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Preface

I write to prod designers and design project managers into think-
ing hard about the process of designing things, especially complex 
systems. The viewpoint is that of an engineer, focused on utility 
and effectiveness but also on efficiency and elegance.1

Who Should Read This Book? 

In The Mythical Man-Month I aimed at “professional programmers, 
professional managers, and especially professional managers of 
programmers.” I argued the necessity, difficulty, and methods of 
achieving conceptual integrity when software is built by teams.

This book widens the scope considerably and adds lessons 
from 35 more years. Design experiences convince me that there 
are constants across design processes in a diverse range of design 
domains. Hence the target readers are:

1. Designers of many kinds. Systematic design excluding intu-
ition yields pedestrian follow-ons and knock-offs; intuitive design 
without system yields flawed fancies. How to weld intuition and 
systematic approach? How to grow as a designer? How to func-
tion in a design team?

Whereas I aim for relevance to many domains, I expect an 
audience weighted toward computer software and hardware 
designers—to whom I am best positioned to speak concretely. 
Thus some of my examples in these areas will involve technical 
detail. Others should feel comfortable skipping them.

2. Design project managers. To avoid disaster, the project man-
ager must blend both theory and lessons from hands-on experi-
ence as he designs his design process, rather than just replicating 
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some oversimplified academic model, or jury-rigging a process 
without reference to either theory or the experience of others. 

3. Design researchers. The study of design processes has 
matured; good, but not all good. Published studies increasingly 
address narrower and narrower topics, and the large issues are 
less often discussed. The desire for rigor and for “a science of 
design” perhaps discourages publication of anything other than 
scientific studies. I challenge design thinkers and researchers 
to address again the larger questions, even when social science 
methodology is of little help. I trust they will also challenge the 
generality of my observations and the validity of my opinions. I 
hope to serve their discipline by bringing some of their results to 
practitioners.

Why Another Book on Design?

Making things is a joy—immensely satisfying. J. R. R. Tolkien 
suggests that God gave us the gift of subcreation, as a gift, just 
for our joy.2 After all, “The cattle on a thousand hills are mine. … 
If I were hungry, I would not tell you.”3 Designing per se is fun.

The design process is not well understood either psychologi-
cally or practically. This is not for lack of study. Many design-
ers have reflected on their own processes. One motivation for 
study is the wide gaps, in every design discipline, between best 
practice and average practice, and between average practice and 
semi-competent practice. Much of design cost, often as much as 
a third, is rework, the correction of mistakes. Mediocre design 
provably wastes the world’s resources, corrupts the environment, 
affects international competitiveness. Design is important; teach-
ing design is important.

So, it was reasoned, systematizing the design process would 
raise the level of average practice, and it has. German mechanical 
engineering designers were apparently the first to undertake this 
program.4

The study of the design process was immensely stimulated 
by the coming of computers and then of artificial intelligence. The 
initial hope, long delayed in realization and I think impossible, 
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was that AI techniques could not only take over much of the 
drudgery of routine design but even produce brilliant designs 
lying outside the domains usually explored by humans.5 A dis-
cipline of design studies arose, with dedicated conferences, jour-
nals, and many studies.

With so much careful study and systematic treatment already 
done, why another book? 

First, the design process has evolved very rapidly since 
World War II, and the set of changes has rarely been discussed. 
Team design is increasingly the norm for complex artifacts. Teams 
are often geographically dispersed. Designers are increasingly 
divorced from both use and implementation—typically they no 
longer can build with their own hands the things they design. All 
kinds of designs are now captured in computer models instead of 
drawings. Formal design processes are increasingly taught, and 
they are often mandated by employers.

Second, much mystery remains. The gaps in our understand-
ing become evident when we try to teach students how to design 
well. Nigel Cross, a pioneer in design research, traces four stages 
in the evolution of design process studies:

Prescription1.  of an ideal design process
Description2.  of the intrinsic nature of design problems 
Observation 3. of the reality of design activity 
Reflection 4. on the fundamental concepts of design6

I have designed in five media across six decades: computer 
architecture, software, houses, books, and organizations. In each 
I have had some roles as principal designer and some roles as 
collaborator in a team.7 I have long been interested in the design 
process; my 1956 dissertation was “The analytic design of auto-
matic data processing systems.”8 Perhaps now is the time for 
mature reflection.

What Kind of Book?

I am struck by how alike these processes have been! The mental 
processes, the human interactions, the iterations, the constraints, 
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the labor—all have a great similarity. These essays reflect on what 
seems to be the underlying invariant process.

Whereas computer architecture and software architecture 
each have short histories and modest reflections about their 
design processes, building architecture and mechanical design 
have long and honorable traditions. In these fields design theo-
ries and design theorists abound.

I am a professional designer in those fields that have had 
only modest reflection, and an amateur designer in some long 
and deep fields. So I shall attempt to extract some lessons from 
the older design theories and to apply them to computers and 
software.

I believe “a science of design” to be an impossible and indeed 
misleading goal. This liberating skepticism gives license to speak 
from intuition and experience—including the experience of other 
designers who have graciously shared their insights with me.9

Thus I offer neither a text nor a monograph with a coher-
ent argument, but a few opinionated essays. Even though I have 
tried to furnish helpful references and notes that explore intrigu-
ing side alleys, I recommend that one read each essay through, 
ignoring the notes and references, and then perhaps go back and 
explore the byways. So I have sequestered them at the end of 
each chapter.

Some case studies provide concrete examples to which the 
essays can refer. These are chosen not because of their importance, 
but because they sketch some of the experience base from which 
I conclude and opine. I have favored especially those about the 
functional design of houses—designers in any medium can relate 
to them. 

I have done functional (detailed floor plan, lighting, electrical, 
and plumbing) design for three house projects as principal archi-
tect. Comparing and contrasting that process with the process of 
designing complex computer hardware and software has helped 
me postulate “essentials” of the design process, so I use these as 
some of my cases, describing those processes in some detail.

In retrospect, many of the case studies have a striking com-
mon attribute: the boldest design decisions, whoever made them, have 
accounted for a high fraction of the goodness of the outcome. These 
bold decisions were made due sometimes to vision, sometimes to 
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desperation. They were always gambles, requiring extra invest-
ment in hopes of getting a much better result.
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Endnotes

The caption for the book cover is based on Smethurst [1967],1.  The 
Pictorial History of Salisbury Cathedral, who adds, “… Salisbury 
is thus the only English cathedral, except St. Paul’s, of which the 
whole interior structure was built to the design of one man [or one 
two-person team] and completed without a break.”

Tolkien [1964], “On Fairy Stories,” in 2. Tree and Leaf, 54. 

Psalm 50:10,12. Emphasis added.3. 

Pahl and Beitz [1984], in Section 1.2.2, trace this history, starting in 4. 
1928. Their own book, Konstructionslehre, through seven editions, is 
perhaps the most important systematization. I distinguish study of 
the design process from rules for design in any particular medium. 
These are millennia older.
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Simon’s The Sciences of the Artificial [1969, 1981, 1996].

Cross [1983], 6. Developments in Design Methodology, x.

A table of the specific design experiences is included in the  7. 
appendix materials on the Web site:  
http://www.cs.unc.edu/~brooks/DesignofDesign.

Brooks [1956], “The analytic design of automatic data processing 8. 
systems,” PhD dissertation, Harvard University.

I thus do not contribute to the design methodologists’ goal as 9. 
stated in http://en.wikipedia.org/wiki/Design_methods (accessed 
on January 5, 2010): 

The challenge is to transform individual experiences, frameworks and 
perspectives into a shared, understandable, and, most importantly, a 
transmittable area of knowledge. Victor Margolin states three reasons 
why this will prove difficult, [one of which is]:

‘… Individual explorations of design discourse focus too much 
on individual narratives, leading to personal point-of-view 
rather than a critical mass of shared values.’

To this I must plead, “Guilty as charged.”

Glegg [1969], 10. The Design of Design.
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1
The Design Question

[New ideas would come about] by a connexion and 
transferring of the observations of one Arte, to the uses 
of another, when the experience of several misteries 
shall fall under consideration of one mans minde.

Sir FranciS Bacon [1605], The Two 
Books of The Proficience and 

advancemenT of Learning, Book 2, 10

Few engineers and composers ... can carry on a 
mutually rewarding conversation about the content of 
the other’s professional work. What I am suggesting 
is that they can carry on such a conversation about 
design, . . . [and then] begin to share their experiences 
of the creative professional design process.

HerBert Simon [1969], The sciences   
of The arTificiaL, 82

Spiral staircase 
Corbis 
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Is Bacon Right? 

Sir Francis Bacon’s hypothesis is our challenge. Are there invari-
ant properties of the design process itself, properties that hold 
across a wide range of media of design? If so, it seems likely that 
designers in one medium would collectively grasp some of these 
principles more clearly than other designers, through struggles 
that are peculiarly difficult for that medium. Moreover, some 
media, such as buildings, have longer histories of both design 
and meta-design—“the design of design.” If all this is true—and 
if Bacon’s conclusion is true—designers in different media can 
expect to learn new things about their own several crafts by com-
paring their experiences and insights.

What Is Design?

The Oxford English Dictionary defines the verb design as 

To form a plan or scheme of, to arrange or conceive in the mind . . . 
for later execution.

The essentials of this definition are plan, in the mind, and later exe-
cution. Thus, a design (noun) is a created object, preliminary to 
and related to the thing being designed, but distinct from it. Dor-
othy Sayers, the English writer and dramatist, in her magnificent 
and thought-provoking book The Mind of the Maker, breaks the 
creative process out further into three distinct aspects. She calls 
them the Idea, the Energy (or Implementation), and the Interac-
tion,1 that is, 

The formulation of the conceptual constructs 1. 
Implementation in real media 2. 
Interactivity with users in real uses 3. 

A book, in this conception, or a computer, or a program, 
comes into existence first as an ideal construct, built outside time 
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and space, but complete in essence in the mind of the author. It 
is implemeted in time and space, by pen, ink, and paper; or by 
silicon and metal. The creation is complete when someone reads 
the book, uses the computer, or runs the program, thereby inter-
acting with the mind of the maker.

In an earlier paper, I divided the tasks in building software 
into essence and accident.2 (This Aristotelian language is not to 
denigrate the accidental parts of software construction. In mod-
ern language the terms would more understandably be essential 
and incidental.) The part of software building I called essence is 
the mental crafting of the conceptual construct; the part I called
accident is its implementation process. Interaction, Sayers’s third 
step, occurs when the software is used.

The design is thus the mental formulation, which Sayers calls 
“the Idea,” and it can be complete before any realization is begun. 
Mozart’s response to his father’s inquiry about an opera due to 
the duke in three weeks both stuns us and clarifies the concept:

Everything has been composed, just not yet written down.

LETTER To LEoPoLD MozART [1780]

For most human makers of things, the incompletenesses and 
inconsistencies of our ideas become clear only during implemen-
tation. Thus it is that writing, experimentation, “working out,” 
are essential disciplines for the theoretician.

The phases of Idea, Implementation, and Interaction oper-
ate recursively. Implementation creates a space in which another 
cycle of design must be done. Thus Mozart Implemented his 
opera Idea with pen on paper. The conductor, Interacting with 
Mozart’s creation, conceived an Idea of an interpretation, Imple-
mented it with orchestra and singers, and the Interaction with 
the audience completed the process.

A design is a created object; associated with it is a design pro-
cess, which I shall call design, without any article. Then there is the 
verb to design. The three senses are intimately related; I believe 
context will resolve ambiguity.
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What’s Real? The Design Concept

If a number of individuals have a common name, we assume them to 
have also a corresponding idea or form:—do you understand me?

I do. 

Let us take any common instance; there are beds and tables in the 
world—plenty of them, are there not?

Yes.

But there are only two ideas or forms of them—one the idea of a 
bed, the other of a table. 

True. 

And the maker of either of them makes a bed or he makes a table for 
our use, in accordance with the idea.

PLATo, THE REPUBLIC [360 BC], BOOK X

At the 2008 Design Thinking Research Symposium 7, each 
of the speakers presented analyses of the same four design team 
meetings.3 Videos and transcripts had been distributed well in 
advance. 

Rachael Luck of the University of Reading identified in the 
architectural conversations an entity that none of us had remarked 
but all then recognized: the Design Concept.4 

Sure enough, both architect and client referred from time to 
time to this shared invisible entity. Speakers usually gestured 
vaguely toward the drawings when they spoke thus, but it was 
clear they were not referring to the drawings or any particular 
thing therein. Always, the concern was for the conceptual integ-
rity of the developing design.

Luck’s insight made the Design Concept a thing in its own 
right. This resonated strongly with my experience. When the IBM 
System/360 “mainframe” computer family’s single architecture 

From the Library of Wow! eBook



ptg

What’s Real? The Design Concept 7

was being developed (1961–1963), such an entity was always 
present in the architecture group, although never named. Exploit-
ing Gerry Blaauw’s brilliant insight, we had explicitly separated 
the System/360 design activities into architecture, implementation, 
and realization.5 The basic concept was a computer family with 
one face to the programmer—the architecture—and multiple con-
current implementations at various positions on the performance 
and price curves (Chapter 24).

The very simultaneity of multiple implementations, with 
their several engineering-manager champions, drove the com-
mon architecture toward generality and cleanliness and insulated 
it from small cost-saving compromises. These forces, however, 
were merely shields for the instincts and desires of the architects, 
who each wanted to make a clean machine.6

As the architecture design progressed, I observed what at 
first seemed quite strange. For the architecture team, the real Sys-
tem/360 was the Design Concept itself, a Platonic ideal computer. 
Those physical and electrical Model 50, Model 60, Model 70, 
and Model 90 things under construction out on the engineering 
floors were but Plato’s shadows of the real System/360. The real 
System/360’s most complete and faithful embodiment was not in 
silicon, copper, and steel, but in the prose and diagrams of IBM 
System/360 Principles of Operation, the programmer’s machine- 
language manual.7 

I had a similar experience with the View/360 beach house 
(Chapter 21). Its Design Concept came to be real long before any 
construction began. It persisted through many versions of draw-
ings and cardboard models.

Interestingly enough, I never felt such a Design Concept 
entity of the Operating System/360 software family. Perhaps 
its architects did; perhaps I did not have an intimate enough 
acquaintance with its conceptual bones. Perhaps the Design Con-
cept didn’t emerge for me because OS/360 was in fact a fusion 
of four somewhat separate parts: a supervisor, a scheduler, an 
I/O control system, and a large package of compilers and utilities 
(Chapter 25).
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What’s the Value? 

Is there positive value to recognizing an invisible Design Concept 
as a real entity in design conversations? I think so. 

First, great designs have conceptual integrity—unity, econ-
omy, clarity. They not only work, they delight, as Vitruvius first 
articulated.8 We use terms such as elegant, clean, beautiful to talk 
about bridges, sonatas, circuits, bicycles, computers, and iPhones. 
Recognizing the Design Concept as an entity helps us to seek its 
integrity in our own solo designs, to work together for it in team 
designs, and to teach it to our youth. 

Second, talking frequently about the Design Concept as such 
vastly aids communication within a design team. Unity of con-
cept is the goal; it is achieved only by much conversation. 

The conversation is much more direct if the Design Concept per 
se, rather than derivative representations or partial details, is the 
focus. 

Thus, moviemakers use storyboards to keep their design conver-
sations focused on the Design Concept, rather than on implemen-
tation details.

Detailing will of course surface conflicting versions of the 
Concept and force resolution. For instance, System/360 architec-
ture needed a decimal datatype, as a bridging aid for thousands 
of existing users of IBM’s decimal machines. our developing 
architecture already had several datatypes, including a 32-bit 
fixed-point twos-complement integer and a variable-length char-
acter string.

The decimal datatype could be made similar to either one. 
Which choice better fit the Design Concept of System/360? Strong 
arguments were made each way; the strength of each depends 
on one’s version of the Design Concept. Some of the architects 
had implicit Design Concepts reflecting earlier scientific comput-
ers; others’ implicit concepts reflected earlier business computers. 
System/360 was explicitly intended to serve both kinds of appli-
cations well.

We chose to model the decimal datatype after the character-
string one, the one more familiar to the largest particular user 
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community of the decimal datatype, IBM 1401 users. I would 
decide that way again.

Thinking about the Design Process

Thinking about designs has a long history, going back at least to 
Vitruvius (died ca. 15 BC). His De Architectura is the important 
book about design from the Classical period. Major milestones 
are the Notebooks of Leonardo da Vinci (1452–1529) and the Four 
Books of Architecture by Andrea Palladio (1508–1580). 

Thinking about the design process itself is much more recent. 
Pahl and Beitz trace German thought from Redtenbacher in 1852, 
stimulated by the rise of mechanization.9 For me, major mile-
stones have been Christopher Alexander’s Notes on the Synthesis 
of Form (1962), Herbert Simon’s The Sciences of the Artificial (1969), 
Pahl and Beitz’s Konstructionslehre (1977), and the founding of the 
Design Research Society and the starting of the journal Design 
Studies (1979).

Margolin and Buchanan [1995] is an edited collection of 
some 23 essays from the journal Design Issues, primarily design 
criticism and theory, with “occasional ventures into philosophical 
issues that bear on the understanding of design” (p. xi).

My The Mythical Man-Month [1975, 1995] reflects on the 
design process for IBM’s Operating System/360, later evolved to 
MVS and beyond. It emphasizes the human, the team, the man-
agement aspects of that design and development project. Of par-
ticular relevance to the present work are Chapters 4–6 of those 
essays, which address how to achieve conceptual integrity in a 
team design.

Blaauw and Brooks [1997], Computer Architecture: Concepts 
and Evolution, includes extensive discussion of the design of the 
IBM System/360 (and System/370–390–z) architecture and the 
relationships of and rationales for dozens of design decisions. It 
doesn’t treat the design process or human aspects of designing 
at all. But Section 1.4, which discusses criteria for goodness in 
computer architectural design, is indeed of particular relevance 
for this work.
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Kinds of Design

System Design versus Artistic Design 

This book is about the design of complex systems, and the view-
point is that of the engineer, an engineer focused on utility and 
effectiveness but also on efficiency and elegance.

This contrasts with much of the design done by artists and 
writers, whose emphasis is on delight and the conveying of 
meaning. Architects and industrial designers, of course, fall into 
both camps.

Routine, Adaptive, Original Design

We often think of bridge design as one of the high arts of engi-
neering, one where breakthroughs in concept or of technology 
have dramatic and highly visible cost, function, and esthetic 
consequences.

Well, a high fraction of all highway bridges are short, so 
cranking out a design for a 50-foot concrete bridge is a routine 
and automatable process. For short bridges, civil engineers know, 
and long ago codified into handbooks, the design decision tree, 
the constraints, and the desiderata. The same situation prevails 
for the design of compilers for established languages on new 
platforms. There are many areas of routine, automatable design. 

The emphasis in this book is on original design, as opposed 
to the routine redesign of object after object with changed param-
eters, or even adaptive design, which is essentially the modifica-
tion of a preceding design or object to serve new purposes. 

Notes and References

Sayers [1941], 1. The Mind of the Maker. 

Brooks [1986], “No silver bullet.”2. 

McDonnell [2008], 3. About Designing. This book is the edited Papers 
from the Design Thinking Research Symposium (DTRS7).

Luck [2009], “Does this compromise your design?” reprinted in 4. 
McDonnell [2008], About Designing.
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Blaauw and Brooks [1964], “Outline of the logical structure of   5. 
System/360.” Blaauw further divides Sayers’s “Energy” into Imple-
mentation and Realization, a distinction I find immensely useful. 

Janlert [1997], “The character of things,” argues that designed things 6. 
have character and discusses how one designs that character. 

IBM Corp. [1964], 7. IBM System/360 Principles of Operation.

Vitruvius [22 BC], 8. De Architectura.

Pahl and Beitz [1984], 9. Engineering Design.
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•  Goal

•  Desiderata

•  Utility function

•  Constraints, especially budget (perhaps not $ cost)

•  Design tree of decisions

UNTIL ("good enough") or (time runs out)

   DO another design (to improve utility function)

      UNTIL design is complete 

         WHILE design remains feasible,

            make another design decision

         END WHILE

         Backtrack up design tree

         Explore a path not searched before

      END UNTIL

   END DO

   Take best design

END UNTIL
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2
How Engineers Think of 
Design—The Rational 
Model

… [F]or the theory of design is that general theory 
of search … through large combinatorial spaces.

HerBert Simon [1969], The sciences   
of The arTificiaL, 54

A Rational Model of the design process
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The Model

Engineers seem to have a clear, if usually implicit, model of the 
process of design. It is an orderly model of an orderly process as 
the engineer conceives it. I shall illustrate with an example of a 
beach house design (sketched in Chapter 21).

Goal. First one starts with a primary goal, or objective: “One 
wants to build a beach house to take advantage of wind and 
wave at an oceanfront lot.”

Desiderata. Associated with the primary goal are a host of 
desiderata, or secondary objectives: “The beach house should be 
reinforced to withstand hurricane-force winds; it should sleep 
and seat at table at least 14 people; it should exploit the stunning 
views;” and so on.

Utility Function. One wants to optimize the design according to 
some utility or goodness function that weights the several desid-
erata as to their importance. So far as I can tell, most designers 
imagine the terms themselves to be linearly summed, but conceive 
of each goodness variable individually as not linear, but rather as 
curved asymptotically to saturation. For example, more window 
area is a desideratum, something desired in house design. But the 
utility added by each extra square foot of window diminishes. 
The same is true of electrical outlets. The utility of the windows 
and that of the outlets, however, seem simply to sum.

Constraints. Every design, and every optimization, is subject 
to constraints. Some of these are binary, either satisfied or not— 
“The house must be set back at least 10 feet from the lot’s side 
lines.” Others are more elastic, with steeply rising penalties as 
one approaches a limit, such as schedule constraints—one fiercely 
wants to have the beach house ready when warm weather comes.

Some constraints are simple, such as setback limits. Others 
blithely conceal terrifying complexity—“The house must satisfy 
all the building codes.”

Resource Allocations, Budgets, and Crucial Budgets. Many 
constraints take the form of a fixed resource to be allocated 
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among design elements. The most common is a total cost budget. 
But this is by no means the only such constraint, nor is it nec-
essarily the one that most controls the designer’s attention in a 
particular project. In the beach house floor plan, for example, the 
controlling commodity to be rationed was the feet (even inches) 
of ocean frontage. In the design of a computer architecture, the 
critical budget may be the bits in a control register or an instruc-
tion format, or the uses of the total memory bandwidth. When 
people were solving Year 2000 problems in software, working 
days on the schedule were the crucial allocable resource.

Design Trees. Now, so the Rational Model goes, the designer 
makes a design decision. Then, within the design space nar-
rowed by that decision, he makes another.1 At each node he 
could have taken one or more other paths, so one can think of 
the process of design as the systematic exploration of a tree-
structured design space. 

In this model, design is conceptually (at least) very simple. 
One searches the tree-structured design space, testing each option 
against the constraints for feasibility and choosing so as to opti-
mize the utility function. The search algorithms are well known 
and can be cleanly described.

CLOCK

VISIBILITY

PLAIN
DIAL

LUMINOUS 
DIAL 

CONTROL

ELECTRIC 
LIGHT

PHOSPHORESCENT 
LIGHT

  CHIME RADIO

DAILY SLUMBER

SET

ALARM

ONCE OFF

STOP

SOUND SETTING

BUZZER

Figure 2-1 Portion of a design tree for an alarm clock
From Blaauw and Brooks [1997], Computer Architecture,  

Figures 1-12, 1-14.
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That cleanliness holds only for an exhaustive search of all 
paths, seeking a truly optimal solution. Designers commonly sat-
isfice by searching only until a “good enough” solution is found.2 
Many engineers seem to approximate some sort of depth-first 
search strategy, choosing at each node the most promising or 
attractive option and exploring it to the end. At dead ends, one 
backtracks and takes another path. Hunches, experience, consis-
tency, and esthetic taste guide each option selection.3

Whence Formulations of This Model?

The notion that the design process should be modeled as a sys-
tematic step-by-step process seems to have first developed in 
the German mechanical engineering community. Pahl and Beitz 
present the most widely used exposition in seven successive edi-
tions of their great work.4 They observe the practice, but not the 
explicit statement, of systematic search of design alternatives in 
the Notebooks of Leonardo da Vinci (1452–1519).

Herbert Simon independently argues for design as a search 
process in The Sciences of the Artificial [1969, 1981, 1996]. His model 
and his discussion of it are much more sophisticated than those 
here. Simon, optimistic that the design process was a fit target for 
artificial intelligence (once adequate processing power became 
available), was motivated to lay out a strictly rational model of 
design precisely because such a model was a necessary precur-
sor to automating design. His model remains influential even if 
today we recognize the “wicked problem”5 of original design as 
one of the least promising candidates for AI.

In software engineering, Winston Royce, appalled at the fail-
ures of the “just write it” approach for large software systems, 
independently introduced a seven-step Waterfall Model to bring 
order to the process, as shown in the next chapter’s frontispiece. 
In fact, Royce introduced his waterfall as a straw man that he 
then argued against, but many people have cited and followed 
the straw man rather than his more sophisticated models. I made 
that mistake myself in my younger days, and publicly repented 
of it later.6 Even if ironically, Royce’s seven-step model must be 
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considered one of the foundational statements of the Rational 
Model of design. 

As Royce emphasizes, his seven steps are distinctly different 
from one another and must be planned and staffed differently. 
Iteration is provided for but carefully limited in scope:

The ordering of steps is based on the following concept: that as each 
step progresses and the design is further detailed, there is an itera-
tion with the [immediately] preceding and succeeding steps but 
rarely with the more remote steps in the sequence. … What we have 
is an effective fallback position that tends to maximize the extent of 
early work that is salvageable and preserved.7

The notion that a design space can be formulated as a tree is 
implied by Simon. It is described and illustrated by Gerry Blaauw 
and me in our Computer Architecture.8 There we arrange the design 
choices for processor architecture strictly hierarchically in a giant 
tree, represented by 83 linked subtrees. A simple example of the 
design tree for the alarm of an alarm clock is shown in Figure 
2-1. In it one observes two types of branches indicated by open 
and closed roots. The first, as shown for “Alarm,” shows a sub-
division; each branch is a different design attribute that must be 
specified. This is called an attribute branch. The alternative branch, 
shown for “Sound,” enumerates alternatives of which one must 
be chosen.

What’s Right with This Model?

Any systematization of the design process is a great step forward 
compared to “Let’s just start coding, or building.” It provides 
clear steps for planning a design project. It furnishes clearly defin-
able milestones for planning a schedule and for judging progress. 
It suggests project organization and staffing. It helps communica-
tion within the design team, giving everyone a single vocabulary 
for the activities. It wonderfully helps communication between 
the team and its manager, and between the manager and other 
stakeholders. It is readily teachable to novices. It tells the novice 
facing his first design assignment where to begin.
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The Rational Model in particular brings yet more advan-
tages. The early explicit statement of goals, secondary desider-
ata, and constraints helps a team avoid wandering, and it breeds 
team unification on purposes. Planning the whole design process 
before starting coding or formal drawings avoids many troubles 
and much wasted effort. Casting the process as a systematic 
search of a design space broadens the horizon of the individual 
designers and lifts their eyes far beyond their previous personal 
experiences.

But the Rational Model is much too simplistic, even in Simon’s 
richly developed version. Hence we must examine its faults.

Notes and References

Following Simon [1981], 1. The Sciences of the Artificial, throughout this 
book I use man as a general noun, encompassing both genders, and 
he, him, and his as androgynous pronouns. I find it more gracious to 
continue the long tradition of including women and men equally 
in these general pronouns than to adopt more awkward, hence dis-
tracting, constructions.

To 2. satisfice is to make good enough without necessarily optimizing 
(Simon [1969], The Sciences of the Artificial, 64).

But see Akin [2008], ”Variants and invariants of design cognition,” 3. 
who finds evidence from the DTRS7 protocols that building archi-
tects tend to search laterally among several alternatives at every 
level, whereas engineering designers emphasize depth-first search 
based on an initial solution proposal. 

Pahl and Beitz [1984ff.], 4. Engineering Design.

Rittel and Webber [1973], “Dilemmas in a general theory of plan-5. 
ning,” define this term formally. It is well discussed in http:// 
en.wikipedia.org/wiki/Wicked_problem.

Brooks [1995], 6. The Mythical Man-Month, 265.

Royce [1970], 7. “Managing the development of large software systems,” 329.

Blaauw and Brooks [1997], 8. Computer Architecture.
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3
What’s Wrong with This 
Model?

Sometimes the problem is to discover what the problem is.

Gordon GleGG [1969], The design of design

A designer makes things. … Typically his making 
process is complex. There are more variables—kinds 
of possible moves, norms, and interrelationships of 
these—than can be represented in a finite model. 

donald a. ScHön [1984],   
The refLecTive PracTiTioner

Software’s Waterfall Model
After Royce [1970], “Managing the development of large software systems,” and 
Boehm [1988], “A spiral model of software development and enhancement.” 
Royce © 1970 IEEE. Boehm © 1988 IEEE.
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In fact, every designer will recognize the Rational Model as only 
an ideal. It somehow describes how we think the design process 
ought to work, but not how it works in real life.

Indeed, not every engineer will even admit to harboring so 
naive and idealistic a model in his heart. But I think most of us 
really do; I did for quite a long time. Therefore, let us take a hard 
critical look at the Rational Model of design, to identify precisely 
where it most departs from reality.

We Don’t Really Know the Goal When We Start

The most serious model shortcoming is that the designer often 
has a vague, incompletely specified goal, or primary objective. In 
such cases:

The hardest part of design is deciding what to design.

As a student I spent one summer working at a large missile 
company, where I was once set to work designing and building 
a little database system for keeping track of the 10,000 drawings 
for a radar subsystem, and the updating status of each. 

After a couple of weeks, I had a working version. I proudly 
presented a sample output report to my client.

“That’s fine—it is what I asked for—but could you change it 
so that . . . ?” 

Each morning for the next few weeks, I presented my client 
with the output report, revised yet again to accommodate the 
previous day’s request. Each morning he studied the product 
report and asked for yet another system revision, using the same 
polite mantra.

It was a simple system (implemented on punched-card 
machines), and the revisions were conceptually simple. The most 
comprehensive change was to list the drawings sorted by, and 
indented to show, goes-into level, where level was represented 
by a single 0–9 digit in the card. Other refinements included mul-
tilevel subtotals, with exceptions of course, and the automatic 
marking of various noteworthy values with asterisks.

For a while, this frustrated me sorely: “Why can’t he make up 
his mind as to what he wants? Why can’t he tell me all at once, 
instead of one bit a day?”
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Then, slowly, I came to realize that the most useful service 
I was performing for my client was helping him decide what he 
really wanted.

Well, today the software engineering discipline is much more 
sophisticated. We recognize that rapid prototyping is an essen-
tial tool for formulating precise requirements. Not only is the 
design process iterative; the design-goal-setting process is itself 
iterative.

This sophistication in software engineering does not forestall, 
or noticeably reduce, the numerous references in the literature to 
the “product requirements” as a normal given for a design pro-
cess. But I will argue that knowing complete product require-
ments up front is a quite rare exception, not the norm:

A chief service of a designer is helping clients discover what they 
want designed.

In software engineering, at least, the concept of rapid proto-
typing has a name and a recognized value, whereas it does not 
always have the same status in computer design and in building 
architecture. Nevertheless, I see the same goal iteration happen-
ing in these design fields. Increasingly, designers build simulators 
for computers and virtual-environment walk-throughs for build-
ings as rapid prototypes to drive goal convergence. Goal iteration 
must be considered an inherent part of the design process.

We Usually Don’t Know the Design Tree—We Discover 
It as We Go

For the original design of complex structures, such as computers, 
operating systems, spacecraft, and buildings, each major design 
effort has enough novelty in the 

Goal• 
Desiderata, and the utility function• 
Constraints• 
Available fabrication technologies • 

that the designer can rarely sit down and a priori map out the 
design tree.
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Moreover, in high-technology design, few designers can know 
enough to draw the basic decision tree for their domains. Design 
projects often last two years or more. And designers get promoted 
out of design. Consequently, few designers will work in any depth 
on as many as 100 projects over a working life. This means the 
individual designer has not begun to explore all the branches of 
the basic design tree for his discipline. For it is characteristic of 
engineering designers, as opposed to scientists, that they rarely 
explore alternatives that are not clearly on the way to a solution.1

Instead, designers discover the design tree as they work— 
making a decision, and then seeing the alternatives it opens and 
closes for the next consequent design decision.

The Nodes Are Really Not Design Decisions, but Tenta-
tive Complete Designs 

In fact, the very decision tree is itself only a simplistic model of 
the tree-search process. As Figure 2-1 illustrates, there are parallel 
attribute branches, as well as alternative branches. The choices in 
one branch are linked to those in others—by exclusion, affinity, 
or trade-off. Our massive design tree in Computer Architecture is 
much too simple; the entire “Computer zoo” in that work is nec-
essary to elucidate the decision linkings.2

This means that at each node of a design tree, one faces not a 
simple alternative choice among options for one design decision, but 
an alternative choice among multiple tentative complete designs. 

Moreover, the ordering of decisions laying out a design tree 
matters greatly, as Parnas expounds in his classic paper “Design-
ing software for ease of extension and contraction.”3 

The explosive combinatorics of these complications to the 
tree model boggle the mind. (This situation is like that of move 
trees in chess.) This difficulty is explored further in Chapter 16.

The Goodness Function Cannot Be Evaluated 
Incrementally

The Rational Model assumes that design involves a search of the 
design tree, and that at every node, one can evaluate the good-
ness function of the several downward branches.
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In fact, one cannot in general do this without exploring all 
the downward branches to all their leaves, for many goodness 
measures (for example, performance, cost) will depend heavily 
on the subsequent design detailing. So although the goodness 
evaluation is possible in principle, one encounters here again the 
combinatorial explosion of alternatives in practice.

So what is a designer to do? Estimate, of course, either 
formally or informally. One must trim the design tree as one 
goes down.

Experience. Many aids help intuition in this process. One is 
experience, both direct and surrogate: “The designers of oS/360 
exposed detailed formats of system-wide-shared Control Blocks 
in Operating System/360, and it proved a maintenance night-
mare. We will encapsulate them as objects.” “The Burroughs 
B5000 family long ago explored the descriptor-based computer 
architecture. The performance hit was inherently too great, so we 
won’t explore that subtree.” of course, the technological trade-
offs are no longer the same, but the experience lesson is illumi-
nating anyway. The most potent reason to study design history is 
to learn what doesn’t work, and why.

Simple Estimators. Designers routinely use simple estimators 
early in the design tree exploration. A building architect, given 
a budget goal, applies a rough square-foot cost estimate, derives 
a square-foot goal, and uses that for subsequent pruning of the 
design tree. Computer architects use instruction mixes to do 
rough-cut early estimates of computer performance.

A danger, of course, is that the rough estimator may lop off 
design branches that are in fact feasible but appear infeasible 
because of the very approximation involved in the estimator. I 
have watched an architect quote high costs for pushing out a 
wall under an already specified roof structure, based purely on 
a routine square-foot estimator. In fact, most of the cost of the 
added space was in the roof, and that was already committed, so 
the marginal cost was very low. 

One can often get something for nothing, if one has previously 
bought nothing for something.
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The Desiderata and Their Weightings Keep Changing

Donald Schön, the late MIT professor of urban studies and edu-
cation, and a design theorist, said:

[As the designer] shapes the situation in accordance with his initial 
presentation of it, the situation “talks back” and he responds to the 
situation’s back-talk.

