.4) with termsin S(mymazhk, g), k> 1

Observe that by Proposition 18.5.7 and (18.5.14) in [14] we find that g is
o-temperateand g/g° < (hy + h2)2/4 < 1.

Proof. As shown after Definition 3.2 we have that mj + |a;| is aweight for g; and
aj € S(mj + |ajl, gj), j =1,2. Thus

ay’ay € OpS((my + |a1])(m2 + [az]), 9)

isgiven by Proposition 18.5.5in[14]. Wefind that a’ay’ — (a1a2)"” = a* with

a(w) = E ('Ea(le, Dwz)) %G(le, Duy)as (w1)ag(ws)|

wi=wr=w ’

where E(z) = (e —1)/z= fol e’2dg. We have that 0 (D, Duy)ar(wr)as(wz) €
S(M, G) where
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M (w1, wz) = ml(U)l)mZ(U)Z)hi/z(wl)hzzl/z(U)Z)

and Gy, w,(Z1,22) = 91,0,(Z1) + 92,0,(Z2). Now the proof of Theorem 18.5.5
in [14] works aso when ¢ (D,,,, Dy,) isreplaced by 8o (D, , Dy,), uniformly in
0 < 0 < 1. By using Proposition 18.5.7 in [14] and integrating over 0 € [0, 1] we
obtain that a(w) has an asymptotic expansion in S(mimyhK, g), which proves the
lemma.

Remark 3.4. The conclusions of Lemma 3.3 also hold if a3 hasvaluesin £(B1, Bp)
and ap has values in B; where B; and By are Banach spaces (see Section 18.6
in[14]).

For example, if {aj }j € S(mgy, g1) with values in £?, and bi e S(my, g2)
uniformly in j, then {a}”b}“ }j € Op(mimy, g) with values in £<. Observe that
if {¢j}; € S(1, g) isapartition of unity so that Zj ¢j2 =landa € S(m, g), then
{#ja}j € S(m, g) hasvaluesin £2.

Example 3.5. The standard symbol class Sg‘, s defined by

logala(x, &)| < Cuple)rtolel=elfl
has o -temperatemetricif 0 <9 <p < landd < 1

In the proof of Theorem 2.7 we shall microlocalize near (Xo, &) and put h—1 =
(&o) = 1+ |&l. Then after doing a symplectic dilation: (x, &) — (h=1/2x, h1/2¢),
we find that S, = Sth7 hg*) and ,,, = S, g%, k € R, where
g = (g")? is the Euclidean metric. We shall prove a semiclassical estimate for
amicrolocal normal form of the operator.

Let ||u|| bethe L2 norm on R™?, and (u, ) the corresponding sesquilinear inner
product. As before, we say that f € L*(R, S(m, g)) if f(t, x, <) is measurable
and bounded in S(m, g) for aimost al t. The following is the main estimate that we
shall prove.

Proposition 3.6. Assume that
Po = (Dt +if"(t, X, Dy)) ldn +Fg’(t, X, D),

where f € L®(R, S(h~1, hg?)) is real satisfying condition (¥) given by (3.2),
and Fp € L*®(R, S(1,hg’)) isan N x N system; here 0 < h < 1 and ¢* =
(g%)? are constant. Then there exists To > 0 and N x N symbols br(t, x, &) €
L®(R, S(h—%2,g) N St(1, g*)) such that Imbr e L*(R, S(h'/2, g%)) uni-
formly for0 < T < Tp, and

hY2(|b%u|1? + [|ul?) < CoT Im(Pou, b¥u) (35)

for u(t, x) € S(R x R", CN) having support where |t| < T < To. The constants
Co, To and the seminorms of bt only depend on the seminorms of f and Fo.
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Remark 3.7. It follows from the proof that bt = by E*E, modulo Sh'2, g%,
where E € S(1, hg?) is an invertible N x N system, br is scalar and |br| <
CH /2 Here H is aweight for g suchthath < H < 1,and G = Hg' is
o -temperate (see Claim 3.9, Definition 5.3 and Proposition 6.3).

Observe that it follows from (3.5) and the Cauchy—Schwarz inequality that
lull < CTh=2||Poul,

whichwill givealoss of 3/2 derivativesafter microlocalization. Proposition 3.6 will
be proved in Section 7.

There are two difficulties present in estimates of the type (3.5). Thefirst is that
br isnot C* inthet variables. Therefore one has to be careful not to involve by
in the calculus with symbolsin all the variables. We shall avoid this problem by
using tensor products of operators and the Cauchy—Schwarz inequality. The second
difficulty lies in the fact that we could have |bt| > h'/2, so it is not obvious that
cut-off errors can be controlled.

L emma 3.8. The estimate (3.5) can beperturbed with termsin L (R, S(h'/2, hg?))
in the expansion of Py for small T. Also, it can be microlocalized: if ¢(w) €
S(1, hg?) isreal valued and independent of t, then we have

Im(Pog®u, b¥¢™u) < Im(Pou, b u) + ChY/2|ju||?
u(t, x) e S(R™L, cNy (3.6)

where ¢*’by ¢" satisfies the same conditions as by .

Proof. In the following, we shall say that a system is real if it is a real mul-
tiple of the identity matrix. It is clear that we may perturb (3.5) with terms in
L%(R, S(h¥/2, g%)) in the expansion of Py for small enough T. Now, we can also
perturb with real termsr® e L®(R, Op S(1, hg?)). Infact, if r € S(1, hg?) isreal
and B € St(1, g*) is symmetric modulo S(h'/2, g?), then

|Im(r”u, B*w)| < [([(ReB)",r"“]u,u)|/2+|(r”u, (ImB)*“u)| < Ch?||u||?.
(3.7)
In fact, we have[(Re B)®, r*] € Op S(h'/2, g*) by Lemma3.3.
If ¢(w) € S(1, hg?), then

[Po, ¢” ldn] = { f, ¢} Idy modulo L*°(R, Op S(h, hgﬁ)),

where { f, ¢} € L®(R, S(1,hg?)) is rea valued. By using (3.7) with r* =
{f,¢)"Idy and B® = b{¢™, we obtain (3.6) since b¥¢” € OpS*(1, g’ is
symmetric modulo Op S(h'/2, g*) for amost all t by Lemma3.3. Since Lemma3.3
also givesthat

PUbYe"” = ¢" (brp)” = (brg?)”
modulo L*®(R, Op S(h'/2, g*)) we find that ¢ b?¢" satisfies the same conditions
asby.
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Claim 3.9. When proving the estimate (3.5) we may assume that

Fo=(dyf. Ro)=> du fRyj  modulo L¥(R, S(h, hg)), (3.8)
j

where Ry j € L®(R, S(h/?, hg?)) are N x N systems, for al j.

Proof. By conjugation with (E*1)* e Op S(1, hg*) we find that

(E"HYPE® = (E"HYE”(Dy +i ") Idy +(E"Y(D{E + H{ E + FoE))* = P
modulo L>°(R, S(h, hg?)). By solving

DtE+ FE=0
i E|t=0 = ldn
we obtain (3.8) for P with (d,, f, Ry) = E~1H E. From the calculus we obtain that
EY(ETHY =1=(E"H”E®  modulo Op S(Th, hg?)

uniformly when |t| < T. Thus, for small enough T we obtain that (E*1)® is
invertible in L2. Since the metric hg? is trivialy strongly o-temperate in the
sense of [2, Definition 7.1], we find from [2, Corollary 7.7] that there exists
A e L®(R, S(1, hg?)) such that E* A = 1. Thus, if we prove the estimate (3.5)
for P and substitute u = A" v, we obtain the estimate for P with by replaced by
(E7H»)*p2 A”. Since A = E~1 modulo S(h, hg*) we find from Lemma 3.3 as
before that the symbol of this multiplier isin S(h=1/2, g*) N St (1, ¢*) and that it
is symmetric modulo S(h'/2, g%).

We shall see from the proof that if Fg ison the form (3.8), then by = by Idy is
real. Thus, in general the symbol of the multiplier will be ontheform by (E~1)*E~1
modulo S(h/2, g*) with invertible E and areal scalar bt . Inthe following, we shall
use the partial Sobolev norms:

llulls = [I{Dx)3ull. (3.9)
We shall now provethe estimate that isgoing to be used in the proof of Theorem 2.7.
Proposition 3.10. Assume that
Po = (Dt +iF“(t, x, Dy)) ldn +Fy’ (t, X, Dx)

with F* € L“(R,‘Pé (R™) having the real principal symbol f satisfying condi-
tion (V) given by (3.2) and Fg € L*(R, ‘Pg(R”)) isan N x N system. Then there
exists To > Oand N x N symbols Bt (t, X, ¢) € L®(R, S}/Z,l/Z(R”)) with

VBt = (6xBr., [¢]0:BT) € L¥(R, S_|l_/2,1/2(Rn))
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and Im Bt (t, X, &) € L®(R, §/271/2(R”)) uniformly for 0 < T < Tp, such that
IBFUIIZ 5+ llull® < Co(T Im(Pou, BYu) + l|ull?,) (3.10)

for u € S(R"1, CN) having support where |t| < T < To. The constants To, Co
and the seminorms of Bt only depend on the seminorms of F and Fo.

Since VBT € L®(R, S}/z 1/2) We find that the commutators of By with scalar

operators in L*°(R, TOO) arein L*°(R, Tl 21/2) This will make it possible to
localize the estimate. The idea to include the first term in (3.10) is due to Lerner
[24].

Proof that Proposition 3.6 gives Proposition 3.10. Choose rea symbols { ¢j
(X&) }j and {yj(x,&)}j € §(R") having valuesin ¢2, such that > ¢j2 =1,
vi¢j = ¢j and yj > 0. We may assume that the supports are small enough so that
(&) = (&) insuppy;j for some ¢&;, and that there is a fixed bound on number of
overlapping supports. Then, after doing a symplectic dilation

(v, ) = (X(E)Y2, /&)Y

we obtain that S4(R") = S(hj—m,h,-gﬂ) and S, ,(R") = Shi™ g% in
suppyj, m € R, where hj = (¢j)~! < 1and g*(dy,dn) = [dy|* + |dy|? is
constant.

By using the calculus in the y variables, we find ¢5'“ Py = ¢}” Poj modulo

OpS(h,,th ), where

Poj = (Dt +i(yjF)*(t.y, Dy)) ldn +(wj Fo)“(t. y, Dy)
= (Dt +if{”(t,y, Dy)) ldy +F/"(t, y, Dy) (3.11)

with fj = yjf e LR, s(hit, hjg?)) satistying (3.2), and Fi € L¥(R,
S(1, hjg*)) uniformly in j. Then, by using Proposition 3.6 and Lemma 3.8 for
Poj we obtain symbolsbj 7 (t,y, n) € L™(R, S(hj_l/z, o) N St (1, ¢")) such that
Imbj 1 € S(h}/z, g) uniformly for 0 < T « 1, and

It ul® + ¢ ull? < CoT (h; ¥ Im(Pou, ¢bYr41w) + [U?) V¥ ]
(3.12)
for u(t,y) € S(R x R",CN) having support where |t| < T. Here and in the
following, the constants are independent of T.
By substituting y”u in (3.12) and summing up, we obtain

IBEUl? 15+ llull® < CoT (IM(Pou, BEU) + [lull®) + Callull®;  (3.13)
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for u(t, x) € S(R x R", CN) having support where |t| < T. Here

) —-1/2 ) 1
By = Z hy "y ¢i’biré] vi" = Z Bi’r € L¥(R, ¥1/51)2)
i i

0 ImBt € L™(R, ‘Pf/z’l/z). Infact, sncedyj = O onsuppg;, we have

{7 [Poj. vi'l}j € ¥1o(RM

with values in (2 for dmost al t. Also, >; ¢? = 150 3°; ¢¥¢!” = 1 modulo
¥~1(R™M), and by the finite overlap of supportswe find that

((Dx)~Y2BY)*(Dy) V/2BY = (BY)*(Dx) 1BY

= > (B'p)*(Dx) "By  modulow?
lj—kl<K

for some K, which implies that

IBYull?;)5 < Ck (Z IBErull®y), + ||u||%1)).
k

We also have that (Dx)*l/zhj_l/zijqs}“ e YO(R") uniformly, which gives
IBirull-1/2 = Clibr ' wi'ull - Vk.

We find that VBT € S}/z 12 Since Lemma 3.3 gives
=12, 2 1
Br = Zhj b],T¢j € S_l/2,1/2 modulo §/2,1/2,
j

where ¢j € S(1,hjg*) and b 1 € S*(1, g*) for dmost &l t. For small enough T
we obtain (3.10) and the corollary.

4 Proof of Theorem 2.7

In order to prove the theorem, we first need a preparation result so that we can get
the system on anormal form.

Proposition 4.1. Assume that P € S]'(M) isan N x N system of principal type
having constant characteristicsnear (xp, &) € T*M. Thenthereexist elliptic Nx N
systems A and B € (M) such that
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by 0
AVPUBY = Q¥ — (Qoll Q?z) e

microlocally near (xo, &). Wehavethat o (Q11) = 4 Idk wherethe section of eigen-
values A (w) € C* of P(w) isof principal type, and Q, is élliptic.

Thus we obtain the system on a block form. Observe that if K = 0, then P
is elliptic at (xo, o). Since P is of principal type we find by the invariance given
by (2.2) that Q is of principal type, so 4 vanishes of first order on its zeros.

Proof. Since Py, has constant characteristics by the assumptions, we find that the
characteristic equation
|Pm(w) —Aldy | =0

has a unique local solution A(w) € C* of multiplicity K > 0. Since Pn(w) is
of principal type, Proposition 2.10 givesthat d1(wg) # 0 and the geometric multi-
plicity DimKer(Py(w)—A(w) Idy) = K inaneighborhood of wg = (Xg, £o). Since
the dimensionis constant, we may choose a C*°-basefor Ker(Pm(w) —A(w) Idy) in
a neighborhood of wq. By orthogonalizing it, extending to a orthonormal C°-base
for CN and using homogeneity, we obtain orthogonal homogeneous E such that

Aw)ldg P2

E*PnE =
" ( 0 P2

) = B = 0 (E")*PVEY).

Clearly Ker Py = {(z1,...,2n) @ zj = Oforj > K} when i = 0and dPy,
is equal to multiplication with d1 on Ker Py,. Since Py, is of principal type when
4 =0, we find that Im Py, (Ker Py = {0} a wo, which implies that Py is
invertible. In fact, if it were not invertible, there would exist 0 # 2/ e CN-K
so that Poz” = 0O; then

0# Pn'(0,2") ="(P122", 0) € Im Py ] Ker P,
giving a contradiction. By multiplying P from the left with
(IdK —P12P2_21)
0 ldn—k
we obtain P;2 = 0. Thus, we find that

AVPYBY — Qiul QTZ c \Pgln
% %

where s (Q11) = 2 1dk,, |6 (Q22)| # 0and Q12, Q21 € I . Choose amicrolocal
parametrix B, € W™ to Qf, so that B4,QY%, = Qj,B%, = Idy—_k modulo C*®
near wo. By multiplying from the left with
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ldk —QY,BY
12=22 ‘{Icla
0 ldn—k

we obtain that Q12 € S~°°. By multiplying from the right with

ldk 0 c O
~BpQy ldvk /) "

we obtain Q21 € S~ °. Note that these multiplications do not change the principal
symbolsof Qjj for j = 1, 2, which finishes the proof.

Proof of Theorem 2.7. Observethat since P satisfies condition (W) we find that the
adjoint P* satisfies condition (¥). By multiplying with an elliptic pseudodifferen-
tial operator, we may assumethat m = 1. Let P* havethe expansion Py + Py + - - -
where P; = ¢ (P*) € St thenit is clear that it sufficesto consider wo = (o, &o) €
|P1|~1(0); otherwise P* ¢ T i (M) is elliptic near wg so (2.5) holds and P is
microlocally solvable. Now P* |s of principal type having constant characteristics,
so we find by using Proposition 4.1 that

Q%l 0 1
P* = v
(o Q)

microlocally near wg, wheres (Q11) = 4 ldk with 4 € C* an eigenvalue of o (P*)
of principa type and Q, is élliptic. Since Q, is élliptic, it is trivially solvable,
so we only have to investigate the solvability of Q7. Now 4 is of principal type
by the invariance, so if it does not satisfy condition (¥), then the proof of [14,
Theorem 26.4.7] can easily be adapted to this case, since the principal part of the
operator is a scalar symbol times the identity matrix.

To prove solvability when condition (V) is satisfied, we shall prove that there
exists¢ and v € QO(T*M) such that ¢ = 1 in aconical neighborhood of (Xg, o),

andforany T > 0, thereexistsa K x N system Ry € ﬁ/ (M) with the property
that WF(RY) N Tg M = ¢ and

l¢“ull < Ca (Ily" P*ulla/2) + Tllull) + IRF ull + Collull (-1
ue C(M,CcNy. (4.1)

Here |lu|(s) isthe L2-Sobolev norm and the constants are independent of T. Then
for small enough T we obtain (2.5) and microlocal solvahility, since (xo, o) ¢
WF(1— ¢)™. Inthe case where the eigenval ue satisfies condition (W) and (2.4) near
Xo, we may choose finitely many ¢ < §f0(M) such that > ¢; > 1 near xo and
ll¢{’ull can be estimated by the right-hand side of (4.1) for some suitable y and Ry .
By elliptic regularity of { ¢j } near xo, we then obtain the estimate (2.5) for small
enough T with X # Xo in WF(R).

Observe that in the case when 1 satisfies condition (P), we obtain the esti-
mate (4.1) for P* = A(Xx, Dy) ldn with 3/2 replaced with 1 and C1 = O(T) from
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the Beals—Fefferman estimate, see [1]. Since this estimate can be perturbed with
termsin ‘Pg for small enough T we get the estimate and solvability in this case.
A similar argument gives subelliptic estimates if 1 satisfies condition (¥) and the
bracket condition, see [14, Chapter 27]. This gives Remark 2.8.

It remainsto consider the case Py = 4 Idy, where 4 satisfies condition (). Itis
clear that by multiplying with an elliptic factor we may assume that 6: Re A(wq) #
0, inthemicrolocal case after aconical transformation. Then, we may use Darboux’s
theorem and the Malgrange preparation theorem to obtain microlocal coordinates
(t,y: 7,7 € T*R™! sothat wo = (0,0; 0, 7o), t =00on T M and 2 = q(z +if)
in aconica neighborhood of wg, where f € C*(R, S}’O) isreal and homogeneous
satisfying condition (3.2), and 0 £ q € %, see Theorem 21.3.6in [14]. By using
the Malgrange preparation theorem and homogeneity we find that

Po(t,x; 7,¢) = Q_1(t, X; 7, &) (z + i f (L, X, &) ldn +Fo(t, X, &),

where Q_1 is homogeneous of degree —1 and Fp is homogeneous of degree 0 in
the & variables. By conjugation with elliptic Fourier integral operators and using the
Malgrange preparation theorem successively on lower order terms, we obtain that

P* = Q“(Dtldn +i (x F)*) + R” (4.2

microlocally in a conical neighborhood I' of wg asin the proof of Theorem 26.4.7’
in[14]. Herewefindthat F € C*°(R, S}’O(R”)) hasthereal principal symbol f Idy
satisfying (3.2), Q € @O(R”“) has the principal symbol gldy # Oin ' and
R e St o(R") stisfies T (YWF(R") = 0. Also, x(z, ) € § o(R"?) is equal
tolinT and 7| < C|y| insupp y(z, n). By cutting off in the t variable we may
assumethat F € L®(R, S}O(R“)) Now, we can follow the proof of Theorem 1.4
in [10]. As before, we shall choose ¢ and y so that ¢ = 1 conical neighborhood
of wo, ¥ = 1onsupp¢ and supp w C I'. Also, we shall choose

oty 7, 1) = xo(t, 7, n)go(y, n)

where XO(t; 7, ’7) € $,0(Rn+l)! ¢0(ys ;7) € ﬁ,o(Rn)i t# Oin Supp &t xo, |7| <
Cln|insupp yo and |z| = |5] in sUpp o,y xo.

Since [6(Q)] # 0and R = 0 on suppy it is no restriction to assume that
Q = Idy and R = 0 when proving the estimate (4.1). Now, by Theorem 18.1.35
in [14] we may compose C*(R, ¥]'3(R™)) with operatorsin \P"O(R”+l) having
symbols vanishing when || > c(l + |5]); and we obtain the usual asymptotic
expansionin ‘Pmk J(R”Jfl) for j > 0.Since|z| < C|y|insuppy and y = 1on
supp v, it sufﬂc&to prove(4.1) for P* = Dy + i FY.

By using Proposition 3.10 on ¢™ u, we obtain that

U)¢M)u|| 1/2 + ||¢M)u||

< COT(Im(¢U) P*u BU)¢U)U) + Im([P>5< ¢U) IdN]u BU)¢U)U)) + C1||¢U)u||31’
(4.3
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where BY € L*™(R, ‘Pl/z 1/Z(R“)) isan N x N system with VBt € L*(R,

51/2 1/Z(R”)) and |lulls = |I(Dy)®ul| isthe partial Sobolev norminthey variables.
Since |[z| < CJy| in supp¢ we find that [|¢“ull-1 < C|lull~y Forany u, v €
S(R", CN)Wehavethat

(0, BYW)| = [((Dy)?0, (Dy)"Y2BYw)| < C(llolf 2+ IBYUIZy ). (44)

where (Dy) = 1+ |Dy|. Now ¢* = ¢y modulo ¥ 3(R™1), and thus we find
from (4.4) that

(¢" P*u, B¢ w)| < C(lly" P*ull , + Iul® + IBf " ull®y ;) (45)

where the last term can be cancelled for small enough T in (4.3). We aso have to
estimate the commutator term Im ([P*, ¢ Idn]u, B¥¢™u) in (4.3). We find

[P*,¢" 1dn] = —(ap” — { f,$}") ldn € WP o(R"™),

modulo ¥, (R”+1) by the expansion, where the error term can be estimated
by (4.4). Smceqs = yopo wefind that { f,¢} = ¢of f,xo} + yof f, 0}, where
do{ f, 70} = Ro € §’O(R”+1) is supported when |z| = |y| and y = 1. Now

(r+if)yte Sfl(R”H) when |z| = |5|; thus by [14, Theorem 18.1.35] we find
that RY = Ay P* modulo W] §(R™1) where Ay = Ro(r+if)~1 e S {(R™).
Asbefore, we fmd from (4.4) that

[(R§'u, BE¢" )| < CIRGUlF 2 + BF ¢ ull?;,,)
< Co(lly” P*uly o + 1B ul® 1 5+ Ul y0),  (4.6)

and aso
6" u, BYgPu)| < R UIZ + IBEA Ul o0

where R = (Dy)Y/2a1¢" € W15 (R™1); thust # 0in WF(RY).

It only remains to estimate the term Im(({ f, ¢0}x0)“u, BY¢"u). Here
({ f,d0tx0)” = { f. o} 1 and ¢* = ¢ x& modulo ¥, 3(R™1). Asin (4.4)
we find that ’

|(R”u, B¥v)| = |({Dy)R”u, (Dy) "*B¥0)| < C(Jull® + [[0]1?)
for R e S g(R™1); thuswe find that
Hm(({ T, ¢o}x0)"u, BE¢ u)| < [Im({ T, g0} x&'u, BY$& x&w)l + Cllull’.
The calculusgives By ¢y’ = (Bt ¢o)"” and

2i Im ((Br¢o)"{ f,¢0}"”) = { Breo, { f, 0 }}" =
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modulo L* (R, T?/z,l/z(Rn)) since V(Br¢p) € L*(R, S%/2,1/2(Rn)) and { f, ¢o}
isreal. Thus, we obtain that

[Im({ f, g0} xgu, BYo§ 1wl < Clixg ull® < C'ull?, (4.7)

and the estimate (4.1) for small enough T, which completes the proof of
Theorem 2.7.

5 The symbol classes and weights

In this section we shall define the symbol classes to be used. Assume that f ¢
L®(R, S(h™*, hg?)) is scalar and satisfies (3.2). Here0 < h < 1and ¢* = (g7)°
are constant. Itisno restriction to changeh sothat | | < h=%/2, which we assume
in what follows. The results shall be uniform in the usual sense; i.e., they will only
depend on the seminormsof f in L°(R, S(h~1, hgt)). Let
Xit)={weT*R":3s<t, f(s,w) > 0} (5.2)
X_t)={weT*R":3s>1t, f(s,w) <0}. (5.2
Clearly, X4 (t) areopenin T*R", X,.(s) € X (t) and X_(s) 2 X_(t) whens < t.
By condition () we obtain that X_(t) (| X4+ (t) = ¥ and £ (t, w) > 0 when

w € Xi(t), Vt. Let Xo(t) = T*R™M\ (X4 (t) U X=(t)) which is closed in T*R".
By the definition of X4 (t) wehave f(t, w) = Owhen w € Xo(t). Let

do(to, wo) = inf{ g (wo — 22 : z € Xo(to) } (5.3)

be the gﬁ distancein T*R" to Xg(to) for fixed to; it is equal to +oco in the case that
Xo(to) = @. By taking the infimum over z we find that w — dp(t, w) is Lipschitz
continuous with respect to g? for fixedt whendy < oo, i.e.,

sup  [do(t, w) — dolt, 2)|/g° (w — Y2 < 1.
w#zeT*RN

Definition 5.1. We define the signed distance function do(t, w) by
o = sgn( f) min(do, h=1/2), (5.4)
where dp is given by (5.3) and

w e Xi(t)

sgn( f)(t, w) = =t (5.5)
0, w e Xp(t)

sothat sgn(f)f > 0.
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Remark 5.2. The signed distance function w +— do(t, w) given by Definition 5.1 is
Lipschitz-continuous with respect to the metric g* with Lipschitz constant equal to
1, forall t. We asofind that t — Jo(t, w) is nondecreasing, do f > 0, |do| < h~1/2
and when |do| < h~¥/2 wefind that |do| = dg is given by (5.3).

In fact, it suffices to show the Lipschitz-continuity of w > do(t, w) on CXop(t),
and then it follows from the Lipschitz continuity of w — do(t, w) when dg < oo.
Clearly opf > 0, and since X, (t) is nondecreasing and X_(t) is nonincreasing
when t increases, we find that t — do(t, w) is nondecreasing.

In the following, we shall treat t as a parameter which we shall suppress, and we
shall denote f = 4, f and f” = 82 f. We shall also in the following assume that

w

we have chosen g? orthonormal coordinates so that g (w) = |w|?and | f/| < h—1/2,

Definition 5.3. Let
| /]

H-Y2 =14 60| + TR LT (5.6)
and G = Hg".
Observethat (d) = 1+ |do| < H Y2 and
1<HY2< 1400 +h Y41 Y2 <3012 (5.7)
since | f'| < h Y2 and |dp| < h~Y/2. Thisgivesthat hg’ < 9G.
Definition 5.4. Let
M=|f|+|f|H Y24 f"|H 14 hl/2H32 (5.8)

Then we havethat h'/2 < M < Csh1.

The metric G and weight M have the following properties according to
Propositions 3.7 and 3.8 in [8] and Proposition 3.5in [10].

Proposition 5.5. Wefind that H ~1/2 s Lipschitz-continuous, G is o -temperate such
that G = H2G” and

H (w) = CoH (wo)(1 + Gy (w — wo)), (5.9)

We have that M isa weight for G suchthat M < CH-1, f € S(M, G), and
M (w) < C1M(w0) (1 + Gy (w — w0))¥/2. (5.10)
Since G < g < G“ we find that the conditions (5.9) and (5.10) are stronger
than the property of being o -temperate (in fact, strongly o -temperate in the sense

of [2, Definition 7.1]). Note that f e S(M, Hg?) for any choiceof H > hin
Definition 5.4. The following property of G isthe most important for the proof.
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Proposition 5.6. Let H ~%/2 be given by Definition 5.3 for f € S(h~1, hg*). There
exists k1 > 0sothatif (dp) = 1+ |do| < x1H /2, then

f = aodo, (5.11)

where kiMHY2 < a9 € S(MHY2 G), which implies that d9 = f/ag €
S(H-Y2, G).

This follows directly from Proposition 3.9 in [8]. Next, we shall define the
weight m to be used.

Definition 5.7. For (t, w) € R x T*R" welet
m(t, w) = tlgtlfftz{ |do(t1, w) — do(tz, w)|
+max (HY2(t1, w) (Go(ta, w))?, HY2(tz, w) (do(tz, w))?) /2} (5.12)
where (dg) = 1+ |do|.

This weight essentially measures how much t — do(t, w) changes between
the minima of t — HY2(t, w)(do(t, w))2, which will give restrictions on the
sign changes of the symbol. When t +— do(t, w) is constant for fixed w, we
find that t — m(t, w) is equal to the largest quasiconvex minorant of t
HY2(t, w)(do(t, w))?/2, i.e., sup, m = sup,, m for compact intervals | C R,
see [15, Definition 1.6.3].

The main difference between this weight and the weight in [8] is the use of
H/2(50)? in the definition of m instead of H/2(dp), and thisis dueto Lerner [24].
The weight has the following properties according to Propositions 4.3 and 4.4
in[10].

Proposition 5.8. We have that m € L*®°(R x T*R"), w — m(t, w) is uniformly
Lipschitz-continuous, for all t, and

hY2(60)2/6 < m < HY%(60)2/2 < (50)/2. (5.13)
Thereexists C > 0 so that
M(to, w) < Cm(to, wo)(1 + |w — wol/(Jo(to, wo)))>; (5.14)
thus mis a weight for gf.

Thefollowing result will be essential for the proof of Proposition 3.6in Section 7,
and it follows from Proposition 4.5 in [10].

Proposition 5.9. Let the weight M be given by Definition 5.4 and m by Defini-
tion 5.7. Then there exists Co > 0 such that

MH%2(50)2 < Com. (5.15)
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We have the following convexity property of t — m(t, w), which will be
important for the construction of the multiplier.

Proposition 5.10. Let m be given by Definition 5.7. Then

sup m(t, w) < do(t, w) — do(ty, w) + M(ty, w) + M(t2, w) Yw (5.16)

ti<t<ty
Proof. Sincet — do(t, w) is monotone, we find that

inf  (Jdo(t, w) — dolto, w)| + HY2(t, w)(do(t, w))?/2) < m(to, w). (5.17)
+(t—tg)>0

Lett € [ty,t2], then by using (5.17) for tg = t1, tp, and taking the infima, we
obtain that

m(t,w) < _inf _ do(s, w) — do(r, w) + HY(s, w)(do(s, w))?/2
r<ty<tp<s

+ HY2(r, ) (do(r, w))?/2
which gives (5.16) after taking the supremum.

Next, we shall construct the pseudo-sign B = dg + 0o, which we shall use in
Proposition 6.3 to construct the multiplier of Proposition 3.6.

Proposition 5.11. Assume that dg is given by Definition 5.1 and m is given by
Definition 5.7. Then for T > 0 there exists real-valued o7 (t, w) € L®(R x T*R")
with the property that w +— p7 (t, w) is uniformly Lipschitz-continuous, and

loT| <m (5.18)
Tét(do+o1)>m/2  inD'(R) (5.19)

when|t| < T.

Proof. (We owe this argument to Lars Hormander [17].) Let

t
ot(t,w) = sup (50(3, w) — oo(t, w) + %/s m(r, w)dr — m(s, w))

—T<s<t
(5.20)
for|t| < T.Then

oo(t, w) + oT(t, w) = sup (50(3, w) — %/0 m(r, w) dr — m(s, w))

—T<s<t

t

— m(r dr
to7 A (r, w)dr,
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which immediately gives (5.19) since the supremum is nondecreasing. Since w +—
do(t, w) and w — m(t, w) are uniformly Lipschitz-continuous by Proposition 5.8,
we find by taking the supremum that w + p7(t, w) is uniformly Lipschitz-
continuous. We find from Proposition 5.10 that

1 t
do(s, w) —oo(t, w)+ﬁ/ m(r,w)dr —-m(s,w) <m(t,w) —-T<s<t<T.
S

By taking the supremum, we obtain that —m(t, w) < p7(t, w) < m(t, w) when
[t] < T, which provesthe result.

6 The Wick quantization

In order to definethe multiplier we shall usethe Wick quantization, and we shall also
define the function spaces that we shall use. As before, we shall assume that gf =
(g")? and the coordinates are chosen so that g (w) = |w|2. Fora € L>®°(T*R") we
define the Wick quantization:

Ak (x D)u(x) = /T A0 DIuOo dydy  u e SR, (61
using the projections £, (X, Dx) with Weyl symbol

Ty (% &) = " exp(—g (X — Y, & — 1))

(see [7, Appendix B] or [20, Section 4]). We find that aV1%: S(R") > S'(R") so
that (aka)* — (ﬁ)W'Ck,

a>0 = @"*x,Dyu,uy>0 ueSR" (6.2)

and [|a"'(x, D)l £ (L2rny) < llallLe(T+RM), Which isthe main advantagewith the
Wick quantization (see [20, Proposition 4.2]). Now if at(x,¢) € L®(R x T*R")
depends on a parameter t, then we find that

/(atwicku, U)h(t) dt = (AZViCKU, u) ueSRM, (6.3)
R

where Ay (X, &) = fRat(x,g“)qs(t)dt. Infact, if a € L1, then thisfollows from the
Fubini theorem; in general we obtain this by cutting off a on large sets in T*R"
and using dominated convergence. We obtain from the definition that a?Vick = ay
where

a(w)=7"" /I’*Rn a(z) exp(—|w — z|%) dz (6.4)

is the Gaussian regularization; thus Wick operators with symmetric symbols have
symmetric Weyl symbols.
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We also have the following result about the composition of Wick operators
according to Proposition 5.2 in [10].

Remark 6.1. Let a(w), b(w) € L, and let my, m, be bounded weights for gF.
If |a] < my and |b'| = |ob] < my, then

a.WiCkaiCk — (ab)WiCk Frv (65)

with r € S(mimy, g%). In the case when a, b are real valued, |a] < m; and
[b”| < mp, we obtain that

Re(@V'*p"i¥) = (ab —5a b/) +r? (6.6)

withr e S(mimy, g¥). Here &’ is the distributional derivative of a € L and b’ is
Lipschitz continuous, so the product is well defined in L.

If Ae L®(T*R") isan M x N system, then we can define AM by (6.1) on
u € S(R", CN). These operators have the same properties as the scalar operators,
but of course we need that M = N in order for (6.2) to hold.
In the following, we shall assumethat G = Hg! < g? isaslowly varying metric
satisfying
H () < CoH (wo)(1 + |w — wo)™ (6.7)

and that m is a weight for G satisfying (6.7) with H replaced by m. This means
that G and m are strongly o -temperate in the sense of [2, Definition 7.1]. Recall the
symbol class St (1, g¥) defined by Definition 3.2.

Proposition 6.2. Assume that a € L*°(T*R") isan N x N system such that
la] < Cm. Then aWi*k = a¥ where ag € S(m, g) isgiven by (6.4). If a € S(m, G)
for G = HgF, then ag = a modulo symbols in S(mH, G). If ]a] < Cm and
a = 0in a fixed G ball with center w, then ag € S(MHN, G) near w for
any N. If a is Lipschitz-continuous, then we have ag € S*(1, g*). If a(t, w) and
g(t,w) € L°(R x T*RM) are N x N systems and é&a(t, w) > g(t, w) in D'(R)
for almost all w € T*R", then we find (6;(@V'*)u, u) > (g™Wi%u, u) in D'(R) for
ueSR" CNy.

Observe that the results are uniform in the metrics and weights. By localization
wefind, for example, that if |a] < Cmanda € S(m, G) ina G neighborhood of wo,
then ap = a modulo S(mH, G) in asmaller G neighborhood of wq. These results
are well known, but for convenience we give a short proof.

Proof. Since a is measurable satisfying |a] < Cm, where m(z) < Com(w)

(1 + |z — wh™o by (6.7), we find that aViK = a¥ where ag = O(m) is given

by (6.4). By differentiating on the exponential factor, we find ag € S(m, g¥).
Ifa=0inaG ball of radiuse > 0 and center at w, then we can write

"ao(w) = / a(2) exp(—|w — 21%) dz = Om(w)HN ()
\qu)lzaHfl/z(w)
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for any N even after repeated differentiation. If a € S(m, G), then Taylor'sformula
gives

1
ao(w) = a(w) + ﬂ_”/ / (1—0)@" (w + 02)z, 2)e'2* dzdo,
0 JT*Rn

wherea” € S(mH, G) because G = HgF. Since m(w + 0z) < Com(w) (1 + |z|)No
and H (w + 0z) < CoH (w)(1+ |z|)No when || < 1, we find that ag(w) = a(w)
modulo S(mH, G). Now, the Lipschitz continuity of a meansthat 6a € L*°(T*R").
Sincedag(w) = 7" [1.gn 0(2) eXp(—|w—2|2) dz, weobtainthatap € S*(1, g°).

For the final claim, we note that — [ a(t, w)¢'(t)dt > [ g(t, w)¢(t)dt for all
0<¢ e Ci°(R)andamostal w € T*R", which by (6.2) and (6.3) gives

- / @"(t, x, Dy)u, U)p'(t) dt > / (@WK (1, x, Dy)u, g (t) ol
0<¢eCy(R)

foru e S(R", CN).

We shall computethe Weyl symbol for the Wick operator (do+o71) Vi, where o1
is given by Proposition 5.11. In the following we shall suppressthet variable.

Proposition 6.3. Let B = do + 0o, where dg is given by Definition 5.1 and gg isreal
valued and Lipschitz-continuous, satisfying |po| < m, where m < H1/2(59)%/2 <
(d0)/2 isaweight for g*. Then we find

Wick
B — bll) ,

where b = 61+ 01 € S((60), g") 1 ST(L,¢°) isreal, &1 € S(HY2, ¢
St(1,g"), and p1 € S(m, g*) N ST(1, ¢°). Also, there exists k, > 0 so that
91 = do modulo S(H1/2, G) when (do) < xoH 12, which givesb = dp modulo
S(HY2(60)2, g%). For any 4 > 0 we find that |6g] > AH Y2 and HY2 < 1/3
imply that sgn(B) = sgn(dp) and |B| > A1H~1/2/3,

Proof. Let of'% = 6% and og" = o¥. Since |do| < (do) < H7Y2, |go| <
m < (dp)/2 and the symbols are real-valued, we obtain from Proposition 6.2 that
b e S((d0), g%), 1 € S(H™Y2 g*) and p1 € S(m, g°) are real-valued. Since &
and po are uniformly Lipschitz-continuous, we find that 51 and p1 € S*(1, g%) by
Proposition 6.2.

If (5o) < xH~Y2 a wo for sufficiently small « > 0, then we find by the
Lipschitz-continuity of dg and the slow variation of G that (dp) < CoxH /2
in a fixed G neighborhood w, of wo (depending on «). For k <« 1 we find
do € S(H™Y2,G) in w, by Proposition 5.6; thus d; = dp modulo S(H1/2, G)
near wo by Proposition 6.2 after localization.

When |d| > ZH Y2 > 0 at wo, wefind that

lool <M < (60)/2 < (1 + HY?/2)|d0] /2.
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We obtain that |po| < 2|do|/3 s0 sgn(B) = sgn(dp) and |B| > |do|/3 = AH1/2/3
when H1/2 < /3, which completes the proof.

Let m be given by Definition 5.7. Then m is a weight for g* according to
Proposition 5.8. We are going to use the symbol classes S(mK, g), k € R.

Definition 6.4. Let H (m, g%), be the Hilbert space given by [2, Definition 4.1]
so that

ue HmMK, g") & a%uel? VaeSm g) keR. (6.8)
We let ||u|lx be the norm of H (mX, g?).

This Hilbert space has the following properties: S is dense in H(mK, g), the
dual of H(m, g?) is naturally identified with H (m~K, g?), and if u € H(mK, g),
then u = ag'v for someov e L2(R") and ap € S(m~K, g%) (see[2, Corollary 6.7]).
It followsthat a® € Op S(mX, g%) is bounded:

ue HmM!, g") > a%ue HmM X g9 (6.9)

with bound only depending on the seminorms of a.
We recall Proposition 5.5 in [10], which shows that the topology in H (m*/2, g*)
can be defined by the operator mVick, Recall that m > h/2(50)2/6.

Proposition 6.5. Let B = dp+ po, where dp is given by Definition 5.1 and |go| < m.
Then there exist positive constants ¢1, ¢z, and Cq such that

cth2(IBYu12 + ull®) < callullf, < MmY'*u, u) < Collullf,

ueSR" (6.10)
The constants only depend on the seminormsof f in L®(R, S(h~1, hg?)).

In the following, we let |[u(t)|| be the L2-norm of x +— u(t,x) € CN in
R" for fixed t, and (u(t), »(t)) the corresponding sesquilinear inner product. Let
B = B(L2(RM), CN) be the set of bounded operators L2(R", CN) — L2(R", CN).
We shall use operatorsthat depend measurably on t in the following sense.

Definition 6.6. Wesay thatt — A(t) isweakly measurableif A(t) € Bforalt and
t — A(t)u isweakly measurablefor every u € L2(R", CN),i.e, t — (A(t)u,v)is
measurablefor any u, » € L2(R", CN). We say that A(t) € LS.(R, B) if t — A(t)
isweakly measurable and locally boundedin 5.

If A(t) € L.(R, B), then we find that the functiont — (A(t)u,v) € L.(R)

loc loc
has wesk derivative 3 (Au, v) € D'(R) for any u, » € L2(R", CN), given by

d
AU 0@ = - / (ADu, g dt  $) € CCR).
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Ifuct), o(t) € LPS (R, L2(R", CN)) and A(t) € LIS (R, B), then

t = (AU, (1) € Lig(R)
is measurable. We shall use the following multiplier estimate from [8].

Proposition 6.7. Let P = D¢ +i F(t) with F(t) € L. (R, B). Assumethat B(t) =
B*(t) € L™.(R, B), such that

loc
d
E(Bu, u) + 2Re(Bu, Fu) > (Mu, u) inD'(l) YueSR", CN), (6.11)

where M(t) = M*(t) € L°.(R, B) and | € R isopen. Then we have

loc
/(Mu, u)dt < Z/Im(Pu, Bu) dt (6.12)

for u e Ci(1, S(R", CN)).

Proof. Since B(t) € L5 (R, B), wemay foru,» € S(R", CN) define the regulari-
zation

(Bs(t)u, 0) = & / (BS)U, 0)p((t —5)/e)ds = (BU,0) (o) &> O,

where ¢ 1(s) = e 1 ((t — )/e) With0 < ¢ € C(R) satisfying [ $(t) dt = 1.
Thent > (B, (t)u,v) isin C*(R) with derivative equal to &(Bu, 0)($,) =
—(Bu, v)(¢;¢). Let 1o bean openinterval suchthat 1o € |. Then for small enough
& > 0andt e lg wefind from condition (6.11) that

%(Ba(t)u’ U)+2Re(Bu, FU)($.1) = (MU, U)(¢er)  UeSR",CN). (6.13)

Infact, ¢t > 0and supp ..t € C;°(1) for small enough e whent € lo.
Now for u(t) € C3(lo, S(R", CN)) and ¢ > 0 we define

Beu(® = (B (Du(®), u(t)) = 8*l/(B(S)U(t), ut)g(t —s)/e)ds.  (6.14)

For small enough & we obtain B, u(t) € C3(lo), with derivative

d d
aBg,u = ((a Bg) u, u) + 2Re(B;u, dtu)

since B(t) € L{5.(R, B). By integrating with respect to t, we obtain the vanishing
average

" d d
oz/ g Beu at :/((asg) u, u) dt+/2Re(Bgu,6tu)dt (6.15)
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whenu € Cl(lo, S(R", CN)). We obtain from (6.13) and (6.15) that

0> / (MEU), u(t))
1 2Re(BSU(), a1u(t) — F(SUM)P((t — 5)/e) dsdt/e

By letting ¢ — 0, we find by dominated convergence that
0> /(M(t)u(t), u(t)) + 2Re(B(t)u(t), aru(t) — F(t)u(t)) dt

sinceu € C} o(lo, S(R", cNV)) and M(t), B(t), F(t) e Li:(R, B). Here ¢u —
Fu=iPu and 2Re(Bu, i Pu) = —2Im(Pu, Bu), thus we obtain (6.12) for u €
Ci(lo, S(R", CNy). Since g is an arbitrary open subinterval with compact closure
in I, this completesthe proof of the proposition.

7 Thelower bounds

In this section shall prove Proposition 3.6, which means obtaining lower bounds on
2Im(Pou, bYu) = (:btu, u) + 2Re(F*“u, btu),
where Py = Dy Idy +i F™(t, X, Dy) with
F(t,w) = f(t,w)ldNy +Fo(t, w). (7.2)

Here f € L*(R, S(h™1, hg)) is rea-valued satisfying condition (¥) given by
(32), Fo € C®(R, S(1,hg?)) and b = B js the symmetric scalar operator
given by Propositions 5.11 and 6.3 for this f. Since Proposition 5.11 and Proposi-
tion 6.2 give lower bounds on the first term:

obY = Bk > mMk o7 inL? gt <T

it only remainsto obtain comparable lower bounds on Reby F* by Proposition 6.5.
By Claim 3.9 we may also assume that

Fo=(d,f,R) = Zawl j  moduloS(h,hg*)  vt, (7.2

where R; € S(h%2 hg?) are N x N systems, V j. Observe that since d,, f €
S(IMHY2,G), hg < 9G and h < MHY2h¥2 py (5.8) we find that Fp €
S(MHY2hY2 G) c S(1, G) andthus F € S(M, G), G = Hg?.

In the following, the results will hold for ailmost all |t| < T and will only depend
on the seminorms of f and Fp. We shall suppress the t-variable and assume the
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coordinates chosen so that g (w) = |w|2. In order to prove Proposition 3.6 we need
to prove the following result.

Proposition 7.1. Assume that F is given by (7.1)«7.2) and B = do + go. Here
oo is given by Definition 5.1, ¢ is real-valued and Lipschitz-continuous satisfying
loo] < m, wherem < (dp)/2 is given by Definition 5.7. Then we have

Re(BYkF®y, u)y > (C%u,u)  VYueSR"CV) (7.3)
for some N x N systemC € S(m, g%).

Proof of Proposition 3.6. Let Bt = do+ o1, Wheredo+ ot isthe pseudo-signfor f
given by Proposition5.11for0 < T < 1, sothat [pT| < mand

ot(do + o1) = m/2T inD’(]—T,T[). (7.4

If we put By = Owhen |t| > T, then B{'™ = p% where br(t, w) € L®(R,
S(H=Y2, g%) N St(1, g")) uniformly by Proposition 6.3. We find by Proposi-
tion 6.2 and (7.4) that

((&Br)V'*u,u) > (mVi%ky, uy/2T  inD'(]-T,T[) (7.5)

whenu € S(R"). We obtain from Proposition 6.5 that there exist positive constants
c1 and ¢z so that

(m"%u, u) = collullf, = csh2(IbRull® + ul®)  ue SRY.  (7.6)

Here ||ul|1/2 is the norm of the Hilbert space H (m'/2, g¥) given by Definition 6.4.
By Proposition 7.1, wefind for aimost all t € [—T, T] that

Re((BY'*F")|.u,u) = (C”(t)u,u) ue SR",CN), (7.7)

herethe N x N system C(t) € S(m, g*) uniformly. We obtain from (6.9), (7.6) and
duality that there exists a positive constant c3 such that

[(C* (M, u)| < [lully2lIC” MUl -1/2 < c3llullfz < ca(m™M*

u,u)/c2  (7.8)
foru e S(R",CN) and |t| < T. Wefind from (7.5)—(7.8) that
(tb%u, u) + 2Re(Fu, b¥u) > (1/2T — 2c3/co)(mV'*u, u) inD'(]-T, T[)

foru e S(R",CN). By using Proposition 6.7 with P = D ldn +i F*(t, X, Dx),
B = b% and M = m"i/4T we obtain that

clhl/z/ I ull? + Jjul?dt < /(mWiCku, u)dt < 8T/Im(P0u, b¥u) dt
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if ue S(R x R", CN) has support where |t| < T < c,/8cs. Thisfinishes the proof
of Proposition 3.6.

Proof of Proposition 7.1. First we note that since BVi%k = b® e Op S((do), g*) by
Proposition 6.3 and h'/2(50)2 < 6m by (5.13), we find BMR® ¢ Op S(m, g%)
when R € S(h/2, g). SincelImF = & (F — F*) e S(L, hg*) wefind that

2Re(BV*i (ImF)*) = i[b®”, ImF)"] € OpS(h*/2, ¢*);

thusit sufficesto consider symmetric F satisfying (7.2).
We shall localizein T*R" with respect to the metric G = Hg, and estimate the
localized operators. We shall use the neighborhoods

Owy(€) = {w: |w —wo| <eH Y2(wp)}  forwoe T*R".  (7.9)

In the following we may assume that ¢ is small enough so that w +— H(w) and
w — M(w) only vary with afixed factor in w,, (¢). Then by the uniform Lipschitz-
continuity of w +— dp(w) we can find kg > 0 with the following property: for
0 < x < o there exist positive constants ¢, and ¢, so that for any wg € T*R" we
have

100(w)| < ©H~Y2(w) W E wy(ex)  OF (7.10)
o(w)] = CeH ™ 2(w) 0 € wuy(ex). (7.11)

In fact, we have by Lipschitz-continuity that |do(w) — do(wo)| < &cH ~Y?(wo)
when w € wy,(e,). Thus, if &, <« x we obtain that (7.10) holds when |do(wo)| <«
xH~Y2(wg) and (7.11) holds when |do(wo)| > cx H ~Y/2(wo).

Let k1 be given by Proposition 5.6, x» by Proposition 6.3, and let ¢, and c,
be given by (7.10)«7.11) for x = min(xo, k1, k2)/2. Using Proposition 6.3 with
A = ¢, we obtain that sgn(B) = sgn(do) and

[B] > ¢ H _1/2/3 in Wipg (&x) (7.12)

if H1/2 < ¢, /3 and (7.11) holdsin wy, (&x).

Choose real symbols { yj(w) }j and {¥j(w)}; € S(1, G) with valuesin ¢?,
such that >, 1//1-2 =Ly¥Y =y ¥ = 92512 > Ofor some {¢j(w) }j € S(1, G)
with valuesin ¢2 so that

SUPP¢J Cwj= ny (ex)-

Recall that BYWIk = b* whereb = d1+ p1 isgiven by Proposition 6.3. In particular,
91 € S(H=Y2,G) when HY/2 < x»/2 and (7.10) holds, sincethen (dp) < xkoH /2.

Lemma7.2.We find that Aj = ¥jbReF e S(MHY2 g% S*(M,g")
uniformlyin j, and
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Re(b”F") = > wP’A¥y”  moduloOpS(m, g, (7.13)
i

We have A’j“ = Reb?” FJ-"’ modulo Op S(m, g*) uniformlyin j, where Fi =Y¥F.

Proof. Sinceb € S(H™Y2,¢*) N S*(1,¢%), yj € S(1,G) and Fj € S(M, G)
we obtain that Aj € S(MH /2, g*) N S*(M, g*) uniformly in . Proposition 5.9
givesthat

MH¥2(5)? < Cm; (7.14)

thus we may ignore terms in Op S(MH3%2(d)2, g*). Observe that since b ¢
S(H=Y2 g%, {wk}k € S(1,G) has values in (2 and Ay € S(IMH12 gf)
uniformly, Lemma 3.3 and Remark 3.4 gives that the symbols of b*F®*, b®* Fjw
and >, w’ Ay have expansions in S(MH1/2, g*). Also observe that in the
domains wj where H¥? > ¢ > 0, we find from Remark 3.4 that the symbols
of >y v Ay, bF* and b”F" arein S(M H3/2, g*) giving the result in this
case. Thus, in the following, we shall assumethat H1/? « 1, and we shall consider
the neighborhoodswhere (7.10) or (7.11) holds.

If (7.11) holds, then we find that (5o) = H~1/2s0 S(MH1/2, g) € S(m, g?) in
wj by (7.14). Sinceb € S*(1, ¢g%) and A} € S*(M, g*) we find from Lemma 3.3
and Remark 3.4 that the symbols of both Reb”F™ and >, v’ Al v’ are equal
to >, w2Ax = RebF modulo S(MHY/2, g%) in wj. We aso find that the symbol
of Reb”F isequal to Aj modulo S(MH 12 g*), which proves the result in this
case.

Next, we consider the case when (7.10) holds with x = min(xo, x1, k2)/2 and
HY2 < k2/2in wj. Then (d) < roH Y2 s0b = 61+ 01 € S(HY2,G) +
S(m, g*) in wj by Proposition 6.3. Now b is rea and F is symmetric modulo
S(MH, G). Thus, by taking the symmetric part of b F"* = 6{F" + o’ F" we
obtain from Lemma3.3 that the symbol of Re(b® F* —(bF)®) isin S(MH %2, G)+
S(MHmM,g*) < S(m,g%) in wj since M < CH~L Similarly, we find that
AY = Reb”F[" modulo S(m, g%). Since Aj € S(MH Y2, G) + S(Mm, g*) uni-
formly, wefind that the symbol of >, v’ AY v, isequal to RebF modulo S(m, g)
inwj by Remark 3.4, which proves (7.13) and Lemma 7.2.

Next, we shall show that there exists N x N system Cj € S(m, g*) uniformly,
such that
(A¥u,u) > (CPu,u)  ueSR",CM). (7.15)

Then we obtain from (7.13) and (7.15) that

Re(b”F"u,u) = > (y’Cly{'u,u) + (R"u,u)  ueSR"CY),
i
where Zj l//JwC}D y/jw and R e Op S(m, g"), which will prove Proposition 7.1.
Thus it remains to show that there exists Cj € S(m, g%) satisfying (7.15).
As before we are going to consider the cases when HY/2 = 1 or HY2 « 1,
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and when (7.10) or (7.11) holds in w; = o (ex) for k = min(xo, k1, k2)/2.
When HY2 > ¢ > Owefind that Aj € S(MH®¥?2, gf) € S(m, g*) uniformly
by (7.14) which gives the lemmawith Cj = A;j in this case. Thus we may assume
that

HY2 < j4 = min(xo, k1, k2, k3)/2 inoj (7.16)

with k3 = 2¢,. /3 so that (7.12) followsfrom (7.11).

First, we consider the case when Hl/2 < xa and (7.11) holds in wj. Since
|d0(w)| = ¢cHY2(w), we find (5()) = H~Y2in ;. As before we may ignore
termsin S(MH Y2, gt) € S(m, gf) inoj by(7 14). Let fj = ¥; f,sincesgn(f) =
sgn(do) = sgn(B) in w;j by Proposition 6.3 we find that fjB > 0. Since f; €
S(M, G), we find f’“ = fW'C" modulo Op S(MH, G) by Proposmon 6.2; thus we
may replace f/” With fW'C" Since Fo j € S(MHY?hY/2, G) by (7.2) we find that
BWickpw. ¢ OpS(MHl/Z, g%). Since|B| < CH Y2 and B € S*(1, g%), wefind
from (6. 65 in Remark 6.1 that

AP = ReBM* fWik — (Bf)W% > 0 inL? modulo Op S(MH Y2, ¢

which gives (7.15) in this case.

Finally, we consider the case when (7.10) holds with x = min(xo, x1, x2)/2 and
HY2 < x4 < k inw;j. Then (d) < 2xH =2 so we obtain from Proposition 5.6 that
do € S(H=Y2,G) ) S({%), g) i inoj. We havethat b” = (dp + 0o) VI = BWIcK,
where

ool = m < HY%(60)%/2 < (00)/2 (7.17)

by Propositions5.8and 5.11. Also, wefind from Lemma7.2that A = Re BWick Fl
modulo Op S(m, gF).

Take y (t) € C*°(R) suchthat 0 < x(t) < 1, |t| > 2insuppx(t) and x(t) =1
for |t| > 3. Let yo = y(dp), then 2 < |dp| and (dp)/|do| < 3/2in supp yo. Thus
1+ xoeo/do = 1 — xo{do)/2|do| = 1/4. (7.18)
Since |dp| < 3insupp(l — yo) wefind by (7.17) that
B = do + xooo = do(1 + xoeo/d0)
modulo terms that are O(H/2). Since |d)| < 1 and
|x000/d0] < xoH*?(60)?/2i60] < 3HY?(d0)/4
we find from (6.5) in Remark 6.1 that
BWick — giickgWWick  modulo Op S(H¥2(d), g%), (7.19)

where Bo = 1+ yop0/d0 = O(1). Proposition 6.3 gives (y000/d0)M* ¢
Op S(HY2(d0), g) and o1 = 9% where 5, € S(H /2, g*) and 61 = do modulo
OpS(HY2, G)inw;. ThusLemma33and (7.19) gives
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BWiCk 511) BWICk _ 50 BWICk + ct BWICk mOdUIOOpS(H 1/2(50), gﬁ)’
(7.20)
wherec € S(HY2, ¢*) such that suppcﬂco, =.
We find from Proposition 5.6 that f = agdo, Where kiMHY2 < ¢g €
S(MHY2,G), s0 Leibniz's rule gives ag/* € S(MY2HY4, G). Let fj = ¥ f
and

aj = ag/’pjdo € SIMY2HY4, G) (] S(MY2HY4(60), g). (7.21)

Since ¥j = ¢¢ wefindaf = f;do and the calculus gives
al(ag/’p))" =t modulo OpS(MH, G). (7.22)
Since supp fj (suppc = ¥ wefind that f/*c” € Op S(IMH¥2, g*). We also have

Re f{0y = al'al

val modulo Op S(MH %2, G). (7.23)

andIm f,*35 € OpS(MH /2 G). We obtain from (7.20) and (7.22) that

f]_ll) BWICk w(ao BWICk+rw)

= {05 BY"* + al’r ” modulo Op S(m, ), (7.24)
wherer e S(HY?(d), g*). Thisgives
(= (ag %)) "r" € OpS(MY2H¥4(50), gf)
If ReA = %(A+ A%, ImA = % (A — A*) and B* = B then
Re(AB) = Re((Re A)B) +i[ImA, B]/2.
BywmgA_f%omdB_BW*wumMmmaz$ma
Re( "oy By"™) = Re(a’a’By"'*)  modulo Op S(m, g?). (7.25)

Infact, Bo = 1+ yo00/do and (x000/d0)M* € Op S(HY2(d), g*) by Proposi-
tion 6.2. Thus

[a”, B§] = [, (xoe0/d0)""*] € Op SIMH¥?(30), ¢)
whena € S(MHY2, G). Similarly, we find from (7.21) that

aw am BWICk — aw(BWI(:kaw + S]gn) modulo Op S(m, gﬂ)’ (726)
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wheres; = [a?, BI] e S(MY2H¥/4(5p), g*). Next, we shall use an argument
by Lerner [24]. Since By > 1/4 by (7.18) we find from (7.24)—(7.26) that

1 .
Re f "BV > 4a;"a“’ +Reals’  inL®moduloOpS(m,g)  (7.27)

where Sj = rj +sj € S(MY2H34(s), g*). Then by completing the square, we
find that

1 .
Re f/ BWick > 2 (@P+2S’)*(a’+2S") = 0 in L% modulo Op S(m, g*) (7.28)

since (S")*SP =SSP € Op S(MH¥2(50), ¢).
But we must also consider Re Fy? BWick where F satisfies (7.2) thus
Fo.j = ¥jFo € S(IMHY2hY2 G). (7.29)
We shall prove that

Re F w. BWI ck — Re aw Rm modulo Op S(m, gﬁ)’ (730)

where R; € S(MY/2H%/4, g%), which can then be included in the term given by
Sj in (7.27). Sinceb = do € S(H~Y2,G) modulo S(HY?(50)?, g*) in w;j by
Proposition 6.3, we find that
ReFg; BM* = ReF;b" = (ReFo,jd0)"”
modulo Op S(m, g*). We find from (7.21) that Ima; =0, s0
ReFo,jdo = Re¢?Fodo = aj R;,
where
Rj = Reg;j Fo/ag/® € SIMY2HY*hY2, G) € S(MY2H¥4 G).
This gives (ReFo jd)” = a’R?” modulo OpS(MHNY/2,G) < OpS(m, ¢*),

so we obtain (7.30). By adding R;j to Sj in (7.27) and completing the square as
in (7.28), we obtain (7.15) in this case. This completes the proof of Proposition 7.1.

Remark 7.3. It follows from the proof of Proposition 7.1 that in order to obtain the
estimate (7.3) it suffices that the lower-order term Fg € S(MH, ¢*) € S(1, ¢f).
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Abstract The Darboux process, also known by many other names, played a very
important role in some extremely enjoyable joint work that Hans and | did many
years ago. | revisit a version of this problem in a case when scalars are replaced
by matrices, i.e., elements of a non-commutative ring. Many of the issues considered
here can be pushed to the case of a ring with identity, but my emphasis is on very
concrete examples involving 2 x 2 matrices. This paper could be seen as an invitation
for further work.
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1 The bispectral problem

Almost 30 years ago | was extremely lucky. | gave a talk at Berkeley where
I mentioned the following problem:
Find all nontrivial instances where a function ¢ (X, k) satisfies

L (x, ;—X) (X, K) = (=D? + V(X))o (x, k) = K2p(x, k)

as well as
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All the functions V (x), b; (k), ®(x) are, in principle, arbitrary except for smooth-
ness assumptions. Notice that here M is arbitrary (finite).

I was fortunate that Hans was in the audience, and about a week later he came up
with a tool to attack this problem. In a few weeks we started seeing a rich landscape
of examples and we were delighted to see the central role that the Darboux process
played in throwing light on our problem. After many months of intense work, mainly
by slow mail, we found ourselves with a rather nice picture.

The complete answer to the problem is given as follows:

Theorem 1 ([DG]). If M = 2, then V(x) is (except for transation) either c/x2
or ax, i.e., we have a Bessel or an Airy case. If M > 2, there are two families of
solutions.

(a) L isobtained from Ly = —D? by a finite number of Darboux transformations
(L = AA* > [ = A*A). Inthiscase V isarational solution of the Korteweg—
de Vriesequation and all rational solutions of KdV decaying at infinity show up
in this fashion.

(b) L isobtained from Lo = —D? + & after a finite number of rational Darboux
transformations.

It was later observed in [MZ] that in the second case one is dealing with rational
solutions of the Virasoro or master symmetries of KdV.

In case (a) the space of common solutions has dimension one; in case (b) it has
dimension two. One refers to these as the rank-one and rank-two situations. In [DG]
one finds several other equivalent descriptions of the solution such as those in terms
of the monodromy group of the equation.

Observe that the “trivial cases” in which M = 2 are self-dual in the sense that
one can get B by a simple replacement in L.

My reasons for raising the above problem could be traced back to an effort
to understand some work on “time- and band-limiting” that had led me to isolate
certain properties of well-known special function. For an example relating to ortho-
gonal polynomials see [G1]. For more up-to-date versions of this connection
between the bispectral problem and the issue of time- and band-limiting, see
[G2, G3, GY2].

The work with Hans gave rise to a large number of papers by other people, some
of which can be found in an arXiv version of this paper, containing a longer list
of references. Even that longer listing is far from complete, and | apologize for
the omissions. For another guide to some of the work inspired by [DG], see the
citations in MathScinet, MR 0826863.

It may be appropriate to observe that what we are calling the Darboux process
has been reinvented many times, including in the work of some rather well known
people; see for instance [Sc, IH]. Reference [YZ] talks about the Geronimus trans-
formation, from 1940, and its inverse the Christoffel transform. It is clear that the
first one (as noticed in [YZ]) has a lot in common with what we are calling the
Darboux transformation. See also [SVZ, Z].
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2 What isthe main purpose of this paper?

Now that I have reviewed the basic facts of my joint work with Hans, it may be
appropriate to address openly the question in the title of this section.

In the rest of the paper I will mention a few analytical results on certain issues that
can be seen as an outgrowth of the work described in the previous section. However,
the main intention is to take the problem into a noncommutative situation and to
point out a number of avenues for further work. Nothing would make me happier
than seeing that some other workers in this field find these problems challenging
and worth pursuing.

In particular, and answering a pointed question from a very careful and construc-
tive referee, the role of the Darboux process which unlocked the whole story in the
scalar case (provided one starts at the correct starting potentials) is seen here to
be a useful tool to obtain interesting bispectral situations. I make no claim that all
instances of a bispectral situation in the noncommutative case can be organized
neatly by repeated applications of this (or natural extensions of this) process.

In raising this question and in many other ways the referee has been very helpful
in making this into a clearer and more readable paper.

In reference to topics that will appear in the next few sections it is important
to note that in the scalar case, repeated applications of the Darboux process may
take one outside the class of polynomials orthogonal with respect to a measure. One
can easily obtain polynomials that have only an orthogonality functional, such as
derivatives (of certain orders) of delta measures. The Darboux process when applied
as a tool in the matrix-valued case leads to very similar phenomena.

3 The Bochner—Krall problem

In a series of papers with Luc Haine, [GH1, GH2, GH3] and then with Luc and Emil
Horozov, see [GHH1, GHH2], we noticed that a large class of polynomials

Pn(K)

that satisfy three-term recurrence relations in the variable n, as well as differential
equations in the variable k, can be obtained by an application of a similar Darboux
transformation starting from the so-called classical orthogonal polynomials of
Jacobi, Laguerre, and Hermite. In this case one goes from a tridiagonal matrix Lg
(or a function of it) factorized as a product of two bidiagonal matrices,

Lo = AB,

to a new tridiagonal matrix
L =BA.

As indicated in [GH1], some form of this method is given in [MS1].
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In this case one runs into the Toda flows and its master symmetries. Further work
on these lines can be found in [GY1] and [GH4, GH5], and for a very nice survey
of all this material see [H2].

The origins of this line of work are contained in papers such as [Bo, Koo, Kral].
As usual, tracing the roots of a problem is not easy, and | owe to my friend Mourad
Ismail a pointer to reference [R], where these issues were already looked at.

4 A matrix-valued version of the Darboux process for a
difference oper ator

Consider the block tridiagonal matrix

Bo |
Lo—| A B |

where all the matrices A;, B;j are of size N x N and | denotesthe N x N identity
matrix.
If we try to factorize this in the form

where

and

with all the matrices «;, i of size N x N, and then define the matrix
L = pa,
we have that _
By |
L = Al él |

where all the matrices A;, B; are of size N x N.
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This gives y ~ }
Bn = an + fn, An = fnan—1, AL = frao.

Under the appropriate invertibility conditions these relations can be rewritten in
terms of a, and Sy, as follows:

ﬂn =Bn1—an-1,an = Anﬁn_la

which then gives
én = Bn—fny1+ fn = Bn-1 —an-1 +an

and )
An = ﬂnAn—l,Bn_j'l = agl AnO!nf]_.

These expressions are valid forn = 2, 3, ... in the case of An,andforn=1,2, ...
in the case of Bh,.

Above we take fo = 0, so that By = a9 = By — S1. We also need to take,
as observed above, A; = (By — ag)ag.

A moment’s thought gives that once Lg is given, the only free parameter is
the matrix ag. This all important difference with the scalar case will reappear in
Section 10.

Just as in [GH1], and in spite of the fact that one is dealing here with a semi-
infinite block tridiagonal matrix, it is possible to see the connection between this
construction and that in [MS1]. One puts

Bn = —dndp s

and then notices that this amounts to choosing ¢ in the null-space of L. Since L is
not doubly infinite, we seem to have lost some freedom in picking this subspace,
but this can be remedied as in [GH1] by considering L as a limit of an appropriate
doubly infinite matrix with a rich null-space.

5 Fancier versions of the Darboux process

It is well known that it is useful to extend the original method of Darboux consisting
in going from

Lo=AB
to

L = BA

in an appropriate way.
Notice that in the standard case we have

BLo = LB.
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For those interested in the history of these developments, the celebrated book by
Darboux makes it clear that the process is not due to him but to Moutard. So much
for names and historical accuracy.

The new idea is to allow for an arbitrary banded matrix (or a differential operator)
U and to declare L a Darboux transform of Lg as long as we have

ULo = LU.

In several of the uses of Darboux’s original method one needs to apply it
repeatedly, and this fancier version of the method takes care of that.

One should also keep in mind the results in [GHH1, GHH2, H2], where the usual
factorization followed by a reversal of the factors is applied not directly to L but to
a constant-coefficient polynomial in L.

I thank Jose Liberati for pointing out to me that at the very end of [GGRW] one
finds an application of the theory of quasideterminants (a notion that goes back to
Cayley) to obtain expressions for matrix-valued orthogonal polynomials in terms of
their matrix-valued moments. Many of these results, as well as others, have been
derived independently by making good use of the notion of Schur complements in
L. Miranian’s Berkeley thesis. The main new results are contained in [M]. In the
next section we give a very brief look into the theory of matrix-valued orthogonal
polynomials and a short guide to the literature that is relevant to us.

One should remark that this same theory of quasideterminants has been studied
in connection with a certain Darboux process for a matrix Schrodinger equation
in [GV]. In this case one needs to consider this fancier version. For a nice use of
quasideterminants in our context see [BL].

The matrix version of the Darboux process for the difference operator discussed
in the previous section could be extended in this fancier fashion too.

6 Matrix-valued orthogonal polynomials

Given a self-adjoint positive definite matrix-valued weight function W(x),
M.G. Krein, see [K1, K2], considers the skew-symmetric bilinear form defined for
any pair of matrix-valued functions P(x) and Q(x) by the matrix

(P, Q) = (P, Qhw = /R POOW(X) Q" (x)dx,

where Q*(x) denotes the conjugate transpose of Q(x).

Proceeding as in the case of a scalar valued inner product, Krein proves that there
exists a sequence (Pn)n of matrix polynomials, orthogonal with respect to W, with
P, of degree n and monic.
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Krein goes on to prove that any sequence of monic orthogonal matrix-valued
polynomials (Py), satisfies a three-term recurrence relation

AnPn_1(X) + BnPn(X) + Pny1(X) = XPr(X), 1)

where P_; is the zero matrix and Py is the identity matrix. These coefficient matrices
enjoy certain properties: in particular, the A are nonsingular.
The equation above can be rewritten as

ZLPh(X) = xPr(X)

with a matrix . such as the one that has appeared in previous sections.

To place ourselves in the context of the bispectral problem we consider matrix-
valued polynomials (Pn)n satisfying not only the equation above but also “right-
hand side” differential equations of the form

PaD = AnPn forall n>0 2

with A, a matrix-valued eigenvalue and D a differential operator of order s with
matrix coefficients given by

. d
D:Zal FI(X)9 az_a
i=0 dx

which acts on P(x) by means of

S
PD ="' (P)(X)Fi (x).

i=0

This problem in the matrix case was raised first in [D] and then further studied in
[DG1, G10, GI, GPT1, GPT2, GPT3, GT] and in a few other places.

One can see that the differential operators that correspond to a fixed family of
polynomials form an associative algebra which in general is noncommutative; see
[CG2, GT, T]. The problem of exhibiting elements of this algebra that have a mini-
mal order will occupy us in a few examples in the next two sections. For early matrix
valued instances of the bispectral problem and related work see [Z1, Z2, Z3, Z4].

7 A few examples

Here we consider in detail a few examples of the matrix version of the basic Darboux
process described above.
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For 4 > 3/2 consider the monic matrix-valued polynomials which are orthogonal
with respect to the weight matrix

— (7 _ 1—3/2 1 x—1
woo = @202 (1 X7 xepa
Let
By |
L= | A B

be the corresponding block tridiagonal matrix with
1 A-1
T2+ +A-1)
_ n(h+21-2)
AN+ A-1)2 7

S+1,

n

n

Here S= (9%)and I = (}9).

These polynomials can be seen to be joint eigenfunctions of a first-order
differential operator, an observation that was made for the special value 1 = 1
in [CG1, CG2].

If ao is an arbitrary matrix we can consider the monic polynomials that result
from one application of the Darboux process to the block tridiagonal matrix Lo
with free matrix-valued parameter o.

We can see that for an invertible symmetric ag, the new orthogonality weight is
given by

~ - - 1 x-1
W) = @ =% 3¢ 5/2(x_1 1 )

B - -1
_ eTe (( 1 21_2)—(21—3)% )50(x).

Here Be stands for the usual beta function.

We display below some examples that illustrate that for appropriate values of
A the new polynomials are joint eigenfunctions of some higher order differential
operators, i.e., we get new bispectral situations. This appears to have little to do
with ag being symmetric.

Example 1.
5 2
A=5/2, ao=(3 1).
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Here we find one differential operator D satisfying

with

and

An=

PnD = AnPn

4
D=>YdF
r=0

1 -1
F4=(x—2)2x2(_1 L )

F3 = 4(x — 2)x(3x — 2) (_11 _11)

24 1 -1
nggx(Yx—9)(_1 1),

F—§ 5x +6 —8x
=5\ -266x+3) 1x3)°

8x11
Fo (_T _8)
32 >
-5 0

_ 5n%430n%443n%4-2n4-32 n(5n%+30n%+43n+-26
5 5

(n+2)(5n%+20n°4+-3n—44) _ 5n*+30n34+43n?—14n+40
5 5

There are no operators of lower order in the algebra.

L=7/2. ap= (g _71)

Here the corresponding operator is given by

Example 2.

with

6
D= Zaf F
r=0

x—-28%3 /1 -1
Fo = ——— ;
15 -1 1

_ 2(x — 2)°x2(x —4) ( 1
B 5 (—1

169
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Fs = 4(x — 2)X(5X? — 8X + 2) (_11 _11)

Fs = 16x(5x2 — 12X + 6) (_11 —11) |

o 16x(181x-148) (1 -1
2= 39 1 1)

£ _ 32 (—4@x=7) 3(x-6)
T 10\ ox-28) —202x-9))°
£ _ 1 (-13x32 -3x64
0= 19\ 11x32 o )
and we have
Pn D = An Pn
with
Al 19n® + 285n° + 1615n* 4 4275n° + 2446n2) (1 —1
ne 285 -1 1
N 1 (—12480n— 6240 10080n — 2880
285 \  12960n + 5280 —10560n
Example 3.

10
2 =9/2, aoz(o 0).

In this case there is one operator of order eight whose corresponding A, is given by

(=3 + 6N+ TN +8)an  —(N—2)n(N+T)(n +8)fn
" —(n+1)(N + 6)7n (n = Hn(n + 1)(n + 10)dy

with
an = n* +10n° + 59n? + 170N + 840,
Bn = n* 4 14n° + 95n% 4 322n + 1080,
yn = n® +21n° + 169n* + 651n° + 1198n% + 840n — 20160,
Sn = n* +18n° + 143n? + 558n + 1512.

Once again, this corresponds to the lowest-order differential operator possible in
the corresponding algebra.



The Darboux process and a noncommutative bispectral problem 171

8 A few Jacobi-type examples

A different avenue for exploring the similarities as well as the differences between
the use of the Darboux process in the scalar and in the matrix-valued case is given
by the examples in this section.

First recall that in the scalar case it follows from groundbreaking results in [Koo]
and then further work in [KoKol, Z, H2, GY1] that the polynomials orthogonal to
the weight u(x) consisting of a Jacobi density plus two possible delta masses of
nonnegative strengths W, V at the ends of the interval, i.e.,

1) = 1 —=x)%1 +x)# +Wor (x) + VI_1(x),

satisfy differential equations when a and g satisfy certain natural integrality
conditions. We refer, along with other authors, to these polynomials as Koorn-
winder polynomials, not to be confused with some BCy, extensions of Macdonald
polynomials, which are also due to the same author. If the weight at 1 is the only
one that is present, then the order is 2a + 4. If both delta weights are thrown in,
then the order is 2a + 2/ + 6. The results can be obtained by an application of the
Darboux process as shown in [H2, GY1].

We consider now a small collection of situations analogous to those above.

The weight matrices will, as before, consist of a matrix weight density plus a pair
of deltas at the endpoints weighted by certain matrices W, V, i.e., we have

W) = (L= x)“(L + %) ()1( f) + W1 (X) + VI_1(x).

For the first batch of examples we will assume that «, £ are both 0. If V and W
coincide with the matrix (8 8) then we find two linearly independent operators of
order 5 and one of order 6 as well as other operators of higher order. There are no
other operators of lower order.

If V is the matrix (33) and W is the matrix ($2) or the matrix (§9), then
we find two linearly independent operators of order 6 as well as other operators of
higher order. There are no other operators of lower order.

More generally, if V is the matrix (Zzb 2‘2’) and W is the matrix (‘32 Cd), both

cd d?
rank-deficient, then we have the same situation as in the last example.

In general if V and W are of the form (22) and (4 ¢), then the lowest-order
operator in the algebra is just one operator of order 8.

We come now to a different sort of example.

Assume that o and g (> —1) are arbitrary, but insist on picking W and V to be
arbitrary (and not necessarily equal) nonnegative multiples of the matrix (% %)

In this case there is a very nice second-order differential operator in the algebra
which is independent of the choice of the scalar factors that appear in front of the
matrix above to give W and V. There is no lower order operator in the algebra.
When the deltas are both missing, then the algebra contains an operator of order 1.
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The right-handed differential operator alluded to above is a scalar operator of
the usual Jacobi type, with coefficients (1 — x%) and (&« + f — 1) — X(a + S + 3)
multiplied on the right by the matrix ( %, 7).

The eigenvalue is —n(n + o + £ + 2) multiplied by this same matrix.

9 An explicit differential operator

The paper [DG] contains a proof that in the continuous—continuous case, when all
operators in question are differential operators, the so-called ad-condition

adL™1 (@) =0

is necessary and sufficient to have what has been called a bispectral situation, i.e., a
solution of the original problem tackled with Hans.

This condition gives a set of nonlinear equations that need to be solved in the
unknowns L, ©.

It is important to see that this condition can be easily adapted to other situations,
including the present noncommutative one. This approach was taken up in [GI] and
in [GT]. In the second of these papers the “ad-condition” is shown to be equivalent,
once again, to bispectrality.

In general, finding the differential operators of lowest possible order that appear
in a bispectral situation is not easy. By repeated applications of the Darboux process
one may obtain elements of the corresponding algebra that are not necessarily of the
lowest possible order. This issue has surfaced in several different papers, starting
with [DG], and a nice account is given in [H2].

In [GT] one finds an explicit construction of a differential operator that results
from the condition

adL™1(A) = 0.

The operator D is given by
m
Sn—r
_ r
D= Z(;a (P) =7~
r=|

with matrix coefficients S = Sc(x) given by
S = (L —x)™KAP),.
In particular, we display here some of the coefficients. The lowest one is
S = (L =x)MAP)o,

and at the other end,
Sn = (AP)o = Ao,



The Darboux process and a noncommutative bispectral problem 173
and the operator D, of course, satisfies the desired condition
PnDZAnPn, I”IZO

The subscript 0 above refers to the first entry of the corresponding *“vector” with
matrix-valued entries.

10 Toda flows with matrix-valued time

As seen in [GH2], and certainly in other places too, repeated application of the scalar
Darboux process introduces “times and flows” that are related to the Toda flows.
Since these times appear as the free parameters in each application of the process,
it is only natural to raise the issue of “matrix-valued times” and the corresponding
flows. This is a vast and really unexplored area.

11 Electrostatics. Heine, Stieltjes, Darboux

In aremarkable paper that follows on earlier work of Heine, Stieltjes came up with a
nice electrostatic interpretation for the zeros of the Jacobi polynomials. Later work
of Stieltjes as well as of I. Schur and D. Hilbert showed similar interpretations in
the case of the Laguerre and Hermite polynomials.

In [G7, G8] I raise the possibility of some relation between the Darboux process,
where the orthogonality functional gets more and more complicated with every
application of the process, and the corresponding electrostatic interpretation of the
families of polynomials that appear along the way.

It would be interesting to see what if anything of this picture can be developed in
the matrix-valued case.

12 Markov chains

In [DRSZ, G4, G5, G6, G9, G11, Gdl] one finds examples of interesting quasi-
birth-and-death processes that can be studied by exploiting their connection with
certain specific examples of matrix-valued orthogonal polynomials. In particular, in
[G5, G6, G11] one finds examples in which the recurrence of the process is related to
the presence of a matrix-valued delta weight at 1. Since the appearance of these delta
weights is one of the main characteristics of an application of the Darboux process,
one may wonder about a probabilistic interpretation of the relation that may exist
between two Markov chains whose transition probability matrices are related by a
Darboux transformation.
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13 Thingsthat appear beforetheir time

One of the most surprising phenomena uncovered in [DG] has to do with what
was called “the cusps,” namely degenerate situations that correspond to degenera-
cies of “higher-order operators” yielding “lower-order” ones. To put this in the
context of scalar-valued orthogonal polynomials, consider the simplest case of the
Koornwinder polynomials which are orthogonal to Lebesgue measure in [—1, 1]
plus a pair of delta masses at the endpoints of the interval. In this case one knows
that the corresponding orthogonal polynomials are the common eigenfunctions of a
sixth-order differential operator.

In the degenerate case in which the strength of the two delta masses agrees one
gets an operator of order four, and one can say that in a search according to the order
of these operators, this example, just like “the cusps” in [DG], appears before its
time.

We made a tentative exploration of the situation in the matrix-valued case, and
examples of this phenomenon are seen in Section 7.

14 The multivariable case

In this section we mention that in [G9] one finds a specific random walk introduced
by Hoare and Rahman, see [HR], which we show leads to a bispectral situation in
terms of polynomials of two variables. For more recent work see [GR]. | also want
to mention that in the multivariable case one finds a version of the Darboux process
to obtain interesting deformations of the two-dimensional Chebyshev measure; see
[GI1]. All of these phenomena can be studied in the case of matrix-valued orthogo-
nal polynomials.

15 Conclusion

It is clear that very little of the development that | have tried to outline here could
have happened were it not for my good fortune in teaming up with Hans at the
beginning of this journey. As a small token of gratitude for his influence on my own
work | offer to him, and to others, this collection of (mostly) open problems.
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Abstract Duistermaat introduced the notion of real locus of a symplectic manifold,
and subsequently a variety of techniques have been generalized to these lagrangian
submanifolds. Together with Puppe, the authors of this paper generalized these
results to the topological category, introducing conjugation spaces. In this paper,
we review the definition and basic properties of conjugation spaces, and then give a
topological criterion for recognizing a conjugation space.
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1 Introduction

Duistermaat introduced the real locus of a Hamiltonian manifold [Du]. In this
and in others subsequent works [BGH, Go, GH, HH, Ho, OS, <d], it has been
shown that many of the techniques developed in the symplectic category can be
used to study real loci, so long as the coefficient ring is restricted to the integers
modulo 2. As we will see, these results seem not necessarily to depend on the
ambient symplectic structure, but rather are topological in nature. This observation

Jean-Claude Hausmann
Mathématiques-Université, B.P. 240, CH-1211 Genéve 24, Switzerland
e-mail: Jean-Claude.Hausmann@unige.ch

TaraHolm
Department of Mathematics, Cornell University, Ithaca, NY 14853-4201, USA
e-mail: tsh@math.cornell.edu

* The second author was supported in part by NSF grant DM S-0604807. In addition, both authors
are grateful for support from the Swiss National Funds for Scientific Research.

E.P. van den Ban and J.A.C. Kolk (eds.), Geometric Aspects of Analysis and Mechanics: 179
In Honor of the 65th Birthday of Hans Duistermaat, Progress in Mathematics 292,
DOl 10.1007/978-0-8176-8244-6_7, © Springer Science+Business Media, LLC 2011



180 Jean-Claude Hausmann and Tara Holm

prompts the definition of conjugation space in [HHP]. We now give a brief survey
of the results in symplectic geometry that motivated the definition of a conjugation
space.

A symplectic manifold is amanifold M together with a 2-form o € Q2(M) that
is closed (de = 0) and nondegenerate (for each nonzero tangent vector X € TpM
there exists Y € TpM such that wp(X,Y) # 0). Let G be a compact Lie group
acting on M preserving w, g the Lie algebra of G, g* its dual, and (-, ) : g* x
g — R the natural pairing. For each X € g, we let X* denote the vector field on M
generated by the one-parameter subgroup exp(t X). We say that the G-action on M
is Hamiltonian if there is a moment map

d:M— g*
that satisfies

L 1w =d(®, X) forall X € g; and
2. @ isequivariant with respect to the given G action on M and the coadjoint action
of G on g*.

The function ®x = (@, X) is called the Hamiltonian function for the vector
field X*.

When G = T is a torus, the second condition on @ requires that it be a
T-invariant map. In this specia case, we have

Theorem 1.1 ([A], [GS)]). If M isa compact Hamiltonian T-manifold, then ® (M)
is a convex polytope. It is the convex hull of ®(MT), the images of the T-fixed
points.

More generally, Kirwan and many others have explored analogues for nonabelian
groups.

A by-product of Atiyah's proof of Theorem 1.1 is that any of the Hamiltonian
functions @ x isaperfect Morse function on M, in the sense of Bott, and for generic
X, the critical setisMT. More precisely,

N
H*(M;R) = > H* 4 (Fi; R), (1)
i=1

where the F; are the connected componentsof MT and d; is the Morse-Bott index
of F. This statement is also true over Z, provided that the cohomology of each F;
is torsion-free, or when the stabilizers of the torus action satisfy some additional
hypotheses.

Duistermaat introduced the concept of real locus to this framework [Du]. Let M
be a Hamiltonian T-manifold, and 7 : M — M an antisymplectic involution that is
compatible with the action; that is, it satisfies

tt-p)=t"t-2(p),
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foradlt € T and p € M. Thenif it is nonempty, the submanifold M* of z-fixed
pointsisalagrangian submanifold of M called thereal locus of the involution. The
primary example of such an involution is the one induced by complex conjugation
on acomplex projective variety defined over R. For example, if M = CP" equipped
with the Fubini—Study symplectic form and the standard T" action, then the real
locus for complex conjugation consists of the real points RP", whence the name
real locus. The main results in [Du] generalize Theorem 1.1 and Atiyah’s Morse-
theoretic results.

Theorem 1.2 ([Du]). If M is a compact Hamiltonian T-manifold, and z a smooth
compatible antisymplectic involution, then

1. The real locus has full moment image: ®(M?) = ®(M) is a convex polytope;
and

2. When the coefficients are taken in Zy, components ®x of the moment map are
perfect Morse functionson M?, in the sense of Bott, and for generic components
the critical setisM* N MT.

We have the following immediate corollary, areal locus version of equation (1),
that generalizes classical results on real projective space and real flag varieties.

Corollary 1.3. If M is a compact Hamiltonian T-manifold, and = a smooth com-
patible antisymplectic involution, then

N _
HY(M™: Z2) = > H*™ 2 (F)"; Za). )
i=1

where the F; are the connected components of MT and d; is the Morse—Bott index
of F (in M).

Duistermaat’'s work began a flurry of activity on properties of real loci.
We provide a brief account here; a more detailed record is available in [S]]. Davis
and Januszkiewicz studied the real loci of toric and quasitoric varietiesin their own
right [DJ], independent of Duistermaat’swork. Thefirst author and Knutson analyze
a large class of examples of real loci in their account of planar and spatial poly-
gon spaces [HK]. O’ Shea and Sjamaar generalized Kirwan's nonabelian convexity
resultsto real flag manifoldsand real loci [OS]. This has recently been extended by
Goldberg [Go].

Schmid and independently Biss, Guillemin, and the second author generalized
(2) to the equivariant setting: the idempotents T, = {t € T | t? = 1} act on thereal
locus, and many resultsin T-equivariant symplectic geometry may be generalizedto
T, equivariant geometry of real loci (with coefficients restricted to Zp) [BGH, Sd].
This work yields an explicit description of the To-equivariant conomology for the
fixed set of the Chevalley involution on certain coadjoint orbits, and on the real
locus of atoric variety, using localization methods. These results were strengthened
to include the fixed set of the Chevalley involution on all coadjoint orbitsin [HHP].
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Following this, Goldin and the second author [GH] proved that there is a natural
involution on an abelian symplectic reduction of a symplectic manifold with invo-
lution. Moreover, the T, equivariant cohomology of the original real locus surjects
onto the ordinary cohomology of the real locus of the symplectic reduction. This
includes a comprehensive description of toric varieties and their real loci fromyet a
third perspective.

In all of these papers, a common themeis that there is a degree-halving isomor-
phism

HZ(M; Z2) - H*(M"; Zo).

As we now describe, this can be seen as part of a purely topological framework,
that of a conjugation space, introduced in [HHP]. The remainder of this article is
organized as follows. In Section 2, we review the definitions and properties of con-
jugation spaces. Our main theorem gives a criterion for recognizing when a topo-
logical space is a conjugation space; this is stated in Section 3, along with two
noteworthy corollaries. We then prove some basic facts in Section 4, and prove the
main theoremsin Section 5.

Acknowledgments: The authorswould like to thank Volker Puppe for many useful
discussions, in particular regarding Lemmas 4.7 and 4.8. We are grateful to the
referee for a very careful reading and valuable suggestions for improvements and
simplifications of thefirst version of this paper.

Note. For the remainder of the paper, the cohomology is taken with coefficientsin
thefield Zz: H*(X) = H*(X; Z»).

2 A review of conjugation spaces

Let X be a G-spacefor atopological group G. The equivariant conomology Hg (X)
is defined as the (singular) cohomology of the Borel construction:

HE(X) = H*(X xg BG).

Hence, HE(X) is a H*(BG)-algebra. When G = C is the group of order two,
BC = RP* and H*(BC) = Z[u], with u aclassin degree 1. Thus, HZ(X) isa
Z[u]-algebra.

Let 7 be acontinuousinvolution on a space X. Let p: HZ*(X) — H?(X) and
r: HE(X) — HE(XT) bethe restriction homomorphisms, where C = {id, z}.

A cohomology frame or an H*-framefor X isapair («, o), where

(@ x: H¥(X) — H*(X?) is an additive isomorphism dividing the degrees in
half; and
(b) o: HZ(X) — HZ*(X) is an additive section of p.
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Moreover, k and o must satisfy the conjugation equation
roo(a) = x@u™ + Cty (3)

for al a € H2M(X) and al m e N, where ¢ty, denotes any polynomial in the
variable u of degree less than m. An involution admitting a H*-frame is called
a conjugation. An even cohomology space (i.e. H°dd(X) = 0) together with a
conjugation is called a conjugation space. Conjugation spaces were introduced in
[HHP] and studied further in [FP] and [Ol]. The main examples of conjugations
are given by the complex conjugation on flag manifolds, the Chevalley involution
on coadjoint orbits of compact Lie groups, and other natural involutions, e.g., on
toric manifolds or polygon spaces. We now enumerate some important properties of
conjugation spaces.

(@ If (k, o) isan H*-frame, then x and ¢ are ring homomorphisms[HHP, Theo-
rem 3.3]. The ring homomorphism# also commutes with the Steenrod squares:
koSGP = Sq ok, [FP, Theorem 1.3].

(b) H*-frames are natural for r-equivariant maps [HHP, Proposition 3.11].
In particular, if an involution admits an H*-frame, it is unique [HHP, Corol-
lary 3.12].

(c) For aconjugate-equivariant complex vector bundle s (“real bundle” in the sense
of Atiyah) over aconjugation space X, the isomorphism x sendsthetotal Chern
class of # to thetotal Stiefel-Whitney class of its fixed bundle.

Duistermaat’s Corollary 1.3 admitsthe following generalization, provedin [HHP,
Theorem 8.3].

Theorem 2.1. Let M be a compact symplectic manifold equipped with a Hamil-
tonian action of a torus T and a compatible smooth antisymplectic involution .
If MT is a conjugation space, then M is a conjugation space.

The proof of Theorem 2.1 involves properties of conjugations compatible with
T -actions which are interesting in their own right. The involution g — g~* on the
torus T induces an involution on ET. Using thisinvolution together with 7, we get
an involution on X x ET which descends to an involution, still called 7, on Xr.
Toatorus T isassociated its 2-torus, i.e., the set of idempotent elements of T:

To={geTIg?=1}.
The compatibility implies that T, acts on X*. The following lemma is proved in
[HHP, Lemma7.3].
Lemma2.2. (X1)* = (X")1,.

The following theorem is proved in [HHP, Theorem 7.5]. For a partial converse
of Theorem 2.3, see Proposition 5.2 in Section 5.

Theorem 2.3. Let X be a conjugation space together with a compatible action of a
torus T. Then the involution induced on Xt isa conjugation.
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Using Lemma 2.2, one gets the following corollary of Theorem 2.3.

Corollary 2.4. Let X be a conjugation space together with a compatible T -action.
Then thereis a ring isomorphism

R HZ(X) = HE(XO).

3 Conjugation spaces and 1-skeleta

The new results in this paper consist of criteria to verify that an involution 7 is a
conjugation, in the case that = is compatible with an action of atorus T. They are
conditions on the equivariant 1-skeleton of the action of T on X and of the inherited
action of the associated 2-torus To.

Let X be atopological space, together with a continuous action of a group G,
where G is atorus or a 2-torus (finite elementary abelian 2-group). We define the
G-equivariant i -skeleton SkiG(X) of the G-action on X to be

Sk€(X) = {x € X|codim (Gx C G) < i}, (4)

where Gy denotes the G-isotropy group of x. In (4), the “codimension” is inter-
preted as the codimension of a manifold if G is atorus, and the codimension of a
Zo-vector subspace if G is a 2-torus (and hence isomorphic to a Zy-vector space).
In particular, Skg(X) is equal to the subspace X© of fixed points. An edge (of the
G-action) is the closure of a connected component of the set Sk (X) — Sk§ (X).
Theword “edge” isinspired by Hamiltonian geometry: if X isaclosed Hamiltonian
T-manifold, the edges are critical points of the moment map whose images are
1-dimensional faces of the moment polytope (including the so-called internal edges
of the polytope).

Let T be atorus and T» the subgroup of idempotents. A T-action on a space
X induces a Tz-action on X that satisfies SkiT(X) C SkiTZ(X). For example,
XT ¢ XT2.

A continuousaction of atopological group G onaspace X iscalled goodif X has
the G-equivariant homotopy type of afinite G-CW-complex. For instance, asmooth
action of acompact Lie group on aclosed manifoldisgood. A continuousinvolution
7 iscalled good if the corresponding action of the cyclic group C = {id, z} isgood.

Let X be atopological space, and let = be a continuous involution on X that is
compatible with a continuous action of atorus T. Then the involution « preserves
the T -equivariant skeleta and sends each edge to a (possibly different) edge. More-
over, the real locus X* = XC inherits an action of T,. Our main results are the
following.

Theorem 3.1 (Main theorem). Let X be an even cohomology space, together with
a good involution = which is compatible with a good action of a torus T. Suppose
that
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(@) (XT, 7) isa conjugation space.
(b) each edge of the T-action is preserved by r and is a conjugation space.
(©) ST (X) = Ski2(X) fori =0, 1.

Then X isa conjugation space.

Recall that a T-action on a space X is caled a GKM action if each edge is a
2-sphere on which T acts by rotation around some axis, via a nontrivial character
T — SL. One consequence of this assumption isthat X' is discrete.

Corollary 3.2. Let X be an even cohomol ogy space, together with a good involution
t which is compatible with a good GKM action of a torus T, satisfying Sk,T (X) =

SkiTz(X) fori = 0, 1. Supposethat z actstrivially on XT and preserves each edge.
Then X is a conjugation space.

Corollary 3.3. Let X be an even cohomology space, together with a good involu-
tion = which is compatible with a good action of a torus T, satisfying SkiT(X) =

SkiTZ(X) fori =0, 1. Suppose that

(@) (XT, 1) isa conjugation space.
(b) each edge of the T-actionis preserved by  and isa Hamiltonian T-manifold on
which 7 acts smoothly and is antisymplectic.

Then X isa conjugation space.

See Section 6 for comments about the condition SkiT(X) = SkiTZ(X) fori =0, 1.

4 Preliminaries

This section is devoted to the technical details that we will need in the proof of
Theorem 3.1.

4.1 Compatibility

Let X be a topological space endowed with a continuous involution z which is
compatible with a continuous action of atorus T. Then the involution ¢ induces an
involution on the fixed-point set X . In addition, the associated 2-torus T of T acts
on X* and X* N XT < (X*)". Condition (c) of Theorem 3.1 will play an important
role.

Lemma 4.1. Suppose that Sk (X) = Sk'2(X). Then SkT (X)* = Sk2(X7).
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Proof. One has
Sk (X)7 = Sk (X) N X7 € SK2(XT) = XT N SK2(X) = X" NSk (X), (5)

L . . Tovr
which impliesthat Sk (X)* = Sk; 2(X?).

4.2 Equivariantly formal spaces

Let X be a space with a continuous action of a compact Lie group G. The termino-
logy equivariant formality wasfirst introduced in [GKM] for G atorusand complex
coefficients, and was |l ater devel oped for other coefficients where the concept is seen
to berather subtle; see [HHP, (2.3)] and [Fr, Section 8]. We definea G-space X to be
G-equivariantly formal (over Z») if themap X — EG x¢g X istotally nonhomolo-
gousto zero. This meansthat the restriction homomorphism j*: HE(X) — H*(X)
issurjective. A space X with aninvolution 7 iscalled r-equivariantly formal if itis
C-equivariantly formal for the group C = {id, z}. The following results are classi-
cal but may not perhaps be found in the literature with exactly our hypotheses. Let
R = H&(pt); the map X — BG givesaring homomorphism p*: R — HE(X),
making HE(X) an R-module.

Proposition 4.2. Let X be a G-space. The following conditions are equivalent:

(i) X is G-equivariantly formal (over Z5).
(ii) The group G acts trivially on H*(X) and the Serre spectral sequence for the
cohomology of the fibration X — EG xg X — BG collapses at theterm E».
(iii) There is an additive homomorphism o : H*(X) — HE(X) that satisfies
j*oo = idand that p* ® o: R® H*(X) — HE(X) is an isomorphism of
R-modules. In particular, HZ (X) isa free R-module.
(iv) The ring homomorphism HE(X) — H*(X) descends to a ring isomorphism

HE (X) ®r Zo —> H*(X).

Proof. This proof is for mod-2 cohomology, but it works for the conomology with
coefficientsin any field.

(i) is equivalent to (ii): The ring homomorphism j* : HZ(X) — H*(X) isthe
composition:

HE(X) = E%* € Ex* = HABG; H¥(X)) = H*(X)® c H*(X).  (6)

If these inclusions are equalities, then j* is onto, which shows that (ii) implies (i).
Conversdly, if j* is onto, this shows that H*(X)¢ = H*(X) and E%* = Eg’*.
Since the differentials are morphisms of R-modules, thisimplies that E5;" = E5™
(see[McC, p. 148]). Hence (i) implies (ii).
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(i) implies (iii): Since j* is surjective, there exists a Z»-linear section o of j*.
Since G isacompact Lie group, H(’B’(pt) isafinite-dimensional Zp-vector space for
al p. The Leray—Hirsch theorem [McC, Theorem 5.9] then implies that

P*®o: R® H*(X) — HE(X)

is anisomorphism of R-modules. Note that thisimmediately impliesthat HE (X) is
afree R-module.

(iii) implies (iv): The homomorphism j*o p* : R — H*(X) coincides with the
projection R ®r Z, = Zjy. Therefore, j* factors through a ring homomorphism
i HE(X) ®r Zz — H*(X). On the other hand, j*oo = id. Hence, one has a
commutative diagram

R® H*(X) — (R H*(X))®rZ2 = H*(X)
preo |~ = | id
HE(X) —  HE(X) ®RrZ2 ) H*(X),
which provesthat j* isan isomorphism.
(iv) implies (i): Thisimplicationistrivial.

Proposition 4.3. Let X be a good G-space which is G-equivariantly formal (over
7). Suppose that one of the following hypotheses holds:

(@) Gisatorusand X& = Xz,
(b) G isa2-torus.

Then the restriction homomorphism HE (X) — Hg(XG) isinjective.

Remark 4.4. In Case (), Proposition 4.3 isfal sewithout the assumption X = X©2,
For example, consider the G = St actionon X = > ¢ CxR by g(z, t) = (¢%z, 1).
This has X© = {(0,+1)}. Let U, = X — {(0, =)} and U_ = X — {(0, —1)}.
The intersection U N U_ is G-homotopy equivalent to the homogeneous space
G/Gg, and then H5(UL NU_) = H*(BGy2). The Mayer-Vietoris sequence for
(X, U4, U_) then gives an exact sequence

0— HY(BG,) — HE(X) — HZ(X®),
where H1(BG;) = Z,. Proposition 4.3 (a) aso follows from [FP3, Theorem 2.1].

Proof of Proposition4.3: Let R(g) bethefield of fractionsof R, that is, R localized
at S= R — {0}. By our assumptions, the multiplicative set Siscentra in R. Let

XS = {x € X|H*(BG) — H*(BGy) isinjective},
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where Gy istheisotropy group of x. Thelocalization theorem (AP, Theorem 3.1.6],
[Al, Theorem 3.1.7]) asserts that the inclusion XS ¢ X induces an isomorphism of
R(0)-vector spaces

STTHE(X) ~ STTHE(XO). @)
In Case (b), if Gy is a proper subgroup of G, then H2(BG) — H?2(BGy) is not
injective; hence XS = XC. For Case (a), we use that for each x € X, thereis an
isomorphism wy: G = (SH™M such that y (Gx) = C1 x - - - x Cn, whereCj isa
subgroup of S*. In order to have H2(BG) — H2(BGy) injective, each Cj should
be either St or afinite cyclic group of even order. Then X ¢ XS ¢ X%z = XC,
Inall cases, we have that

STTHE(X) = STTHE(X®) ®

isanisomorphism. Therefore, ker(HE (X) — Hg(XG)) isthe R-torsion of HE (X).
But the R-torsion vanishes because H (X) is afree R-module by Proposition 4.2.

Proposition 4.5. Let X be a good G-space. Suppose that Condition (a) or (b)
of Proposition 4.3 is satisfied. Then dimz,H*(X) > dimZzH*(XG) and X is
G-equivariantly formal if and only if equality holds.

Proof. Asin the proof of Proposition 4.3, consider S= R — {0} and Rg) = S1IR
We apply S~ to the terms of the Serre spectral sequence, following [Al, proof
of Corollary 3.10]. When G is atorus, it acts trivially on H*(X), which implies
that E;™* ~ H*(BG; H*(X)) as an R-module and there is an isomorphism of
R(0)-Vvector spaces R(g) ®7, H*(X) ~ S 1E;. Therefore, using equation (8), we get

dimgz, H*(X) = dimg, (S *E2)
> dimg, (S Exo)
= dimrg, (STTHE(X))
= dimrg, (STTHE(X®))
= dimg, (H*(X®)). ©)

By Proposition 4.2, the inequality in (9) is an equality if and only if X is equivari-
antly formal. Finally, when G is a 2-torus, Proposition 4.5 follows from [AP,
Theorem 3.10.4].

Lemma 4.6. Let X be atopological space, together with a good involution = which
is compatible with a good action of a torus T. Suppose that X is T-equivariantly
formal, X7 is r-equivariantly formal, and XT = XT2. Then X is z-equivariantly
formal and X7 is Tz-equivariantly formal.

Proof. In what follows, dim denotes dimy,. By our hypotheses, Proposition 4.5,
and Lemma4.1, we have
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dimH*(X) = dimH*(X") = dimH*(XT)?)
=dimH*((X")™2) < dimH*(X?) < dim H*(X),
which impliesthat
dimH*(X?) = dimH*(X) and dimH*((X?)™?) =dimH*(X?). (10)

Lemma4.6 thus follows from Proposition 4.5.

4.3 Theimage of the 1-skeleton

We shall need the following two lemmas, first proved by Chang and Skjelbred for
rational cohomology and torus action [CS].

Lemma4.7. Let X beatopological space endowed with a good action of a 2-torus
G. Supposethat X is G-equivariantly formal. Then the restriction homomor phisms
on the mod-2 cohomology, HE(X) — HE(X®) and HE(SKE (X)) — HE(X©),
have same image.

Proof. Using the equivalence (i) < (iii) in Lemma 4.2, we know that HZ(X) isa
free HE (pt)-module. By [Hs, Corollary, p. 63], the homomorphism

HE (X, X®) — HE(SKE(X), X©)

isinjective. The H-sequences of the pairs (X, X®) and (Sk®(X), X®) are part of
acommutative diagram

0 —— HE(X) ——— HE(X®) —— HEM™ (X, X®) ——0

l -

HE(SKE (X)) —= HE(X®) — HET(SKE(X), XC) — 0.

Therefore, the injectivity of the last vertical arrow implies the lemma.
Thefollowing lemmafollows from [FP3, Theorem 2.1].

Lemma4.8. Let X be a topological space endowed with a good action of a torus
T. Suppose that X is T-equivariantly formal and that SkiT(X) = SkiTZ(X) for
i =0, 1. Thentherestriction homomor phisms on the mod-2 cohomology, Hy (X) —
H:(XT) and H(SK] (X)) — H:(XT), have same image.
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5 Proof of the main results

The main theorem will follow from two propositions.

Proposition 5.1. Let X be an even cohomology space, together with a good invo-
lution = which is compatible with a good action of a torus T. Suppose that Condi-
tions (a), (b), and (c) of the main theorem are satisfied. Then Xt is a conjugation
space.

Proof. The proof is decomposed into three steps.

Sep 1. Xt is r-equivariantly formal. For G atopological group and k € N, we
consider the G-principal bundle G — ExG — ByG obtained as the kth step in the
Milnor construction. If X is a G-space, the associated bundle with fibre X gives a
bundle X — Xg k — BkG, where Xg x = ExG xg X.

For atorus T of dimension n, B,T =~ (CPX)". The involution z(g) = g~
on T gives an involution = on By T which makes Bk T a conjugation space with
(BcT)” ~ (RP)" ~ B(To.

We first prove that Xt i is z-equivariantly formal. Since X and BxT are even
cohomol ogy spaces, the spectral sequenceof X — Xt — Bk T degeneratesat the
E2-termand H*(X1 k) &~ H*(X)® H*(BkT). Asaconsequence, dim H*(Xt1 k) =
dimH*(X)-dimH*(BkT) < oo. We haveassumedthat X isz-equivariantly formal,
and the fact that X is an even cohomology space impliesthat X is T-equivariantly
formal. So we may apply Lemma 4.6 to deduce

1

dim H*(Xt.x) = dim H*(X) - dim H*(BT)
=dimH*(X?) - dim H*(BxT2). (11)
Lemma 4.6 also implies that X* is To-equivariantly formal, and so we have the

following commutative diagram:

T,
H*((X")1,) —= H*(X?)

T

PT5k
H*(X)1pk) —— H*(X")

which shows that p-f—zjk issurjectiveand thus H*((X?)T,k) &~ H*(X")@ H*(BkT>).
AsinLemma2.2, we may provethat (Xt k)* = (X")T,,k, and so

dim H*(X7.007) = dimH*(X")1,4) = dimH*(X?) - dimH*(B(T2).  (12)

Combining (11) and (12) gives dim H*(Xt k) = dimH*((Xt)"), and together
with Proposition 4.5, thisimpliesthat Xt i is equivariantly formal.

Now given n € N, there exists k € N such that H"(X1) ~ H"(X1x). The
commutative diagram
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HN(XT) —Z—= H"(X)

Pk
HP(X1) 25 H(X)

shows that p is surjective in degree n. This can be done for each n, so Xt is
equivariantly formal.

Step 2. Construction of the ring isomorphism xr: H%(X1) — H*((XT)?).
By Lemma2.2, it is equivalent to construct a ring isomorphism

rr 1 HEF(X) > HE(XT).

By Corollary 2.4, such anisomorphism i, : HF*(XT) — Hf ((XT)7) exists, since
XT isaconjugation space. Since (XT)? = (X7)™2 by Lemma4.1, we may View iy
asamap from HZ*(XT) to H7 ((X7) ). Let us consider the following diagram:

H2*(X) —— H2(XT)

%lkﬁx (13)

Hz (X)) —L H (X)),
By Proposition 4.3, the restriction homomorphisms q and q° are injective. There-
fore, in order to construct xr : HTZ*(X) — H}“Z(X’), it is enough to show that

A" = ki (A), where A = image(q) and A = image(q©).
Let N bethe 1-skeleton of X. Enumeratethe edges Ey, ..., E, of X and define

EE=EUX"=EuX —g). (14)

For 1 < k < n, define Ny = E1 U --- U Ex. Thus Nk N Exp1 = XT, and the
(equivariant) Mayer—Vietoris sequence fits into a commutative diagram:

HE(Nk+1) — H#(N) @ Hi(Eks1) — Hi(XT)

| i F

d
0 —> HE(XT) /2> HE(XT) @ HE(XT) — = Hi(XT) —= 0

The bottom row is clearly exact (we do not need the usual sign because of the Zp
coefficients). We may conclude that the image of H:(Nit1) into H:(XT) is the
intersection of the image of Hy (Nk) with that of H-F(ék+1). Since N = Np, this,
together with Lemma 4.8, shows that
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Image(H7 (N) — H (X)) = (") Image(H} (Ei) — HF(XT)).  (15)
i=1

In the same way, using Lemma 4.7, we have that

n
Image(H7,(N7) — H,((X") ™)) = (7] Image(H,(E") — Hi,((X")™)). (16)
i=1

By naturality, an H *-frame preserves the connected components. Since X' isa
conjugation space, so is any union of its connected components. The disjoint union
decomposition of (14) impliesthat E; is a conjugation space for each i. Hence,

ki (IMage(HT (Ei) — Hi(XT))) = Image(H1,(E]) — H,(X)™)).
Using (15) and (16), thisimpliesthat A" = xgx (A).
Step 3. Congtruction of a section o7 : H*(X1) — HE(X7) o that (xr, o7) isan

H*-frame for (X1, 7). Let (k. o) be the H*-framefor XT. The desired section
ot Will fit in the commutative diagram

rr

___________ HE((XT)T) =—"— H*((X7)")[u]

oT
lq ch lqé lq’[u]

H* (X)) <22 HE(XT))—= HE(XT)1)") == H*(X")1)")[u]

Ofix

where the vertical arrows are induced by the inclusion XT < X (the notation
coincideswith that of diagram (13)). We must justify that thelast two vertical arrows
are injective. But using the identifications

H*(X7)") = H*((X")1,) = H{,(X7)
and
H*(XT)1)") = H*(XT))1,) = HE,(XT)T) = HE, (X)),

the map q[u] coincides with the homomorphism Hf (X*) — H}"z((X’)TZ)
induced by theinclusion (X?)™2 < X,

Note that we just need to construct asection o7 : H*(X1) — HE(Xt) such that
Qecoor = o1xo(. Indeed, if a € H2M(Xt), the conjugation equation for (kgy, oix)
implies

g orroor(a) = Mixooixo0(a) = Kixoq(@)U™ + Ltm.

Since ¢ isinjective, thisimplies that

Iv OO'T(a) = éum + gtm,
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with & € HM((X1)?) satisfying q° (&) = xqy(a). By construction of x1, one has
gt oxr(d) = Kixo(Q(a). Since q° is injective, this implies that & = «;(a). Hence
the pair (x7, o) automatically satisfies the conjugation equation and istherefore an
H *-frame.

We construct an additive section o+ inductively. Consider the statement Hp,: for
k < m, there exists a section o7 : H2(X1) — HZ(X7) of pr such that gcoor =
oiixo Q. Statement Hp is clearly satisfied: we may assume without |oss of generality
that X is arc-connected; and we may then define o1 (1) = 1, where1 € HO(—) is
the unit of H*(—). Now assume by induction that 1 holds. The space Xt is
r-equivariantly formal by Step 1, so there exists a section op: H2M(X1) —
Hém(XT) of pr. We have psxoQcoop = (. Therefore, for any a € Hzm(XT), we
know that gcoop(a) = orxo (@) modulo ker pry. Thiskernel isthe ideal generated
by u. Since H((XT)r) = 0, only even powers of u occur and moreover

m
Ocooo(@) = gixoq(a) + z O'ﬁx(me—Zi)UzI s a7
i=0

whereby; areclassesin H2 (X)) depending on the choice of oo. Wewill modify
oo by successive steps until bpj =Oforal j =mm—1,...,0.
The conjugation equation for (x, aix) implies

m
FixoGc000(8) = Kixo (@)U + (@) + D (i(bam—20) U™ + ftm—i (bom-21)).-
i—0
(18)
Since g isinjective, thisimplies that
rrooo(@) = cou?™ + ftm, (19)

with cg € HO((XT)?) satisfying q°(Co) = xix(bo). Since «7 is an isomorphism,
there exists & € HO(X) with xr () = co. Define anew section

o1: H2M(X1) — HE™(XT)

of pr by o1(a) = 60(@) + o1 (Eo)u®™. By the induction hypothesis, gc oot (Co) =
oix0((€p). By construction of k1, onehas Q% oxr = Kix0 (. Therefore,

MixoOco01(8) = FixoGc000(a) + Fix(Gc oo (E0))u™
= T'ixoGc000(@) + Fix(a1x0q(E0) U™
= I'ixoGc000(8) + Kixoq(Eo)) U™
= I'ixo O 060(a) + q° oy (€o))uZ™

= I'ixoQcooo(a) + qT(CO)Uzm
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= I'ixoQcoop(d) + Kﬁx(bO)Uzm
= Ko q(@u” + {tm(a)

m—1

+ D (e (bzm—20)u™" + Lt (bam-2i)).
i=0

Theinjectivity of ry, impliesthat equation (17) is replaced by

m—1

Ocoo1(a) = grixoq(a) + Z O'ﬁx(me—Zi)UZi~ (20)
i=0

We thus have modified og so that bg = 0. Now, using as above the injectivity of qZ,
this permits us to transform (19) into

rroo1(a) = cuu?™t

+ Ctm-1, (21)
with c; € HL((XT)?) satisfying Q¥ (c1) = xnix (D). Again, write c; = x1(€1) with
€1 € H2(Xt) and define a new section ap: H2"(X7) — HZ™(Xt) of pr by
02(a) = 01(a) + o1(E1)u?™2. Proceeding as above, we prove that if we replace
o1 by o2 in (20), the summation index runs only until m — 2, i.e, bp = b, = 0.
If we continue aslong as possible, we finaly get om: H2M(XT1) — HEAM(XT) with
bp = bp = .-+ = bpyy = 0. Extending o1 in degree 2m by oy, proves that the
statement Hy, holds. So by induction, we have constructed the desired section o7 .

The second propositionis a partial converse of Theorem 2.3.

Proposition 5.2. Let X be an even cohomology space, together with a good invo-
lution = which is compatible with a good action of a torus T. Suppose that X is
t-equivariantly formal and that XT = XT. Then X is a conjugation space if and
only if Xt isa conjugation space.
Proof. The “only if” part is the content of Theorem 2.3. For the converse, let us
assumethat Xt isaconjugation space.

We first construct the ring isomorphism x: H2*(X) — H*(X7). We know that
X is T-equivariantly formal because it is an even cohomology space. By part (iv)
of Proposition 4.2, the ring epimorphism v : HTZ*(X) —> H?%(X) descendsto an
isomorphism
By Lemma4.6, X" is To-equivariantly formal, and so Proposition 4.2 again tells us
that the ring epimorphism w7 : H}“Z(Xf) —> H*(X") descends to a graded ring
isomorphism

H}"Z(xf) ®H;2(pt) Zy —> H*(XY). (23)

By Coroallary 2.4, the ring isomorphism xr : HT2*(X) N H}*Z(Xf) is an isomor-
phism of modules over the ring isomorphism HTZ*( pt) — H}*Z(pt). Therefore, it
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descends to a graded ring isomorphism x : H2#(X) — H*(X7). With this defini-
tion, the equation
l/IToKT = KoVy (24)
is satisfied.
We now construct the section o: H*(X) — HE(X) so that (x,0) is an
H *-frame. Consider the commutative diagram

H*(X7) < HE )" HE((XT)")

A or
alw lwo l%’:
\

H*(X) =Z— HEX)—" HEXD).

o

Since X is T-equivariantly formal, we may choose an additive sections: H*(X) —
H*(X1) of y and define s : H*(X) — HE(X) by 6 = wcooros. Thelinear map
o isan additive section of p, and for a € H?™(X), we have

roo(a) =rowcooros(a)
= ylolto0705(a)
= i (kros@Uu™ + tm)
= (plokr)os(@) u™ + ftm
= (koy)os(@ u™ + £ty
= x(@u™ + {t.