In a good process of design, this conversation with the situation 
is reflexive. In answer to the situation’s back-talk, the designer 
reflects-in-action on the construction of the problem, the strategies 
of action, or the model of the phenomena, which have been implicit 
in his moves.4

In short, as one ponders the trade-offs, there comes a new 
understanding of the whole design problem as an intricately 
interlocked interplay of factors. With it comes a change in the 
weightings of the desiderata. The same thing happens as the cli-
ent, if there is one, grows his understanding of what he will get 
and develops his detailed vision of how he will use it.

In our house-remodeling design, for example (Chapter 22), 
a simple question, overlooked in the original program, arose 
well along in design, as my wife and I applied use scenarios to 
preliminary designs: “Where will guests at meetings put their 
coats?” This seemingly low-weight desideratum in fact tipped 
the big scales, and occasioned moving the Master Bedroom from 
one end of the house to the other.

Moreover, for designs that must be separately fabricated, 
such as buildings and computers, the designer learns from the 
builders a growing understanding of the interactions between 
design and fabrication. So many desiderata and constraints shift 
and refine. The fabrication technology may evolve as well, an 
especially common occurrence during computer design.

Since many desiderata (such as speed) are weighted on a 
value/cost ratio, yet another phenomenon occurs. As design pro-
ceeds, one finds opportunities to add some particular goodness 
at a very low marginal cost. So something that had not entered 
the original desiderata list at all comes in, and it often takes on a 
value that may demand preserving in later design changes.
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Only after UNC’s Sitterson Hall was designed, built, and 
in use, for example, did the Computer Science Department, as 
user, learn that the suite of spaces consisting of the Lower Lobby, 
Upper Lobby, Faculty Conference Room, Lecture Halls, and Ves-
tibules combined beautifully into a facility well suited for host-
ing conferences of up to 125 people, with minimal impact on the 
work in the rest of the building. This was serendipitous—no such 
function was contemplated in the original architectural program. 
Yet it is a high-value feature: any future revision of Sitterson 
would surely aim to preserve this capability.

The Constraints Keep Changing

Even if the goal were fixed and known, all the desiderata enu-
merated, the design tree known precisely, and the goodness func-
tion precisely defined, design would still be iterative, because the 
constraints keep changing.

Often the environment changes—the city council passes new 
shadow-casting setback requirements; the electrical code has an 
annual updating; a microchip one planned to use is withdrawn by the 
vendor. The world keeps changing around us, even while we design.

The constraints also change due to discovery during the design 
process, or during the fabrication—the builders hit solid rock; 
analysis shows that chip cooling has newly become a constraint.

Not all constraint changes are increases. Often constraints go 
away. When this is fortuitous instead of intentional, the skillful 
designer recognizes the new opportunity and, with his flexible 
design, leaps to exploit it.

Alas! Not all designs are flexible. More commonly, when we 
are deep into a design process, we do not recognize that a con-
straint has disappeared, nor do we remember which design alter-
natives it formerly foreclosed.

It is important to list the known constraints explicitly at the 
start of the design process, as part of what architects call the design 
program. The design program is a document, prepared with the 
client, that sets forth the goal, the desiderata, the constraints. An 
example is given in this book’s Web site. The design program is not
the same thing as a formal requirements statement, which usually 
has contractual force in defining acceptability of a design.
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The explicit listing of constraints smokes them out early, 
avoiding unpleasant surprises. It also impresses them on the 
designer’s mind, radically improving the chances that he will 
recognize when one goes away.

All of us have designed around constraints, a process that 
calls forth much invention and exploration of unconventional 
corners of the design space. This is part of the fun of design, and 
a big part of the challenge.

Changing Constraints Outside the Design Space. Sometimes, 
however, a design breakthrough is achieved by stepping com-
pletely outside the design space, and working there to remove 
the design constraint. In designing the house wing (Chapter 22), 
I wrestled a long time, unsuccessfully, with a shadow-casting set-
back requirement constraint and the Music Room’s desiderata 
(hold two grand pianos, an organ, and a square space for a string 
octet plus a 1-foot teaching margin). Figure 3-1 shows one itera-
tion of the design, and the constraints.

Figure 3-1 Design up against constraints
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Figure 3-2 Constraint eased

The intractable design problem was finally solved completely 
outside the design space—I bought a 5-foot strip of land from 
my neighbor. This was probably cheaper and surely faster than 
attempting to get a setback variance from the city council, another 
outside-the-design-space approach. It also liberated other parts of 
the design, notably the placement of the northwest corner of F 
Study (Figure 3-2).

The explicit listing of known constraints in the design pro-
gram helps here, too. The designer can periodically scan the list, 
asking, “Can this constraint now be removed because the world 
has changed? Can it be entirely circumvented by working out-
side the design space?”

Others’ Critiques of the Rational Model

A Natural Model. The Rational Model as presented and criti-
cized above may seem naive. But it is a very natural model for 
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people to conceive. This naturalness is strongly corroborated 
by the independent creation of the Simon version, the Waterfall 
Model version, and the Pahl and Beitz version. Yet, from early 
on, there have been cogent critiques of the Rational Model from 
the design community.5,6,7

Designers Just Don’t Work That Way. Perhaps the most devas-
tating critique of the Rational Model, although perhaps the hard-
est to prove, is that most experienced designers just don’t work 
that way. While the published critiques have only rarely made 
the “emperor has no clothes” statement that the model simply 
does not reflect professional practice, one senses that overriding 
conviction behind all the detailed analyses.8

Nigel Cross, in his gentlemanly way, is perhaps the most 
articulate exception. Citing many studies, he says bluntly: 

Conventional wisdom about problem-solving seems often to be con-
tradicted by the behavior of expert designers. But designing has 
many differences from conventional problem-solving. … we must 
be very wary about importing models of design behavior from other 
fields. Empirical studies of design activity have frequently found 
“intuitive” features of design ability to be the most effective and 
relevant to the intrinsic nature of design. Some aspects of design 
theory, however, have tried to develop counter-intuitive models 
and prescriptions for design behavior [emphasis added].9 

And, 

The appositional nature of design reasoning has been neglected in 
most models of the design process. Consensus models of the design 
process, such as that promulgated by the Verein Deutscher Ing-
enieure [VDI, 1987] … propose that designing should proceed in 
a sequence of stages. … In practice, designing seems to proceed by 
oscillating between sub-solution and sub-problem areas, as well as 
by decomposing the problem and combining sub-solutions.10

I find both the argument and the empirical evidence quite 
convincing. This oscillation has indeed characterized all my 
design experiences. The “where to put the coats?” requirement 
discovered deep into our house design process is typical.
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Royce’s Critique of the Waterfall Model. Royce in his origi-
nal paper describes the Waterfall Model so that he can point out 
its deficiencies.11 Basically he argues that even with back-arrows 
describing counterflow between adjacent boxes in the waterfall, 
the model doesn’t work. His prescription is, however, simply to 
augment the model with counterflow arrows that go back two 
boxes. A Band-Aid, not a cure.

Schön’s Summary of the Critiques.

[Simon] has identified a gap between professional knowledge and 
the demands of real-world practice. … Simon proposes to fill the 
gap … with a science of design, his science can be applied only to 
well-formed problems already extracted from situations of practice.

If the model of Technical Rationality … fails to account for practi-
cal competence in “divergent” situations, so much the worse for 
the model. Let us search, instead, for an epistemology of practice 
implicit in the artistic, intuitive processes which some practitioners 
do bring to situations of uncertainty, instability, uniqueness, and 
value conflict.12

But Despite All These Flaws and Critiques, the Rational 
Model Persists!

Often the original proponent of a theory or technique under-
stands its promise, its liabilities, and its proper domain more 
clearly than his later disciples. Less gifted, more fervent, their 
very fervor leads to rigidity, misapplication, oversimplification.

So, unfortunately, are many applications today of the Ratio-
nal Model. Writing as recently as 2006, design researcher Kees 
Dorst has to admit, 

Although there have been many developments since then, the origi-
nal work on problem solving and the nature of ill-structured prob-
lems, written by Herbert Simon, still looms large in the field of 
design methodology. The rational problem-solving paradigm, based 
on the conceptual framework that Simon introduced, is still a domi-
nant paradigm in the field.13
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Indeed so! In the field of software engineering, we all too 
often still slavishly follow the Waterfall Model, our own embodi-
ment of the Rational Model.

Verein Deutscher Ingenieure Standard VDI-2221. The Verein 
Deutscher Ingenieure in 1986 adopted the Rational Model, essen-
tially as set forth by Pahl and Beitz, as an official standard for 
German mechanical engineering.14 I have seen many rigidities in 
thinking engendered by this move. But Pahl himself has been at 
some pains to clarify that

Procedures given in VDI-Richtlinie 2221-2223 and Pahl & Beitz 
(2004) are not of the “straight sequence” type, but should be uti-
lized only as guides for basic purposeful action. A useful approach 
in actual situations might be to choose either an iterative approach 
(i.e. with “forward and back” steps) or by repetition using the next 
higher information level.15

DoD Standard 2167A. Similarly, the U.S. Department of Defense 
in 1985 enshrined the Waterfall Model in DoD Standard 2167A.16 
Only in 1994 did they, under the leadership of Barry Boehm, open 
up their acquisition by admitting other models.

So What? Does Our Design Process Model Matter?

Why all this fuss about the process model? Does the model we 
and others use to think about our design process really affect our 
designing itself? I believe it does.

Not Every Design Thinker Agrees with Me. Professor Ken 
Wallace of Cambridge, who translated three editions of Pahl 
and Beitz’s work into English, believes the major step forward 
is to have some model that is readily understood and communi-
cated. He points out how useful it is for beginning designers. The 
Pahl and Beitz model gives the novice a place to start work on a 
design, so he doesn’t just wander. “I put up the Pahl and Beitz 
diagram [their Figure 1.6] and explain it. And then my very next 
slide says, ‘But this is not the way real designers work.’”17 

Hooray! But I am concerned whether younger teachers with 
less personal design experience always say that.
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Suzanne and James Robertson, consultants who practice 
internationally and authors of excellent major works on require-
ments formulation, also feel that the deficiencies in the Rational 
Model don’t really matter. “People who understand what design 
is, know better.”18 

Nevertheless, I believe our inadequate model and following 
it slavishly lead to fat, cumbersome, over-featured products and 
to schedule, budget, and performance disasters.

Right-Brained Designers. Designers are mostly right-brained 
people, visually and spatially oriented. Indeed, one of my curb-
stone tests for potential design talent is to ask, “Where is next 
November?” When my listener is puzzled, I elaborate, “Do you 
have a spatial mental model of the calendar? Many folks do. If 
you do, would you describe it for me?” The strong candidates 
almost always have one; the models themselves vary wildly.

Similarly, software design groups invariably scrawl diagrams, 
not words or code, on their shared whiteboards. Architects con-
sider the broad-pen sketch on tracing paper an indispensable tool 
for communication, but even more for solo thinking.

Since we designers are spatial people, our process models live 
deep in our minds as diagrams, whether Pahl and Beitz’s vertical 
rectangle, Simon’s tree, or even the waterfall Royce draws and 
condemns. The diagrams subconsciously influence much of our 
thinking. Hence I believe a deficient process model hinders us in 
ways we cannot fully know and can barely suspect.

One obvious injury done by accepting the Rational Model 
is that we mis-educate our successors. We teach them modes of 
working that we ourselves do not follow. Hence we leave them 
unaided in arriving at their own real-world working modes.

I doubt if this is the case with more senior teachers, particu-
larly those with industrial designing experience. We are keenly 
aware that models are intentional oversimplifications to help us 
with real-life problems that are frighteningly complicated. So we 
warn our students that “the map is not the terrain,” the model is 
not a complete picture; it may even be inaccurate in what it does 
incorporate.

In software engineering practice, another kind of harm can 
readily be spotted—the Rational Model, in any of its forms, leads 
us to demand up-front statements of design requirements. It leads 
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us to believe that such can be formulated. It leads us to make con-
tracts with one another on the basis of this enshrined ignorance. A 
more realistic process model would make design work more effi-
cient, obviating many arguments with clients and much rework. 
Chapters 4 and 5 elaborate on the requirements problem.

The Waterfall Model is wrong and harmful; we must outgrow it.

Notes and References

The engineer needs a satisficing solution; the scientist needs a dis-1. 
covery, and wider exploration often yields one. 

Blaauw and Brooks [1997], 2. Computer Architecture, 26–27, 79–80.

Parnas [1979], “Designing software for ease of extension and con-3. 
traction,” explicitly treats the design process as tree traversal. He 
argues strongly for making a design as flexible as possible. He urges 
that one do that by putting the decisions least apt to change nearest 
the tree root. Flexibility of a design is an important goal. In software 
engineering, both object-oriented design and agile development 
methodology have this as a fundamental aim.

Schön [1983], 4. The Reflective Practitioner, 79.

Surprisingly, I found few critiques of the Pahl and Beitz formulation 5. 
of the Rational Model and many of Simon’s formulation. Pahl and 
Beitz themselves recognized the inadequacy of the model: in suc-
cessive editions of their work, their model (Figures 3.3, 4.3 in the 
second and third English editions) includes more and more explicit 
iteration steps (Pahl and Beitz [1984, 1996, 2007], Engineering Design). 
Simon’s three editions of The Sciences of the Artificial do not reflect 
any change in the model as proposed, although in personal conver-
sation with me in November 2000 he said that his own understand-
ing of the model had evolved, but that he had had no opportunity 
to rethink and rewrite accordingly.

Visser [2006], The Cognitive Artifacts of Designing, has an excel-
lent Section 9.2, “Simon’s more nuanced positions in later work,” 
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which examines Simon’s evolution as embodied in later papers. 
Visser shares my surprise that this evolution didn’t get reflected in 
the later editions of The Sciences of the Artificial.

Holt [1985], “Design or problem solving”:6. 

There are two distinct interpretations of engineering design. The 
problem-solving approach, popular in many tertiary institutions and 
with an emphasis on solving structured, well defined problems using 
standardized techniques, may be traced to “hard” systems thinking. 
The creative design approach, on the other hand, combines analytical 
and systems thinking with human factors in engineering design to 
create and take advantage of opportunities to serve society. This paper 
discusses the limitations of the problem-solving approach in dealing 
with many real world tasks. 

Whereas Cross’s critique is empirical, Schön criticizes the philosophy 7. 
underlying the Rational Model. He says that the Rational Model, as 
enunciated by Simon, is a natural outgrowth of a much more per-
vasive philosophical mind-set, which he calls Technical Rationality 
and identifies as a heritage of now-discredited positivism. He finds 
the underlying philosophy itself totally inadequate for understand-
ing design, even though it has been institutionalized into most pro-
fessional design curricula:

From the perspective of Technical Rationality, professional practice is 
a process of problem solving. Problems … are solved through the selec-
tion, from available means, of the one best suited to established ends. 
But with this emphasis on problem solving, we ignore problem set-
ting, the process by which we define the decision to be made, the ends 
to be achieved, the means which may be chosen. In real-world prac-
tice, problems do not present themselves to the practitioner as givens. 
They must be constructed from the materials of problematic situations 
which are puzzling, troubling, and uncertain. … a practitioner must 
do a certain kind of work. He must make sense of an uncertain situ-
ation that initially makes no sense. … It is this sort of situation that 
professionals are coming increasingly to see as central to their prac-
tice. … Technical Rationality depends on agreement about ends.
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A vivid example is Seymour Cray’s 1995 quote: “I’m supposed to be 8. 
a scientific person, but I use intuition more than logic in making basic 
decisions.” http://www.cwhonors.org/archives/histories/Cray.pdf,   
accessed September 14, 2009.

Cross [2006], 9. Designerly Ways of Knowing, 27.

Cross [2006], 10. Designerly Ways of Knowing, 57. Dorst [1995], “Compar-
ing paradigms for describing design activity,” has an especially good 
discussion of Simon versus Schön. Their journal article is reprinted 
in Cross [1996a], Analysing Design Activity. Dorst also shows that 
for the Delft II protocols, Schön’s model fits the observed designer 
behavior much more accurately.
Royce [1970], “Managing the development of large software 11. 
systems.”
Schön [1983], 12. The Reflective Practitioner, 45–49.
Dorst [2006], “Design problems and design paradoxes.”13. 
VDI [1986], 14. VDI-2221: Systematic Approach to the Design of Technical 
Systems and Products.
Pahl [2005], “VADEMECUM—recommendations for developing and 15. 
applying design methodologies.”
DoD-STD-2167A tried to fix this but unfortunately put a waterfall 16. 
diagram in a prominent place and left things pretty much as they 
were. MIL-STD-498 superseded 2167A and addressed the model 
problem. DoD has since superseded 498 by adopting industry stan-
dards IEEE/EIA 12207.0, IEEE/EIA 12207.1, and IEEE/EIA 12207.2. 
Personal communication [2008].17. 
Personal communication [2008].18. 
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4
Requirements, Sin, and 
Contracts

Any attempt to formulate all possible 
requirements at the start of a project will fail 
and would cause considerable delays.

PaHl and Beitz [2007], engineering design

The committee believes that getting to a state 
of clear and complete system-level requirements 
requires the interaction with potential contractors 
that occurs between Milestones A and B.

JameS Garcia, For tHe air Force StudieS
Board committee on Pre-mileStone a

and early-PHaSe SyStemS enGineerinG

Boeing-Sikorsky RAH-66 Comanche helicopter, originally the LHX
Sikorsky Aircraft/Richard zellner/AP Wide World Photos
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A Horror Story 

The general had spent a career in Marine Corps aviation and 
knew helicopters. He and I had been dispatched into the depths 
of the Pentagon as a subcommittee of the Defense Science Board. 
We listened intently as a colonel briefed us on the in-progress 
design of the LHX (the Comanche), the next-generation light 
attack helicopter on which billions would be spent, and upon 
which soldiers’ lives would depend. The helicopter was to be the 
successor to four different current helicopters, which had differ-
ent missions.

The colonel outlined the requirements that had been devel-
oped by an inter-group committee representing the several using 
groups: 

“Fly so fast, so far. Carry X armor; mount Y weapons; carry z 
supply of ammunition; carry W fully equipped warriors, besides 
the crew.

“Fly close to the ground, under the radar cover. Even on a 
dark and stormy night, jump up to avoid obstacles. Pop up to 
shoot; pop back down to evade returned fire.”

Then, without any change of inflection or expression, he said, 
“And it must ferry itself across the Atlantic [way beyond its nor-
mal operating range].”

The general and I were visibly shocked. The briefer quickly 
responded, “Oh, it will be designed to do that, by taking out all 
the ordnance and ammunition, and filling it with drums of gaso-
line.” But our incredulity bore on rationale, not feasibility. Even I, 
a computer designer, knew in my gut that one had to pay for such 
a capability—not in dollars but in reduced capacity elsewhere. 

“Why must it do that? Surely, it will have to do that only 
twice, if you’re lucky.”

“We don’t have enough C-5 transport planes to carry them 
over.”

“Why not take a bit of the program money for the LHX and 
buy more C-5s, instead of compromising the LHX design?”

“That’s not possible.” 
our shock at the extreme requirement was fully matched 

by our shock that its extremity didn’t bother our briefer. Per-
haps our instincts were wrong. Perhaps the marginal cost of the 
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self-ferrying capability was indeed low. Perhaps knowledgeable 
designers had wrestled with that question. 

But our ensuing conversation was not encouraging. If my rec-
ollection is accurate, the LHX Requirements Committee included 
neither an aircraft engineer nor a helicopter pilot—but rather 
mostly bureaucrats skilled at representing their groups in inter-
group negotiations.1 

Unfortunately, Not Unique

Many readers will have no trouble conjuring up a vision of a 
meeting of the LHX Requirements Committee; we have been to 
such meetings. 

Each player has a wish list garnered from his constituents and 
weighted by his personal experiences. Each has both an ego and 
a reputation that depend on how well he gets his list adopted. 
Logrolling is endemic—an inevitable consequence of the incentive 
structure. “I won’t naysay your wish, if you won’t naysay mine.”

Who advocates in the requirements process for the prod-
uct itself—its conceptual integrity, its efficiency, its economy, its 
robustness? Often, no one. As often, an architect or engineer who 
can offer only opinion based on taste and instinct, unbuttressed 
as yet by facts.2 For in a classical Waterfall Model product pro-
cess, requirements are set before design is begun. 

The result, of course, is a grossly obese set of requirements, 
the union of many wish lists, assembled without constraints.3 
Usually, the list is neither prioritized nor weighted. The social 
forces in the committee forbid the painful conflicts occasioned by 
even weighting, much less prioritizing. 

Eventually, wish list and constraints must be reconciled. 
In practice, the product designers implicitly weight the official 
requirements using their own personal user models.4 In many 
cases, the failure to provide weightings has decoupled the 
designers from deep user and application knowledge the several 
requirements setters do actually possess. 

Generating requirements by committee, by the nature of the 
beast, tends to produce products that are too rich (Detroit cars, 
bloated software systems, unbuildable Internal Revenue and FBI 
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systems). Perhaps committee specification is why large and super-
ambitious software systems seem so prone to total disaster. 

In the building of the IBM Operating System/360, require-
ments were initially set by a large committee from the Marketing 
Division, following a process and producing a result just like that 
described. As Project Manager, I had to reject the requirements 
document as totally impractical and have a quite small team of 
architects, marketers, and implementers extract the essence.

Fighting Requirements Bloat and Creep

Requirements proliferation must be fought, by both birth control 
and infanticide. A very insightful report from the National Research 
Council’s Air Force Studies Board addresses both attacks.5

The Committee on Pre-Milestone A and Early-Phase Systems 
Engineering starts with its own horror story. Major military sys-
tems 30 years ago had a development time of around five years. 
Now times from program initiation to system deployment are 
two to three times longer, even while the pace of both technology 
and threat accelerates.

The dramatically successful programs of yore typically had 
one or a few clear overriding objectives and schedule urgency. These 
projects were begun with a few top-level requirements. As devel-
opment proceeded, these were indeed broken down into more 
specific sub-requirements and key performance parameters, all 
under hard-driving, capable managers who continually balanced 
system function against schedule and cost. 

As for requirements creep, whether pressed by users or by 
internal inventors, schedule urgency had been the best defense. 
(This has been my own best defense, as well, in system build-
ing.) The committee perceives that Department of Defense acqui-
sition has lost that permeating sense of urgency, replaced with 
ever-increasing layers of “oversight” mechanisms to avoid mis-
takes. Such a progression is also not unknown within technical 
corporations.

The committee recommends that an organized systems engi-
neering effort begin well before even the focused technology 
development for a new system is begun. But they recommend 
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not the initial specification of requirements before Milestone A, 
but that the initial statement of detailed requirements be defined
during system development, between Milestone A and Milestone B:

The definition of clear key performance parameters by Milestone 
A and clear requirements by Milestone B that can remain stable 
through Initial Operational Capability can be essential to an effi-
cient development phase.6

Requirements creep is addressed head-on in the most effective 
way. The committee’s top-priority recommendation is: Appoint 
early-on strong, seasoned, domain-knowledgeable managers who 
can stay with the program through initial systems delivery. Then 
empower them to “tailor standardized processes and procedures as 
they feel is necessary [emphasis added].”7

They also urge the use of a Requirements Traceability Matrix 
to ensure that each requirement detailed, defined, and laid on is 
indeed derived from one or more of the initial overall require-
ments—that it didn’t sneak in from a request by some user rep-
resentative or a designer’s desire to do something clever, novel, 
and putatively useful.8 

Sin

Suppose: 

There is a client who is never greedy, but quite happy to pay • 
his architect and builder fair prices for their expertise and 
labors (perhaps from enlightened self-interest, because he 
will want their help again). 
He has engaged an architect who always considers himself • 
the client’s agent, eager to use his talents and professional 
skills to best uncover and serve the client’s true interests. 
He is contracting with a builder who sees and invariably per-• 
forms his calling so as to produce high-quality products at the 
best possible value/cost ratio, within budget and on schedule. 
All the players are honest and truthful, and communication • 
among them is excellent.
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Then: I would argue that 

A cost-plus payment arrangement will give the client the • 
most value per dollar.
Design-build is the most rapid way to get a project built.• 
An explicit Spiral Model process (next chapter) will yield the • 
product best suited to the client’s needs. 

If this last is true, how can we explain the persistence of 
the Waterfall Model, when the greater fidelity of the Spiral and 
Co-Evolutionary models has been seen for more than a quarter 
century?

The one-word answer is sin: pride, greed, and sloth. We all 
recognize the suppositions above as ideals. The reader may have 
snorted on reading them: “Fat chance of all those conditions pre-
vailing!” Because humans are fallen, we cannot trust each other’s 
motivations. Because humans are fallen, we cannot communicate 
perfectly. 

Contracts

For these reasons, “Get it in writing.” We need written agreements 
for clarity of communication; we need enforceable contracts for 
protection from misdeeds by others and temptations for our-
selves. We need detailed enforceable contracts even more when 
the players are multi-person organizations, not just individuals. 
Organizations often behave worse than any member would.

Clearly, it is the necessity for contracts, whether within an 
organization or between organizations, that forces the too-early 
binding of goals, requirements, constraints. Everyone recognizes 
the fact that these must later be changed. (This opens new oppor-
tunities for wrongdoing: “Low-ball on the contract; make it up on 
the change orders.”) So it seems that the necessity for contracts 
best explains the persistence of the Waterfall Model for designing 
and building complex systems.

A Model for Contracting

The pressure for a complete and agreed-upon set of require-
ments comes ultimately from the desire—often, an institutional 
demand—for a fixed-price contract for a specific deliverable. Yet 
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this demand runs head-on into the hard fact, argued in Chapter 
3, that it is essentially impossible to specify a complete and accu-
rate set of requirements for any complex system except in itera-
tive interaction with the design process. 

How have the centuries-old building design disciplines han-
dled this perplexity? Fundamentally, by a quite different contract-
ing model. Consider a normal building design process: 

The client develops a • program, not a specification, for the 
building. 
He contracts with an • architect, usually on an hourly or per-
centage basis, for services, not for a specified product. 
The architect • elicits from the client, the users, and other stake-
holders a more complete program, which does not pretend to be 
a rigid contractable product specification. 
The architect does a • conceptual design that approximates the 
reconciliation of program and the constraints of budget, 
schedule, and code. This serves as a first prototype, to be con-
ceptually tested by the stakeholders.
After iteration, the architect performs•  design development, 
often producing more detailed drawings, a 3-D scale model, 
mock-ups, and so on. After stakeholder iteration, the archi-
tect produces construction drawings and specifications.
The client uses these drawings and specifications to enter • 
into a fixed-price contract for the product. 

Notice how this long-evolved model separates the contract 
for design from the contract for construction. Even when both 
are performed by the same organization, this separation clarifies 
many things. 

Of course, this model isn’t fully sequential, either. As anyone 
ever involved in even a modest construction project knows, prac-
tical construction problems and late-stage client changes in either 
needs or design evaluation will occasion design changes, which 
in turn will necessitate contract change orders.

The classical architectural process sketched above has its own 
drawbacks, not least an extended schedule. Building projects with

Close client-architect-contractor trust relationships,• 
Well-understood design challenges, or • 
A pressing hurry, justifying higher risks,• 
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often conflate the normal process into a concurrent, pipelined 
design-build process. The architects organize their work so that 
the detailed construction drawings are produced first for the 
parts the contractor will need first: long-lead-time steel, site work, 
foundations.

System projects that meet the bulleted conditions should sim-
ilarly be able to proceed on a design-build basis, too. Here the 
challenge is for the computer and software builders to identify 
the build order and the long-lead-time components.

Much hard thinking remains to be done here. I challenge the 
community to engage in this dialog.9,10 

Notes and References

The Wikipedia [2002–2009] article on “RAH-66 Comanche” tells the 1. 
history of the program. Its description of the helicopter’s properties 
confirms my recollection of the stated requirements:

The Comanche’s very sophisticated detection and navigation systems 
were intended to allow it to operate at night and in bad weather. Its 
airframe was designed to fit more easily than the Apache into trans-
port aircraft or onto transport ships, enabling it to be deployed to hot 
spots quickly. If transport assets were not available, the Comanche’s 
ferry range of 1,260 nautical miles (2,330 km, 1,553 miles) would 
even allow it to fly to battlefields overseas on its own. 

In the event, the LHX evolved from a light attack helicopter to 
a reconnaissance helicopter, the Comanche pictured in the chapter 
frontispiece. Two were built; the program was scrapped because 
unmanned drones had taken over the reconnaissance function.

Squires [1986], 2. The Tender Ship, studied government acquisition of 
innovative technology. “A theme running through the book is that 
the key to success is allowing the designers to be faithful to the 
engineering integrity of the product” (Mary Shaw, reviewer’s com-
ment). Squires urges designers to have a passion for the product’s 
integrity: 

An applied scientist or engineer shall display utter probity toward the 
engineered object from the moment of its conception through its com-
missioning for use. 
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An anonymous reviewer correctly points out that one stakehold-3. 
er’s frill is often another’s necessity. The effect I see, however, is 
that particular features have ardent champions. On the other hand, 
although everyone wants speed, smallness, robustness, ease of use, 
these requirements have no ardent champions in the requirements 
process, largely because the effect of a particular feature on them 
can’t be known so early.

Chapter 9 discusses designers’ mental models of users.4. 

Air Force Studies Board [2008], 5. Pre-Milestone A and Early-Phase Sys-
tems Engineering.

Air Force Studies Board [2008], 6. Pre-Milestone A and Early-Phase Sys-
tems Engineering, 4. But see page 50, which might be misinterpreted:

One must clearly establish a complete and stable set of system-level 
requirements and products at Milestone A. While requirements creep 
is a real problem that must be addressed, some degree of requirements 
flexibility is also necessary as lessons involving feasibility and practi-
cality are learned. … Certainly control is necessary, but not an abso-
lute freeze. 

By communication with me, both the chair of the committee, 
Dr. Paul Kaminsky, and the NRC staff member responsible, Mr. 
James Garcia, clarified that the committee’s intent is as stated in the 
page 4 paragraph. Mr. Garcia says:

It was the committee’s intent to say that clear KPPs [key perfor-
mance parameters] be developed by MS [milestone] A, and clear 
and complete requirements by MS B, as stated in the Summary and 
in Chapter 4. The committee believes that getting to a state of clear 
and complete system-level requirements requires the interaction with 
potential contractors that occurs between MS A and B. 

John McManus, MBCS, is a leading practitioner in project manage-7. 
ment and software development methods. Dr. Trevor Wood-Harper 
is Professor of Systems Engineering at Salford University: “A project 
charter laying out the reasons and expectations for a new initiative, 
and a project manager’s vision for the task ahead are vital starting 
points for IT projects“ (McManus [2003], Information Systems Project 
Management).
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Boehm [1984], “Prototyping versus specifying,” describes a class-8. 
room experiment in which one team built from lovingly crafted 
design specifications and a second team essentially built straight 
from the requirements. The first team’s system suffered from feature 
bloat because the designers kept putting in things to “complete” the 
design or make it consistent. So it’s not just the wish-listers who 
cause bloat—designers themselves can do it. I’ve done it myself, on 
the IBM Stretch computer.

Jupp [2007] treats the novel contracting schemes that have been 9. 
used in public-private partnerships for public works in the UK.

Muir Wood [2007], “Strategy for risk management,” is a conference 10. 
paper that proposes how tunneling clients and contractors should 
deal with unforeseen risk in their contracting.
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5
What Are Better Design 
Process Models? 

It is widely accepted that creative design is not a matter of 
first fixing the problem and then searching for a satisfactory 
solution concept; instead it seems more to be a matter of 
developing and refining together both the formulation 
of the problem and ideas for its solution, with constant 
iteration of analysis, synthesis and evaluation processes 
between the two ”spaces”—problem and solution.

niGel croSS and keeS dorSt [1999], 
“co-evolution oF ProBlem and 

Solution SPaceS in creative deSiGn”

Boehm’s Spiral Model
Boehm [1988]. Boehm © 1988 IEEE.
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Why a Dominant Model?

Both practice and the education of designers now cry for 
answers: 

If the Rational Model is really wrong,• 
If having a wrong model really matters, and • 
If there are deep reasons for the long persistence of the wrong • 
model,

then what are better models that 

Emphasize the progressive discovery and evolution of design • 
requirements,
Are memorably • visualized so that they can be readily taught 
and readily understood by team and stakeholders, and 
Still facilitate contracting among fallen humans?• 

All models are by definition simplified abstractions of reality. 
Hence there can be many useful models of a design’s life-cycle 
progression, each emphasizing some aspects and omitting others. 
Mike Pique made a video that dramatically highlighted this point 
by showing some 40 different computer graphics models of the 
protein bovine superoxide dismutase: stick models, ribbon mod-
els, solid models, action models, and others.1 

One could therefore cogently argue that seeking a dominant 
model for the design process is a fool’s errand. Why not let 100 
models bloom? Each will add illumination.

I strongly disagree. The ubiquity of the Waterfall Model in 
software engineering, despite the many criticisms and the dam-
age done by its oversimplification, convince me that the need to 
communicate and the nature of academic instruction mean that 
there will be a dominant model of the design process. Thus the 
pressing need is to substitute a less misleading model, not merely 
to augment present practice with a better model. Indeed, in the 
wider field of design, I see Simon’s problem-solving model as 
having occasioned a lot of wasted effort in blind alleys by people 
trying to understand and improve design.
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The Co-Evolution Model

Maher, Poon, and Boulanger proposed a formal model which I 
find helpful, the Co-Evolution Model.2,3 Cross and Dorst describe 
this model as follows:

It seems that creative design is not a matter of first fixing the prob-
lem and then searching for a satisfactory solution concept. Cre-
ative design seems more to be a matter of developing and refining 
together both the formulation of a problem and ideas for a solution, 
with constant iteration of analysis, synthesis and evaluation pro-
cesses between the two notional design ‘spaces’—problem space and 
solution space. The model of creative design proposed by Maher et 
al. [1996] is based on such a ‘co-evolution’ of the problem space and 
the solution space in the design process: the problem space and the 
solution space co-evolve together, with interchange of information 
between the two spaces [Figure 5-1].4

Evolution is used loosely here. The model is evolutionary in 
that both the understanding of the problem and the development 
of the solution are incrementally generated and incrementally 
evaluated. 

REQUIREMENTS DEFINITION

SOLUTION DEVELOPMENT

PROBLEM STATEMENT 1

PROTOTYPE 1 PROTOTYPE 2 PROTOTYPE 3

PROBLEM STATEMENT 2 PROBLEM STATEMENT 3

Figure 5-1 Maher, Poon, and Boulanger’s Co-Evolution Model of 
design (Maher [1996])
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Philosophers of technology have recently wrestled at length 
with the question of how well the process of human innova-
tion is modeled by biological evolution. ziman [2000], a work of 
many chapters by authors from many disciplines, gives a good 
summary of the state of thinking on the topic by philosophers 
and others as of 2000.5 It sets forth arguments both that biologi-
cal evolution is a good model, involving random generation and 
natural selection, and that it is not, because innovation is guided 
by purposeful design (the authors presume that evolution is not).

The Co-Evolution Model certainly emphasizes the progressive 
discovery and formulation of requirements. Its visual representa-
tion is memorable. It isn’t very comprehensive: it doesn’t pretend 
to include all aspects of the design-build-test-field-maintain-
extend process. Moreover, the geometric image does not suggest 
a convergent process. So far as I can tell, the model has not yet 
had a lot of subsequent development and, as originally formu-
lated, contained no milestones and contracting points. Although 
the model is attractive and better than the Rational Model, I don’t 
think it is sufficient.