From the fourth to the fifth line, we have used the fact that wioxr = xoy.
This comes from equation (24), using that under the identifications HE((X1)7) =
H*((Xt)H)[u] and HE(X®) = H*(X7)[u], y¢ isthe obvious polynomial extension
of y*. Therefore, the conjugation equation is satisfied and (x, o) is an H*-frame
for X.

Proof of the main theorem: Theorem 3.1 follows directly from Propositions 5.1
and 5.2.

Proof of Corollary 3.2:  The hypothesesimply that the restriction of z toanedge E,
which is a 2-sphere, is conjugate to a reflection (through an equatoria plane). This
follows from the classical result that a continuous involution on S? is topologically
conjugate to a linear one; see, e.g., [CK, Theorem 4.1]. Therefore, each edge is a
conjugation 2-sphere in the sense of [HHP, Example 3.6]. Hence, each edge is a
conjugation space, and the hypotheses of Theorem 3.1 are satisfied.

Proof of Corollary 3.3: By [HHP, Remark 3.1], t preserves each arc-connected
component of XT. In consequence, for each edge E of X, hypothesis (a) of
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Corollary 3.3 impliesthat ET isa conjugation space. By Theorem 2.1, each edgeis
then a conjugation space. The hypotheses of Theorem 3.1 are therefore satisfied.

6 Remarks
6.1 A casewhen the skeleta differ

Thefollowing example shows that the condition Skg (X) = Skgz(X) doesnot imply
that SkI (X) = SkIZ(X), evenfor spaceslikethose occurringin Corollary 3.2 or 3.3.
We consider the Hamiltonian action of St on 2 ¢ CxR givenby g-(z, 1) = (gz, 1),
compatible with the involution (z, t)* = (2, t). Points of S? will be denoted by x,
y, etc. Let p1 = (0, 1) be the north and south poles. Let T = S x S act on
X = x Shy

(g,h)- (x,y) = (gh-x,gh™y).

The fixed-point setsfor T and T, are equal, Skg(X)’ = Skg2(xf), each consisting
of thefour points { p+} x { p+}. By Proposition 4.5, X is T-equivariantly formal and
X* is To-equivariantly formal.

The T-equivariant 1-skeleton is a graph of four 2-spheres

Sk (X) = {(X, Y)|X = p+ OF y = px}.

Therefore, X is a GKM space. On the other hand, SkI(X) #* SkIZ(X), since
SK;?(X) = X. Moreover, Sk] (X)” # Sk;?(X?) because Skj2(X*) = X*. It would
be interesting to know whether the conclusion of Lemma 4.8 holds for the T -space
X (aquestion raised by the referee).

6.2 The relationship to previous work

The condition SkiT(X) = SkiTZ(X) fori = 0,1 of our main theorems is already
implicitly present in earlier papers [Sd, BGH] that deal with GKM Hamiltonian
manifolds. In [Sd], one requires that for each point of x € X', the characters
involved in the 2-spheres adjacent to x are pairwise independent over Z;. In [BGH,
p. 373], the authors require that XT = X2 and that “the rea locus of the one-
skeleton is the same as the one-skeleton of thereal locus.” In general, these condi-
tions are weaker than SkiT(X) = SkiTZ(X) fori = 0, 1 (seeLemma4.1), but they are
equivalent hypotheses for Hamiltonian GKM manifolds. To see this, we may work
with the local normal coordinates about a T-fixed point. In this model the T -action
and the involution are linear.
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1 Introduction

This article studies the nonabelian localization results of Beasley and Witten in
[BW], and considers the analogue of these results when the gauge group G is the
abelian group G = U(2). In the finite dimensional case, Duistermaat and Heckman
studied the stationary phase approximation for integrals of the form

[ et 00,
M

where f(x) = ”(‘é’;) , (M, w, G, ) is a Hamiltonian G-space, and Y is an element

of the Lie algebra of G and " the component of the moment map in the direction
of Y. They proved that the stationary phase approximation in this case is exact, and
in the special case of isolated fixed points they obtained the (abelian) localization
formula

. i\! itu” (p)
it (x) — I_) z e
/Me A (t o /detLp(Y)'

where MY = {p € M|Ym (p) = 0} is the fixed-point set of the vector field generated
by Y.

The case of U(1) Chern-Simons theory is another situation in which the
stationary phase approximation is exact. In [BW], Beasley and Witten study Chern—
Simons gauge theory on a Seifert manifold X, with a gauge group G that is
nonabelian, compact, connected, simply connected, and simple. These assumptions
imply that the principal G-bundle over X

GC—sP

|

X

is trivial. This is not the case for G = U(1), for which some of these assumptions
are not valid.

The authors of [BW] then apply the technique of nonabelian localization to the
Chern-Simons path integral

Zx(k)z/MDA exp[i%/xTr(AAdA+§A/\A/\A)] Q)

Here M is the moduli space of all connections on X; through localization, the
authors of [BW] reformulate the partition function as an integral over the space of
gauge equivalence classes of flat connections. They are able to compute this parti-
tion function in terms of topological data on the moduli space of flat connections,
M, in several cases, specifically related to SU(2).
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Some results for the U(1) Chern—Simons theory are already known; see [M] and
[MPR]. We study the results of Manoliu in [M], where the partition function for
U(1) Chern-Simons theory has been calculated independently, and compare her
results to those of [BW]. Manoliu studies U(1) Chern-Simons theory for arbitrary
3-manifolds; on the other hand, Beasley and Witten study Chern—Simons theory for
simple simply connected gauge groups G for Seifert 3-manifolds (manifolds which
are the total space of a circle bundle over a 2-manifold or a 2-dimensional orbifold).
As noted above, one of the main differences of the U(1) theory from the setting
of [BW] is the fact that there exist nontrivial principal U(1)-bundles over X. This
difference occurs explicitly in the expression for the partition function in the U(1)
case. Manoliu gives the following formula for the Chern—Simons partition function
in [M]:

kmx

- % e[, 0

peTors H2(X,Z)

Zx

where TorsH2(X, Z) is the torsion subgroup of H?(X, Z) and is isomorphic to
HL(X,R/Z). Note that a principal U(1)-bundle P — X has flat connections if
and only if the first Chern class c¢1 (P)—if nonzero—is a torsion class in H2(X, 7).
The sum over p passes over different topological types for the bundle over the
3-manifold X. We have calculated the dependence of the results of both [BW] and
[M] on the Chern—Simons parameter k. In our comparison we are looking only at the
component of the partition function that comes from the contribution of the trivial
bundle P = U(1) x X in the partition function of [M], since the results of [BW]
apply only to this case. For groups G which are simply connected, all G-bundles
over three-manifolds are trivial, whereas this is not true for U(1) bundles.

We compare the expressions for the Chern-Simons partition functions found by
Beasley-Witten and by Manoliu in their respective situations. Both partition func-
tions are expressed as integrals of top-degree differential forms over the moduli
space M of gauge equivalence classes of flat connections over the 3-manifold.
We restrict to G = U(1), and compare

e the power of k appearing in the integrand,;
e the integrand (in both cases it is the symplectic volume form).

Proposition 1.1. The U(1) Chern-Simons partition function from (5.17) of [M] and
the specialization of Beasley and Witten’s Chern—Simons partition function (5.172)
of [BW] to G = U(2) are both proportional to

K(29-1)/2 / e
U(L)29

(for the symplectic form e on U(1)29).

An important ingredient in our study of the partition functions is the appearance
of the Reidemeister torsion (R-torsion) in [M]. We provide a section devoted specifi-
cally to the R-torsion, and also study the relationship of the R-torsion to the
symplectic volume of M.
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2 k-dependence

In this section we compare the results of [BW] and [M] for the k-dependence of their
partition functions. In particular, we look at eq. (5.172) of [BW], and eq. (5.17)
of [M], and derive their respective dependences on the Chern-Simons coupling
constant k.

Let us begin with [M]. Equation (5.17) of [M] reads

kmx

T TP IR T A

peTors H2(M,Z)

Zx

LD S BT )

peTors H2(M,Z) Mo,p
= k™x /M ox (Tx)Y?, (5)
0

where 1
my = 5(olim H1(X,R) — dim H(X, R)). (6)

Here if p correspondsto a trivial bundle P = U(1) x X, then ax_ p(A) = elkCS(A)
is the Chern—Simons function of the connection A, raised to the power k. We note
that if P is a trivial bundle and A is a critical point for the Chern—Simons functional,
thendA =0,s0 ox,p(A) = 1.

The k dependence comes only from the factor k™x. The value of my is as follows.
Since X is connected, dim HO(X, R) = 1. The values of dim H1(X, R) are stated
in [FS]; for completeness we provide a short proof.

Proposition 2.1 ([FS]).

29, n>1,

dimHY(X,R) = =
2g+1, n=0,
where n is the degree of the U(1)-bundle X, and g is the genus of the base space X:

u@l) ——x

|

>

Proof. By the universal coefficient theorem (UCT),

H(X, R) ~ Hom(H1(X, Z), R), (7)
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i.e., the UCT implies that
0 — Ext(Ho(X,Z),R) — Hl(X, R) - Hom(H1(X,Z),R) — 0

is exact. Also
Ext(Ho(X, Z), R) ~ Ext(Z, R) ~ 0,

since Z is free.
Thus we compute Hom(H1(X, Z), R). By Hurewicz,
m1(X)
[71(X), 71(X)]
We assume that X is a Seifert fibered manifold which fibers over a 2-manifold rather

than over an orbifold, since this is the setting of (5.172) of [BW]. Hence we have
the following presentation of 71 (X)([O1]):

Hi(X,Z) ~

g
T1(X) >~ <ap, bp, hi[ap, h] = [bp, h] =1, H[ap, bp] = h”>,

p:l
where g is the genus of the base space X of our Seifert fibered 3-manifold X,
Uu@l) ——x
z

and n = c1(X) is the Chern number of the U(1)-bundle X. The generator h arises
from the generic fiber over X. Observe that in the abelianization of z1(X) the
following relation is satisfied:

g
[ [fap.bpl =h". (8)
p=1
We have ;
[71(X), 71 (X)] = <[ap, bpll [ [[ap. bpl = h”> 9)
p=1
and therefore
X
mX) (ap, bp, hi[ap, bp] = h" = 1) (10)

[71(X), z1(X)]
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where ap,bp,h now represent equivalence classes in the abelianization and

(ap) ~ Z, (bp) ~ Z, s ~ Z/NZ ~ Zy. Thus,

729 x Zn, n>1,
_ m o= (11)
[71(X), 1 (X)] 729+1 n=
Finally, we have
X)
HL(X,R) ~ Hom(H;(X. Z), R :Hom(L,R)
(6 1) = Hom(F(X, 2). 1 22 (X). 21001
Hom(Z® x Zn,R), n=>1,
o~ (12)
Hom(Z29+1, R), n=0,
R29, n>1, 13
~|R29+L p=0. (13)
In conclusion,
R 29, n=>1,
dimHY(X,R) = (14)
20+1, n=0.

We will restrict ourselves to the case n % 0 because this is assumed in [BW]. Thus
we obtain the k dependence
29-1
Zx ~k 2.

Now consider the k dependence for (5.172) of [BW]. For this computation we
assume that all work leading to (5.172) is relevant to the case of a trivial principal
U(1)-bundle over X. We note that the main difference between our case (with a
U(1) gauge group) and the case studied in [BW] is that [BW] assume that their
gauge group G is compact, connected, simply connected, and simple. In particular,
they can conclude that their principal G-bundle

GC—>P

|

X

is trivial. However, U(1) is neither simply connected nor simple, and there exist non-
trivial principal U(1)-bundles over X. Itis surprising that our results show that [BW]
(5.172) is still valid in the U(1) case, although we could not infer this from Beasley
and Witten’s calculation because our situation does not satisfy the hypotheses of

[BW].
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Consider eq. 5.172 of [BW]:

Zx = Z(0)l i, (15)

1 Fis —~ 1 1 —~ In
= —exp(-= A Q4 Zey(T .
IrIexp( . ;70) /M“o (Mo)exp[zne + 50T Mo) + 5 @}

Here

e M is a smooth component of the moduli space of irreducible flat connections
on a Seifert manifold X (we assume that our Seifert manifold X is a smooth line
bundle of degree n over X);

I' = Z(G) is the center of G;

di
° 7]0=—n IEanG'
Xj/2

. A(Mo) _ Hdlm/\/lo "~ S where xj (1 < j < n) are the Chern roots of
T Mo. so that ¢(T Mo) = []_; (1 +xj), xj € H3(Mo, Z);

e Qis the symplectic form on Mo;
o ¢ = k+c , Where Cy is the dual Coxeter number of G;

e O ¢ H4(Mo) is the cohomology class corresponding to the degree-4 element
—(¢, ¢)/2 in the equivariant cohomology Hé(pt) (for ¢ € g using the Cartan
model of equivariant cohomology); ® can also be described in terms of the
universal bundle U:

C———U

|

Jac(X) x X
In other words,
0= —%Cl(U)let.ez,
where Jac(ZX) is the Jacobian of X.

The overall constant I' does not make sense for G = U(1), since it is infinite.
We disregard the overall constant in front of the integrand in ()| 4, Looking
only at the k dependence, we consider Z(E)|ﬂo' ignoring overall multiplicative
constants:

P 1 1 — In
Z(e)lj\;;0 ~ //\7 A(Mp) exp [EQ + §C1(TM0) + m@} . (16)
0

Note that Mo ~ U(1)% x Z, by Proposition 2.2 of [M], and since we are restricting
to the trivial bundle case, we identify Mo ~ U(1)?9 as the connected component
corresponding to p = 0.

The first thing we observe is that ® = 0 in our case. This follows, since the
universal bundle U for U(1)-bundles is the classical Poincaré line bundle, and
the Poincaré line bundle is normalized to have degree d = 0 when restricted to
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the Jacobian of X. Since ¢y (U) = d[Z] € H2(Z), this implies ¢y (U) = 0, and
hence ® = 0. Also, since Mg ~ U(1)%9, we know that

g g
¢(Mo) = ¢(TMo) = [Te(Li) = [Ta+x),
i=1 i=1

where
Li=T%i, and x =ci(Li) € HA(Zi, 2),

where Z; ~ (U(1))2. Then the tangent bundles T ; are trivial, and hence
Xi =c1(T %) =0.

Thus .
dim Mg

Ao = []
j=1

Sh(r3/2) o

Clearly, c1(T Mo) = 0 as well, and we arrive at

1
Recalling that e = 2%, we have

Z()l g, ~ /M exp[kQ] = /M k9Q9/g! = k9Volg (Mo).
0 0

Thus the U(1) Chern-Simons partition function computed from eq. 5.172 of [BW] is
Zy = Z(e)|/\70~k9. (19)

There is a difference of k1/2 between the two cases, since Zx ~ k9 for Beasley—

Witten, whereas Zx ~ K for Manoliu. Let us analyze this difference further.
In the case of [M], this extra factor of k—1/2 appears because the dimension of the
stabilizer of the gauge group action (for U(1) gauge groups) is dim(H%(X, R)) = 1.

A similar phenomenon occurs in Yang—Mills theory at the higher nonflat critical
points of the Yang—Mills action. As observed in Section 4.3 of [BW] (for example
equation (4.45)), there is a factor of k1/2 in the Yang—Mills partition function coming
from the fact that the gauge group G does not act locally freely on the locus of
nonflat Yang-Mills solutions. This k/2 factor comes from the U(1) stabilizer at a
nonflat Yang—Muills solution. U(1)-Chern-Simons theory also has a U(1) stabilizer
at all points, the subgroup of constant gauge transformations with values in U(1).
This accounts for the extra factor of k—=%/2 in the Chern—Simons partition function
in Manoliu’s paper.

In fact, Beasley and Witten recast the Chern—Simons partition function as a
Yang-Mills partition function (see (3.61) in [BW]). In the computation of (5.172)
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of [BW] it is assumed that one is localizing at an irreducible flat connection, and
therefore the isotropy group of A, T'a = {u € GJu(A) = A}, is finite. Hence
there is no factor of k1/2 in [BW] (5.172) because the dimension of the stabilizer is
zero.

The extra factor of k—1/2 also appears in [JKKW] (see Section 9, Example 46).
This article treats integrals of the same form as [BW] (3.61) over symplectic mani-
folds equipped with Hamiltonian group actions. When the group acts locally freely
at the zero locus of the moment map, it is shown in [JK] that the integral is a poly-
nomial in € = 2z /k. When the group acts with nontrivial stabilizer at points in
the zero locus of the moment map, the partition function is a polynomial in /€ but
notin e.

3 Reidemeister torsion and symplectic volume

We would like to show that the remainder of the calculation in [M] involving the
Reidemeister torsion yields the symplectic volume as above. In this section we
review Reidemeister torsion (R-torsion) and provide some relevant examples.

The R-torsion is an invariant for a CW-complex and a representation of its funda-
mental group. Before we define the R-torsion, we recall the definition of the torsion
of a chain complex. Let

. 4o
Co=O0—oCico i &% e % oo 0

be a chain complex over [F (either R or C). Let Z; denote the cycles of this complex,
B; denote the boundaries, and H; the homology. Let {ci} be a basis of C; and let ¢ be
the collection {c'}j=o. We call a pair (C,, c) a based chain complex, ¢ the preferred
basis of C,,, and c' the preferred basis of C;. Let h' be a basis of H;.

We construct another basis as follows. By the definitions of Z;j, Bj, and Hj, the
following two split exact sequences exist:

027 —C & By o,
0— Bj—> Zj —> Hj — 0.
Let Bj_; be a lift of Bj_; to C; and H; a lift of H; to Z;. Then we can decompose
C;j as follows:
Ci=Zi®Bi_1 = Bi® Hi ® Bi_1 = di;1Bj ® Hi & .Bi_1.
Choose a basis b' for B;j. We write bit! = {Eij“}'?‘ , for a lift of b and h =

U : 4=t .
{h'j }lel for a lift of h'. By construction, the set {b' Ud;j_1 (b'**)Uh'} forms another

ordered basis of C;j. Denote this basis by {b'di1(b'*1)h'}. The definition of the
R-torsion, Tor(C,, c, h), is as follows:
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n .
Tor(C.. o)t} = (=1 [TB'dia @O 1D e Fr, (20)
i=1
where [b'd; +1(b'+1)h'/c ] denotes the determinant of the change of basis matrix

from the basis {c'} to the basis {b'd; 1 (b't1)h'}. An alternative definition is to equip
our complex C, with volumes ui € (A™C;j)*, one for each i, and then to define

/\i even Mi [SI A di+l(51+l) A ﬁ']
Aiodg i [0 A dip1(bi+1) A hiT

where we take b' = A;b, dij1b™*? = AT 41}, and At = AT% Y. The
torsion is an element

Tor(Cs, w){h} =

(1)

Tor(Cy., ) € ®zi+1[A™ Hai1+1(C.)] ®2i [A™Hai (C.)]*.

The latter definition specializes to the former definition when we choose the
canonical volumes associated to a choice of preferred basis ¢ for C.

It is well known (see, e.g., [F]) that the torsion is independent of the choices
of b’ and of the choices of lifts b', hi. In the case that our complex C, is acyclic,

we define = =

Al even #ilb' A di+1(bl+l)]
Aiodgd #i[b' A diy1(b™+1)]
We will be interested in a specific chain complex C,. In particular, let N be a cell
complex, and p a representation of z1(N) in G. The Lie algebra g is acted on by
71 (N) under the composition of the adjoint action of G and the representation p. Let
g, denote g with the 71 (N)-module structure from p. Let N denote the universal
cover of N. Since the fundamental group z1(N) acts on N by covering transfor-
mations, the chain complex C..(N) also has a natural z1(N)-module structure. The
chain complex of interest is then C,.(N, g,), defined as the quotient of C.(N)®g
under the equivalence

Tor(Cy, u) = (22)

o ®X ~oca®Ad(p@) X, (23)

where a € 71(N), 0 € C*(ﬁ), and X € g. The usual differential on C.(N) is
compatible with the equivalence relation, and thus descends to a differential J, on
C.«(N, g,). By dualizing one obtains the corresponding cochain complex C*(N, g,)
with differential d, = J7. We have the following lemma.

Lemma 3.1 ([JW]). Suppose h € G. If p and hph~! are conjugate representations
of 71(N) in G, then the map Ad(h) : g — g induces an isomorphism of the chain
complexes C.(N, g,) and C..(N, gy, ,n-1). Hence one obtains a natural isomorphism
between the cohomology groups

H'(C.(N, g,))
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and _
HY(CL(N, gp,n-1))-

We will mainly be interested in the zeroth and first cohomology groups of this
complex. We recall the following result.

Proposition 3.2 ([JW]). Let [p] € Hom(z1(N), G)/G. The choice of a particular
p € Hom(z1(N), G) in the conjugacy class [p] identifies the Zariski tangent space
at p of the space Hom(z1(N), G)/G with the first cohomology group H(N, gp)-

Furthermore, the Lie algebra of the isotropy group of p (the subgroup of G fixing
the representation p under conjugation) is HO(N, g,,).

Using the definition of the R-torsion in (21) above, we may define volumes on
C.(N, g,) using the metric on g. We take {aj' ® Xk} to be an orthonormal basis

of C«(N, g,,), where o! are the i-cells in the universal cover N and the X are an
orthonormal basis of g. This volume is well defined, since the adjoint representation
is an orthogonal representation of G, and hence compatible with the equivalence
relation (23). The torsion is then an element of

Tor(C«(N, g,), 1) € ®2i+1[A™ Hai+1(N, g,)] ®2i [\ Hai (N, g,)]*.

Since H'(N, g,) = Hi(N, g,)*, the torsion may be identified with an element
Tor(C.(N, g,), #) € ®2i+1[A™*HZ*L(N, g,)]* @21 [\"*H? (N, g,)]. (24)

The isomorphisms in Lemma 3.1 identify the torsion Tor(C.(N,g,)) with
Tor(C.«(N, gpyn-1), so the torsion descends to an equivalence class (N, p)
depending only on the conjugacy class [p] € Hom(z1(N), G)/G.

It is instructive to consider the case that N is a genus-g surface x9.

Example 3.1. From the relation (24) above, we see that the torsion 7 (X9; p) of a
surface =9 takes values in

/\male(Zg,gp)* ® Amatz(Eg, gp) ® /\maxHO(Eg’gp)'
By Poincaré duality, H?(29, g,) is canonically dual to HO(x9, gp), SO we have
7(29; p) € AMHL(29, g,)".

Observe that H1(29, g,) is a symplectic vector space (the tangent space to the
moduli space of gauge equivalence classes of flat connections on X9) with the
symplectic form given by the cup product H'(29,g,) ® HY(Z%g,) —
H2(29,R) ~ R. One can show that in fact, the torsion may be identified with
the symplectic volume on H1(Z9, g,)- A rigorous proof of this is given in [W].

The case of interest to us here is that of N a Seifert manifold and G = U(1). In this
case, the torsion 7 (N; p) takes values in

Amale(N’gp)* Amax H3(N,gp)* ® /\maXHZ(N’gp) ® AmaxHO(N,gp)’
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where by Poincaré duality H3(N, g,) is canonically dual to
HO(N, g,) ~ R
and H1(N, g,) is canonically dual to H?(N, g,). Note that
HO(N, g,) ~ R
once we choose a basis, because we are working with U(1). Thus,
7(N; p) € (A"™*HY(N, g,)")®?,

or
VT(N; p) € AM*HY(N, g,)".

When N is two-dimensional we observed above (see [W]) that the torsion can be
identified with the symplectic volume on H1(Z, 9p).

We recall our previous results in equation (18), where we observed that for the
gauge group U(1) the Chern-Simons partition function Zx was proportional to the
symplectic volume. In the case G = U(1), for a Seifert manifold U(1) - N — X,
we would also like to see that /7 (N) is proportional to the symplectic volume on
the moduli space U(1)%9 x Zy.

Writing this more concisely, we want to see that

JVT(N)=C - af, (25)

where C e R* is some nonzero constant. Here « € Q%(U(1)%9 x Zn); R) is the
symplectic form on U(1)29 x Z,, i.e., the symplectic form on each of the n disjoint
copies of U(1)?9. We introduce the notation a = (p,m) € U(1)%9 x Zn. Here
wala, B) = [y a A B, fora, p e HY(N,ga) ~ HY(Z, g)) =~ Ta(U(L)% x Zn).
Here the last equality follows from Proposition 3.2. Also /7 (N) € Q%9(U(1)%9 x
Zn: R), i.e., we define /7(N), := +/7(N; a), Va € U(1)% x Z, as a section of
the top exterior power of T*(U(1)?9 x Z,)]. To summarize, both the torsion and
the symplectic volume are volume elements on U(1)?% x Z, and the Lie group
structure of U(1) means that the tangent bundle is trivial, and there is a natural
basis vector given by a generator of the Lie algebra of U(1). In terms of this basis
vector, we note that the definition of the torsion does not depend on the choice of
a point in U(1)% x Zj, since the differential of the chain complex is simply the
exterior derivative. For nonabelian groups the differential is the twisted differential
da = d + Ad(A), which does depend on the choice of a flat connection A. If the
group is abelian, d A reduces to the exterior derivative d, and it does not depend on A.

It will be sufficient to identify /z(N) and w9 at a single point of the moduli
space U(1)29 x Zn, since we will show that /7 (N) and w are invariant under left
multiplication, i.e., invariant under the action,

La U1 x Zy — U1)X x Zy

definedby L : b a-bfora e U(1)%9 x Zp.
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First, we show that /7 (N) is invariant under this action. As discussed above,
the torsion does not depend on the choice of point a = [A] € U(1)% x Z,
corresponding to a flat connection A. By construction, the torsion is independent
of a.

We identify HY(N,R) ~ HZI(N,d), viewed as differential 1-forms, with
Ta(U(1)% x Zy) in the following way. The generators of H1(N, R) come from
generators of the cohomology for U(1), one for each generating loop of the funda-
mental group z1(N). The tangent space to the moduli space U(1)%9 x Zjy at a then

has 2g generators {a%,a}lzil Since the definition of z (N) is independent of a, where
£,— is the vector field on the ith copy of U(1) in U(1)?9 x Z,, we have that

0
(d La)ba— vb e U x Zn, 1 <i < 2g. (26)

a —
¢' a 6¢' a-b’

We conclude that L:z(N) = z(N), Va € U(1)?9 x Zn, i.e., z(N) is invariant under
the action of U(1)29 x Z, on itself.

The next thing that we will show is that w, the Goldman-Atiyah-Bott symplectic
form on the moduli space, is invariant under the action of U(1)2 x Z, on itself.
This can be seen directly. Consider

i (3 ) o () ()
_ 0 2

a o 0
n(5)

Liw=w, VaeUQ)? x Zn,

Thus,

i.e., w is invariant under the action of U(1)% x Z, on itself.
Now we can prove our original claim. Let e denote the identity element of
U(1)2 x Z,. Then at the point e, +/z7(N) and w9 must agree up to a nonzero

multiplicative constant:
VTN)le =C -0
for some C € R*. By left invariance, we therefore have
VT(N)la=C-a%a, VaeUQ)X xZ,.
Thus,

JT(N) =C - 8.
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1 Introduction

Thereis a close relationship between Mumford's geometric invariant theory (GIT)
in (complex) agebraic geometry and the process of reduction in symplectic geo-
metry. GIT was developed to construct quotients of algebraic varieties by reduc-
tive group actions and thus to construct and study moduli spaces [27, 28]. When a
moduli space (or a compactification of a moduli space) over C can be constructed
as a GIT quotient of a complex projective variety by the action of a complex re-
ductive group G, then it can be identified with a symplectic reduction by a maxi-
mal compact subgroup K of G, and techniques from symplectic geometry can be
used to study its topology (for example [2, 15, 16, 19, 20, 21, 22]). Many moduli
spaces arise as quotients of algebraic group actions, but the groups concerned are
not necessarily reductive, so that classical GIT does not apply and different meth-
ods need to be used to construct the quotients (cf., e.g., [18, 24]). Nonetheless, in
suitable situations GIT can be generalised to allow us to construct GIT-like quo-
tients (and compactified quotients) for these actions [7, 23]. This paper describes
some ways in which such nonreductive compactified quotients can be studied using
symplectic techniques closely related to the “ symplectic implosion” construction of
Guillemin, Jeffrey, and Sjamaar [14].

More precisely, suppose that U is a maximal unipotent subgroup of a complex
reductive group G acting linearly (with respect to an ample line bundle L) on a
complex projective variety X, and suppose that the linear action of U on X extends
to alinear action of G. Then the ring of invariants @,..o H2(X, L®KYY s finitely
generated and the enveloping quotient X //U (in the sense of [7]) is the projective
variety Proj(@,-o HO(X, L®K)V) associated to the ring of invariants. Moreover,
if K isamaximal compact subgroup of G, and X is given a suitable K -invariant
Kahler form, then X//U can be identified with the imploded cross-section Ximpl of
X by K in the sense of the symplectic implosion construction of Guillemin, Jeffrey,
and Sjamaar [14]. Note that here U is the unipotent radical of a Borel subgroup of
G. The aim of this paper is to generalise symplectic implosion to give a symplectic
construction for GI T-like (compactified) quotients by the unipotent radical U of any
parabolic subgroup P of a complex reductive group G, when the action extends to
an action of G. Hence we obtain a“moment map” description of such compactified
quotients of projective varieties by unipotent radicals of parabolics which is analo-
gous to the description of areductive GIT quotient Y// G as a symplectic quotient
1~ 1(0)/K, where K isamaximal compact subgroup of G and x isamoment map.

The layout of the paper is as follows. Section 2 reviews classical GIT and
its relationship with symplectic geometry, while Section 3 reviews symplectic
implosion from [14] and extends its construction to cover quotients by unipotent
radicals of parabolics. Section 4 gives abrief description of the results of [7, 23] on
nonreductive actions and the construction of compactified quotients (more details
and amuch moreleisurely introduction to nonreductive GIT can befoundin[7]) and
finally relatesthem to symplecticimplosion. A simple examplewhen G = SL(2; C)
isworked out in detail at the very end of the paper in Example 4.8.
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1.1 Index of notation

Notation isintroduced in this paper as follows:

w, K 82.1
OL(X), X// G, XSS, XS (for reductive actions) §2.2
Ximpl To 1, 5, W, [K;, Ke1, £, B, Unex» G/Umnac » A, A%, Vi, T1, 1, wo §3.1
B, Ui, V.7, vy, F, 0¥, S, Ximpl §3.1

U.P,L® K® s, R, R(S), QP €, 3P G/U, XU, EP  §32
VL VKD P o) KT L FPLEP K (P, ol XISKT 832

> Vw0 impl
KK(P) > ff
Xt - G/U §3.3
XSS, XS, XSS XS X //U, G xy X, X5, XS 84.1
O,X///\U, I:SZI:EN):Xa‘jI(ﬂ X//U §42

2 Symplectic reduction and geometric invariant theory

The GIT quotient construction in complex algebraic geometry is closely related to
the process of reduction in symplectic geometry.

2.1 Symplectic reduction

Suppose that a compact, connected Lie group K with Lie algebra ¢ acts smoothly
on asymplectic manifold X and preservesthe symplectic form w. Let us denote the
vector field on X defined by theinfinitesimal action of a € € by x — ax. Recall that
amoment map for the action of K on X isthen asmooth map u : X — £* which
satisfies
du(x)($) -a= wx(¢, ax)

foral x € X, ¢ € TxX, and a € & Equivalently, if ua : X — R denotes the
component of i along a € ¢ defined for all x € X by the pairing ua(X) = u(x) - a
between 1 (x) € £ and a € &, then u, is a Hamiltonian function for the vector
field on X induced by a. We shall assume that any moment map u : X — ¢*is
K -equivariant with respect to the given action of K on X and the coadjoint action
of K on ¢*. If the stabiliser K, of ¢ € & acts freely on x=1(¢) then u=1(¢) is
a submanifold of X and the symplectic form w induces a symplectic structure on
the quotient 2 =1(¢)/ K, whichis the Marsden-Weinstein reduction, or symplectic
reduction, at ¢ of the action of K on X. The quotient #—1(4“)/K( aso inherits a
symplectic structure when the action of K on u~1(¢) isnot free, but in this case it
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islikely to have singularities (although these will be only orbifold singularitiesiif ¢
isaregular value of y, or equivaently if K- actson u~1(¢) with finite stabilisers).
Thecase = Oisof particularimportance; 1z ~1(0)/K isoften called the symplectic
quotient of X by the action of K.

Now let X be a nonsingular connected complex projective variety embedded in
complex projective space P, and let G be a complex Lie group acting on X viaa
complex linear representation p : G — GL(n + 1; C). By an appropriate choice of
coordinates on P" we may assume that p maps a maximal compact subgroup K of
G into the unitary group U(n + 1). Then the Fubini—Study form o on P" restricts to
a K-invariant Kahler form on X, and there is a moment map x : X — ¢* defined
(up to multiplication by aconstant scalar factor depending on the convention chosen
for the normalisation of the Fubini—Study form) by

_ Xp@%
2mi||X||2

u(x)-a (@)

for all a € ¢, where X € C"*! — {0} is a representative vector for x € P" and
the representation p : K — U(n + 1) induces p. : ¢ — u(n + 1) and dualy
prruln+ * — .

In this situation there are two possible quotient constructions. the symplectic
reduction x~1(0)/K in symplectic geometry and the GIT quotient X//G in age-
braic geometry described below. In fact these give us the same space, at least up to
homeomorphism (and diffeomorphism away from the singularities).

2.2 Mumford’s geometric invariant theory

Let X beacomplex projectivevariety andlet G be acomplex reductive group acting
on X. Recall that over C alinear algebraic group G is reductiveif and only if it is
the complexification of a maximal compact subgroup K. The simplest nontrivia
example is the complexification C* of the circle St, and more generally GL (n; C)
is the complexification of the unitary group U (n) and thus is reductive. In contrast
the additive group of complex numbersC™* has no nontrivial compact subgroupsand
so is not reductive; the sameis true of any complex linear algebraic group U which
is unipotent (that is, U isisomorphic to a closed subgroup of the group of strictly
upper triangular matrices in GL (n; C) for some n). In some sense reductive and
unipotent groups sit at the opposite extremes of a spectrum, and any linear algebraic
group H has a unique maximal unipotent normal subgroup U (its unipotent radical)
such that the quotient group H /U isreductive.

Geometric invariant theory needs an extraingredient in addition to the action of
G on X, which is alinearisation of the action, that is, aline bundle L on X and a
lift of theaction of G to L. Thelinebundle L isusualy taken to be ample, and then
very little generality islost by assuming that for some projective embedding

X cp"
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the action of G on X extendsto an action on P given by arepresentation
p:G— GL(n+1),

and taking for L the hyperplaneline bundle Opn (1) on P".

A categorical quotient of a variety X under an action of G is a G-invariant
morphism ¢ : X — Y from X to a variety Y such that any other G-invariant
morphism ¢ : X — Y factorsas$ = yx o ¢ for auniquemorphism y : Y — Y [28,
Chapter 2, 84]. An orbit space for the action is a categorical quotient¢ : X — Y
such that each fibre ¢ —1(y) is asingle G-orbit, and a geometric quotient is an orbit
space ¢ : X — Y which is an affine morphism such that

(i) if U isopeninY then
¢* 1 OU) — O(p~ 1))

induces an isomorphism of O(U) onto O(¢~1(U))€, and
(i) if Wy and W» are disjoint closed G-invariant subvarietiesof X then their images
¢ (Wq) and ¢ (W) inY are digoint closed subvarietiesof Y.

When G acts linearly on X as above there is an induced action of G on the
homogeneous coordinate ring

OL(X) = P HOUX, L¥) = Clxo, ..., Xn] /T x. )
k>0
where Zx istheideal in C[Xo, . .., Xn] generated by the homogeneous polynomials

vanishing on X. The subring O (X)© consisting of the elements of & (X) left
invariant by G isafinitely generated graded complex algebrabecause G isreductive,
and so we can define the GIT quotient X//G to be the projective variety
Proj(OL (X)®) associated to O (X)€ [27]. The inclusion of O (X)C in OL(X)
determines a rational map g from X to X// G, but in general there will be points of
X C P" where every G-invariant polynomial vanishes and so this map will not be
well defined everywhere on X. Hence we define the set X of semistable pointsin
X to bethe set of those x € X for which there existssome f € O (X)© not vanish-
ing at X, and then the rational map q restricts to a surjective G-invariant morphism
from the open subset XS of X to the quotient variety X//G, whichis a categorical
quotient for the action of G on X=5. Thisrestrictionq : X — X//G is not neces-
sarily an orbit space: when x and y are semistable points of X we haveq(x) = q(y)
if and only if the closures Og (x) and Og (Y) of the G-orbits of x and y meet in XS
Topologically X//G is the quotient of X5 by the equivalence relation ~ such that
if xandy liein XSthen x ~ y if and only if Og(x) and Og (y) meet in X5,

A stable point of X (“properly stable” in the terminology of [27]) is a point
x of X5 with a G-invariant neighbourhood in X5 such that every G-orbhit in this
neighbourhood is closed in X and has dimension dim G. If U is any G-invariant
open subset of the set XS of stable pointsof X, then (V) isan open subset of X// G
and the restriction qjy : U — q(U) of g to U is an orbit space for the action of
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G on U, so that it makes sense to write U /G for q(U); infact U/G isageometric
quotient for the action of G on U. In particular there is a geometric quotient XS/ G
for the action of G on X3, and X//G can be thought of as a compactification of
XS/G:

X5 c X c X

open open

| | ®

XS/G C X//G = XS/~
open

Remark 2.1. X5, XS5, and X//G are unaltered if for any k > 0 the line bundle L
is replaced by L®k with the induced action of G, so it is sometimes convenient to
alow fractional linearisations L®¢/™,

The subsets XSS and XS of X are characterised by the following properties (see
Chapter 2 of [27] or [28]).

Proposition 2.2 (Hilbert—-Mumford criteria).

(i) Apoint x € X issemistable (respectively stable) for the action of G on X if and
only if for every g € G the point gx is semistable (respectively stable) for the
action of a fixed maximal (complex) torus of G.

(if) Apoint x € X with homogeneouscoordinates[Xp : ... : Xn] in some coordinate
system on P" is semistable (respectively stable) for the action of a maximal
(complex) torus of G acting diagonally on P" with weights o, . . ., an if and
only if the convex hull

Conv{a; : xj # 0}

contains O (respectively contains O initsinterior).

The GIT quotient X// G is homeomorphic to the symplectic quotient x~1(0)/K,
and the subsets X and X® of X can be described using the moment map x at (1)
above. More precisely [19], any x € X issemistableif and only if the closure of its
G-orbit meets 1 ~1(0), while x is stableif and only if its G-orbit meets

1 O)reg = (X € x~H(O)|du(x) : TxX — €* issurjective],

and the inclusions of 1 ~1(0) into X and of x~1(0)req into X® induce homeomor-
phisms
1 HO)/K = X//G

and
1 (O)reg/K — X°/G.

Thus the moment map picks out a unique K -orbit in each stable G-orbit, and also
in each equivalence class of strictly semistable G-orbits, where x and y in XS are
equivalent if the closures of their G-orbits meet in X5 (that is, if their images under
the natural surjectionq : X= — X//G agree).
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Remark 2.3. It followsfrom theformula (1) that if we changethe linearisation of the
G-action of X by multiplying by a character y : G — C* of G, then the moment
map is modified by the addition of a central constant ¢, in £*, which we can identify
with the restriction to ¢ of the derivative of y.

Example 2.4. Let G = SL(2; C) act on X = (P*)* viaMobius transformations and
let K be the maximal compact subgroup SU(2) of G. If weidentify P! with the unit
sphere S in R then there is amoment map

wiX=(H* - e = RS

given by (X1, X2, X3, X4) = X1 + X2 + X3 + X4. Thus x~1(0) consists of con-
figurations of four points on S? which are balanced in the sense that their centre of
gravity lies at the origin, while £ ~1(0)\ «~1(0)eq consists of the configurationsin
which two points coincide at some p € S? and the other two points coincide at the
antipodal point — p. The open subset

X5 = {(X1, X2, X3, Xa) € (P1)* : X1, X2, X3, X4 dlistinct}

of X = (P1)* hasageometric quotient which, using the cross-ratio, can beidentified
with
Pl - {05 19 OO},

and thisin turn can be identified with 1 ~1(0)reg/K . In addition,
X = {(X1, X2, X3, X4) € (P1)* : at most two of X1, X2, X3, X4 coincide}

has a categorical quotient X//G = X35/ ~= P in which the points 0, 1, co each
represent three strictly semistable G-orbits in X: one G-orbit consisting of con-
figurations in which two points x; and x;j coincide at some p € PP1 and the other
two points xx and xm coincide at a distinct point q € P2, a second consisting of
configurationsin which x; and xj coincide at some p PP* and the other two points
Xk and xp, are distinct from each other and from p, and the third consisting of con-
figurationsin which xy and Xy, coincide at a some point q € P1 while x; and Xj are
distinct from each other and from q. Thefirst of these orbitsis closed in XS5 and lies
in the closure of each of the other two orbits.

3 Symplectic implosion and quotients by nonreductive groups

Ways in which classical GIT might be generalised to actions of nonreductive affine
algebraic groups on algebraic varieties were studied in [7] (see aso [23]) building
on earlier work such as [8, 9, 10, 11, 35]. Every affine algebraic group H has a
unipotent radical U < H such that H/U is reductive, so we can concentrate on
unipotent actions. It is shown in [7] that when a unipotent group U acts linearly
(with respect to an ample line bundle L) on a complex projective variety X, then
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X hasinvariant open subsets XS € X5, consisting of the “stable” and “semistable’
points for the action, such that Xs has a geometric quotient X5/U and X*= has a
canonical “enveloping quotient” X — X//U, which restrictsto X5 — XS/U,
where X5/U is an open subset of X //U. However, in contrast to the reductive case,
the natural map from X=to X//U isnot necessarily surjective, and indeed itsimage
is not necessarily a subvariety of X//U, so this does not in general give us a cate-
gorical quotient of X5, Furthermore, X//U is in general only quasi projective, not
projective, though when the ring of invariants OL(X) = D=0 HO(X, L&YY is

finitely generated as aC-algebrathen X //U isthe projectivevariety Proj (O (X)Y).

In order to obtain a compactification X//U of the enveloping quotient X//U
when the ring of invariants OL(X)Y is not fi nitely generated, and to understand its
geometry evenwhen X //U = X//U isitself projective, we can transfer the problem
of constructing a quotient for the U-action to the construction of a quotient for an
action of areductivegroup G which containsU asasubgroup, by finding areductive
envelope. Thisis a projective completion

G xy X

of the quasiprojective variety G xy X (whichisthe quotient of G x X by the free
action of U acting diagonally on the left on X and by right multiplication on G),
with a linear G-action on G xy X extending the induced G-action on G xy X,
such that the U-invariants on X lying in a suitable set (see Definition 4.3 below)
extend to G-invariantson G xy X. If the linearisation on G xy X isample, then
the classical GIT quotient

G xu X//G

is a compactification X//U of X//U, and hence aso of its open subset X5/U if
XS #£ ¢. Moreover, if XS and X denote the open subsets of X consisting of
points of X which are stable and semistable for the G-action on G xy X under
theinclusion

X Gxy X G xy X,

then

XSC XSc XSc XS
Note, however, that X3, X, and X//U depend in general on the choice of reductive
envelope G xy X withitslinear G-action, whereas XS, X5, and X//U depend only
onthelinear action of U on X.

Just as GIT quotients by complex reductive groups are closely related to
symplectic reduction, so quotients by suitable unipotent groups (in particular maxi-
mal unipotent subgroups of complex reductive groups) are closely related to the
construction called symplectic implosion [14], which we will discuss below.
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3.1 Symplectic implosion for a maximal unipotent subgroup

Let (X, w) be a symplectic manifold on which a compact connected Lie group K
acts with amoment map x : X — £*, where ¢ is the Lie algebra of K. Let us
choose an invariant inner product on ¢ and use it to identify £* with ¢. Let T be
a maximal torus of K with Lie algebrat < ¢ and Weyl group W = Nk (T)/T,
andlet t} = t*/W = ¢£*/Ad*(K) be a positive Weyl chamber in £*. The imploded
cross-section [14] of X isthen

Ximpl = #71(t*+)/ ~, 4

where x ~ y if and only if u(X) = u(y) = ¢ € tf and x = ky for somek €
[K:, K/]. Here K- denotesthe stabiliser K- = {k € K (Ad*k)¢ = ¢} of ¢ under
the coadjomt action of K on £, and [K, K] is its commutator subgroup. If X is
the set of faces of t7 then

X u (o) Ll 1(0) 5
impl = H K., K, ] () u H [Ka,Ku] ©)

geX

ff#(i* )°

where K, = K for any ¢ € o. The topology on Ximpi is the quotient topology
induced from /rl(t ), and Ximp also inherits a symplectic structure. More pre-
cisely, it is stratified by the locally closed subsets () /[K,, K, ], each of which
isthe symplectic reduction by the action of [K,, K] of alocally closed symplectic

submanifold
Xo = Ka,u_l U T
T€X, 7120

of X (and locally near every point, Ximp can be identified symplectically with the
product of the stratum and a suitable cone in the normal direction). The induced
action of T on Ximpl preserves this symplectic structure and has a moment map

HXimpt + Ximpl — ) C t*

inherited from the restriction of x to ﬂ‘l(ti). If ¢ e i, the symplectic reduction
of Ximp @t ¢ for thisaction of T isthe symplectic reduction of X at ¢ for the action
of K:

-1
O i (9 B9
T T-[Ks Kol Ke
The universal imploded cross-section is the imploded cross-section

(6)

(T*K)imp = K x ti/ ~ (7)
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of the cotangent bundle T*K = K x £* with respect to the K -action induced from
the right action of K on itself; it inherits an action of K x T from the left action of
K onitself and the right action of T on K. Any other imploded cross-section Ximp
can be constructed as the symplectic quotient of the product X x (T*K)impl by the
diagonal action of K [14, Theorem 4.9].

Infact (T*K)impl isalways acomplex affine variety, and its symplectic structure
is given by a Kahler form. Indeed, let G = K¢ be the complexification of K and
let B be a Borel subgroup of G withG = KBand KN B = T. If Upnax < B
is the unipotent radical of B (and hence a maximal unipotent subgroup of G), then
Umax isaGrosshans subgroup of G [12]: that is, the quasiaffine variety G/Umax can
be embedded as an open subset of an affine variety in such away that its comple-
ment has (complex) codimension at least two. This means that the ring of invariants
O(G)Ym sfinitely generated (see for example[12]), and by [14, Proposition 6.8],
thereisanatural K x T-equivariant identification

(T*K )impl = Spec(O(G)Uma)

of the canonical affine completion Spec(O(G)Ym) of G/Umax With (T*K)impi-
It follows that if X is acomplex projective variety on which G acts linearly with
respect to a very ample line bundle L, and w is an associated K -invariant Kahler
form on X, then the symplectic quotient Xjmp of X x (T*K)impl by K can be
identified with the GIT quotient (X x Spec(OQ(G)Ym=))) //G. Moreover,

OL(X)Ymax = (O (X) ® O(G)Vma)©

isfinitely generated, and if we define the GIT quotient X//Umax to be the projective
variety Proj(O (X)Yma) associated to the ring of invariants O (X)Yme then

X//Umax = Proj(OL (X)Vm) = (X x Spec(O(G)U™))) //G = Ximpi.  (8)

The proof in [14, Section 6] that (T*K)impl is homeomorphic to the canonical
affine completion

G/Unax = Spec(O(G)Um)

of G/Umax runsasfollows. First it is possible to reduce to the case that K is semi-
simple and simply connected, by regarding K as the quotient by a finite central
subgroup of Z(K) x [K, K], where Z(K) is the centre of K and [K, K] is the
universal cover of the commutator subgroup [K, K] of K.

Following [14, Section 6], if K isasemisimple, connected, and simply connected
compact group let A = ker(exp|¢) be the exponential lattice in t, and let A* =
Homy (A, Z) be the weight lattice in t*, so that A% = A* Nt} is the monoid of
dominant weights. For 4 € A% let V, be the irreducible G-module with highest
weight 1, and let

={w1,..., o}

be the set of fundamental weights, which forms a Z-basis of A* and a minimal
set of generators for A% . Recall that V;* = V,; is the irreducible G-module with
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highest weight 14, where: : t* — t* istheinvolution given by 14 = —wo4 and wg
denotesthe element of the Weyl group W of G such that woUmaxwg * = U isthe
unipotent radical of the Borel subgroup B°P of G whichis oppositeto B > U inthe
sense that B N B is the complexification Te of T and Umax N Ul is the identity
subgroup. We have an isomorphism of G-modules

oG = P vi= P Vi 9)

LeNT reNt

where G acts on itself on the left and Unax acts on G on the right. Note that T
normalises Uma and this isomorphism (9) becomes an isomorphism of G x Te-
modulesif we let T¢ act on V; with weight —/ so that it acts on V;* with weight 4
(see[12, Section 12]). Equivalently we have an isomorphism of G x Te-modules

oGV = @ v" eV}, (10)

reNY

where VfT) istheirreducible Tc-module with weight 4, and by [12, Theorem 12.9]
thisisomorphism extends to an isomorphism of G x G-modules

0G) = P VvieVv;. (12)
reNt

In particular, the algebra O(G)Ym is generated by its finite-dimensional vector

subspace
Pvi=Pviev.
well well

The inclusion of this finite-dimensional subspace into ©(G)Yma induces a closed
G x T¢-equivariant embedding of G/Uﬁ':;X = Spec(O(G)Ym) into the affine space

E=P Vo =P V) @ Vo,

well well

sending the identity coset Umax in G/Umax C G/Uffax toasum

ZDW

well

of highest-weight vectors v, € Vg, = (V,(HT))* ® V4. Under this embedding
G/Umax isidentified with G EYma where EYma is the subspace of E consisting of
vectors fixed by Unmax. We give E aflat Kahler structure wg viathe unique K x T-
invariant Hermitian inner product on E which satisfies ||, || = 1 for each w € TI.
Then by [14, Proposition 6.8] thereisa K x T-equivariantmap 7 : K x t§ — E
defined on % by
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r

1
F(1,2) = NG > @), (12)

j=1

wherea” = 2a/(a - o) and

S= {0‘1;~-~,ar}
is the set of simple roots corresponding to the fundamental weights {w1, ..., @y}
(so that w; .aJ-V = ¢gjj fori, j € {1,...,r}); moreover, F induces ahomeomorphism

from (T*K)impl t0 G/Umaxaﬁ whose restriction to each stratum ,u‘l(a)/[Kg, Ks]
of (T*K)impl isasymplectic isomorphism onto its image.

Remark 3.1. Let M be any compact Kahler manifold on which the complexified
torus T actsin such away that T preservesthe Kahler structure and has a moment
map ut : M — t*.In[1, Theorem 2] Atiyah shows

(a) that theimage 7 (Y) under the torus moment map x1 of theclosure Y in M of
the Tg-orbit Y = Tcm of any m € M is aconvex polytope P whose vertices are
theimages under x of the connected componentsof Y "M T, where MT isthe
T-fixed-point setin M,

(b) that the inverseimagein Y of each open face of P consists of asingle Te-orbit,
and

(c) that x7 induces a homeomorphismof Y/ T onto P.

In fact Atiyah's proof shows that if ) = exp(it) is the orbit of m € M under
the subgroup exp(i t) of T then 1 restricts to a homeomorphism from ) onto P,
and the inverse image in ) of each open face of P consists of a single exp(i t)-
orbit.

We can apply thisto the compactification M = P(C @ E) of the affine space E.
The moment map ﬂE . E — t* for the T-action on E with its chosen flat K&hler
structure is given (up to multiplication by a positive constant) by

D Uy > > lugPo
w w

when u, € V, for w e I, while the moment map y].IrD((C@E) P(Co® E) — t* for
the T-action on P(C & E) with the induced Fubini—Study Kahler structureis given
(up to multiplication by a positive constant) by

oy [V s
Z: u =
[ 2 w} 122+ X ent U 112

well

whenz € C and u, € V4 for w € II are not al zero. Comparing these two
moment maps on E (regarded as an open subset of P(C & E) in the usual way) we
see that the image under #$ of the closure ) in E of the exp(i t)-orbit V in E of the

vector >° 1 v corresponding to theidentity coset Umax in G/Umax iSthe conein
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t* spanned by the half-linesR_ @ for @w e II, which is of course the positive Weyl
chamber t7; . We also find that the restriction

uEly Y-t (13)

is @ homeomorphism, and it is easy to check that the map 7 : t} — E of [14,
Proposition 6.8] defined at (12) above can be identified with the composition of the
inverse (,u$|j))‘1 : ti — Y of (13) and the inclusion of ) in E. From this it
can be deduced that its K x T-equivariant extenson 7 : K x t§ — E inducesa
bijection from (T*K)imp onto the closure G/Umaxaff of GO perr Vo) = G/Umax
in E using

(i) the lwasawa decomposition

of G, which tells usthat G/Umax = K = F(K x t£), and
(i) Lemma 6.2 of [14], which shows that for each face o of t’ the stabiliser in K

of
> o

weEo

is[Ky, Ko].

Guillemin, Jeffrey, and Sjamaar also construct a K x T-equivariant desingulari-
sation (T*/Iz)i/mm for the universal imploded cross-section (T*K)imp = maﬁ
and a partial desingularisation )/<i}1/p| for Ximpi. In [14, Section 7] they show that if
the action of K on X has principal face theinterior (t%)° of t% (where the principal
face is the minimal open face o of t% such that 4 (X) Nt} iscontained in ¢), then
m can beidentified with the symplectic quotient of X x (T;R)/imm by theinduced
action of K (and thwserve without proof that the same is true for any principal

face). Moreover, (T*K)impl can be identified as a Hamiltonian K -manifold with the
homogeneous complex vector bundle

——— aff u
G/Umax =G XB E Y max (14)

over theflag manifold G/ B, wherethe restriction to G x EYma of the multiplication
map G x E — E induces abirational G-equivariant morphism

af ————aff .
PUmax - G/UmaX g G/Umax = (T K)impl CE.

Note that the fixed-point set EYma of Upax in E isthe closurein E of the Te-orbit
of > envw. If Ao € t* isregular dominant and e > O is sufficiently close to
0, and if wo is the Kahler form on G/B given by regarding G/B as the coadjoint
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K-orbit through € 1o, then pj _ we + q*wo isaKahler formon G/Umaxaﬁ, where
q: G xg E — G/B istheprojection.

It is also shown in [14, Section 7] that the partial desingularisation m can
adternatively be obtained from Ximp via a symplectic cut with respect to the
T-action and the polyhedral conee 1o+ 17, where z isthe principal faceof X, 1g € 7,
and € > Oissufficiently closeto O; that is, )% is the symplectic reduction at € 1g
for the diagonal T -action on the product of Xjmp and the symplectic toric manifold
associated to the polyhedron —7 (see[25, 26]).

3.2 Symplectic implosion for the unipotent radical of a parabolic
subgroup

Now suppose that U is the unipotent radical of a parabolic subgroup P of the
complex reductive group G. Recall (see, e.g., [4, 33]) that a parabolic subgroup
of G isa closed subgroup which contains some Borel subgroup, and its unipotent
radical isits unique maximal normal unipotent subgroup; thus by replacing P with
a suitable conjugate in G if necessary, we can assume that P contains the Borel
subgroup B of G and U < Upex. Then P = UL(P = U x L, where the
Levi subgroup L) of P contains the complex maximal torus T, of G, and we can
assume in addition that L(P) is the complexification of its intersection

KP =L®PnK=PnK

with K. For some subset Sp of the set S of simpleroots, P isthe unique parabolic
subgroup of G which contains B such that theroot space g_,, for a € Siscontained
inthe Lie agebraof P if and only if « € Sp. The Lie algebraof L) is generated
by theroot spaces g, and g_,, for o € Sp together with the Liealgebratc = t®r C
of the complexification T of T. In addition, the Lie algebraof U is

u= P . (15)

aeRt
9o ZLie(L(P)

where R isthe set of positive roots for G, whilethe Lie algebraof P is

p=tc® P o (16)
a€R(Sp)

where R(Sp) is the union of RT with the set of al roots which can be written
as sums of negatives of the smple roots in Sp. If we identify S with the set of
vertices of the Dynkin diagram of K then the Dynkin diagram of the semisimple part
QP = KPP K®] of K(P) jsthe subdiagram given by leaving out the vertices
which do not belong to Sp. We can decompose £(P) = LieK (P) and t as
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(P — [E(P), g(P)] D 5(") and t=tP @3“’),

where[¢(P), ¢(P)] isthe Lie agebraof QP = [K(P), K(P)], while t(P) isthe Lie
agebraof themaximal torus T® = T N[K ) K] of QP), and 3P istheLie
algebra of the centre Z(K (P)) of K(P). Asbefore let B% = T.Ughy be the Borel
subgroup of G, with unipotent radical Uk, which is oppositeto B in the sense that
BN B = Tc and Umax N Uneyx = {1}, and let: : t* — t* be the involution given
by 1A = —wo4, Where wo denotes the element of the Weyl group W of G such that
wOUmaxwo - Umax

By [13, Theorem 2.2] U is a Grosshans subgroup of G, and so, just as in the
case U = Upmax, thering of invariants O(G)V is finitely generated and G/U hasa
canonical affine completion

G/U < G/U™ = spec(0(G)Y) 17)

such that the complement of G/U in G/U " has codimension two.

Remark 3.2. When U = Uy the Iwasawa decomposition

enablesustoidentify G/Umax with K exp(i t). More generally we have an analogous
decomposition

G=K xr P=K xgr LOU =K xgr KP expie®)u
= K exp(i tP)u, (18)
which enables usto identify G/U with K exp(i ¢(P)).