Whirligig Model. Yet it is important not to go overboard. 
Some of the proposed models, though rich, are so complex as 
to defy understanding, much less memorization and facile use 
in discussion. An example is Hickling’s Whirligig Model, with 
cycles and epicycles.6 

Raymond’s Bazaar Model 

Raymond in his brilliant The Cathedral and the Bazaar [2001] 
argues that the whole notion of a cathedral-like design process 
has been outmoded by the Open Source, “bazaar,” process that 
has richly and effectively led to the development of Linux, a mar-
velously functional and robust operating system. His arguments 
are powerful and crisply formulated. He argues that the Open 
Source process can be the most effective way to develop all sorts 
of application programs, as well as operating systems. He illus-
trates with Fetchmail, his own creation.7
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How It Works

As Raymond describes the bazaar process, a member of the using/ 
creating community sees a need, develops a module to meet it, 
and offers it to his peers as a gift. Integration of the module is, 
in the Linux community, greatly facilitated by the modularity of 
the Linux structure, especially its pipes and filters mechanisms. 
The same process works for the repair of bugs. Someone detects a 
bug in a module he is using, finds it, fixes it so he can get his own 
work done, and then offers the fix as a gift to the community.

Clearly people write new modules and fix bugs so they can 
do their own work. Why do they give away the results, when the 
necessary testing, documentation, and publication demand sub-
stantial extra work?8 Raymond’s answer, which rings true to me, 
is that the incentive and the reward is prestige.9

often multiple modules or multiple fixes for the same bug are 
offered to the community. Raymond argues that a market mech-
anism (even among free goods) is at work. The better tool, the 
better fix, wins the more widespread acceptance, and its author 
proportionately wins more prestige.

So the bazaar is populated with many “vendors” offer-
ing their digital wares electronically. Many buyers, with their 
votes, pay recompense in a prestige communicated electronically 
throughout a worldwide community.

Strengths 

What a wonder is this gift-prestige culture! How unlike crass 
work-for-money, claim-my-intellectual-property-rights! What a 
new model for other societal activities!

Moreover, Raymond cogently argues, the system products 
produced by the bazaar process are in general technically supe-
rior to those produced by the cathedral process. First, the mar-
ket mechanism selects, in evolutionary fashion, the best-designed 
modules. Second, subjecting a new module simultaneously to 
hundreds of testers smokes out the bugs sooner, yielding a more 
robust product. Third, bugs are fixed better, because of market 
selection among fixes.
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Thus the bazaar process is put forward as a totally new 
model both for product creation and for collaboration among 
electronically coupled, asynchronously communicating, mutually 
unacquainted teams.

I strongly urge all of my readers to read Raymond—not just 
the widely circulated title essay, but the other chapters in the book. 
There is much truth, much insight, and much wisdom there.

When Does the Bazaar Work?

Nevertheless, I would make six independent short observations 
about the Open Source process. This is in lieu of a protracted dis-
cussion, since I have no personal experience using it.

The Bazaar • is indeed an evolutionary model. The larger sys-
tem is grown by adding components, each of which meets 
a need (a requirement, if you will) discovered by the user-
designer.
The gift-prestige economy works for people who are being • 
otherwise fed; that is, the software gifts to the community are 
by-products of other work products that produce the revenue 
to pay the builders-donors.
Since many of the products so made are indeed by-products, • 
there have been more tools than applications. The results 
are not always quite polished or quite debugged—they only 
have to be good enough for the purpose of the builder. The 
“market” selection is in fact the quality control.
Despite much that has been written about the “openness” and • 
the “freedom” of the open Source process, the total Linux 
edifice is hardly a random pile of idiosyncratic pieces—Linus 
Torvalds has been an overarching intellectual force for con-
ceptual integrity. Moreover, for Linux a functional specifica-
tion already existed: UNIX. of equal importance, an overall 
system design existed.
A key to all design processes is the discovery of the users’ • 
needs, wants, and criteria. The conspicuous success of the 
bazaar process in the Linux community seems to me to derive 
directly from the fact that the builders are also the users. Their 
requirements flow from themselves and their work. Their 
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desiderata, criteria, and taste come unbidden from their own 
experience. The whole requirements determination is implicit, 
hence finessed. I strongly doubt if Open Source works as well 
when the builders are not themselves users and have only 
secondhand knowledge of the users’ needs.
Hence there is still a need for cathedral processes, care-• 
fully architected, tightly controlled, and meticulously tested. 
Would you use the Open Source process to build the new 
national air-traffic control system?10

Boehm’s Spiral Model

Barry Boehm proposed in 1988 the Spiral Model for the build-
ing of software.11 The chapter frontispiece shows the model as 
originally proposed. The spiral shape certainly suggests progress. 
It associates successive repetitions of the same activity. The geo-
metric shape is easily understood and memorable. The model 
emphasizes prototyping, starting with user-interface prototypes 
and user testing long before an operational prototype is possible. 

The model has had wide acceptance; it is even permitted as a 
substitute for the Waterfall Model in U.S. Department of Defense 
procurements.12 It has also had some development. 

Denning and Dargan [1996] have criticized the Spiral Model: 
“[It is an improvement], but it is still designer and product cen-
tered, rather than user and action centered.”13 They go on to 
propose a rather informal action-centered design process which 
properly gives increased attention to the users and the use mod-
els. I recommend their thoughtful paper.

Nevertheless, since a development model is principally used 
by developers, I believe having it designer-centered is entirely 
appropriate. Moreover, their process approach does not address 
the need for a memorable geometric model or for a basis for arriv-
ing at contracts. With Boehm and against Denning and Dargan, I 
advocate frequent but not continuous interaction with representa-
tive users, with successive prototypes as the vehicles.

As originally proposed, the Spiral Model accommodated, but 
did not emphasize, the progressive discovery of requirements, 
nor did it emphasize contracting points.
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I strongly believe the way forward is to embrace and develop 
the Spiral Model. I would suggest punctuating the spiral with 
explicit contracting points, augmented with clear specification 
of what can be contracted, with what certainties, and with what 
explicit distribution of risk. Risk management is the focus of 
much of Boehm’s later work.14

Design Process Models: The Summary Argument of 
Chapters 2–5

A formal design process model is needed, to help organize • 
design work, to aid communication in and about projects, 
and for teaching.
Having a visual, geometric representation of a design process • 
model is crucial, for designers are spatial thinkers. They will 
most easily learn, think about, share, and talk in terms of a 
model with a clear geometric picture.
The Rational Model of design occurs naturally to engineers. • 
Indeed, it has been independently and formally set forth sev-
eral times: for example, by Simon, by Pahl and Beitz, and by 
Royce.
The linear, step-by-step Rational Model is highly misleading. • 
It does not accurately reflect what real designers do, or what 
the best design thinkers identify as the essence of the design 
process.
The bad model matters. It has led to the too-early binding of • 
requirements, leading in turn to bloated products and sched-
ule/budget/performance disasters.
The Rational Model has persisted in practice despite its inad-• 
equacies and plenty of cogent critiques. This is because of its 
seductive logical simplicity, and because builders and clients 
need “contracts.”
Several alternative process models have been proposed. I • 
find Boehm’s Spiral Model the most promising. We need to 
keep developing it.
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6
Collaboration in Design

A meeting is a refuge from “the dreariness of 
labor and the loneliness of thought.”

Bernard BarucH, in riSen [1970], 
“a tHeory on meetinGS”

Menn’s Sunniberg Bridge, 1998
Christian Menn, ETH zürich, ChristianMennPartners AG
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Is Collaboration Good Per Se?

Two big changes in design have taken place since 1900:

Design is now done mostly by teams, rather than individuals.• 
Design teams now often collaborate by using telecommuni-• 
cations, rather than by being collocated.

As a consequence of these big shifts, the design community is 
abuzz with hot topics:

Telecollaboration• 
“Virtual teams” of designers• 
“Virtual design studios”• 

All of these are enabled by telephony, networking, computers, 
graphic displays, and videoconferencing.

If we are to understand telecollaboration, we must first under-
stand the role of collaboration in modern professional design.

It is generally assumed that collaboration is, in and of itself, a 
“good thing.” “Plays well with others” is high praise from kinder-
garten onward. “All of us are smarter than any of us.” “The more 
participation in design, the better.” Now, these attractive proposi-
tions are far from self-evident. I will argue that they surely are 
not universally true.

Most great works of the human mind have been made by one 
mind, or two working closely. This is true of most of the great 
engineering feats of the 19th and early 20th centuries. But now, 
team design has become the modern standard, for good reasons. 
The danger is the loss of conceptual integrity in the product, a 
very grave loss indeed. So the challenge is how to achieve con-
ceptual integrity while doing team design, and at the same time 
to achieve the very real benefits of collaboration.

Team Design as the Modern Standard

Team design is standard for modern products, both those mass-
produced and one-offs such as buildings or software. This is 
indeed a big change since the nineteenth century. We know the 
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names of the leading 18th- and 19th-century engineering design-
ers: Cartwright, Watt, Stephenson, Brunel, Edison, Ford, the 
Wright Brothers. Consider, on the other hand, the Nautilus nuclear 
submarine (Figure 6-1). We know Rickover as the champion, the 
Will who made it happen, but which of us can name the chief 
designer? It is the product of a skilled team.

Consider great designers, and think of their works:

Homer, Dante, Shakespeare• 
Bach, Mozart, Gilbert and Sullivan• 
Brunelleschi, Michelangelo• 
Leonardo, Rembrandt, Velázquez• 
Phidias, Rodin• 

Most great works have been made by one mind. The excep-
tions have been made by two minds. And two is indeed a magic 
number for collaborations; marriage was a brilliant invention and 
has a lot to be said for it. 

Figure 6-1 The Nautilus nuclear submarine
U.S. Navy Arctic Submarine Laboratory/Wikimedia Commons
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Why Has Engineering Design Shifted from Solo to Teams?

Technological Sophistication. The most obvious driver toward 
team design is the increasing sophistication of every aspect of 
engineering. Contrast the first iron bridge (Figure 6-2) with its 
splendid descendant (chapter frontispiece).

The first had to be wrought very conservatively, that is, heav-
ily and wastefully, even though elegantly. Both the properties of 
the iron and the distribution of static and dynamic stresses were 
understood imperfectly (though remarkably well!).

Menn’s bridge, on the other hand, soars incredibly but confi-
dently, the fruit of years of analysis and modeling.

I am impressed that there are no naive technologies left in 
modern practice. It was my privilege to tour Unilever’s research 
laboratory at Port Sunlight, Merseyside, UK. I was astonished 
to find a PhD applied mathematician doing computational fluid 
dynamics (CFD) on a supercomputer, so as to get the mixing of 
shampoo right! He explained that the shampoo is a three-layer 
emulsion of aqueous and oily components, and mixing without 
tearing is crucial. 

Figure 6-2 Pritchard and Darby’s Iron Bridge, 1779 (Shropshire, UK) 
iStockphoto

From the Library of Wow! eBook



ptg

Team Design as the Modern Standard 67

The designers of a John Deere cotton-picking machine used 
CFD to structure the airflow carrying the cotton bolls. A modern 
farmer spends not only hours on the tractor, but also hours on 
the computer, matching fertilizer, protective chemicals, seed vari-
ety, soil analysis, and crop rotation history.2 The master cook at 
Sara Lee adjusts the cake recipe continually to match the chemi-
cal properties of the flour coming in; the boss in the paper mill 
similarly adjusts for the varying pulpwood properties.

Mastering explosive sophistication in any branch of engineer-
ing forces specialization. When I went to graduate school in 1953, 
one could keep up with all of computer science. There were two 
annual conferences and two quarterly journals. My whole intel-
lectual life has been one of throwing passionate subfield interests 
overboard as they have exploded beyond my ability to follow 
them: mathematical linguistics, databases, operating systems, 
scientific computing, software engineering, even computer archi-
tecture—my first love. This sort of splintering has happened in 
all the creative sciences, so the designer of today’s state-of-the-art 
artifact needs help from masters of various crafts.

The explosion in the need for detailed know-how of many 
technologies has been partially offset by the stunning explosion in 
the ready availability of such detailed know-how—in documents, 
in skilled people, in analysis software, and in search engines that 
find the documents and plausible candidates for collaborators.

Hurry to Market. A second major force driving design to teams 
is hurry to get a new design, a new product, to market. A rule 
of thumb is that the first to market a new kind of product can 
reasonably expect a long-run market share of 40 percent, with the 
remainder split among multiple smaller competitors. Moreover, 
the pioneer can harvest a profit bubble while the competition 
builds up. In the biggest wins, the pioneer continues to dominate. 
These realities press design schedules hard. Team design becomes 
a necessity when it can accelerate delivery of a new product in a 
competitive environment.3

Why is this competitive time pressure more intense than 
before? Global communications and global markets mean that 
any great idea anywhere propagates more quickly now.
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Costs of Collaboration

“Many hands make light work”—Often 
But many hands make more work—Always

We all know the first adage. And it is true for tasks that are partition-
able. The burden on each worker is lighter, hence the time to com-
pletion is shorter. But no design tasks are perfectly partitionable, and 
few are highly partitionable.4 So collaboration brings extra costs.

Partitioning Cost. Partitioning a design task is itself an added 
task. The crisp and precise definition of the interfaces between 
subtasks is a lot of work, slighted at peril. As the design pro-
ceeds, the interfaces will need continually to be interpreted, no 
matter how precisely delineated. There will be gaps. There will 
be inconsistencies in definition and conflicts in interpretation; 
these must be reconciled.

To simplify manufacture, there must be standardization of 
common elements across all the components; some commonality 
of design style must be established.

And then the separate pieces must be integrated—the ulti-
mate test of interface consistency. It is not just in shipyards where 
the reality of integration is “Cut to plan; bang to fit.”5

Learning/Teaching Cost. If n people collaborate on a design, 
each must come up to speed on the goals, desiderata, constraints, 
utility function. The group must share a common vision of all of 
these things—of what is to be designed. To a first approximation, 
if a one-person design job consists of two parts—learning l and 
designing d—the total work when the job is shared out n ways is 
no longer

work= l + d 
but now at least 

work= n l + d
Moreover, someone with the vision and knowledge must do the 
teaching, hence will not be designing. One hopes that the effi-
ciencies of specialization will buy back some of these costs.

Communication Cost during Design. During the design pro-
cess, the collaborating designers must be sure their pieces will fit 
together. This requires structured communication among them.
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Change Control. A mechanism for change control must be put 
into place so that each designer makes only those changes that (1) 
affect only his part or (2) have been negotiated with the designers 
of the affected parts. Since much of the cost of design is indeed 
change and rework, the cost of change control is substantial. The 
cost of not having formal change control is much greater.6 

The Challenge Is Conceptual Integrity!

Much of what we consider elegance in a design is the integrity, 
the consistency of its concepts. Consider Wren’s masterpiece, St. 
Paul’s Cathedral (Figure 6-3).

Figure 6-3 Wren’s St. Paul’s Cathedral
iStockphoto
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Such design coherence in a tool not only delights, it also yields 
ease of learning and ease of use. The tool does what one expects it to 
do. I argued in The Mythical Man-Month that conceptual integrity 
is the most important consideration in system design.7 Sometimes 
this virtue is called coherence, sometimes consistency, sometimes 
uniformity of style. Blaauw and I have elsewhere discussed con-
ceptual integrity at some length, identifying as component prin-
ciples orthogonality, propriety, and generality.8 The solo designer or 
artist usually produces works with this integrity subconsciously; 
he tends to make each microdecision the same way each time he 
encounters it (barring strong reasons). If he fails to produce such 
integrity, we consider the work flawed, not great.

Many great engineering designs are still today principally 
the work of one mind, or two. Consider Menn’s bridges.9 Con-
sider the computers of Seymour Cray. The genius of his designs 
flowed from his total personal mastery over the whole design, 
ranging from architecture to circuits, packaging, and cooling, 
and his consequent freedom in making trades across all design 
domains.10 He took the time to do designs he could master, even 
though he used and supervised a team. Cray exerted a power-
ful counterforce against those corporate and external pressures 
that would have steered his own attention away from design to 
other matters. He repeatedly took his design team away from the 
laboratories created by his earlier successes, considering solitude 
more valuable than interaction. He was proud of having devel-
oped the CDC 6600 with a team of 35, “including the janitor.”11 

One sees this pattern—physical isolation, small teams, intense 
concentration, and leadership by one mind—repeated again and 
again in the design of truly innovative, as opposed to follow-on, 
products: for example, the Spitfire team under Joe Mitchell, off 
at Hursley House, a stately home in Hampshire, UK; Lockheed’s 
Skunk Works under Kelly Johnson, from which the U-2 spy plane 
and F-117 stealth fighter came; IBM’s closed laboratory in Boca 
Raton, Florida, home of IBM’s successful effort to catch up with 
Apple on the PC.

Dissent

Not everyone agrees with the thesis I have been arguing. Some 
argue the social justice of participatory design—that it is right 
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for users to have a significant role in the design of objects for 
their use.12 Whereas this participation is feasible (and prudent 
as well as fair) for buildings, user participation in the design of 
mass-market products is inherently limited to a small sample of 
prospective users. Such a voice must be conditioned by the repre-
sentativeness of the sampling, and the vision of the designer.

Others argue that my facts are wrong, that team design has 
in fact always been the norm.13 The reader will have to judge for 
himself.

How to Get Conceptual Integrity with Team Design?

Any product so big, so technically complex, or so urgent as to 
require the design effort of many minds must nevertheless be 
conceptually coherent to the single mind of the user.14 Whereas 
such coherence is usually a natural consequence of solo design, 
achieving it in collaborative design is a management feat, requir-
ing a great deal of attention. So, how does one organize design 
efforts to achieve conceptual integrity?

Modern Design as an Interdisciplinary Negotiation?

Many (mostly academic) writers conclude from the high degree 
of today’s specialization that the nature of design has changed: 
design today must be done as an “interdisciplinary negotiation” 
(among the team). The clear implication, though not explicit, is 
that the team members are peers, and each must be satisfied. NO!
If conceptual integrity is the final goal, negotiation among peers 
is the classic recipe for bloated products! The result is design by 
committee, where none dare say “No” to another’s suggestion.15

A System Architect

The most important single way to ensure conceptual integrity in 
a team design is to empower a single system architect. This per-
son must be competent in the relevant technologies, of course. He 
must be experienced in the sort of system being designed. Most 
of all, he must have a clear vision of and for the system and must 
really care about its conceptual integrity.
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The architect serves during the entire design process as the 
agent, approver, and advocate for the user, as well as for all the 
other stakeholders. The real user is often not the purchaser. This 
is evidently true with military acquisitions, where the purchaser 
(and even the specifier) is far removed from the user. Indeed, the 
same system may have multiple users, wielding it at strategic, 
battalion, and personal levels. The purchaser is represented at the 
design table by marketers. The engineers are represented. The 
manufacturers are represented. Only the architect represents the 
users. And, for complex systems as well as for simple residences, 
it is the architect who must bring professional technology mas-
tery to bear for the users’ overall, long-run interest. The role is 
challenging.16 I have discussed it in considerable detail in Chap-
ters 4–7 of The Mythical Man-Month.

One User-Interface Designer

A major system will require not only a chief architect, but indeed 
an architectural team. So the conceptual-integrity challenge 
recurses. Even architecture work must be partitioned, controlled, 
and hence reintegrated. Here again, conceptual integrity requires 
special effort. 

The user interface, the user’s crucial system component, must 
be tightly controlled by one mind. In some teams, the chief archi-
tect can do this detailed work. Consider MacDraw and MacPaint, 
early Mac tools that were in fact built by their designers. In large 
architecture teams, the chief architect’s scope is too large for him 
to do the interface himself. Nevertheless, one person must do it. If 
one architect can’t master it, one user can’t either. At Google, for 
example, one vice president, Marissa Mayer, maintains personal 
control over the page format and the home page.17 

Such an interface designer not only needs lots of using 
experience and listening skills, he above all needs taste. I once 
asked Kenneth Iverson, Turing Award winner and inventor of 
the APL programming language, “Why is APL so easy to use?” 
His answer spoke volumes: “It does what you expect it to do.” 
APL epitomizes consistency, illustrating in detail orthogonality, 
propriety, and generality. It also epitomizes parsimony, providing 
many functions with few concepts.
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I once was engaged to review the architecture of a very ambi-
tious new computer family, the Future Series (FS) intended by 
IBM’s developers to be a successor to the S/360 family. The archi-
tectural team was brilliant, experienced, and inventive. I listened 
with delight as the grand vision unfolded. So many fine ideas! 
For an hour, one of the architects explained the powerful address-
ing and indexing facilities. Another hour, another architect set 
forth the instruction sequencing, looping, branching capabilities. 
Another described the rich operations set, including powerful 
new operators for data structures. Another told of the compre-
hensive I/O system.

Finally, swamped, I asked, “Can you please let me talk to the 
architect who understands it all, so I can get an overview?”

“There isn’t one. No one person understands it all.” 
I knew then that the project was doomed—the system would 

collapse of its own weight. Being handed the 800-page user man-
ual confirmed in my mind the system’s fate. How could any user 
master such a programming interface?18

When Collaboration Helps

In some aspects of design the very plurality of designers per se 
adds value.

Determining Needs and Desiderata from Stakeholders

If deciding what to design is the hardest part of the design task, 
is this a part where collaboration helps? Indeed so! A small team 
is much better than an individual at studying either an unmet 
need or an existing system to be replaced. Typically, several 
minds think of many different questions and kinds of questions. 
Many questions mean many unexpected answers. The collaborat-
ing team must ensure that each member gets full opportunity to 
explore his trains of inquisitiveness.

Establishing Objectives. Under any design process, the 
designer begins by conversing with the several stakeholders. 
These conversations are about the objectives and constraints for 
the design. The hard task is to flush out the implicit objectives 
and constraints, the ones the stakeholders don’t even recognize 

From the Library of Wow! eBook



ptg

74 6. Collaboration in Design

that they have. Indeed, from these conversations—what is said, 
how it is said, what is unsaid—comes the designer’s first esti-
mate of the utility function.

A crucial part of this phase is observation of how the user does 
the job today, with today’s tools and circumstances. It often helps 
to videotape these observations, and to view them over and over. 

Having collaborating designers participate is extremely use-
ful for this phase. Extra minds

Ask different questions• 
Pick up different things that are not said• 
Have independent and perhaps contradictory opinions of • 
how things are said
Observe different aspects of working• 
Stimulate the discussion of the videotapes• 

Conceptual Exploration—Radical Alternatives

Early in the design process, designers begin exploring solutions—
the earlier the better (as long as no one gets wedded to any solu-
tion), for the concreteness of postulated solutions usually elicits 
hitherto unspoken user desiderata or constraints.

Brainstorming. This is the time for brainstorming. Severally, 
each member of the design team sketches multiple individual 
schemes. Collectively, the team members prod each other into 
radical, even wild, ideas. The standard rules for this stage include 
“Focus on quantity,” “No criticism,” “Encourage wild ideas,” 
“Combine and improve ideas,” and “Sketch all of them where all 
can see.”19 More minds mean more ideas. More minds stimulat-
ing each other yield lots more ideas. 

The ideas are not necessarily better. Dornburg [2007] reports 
a controlled industrial-scale experiment at Sandia Labs:

Individuals perform at least as well as groups in producing quan-
tity of electronic ideas, regardless of brainstorming duration. How-
ever, when judged with respect to quality along three dimensions 
(originality, feasibility, and effectiveness), the individuals signifi-
cantly (p<0.05) out performed the group working together. 
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Competition as an Alternative to Collaboration. In the concep-
tual exploration phase, one can alternatively harness and stimu-
late the creative powers of multiple designers by holding design 
competitions. These work best when the known constraints and 
objectives are concretely stated and shared, and when unneces-
sary constraints are carefully excised.

In architecture this practice has been routine for centuries. 
Brunelleschi established himself by winning the design competi-
tion for the dome of the Santa Maria del Fiore cathedral in Flor-
ence in 1419 (Figure 6-4). His radical concept, its feasibility made 
plausible by a scale model, opened new vistas, seen today in St. 
Paul’s and the U.S. Capitol. 

Figure 6-4 Brunelleschi’s Dome, Santa Maria el Fiore
Anonymous, “View of Florence from the Boboli Gardens,”  

19th Century, Watercolor, Museo di Firenze com’era, Florence, Italy/ 
Scala/Art Resource, New York.
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In architecture and some major civil engineering works, there 
is a single client and multiple designers hoping to get the job. So 
a competition naturally suggests itself.

The situation is quite different in the normal product- 
development environment of a computer or software developer. 
There it is customary for a single team to be assigned to develop 
a particular product. There will always be competing ideas inside 
the team about different design decisions, and debates are rou-
tine. But only rarely does a management set up multiple teams to 
pursue a single objective competitively.

Occasionally, however, there will be a formal design compe-
tition within a corporate product-development setting. During 
System/360 architectural design we worked on a stack architec-
ture for six months. Then came the first cost-estimating cycle. The 
results showed the approach to be valid for mid-range machines 
and up, but a poor cost-performer at the low end of the seven-
model family.

So we had a design competition. The architecture team self-
selected into some 13 little (one- to three-person) teamlets, and 
each did an architectural sketch, against a fixed set of rules and 
deadlines. Two of the 13 designs were best in my opinion as judge. 
They were surprisingly alike, more surprising because the teams 
were rather cool toward each other and had not communicated.

The confluence of those designs set the pattern for the proj-
ect. (Their big difference, 6-bit-byte versus 8-bit-byte, occasioned 
the sharpest, deepest, and longest debate of the whole design 
process.)

I reckon the design competition, originally suggested by Gene 
Amdahl, to have been immensely invigorating and fruitful. It put 
everyone hard to work again after a demoralizing cost estimate. 
It got each person deeply involved in all aspects of the design, 
which greatly helped morale and proved valuable in the later 
design development. It produced a consensus on many design 
decisions. And it produced a good design.20

Unplanned Design Competitions: Product Fights. Not infre-
quently, it happens that design team B will so evolve its design 
that it begins to overlap the market objective of design team A. 
Then one has an ad hoc design competition, a product fight.
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I’ve seen many product fights. They follow a standard script 
in five acts:

The two teams, who may not already know the details of each 1. 
other’s work, meet, compare products and intended mar-
kets, and conclude unanimously that there is no real overlap 
between their products. Both should proceed full speed. 
Reality appears, in the form of a market forecast or a skepti-2. 
cal boss.
Each team changes the design of its product to encompass all 3. 
of the other product’s market, not just the overlapping part. 
Each team begins wooing supporters among customers, mar-4. 
keting groups, and product forecasters.
There comes a shootout before some executive with the 5. 
power to decide.

Scripts diverge at this point: team A wins; team B wins; both 
survive; neither survives the intense scrutiny engendered by the 
competition.

This scenario can and usually should be shortened by early 
action by a skeptical boss. Sometimes, however, it may be the 
best way to get a thorough (and impassioned) exploration of two 
quite different design approaches.

Design Review

The phase of design where collaboration is most valuable, even 
necessary, is design review. Multiple disciplines must review: 
other designers, users and/or surrogates, implementers, purchas-
ers, manufacturers, maintainers, reliability experts, safety and 
environment watchdogs.

Each disciplinary specialist must review the design docu-
ments alone, for careful review takes time, reflection, and perhaps 
the study of references, archives, and other designs.21 Each will 
bring a unique point of view; each will raise different issues and 
find different flaws. But joint, group review is also imperative. 

Demand Multidisciplinary Group Review. Group review has 
the power of numbers, but special power comes from the view-
points of multiple disciplines. The review team should be much 
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larger than the design team. Those who will build the design, 
those who will maintain it, sample users, those who will market 
it—all must be included. Consider the review for a new subma-
rine design. The supply officer sees a shortcoming; his spoken 
concern triggers a similar concern for the damage control spe-
cialist. The manufacturing tooling expert sees something hard 
to build; his suggested solution sets off alarms in the acoustic 
expert’s mind.

Designers at the Electric Boat Division of General Dynamics 
told me of a review in which the shipyard foreman took one look 
at a semicylindrical storage tank and quickly suggested rolling 
a one-piece cylinder, cutting it in half, and roofing it with a flat 
plate. This was in place of some 20 pieces the engineer had speci-
fied. Said the foreman, “We submarine builders are good at roll-
ing cylinders.”

Similarly, a designer at Brown & Root in Leatherhead, Eng-
land, told me of a design review for a deep-sea oil-drilling plat-
form. The maintenance foreman pointed to a particular unit and 
said, “Better make that one out of heavy-gauge steel.”

“Why?” 
“Well, we can paint it in the workshop before it’s installed, 

but where it goes, we’ll never be able to paint it again.”
The engineers redesigned the whole vicinity of the platform 

so the unit could be reached.

Use Graphical Representations. For design review, the most 
important aid is a common model of the product—a drawing, a 
full-scale wooden mock-up or virtual-reality simulation of a sub-
marine, a prototype of a mechanical part, perhaps an architec-
tural diagram of a computer.

A multidisciplinary design review often demands a richer 
variety of graphical representations of the design than the 
designers themselves have been using. Not everyone in the 
review will be able to visualize the end product from the engi-
neering/architectural drawings. My observation from visiting 
various facilities is that such design reviews are probably the 
most fruitful applications of virtual-environment visualization 
technology.22

From the Library of Wow! eBook



ptg

When Collaboration Doesn’t Work—for Design Itself 79

Sharing the product model and sharing each other’s com-
ments are both vital to effective design review; tools for simulat-
ing such sharing are the sine qua non of group design reviews 
where all the players cannot be physically present. Here telecol-
laboration comes into its own.

When Collaboration Doesn’t Work—for Design Itself

The Fantasy Concept of Design Collaboration. The computer-
supported-collaborative-work literature is peppered with a fan-
tasy version of collaborative design. This would be harmless, 
except that the fallacious concept focuses ever more elaborate 
academic research on ever less useful technological tools for 
collaboration.

In this fantasy, a design team really or virtually sees a model 
of the design object—whether a house, a mechanical part, a sub-
marine, a whiteboard diagram of software, or a shared text. Any 
team member proposes changes, usually by effecting the change 
directly in the model. Others propose amendments, discussion 
proceeds, and bit by bit the design takes form.

Not How Collaborators Design. But the fantasy concept 
doesn’t fit how collaborators really do design, as opposed to 
design review.

In all the multi-person design teams I’ve seen, each part 
of a design has at any time one owner. That one person works 
alone preparing a proposal for the design of his part. Then he 
meets with his collaborators for what is in effect a micro-session 
of design review. Then he normally retires and works out the 
detailed consequences of the decisions and directions discussed 
collaboratively.

If alternate proposals are made in the session, and not 
accepted by the owner, the proposer will often withdraw and 
develop an alternate design. Then the session will convene again, 
to choose, fuse, or strike off in some third direction.

Where’s Design Control? The fantasy concept has no function 
for originating designs, only refining them. The fantasy concept is 
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flawed as a model for collaborative design change, too. Schedule 
gain from collaboration implies concurrent activity; and concur-
rent activity requires synchronization, a step totally missing from 
solo design. Designer Jack owns the air ducts in an oceangoing 
tanker; Jill owns the steam pipes. As each fleshes out his design, 
and at every subsequent change, some mechanism of design con-
trol must monitor that they don’t both use the same space. Some 
resolution procedure must be in place for settling conflicts. Some 
version control must be established so that each designs against a
single time-stamped version of all the earlier design work.

In one instance of the fantasy concept I have actually seen 
proposed, the client admiral views the design model for a nuclear 
submarine, and he moves a bulkhead to give equipment repairers 
better access. (Making this possible is a technically challenging 
task in a virtual-reality interface to a CAD system. Many tech-
niques for real-time visualization depend upon the static nature 
of most of the world-model.)

But the challenge is not worth accepting! The admiral may 
want to move the bulkhead to see how the space will look and 
feel, and he may be allowed to do that in a playpen version of the 
model. But before any such move becomes part of the standard 
design version, someone or some program must check the effects 
on the space on the other side of the bulkhead, the structural con-
sequences, the acoustic consequences, the effects on piping and 
wiring. Imagine the horror of the responsible engineers to find 
that the bulkhead has been moved by the admiral, who cannot 
possibly have known the constraints and design compromises it 
embodied. By the time there is a design for the admiral to walk 
through virtually, it is far enough along to require formal change 
control.

The fantasy model of collaborative design reflects a monu-
mental unconcern about conceptual integrity. Jill pats the design 
here; Jim nudges it there; Jack patches it yonder. It is spontane-
ous; it is collaborative; and it produces poor designs. Indeed, 
we know the process so well that we have a scornful name for 
it—committee design. If collaboration tools are designed so they 
encourage committee design, they will do more harm than good.
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Conceptual Design, Especially, Must Not Be Collaborative

once the exploratory stage is past and a basic theme is selected, 
it’s time for conceptual integrity to rule. A design flows from 
a chief designer, supported by a design team, not partitioned 
among one.23

To be sure, the conceptual design thus pursued may run into 
a blind alley. Then a different basic scheme must be selected, and 
collaborative exploration is again in order until that new basic 
scheme is selected. 

Two-Person Teams Are Magical

The foregoing discussion of design collaboration dealt with teams 
of more than two people. Two-person teams are a special case. 
Even in the conceptual design stage, when conceptual integrity is 
most imperiled, pairs of designers acting uno animo can be more 
fruitful than solo designers. The literature on pair programming 
shows this to be true during detailed design. Typical initial pro-
ductivity runs less than two working separately, but error rates 
are radically reduced.24 Since perhaps 40 percent of the effort on 
many designs is rework, net productivity is higher and products 
are more robust.

The world is full of two-person jobs. The carpenter needs 
someone to hold the other end of the beam. The electrician needs 
help when feeding wire through studs. Child raising is best done 
by two actively collaborating parents. “It is not good for man to 
be alone,” while spoken in its truest sense about marriage,25 might 
usefully be preached to lone-ranger designers.

The typical dynamics of two-person design collaboration 
seem different from those of multi-person design and solo design. 
Two people will interchange ideas rapidly and informally, with 
neither a protocol as to who has the floor nor domination by one 
partner. Each holds the floor for short bursts. The process switches 
rapidly among micro-sessions of proposal, review and critique, 
counterproposal, synthesis, and resolution. There is typically a 
single thread of idea development, without the maintenance of 
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separate individual threads of thought as in multi-person discus-
sions. Two pencils may move over the same paper with neither 
collision nor contradiction.

“As iron sharpens iron,” each stimulates the other to more 
active thought than might occur in solo design. Perhaps the very 
need to articulate one’s thinking—to state why as well as what— 
causes quicker perception of one’s own fallacies and quicker rec-
ognition of other viable design alternatives. 

A classic 1970 paper by Torrance showed that dyadic interac-
tion produced twice as many original ideas, produced ideas of 
twice as much originality, increased enjoyment, and led subjects 
to attempt more difficult tasks.26

Pair-wise design sessions still need to be interspersed with 
solo ones—to detail, to document the creative fruit, and to pre-
pare proposals for the next joint session.

So What, for Computer Scientists?

Much effort by academic computer scientists has gone into the 
design of tools for computer-assisted collaboration by workers in 
their own and other disciplines. Distressingly few of these ideas 
and tools have made it into everyday use. (Important tools that 
have succeeded are code control systems and “Track Changes” in 
Word.) Perhaps this is because it is especially easy for academic 
tool builders to overlook some crucial properties of real-world 
team design:

Real design is always more complex than we tend to imag-• 
ine.27 This is especially true since we often start with textbook 
examples, which have perforce been oversimplified. Real 
design has more complex goals, more complex constraints to 
be satisfied, more complex measures of goodness to be satis-
ficed. Real design always explodes into countless details.
Real team design always requires a design-change control • 
process, lest the left hand corrupt what the right hand has 
wrought. 
No amount of collaboration eliminates the need for the • 
“dreariness of labor and the loneliness of thought.”
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For these reasons, I think we should be very leery about 
assigning graduate students with little or no real-world design 
experience dissertation topics in the field of collaborative design 
tools. Moreover, our journals should be very slow to accept such 
papers that are not based on real-world experience and/or real 
design applications. 

Notes and References

This marvelous phrase was quoted by Bernard Baruch, who said his 1. 
attorney said it to him.

Economist2.  [2009], “Harvest moon.”

The wise manager of a multi-project organization early launches a 3. 
solo designer, or a pair, to start exploring designing for a technology 
foreseeable, but not yet buildable.

Brooks [1995], 4. The Mythical Man-Month, Chapter 2.

Shipyard foreman at Electric Boat, Groton, CT (personal 5. 
communication).

The most complete scientific study I have seen comparing solo and 6. 
individual designers is Cross [1996a], Analysing Design Activity.

The Delft protocols included a solo designer and a three-person team 
attacking the same problem, with both observed by video and the 
solo designer encouraged to think aloud. Twenty different chapters, 
each using its own analytical method, analyze the Delft video proto-
cols. Most apply their authors’ own predefined categories of activity 
to one or both of the protocols. Many of the chapters either compare 
the activities and performance of the two alternatives or else analyze 
the social behavior of the team. The most specific conclusion is that 
by Gabriela Goldschmidt [1995], “The designer as a team of one”: 
“Detailed analysis leads to the conclusion that there are almost no 
differences between the individual and the team in the way they bring 
their work to fruition.”
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Charles Eastman [1997] reviews this book in Design Studies
(475–476): 

Together the studies offer a rich set of perspectives that allow a reader 
to understand both the fertileness and the idiosyncrasy of design pro-
cesses. The video transcription obviously captured a rich character-
ization of design behavior, . . . The limitation of current methods of 
protocol analysis, however, are made readily apparent. Each study by 
itself provides only a small peephole into the overall design process. 
Only through the cumulative breadth of multiple studies does the 
sense of the full process emerge.

This book clearly presents the current state of design protocol studies 
after thirty years of effort and relates them more generally to various 
theories of design.

Brooks [1995], 7. The Mythical Man-Month, Chapter 4, 42ff.

Blaauw and Brooks [1997], 8. Computer Architecture, Section 1.4; Brooks 
[1995], The Mythical Man-Month, Chapters 4–7, 19. 

Billington [2003],9.  The Art of Structural Design, Chapter 6; Menn 
[1996], “The Place of Aesthetics in Bridge Design.”

Blaauw and Brooks [1997], 10. Computer Architecture, Chapter 14.
Murray [1997], 11. The Supermen. 
Greenbaum and Kyng [1991], 12. Design at Work; Bødker [1987], “A Uto-
pian Experience.”
Weisberg [1986], 13. Creativity: Genius and Other Myths; Stillinger [1991], 
Multiple Authorship and the Myth of Solitary Genius.
R. Joseph Mitchell, the designer of the Spitfire, warned one of his test 14. 
pilots (the user!) about engineers: “If anybody ever tells you anything 
about an aeroplane which is so bloody complicated you can’t under-
stand it, take it from me: it’s all balls.”
Eoin Woods of Artechra says, 15. 

I’m not as pessimistic as you about joint design. I’ve worked in teams 
where we had spirited discussion to drive our designs and then agreed 
the solution among us (albeit sometimes with a benign dictator mak-
ing final decisions). The designs remained coherent because it was one 
or two strong concepts of the design that won out and then drove 
all of the other decisions; we didn’t design by committee and “horse-
trade” the detailed decisions (personal communication [2009]). 
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Brad Parkinson, now at Stanford, one of the two system architects/16. 
contracting officers for the GPS system, pointed out that the chal-
lenges of that task were substantially increased by having multiple 
contractors for the several system pieces (personal communication 
[2007]).
Holson [2009], “Putting a bolder face on Google.” 17. 
Mary Shaw of Carnegie-Mellon asks, “What does this say about mod-18. 
ern software development environments and their APIs?” 
Osborn [1963], 19. Applied Imagination. 
Design competitions in organization design are yet different; the 20. 
task is inherently political. The various competing forces usually do 
not even share the objective of getting the organization that works 
best. How well the organization will work is subordinated to who 
will have which levers of power.
Margaret Thatcher: “One wants documents [as opposed to view-21. 
graph foils] so one can think through beforehand, and consult 
colleagues” (personal communication via Sir John Fairclough). 
American business all too often does reviews via PowerPoint pre-
sentations. Those vague bullets enable each participant to interpret 
the information as he pleases; they also facilitate the suppression of 
embarrassing but crucial details. 

Lou Gerstner, turnaround CEo of IBM, startled the whole cul-
ture early on ([2002], Who Says Elephants Can’t Dance?, 43): “Nick 
was on his second foil when I stepped to the table and as politely 
as I could in front of his team, switched off the projector . . . it had a 
terribly powerful ripple effect . . . Talk about consternation. It was as 
if the President of the United States had banned the use of English 
at White House meetings.” 

Brooks [1999], “What’s real about virtual reality?”22. 
Harlan Mills’s concept of a supported-chief-designer team, a “sur-23. 
gical” team, is detailed in Brooks [1995], The Mythical Man-Month, 
Chapter 3.
Williams [2000], “Strengthening the case for pair-programming”; 24. 
Cockburn [2001], “The costs and benefits of pair programming.” 
Genesis 2:18.25. 
Torrance [1970], “Dyadic interaction as a facilitator of gifted 26. 
performance.”
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See, for example, the impressive PhD dissertations by Hales [1991], 27. 
“An analysis of the engineering design process in an industrial con-
text” (Cambridge), or Salton [1958], “An automatic data processing 
system for public utility revenue accounting” (Harvard), for detailed 
documentation of what is involved in an actual design.
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7
Telecollaboration 

The new electronic interdependence recreates 
the world in the image of a global village.

marSHall mcluHan [1967],
The medium is The message

Henry Fuchs’s vision of the office of the future
Drawings by Andrei State, University of North Carolina
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Why Telecollaboration?

At last we are positioned to examine telecollaboration. Why 
do design teams now harness communications technologies to 
enable collaborations among people who are not collocated?

Specialization

The super-specialization of skills now occasions much collabora-
tion. But any particular specialized skill is not available in every 
hamlet—or even in every city. The ubiquitous village blacksmith 
has become the rare materials-scientist expert in titanium alloys; 
the town fireman has become the Red Adair, summoned to the 
corners of the Earth to snuff multimillion-dollar oil-well fires.1

Home

People have strong, even dominating, preferences as to where 
they live. For many, it is the call of the family, of clan, of culture. 
For others it is rural versus town versus city. For yet others it is 
climate or seacoast or mountains. People with highly specialized 
skills can often write their own tickets. Telecollaboration tech-
nology enables more and more such experts to live where they 
please and work elsewhere. Of my own former students, one has 
lived in Iceland, one in Brazil, while working “in” Silicon Valley.

Around the Clock 

Rotation of the Earth enables work to be advanced around the 
clock by team members each working only day shift.

Cost

Wide disparities in both cost of living and standard of living 
make common high-tech skills available at radically lower cost 
via outsourcing. Of course, dredging a (telecommunications) 
channel between disparate economies begins a torrent of level-
ing, surely the healthiest form of “foreign” aid.
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Figure 7-1 Airbus 380
iStockphoto

Politics

Large international ventures with government support inevitably 
involve the partitioning of jobs among nations, hence among loca-
tions. Consider the Airbus 380, a bold work of engineering (Fig-
ure 7-1). Not only the manufacturing but also the development 
was partitioned among France, Germany, Britain, and Spain.

Jeffrey Jupp, then Technical Director of Airbus UK in Eng-
land, explained to me how Airbus wings were designed in Bristol 
to lift and fit the fuselage designed in Toulouse:

Full telecommunications capabilities were used.• 
Bristol had some of its own engineers on-site in Toulouse as • 
ambassadors.
Every day a company plane flew from Britain to Toulouse • 
and back, carrying live people both ways.

In my experience, none of these collaboration aids could be 
omitted. Alas, the Airbus 380 also illustrates a special pitfall, one 
perhaps more hazardous for politically occasioned distributions. 
The French and British teams used Release 5 of CATIA CAD 
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software. The German and Spanish teams used Release 4. Lo and 
behold, in part because of differences between these releases, the 
wiring harnesses designed by one team required larger radii than 
those provided by the other team’s conduits. These and other ini-
tial delivery delays, some 22 months, have been very painful.2

Been There, Done That—Distributed Development of 
the IBM System/360 Computer Family, 1961–1965

The initial seven IBM System/360 computers were concurrently 
developed in four locations across three countries: Poughkeep-
sie and Endicott, New York; Hursley, UK; Böblingen, Germany. 
These computers, the first upward-downward strictly binary-
compatible family, pioneered the industry switch from 6-bit to 
8-bit bytes. I was Project Manager. Chapter 24 is a case study of 
the architecture design for System/360. (The Model 20 wasn’t 
downward-compatible—a mistake in the mind of architect Wil-
liam Wright, and in my view.)

Over 40 new 8-bit input-output devices had to be concur-
rently developed, each exploiting the specialized skills and 
experience of still more separate and separated laboratories: La 
Gaude, France; Lidingö, Sweden; Uithoorn, the Netherlands; San 
Jose, California; Boulder, Colorado; Lexington, Kentucky; and 
Endicott, New York. A technical innovation radically aided the 
coordination of these efforts—the meticulous definition of a stan-
dard logical, electrical, and mechanical interface for attaching any 
I/O device to any computer.3 Even so, managing the distributed 
development of these devices was a major task. Software devel-
opment was even more widely partitioned.

For computers, software, and I/O devices, we used the same 
management techniques as those described above for BAE. Our 
telecommunications facilities were far more primitive: I leased 
IBM’s first full-time transatlantic phone line. We didn’t run a 
company plane back and forth, but we bought a lot of airline tick-
ets. The British lab maintained a resident participant in Amdahl’s 
Poughkeepsie architecture group; we maintained resident partici-
pants from Poughkeepsie on the processor implementation teams 
in Britain and Germany.
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Besides thousands of phone calls and documents, many pair-
wise face-to-face meetings coupled the laboratories. Annual two-
week-long whole-team meetings settled hanging conflicts and 
challenges—some 200 of them at one session.

Our distributed development effort was occasioned by the 
same forces as usual:

Distributed technology specializations• 
Immovable talent pools• 
Interdivisional politics and distribution of work• 

The effort was highly successful.4 Make no mistake, how-
ever: distributed development of a unified product is work! More-
over, the distribution per se creates a lot of extra work! We sorely 
underestimated the immense importance of the informal commu-
nication channels at work within collocated teams, until we expe-
rienced their absence. Space barriers are real!5 Time-zone barriers 
are real, sometimes more so than space barriers! And cultural 
barriers are very real and must be taken into account!6 

Making Telecollaboration Work

Distributed design will only increase. Telecommunications tech-
nology continues to explode. How shall designers and design 
managers harness it to make telecollaboration work?

Face-to-Face Time Is Crucial!

Consider your own telephone conversations. Do you experience 
a difference not only in comfort but also in effectiveness when 
talking to a stranger, as opposed to an acquaintance?

How far would you walk to avoid using each of {videocon-
ferencing, telephone, email, written mail} to

Make a lunch appointment?• 
Seek a discount on a purchased service?• 
Negotiate a complex business deal?• 
Plan a family vacation?• 
Fire your administrative assistant?• 
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For some of these, you would prefer email or telephone over 
walking (and time synchronizing); for others, you would gladly 
walk quite a distance.

The most successful telecollaborations I have known have been 
built on extensive face-time histories, and even these have required 
some face time during the ongoing telecollaboration. Absent such 
histories, travel is worth what it costs in money and time.

Some of the most fruitful dollars I spent at IBM paid for a 
bus to take the S/360 project’s administrative staff and secretar-
ies 60 miles from Poughkeepsie to White Plains, New York. They 
spent the midday lunching and talking with their counterparts 
at division headquarters, familiar voices hitherto faceless. This 
lubrication was much more effective than just more pressure on 
cooperation.

I am told that Boeing brought its scores of distributed design 
teams for the 777 airplane to Everett, Washington, for weeks of 
together time, as the design was starting.

People instinctively know the value of face time. So, in spite 
of potent videoconferencing technology, airplanes still carry lots 
of business travelers.

Clean Interfaces

Defining clean interfaces among remotely designed components 
is a hard job. The job doesn’t end with definition—continual 
question-and-answer interpretation of the definitions’ semantics 
proves necessary. Changes must be made, controlled, and widely 
communicated.

Another important part of system architecture is not merely 
the definition of interfaces, but management’s designing a prede-
termined mechanism for resolving differences of opinion or taste. 
There is no substitute for authority.

But the payoff from these costly labors is incredible! Clean 
interfaces make a big difference in the error rate of the design. 
Some have estimated that errors and rework, though affecting 
only a small fraction of a design, may account for half the design 
cost. Worse yet, errors due to vague or sloppy interfaces usually 
surface late, during system integration. Nastier to find, costlier to 
fix, they impact the whole system schedule.
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Moreover, clean interfaces enhance the joy of the work. 
Designing is fun; ironing out misunderstandings with peers 
is usually not. When designing, one feels progress happening; 
when resolving interface misunderstandings, one feels slippage. 
Clean interfaces give multiple designers each the joy of owner-
ship, of the privilege of signing a piece of work. They also facili-
tate sequential ownership, as small components flow together 
into recognizable larger subsystems.

Technologies for Telecollaboration

Decade after decade, technology pundits predict that designers’ 
travel will be obviated by telecommunications. It hasn’t hap-
pened yet.7 Why? Will it? My guess is that more and more con-
venient and lifelike communications technologies will indeed 
successfully substitute for more and more face-to-face meetings.8 
Nevertheless, because of the endless nuance of human commu-
nication, being in the same room together from time to time will 
never cease to be very important for design collaborators.

Low Tech Often Suffices

The Document. The most potent technology for telecollabora-
tion is the document shared, whether by network or by post. For-
mal prose and formal drawings carry the precision that demands 
study, enables critique, stimulates interaction. 

Gerry Blaauw and I found, when crafting our 1,200-page 
Computer Architecture [1997], that most of our transatlantic inter-
action was effectively done by mailed drafts. However, this effec-
tive remote cooperation was built upon nine years of daily face 
time; a resulting deep knowledge of each other’s design style, 
sensitivities, and “collaboration manners”; and upon deeply 
shared convictions about computer architecture. Even with this 
foundation, iterations of remote exchanges of drafts had to be 
supplemented by quarterly telephone meetings and semiannual 
three-day face meetings.

These latter were always very instructive. Inherently, they 
focused on the tough nuts that had not yet been cracked. We 
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found that when a text paragraph couldn’t be made to work, it 
was always because we didn’t know what we were talking about. 
Half-hour discussions usually ensued. We learned something 
new about computer architecture.

The modern equivalent of the red-marked draft is the Word 
document with changes tracked. Many critics can interact; each 
has his changes distinguished from all others. Word’s Track 
Changes is a well-designed capability. Yet I find the red-marked 
document far easier to create and to study, largely because of 
its easy two-dimensional access. Our electronic technology isn’t 
there yet. (Or I’m just a dinosaur.)

The Telephone. Next to the document comes the telephone, an 
even bigger breakthrough than email. Email users know the haz-
ards of extemporaneous writing with no attached vocal inflec-
tions and no instant give-and-take. Instant messaging is a poor 
substitute for telephony.

Telephone-Plus-Shared-Document. Telephone-plus-shared-
document becomes vastly more powerful than either alone. The 
combination adds real-time interactions, which save a lot of 
written explanation and head off much misunderstanding. Less 
obviously, the shared document adds much specificity and detail 
to a phone conversation. Having to agree word-by-word forces 
the collaborative facing of many issues that would otherwise be 
missed.

This combination is very powerful. In our laboratory, Kurtis 
Keller, our staff mechanical engineer, was collaborating with Sam 
Drake at the University of Utah on the design of a new head-
mounted display. We were operating a quite effective real-time, 
high-bandwidth video teleconferencing system between UU and 
UNC. Our videoconferencing station was only 150 feet down the 
hall from Kurtis’s office, a short walk. Yet we observed, well into 
the design process, that Kurtis was not investing even that mini-
mal effort in the teleconferencing system. He was working in his 
office, by phone; both he and Drake had the drawing up on their 
workstations.
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Videoconferencing 

Once hyped as the “game-changing” tool for telecollaboration, 
videoconferencing has come into widespread use, but far more 
slowly and less extensively than originally expected.

Why so slowly? In the early days, low bandwidth led to low 
frame rates; the experience was quite artificial. Now that normal 
video rates are available, what technical advances will make the 
experience better?

Field of view.•  Video is good for one-on-one conversations, 
but if one half of a committee is meeting with another, it’s 
hard to see everyone and at the same time to really discern 
facial expressions.
Better sharing of documents and presentations.•  One wants 
to view speaker and slide or document simultaneously, not 
alternatively. One wants to spread materials out on a table. 
One wants to make both private notes and shared markings. 
A symmetric shared whiteboard is really needed.
More resolution.•  Resolution is still not good enough to enable 
one to share a full 8½ x 11 page of text, or to read faces well.
Better depth cues.•  The lack of depth cues, although very 
rarely producing ambiguities, continually reminds the par-
ticipant that he is in fact not there.

When Is Videoconferencing Most Valuable? In spite of the 
current technical shortcomings, in some social situations video-
conferencing is much better than telephony, although still poorer 
than face-to-face conferencing. These are situations when facial 
expressions and body language really matter:

When screening stranger job applicants to select finalists• 
When issues are vital to one or more participants• 
When the participant at one end is quite insecure• 
When organizational or national cultures are different• 

High-Tech Videoconferencing. Considerable research has been 
done piloting maximum-realism teleconferencing systems. My 
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colleague Henry Fuchs has enhanced videoconferencing with 
depth cues and demonstrated anecdotally that the enhancement 
substantially increases one’s feeling of “being there.” Each par-
ticipant’s head is tracked, so the powerful kinetic depth effect is 
harnessed—when one moves his head, the reconstructed objects 
on the screen shift according to their distance from the cameras. 
Moreover, multiple cameras yield a 3-D image, which is dis-
played in stereo via two projectors with polarized filters.9

Telecollaboration Technology—Pulled or Pushed? Much aca-
demic research has been invested in telecollaboration hardware 
and software. This has yielded many tools and systems, some 
commercially marketed, and a conference series10 and a respected 
journal11 that cover the subject (as well as collocated cooperation).

One is forced to the conclusion that most of those tools and 
systems spring from a technical idea rather than from an analysis 
of a collaboration pattern or need. Indeed, in a quick Web search 
for telecollaboration, 49 of the first 50 entries were on tools or 
education, not on collaboration in design. In a library shelf study, 
of 20 books, 19 were on tools, not on applications of the tools to 
accomplish tasks.

This inversion concerns me deeply. It is wasteful of a pre-
cious resource—PhD research efforts—and it mis-educates our 
ablest students. Effective toolsmithing always starts with the user
and the task. In my experience, it is best done when the toolsmith 
has a real user with a real task that must be done. Buggy pro-
totypes will not then satisfy; critical feedback will be immediate 
and blunt. I have written extensively on this elsewhere; those 
positions have not changed.12 

Notes and References

Lohr [2009],1.  “The crowd is wise (when it’s focused),” reports on 
the concept of “collective intelligence” in which specialized teams 
coalesce via the internet for major technical projects:

But a look at recent cases and new research suggests that open- 
innovation models succeed only when carefully designed for a   
particular task and when the incentives are tailored to attract the 
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most effective collaborators. “There is this misconception that you can 
sprinkle crowd wisdom on something and things will turn out for the 
best,” said Thomas W. Malone, director of the Center for Collective 
Intelligence at the Massachusetts Institute of Technology. “That’s not 
true. It’s not magic.” 

Clark [2006], “The Airbus saga,” is an excellent newspaper account. 2. 
See also http://en.wikipedia.org/wiki/Airbus_380, accessed on 
September 9, 2008.

This work required a small architecture team of its own.3. 

Wise [1966], “I.B.M.’s $5,000,000,000 gamble,” has a very competent, 4. 
thorough, and fair discussion of the project and its troubles, as seen 
two years after announcement. As to collaborative design, he says, 
“The international engineering group was woven together with con-
siderable effectiveness, giving I.B.M. the justifiable claim that the 
360 computer was probably the first product of truly international 
design” (p. 142).

Peter Fagg, the System/360 project’s Engineering Manager, did 
a phenomenal job of managing the interdivisional, international 
development of the dozens of new input-output devices, without 
line authority over any of those teams.

Herbsleb [2000], “Distances, dependencies, and delay in a global col-5. 
laboration,” and Teasley [2000], “How does radical collocation help 
a team succeed?” document the disadvantages of distributed work. 
Hinds [2002], Distributed Work, presents a set of reports of various 
aspects of distributed work.

Ghemawat [2007], 6. Redefining Global Strategy.

Garner [2001], “Comparing graphic actions between remote and 7. 
proximal design teams,” reports an interesting study comparing col-
located and remote collaborations on a design project: 

This paper outlines the conduct and findings of a research project 
which compared the sketching activity and sketched output of pairs 
of design students collaborating face-to-face to other pairs linked by 
computer-mediated tools. . . . Sketch Graphic Acts are used to illu-
minate the phenomenon of shared sketches and the importance of 
“thumbnail” sketches—which were commonly exploited in laboratory 
studies of face-to-face collaboratively working but were significantly 
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impoverished in studies of computer-mediated remote collaborative 
working.

On the other hand, Sonnenwald et al. [2003], “Evaluating a sci-
entific collaboratory,” not only observed no differences, but also dis-
covered that scientists found advantages and disadvantages to each mode 
of working:

The evaluation of scientific collaboratories has lagged behind their 
development. Do the capabilities afforded by collaboratories outweigh 
their disadvantages? To evaluate a scientific collaboratory system, we 
conducted a repeated-measures controlled experiment that compared 
the outcomes and process of scientific work completed by 20 pairs of 
participants (upper level undergraduate sciences students) working 
face-to-face and remotely. 

We collected scientific outcomes (graded lab reports) to investigate 
the quality of scientific work, post-questionnaire data to measure the 
adoptability of the system, and post-interviews to understand the par-
ticipants’ views of doing science under both conditions. We hypoth-
esized that study participants would be less effective, report more 
difficulty, and be less favorably inclined to adopt the system when col-
laborating remotely. 

Contrary to expectations, the quantitative data showed no statistically 
significant differences with respect to effectiveness and adoption. The 
qualitative data helped explain this null result: participants reported 
advantages and disadvantages working under both conditions and 
developed work-arounds to cope with the perceived disadvantages of 
collaborating remotely. While the data analysis produced null results, 
considered as a whole, the analysis leads us to conclude there is posi-
tive potential for the development and adoption of scientific collabora-
tory systems.

An anonymous writer in Economist.com [2009] speculates that “the 8. 
cyclical downturn may be coinciding with a structural decline in 
business travel because of advances in information technology.” Thus 
the downturn may accelerate the adoption of videoconferencing.

Raskar [1998], “The office of the future”; Towles [2002], “ 3D tele-9. 
collaboration over Internet2”; http://www.cs.unc.edu/Research/ 
stc/inthenews/pdf/washingtonpost_2000_1128.pdf, accessed on 
August 28, 2009. 
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Virtual worlds such as Second Life are also being explored 
for telecollaboration. See for example, http://blog.irvingwb.com/
blog/2008/12/serious-virtual-worlds-applications.html.

See http://www.cscw2008.org/.10. 
Computer Supported Cooperative Work (CSCW): The Journal of Collab-11. 
orative Computing. ISSN: 0925-9724 (print version); ISSN: 1573-7551 
(electronic version).
Brooks [1977], “The computer ‘scientist’ as toolsmith”; Brooks [1996], 12. 
“The computer scientist as toolsmith II.” 
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8
Rationalism versus 
Empiricism in Design

All Men are liable to Error; and most Men are, in many 
Points, by Passion or Interest, under Temptation to it.

JoHn locke [1690], an essay concerning   
human undersTanding

… the two operations of our understanding, intuition 
and deduction, on which alone we have said we 
must rely in the acquisition of knowledge.

rené deScarteS [1628], ruLes for 
The direcTion of The mind

John Locke (1632–1704), British empiricist philosopher
Wikimedia Commons (commons.wikimedia.org)
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Rationalism versus Empiricism

Can I, by sufficient thought alone, design a complex object cor-
rectly? This question, particularized to design, represents a crux 
between two long-established philosophical systems, rationalism 
and empiricism. Rationalists believe I can; empiricists believe I 
cannot.1

The crux goes much deeper than first meets the eye. The 
philosophical issue is fundamentally one’s view of the nature of 
man as creator.

The rationalist believes that man is inherently sound (and 
good), subject to mistakes, and perfectible by education. After 
right education, maturing experience, and sufficient careful-enough 
thought, a designer can make a flawless design. The design meth-
odology task, therefore, is to learn how to reason a design into 
flawlessness.

The empiricist believes that man is inherently flawed, and 
subject repeatedly to temptation and error. Anything he makes 
will be flawed. The design methodology task, therefore, is to 
learn how to determine the flaws by experiment, so that one can 
iterate on the design.

Examples abound. Aristotle believed he could discover science 
deductively by reasoning; hence heavier objects would fall faster 
than light ones. Galileo believed that experiment was necessary 
and had the temerity to challenge Aristotle’s ancient authority.

René Descartes (1596–1650) perhaps most directly enunciated 
the rationalist view. John Locke (1632–1704) clearly set forth the 
empiricist one. 

To this day, French science excels in beautiful logical struc-
tures, from Fourier’s analysis of heat flow, through Carnot’s ther-
modynamics, to the mathematical edifices of the Bourbaki group. 
Meanwhile, British science has gone from strength to strength 
within the empirical tradition—Watt, Faraday, Heaviside, the 
Braggs all leap to mind.

Software Design

Is a computer program a mathematical object to be fashioned in 
abstraction and made correct by proof? So the rationalists would 
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contend, led by Edsger Dijkstra.2 It is all a matter of proper care-
ful thinking. One can, and should, design software to be correct 
and then prove the design is correct. And that will suffice.3

Now, granted, a program is a pure mathematical object and 
in principle can be designed perfectly by correct thought. The 
difficulty is not with the design medium but with designers. 
Empiricists believe that humans will inevitably make mistakes: in 
defining objectives, in software architecture, in implementation 
in objects (algorithms and data structures), and in realization in 
code itself. This firm faith in fallibility prescribes a design meth-
odology that includes design, early prototypes, early user testing, 
iterative incremental implementation, testing on a rich bank of 
test cases, and regression testing after changes.

I Am a Dyed-in-the-Wool Empiricist

I became so first from experience. only twice in my life have I 
written a program that ran correctly the first time and did exactly 
what I needed it to do. One of those times was my very first sub-
stantial program. In graduate school at Harvard in 1953–1954, we 
had programming term projects. The mode of use of the Harvard 
Mark IV was hands-on, but each team of two students got two 
one-hour shots in which to debug and run their semester projects. 
William V. (Bill) Wright, a super-able peer, and I desk-checked 
our modest 1,500-line program meticulously and ad nauseam. It 
ran right the first time.

one might say that this experience is an existence proof for 
the possibility of rational design for correctness. But we didn’t 
prove our program correct; we desk-tested it by simulated exe-
cution. Moreover, I doubt if anyone could maintain the state of 
motivation and regularly repeat the level of meticulous checking 
that we did. Yes, in principle it is possible. With real people and 
real-scale contemporary software, it is not sustainable.

What is the experience in designing programs to be correct? 
People have used formal proof methods to prove that the kernels 
of secure operating systems are correctly designed and imple-
mented.4 This is an exactly proper use of the technique. one 
needs the high degree of assurance that a formal proof offers.
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Even that assurance is not 100 percent, of course. Over the 
history of mathematics, many proofs, once accepted, have later 
been found fallacious.5 Formal proof is not an error-free tech-
nique. Its advantage is that the reasoning in a formal proof is 
different in form from that of program design, so the odds are 
radically improved that the same mistake will not slip past both 
scrutinies.

The kernel is probably as far as the correctness proof tech-
nique should be applied. If kernels are secure and correct, the 
damage of error, loophole, or malice elsewhere in the program 
can be contained. The work of proving a program correct is 
substantial, on the order of the work of building the program.
No proof can show that the original objectives for the program 
were right.6

Harlan Mills and his colleagues at IBM developed a variant 
of design correctness-proving that makes a lot of sense to me. 
In their “cleanroom” technique, Mills and team expose every 
aspect of a design to intense group scrutiny. The design group, 
in meeting assembled, hear the designer explain why the design 
is correct, as they challenge his arguments and their implicit 
assumptions.7 

Formal proof of correctness is usually infeasible; abandoning 
all effort at systematic verification (the more common extreme) is 
dangerous: Mills’s systematic but non-formal group scrutiny of 
logical argument seems to me a wise and practical balance.

Rationalism, Empiricism, and Correctness in Other 
Design Domains

So far as I can tell, in no design domain other than software engi-
neering have designers even attempted to prove correctness by 
rigorous formal methods. Perhaps this is because software is, like 
mathematics, fashioned of pure thought-stuff, so rigorous proof is 
conceivable. Most other design domains result in physical imple-
mentations, and one cannot prove theorems about materials and 
their faults, or about spaces and their suitability.

Organization design is like software design in that no mate-
rial is involved. I know of no attempt to prove correctness, or 
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even workability, of a postulated organization. The authors of 
the The Federalist Papers, however, undertook to demonstrate the 
feasibility of the United States Constitution by closely reasoned 
logical arguments. Whereas much of their wisdom still impresses 
succeeding generations, the Civil War (a system crash of extreme 
severity) demonstrated the incompleteness of the demonstration. 

Design domains other than software engineering may not 
undertake correctness-proving, but they make extensive use of 
design verification, using a myriad of analysis and simulation 
techniques.

People now do stress, vibration, acoustic analyses on 
mechanical parts. Real-time or videotaped walk-throughs enable 
architects and clients to run simulated use scenarios on designed 
buildings. Loading-stress analyses test against snow and hurri-
cane. Earthquake analyses provide dynamic stress testing.

Computer hardware undergoes extensive simulation at the 
circuit level, the logical design level, and the program execution 
level. Even the operating system for a not-yet-built computer is 
extensively tested; it is executed (dead slow) on a computer sim-
ulator on an existing host.

An inevitable consequence of these extensive empirical anal-
yses is greater iteration in the design process. The more sophis-
ticated analysis means more precise measures of the degree to 
which desiderata have been satisfied and constraints obeyed. 
Hence verification of the design against the goals specified becomes 
a more straightforward and certain process. But none of these anal-
yses and simulations addresses the rightness of the goals or the validity 
of the assumptions about the environment.

Can I, by sufficient thought alone, design a complex object 
correctly? No; testing and iteration are in practice necessary. But 
careful thought helps. The succeeding essays in Part III suggest 
some aspects of such thought. 

Notes and References

Rationalism and empiricism are approaches to epistemology—how 1. 
one can know something. The classic propounders of these positions 
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were far from polarized. Descartes advocated empirical science; 
Locke saw rationalism as the basis for mathematics. 

This particularization from epistemology to design is my own; I 
am in deep water here and quite subject to error.

Dijkstra [1982], 2. Selected Writings on Computing.

Dijkstra [1968], “A constructive approach to the problem of program 3. 
correctness,” 174–186.

Klein [2009a], “operating system verification,” and [2009b], “seL4: 4. 
Formal verification of an OS kernel,” gives a good overview and an 
impressive current achievement. The authors claim this as the first 
time that a nontrivial kernel’s implementation has been completely 
functionally verified.

For example, there was a proof that a matrix multiplication requires 5. 
n3 scalar multiplications. The flaw was in the assumption that the 
operations would be on vectors. Strassen [1969], “Gaussian elimina-
tion is not optimal.”

A famous and instructive case is the accident of Lufthansa Flight 6. 
2904, which went off the runway at Warsaw due to a failure of the 
computer-controlled stopping systems to engage. The code followed 
the specification, which was wrong for the unexpected circumstances. 
According to http://en.wikipedia.org/wiki/Luftansa_Flight_2904, 
referenced on July 16, 2009:

To ensure that the thrust-reverse system and the spoilers are only acti-
vated in a landing situation, all of the following conditions have to be 
true for the software to deploy these systems:

there must be weight of over 12 tons on each main landing   •	
gear strut 
the wheels of the plane must be turning faster than 72 knots•	
the thrust levers must be in the reverse thrust position•	

In the case of the Warsaw accident neither of the first two condi-
tions was fulfilled, so the most effective braking system was not acti-
vated. Point one was not fulfilled, because the plane landed inclined 
(to counteract the possible windshear). Thus the pressure of 12 tons 
on both landing gears required to trigger the sensor was not reached. 
Point two was also not fulfilled because of a hydroplaning effect on 
the wet runway.
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Mills [1987], “Cleanroom software engineering.” 7. 
Wikipedia (referenced on October 30, 2008 at http:// 

en.wikipedia.org/wiki/Cleanroom_Software_Engineering) provides 
a good summary of the whole approach:

The basic principles of the Cleanroom process are

Software development based on formal methods

Cleanroom development makes use of the Box Structure Method to 
specify and design a software product. Verification that the design cor-
rectly implements the specification is performed through team review.

Incremental implementation under statistical quality control

Cleanroom development uses an iterative approach, in which the prod-
uct is developed in increments that gradually increase the implemented 
functionality. The quality of each increment is measured against pre-
established standards to verify that the development process is pro-
ceeding acceptably. A failure to meet quality standards results in the 
cessation of testing for the current increment, and a return to the 
design phase.

Statistically sound testing

Software testing in the Cleanroom process is carried out as a statis-
tical experiment. Based on the formal specification, a representative 
subset of software input/output trajectories is selected and tested. This 
sample is then statistically analyzed to produce an estimate of the reli-
ability of the software, and a level of confidence in that estimate.
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9
User Models—Better 
Wrong than Vague

. . . [T]ruth will sooner come out of 
error than from confusion. 

Sir FranciS Bacon [1620],
The new organon 

An architecture team
Anderson Ross/Getty Images Inc.—Stockbyte
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Explicit User and Use Models

Experienced designers often begin by writing down exactly what 
they know about the user, the user’s purposes of use, and the 
modes of use. Wise designers also write down explicitly what 
they don’t know but assume about the user and users. 

Where there are multiple different applications or multiple 
different sets of users, they describe each, then define explicitly 
the weightings among them so as to define the use model.1

The more detailed and particularized these assumptions, the 
more occasion they offer for early detailed thinking. This think-
ing would have been required anyway later, as the design pro-
ceeds. Doing it early forfends mistakes.2

Really?

Who actually does all that extra work before starting on a design? 
The answer, of course, is that very few of us do. In my view, we 
need to define explicit use and user models in many more cases 
than we do. Doing so will improve design practice.

The need for explicit models of both applications and 
users follows directly from the peculiar characteristics of mod-
ern design: design by teams and the design of complex tools as 
opposed to simple ones. 

Team Design

All designers in fact have user and use models consciously or 
subconsciously in mind as they work. Team design creates the 
all-new requirement that the entire team have the same user 
model, the same use model. This requires explicit models and 
assumptions.