Let X be acomplex projective variety on which G acts linearly with respect to
avery ampleline bundle L, and let @ be an associated K -invariant Kahler form on
X. Thenit follows by the Borel transfer theorem (seg, e.g., [5] Lemma4.1) that

OLX)Y = (OLX) ® 0(G)Y)®
isfinitely generated, and the associated projective variety
X//U = Proj(OL(X)")

isisomorphic to the GI T quotient (G/—Uaff x X)//G. Just asinthecase U = Umax,
if we have a suitable K-invariant Kahler form on G/—Uaff, then we will be able
to identify X//U with a symplectic quotient of G/—Uaff x X by K, and obtain a
symplectic description of X//U analogous to symplectic implosion, with G/—Uahc
playing the role of the universal imploded cross-section (T*K)impl. Asis observed
in [14, Section 6], the easiest case is that in which K is semisimple and simply
connected (for example when K = SU(r + 1)); for general compact connected K
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one can reduce to this case by considering the product K of the centre of K and
the universal cover of its commutator subgroup [K, K], and expressing K asK /Y,
where Y isafinite central subgroup of K.

Therefore, as in the previous subsection, let K be a semisimple, connected, and
simply connected compact group, let A = ker(exp |¢) be the exponential latticein t,
andlet A* = Homy (A, Z) bethe weight lattice in t*, so that A% = A* Nt} isthe
monoid of dominant weights. For 4 € A* let V; be the irreducible G-module with
highest weight 2, and let IT = {w1, ..., wr} be the set of fundamental weights,
forming a Z-basis of A* and a minimal set of generators for A* . Recall that we
have an isomorphism of G x G-modules

oG =P Vv.eviz=PVviev (19)

ISV LeNT
which restricts to an isomorphism of G x T.-modules

oG = P vVevi= PV, (20)

LeNT reNt

which is generated as an algebra by its finite-dimensional vector subspace

E* = @v;;,

well

giving usaclosed G x Tc-equivariant embedding of G/U?:;x = Spec(O(G)Ymax)
into the affine space E equipped with a flat Kahler structure. We have seen how
Guillemin, Jeffrey, and Sjamaar identify (T*K )impl with G/U o equipped with the
Kahler structure obtained from this embedding in E. To extend their construction to
G/Ua](f when U is the unipotent radical of a parabolic subgroup P > B as above,
wefirst observe from the proof of [13, Theorem 2.2] that O(G)Y isgenerated by any
finite-dimensional L(®-invariant (or equivalently K (P)-invariant) vector subspace
of
oG =P Vv.evizP Viev

reNt LeNY
which contains
EE=PVvi=PviPev.
well well

Here as above V") istheirreducible Te-module with weight w, while K (P = K N
L(P) = K N P isamaximal compact subgroup of the Levi subgroup L(®) = K (P)¢
of P, and K(P) actson O(G) vialeft multiplication on G.

Let E( be the dual of the smallest K (P)-invariant subspace (E(™)* of O(G)
containing E*; then (E(™))* isfixed pointwise by U, since K () normalisesU and
U is a subgroup of Umax, Which fixes E pointwise. The inclusion of (E(®)* in
O(G)Y < O(G) inducesa closed L(P) x G-equivariant embedding of G/U> =
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Spec(O(G)V) into the affine space E(P), whose projection to E induces the embed-
ding of G/U ﬁi;x described in the previous subsection.

The subspace (EP))* decomposes under the action of K x K (P asadirect sum
of irreducible K x K (P)-modules

E(P)) @ (V(P))

well

where (V7)* isthe smallest K x K (P)-invariant subspace of O(G) containing V% .
Asin[12, Section 12] we have

VP = v g vy,
where VK™ istheirreducible K (P)-module with highest weight @, so

well well

Moreover, |fu(P) |sthevector|nV(P) (VK(p))*®V repreaentmgthemcluson

of VK™ in V,, then the embedding of G/U < G/U%" in E® induced by the
inclusion of (E®)* in O(G)Y takestheidentity coset U to > _;;vir. Let

(P) (P)
Ve = @ e

AEN?,

be the decomposition of VK( " into wei ght spaces with weights 1 € t* under the

action of the maximal torus T of K (™. Then V" decomposesasaK x T-module
into asum of irreducible K x T-modules

VP = DV, @ (VA (22)

and o) =3, ofvp)ﬂ, where vflfj)/1 € Vp ® (Vu’jff))* represents the inclusion of
VK( "IN Vg In particular, vg% is a highest-weight vector for the action of K x
K(P) on VP,

Remark 3.3. The embedding of G/U < G/U°" in E(® induced by the inclusion
of (E(P)* in O(G)Y takes the identity coset to 3" . o). From the decompo-
sition G = K exp(i¢(P)U (see Remark 3.2 above) and the compactness of K it
follows that the closure G/U™" of the G-orbit of 3, _; o) in E( is given by

the K -sweep
G/u —«k (exp(i WPy > Dgp)

well
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of the closure in E(®) of the exp(i e(™)-orbit of 3" ;v Similarly the closure
in E(® (or equivalently in the linear subspace @, _; (VK'™)* @ VK™ of E(P)) of
the L®-orbitof 3" ;& (whichisafreeorbit sinceU N L = (1}) is given
by K P (exp(itP) > .y vi). Note alse that &) = (J, . ») Ad(K)t and so

expt®) = | J kexpitk™. (23)
keK (P)

Let Sp = {a1,...,arp)} € S={o1,...,ar} betheset of smplerootsfor the
root system of (K (P), T) with corresponding positive Weyl chamber

Cp={et i az0fordlae S =t @,

where 3(P) is the Lie algebra of the centre Z(K (P)) < T of K( and 7" is the
positive Weyl chamber for the semisimple part

Q(P) — [K(P), K(P)]

of K(P) with respect to the maximal torus T®® = T N [K®, K] of QP and
simple roots given by restricting Sp to T®). If w - @ = Ofor al a € Sp (or equi-
vaently if w = @; for j > r(P)) thenw e 3(P* and VX is one-dimensional;
in this situation Q™) acts trivially on VX and we have VK™ = VK" with
VKT = 0if 4 # o, and oK™ = oK' while oK = 0if 2 # w. Onthe
other hand, if j < r(P) then w = w; restricts to a fundamental weight for Q™)
and VK™ = vQ" istheirreducible QP -modulewith highest weight @ | e, on
which Z (K (P)) acts as scalar multiplication by T |7k Py

There is a unique K x K®)-invariant Hermitian inner product on E(®) =
D, o VT satisfying [[oiF), | = 1 for each w e T, which is obtained from
K-invariant Hermitian inner products on the irreducible K -modules V,, and their
restrictions to K (P)-invariant Hermitian inner products on the irreducible K (P)-

modules V™). Thisgives E(P aflat Kahler structurewhichis K x K ®-invariant.

Remark 3.4. Recall that

EP =P VP =P VE") ® V.

well well

where VK® < v, and the embedding of G/U < G/Ualff in E(P induced by
theinclusion of (E(P)* in O(G)Y takestheidentity coset U to > ;0% ), where
o) e VP = (VK Py @ v, representstheinclusion of VK in Vy,. Thus

> 0P e PETy vk cE®),

well well
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where@®,, .; (VK")*@V K™ isinvariant under the action of the subgroup K P x
K™ of K x K(P on E(P), and indeed isinvariant under the action of L(®) x L(P),
If we identify (VX™)* @ VK™ with End(VX"™) equipped with the Hermitian
structure

(A, B) = Trace(AB*)

in the standard way, then v " isidentified with the identity mapin End(vK™). 1f v
isany Hermitian vector space then the moment map for the action of the product of
unitary groups U (V) x U (V) on End(V) by left and right multiplication is given
(up to anonzero real scalar) by
A (i AA* T ATA)
(cf. [29, Section 3.3]). Thus the moment map for the action of K (P) x K () on
DV o™ = @ Enavs”)

well well

isgiven (up to multiplication by anonzero real scalar) by

S Ag > (”K(P)(Z iAwA;;),nK(P)(Z iA’,;Aw)), (24)

well well well

where 7K : W(Byen VK(P))* — (¢P)* isthe projection induced by theinclu-

w

sion of K (P asasubgroup of the unitary group U( @, <1y vg(”). In particular, if
g belongs to the complexification L™ of K and g, : VX — VK isthe

action of g on VK™ then

92 05 =D On

well well

and the moment map for the left K (P)-action sends thisto

2K® (Z igwg;) c P

well

Using the decomposition ¢P) = [¢(P)_ ¢(P)] @ 3P we can decompose 7K :

u(@ VK(P))* — (¢P)* as

well Yo
3
n_K(P) _ E[K(P)’K(P)] @nZ(K(P)) : u(@ Vg(P)) N [E(P), F(P)]*G%(P)*. (25)
well

Ifg=yzwithy e [LP, LP] = QP andz € Z(LP)) = Z(KP), then the
K (P)-moment map above sends gy, .y vt to
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[K® kP ; * Z(K(P)) ; *
g 2 oY |+ 2 izmzy,
1<j=<r(P) 1<j=r

c [E(P), ?(P)]* ® 5(P)*_

It follows by the arguments of [29, Section 3] (in particular Proposition 3.10) that
the T{P-orbitof 3" _;; o) is mapped diffeomorphically onto tP) by the moment
map
P TP ;
y Z Uz(y) =7 z 1Yo yz*Uj (26)
well 1<j=r(P)

for the action of T(P) on E(P), since its image in the projective space P(E(P)) is
mapped diffeomorphically by the associated moment map onto the convex hull of
the set {ww : w e I, w € WP}, where W(P) is the Weyl group of QP =
[K®) K™ (cf. Remark 3.1).

Now consider the moment map ,Lt-IF(P) for the restrictionto T of the K (P)-action
on E(®. Thisisgiven (up to multiplication by a positive constant) by

2
D g D gl
W, W,

when U ; € VX for o e Tl and 1 € A%, C A*. The embedding of G/U <
G/U™ in E® induced by the inclusion of (E())* in O(G)Y takes the coset of

teTctO
=]
2 TG

so the value taken by this moment map on the coset tU of t = tity € T¢, where
tp e TP andt, € Z(L(P) = Z(KP)), isgiven by

r(P)

Zu(m 210120 = [wy ()| ZZMam 2llog” 122

j=1

r
+ D w1, P, @)
j=r(P)+1

where the jth sum over 4 runs over all the weights of the irreducible K (®)-module
V,*;j(P) with highest weight @ ;. When we decompose t* as t(P* @ 3(P)* this has
component

lel ®@) 2GS 17w |z e in 3P
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and
r(P)

Z|w,(tz)| ZZM(tm 2oy 1P Alpey in e,

Definition 3.5. Let t¥ be the cone

(P)+
weWP)

in t*, where W(P) is the Weyl group of Q(P) = [K (), K (P)] (which is a subgroup
of the Wey! group W of K).

Lemma 3.6. The r&striction to the closure exp(it) > o vfyp) of the exp(i t)-orbit
in EP of 3 ;0" of the moment map xE™ for the action of T on E(®
is a homeomorphism onto the cone tp)+ in t*. Its inverse provides a continuous
injection
———aff
FP it > G/UT c EP (28)

such that yE(P) o F(P) istheidentity on £, . . Moreover, exp(it) 3, .y v isthe
union of finitely many exp(i t)-orbits, each of the form

FP@) =explity > o,
well,leAsNo

where ¢ is an open face of tjp) e

Proof. This follows by applying the results of [1] to the compactification P(C &
E(P)) of the affine space E(P), asin Remark 3.1, and observing that the convex hull

of the weights / of the T-action on the K (P-module VX is the convex hull of
{ww : w e WP}, and thus the convex hull of the half-linesR, /. for A € A, with

w € Il isthe cone tTP)+

Lemma 3.7 (cf. [29, Lemma 3.12]). The image of the closure Tc > . o) of

the Te-orbit in E® of 3 _ o under the K ®-moment map 7 : E(®) —
(eP)y* = ¢(P) js contained in t.

Proof. The orthogonal complement to ¢ in ¢P) is[¢(P), ], andif ¢ € tand &  ¢(P)
andt € T¢ then by Remark 3.4,

E(P) ( Z D(P)) &) = Z Trace(i [&, (twt?)

well well

= Z Trace(i¢[¢, twt:r]) =0

well

since (¢, txt%] = 0.
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Corollary 3.8. The restriction of the K (P-moment map xE” : E(P) s (¢(P)y* to

the closure
exp(i e(P)) Z o

well

of the exp(it)-orbit in E® of 3 _;0& is a homeomorphism from
exp(itP) Y, o& onto the closed subset

e = Ad (K Pty

of e(P*, Moreover, exp(i ¢P)) 3" _; v'F) is the union of finitely many exp(i ¢(P))-
orbits which correspond under this homeomor phism to the open faces of E(P) ¥

Proof. We have already observed that the restriction of the T-moment map uE(P)
E(P) — ¢* to the closure
explit) D oplin S o)

well

of the exp(it)-orbit of the image > . o,(UP ) of the identity coset U under the
embedding of G/U in E(P) is a homeomorphism from this closure onto the cone
t?PH—' Since yE(P) is the projection of ﬂE(P) onto t*, it follows immediately from
Lemma 3.7 above that the restriction of xE© : EP — ¢(P))* = ¢(P) 10 this
closure exp(it) > e ufy )isa homeomorphism onto the cone t(P) 4+ wWhen t* is
identified with t € ¢(P) via the restriction of the fixed invariant inner product on
t. Replacing the maximal torus T with kTk=! for any k € K(P), it follows that
the restriction of xE® : E(® — (e(P)* to the closure kexp(i k13 ;v
of the exp(i Ad(k)t)-orbit of theimage > ;v ( ) of the identity coset U under
the embedding of G/U in E(P) isa homeomorphlsm onto the cone Ad* (K)t(p | -

Putting these homeomorphisms together for k € K (), we get a homeomorphism
M from

Z = [(kN#P), x) € KP/NIP 5 EP) s x e kexpik—2 > ol

well

where N!P) is the normaliser of T in K, to

K (P) X tpyy = (RN, &) € KP/NP) s 6P1e e A (), , )
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which fitsinto a diagram

P
Z - K )XN{_P) t?PH

a Il (29)

expt®) Y, 05 = Uk Ad* (Kt , = 67

where the first horizontal map is the homeomorphism M and the second is u EC)

Since the image of « is dense and K (P) is compact, it follows that o is surjec-
tive. Moreover, f is surjective, and ﬁ(kN#P),f) = BK Nép),é’) if and only if
Ad*(k~1)¢ lies in an open face & of t, such that kk=1 e K!P, in which case
a(MAKNP), &) = a(M KNP, €)). Thus

luE(P) - exp(i t(P)) Z Dz(lf) N ?SFP)*

well

is a continuous bijection, which is a homeomorphism since K is compact and M is
a homeomorphism.

Theinverse of uE7 : exp(ie®) Y o — e

K (P)-equivariant map

gives us a continuous

FP P, G/ c P
extending (28) such that xE'” o F( is theidentity on €™, Thisin turn extends
to acontinuous K x K (P)-equivariant map

FP K x P 5 GuT (30)

which is surjective since G/U"ijf = K(exp(it®)> n vy by Remark 3.3.
Definition 3.9. If ¢ ¢ ¢7* = Ad“(KP)trp = Ad(KPHE let ¢ = Ad* (k)¢
withk € K(P and ¢ e t*, andlet o be the open face of ¢ containing &. Let oo(P)
be the open face of t, whose closureis

oo(P) = (¢ e t*:¢-a =0fordl a € Ry, \RP)},
where R and R(P) are the sets of rootsof K and K (P), and
Ryo ={a € R:¢-a =0foral ¢ € oo},

so that oo(P) is an open subset of the open face containing oo of the cone tfp) 4
Finally, let K (P) = kKgk™1, where K¢(P) = Kyo(p) is the stabiliser under the
adjoint action of K of any element of go(P).
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Notethat K (P) < K, forany ¢ e ¢7*.

Lemma 3.10 (cf. [14, Lemma 6.2]). Let 0 be an open face of t¥, , and let

(P)+
NG I S

well
reAd*(WPHwng
If ¢ € o then the stabiliser of o in K is [K: (P), K¢ (P)].

Proof. Recall that t{p), = U, ewe Ad*(w)t}, so there is an element wo of the
Weyl group WP of QP = [K (P, K (P)] suchthat Ad* (wo)¢ € t. and Ad* (wo)o
contains an open face ag of t} with oo an open subset of ¢. First assume that ¢ =
Ad* (wo)¢ liesin ag. Thenif w e I and w € WP) we have Ad*(w)w € & if and
only if Ad*(w)w liesin the linear subspace of t* spanned by IT N6 = I1 N &g, and
since ¢ € oy, this happensif and only if Kg < wKy w1, sothat

ﬂ wKyw ™t = Ke.
well
i=wweWP wng

As in the proof of [14, Lemma 6.2] we find that if w € WP, the stabiliser in
G = K¢ of [vfzf,)ww] € IP’((VU'§<P))* ® Vo) iswPy, w1, where P,, isthe parabolic
subgroup of G associated to @, and thus the stabiliser in K of u((,P) isthe conjugate

by wo of

ke N wKgyw t:A(g) =1foradlle A*Né
well
i=wweWP mng

={keKs:i(g)=1fordl 2 e A*Na} =[Ke, Ke] = [Ko, Kool (31)

In general, if & = Ad*(wo)¢ liesin t§ N Ad*(wo)o then thereis a unique open
face oo of . containing ¢. Let oo(P) beasin Definition 3.9; thens Nt = oo(P),
and so by the previous paragraph the stabiliser of vf,P) inK is

w0l Koo(P)» Kog(m]wg * = [Ke (P), K¢ (P)].

Thus we extend the definition of the imploded cross-section Ximpl to a K (P)-

K,K(P)

impl as follows.

imploded cross-section X

Definition 3.11. Let (X, w) be a symplectic manifold on which K acts with a
moment map ux : X — ¢£*. Asbeforelet

e = Ad (K, = Ad* (K Pt = Ad*(QP)er < elP (32)
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be the sweep of t*. under the coadjoint action of K (™) on ¢*, and let = (P) be the set
of open faces of £7%. If ¢ € #P)* let K (P) be defined as in Definition 3.9. The
K (P)-imploded cross-section of X is
. .
Xima = 1€~
where x ~g @) yif andonly if u(x) = u(y) =¢ € %SFP)* and x = xy for some
K € [K-(P), K-(P)].
The universal K (P)-imploded cross-section is the K (P)-imploded cross-section

(P)
(TR =K x e/~

for the cotangent bundle T*K = K x £* with respect to the K -action induced from
theright action of K on itself.

Theorem 3.12. Themap F(P) : K x ¢{7* — G/U™ of (30) inducesa K x K (P-
equivariant homeomor phism

(TR = K x 6P/~ o GTUY € EP),

. e . (P)* ~ . —aff (p)
Moreover, under this identification of K x €7/ = ) with G/U™ < E'", the
moment map for the action of K x K on E(®) is induced by the map (K x
e/ g — B x €P)* given by

K, &) = (Ad*(K) (), 0))-
Proof. By Lemma3.10, F(?) inducesacontinuousmap (T*K)iﬁ;;(m ~outc
E(P), whichissurjectivesinceG/U>" = K (exp(i ¢(P)) S e o)) by Remark 3.3.
Themap (K x £7%)/ a2 py— £ x EP)* given by

K, O) = (Ad*(K)(), Q)

is the composition of 7P : K x eP* - G/U™ with the restriction to
G/U™ < E® of the moment map «E® for the action of K x K™ on E(P.
Moreover, F(P) is continuousand surjective and restricts to ahomeomorphismfrom
expitP) Y oF) to €7* by Corollary 3.8. 1f 7P (ke, 1) = F P (ka, 02)

then it follows by applying xE” that (Ad* (k) (1), c1) = (Ad*(k2)(2), ¢2) and
thereforery = > and kik, * € Ky, = K. Thus

FP @, ) = k7L DFP ke, 1) = KL DFP k2, 02)
= (k{ ke, DFP(A, 22) = (ky o, DFP (L, 1),
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Sincey = ¢ € €7 = Ad*(KPHtrp ., we can write (1 = (2 = Ad* (ko) (),
where¢ € tfp), andko € K®P s

FP@, )= LkgHFPUL 1) = (ke kg HF (L, 1)
= (k; ko, DFP (1, 0).

By Lemma3.6, F(7)(1, ¢) liesintheexp(i t)-orbitof 3", ey ;e as s o), wheres

is the open face of t?P)+ containing ¢. Hence by Lemma 3.10, kl‘lkz €

[K:(P), K (P)], and thus #P) induces a continuous bijection (T*K)ifﬁ,fl(m N
G/U™ < E?. Since K iscompact and so the map (K x 87%) ) 2 py— B x B(P)*
givenby (k, &) — (Ad*(K)(¢), ¢)) is proper, this continuous bijection is a homeo-
morphism.

Remark3.13. 1f K® = T and ¢ € &7 then K. (P) = K, and 0 XkimpiT iS
the standard imploded cross-section Ximpi of [14]. On the other hand, if K(P) = K
then K-(P) is conjugateto T and [K-(P), K- (P)] istrivial for al ¢ e Ef)*, so
XKimpIK = T*K.

Of course G/—Uancf inheritsa K x K (P-invariant Kahler structure as a complex
subvariety of E(P). Thesubvariety G/U>" (whichisin general singular) is stratified
by the (finitely many) G-orbitsin G/U ™", and the K x K (P-invariant Kzhler struc-
tureon E(P) restrictsto a K x K (P)-invariant symplectic structure on each stratum,
which gives G/—Uaff a stratified symplectic structure. Under the homeomorphism
(T*K)KP . G0 of Theorem 3.12 these strata correspond to the locally

impl

closed subsets

K x Ad*(K(Phg _ K xo
= K(P) XKUQK(P) (W)

%K(P)
K xo
K s (50
KoK [Ks Py, Ko(p]

of (T*K)i*fn’g(m, where ¢ € X runs over the open faces of t%. So the homeo-

morphism (T*K)i*r(n’;(m — G/Ua[ff of Theorem 3.12 induces a stratified K x
K (P)-invariant symplectic structure on the universal K (P)-imploded cross-section

(T*K)K P Asin[14] theinduced symplectic structure on

impl
K xo
KPP « P) (—)
KoK [Ko(P), Ko(p)]
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can be described directly, and can be expressed in terms of the symplectic reduction
by the action of the subgroup [K, (p), K, (p)] Of K on alocally closed symplectic
submanifold of T*K (cf. [14, Section 2]).

Using this symplectic structure on (T*K)
corollary.

K,K(P)
impl

we obtain the following

Corollary 3.14. Let K act on a symplectic manifold X with moment map u : X —
— P

£*. Then the symplectic quotient of G/Ua[ff x X = (T*K)K’K( "% X by the diagonal

impl
- . . . . P
action of K can be identified via 7(P) with Xi*ﬁq’;f :

Remark 3.15. In particular, if X is a projective variety with a linear action of the

complexification G of K, then X/ can be identified with the GIT quotient of

G/Uaff x X by the diagonal action of G.

It followsfrom Corollary 3.14 that if (X, w) isany symplectic manifold on which

. P .
K actswith moment map x : X — ¢* then Xi*ﬁ;gf( " inherits a stratified K x K (P)-
invariant symplectic structure

-1
K,K(P) (o)
XimpI = |_| ~KP
g€EX

-1
_—1,4(P)%y0 (P) )
=pu HE U ] K XK“”K(P)([KU(P),KJ(W]) )

geEX
oA ()
with strata indexed by the set ¥ of open faces of t*, which are locally closed
symplectic submanifolds of X*:X” The induced action of K™ on xX:K™ pre-

3 : impl impl
serves this symplectic structure and has a moment map

LK KP) (P)s (P)x
Hxi}fﬁ;(P) . lepl — E+ - 4

inherited from the restriction of x to #—1(35:3))_

Remark 3.16. In order to identify G/U A \with (T* K)i'fn’;(m we made the assump-

tion that K is semisimple and ssimply connected. However, the construction of

Xi*fn’; ® makes sense whenever K is a compact connected Lie group with a Hamil-
tonian action on the symplectic manifold X, and as in [14] we can identify G/Uaff

with (T*K )i'fn"T(P) in thismore general situation by expressing K as the quotient of
the product of its centre Z(K) and the universal cover of [K, K] by afinite central
subgroup. We then get an identification of X KK ith the symplectic quotient of

impl
G/Uaff x X by K inthe general case.
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3.3 Wonderful compactifications, symplectic cuts, and partial
desingularisations

Recently, Paradan [29] introduced a generalisation of the technique of symplectic
cutting (originally dueto Lerman [25]) which isvalid for a (not necessarily abelian)
compact connected group K and is motivated by the wonderful compactifications of
De Concini and Procesi. He defines a K -adapted polytopein t* to be a W-invariant
Delzant polytope P in t* whose vertices are regular elements of the weight lattice
A*.1f {41, ..., AN} are the dominant weights lying in the union of all the closed
one-dimensional faces of P, thenthereisa G x G-equivariant embeddingof G = K¢

into
N
P (EB Vi® Vii)
i=1

associating to g € G its representation on EBiN:l V;;. The closure X Pk of the
image of G in this projective space is smooth and has moment map

1lk X Py = E X B
whoseimageis

1Rk (X)) = LA (kp)E, —Ad* (k2)2) : & € P ki kz € K.

The symplectic cut X(p’K) defined by Paradan of a symplectic manifold X under
a Hamiltonian K -action with respect to such a K -adapted polytope P is given by
the symplectic quotient of Xp k) x X by K, so that if X isacomplex projective
variety with alinear K -action then X p | isthe GIT quotient

Xpx) =X Pk, x X)//G,

where G = K¢. Then X(p’K) inherits a Hamiltonian K -action with moment map
1P Xp.x, = ¢ whoseimageis

W PO Xep ) = 1(X) N AT (K)(P).

Moreover, if Up = Ad*(K)(P°), where P° isthe interior of P, then (u XProy-1
(Up) isan open dense subset of XP.x) whichis K -equivariantly diffeomorphicto
the open subset ;rl(Up) of X. Thisdiffeomorphism is aquasisymplectomorphism
in the sense that thereis ahomotopy of symplectic formstaking the symplectic form
on (u X(P,K>)—1(Up) to the pullback of the symplectic formon x~(Up).

Recall from [14, Section 7] that if P, isthe polyhedral cone —(e 4o + t} ), where
Lo isagenericelement of 4 (X)Nt} and0 < e « 1, thentheimploded cross-section
Ximpl = XkimpiT has a partial desingularisation
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)?i;‘l/pl = (Ximpl)(’PE’T),

which is the symplectic reduction of X(_tLT) X Ximpl @ €Ag. Similarly, just as
in [14], if P > B is a parabolic subgroup of G = K with maxima compact
subgroup K (P) = K NP and unipotent radical U, then we can construct a K x K (P)-

K,K(P)

equivariant desingularisation (T*K )impl for the universal imploded cross-section

(T*K)fSK"™" = G7U™" and apartial desingularisation XK' for XK', which

—_—

can beidentified with the symplectic quotient of X x (T*K)K’K(P) by the induced

impl
action of K. Moreover, (T*K)i*fﬁgm) can beidentified asaHamiltonian K -manifold
with
—— aff T ~— (P T ~— (P
G/U =G xp (L(P) > uf;’)) =K xy® (L(P) > u§;’>), (34)
well well

whereL(® 3" viP) istheclosurein E(P) (or equivalently in thelinear subspace
D, en (VK(P))*®VI§(P) of E(P) of the L (P)-orbit (or equivalently the P-orbit) of

w

> en vy, and therestrictionto G x L(® S v'P) of the muiltiplication map
G x E(® — E®) induces abirational G-equivariant morphism

—— aff .
pu:G/U" - G/U™ = (TK)IK" < EP.

It follows from Theorem 3.5 of [29] that LS oF) is a nonsingular
subvariety of

@ (Vg(l’))*@)\/g(r“) EP((CEB @ (Vu}f(P))*®V$(P)).

well well

If 20 € u(X)Nnt: N3P*isgenericand e > Oissufficiently closeto 0, and if we is
the Kahler form on G/ P given by regarding G/ P as the coadjoint K -orbit through

——aff
€20, then piywee) + qioc isaKahlerfoomon G/U, wheregp : G xp E® —
G/P isthe projection.

. . N K.K® . . K.K®P)
Thepartial desingularisation X; )~ can alternatively be obtained from X; -

via a symplectic cut following Paradan [29]. Let W(P) be the Weyl group of the
compact subgroup K (P) of K ; then we have an identification

K,K(P) K,K(P)
Ximpl = (Ximpl )(PE,K(P))’ (3%

where the cut is with respect to the K (P)-action and the polyhedral cone P, =
—(€e20 + t{p),)- If we wish we can cut with respect to a suitable WP invariant
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Delzant polytope P, in this cone which is large enough that its complement does
not meet the compact subset « (X), but then the identification (35) is not quite sym-
plectic according to Paradan’s construction; asin Remark 3.1 we haveto distinguish
between the flat Kahler metric on

B V") Vs < e

well

and the Fubini—Study metric on

D vET) v < P(C@ P vy ®V§(P)) cP(C e EP),

well well

4 Nonreductive geometric invariant theory

Thelast section discussed a generalisation of symplecticimplosion whichis closely
related to a Gl T-like quotient construction for alinear action of the unipotent radical
U of aparabolic subgroup P of acomplex reductive group G on a complex variety
X. This section will recall from [7] aversion of GIT for nonreductive group actions
and then relate it to symplectic implosion.

4.1 Background

Let H be an affine algebraic group, with unipotent radical U (that is, U is the
unique maximal normal unipotent subgroup of H), acting linearly on a complex
projectivevariety X with respect to an amplelinebundle L. If we wish to generalise
Mumford’'s GIT to this nonreductive situation, the first problem to be faced is that
thering of invariants
OLEOM = P HAX, LEY"
k>0

is not necessarily finitely generated as a graded complex agebra, so that
Proj(@L(X)H) is not well defined as a projective variety. Note, however, that in
the case considered in Section 3 in which the unipotent radical U of a parabolic
subgroup of a reductive group G acts linearly on X and the linear action extends
to G, then the ring of invariants is finitely generated. Even when OL(X)M is not
finitely generated Proj OL )M ) does make sense as ascheme, and the inclusion of
OL(X)H in OL(X) glV$usara|ond map of schemes g from X to Proj (OL(X) ),
whose image in PrOJ(OL(X) ) is congtructible (that is, a finite union of locally
closed subschemes).

We will consider only the case that H = U is unipotent, since H /U is always
reductive and classical GIT allows us to deal with quotients by reductive groups.
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A more leisurely introduction to nonreductive GIT and details and proofs of the
results quoted below can be found in [7].

Definition 4.1 (See [7]). Let | = Um>OH°(X, L®MVY and for f e | let X be
the U-invariant affine open subset of X where f does not vanish, with O(Xy) its
coordinatering. The (finitely generated) semistable set of X is

XS = XS0= | ] X
felfo

where 119 consists of f e | such that O(Xy)Y is finitely generated. The set of
(locally trivial) stable pointsis

X|tS U Xf,

fellts

where 'S isthe set of f e | such that O(X¢)Y is finitely generated, and q :
Xt —> Spec(O(X¢)Y) isalocaly trivial geometric quotient. The set of naively
semistable points of X isthe domain of definition

$:UXf

fel

of therational map ¢, and the set of naively stable pointsof X is

=UXf,

felns

where | consists of those f e | such that O(X¢)V is finitely generated, and
q: X§ — Spec(O(X5)Y) isageometric quotient.

The enveloped quotient of XS isq : X — q(X), where q(X%) is a dense
constructible subset (but not necessarily a subvariety) of the envel oping quotient

X/yu= |J Spec(OX1)")

felssfg
of X5,

Lemma4.2 ([7, 4.2.9 and 4.2.10]). The enveloping quotient X//U is a quasi-
projective variety, and if OL(X)VY is finitely generated then it is the projective
variety Proj(O (X)Y).

Let G be acomplex reductive group with U as a closed subgroup, and let G xy
X denote the quotient of G x X by the free action of U defined by h(g, x) =
(gh~1, hx), which is a quasiprojective variety by [30, Theorem 4.19]. There is an
induced G-actionon G xy X given by left multiplication of G onitself. If the action
of U on X extendsto an action of G, thereis an isomorphism of G-varieties
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Gxy X=(G/U)x X (36)

given by [g, x] — (gH, gx). When U acts linearly on X with respect to a very
ample line bundle L inducing an embedding of X in P", and G is a subgroup of
SL(n+ 1; C), thenthereisavery ample G-linearisation (which we will also denote
by L) on G xy X viathe embedding

Gxy X GxyP"=(G/U) x P",

and using the trivial bundle on the variety G/U, which is quasiaffine by [12,
Corollary 2.8]. For large enough m we can choose a G-equivariant embedding of
G/U in C™M with alinear G-action to get a G-equivariant embedding of G xy X
inC™ x P" ¢ PM™ x P" ¢ P"™MN and the G-invariants on G xy X are
given by

P HOG xuy X, L¥ME = PHHOX, LEMY = OL(X)V. (37)

m>0 m>0

Definition 4.3 ([7, Section 5.2]). A finite separating set of invariants for the linear
action of U on X isacollection of invariant sections { f1, ..., f,} of positive tensor
powers of L such that if x, y are any two points of X then f(x) = f(y) for al
invariant sections f of L® and al k > 0if and only if

fix) = fi(y) Vi=1,...,n

If G is any reductive group containing U, a finite separating set S of invariant
sections of positive tensor powers of L is afinite fully separating set of invariants
for the linear U-action on X if

(i) forevery x € XSthereexists f € Swith associated G-invariant F over G xy X
(under theisomorphism (37)) suchthat X € (Gxy X)g and (G xy X)f isaffine;
and

(ii) for every x € XS thereexists f € Ssuchthat x € X and Sisagenerating set
for O(X)Y.

By [7, Remark 5.2.3] this definition isin fact independent of the choice of G.

A G-equivariant projective completion G xy X of G xy X, together with
a G-linearisation with respect to a line bundle L which restricts to the given
U-linearisation on X, is a reductive envelope of the linear U-action on X if every
U-invariant f in somefinite fully separating set of invariants S for the U -action on
X extends to a G-invariant section of a tensor power of L over G xy X. If L is
ampleon (G xy X) it isan ample reductive envel ope.

There always exists an ample reductive envelope for any linear U-action on a
projective variety X, at least if we replace the line bundle L with a suitable positive
tensor power of itself (see[7, Proposition 5.2.8]).
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Definition 4.4. Let X be a projective variety with alinear U-action and a reductive
envelope G xy X. Leti : X = G xy Xand j : G xy X < G xy X bethe
inclusions, and G xy X and G xy X the stable and semistable sets for the linear
G-actionon G xy X. Then the set of completely stable points of X with respect to
the reductive envelopeis

X3 = (joi) LG xu X)
and the set of completely semistable pointsis
X® = (joi) LG xy XO).

Theorem 4.5 ([7, 5.3.1]). Let X be a normal projective variety with a linear
U-action, for U a connected unipotent group, and let (G xy X, L) be any ample
reductive envelope. Then there is a diagram

X§ C XS C Xns - XSS C XSS — xnss
P ! ! !
X3/U € XS/U € X"S/U € X//U € G xy X//G

<«

where all the inclusions are open and the first three vertical maps provide quasi-
projective geometric quotients of the stable sets XS, XS, and X" by the action
of U. The fourth vertical map is the enveloping quotient g : X — X//U
defined in Definition 4.1 and X//U is an open subvariety of the projective variety
G xy X//G.

Note, however, that even when O (X)V isfinitely generated so that
X//U = Proj(OL (X)) = G'xu X//G,

themapsq : X3 — X//U and X — G xy X//G are not necessarily surjective,
and their images arein general only constructible subsets and not subvarieties.

4.2 Some examples of reductive envelopes

Now let us assume that U = (C™)", where C™ is the additive group of complex
numbersandr isany positive integer.

Remark 4.6. Each affine algebraic group H over C has a unipotent radical U, which
is the unique maximal normal unipotent subgroup of H and has a reductive quo-
tient group R = H/U (see, eqg., [4, 33] for more details). Given alinear action of
H on a projective variety X with respect to an ample line bundle L, we can hope
to quotient first by the action of U, and then by the induced action of the reduc-
tive group H /U, provided that the unipotent quotient (or compactified quotient) is
sufficiently canonical to inherit an induced linear action of H /U. For example, if
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the algebraof invariants OL(X)V isfi nitely generated then the enveloping quotient
X/U = Proj(@L(X)U) is a projective variety with an induced linear action of
H /U on an induced ample line bundle on X//U, and then classical GIT allows us
to construct X//H = Proj(O (X)H) asaGIT quotient (X//U)//(H/U) of X//U
by the reductive group H/U; even when OL(X)V is not finitely generated, the
sameis true for Proj (O (X)Y,), where m is a sufficiently large positive integer and
OL(X)Y is the subalgebra of O (X)! generated by invariant sections of L%/ for
1 < j < m. Moreover, the unipotent radical U has canonical sequences of normal
subgroups such that each successive subquotient is isomorphic to (C™)" for some
r (for example by taking the ascending or descending central series of U), so we
can hope to quotient successively by unipotent groups of the form (C*)", and then
finally by the reductive group R. Thereforethe case U = (C™)" for somer isless
special than it might appear at first sight.

Note that when U = (C*)" we have Aut(U) = GL(r; C); let
U=C*xU

be the semidirect product, where C* is the centre of Aut(U). The centre of U is
finite and meets U in thetrivial subgroup, so U isisomorphic to a closed subgroup
of the reductive group G = SL(C & u) viatheinclusion

U< U — Aut(U) > GL(LieJ) = GL(C & u),

where u is the Lie algebra of U and U is identified with its group of inner
automorphisms. Then U is the unipotent radical of a parabolic subgroup P of
G = SL(r + 1; C), where P is the stabiliser of the r-dimensional linear sub-
space u of C & u, so we are in the situation of Section 3.2 above. The parabolic
P=UXGL(r;C)inG = SL(r + 1; C) has Levi subgroup GL(r; C) embedded

inSL(r + 1; C), since
g 0
= .
g 0 detg?!

G/U Z{a e (CHY* ®@C'*a: C" — C*isinjective)

Note that

with the natural G-action ga. = g o a. Since the injective linear maps from C" to
C"+1 form an open subset in the affine space (C")* @ C"+1, whose complement
has codimension two, we see directly in this case that U = (C*)" is a Grosshans
subgroup of G = SL(r + 1; C) and hence that

OG)Y = O(G/U) = O(C"* @ C't1)
isfinitely generated [12] with

G/UM = speco(G)Y = (C)* @ C L.
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Now suppose that the linear action of U = (C*)" on X extendsto alinear action
of G = SL(r + 1; C), giving us an identification of G-spaces

G xuy X = (G/U) x X

as at (36) via [g,x] — (gH, gx). Then (as in the Borel transfer theorem [5,
Lemma4.1])

OL(X)Y = OL(G xu X)® =[0(G/U) ® OL(X)]® (38)
isfinitely generated [13] and we have a reductive envelope
G xy X=PCa® ((CH*@C ) x X

with
G xu X//G = X//U = Proj(OL(X)Y),

where we choose for our linearisation on G xy X theline bundle
N
L( ) = O]}D(C@((Cr)*®cr+l))(N) ® L

with N > O sufficiently large (see [23, Section 4.1]). This reductive envelope is
ample and so satisfies Theorem 4.5; in addition, by [23, Section 4.1(6)] we have

X°=X5 and X¥=X% (39
Thuswe have adiagram

XS < XS

\ \

XS/U € X//U = G xu X//G

but the enveloping quotient map g : X — X//U = G xy X//G is not neces-
sarily surjective, so in contrast to the reductive situation we cannot describe X //U
topologically as the quotient of X by an equivalence relation.

In order to describe X//U topologically (and geometrically) it is useful to
consider the linear action of the Levi subgroup GL(r; C) < P on the closure
PxuX =PCa(CH*QC) x Xof Pxy X=LP xXinGxy X =
P(C @ ((C")* ® C"*t1)) x X. We have

G xu X=G xp (P xy X),

where P/U = GL(r; C) and G/P = P' is projective, so G xp (P xy X) isa
projective completion of G xy X. Theinduced linearisation of the action of G on
G xp (P xy X) isnotample: if weregard G xp (P xy X) asasubvariety in the
obviousway of
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G xp (G xu X) =G xp (FC® (C)H* @ C™h) x X)
= (G/P) x P(C® ((C")* @ C"1y) x X
P x P(Ca (CH*®Ct) x X

then the birational morphism

Gxp(Pxy X)»> Gxy XZPCah® (CH*RC")) x X
givenby [g, y] — gy extendsto the projection
P' x P(C @ ((C)* ®C)) x X > P(Ca ((C)* @ C™h) x X

and the induced line bundle is the restriction to G xp (P xy X) of
OP(C@((@)*®O+1D(N) ® L. However, if € € Q N (0, 00), the tensor product

Lo = L ) of thisline bundle with the pullback viathe morphism
Gxp(Pxy X)— G/P=P

of the fractional line bundle Opr (¢) provides an ample fractional linearisation for
the action of G on G xp (P xy X) with, when ¢ is sufficiently small, an induced
surjective birational morphism

X//U =ae G xp (P xy X)//;,.G—> Gxu X//G=X//U,  (40)
which is an isomorphism over
(G xy X3)/G = X5/U = XS/U.

Thislinebundle L, can bethought of asthe bundle G x P(Opce(Cryecr))(N)®L)
on G xp (P xy X), where now the P-action on Opce((cry+ecry)(N) ® L isno
longer the restriction of the G-action on theline bundle Opca(crygor+1)) (N) ® L
but has been twisted by ¢ timesthe character of P which restricts to the determinant
onGL(r; C).

Since GL(r; C) = P/U has a central one-parameter subgroup C*, we can
modify the linearisation of any linear actions of P and GL(r; C) by multiplying
by € times the standard character det of GL(r; C) for any € € Q. By the Hilbert—
Mumford criteria (Proposition 2.2 above) we have

ss,GL(r;C),e

Pxy X CPxy X SO

CPxuyX (41)

ss,GL(r;C),e ss,SL(r;C)

where P xy X and P xy X (independent of ¢) denote the
GL(r; C)-semistable and SL(r; C)-semistable sets of P xy X after twisting the
linearisation by e times the character det of GL(r; C); this character is of course
trivial on SL(r; C). It turnsout (see [23, Section 4.1(11)]) that if € is chosen appro-
priately (closeto —N/2, where N isasin the choice of linearisation above) then
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mS&GL(r;C),E — (P(Ca (((Cr)* ® (Cr)) « X)SS,GL(I';(C),E — GL(r; (C) x X,
(42)
and so quotienting we get
P xu X//fm GL(r;C) = X. (43)
—N/2

Therefore
X =get P xy X//SL(r;C) = (P(C& (C)*®C")) x X)//SL(r;C)  (44)

is a projective variety with a linear action of C* = GL(r; C)/SL(r; C), which we
can twist by e times the standard character of C*, such that whene = —N/2 we get

X //-Nj2C* = X, (45)

while for ¢ > 0 sufficiently smal we have a surjection from an open
subset (X' //.C*)SS of X' //.C* onto X///\U and hence onto X//U (see[23, Proposi-
tion 4.6]). More precisdly, let (X//.C*)® be the open subset P xy X/
GL(r; C) of

Pxy X0 6L 0) = Fxy X9 5L €y

— XS,S/(C* g X//Ec*

andlet Y€ = 7 1((X//cC*)S) and X3¢ = 7~ 1((X //.C*)%), wherer ; XSS€ —
X //C* isthe quotient map, so that

(X//CH® = a8 /C*. (46)

In this construction we can replace the compactification P(C & ((C")* @ C")) of
GL (r; C) by itswonderful compactification P(C & ((C")* ® C)) given by blowing
up P(C o ((C")*® C")) = {[z : (z)j j—,]} dlong the (proper transforms of the)
subvarieties defined by

z=0 and rank(zj)<¢

fore =0,1,...,r and by
rank(zij) < ¢

for ¢ = 0,1,...,r — 1 [17]. The action of SL(r; C) on P(C & (C")* ® C')),
linearised with respect to a small perturbation of the pullback of Opcg(cryecry)
(1), satisfies

P(Co® (C) ®C)S=PCs (C)* @)
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and o
P(C® ((CT)* ® C"))//SL(r; C) = P,

If wetake P xy X tobe
P(C ® ((C)* ® C")) x X
instead of P(C @ ((C")* ® C")) x X, and define
X =P(Ca (T ®C)) x X//SL(r; C), (47)

then the properties of X’ given above are satisfied by X', and if X isnonsingular then

—~—

X//U =det G xp (P(C&® ((C)* ®C)) x X)//G

isapartial desingularisation of X//U and a compactification of XS/U. Indeed, it is
shown in [23, Proposition 4.6] (combined with [23, Remark 4.8]) that if ¢ > Ois

sufficiently small then the natural rational map from X' //.C* to X//U restricts to
surjective morphisms

(X//cCHS > X//U — X//U

and } )
(z’\f//e(C*)S — XS/U.

Using the theory of variation of GIT [6, 32, 34], we can relate the quotient X/ C*
to X //n/2C* = X viaasequence of flips which occur as walls are crossed between
the linearisations corresponding to € and to —N/2. Thus we have a diagram

(X//cCH® S (X)/CH® C X/ CF « — = X =X//_nj2C*

\: 2 flips
X$/U < XU (48)
I J

Xs/U < X//U
where the vertical maps are all surjective, and theinclusions are al open.

Remark 4.7. The construction of a reductive envelope described here is valid only
if the action of U = (C™)" on X extends to an action of G = SL(C @ u) (which
is a rather special situation when the ring of invariants O (X)V is always finitely
generated). Moreover, at least a priori this construction may depend on the choice
of the extension of the U-action to a G-action, although G xy X//G = X//U =
Proj (@L(X)U) depends only on the linearisation of the U-action on X. However,
it is shown in [23] that we can associate to a linear U-action on X a family of
projective varieties Yy, (one for every sufficiently large positive integer m), each of
which contains X and has an action of G = SL(C & u) and a G-linearisation on an
ampleline bundle Ly,,, which restricts to the given linearisation of the U -action on
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X and is such that every U-invariant in a finite fully separating set of U -invariants
on X extendsto aU-invariant on Yy,. Then we can embed X in the G-variety

P(C® ((C)* ® C"Y) x Ym

as {1} x X, where: € (C")* ® C'*! < P(Ca (CH*®C'*1)) is the
standard embedding of C" in C'*1. The closure of GX = G xy X in
P(C® ((C")* ® C"*1)) x Yy will provide us with a reductive envelope G xy X
(which is, however, not necessarily ample), and we can study the closures of the
images of X5/U in Yn//U = Ymn//U and its partial desingularisation Yy //U
constructed as above.

4.3 Symplectic implosion for U = (C*)" < SL(r + 1; C) actions

Let X be acomplex projective variety on which the complexification G = SL(r +
1, C) of K = SU(r + 1) acts linearly with respect to a very ample line bundle L,
and let U = (C™)" bethe unipotent radical of the parabolic P = GL(r; C)U asin
the previous subsection. As before, let T be the maximal torus of K consisting of
the diagonal matricesin K, and let B be the upper triangular Borel subgroup of G.
In the notation of Section 3.2 wehave L(P) = GL(r; C) and K(P) = U(r). We can
identify the Lie algebrat(® = u(r) of K (P) with the product [¢(P), ¢(P)] @ 3(P) of
the Liealgebrasof its semisimplepart Q(P) = [K(P), K (P)] = SU(r) and its centre
Z(K(P)) = sl If weidentify t* with

=@...a+DeR™ a4+ +54=0
in the usual way so that

== .G et 1 aa=0> > Gl

then
tpy == ...+ et 1 =guaforj=1,...r} (49)

and
== g et = =4l (50)
Moreover, ESFP)* can be identified with the set of skew-Hermitian matrices in

su(r + 1)* of theform
& 0
= 51
= (5 i) (5)

where ¢ isaskew-Hermitianr x r matrix with all itseigenvalues of theformi A with
A€ Rand 1 > Arq1. If al the eigenvaluesi 4 of & satisfy 4 > Ar 41 then K-(P)
isconjugateto T and [K (P), K (P)] istrivial. In general, Ad*(K (P)¢ containsa
matrix of the form
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(g iiri)llj) 52

forsome j € {0,1,...,r}, where¢ isaskew-Hermitian (r — j) x (r — j) matrix
with &l its eigenvalues of theformil withA e Rand A > Ar4q,and | isthe j x |
identity matrix. Then K (P) is conjugatein K (P) = U(r) to the product of atorus
and the unitary group U (j) embedded in K = SU(r + 1) as

l—j O 0
A—| 0 A 0 ,
0 0 detA?

and the face ¢ of ESFP)* to which ¢ belongs is determined by j and the partition
m € I, _j givenby theeigenvaluesi 4 of ¢ with 1 > A; 1. Thus[K(P), K (P)] =
SU(j) and the universal K (P)-imploded cross-section is

r
K,K(P) (P) KPP
TR = || (K x €777/ ~

= (K x tP"° |_| | ] (K x ey =K

j=1rmellj
= (K x e%)° 1 |_| | | U(r)x .
= (U x-xU(x) xU())

x (K x €5 )/8U())). (53)

Here E(P)* consistsof all ¢ € su(r + 1)* of the form (51) with ¢ a skew-Hermitian
rxr matnx with all its eigenvalues of theformil with1 € Rand A > 4,41 and

exactly j of its eigenvalues equal to i A1, and E(P)* consists of al ¢ e E(P]* of
the form (51) such that the partition of r — | determl ned by the eigenvalues of ¢ of

the formi A with /1 > Ar41 isw. Moreover, if (k1, ¢1) and (kz, ¢2) liein K x E(P)*
then (kq, (1) ~ ~K® (ks 2) if and only if thereissomex € K (®) such that

o )
=250 il

and x tkiky e € [Ko(P), Ko (P)] = SU(j). Thus (T*K)
/U™ = (€)@ C 1 via

K,K(P

impl 1S isomorphic to

(k, &) = ko F(0),
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whereif ¢ isat (51) then F(¢) : C" — C" < C' L isthelinear map represented by
theuniquer xr Hermitian positive definite matrix o satisfyingia*a = & —irq1lr.

Let w be a K-invariant Kahler form on X, given in some choice of coordinates
by the Fubini—Study form on the projective space into which the very ample line
bundle L embeds X. Then we know that

OLX)Y = (OLX) ® 0(G)Y)®
isfinitely generated, and the associated projective variety
X//U = Proj(OL(X)")

is isomorphic to the GIT quotient (G/Uaﬁ x X)// G, which as in Section 3.2 can

be identified with a symplectic quotient of G/U>" x X by K, and thus with the
K (P)-imploded cross-section

®)
XHH _1(?(P)*)/ R (P)

impl

of X, wherex ~¢®) yifandonlyif u(x) = u(y) =¢ € E(P)*

somex € [K(P), K- (P)]. Equivalently

and x = xy for

(P) _ _ P
Xllfng 1((E(P)*) ) U |_| L l(E(P)*)/ %K
j=1

r

] (P)*yo

=w @MU L VOX o
j=la=(m1,....m¢)€ll]

x (u 2T e /suG). (54)

since [K; (P), K. (P)] = SU())if ¢ € e

The desingularisation (T*K)-K KKK of (T* K)-K’K(P) isgiven by

impl impl

(T*K)-K’K(P) _ (K % ES_P)*’S)/ %5@), (55)

impl

where s(f)*f = Ad“(KP)(edo + tfp,) for 0 < € < 1land ig =
diag(1, 1,. r) € thp), N3P, andif (ki ¢1) and (ka, ¢2) liein K x ¢,
then (kq, {1) ~K " (ko, 7) if and only if thereissomex € K (P = U(r) such that

eme(§ )
== 0 idrial]
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and K_lklk_llc lies in the maximal torus Tj of [K-(P), Ku(P)] = SU(j) which

() P) .
K,K fXKK

impl impl isthe

is its intersection with T. The partial desingularisation X:

symplectic quotient of (T*K)Imf( "% X by the diagonal action of K ; asastratified
symplectic space, it is given by

—_—

K K(P) —1 (P
Xirmpl (79 u |_| LI UOX g cextmoxu)

j=lr=(x1,....m¢)€ll]

x (uMeio+ ), NED/T)),

and it can also be identified with the partial desingularisation X//U described in
Section 4.2.

Example4.8. Let U = C™ act linearly on a projective space P", and suppose that
coordinates have been chosen so that the natural generator of Lie(C*) = C has
Jordan normal form with blocksof sizesky + 1, . . ., ks + 1, where Z?zl(kj +1) =
n+ 1. The C* action extendsto an action of G = SL(2; C) by identifying C* with
the group of upper triangular matrices

Lay secl<sec
I(o 1)'ae ]— &0

and C™* with @$_; Sym"i (C?), where Sym¥(C?) is the kth symmetric power of
the standard representation C2 of G = SL(2; C). We have

G/CT = C?\{0} c C?> c P> =G/Ct
and thus P" //C* isthe GIT quotient Proj(C[Xo, - . ., Xa]€7) = (P2 x P")//G with
respect to the linearisation Op2(N) ® Opn(1) onP? x P" for N asufficiently large
positive integer. Since (P2 = C? and N islarge, we have
P? x PMYSC < C? x P" = (G x¢+ PM) U ({0} x PM),
and if semistability implies stability then
P"//Ct = P")*Y /Ct U ({0} x P")//SL(2; C).

In this example the parabolic subgroup P of G = SL(2; C) isits standard (upper
triangular) Borel subgroup with B/C+ = C* = P! and

B xc+ PN =P x P,

while G xg B/C+ = G xp P! is the blowup of P? at the origin 0 € C? C P2,
Similarly G xg (B x¢+ P") istheblowup of G x¢+ PN = P2 x P" along {0} x P",
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and its quotient % isthe blowup of P"//C™T aong its“boundary”
P"//SL(2; ©) = ({0} x P")//SL(2; C) < (P* x P")//SL(2; C) = P"//C*.

From the point of view of symplectic geometry we have

i ()
su ~# @ou

1(0)
UR)’

P//CF = (P")impl = 1 H(£)°) U

where t} isidentified with (0, o) in the usual way, and

1 e)
Sl

PN //C+ 2 (PN = s~ (e, 00) L

for0 < e « 1.
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Quantization of g-Hamiltonian SU(2)-spaces

Eckhard Meinrenken

Dedicated to Hans Duistermaat on the occasion of his 65th
birthday

Abstract We will explain how to define the quantization of g-Hamiltonian SU(2)-
spaces as push-forwards in twisted equivariant K-homology, and prove the
“guantization commutes with reduction” theorem for this setting. As applications,
we show how the Verlinde formulas for flat SU(2)- or SO(3)-bundles are obtained
vialocalization in twisted K -homology.

Key words: Moment maps, moduli spaces, twisted K -theory

Mathematics Subject Classification (2010): 53D30, 19L50

1 Introduction

The theory of g-Hamiltonian G-spaces was introduced ten years ago in the paper
Lie group valued moment maps [1]. The motivation was to treat Hamiltonian loop
group actions with proper moment maps in a purely finite-dimensional framework,
obtaining for instance a finite-dimensional construction of the moduli space of flat
G-bundles over a surface. Many of the standard constructions for ordinary Hamil-
tonian group actions on symplectic manifolds carried over to the new setting, but
often with nontrivia “twists” For example, all g-Hamiltonian G-spaces M carry a
natural volume form [5], which may be viewed informally as a push-forward of the
(ill-defined) Liouvilleform on the associated infinite-dimensional loop group space.
Thisvolumeform admitsan equivariant extension (but for anonstandard equivariant
cohomology theory) [3], and the total volume may be computed by localization
techniques, just asin the usual Duistermaat—Heckman theory [18].
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One problem that had remained open until recently is how to define a “quanti-
zation” of g-Hamiltonian spaces. In contrast to the Hamiltonian theory, the 2-form
on a g-Hamiltonian space is usually degenerate. Hence, there is no obvious notion
of a compatible almost complex structure, and the usual quantization as the equi-
variant index of a Spin.-Dirac operator [16] is no longer possible. In [31], rather
than trying to construct such an operator, we define the quantization more abstractly
as the push-forward of a K-homology fundamental class [M]. This fundamental
class is canonically defined as an element in twisted equivariant K-homology of
M. Our construction defines a push-forward of this element to the twisted equivari-
ant K-homology of a Lie group. The Freed—Hopkins-Teleman theorem [20, 19]
identifies the latter with the fusion ring R« (G) (Verlinde algebra), at an appropriate
level-k. We take the resulting element Q(M) € Rk (G) to be the “quantization” of
our g-Hamiltonian space. Asin the usual Hamiltonian theory [22, 21, 30], the quan-
tization procedure satisfies a “ quantization commutes with reduction” principle.

Inthe present paper, wewill preview thisquantization of g-Hamiltonian G-spaces
for the smplest of simple compact Lie groups G = SU(2). Much of the general
theory simplifiesin this special case—for example, thereis afairly simple proof of
the g-Hamiltonian “quantization commutes with reduction” theorem. As an appli-
cation, we explain, following [4], how the SU(2)-Verlinde formulas are obtained in
our theory. In the last section, we will show how to derive Verlinde-type formulas
for moduli spaces of flat SO(3)-bundles. The paper will be largely self-contained,
except for certain details that are better handled with the techniques from [31].

Notation. We fix the following notation and conventions for the Lie group SU(2).
The group unit will be denoted by e, and the nontrivial central element by ¢ =
diag(—1, —1). We define an open cover by contractible subsets

SU@2)+ =SU@)\{c}, SU@2)- =SU(2)\{e} )

with intersection the set SU(2)reg Of regular elements. We take the maximal torus T
to consist of the diagonal matrices, isomorphic to U(1) by the homomorphism

it UQ) —> T, z~ dagzz™?).