This exercise is rare because the members of the team 
usually believe, without anyone saying so, that they share a 
common set of assumptions. After all, each one heard the enter-
prise leader charge and challenge the team. Each one has read 
the goal-defining document. All are expert.

Matters are not so simple. Each of us has in fact had a dif-
ferent experience using similar systems; my experience informs 
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my picture of the typical user. Each of us has been exposed to a 
different set of applications; my exposure helps me define this 
application. If the team does not draft a common set of explicit 
assumptions, each designer will work with a distinct set of 
implicit ones. Microdecisions too minor ever to be discussed will 
be made differently, and conceptual integrity will be lost.

Differing use models inevitably yield design inconsisten-
cies in a team design. Operating System/360 (now z/OS), for 
example, reflects in several parts two quite inconsistent debug-
ging philosophies—one assuming batch use, the other assuming 
time-shared use from terminals. There was no conscious decision 
to cater to two use modes; it merely reflected subgroups holding 
differing use models.3 The result was bloat and incoherence.

Complex Designs. As tool complexity grows, the need for 
explicit use models increases. Even for a shovel, it is important 
to be explicit as to whether it is for coal, dirt, grain, snow, or 
some mix; whether for child, woman, or man; whether for the 
casual user or the manual laborer. How much greater is the need 
for explicit use models for a truck, a spreadsheet, an academic 
building! 

Moreover, the more complex the design, the less likely the 
designers are to be domain experts who could do the users’ jobs. 
Implicitly assumed models are then much more dangerous.

What If the Facts Are Not Available? 

As soon as the designer starts to make explicit use models, trouble 
strikes: he is rudely confronted with how much he doesn’t know. 
The very effort forces him to ask questions he might not otherwise 
have asked until much later. This is an unmitigated good. 

Suppose one is designing a program product to route and 
schedule school buses. Some careful fieldwork with two or three 
“representative” school systems will yield facts galore: time con-
straints, number of buses, number of drivers, geographic distri-
bution of pupils. Yet, when one sets out to state a use model for 
a general routing and scheduling program, these facts just drive 
more questions. 
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To what degree are the sampled systems representative? 
Over the whole intended user set, what are the ranges of all those 
parameters? Their distributions? 

What are the rates of change from scheduling period to 
scheduling period? What will the ranges be five years from now? 
Ten years?

As the questions get harder, the answers get vaguer. What is 
the designer to do if he has committed himself to making explicit 
use models? 

Guess! 

I am quite convinced that, once he has moved beyond questions 
that can be answered by reasonable inquiry, the designer should 
guess or, if you prefer, postulate a complete set of attributes and 
values, with guessed frequency distributions, in order to develop 
complete, explicit, and shared user and use models. 

An articulated guess beats an unspoken assumption.

Many benefits flow from this “naive” procedure:
Guessing the values and frequencies forces the designer to 

think very carefully about the expected user set. 
Writing down the values and frequencies exposes them to 

debate. It is easier to criticize something concrete than to create, 
so there will be more input from the whole team. The debate will 
inform all the participants and will surface the differences in user 
images that the several designers carry. It typically also will sur-
face other unrecognized assumptions.4

Enumerating the values and frequencies explicitly helps 
everyone realize which decisions depend upon which user set 
properties. 

More important, it raises these crucial questions: Which 
assumptions matter? How much? Even this sort of horseback 
sensitivity analysis is valuable. When it develops that important 
decisions are hinging on some particular guess, it is worth the 
cost to develop a better estimate.

In the end, however, many assumptions will remain debat-
able and unverifiable. The chief architect must own—and make 
known—the set the team goes with.
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Better Wrong than Vague!

At this point the reader will object, “How can I know or even 
assume so much detail about uses and users?” The answer is, 
“You will in fact make those assumptions anyhow”; that is, each 
design decision will be guided, consciously or unconsciously, by 
the designer’s assumptions about uses and users. What this often 
means in reality is that the vague designer substitutes himself for 
the user, designing for what he assumes he would want if he 
were the user. But he isn’t. 

Therefore, wrong explicit assumptions are much better than 
vague ones. Wrong ones will perhaps be questioned; vague 
ones won’t.

Notes and References 

A 1. use model is a weighted collection of use cases. Robertson and Rob-
ertson [2005], Requirements-Led Project Management, treat use cases in 
considerable detail. 

Cockburn [2000], 2. Writing Effective Use Cases, is a thorough 
treatment.

Brooks [1995], 3. The Mythical Man-Month, 56–57.

Students in my advanced computer architecture course have been 4. 
required to do this for their term projects. When it has been done 
conscientiously, the effect on the designs has been very beneficial. 
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10
Inches, Ounces, Bits, 
Dollars—The Budgeted 
Resource

If a design, particularly a team design, is to have 
conceptual integrity, one should name the scarce 
resource explicitly, track it publicly, control it firmly. 

Apollo rocket
iStockphoto
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What’s the Budgeted Resource?

Within any design, there is at least one scarce resource to be 
rationed or budgeted. Sometimes there are two or more to be 
jointly optimized; but most commonly, one is dominant, and 
others appear chiefly as desiderata or constraints. Economists 
call this the limiting resource; I prefer to emphasize the necessary 
designer action: conscious budgeting.1

Although designers often talk as if cost or some perfor-
mance/cost ratio were the resource to be optimized, that is 
often not how they act in practice. It follows that if a design, 
particularly a team design, is to have conceptual integrity, one 
wants to name the scarce resource explicitly, track it publicly, control 
it firmly. 

Often Not Dollars

Ponder some budgeted critical resources that are not dollars: 

Inches of oceanfront, in a beach house• 
Ounces of payload, in a spacecraft—or in a backpack• 
Memory bandwidth, in any von Neumann computer • 
architecture
Nanoseconds of timing tolerance, in a GPS system • 
Calendar days, on an asteroid-interception project• 
Resident kernel memory space, in OS/360 design• 
Program hours, at a conference• 
Pages, on a grant proposal or a journal paper• 
Power (and stored energy) on a communications satellite• 
Heat, in a high-performance chip• 
Water, on western farmland• 
Student learning hours, in a degree curriculum• 
Political power, in an organization’s constitution • 
Seconds, even frames, in a film or video• 
Hours of access to the track per day, in London Underground • 
engineering and maintenance
Format bits, in a computer architecture• 
Hours or minutes, in a military assault plan• 

From the Library of Wow! eBook



ptg

The Budgeted Resource Can Change 121

Even Dollars Have Flavors, and Surrogates

Even when cost is in fact to be the budgeted commodity for a 
design project, cost varieties must be considered. For personal 
computers, made by the hundreds of millions, manufactur-
ing cost is dominant. For supercomputers, made by the dozens, 
development cost dominates. 

Quite often, designers adopt surrogates for dollars as their 
budgeted resources. Building architects will do program devel-
opment, and often schematic design, using square feet as the 
rationed resource. Computer architects used to use bits of regis-
ter and of various cache levels as surrogates for chip area. 

Surrogates have several advantages: They are usually simpler. 
One can design with them long before one knows the surrogate/ 
dollar ratio. They are more stable. Using the same surrogate har-
nesses one’s previous design experiences, even though the sur-
rogate/dollar ratio may be different, or even varying. One knows 
how many square feet per occupant an auditorium needs. 

Surrogates can also lead one astray; the temptation is to use 
them after they cease being appropriate. Chip designers often 
thought in terms of area well after wiring length or pin count 
became the important critical resource.

The Budgeted Resource Can Change

Shifts in technology sometimes change which resource is criti-
cal. Therein lie snares for the unwary. As chip densities went up, 
I/O pins displaced chip area as the limiter on function, hence 
became the rationed commodity. But power dissipation has now 
displaced pins as the rationed commodity on many chip designs. 
Seymour Cray once famously said, “Refrigeration is the key to 
supercomputer design.”2 Gene Amdahl told me, about the same 
time, that off-chip capacitance was the speed-limiting commodity 
in his designs.3 

Some think that number of classes has replaced function 
points as the estimator for software complexity, hence for prob-
able size. Experienced consultants Suzanne and James Robert-
son, however, say that they find function points still to be the 
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most robust estimator.4 Eoin Woods, an experienced developer, 
points out: 

People want to measure two things: How much value is delivered 
and how much artefact needs to be produced to deliver it. Function 
points are good because they try to measure the former, whereas 
lines of code, number of classes, and so on, are very sensitive to 
style. One can reduce both of these while increasing delivered value 
quite easily [reviewer’s comment].

The budgeted resource can change in the middle of a design, 
just because we get smarter. Operating System/360 (1965) was 
designed to cover a 16-fold range of computer memory sizes, from 
32K bytes (yes, K, not M) up to and beyond 512K. Clearly, some 
memory space had to be left for the application program, so the 
resident kernel of the operating system was sorely constrained— 
to 12K in the tightest case. We were sure that memory space was 
the constraining “budgeted resource.” We were wrong. 

OS/360 was one of the first operating systems that could 
assume a disk for storing the operating system. Earlier operating 
systems were tape- or even card-based. Having random-access 
systems resident wonderfully expanded the function one could 
build into limited space. “Just read in a chunk from disk.” And 
everybody in the system design team did—with great frequency: 
chunks had to be small, to fit the 1K buffer area of the smallest 
configuration. 

One of our wisest developers, Robert Ruthrauff, began early 
in the OS/360 project to build a performance simulator, and for-
tunately he got it running early. The first results were horrifying! 
On our second-fastest computer model (Model 65), our program-
ming system would compile only five Fortran source statements 
a minute! That day, the project’s budgeted resource switched 
from memory bytes to disk accesses.5 

So What?

If thinking in terms of a budgeted resource is a healthy discipline 
for a design team, what actions follow as corollaries?
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Identify Explicitly

A project manager naturally begins by enumerating all the objec-
tives and constraints. Explicit identification of the budgeted 
resource should be next. Notice that as defined and discussed, 
this is usually a resource of the design, not of the design process. 
For example, skill allocation is always crucial to a design project, 
but it is not a property of the design itself. 

Project schedule may be critical, but it is often the property 
of the project, not the resulting design. For example, in prepar-
ing a competitive proposal against a hard deadline, “We’ll do 
the best design we can in the time we’ve got.” On the other 
hand, if designing to divert the asteroid, schedule days become 
the budgeted resource. Similarly, in a race to be first to market 
with a totally new product, schedule may become the budgeted 
resource.

Track Publicly

The whole team needs to know, continually, the current budget 
for the critical resource. In particular, each sub-team, each team 
member, must know how many chip milliwatts or transaction-
processing disk accesses their part of the design may use, how 
many they control. 

Control Firmly

Whatever the critical resource, the team leader will keep a 
small personal kitty for late allocation, just as a general keeps 
some reserves for dispatch to the hottest part of the battle as it 
develops.6 

It is imperative that only one person control budgeting and 
rebudgeting. Gerry Blaauw did this superbly with bits in the Pro-
gram Status Word of the System/360 architecture. These were, 
along with memory bandwidth and bits in instruction formats, 
the budgeted resources the architects were allocating. His total 
system overview, his cautious stinginess, his inventiveness of 
alternatives within the existing architecture, all combined to 
make a highly efficient architecture.7

From the Library of Wow! eBook



ptg

124 10. Inches, Ounces, Bits, Dollars—The Budgeted Resource

Ken Iverson, winner of the Turing Award for his APL lan-
guage, desired conceptual integrity above all, so he made the 
number of distinct language concepts the budgeted resource. 
Countless proposals were made, both within the implementing 
team and from the using community, for new constructs embody-
ing additional concepts. His total system overview, his cautious 
stinginess, his inventiveness of solutions within the existing lan-
guage, all combined to make a highly elegant language.

Marissa Meyer today exerts the same total system overview, 
the same passion for consistency in design, and the same cau-
tious stinginess in her role as the dragon guarding Google’s look 
and feel.8 

Notes and References

Simon [1996], 1. The Sciences of the Artificial, also treats finding the lim-
iting resource as crucial to the design process (143–144). 

Murray [1997], 2. The Supermen.

Personal communication [about 1972].3. 

Personal communication [2008].4. 

Digitek’s elegant little Fortran compiler (1965) used a very dense, 5. 
specialized representation for the compiler code itself, so that exter-
nal storage was not needed. The time lost in decoding this represen-
tation interpretatively was gained back tenfold by entirely avoiding 
the budgeted constraint—disk accesses. Brooks [1969], Automatic 
Data Processing, Chapter 6.

A general planning a battle is a designer in a most serious sense, 6. 
and one who perhaps more than any other must rapidly revise his 
design in the face of new facts and constraints.

Blaauw [1997], “IBM System/360,” Section 12.4. 7. 

Holson [2009], “Putting a bolder face on Google.”8. 
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11
Constraints Are Friends

Form is liberating.

artiStS’ aPHoriSm

I need four walls around me, to hold my 
life, and keep me from going astray.

JameS taylor, “Bartender’S BlueS”

A general-purpose product is harder to design 
well than a special-purpose one.

Michelangelo’s David, carved from an “abandoned” block of marble
iStockphoto
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Constraints

Constraints may be burdens, but they also may be friends. Con-
straints shrink the designer’s search space. By so doing, they 
focus and speed design. Many of us disliked “Write an essay on 
whatever you want” assignments in junior high, and we were 
on to something real: removing all constraints makes the task of 
“designing” the essay harder, not easier.

Bach understood this. Wolff says, “Bach, predisposed from 
the very beginning toward traversing conventional boundaries, 
nevertheless preferred to work within a given framework and 
accept the challenges it imposed.”1

Constraints not only shrink the search space, they challenge 
the designer, often thereby stimulating a completely fresh creation. 
Consider Michelangelo’s David. According to legend, the block of 
marble had been abandoned by Antonio Rossellino 25 years earlier 
as unusable, because of a crack. The result is a concept of David dif-
ferent from that in previous and contemporary art. One is piqued 
to study exactly how Michelangelo coped with the block’s defects, 
and how this stimulated the different artistic concept.

Christopher Wren’s London churches offer another vivid 
example. Commissioned to rebuild 50 Anglican churches 
destroyed by the Great Fire of 1666, Wren was sorely constrained. 
For each, he had to take as given the site, its environment, and 
often the previous foundation. Moreover, Anglican churches must 
be oriented with the altar to the east in symbolic anticipation of 
Christ’s promised return as the “bright morning star.”2 It is great 
fun to go today to each of the 27 Wren churches that remain after 
the attrition of time and the World War II Blitz. Look at each site 
and its problems, consider the orientation constraint, and see 
how Wren invented different solutions.

The designers of a viaduct on the Blue Ridge Parkway in the 
North Carolina mountains had to touch ground as little as possible 
to minimize environmental damage. The result was quite elegant.3

Up to a Point

Artificial constraints for one’s design task have the nice prop-
erty that one is free to relax them. Ideally, they push one into an 
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unexplored corner of a design space, stimulating creativity. But 
any constraint set may push the designer into an empty corner, 
where no conceivable design works. 

Therefore, one must carefully distinguish

Real constraints• 
Obsolete once-real constraints• 
Constraints misperceived as real• 
Intentional artificial constraints• 

Obsolete Constraints. The experienced designer, like a lion 
accustomed to pace the confines of its cage, may find himself obey-
ing by habit constraints made obsolete by technological advances. 
Chapter 9, “Ten pounds in a five-pound sack,” in The Mythical 
Man-Month [1975], now reads like a joke. It teaches techniques 
for squeezing software into cramped memory spaces. Crucial in 
1965, they were already less important in 1975, but many pro-
grammers still strained for small sizes. (Of course, memory size 
has always mattered for embedded computers, especially now 
for those stunningly rich systems we still call “cell phones.”)

Figure 11-1 Misperceived constraint puzzle: Run a continuous line 
of no more than four straight segments through all nine dots.
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Misperceived Constraints. These are more subtle. Figure 11-1 
shows a classic example. (See Figure 11-5 for a solution.4) The 
boundary-line constraint described in Chapter 3 is another.

To multiply two 2 x 2 matrices in only seven multiplications 
instead of eight, one must discard the misperceived constraint 
that vector operations must be used.

The design of the IBM 9020 computer system for the Federal 
Aviation Administration (FAA) furnishes a painful example. Sys-
tem architects at MITRE Corporation, acting for the FAA, were 
properly aiming at a super-reliable system. They specified the 
configuration shown in Figure 11-2.

So far, so good. The IBM team responding to this request 
for bids discovered that the new System/360 semi-integrated 

Figure 11-2 Triple modular redundant processor and I/O 
configuration specified for 1965 FAA system
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circuit technology was very well suited for the unit-reliability 
demands.

The S/360 Model 50, a mid-range computer, more than met 
both the speed and reliability requirements for the processors. The 
same Model 50’s I/O system, implemented with the same mem-
ory and datapaths as the processor, but with different microcod-
ing, handsomely met the requirements for the I/O controller. 

So the IBM engineers designed the system sketched in 
Figure 11-3. 

Careful analysis showed that the Figure 11-3 configuration 
more than met all the system performance requirements and all 
the system reliability requirements. But it was rejected. 

It did not have the specified configuration topology. The 
MITRE system architects had mistakenly insisted on the speci-
fied topology as an essential constraint—although what they 
were actually shopping for was function and reliability, not 
topology. So IBM bid, built, and delivered the configuration 

Figure 11-3 FAA system as first proposed with System/360 Model 50 
computers
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shown in Figure 11-4. Unchallenged reliability analyses showed 
this configuration to be in fact considerably less reliable than 
that in Figure 11-3, since there are twice as many components 
and many more connectors that can fail. But it met the specified 
constraints! 

The pricing was magical for the taxpayers. Quite indepen-
dently from cost, the government paid for system 11-4 just what 
it would have paid for system 11-3. IBM really wanted that con-
tract! Of course, the lifetime costs for power, cooling, and mainte-
nance would not have been at all equal. 

When you specify something to be designed, tell what prop-
erties you need, not how they are to be achieved. 

If implementation approaches are given as constraints, better 
solutions are cut off. For the sake of the artifact and the user, the 
designer confronted with false constraints should fight back!

Figure 11-4 IBM 9020 FAA system as delivered

PERIPHERAL 
ADAPTER 1

PERIPHERAL 
ADAPTER 2

PERIPHERAL 
ADAPTER 3

MEMORIES

S/360 MODEL 50 
PROCESSOR

DISABLED

S/360 MODEL 50 
I/O CHANNELS

DISABLED

S/360 MODEL 50 
I/O CHANNELS

DISABLED

S/360 MODEL 50 
I/O CHANNELS

DISABLED

S/360 MODEL 50 
PROCESSOR

DISABLED

S/360 MODEL 50 
PROCESSOR

DISABLED

From the Library of Wow! eBook



ptg

A Design Paradox 133

A Design Paradox: General-Purpose Artifacts Are Harder 
than Special-Purpose Ones

I have earlier argued that the hardest part of designing is 
deciding exactly what to design. Above, I argued that constraints 
are friends, that they make the design task easier, not harder. 
It follows that the more specialized the purpose, the easier the 
design task. 

At first this seems wrong. One would offhand think it an 
easier assignment to “Design a 1,000-square-foot house” than to 
“Design a 1,000-square-foot house for a family with two children 
of opposite genders, located in Chapel Hill, North Carolina, fac-
ing north.”

In one sense, of course, the former task is indeed easier—it is 
harder for the design to be criticized. If there are no constraints, 
there are no criteria for excellence. In general, it is easier to do a 
mediocre general-purpose design than to do a mediocre special-
purpose design.

Nevertheless, overall the latter job is easier if one wants an excel-
lent design. Any design process begins with the designer elaborat-
ing and particularizing the objectives and constraints. The first task 
is to narrow the design space. The more constrained the assigned 
goal, the more of this task has already been accomplished.

Dashing Off a General-Purpose Design. How can this be so? 
Consider the case of computer architecture. General-purpose 
computers are well understood. over a hundred exemplar archi-
tectures have been built and sold. Everybody knows what they 
have to do. A good designer can sketch one out in a few days; the 
set of architectural decisions is clear:

Instruction formats• 
Addressing and memory management• 
Datatypes and their representations• 
Operation set• 
Instruction sequencing• 
Supervisory facilities• 
Input-output• 
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Designing the Special-Purpose Computer Architecture. On 
the other hand, designing a special-purpose computer clearly 
takes a lot of extra work up front. one must study the applica-
tion. What makes it peculiar? What are the relative frequencies 
of operations? What are the weightings of desiderata for the cli-
ents: performance, cost, reliability, weight? Indeed, one has to 
develop an explicit characterization of the application.

Designing an Excellent General-Purpose Architecture. But 
one also needs an explicit user model to do proper design of 
a general-purpose architecture, and the user model is much 
harder to craft. In fact, one must study each of a whole set of 
applications, determining the peculiar needs and balances of 
each. Scientific computing emphasizes matrix algebra and par-
tial differential equations; engineering computation empha-
sizes data reduction and formula evaluation; database query 
emphasizes optimum disk utilization. Each application must be 
understood.

Then they all have to be weighted:

Across the entire application set• 
Across the entire set of intended machine implementations• 
Across the decades of lifetime that a new architecture must • 
contemplate5

Likewise, as the design proceeds, the nascent result must be 
tested against the assumed characteristics of each user segment. 
When the design is complete and prototyped, the prototype 
must be tested by actual users from each segment. 

So it is that I always assign my students in my advanced 
computer architecture course to do special-purpose architecture 
projects. They cannot offer gas and platitudes; the application 
and user analysis must be precise. And yet, they often do an 
excellent job of this, whereas they could not possibly devise an 
excellent unconstrained general-purpose architecture in the time 
available. The task is far easier than would be the in-depth anal-
ysis that a serious general-purpose design effort must make.
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Software Design. The same paradox holds for software. 
Designing a special-purpose programming language is straight-
forward compared to the delicate balancing of expressive power, 
generality, and parsimony that one must seek in a general-pur-
pose programming language. Restraint is so much easier to 
practice in the special-purpose design.

Spatial Design. The paradox holds as well for building spaces. 
Designing a superb bedroom is easier than designing superb 
public living spaces, precisely because the public spaces have 
so many more functions, so many more scenarios to be studied, 
and so many more furnishing options.6

Similarly, designing a specialized laboratory is easier than 
designing the public lobby of a computer science building. 

Net

Since constraints are the designer’s friend, if the task originally 
seems unconstrained, first think harder about what is really 
desired, about the user and use models, and you will probably 
find some narrowing constraints, to the benefit of both designer 
and user.

Notes and References

Wolff [2000], 1. Johann Sebastian Bach, 387. When not sufficiently 
constrained by commission or available performance talent, Bach 
would sometimes adopt quite artificial constraints to stimulate 
his creativity. An example is the repeated use of the BACH motif 
(the sequence of notes B-flat, A, C, B-natural). I don’t recommend 
the adoption by engineering or software of artificial constraints to 
stimulate creativity.

Revelations 22:16.2. 

http://www.blueridgeparkway.org/linncove.htm, accessed on 3. 
July 18, 2009.
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4. 

Figure 11-5 A solution to the nine-dots puzzle

We originally predicted that the System/360 architecture would 5. 
have to live 25 years, through generations of implementations 
(Brooks [1965], “The future of computer architecture”). The forces 
for preserving programming languages, computer architectures, 
and operating system architectures are stronger than we then knew. 
IBM’s z/90 still embodies System/360 architecture 45 years later, 
and the end is not yet in sight. Fortran (1956) use today is another 
good indicator of the strength of those persistence forces.

For the Kenwood House in Hampstead near London, Robert Adam 6. 
(1728–1792) designed every detail of the furnishings, down to the 
doorknobs (Kenwood Guidebook).
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12
Esthetics and Style in 
Technical Design

Firmitas, utilitas, venusitas 
(Firmness, usefulness, delight)

marcuS vitruviuS [22 Bc], 
de archiTecTura 

Style is the dress of thought, and a well-dressed thought, 
like a well-dressed man, appears to great advantage.

lord cHeSterField [1774], letter ccxl, 361

Monticello: Jefferson’s adaptation of Palladio’s adaptation of Roman style
iStockphoto
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Esthetics in Technical Design

Vitruvius famously asserted that a good building architecture 
achieves “firmness, usefulness, and delight.”1 Delight is equal 
with firmness and usefulness, although from a purely utilitarian 
point of view firmness and usefulness should quite suffice.

The whole human experience confirms him. We have always 
wanted our public and private structures to satisfy the soul’s 
need for beauty, and we have almost always been willing to 
invest extra work toward that end.

The cave man painted on the walls of his cave; Native Ameri-
cans decorated their hide tepees. Prehistoric Britons decorated 
their pottery with fingernail carvings. Moldings, carving, tiling, 
paneling, and painting have supplemented the firm structures 
and the convenience features of dwellings through the centuries. 
Standards of beauty have varied widely, from the ornate to the 
lean, by culture and by epoch, but visual beauty has always been 
a goal for building design.

What is the role of beauty, of esthetics, in technical design? 
Cars, airplanes, and ships have physical forms and therefore are 
capable of visual beauty. But this is not the whole story. We find 
ourselves talking about “elegant” and “ugly” programming lan-
guages. When we speak of a “clean” computer, we are referring 
not at all to the visual appearance of its industrial design, but to 
some property of its logical structure.

We rejoice as we behold and use some designs. Others with 
equivalent function and equal soundness fail this test, and we 
care. The delight may be visual, auditory, gustatory, or haptic. 
It may even be purely intellectual, as with a beautiful proof or 
a well-dressed thought. Our language captures this in many 
ways—we casually talk about an “elegant” program, and our 
hearers know what we mean.2

What Is Logical Beauty?

Parsimony 

“Elegance” Requires Parsimony. One definition of elegance in 
mathematics is “accomplishing a great deal with few elements.” 
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This certainly applies to proofs. Alas, too many math textbook 
authors believe it applies as well to explication. Clearly suffi-
ciency is not enough for good explication; clarity demands expan-
sion and illustration with examples.

One is tempted to design programming languages with par-
simony as the guiding principle. And computer design clearly 
must place a high value on parsimony, the use of few elements.3

Lisp, for example, has a tiny core, but elegant provisions for 
extensibility and composability give it power. Visual Basic, on the 
other hand, is considerably more complex, but much more dif-
ficult to extend.

Not the Whole Story. Parsimony is not enough, however. Add-
ing an “unnecessary” bit of componentry, such as index registers, 
to a computer can radically improve its performance and its per-
formance/cost ratio. Common Lisp expands the basic language 
to make it easier for programmers to get about their business.

Van der Poel designed a computer with only one operation 
code.4 Every instruction carried out the same operation. He dem-
onstrated the sufficiency of his operation—his machine could do 
anything any other computer could do. And yet it was very dif-
ficult to program. Ironically, the delight that came from using it 
was similar to the delight from working out a crossword puzzle— 
a construct of intentional complexity and no intended utility. 

In practice, the effective use of van der Poel’s machine 
required mastery of a whole library of nonobvious idioms. Van 
der Poel coded up some subroutines and macro operations, and 
everybody else programmed in the somewhat higher-level lan-
guage thus produced. 

A similar story can be told of APL, a very elegant and pow-
erful programming language. Many styles of programming can 
readily be expressed in APL—from the clear and straightforward 
to the convoluted and overcompacted. Although the operators 
have quite straightforward actions, nonobvious idiomatic combi-
nations are sometimes used for high-frequency functions. Exam-
ples are given in Computer Architecture, Section A.6. Program 
A-41, “Force to even,” halves a number, floors it, and doubles it 
(Blaauw and Brooks [1997]). 

In some circles, it is even fashionable to see how much func-
tion can be packed into one line of APL, however convoluted and 
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idiomatic. “One-liners” are traded about and published with glee 
and pride. But again, this is crossword puzzle sport, not elegant 
design. Programming languages exist to facilitate the writing—
and the much more frequent reading—of programs, not to serve 
as puzzles.5

Structural Clarity

Parsimony Is Not Enough. One also demands a certain straight-
forwardness in a language or a computer architecture. There should 
be a direct route from what one wants to say to how one says it.

Human natural language, which we may assume developed 
to meet a total combination of real needs, is far from parsimoni-
ous. Shannon [1949] showed that the redundancy of English is 
about 50 percent.6 Even with this much redundancy, human lan-
guages develop idioms, just as programming languages do.

Structure. “Elegance” in a technical design demands that the 
basic structural concept of the design be plainly evident and, if 
not logically straightforward, easily explained. 

Metaphor. Both “elegance” and comprehensibility are aided 
by the use of familiar and simple metaphors, especially in user 
interfaces to the designed object. The “Desktop” of the Macintosh 
operating system is a prime example. VisiCalc’s “spreadsheet,” 
now more familiarly embodied in Excel and Lotus, is another.

Consistency

Gerry Blaauw and I have studied the question “What is good
computer architecture?” Perhaps a look at that small treatment 
can illuminate the much larger question, “What is lovely techni-
cal design?” In the next subsection, I summarize Section 1.4 from 
our Computer Architecture [1997].7

What Is Good Computer Architecture?

An architecture that fails to include needed functions is errone-
ous. But even if the needed functions are present, they may still 
be awkward. or the whole may be so complex that it is hard to 
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learn and remember the functions and their rules. An architec-
ture that is straightforward to use is often called clean.

Blaauw and I believe that consistency underlies all prin-
ciples of quality. A good architecture is consistent in the sense 
that, given a partial knowledge of the system, one can predict the 
remainder.8

For example, the mere decision to include a square-root oper-
ation in an operation set should almost fully define the operation. 
The data and instruction formats should be the same as those 
for other floating-point arithmetic operations. Precision, range, 
rounding, and significance should be handled as with other 
results. Even taking the square root of a negative number should 
have an exception treatment similar to that of division by zero.

Still, the truly consistent solution can be hard to identify. For 
computer architecture, some touchstones are brevity of descrip-
tion, simplicity of code generation, and suitability for many 
implementations.

Derived Principles. From consistency flow three major design 
principles: orthogonality, propriety, and generality.

Orthogonality: Do Not Link What Is Independent. A change 
in one orthogonal function has no observable effect on any other 
function in the set. For an alarm clock, for instance, a set of func-
tions might include a lighted face and an alarm. Orthogonality 
would be violated if the alarm operated only when the face was 
lighted. We give many examples of the violation of orthogonality 
in computer architectures in our book.

Propriety: Do Not Introduce What Is Immaterial. A func-
tion meeting an essential requirement is called proper. For a car, 
functions such as steering, speed control, lights, and windshield 
washer are proper to its purposes.

The opposite of propriety is extraneousness. An example is 
the automotive gearshift. Shifting gears is not proper to driving; 
the extraneous component of the user interface arises from the 
implementation of the car.

An example of propriety in computers is the unique repre-
sentation of zero in twos-complement notation. In contrast, both 
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signed-magnitude and ones-complement notations attach a sign 
to zero, a distinction that is extraneous. More rules have to be 
made as to how the signed zero behaves in arithmetic and zero-
test operations; these often have unexpected effects in use.

Parsimony is a subset of propriety. Another is transparency, the 
property that a function’s implementation produces no visible side 
effects. In a computer, the implementation of the datapath with a 
pipelined organization should be invisible to the programmer.

Generality: Do Not Restrict What Is Inherent. Generality is the 
ability to use a function for many ends. It expresses the profes-
sional humility of the designer, his conviction that users will be 
inventive beyond his imagination and that needs may change 
beyond his ability to forecast. The designer should avoid limit-
ing a function by his own notions about its use. When you don’t 
know, grant freedom.

The Intel 8080A has an operation called Restart. It was indeed 
intended for restarting after an interruption. But it was designed 
with enough generality that its most frequent use is for return 
from a subroutine.

The major ways generality is achieved are open-endedness 
(space for future development), completeness of function sets, 
decomposition of functions into orthogonal components, and 
composability.

More Virtues of Consistency

Consistency is reinforcing and self-teaching, because it con-
firms and encourages our expectations. It also solves the conflict 
between ease of use and ease of learning. Ease of learning requires 
a simple architecture, as with fixed-point arithmetic. Ease of use 
requires a complex one, as with floating-point arithmetic. When 
the designer makes fixed-point a subset of floating-point, the 
user’s comprehension of the architecture can grow naturally.

Style in Technical Design

On tuning in to the middle of a piece of classical music, a knowl-
edgeable listener can usually guess the century and often the 
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composer, even if he has never heard the particular work. On see-
ing an unfamiliar painting, we often can say, “Looks like a Rem-
brandt,” or “Dutch Golden Age.” British WRENs during World 
War II learned to recognize the characteristic Morse code “fists” 
of Axis broadcasters and were thereby able to identify military 
units as they moved. So it is with bridges, automobiles, airplanes, 
and computer architectures. A particular computer “looks as if” 
Seymour Cray designed it.

One of the drivers of delight is what we call style (definition 
attempted below). Two style components affect delight: the con-
sistency with which a style is effected, and the intrinsic qualities 
of the style itself. In architecture, music, cuisine, or computers, 
no style will appeal to everyone; a mishmash of styles delights 
no one.9 

I have earlier argued that conceptual integrity is the most 
important attribute of a design. Surely the most important integ-
rity of a design is in the overall structure, the very bones of the 
design. But it is important to follow a uniform style in the details, 
the skin, as well. 

A style consistently applied is a component, even if only the 
“dress,” of the conceptual integrity of a product. It does more 
than delight—it aids the comprehensibility of the design. In turn, 
this begets ease of initial learning, ease of use, ease of recollection 
after disuse, ease of maintenance, ease of extension. 

Style matters in all media of design, all genres. 

What Is Style?

Precisely what is this characteristic way of working that confers 
designer recognizability on the products? This question is harder 
than it appears. 

Definitions. The Oxford English Dictionary defines style, in the 
sense we are considering, as

14. Those features of literary composition that belong to form or 
expression rather than to the substance of the thought or matter 
expressed.

From the Library of Wow! eBook



ptg

146 12. Esthetics and Style in Technical Design

21. A particular mode or form of skilled construction, execution or 
production; the manner in which a work of art is executed, regarded 
as characteristic of the individual artist or of his time and place.

Webster’s Revised Unabridged Dictionary (1913 edition):

4. Mode of presentation, especially in music or any of the fine arts; 
a characteristic or peculiar mode of developing an idea or accom-
plishing a result. 

Akin [1988], “Expertise of the architect”: 

Style as an expression of the designer’s personal and professional 
choices is a vehicle which helps limit the many degrees of freedom 
that design problems have.

A Characteristic of Detailing. We observe that different works 
by the same artist are different in the subject painted, or the genre 
and themes of music composed, but alike in recognizable style. 
Similarly, the oak Park church by Frank Lloyd Wright has cer-
tain resemblances of parts and arrangement to other architects’ 
churches, but it has a close affinity of line, of detailing, of orna-
mentation, of palette, with Wright’s residences. Whatever style is, 
it has more to do with details of design than with the main pur-
pose or thrust.10

A Hypothesis: Minimization of Mental Effort. All design, all 
creation, involves hundreds of microdecisions. Habits seem to be 
a mechanism by which humans economize on mental effort, by 
which we reduce the burden of decision making in everyday life. 
If this is indeed an inborn human trait, it surely carries over into 
our creative activities. Absent substantial reasons to do other-
wise, we make the same microdecision the same way every time. 
The bundle of microdecisions, consistently made, characterizes 
our work and gives it the particularity, the distinctiveness, that 
yields recognizability.

Consistency across Microdecisions. one would expect micro-
decisions to be consistent not only across time but also across sets 
of similar decisions. In related microdecisions, the same factors 
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enter, and the same mind would naturally weight them in a con-
sistent way.

A Frank Lloyd Wright will tend to use rectilinear elements 
instead of curved ones in all his decorations, and in his struc-
tures, too. A Seymour Cray will consistently opt for maximum 
performance over compatibility with his earlier computers.

Clarity of Style. To the degree that a designer does indeed 
achieve consistency across a wide range of macro- and micro-
decisions, we say that he has a clear style, meaning that it is 
possible to describe it economically. It follows that recognition 
is easier.

Even a baroque architecture can show clarity of style. Wright’s 
architecture was spare as well as clear, but those aren’t the same 
property.

When little consistency across design decisions is achieved, 
we call the style opaque or muddled. Somehow, consistency brings 
clarity, and clarity brings delight.11

My working definition:

Style is a set of different repeated microdecisions, each made the 
same way whenever it arises, even though the context may be 
different.

Moreover, related microdecisions are resolved in related ways.
Style unquestionably exists. A few bars tell us that a work is 

Bach’s, or Mozart’s, or Schubert’s. A famous exhibition brought 
together many Rembrandts, and many works once attributed to 
Rembrandt but now recognized as imitations. The experts agreed 
as to what was genuine; even laymen could tell surprisingly 
often.12

Reasonably knowledgeable people can readily tell a Sey-
mour Cray computer from a Gerry Blaauw or Gordon Bell one.13 
The authors of the unsigned Federalist Papers have been conclu-
sively identified by details of their prose styles.14 Programmers 
can identify each other’s code. C. S. Lewis argues that Jesus’s 
miracles faithfully display the hallmarks of the Father’s creative 
style.15,16
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Properties of Styles 

Regardless of the medium of design, styles share some common 
properties.

Specification Is Costly. First, making a style explicit takes a 
remarkable amount of specification. The Chicago Manual of [Eng-
lish prose] Style runs 984 pages. Fowler’s Modern English Usage 
[1926ff.] invests some 2,800 words into defining the proper usage 
of the. Our implicit recognition of Bach’s style uses a lot of stored 
information.

Specification Is Hierarchical. Second, any style specification 
(explicit or implicit) is inherently hierarchical. Consider English 
prose:

Dialect and diction• 
Person, tense, formality, vividity of color, warmth of tone• 
Balance and rhythm—prosody• 
Usage—for instance, gender pronouns• 
Punctuation• 
Compositional layout—font, spacing, and so on• 

The compositional styling for this book, shown on its Web 
page,17 deals with book styling, chapter styling, headings, para-
graphing, fonts, and other elements.

Styles Evolve. Third, styles evolve over time, even an individ-
ual’s style. Cognoscenti can tell Turner’s late pictures from his 
early ones.18 Larger styles, such as Gothic architecture, evolved 
so much that we distinguish Early, Decorated, and Perpendicular. 
Moreover, fashions in style evolve even faster, whether in pop 
music, teenage jargon, or 17th-century English gardens.

To Get a Consistent Style—Document It!

A design style is defined by a set of microdecisions. A clear style 
reflects a consistent set. A clear style may not be a good style; a 
muddled one never is.19

The aspiring designer must therefore strive for consistency of 
style. A design team has to work even harder at it. A sole author 
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writing a ten-page paper, all at once, will have a clear style. The 
same writer, producing a book, will find he needs to document 
some stylistic microdecisions as he goes along, to maintain con-
sistency. Moreover, even the ten-page paper will need a style 
sheet (or a careful final editor) if sections have multiple authors.

In most design contexts, many stylistic decisions are given at 
the start. A technical paper has the journal’s style manual; a book, 
the publisher’s. An automobile designer assumes a mammoth set 
of SAE standards plus a company catalog of preferred springs, 
nuts, bolts. An operating system designer has a library of stan-
dard subroutines. 

Nevertheless, each particular design occasions lots of unpre-
scribed microdecisions. Gerry Blaauw and I found that our large 
joint Computer Architecture grew a 19-page Writing Style Sheet.20 
This of course supplemented both the overarching Chicago Man-
ual of Style and Addison-Wesley’s own house style document. 
Comprehensive as these were, they left many unanswered ques-
tions that we had to specify. For example, how were we to refer 
to a particular computer? Manufacturer plus model number? All 
this for each and every mention, for only first mention? Or first 
mention per chapter?

Of course, a design team must document the design proper, 
whether in engineering drawings, building blueprints, or a user 
manual. They also must say why, capturing the designers’ intent 
so that the later maintainer will not in ignorance loose a vital 
stone from the edifice’s arch. This is the final work product. The 
team must also, to preserve conceptual integrity during main-
tenance, document internally the myriad of microdecisions that 
govern and compose the visible design.

How to Achieve a Good Style

The prescription is simple; the methods, straightforward; the 
work, arduous.

Study Other Designers’ Styles Intentionally. Practice work-
ing in another’s style. This will force close attention to detail 
and explicit thinking. It might also produce great works—
consider Respighi’s Ancient Airs and Dances, or Fritz Kreisler’s 
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Classical Manuscripts or his Praeludium and Allegro (in the style of 
Pugnani).21

Make Conscious Judgments. Write opinions as to what styles 
you like and why, what aspects of a particular style and why.

Practice. Practice. Practice.

Revise. Look for stylistic inconsistencies.

Choose Designers Carefully. Seek for your products designers 
who have clear styles and good taste, as demonstrated by their 
previous works.

Notes and References

Vitruvius [22 BC], 1. De Architectura.

Gelernter [1988], 2. Machine Beauty, makes a powerful argument that a 
sense of beauty, not just analysis, should govern design.

Steve Wozniak [2006], 3. iWoz, proudly claims that the Apple I used 
only two-thirds as many components as other equivalent machines.

van der Poel [1959], “zEBRA, a simple binary computer.” An acces-4. 
sible explanation of the machine is given in Blaauw and Brooks 
[1997], Computer Architecture, Section 13.1. See also van der Poel 
[1962], The Logical Principles of Some Simple Computers.

We commit a difficult APL one-liner in 5. Computer Architecture in Pro-
gram 9-8 on page 511 (Blaauw and Brooks [1997]).

Shannon [1949], 6. The Mathematical Theory of Communication.

Blaauw and Brooks [1997], 7. Computer Architecture.

Blaauw [1965], “Door de vingers zien”; Blaauw [1970], ”Hardware 8. 
requirements for the Fourth Generation.“

C. S. Lewis [1961], 9. An Experiment in Criticism, argues strongly that 
excellence and level of style (“highbrow” versus “lowbrow”) are 
independent.

Alexander [1977], 10. A Pattern Language, is an important architectural 
example.
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Examples of clear styles that have particularly delighted me include 11. 
some artificial and imitative ones: 

The open-air Spanish architecture museum, El Poble Espan- • 
yol, at Barcelona
EPCOT at Walt Disney World, with its national pavilions• 
Duke University’s Gothic campus• 
Jefferson’s ten Pavilions on the Lawn at the University of Vir-• 
ginia, each illustrating a particular style 
Sidney Smith’s 18th-century prose• 
The Respighi and Kreisler works cited• 

One work came as an imitation and went home to the Art Institute 12. 
of Chicago as genuine.
For example, see Chapters 14 (Cray) and 15 (Bell) and Section 12.4 13. 
(Blaauw style) in the “Computer zoo” section of Blaauw and Brooks 
[1997], Computer Architecture.
Mosteller [1964], 14. Inference and Disputed Authorship. 
Lewis [1947], 15. Miracles, Chapter 15.
Chen [1997], “Form language and style description,” is a serious 16. 
review of What is style? and an attempt to quantify it. 
http://www.cs.unc.edu/~brooks/DesignofDesign.17. 
Most artists’ styles evolve. The exhibition “Monet in Normandy” 18. 
(2006–2007) at the North Carolina Museum of Art emphasized the 
striking evolution of his style over the years. 
one may or may not like Gaudí’s stunning Barcelona church, La 19. 
Sagrada Familia, but there is no doubt about the conceptual integ-
rity of the style.
Posted on this book’s Web page: http://www.cs.unc.edu/~brooks/ 20. 
DesignofDesign.
Kreisler first published 21. Classical Manuscripts in 1905, asserting that 
he had found them in an old convent in the South of France. He was 
embarrassed to have his own name appear too often as composer 
on his concert programs. In 1935, he admitted that he had composed 
them, and they were republished as pieces “in the style of.”

From the Library of Wow! eBook

http://www.cs.unc.edu/~brooks/DesignofDesign
http://www.cs.unc.edu/~brooks/DesignofDesign
http://www.cs.unc.edu/~brooks/DesignofDesign


ptg

From the Library of Wow! eBook



ptg

153

13
Exemplars in Design

. . . [T]he vast field of possibility can only be searched if 
you have some idea in advance of what you are looking for. 
Without prestructures of some kind, you cannot know where 
to look, or whether you have found what you are looking 
for. This again seems to justify architects in bringing past 
solutions and notions of style to bear on the search . . .

Bill Hillier and alan Penn 
[1995], “can tHere Be a domain-

indePendent tHeory oF deSiGn?”

Pages from a Palestrina Mass copy in Bach’s own hand

Staatsbibliothek of Berlin
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Few Designs Are All-New

But These Surely Are Fun! Rarely does one get to do a design 
that is entirely new. Imagine designing the first Earth-orbiting 
satellite, the first portable telephone, the first WIMP interface, the 
first air terminal, the first supercomputer!

The Common Lot. Usually, however, even novel designs 
derive from earlier artifacts intended for similar purposes and 
built with similar technology. The designer himself may have 
designed an earlier work; if not, he surely has seen, studied, and 
perhaps used some. 

What then is the proper role of exemplars, precedents, in 
design? How should the designer study and use them? Should 
each design domain develop an accessible cumulative store of 
exemplars? How? Who?

The Roles of Exemplars

Exemplars provide safe models for new designs, implicit check-
lists of design tasks, warnings of potential mistakes, and launch-
ing pads for radical new designs.

Hence great designers have invested great efforts in studying 
their precedents. Palladio (1508–1580) not only studied Vitruvius 
[22 BC], he journeyed to Rome and measured and documented 
the surviving monuments, learning the most successful of the 
concepts and proportions evolved by the Romans of antiquity. 
From this tedious and unsung labor sprang not only his own 
original designs, but a design book that fathered a most enduring 
style of architecture.

Jefferson carefully studied not only Palladio’s books, but the 
buildings around him in Paris.1 

Bach took a six-month unpaid leave from his job and walked 
250 miles to study the work and ideas of Buxtehude. (He lost his 
job for overstaying his leave.) Bach proved to be a much greater 
composer than Buxtehude, but his surpassing excellence came 
from comprehending and using the techniques of his predeces-
sors, not ignoring them.2
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I argue that great technical designers need to do likewise, 
but that the hurried pace of modern design has discouraged this 
practice. 

Besides what individual designers do, technical design disci-
plines eager to produce great designs need to develop accessible 
bodies of exemplars and knowledgeable critiques of them. 

What about Computer and Software Design?

What is the state of exemplar-based design in the computer 
and software fields? I think a fair answer is that we are rather 
behind older design disciplines. We are coming along rather well 
in developing the art and the resources for exemplar-informed 
design. But many of our curricula do not yet emphasize it, and 
penetration into design practice is not yet high.

What Exemplars Do You Use?

Amateur designers and trained professionals in the older design 
disciplines differ substantially in their use of exemplars.

The amateur uses those exemplars he happens to have 
encountered in his own experience. The trained professional has 
been exposed to a far wider range: whole libraries of exemplars 
representing different eras, different styles, different schools of 
thought. At best, he has had expert-guided tours through these 
libraries, with his teachers highlighting the noteworthy charac-
teristics and explicating differences.

Much design in the computer and software fields suggests 
the use of only exemplars encountered in personal experience; 
even our trained professionals are not studying the exemplars 
available.

Computers. Computer architectures reveal the profound influ-
ence of the machine on which the architect first had substantial 
programming experience. Thus the early DEC minicomputers 
have a strong flavor of the MIT Whirlwind; IBM’s System/360 is 
heavily flavored by the IBM 704 and 1401; the early microcom-
puters are clearly inspired by the DEC PDP-11. 

One can also discern corporate memory—computers, 
unlike buildings, are designed by architects working within the 
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implementing companies. They are more familiar, by explicit 
training and by informal culture, with their company’s predeces-
sor machines than with those of competitors. The Intel micropro-
cessors strongly reflect a particular corporate style. 

Design by adaptation is common in this field. Successful 
computers breed families of compatible siblings and successors, 
usually designed by adding function to the earlier models. 

Mass-Product Software. Products such as Microsoft Word 
have followed the design pattern of computers, with successive 
generations created by progressively modifying function and 
implementation. This has been well studied and documented by 
Lehman and Belady.3

Custom Application Software and Operating Systems. Histor-
ically, most custom application software and operating systems 
reflect chiefly the experience of their designers, rather than that 
of the whole discipline. 

More recently, the documentation and teaching of patterns 
has provided cross-fertilization for the field. Gamma [1995], 
Design Patterns, is strong on data structures and component-level 
patterns; Buschmann [1996], Pattern-Oriented Software Architec-
ture, deals with larger-scale, system-structure patterns. We need 
more descriptions of whole systems, explaining system concepts. 
By and large we have that for a few operating systems only.

Studying Design Rationales of Exemplars

How should designers study exemplars in their fields? To study 
an architecture, one can read the manual. To study an implemen-
tation, one can read maintenance documentation. But for over-
view, one has to study the technical papers and books about the 
products to get the rationales.

Most technical papers, however, emphasize the whats and 
give skimpy coverage to the whys. And many designs never get 
explicated by their original designers at all; the creators are too 
busy on their next designs.
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The exceptions cluster around the early days of any technol-
ogy and around later revolutions, when approaches vary widely 
and debates are hot. These papers, like reports of military victo-
ries, are always after the fact, and they are usually rationalized; 
that is, they are far more rational in retrospect than was the actual 
design process. For most of us, that process was rich with pot-
holes, blind alleys, mistaken turns, and alterations of goals. We 
learn a lot from the few exceptions to this post hoc smoothing.

Computer processor architecture provides a fruitful example 
for a study of exemplars. The technology is recent enough that there 
were many venues and outlets for descriptions. The field began 
with a wide diversity of design approaches and has converged to 
a “standard architecture.” Blaauw and I elaborate on this evolu-
tion in Chapter 9 of our Computer Architecture [1997]. Revolutions— 
virtual memory, minicomputers, microcomputers, and RISC   
architectures—punctuated the historical development. Each occa-
sioned fresh debates and hence stimulated fuller rationales.

First-Generation Computers

The most important computer paper ever written is  

Burks, Goldstine, and von Neumann [1946], “Preliminary discus-
sion of the logical design of an electronic computing instrument.” 

It is an incredible piece of work—must reading for every com-
puter scientist. It cogently sets forth the stored-program concept, 
the three-register arithmetic unit, and many other ideas besides. 
The coverage is complete; the reasoning, compelling.

Maurice Wilkes says of an earlier draft,

I sat up late into the night reading the report. … I recognized this 
at once as the real thing, and from that time on never had any 
doubt as to the way computer development would go.4 

Wilkes further says there that this paper sets forth the ideas 
generated at the University of Pennsylvania in discussions 
among Presper Eckert, John Mauchly, and John von Neumann. 
He regrets that the extremely fruitful ideas are usually credited 
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to von Neumann alone and has been at some pains to correct this 
misunderstanding.

After “Preliminary discussion” appeared, many groups in 
many places started building stored-program computers, using 
vacuum-tube logic. The first successes were at Manchester, with 
a running but unusably small Baby, and at Cambridge, with the 
first useful stored-program machine, the EDSAC. These rationales 
are very well documented: Williams [1948], “Electronic digital 
computers”; Wilkes [1949], “The EDSAC.”

The most important early supercomputers are the IBM Stretch 
and the Control Data CDC 6600. Buchholz [1962], Planning a Com-
puter System: Project Stretch, gives mostly rationale papers. How-
ever, the most noteworthy paper is Chapter 17, which describes a 
radically different sort of computer—a data-streaming coproces-
sor designed for cryptanalytic use—with hardly any description 
of the application or rationale for machine features.

The CDC 6600 quickly succeeded the Stretch as the world’s 
fastest computer and came to dominate scientific supercomput-
ing. It is the ancestor of the Cray family of supercomputers. 
Thornton [1970], The Design of a Computer—The CDC 6600, gives 
lots of rationale.

Third-Generation Computers

Second-generation computer architectures ran out of gas; that is, 
they lacked enough address bits to handle the large memories 
that had become economical and indispensable. An incompat-
ible break in many product lines’ architectures became inevita-
ble, although painful. Fortunately, integrated circuits provided a 
large improvement in realization cost, and high-level languages 
enabled recompilation, so that the switch to new architectures 
could be afforded. New architectures occasioned new rationales.

Blaauw and Brooks [1997], Computer Architecture, while not 
a rationale book, nevertheless includes rationales for many of 
the System/360 architectural decisions. Those are the examples 
we could explicate from personal knowledge. Amdahl [1964] 
and Blaauw [1964] give abbreviated synopses of the System/360 
rationale.
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Virtual Memory

The Manchester Atlas introduced the automatic paging of blocks 
of instructions and data from a slower backing store into a smaller 
high-speed memory. Developers of time-sharing operating sys-
tems at Michigan and MIT soon proposed generalizing this con-
cept into a full-fledged virtual memory, with vast namespace. GE 
and IBM built such computers. Again a revolution; again new 
rationales: Sumner [1962] (Atlas), Dennis [1965], Arden [1966].

The Minicomputer Revolution

Transistor-diode logic offered a radically cheaper way of realizing 
computers. Such a machine, the DEC PDP-8, changed the world 
by making a computer that individual departments, not whole 
institutions, could afford and control. This sociological advance 
was at least as important as the technological performance/cost 
advance. Minicomputers were made by the thousands, coexisting 
with, rather than replacing, the so-called mainframes. 

The mainframe makers were content with their business 
models, and—fat, dumb, and happy—they universally missed 
the minicomputer revolution. Many new computer makers 
started up. The most successful was Digital Equipment Corpo-
ration. Bell [1978] treats the rationales and evolution of DEC’s 
minicomputers.

The Microcomputer and RISC Revolutions

A similar sociological and technological revolution took place 
with integrated circuits. Radically lower costs meant that individ-
uals, rather than departments, could have and control their own 
personal machines. Microcomputers are made by the millions.

This time it was the minicomputer makers, quite success-
ful at what they were doing, who were fat, dumb, and happy. 
They missed the microcomputer revolution. Hewlett-Packard 
survived; DEC did not. Some of the mainframe makers, notably 
IBM, got back into the game and became major suppliers of per-
sonal microcomputers.

From the Library of Wow! eBook



ptg

160 13. Exemplars in Design

Again, the revolution spawned a cascade of rationales: Hoff 
[1972] (one-chip CPU), Patterson [1981] (RISC I), Radin [1982] 
(IBM 801).5

Experts in other disciplines can readily develop similar lists, 
giving the flow of history, the revolutions, and the milestone doc-
umented exemplars.

What Should a Discipline Do to Improve  
Exemplar-Based Design?

If indeed designers need to thrust beyond their own personal and 
corporate experience to master the ideas and techniques of their 
whole craft, how can the craft help?

Collections of Exemplars

The foregoing section shows that for computer architecture, there 
are plenty of documented exemplars. The obvious next step is the 
assembling and publishing of systematic collections. Gordon Bell 
and Allen Newell were the first to provide enough detail to help 
designers in their great 1971 book, Computer Structures. Hennessy 
and Patterson in 1990 contributed their valuable Computer Archi-
tecture, whose Appendix E is very helpful. Blaauw and I added to 
the collection with Chapters 9–16 of Computer Architecture.

Beyond Collection

The next step after collection is careful, evenhanded criticism of 
particular exemplars. In computer design, we see this both in the 
books of collections and in journal reviews of particular machine 
descriptions.

Next beyond criticism comes analysis, comparing one exem-
plar against another, assessing the differences in light of the 
objectives of each. Analysts are tempted to criticize the selection 
of product goals, rather than the effectiveness of the designing 
meeting those goals. Such analysis doesn’t much help future 
designers.

A further step needs to follow comparative analysis. Some 
features of a design seem strong, others weak. Some approaches 
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to design problems work; others do not. Hence careful analysts 
will derive from each example Rules of Good Practice to guide 
new syntheses. In most engineering disciplines, these rules are 
collected into handbooks, and ultimately into standards.

What about Software Design?

Computer design has progressed far through the sequence of col-
lection, criticism, comparative analysis, and rules for synthesis. 
Software design is way behind.

Perhaps this is merely a question of youth. Software engi-
neering as a discipline dates from 1968;6 computer engineering, 
from 1937.7 So far we have descriptions of individual exemplars 
of operating systems,8 collections for programming language 
descriptions and rationales,9 and little else.

Describing an operating system architecture is much more 
difficult than describing that of a computer. The functions are 
individually more complicated, and there are more of them. 
Moreover, the semantics of the operation Link are more difficult 
to describe than those of Divide. I believe we are dealing with 
two orders of magnitude more complexity. That will surely retard 
the collection, criticism, analysis, and synthesis of major software 
exemplars. I rejoice that Grady Booch has undertaken to assem-
ble a Handbook of Software Architectures, currently as a Web site, 
ultimately for print.10

Who? Systematizing exemplars for study is a task of scholar-
ship, not of design. Scholars and designers are different in taste 
and temperament. Designers often drive on from the conclu-
sion of one project to the initiation of another, without pausing 
for much reflection, much less works of scholarship. Only as a 
discipline matures does it attract scholars (or matured designers, 
ready to reflect).

How Encouraged? Does modern engineering academia value 
and praise the work of the systematizer? Can one get tenure for 
doing such? In many institutions this work would be valued in 
a History of Science and Technology Department, but not in an 
Engineering Department. 
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Exemplars—Laziness, Originality, and Pride

Whoa! The above discussion on exemplars in design skips lightly 
by some issues very real for each designer:

Isn’t copying an early design, a precedent, just an exercise in • 
laziness? Can an honest professional do that with integrity? 
People become designers because they like to make things. • 
What fun is there in confining one’s self-expression within 
the iron cage of another’s style?
The world highly values originality and innovation and • 
rewards them with respect, reputation, and sometimes fame 
and fortune.
One’s special contribution to the human race depends upon • 
one’s own unique vision. Isn’t it a disservice to neglect or 
suppress this originality?11

Some Perspective

Lest there be misunderstanding, I most emphatically do not assert 
that most design problems can be solved by adapting exemplars, 
nor do I advocate their slavish copying.

I do assert that

The designer should know well the exemplars of his craft, • 
their strengths, their weaknesses. originality is no excuse for 
ignorance.
In engineering, if not in the arts, gratuitous innovation (that • 
is, not anticipated to be “better” in some useful sense) is a 
foolish idea and a selfish indulgence of pride—because of the 
unavoidable risk of unintended downside consequences. 
Designers who master the styles of their predecessors have • 
more treasures upon which their originality can draw.

Laziness

Certainly the lazy or slack designer can minimize his work by 
picking an exemplar and just modifying it to fit. By and large, 
those who just copy do not draw on ancient or remote exemplars 
but only on those that are most current and fashionable. The 
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world is full of lazy Bauhaus architecture and mediocre ranch-
type homes done in Frank Lloyd Wright’s “prairie” style.

Not laziness, but a high level of enthusiasm and diligence is 
required for the mastery of the corpus of exemplars available in 
any design domain. 

Originality and Pride

It seems to me that the current premium on design originality 
misleads. To paraphrase Vitruvius, whatever the medium, one 
wants a design that meets the functional need, is robust and 
durable under stress, and gives the user pleasure. So with Shaker 
furniture, with Revere’s tableware, with Peck and Stowe’s needle- 
nosed pliers.12

What then of originality? Well, it can certainly delight. We 
have all seen new designs so sparkling fresh that we rejoice at 
the elegance of the solution—a Leatherman folding pocket tool, a 
Slinky toy, a cable-stayed bridge.

But the delight lies in the superior elegance of the new solu-
tion to an old problem, not in its novelty per se. This is shown 
by the new delight each time we use the tool or toy. It does not 
fade. On the other hand, mere novelty is a cheat for satisfaction. 
The seven-day wonder grows old. As its novelty fades, so does 
the delight. The novelty seeker is perpetually driven. There is no 
resting delight.13

Originality as Goal or By-product. He who seeks originality is 
apt to find novelty, but not permanence of delight. On the other 
hand, he who seeks to make designs that really work is most 
apt to come up with new designs of enduring value, almost as a 
by-product.

Pride. Closely tied to the striving after originality is pride, a 
desire to make a name for oneself. This ancient cause and conse-
quent of humanity’s fall infects all design, and ruins much.

Early on it manifested itself in the Tower of Babel. “Come, let 
us build a tower to heaven, and make a name for ourselves.”14

Shelley in one of his poems captures the ancient and modern 
desire: “My name is ozymandias, King of Kings; Look on my 
works, ye Mighty, and despair.” 

The desire to be original has degraded many a work.15
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Wren’s St. Paul’s Cathedral shows that glory can be created within a 11. 
tradition, as well as outside.

I find delight in Disney World’s exercises in working within 
styles and yet expressing wonderful originality. Consider Cinder-
ella’s Castle, Tom Sawyer’s Island, the Haunted House, the Swiss 
Family Robinson’s Treehouse, and the 19th-century Main Street. In 
that context, even the exaggeration and parodying of styles is work-
able and can be delightful.

Heath [1989], “Lessons from Vitruvius,” is an excellent overview of 12. 
Vitruvius. The assertion is that Vitruvius sets forth a design method, 
essentially a branching-tree approach, that leads one to choose 
among 45 house types. This is a major reference with respect to the 
use of exemplars and of simplified design methods.
I think this is a true test between godly pleasures and satanic coun-13. 
terfeits. For real pleasures give satisfaction (satis = “enough”). One 
gets enough food, enough sleep, enough work, enough play, enough 
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lovemaking. The perverted, however, always seeks a new delicacy, a 
different taste, a progressive weirdness.
Genesis 11.14. 
I work in such a building. By its context, Sitterson Hall could eas-15. 
ily have perfected a visual quadrangle with the facing Carolina Inn. 
This is the same height, an elegant colonial building, and made of 
the same brick. “Originality” led in Sitterson to a different and ugly 
steel roof and to third-floor dormer windows that are too high for 
seated occupants to enjoy the view. And the coherent visual quad-
rangle is not realized.
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14
How Expert Designers 
Go Wrong

I beseech you, in the bowels of Christ, think 
it possible you may be mistaken.

oliver cromwell [1650]

But when I make a mistake, it is a beaut!

Fiorello la Guardia

The besetting mistake of expert designers is not designing 
the thing wrong, but designing the wrong thing.

Collapse of the aerodynamically misdesigned Tacoma Narrows Bridge
AP Wide World Photos 
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Mistakes

In any field, the amateur makes lots of little mistakes that a pro-
fessional would never make. Training, internship, and practice 
have drilled the professional on good technique.

Professionals, when they goof, do it in a big way—making 
bridges that collapse during construction, houses with no stairs 
between stories, computers that radically waste memory band-
width, programming languages that are too rich to be learned.

Henry Petroski has suggested that after each revolution in 
materials or technique, designers do in fact

Tread cautiously at first• 
Master the new approach• 
Begin to extend it boldly, often forgetting the underlying • 
assumptions
Overreach in their boldness and self-confidence, pressed per-• 
haps by hubris and competitiveness

He cited a study documenting a consistent 30-year period between 
major bridge collapses and suggested we were due for another.1 
The I-35W bridge collapse in Minneapolis proved him right.

Probably a major cause of professionals’ gross failures is the 
appearance of a new generation of designers, trained from the 
start in the new technique. Not having suffered through the birth 
pangs, which often consist of controversy that probes assump-
tions, the new professionals are much less conscious of the 
assumptions and caveats. 

They are also usually quite unconscious of how the new tech-
nique fits into the whole armory of possible techniques. The pro-
fessional, I would suggest, is apt to be familiar with the trees, 
doesn’t see the woods, and is slow to ask, “Does what I am doing 
make sense in the large?” To paraphrase Thomas Jefferson, the 
professional is often so preoccupied with doing the thing right that 
he fails to stop and ask, “Am I doing the right thing?” 

In the development of the System/360 computer family, our 
superb group of seasoned computer architects rejected automatic 
memory management, an omission that had to be remedied 
almost before the paint was dry.
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Success is dangerous for the professional designer. Failure 
stimulates analysis, scrutiny, rethinking. Success stimulates con-
fidence both in design technique and in oneself. Both trusts may 
be misplaced.

The Worst Computer Language Ever

A vivid example of expert failure is IBM’s operating System/360 
Job Control Language (JCL), now known as MVS Job Control 
Language for z/oS. It is, I am convinced, the worst computer 
programming language ever devised by anybody, anywhere. It 
was developed under my supervision; there is blame enough to 
go around among all the supervisory levels.

It is instructive first to examine JCL’s deficiencies as a pro-
gramming language. Then one must inquire how a software team 
of real experts, having on call, for example, designers of the origi-
nal Fortran and leading language theoreticians, could go so radi-
cally wrong.

Although the mistakes were made 45 years ago, JCL is still in 
use, in essentially the same form. The mistakes continue to curse 
us. And the lessons are timeless.

What’s JCL?

OS/360 was originally designed as a batch operating system, 
although from the first, terminal users could interact in sending 
jobs into the work queue, setting them up, inquiring about status, 
and retrieving results. The Job Control Language is a scripting lan-
guage that specifies the options and priorities to be used for com-
puting a batch job, the input files to be mounted, the disposition 
of each output file, and a host of other lesser functions concerned 
with the management of program and data files. A JCL script 
might specify, for example, compilation of a source program, link-
ing with library programs, execution against particular datasets, 
and the printing, recording on disk, and archiving on tape of the 
several outputs.
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JCL is really hard to learn and use. A set of JCL commands 
that successfully controlled a computing process would there-
fore be copied blindly by other users. Only the boldest would go 
inside the JCL script to change anything except obvious param-
eters. Even today, archived programs in Fortran and CoBoL are 
stored away with the attendant JCL, in “dusty-deck” files.

So What’s Wrong with JCL?

The biggest flaw of all was that JCL is indeed a programming 
language, but it was not perceived as such by its designers.

One Scheduling Language for All Programming Languages.   
JCL is deeply flawed in its very concept. 

OS/360 provided compilers for a rich variety of program-
ming languages, at least six besides Fortran and CoBoL. Each 
user had to know at least two languages: JCL and his program-
ming language of choice. Most did not, hence the borrowed JCL 
and the dusty decks.

What one wants, instead of a single schedule-time language 
like JCL, is a schedule-time capability, just like the compile-time 
capabilities provided for PL/I and for the S/360 Macro Assem-
bler. Then each programmer could work within a single language, 
specifying some actions for compile time, some for schedule time, 
and most for run time.

Like S/360 Assembler in Syntax, Rather than a High-Level Lan-
guage. Having mistakenly decided to have one schedule-time 
language, the designers chose the wrong one. As early as 1966, 
one year after the full OS/360 was up and running, assembler-
language jobs accounted for only about 1 percent of all jobs. A 
major paradigm shift had happened, and it wasn’t recognized.

But Not Exactly Like S/360 Assembler Syntax. Enough devia-
tions crept into JCL that knowing S/360 Assembler syntax did 
not mean knowing JCL syntax.

Card-Column-Dependent. Fortran, for reasons having to do 
with the 36-bit word of the IBM 704 (1956), allowed statements 
of 72 characters, plus continuation lines. Characters beyond the 
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72nd in a line were ignored. (Card columns 73–80 were originally 
used to serially number program cards, so that if dropped they 
could be readily reordered!) 

JCL followed this punched-card-based format, exactly when 
the rest of OS/360 was being predicated on terminal access. (Ter-
minals then, and later, didn’t even indicate a numeric character 
position, so users didn’t know when they had reached position 
73.) A major paradigm shift was happening, even being pushed 
by this very system product, and it wasn’t recognized.

Too Few Verbs. The designers’ proud boast was that JCL has 
only six verbs: JoB, EXEC, DD, and so on. And so it does. But 
the number of functions the language has to perform far exceeds 
six.2 With an imposed “elegant” simplicity not up to the actual 
complexity inherent in the task at hand, the complexity inevita-
bly breaks out in jury-rigged solutions. 

Declaration Parameters Do Verbish Things. The verb func-
tions have to be provided somehow. So in JCL a Data Declara-
tion (DD) statement is provided with a (too-)rich set of keyword 
parameters. Many of these are imperative verbs in disguise, such 
as DISP, which commands what to do with the dataset after a job 
step ends.

Almost No Branching. Central to most programming languages 
is the concept of a conditional branch. JCL has no such cen-
tral concept—branching is an afterthought, restricted in action, 
achieved through a parameter.

No Iteration. There is no direct primitive in JCL to accomplish 
iteration; it must be fashioned out of the awkward branching. 
The designers did not imagine an iterative action in a schedule-
time script.

No Clean Subroutine Call. Similarly, the designers did not per-
ceive any need for a subroutine call in a schedule-time script. This 
is harder to understand, for many JCL programs make extensive 
use of open subroutines, that is, repeated sequences of commands 
identical except for a few parameters.
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How Did JCL Get That Way?

The professionals who designed JCL brought too much experi-
ence to the task. Their familiarity with what they thought to be 
the problem blocked their thinking about it afresh, in its wider 
setting. In this case, following an exemplar brought disaster.

The key thinkers on the oS/360 JCL had come to the oS/360 
project fresh from the highly successful IBM 1410/7010 Operat-
ing System (1963). In terms of function, the 1410/7010 OS was 
perhaps two orders of magnitude simpler than OS/360. It was 
strictly a batch operating system designed for classical file-
maintenance applications, without teleprocessing. Scheduling 
functions such as file names and I/O device assignments were 
specified by a few simple control cards placed before each job’s 
deck as it was put into the punched-card reader, a technique dat-
ing from tape-based operating systems.

The designers of oS/360 JCL saw their task as being a replay 
of their 1410/7010 experience—designing, as they explained it, 
“a few control cards for the scheduler.” This was the fatal mis-
take. Each part of this goal description turned out to be wrong in 
concept, and stating it wrongly led to wrong thinking throughout 
the design.

Few types of control cards did indeed characterize the 1410/7010 
operating system, and fewness equated to simplicity as a goal for 
oS/360 JCL. This led to having too few verb types. Not only was 
fewness of card types wrong; so was the implicit assumption that 
each job would be controlled by a few cards of each type. In the 
event, JCL scripts usually contained dozens of statements.

Cards was the second conceptual misleader. The whole 
JCL programming language was conceptually built around the 
punched card just as it galloped into obsolescence.

Control cards implied that each was separately interpreted 
and almost independent in action—and indeed, that was the case 
in early operating systems. This accounts for the limited branch-
ing, iteration, and subroutine facilities of this poor stunted pro-
gramming language.

Thinking of the cards as separate complete commands explains, 
I think, why none of us ever recognized that JCL was going to be 
a programming language—one interpreted and executed at sched-
ule time. Our basic problem was a pedestrian vision.
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A consequent problem was that JCL was never really 
designed—it just grew. Had it been recognized as a system lan-
guage, it might perhaps have been designed as a language, using 
the expertise and experience of our language designers.

But, it wasn’t. Initially, as the “layout of a few control cards,” 
it was a by-task incidental to the main job of designing the job 
scheduler itself. As the tasks of file system management, telepro-
cessing network management, and so forth, grew during OS/360 
design, every new schedule-time function or specification got 
loaded onto JCL. Since the language had little flexibility, general-
ity, or comprehensive structure, the new specification ended up 
as a new keyword parameter, most often in the DD statements. 
So what should have been adjectives in declarations became 
imperative verbs with all sorts of action consequences.