The Weyl group W = Z, acts on T by permutation of the diagonal entries, or
equivalently on U(1) by z — z~1. Welet A C t bethe integral lattice (kernel of
exp|y) and A* C t* itsdual, the (real) weight lattice. For any € A* we denote by
t > t# the corresponding homomorphism T — U(1); the resulting 1-dimensional
representation of T isdenoted by C,,. The weight |attice is generated by the element
p € A* such that C, is the defining representation of U(1). The corresponding
positive root is a = 2p. We will identify su(2)* = su(2) using the basic inner
product
&= 12 w@'e), &¢& esu.

T 42
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~

Similarly we identify t = +t* using the induced inner product. Under this
identification, A = 2A*, with generators « = 2rzidiag(l,—1) and p = in
diag(1, —1).

For any subset A C t, we define Ta = exp(A) = {exp&| & € A}. Any conju-
gacy classin SU(2) passes through aunique point in Tjo,,], so that [0, p] labelsthe
conjugacy classes. We will frequently use the equivariant diffeomorphism,

To,p) x SU@R)/T — SU2)reg, (L, gT) = Adgy(t). (2

2 Thefusion ring Rk (SU(2))

In this section, we review three simple descriptions of the level-k fusion ring
(Verlindealgebra) R¢(G) for the case G = SU(2). Thefusion ring may beidentified
with the set of irreducible projective representations of the loop group L SU(2) at
level-k [36], but we will not need that interpretation here.

2.1 First description

Let R(SU(2)) be the representation ring of SU(2), viewed as the ring of virtual
characters. Form=0,1, 2, ... let y,, € R(SU(2)) bethe character of the (m + 1)-
dimensional irreducible representation of SU(2). These form a basis of R(SU(2))
as aZ-module, and the ring structure is given by

xXmxm = Ymmv + Xmm—2 + -+ Ym—n|-

Fork=0,1,2,...,thelevel-k fusion ring (or Verlinde algebra) is a quotient
Rk(SU(2)) = R(SU(2))/1k(SU(2))

by the ideal 1x(SU(2)) generated by the character yx.1. Additively, the ided is
spanned by the characters yk+1, x2k+3, x3k+5, - - ., together with all characters of
the form y;r — (—=1)" 1, wherel € {0, ..., k}, and |’ isobtained from| by r reflec-
tionsacrossthe set of elementsk+1, 2k+3, 3k+5, . . .. It followsthat asan abelian
group, R«(SU(2)) is free with generators o, . . ., 7k the images of yo, ..., yk. For
example, if k =4, m =3, m" = 4 we have

x3xa=x1+ 3+ s+ yyr=>1wa=11+13+0—13=11.

For any given level-k, the element 7x € R«(SU(2)) defines an involution of the
group R«(SU(2)),

T = 7Tk = Tk—|-
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2.2 Second description

Let g bethe (2k + 4)th root of unity

Then 1k (SU(2)) ¢ R(SU(2)) may be described as the idea of all characters
vanishing at all points j (g%),fors=1,..., k + 1. Put differently, letting

Tz ={t e TIt* =g}
bethe cyclic subgroup generated by j (q), 1k(SU(2)) isthe vanishingideal of Ty, 2N
SU(2)rey = Ty - Hence, for any t e T3 the evaluationmap eve : R(SU(2)) — C
descends to an eval uation map
evi: Re(SU2) - C, 1 t(t) = evi(7).
For the basis elements one obtains, by the Weyl character formula,

q(l+1)s _ q—(l+1)s

(@) = =
The orthogonality relations
k+1 p—)
z'q 9L (@@ = b 3

2k+4

allow usto recover ¢ € R«(SU(2)) from thevalues z(j (g%)) fors =1,...,k. The
coefficientsin this sum may alternatively be written as

|qs_q—s|2_ k _1.2 TS
xra —\2tY) I\ 2)

2.3 Third description

The third way of describing the fusion ring is to write down the structure constants
relativeto the basis 7o, . . ., k. Thelevel-k fusion coefficient Nl( } s forO<li <k
is the multiplicity of zg in the triple product 7, 71,7,. The fuson coefﬂments are
invariant under permutations of thel;, and have the additional symmetry property

K K .
N|(1’f2’|3 = Nl(l’)kflz’kfI3 (coming from x| = 7x71). One has

U7, = : , Nll l2, |3T|3'
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Let A c [0, 1]° be the Jeffrey—\eitsman polytope, cut out by the inequalities
U3 <Ui+Uz, Ui <Ux+U3 Ux=<uU3+Ui, Ui+U2+U3=2

Suppose Ci, i = 1, 2, 3, are conjugacy classes of elements exp(u; p). As shown by
Jeffrey—Weitsman [27, Proposition 3.1], the set {g19203| gi € C;} containseif and
only if (ug, uz, uz) € A. Similarly,

I1,02,13 =

) 1 if Ip+12+413even, (%’IFZ’IFS)GA,
0 otherwise

3 Thetwisted equivariant K-homology of SU(2)

We will follow the approach to twisted K -homology via Dixmier—Douady bundles.

3.1 G-Dixmier-Douady bundles

Suppose G is a compact Lie group, acting on a (reasonable) topological space
X. A G-Dixmier—Douady bundle over X is a G-equivariant bundle A — X of
x-algebras, with typical fiber K(H) the compact operators on a separable Hilbert
space H, and structure group Aut(K(H)) = PU(H) the projective unitary group.
Here H is alowed to be finite-dimensional. A Morita isomorphism between two
such bundles A3, A2 — X is a G-equivariant bundle of (42 — A1)-bimodules
£ — X such that € is locally modeled on the (K(H2) — K(H1))-bimodule
K(H1, H2) of compact operatorsfrom H1 to Ho. We write

Al ~e Az.

One then also has A2 ~co A1, where the opposite bimodule £° is modeled
on K(H2, H1). Any two Morita isomorphisms &, £’ between A3, A differ by a
G-equivariant line bundle J, given as the bundle of bimodule homomorphisms:

J=Homy, 4,(€.&), &=E®J.

Two equivariant Morita isomorphisms £, £ will be called equivalent if this line
bundle is equivariantly trivial. By the Dixmier—Douady theorem [14] (extended
to the equivariant case by Atiyah—Segal [6]), the Morita isomorphism classes of
G-Dixmier—Douady bundles A — X are classified by an equivariant Dixmier—
Douady class DDg(A) € Hg(x, 7). Put differently, the Dixmier—Douady classis
the obstruction to an equivariant Morita trivialization C ~¢ A, i.e., an equivariant
Hilbert space bundle £ with an isomorphism A = K(£).
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Remark 3.1. For G = {e} the Dixmier—Douady class is redlized as a Cech
cohomology class, as follows: Choose a cover {Ug} of M with Morita triviaiza-
tion C ~¢, Alu,. On overlaps, the &, arerelated by “transition line bundles’:

Jab = Hom4(€a, &b), &b = Ea ® Jab.

On triple overlaps, one has a trivializing section Oapc Of Jap ® Jpc ® Jea. Taking
U, sufficiently fine, the Jap are al trivial, and a choice of trivialization makes
Ganc into acollection of U(1)-valued functions defining a Cech cocycle. A different
choice of trivialization of the Jap changes the cocycle by a coboundary. The class
DD(A) equals the cohomology class of &, under the isomorphism H?(X, U (1)) =

H3(X, Z).

3.2 The Dixmier-Douady bundle over SU(2)

We will now give afairly explicit construction of an equivariant Dixmier—Douady
bundle representing the generator of ng(z)(SU(Z), 7) = 7, using the cover (1).
Let H be any SU(2)-Hilbert space with the property that H containsall T-weights
with infinite multiplicity. (A possible choiceisH = L2(SU(2)) with the left regular
representation.) Asaconsequence, there existsa T -equivariant unitary isomorphism

H—>H®C, (4)

(given by a collection of isomorphisms of the x-weight spaces with the (¢ — p)-
weight spaces). Let
E+=9U2)+ xH

with the diagonal SU(2)-action. By (2), any SU(2)-equivariant bundle over SU(2)reg
is uniquely determined by its restriction to a T-equivariant bundle over T, ,). Let
J — SU(2)reg be the equivariant line bundle such that J|r, ,, = T(0,5) x C,. The
isomorphism (4) defines a T -equivariant isomorphism

E- 1o = E+lT0, ® IT0,)

which extendsto an SU(2)-equivariant isomorphism £_ ISU@)reg = E+ISUQ2)eg ® J-
This then defines an isomorphism K(E-)[su(2),q; = K(E+)[sU(2)re: Which we use
to glue K(€+) to a global bundle A. The bundle A represents the generator of
H3u(2) (SU(2), Z) = Z. Since H,,(SU(2), Z) = 0, any other Dixmier-Douady
bundle A’ representing the generator is related to A by a unique (up to equi-
valence) Morita isomorphism. Again, this can be made quite explicit: Let £, be
Moritatrivializations of A’, with transition line bundle J’. Thenthe Morita A — A’
bimoduleis obtained by gluing K(&', , £+) with K(&”, £_), wherethe isomorphism
over SU(2)reg is defined by the choice of an equivariant isomorphism J’ = J (the
latter is unique up to homotopy).
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3.3 The equivariant Cartan 3-form on SU(2)

The equivariant Dixmier—Douady bundle A — SU(2) may be viewed as a
“prequantization” of the generator of equivariant Cartan 3-form on SU(2).
To explain this viewpoint, we need some notation. For any manifold M with an
action of aLie group G, we denote by &y € X(M), ¢ € g, the generating vector
fields for the infinitesimal g-action. That is, &v(f) = %|u=o(exp(—uf))*f for
f e C®(M). We let (QF (M), dg) denote the complex of equivariant differential
forms ' _
kM = P Sg ealMm)°,
2i+j=k

with equivariant differential (dgy)(&) = dy (&) — 1(Ewm)y (&). For G compact, its
cohomology isidentified with Borel’s equivariant cohomol ogy Hé(M, R).

Let oL, 0R e Q1(SU(2), su(2)) be the Maurer—Cartan forms on SU(2). The
Cartan 3-form 5 € Q3(SU(2)) is given in terms of the basic inner product - on
su(2) by

1
= oL .[6\, 0.
=15 [60-,07]

It is d-closed, and has an equivariantly closed extension ysy () € qu(z) (SU(2)),

1
nsue) (&) =n — E(GL +0R).¢.

Let w € Q2(su(2)) be the invariant primitive of exp* 5 defined by the de Rham
homotopy operator for the radial homotopy. The image of the (nonclosed) 2-form
du — % exp* (8- + %) under the homotopy operator is zero, since its pull-back to
any line through the origin vanishes. Hence

exp* nsu(2) = dsu) (@ — u), %)

where the “identity function” u: g — g is viewed as an element of su(2)* ®
QO(su(2)).

Lemma 3.2. For any G-manifold with a closed equivariant 3-form y € Q%(M),
all G-orbits S ¢ M acquire unique invariant 2-forms ws € Q2(S)€ such that
dews =i%y.
The straightforward proof is |eft to the reader. As special cases, we obtain 2-forms
we on the conjugacy classes C ¢ SU(2) and w» on the adjoint orbits O C su(2)
such that
dsu@we = —151su),  dsu@wo = 1H(du).

Under the identification of su(2) with itsdual, we isjust the usua symplectic form
on coadjoint orbits. Suppose C = exp(O). Then (5) and the uniqueness part of the
lemmaimply

0w =00 — (&Xp|o)*wc. (6)
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Let V C su(2) bethe open ball of radius %Fz We have diffeomorphisms

exp,: V=SU2)y,

where exp,_ is the restriction of the exponential map, and exp_ = l¢ o exp, isits
|eft trandate by the central element c. The inverse maps will be denoted by

log,: SU(2)+ — V C su(2).

Let wr = logi w € SU(2)1. Then dwy = 5 over SU(2).. Furthermore, by
equation (5) we have, over SU(2),

dsu(e)(w+ —1091) = 77su(2)- (7)

Over SU(2)reg, both wy are primitives of #; hence their difference is closed.
To determine this closed 2-form, recall (cf. equation (2)) that SU(2)reg = T(o,) X
SU2)/T. Let

Y: SUQ2)reg —> SUQ2)/T

be the projection to the second factor, and identify SU(2)/ T with the (co)adjoint
orbit O = SU(2) - p.

Lemma3.3.Onehas w_ — w; = Y wp over SU(2)r, Where O is the adjoint
orbit of the element p.

Proof. By (7) we have
dsu)(w- — @y — (log_ —log,)) =0

over SU(2)reg. Thus, log, —log_ serves as amoment map for the closed invariant
2-form w_ — w. We claim that

log, —log_ =100 V.

Since both sides are SU(2)-equivariant, it suffices to compare the restrictions
to T, C SU(2)rey. Indeed, log, (exp(up)) = up and log_exp(up) =
log(exp(u — 1)p) = (u — 1)p, so the difference is (log, —log_)(exp(up)) = p
as needed. This gives

0=dsyp)(w- —wy +i1p0¥) =dsye)(w- — o1 — Y wp).

In particular, w_ — w+ — Y*we isannihilated by al contractions with generating
vector fields for the conjugation action. It is hence enough to show that its pull-back
to T(o,y) is zero. Indeed, by applying the homotopy operator to expy 13 7su(2) = 0,
we seethat 1w = 0, whichimpliesthat w.. pull backtoOonT.

The 2-form we is the curvature form curv(V) of the line bundle SU(2) x1 C,,, for
the unique invariant connection V on thisbundle. Let J = ¥*(SU(2) x1 C,) carry
the pull-back connection V3. Theidentities
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w_ —wy =curv(Vy), doyr =1y

say that (Vj, wy) is a “gerbe connection” in the sense of Chatterjee—Hitchin
[12, 24], with # as its 3-curvature. Similarly, (Vj, w+ — log,) is an equivariant
gerbe connection, with equivariant 3-curvature 7sy2).

We conclude this section with an easy proof of the fact that » integrates to
1. Observe that 6V = V\V is the (co)adjoint orbit © of the element p. It has
symplectic volume [, o = 1 by the well-known formulafor volume of coadjoint
orbits [11, Corollary 7.27]. Since C := expO = {c}, we have wc = 0. Hence
equation (6) together with Stokes's theorem gives

/ HZ/dw’:/l*@UTZ/wO:l-
SU(2) \Y O O

3.4 Twisted K-homology

Let G beacompact Lie group acting on acompact G-space X. Given a G-Dixmier—
Douady bundle A — X, one defines (following J. Rosenberg [37]) the twisted
K -homology group

KS(X, A) = KE(T (X, A)),

where the right-hand side denotes the K -homology group of the (G — C*)-algebra
of sections of A. (For K-homology of C*-algebras, see [23, 28].) The twisted
K -homology is a covariant functor: If ®: X; — Xz isan equivariant map of com-
pact G-spaces, together with an equivariant Moritaisomorphism A1 >~¢ ®* A2, one
obtains a push-forward map

D,: KF (X1, A1) - KF (X2, A2).

Itispossible to work out many examples of twisted equivariant K -homology groups
simply from its formal properties such as excision, Poincaré duality, and so on. For
A = C one obtainsthe untwisted K -homology groups. One has aring isomorphism

K$ (pH) = R(G),

where the ring structure on the left-hand side is realized as push-forward under
pt x pt — pt. The following is the simplest nontrivial case of the Freed—Hopkins—
Teleman theorem [20]. This special case may be proved by an elementary
Mayer—Vietoris argument; see Freed [19].

Theorem 3.4. Let SU(2) act on itself by conjugation, and let A — SU(2) be the
basic Dixmier—Douady bundle. For all levelsk =0, 1, 2, . . ., the R(SU(2))-module
homomorphism

R(SU(2) = K’ (pt) — KV (sU(2), AK?)
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given as push-forward under the inclusion of the group unit pt — SU(2) is onto,
with kernel the level-k fusion ideal 1 (SU(2)). It hence defines a ring isomor phism,

Rc(SU(2) = KPP (sU(2), AK2).

3.5 The K-homology fundamental class

Recall that for n even, the complex Clifford algebra CI(n) = CI(R") admits a
unique (up to isomorphism) irreducible x-representation. Concretely, the identifica-
tion R" = C"/2 gives a Clifford action on the standard spinor module S = AC"/2,
This realizes the Clifford algebra as a matrix algebra, C1(n) = End(S). Given
A € SO(n) there exists a unitary transformation U € U(S), unique up to a scalar,
such that A(v) -U(z) = U (v - z) forv € R", z € S. The set of such implementers
U forms a closed subgroup of U(S), denoted by Spin.(n), and the map taking U to
A makesthis group into a central extension

1— U() — Spin.(n) - SO(n) — 1.

If M isan oriented Riemannian G-manifold of even dimension n, then its Clifford
algebra bundle CI(TM) is a G-equivariant bundle of complex matrix algebras.
It is thus a G-Dixmier—Douady bundle. Its Dixmier—Douady class is the third
integral equivariant® Stiefel-Whitney class, W3(M) € HE(M,Z). As pointed
out by Connes [13] and Plymen [35], an equivariant Spin.-structure on M is
exactly the same thing as an equivariant Morita trivialization of C (T M). Indeed,
given an equivariant lift Psin (M) — Pso(M) of the SO(n)-frame bundle to
the group Spin.(n), the Morita triviaization is defined by the bundle of spinors
S = Pgin, (M) X spin.(n) S. Conversely, given an equivariant Morita trivialization
CI(TM) ~s C, one obtains a lift of the structure group: The fiber of the bundle
Pspin, (M) & m € M isthe set of pairs (A,U), where A: TnM — R" is an ori-
ented orthonormal frame, and U : Sy, — S is a unitary isomorphism intertwining
the Clifford actions of » € TnZM and A(v) € R".

The Clifford bundle CI(TM) is naturally a CI(TM) — CI(TM) bimodule.
Using the canonical antiautomorphism of CI(T M), it may aso be viewed as a
moduleover CI(TM)®C (T M), definingaMoritatrivialization of thelatter. Given
any Spin.-structure S, one obtains a Hermitian line bundle

L = L(S) = Homc (rmyeciTm)(CI(TM), S ® S)

1 We remark that for G compact and simply connected, the vanishing of W2 (M) is equivalent to
the vanishing of the nonequivariant Stiefel-Whitney class W3(M), since the map HE(M, Z) —
H3(M, Z) isinjective (cf. [29]).
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called the Spin,-line bundle. Twisting S by aline bundle L changes the Spin..-line
bundle as follows:
LE®L)=LES) ® L%

For any equivariant Sping-structure on an even-dimensional manifold, the class of
the Spin.-Dirac operator defines a fundamental class in equivariant K-homology.
In the absence of a Sping-structure, there is still a fundamental class, but as an
element

[M] € K§(M, CI(TM))

in twisted K-homology.? For an explicit construction of [M], see Kasparov [28].
Below, we will construct elements of R¢(SU(2)) = KSU(Z) (SU(2), A%+2) as push-
forwards of [M] under SU(2)-equivariant maps ®: M — SU(2). In order to define
such a push-forward, we need an equivariant Moritaisomorphism

CI(TM) ~g d*AKF2,

We will explain how such a “twisted Spin.-structure” arises for prequantized
g-Hamiltonian SU(2)-spaces. The counterpart to the Spin.-line bundleis the Morita
isomorphism @* A%+4 ~ - C given by

K = Homc iirmyecirmy (CHT M), (€ @ £)P).

4 g-Hamiltonian SU(2)-spaces
4.1 Basic definitions

Let G beacompact Lie group, with Lie algebra g. Given an invariant inner product
B onits Lie algebra, define the equivariant Cartan 3-form

1 1
%?@)=iimwuwheﬂ>—§BwL+e?éy

A g-Hamiltonian G-space (relative to the inner product B) is a triple (M, w, @),
where M is a G-manifold, w is an invariant 2-form, and ®: M — G is an equi-
variant smooth map, called the moment map, such that

(i) dew = —0*Y,
(i) kerw N ker(d®) = 0 everywhere.

Remark4.1. If G = T is atorus, thisis just the usual definition of a symplectic
T -space with torus-valued moment map. Indeed, Condition (i) in this case says that
do = 0and om(Em (M), ) = —B@T(Am®@®)),¢) foradl & € g, v € TyM.

2 More precisely, one has to view CI(T M) as a Z,-graded Dixmier—Douady bundle, and work
with the twisted K -homology for such Z;-graded bundles.
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Hence it implies ker(w) C ker(d®), whence (ii) simplifies to ker(w) = {0}. For
general G, a similar argument shows that ker(wm) is spanned by al &y (m) such
that Adgm) & + ¢ = 0.

Basic examples of g-Hamiltonian G-spaces are the conjugacy classes C C G,
with moment map the embedding. The double D(G) = G x G, with G acting
by conjugation and with moment ®(a, b) = aba~1b~1, is another example. The
2-formis

1 1 1
= Ea*aL . b*@R + Ea*aR . b*aL + E(ab)*eL . (a—lb—l)*eR’

where, for example, a~1b~! denotesthemap (a, b) — a~1b~1.If G’ isthe quotient
of G by afinite subgroup of Z(G), then the moment map, action, and 2-form on
D(G) descendsto D(G’), so that D(G’) is again a g-Hamiltonian G-space.

Given two g-Hamiltonian G-spaces (M;, wj, ®;), i = 1, 2, their product M1 x
My with the diagonal G-action, moment map ®1®,, and 2-form w1 + w2 +
IB(@30%, ®30R) isagain ag-Hamiltonian G-space. Thisis called the fusion prod-
uct of M1, M2. The symplectic quotient of a g-Hamiltonian G-space is M/ G =
®~1(e)/G. Similarly to the Hamiltonian theory, eisaregular value of @ if and only
if G actslocally freely on ®~1(e), and in this case M/ G is a symplectic orbifold.
(If eisasingular value, then M / G isasingular symplectic space asdefinedin[39].)
More generally, given a conjugacy class C one can define a symplectic quotient

M/cG = (M x C)/G.

It was shown in [1] that moduli spaces of flat G-bundles over compact oriented
surfaces |, of genus h with r boundary circles, with boundary holonomies in
prescribed conjugacy classes Cj, are symplectic quotients

M(Z,C1,...,C) = (D(G) x --- x D(G) xC1 x --- x Cr)/ G.

h times

We now specialize to g-Hamiltonian SU(2)-spaces (M, o, @), with B the basic
inner product. Put M = ®~1(SU(2)+), and let

w0+ = o+ OFwy,
Do+ = log, o®.
Then
dsu(2) (wo,+ — Po,+) = dsy(2)(w + O™ (w+ —log,)) = 0.

That is, wo, + isclosed, with @g 4+ asamoment map. Using condition (ii) above one
can show [1] that wo, + are nondegenerate, i.e., symplectic. Thus, (M+, wo,+, Po,+)
are ordinary (symplectic) Hamiltonian SU(2)-spaces. In particular, M are even-
dimensional, with a natural orientation. If M is compact and connected, then the
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spaces M are connected. (This follows from the convexity properties and the fiber
connectivity of group-valued moment maps[1].)

Conversely, (M, w, @) is determined by the pair of Hamiltonian SU(2)-spaces
(M4, wo,+, @o,+). This correspondence reduces many properties of g-Hamiltonian
spaces to standard facts about ordinary Hamiltonian spaces. It is also used to con-
struct g-Hamiltonian spaces, as in the following example.

4.2 Example: The 4-sphere

The following construction of a g-Hamiltonian structure of S* is taken from [5].
An independent construction due to Hurtubise-Jeffrey [26] was later generalized by
Hurtubise-Jeffrey—Sjamaar [25] to define the structure of a g-Hamiltonian SU(n)-
space on S?, for any n.

Let §C2 carry the standard SU(2)-action and the standard symplectic structure
wo = 'E(dzl A dzZ1 + dzo A dZp). The moment map for the SU(2)-action can be
written, for z £ 0, as

Do(z) = —iz?)|z)?P(2) +i72)z|%(I — P(2)),

where P(2) isthe projection operator,
t 2,5
ofa) (za 1 [ l|al° 222
P@) = |z 2( )( ) =—| 2 :
)\ 2z 1ZII% \ z122 |2)?

exp(®o(2)) = e 7 127 p(z) 4 7?1217 (| _ p(z)).
LetV C su(2) bethe open ball of radius % (cf. Section 3.3). We have | ®g(2)|| =
\%EHZHZ, so that

Hence,

St = ogt(V) = {ze C?ziz)? < 1.
Define a diffeomorphism F of the annulus0 < z|z||2 < 1 by

1 —
zl|z|? '

F(z1,22) = (-22,71)

Then F is equivariant, with z || F (2)|> = 1 — 7 ||z||2. Gluing the charts S} under F,
one obtains a 4-sphere S* with an action of SU(2).

Put @, = exp®gand ®_ = lc o eXp Dy = — exp Dg. The diffeomorphism F
satisfies P(F(z)) = | — P(2), and therefore,

1 (F(2)) = exp(®o(F (2)) = — exp(Po(2)) = ©-(2).
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Hence @ glueto aglobal equivariantmap @ : S* — SU(2). Similarly, the 2-forms
wi = wp + Oyw glue® to a global invariant 2-form o € Q*(SY), defining a
g-Hamiltonian SU(2)-space (S*, o, ).

Remark 4.2. The space S* carries an involution | : S* — S* given in charts by
complex conjugation. It hasthe equivariance property | (g-x) = 1(g) - | (x) relative
to the involution of SU(2) given by complex conjugation of matrices, | (A) = A.
The involution satisfies 1*0 = —w and 1*® = ®. The fixed-point set of the
involution is a 2-sphere > ¢ S*. The theory of anti-involutions of g-Hamiltonian
G-gpaces was developed in recent work of Schaffhauser [38], who established an
analogue of the convexity results of Duistermaat [15] and O’ Shea—Sjamaar [33] in
this context.

Remark 4.3. It is well known that the complement of the zero section in T*(S?) is
SU(2)-equivariantly symplectomorphic to the complement of the origin in C2. One
may thus modify the construction above, and obtain examplesin which thefiber over
e or over ¢ (or both) is a 2-sphere rather than a point. The four examples obtained
inthisway are the completelist of 4-dimensional g-Hamiltonian SU(2)-spaceswith
surjective moment map.

5 Cross-sections

Let (M, w, @) beag-Hamiltonian SU(2)-space. By the g-Hamiltonian cross-section
theorem [1], the preimage
Y =0 1T, ©)

isag-Hamiltonian T-space (Y, oy, ®|y), with 2-form wy = iJw. In particular, oy
is symplectic. Letting @y: Y — (0, p) C twith exp®dy = Dy, it isimmediate
that (Y, wy, ®y) isan ordinary Hamiltonian T-space. We have

Mreg = My NM_ = SU(2) x7 Y

and
TMly =TY @ t-,

where the second summand is embedded by the generating vector fields. This
splitting is w-orthogonal, and the 2-form on Y x t* isgiven at y € Y, with
g = O(y) € Ty by (é1,%) = 3((Adg—Adg-1)é1, &). Note that since the
pull-back of w to T(g,,) is zero, the 2-forms wo,+ both pull back to wy. Similarly

Do, |y = Py = Do, |y + p.

% To check that these 2-forms agree on the overlap S, = St N S*, it suffices to consider their
pull-back to symplectic cross-sections asin Section 5.
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That is, (Y, wy, ®y) may also be viewed as the symplectic cross-section of M.
(To be precise, in the case of M_, it is the opposite cross-section, given as the
preimage of (—oo, 0) C t under dg__.) The 2-formson the bundles Y x t* induced
by wo, + are

(61, &) > adyy & - &,

where 4 = @0, (y) and u_ = do__(y).

ThespaceY isonly a“partial” cross-sectionfor M, sinceit leaves out the subsets
®~1(e), ®~1(c). On the other hand, the “full” cross-section Y = @®~(Tjo )
is usualy not a manifold, let alone symplectic. However, following Hurtubise—
Jeffrey—Sjamaar [25] one can “implode” Y to obtain asymplectic T-space X, which
is a symplectic orbifold under regularity conditions. As a topological space, the
imploded cross-section is a quotient space

X = & Y(Tjo,01)/ ~»

where the equivalence relation divides out the SU(2)-action on both ®~1(e) and
®~1(c). We have adecomposition of X into three symplectic spaces,

X = (M//SU@2) UY U (M /e SU@)). ©)

Theaction of T € SU(2) on ®@~1(Tjg,,}) descends to an action on X, and the map
®~1(Tjo,5) — [0, p] C t descendsto a T -equivariant map

Ox: X — t.

Let
X =(M/SU@)uY, X_=YU(M/cSUQ),

sothat X aretheimploded cross-sectionsof M... View M. asHamiltonian SU(2)-
spaces with 2-forms wo_+, and let C? carry the standard structure as a Hamiltonian
SU(2)-space.

Proposition 5.1. Suppose SU(2) acts locally freely (respectively freely) on d)‘l(e),
®~1(c). Then the imploded cross-section X admits a unique structure of a symplec-
tic orbifold (respectively symplectic manifold) such that the open subsets X1 are
symplectic quotients,

Xi = (M x C?)/ SU(2).

Furthermore,

a. Therestriction of ®x to X4 is smooth, and is a moment map for the action of
T = U®).

b. The Hamiltonian T-space (Y, wy, ®v) is embedded as an open symplectic sub-
manifold of X.

c. M/ SU(2) is a symplectic suborbifold (respectively submanifold), with normal
bundle ®~1(e) xsy(z) C2. The U(1) action on the normal bundle is with weights
(-1, -1).
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d. M//c SU(2) is a symplectic suborbifold (respectively submanifold), with normal
bundle ®~1(c) x sy(2) C2. The U(1)-action on the normal bundleiswith weights
(1,1).

Thus, X is obtained by gluing the Hamiltonian imploded cross-sections for
(M4, wo,+, Po,+). For the case G = SU(2), the imploded cross-sections con-
struction was introduced by Eugene Lerman as an SU(2)-counterpart of symplec-
tic cutting. Its basis properties for Hamiltonian SU(2)-spaces are described in [30,
Appendix], and directly imply the properties for g-Hamiltonian SU(2)-spaces.

Remark 5.2. More intrinsically, the imploded cross-section can directly be con-
structed as a g-Hamiltonian symplectic quotient X = (M x S/ SU(2). Thisis
the approach taken in [26, 25]. However, in this paper we will have more usefor the
construction in terms of ordinary Hamiltonian quotients.

6 The canonical “twisted Spin.-structure’

Chooseinvariant almost complex structureson M., which are compatiblewith wg, +
in the sense that each tangent spaceisisomorphicto C"2 with the standard complex
structure and standard symplectic form. The almost compl ex structure defines spinor
modules

So,+ = AcTMy — My

for the Clifford bundles CI(T M)|m.. , where the notation A¢ denotes the complex
exterior powers of T My relative to the given complex structure. On the overlap
M, N M_ = Mg, the two spinor bundles differ by Home |t m)(So,+-» So,—)-

Proposition 6.1. The line bundle Homc (1 m)(So,+, So,—) is equivariantly isomor-
phic to the pull-back ®*(J®?).

Proof. An SU(2)-invariant aimost complex structure on Mygg = SU(2) x1 Y is
equivalent to a T-invariant complex structure on the bundle TM|y = TY & t*.
This bundle carries two symplectic structures, defined by the 2-forms wg, + on M.
Pick a T -invariant compatible structure on the bundle TY'. Its sum with the complex
structure on t*, coming from the identification t- = C,, is compatible with wo,_.
Similarly its sum with the complex structure on t-, coming from the identification
t- = C_,, iscompatiblewith wo,—. The corresponding spinor bundl&sSo,ﬂE ly =Y
arerelated by atwist by a T -equivariant line bundle, corresponding to the change of
the complex structure on t* to its opposite. Clearly, thisisthelinebundle Y x C, =
Y x (C))%
So.-Iv =801y ® (Y x (C,)?).

Extending to Myeg, and using the definition of J — SU(2)eg We obtain

5‘0,_ = 3034_ ® O*J2.
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But S+ are equivariantly isotopic to Sp_+, since any two choices of equivariant

compatible almost complex structures are isotopic. Hence we also have Sp - =
So.+ ® ©* 2, or equivalently Homg |ty (So.+, So,—) = ©*J2.

Equivaently, we can express this result as follows:

Proposition 6.2. For any g-Hamiltonian SU(2)-space (M, w, @), there is a distin-
guished (up to equivalence) SU(2)-equivariant Morita isomorphism

O*A? ~5 CI(TM). (10)

Proof. Let 7= — SU(2)+ define Morita trivializations C ~r, A?. Fix iso-
morphisms 7~ = F; ® J? and Sp— = So+ ® ®*J? on intersections. The
desired MoritaC I(T M) — ®* A2 bimodule S isthen obtained by gluing the bundles
S+ = Home (®* F4., So,+), using that

Home (®* F_, So,_) = Homg (0" (Fy ® J?),
So.+ ® ®*J?) = Home (0% F, So.+)
on the intersection.

We refer to the Moritaisomorphism (10) asthe canonical twisted Spin.-structure
of ag-Hamiltonian manifold.

Remark 6.3. In particular, we see that the third integral Stiefel-Whitney class of any
g-Hamiltonian SU(2)-space satisfies

W3(M) = 2d*x,

where x € H3(SU(2), Z) is the generator. Since thisis a 2-torsion class, it follows
that 4d*x = 0. The fact that ®*x is torsion is a consequence of the condition
dw = —®*y. The more precise statement relies on the minimal degeneracy condi-
tion ker(w) N ker(d®) = 0.

7 Prequantization of g-Hamiltonian SU(2)-spaces

Suppose (M, w, @) is ag-Hamiltonian SU(2)-space. The conditions dow = —®*y
and dy = 0 mean that the pair (w, —#) defines a cocycle for the relative de Rham
complex* Q*(®). For k > 0, we define a level-k prequantization of (M, w, @) to
be alift of the classk[(w, —;)] € H3(®, R) to aclassin H3(®, Z).

4 Recall that for any morphism of cochain complexes F*: C* — C®, the relative cohomo-
logy H*(F) isthe cohomology of the algebraic mapping cone (C*~1 @ CX, d), with differential
dix,y) = (F(y) — dx,dy). In our case F = ®*, acting on differential forms or on singular
cochains, and we write H (®, -) for the relative cohomol ogy.
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Remark 7.1. One can similarly define an equivariant level-k prequantization to be
an integral lift of K[(w, —ysu(2))] € ng(z)(CD,R). However, the equivariance is
automatic: Indeed, for any simply connected compact Lie group G and any G-space
M one has Hg(M,Z) = HP(M, Z) for p < 2,andif ®: M — G isan equivariant
map one has HE(®, Z) = HP(®, Z) for p < 3. See, eg., [29].

Lemma 7.2. If (M, o, ®) admitsa level-k preguantization, then the set of such pre-
quantizationsis a principal homogeneous space under the group Tor(H2(M, Z)) of
flat line bundles over M.

Proof. Clearly, the set of prequantizationsis a principal homogeneous space under
Tor(H3(®, Z)). Since H3(SU(2), Z) = Z hasno torsion, Tor(H3(®, Z)) liesinthe
image of the map H2(M, Z) — H3(®, Z) in the long exact sequence for relative
cohomology. But this map isinjective since H2(SU(2), Z) = 0, and hence restricts
to an isomorphism of the torsion subgroups.

Theclassk[(w, —7)] isintegral if and only if it takesinteger valueson all relative
3-cycles; that is, for every smooth singular 2-cycle ¥ € C(M), and every smooth
singular 3-chain " € C3(SU(2)) bounding ®(X), we must have

k(/rn+/za))eZ. (11)

(Given X, it is actually enough, by the integrality of #, to check the condition for
some I" bounding ®(X).) If H2(M, R) = 0, thereis amuch simpler criterion [29]:
Let x € H3(SU(2), Z) be the generator. Since ®*[#] = 0, the class ®*x istorsion.
If H3(M, R) = 0, then (M, w, ®) is prequantizable at level-k if and only if

Kd*x = 0. (12)

Proposition 7.3. The conjugacy classC of t € Tjg ,) C SU(2) is prequantizable at
level-k if and only if t = exp(}p) for somen € {0,1,...,k}.

Proof. It is enough to check criterion (11) for ¥ = C. Writet = exp(up) with
u € [0,1]. Let O be the adjoint orbit of up, so that C = ®(O). As above, let

V C su(2) be the open ball of radius %2 Then O isthe boundary of V, = uV, and

we compute, with ' = @ (),

/77: exp'n = dw:/iéw:/w@—/wc.
r Vu Vu @] @ C
k(/;y—l—/wc):k/w@,

r C @

which isaninteger if and only if the orbit through kup isintegrd, i.e., ku € Z.

Hence

Proposition 7.4. The 4-sphere S* and the double D(SU(2)) are prequantizable
at any integer level-k. More generally, this is the case for any g-Hamiltonian
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SU(2)-space (M, w, @) with vanishing second homology. The double D (SO(3))
(viewed as a g-Hamiltonian SU(2)-space) is prequantizable at level-k if and only if
k iseven.

The condition for D(SO(3)) wasfirst obtained by Derek Krepski [29].

Proof. In each of these examples we have H2(M, R) = O; hence it sufficesto find
al k such that kd*x = 0. For M = S* one has ®*x = 0, since H3(S%,Z) =
0. For M = D(SU(2)), one again has ®*x = 0, by the properties of x under
group multiplication and inversion (Mult* x = prj x + prs x, Inv*x = —x.) For
M = D(SO(3)), one checks that the torsion subgroup of H3(M, Z) is Z,, so that
M is prequantizable at either all levels or at all even levels. We claim that M is not
prequantizableat level 1. To seethis, consider the symplectic submanifold T’ x T’ C
D(S0O(3)), where T’ isthe maximal torusin SO(3) given astheimage of T. For the
symplectic volume one finds (see Section 11.1 below)

vol(T x T) lvoI(T T) 2_1
X = — X = — = —,
4 4 2
By criterion (11), with ¥ = T’ x T and T' = ¢, the prequantized levels k must
satisfy k [ w € Z; hence they must be even.

Finally, weremark that if (M;, wj, ®@;) are prequantized at level-k, then their fusion
product M1 x My inherits a prequantization at level-k.

For an ordinary Hamiltonian SU(2)-space (M, wg, ®o), a prequantization is an
integral lift of the class of the equivariant symplectic form. More generally, by a
level-k prequantization of such a space we mean a prequantization of (M, ko,
kdg). Geometrically, the lift is realized as the equivariant Chern class of an equi-
variant prequantumline bundle over M.

Proposition 7.5. A level-k pregquantization of a g-Hamiltonian SU(2)-space
(M, w, @) is equivalent to a pair of level-k prequantizations of the Hamiltonian
SU(2)-spaces (M-, wo,+, ©o,+), with the property that the prequantumline bundles
Ly — My satisfy

Lo=L, ®d*JK

ontheoverlap Mrgg = My N M_.

Proof. Let ®.: My — SU(2)+ be the restrictions of ®. Since SU(2),, SU(2)_
retract onto e, ¢ respectively, the long exact sequences in relative conomology give

isomorphisms H2(M.., -) = H3(®.., -), and acommutative diagram

H3®,2) —— H3(®4,Z) = HA(My, 2)

l |

H3®,R) —— H3¥®4,R) = H*(M4,R)
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The lower horizontal map is given on K[ (@, —#)] by
k[(w, —)] — Kot + OFwi] = k[wo,+].

To give a parallel discussion of the upper horizontal map, let CK(, R) =
Hom(Ck(+), R) denote the complex of smooth singular cochains, with coefficient
inthering R. We have two natural cochain maps,

CK(,, Z) — CK(,R) < QK(»).

Let % e C3(SU(2), Z) beasmooth singular cocyclewhoseimagein C3(SU(2), R)
is cohomologousto the image of #, and let wf € C2(SU(2)+, Z) be primitives of
the restriction of 7% to SU(2)+. Let 6% € C%(M, Z) be such that doZ = —kd* 5%,
and such that [(cZ, ky”)] € H3(®, Z) represents the lift of k[(w, —7)] given by
the prequantization. The upper map in the commutative diagram above is given on
[(@ %, kn™)] by

[(0” kn™)] = [of + ko wl].

Hence [¢Z + kd*w?] € H?(My, Z) areintegral lifts of k[wg +]. Let Ly — My
be the corresponding SU (2)-equivariant prequantum line bundles, so that

ci(Ly) = [0 + ko*w?].

On the overlap Mg = My N M_, the difference between the 2-cocycles
0':% + @*wjz: is k(D*(ZU_Z|SU(2)reg — w£|su(2)reg). The 2-cochain W_Z|SU(2)reg —
W+Z|SU(2)reg € CZ(SU(Z)reg, 7) is closed, and its cohomology class is an integral
lift of [w,|su(2)reg - ?D'+|3U(2)reg] = Y*we] € HZ(SU(Z)reg, R). Hence it repre-
sents the Chern class ¢1(J). We have shown that

C1(L— M) — Co(L 4 [Mpeg) = k@ C1(J)

and consequently L [Myg = L4 |Mey ® ®*JK. Conversely, given apair of prequan-
tum line bundles L. with this property, we may retrace the steps of this proof to
obtain an integral lift of [k(w, —#)].

In particular, weseethat if (M, w, @) isprequantized at level-k, and eisaregular
value of @, then the symplectic quotient M/ SU(2) inherits a level-k prequantiza-
tion. The corresponding prequantum line bundle over M/ SU(2) isL./ SU(2) =
Lilp-2(e)/ SU).

The preguantization result may be expressed in terms of Moritatrivializations:

Proposition 7.6. A level-k prequantization of a g-Hamiltonian SU(2)-space
(M, o, @) givesrise to a Morita isomorphism

C g d* AKX

Proof. Pick Moritatrividizations C ~z, A over SU(2), with F_ = F, @ JK
on the overlap. The prequantum line bundles L.+ — M. defined by the level-k
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prequantization satisfy L_ = L ® ®*JK on the overlap. Hence the Hilbert space
bundles
Ey = HomC(Li, (D*}—i)

(where Hom¢ denotes continuous bundle homomorphisms) glue to give the desired
Moritaisomorphism.

Proposition 7.7. Suppose (M, w, ®) is a level-k prequantized g-Hamiltonian
SU(2)-space. Assume that e, ¢ are regular values of ®. Then the imploded cross-
section (X, wx, ®x) inherits a level-k prequantization.

Proof. Let (M4, wo,+, ®o,+) carry the corresponding prequantum line bundleswith
L_ = Ly ® ®*JX on the overlap. Since X+ = (M1 x C2)/ SU(2) are ordinary
Hamiltonian quotients, we obtain prequantizations of the Hamiltonian T -spaces
(X4, wx, Px). The prequantum line bundles L x, satisfy Lx, |y = L+]y; hence

Lx v = Lx, |y ® @3 3% = Lx, ly ® Cy,.

We conclude that Lx, and Lx_ ® C_g, patch to define a global T-equivariant
prequantum line bundle Ly — X.

8 Quantization of g-Hamiltonian SU(2)-spaces

We are now in a position to define the quantization of prequantized g-Hamiltonian
SU(2)-spaces. We begin with a quick overview of the quantization of ordinary
Hamiltonian G-spaces (M, w, ®). Choose an invariant almost complex structure
on M, compatible with the symplectic form. Such an ailmost complex structure is
unique up to equivariant homotopy, and hence the isomorphism class of the result-
ing equivariant Sping-structure given by a G-equivariant spinor bundle S is inde-
pendent of this choice. We obtain a Moritaisomorphism CI(T M) ~go C. Givena
prequantumlinebundle L — M, onecan twist by L to obtain anew Spin,-structure
S ® L1, hence aMoritaisomorphism

CI(TM) ~gsmgL C.
Thisalows usto define a push-forward map relativeto p: M — pt,
pe: KE(M, CITM)) — KE(pt) = R(G),
andto set (M) = p«([M]) € R(G). (For G = {€}, thisisjust an integer.) Equiva-
lently, Q(M) may be viewed as the equivariant index of the Spin.-Dirac operator for

the Spin,-structure S ® L 1. The quantization procedure for Hamiltonian G-spaces
is compatible with products:

Q(M1 x M2) = Q(M1)Q(M2). (13
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For any g € G, the value of the equivariant index Q(M) at g may be computed
by Atiyah—Segal’slocalization theorem. On the other hand, one has the Guillemin—
Sternberg quantization commutes with reduction property: Let Q(M)® e Z bethe
multiplicity with which the trivial representation occursin Q(M). Then [30, 32]

QM)® = Q(M/G).

Heretheindex Q(M// G) iswell defined if Oisaregular value of ® and the G-action
on ®~1(0) is free. If the action is only locally free, then M /G is an orbifold and
the quantization is defined by the index theorem for orbifolds. In the general case,
if Oisnot aregular value and M/ G isasingular space, Q(M// G) may be defined
by partial desingularization of the singular symplectic quotient [32].

Suppose now that (M, w, ®) isacompact g-Hamiltonian SU(2)-space, prequan-
tized at level-k. By combining the Morita isomorphisms ®*.A42 ~g CI(T M) from
Proposition 6.2 and C ~¢ ®*.4X from Proposition 7.6 we obtain a Moritaisomor-
phism

CHTM) ~gopge O* A2,

This defines a push-forward map in K -homology,
Ko @ (M, CITM)) — K5 @(SU(2), AT?) = Ra(SU(2).

Definition 8.1. Let (M, w, ®) be a compact g-Hamiltonian SU(2)-space,
prequantized at level-k. We define the quantization Q(M) € R¢(SU(2)) to be the
push-forward of the K -homology fundamental class[M] e KOSU(Z)(M, CI(TM)),

QM) = @, ([M]).

The properties of this quantization procedure for g-Hamiltonian spaces are very
similar to those for the Hamiltonian case: In particular, the analogue to the “quan-
tization commutes with products’ property (13) holds, with the left-hand side
involving the fusion product of g-Hamiltonian spaces, and the right-hand side the
product in R¢(SU(2)). However, while (13) is rather obvious in the Hamiltonian
theory, its g-Hamiltonian counterpart is a nontrivial fact (proved in [31]). In what
follows, we will focus on “localization” and “quantization commutes with reduc-
tion” for g-Hamiltonian SU (2)-spaces.

9 Localization

We mentioned in Section 2.2 that any © € R«(SU(2)) is determined by its values
7(t) at lementst e T,.%. For alevel-k prequantized g-Hamiltonian SU(2)-space
(M, @, @), the number Q(M)(t) may be computed by localization to the fixed-
point set Mt of t. By equivariance, and sincet is regular, the moment map takes the
fixed-point set to the maximal torus T = SU(2)!.
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Proposition 9.1. The restriction AKt2) ¢ admits a Ty 2-equivariant Morita triviali-
zation,
C =g Ak+2|'|'.

This Morita trivialization is uniquely determined (up to equivalence) by requiring
that G|e extend to an SU(2)-equivariant Morita trivialization of A+2|e.

Proof. Choose SU(2)-equivariant Morita trividizations C ~x, A?|gy(), such
that on the overlap, F_ = F, ® J*t2, Restrict to T-equivariant Morita triviaiza-
tions over

TNSUQR)y =T—pp, TNSUR) - = Tpo2y.

Theintersection T, ,) N T(0,2,) hastwo connected components, T(g, ;) and T, 2,).
Therestrictions of JK*2 to the two componentsare

2170, = T X Car2pps
‘]k+2|T(/1,2/J) = T(P,zﬂ) X C_(k+2)p

Let
g+ = *7:+|T(_,,,!/,)s gf = -7:7|T0,2,,, ® C(k-‘rZ)/)-

Then G = G, over Tg,,), whileG_ = G, ® Cok42), over T(, 2). But Tki2 is
exactly the subgroup of T acting trivially on Cxk42),. That is, the bundles G+ glue
to define a Ti.-2-equivariant Moritatrivialization

C~g Ak+2|T.

By construction, G|e extends to the unique (up to equivalence) SU(2)-equivariant
trivialization F |e of Ale. Any other Ty, 2-equivariant Morita triviaization differs
from G by twist with a Tx2-equivariant line bundle. Since dmT = 1, we have
HTZ.k+2 (T) = HTZHZ(pt); hence such aline bundle is detected by its restriction to e.
Since only the trivial Ty42-representation extends to an SU(2)-representation, the
proof is complete.

Remark 9.2. Thelast part of the proof relied ondim T = 1. Indeed, the correspond-
ing statement for higher rank groupsistrickier [31].

Proposition 9.3. Suppose ®: M — SU(2) is an equivariant map, and that we
are given an equivariant Morita isomorphism CI(TM) ~g¢ ®* A2, Then, for
all regular elementst € T N SU(2)reg, and any component of the fixed-point set
F c MY, the restriction T M| inherits a distinguished T 2-equivariant Spin,-
structure.

Proof. By equivariance, and since t is regular, ® restrictsto amap ®r: F —
SU(2)! = T. Hence we have Ty 2-equivariant Moritaisomorphisms

C ~grg O (AF2|7) ~gop. CI(TME).
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But a Morita trivialization of a Clifford algebra bundle is equivalent to a Spin-
structure.

Let L — F bethe Spin,.-line bundle associated to this Spin.-structureon T M |r.

Remark 9.4. The line bundle £g may be described as follows. From CI(TM) ~¢
@* Ak+2 we obtain aMoritatrivialization,

C~CITM)®CI(TM) ~gge O A4,

Over M., we have another Moritatrviaization of ®* A2t comi ng from the defin-
ing Moritatriviaizations of A over U.. The two Morita trivializations are related
by line bundles £+ — My, with £_ = £, ® ®*J~@+4 on the overlap.
The restriction of J%+4 to T is Ty, o-equivariantly trivial, and Lg is the Ty -
equivariant line bundle obtained by gluing L+ |FAm., -

Using Proposition 9.3 we see that even though M does not come with a Sping-
structure, the fixed-point contributionsfrom the usual Atiyah—Segal—Singer theorem
[8, 7, 9] are well defined. Indeed one has, the following resuilt.

Theorem 9.5 (Localization). Suppose (M, w, ®) is a compact g-Hamiltonian
SU(2)-space, prequantized at level-k. For all t € T, the number Q(M)(t) is
given as a sum of fixed-point contributions,

QM) = D QUE)(),

Fcmt
where Q(ve)(t) is defined using the Ty.2-equivariant Sping-structureon TM|g.

The proof of Theorem 9.5 is parallel to the proof of the localization formulain
Atiyah—Segal [7]; details will be given in [31]. In the cohomological form of the
index theorem, the fixed-point contributions Q(vg) are given asintegrals of certain
characteristic classes over F (cf. [16, 4]),

A(F) exp(c1(L))
Dr (vE, t) '

Here K(F) is the A-class, and Dr(vg,t) is given on the level of differential
forms by

QE)(t) = (0 (L) ()2 /F

Dr(ve,t) = e% rankR(VF)det]E/Z (1 _ t—le% curv]R(vF)) ,

with curvg (vE) € Q2(F, o(vg)) the curvature form for an invariant Riemannian
connection. The expression in parenthesesliesin Q(F, End(vg)), with zeroth-order
term the identity, and the (positive) square root of its determinant is well defined.
Finally, £ istheline bundle associated to the Spin,-structure on T Mg, the phase
factor o (Lr)(t) € U(1) is given by the action of t on £|g, and o (L£) ()2 isa
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suitable choice of squareroot.’ If F ¢ M., the Spin.-structureon T M | is defined
by the almost complex structure on M, twisted by the line bundle L ;.. Hence, the
fixed-point contribution can be written in “ Riemann—Roch” form as

Td(F) ch(L+[r)
D(vr,+,1)

where D (vg 4+, t) isthe equivariant characteristic class

Q) (1) = a(L+|F>(t)/F

D(UF)+’ t) = det(c (1 — t_leleT CUTVC(UF,+)) ,

with curve (ve,+) the curvature form for an invariant Hermitian connection, and
o (L4 |F)(t) the phase factor defined by the action of t on L |. Thereisasimilar
formulafor thecase F ¢ M_:

Td(F)ch(L_|F)

Q) (1) = —t* D25 (L_[p)(t) /F e

Ift=j(@% withs=1,...,k+ 1, wehave

_tk+2)p _ (- 1)5—1.

Thissign factor may be traced back to our choice of Moritatrivialization of AK+2|,
which was chosen to be compatible with the SU(2)-equivariant Moritatrivialization
of AKt2|g (rather than that of AX+2|¢).

Remark 9.6. A detailed check of the equivalence of the “Spin,” and “Riemann—
Roch” forms of the fixed-point contribution may be found in [4, Section 2.3].
In general, it is quite possible that F is contained neither in M4 nor in M_: this
happens for instance for M = D(SO(3)), as discussed in the final section of this

paper.

Remark 9.7. The right-hand side of the localization formula appears in [4], as a
“working definition” of the quantization of ag-Hamiltonian space. However, in [4] it
was not understood how to view this expression asthe localization of an appropriate
equivariant object on M.

5 The square root is determined as follows. Let Sy be the fiber of the spinor module at any given
x € F. Choose a Tp-invariant complex structure on Ty M, compatible with the orientation.
Let ¢, ..., Cnj2 € U(1) be the eigenvalues (with multiplicities) for the action of t on TxM, and
u € U(1) the action of t on the line Homg (1, m) (Ac Tx M, Sx). Then

cLp®?=u[] "
cr#1

using the square roots of ¢; # 1 with positive imaginary part.
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10 Quantization commutes with reduction

Suppose (M, w, @) is a compact g-Hamiltonian SU(2)-space, with a prequantiza-
tion at level-k. For each| = 0, ..., k, let C; be the conjugacy class of the element
exp(Lp). If SU(2) actsfreely (respectively locally freely) on ®~1(C)), then

M/¢ SU@) = (M x )/ SU2) = @~(C1)/ SU(2)

is a smooth symplectic manifold (respectively orbifold), with alevel-k prequantiza-
tion from M. The Riemann—-Roch numbers

QM/¢ SU(Q)) € Z

are thus defined. If SU(2) does not act locally freely, it is still possible to define the
Riemann—Roch numbers using a partial desingularization, asin [32].

Theorem 10.1 (g-Hamiltonian quantization commutes with reduction). Let
(M, w, @) be alevel-k prequantized g-Hamiltonian SU(2)-manifold, and Q(M) €
Rk(SU(2)) its quantization. Let N(l) € Z be the multiplicity of 7; in Q(M). Then

N() = Q(M/¢ SU(2)),

where the right-hand side denotes the level-k quantization of the symplectic
quotient.

A general proof of thisresult, for arbitrary simply connected groups, can befoundin
[4]. Herewe will present amuch simpler approach for therank-1 case. It is modeled
after asimilar proof for the Hamiltonian case [30, Appendix].

Proposition 10.2. Let (M, w, @) be a level-k prequantized g-Hamiltonian SU(2)-
space. Suppose SU(2) acts (locally) freely on @ (e), ®~1(c), so that the imploded
cross-section (X, wx, ®x) is a smooth Hamiltonian T-space, with a prequantiza-
tion at level-k. Let Nx (1), € Z, be the multiplicity function for the Hamiltonian
T-space X, and N(I), 0 < | <k, that for the g-Hamiltonian SU(2)-space M. Then

N(@) ifo<l<k,

Nx (1) = | .
0 otherwise.

Proof. We will consider only the case that SU(2) acts freely on ®~1(e), @~ 1(c).
The fact that Nx(l) vanishesunless0 < | < k is an easy specia case of the
Hamiltonian “quantization commutes with reduction” theorem; see, e.g., [17]. The
statement is thus equivalent to showing that Q(M) istheimage, under the induction
map R«(T) — Rk(SU(2)), of t?Q(M)(t) € R(T) (restricted to Tx2). That is, we
haveto show that for al t = j (z), withz € {q, d2, ..., gkt1},

QX)) -t oX)t™hH o)) |, o)t
tr —t=r 1t 1—t2

QM) =
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The equivariant index theorem expresses Q(M)(t) as a sum of fixed-point contri-
butions, Q(ve)(t), as explained above. Since SU(2) acts freely on ®~1(e), ®~1(c),
the fixed-point manifolds F are all contained in Myeq; hence we may work with the
Riemann—Roch form of the fixed-point contributions. By regularity, ®(F) c T"™9.
Thus, either F C Y, or theimage of F under the Weyl group action liesin Y. That
is, al fixed-point manifoldscomein pairs F, F’, with F € Y and F’ itsimage under
the action of the nontrivial Weyl group element. We have

Qe)(t) = QWE)(t™Y).

Now, since F C Y, it also appears as a fixed-point set in X. The normal bundle of
F in M splits as a direct sum of its normal bundle vZ in X and the normal bundle
of Y in M, the latter being T-equivariantly isomorphic to C, = C,. Hence, the
fixed-point contributions are related by

QW)

QW™
1-t2"° 1t

Q(VF)(t) = 1_t2

Qvr)(t) =

Summing over al fixed-point components F c Y*, one obtains all contributionsto
the fixed-point formulafor X, except the contributionsfrom F = M/ SU(2) and
F = M/ SU(2). From the explicit description of the normal bundle of M/ SU(2)
as @1(0) xsu(z) C?, and the identity, for & € su(2),

det(1 — z7te ) = z % det(1 — z&*) = z 2 det(1 — ze ™),

we obtain

D(vl\)/(I/SU(Z)’ 7Y = Z_ZD(Vli(/I/SU(Z)r 7).
Hence, the two termsfor F = M/ SU(2) cancel in the fixed-point formulafor X.
Similarly, the two contributionsfrom F = M/ SU(2) cancel.

Proof of Theorem 10.1. We have seen that N(I) = Nx(l). From the “quantization
commutes with reduction theorem” for Hamiltonian U(1)-spaces [17], we know
that Nx (1) isthe Riemann—Roch number of the level-k quantization of asymplectic
quotient of X:

izl
Ny = 0 (o5 () 1u) = ey U@,
One obtains the multiplicities N(I) by the orthogonality relations (3). Writing
N() = Q(M/¢ SU(2)) we obtain

k+1

QM /¢ SUQ) =D

s=1

9% — g5

s A0 @) 2M)(j (@%).
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11 Examples

Using the localization formula, we can compute the quantizations Q(M) e
R«(SU(2)) for our basic examples. Recall that zn, n = 0,..., Kk, are the basis
elements of R«(SU(2)).

11.1 The double
We begin with the g-Hamiltonian SU(2)-space D(SU(2)). Recall that this spaceis
prequantizable at any integer level k > 1.
Proposition 11.1. The level-k quantization of the double D (SU(2)) is given by
[5]

Q(D(SUQ) = > (k+1-2j)rz;.
j=0

Here [x] denotes the largest integer less than or equal to x. Equivalently,

_ 2k + 4
Q(D(SU)(j (@%) = m

fors=1,...,k+1

Proof. We first verify the equivalence of the two formulas. Using the known
formulas for products of z,'s, one finds that

(5]

k
D k+1-2))r2) = > ().
n=0

j=0

Writez = g5. Then

K k
. 1 B
> (anli @) = =g 2@ 2 )2
n=0 n=0
k
! 2k + 4
== S g2y . T
|lz—z71)2 nZO( ) Tr=Trl

where the sum is evaluated as a geometric series (using ZK*2 = (—1)S). We next
comparethisresult to the fixed-point computationfor M = D(SU(2)) (thefollowing
computation may befoundin[4]). Sincetheaction of SU(2) on M = SU(2) x SU(2)
is by conjugation on each factor, and | (z) isaregular element, its fixed-point set is
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MI@=TxT=F.

Notethat ®(F) = {e}, in particular F C M... Theinduced symplectic structure on
F isthe standard symplectic structureon T x T, defined by the inner product:

wF = prior - pr3 o7,

wherepr,;: T x T — T arethe two projections. The symplectic volume of F is

voI(F):/TXTa)Fz(/TQT)~(/T0T):a~a:2.

The Spin.-line bundle £ comes from the level-(k + 2) Morita isomorphism
CI(TM) ~ d* A2,

C~CITM)® CI(TM) ~ o* 4%+,

hence it is isomorphic to the (2k + 4)th power of the level-1 prequantum line
bundle over F. (We are using that H?(M, Z) = 0.) Hence %cl(ﬁ;:) = K+ 2)wr.
By considering the action at x = (e, €) € F, onechecksthat ¢ (Lr)(t) = 1. Indeed,
the Spin,-structureon Ty M extendsto an SU(2)-equivariant Spin..-structure, and the
corresponding representation of SU(2) on Lk |x is necessarily trivial. The normal
bundleto F in M isatrivia bundle

vE =s5u(2)/tdsu(2)/t=CapC™,

with T acting by weight 2 on the first summand and —2 on the second summand.

Hence
GFOY2 1 1

Dr(vr,0)  1A-AA-22) [z—z 17
Since finally A(F) = 1, the fixed-point contribution is

elk+dor 2k +4
Flz—zP 2=z

x(vr, j(2) =

as claimed.

Recal now that M(Zp) = D(SU(2))"/ SU(2) is the moduli space of flat SU(2)-
bundles over asurface of genush. Using that quantization commutes with products,
we have Q(D(SU(2))") = Q(D(SU(2)))". Together with the quantization com-
mutes with reduction principle we hence obtain the Verlinde formulafor this moduli
space (cf. [40]):

k+1 /s —s2\1"h k1 ;20 sp y\1-h
o |q —q | o 2sin (R+2)
Q(M(Zn)) = Z(W) - Z(W) '

s=1 s=1
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11.2 Conjugacy classes

We have seen that the conjugacy classes C ¢ SU(2) admitting alevel-k prequanti-
zation are precisely those of elements exp(Ep) with0 < n < k.

Proposition 11.2. The level-k quantization of the conjugacy class C = SU(2) -
exp(gp) isgiven by
Q(C) = n. (14

Equivalently, fors=1,...,k+1,

) qs(n+1) _ q—s(n+l)

QO @) = 5 (15)
Proof. The equivalence of the two formulations follows from the discussion in
Section 2.2. Write z = 5. If n < k, then ®(C) C SU(2),.. The symplectic form on
C = Cy identifies C with the coadjoint orbit of E p, and the level-k prequantization
corresponds to the usual (level-1) prequantization of the orbit through np. Written
in Riemann—Roch form, the fixed-point contributions for the conjugacy class are
just the same as those for the coadjoint orbit, given by (15). If n = k, the conjugacy
class C coincides with the central element {c}. Since ZK+2 = (—1)S we have

7K+ _ o~ (k+1) ZK+2 _ 7= (k+2)42

= = =__1S
1x(2) p— 21 (-=1°,

which on the other hand is also the fixed-point contribution for Q(C)(j (2)), for
C € ®1(SU(2)_). Thisgives (15) for n = k.

As a consequence, we may compute the level-k quantization of
M(ZL:C1, ..., C) = D(SUR)Y" x C1 x -+~ x Cr,

whereCi,i = 1,...,r, areconjugacy classes of elementsexp('—llp) withO <I;j <k.
One obtains

e —as2\
Q(M(zg;cl,...,cr»:Z(TH) 0,(@%) -+ 71, (7).
s=1

Forh = O0andr = 3, the right-hand side of this formula consists of the fusion
coefficients. That is,

QM(22: C1.Ca. C3)) = N©)

1,12,13°
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11.3 The 4-sphere

Recall that the g-Hamiltonian space S* admits a unique prequantization for all k.

Proposition 11.3. The level-k quantization of the 4-sphere s given by

k
Qs =D .
n=0

Equivalently,fors=1,...,k+1,

211—q7S|72 dd,
Q(S4)(J(qs))=[ ma so
0, S even.

Proof. Write z = g°. We first verify the equivalence of the two formulas:

k

> (i (@(@) =

k
12_1 Z(Zn+1 _ Z—(n+1))
n=0

n=0 Z-
1 s k2 1, (k42)
T 771 1-z  1-z1 '
If siseven, then Zt2 = 1 and the two terms cancel. If s is odd, then Zt2 = —1

and we obtain, writing (z— z 1) = (1 — z Y (z+ 1), that

k ' B 2 _ 2
ngofn(l (2) = 1-zH1-2 C1-z 42

The fixed-point set of t consists of the “north pole” ®~1(e) and the “south pole”
®~1(c). By construction, S} are identified with open ballsin C?, with the standard
SU(2)-action. Hencetheweightsforthe T C SU(2)-actionare +1, —1 respectively,
and the fixed-point formulas give (using j (z) k27 = Z*+2 = (=1)%)

1

TV aga-y

. 1
9(sh(j(2) = A-2a-79

as needed.

11.4 Moduli spaces of flat SO(3)-bundles

The symplectic quotient
D(SO(3))"/ SO(3)
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of an h-fold product of D(SO(3))’s (viewed as g-Hamiltonian SO(3)-spaces) is the
moduli space of flat SO(3)-bundles over a surface of genus h. It has two connected
components, given as symplectic quotients of D(SO(3))", where D(SO(3)) is now
viewed as a g-Hamiltonian SU(2)-space:

D(SO(3))"/ SO(3) = D(SO(3))"/ SU(2) U D(SO3)"/c SU(2).  (16)

Thetwo components correspond to the trivial and the nontrivial SO(3)-bundlesover
the surface. To obtain Verlinde numbers for these moduli spaces, we need to work
out the quantization of the g-Hamiltonian SU(2)-space D (SO(3)).

We have seen that D(SO(3)) is prequantizable at level-k if and only if Kk is
even. The different prequantizationsform a principal homogeneous space under the
torsion subgroup of H2(D(SO(3)), Z). In fact, thisgroup is all torsion, and

H?(D(S0@)), Z) = HZ, 7, (D(SU(2)), Z)

=HZ 2 (L. 2)
= Hom(Zz x Z, U(1)).

Letting Cy4 denote the 1-dimensional representation given by ¢ € Hom(Z; x
Z2,U(1)), this group acts by tensoring with the flat line bundle

D(SU(2)) x7,xz, Co-

Let T = T/Zy be the maximal torus in SO(3), and N(T) c SU(2), N(T) C
SO(3) the normalizers. Similarly, for elements a, b, ... of SU(2) we denote by
a’,b/,...theirimagesin SO(3).

Lemma 11.4. For anyt € Treg C SU(2), thefixed-point set of itsaction on SO(3) =
SU(2)/Z2isT' = T/Z, unlesst? = ¢, inwhich caseitis N(T’) = N(T)/Zo.

Proof. For a € SU(2), the element &’ is fixed under Ad; if and only if a is fixed
up to acentral element, i.e., tat—ta~1 e Z(SU(2)). If this central element ise, this
just meansthat a € T. If the central element is ¢, then at—*a=1 = t~1c shows
that a € N(T) represents the nontrivial Weyl element w, and ¢ = tw(t~1) = t2.
We have thus shown that the fixed-point set of aregular element t istheimage of T
in SO(3), unlesst? = c, in which caseit is theimage of the normalizer N(T).

Let us consider the fixed contributionsof anyt = j(q%),s=1,2,...,k+1, for
the g-Hamiltonian space D(SO(3)), for k even. Notethat t2 = ¢ < s = k/2 + 1,
and so we have to consider two cases:

Casel.s # 1+ & i, t? # c. Then D(SO@3))' = T’ x T’ =: F is connected,
and its moment map image is {e}. Since SU(2) acts trivially on the fiber of L, at
(¢, €) C F,theactionof t on L4 | istrivial. Hence the fixed-point contributionis
just 1/4 that of the corresponding fixed-point manifold in D(SU(2)):
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e ) 1 2k+4 1 (k +1)
Vv 5 = — = " - .
2 410°— g2 4sin*(£3) \2

Case2.s=1+ % i.e,t?=candg®=i.Then D(SO(3))! = N(T’) x N(T’) has
four connected components, indexed by the elementsof u = (U1, u2) €e W x W =

Zo x Zp. Choose
n= 0 1 N(T
=\_1 o) NM

asalift of the nontrivial Weyl group element, and let n” € N(T") beitsimage. Then
each fixed-point component F, has a base point

XU € {(e(a e()a (n/a e/)v (e(9 n/)a (n/a n/)}

with the property ®(x,) = e. For any given choice of the prequantization, one finds
that the contribution of the component labeled by u = (u1, uy) is of the form®

Au) 2k+4 _A(u)(k )

- |
4 gz 4 \27

xR, 1) =

where A(u) € U(1) is given by the action of t on L |m,. For u = (1, 1), this
phase factor is A(u) = 1 as above. Thetotal fixed-point contribution is obtained by
summing over al u = (u1, uz):

QD (0@ 2 = (5 +1) X 45

Let y € R¢(SU(2)) be defined by

k/2
1= (Dgj=w-r2+m+ -+ (=D 17)
j=0

Using the orthogonality relations for level-k characters, one finds that

k
W2y = > 4+1, 4@ =0 fors#k/2+1.

x(q >

From the localization contributions, we see that

1
Q(D(SOWQ))) = 5 (Q(D(SU(Z))) + D A X) :

4 u#A(LD

It remainsto understand thesum >, ; 1) A(U).

6 The computation is similar to that in Section 11.1. In particular, the symplectic volume of the
2-torus Fy may be computed by working out wr, in coordinates; one obtains vol (Fy) = 1/2. See
[2] for more general calculations aong these lines.
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Lemma 11.5. For every even k and any ¢ € Hom(Zy x Zz,U(1)), the space
D(SO(3)) admits a unique pregquantization at level-k with the property that

AU) = (=1)¥2p(u)

forall u # (1, 1).

Proof. Changing the preguantization by ¢ € Hom(Z, x Z,U(1)) changes A(u)
to 2(u) = A(u)¢(u). This shows uniqueness. For existence, we have to find a pre-
quantization with A(u) = (—1)¥/2 for u # (1, 1). In fact, it is enough to find such
aprequantization for k = 2. (The general case will then follow by taking the k/2th
power of the prequantization at level 2.)

For k = 2, and any of the four possible prequantizations, write

2
Q(D(S0@))) = > N,

1=0
Thelocalization formulasfor g, g2, q° give equations

N(0) + v2N(1) + N(2) = 1,

1 1
NO -N@ =3+5 > AW,
uz#(1,1)

N() — v2N(1) + N(2) = 1.

The first and third equations give N(1) = 0 and N(0) + N(2) = 1. In particular,
N(0) — N(2) isan odd integer. The second equation shows that Zu#(m) A(u)isa
real number. A change of prequantization produces a sign change of exactly two of
the A1(u)’'swith u # (1, 1). Since Zu#(l,l) Z(u) is again a real number, it follows
that all A(u) are real, and hence equal to +1. The number of /(u)’s equal to —1
must be odd, or else the second equation would give that N(0) + N(2) = 0or = 2,
contradicting that N(0) — N(2) isodd. Hence, either all three /.(u)’swithu # (1, 1)
areequal to —1, or exactly one of them equals —1 and the other two are equal to +1.
Theresulting four cases must correspond to the four prequantizations. In particul ar,
thereisaunique level-2 prequantization such that A(u) = —1forall u # (-1, —1).

Let 95,1 beequal to 1if ¢ = 1, equal to O otherwise. Then 3", ¢ (u) = 49,1, i€,
Zu;&(l,l) d(u) = —1+ 494 1. It follows that

1
Q(D(S0@M)) = ((D(SU(2) + (—D2(=1+495.1) 2)-

From the known expansions of Q(D(SU(2))) (Proposition 11.1) and y (equa-
tion (17)) in the basis 7, wefinally obtain the following theorem:

Theorem 11.6. For k even, let D(SO(3)) carry the level-k pregquantization labeled
by ¢ € Hom(Z, x Z3, U(1)). Then
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1 k2 _
QD(SOWM) = 7 > (k+1=2) + (=D 3(=1+ 46y 1)1z,
j=0
Equivalently,fors =1,...,k+1,
Fsin 2 (%) (5 +1). s#+1

Q(D(S0(d))(j (%) =
1A+ (-DM2(-1+4951) (5 +1), s=5+1.

Dividing into the various subcases, the formulareads

E+Doo+E-Doo+Su+(§-2w+---,
¢—1 k=0 mod 4,

‘L'0+ ‘L'2+(——1)‘L'4+( 1)1'6+-~-,

¢#1, k=0 mod 4,

(ot (F + Vet (452~ Dot (Phrs s
¢=1 k=2 mod 4,

(52 + Yo+ () ez + (F)ract (2 - Dot
¢#1, k=2 mod 4.

Q(D(SO@Q))) = ;

Using this result, in combination with “quantization commutes with reduction,” it
is now straightforward to compute the quantizations (Verlinde numbers) for the
moduli spaces (16). Note that there are many different prequantizations, since one
can choose a different ¢ for each factor. The case with boundary (markings) is still
more complicated, and will be discussed elsewhere.

Remark 11.7. For k = 0 mod 4, the result above was proved about eight years
ago in joint work [2] with Anton Alekseev and Chris Woodward. Pantev [34] and
Beauville [10] had earlier obtained similar results using techniques from algebraic
geometry.

References

1. A. Alekseev, A. Makin, and E. Meinrenken, Lie group valued moment maps, J. Differential
Geom. 48 (1998), no. 3, 445-495.

2. A. Alekseev, E. Meinrenken, and C. Woodward, Formulas of Verlinde type for non simply-
connected groups, 2000, Unfinished manuscript.

, Group-valued equivariant localization, Invent. Math. 140 (2000), no. 2, 327-350.

4. A.Alekseev, E. Meinrenken, and C. Woodward, The Verlinde formulas asfixed point formulas,
J. Symplectic Geom. 1 (2001), no. 1, 1-46.

, Duistermaat—Heckman measures and moduli spaces of flat bundles over surfaces,
Geom. and Funct. Anal. 12 (2002), 1-31.

6. M. Atiyah and G. Segal, Twisted K -theory, Ukr. Mat. Visn. 1 (2004), no. 3, 287-330.

7. M. F. Atiyah and G. B. Segal, The index of dlliptic operators. 11, Ann. of Math. (2) 87 (1968),
531-545.




292 Eckhard Meinrenken

8. M. F. Atiyah and |. M. Singer, The index of elliptic operators I, Ann. of Math. (2) 87 (1968),
484-530.
9. , The index of elliptic operators I11, Ann. of Math. (2) 87 (1968), 546—604.

10. A. Beauville, The Verlinde formula for PGL(p)., The mathematical beauty of physics (Saclay,
1996), Adv. Ser. Math. Phys., vol. 24, World Sci. Publishing, 1997, pp. 141-151.

11. N. Berline, E. Getzler, and M. Vergne, Heat kernels and Dirac operators, Grundlehren der
mathematischen Wissenschaften, vol. 298, Springer-Verlag, Berlin—Heidelberg-New York,
1992.

12. D. Chatterjee, On the construction of Abelian gerbs, Ph.D. thesis, University of Cambridge,
1998.

13. A. Connes, Noncommutative differential geometry, Inst. Hautes Etudes Sci. Publ. Math.
(1985), no. 62, 257-360.

14. J. Dixmier and A. Douady, Champs continus d’ espaces hilbertiens et de C*-algebres, Bull.
Soc. Math. France 91 (1963), 227-284.

15. J. J. Duistermaat, Convexity and tightness for restrictions of Hamiltonian functions to fixed
point sets of an antisymplectic involution, Trans. Amer. Math. Soc. 275 (1983), 412-429.

, The heat kernel Lefschetz fixed point formula for the Spin-c Dirac operator, Progress
inNonlinear Differential Equationsand Their Applications, vol. 18, Birkhauser, Boston, 1996.

17. J. J. Duistermaat, V. Guillemin, E. Meinrenken, and S. Wu, Symplectic reduction and
Riemann—Roch for circle actions, Math. Res. Letters 2 (1995), 259-266.

18. J. J. Duistermaat and G. J. Heckman, On the variation in the cohomology of the symplectic
form of the reduced phase space, Invent. Math. 69 (1982), 259-268.

19. D. Freed, The Verlinde algebra is twisted equivariant K -theory, Turkish J. Math. 25 (2001),
no. 1, 159-167.

20. D. Freed, M. Hopkins, and C. Teleman, Loop Groups and Twisted K-Theory |, arXiv:
0711.1906.

21. V. Guillemin, Reduced phase spaces and Riemann—Roch, Lie Groups and Geometry in Honor
of B. Kostant (Massachusetts | nstitute of Technology, 1994) (R. Brylinski et al., eds.), Progress
in Mathematics, vol. 123, Birkhauser, Boston, 1995, pp. 305-334.

22. V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group represen-
tations, Invent. Math. 67 (1982), 515-538.

23. N. Higson and J. Roe, Analytic K-homology, Oxford Mathematical Monographs, Oxford
University Press, Oxford, 2000, Oxford Science Publications.

24. N. Hitchin, Lectures on special Lagrangian submanifolds, Winter School on Mirror Symme-
try, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), Amer. Math. Soc.,
Providence, RI, 2001, pp. 151-182.

25. J. Hurtubise, L. Jeffrey, and R. Sjamaar, Group-valued implosion and parabolic structures,
Amer. J. Math. 128 (2006), no. 1, 167-214.

26. J. C. Hurtubiseand L. C. Jeffrey, Representations with weighted frames and framed parabolic
bundles, Canad. J. Math. 52 (2000), no. 6, 1235-1268.

27. L. Jeffrey and J. Weitsman, Bohr—Sommerfeld orbits in the moduli space of flat connections
and the Verlinde dimension formula, Comm. Math. Phys. 150 (1992), no. 3, 593-630.

28. G. G. Kasparov, K -theory, group C*-algebras, and higher signatures (conspectus), Novikov
conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc.
Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 101-146.

29. D. Krepski, Pre-quantization of the moduli space of flat G-bundles over a surface, J. Geom.
Phys. 58 (2008), no. 11, 1624-1637.

30. E. Meinrenken, Symplectic surgery and the Spin®-Dirac operator, Adv. in Math. 134 (1998),
240-277.

31. E. Meinrenken, Twisted K -homology and group-valued moment maps, Preprint, August 2010,
arXiv:1008.1261.

32. E. Meinrenken and R. Siamaar, Sngular reduction and quantization, Topology 38 (1999),
699-763.

33. L. O’ Sheaand R. Sjamaar, Moment maps and Riemannian symmetric pairs, Math. Ann. 317
(2000), no. 3, 415-457.

16.




Quantization of g-Hamiltonian SU(2)-spaces 293

34. T. Pantev, Comparison of generalized theta functions, Duke Math. J. 76 (1994), no. 2,
509-539.

35. R. J. Plymen, Srong Morita equivalence, spinors and symplectic spinors, J. Operator Theory
16 (1986), no. 2, 305-324.

36. A. Pressley and G. Segal, Loop groups, Oxford University Press, Oxford, 1988.

37. J. Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral.
Math. Soc. Ser. A 47 (1989), no. 3, 368-381.

38. F. Schaffhauser, Areal convexity theorem for quasi-Hamiltonian actions, arXiv:0705.0858.

39. R. Samaar and E. Lerman, Sratified symplectic spaces and reduction, Ann. of Math. (2) 134
(1991), 375-422.

40. A. Szenes, \erification of Verlinde's formulas for SU(2), Internat. Math. Res. Notices (1991),
no. 7, 93-98.






Wall-crossing formulasin Hamiltonian geometry

Paul-Emile Paradan

Dedicated to Hans Duistermaat on the occasion of his 65th
birthday

Abstract In this article, we study the local invariants associated to the Hamil-
tonian action of a compact torus. Our main results are wall-crossing formulas
between invariants attached to adjacent connected components of regular values of
the moment map.

Key words: Symplectic, moment map, geometric quantization, transversally
elliptic, partition function
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1 Introduction

Let (M, Q) be a compact connected symplectic manifold with the Hamiltonian
action of a compact torus T and moment map @ : M — t*. Let us assume that
the action is effective. We are interested here in two global invariants:

1. the Duistermaat—Heckman measure DH(M), which is the pushforward by ® of
the Liouville volume form,

2. the Riemann—Roch characters RR(M, L&), k > 1, which are virtual represen-
tations of T. Here the data (M, Q, @) is prequantized by a Kostant—Souriau line
bundle L.

Let A* C t* be the weight lattice of T. For every couple (u, k) € A* x Z”%, we
denote by m(x, k) € Z the multiplicity of the weight x in RR(M, L&),
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One striking property of the moment map is that its image ®(M) is a convex
polytope in t*. In fact, as noted for example in [17] or [20], each component of the
set of regular values of @ is either an open convex polytope contained in ® (M) or
the open subset cext = t*\ @ (M).

Let us fix a connected component ¢ of regular values of ®. A celebrated theorem
of Duistermaat and Heckman [15] tells us that the measure DH(M) is equal to a
polynomial DH, times a Lebesgue measure on the open subset c. Note that DH.,,,
is the zero polynomial.

The “quantization commutes with reduction” theorem [28, 29] shows that there
exists a periodic polynomiall m. : A* x Z — Z which coincides with the multipli-
citymapm : A*xZ>% — Z on the cone of t* x R generated by ¢ x {1}. The periodic
polynomial m. is defined by a Kawasaki-Riemann—Roch formula on a symplectic
quotient M, = ®~1(a)/T, where a € c¢. As a corollary, we get that DH_ is the
semiclassical limit of m.: one has

ku, k 1
||m mt( /us ) _

M T T @na e (L1

for every 4 € A*. Here d = % dim M.

We have seen that the global invariants DH(M), RR(M, L&), k > 1, give rise
to a family of local invariants DH, m., where ¢ runs over the connected component
of regular values of @.

This paper is concerned with the differences DH., — DH._ and m¢, — m¢_ in
the case that ¢4 are two adjacent connected components of regular values of ®. Let
A C t* be the hyperplane that separates c.. Some continuity properties are known:

1. the polynomial DH., — DH,_ is divisible by a certain power of the equation of
the hyperplane A (see [17] and [12]);
2. the periodic polynomial m¢, — m._ vanishes on

{(u,K) € A* x Z| u € KA}, (1.2)
See [29].

In this paper, we compute explicitly the difference DH., — DH,_, and we show
that m¢, — m¢_ vanishes also on some translates of (1.2).

Let us introduce some notation. We denote by To C T the subtorus of dimension
1 that has for Lie algebra the one-dimensional subspace t, which is orthogonal to
the hyperplane A. Let f € ta be the primitive element of the coweight lattice
ker(exp : t — T) which is pointing in the direction from ¢_ to c.

We make the choice of a decomposition T = T/Ta x Ta, Where T/ Ta denotes
a subtorus of T. At the level of Lie algebras, we have then t = (t/ta) @ ta and
t" = (t/ta)* @ t}: hence & + (t/ta)* = A forany & € A. We denote by S(t)
the algebra of polynomials on the vector space t*. We will consider the polynomial
DH., — DH._ e S(t) relatively to the decomposition

1 See Definition 3.1 for the notion of “periodic polynomial.”
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S =P St/ta)p’.

jeN

Let us choose (and fix once and for all) & € A in the relative interior of cx Nc—
in A. We consider the family F of connected components Z ¢ MT4 such that
& e ®(Z) C A.ltiseasy to see that F does not depend of the choice of £: we have
trNc_ Cc ®(Z)forall Z € F. Foreach Z € F, we denote by

DOz Z— (t/ta)*

the restriction of the map ® — & to the symplectic submanifold Z. The map @7
is @ moment map relative to the Hamiltonian action of T/Tx on Z. Let DH(Z)
be Duistermaat—Heckman measure on (t/ta)* associated to the moment map @ .
Since 0 is a regular value of @z, we may consider the Duistermaat—Heckman poly-
nomial

DHo(Z) € S(t/ta)

such that DH(Z)(a’) = DHo(Z)(a’)Pa’ in aneighborhood of 0 € (t/ta)*. Here da’
is the natural Lebesgue measure on (t/ta)*, derived from the Lebesgue measure on
t“and dg on t3.

For Z € F, we consider the symplectic reduction

Z: = 0550)/(T/Ta)

and the normal bundle Nz of Z in M. Note that Nz inherits the structure of a
symplectic vector bundle, together with a Hamiltonian vector bundle action of the
circle Ta on it. Let 2dz be the dimension of Z¢ and let 2r z be the (real) rank of Nz.
We prove in Section 2 the following.

Theorem A. We have

(DH, —DH¢ )(@) = > Dz(@a—¢), aet,
ZeF

where each polynomial Dz € S(t) admits the following decomposition:
_ dz
pret ( DHo(2) K
Dz = + > BQzx )
L _ >
det;/* (Yﬁ) =Y (H

Each polynomial Qz K belongsto S(t/ta) and is of degree less than dz — k. The

term detl/? (=2 L) e 7 isthe Pfaffian of the infinitesimal action of 52 on the fibers
of the normal bundle Nz.

Theorem A generalizes previous results of Guillemin-Lerman—Sternberg [17]
and Brion—Procesi [12]. In Section 2.4 we give the precise definition of the polyno-
mials Qz .
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Suppose now that M is prequantized by a Kostant-Souriau line bundle L. The
hyperplane A is defined by the equation

(a, )
2r

—ra=0, aet" (1.3)

for some rp € Z. The bundle Nz decomposes as the sum of two polarized sub-
bundles N5 Let s € N be the absolute value of the trace of £ £; on N3

Note that the integer s} + s is larger than half of the codimension of Z in M.
We prove in Section 3.5 the following theorem.

Theorem B. Let s* := infzc 7 s; We have m¢, (u, K) = mc_(u, K) when

_ Au, p)

—S <

—krp <st. (1.4)
T
Note that the symplectic orbifolds Z¢, Z € F form the connected component of
the symplectic reduction

ME = (@1 N M) /(T/Ty).
We have the following refinement of Theorem B.

Theorem C. If/\/lfA is connected, the inequalities (1.4) are optimal, i.e., there exist
(u, k) such that <u2_f> —krp = +st and Me, (@, K) # me_(u, K).

In Section 4 we apply Theorem B to the particular cases in which M is an integral
coadjoint orbit of a compact Lie group G. In Section 4.4, we study more precisely
the case G = SU(n): here our result specifies some results of Billey—Guillemin-
Rassart [10].

In Section 5, we obtain a strong version of Theorem B in the case of an action of
atorus T on a complex vector space CY. The quantization of this action is in some
sense the vector space Pol(C%) of complex polynomials on C9. The T-multiplicities
of Pol(CY) are given by a partition function Ng : A* — N. It was observed in [13,
35] that there exists a finite decomposition of the vector space t* in conic chambers
such that NRg is a periodic polynomial on each piece.

Let ¢4 be two adjacent chambers, and let P.. be the corresponding periodic
polynomials computing Nr on each chamber. The main result of Section 5 is the
formula (5.6), which depicts the periodic polynomial P., — P._ as a convolution of
distributions. Recently,? Boyal-Vergne [11] and De Concini-Procesi-Vergne [14]
proposed different proofs of this formula.

2 Qur present paper is a revised version of the preprint math.SG/0411306.
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Notation

Throughout the paper T will denote a compact, connected abelian Lie group, and t
its Lie algebra. The integral lattice A C t is defined as the kernel of exp : t — T,
and the real weight lattice A* C t* is defined by A* := hom(A, 2z Z). Every
u € A* defines a 1-dimensional T-representation, denoted by C,, where t =
exp X acts by t# := € {X) \We denote by R(T) the ring of characters of finite-
dimensional T-representations. We denote by R™°°(T) the set of generalized char-
acters of T. An element y € R™°°(T) is of the form y = Z”Em a, C,, where
u— a,, A* — Z has at most polynomial growth.

The symplectic manifolds are oriented by their Liouville volume forms. If (Z, 0z)
is an oriented submanifold of an oriented manifold (M, oy ), we take on the fibers
of the normal bundle N of Z in M, the orientation oy satisfying oy = 0z - ON.

2 Duister maat—Heckman measures

Let (M, Q) be a connected symplectic manifold of dimension 2n equipped with a
Hamiltonian action of a torus T, with Lie algebra t. The momentmap ® : M —
t* satisfies the relations Q(Xu, —) + d{(®, X) = 0, X € t, where Xy (m) =
%h:oe‘tx -m is the vector field generated by the infinitesimal action of X € t.

We assume in this section that @ is a proper map, and that the generic stabilizer
I'm of T on M is finite.

The Duistermaat—Heckman measure DH(M) is defined as the pushforward by
@ of the Liouville volume form ‘ﬁ—? on M. For every f e C*(t*) with compact

support one has [,. DH(M)(a) f (a) = [, f(d))%—?. Equivalently,

n

DH(M)(a):/M(S(a—CD)%, aet

We can define DH(M) in terms of equivariant forms as follows. Let . A(M) be
the space of differential forms on M with complex coefficients. We denote by
At’erj'ﬁ,(t, M) the space of tempered generalized functions over t with values in
A(M), and by M@%Op(t*, M) the space of tempered distributions over t* with

values in A(M). Let F : Agmp(t, M) — Mo (£, M) be the Fourier transform
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normalized by the condition that (X — €'©-X)) is equal to the Dirac distribution
ar d(a—<).

Let Q¢(X) = Q — (@, X) be the equivariant symplectic form. We have then
F(e ') = e '2%5(a — @) and so

DH(M) = (i)”/M F(e 'y, (2.1)

2.1 Equivariant cohomology and localization

We first recall the Cartan model of equivariant cohomology with polynomial coeffi-
cients and the extension to generalized coefficients defined by Kumar and Vergne
[26]. We then give a brief account of the method of localization developed in
[30, 31],

Let M be a manifold provided with an action of a compact connected Lie group
K with Lie algebra ¢. Letd : A(M) — A(M) be the exterior differentiation. Let
Ac(M) be the subalgebra of compactly supported differential forms. If V is a vector
field on M we denote by c(V) : A(M) — A(M) the contraction by V. The action
of K on M gives a morphism X — Xy from ¢ to the Lie algebra of vector fields
on M.

We consider the space of K -equivariantmaps ¢ — A(M), X i 5(X), equipped
with the derivation (D#)(X) := (d — ¢(Xm))(n(X)), X € & Since D? = 0, one
can define the cohomology space ker D/ImD. The Cartan model [7, 21] considers
polynomial maps, and the associated cohomology is denoted by Hy (M). Kumar
and Vergne [26] studied the cohomology spaces HKO"(M) obtained by taking C*>
maps. Recall the construction H > (M).

The space C~°°(t, A(M)) of generalized functions on ¢ with values in the
space A(M) is, by definition, the space Hom(mc(¢), A(M)) of continuous C-linear
maps from the space mc(£) of smooth compactly supported densities on ¢ to the
space A(M), both endowed with the C*°-topologies. We define A, (M) :=
C=°(t, A(M))X as the space of K -equivariant C~°°-maps from ¢ to A(M).

The differential D defined on C*°(¢, A(M)) admits a natural extension to
C(t, A(M)) and D?> = 0 on A >°(M) [26]. The cohomology associated to
(A (M), D) is called the K-equivariant cohomology with generalized coeffi-
cients and is denoted by 7,**(M). The subspace Ay (M) := C™>(¢, Ac(M)K
is stable under the differential D, and we denote by HE?@(M) the associated
cohomology. When M is oriented, the integration over M gives rise to a map
Ju i HE (M) = (0,

Localization procedure. Let 4 be a K -invariant 1-form on M and let

D)0 M — € (2.2)

be the K-equivariant map defined by (®,(m), X) = A(Xm)m. Then DA(X) =
di — (®,, X). The localization procedure developed in [30, 31] is based on the
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existence of an inverse [DA]~?! of the K -equivariant form D /. It is an equivariantly
closed element of A;OO(M\cD;l(O)) defined by the integral

[DA]7L(X) =i /OOO e 1 tDAX)gt, (2.3)

An open subset &/ C M is called adapted to 4 if ¢/ is K-invariant and if (6l/) N
d);l(O) = . In [31], we associate to an open subset ¢/ adapted to 4 the following
equivariantly closed form with generalized coefficients:

PU = Y 4 dyY[DA] 0. (2.4)

Here yY e C*°(M) is a K -invariant function supported in ¢/ which is equal to 1 in
a neighborhood of &/ N @;1(0). The cohomology class defined by sz in H ™ (M)

does not depend of x“. In particular, P{ = 0 in H (M) if U N ®;1(0) = .
Ifun d);l(O) is compact, we take y“ with compact support. Then Pﬁ’ defines a
cohomology class in % (M).

2.2 Localization of DH(M)

We return to the situation of a Hamiltonian action of a torus T on a symplectic mani-
fold (M, w). We need two auxiliary data: a T-invariant Riemannian metric on M,
denoted by (-, -),,, and a scalar product (-, -) on t* which induces an identification
t* >~ t

Let H be the Hamiltonian vector field of the function *71||<I>||2 . M — R. For
m € M we have Hpy = (©(M))m|m. Then for every & € t*, the Hamiltonian vector
field of ‘71 @ — &2 is H — &m, and we consider the T-invariant 1-form

de = (H =S, )m (2.5)

with corresponding map @;. : M — t* (see (2.2)). Here cD;El(O) coincides with
the subset Cr(||® — &||2) ¢ M of critical points of the function ||® — &||2, and
m e Cr(||® — &||2) if and only if (®(m) — &)m vanishes at m [30, 31].

Definition 2.1. Let P¢ € H;ff(M) be the cohomology class defined by Pﬁ’f, where
U is a T-invariant relatively compact neighborhood of ®~1(&) such that Z/ N
Cr(|l® —¢|I?) = @71().

The cohomology class P will be used to localize the Duistermaat—-Heckman
measure. For every ¢ e t*, we define the distribution DH (M) by

DH: (M) = ()" F (/M Pge_ig‘) . (2.6)
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Here we can put the Fourier transform outside the integral because P, is compactly
supported on M. Forany ¢ e t*, letrg > 0 be the smallest nonzero critical value of
the function ||® — &||2. As a particular case of Proposition 3.8 in [31], we have

Proposition 2.2. Let & be any point in t*. The equality
DH(M) = DHg(M)
of distributions on t* holdsin the open ball B(&, rg) C t*.

We will now use this proposition, first to recover the classical result of Duister-
maat and Heckman [15] concerning the polynomial behavior of DH(M) on the open
subset of regular values of ® and then to determine the difference taken by DH(M)
between two adjacent regions of regular values.

2.3 Polynomial behavior

We recall now the computation of the cohomology class P: when ¢ is a regular value
of @, which is given in [30, Section 6] for the torus case (see [31, Section 3.1] for the
case of the Hamiltonian action of a compact Lie group). First recall the following
basic result, which shows that & — DHs(M) is locally constant on the open subset
of regular values of @.

Lemma 2.3 ([33]). If £ and ¢’ belong to the same connected component of regular
values of @, we have Ps = Pg in Hy T (M).

If we combine Lemma 2.3 with Proposition 2.2, we see that for any connected
component ¢ of regular values of @, we have

DH(M)(a) = DH:(M)(a), acec,

forany ¢ e ¢. We have to compute DH: (M) when ¢ is a regular value of @.

We consider the T-principal bundle ®1(¢) — M, = ®~1(&)/T with cur-
vature form wg € 7‘(2(./\/15) ® t. The orbifold M, carries a canonical symplectic
2-form Q.. We denote by

Kire : M (M) — H*(M;)

the Kirwan morphism. For any y € C*°(t) and # € H$ (M) we have Kir:(ny) =
Kirg () w(wg), where the characteristic class y (w;) is the value of the differential

operator 2 (Fxlo) against y. By [31, Proposition 3.11], we know that the integral

| ] Pe00noouxax
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is equal to _
(—2i )M Tyol(T, dX)
ITml

Kire () (o) 27
for every equivariant class € H$°(M). Here vol(T, dX) is the volume of T for
the Haar measure compatible with d X, and |I"v | is the cardinal of "y (note that the
generic stabilizer of T on ®~1(¢) is T'y). In other words, for every 5 € HF (M)
we have the following equality of generalized functions on t* supported at O:

(=2i n)dimT

/M PeOXn(x) = S

/ Kir 2 ()€™ GxI0vol(T, —). (2.8)
Mv

<

For n = e ' we have Kirs(y) = e '~ and a small computation
shows that

da

F(EFNoI(T, -)) (@) = 1) oS

aeth (2.9)

Here da is the Lebesgue measure on t* normalized by the condition vol(T,dX) =1
for the Lebesgue measure d X on t, which is dual to da.
Finally (2.6), (2.8), and (2.9) give

i\d
DHf(M)(a)=—(I) / e (e t@de) gg
Me

IT'ml
o
- L[ @ty (2.10)
Tl o, di

where 2d = dimM_.

Definition 2.4. For any connected component ¢ of regular values of ® we denote by

A . .
DH, the polynomial function a ﬁ f/\/l: M where ¢ is any point
. .

of c.

With the help of Proposition 2.2 we recover the classical result of Duistermaat
and Heckman [15] stating that the measure DH(M) is locally polynomial® on the
open subset of regular values of @, and its value at a regular element ¢ is equal to
the symplectic volume of the reduced space M. (times |I'm |71). More precisely,
we have shown that for a connected component ¢ of regular values of ® we have

DH(M)(a) = DH.(a)da, ae «. (2.11)

3 It is a polynomial times a Lebesgue measure on ¢*.
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2.4 Wall-crossing formulas

Consider now two connected regions ¢4 of regular values of ® separated by a
hyperplane A C t*. In this section we compute the polynomial DH.,, — DH,_.
It generalizes previous results of Guillemin—Lerman-Sternberg [17] and Brion-
Procesi [12].

Let &, & be respectively two elements of ¢, and ¢_. We know from (2.2),
(2.10), and Definition 2.4 that

(DH., — DH, )(a)da = (i)"F (/ (P:, — Pf_)e—iﬂf) (@), aet. (2.12)
M

We recall now the computation of the conomology class Pz, — P € Hi%o(M)
done in [33]. We use the notation defined in the introduction.

Definition 2.5. We denote by M2 the union of the connected component Z of the
fixed point set M T4, for which we have ®(Z) C A. Let M be the T -invariant open
subset of M2 where T/ T acts locally freely.

For a connected component Z ¢ M*, one has either c; Nt C ®(Z) or ty N
N ®(Z) = ¥, due to the fact that for any & in relative interior of tx Nt in A,
and any m € ®~1(¢), the stabilizer ty C tis either equal to t, or reduced to {0}.

The symplectic manifold M2 carries a Hamiltonian action of T/ T, with moment
map ®[ya - M2 — A equal to the restriction of ® on M2,

Let & be a point in the relative interior of < Nt in A. From the previous
discussion, we know that ¢ is a regular value of @|ya, i.e., o 1E NMTs s a
submanifold of M. Following Definition 2.1 we associate to ¢ the cohomology
class

P& € HTP%, ((Mg)).

Let * (M) be the subalgebra of 7*(MZ) formed by the T-basic elements.
Since the Tx-action on MOA is trivial, we have a canonical product operation

M5, o(ME) X €7 (ta, H* (M) 5 HIF (M. (2.13)

Proposition 2.6 ([33]). There exists a generalized function supported at 0, 5* <
C~(ta, H*(M&)P®), such that

Pev =P = (4P A0%) in HEE(M).

Here (ia)« : H{"CO(MOA) — H; T (M) is the direct image map relative to the
inclusionia : MQ < M.

We will now give the precise definition of §*. The decomposition T = T x
T /T and the trivial action of T, on MoA give a canonical isomorphism

ja tHEME) —> S(t8) ® Hi 1, (Mg)),
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where S(t}) is the algebra of complex polynomial functions on ta. Since the
T/Ta-action on MZ is locally free, we have the Chern-\Weil isomorphism

ova t H 7, (ME) —> HY (MG,
Let N be the T-equivariant normal bundle of M2 in M, and let
Eul(Np) € HE (M)

be the T-equivariant Euler class of N5 . Now we consider the restriction of Eul(Np)
on the open subset My ¢ M A which we see through the isomorphism cva o ja
as an element of S(t}) ® H*(M&)Pas (for simplicity we keep the same nota-
tions Eul(Nx) for this element). Following [30], we define inverses EuI;%(NA) €

C—OO(tA, H*(MOA)baS) by
1 1

Bl (NAYCO = Im e N (X £ 158

(2.14)

Here S € t, is chosen so that (¢ — &=, B) > 0.
Definition 2.7. The generalized function 6 € C~>°(ta, H*(MZ)P®) is defined by

0% := Eul;H(Na) — EUlZ5(Na). (2.15)

Since the polynomial Eul(Ny) is invertible in a smooth manner on t5 \{0}, the
generalized function 62 is supported at 0.
Let & be a pointin the relative interior of cyNc_ in A. We consider the symplectic
reduction
ME =M N &L /(T/Ta).

If we restrict 02 to the submanifold M2 N ®~1(&) we get the generalized function
OF € CT®(ta, H*(ME)).

Now we are able to compute the right-hand side of (2.12). Let 0 € H*(M2) ®
t/ta be the curvature of the T/T,-principal bundle M4 N ®~1(&) — ME. Let

|SfA| be locally constant function on M2 N ®~1(¢), which is equal to the cardinal
of the generic stabilizer of T/Ta. Let| = dim T. From (2.8) and Proposition 2.6
we have

/ (Ps. — P )(X)e %0
M
"

(=2t

|SVA| /MA ew?(%;/lo)vol(T/TA, —)Kif?(e_ig‘)(x”)aéé (X" (2.16)
. ¢
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In the last equation the notation is the following:

1. X = X'+ X" with X’ € t/ty and X" € ta,

2. the Kirwan map Kir 2 : H(M) — C®(ta, H*(ME)) is the composition of the
restriction H*(M) — H%"(MA N ®~1(&)) with the Chern—Weil isomorphism
HPMA N D)) —> C¥(ta, HH (M),

A direct computation gives that Kir 2 (Q)(X") = Q2 — (&, w® + X”), where
Q2 is the induced symplectic form on the reduced space M?. If we take the Fourier
transform in (2.16) we get

(DH, — DH. )(a)da
(i)m—l_l i (QA+(@,wb / ”
-5 /M?e @600 gt 7, (92)(@") ) @ - &)

B (i)n+1—|
-2 Ed (/z

ZeF <

—i(Q% ! w? / "
e 1 (QEHE08) 4q ftA((sz)(a ))(a_f), (2.17)

where a = @’ +a” with @’ € (t/ta)* and @” € (ta)*. In (2.17), we write [, 2 =
<
> 7er J=., where the sum is taken over the set F of connected components Z of
<
M that intersect ®—1(¢). We take then

Z: = (ZNd 1)) /(T/Ta).

The 2-forms QEA, a)?, the generic stabilizer S&, the vector bundle N, , and the gene-
ralized function 5? restrict to each component Z: we denote them respectively by
Qf, 0f, $¢, Nz, 6f.

We recgall now the computation of the Fourier transform of the inverses
Eul;;(Nz) := Eul;;(Na)|z that is given in [30, Proposition 4.8]. We consider
a T-invariant scalar product on the fibers of the bundle Nu. Let R € Az(MOA,
so (N,))P® be the curvature of a T-invariant and T/Ta-horizontal Euclidean
connexion on N,: we denote by RZ e A%(Z,s0(Nz))"® the restriction of R to
a component Z € F. The curvature commutes with the infinitesimal action L£x
of X € ta and with the complex structure Jp = E/;(—Elzg)l/z on Ny defined by
b e ta.

We denote by S° the symmetric algebra of the complex vector bundle (Na, Jg).
We keep the same notation for the restriction of S* on the submanifolds Z, ®=(&)N
M#, and for the induced orbifold vector bundle on the reduced spaces Z¢ and M 2.
For each k € N, we denote by Tr the trace operator defined on the complex
endomorphisms of SX. For a complex endomorphism A of N, we denote by A®k
the induced endomorphism on SX. For any X € ta, the complex endomorphism
£;<1 RZ is symmetric. Hence the trace Trsk((ﬁ;(l R%)®X) is a basic real differential
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form of degree 2k on Z which does not depend of the choice of complex structures

(Jﬁ or J_ﬁ).
Let p* e t} the dual of § € ta.

Proposition 2.8 ([30]). For a smooth function f on t} with compact support we
have ft*A Fi, (Eulgl(Nz))(a”)f(a”) = fo‘x’ Pz (t) f (tp*)dt, where Pz isthe poly-
nomial on R defined by

B (27l'i)rz trz— 1 dlm(Z)/2 k trZ*1+k

dety*(Ly)

Here oy = Trsk((ﬁgl RZ)®ky ¢ A2k (Z)bas, detlz/z(ﬁﬁ) isthe Pfaffian of £ on Nz,
andrz = rkc(Nz).

One checks then that

[ FuEdN @) @) = [T —Pa-0 Tt
t 0

0
_ _/ P (1) f (t4™)dlt.
—00
Hence the distribution Fi, (6%) is equal to Pz(8)dg. From now on we fix /8 as the
primitive element of tA N A which is pointing out c_. Then dg and dp* are (dual)
Lebesgue measures on t* and t. We have vol(Txa, dg*) = 1.

Let Rg be the restriction of the curvature RZ to the submanifold Z N ®~1(¢).
Since RZ is T/ Tx-basic, Trsk((zlgl RZ)®K) can be seen as a real differential form
of degree 2k on the orbifold Z: = (Z N ®~1(&))/(T/Ta).

Each connected component Z of M2 is a T/ T, Hamiltonian manifold: we take
for moment map ®z : Z — (t/ta)* the restriction of ® — ¢ to Z. Hence 0
is a regular value of ®7. Let DHp(Z) be the polynomial function on (t/ta)* =
{a € t*|(B, a) = 0} such that DH(Z)(a’) = DHp(Z)(a")da’ near 0. Finally, (2.17)
together with the Proposition 2.8 gives the following theorem.

Theorem 2.9. We have (DH,, — DH. )(a) = > ,.rDz(a —¢), a € t*, where
each polynomial Dz € S(t) admits the following decomposition:

o pt DHo(Z)
Dz = detl/z( ﬁ,;) ((rz ! Zﬁ Qz k) (2.19)

The polynomials Qz x € S(t/ta) are defined by

n_ (1)K (QF + (@, wf)T2 —1 7 &k
Qz k(@) = (rz—1+k)!|s§|/§ T R

Here2dz = dim Z: and 2rz = dimM — dim Z.
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Remark 2.10.

e The polynomial DH., — DH,_ is divisible by the factor a — (a—¢, A 1 with
r =infzcrrz. If AN®(M) is not a facet of the polytope ® (M) we haverz > 2
for all connected components Z € F; hencer — 1 > 1.

e Suppose now that ¢, is a connected component of regular values of @ at the
edge of the polytope ®@(M). Then ®(M) N A is a facet of the polytope ®(M).
Here Z = ®~1(A) is a connected component of the fixed-point set M T4 In this
situation we have DH., = Dz, where the polynomial Dz is defined by (2.19).

3 Quantum version of Duistermaat—Heckman measures

We suppose here that the Hamiltonian T-manifold (M, w, @) is prequantized by a
T-equivariant Hermitian line bundle L over M, which is equipped with a Hermitian
connection V satisfying the Kostant formula

L(X) = Vx, =i (D, X), Xet (3.1)

The former equation implies that the first Chern class of L is equal to [%] In this
section we suppose that M is compact and we still assume that the generic stabilizer
I'v of T on M is finite. The quantization of (M, Q) is defined as the Riemann-
Roch character RR(M, L) € R(T), which is computed with a T-equivariant almost
complex structure on M compatible with Q [32]. For k > 1, we consider the tensor
product L&, Its Riemann—Roch character RR(M, L®K) decomposes as

RR(M, L®) = > m(u, k) C,. (3.2)
HEN*

Let us recall the well-known properties of the map m: A* x Z>% — Z. When Lis

a regular value of @, the “quantization commutes with reduction” theorem [28, 29]
tells us that

m(u, k) = RR(M g, £14), (3.3)

where £#-K = (L®"|¢71(%)®(C_/,)/T is an orbifold line bundle over the symplectic
orbifold My = ®~1({)/T. In particular, if & does not belong to (M) we have

m(u, K) = 0. When 4 € ®(M) is not necessarily aregular value of @, one proceeds
by shift desingularization. If & € ®(M) is a regular value of @ close enough to %
then (3.3) becomes

m(u, k) = RR(M, £4°5), (3.4)

where Lé"k = (L®k|@71(:) ® C_,)/T (fora proof see [29, 32]).

Definition 3.1. A function f : & — Z defined over a lattice = ~ Z' is called
periodic polynomial if
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(aj %)

p
foo=>"¢ NCPj(X), Xe€E,
i—1

where ay, ..., ap € E*, N > 1, and the functions Py, . .., Pp are polynomials with
complex coefficients.

Remark 3.2. Let C be a cone with nonempty interior in the real vector space E®y R.

Any periodic-polynomial function f : & — Z is completely determined by its
restrictiononC N =E.

Let ¢ C t* be a connected component of regular values of ®. In [29] Meinrenken
and Sjamaar proved that there exists a periodic polynomial functionm, : A* xZ —
Z such that m (u, k) = m(u, k) for every (i, k) in the cone

Cone(c) = {(£,5) e t* x R™%| & es- ). (3.5)

Consider now two adjacent connected regions c of regular values of @ separated
by a hyperplane A C t*. When A does not contain a facet of the polytope ® (M),
Meinrenken and Sjamaar proved also that

mC+(ﬂ, k) = mtf (:ur k) = m(ﬂ, k) (36)

for every (u, k) € Cone(c4) N Cone(c—) = Cone(cy N'cZ) C Cone(A).

The main purpose of this section is to prove that (3.6) extends to a “strip” con-
taining Cone(A).

Let 5 € A be the primitive orthogonal vector to the hyperplane A C t* which is
pointing out of c_. Then A = {¢ € t*|% =r} forsomerp € Z, Cone(A) =
{(&,8) e t* x RZ°|<52’—;TB> —sra=0},andc_ C {¢ € t*|% <Al

Let Tp be the subtorus of T generated by S. Let N be the normal vector bundle
of M2 in M. The almost complex structure on M induces a complex structure J
on the fibers of Na. We have a decomposition Nao = > ¢ N3, where N} = {v €

NalLgv = s Jv}. We write Np = NX’ﬂ &) N;’/’), where

NP = D7 NS (3.7)
+s>0

Definition 3.3. For every connected component Z ¢ MT2 we define sf e N
respectively as the absolute value of the trace of 5L on Nf’ﬁ|z.

Note that s}“ + s, is larger than half of the codimension of Z in M. We prove in
Section 3.5 the following theorem.

Theorem 3.4. We havem,, (x, k) = m¢_(u, k) for all (u, k) € A* x Z such that

_ Auw. B

—S <
2

—krp <st. (3.8)
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The numberss—, st e N are defined as follows. We take s* = infz s%, where the
minimum is taken over the connected components Z of M T4 for whicht N'c— C
D (2).

Similar results were obtained by Billey—Guillemin—Rassart [10] in the case of M
a coadjoint orbit of SU(n), and by Szenes—\Vergne [36] in the case of M a complex
vector space. See Sections 4.4 and 5, where we study these two particular cases in
detail. In Proposition 3.25, we give also a criterion which says when the inequalities
in (3.8) are optimal. This criterion is satisfied when there is only one component Z
of M4 such that ©7 Nc= ¢ ®(Z). Then (3.8) is optimal and s* + s~ is larger than
half of the codimension of Z in M.

The following easy lemma (see Lemma 7.3. of [32]) gives some basic informa-
tion about the integer s3.

Lemma 3.5. Let (M, Q, @) bea compact Hamiltonian T-manifold equipped with a
T-invariant almost complex structure compatiblewith Q. Consider a nonzero vector
y € tandlet Z be a connected component of the fixed-point set M” . Let N be the
normal vector of Z in M andlet N—>7 bethe negative polarized normal bundle (see
(3.7)). Then N—>” = Qif and onlyif thefunction (®, y ) : M — R takesits maximal
valueon Z.

This lemma ensures that s* > 1 in Theorem 3.4 when A N ®(M) is not a facet
of the polytope ®(M).

Consider the situation in which A N ®(M) is a facet of the polytope ® (M), so
that ¢ N ®(M) = @; hence m¢, = 0. If we apply Lemma 3.5 with y = S, we
obtain N=# = 0, and so s~ = 0. In this situation we get the following corollary.

Corollary 3.6. Let ¢ be a connected component of regular values at the edge of
the polytope @ (M). Then ®(M) N A isafacet of ®(M). Let f € A bethe primitive
orthogonal vector to the hyperplane A C t* which is pointing out of c_. Here Z =
®~1(A) isaconnected component of thefixed-point set M T2, Wehavem,_(u, k) =
0 for all (u, k) € A* x Z such that

(u, B)

T

0<

—kra <s5. (3.9)

Here s}r € Nislarger than half of the codimension of Z in M, and the inequalities
(3.9) are optimal.

The rest of this section is dedicated to the proof of Theorem 3.4. We start by
reviewing some of the results of [32].
3.1 Elliptic and transversally elliptic symbols

We work in the setting of a compact manifold M equipped with a smooth action of
atorusT.
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Let p: TM — M be the projection, and let (-, -)m be a T-invariant Riemann-
ian metric. If E®, E! are T-equivariant vector bundles over M, a T-equivariant
morphism ¢ € T'(TM, hom(p*E?, p*E?)) is called a symbol. The subset of all
(m,») € TM where g (M, ) : E% — Erln is not invertible is called the characteris-
tic set of o, and is denoted by Char(o).

Let Tt M be the following subset of TM:

TrM ={(m,0) e TM, (v, Xm(m)),, =0 forall X € t}.

A symbol o is ellipticif o is invertible outside a compact subset of TM (Char (o)
is compact), and is transversally elliptic if the restriction of o to Tt M is invertible
outside a compact subset of TTM (Char(c) N T1 M is compact). An elliptic symbol
o defines an element in the equivariant K-theory of TM with compact support,
which is denoted by K1 (T M), and the index of ¢ is a virtual finite-dimensional
representation of T [3, 4, 5, 6].

A transversally elliptic symbol o defines an element of K1 (Tt M), and the index
of o is defined as a trace class virtual representation of T (see [1] for the analytic
index and [8, 9] for the cohomological one). Observe that any elliptic symbol of TM
is transversally elliptic; hence we have a restriction map K1t (TM) — K1 (TtM),
and a commutative diagram

Kt(TM) —— K1 (TTM) (3.10)
Index{,lt llndex{,,
R(T) ——= R™(T).

Using the excision property, one can easily show that the index map Index{, :
Kt (TtU) — R™°°(T) is still defined when ¢/ is a T -invariant relatively compact
open subset of a T-manifold (see [32, Section 3.1]).

3.2 Localization of the Riemann—Roch character

We suppose now that the compact T-manifold M is equipped with a T-invariant
almost complex structure J. Let us recall the definitions of the Thom symbol
Thom(M, J) and of the Riemann—Roch character [32].

Consider a T-invariant Riemannian metric g on M such that J is orthogonal
relative to g, and let h be the Hermitian structure on TM defined by h(v, w) =
g, w) —19(Jv, w) for v, w € TM. The symbol

Thom(M, J) € [(TM, hom(p*(AXe"TM), p*(AZ9TM)))
at (m, ») € TM is equal to the Clifford map

Cln() : AY TM — AT M, (3.11)
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where Clm(v) - w = v Aw —¢h(v) - w for w € AZTxM. Here ch(v) : AZTmM —
A*~1TmM denotes the contraction map relative to h. Since the map Clm(v) is
invertible for all o # 0, the symbol Thom(M, J) is elliptic.
The Riemann-Roch character RR(M, —) : Kt (M) — R(T) is defined by the
relation
RR(M, E) = Index], (Thom(M, J) ® p*E). (3.12)

The important point is that for any T -vector bundle E, Thom(M, J) ® p*E corre-
sponds to the principal symbol of the twisted Spin® Dirac operator Dg [16]; hence
RR(M, E) € R(T) is also defined as the (analytical) index of the elliptic operator
DEe.

Consider now the case of a compact Hamiltonian T-manifold (M, w, ®). Here J
is a T-invariant almost complex structure compatible with Q: (v, w) — Q (v, Jw)
that defines a Riemannian metric on M. As in Section 2.2, we make the choice of a
scalar product (-, -) on t* (which induces an identification t* ~ t) and we consider
forany & e t* the function ‘71 |® — &2 : M — R and its Hamiltonian vector field
H —¢m.

Definition 3.7. For any & € t* and any T-invariant open subset &/ ¢ M we define
the symbol Thom¢ (/) by the relation

Thoms(U) (M, v) ;= Thom(M, J)(M,v — (H —&Em)(M)), (M, v) € TU.