Lessons Learned

Study failure examples even more carefully than you study 1. 
successes.
Watch yourself after success. Success stimulates confidence in 2. 
the design technique, in the design itself, and in oneself. All 
may lead to overconfidence.
Think at the top level about the object you are designing 3. 
and its assumptions about the environment in which it will 
be used. Is a paradigm shift under way? Will your assump-
tions still be valid a decade hence? Are you designing the 
right thing?

Notes and References

Petroski [2008], 1. Success through Failure. He cites the original study, 

Sibly [1977], “Structural accidents and their causes.”

A few more verbs have been added during JCL’s evolution. A cur-2. 
rent JCL standard (November 2008) is given at http://www.isc.
ucsb.edu/tsg/jcl.html. The original one is in IBM Corp. [1965], 
IBM Operating System/360, Job Control Language.
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15
The Divorce of Design

Around the sixteenth century, there emerged in 
most of the European languages the term “design” 
or its equivalent. . . . Above all, the term indicated 
that designing was to be separated from doing.

micHael cooley [1988]

Wright Brothers’ first flight, Nags Head, North Carolina
Library of Congress
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The Divorce of Design from Use and from 
Implementation

One of the most striking 20th-century developments in the design 
disciplines has been the progressive divorce of the designer from 
both the implementer and the user. 

Consider the 19th- to turn-of-the-20th-century inventors. Edi-
son fabricated working versions of all his inventions in his labo-
ratory. Henry Ford made his own car. Wilbur and Orville Wright 
built their airplane with their own hands.

A century later, what computer engineer can make his own 
chips, much less start with sand and copper? What airplane 
designer is a master of the complex manufacturing processes that 
will build the plane, much less the complex software that will 
dynamically stabilize it? What architect does his own structural 
engineering and earthquake strengthening? 

Similarly, in many disciplines the designer is divorced from 
the user as well. In architecture, the designer of a hospital, a cre-
matorium, a nuclear-fuel-processing plant, a biophysics labora-
tory, brings little personal experience as a user and must elicit 
expected user behavior from representative users or, worse, user 
surrogates who are themselves removed a step or two from real 
users. Few naval architects have commanded a ship, much less 
wielded one in battle. 

This is in sharp contrast with the situation only a genera-
tion ago. Today’s cars were designed by senior engineers who 
had spent their teenage years taking old cars apart under the 
proverbial shade tree. Today’s senior communications experts 
mostly had ham licenses and probably crafted one-tube radios 
in school. Some of today’s British senior mechanical engineers 
were the product of 1-3-1 “sandwich” programs: a year of hands-
on training with the company, three years in university at com-
pany expense, another year of hands-on training before starting 
to design. Many of America’s engineers are the product of co-op 
programs that interspersed college with hands-on industrial 
experience. 

Fortunately, there are exceptions to the divorces. Software 
engineering, for example, is still so young that system architects 
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were once programmers. The designers of personal products such 
as the iPod, the iPhone, and cars are, first of all, users, and their 
own use-vision illuminates their designs. 

The designers of UNIX and especially the Open Source 
designers of Linux start with their own needs, build tools for their 
own use, and share with their own peers. I reckon this accounts 
for both the use success and the user passion. 

Why the Divorces?

The first reason is obvious. The stunning 20th-century advances 
in all implementation technologies demand specialization and 
protract learning times. Keeping up with just earthquake engi-
neering or just manufacturing with composite materials is now a 
full-time job.

A second reason is less obvious but perhaps as strong. 
The things we design are so much more complex that just their 
design demands specialization, protracted learning times, and 
all the designer’s energies. There are now few unsophisticated 
technologies. Consider the complex manufacturing process of 
the simple Twinkie, where good taste has to be combined with 
good shelf life and with continued separation of the filling from 
the cake.1

Fallout from the Divorces

So what? What consequences can we see? Miscommunication 
abounds. Architects build elegant buildings that are hard to 
work in. Engineers design control panels that nuclear reactor 
operators find confusing. Over-specified implementations cost 
way more than they should, with little added function or per-
formance. Both the user-designer link and the designer-imple-
menter link narrow radically in bandwidth. Communication 
between people is always much poorer than communication 
within a person. Instances of disastrous, costly, or embarrassing 
miscommunication abound.
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Remedies

The first implication is that designers must recognize that the 
20th-century divorces have occurred, and that much extra delib-
erate and focused effort must be marshaled to mitigate their 
painful effects. 

Remedy 1: Use-Scenario Experience

Even a small amount of use-scenario experience is better than 
none. Even a good simulation of a use experience is better than 
none. Full-scale mock-ups enable dry runs of kitchen or cockpit 
scenarios. So do virtual environments.

When assigned to design an operator’s console for the IBM 
Stretch computer, I had only hearsay evidence as to what opera-
tors actually did, much less the relative frequencies and impor-
tances of their several tasks. 

The Stretch team stopped for two weeks in the summer while 
most took vacations. So I went to the computation center that 
operated 709 computers for the Poughkeepsie laboratories, and I 
applied to be an apprentice operator for two weeks. 

It was immensely informative. Mostly, I mounted tapes, but I 
soaked in the rhythms of a scientific computer center and sharply 
watched what the chief operators did.2 

This “user” experience led to the design of the first opera-
tor’s console to be program-controlled (essentially a close-con-
nected terminal) rather than directly reflecting and affecting the 
hardware, a capability that enables multiple consoles for multiple 
operators, and a flexible allocation of tasks among operators, as 
well as online interactive debugging of programs. 

I must admit that the overly fancy console I designed seems 
to have been rarely used in any Stretch installation in the ways I 
envisioned. Online interactive debugging did not become a real-
ity until considerably later, partly because Ted Codd’s multipro-
gramming operating system for Stretch was an option, not the 
standard Stretch software.3 

The experience became more fruitful when I was engaged in 
the Operating System/360 design. All the factors were in place 
for online interactive debugging, and the previous exploration 
led to a leaner terminal and full software support.
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A similar experience was a semester’s sabbatical in Dave and 
Jane Richardson’s biochemistry laboratory at Duke. Daily expo-
sure helped me understand their needs for molecular graphics 
tools for studying protein structure and function.

Philippe Kruchten systematized this sort of exposure when 
he was the lead architect for Canada’s air-traffic control system:

All the software people were sent for hands-on training on air-
traffic control, going to ATC classes, then spending days sitting 
next to controllers in a live Area Control Center, trying to under-
stand what was the essence of their activity. Similarly, the ATC 
specialists were sent to courses such as Object-Oriented Design, 
Programming in Ada, to reach the point where there was enough 
common vocabulary for them to efficiently work together and lever-
age each other’s skills.4

Remedy 2: Close Interaction with Users via Incremental 
Development and Iterative Delivery

Harlan Mills’s system of incremental development and iterative 
delivery is the best way to stay quite close to users right from the 
very start of the project.5 One builds a minimal-function version 
that works; then one gives it to users to use, or at least to test-
drive. Even products being built for a mass market can be tested 
on a sample of users. 

In my own practice, building interactive graphics systems as 
tools for scientists, I have usually been surprised by early user 
reactions to our prototype systems. Almost invariably I have made 
wrong assumptions about how they would use the new tool.

My team spent some ten years realizing our dream of a 
“room-filling protein” virtual image. My idea was that the chem-
ists could more readily find their way around in the complex 
molecule by knowing where the C-end and the N-end were posi-
tioned in the physical room. After many disappointments, we 
finally had a suitable high-resolution image in a head-mounted 
display. The chemist could readily walk around in the protein 
structure to study areas of interest.

Our first user came for her biweekly appointment; all went 
well and she moved about quite a bit. Next session, same thing. 
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Third session: “May I have a chair?” A decade’s work shot down 
by one sentence! The navigation assistance wasn’t worth the 
physical labor.

We had a similar experience with a radiation-treatment plan-
ning system. The radiologist’s task is to find directions of multiple 
beams that will impinge on the tumor while avoiding sensitive 
organs such as eyes. We hung the patient’s semitransparent vir-
tual body in space, so the physicians could walk around and 
sight through from all viewpoints. No, they much preferred to sit 
and rotate the virtual patient through all angles.

Remedy 3: Concurrent Engineering

Designers need to dig more energetically and personally into the 
actual experiences and processes of implementation. Even an iso-
lated and unrepresentative implementation experience can won-
derfully inform a designer’s often idealized or inchoate vision of 
how implementation is done. I recommend it highly.

There is a danger that a modest sample experience of imple-
mentation will unduly influence a design, if the designer’s 
personal experience is all that is available—it is by nature unrep-
resentative. Probably the best balance is achieved with concur-
rent engineering as the main design practice. Here, the true 
implementers are intimately involved in the design process; their 
broad experience provides the balance for a designer’s limited 
implementation examples. (In the software field, this same prac-
tice sometimes is called just an agile method.)

Pulling implementers forward into the design process makes 
its own demands. Shipyard workers who are skilled at following 
standard engineering drawings may be less skilled at envisioning 
the finished construct from the standard plans and sections, hence 
unable to catch mistakes or to foresee implementation “gotchas.” 
Augmenting the standard plans and sections with richer visuals, 
even virtual-environment explorations, may provide the tools 
that lubricate the concurrent design process. 

Remedy 4: Education of Designers

Design curricula simply must include both techniques for and 
practice at understanding users’ needs and desires.6 
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In a classic and durable 1985 paper, Gould and Lewis enun-
ciated three design principles, giving first place to understand-
ing users and their tasks by “direct contact from the outset.” They 
found many designers who thought they were doing this when 
in fact they were hearing or reading about them, examining user 
profiles, “presenting,” “reviewing,” or “verifying” designs with 
users late in the process.7 

Implementation experience in the machine shop, at the 
job site, actually building the software, is just as crucial for the 
designer’s education. 

The students’ needs for direct user contact and actual imple-
mentation experience argue strongly for more project courses 
and experiences, even at the expense of book learning. Analyti-
cal techniques and formal synthesis methods are necessary tools, 
but advanced methods can be self-taught when needed. Gut 
instincts are harder to acquire. Today’s design curricula must 
reckon with the divorce of design and make strenuous efforts to 
introduce the young designer to the real worlds of implementa-
tion and use.

Notes and References

Ettlinger [2007], 1. Twinkie, Deconstructed.

And listened to the sounds. I share Grady Booch’s nostalgia: “I miss 2. 
the sounds that old computers made. I could tell what my program 
was doing by the sound the computer made.”

Codd [1959], “Multiprogramming STRETCH.” 3. 

Kruchten [1999], “The software architect and the software architecture 4. 
team.” He further reports, “Some balked, sensing a waste of time, but 
were later amazed at how much it helped them do their jobs.”

Mills [1971], “Top-down programming in large systems.”5. 

In some 22 offerings of a software engineering laboratory course, I 6. 
have found it necessary and possible to solicit outside users, with 
whom student teams must work, and whom they must satisfy. The 
users have to commit time for weekly meetings with the team, in 
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return for which they may get usable prototype software. I ask for 
projects that would be useful if successful but not necessary. The 
student team must be allowed to fail.

Gould [1985], “Designing for usability”: “These principles are: early 7. 
and continual focus on users; empirical measurement of usage; and 
iterative design.”

From the Library of Wow! eBook



ptg

This page intentionally left blank 

From the Library of Wow! eBook



ptg

From the Library of Wow! eBook



ptg

185

16
Representing Designs’ 
Trajectories and Rationales

In collaboration with Sharif Razzaque

There are many ways of making a fool of 
yourself with a digital computer, and to have 
one more can hardly make any difference.

Sir maurice wilkeS [1959], “tHe edSac”

Be careful how you fix what you don’t understand.

Portion of a Compendium chart for Brooks House Wing design
Sharif Razzaque
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Introduction

For designers to get the most learning from each design experi-
ence, they need to document how it evolves: not only the whats of 
the design, but also the whys by which it was reached. Moreover, 
such a rationale document is a priceless aid to system maintain-
ers; it prevents many ignorant mistakes. Documenting trajecto-
ries and rationales is much harder than it at first appears.1

Several research groups have tackled the problem of making 
computer tools to assist in this process.2 So Dr. Sharif Razzaque 
and I decided to develop a computer representation of a specific 
design project’s trajectory. We took as our raw material the 235-
page prose log that my wife, Nancy, and I contemporaneously kept 
while designing a 1,700-square-foot addition to our house. (That 
design project is briefly sketched in Chapter 22. A larger portion of 
the design tree for this project is posted on this book’s Web site.) 

This chapter shares our observations both about the nature of 
a real design trajectory and about documenting design trajecto-
ries. Herein our usage is as follows:

We•  for work we did together
I • for work Razzaque did solo
I•  for Razzaque’s comments and hypotheses, but 
We•  when Brooks agrees with them 

Linearizing the Web of Knowledge

As Vannevar Bush acknowledged in the design for his proposed 
Memex system, the representation of all the interrelations among 
items of knowledge requires a general graph, in general a non-
planar graph.3 

But such a graph is difficult to represent and nigh impossible 
to comprehend. So in all disciplines people linearize the knowl-
edge representation and supplement the linear representation 
with one or more auxiliary representations.

The process is:

Cut edges in the graph until it is a tree. This process imposes 1. 
a hierarchical order where there was none before, whether 
that order is wanted or not.
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Map the tree onto a line in any of the several well-known 2. 
ways, but usually depth-first.

Consider a book, for example. The subjects it treats are intri-
cately interrelated. But the book itself is perforce linear: page fol-
lows page; line follows line; word follows word. So the author 
organizes the subject matter into a tree and shows the tree in 
the table of contents: chapters of sections, sections of subsec-
tions. The page numbers show the mapping from the tree to the 
linear form.

The table of contents is, however, not the whole story by any 
means. In the back of the book is an index, which organizes the 
book contents alphabetically by term. The page numbers for any 
given term essentially define a linked chain through the book. The 
index restores many of the links that were cut in mapping the web 
of material to the table of contents tree.

The same process yields the organization of a library. The 
Library of Congress numbering system (or the Dewey Decimal 
System) maps all the interconnected books to a tree. The tree is 
mapped via a depth-first traversal to a line, yielding a shelf order. 
But this mapping is supplemented by multiple indices, each 
restoring cut links to form chains: an author index, a title index, a 
subject index. 

The subject index is especially interesting because the shelf-
order mapping was already based on principal subject. The sub-
ject index recognizes that any work treats many subjects besides 
its principal one.

A Wikipedia article solves this web-structure representation 
by rich cross-linking, instantaneously accessible. This capability is 
a significant new addition to our intellectual toolbox.

Any design space has the same sort of web structure, so 
the representation of designs is challenging. And if designs are 
difficult to represent efficiently, design processes are inherently 
more so.

Simon’s Rational Model of design, Chapter 2, seems to 
assume the existence of a design decision tree that shows at each 
alternative node the subordinate design decisions occasioned 
by that choice. Ideally, one would associate with each choice 
the rationale for that decision. But decisions are interrelated 
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in many complex ways, each with both simple reasons apply-
ing to it alone and reasoning that is shared with siblings and 
cousins.

Our Capture of a Design Trajectory

Our goals were to capture the implicit design tree of the Brooks 
House Wing design, both to supplement the abbreviated prose 
case study of that design process in Chapter 22, and to represent 
the design trajectory through time. More important, we wanted 
to get insights into the Brookses’ design process: 

How consistent is the log with Fred’s recollections? • 
What and where were the struggles? • 
When and how did the breakthroughs occur? • 
Did Fred and Nancy explore the design tree systematically? • 
Do findings from this analysis support the arguments in the • 
rest of this book?

As it turned out, what we learned in trying to reconstruct the 
design tree is more revealing than the tree itself. In fact, the tree 
itself yielded disappointingly few insights. This exercise was an 
experiment that failed.

Our Process for Studying the House Design Process

We started with a search for off-the-shelf software for drawing 
design trees. We eventually settled on Compendium,4 a tool now 
primarily intended for recording and focusing the design process 
as it unfolds. 

I seeded the design tree from the notes on the very first page 
of the log and proceeded page by page, transcribing the notes 
into nodes and links in the design tree according to a written 
transcription scheme that I first prepared. We quickly ran into dif-
ficulties that forced us to wonder if we were transcribing prop-
erly. This led me to tweak the transcription scheme, veering from 
Compendium’s implied guidelines.
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Our process settled into a pattern: Each time we adjusted our 
transcription scheme, I would go back to page one and rework 
our Compendium tree to match the new scheme. We would then 
advance further into the log and inevitably run yet again into a 
log entry that didn’t fit into our transcription scheme. This would 
cause us to reexamine

Our (evolving) transcription scheme • 
Our use of Compendium to reconstruct the decision tree • 
The design process itself• 

This process—encountering problems with the transcription 
scheme, adjusting it, and starting over—happened over and over, 
every day at first and then less and less frequently. We gradually 
converged to a better scheme and surrendered to living with the 
remaining flaws, just so we could make progress transcribing the 
log into a design tree.

What Is a Design Tree?

It wasn’t until much later that I realized that our problems in 
finding a transcription scheme for the design tree flowed from 
our lack of a precise definition of a design tree. My mental defi-
nition had been informal, implicit, and vague. The search for a 
usable tree transcription scheme was also a search for a defini-
tion of design tree that would be rigorous, comprehensive, and precise 
enough to be operationally useful. 

Because my definition was informal and implicit, it did not 
even occur to me to construct a sample pen-and-paper design 
tree and for it a transcription scheme independent of the soft-
ware tool.

Our vague starting notion of a design tree matched that in 
Figure 2-1. This notion is like the tree of options one meets when 
configuring a built-to-order laptop. Each design question (that is, 
decision to be made) is a node. Sibling design questions such as 
“Visibility” and “Alarm” are orthogonal to each other, and the 
designer must answer each of them. In Blaauw [1997], these are 
called attribute branches. 
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Each design-question node has a child node for each of its 
alternative design options. In the laptop example, one must 
choose the display size from several options. These options are 
mutually exclusive alternative branches. The designer chooses 
one for each independent design question.

Most choices raise more design questions (for example, hav-
ing decided to use a luminous dial, one must choose its light 
mechanism). These design-question nodes are children of the 
previous solution node. Thus such a decision tree includes both 
independent and mutually exclusive design choices, and the 
finished product is represented not by the selection of a single 
node, but rather by the set of many design-alternative nodes, 
one at the leaf chosen for each independent design question.

To represent rationale within the tree, each option should 
associate with nodes for its pros and cons. Each design-question 
node would also have an associated node designating the choice 
made and why.

This first notion of a decision tree with rationale seemed to 
fit naturally with Compendium’s predefined node types. I chose 
this mapping: Each design question was represented as a ques-
tion icon. Each design alternative was an idea icon. Each idea 
icon had pro-icon and con-icon children. The alternative chosen 
became an agreement icon with a why note. 

Finally, we thought design questions, even independent 
ones, should be sorted hierarchically, by house spaces. For exam-
ple, we expected to group all the Living Room issues under one 
“Living Room” node to match the structure and labeling of the 
log entries.

Brooks early on had divided the design task into three sepa-
rable problems (Figure 16-1). 

Insights into the Design Process 

Design Isn’t Just to Satisfy Requirements, but Also to 
Uncover Requirements

Page-by-page analysis of the log quickly showed that even though 
an architectural program had been defined, the requirements 
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were still changing. For example, architect Wes McClure had pro-
posed adding pavilions, one to the north and one to the south.5 
The Brookses ultimately rejected this idea because (a) the result-
ing house did not have any central place where the family would 
naturally congregate, and (b) the South Pavilion would require 
removing a precious large black oak tree. But neither the central 
place nor preserving the oak tree were recognized requirements 
when McClure devised the pavilions. Analyzing a proposed 
design solution, the pavilion idea, caused the Brookses to see 
these requirements. 

We see this pattern again and again in the log. Design work 
doesn’t just satisfy requirements, it elicits them. our experience 
resonates with Schön’s theory in Chapter 3. A good design pro-
cess will encourage this phenomenon, rather than suppress it.

Figure 16-1 Division of the house wing design task into separable 
problems
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Design Isn’t Simply Selecting from Alternatives, but Also 
Realizing Their Existence

Once the designer has posed a design question, it’s not usually 
possible to simply enumerate all the possible alternatives. Some 
are obvious or preexisting options (perhaps borrowed from exem-
plars). But others are novel and require breakthroughs. In the log, 
we see the Brookses struggle between two possible Music Room 
configurations, and after much analysis and several attempts at 
tweaking each, neither is deemed acceptable. They discover a 
third configuration that they instantly like. The log notes: “Con-
fig C—A real way forward!”

This pattern also repeats again and again in the log. As Chap-
ter 3 tells, Brooks’s purchase of land from his neighbor was not 
an obvious solution to the problem of siting the Music Room. A 
major part of design is realizing that design options exist. once 
again our experience resonates with Schön’s theory.

The Tree Changes as the Design Changes—How to  
Represent That Evolution?

The three separable problems look very much like a laptop con-
figuration tree, except that the lowest nodes are not leaf options, 
but rather sub-design questions. But the tree indicates that some 
amount of design has already been done. Why is the Entrance in the 
New Wing? Assignment to the New Wing, and not the Old West 
section, is itself a design decision. The tree of the design ques-
tions has implicit in it some design decisions.

But as we worked through the log, it became unclear why 
certain rooms were assigned to one wing versus another during 
the design process. Brooks then had the insight that he thinks 
of the house both as the original house (before this construction 
project) and also as it was finally built. For example, today he 
thinks of Fred’s Study as a child of the New Wing node, because 
that’s as built. When he wrote that first log page, Fred’s Study 
was downstairs, and it was undecided where it would go. But 
there are many different designs between those stages. 

Each of those high-level designs carries with it a different 
organizational tree structure. As the design changes, the same 
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rooms and parts are grouped under different high-level nodes. 
For example, the original house and the 1987 design have the 
Master Bedroom in the East Wing, whereas the final design has 
it in the New Wing. Which tree structure should we adopt? 
How do we show the trajectory through time?

Our approach was to hang all nodes off the organizational 
structure of the as-built house, in order to have a stable structure 
for the design tree. The final house design is divided into Phase 
I (in turn subdivided into the New Wing and Old West) and 
Phase II (Kitchen and Playroom). 

Certain design alternatives are necessarily nodes high in the 
design tree. For example, “Flip house end for end” must be at a 
level above Phase I and Phase II (or New Wing, Old East, and 
Old West). But this particular node confuses the reader, because 
it survived only briefly in the design process. But such a high-
level node is always thereafter visible and intrusive. 

We considered grouping several such short-lived explora-
tions into a top-level node called “Early Wanderings,” noting 
that many projects explore several radical designs early on. But 
abandoned design alternatives occur at each stage of the design. 
Those abandoned early are really similar to ones abandoned 
later, except they affect larger portions of the tree; far-reaching 
changes become fewer and fewer as the design evolves and 
stabilizes.

The very structure of a decision tree changes over time. 
Documenting such changes requires a new dynamic tool that 
doesn’t yet exist. It must track not only how the tree grows leaf-
ward over time, but also how nodes and their sub-trees get cut 
from one branch and grafted into another. 

Tree of Decisions versus Tree of Designs

As Figure 2-1 shows, the final complete design (that is, a product) 
is represented not by a single node in a decision tree, but rather 
by the set of leaves. From such a tree, it is difficult to visualize 
what is the best complete design so far on any given day of the 
design project. 
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The space of all possible designs is a different tree altogether, 
where each node specifies a sub-tree of products, alike in all 
the decisions down to that node, further differentiated below it. 
We call this the tree of designs. Each leaf is a different complete 
design.

The tree of designs is combinatorially larger than the cor-
responding tree of decisions. For example, a decision tree with 
n independent binary design questions yields a tree of designs 
with 2n nodes. But for any substantial design this tree will be so 
large that it seems implausible that a human could construct it, 
or that doing so would result in any insight. The tree of designs 
is much too cumbersome for actual use in designing.

But the very concept of a tree of designs is instructive and 
clarifying. For example, there is an analogy to agile software 
development: each nightly build corresponds to a node in the 
tree of designs, and each represents the best complete design 
thus far. 

Modular versus Tightly Integrated Designs

In transcribing the Brooks house decision tree, we found that the 
selection among a decision’s alternative options is rarely inde-
pendent of the choices for others. For example, the Music Room 
could have been in the north or west portion of the New Wing— 
a high-level decision—but its placement affected the possible 
placements of the Studies, Living Room, and Kitchen!

This resulted in an awkward decision tree, because some 
alternative solutions had to be combinations of several attributes. 
For example, instead of a “Music Room location” decision with a 
set of simple alternatives, we had these compound alternatives: 

Music Room west; Living Room north

Music Room north; Kitchen south

Music Room north; Kitchen north

And even these were not independent of other design alternatives. 
In Notes on the Synthesis of Form, Alexander [1964] explains 

how this tight dependency (that is, lack of modularity) is a 
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disadvantage, because it makes it hard to revise the design. Thus 
a designer may not just choose among the merits of alternative 
designs per se, but may intentionally and rightly trade off design 
quality against the ease of a future modification. This is precisely 
what Parnas [1979] urges in his extremely fundamental paper, 
“Designing software for ease of extension and contraction.”6 
Moreover, one may need to trade off quality of the design for 
speed and ease of the design process itself.

Modular designs are more readily represented as decision 
trees. Indeed, this may be what we mean by a modular design. 

On the other hand, complete modularity also has drawbacks. 
Optimized designs have components that achieve multiple goals. 
Consider the unibody car: the body is not just for esthetics and 
holding passengers, it is also the structure. The unibody design 
is lighter and stronger than a ladder-frame body. But a ladder-
framed pickup truck can be converted to an SUV more easily 
than can a unibodied one. 

Compendium and Alternative Tools

We investigated several software packages in hope of finding one 
suited for reconstructing and analyzing our specific example of a 
design decision tree. Here’s what we found.

Task Architect

Task Architect7 could indeed be helpful for design, but not in 
the way we were hoping. Task Architect is a tool to facilitate task 
analysis—the structured study of how a job is carried out. Exam-
ples include both manual tasks, such as installing headlights on 
a car assembly line, and mental tasks, such as deciding whether 
to abort a landing. 

Thus, for the Brooks house project, Task Architect might have 
been used to get a better understanding of the Brookses’ use 
cases (cooking, hosting a meeting, teaching music, and so on). 
Task Architect is neither designed nor readily adapted for recon-
structing the decision tree (but we surely did try!).
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Project Management Tools

Like Task Architect, project management tools, such as Microsoft 
Project, OmniPlan, or SmartDraw, might be useful for the process 
of designing a system but don’t appear appropriate for represent-
ing decision trees.

Critical-path methods such as the Program Evaluation and 
Review Technique (PERT) are the underlying models of project 
management tools. PERT seems to support only the Waterfall 
Model. Because there are no conditional tasks/nodes, the PERT 
technique implicitly assumes the major design decisions have 
already been made.8

IBIS and Its Descendants

IBIS (Issue-Based Information System) was designed in the 1980s 
for collaboratively making decisions and documenting the ratio-
nale behind them.9 Like Compendium, it is intended to be used 
during the decision-making process, to keep design meetings 
productive and to help identify weak logic.

For each tool we evaluated, I sketched a transcribing scheme 
to fit our needs to that tool. We first took a quick look at Com-
pendium, and then Task Architect. When we came to IBIS, we 
found that it very naturally supported many of the fields and 
node types that we had decided we needed.

IBIS was a command-line program. gIBIS, by Conklin, was a 
graphical version of IBIS.10 gIBIS would have been more appro-
priate for our needs than Compendium, but we could not find a 
version that worked on our computers. Compendium is in fact a 
descendant of gIBIS. So, back to Compendium.

Compendium

Compendium has many advantages. It is remarkably flexible; it is 
becoming even more so. An active team of developers are extremely 
responsive to requests and cries for help. Compendium’s request- 
and bug-tracking database is online and public. A large commu-
nity of users share a very active online discussion forum. Hence 
Compendium is always growing to handle new uses. 
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Nevertheless, in retrospect we can’t recommend this tool 
either for design itself or for documenting a trajectory and design 
rationales.

As to design itself, we are concerned that if designers use 
a structured annotation or software tool during design, it will 
restrict the ease of having vague ideas, impeding conceptual 
design. In much in the same way, a CAD tool is too precise for 
the quick exploration of creative ideas, whereas sketches allow 
the designer to be vague. Conklin himself noted that gIBIS was 
too structured and cumbersome for certain creative aspects of the 
design process.11 

For our task of reconstructing the decision tree, I don’t 
think Compendium is the most appropriate software tool. Our 
final transcription scheme ended up being very different from 
Compendium’s target usage. Rather than using Compendium’s 
affordances to help me reconstruct the design tree, I had to find 
creative ways of repurposing Compendium’s features (such as 
using Compendium’s Reference node to describe requirements). 

Beyond that, our trees (even with great efforts to reduce 
their size) appear much bigger than Compendium’s user inter-
face readily accommodates, and this design task was small com-
pared to most substantial software projects. It is difficult to find 
nodes in such large trees, and even harder to print or graphically 
export them. 

Our final transcription scheme uses 

Work-arounds for Compendium’s structures • 
Our own self-enforced structures to ensure a consistent • 
design tree, rather than Compendium’s 

Hence I believe that a generic diagramming tool, with features 
such as automatic layout of trees, automatic rerouting of relation-
ship arrows, and searchable associated notes, is better suited to tree 
capture. Microsoft Visio or SmartDraw might be such a choice.

DRed12—A Tantalizing Tool

The biggest success story we’ve heard about in computer-aided 
design rationale documentation is the widespread use of DRed 
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at Rolls-Royce (RR). DRed was developed by Rob Bracewell at 
Cambridge University’s Engineering Design Centre, under the 
sponsorship of Rolls-Royce, BAE Systems, and the UK Engineer-
ing and Physical Sciences Research Council.13 

DRed is designed for capturing design rationales as deci-
sions are made. Its conceptual structure is quite like that of gIBIS. 
In use, it looks very similar to Compendium. But because it has 
been used primarily for rationale capture, DRed’s evolution has 
focused on that function, as distinguished from facilitation of 
design meetings.14

Adoption of DRed in RR was radically facilitated because 
there was already a strong rationale-capture culture in RR. (The proj-
ect’s other sponsor, BAE Systems, has not had such a culture, and 
DRed has not been widely adopted there.) RR engineers were 
already required to write a design-rationale prose report. The big 
step was a management rule that allowed project teams to do a 
DRed document instead of the previously required prose report. 
DRed documentation is much easier to do. 

As Marco Aurisicchio relates, the adoption at RR has been 
extensive. Aurisicchio is Cambridge’s point person for the rela-
tionship with RR and is most familiar with how RR uses DRed. 
He teaches many of the use courses at RR. Michael Moss, of the 
RR corporate staff, is RR’s point person for DRed, to whom RR 
engineers go for direct support. He also filters and prioritizes 
feedback to Bracewell’s team at Cambridge. In Brooks’s view, this 
dedicated two-person link between users and builder has played 
a major role in DRed’s success.

Use modes vary by group, but it is common for DRed con-
tent to be created on a whiteboard during a design meeting. Then 
one person is tasked to turn the captured whiteboard sketches 
into formal DRed documentation. DRed is also created during 
solo design sessions. It is used for both conceptual and detailed 
design. Designers, reviewers, and downstream manufacturing 
engineers use DRed themselves, always without a facilitator.

About 30 percent of all RR engineers, some 600 in several 
divisions and in RR labs across the world, have had at least 
short-course training in DRed use. New engineers learn RR engi-
neering practice in a six-week project course, in teams of four. A 
typical project is a real problem that some group wants solved 
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and doesn’t have the manpower to do; but not an essential proj-
ect, so trainees are allowed to fail.15

The largest DRed tree the Cambridge team has seen com-
prised 190 charts, with an average of 15 nodes per chart. There 
is also for such projects an overview chart, with a node for each of 
the detailed charts.

Of course, RR’s designs evolve. Their DRed charts and other 
documents evolve with the design. The DRed charts are very use-
ful to both presenters and reviewers in the multiple reviews. The 
DRed document is not itself under formal revision control. For-
mal RR revision control is seen as so cumbersome that “if DRed 
were under it, DRed wouldn’t be used.”

A widespread use the developers never imagined for DRed 
is as a tool for steering and documenting the diagnosis of faults 
by product engineering groups responding to field reports from 
all over the world. “Here’s the data as to when, where, and how 
the engine quit, and all the readings captured then. Now, what 
caused it?”

Unfortunately, DRed is not generally available. RR and BAE 
Systems own the intellectual property, and they currently choose 
to keep it proprietary.

Notes and References

MacLean [1989], “Designing rationale,” and Tyree [2005], “Archi-1. 
tecture decisions,” argue for rationale capture. Moran [1996], Design 
Rationale, is a rather complete compendium of the published papers 
on design rationale. Madison [1787], Notes on the Debates in the Fed-
eral Convention of 1787, is a stunning example of complete rationale 
capture. Madison’s text is also available on the Web at http://www.

constitution.org/dfc/dfc_0000.htm.

Noble [1988], “Issue-based information systems for design”; Conklin 2. 
[1988], “gIBIS”; Lee [1993], “The 1992 workshop on design rationale 
capture and use”; Lee [1997], “Design rationale systems”; Bracewell 
[2003], “A tool for capturing design rationale”; Burge [2008], “Soft-
ware engineering using RATionale.”
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Bush [1945], “That we may think,” the great paper proposing a 3. 
Memex system with generalized linking and personalized link 
trails through a knowledge graph much like today’s World Wide 
Web. The technology proposed was primitive, but the concepts are 
visionary and prescient.

Shum [2006], “Hypermedia support for argumentation-based ratio-4. 
nale”; http://compendium.open.ac.uk/institute/, accessed July 25, 
2009.

See the plans in Chapter 22.5. 

Parnas [1979], “Designing software for ease of extension and con-6. 
traction,” uses a tree of designs as its basic framework.

http://www.taskarchitect.com/index.htm, accessed July 25, 2009.7. 

This isn’t exactly right—PERT can help a manager choose among 8. 
design alternatives, based on the schedule implications for each.

Noble [1988], “Issue-based information systems for design.”9. 

Conklin [1988], “gIBIS.”10. 
Conklin [1988], “gIBIS,” 324–325.11. 
This section is based on a joint interview of Bracewell and Aurisic-12. 
chio by Brooks on June 19, 2008. Brooks saw a full demonstration 
that showed the system capabilities.
Bracewell [2003], “A tool for capturing design rationale.”13. 
Aurisicchio et al. [2007], “Evaluation of how DRed design rationale 14. 
is interpreted.”
UNC–Chapel Hill’s software engineering project course applies 15. 
exactly the same criteria for project selection from real users.
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17
A Computer Scientist’s 
Dream System for 
Designing Houses—Mind 
to Machine

Pyramids, cathedrals, and rockets exist not because of 
geometry, theory of structures, or thermodynamics, 
but because they were first pictures—literally 
visions—in the minds of those who conceived them.

euGene FerGuSon [1992], engineering   
and The mind’s eye

UNC GRIP Molecular Graphics System user console
James Lipscomb
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The Challenge

Suppose one could imagine into existence an ideal computer sys-
tem for the architectural design of houses and other buildings. 
What would it be like? 

A Vision

A professional architect is obviously better equipped than I to 
envision an entire “building design” system. Yet because I’ve 
done a little amateur house design, because building architec-
ture is more concrete and accessible to a general audience than is 
software architecture, and because I have for more than 50 years 
worked on human-computer interfaces, I presume to postulate 
my version of the designer-computer interface for a Dream Sys-
tem for Designing Houses.