The characteristic set of Thomg({) corresponds to {(m,») € TU,» =
(H — &m)(m)}, the graph of the vector field H — &y over 4. Since H — &y belongs
to the set of tangent vectors to the T -orbits, we have

Char(Thom:(U)) N T1U = {(m,0) € TU | (H — &m)(m) = 0}
=(mel, d|® -l =0},
Therefore the symbol Thome (/) is transversally elliptic if and only if
Cr(|® — |1y U ol = 9. (3.13)

Definition 3.8. When (3.13) holds we say that the couple (i, &) is good.

Definition 3.9. Let (U, &) be a good couple. For any T-vector bundle E — M, the
tensor product Thom: (/) ® p*E belongs to Kt (T1/) and we denote by

RRS, (M, E) € R™¥(T)
its index.

Proposition 3.10. Let (U, &) be a good couple.

e If U possesses two T-invariant open subsets 4%, 2/2 such that &1 N 42 N
Cr(|® — ¢[1?) = ¢ and U* UU?) NCr(|® —¢[?) = U N Cr(|® — &[2),
then the couples (U1, &) and (142, &) are good and
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RRS, (M, —) = RRZl(M, =) +RRS,(M, ).

In particular, RRZ(M, -) = RRi{l(M, —) if* isan open subset of 2/ such that
UtNCr(|@ — &%) =UNnCr(|@ - &)%)
o If& e t*iscloseenoughto &, then (U, &) isgood and

RR;,(M, —) = RRY, (M, —).

Proof. The first point is a direct consequence of the excision property (see Proposi-
tion 4.1. in [32]).
Let us prove the second point. Consider now the scalar product

$(9) == (H — &y, H = Smm,

where &5 = s¢’+(1-5)¢&, s € [0, 1]. Each ¢ (s) is a smooth function on M. We have
B(s) = IIH —EmI? +S((E —&)m, H —Ew) and then the following inequality holds
on M:

$(S) = IH —eml*(IH — Emll — sliém — &yl (3.14)

Since ol is compact, we have the following inequalities on it: ||H — &m|l > ¢1 > 0
and [[Xm | < c2|| X|| for any a € t. So (3.14) implies the following inequality on
ou:

#(s) = ci(c —sl|¢ =<'y for se]0,1].

So if &’ is close enough to &, we have |[H — &y, || > ¢3 > 0on ol forany s € [0, 1].
We have first to prove that the couple (4, £%) is good for any s € [0, 1]. We see then
that the family of transversally elliptic symbols Thomgs(f), s € [0, 1], defines a
homotopy between Thomg (/) and Thomg (U/). Hence Thome (U4) = Thomg (/) in
Kt (TtU).

The first point of Proposition 3.10 shows that RRZ(M, —) depends closely on the
intersection & N Cr(||® — &||2). In particular, RRZ(M, —) =0whenU/ NCr(||® —
&)%) = . Recall that

Cr(lo — &5 = [ J M"no i +9), (3.15)
q/GBé
where Bz C t* is a finite set [24].
Definition 3.11. For any ¢ € t* and y € B, we denote simply by
RR: (M, =) : K1(M) — R™(T)
the map RRZ(M, —), where U/ is a T-invariant open neighborhood of M7 N
@ 1(y + &) suchthat Cr(||® — &) NU = M? N O~ L(y +&).

Proposition 3.10 ensures that the maps RRé; (M, —) are well defined, and for any
good couple (U, &) we have
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RR;,(M,—)= > RRy(M,-). (3.16)
y BN U)

If we take / = M, we have RR} (M, —) = RR(M, —) = P RR; (M, —) (see
[32, Section 4]).

3.3 Periodic polynomial behavior of the multiplicities

We suppose here that the Hamiltonian T-manifold (M, Q, @) is prequantized by a
T-complex line bundle L satisfying (3.1) for a suitable invariant connection. In this
section we will characterize the periodic polynomial behavior of thg multiplicities
m(u, K) with the help of the localized Riemann—Roch character RRg(M, -).

Let us introduce some vocabulary. We say that two generalized characters y * =
Zﬂe,\* aff C, coincide on a region D C t* if a;{ = a, forevery u € DN A"
A generalized character y =3, a, C,, is supported on aregion D C t*ifa, =0
for 1 ¢ D. Aweight u € A* occursin y = Zﬂ a,C,ifa, #0.

For & e t*, we definerg > 0 as the smallest nonzero critical value of the function
|®@ — &||, and we denote by B(¢, re) the open ball of center & and radius re.

Theorem 3.12 ([32]). For any ¢ e t*, the generalized character RRg(M, L®k)
coincideswith RR(M, L®K) on the open ball k - B(&, re).

The arguments of [32] for the proof of this theorem will be needed later, so we
recall them. Let & e t*. We start with the decomposition

RR(M, L®K) = >" RRS (M, L&), (3.17)
y €B;

We recall now, for a nonzero y € B¢, the localization of the map RRé; on the fixed-
point set M? [32].

Let N be the normal bundle of M” in M. The almost complex structure on M
induces an almost complex structure on M” and a complex structure on the bundles
N and N¢ := N ® C. Following (3.7), we define the y -polarized complex vector
bundles N7 and (N¢)™7.

The manifold M7 is a symplectic submanifold of M equipped with an induced
Hamiltonian action of T’ its moment map is the restriction of ® on M”. Following
Definition 3.11, we have on M” alocalized Riemann—Roch character RR@ (M7, —=).
On M7, the Hamiltonian vector fields of the functions |® — & |2 and |® — (& + 7 )]|2
coincide; hence i ‘

RRg(MV ,—) = RR8+/(MV, -). (3.18)
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We prove in [32, Theorem 5.8] that

RRS (M, E) = > (=D'RRS (M7, E|m» @ det(N*7) @ SY(NI7))  (3.19)
keN

for every T-vector bundle E. Here | is the locally constant function on M” equal to
the complex rank of N7,

Proposition 3.13 ([32], Section 5). Let N be the T-vector bundle N with the oppo-
site complex structure on thefibers. Thesum (=1)' 3, det(N+7) @ S{NS ) is

aninverse of AN, which we denote by [A& N1 1.

If we use the notation of Proposition 3.13 and (3.18), the localization (3.19) can
be rewritten as

RRE (M, E) = RRS™ (M7, Elwr @ [A&NT;Y). (3.20)

Leti : T, < T be the inclusion of the subtorus generated by y. Let F be a
T-vector bundle on M? .

Lemma 3.14 ([32], Lemma 9.4.). Aweight © € A* occursin RR%(MV, F) onlyif
i *() occurs as a weight for the T, -action on the fibers of F ® [A(‘CN];l.

Since the T, weights on the bundles Ng’y and N7 are polarized by y, the
localization (3.19) gives the following:

Corollary 3.15. For anonzero y € B, the generalized character RR‘; (M, L®K)is
supported on the half-space {a € t*|(y,a — k(¢ + y)) > 0}.

Since the condition (y, a — k(¢ +y)) > 0 implies that [[a — K&|| > K]y || > krg,
the last proposition shows that every weight of the open ball k - B(&, rg) does not
occur in RR§ (M, L&), This last remark together with (3.17) proves Theorem 3.12.

For the localized Riemann—Roch character RRg(M, —) we have the following
lemma, which is very similar to Lemma 2.3.

Lemma 3.16. Let ¢ C t* be a connected component of regular values of ®. For
every &, & e ¢, wehave RR; (M, —) = RR5 (M, —).

Proof. We have to show that the map & +— RRg(M, —) is locally constant on c.
Let ¢ € ¢ and take an open neighborhood ¢/ of ®~1(&) small enough that the sta-
bilizer T, = {t € T|t-m = mj} is finite for every m e /. We see then that
UNCr(|® — &%) = L&) and oL/ N Cr(||d — &) = B if & is close enough
to &: hence RRg/(M, —-) = RR;’(M, —) for ¢’ close enough to &. The second point
of Proposition 3.10 finishes the proof.
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When ¢ is a regular value of @, the localized Riemann—-Roch character
RRg(M,—) has been computed in [32] as follows. Let RR(M¢, —) be the
Riemann-Roch map defined on the orbifold M; = ®~1(¢)/T by means of an
almost complex structure compatible with the induced symplectic structure. For
every T-vector bundle E — M we define the following family of orbifold vector
bundles over M.:

& = (Elg-1 ® C—p)/T, pe A (3.21)

For every T-vector bundle E on M, we proved in [32, Section 6.2] the following
equality in R™°°(T):

RR5(M, E) = > RR(M¢, &) C,. (3.22)
HEN*

This decomposition was first obtained by Vergne [37] when T is the circle group
and when M is Spin. The number RR(M, ££) € Z is then equal to the T -invariant

part of the index RRg(M, Ey@C_,.

Remark 3.17. Lett — t* be a character of T. Suppose that a subgroup H c T acts
trivially on M and with the character t € H — t* on the fibers of the T-vector
bundle E. Then H acts with the charactert € H — t*~# on RRg(M, E)y® C_,,
and then RR(M, &) # O only if t*=# = 1 forevery t € H. So the sum in (3.22)
can be restricted to A+ A}, , where Aj, is the sublattice of A* formed by the element
a € A* satisfyingt* =1, Vt € H.

This remark applies also to the usual character RR(M, E) =2 .y~ m,C,. The
multiplicity m, € Z is equal to the (virtual) dimension of the T-invariant part of
RR(M, E) ® C_,. With the same hypothesis as above we see that m, # 0 only if
u e L+ AY.

Let I'v be the generic stabilizer for the action of T on M. Consider a weight
o such that T'y; acts on the fibers of L with the character t — t%0. We define the
sublattice Z2(M, L) € A* x Z by

E(M, L) :={(u,k) € A" x Zlkao — uu € AT, }. (3.23)
We know then that m(u, k) = 0if (u, k) ¢ E(M, L).

Proposition 3.18. Let ¢ be a connected component of regular values of ® and let
Cone(c) be the corresponding cone in t* x R>? (see (3.5)). Let & € ¢. For any
(u, k) € Cone(c) N 2(M, L) we have

m(u, k) = RR(Me, ££5), (3.24)

where .
LE* = (L% 415 @ C_)/T. (3.25)
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Proof. Let (u,k) € Cone(c) and let &' = £ e c. We know from Theorem 3.12
that the generalized character RRS/(M, L®K) coincides with RR(M, L®K) on the
open ball k- B(&",rz) = B(u, krgs). So m(u, k) is equal to the x-multiplicity in
RRg/(M, L®k). Take nowany & € ¢. We know from Lemma 3.16thatRR€(M, -) =
RRS (M, —),kand (3.22) shows that the x-multiplicity in RR (M, L®) is equal to
RR(Mg,L‘é" ).

Definition 3.19. Take & € ¢. The map m. : A* x Z — Z is defined by the equation
Me(u, k) = RR(Me, £1), (3:26)
where Lé"k is the orbifold line bundle defined by (3.25).

In other words, the map m is defined by the following equality in R~°°(T):

> me(u. k) Cu = RRG(M, LX),
HEN*

for all k € Z. From Remark 3.17, we know that m. is supported on the sublattice
E(M, L) defined in (3.23).

We will now exploit the Riemann—Roch theorem for orbifolds due to Kawasaki
[23] to show that the map m. is a periodic polynomial.

3.4 Riemann—Roch—Kawasaki theorem

First we recall how the Riemann-Roch character RR(M¢, &) is defined when ¢ is
a regular value of ® and & = E;q-1()/T is the reduction of a complex T -vector
bundle E over M. The number RR(M¢, &) € Z is defined as the T-invariant part
of the index of a transversally elliptic operator Dg on ®~1(&). Since the index of
De depends only of the class of its symbol o (Dg) in K1 (TT®~1(¢)), it is enough
to define the transversally elliptic symbol ¢ (Dg). Since the action of T on ®~1(¢)
is locally free, V := T ®~1(¢) is a vector bundle. It carries a canonical symplectic
structure on the fibers, and we choose any compatible complex structure making V
into a Hermitian vector bundle. At (m, v) € T®~1(¢), the map o (Dg)(m, v) is the
Clifford action

Clm(v1) ® ldgy, : (AY*"Vim) ® Em —> (A%Vm) ® Em.

where v1 € Vi, is the V-component of the vector o € Tn®1(&). We explain
now the formula of Kawasaki for RR(M¢, &) when ¢ € @ (M) is a regular value
of @ [23].

Let I be the collection of the finite subgroups of T that are stabilizers of points
in M. Consider the orbit type stratification of ®~1(¢) and denote by S: the set
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of its orbit type strata. Each stratum S is a connected component of the smooth
submanifold
D H(E)pg = {m € ®H()[Stabr (M) = Hg} (3.27)

for a unique Hs € FF. The orbifold M. decomposes as a disjoint union Uscs. S/ T
of smooth components, and each quotient S/ T is a suborbifold of M. The generic
stabilizer 'y of T on M s also the generic stabilizer of T on the fiber* ®—1(¢),
and is associated to an open and dense stratum Syax.

Suppose that E — M is a Hermitian T-vector bundle. On each suborbifold S/ T,
we get the orbifold complex vector bundle

&s:=Eg/T. (3.28)
We define twisted characteristic classes Ch™(Es) and D~ (Es) by
ChY (Es) :=Tr(y%s . e RE) 5 € H, (3.29)

and .
D’ (Es) :=det (1 — (%)t . e = RE)) 5 e Hs (3.30)

Here R(&s) € A%(S/T,End(Es)) is the curvature of a horizontal Hermitian
connection on E‘g, andy — y €s js the linear action of Hs on the fibers of E‘g.

Let Ns be the normal bundle of S in ®~1(¢). The symplectic structure on M
induces a symplectic form Qs on each suborbifold S/ T, and a symplectic structure
on the fibers of the bundle Ns. Choose a compatible almost complex structure on
S/T, and a compatible complex structure on the fibers of Ns making the tangent
bundle of S/T and Ns := Ns/T into Hermitian vector bundles. Consider a
Hermitian connexion on T(S/T), with curvature R(S/T), and let

(3.31)

Todd(3/T) = det( (1/2m)RS/T) )
1_ e (/20RET)

be the corresponding Todd forms. As in (3.30), we associate to the complex orbi-
fold vector bundle A, the twisted form D~ (Ns), which is a map form Hs to
A®eN(S/T). The 0-degree part of D” (\s) is equal to det(1 — (y#Vs)~1); hence
D7 (Ns) is invertible in A®e"(S/T) when y belongs to

HS = {y e Hs|det(L — (*V5)71) £ 0}. (3.32)

Note that HZ corresponds to the set of y € Hs for which Siis a connected compo-
nent of (d~1(&))”.

4 Since a neighborhood of ®~1(¢) in M is T-equivariantly diffeomorphic to ®~1(&) x ¢*.
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Theorem 3.20 (Kawasaki). The number RR(M¢, &) € Z is given by the formula

o 1 Todd(S/T)Ch’ (€s)
RR(M¢, &) = ;Sg T ZH‘,O/S/T Ve (3.33)

We now exploit Theorem 3.20 to show that the map m. : A* x Z — Z defined
by (3.26) is a periodic polynomial. We need the classical computation of the first
Chern class of the line bundle

£ = (L% @ C_) /T (3.34)
The curvature form wz € H2(M;) ® t of the principal T-bundle ®~1(&) — M:

restricts to a curvature form ws € H?(S/T) ® t on each stratum.

Lemma 3.21. Thefirst Chern class of theline bundleﬁ‘g’k isgiven by

1
(L8 = 5- (ks = (k& — 1, 05)).
T

For a stratum S, we consider as € A* such that y € Hs — y *S corresponds to
the action of Hs on the fibers of L g. Finally, we have the decomposition

Me(u, k) = D~ Ps(u, k), (3.35)
SeS¢

where

1 _ Todd(S/T) 1 (ke (ke

=) K) — kas—pu ez KQs—(kf—u,0s)) 3.36

S0 = g yZEHOv /s,/T D7 (N5) (530
S

When Sis the principal open dense stratum Syax, the map Ps is

kao—
ZyeFMy 0T H

Pmax(ﬂ’k) = Tml

/ Todd(M_)ez K% ——moe) (3 37)
Me

kao—u
The term Z’Er‘“fihj is equal to 1 when (u, k) belongs to the lattice Z(M, L) (see

(3.23)), and is equal to 0 in the other cases. From (3.36) we see that Ps is a periodic
polynomial of degree less than 2™>T) ‘and for S = Spax we have on E(M, L),

1 (KQ: — (k& — p, )"
P k) = od-1 3.38
max(#a ) (271,')d /Mg d' + ( )7 ( )
where d = 9MM: ang O(d — 1) denotes a polynomial of degree less than d — 1.

If we use the polynomial DH, defined in Section 2 we can conclude our computa-
tions with the following:
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Proposition 3.22. The map m. is a periodic polynomial of degreed = %
supported on Z(M, L). For (u, k) € E(M, L) we have

d

(2m)d

DH, (ﬁ) +0(d-1),

Me(u, K) = [Tm| K

where O(d — 1) means a periodic polynomial of degreelessthand — 1.

3.5 Wall-crossing formulasfor the m,

Let ¢4 and c¢_ be two adjacent connected components of regular values of @
separated by a hyperplane A. The aim of this section is to compute the periodic
polynomial m¢, — m_.

We consider two points ¢+ € ¢4 suchthaté = %(45r +¢&_) belongs to the relative
interior of t Nc_ in A. We suppose furthermore that &+ — &~ is orthogonal to
A. Using the identification t* =~ t given by the scalar product, the vector y =
%(f_;_ — &), seen as a vector of t5, belongs® to R>%4. We noticed in Section 2.4
that for all m € ®~1(¢) the stabilizer tn, is equal either to t or to {0}. Then there
exists an open T-invariant neighborhood 2/ of ®~1(&) in M such that for all m € I/
either t, := {0}, or ty, = tp and ®(m) € A.

One can see easily that the couple (U4, ¢) is good and the second point of
Proposition 3.10 tells us that

RR;,(M, —) = RRy, (M, =) = RR}; (M, —) (3.39)
when & are close enough to ¢. Since U N Cr(||® — E1%) = @ 1(&), we have
RRZZ(M, —) = RRg(M, —). If & are close enough to & we have

UNCr(|@ —&x)?) = 0 (&) [ M no o). (3.40)

The former decomposition is due to (3.15) and to the fact that the stabilizer of t on i/
is equal either to ta orto {0}. Noticethat & +y = &1 +y = £. The decomposition
(3.40) gives .

RR;¥ (M, —) = RR5*(M, —) + RR%, (M, —), (3.41)

where RR?;‘(M, —) (respectively RRf_Jg,(M, —)) is the Riemann—-Roch character

localized on M7 N®~1(&) by the vector field H — (¢_)m (respectively H — (&4 )m).
Now (3.39) and (3.41) prove the following result.

Proposition 3.23. If £+ are close enough to A, we have

RR3" (M, —) — RR5 (M, —) = RR; (M, —) — RR™, (M, —).

5 B iis the primitive vector of t4 N A pointing out of c_.
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We know from Proposition 3.18 that m., («, k) is equal to the x-multiplicity of
Tin RRgi(M, L®K). Hence m¢, (i, k) — mc_(u, k) is equal to the x-multiplicity
of T in RR; (M, L®K) — RR™, (M, L&),

Let N be the normal bundle of M4 in M, and let [AjCN_A];}; be the polarized
inverses of A2.Na (see Proposition 3.13). Since ¢ = ¢ —y =¢- +yandy €
R>94, the localization (3.20) gives

RR;™ (M, L®) = > RR3(Z, L%z ® [A\ENZ 1),
ZeF

RR, (M, L¥) = > RR3(Z, L%z @ [2&NZ 1)),
ZeF

Finally, mc, («, K) —mc_(u,K) = > 7.7 Az (., K), where Az (u, k) is equal to
the x-multiplicity of T in

RR3(Z, L%z ® [A\&NZ17)) — RRy(Z. L%z @ [\ Nz 1Y), (342)

Let " e t} N A*, which is defined by the relation (5’, ) = 2z, so that A}, =
Z,’. Concerning the Tx -weights we have
1. The Tp-weight on L®k|z is equal to krp f’.
2. The Tx-weight on det(NF*/) is s 8/, where s € N is the absolute value of
the trace of 5= £ on N3 7.
3. The Ta-weights on S*O(NF7) (respectively S*O(N~~#)) are of the form pp’
with p > 0 (respectively p < 0).
Now Lemma 3.14 shows that if a weight x occurs in RRg(Z, L%z ®
[A&NZ ;Y. we have i*(u) = (kra + S5 + p)A’ with p > 0, and then

(u, B)
2

—+
—kra >s7.

Similarly, if a weight 4 occurs in RRg(Z, L®|; ® [/\E:N_z]:j), we have

(w, B)
2

—krp < —s,.

Finally, Az (u,k) = 0 when —s; < %2 _kr, < s}. We have proved the
following theorem.

Theorem 3.24. Let st = infy s%, where the infimum is taken over the connected
components Z of M T for whichc; Nt C ®(Z). For every (u, k) € A* x Z, we
have m, (1, K) = me_(u, k) if

- (. B)

T

—S

—krp <s'. (3.43)
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Sometimes the inequalities (3.43) are optimal.

Proposition 3.25.

e Consider the connected components Z € F for which s} is minimal. Among
them consider thesubset 7, wheredim(Z) ismaximal. If theintegersrke (N ),
Z € F4 havethe same parity, then the condition % —kra < stisoptimal in
3.43).

° I(n thzz same way, consider the connected components Z € F for which s; is
minimal. Among them consider the subset 7_ where dim(Z) is maximal. If the
integers rkC(N;ﬁ), Z € F.4, have the same parity, then the condition —s~ <
Wl kr 5 isoptimal in (3.43).

Remark 3.26. The last proposition applies when there is a unique connected com-
ponent Z of M4 for which c Nc— C ®(2).

Proof. We consider only the first point, since the other point works similarly.
We restrict our attention to the couples (u, k) such that % — kran = s*. They
are of the form

pu=(krp +sHp + uz (3.44)
with up € A’f/tA. Letus denote by D(u2, k) the restriction of m¢, (u, K)—m¢_(u, K)
to the set of couples (u, k) parametrized by (3.44). We want to prove that D(u2, K)

is not identically equal to zero.
From the previous discussion one knows that

Dlua. = 3 (-1 MDDz (ur k), (3.45)

Z,sy=st
where Dz (u2, k) is the g-multiplicity of T in
RRS(Z, L%z @ det(NS 7).

Let us make a few remarks concerning the maps RRg(Z, =) K1(2) —
R™°°(T). Since Ty acts trivially on Z, the decomposition T = T/Ta x Ta induces
a canonical isomorphism Kt (Z) >~ K1/1,(Z) ® R(Ta); i.e., every T-equivariant
vector bundle E — Z decomposes as

E= Z E/ ®C,,. (3.46)
H1ELP’

Here each E#1 is a T/Ta-equivariant vector bundle on Z, and C,, denotes the
one-dimensional T -representation associated to i1 € A“{A.

For every T-equivariant vector bundle E — Z, the character RRg(Z, E) is
equal to the T -equivariant index of the T -transversally elliptic symbol Thomg (V) ®
p*(E), where V is a small neighborhood of ®~1(¢) N Z in Z (see Definition 3.9).
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Since the T, action is trivial on Z, the symbol Thom, (V) is also T/ Tx transversally
elliptic and the action of Ty is trivial on it. We have then

RR3(Z,E)= > RR§(Z,EM)®C, (3.47)
H1ELP!

where the character RRS(Z, E#1) € R™°°(T/Ta) is computed by Theorem 3.22
applied to the Hamiltonian T/ Tx-manifold Z. For every T-vector bundle E — Z
we define the family E£72, u1 € Zp', ua € A}y, of orbifold vector bundles over

the reduced space Z: = Z N ®~1(¢)/(T/Ta) by
ELVI2 = (B" @ Cpy)lo-1¢)nz/(T/Ta). (3.48)
Finally, (3.22) and (3.47) give the following:
RRS(Z.E)= > > RR(Z,EM)® Cu ® Cpy
, ~ —_— —_——
HLELP' P2 €N €R(TA)  €R(T/Ta)

= Z RR(Z¢, EE412) Cy. (3.49)
HEN* )

In (3.49) we write © € A* asasum of u1 € Zp" with us € Afyy,» 0 that
C, € R(T) is equal to the tensor product C,,; ® C,;.

When the vector bundle E — Z is the line bundle L := L®K|; @ det(N;’ﬂ) we
have L = Li#' @ Cjp for j = krp + s*. Finally, we have

Dz (2, k) = RR(Zz, LI/ 2).
Now we use the results of Section 3.4 to study the map

Let Tz < T/Ta be the generic stabiliser of T/T, on a component Z. Let
oz,07 € A’{/tA be such that the action of I'z on the fibers of L,z and det(N;’ﬂ) are

respectively t — t%Z and t — t°2. From Remark 3.17 we know that the map (3.50)
is supported on the subset

Bz = {(u2.K) € Ajy, x Z | t92F02H2 =1 Vit eTy). (3.51)

The only difference with the computations done in Section 3.4 is the line bundle
det(N;’ﬂ). But this does not change the global behaviour of the map (3.50) on Zz:
it is a periodic polynomial map of degree dz = dim(Z¢)/2, and we have

Dz (pu2,k) =

kQz, — (ké — o
1 / (kQz, — (ki — p2, z,)) +0(z —1) (352
Zé

(27)dz dz!

forall (u2,k) € Zz.
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Suppose now that all the signs (—1)*¢(Nz") coincide when Z € F.. From
(3.45), we get that D (u2, k) does not vanish for large values of (u2, k).

4 Multiplicities of group representations

Let K be a semisimple compact Lie group with Lie algebra ¢, and let T be a maximal
torus in K with Lie algebra t. In this section we denote by (—, —) the scalar product
on ¢ induced by the Killing form, and we keep the same notation for the induced
scalar products on t* and on t.

Let A* C t* be the weight lattice, and let ® C A™* be the set of roots for the
action of T on ¢ ® C: we denote by A%, the sublattice of A* generated by ‘R.
We choose a system of positive roots )R C 93, and we denote by % the corre-
sponding Weyl chamber.

The irreducible representations of K are parametrized by the set A% = A*Nt}.
For A € A% we denote by V; the irreducible representation of K with highest weight
A. Here we are interested in the T-multiplicities in V;|t. Letm : A* x A% — Nbe
the map defined by

Vilr = 2 m(u, 1) C, (4.1)
neN*

forevery 2 € A%

Definition 4.1. For every 4 € A%, we denote by m* : A* x 279 — N the map
defined by m* (u, k) = m(u, ki). So m*(u, k) is equal to the multiplicity of Cyin
Vil

4.1 Borel-\Weil Theorem

First we recall the realization of the K-representation V; given by the Borel-Weil
theorem. The coadjoint orbit K - A is equipped with the Kirillov—Kostant-Souriau
symplectic form Q, which is defined by

Q(Xm, YM)m= (M, [X,Y]), for meK-4 and X,Y et (4.2)

The action of K on K - 1 is Hamiltonian with moment map K - 1 < £* equal
to the inclusion. The action of T on K - 4 is also Hamiltonian with moment map
® : K- 1 — t* equal to the composition of the inclusion K - 1 <« &* with the
projection map £* — t*.

There exists a unique K-invariant complex structure on K - 2 compatible with
the symplectic form. In this situation the Kostant—Souriau prequantum line bundle
over K - Ais

(C[g] =K XK, (C,{.
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Here we use the canonical identification K/K; ~ K - 4, [K] — k- 4, where K is
the stabilizer of Z in K. The line bundle Cp;) over the complex manifold K - 4 carries
a canonical holomorphic structure. If one works with the symplectic form kQ, for
an mteger k > 1, the corresponding Kostant-Souriau prequantum line bundle is
C[;] = K xk, Cx; = Cay.

Let HA(K - A (Cm) be the gth cohomology group of the sheaves of holomorphic
sections of (Cﬁ] over K - 4. The Borel-Weil theorem tells us that

HOK - 4, (C[)]) = Vi (4.3)

and
HAK - 4 (Cm) =0 for g>1 (4.4)

If RRK(K - 4, —) : Kk(K - 1) — R(K) is the K-equivariant Riemann-Roch
character defined by the compatible complex structure, (4.3) and (4.4) give

RRK(K - 2 (C[A])_Vk,l in R(K). (4.5)

Now if we denote by RR(K - 4, —) : Ky (K - 1) — R(T) the T-equivariant
Riemann-Roch character, we have Vki|T =RR(K -4 (Cm) The multiplicity func-

tionm* : A* x N* — N is characterized by the relation

RR(K -2, CEH = > m*(u, k) C,, in R(T), (4.6)
HEN*

fork > 1.
The sublattice A%, of A* generated by the roots is characterized by the (finite)
center Z(K) of K as follows. For & € A* we have

leAhe=th=1 VteZ(K), 4.7)

andfort e Twehavet € Z(K) <= t* =1,V e A% The finite abelian group
A* /A%, is then naturally identified with the dual of Z(K'). We have the following
well-known fact.

Lemma 4.2. Themultiplicity map m* issupported on the sublattice =; = {(u, k) €
A* X Zlp — KL € A%}

Proof. The center Z(K) of K acts trivially on K A and with the character t €
Z(K) > t** on the fibers of the line bundle (C[ﬂ] Since m*(u, k) is equal to the
dimension of the T -invariant subspace of RR(K - (C[)])®(C_ﬂ, we have following
Lemma 3.17 that m*(x, k) # 0 only if t*~K* = 1, vt € Z(K). We conclude then
with (4.7).

In this section we study the periodic polynomials

m!:A* x Z — Z. (4.8)
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defined for every connected component ¢ C t* of regular values of the moment
map @ : K - 2 — t*. We know that mﬁ is also supported on the sublattice =, (see
Section 3.3).

In order to apply Theorem 3.24 to the periodic polynomials m?, we have to
compute the critical values of the momentmap @ : K - 1 — t*.

4.2 Critical pointsof & : K - A — t*

Let {a1,...,0dimT} be the simple roots of the set 2R, of positive weights. The
fundamental weights wy, 1 < k < dim T, are defined by the conditions
Z(T"f‘zj)zai,j forall 1<i,j<dimT. (4.9)
aj

Recall that the fundamental weights generate the lattice A;‘,Q of algebraic integral

elements of t*. We have A* C Aj;'g and equality holds only if K is simply con-
nected.
Let W be the Weyl group of (K, T). We will look at

G={o -wiloeW, 1<i<dimT} (4.10)

as a subset of t modulo the identification t >~ t* given by the scalar product. The
singular points of ® have the following nice description. This result first appeared
in Heckman’s thesis [22].

Proposition 4.3 ([22, 17]). The set of critical pointsof @ : K - 4 — t* isthe union
of the fixed-point set (K - 1)#, € G. For each g € G we have

(K- =] K oi,
oceW

where K/ isthe stabilizer subgroup of £ in K.

The fixed points of the action of T on K - 1 characterize the image of ® com-
pletely: ®(K - 1) is the convex polytope

conv(W - 1) := convex hull of W - 1. (4.11)

This result was first proved by Kostant [25]. This is a particular case of the convex-
ity theorem of Atiyah, Guillemin, and Sternberg [2, 18]. From Proposition 4.3, we
know that the singular values of @ : K - 1 — t* are the convex polytopes

coowvW? . 62), BeF, o e WW, (4.12)



Wall-crossing formulas in Hamiltonian geometry 327

where W# is the stabilizer® of g in W, i.e., W/ is the Weyl group of (K#, T). Each
convex polytope conv(W” - ¢ 1) lies in the hyperplane

Apo=1{et’|(¢—0al, p) =0} (4.13)
We will use the following lemma.

Lemma4.4.

o KFf.gi=KF .g')ifandonlyifei e W',
o conv(W# . g 1) nconv(WP - ¢'2) # @ifandonlyif Ag, = Ap o

Proof. The first point follows from the fact that the intersection of a coadjoint orbit
KA. u, u e t*, with * is equal to W# - 4.

It is sufficient to prove the second point for § = @;. The half-line R>%%; is
an edge of the Weyl chamber. It is well known that the following vector subspaces
coincide:

e the line Rwj,
o the vector subspace of K “ -invariant elements of ¢*,
e the vector subspace of W'-invariant elements of t*.

Each convex polytope conv(W' - ¢ 1) contains the W' -invariant element

1
W ZT'O’A,

reW

which is equal to the intersection of the hyperplane Az , with the line Rewj. Hence,
if Ags = Ap,, the intersection conv(W/ - 1) N conv(W# - ') contains a
W!-invariant element, and then is not empty.

Definition 4.5. An element 1 € A’ is generic if for every fundamental root w; and
any o, 0’ € W, we have
A/g,g #* Aﬁ,g (4.14)

whenever the submanifolds K# - ¢ 4 and K# - 6’ are not equal.

‘This condition of genericity imposes that (¢4, wi) # (¢'4, wi) when g1 ¢
W'e' 1.

Example 4.6. Consider the case of SU(4). Take the coadjoint orbit trough 1 =
(2,1,-1,-2),and g,0’ suchthate 1 = (2, -2,1,-1)and 6’2 = (1, -1, 2, -2).
Take the fundamental weight @, = %(l, 1, —1, —1). In this case A is not “generic,”
sincecd ¢ Wig’Abut (61, wr) =0=(c', m2).

6 When S = @i, we denote by W! the stabilizer of @; in W.
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4.3 Main theorems

Let ¢y and ¢_ be two adjacent connected components of regular values of @ :
K -1 — t*. The intersection ¢ N ¢ty is contained in a hyperplane orthogonal to
peF.

Definition 4.7. Let A(c,, c_) be the set of all [¢] € W/WP# such that the convex
polytope conv(W” - ¢ 1) contains e N ¢

Then
U x’ei
[eleA(cs,co)

is the union of the connected components of (K - 1)# that intersect ®~1(¢) when
ecynNey.
Remark 4.8. When 1 is a regular element of t*, all polytopes conv(W” - ¢ ) are

of codimension 1. When 4 is “generic” (see Definition 4.5), the set A(c4, c_) is
reduced to one element.

The multiplicity function m* : A* x Z>% — N is invariant under the action of
the Weyl group: m*(o u, k) = m*(u, k) for every o € W. The set of connected
components of regular values of @ is also invariant under the action of W.

So, for the rest of this section we restrict our attention to case that ¢, and c_ are
separated by a hyperplane orthogonal to a fundamental weight f = @ : the vector
wi is pointing out of ¢_. We denote by K' the stabilizer of wj in K.

Consider [o] € A(cy, c_) and let K' - 5 1 be the corresponding connected com-
ponent of (K - 1)#. The tangent space of K - 1 at ¢ 1 is the following K “*-module:

ToK-D)= > &, (4.15)

(a,02)>0

where £, C £®C is the one-dimensional complex subspace associated to the weight
a € fR. In the same way, the tangent space of K' -5 4 at o 1 is the K' N K“*-module
defined by

To(Koh)y= D t. (4.16)

(a,04)>0

(a,m;)=0
Finally, the normal bundle of K' - ¢4 ~ K'/(KI N K?%)in K - 1 is N =
KI XKinKo# Nn-,i,Where
Noi = Dt (4.17)

(a,02)>0

(a, i) #0
For an element x € t*, we have u = Zidi:”}T[ﬂ]k ok, Where
(wk, 1)

e R.
|ak|?

[ulk=2

Note that [u]k € Z when u belongs to the lattice A%,.
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Definition 4.9. For [¢] € A(cy, c—) we define the positive integers

sjfi:i Z [a]i.

(a,04)>0

+(a,mi)>0

Note that s:i + s, is larger than half of the codimension of Ki - g4 in K - .

(X

Theorem 4.10. Let ¢, and c_ be two adjacent connected components of regular
valuesof @ : K - 1 — t* separated by a hyperplane orthogonal to a fundamental
weight w;j: we denote by r; the common value [¢]; for all £ in this hyperplane.
Let mﬁi . A* x Z —> 7 be the corresponding periodic polynomials which are
supported on the sublattice Z; = {(u, K)|u € ki + A}

For all (1, k) € Z;, wehavem¢, (u, k) =m¢ (u, k) whentheinteger [«]; —kri
satisfies

—s < [uli —kri <s*. (4.18)

Here the positive integers sﬁ are defined by

+ ; +

= inf s 4.19

3 [c]leA(ct,co) ol ( )

When A(c, c-) isreduced to one element o, for exampleif 4 is“ generic;” the
integer sﬁ + 57 islarger than half of the codimensionof K' - 6 4 in K - 4.

Another way to express the result of Theorem 4.10 is to introduce, as in [36] the
convex polytope

O(cy.c)= ) > 0.1a]. (4.20)

ogeA(ct,co) \(a,01)>0

Let A be the hyperplane which separates ¢ and c_. Equation (4.18) is equivalent
to saying that

mg, (i, k) =mf (u, k) if u e kA +0(cs, o). (4.21)

Proof. Theorem 4.10 is a direct consequence of Theorem 3.24. The main differ-
ence between them is the decomposition of the lattice supporting the periodic
polynomials. In the former we use the decomposition A* = A} @ Af, asso-
ciated to the choice of a subtorus T/TA. Here we use the decomposition A}, =
Zai @ Zk# Zoy. Note first that for (u,k) € Z;,wehave u — ol € Agi and then
[t — o A]i = [u]i — krj is an integer.

We start as after Proposition 3.23: m¢, (u,k) — m¢ (u,k) is equal to the
p-multiplicity in > 4. ) A, — A}, where

A =RR§(K' - 01, CEX ® [N I5h,). (4.22)
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Here & belongs to the relative interior of ¢ N ¢, the line bundle Cﬁ'f is equal to

. R +
K' xkinker Ckga, and [AZNGi ];%Ui corresponds to (—1)”‘C(Nmi) times

K' xkinkes (det(N5) ® S*((N,,i ® ©)*)),

with
+
No= D &
(a,04)>0
+(a,wi)>0
and
(Na,i ® (C)i = Z €.
(a,0 1)#0
+(a,mi)>0

Now we can apply Remark 3.17 with the subgroup H C T equal to the center
Z(K") of K': an element y € A* belong to Zk#i Zao ifand only if t” = 1 for all
t e Z(Kh.

The group Z(K) acts trivially on the manifolds K' - ¢ 4, and with the characters
associated to the weights

kedi+ > a+o6 with (9,m)=0

(a,61)>0
(a,mi)>0

on the bundle CS']‘ Q[AENG.i ]z}il, and with the characters associated to the weights

kedi+ > a+o with (9, @) <0
() <0
onlthgfbundle Cﬁ']‘ ® [AGNG.i ]:}Ui . Now, the z-multiplicity in A is not equal to 0
onlyi

kei+ D a+d—ped Zax with =+ (5, m)=0. (4.23)
(a,02)>0 k7E|
+(a,wi)>0

Condition (4.23) implies that [u«]; > k[o A]i +s;fi or [u]i < k[oA]i —s, ;. Finally,
we have to prove that m¢, (i, k) = m¢_(u, k) if

s, < [u]i —Kk[oA]i < S;:i

forallo € A(cy,co).
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4.4 The case of SU(n)

Let T be the maximal torus of SU(n) consisting of the diagonal matrices. The dual
t* can be identified with the subspace x; + --- + x, = 0 of R". The roots are
R =1{g —¢gll <i # ] < n} and we will choose the positive ones to be
R = (g — €j|1 <i < j < n}. The simple roots are then aj = & — &1, for
1 <i < n—1,and for these simple roots, the fundamental weights are

1
wkzﬁ(n—k,n—k,...,n—k,—k,—k,...,—k), l<k=<n-1 (4.24)

k times n—k times

Consider now the coadjoint orbit O, for A € t*. Let ® : O; — t* be the moment
map associated to the Hamiltonian action of T on O;. The center of SU(n), which
we denote by Z, corresponds to the set of matrices zI with z" = 1. Recall the
following well-known fact.

Lemma4.11. Let & bearegular valueof @ : O, — t*. Thenfor everym e cD—l(f)
the stabilizer subgroup Ty, ;= {t € T |t - m = m} isequal to Z,.

Proof. Since ¢ is a regular value, we know that Ty, is finite for every m € ®~1(&).
The dual of the Lie algebra su(n) decomposes as su(n)* = t* @ >, oz+ su(N)},
where su(n)? ~ C_, as a T-module. For m € o~1(&), we have m = mg +
> geont My with m, € su(n)’, and then Ty = Nim, 20 Ker(t — t*). So the lattice
A%, generated by the set {a € R |m, # 0} is a subgroup of NG with A% /AL
finite. We have to show that Af,, = A%,;. For this purpose we introduce the following
equivalence relationon {1, ..., n}:

i~ <<=8g—¢g €A

Suppose that {1, ..., n}/ ~ is not reduced to a point. Let C; and C; be two distinct
equivalent classes and let # = (f1, ..., fn) be the element of t* defined by g =
ﬁ ifi €Cy, i = |E_21| ifi € Cp,and i = 0 in the other cases. We see then that
(B,a) = 0forall @ € AR, which is in contradiction with the fact that Ag,/Af, is
finite. We have proved that 6 — ej € A, foralli, j e {1,...,n}.

We are in the particularly nice situation in which the symplectic reduction
(0y)¢ = ®~1(&)/T is a smooth manifold for every regular value &.

Suppose now that /1 is a positive weight, and let ¢ be a connected component of
regular values of ® : O; — t*. We know that m’ : A* x Z — Z is supported on
the sublattice £, = {(u, K)|u € KA + AR}

Corollary 4.12. Themapm/ : E; —> Zisapolynomial of degree %1 —d,,
where d; isthe number of positive roots orthogonal to 1.

Proof. Take ¢ e ¢ Following Proposition 3.18, the periodic polynomial m¢ is
defined by m{(u,k) = RR((Oz)¢, L5 ) for all (u,k) € E;. Here (0;); =
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®~1(&)/T is a smooth manifold, and the line bundle E‘gﬁ,ﬂ = (L®k|®71(¢~)®C_ﬂ)/T
is also smooth, since the center Z, acts trivially on L®k|¢71(5) ® C_,. Now the
Atiyah-Singer integral formula for the Riemann—-Roch number RR((O;)¢, Eg’ﬂ)

Zhows that m'é is a polynomial of degree w = d'mTO' —(n—=1) = W —
YR

Now we rewrite Theorem 4.10 for the group SU(n). Let A = (A1 > --- > 1) be
a positive weightand let ¢ and c_ be two adjacent connected components of regular
values of ® : O; — t* separated by a hyperplane orthogonal to a fundamental
weight @;. The vector wj is pointing out of ¢_, and let (wj, &) — ri = 0 be the
equation of this hyperplane. We consider the linear map

QE,t) == (mi, &) —tri.

The hyperplane {Q = 0} C t* x R separates Cone(c) and Cone(c_).

The conditions (ex—e, 0 4) > 0and (ex—&, w;j) > 0are respectively equivalent
t0 Ay > Asqy and k <i < I. For SU(n), the number [a]; is equal to 0, 1, or —1
for any roots o and any i = 1,...,n — 1. Hence for every ¢ € A(cy,c_), the
integers s, sf; > 0 introduced in Definition 4.9 are equal to

S:,i = rkC(N;:i) =f{k <i <Ilsuchthat 1,k > As()}, (4.25)
S, = rkC(N;i) =f#{k <i <lsuchthat i, < 4sq)}, (4.26)

. is equal to half of the codimension of K' - ¢ 1 in K - 2, that
is, sT; +5,; =i(n—i)—dim(K?*/KI N K?%4)/2.

' 0,0

Now we make precise the results of [10].

+ —
and the sums; + s

Theorem 4.13.

e Thepolynomial m{ —m : Z; — Zisdivisible by thelinear factors

(Q_§_+1)3(Q_§_+2)35Q9a(Q+§+_2)9(Q+§+_l)a

where s = inf,1cA(c,..c ) sf,i
e Thelinear factors (Q — §7) and (Q — §7) do not divide m}_ — m? .

Proof. The first part is the translation of Theorem 4.10. We have just to prove that
the linear factors (Q —s7) and (Q — sﬁ) do not divide m’cl_ — m’c1+. This point is a

direct application of Proposition 3.25. The only fact we use here is that rkC(Njfi) =
+

s~ So the number rkc (N, ) is constant for all ¢ € A(c, ¢-) forwhich s = 5™

We now rewrite Theorem 4.13 in the particular case that A(c,, c_) contains
just one element. This happens when 2 is a “generic” positive weight (see Defini-
tion 4.5), or when ¢, does not intersect ®(O,). Here a positive weight 1 =
(A1 = --- = Ap) is “generic” if for every pair of permutations o, s’ and any
k=1,...,n—1, we have
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k k
D ety # DAt
i=1 i=1

when (g (1), - - -5 Ao(n) & Sk X Gn-k(Lo/(1)s - - - » Ao’ (m))-

Corollary 4.14. Let 1 bearegular weight. Let ¢, and c_ be two adjacent connected
components of regular valuesof ® : O; — t* and suppose that .A(c, c_) contains

just one element 5. Then the polynomial m}_ —m¢, : Z; — Z isdivisible by the
i (n—1) linear factors

Q-5 +1, Q-5 +2),....0,....(Q+5 -2, (Q+5" - 1),

where §© = s are defined by (4.25) and (4.26). Moreover, the linear factors

(Q—s7) and (Q — s") do not divide m} — m?, .

5 Vector partition functions

Let T be a torus with Lie algebra t and let A* C t* be the weight lattice. Let
R = {a1,...,aq} be a subset of not necessarily distinct elements of A* which are
in an open half-space of t*. We associate with the collection R a function

Nr: A* — N

called the vector partition function associated to R. By definition, for a weight ,
the value Nr(w) is the number of solutions of the equation

d

> kjaj=u, kjez? j=1,...d. (5.1)
j=1

Let C(R) C t* be the closed convex cone generated by the elements of R, and
denote by A} C A* the sublattice generated by R. Obviously, Nr(x) vanishes if u
does not belong to C(R) N A%

Suppose now that R generates the vector space t*. Following [36], we will call
a vector singular with respect to R if it is in a cone C(v) generated by a sub-
set v C R of cardinality strictly less than dim T. The connected components of
t*\{singular vectors} are called conic chambers. The periodic polynomial behavior
of Nr on closures of conic chambers of the cone C(R) is proved in [35]. We have
the following refinement due to Szenes and Vergne [36]. Let us introduce the convex

polytope
d
O(R) = > [0, 1]a;. (5.2)
j=1
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We observe that ¢ — CJ(R) is a neighborhood of ¢ for any conic chamber ¢ of the
cone C(R). We have the following qualitative result.

Theorem 5.1 ([36]). Let ¢ be a conic chamber of the cone C(R). There exists a
periodic polynomial P, on A* such that for each u € ¢ — O(R), we have

Nr(u) = Pe(p).

In Section 5.4 we will give another proof of Theorem 5.1.

Let cx C t* be two adjacent conic chambers separated by the hyperplane A =
{& e t*|(&, B) = 0}. Here B € tischosenso that cx C {& € t*| + (&, ) > 0}. The
aim of this section is to give a wall-crossing formula for the periodic polynomial
P, — P._.

+Note that the vector space A is generated by RN A. We polarize the elements of
R that are outside A. We define

R’:{ejaj|(aj,ﬁ)7é0andej=sign (aj, B}, (5.3)
= > (5.4)
+{aj,p)>0
and
r= =4{j| + (o, p) > O}. (5.5)

We now look at the vector space A equipped with the subset RN A C A* N
A, which lies entirely in an open half-space. Let Nrna : A* N A — N be the
corresponding vector partition function. It is easy to see that c;-N¢c_ is contained in
the closure of a conic chamber ¢’ C A relative to RN A. Following Proposition 5.1
there exists a periodic polynomial P, on A* N A such that for each x € ¢ N A*, we
have

NRna (7) = Pe(y).

Let Nr : A* — N be the vector partition function associated to the polarized
set of weight R’ (see (5.3)). The main result of this section is the following.

Theorem 5.2. The periodic polynomial P., — P._ : A* — Z satisfies

P, (1) =P ()= D D(u—7)Pe(y), ueA* (5.6)
y €EA*NA

where D : A* — Z isdefined by
D(1) = (=1)" Nr( +067) = (=1)" Ne (= = 37).
The proof of Theorem 5.2 will be given in Section 5.5.

Corollary 5.3. P, (1) = Pc_(u) for all the weights 1 e A* satisfying the
condition
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—(0 B) < (u, B) < (67, B).

These inequalities are optimal, since

(Pey =P ) (=0~ +7) = (=1)" Pe(y)

and .
(Pe, — P ) (=0T +7) = (=DM Pe(y)

forally e A*NA.

Proof. In (5.6), the term D(u — y)Py(y) does not vanish only if © — y €
6"+ C(R)or —(u—7y) € 67 +C(R) forsome y € C(RN A). These two con-
ditions impose respectively that (u, 8) > —(6~, ) and (u, B) < —(5T, B). If one
takes 4 = —0~ 4+ y withy € A* N A, (5.6) becomes (P, — Pc._)(—0~ +y) =
2 rensna D(=07 +y =y )Pe(y”) with

D=0~ +7 —7)=(=D" Np(y =)= (=D Nr(@™ =" —p +7).
Since the cone C(R') intersects A only at {0}, Nr'(y —y’) = 0if y # y’. Since
(0= — 0%, B) < 0, we always have Ng (6~ — 6+t — y + 7') = 0. We get finally

that (P, — Pc_)(=0~ +7) = (=1)" Pg(y). One can show in the same way that
(P, = P ) (=0T +7) = =(=D"" Pe(y).

5.1 Quantization of C¢

We consider the complex vector space €Y equipped with the canonical symplectic
formQ = 5 >& | dzj AdZ;. The standard complex structure J on C4 is compatible
with Q. Let T be atorus, letaj € t*,j =1,...,d, be weights of T, and let T act
on CY as

t-(zg,...,29) = A *zg, ..., t7%zg). (5.7)
The action of T preserves the symplectic form €, and the moment map associated
with this action is

1 d
O(2) = EZ|z,—|zocj-. (5.8)
i=1

The prequantization data (L, (, ), V) on the Hamiltonian T-manifold (CY, Q, @)
is a trivial line bundle L with a trivial action of T equipped with the Hermitian

2 —
structure (s, s'); = e%ss/ and the Hermitian connexion V = d — 6, where § =
1>d  zdz
7 2.i—12Zjdzj.

The quantization of the Hamiltonian T-manifold (CY, Q), which we denote by
QT (€Y), is the Bargman space of entire holomorphic functions on C9 which are £2

. . . -1z
integrable with respect to the Gaussian measure e Q.
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We suppose now that the set of weights R = {ai,...,aq} is polarized by
n € t, which means that (aj, ) > 0 for all j. The T-representation QT (CY is
then admissible, and we have the following equality in R™°°(T):

Q"(C% = > Nr(u)Cy, (5.9)

neh*

where Ngr : A* — Nis the vector partition function associated to R. In other words,
the generalized character of QT (CY) coincides with the generalized character of
the symmetric algebra S*(C9), where C9 means CY with the opposite complex
structure.

For the remaining part of Section 5, we assume that the set of weights R =
{a1,...,aq} is polarized, and generatesthe vector space t*. The first assumption is
equivalent to the fact that the moment map @ : C9 — t* is proper, and the second
assumption is equivalent to the fact that the generic stabiliser of T on CY is finite.
Notice that the vectors of t* which are singular with respect to R correspond to the
singular values of @.

In the next section we will show that QT (CY), viewed as an element of R~°°(T),
can be realized as the index of transversally elliptic symbols on C%. Then we will
apply the techniques developed in Section 3. The main difference here is that we
work with the noncompact manifold C9.

5.2 Transversally liptic symbolson CY

Let p: TCY — CY be the canonical projection. We consider the Thom symbol
Thom(C%) e T(TCY, hom(p* (AX*"TCY), p* (A 24T CY)))

associated to the standard Hermitian structure on C9. Obviously the symbol
Thom(CY) is not elliptic, since its characteristic set is equal to the zero section
in TCY (hence is not compact).

Now we deform the symbol Thom(C¢) in order to obtain transversally elliptic
symbols. Since CY can be realized as an open subset of a compact T-manifold, we
have a well-defined index map

Index(g : K7(TTC%) — R™°(T).
Definition 5.4. For any 7 < t, we define the symbol Thom”(C%) by
Thom” (CY%)(z, v) = Thom(CY)(z, » — 5ce(2)),  (z,0) € TCY,

where 7¢a is the vector field on CY generated by 7.

The symbols Thom” (C%) were studied in [32]. It is easy to see that Thom” (C%)
is transversally elliptic if and only if the vector subspace (C%)” is reduced to {0},
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ie, if {aj,n) # Oforall j = 1,...,d. We prove in Proposition 5.4 of [32]
that
Index£d (Thom”(C%)) = S*(CY) in R ®(T), (5.10)

when (aj,n) > O0forall j =1,...,d.

In order to compute the multiplicities Nr(x) of QT (CY) we introduce the
following transversally elliptic symbols. Take a scalar product b(, -) on t*, and
denote by & +— &P t* ~ t the induced isomorphism. For each ¢ € t*, the Hamil-
tonian vector field of the function ‘71 [® — &2 is the vector field

z (@2 - ) (),
which we denote ° — &,

Definition 5.5. For any ¢ € t* and any scalar product b(-, -) on t*, we define the
symbol Thom (CY) by

Thom; p(C%)(z, v) = Thom(C?)(z, v — (H® — &2 (@),  (z,0) € TC.

Let Char(Thomsp(C9) < TCY be the characteristic set of Thomg (C9).
We know that Char(Thome p(C%)) N T+CY is equal to the critical set Cr(||® — &[|2)
of the function ||® — 5”% ‘Cd > R (see Section 3.2). A straightforward computa-
tion gives that z € Cr(||® — 5||%) if and only if

b(®(2) — ¢ aj)zj =0 forall j=1,....d. (5.11)

The former relation implies in particular that b(®(z) — &, @ (2)) = % Zj b(®(z) —
&, aj)1zj|? = 0. Hence | ®(2) |2 = b(D(2), &), which implies

12 (2)lb < <]l (5.12)

Take now n € t such that (aj,#) > 0 forall j, and let 7, € t* be such that
(76)° = . We have then

Cyllzl* < (®(2), n) = b(@(2), 1) < D@ Ibllnpllb, (5.13)

where C, = 3 infj(aj, ), and z — ||z||? is the usual Hermitian form on CY. With
(5.11) and (5.13) we get the following.

Lemma 5.6. The critical set Cr(||® — &[|2) ¢ CY is contained in the ball of radius

<1 7pllo
C, ’

where 77 € tissuchthat C, = 3 infj(aj, n) > 0.

We have then proved that the symbols Thomg,b((Cd) are transversally elliptic.
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Proposition 5.7. The class of the transversally elliptic symbol Thomg;b((Cd) in
K1 (T+C%) does not depend of the data &, b, and is equal to the class defined by
Thom” (CY), where 5 € t is chosen so that (aj,n) > Oforall j.

Proof. By Lemma 5.6, we know that for any scalar product b(-, -) on t*, the char-
acteristic set of Thomg p(CY) intersects TTCY at {0}. If by and by are two scalar
products on t*, we consider the family by = th; + (1 — t)bg, 0 <t < 1, of scalar
products on t*. Hence Thomo’bt((Cd), t € [0, 1], defines a homotopy of transver-
sally elliptic symbols. We have proved that Thomg p,(C%) = Thomgp, (CY) in
KT(TTCY) forany ¢ e t*.

Fix now the scalar product b and an element £ € t*. For any t € [0, 1] the
characteristic set of Thomtg,b(cd) intersects TTCY in the ball of radius

[<1Ib 70l
Cy '

Hence Thomtg,b((Cd), t e [0, 1], defines a homotopy of transversally elliptic
symbols: Thom: p(C%) = Thomg p(CY) in K1 (TTCY). We have proved that the
class of the transversally elliptic symbol Thomg,b((cd) in K7(TTC%) does not
depend on the data &, b.

Since the weights «; lie entirely in an open half-space of t*, there exists a scalar
product b, (-, -) on t* for which we have

by (ai,aj) >0

foralli,j = 1,...,d. Let HP+ be the Hamiltonian vector field of the function
—71||<D||§+, and let 5ca be the vector field on C9 generated by # € t such that
(aj, n) > O0forall j. A straightforward computation gives that

(H°+(2), nca(2)) > 0 (5.14)
for all nonzero z € CY. Consider now the following family of symbols on C9:
at(z,v) = Thom(CY(z, v — (tHP* + (1 — )ea) (@), (z,0) € TCY,

so that g = Thom” (CY) and o1 = Thomg , (C%). The inequality (5.14) shows that
Char(oy) N TTCY = {0} forall t € [0, 1]. Hence oy, t € [0, 1], defines a homotopy
of transversally elliptic symbols: Thom” (C%) = Thomg p, (C%) in K1 (T7CY).

For the remaining part of this paper we fix a scalar product on t*, and we consider
the family of transversally elliptic symbols Thom;:(C%), & € t* (to simplify, we do
not mention the scalar product in the notation). Proposition 5.7 and (5.10) imply the
following.

Proposition 5.8. For every & € t*, QT (CY) is equal to the generalized character
Index [ (Thome (CY)).

Now we apply the techniques developed in Section 3 in order to compute the
multiplicities of Index .4 (Thom; (C)).
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5.3 Localization in a noncompact setting

As in Section 3.2 we start with a definition.

Definition 5.9. For any ¢ € t* and any T-invariant relatively compact open subset
U c €9 we define the symbol Thom; (4) by the relation

Thome (U)(z, v) := Thom(CY)(z, v — (H — Eca)(2))  (z,0) € TU.

The symbol Thom; (/) is transversally elliptic when Cr(|® — &[1?) N U = ¢
(the couple (U, &) is called good) and we denote by

RR;,(CY) € R™(T)

its index. Proposition 3.10 is still valid here. In particular, for a good couple (i, &),
we have RR;((Cd) = RR;((Cd) if & is close enough to &. Consider now the decom-
position
cr(lo - ¢ = [J € noty +9).
y €B;
Here B: C t* is finite set, since CY has a finite number of stabilizers. Since 0 €
(€% and z — (®(2), y) is constant on (CY)” , we have

(y+<&,7)=0 (5.15)
forall y € Be¢.
Definition 5.10. Forany ¢ € t* and y € B¢, we denote simply by

RRS (C?) € R™>(T)

the generalized character RRg((Cd), where U/ is a T-invariant relatively compact
open neighborhood of (C%)? N ®~1(y +¢&) such that Cr(J|® — &%) N = (CY)’ N
Oy +9¢).

Since RR?’KCd (€Y is equal to QT (CY) (see Proposition 5.8), part (a) of Proposi-
tion 3.10 ensures that we have the decomposition

QT (% = > RRS(CY).

7 €Be

Let ¢ C t* be a conic chamber of the cone C(R), and take ¢ in ¢. Then ¢ is a
regular value of the moment map @ : CY — ¢* defined in (5.8). Let Q: be the sym-
plectic structure on the orbifold ((Cd)g = ®~1(¢)/T that is induced from Q. The
orbifold ((Cd)gv is also equipped with a complex structure J; that is induced from the
standard complex structure on C9, in such a way that the orbifold ((C%)¢, Q¢, J¢))
is a Kahler orbifold. If & belongs to the lattice A*, the reduced space (C%); is the
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Kahler toric variety corresponding to the polytope {s € (R=%)d| > sjaj = ¢} of
RY. For every u € A we consider the holomorphic orbifold line bundle

Ley=(07HE) xC_)/T

on (CY);.

Definition 5.11. The periodic polynomial P. : A* — 7Z associated to the conic
chamber ¢ is given by
Pe(u) = RR((Ce, L¢ ), (5.16)

where the right-hand side is the Riemann—Roch number associated to the holomor-
phic orbifold line bundle L¢ .

Another way to define the periodic polynomial P is to consider the generalized
character RR%((C") for & e ¢: here y = 0 parametrizes the component ®~1(¢) of
Cr(|® — &|1?). By (3.22) we have

RR5(CH = > Pe(u)C, in RT(T). (5.17)
HEN*

By Lemma 3.16, we know that RRg/ (C%) = RR;(CY) when &, &' are two elements
of ¢: hence the polynomial P. does not depend on the choice of ¢ in c.

5.4 Proof of Theorem 5.1

Consider a weight « € (¢ —0(R)) N A* of the form o = &' — 37 tjaj with &' e ¢
and tj € [0, 1]. We start with the decomposition

T/ r~d " ~d
Q' (ChH = D RR;(CY.
yEBgv/
Since Nr(u) and Pc(u) are respectively the multiplicities of C, in QT (CY) and
in RRS (€Y, the proof will be complete if we show that the multiplicity of Cy in
RR@;/ (CY is equal to zero when y # 0.

Consider a nonzero element y in B¢ . For the character RR? (CY) the localization
(3.20) gives

RRS'(CY) = RR; 7 ((€%7) ® [A&N T2, (5.18)
where N = Z(aj’y)#o C_4; corresponds to the normal bundle of (€Y% inCY. The
inverse [A& N1 is equal to (—1)'Cs(,) ® S‘(NE’V ), Where

)=~ 2, a.

(@j,7)<0
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Since y acts trivially on (C%)7, all the weights ' € A* that appear in
RRg 7 (YY) satisfy (4',7) = 0. Since the weights of Ng’y are polarized by
7, we see from (5.18) that all the weights x’ € A* that appear in RRé;,((Cd) must
satisfy

(W'y) = ©6@), ). (5.19)
Consider now the weight u = &'—>; tjaj. Since ¢’ € ¢, the equality (5.15) implies
(¢, y) < 0andthen

W) =N+ D —tilep,N— D i@,y <— D (@)

<0 (aj,7)>0 (aj,7)<0 (aj,7)<0

<0

So we have proved that (x,y) < (d(y),y); hence the multiplicity of C, in
RRg/ (€Y is equal to zero.

5.5 Proof of Theorem 5.2

Let ¢+ be two adjacent conic chambers separated by the hyperplane A = {& €
t*[(&, B) = 0}. Here g is pointing out of ¢_.

We consider two points &L € ¢y such that & = %(é* + ¢7) € A belongs to
the conic chamber ¢’. We suppose also that the orthogonal projections of &1 on A
are equal to £. We know that P, (1) — Pc_(u) is equal to the x-multiplicity of

RRS*(CY) — RR;™ (CY). Proposition 3.23 tells us that
RR3"(C?) — RR3(CY) = RR; (CY) — RRY, (CY),

where y € R*%8 issuchthat é&_ +y = &, — y = &. The localization (3.20) gives
then

RR; (CY) — RR™, (C%) = RR5((CY) ® (AN T — [AEN1ZS).  (5.20)

Let Py : A*N A — Z be the periodic polynomial map which coincides with the
vector partition function Nrna on ¢/ N A*. If we work with the vector space (C9)#
equipped with the Hamiltonian action of T/ Tx, (3.22) gives the following equality
in R7°(T/Ta):

RR5((CH) = > Pe()C,. (5.21)
yEA*NA

A straightforward computation gives

[AENT = (D" D> Ner(u+6)C, (5.22)
pneN*
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and
[AEN]TS = (D7 30 Ner(u +0)C,, (5.23)
HEN*

where r ¥, 5%, R’ are defined in (5.3), (5.4), and (5.5). Since N_r (1) = Nr/(—u),
the equations (5.21), (5.22), and (5.23) show that the right-hand side of (5.20) is

equal to
> > D@Pe()Cpusy

HEN* y eA*NA

with D(x) = (=1)" Nr(g46")—(=1)""Ngr (—u — ™). Finally, we have proved
that Pe, (1) — Pe_(u) =2, caxna D —7)Pe(y).
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Eigenvalue distributions and Weyl laws for
semiclassical non-self-adjoint operatorsin
2 dimensions

Johannes Sjéstrand

Dedicated to Hans Duistermaat

Abstract In this note we compare two recent results about the distribution of
eigenvalues for semiclassical pseudodifferential operators in two dimensions. For
classes of analytic operators A. Melin and the author [6] obtained a complex Bohr—
Sommerfeld rule, showing that the eigenvalues are situated on a distorted lattice.
On the other hand, with M. Hager [4] we showed in any dimension that Weyl
asymptotics holds with probability close to 1 for small random perturbations of
the operator. In both cases the eigenvalues distribute to leading order according to
smooth densities, and we show here that the two densities are in general different.

Key words: Weyl law, random
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1 Introduction

In a classical paper by J.J. Duistermaat and L. Hormander [1], one very interest-
ing application is about (pseudo)differential operators with principal symbol p such
that the Poisson bracket { p, P} vanishes on the zero set p~1(0) and the differentials
of the real and imaginary part of p are independent there, so that the zero set is
a codimension-2 submanifold of the cotangent space. The authors gave interesting
existence results under noncompactness assumptions on the bicharacteristic folia-
tion. In my thesis under the direction of L. Hormander my task was to study the
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case {p, P} # 0 on the zero set of the symbol, and in a subsequent paper with
Duistermaat [2] we introduced and studied certain microlocal projections onto the
kernel and the cokernel of the operator. The full history of this subject can be traced
back to the famous counterexample of Hans Lewy to local solvability and sub-
sequent work by Hormander and others, and there is also quite a rich recent history.

There has been a renewed interest in non-self-adjoint operators and the related
notion of pseudospectrum, promoted by L.N. Trefethen, E.B. Davies, M. Zworski,
and others. Again the Poisson bracket i ~1{p, P} plays an important role as a source
of pseudospectral behaviour, including spectral instability. (We observe here that
the above Poisson bracket is equal to the principal symbol of the commutator of the
corresponding (pseudo)differential operator and its adjoint.) We refer to the surveys
[8, 9], where further references can be found.

Possibly, as a reaction to these developments, the author participated in two
projects:

e With A. Melin [6] we discovered for a fairly wide and stable class of non-self-
adjoint semiclassical pseudodifferential operators in dimension 2 with analytic
symbols that the individual eigenvalues in certain regions can be determined
by a Bohr—Sommerfeld quantization rule defined in terms of certain complex
Lagrangian tori (close to the real domain). The underlying idea is here to change
the Hilbert space norm by means of exponential weights in such a way that the
operator becomes (more) normal.

e M. Hager [3] considered certain non-self-adjoint h-pseudodifferential operators
in dimension 1 with small multiplicative random perturbations and showed that
with probability tending to 1 when h — 0, the eigenvalues distribute according
to the classical Weyl law, well known in the context of self-adjoint operators
for almost a century. The same type of result was subsequently obtained in any
dimension by Hager and the author [4] for a certain class of nonmultiplicative
random perturbations and recently also for multiplicative random perturbations
in any dimension by the author [10].

In the present note we shall compare the resulting distributions of eigenvalues in
dimension 2. More precisely, let P have leading symbol p and satisfy the assump-
tions of [6] in the slightly strengthened form of Theorem 1 below. Then for generic
p the density of eigenvalues of P according to [6] is different from the one for small
random perturbations of P as in [4]. This means that the random perturbations will
change radically the asymptotic distribution of eigenvalues. The intuitive explana-
tion of this phenomenon is that the result of [6] depends on the geometry in the
complex domain, while the random perturbation destroys analyticity, and hence the
eigenvalue distribution should be given in terms of the real phase space, where the
Weyl law is the natural candidate.

The corresponding phenomenon in one dimension is similar and easier. Here
the (expected and sometimes well established) general situation is that the eigen-
values of an analytic pseudodifferential operator are confined to curves possibly
with branch points, determined by complex Bohr—Sommerfeld rules, while the Weyl
law for random perturbations will distribute the eigenvalues in the image by p of
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the real phase space. For example, if P = (hDy)? +ix?, p(x,&) = &2 +ix?, the
eigenvalues will be confined to €7/4[0, +oo, while those of random perturbations
of P will spread inside the first quadrant = p(T*R).

We next describe the main result of [6]. Let p(x, &) be bounded and holomorphic
in a tubular neighborhood of R* in C* = C2 x Cg. (The assumptions near oo can be
varied in many ways and we can let p belong to some more general symbol space
as long as we have the appropriate form of ellipticity near infinity; cf. (2) below.)
Assume that

R* N p~1(0) # ¥ is connected, (1)

for simplicity. Also assume that
on R* we have | p(x, &)| > 1/C, for |(x,&)| > C, @)
for some C > 0, and
d% p(x, &), dIp(x, &) are linearly independent for all (x, &) € p~1(0) "R, (3)

It follows that p~1(0) N R* is a compact (2-dimensional) surface.
Also assume that

{9 p, I p}| is sufficiently small on p~1(0) N R*. (4)

By “sufficiently small” we mean that [{9ip, Ip}| < o for some 6 > 0O that will
depend on all constants (implicit or explicit) that are required to express the other
conditions above uniformly.

In [6] we showed that p~1(z) N R* is a real torus for z € neigh (0, C) (i.e.,
some neighborhood of 0 in C) and that there exists a smooth 2-dimensional torus
I'(z) ¢ p~1(2) N C* close to p~1(z) N R* such that I = 0and 1) € R,
j =1,2.Here lj(z) := fyj(z) ¢ - dx are the actions along two fundamental cycles
71(2), y2(2) C T'(z) and ¢ = Z% d¢j A dxj is the complex symplectic (2,0)-form.
Moreover, I'(2), | (z) depend smoothly on z € neigh (0).

The main result of [6], valid under slightly more general assumptions than the
ones above, is then the following

Theorem 1. Under the above assumptions, there exist a neighborhood V of 0 € C,
o € (32)%, 0; € C®(V;R?), and 0(z;h) ~ O + O1(2)h + G,(2)h? + -~ in
C>(V; R?) such that for z € V and for h > 0 sufficiently small, z is an eigenvalue
of P = p”(x, hDy) iff

(11(2), 12(2))

=k —0(z h), for somek e Z2. (BS)
2zh

Here p*(x, hD) denotes the eyl quantization of the symbol p(x, h¢).

Let us also assume that

the map z+— 1 (2) := (11(2), 12(2)) is a diffeomorphism fromV to [ (V). (5)
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This assumption is satisfied if we strengthen (4) by assuming that [{) p, Ip}| is
sufficiently small on p~1(z) for all z € neigh(0, C) and choose V small enough. The
eigenvalues near 0 will then form a distorted lattice, and we introduce the leading
spectral density function 0 < w(z) € C*(V) by

dl1(2) Adl2(2) = Lo (2)dRz A dJz, (6)

where the sign is chosen so that « becomes positive. Then from Theorem 1 it follows
that for every W & V with smooth boundary, the number of eigenvalues in W
satisfies

1
N(W; h) = e (/Wcu(z)L(dz) +o(1)), h - 0. @

Here L(dz) = d%iz d3Jz denotes the Lebesgue measure.

Now we turn to the results in [3, 4, 10]. Again the unperturbed operator is of the
form P = p*(x, hDy), where the complex-valued smooth symbol should belong
to a suitable symbol class and satisfy an ellipticity condition at infinity which guar-
antees that the spectrum of P in a given open set Q & C is discrete. The perturbed
operator is of the form Ps = P +6Q,,, where the parameter ¢ is small, say bounded
from above by some positive power of h and from below by e " for some suitable
value a €]0, 1]. Under some additional assumptions on the type of random pertur-
bation and about nonconstancy of the symbol p, it is shown in the cited works that
with a probability that tends to 1 when h — 0, the number of eigenvalues of Ps in
W & Q obeys

No (W ) = h)n S (VOI(PTH (W) + 0(1)) (8)
uniformly for W in a class of subsets of Q with uniformly smooth boundary. (In the
case of multiplicative perturbations, an additional symmetry assumption on the
symbol is imposed which cannot be completely eliminated.)

Notice that this result can be formulated as in (7) with the density » replaced
by the Weyl density w(z)L(dz), defined to be the direct image of the symplectic
volume element under the map p, so that

/f(z)w(z)L(dz) =// f(p(x,&)dxds, e Cyo(V). 9)

In the two-dimensional case there are situations (for instance in the case of the
symbol p(x, &) = 3((x? + &2) + i (xZ + ¢2)) — const and small perturbations of
that symbol) where Theorem 1 applies to P and the results of [4, 7] apply to small
random perturbations, and it is then of interest to compare the spectral densities.
We shall see that w(z) = w(z) in the integrable case when {ip, I p} = 0 but that
these quantities are different in general.

Theorem 2. Under the assumptions (1)—(5) we have generically that w # w.
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In other words, if w = w, then there are arbitrarily small perturbations of P
within the class of operators as in the theorem for which w # .

2 Theintegrable case

In this section, we strengthen the assumption (4) to
{Mp,Ip}=0. (10)

It is then well known by the Liouville-Mineur-Arnold theorem (see [11]) that
there exists a real symplectic diffeomorphism x : neigh(y = 0,T*T?) —
neigh (p~1(0) N R*, R%) (i.e., from a neighborhood of {5 = 0} in T*T? to a neigh-
borhood of p~1(0) N R* in R*) such that

pox = p(n) (11)
is independent of y, where T? = (R/2xZ)? and T*T? ~ T x RZ.

In this case I'(z) is simply the real Lagrangian torus p—1(z) N R* and

1j(2) = 2znj +1j(0),  pln) =z (12)

It follows that up to composition with x, we get the same quantities w(z), w(z) if
we do the computation directly on T*T2 for p(s7), and we restrict the attention to
that case and drop the tilde.

From (12) and (6) we get

w(2) _‘ ¢ 00n, n2) b=z (13)

@r)? [ a(p,Ip)
From (9), we get for f € C;°(V):

/Famanma=/ £ (p(y. m)dydy
=(zn3/f<pm»dn

=@nf/fa>

which shows that w(z) also satisfies (13), so

det o(n1, 1m2)

L(d
20ip,sp) | -

w@)=w(z), zeV, (14)

in the completely integrable case (10).
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3 Thegeneral case

In this section we shall prove Theorem 2 by means of calculations similar to those
in [5]. Let p satisfy the assumptions (1)-(5). Let G¢(x, &) for t € neigh (0, R)
be a smooth family of functions that are holomorphic and uniformly bounded in
a fixed tubular neighborhood of R*. Possibly after decreasing the neighborhood of
t = 0 we get a smooth family of canonical transformations «; from a fixed tubular
neighborhood of R* onto a neighborhood of R, by solving the Cauchy problem

d —
a’ft(p) = (k)«(iHg)(p), xo(p) = p, (15)

where
0Gt 0 0Gt 0

Gt = S7 A0 Ao Az

o0& oX oX o¢
is the holomorphic Hamilton field (of type (1, 0)) and we identify i Hg, with the
corresponding real vector field |/I-|Et ‘=iHg, +iHg,.
Put pt = p o xt. Then (possibly after further shrinking the neighborhood of
t = 0) py will satisfy the assumptions (1)—(5), and since «; are complex canonical
transformations, we also know that

wt = w is independent of t. (16)

In order to prove Theorem 2, it suffices to prove the following result.

Theorem 3. For every neighborhood V of 0 € C, we can find a family G; as above
such that every neighborhood of t = 0 will containat for which wt # w inV. Here
wy denotesthe Weyl density of py, defined asin (9).

Remark 1. Actually, we shall prove the theorem in all dimensions (replacing 2 by
any 0 < n € N) forany p # 0 that is bounded and holomorphic in a tubular
neighborhood of R?" in C2" that satisfies (2) and for which p~(0) N R?" + ¢. Let
wt(2)L (dz) be the measure defined as in (9) with p = po replaced by pt = p o «t.

Proof. For f € C3°(V: R) we get

/f(z)au;tt(Z)L(dz)z %/ f (2w (2)L(d2)

_ %// f(pe(x, &))dx de

//(—( S —(pt)apt)dxdé.

opt .
— =IiH
ot Gt Pt

Here, we have
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and using that f is real,

/f(z)augt(z)L(dz)zzﬁ (i // %(Q)Hetp[dxdf)
S (i //Z—;(pt)Hpt(Gt)dxdg“)
-2 (i //Hp[ (Z_fz(pt)) thxdf)
_2%( //( Mo (PO + = azf p[(pa)etdxdz)
J%(//—(polm pt}thxdf)

=/ (AF)(pO) {9 pr, IPIRGe dx de. 17)

If {9 p, Ip} = 5{p, P} does not vanish identically, there are points arbitrarily close
to p~1(0) where it does not vanish and we can choose f ¢ Cs°(V: R) (where V
is any fixed neighborhood of 0 € C) such that (A f)(p){9p, I p} does not vanish
identically. We can then choose G = Gy independent of t with the properties above
so that

/f(z) (;Lt) Ou)t(z)L(dz)z/ (AF)(P){Mp, IPIRG dxdé 0.
t=l

We get the conclusion of Theorem 3 in this case.
If (M p, Ip} = 0, we choose G real and independent of t in (17) and differentiate
that identity once with respecttot att = 0 to get

/f()( ’”t) L(dz) = /(Af)(p)(at) 0( (e pt})Gdde
t=

=/ (Af)(p>§<{i Hap. P} + (p.THGP))G dx d¢

= =5 [[aD®ItHHG + HoHpGIG dxde:

Here we integrate by parts and use that Hpp = 0, Hpp = 0, to get

/f()(a wt) L(dz) = /(Af)(p)|HpG|2dxdg“
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Again we see that we can find f € C5°(V;R) and G = Go as above, so that the
last integral is # 0. The conclusion in the theorem follows in this case also.
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Abstract We prove, under some generic assumptions, that the semiclassical
spectrum modulo O(#%) of a one-dimensional pseudodifferential operator
completely determines the symplectic geometry of the underlying classical system.
In particular, the spectrum determines the Hamiltonian dynamics of the principal
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1 Introduction

In this article 1 would like to advocate an inverse spectral theory for pseudodiffer-
ential operators. What does this mean? One of the most famous inverse spectral
problems, made fashionable by Kac’s very entertaining article [12], with a mind-
catching title “Can one hear the shape of a drum?”! was about the Laplace operator
on a bounded domain Q C R". Frequencies v, solutions to the eigenvalue problem
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may be viewed as harmonics that can be heard when the interior of the “membrane”
Q vibrates freely. The question was whether the knowledge of all frequencies
completely determines Q (up to isometry, of course). As Kac mentioned, this ques-
tion appears naturally in the context of quantum mechanics, for a particle trapped
in a hard potential well. An important observation in Kac’s paper was the relevance
of the Weyl law, which let us find the volume (or area when n = 2) of Q from the
asymptotic behaviour of large eigenvalues.

Counterexamples are now known: there are nonisometric shapes in R? that
produce different frequencies [10]. Nonetheless, this fact should not let us think
that the problem has become obsolete. The seemingly simple case of a convex,
bounded domain Q e R? with analytic boundary is still open; the closest result,
in the presence of symmetry, is due to Zelditch, see [24, 23, 27].

Understanding this problem requires putting it in a wider perspective. A natural
variant of Kac’s problem is whether the spectrum of the Laplace operator Ag on
a compact Riemannian manifold (M, g) determines the metric g. Although here
again, counterexamples have been known for a long time [15], our understand-
ing remains relatively poor. Recent work by Zelditch and Guillemin suggests that
microlocal tools are quite relevant for all these questions. This, in turn, is a hint that
more general operators than the Laplacian could be dealt with similarly.

From a quantum-mechanical viewpoint, Kac’s situation is quite extreme. A more
natural setting would involve a particle “trapped” by a smooth potential well.
No more boundary problems, but instead a Schrodinger operator on R",

hZ

Of course now the potential function V should be recovered from the spectrum of P.
This inverse spectral problem has been much studied, but only very recently have
microlocal tools similar to those used by Guillemin and Zelditch been applied to
it [11, 6, 3].

Here, | would like to shift again the initial problem one step further away.
Instead of the Laplacian, or the Schrddinger operator, why not consider any (elliptic)
differential operator, or even, while we’re at it, any pseudodifferential operator?
Of course, since there is no longer a domain €, no potential function V, the sensible
question is, what should we try to recover from the spectrum?

The inverse spectral problems | have mentioned here can all be understood as
semiclassical limits. From a quantum object, the spectrum, one wants to recover
classical observables such as the metric g, or the potential V. These quantities, in
turn, fully determine the classical dynamics of the system. For general pseudo-
differential operators, semiclassical analysis still shows the strong relationship
between the classical dynamics and the quantum spectrum, so | believe that the
most natural “object” that we should try to recover from the spectrum is pre-
cisely this classical dynamics. This, precisely, amounts to determining the principal
symbol of the operator. In fact, if we keep in mind Weyl’s asymptotics, this sounds
fairly natural, for it is well known that Weyl’s asymptotics extend to arbitrary
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pseudodifferential operators, provided that we compute phase space volumes defined
by energy ranges given by the principal symbol [22, 16].

As in the Riemannian case, one should take into account a symmetry group acting
on the classical data. For general pseudodifferential operators, there is only one
available: the group of symplectomorphisms, acting on the phase space M. This is
a much bigger group than the group of Riemannian isometries, in accordance with
the fact that the space of principal symbols C°°(M) is much bigger than the space
of Riemannian metrics, or potential functions.

Acknowledgements
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proof of Theorem 4.2.

2 The setting

Since we aim at recovering the classical dynamics from the spectrum, we are going
to work in the setting of semiclassical pseudodifferential operators, which we recall
here. Throughout this work, we consider only the one-dimensional theory. It would
be very interesting to have higher-dimensional results, but it is not expected that
such precise results would persist. However, a reasonable challenge would be to
undertake a similar study for the completely integrable case.

The classes ¥9(m) of semiclassical pseudodifferential operators that we use are
standard. Let M = T*R = RZ .. Letd and m be real numbers. Let S%(m) be the
set of all families (p(-; 2)) e (0,17 Of functions in C°°(M) such that

Vo € N2, [0f, 5 Pp(x. & h)| < Cuh® (L + X1 + €))7, (1)

for some constant C,, > 0, uniformly in 4. Then ¥9(m) is the set of all (unbounded)
linear operators P on L2(R) that are 41-Weyl quantisations of symbols p € $¢(m):

w 1 iix_y.e X+y .
(P = OpF (P00 = 5 [ eFr9p (22 e )uyidydcy

The number d in (1) is called the h-order of the operator. Unless specified, it will
always be zero here. In this work all symbols are assumed to admit a “classical”
asymptotic expansion in integral powers of £ (that is to say, in the ladder
(Sd(m))dez,dzd0 for some dy € Z). The leading term in this expansion is called
the principal symbol of the operator.
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Thus, the Schrédinger operator P = —%ZA + V on R is a good candidate,
of h-order zero, whenever V has at most polynomial growth.

We use in this article the standard properties of such pseudodifferential operators.
In particular, the composition sends ¥4 (m) x ¥ (m’) to ¥94+9"(m +m’). Moreover,
all P € ¥9(0) are bounded: L2(R) — L2(R), uniformly for0 < i < 1.

An operator P € W(m) is said to be elliptic at infinity if there exists a constant
C > 0 such that the principal symbol p satisfies

1
Ip(x, &) = E(|x|2 + [¢1PHm2

for x| + |¢” = C.

If P has a real-valued Weyl symbol, then it is a symmetric operator on L2 with
domain C§°(IR). If furthermore the principal symbol is elliptic at infinity, then P is
essentially self-adjoint (see for instance [8, Proposition 8.5]).

Finally, when P e ¥%(m) is self-adjoint and elliptic at infinity, then for any
f e C§°(R), the operator f(P) defined by functional calculus satisfies f(P) e
Nken (PO(—km)). See for instance [8] or [17] for details.

The advantage of the semiclassical theory is that it allows us to use richer versions
of Weyl’s asymptotics. Instead of considering the limit of large eigenvalues, we fix
a bounded spectral window | = [Eg, E1] € R and study the asymptotics of all
eigenvaluesin I, as i — O.

Definition 2.1. We say that Assumption A(P, 7, |) holds whenever:

1. P is a self-adjoint pseudodifferential operator in ¥°(m) with principal symbol
p, elliptic at infinity.

2. J c [0, 1] is an infinite subset with zero as an accumulation point.

3. There exists a neighbourhood J of | such that p~1(J) is compact in M.

When m > 0, the properness condition 3 is implied by condition 1. If Assumption
A(P, J, I holds, we denote by (P, I) the spectrum of P = P (%) in | (includ-
ing multiplicities). We denote by X (P, 7, I) the family of all {£5(P, 1); & € J}.
It is well known that X5 (P, I) is discrete for & small enough (see, e.g., [17,
Théoréme 3.13], in a slightly different setup).

Proposition 2.2. Let P be a self-adjoint pseudodifferential operator in ¥ (m), with
principal symbol p, elliptic at infinity. Let J C R be a closed interval such that
p~1(J) is compact. Then for any open interval | C J there exists /g > 0 such that
the spectrum of P in | is discrete for < hyp.

Proof. Let f e C§°(J) be equal to 1 on I. Then by pseudodifferential func-
tional calculus, f(P) is compact for /# small enough (see for instance [8, p. 115]).
Therefore, denoting by IT; the spectral projector on I, we have that TT; = IT; f(P)
is compact. This implies that IT; has finite rank: the spectrum in | is discrete.

The goal of this article is to recover the dynamics of the Hamiltonian p in the
region p~L(1) for any operator P for which Assumption A(P, .7, 1) holds, for



Symplectic inverse spectral theory for pseudodifferential operators 357

some subset 7 c [0, 1]. Of course if we can do it for an arbitrary compact interval
I C R, we recover the full dynamics of p.

It turns out that under some genericity conditions, these inverse spectral problems
are fairly easy, compared to the general multidimensional problems alluded to in the
introduction, in the sense that they require only a few terms in the asymptotics of
the spectrum. Having this in mind, for & € R we denote by (P, 7, 1)+ O(h*) the
equivalence class of all X5 (P, I) modulo 2*. Our main result is Theorem 5.2, but
we also state several intermediate results that require weaker hypotheses.
An informal statement of Theorem 5.2 is as follows.

Theorem 2.3 (Theorem 5.2). Let Assumption A(P,7,1) hold, and set
M = p~(1). Suppose that p;y is a Morse function. Assume that the graphs of
the periods of all trajectories of the Hamiltonian flow defined by pu, as functions
of the energy, intersect generically.

Then the knowledge of (P, 7, 1) + O(k?) determines the dynamics of the
Hamiltonian system pyy.

In fact, we determine completely the Hamiltonian p up to symplectic equivalence.
Perhaps the most difficult step, for which Weyl’s asymptotics are not enough,
is the seemingly simple problem of counting the number of connected components
of p~1(E), for a regular energy E € | (Theorem 4.2).

Although we state everything for pseudodifferential operators defined on R,
it is most probable that all results extend to the case of pseudodifferential operators
defined on a one-dimensional compact manifold equipped with a smooth density,
and to the case of Toeplitz operators on two-dimensional symplectic manifolds.

The plan of the paper follows a fairly logical progression. Since we always work
modulo symplectomorphisms, it is not reasonable to look for a formula that would
give the principal symbol p. Instead we will try to recover as many symplectic
invariants as possible from the spectrum, so that given two spectra, we should be
able to tell whether they come from isomorphic systems.

Thus, the geometric object under study is a proper map p : M — R, where M
is a symplectic 2-manifold. The simplest symplectic invariants of this map are in
fact topological invariants, and are dealt with in Sections 3 and 4. Indeed, it follows
from the action-angle theorem that as soon as E € R is a regular value of p, then
the fibres of p consist of a finite number of closed loops, each one diffeomorphic to
a circle. Therefore, we need to be able to detect

1. whether an energy E € R is a regular or critical value of p; this is done in
Section 3 (Theorem 3.1);

2. when E is a regular value, the number of connected components of the fibre
p~L(E); Section 4.1 discusses this point (Theorem 4.2).

Putting these results together, we are able to recover the topological type of the
singular fibration (Theorem 4.5). Then in Section 5, relying on the classification
result of Dufour—Molino—Toulet [9, 18] (and some additional argument) we finally
manage to recover the symplectic geometry of the system (Theorem 5.2).
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3 Singularities

In order to detect whether a given energy Eg € R is a critical value of p, it is
enough to know the spectrum of P in a small ball around Eg, at least under some
nondegeneracy conditions.

Recall that a function f : M — R is said to have a nondegenerate critical point
m € M whendf (m) = 0 and the Hessian f”(m) is a nondegenerate quadratic form.
Since M has dimension 2, there are only two cases:

1. Elliptic case: there are local symplectic coordinates (x, &) in Ty M such that
f7(m)(x, &) = C(x? + &2), for some constant C 0.

2. Hyperbalic case: there are local symplectic coordinates (x, &) in Ty M such that
f7(m)(x, &) = Cx¢&, for some constant C # 0.

We refer to each of these two cases as the type of the singularity m.

Theorem 3.1. Let | be an interval containing Eg in its interior, and let Assumption
A(P, J, 1) hold. Assume also that p has only nondegenerate critical values in 1,
and that any two critical points with the same singularity type cannot have the same
image by p. Then from the knowledge of = (P, 7, I) + O(h?) one can infer

1. whether Ej is a critical value of p;
2. in case Eg is a critical value, the type of the singularity.

Proof. We use Weyl’s asymptotics, which can be obtained from a semiclassical
trace formula as in [7, 3]: of E; € 1, then the number of eigenvalues of P in
[Eo, E1] is equivalent, as & — 0, to

1

— dx dé.
2mh Jp-1([Eo,Ex])

We fix Eg and consider the behaviour of the “action” function

A(E1) ::/ dxd¢.
p~*([Eo.E1])

Since p~1(Ep) is compact, it follows from the action-angle theorem that if Eq is a
regular value of p, then A is smooth in a neighbourhood of Eg. If Eg is an elliptic
critical value, then one of the Liouville tori in p~1(E), for E close to Eg (on one
side of Eg) degenerates to a point in the way that a harmonic oscillator energy level
does at the origin. Then the function A admits a discontinuous derivative at Eg. All
of this follows from the local normal form of elliptic singularities. Finally, if Eg is
a hyperbolic singularity, we can also use the local normal form at the singularity,
which tells us that two Liouville tori coalesce into a unique one. In this case, A(E)
behaves like (E — Ep) In|E — Ep|, and thus its derivative diverges to +oo.

Another approach to this theorem is to consider the density of states in small
regions around Eg, which can be proved using Bohr—-Sommerfeld rules. In fact,
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Bohr-Sommerfeld rules are arguably too strong for the following proposition, but
we use them here because we will have to refer to them later.

Proposition 3.2. Let y € (0,1), and for E € I,
pr(E) = W*77#(Zp(P, B(E, W ))).

Then for any E € I, the limit p(E) = limp_,¢ px(E) exists (in [0, +o0]), and

1. if E is a regular value of p, then p is smooth at E;
2. if E is an elliptic critical value of p, then p is discontinuous;
3. if E is a hyperbolic critical value of p, then p(E) = 4o0.

Proof. In case E is a regular value, the result follows directly from Weyl’s
asymptotics as before, or from the semiclassical Bohr—Sommerfeld rules as in [19].
Let us recall the Bohr—Sommerfeld approach. There exists an ¢ > 0 such that
the eigenvalues of P inside [E — ¢, E 4+ ¢] modulo O(h*°) are the union (with
multiplicities) of a finite number of spectra ok, k = 1,..., N, where N is the
number of connected components of p~1(E), and each oy is determined by quasi-
modes microlocalised on the corresponding component. Precisely, the elements of
ok are given by the solutions 4 to the equation

g®(; h) € 2nhZ, )
where the function g®) admits an asymptotic expansion of the form
0" (4 1) ~ 989 (1) + hgi O () + H2g0 () + - - ®)

with smooth coefficients gj. Moreover, if we denote by Cx(4) the kth connected
componentof p~1(1), in such a way that the family (Cx(4)) is smooth in the variable
A, then g(()k) is the action integral:

o () = / cdx. (4)
Ck(2)

From (2) it follows that for 7 small enough,
#(ok N B(E,€) = @) M g®(E + e 1) — g (E —e; D)+,

where 6 € [—1, 1] is here to take care of the appropriate integer part of the right-
hand side. Hence

(k)
0 E
26790 (E)

2
2=+ O + O)| +0.

#(ox N B(E, €)) = (2nh)~*
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With € = A7, this gives

y=11o k)
#(ox N B(E,R")) = W 1% () + 0 H +0Q).
T oE
Summing up all contributions for k = 1,..., N, we get the first claim of the

theorem, with )
1 |agg” (E)

p(E)= = | =2

The second claim can be proved in a similar way, using Bohr—-Sommerfeld rules
for elliptic singularities [21]. For our purposes, a Birkhoff normal form as in [2]
would even be enough, since we deal with energy intervals of size O(h”). Here
again there exists an ¢ > 0 such that the eigenvalues of P inside [E — ¢, E + €]
modulo O (k) are the union (with multiplicities) of a finite number of spectra
ok corresponding to the various connected components of p~1(E). The difference
is that not all components need have critical points. In fact, by assumption only
one component may have an elliptic critical point. Let us call oy the corresponding
spectrum, and Ck(4) the corresponding family of connected components. Since an
elliptic critical point is a local extremum for p, the sets Cx (1) are empty for all 1 in
one of the halves of the interval [E — ¢, E + €]. Without loss of generality, one can
assume that Cx (1) = 0, V4 € [E — ¢, E[. Then Cx (E) is just a point, while Cx(A) is
acircleforall 2 €]E, E + €].

The Bohr—-Sommerfeld rules for elliptic singularities say that the elements of oy
are the solutions A to an equation of the form

e® (1 h) € 27 AN, (5)

where the function e®) admits an asymptotic expansion exactly as g above (3).
What is more, it is equally true that the principal term is an action integral:

eWE)=0, 1) = / fdx, Viel[E,E+el.
Ck(2)
Calculating along the same lines as above, we find, for the quantity

P (1) = B #ox N B4, 1)),

the following limits:
1. when / € [E — ¢, E[, limp_0 p) () = 0;

) 1] oe¥ (,1)
2. when 2 €]E,E +¢€ E] limp0p;, () = 2| =5 |;
2l (E
3. “mh—)Oph)(E) = 27, OOE( . ;

Finally, let E be a hyperbolic critical value for p. Weyl asymptotics for such
a situation have been worked out in [1], and the singular Bohr-Sommerfeld rules
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have been established in [4]. Using the latter result it can be proven as in [13] that
the number of semiclassical eigenvalues generated by a hyperbolic fixed point, in a
neighbourhood of size ¢ = /7 of the critical value, is of order ¢| In i|/A. Therefore,
since there may be only one hyperbolic pointin p~1(0), it follows from this estimate
and the results we just proved above for the regular and the elliptic cases that

pr(E) = ClInAl,

for some constant C > 0. This gives p(E) = +oc.

Remark 3.3. It is probable that the nondegeneracy condition can be avoided. It is
known quite generally that Weyl asymptotics hold for critical energies [25]. Thus,
in all cases, we recover the action integral as the integrated density of states. It would
remain to show that the behaviour of the action integral completely determines the
singularities of p. This is easy in the Schrodinger case p = &2 4 V (x).

4 Topology

As we already mentioned above, once the singular fibres of p have been excluded,
the topology is easy to understand. The map p becomes a locally trivial fibration
whose fibres are disjoint unions of circles.

Thus, if Ep is a regular value of p, the semiglobal problem around Eg just
amounts to counting the number of connected components of p~1(Eo).

The topology of singular fibres strongly depends on the type of singularity. Under
the nondegeneracy assumption, the topology of the singular foliation in a neighbour-
hood of a singular fibre is essentially determined by the type of the singularity, and
thus by Theorem 3.1.

4.1 Connected components

Let I be a compact interval of regular values of p. As above, we denote by Cx (1),
fork = 1,...,N and 1 € I, the smooth families of connected components of
p~1(2). Each Cx(2) is globally invariant by the Hamiltonian flow generated by p.
Thus, this flow is periodic on Cx (1). Let |z« (1)| # 0 be its primitive period (the sign
is determined by the formula below). It follows from the action-angle theorem that
7k is a smooth function of A. In fact, it is well known that the period is the derivative
of the action, and we have already met this quantity in the proof of Proposition 3.2.
Using the action integral (4), we get

g (1)

(4) = a7
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Notice again that 7y never vanishes on I.

Definition 4.1. We say that a point (1,t) € (I x R*) is resonant whenever there
exist (k, j)and (k/, j))in {1, ..., N} x Z*, with k # k’, such that

ja() = j'ae () = —t.

Theorem 4.2. Let | be an interval of regular values of p, and let Assumption
A(P, J, I hold. Assume also that the set of resonant points in | x R is discrete.
Then the number N of connected components of p~1(4), 1 € I, is determined by
the spectrum (P, 7, 1) + O(K?).

Before proving the theorem, let us just remark that the leading term of Weyl’s
asymptotics is not sharp enough for this. Indeed, it gives only the density p
(Proposition 3.2):

1 N
pO) == 1wl (6)
k=1

From this one cannot distinguish, for example, one component with period z from
two components with periods |z1| + |2] = |7].

Observe also that the condition on resonant points is not adapted to systems with
symmetries. For instance, a Schrodinger operator with a symmetric double well has
two components with equal periods.

Proof of Theorem 4.1. We introduce the period lattice Lk (1):

Lr() :={(4,1) € | xR; exp(tXp)is periodic on Cx (1)}
=1{(4, jw(A); A€, jeZ}

and L() = Uszl Ly (1). The set £(I) is a union of smooth graphs that may
intersect. The intersection points for t - 0 are precisely the resonant points.

In order to prove the theorem, we split the argument into two steps. The first one
is to prove that X(P, 7, 1) 4+ O(/?) determines £(1). The second step consists in
showing why the knowledge of £(I)—and the assumption on the set of resonant
points—allows us to count the number N of connected components.

Step 1. Returning to the Bohr—Sommerfeld rules discussed in the proof of
Proposition 3.2, we recall that the spectrum of P modulo O(h*°) is the super-
position of the spectra ok generated by Cx, for k = 2,..., N. For each k,
ok has a periodic structure that makes it close to an arithmetic progression. Thus,
a simple and naive idea to distinguish between the different periodic structures is
to perform a frequency analysis, via a Fourier transform. Because we have at our
disposal only a truncated sequence of eigenvalues (those that belong to 1), we need
to introduce a cut-off. Let I’ € | and let y € C*°(R) have compact support in the
interior of | and be equal to 1 on I’. We introduce the spectral measure

Do )= D x(E)e(h),

EeX;(P,I)
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where Jg is the Dirac distribution at E. The quantity we want to investigate is its
Fourier transform. Since the mean spacing between consecutive eigenvalues is of
order i, we use a corresponding scale for the time variable t, and thus introduce

Zt:hy= > x(EeEM

EeXZi(P,I)

The function Z is called the partition function. In fact, the idea we have just
described is very well known in the semiclassical context, and is part of the general
formalism of trace formulas. We can consider the Schrodinger group U (t; h) =
exp(—itP/h), and then Z(t; k) = Trace(y (P)U(t; h)). It is well known that
x (P)U(t; h) is a Fourier integral operator, whose canonical transformation is the
classical flow of p. Moreover, its trace is a Lagrangian (or WKB) distribution
associated with the Lagrangian manifold of periods

Ap={(E,7) eR% 3z € p~H(E), exp(t Xp)(2) = 2} = L(I').

Such a result would almost finish the proof of Step 1. In fact, this statement exists
in many versions, depending on various possible situations and hypotheses. For this
reason we are not using it here as is, but instead resort once again to the Bohr—
Sommerfeld rules, which is arguably the easiest way to go.

We can split the partition function as

N
Z(t:h)y=> > x(Ee"EM

k=1 Eeok

Then from (2) one can introduce ¢ — f®(c; ) as the inverse of 2 — g®(1; 1),
which exists for 4 small enough, and write

Z(t:h) = pt@rhj; h) (7)
JEZ

(which, as before, is a finite sum) with

N
—itf ®(c:
pr(c: h) == x (10 (c; hye @M/, ®)
k=1

Note that ¢t (-; 1) € C;°(IR). By the Poisson summation formula,
1 .
Z(t:h) == > ¢(j/h) 9

ZﬂhjEZ
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(which, in contrast to (7), is a truly infinite sum) with

N

1 . . 1 g .

s t/m =5 [ e Vg e)de = Zi(t: j. h) (10)
k=1

and

_ 1 N .
Zy(t; j, h) = %/e"h et O@m) (10 (¢ pyyde.

Let us now fix j and consider Zy as a function of t. Returning to the spectral
variable 1 = f®(c; i) we can write

2w h A

. , oq® J: R
=fm.—ﬂ(e_”g(k)u’m/h}((i)—g : )).

. 1 i Gig®) (s ag®; h
Zi(t; j, h) = —/e—'“/ﬁe—'lg“)“ﬁ)/ﬁx(1)79 a( Das.

oA

Thus Zy is the semiclassical Fourier transform of a compactly supported WKB
AqK) (-

function with phase function 4 —jgék)(/l). Since W = (1) + O(h),

its associated lagrangian submanifold is defined by the equation

t = —ju(l). (11)

More precisely, since the amplitude of this WKB function is 7 (1) y (1) + O(h), and
7k does not vanish in the support of y, the semiclassical wavefront-set of Zy(-; j, k)
is, for fixed j € Z,

WFR(ZK) = {(2,1) e R t=—jw(d), x(2) #0).

Let us now turn to the behaviour of Z(t, k) for positive times. For this we
consider the localisation of Z modulo O(h*>). Lettp > 0, ¢ > 0, and let
p € C3°(B(to, €)). There is no solution to (11) in the support of p for |j| outside

the interval
to—¢ to+¢
Ik(e) := ) .
supy || infy |zk]

Making explicit the nonstationary phase argument, we can write, for any ¢ € N,

AN Gt e
Zk(t; j, h) = (—) /e*'h Ci+tio @MY C(a(c; hy)dc,

J1

where L is the linear differential operator defined by

u(c)

(k)
t ofy
1+ 7 ¢

d
(Lu)(c) = dc
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and a(-; h) € C3°(l) admits an asymptotic expansion in nonnegative powers of 7,

00
in the C* topology. Let b(c) = (1 + %°£°C )~*. Then b is uniformly bounded on |

for |j| > (to + €)/inf; |=«|, and for any ¢ € N*, there exists a positive constant Cy,
independent of j and A, such that ‘g—i? < C¢/j. Therefore, there exist constants

C, > 0such that

IL‘(a)| < Co,

and we get, again when | j| > (to + €)/ infy |zk],

- /h\¢
PO Zt: §, )| < Ce (T) .

Thus, for ¢ > 2, ~
> 1pMOZk(t: j. b < Coh.
11> e
This shows that only a finite (independent of ) number of terms contributes to
p@)Z(t; k) modulo O (/). Thus the (non)stationary phase approximations are
jointly valid. Therefore Z(t; #) microlocally vanishes at any point that does not
belong to £(1); this can be written

WER(Z(:; 1)) C L(1).
More precisely,
WFr(pZ (s h) C{(4, jr(A); A € 1, 1]l € Ik(e),k =1,...,N}.

Moreover, at a non-resonant point (4, jzx(4)), no other period j’zy, can contribute,
and thus Z (-; k) is a lagrangian distribution microlocally equal to Zx(-; j, &2). Since
the set of resonant points is discrete, and WF(Z) is closed in T *1, we must have
WF(Z(-; h)) = L(1), which finishes the proof of the first step.

Step 2. We are now left with a simple geometric inverse problem: given the set of
periods £(1), how can one recover the number N of connected components?

Our strategy is to recover the fundamental periods |z1], ..., |zn]. First of all,
by Weyl’s asymptotics (6), one obtains the a priori bound |zx(4)| < mp(A). Let
R := maxj zp. Then by assumption, the set of resonant points inside 1 x]0, R] is
finite; therefore, one can always find a smaller, nonempty interval I C | such that
there is no resonant point at all in 'x]0, R].

We extract the periods 7 from £ := £(I) N (I x]0, R]) inductively, as follows.

1. Consider a point (41, 71) € £1 with “minimal height” 71 : V(1,7) € £1, 71 < 7.

2. By the nonresonance assumption, the connected component of (11, 71) in L1 is
the graph of a smooth function of the interval I. We denote this function by
A 11(2).
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3. Consider the set
Ly = LI\[(2, ju(D): el jeZ).

Again by the nonresonance assumption, £1 remains a union of nonintersecting
smooth graphs.

4. 1f L1 is empty, then N = 1. Otherwise, start again by replacing Lo by £1, and
so on. If Ly is empty, then N =k — 1.

Remark 4.3. If we disregard symmetry issues, our assumption on the resonant set is
quite weak. For instance, one can allow the crossing of two periods to be flat (all
derivatives are equal at a point 1), simply because we put ourselves in a region with
no crossing at all. However, it is easy to prove Step 2 with even weaker assumptions.
For instance, it may work even if there are some open intervals of values of 2 which
admits resonant pairs. It would be interesting to know whether Step 1 could hold in
this case as well. 1t would then involve subprincipal terms in the Bohr-Sommerfeld
expansion.

4.2 Singular fibres

As we already mentioned, the following result comes for free.

Theorem 4.4. Let Assumption A(P, 7, |) hold, and let Eg € | be a nondegene-
rate critical value of p. Assume also that p~%(Eg) contains only one critical point.
Then from the knowledge of = (P, 7, I) 4+ O(/%) one can determine the topology of
the singular foliation induced by p, in a saturated neighbourhood of p~—1(Ey).

Proof. Under these assumptions, the topology of the singular foliation induced by
p in a saturated neighbourhood of p~1(Ey) is known to be completely characterised
by the type of the singularity [9, 26], which is determined by Theorem 3.1. For the
convenience of the reader, we briefly recall the two possible cases.

1. The elliptic case. The singular fibre p~1(Ep) is just a point and the foliation is
homeomorphic to the one given by the Hamiltonian H (x, &) = x2 + &2.

2. The hyperbolic case. The singular fibre is a circle with a transversal self-
intersection (the figure eight). It separates a saturated neighbourhood into three
connected parts: two on one side, and one on the other side. It is homeomor-
phic to the foliation given by the Hamiltonian H (x, &) = ¢2 4+ x* — x2, ina
neighbourhood of H~1(0).

4.3 Global topology

We say that a Hamiltonian system p on the symplectic 2-manifold M is topologi-
cally equivalent to the Hamiltonian system p on M if there is a homeomorphism
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¢ M — M such that
p=pog.

Notice that this implies that ¢ respects the foliation, fibre by fibre. In particular,
p and p have the same set of regular values and the same set of critical values.
If | is an open interval, then two Hamiltonian systems p and p are called topologi-
cally equivalent over | when they are topologically equivalent when restricted to the
symplectic manifolds p~1(1), (p)~1(1).

We call the topological type of a Hamiltonian system the equivalence class of
topologically equivalent systems.

Theorem 4.5. Let Assumption A(P, 7, ) hold, and assume that p has only non-
degenerate critical values in some neighbourhood of I, such that any two critical
points with the same singularity type cannot have the same image by p. Let
C1 < --- < Cp be the critical values of p in I. Suppose that in each interval
(Ci,Ciy1), i = 1,...,n — 1, there exists a nonempty subinterval I; such that
the set of resonant points in I; x R is discrete in R2. Then the knowledge of
(P, J, 1) + O(h?) determines the topological type of the Hamiltonian system
p over I.

Proof. Upon a possible enlargement of I, one may assume that | = (Eo, E1)
for regular values Eg, E1. Using symplectic cutting [14] or surgery [26], one may
replace the phase space R? by a compact symplectic manifold where p~1(1) is
embedded. Then we apply the result of [9] that says that the topological type of
p on M is determined by its Reeb graph: the set of leaves of the foliation, as a
topological 1-complex. This graph is characterised by the relative positions of criti-
cal values, and the number of fibres between two consecutive critical values. The
former is determined by the spectrum in | thanks to Theorem 3.1, while the latter is
determined foreachi = 1,...,n — 1 by the spectrum in I;, thanks to Theorem 4.2.
This gives the topological type of p, up to some homeomorphism of the Reeb graph
itself. But since we know the precise values of p at singularities, we can in fact
assume that this homeomorphism is the identity.

5 Symplectic geometry

The tools we have used so far give us the periods of the classical Hamiltonian
system, which is of course much more than mere topological information. We show
here that it is indeed sufficient to recover the full dynamics of the systems.

We say that a Hamiltonian system p on the symplectic 2-manifold M is
symplectically equivalent to the Hamiltonian system p on M if there is a smooth
symplectomorphism ¢ : M — M such that
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Thus, the dynamics of p on the level set {p = E} is transported via ¢ to the
dynamics of p on the level set {p = E}.

We call the symplectomorphism type of a Hamiltonian system the equivalence
class of symplectically equivalent systems. As before, one may restrict this equiva-
lence to an interval | of values of p and p.

Definition 5.1. Let (1,t) € | x R be a resonant point for p. Thus
jw() = jre(A) = —t

for some j, j’,k # k’. We say that this resonance is weakly transversal if there
exists an integer n € N* such that the nth derivatives of the periods are not equal:

it () # i V).

Theorem 5.2. Let Assumption A(P, 7, 1) hold, and suppose that p has only non-
degenerate critical values in some neighbourhood of I, such that any two criti-
cal points with the same singularity type cannot have the same image by p. Let
C1 < --- < cp be the critical values of p in I. Suppose that for each interval
Ji = (¢, Cit1), i = 1,...,n — 1, the set of resonant points in J; x R is discrete.
Finally, assume that all such resonant points are weakly transversal.

Then the knowledge of (P, 7, |) + O(h?) determines the symplectic type of
the Hamiltonian system p over |I.

Proof. We use the symplectic classification of [9, 18] using weighted Reeb graphs.
Under our assumptions, the Reeb graph has vertices of degrees 1 and 3. A vertex of
degree 1, a bout, corresponds to an elliptic critical value, while a vertex of degree 3,
called a bifurcation point, corresponds to a hyperbolic critical value. At a bifurca-
tion point we can distinguish one particular edge, called the trunk, corresponding to
the side of the figure 8 with only one connected component. The two other edges
are called the branches. A weighted Reeb graph is a Reeb graph each of whose
edges is associated with a positive real number, its length, and such that each of
the two branches of each bifurcation point is associated with a formal Taylor series
(i.e., a sequence of real numbers). The hypotheses of the theorem allow for deter-
mining the topological Reeb graph via Theorem 4.5. Thus, the next step of the proof
is to show how the numbers that constitute the weighted Reeb graph can be
recovered from the spectrum. The final step is to obtain the symplectic equivalence
in the sense that we have just defined above.

Thelengths

Let Cx(Ji), fork =1,..., N, be the connected components of p—l(Ji). Let Kg,i €
C°°(Ck(Ji)) be an action variable for the regular Lagrangian fibration pc,(j); itis
unique up to a sign and an additive constant. By definition the length of the edge
corresponding to the set of leaves in Cx(J;) is
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Cki = | lim K i(c) — lim Kgi(c)|. (12)
c—Cj C—>Cit+1

In learned terminology, this is the Duistermaat—-Heckman measure of J; for the
St-action defined by Ky i, or equivalently, it is the affine length of J; endowed with
its natural integral affine structure given by pjc, (3;)-

It follows from the local models for elliptic and hyperbolic singularities that this
length is always finite. This is obvious at elliptic singularities, where the action
has the form x? + £2. At a hyperbolic singularity m, one can introduce a foliation
function q such that in some local symplectic coordinates around m, q = x¢, and
g > 0 on the branches, while g < 0 on the trunk. Then the Duistermaat—-Heckman
measure has the form
duj(@) = (Ing+gj(g))dg oneachbranch (j =1, 2), (13)
du(q) = (2In|q| + g(q))dg on the trunk,

with some smooth functions g, g1, g2 satisfying

vp, 9P =gP0) + g (0).

In this form, the Taylor series of the functions g, g1, g2 at the origin are uniquely
defined [18, 20].

Using the proof of Theorem 4.2, from the spectrum in | we can recover the
periods 7x(1), k = 1,..., N, for A in any interval in J; where the graphs of the
periods zx don’t cross. At a crossing the difficulty is to put the labels k correctly,
so that the connected components Ck(4) remain in the same Ci(Jj) when 2 varies.
This can be overcome precisely thanks to the weak resonant assumption at each
crossing, because each i is C* in J;. This was the main issue. Now, fixing a point
Ai € Ji, the action variable Ky ;j we can compute by the formula

A
Kk.i (1) Z:/ w(AHdA, e .
Ai

This gives the length of Cx(J;j) via equation (12).

The Taylor series at the bifurcation points

By definition, the sequences of numbers associated with a bifurcation point in the
Reeb graph are the Taylor series of the functions g1, g» (defined in equation (13)) at
the origin.

Let us show how to recover the Taylor series of g from the spectrum. The proce-
dure is completely analogous for g1 and g.

Thus, we consider a hyperbolic critical value cj+1. We want to express the
Duistermaat—-Heckman measure on the trunk in terms of the principal symbol
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p. By a theorem of Colin de Verdire and Vey [5], there exist local symplectic
coordinates (x, &) at the hyperbolic point, and a smooth, locally invertible function
f:([R,cit1) — (R, 0) such that

f(p)=x{=q.

For notational purposes, one may assume that f’(ciz1) > 0, which amounts to
saying that the trunk is sent by p to 4 < cj41. Then from (13), for A close to cj41,
A < Ciyt,

du() = Q2In[f(A)|+go f(1)f'(2)dA.

On the other hand, if the connected component corresponding to the trunk is Cx (J;),
one has by definition of the Duistermaat—-Heckman measure d (1) = = (1)dA.
Therefore

w() = '@ In T () +go f(4) =2f"(A)In|Z - ciyal +h(2),

for some smooth function h at 4 = ci1. There, using Taylor’s formula, we have
written f (1) = a(4 — Ciz1) + (A — Ciy1)? (1), with > 0 and f smooth at Cj1,
and hence

h(l) = 2f'G)Ina + (4 — cizr) F ()] + F/(D)g o f(A). (14)

This shows that h is smooth for 4 close to ¢j1.

It is easy to see that any smooth function ¢ in a neighbourhood of the origin
such that ¢(t) Int extends to a smooth function att = 0 must be flat. Hence the
knowledge of 7 (1) for 1 < cjy1 completely determines the Taylor series of /(1)
(and hence f(4))at A = Cjt1.

Then one can recover the Taylor series of h using

h(2) = w(2) —2f' (W) In |2 —cial, YA <Cij1.

Finally, from (14) and the fact that f is locally invertible, one can recover the
Taylor series of g at the origin.

Symplectic equivalence

We have proved that the weighted Reeb graph is determined by the spectrum.
By Toulet’s classification [9, 18], if two such systems (M, p) and (M, f) have the
same weighted Reeb graph, there exists a symplectomorphism ¢ : M — M such
that p and p o ¢ define the same singular foliation on M (¢ induces a homeomor-
phism of the leaf space, fixing the vertices). If we assume that the operators P and
P have the same spectrum (modulo :2) and satisfy the requirements of the theorem,
then we also know that p and p o ¢ share the same set of critical values c;j. The fact
that p and pog define the same foliation implies that for each connected component
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Cx (Ji), there exists a smooth, invertible function f : Jj — Jj such that
p=fofog on Ck(J). (15)

Since the singular fibres at the ends of Cx (J;) are fixed by ¢, f must be increasing,
and thus extends to a homeomorphism of J;.

As we already saw, the spectrum also determines the periods at a given energy
E = A. Hence for 1 € J;, w(1) = 7k(4). Since zx is integrable at cj;1, we can
define action integrals for 4 < cj41 as

A A
Kk,i(4) Zz/ % (1)d 4, Kk,i(i) Zz/ K (A)dA.

i+1 i+1

We have K i(4) = Kk,i (4). On the other hand, the action is a symplectic invariant
of the foliation. From (15) on can compute the action on the curve ¢ (Ck(f (1)) =
Ck(2) 1 Ky i (T (1)) = K,i (1) + const. Therefore

Ki,i(4) = Ki,i (f(2)).
Since 7 does not vanish in Jj, K j is strictly monotonic on J;. Therefore
f( =4, Viel.
Thus p = p o ¢ on each C, and by continuity
p=pop onM.

This finishes the proof of the theorem.
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