The interface proposed will heavily reflect the experience 
of my students and me in evolving the UNC–Chapel Hill GRIP 
Molecular Graphics System. Evolution of this real-time interac-
tive graphics system took place over years, as we worked with 
brilliant protein chemists on tools for challenging tasks.1

This essay will treat only the process of functional design of 
houses, not the processes for structural or systems engineering, 
although I think the same system would be useful for the struc-
tural engineering, the mechanical and electrical systems, and 
even the furnishings.

There have been other dream systems for design. Ullman 
[1962] devotes an essay to such a system for mechanical design.2 
Yet our scopes are quite different. Ullman seeks a program to 
handle as much of the knowledge management as possible, a 
valuable objective. I am here principally concerned with the com-
munication between the designer’s mind and the automatic sys-
tem, for I consider the designer’s mind to be paramount.

Progressive Truthfulness

Good design is top-down. One starts a prose document with an 
outline that identifies the key ideas and then the subordinate 
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ones. One begins a program by thinking about a data structure 
and an algorithm. One starts thinking about a house plan by 
identifying the functional spaces based on the use cases, and 
then their connectivity. One early on addresses a building’s 
esthetics in terms of massing.

Great designers, even the most iconoclastic, rarely start 
from scratch—they build on the rich inheritance from their pre-
decessors.3 They take an idea from here, an idea from there, add 
some of their own, and wrestle the mix into a design that has 
conceptual integrity and a coherent style of its own.

The usual technique is to begin a design with precedential 
ideas but blank paper. One sketches in the big units and then 
proceeds by progressive refinement, adjusting dimensions and 
adding more and more detail.

Turner Whitted in 1986 proposed that another, perhaps bet-
ter, way to build models of physical objects (originally in the 
context of computer graphics) is to start with a model that is 
fully detailed but only resembles what is wanted. Then, one 
adjusts one attribute after another, bringing the result ever 
closer to the mental vision of the new creation, or to the real 
properties of a real-world object.

Whitted called his technique progressive truthfulness.4 In a 
very real sense, progressive truthfulness is precisely the pro-
gram of the natural sciences over the past few centuries, as their 
models approach the existing natural creation.5 

With human design of artifacts, the very process of design-
ing occasions changes in the mental ideal that the design 
approaches. Progressive truthfulness radically helps. One has at 
every step a prototype to study. The prototype is initially valid; 
that is, there are no inconsistencies in structure. The prototype 
is always fully detailed, so that visual and aural perceptions of 
it do not mislead. 

So one can imagine a house design sequence such as this:

“Give me the Three-Bedroom Georgian House.” • 
“Face it north.”• 
“Mirror-flip it left to right.”• 
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“Make the living room 14 feet wide.”• 
“Shrink the kitchen depth by a foot.”• 
“Make the exterior white stucco instead of brick.”• 
“Make the roof pantiles instead of shingles.”• 

I find Whitted’s vision convincing, and I will postulate that 
approach for this Dream System. It could bring about a change 
in how one does design. New tools can lead us to better ways of 
thinking.

The Model Library

Hence the Dream System starts with a rich library of fine speci-
mens of fully detailed designs. Starting with exemplars that 
themselves have consistency of style ensures that such consis-
tency is the designer’s to lose. The model library itself grows as 
the system is used. For remodeling, computer-vision methods of 
capturing a 3-D object and reducing it to a structured model will 
be necessary. 

In our first imagined house-uttering sequence, the designer 
acted as if intimately familiar with the exemplar library: he called 
out an exemplar by name. 

No matter how experienced the designer, as the library 
grows, this easy familiarity will be lost. As with any large terrain, 
one will be quite at home in parts, passably competent in others, 
and an explorer elsewhere. The novice will explore everywhere. 
Hence the ability to scan the library hierarchically and otherwise 
is crucial. 

Structuring the library most helpfully is a prime taxonomic 
task, but much terminology and conceptual structure already 
exist.6

Hazards of the Progressive Truthfulness Mode

Although I postulate that progressive truthfulness is how the 
most productive and easy-to-use design systems must be built, it 
has its inherent hazards.
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Some will argue that broad exposure to exemplars will 
implicitly limit the designer’s creativity. Could the designs of a 
Brunelleschi, a Le Corbusier, a Gehry, a Gaudí, emerge from the 
minds of designers so indoctrinated? 

I submit that they did. None were amateurs. All trained by 
studying precedents. Like Bach, they innovated from mastery, 
not ignorance. The Grandma Moseses of the world are few. 

Perhaps more relevant, these “but what about?” examples 
represent a minute fraction of designs, and a great tool doesn’t 
have to provide for discontinuities.

The true hazards of progressive truthfulness lurk in the 
library. Bad models, too few models, too narrow a variety of mod-
els—these shortcomings will most limit the emerging designs. 
This hazard will be worst at the beginning. 

A Vision for Input from Mind to Machine

Whether designing from an exemplar or de novo, how does one 
transform thought-stuff into a computer model?

one wants to utter one’s castle in the air into existence, 
using the voice, both hands, the head, and conceivably the feet. 
Buxton, his colleagues at Alias Systems, and his students at the 
University of Toronto have pioneered two-handed interfaces.7 
The dominant hand makes the precise manipulations; the non-
dominant hand provides framing context (hereafter right and 
left, for simplicity). Both hands together provide approximate 
dimension—”So big.”

The Noun-Verb Rhythm

In design languages, as in imperative languages in general, each 
utterance has a verb and a noun, the object. The noun may have 
a selecting “which” adjectives, phrases, or clauses. The verb may 
have an adverbial phrase (Figure 17-1). A linguistic curiosity is 
that many verbs assign adjectives to the object noun: “Make this 
door 32 inches wide.” “Color the west wall green.”
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VERB OBJECT NOUN

ADVER
B

AD
JEC

TIVE

Figure 17-1 Structure of an imperative sentence

In spatial design languages, one usually wants to specify 
the noun by pointing—a task for the hand(s). The voice is the 
natural instrument for verbs; the Windows-Icons-Menus-Point-
ing (WIMP) interface uses an unnatural input, the menu. To be 
sure, the menu has the tremendous advantage of showing the 
options. For the user traversing familiar tasks, however, this is 
not necessary. 

Users at work at a WIMP interface proceed with a regular 
rhythm: point to or key in a noun specification; then point to a 
menu command (verb). Thus, in editing a document, one selects 
a block of text, points to “Cut”; perhaps selects another, points to 
“Copy”; selects an inter-character location, points to “Paste.”

Specifying Verbs

The one-handed rhythm is in fact irritating and counterproduc-
tive. By moving the pointer away from the noun field to the verb 
menu, one loses one’s place. The next noun is usually close to the 
previous one—back goes the pointer to about where it was. To 
avoid this disorientation, special ways have been developed for 
high-frequency verb specification. Double-clicking becomes an 
“Open” verb; keying specifies an “Insert.” 

The most common verbs have keyboard equivalents, exe-
cuted with the left hand. This technique is a brilliant invention. 
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The novice always has available the standard technique—verb 
selection from a menu. The expert has techniques that are faster, 
exploit both hands, and leave the pointer positioned in the noun 
field. Best of all, the novice can acquire expertise one verb at a 
time, according to his own use frequencies. 

Voice Commands. But voice is the natural mode for giving 
commands. So our Dream System will have a limited-vocabulary 
voice recognizer with wide tolerance for voice differences, a rich 
synonym vocabulary, and a user-modifiable dictionary. The menu 
option is kept active, as is the keyboard one. The hoarse user has 
lost no options. 

General Verbs. Today’s architectural CAD systems embody 
a richly developed set of general verbs, based on years of cus-
tomer experience. There are perhaps too many, but if any user 
can choose a personal palette and thereafter select most readily 
from it, usability is not hampered. 

Examples include 

Rotate• 
Replicate• 
Group• 
Snap• 
Align• 
Space Apart• 
Scale• 
Select object from Library• 
Name• 

Select object from Library is perhaps the most useful of these, 
whether or not one takes the progressive truthfulness approach. 
We do, and that approach elevates library selection in frequency 
and importance. 

The library will have all objects in one scale; the frequent 
verb will be Select and Scale, where the scaling is automatically 
set by the current working scale. 
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Specifying Nouns

What a variety of ways we use for specifying objects and regions 
of the space and time continuum! 

By Name. In most conversation we specify objects by an explicit 
name or a name implicit via a pronoun. We want to do the same 
in the Dream System. Even with 100 percent effective voice rec-
ognition, this is still harder than it looks. To what does “the left 
one” refer? “The front one”? “The red one”? “The biggest one”? 
“It”? Even when the pointing is unambiguous, the scope of selec-
tion is often not. Making a system as smart and natural as a 
three-year-old requires syntactic analysis, semantic analysis, and 
the saving and use of context. 

Moreover, the same object is called by different names, and 
different objects by the same name. Deriving standard defini-
tions for a joint Army–Navy–Air Force database proved a huge 
job. Just “What time is it?” was challenging. The Air Force used 
Greenwich time; the Army used local time; each Navy ship used 
the local time where its battle-group aircraft carrier was. 

So our Dream System must enable individual users and user 
groups to create individualized synonym dictionaries that sup-
plement and override the system dictionary. Rationalizing model 
library nomenclature is much too deep a morass for our system 
builders; the users must have and wield the tools. 

By Pointing in 2-D. The stunning success of the WIMP inter-
face demonstrates the power of pointing for selecting defined 
and visible objects. This mode will indeed have very high use 
frequency. 

But it is not sufficient. When we built the GRIP system, I 
assumed our first client chemist would select one of several hun-
dred amino-acid residues in a protein by pointing to it. No, he 
wanted a keypad so he could specify a residue by a three-digit 
residue number. He had worked with that particular protein for 
years; he knew the numeric names of those residues as well as he 
knew the names of his children! Pointing required adjusting the 
viewpoint until the target residue was clearly visible in the 3-D 
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tangle. Moreover, extending the arm holding the light pen was 
fatiguing. 

By Sketching in 2-D. Architects design 3-D entities. But their 
principal mode is 2-D drawing, both rigorous and sketchy. This 
is true even though their fanciest 2-D projections are such lim-
ited portrayals of 3-D objects. Sketching appears essential to the 
thought process.8 

I do not believe this primacy of 2-D drawing will ever change, 
no matter how rich and handy the 3-D modeling tools become. 
The retina is 2-D. The flat surfaces that so easily guide the hand 
are 2-D. Therefore, our Dream System must feature 2-D pointing 
and sketching, as with a pen pad that detects not only position 
but also pressure.

For defined 2-D spaces, such as maps or blueprints, one often 
needs to specify both where and how much region. Hierarchical 
subdivisions such as states, countries, or rooms make this how 
much specification much easier. 

Precise specification of both where and how much calls for a 
two-handed operation. Consider drawing a line of a precisely 
specified length. The right hand holds the pen telling where; the 
left works the numeric keypad telling how long. 

Pointing and Sketching in 3-D. All of the above considerations 
for 2-D apply in 3-D. Pointing is inherently more fatiguing—one 
must hold the hand up. Finger-wrist-elbow movements have 
about the same relative precision as hand-elbow-shoulder move-
ments, so one wants a primary working volume where both 
elbows rest most of the time.9 

Specifying arbitrary spatial regions and their rotations is more 
difficult than specifying objects and their positioning. In conver-
sation we usually specify arbitrary regions with two hands in 
motion: “The cloud was shaped like this.” That’s how our Dream 
System should work. Much work has been done on widgets and 
affordances for 3-D specification.10 Much of the work aims to 
yield freehand specification; much of it just provides more awk-
ward substitutes for it. 
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Specifying Text

Most text blocks will be short strings, mostly names and dimen-
sions, on the design drawings. Voice recognition is the tool of 
choice for these, as with verbs.

Specifications will consist of blocks of text, standard para-
graphs chosen from a database and parameterized. For creat-
ing new substantial text, dictation has largely died out because 
one can type and edit paragraphs much faster than one can dic-
tate and edit. For both of these kinds of text tasks, one needs an 
alphanumeric keyboard.

In our UNC GRIP system, we found it advantageous to slide 
the keyboard away under the work surface. In practice, it stayed 
there most of the time; I would expect the same to be true in the 
Dream System.

Specifying Adverbs

“Move.” 
“Which way? How far? To Where?”

“Rotate.” 
“Which way? How far?”

“Duplicate.” 
“How many? Which direction? Spaced how?”

“Select door and scale.” 
“How wide?”

The command dialog consists of not only verbs and nouns; most 
verbs have adverbial modifiers, usually prepositional phrases.11 

Most Such Adverbs Will Be Quantitative. Moreover, those 
must be precise; pointing on a tablet rarely suffices. Much of this 
precision is specified indirectly by auxiliary verbs: Snap To, Align 
With, and so on. 

Much is specified by selection from limited menus: color pal-
ettes, materials lists, finish schedules. Menu selection is cognitively 
and economically cheap. House designs, like computer memory 
accesses, exhibit very strong locality—for any given design deci-
sion, there may be many independent choice alternatives, but 
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most choices are made from a small subset. Customizable menus 
are essential. 

The remaining quantitative precision is best specified by 
a numeric keyboard. In our experience, this gets much use. 
One doesn’t want to put it away as one does the alphanumeric 
keyboard. 

Specifying Viewpoint and View

Most creative architectural work is done on plans and sections, 
but one checks the work by looking at the 3-D design whole, and 
from many vantages including walking through it. Specifying the 
current view of a 3-D house design is an important special case of 
noun + adjective specification. 

One changes some viewing parameters continually and some 
infrequently. This distinction is not the same as dynamic ver-
sus static. One wants even infrequently changed parameters to 
change dynamically and smoothly. 

Interior Views

In simulating a walk through a house, x, y location and head 
yaw change continually. One slides a viewpoint about on a 2-D 
drawing representing one building floor and turns the gaze in 
the same plane. 

Eye height above the floor changes rarely. Most often, one 
moves to the same height on a different floor. Infrequently, one 
adjusts eye height proper, to fit a different designer or to envision 
the perspectives of different users. 

Roll is rarely changed. We just don’t roll our heads much. 
Pitch movements are much more common—look down, look 
up—but they are far less frequent than x, y and yaw movements.

The EyeBall. We found a special I/O device to be ideal for 
specifying interior views in architecture. The EyeBall consists of 
a six-degrees-of-freedom tracker housed in a billiard ball whose 
bottom half inch has been sliced off. It is equipped with two but-
tons readily pushed by the forefinger and the middle finger (Fig-
ure 17-2). One glides it over a work surface to move a V-shaped 
cursor on the plan.
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Figure 17-2 UNC–Chapel Hill EyeBall viewpointer device
Kelli Gaskill, University of North Carolina

This device enables natural continual specification of all six 
view parameters—viewpoint (3 parameters), view direction (2 
parameters), and view roll (1 parameter)—while heavily favoring 
x, y, yaw. The forefinger’s button is that of a one-button mouse; 
the other button is a clutch. One moves the viewpoint to an upper 
floor by raising the EyeBall, clutching, lowering it to the table, 
and unclutching. Eye height above the floor stays unchanged. A 
nice property is that the viewpoint continually moves in z, as if 
one is in a glass elevator; there is no visual discontinuity, so one 
doesn’t get lost in the model so often.

The EyeBall has another mode of use besides gliding over 
plans to specify interior views. Assume one always has, as a con-
text index, a 3-D model on one side of one’s workstation, with a 
“You are here” light showing viewpoint. Then, one can easily point 
within this index and say, “Put me there, looking that way.”12
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In either mode, eye height is set by a slider, usually very 
rarely. Two buttons default it to that of the 5th-percentile woman 
or the 95th-percentile man.

Exterior Views

The “Toothpick” Viewpointer. As I elaborate in the next chap-
ter, any design workstation needs multiple views of the object 
being designed: the workpiece on which one is manipulating 
plus context views.

For a house, one context view may be a view from the out-
side, or a view of a whole room or interior wall. For specifying 
an arbitrary exterior view of an object, we have found the most 
useful device to be a two-degrees-of-freedom positional joystick, 
as shown in Figure 17-3.

Figure 17-3 Toothpick viewpoint device; copy of a UNC device made 
by Professor Charles Molnar’s group at Washington University, St. Louis 
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This is readily manipulated, usually by the left hand, to 
specify the direction from which one is looking at the object. The 
rest position has the Toothpick pointing to the user. To give a full 
4p-steradian selection of views, we doubled the angle of displace-
ment of the Toothpick from its rest position. Thus, when it is 
moved completely to the left or right, one’s view moves around 
the object to look at it from the very back. Our users found this 
doubling easy and natural, rather to my surprise. This is supple-
mented with frequently used default buttons specifying the four 
elevations and some three-quarter views (from the corner of an 
aligned encompassing cube), and a rarely used slider that speci-
fies the viewing distance.

Depth Perception. Massing, the relative placement of filled and 
empty volumes, is an important consideration in architectural 
esthetics. Perceiving it requires 3-D perception. The most power-
ful depth cue is the kinetic depth effect, the relative motion of eye 
and scene. This cue is stronger even than stereopsis, and the two 
together are very powerful. 

So how does one specify the motion wanted? Clearly the 
EyeBall can be used to move the viewpoint arbitrarily, but that 
requires work. One would like to study massing while think-
ing. On the UNC–Chapel Hill GRIP Molecular Graphics System, 
we found that rocking the entire scene about the vertical axis 
greatly helped perception while thinking, so we provided a rock-
ing mode in which the scene behaved like a torsion pendulum 
whenever no action was being taken. The controls enabled the 
user to specify both the amplitude and the period of the rocking, 
although usually default values were used.

Notes and References

Brooks [1977], “The computer ‘scientist’ as toolsmith”; Britton 1. 
[1981], The GRIP-75 Man-Machine Interface; and Brooks [1985], “Com-
puter graphics for molecular studies,” describe the system. The user 
interface was remarkable in that it had 21 degrees of freedom for 
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modifying the model and controlling the display, plus keyboards. 
All were in fact used. No device had more than three degrees of free-
dom; there was no device overloading. Users instinctively reached 
to known locations to change values.

Ullman [1962], “The foundations of the modern design environ-2. 
ment,” in Cross [1962b], Research in Design Thinking. 

Alexander, 3. Notes on the Synthesis of Form [1964], A Pattern Language 
[1977], and The Timeless Way of Building [1979], are all highly rel-
evant here.

Turner Whitted, personal communication [1986].4. 

Computer graphics also used progressive refinement in scene illu-5. 
mination, back when computers were slow. In the first 1/30 second, 
one renders an image with simple ambient lighting. In subsequent 
frame times, one iteratively calculates the more sophisticated radi-
ositized illumination. The visual effect is dramatic—in a building 
interior image, for example, the shadows flee away to the corners of 
a room as the lighting sweetens from ambient to radiositized. 

See, for example, the 40 styles of houses at http://www.houseplans.6. 
net/house-plans-with-photos/ (accessed July 30, 2009).

Buxton [1986], “A study in two-handed input.”7. 

Goel [1991], “Sketches of thought.”8. 

Arthur [1998], “Designing and building the PIT.”9. 

For example, Conner [1992], “Three-dimensional widgets.”10. 
One can imagine building the system so that it asks such follow-up 11. 
questions after a noun or verb is incompletely specified. If so, one 
must be able to turn it off; expert designers will know implicitly 
what must come next, and the distraction would be intrusive.
Stoakley [1995], “Virtual reality on a WIM.”12. 
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18
A Computer Scientist’s 
Dream System for 
Designing Houses— 
Machine to Mind

When we mean to build,  
We first survey the plot, then draw the model;  
And when we see the figure of the house,  
Then we must rate the cost of the erection;  
Which if we find outweighs ability,  
What do we then but draw anew the model 
In fewer offices, or at least desist  
To build at all?

william SHakeSPeare [1598],
henry iv, ParT 2 

Vision for a house design workstation
Drawing by Andrei State
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Two-Way Channel

Mind-machine collaboration demands a two-way channel. The 
broadband path into the mind is via the eyes. It is not, however, 
the only path. The ears are especially good for situation awareness, 
monitoring alerts, sensing environment changes, and speech. The 
haptic (feeling) and the olfactory systems seem to access deeper 
levels of consciousness. Our language is rich in metaphors sug-
gesting this depth. We have “feelings” about complex cognitive 
situations on which we need to “get a handle” because we “smell 
a rat.” 

Visual Displays—Multiple Concurrent Windows

Computer-using designers have customarily worked with one 
active window. Yet computer scientists have long understood 
that designers need at least two, and that screen sizes have been 
far too small.1 What visual displays would one in fact want in a 
Dream System for Designing Houses?

The Drafting Table and Drawing View

Since I believe 2-D drawings will always be primary for actual 
design, the first display is an electronic drafting table. 

Angle.•  In standard manual drafting, a vertical display and 
tiltable work surface are perforce combined, but electronics 
liberates. Separating the two means the hand and arm no 
longer obscure the view. Studies show that users have no 
difficulty moving a mouse or pen on one surface correlated 
with a display on another. 
Work surface size.•  Drafting tables vary, but 30 x 48 inches is 
common. These dimensions are set by the arms’ reach. 
Display resolution.•  It should be that of the human eye, 
about one minute of arc—a 1,920-pixel computer screen at a 
distance twice its width. Such flat-screen displays now grace 
many offices.
Display viewing distance.•  Projection on a screen 6 to 8 feet 
away relieves eyestrain for the individual designer.
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The object on the table is almost always a 2-D drawing. The 
object on the screen may be the drawing, other renderings, and so 
on. Layering of the displayed drawings with controllable trans-
parency, as is routinely done today, is an indispensable technique 
for focusing attention on some one aspect while maintaining con-
ceptual context. 

The 2-D Context View

In all our UNC systems where we’ve watched users doing real 
design work, whether architectural, molecular, or 2-D diagrams 
for publication, we see a universal sequence: 

Study a big spatial chunk for context.1. 
zoom in.2. 
Create or manipulate some local portion.3. 
zoom out.4. 
Repeat.5. 

Obviously, the historical limitation of one time-shared win-
dow enforced this unnatural and wasteful behavior. One wants 
a context view and a detailed view simultaneously, switching by 
movement of eyes rather than hand. We must provide that. More-
over, it won’t do to provide the context window as a thumbnail 
in some corner of the detailed view—one needs to see the details 
in it, too. With current prices, no serious design shop can have 
any excuse for being display-constrained. Have two big screens 
showing these two views all the time!

Usually, the context view will be spatial, normally the entire 
plan. But for operations such as object selection from a library, 
one view might well be the library (a hierarchical tree representa-
tion or the contents of a particular node), the other still the draw-
ing where the object is to be placed. 

The 3-D View

People live and move in 3-D houses, not 2-D abstractions. In the 
Dream System, the designer continually sees the 3-D house as 
currently specified—always in full detail. 
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Projection virtual-environment technology seems quite 
suited for this. One doesn’t want a completely immersive envi-
ronment, such as a CAVE; a small vertical dome would be 
superb. Even a single standard 3-D view window would serve 
nicely. The designer is surely seated at the drafting surface, not 
walking about. He surely has a set of controls handy. This 3-D 
display is an auxiliary creation tool, whereas the CAVE was 
designed for viewing, not creation. 

Several technical issues arise. First, one does not want 
to wear stereo glasses all the time while designing. The eyes 
work hard enough without that burden. So one wants a mode 
switch—perhaps a foot switch. Or, the 3-D display can be 
autostereoscopic. 

Next, houses generally have flat walls, and so can projection 
screens. Of course, one wants the viewpointer, ideally an EyeBall, to 
control standard modes where yaw rotations spin the scene around 
the viewer and vice versa. But the Dream System also wants a 
snapping mode that aligns the view to a flat house surface. 

Exterior Views

Especially useful viewings are the house from outside, with a 
wide field of view. As with interior views, one wants viewer 
controls of the hourly and seasonal positions of the sun. 

Viewpoint control for exterior viewing is ideally different 
from that for interior viewing. One usually wants to specify x,
y on the context display and to have view direction continually 
default toward the center of the house. Thus one easily walks 
around a house.

A dramatic exterior view is the house at night with the inte-
rior lights ablaze. The effect, if overly exploited by the painter 
Thomas Kinkade, is charming, attractive, homey.

I have found a third exterior view to be unexpectedly use-
ful—the night view with the near wall dynamically eliminated. 
Circumnavigating a building in this mode gives a comprehen-
sive grasp (Figure 18-1). 

From the Library of Wow! eBook



ptg

Visual Displays—Multiple Concurrent Windows 223

Figure 18-1 Cutaway view of an apartment
DeltaSphere, Inc.

The Workbook View

Yet another window concurrently displays the designer’s work-
book. Designers come to design stations with 

In-progress designs• 
Action plans • 

They take away

Updated in-progress designs and future action plans• 
Logs capturing all actions; these, or the version-control sys-• 
tem, enable automatic backtracking
Notes, ideally dictated so as to leave the hands free to design, • 
as to what was tried, and why, what was rejected, and why, 
and what was kept, and why

The whys, which cannot be captured from the action log, are cru-
cially important for any complex design. They wonderfully aid 
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refreshment after interruption. They remind one of the branching 
thought trails skipped as one explored a particular design alter-
native. The whys are priceless for new team members and for a 
designer’s project heirs. 

Ideally, the action plan and the resulting notes are interleaved 
in one document, distinguished by color or font. 

In the Dream System, two page-corner inserts in the action 
log show the current value of the cost estimate and of some other 
budgeted commodity, such as square feet. 

The Specification View

Construction requires not only drawings, but also prose specifi-
cations. Ideally, these grow to finality contemporaneously with 
the drawings, not afterward.

This is not nearly so hard as it first seems, given the progres-
sive truthfulness mode of design. Specifications are highly styl-
ized. If each of the starting models in the library has its specs, 
the designer can work by changing them as he goes. This task is 
made radically simpler by the vast collection long called Sweets 
File, now Sweets Network.2 Many million products are listed,   
pictured, described, and specified there. McGraw-Hill Construc-
tion maintains the file and its taxonomy; product vendors provide 
the contents; architects and contractors subscribe to the service. 
Everybody wins.

So the Dream System needs a fourth 2-D window, the con-
tinually refined prose specifications. Ideally, a change made in 
this display can be automatically reflected in the drawing dis-
play. Since many Sweets Network product descriptions already 
include CAD models in standardized form, this link is not con-
ceptually difficult. Propagating changes from the drawing back 
to specification is much more difficult—a research problem.3 

Audio Display

I was stunned, many years ago, to watch a videotape in which a 
group of Helsinki architects showed a computer graphics simula-
tion of a proposed redevelopment project. The visuals were good 
but not exceptional. But the video included recorded playground 
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sounds. Even though no people were visible, the offstage noises 
made the whole scene leap to life. 

Delivering audio displays is easy; building the sound models 
to be displayed is challenging. One wants to plant, at locations 
both indoors and outdoors, sound sources: a TV, traffic, a wash-
ing machine, young children playing/squabbling. Then, as one 
walks through the virtual house, one wants to hear the result, to 
look for both pleasure and nuisance. 

The necessary acoustic simulation technology is well in hand.4 
What cannot currently be done in real time can be approximated 
and the display progressively refined. The march of processor 
speed will solve such difficulties.

The challenge is doors and windows. Which ones are open? 
How far? The combinations explode. Both designer specification 
and designer exploration seem easy in principle and tedious in 
practice. An obvious exploration aid would be a sound-intensity 
plot, as of ear height, gridded over the entire house drawing, and 
responding to interactive opening and closings of orifices. This 
visual display could suggest where to listen. The EyeBall is again 
a handy device for specifying the location and orientation in the 
model for the listening head.

Haptic Display

Haptic displays seem to get to our guts (and hearts) like no other 
modalities.5 Nevertheless, try as I might, I have not conceived 
of any plausible use of existing haptics technology in the Dream 
System.

Generalization

From the specifics of the Dream System for Designing Houses 
one can readily generalize to many other domains. A dream sys-
tem for building software, for example, would not benefit from 
all the 3-D capabilities. But it should incorporate the rich starting 
library, the Design Display, the Context Display, the Workbook 
Display, and a Test Cases Display, all suitably cross-linked. 
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Feasibility

Can the Dream System now be built? Unquestionably, yes. All 
the technologies are well within reach. Can it now be an afford-
able tool even for relatively modest projects like the design of 
individual houses? I believe it can, at least in larger firms that can 
invest the capital and can time-share the system among multiple 
designers. 

How would one build it? Incrementally! Any all-at-once proj-
ect to build such a superficially pondered system would almost 
surely fail. But growing it, incrementally, with continual trials by 
real designers, would work. The hardest part would be assem-
bling a good initial library of starting models. 

One can imagine an academic research project that devel-
ops a framework, and the necessary standard input format and 
description format, and then solicits Open Source contribution 
of models. This is a place where the prestige incentive of the 
Open Source model could work well.6 I should think that archi-
tects might view having their house, room, or other project in the 
library as yielding not only prestige, but also advertising, like 
having it featured in a magazine. It would not be too hard to 
automatically winnow a massive central library based on usage. 
If it isn’t viewed, out it goes.

Notes and References

Brooks [1995], 1. The Mythical Man-Month, 194.

http://products.construction.com/.2. 

The heavy machinery in the system basement required to do 3. two-
way linking, even in the much simpler case of text editing, may be 
grasped from Ken Brooks’s Lilac system, described in “A two-view 
document editor with user-definable document structure” [1988] 
and “A two-view document editor” [1991]. The difficulty is that one 
view contains much more information than the other, so making 
modifications in the simpler view requires deducing and injecting 
information into the complex view.
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Svensson and Kristiansen [2002], “Computational modelling and 4. 
simulation of acoustic spaces.”

Meehan [2002], “Physiological measures of presence in stressful vir-5. 
tual environments.” 

Raymond [2001], 6. The Cathedral and the Bazaar, Chapter 4, “The magic 
cauldron.”
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19
Great Designs Come from 
Great Designers

Not from Great Design Processes

The basic premise underlying the SEI’s [Software 
Engineering Institute] work on software process maturity 
is that the quality of a software product is largely 
determined by the quality of the software development 
and maintenance processes used to build it.

mark Paulk [1995], “tHe evolution 
oF tHe Sei’S caPaBility maturity 

model For SoFtware” 

…[W]hile some may see them as the crazy ones, we see 
genius, because the ones who are crazy enough to think 
that they can change the world, are the ones who do.

Steve JoBS, aPPle commercial (1997)

Thomas Jefferson
iStockphoto
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Great Designs and Product Processes

The authors of the opening quotes could hardly disagree more. 
Who’s right?

I have earlier listed a little personal classification of well-
known computer products, divided according to whether or 
not a product has passionate fans. It is expanded as Figure 
19-1, with some more recent additions. I believe this division 
reflects some greatness in the designs. (It does not at all cor-
respond to commercial success, which depends complexly on 
many factors besides design quality.)

A striking thing about this chart is that, so far as I can 
determine, every one of the right-hand products was produced 
by a formal product process, one involving many inputs and 
many approvals. Each of the left-hand products was produced 
outside a normal product process. 

Examples abound in other fields: the atomic bomb, the 
nuclear submarine, the ballistic missile, the stealth airplane, 
the Spitfire, penicillin, the intermittent windshield wiper. 
Each of these innovations was produced by a small team, 
either naturally or intentionally set apart from normal prod-
uct processes.

Yes No

iPhone Cell phone

Apple II PC

Macintosh Interface Windows 

UNIX z/OS (MVS)

Pascal Algol 

Fortran Cobol

Python Appletalk

Figure 19-1 Computer product fan clubs  
(After Brooks [1995], The Mythical Man-Month, Figure 16-1) 

From the Library of Wow! eBook



ptg

Product Processes—Cons and Pros  233

Product Processes—Cons and Pros 

This observation, even if true frequently but not always,1 raises 
important questions: 

Why do so many great products issue outside product • 
processes?
What are product processes for? Why have them? • 
Can one do a great design within a product process? How?• 
How can we make product processes that encourage and • 
facilitate great designs, rather than inhibiting them?

Do Product Processes Stifle Great Designs?

I believe that standard corporate product design processes do 
indeed work against truly great and innovative design. Consid-
ering how and why corporate processes evolve, this is not hard 
to understand. Product processes exist to bring order out of the 
natural chaos that develops new products.

By its very nature, process is conservative, aiming to bring 
similar but somewhat different things within one orderly frame-
work. Hence the really dissimilar, the highly innovative, doesn’t 
fit the framework. Consider the personal computer, not really the 
same thing at all as the institutional glass house of the 1960s or 
the central departmental minicomputer of the 1970s.

By its very nature, a product process aims at predictability:
a product roughly defined by business needs before any great 
designer has spent substantial time on the problem, to be deliv-
ered at a stated time at a stated price. Predictability and great 
design are not friends.

By its very nature, a product process “fights the last war,” 
encouraging tactics that have worked in the past and discourag-
ing those that have failed. Hence for the product addressing a 
new war—a totally new need or mode of operating—both kinds 
of tactics may be irrelevant. Consider the iPhone, not really the 
same thing at all as a simple mobile phone, much less the land-
line instrument Alexander Graham Bell invented and his AT&T 
monopolized.
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By its very nature, a product process is veto-oriented, aimed at 
blocking bad ideas and catching oversights. The process aims to 
inhibit products that won’t sell as hoped, products that cost more 
than expected to deliver, promises about function and schedule 
that can’t be kept. More subtly, a corporate product process also 
aims to inhibit a confused product line, where one’s own prod-
ucts are one’s most deadly competitors, and customers don’t 
know what to buy. Since failure can arise from many causes, 
product processes typically demand consensus by many people, 
each expert in a separate cause of potential failure.

Such consensus stifles great design in several ways. First, 
each expert watchdog is paid to avoid mistakes, not to make 
great things happen. So each is separately biased toward finding 
reasons not to proceed. Even when a really new product is not 
vetoed, consensus mechanisms often take off the sharp edges by 
forcing compromises. But the sharp edges are the cutting edges!

Next, product processes require not only consensus among 
the living and present, but consensus with the past, as codified 
into rules. Product processes grow, and as with all bodies of 
rules, each mistake-experience begets new rules or new approv-
als to prevent repeats. There are few barriers to the birth of such 
extra rules, and, once they are born, there are no forces for their 
elimination until a crisis comes. By the very nature of things, 
bureaucracies become more Byzantine, processes heavier, and 
organizations less nimble as they succeed and grow.2

When I was managing the development of IBM’s System/360 
computer family hardware in the early 1960s, our S/360 Model 20 
mainframe was being developed in IBM’s laboratory in Böblin-
gen, Germany. This team had great talent and strong leadership. 
Yet, although they had been in operation for many years and had 
produced successful products for specialized markets, they had 
never quite succeeded in getting a product into IBM’s main prod-
uct line, its worldwide market. For the “bet your company” Sys-
tem/360 project, this was scary, so I went to investigate. 

The reason became clear. The engineers had always consci-
entiously and scrupulously followed IBM’s official Corporate 
Product Procedure, as documented in a manual of more than 
100 pages. Successful project managers in other labs made bold 
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“exceptions” to the procedure rules at the right times; the secret 
to success was choosing wisely!3 I sent such an experienced pro-
cedure manipulator to manage the project. He enabled the strong 
talent there to realize its potential. The S/360 Model 20 became 
phenomenally successful.

Finally, consensus processes starve innovative design by 
eating the resource. Consensus building takes meetings, lots of 
meetings. Meetings take time, lots of time. Great designers are 
few and far between; their time is exceedingly precious.

So Why Have a Product Process at All? 

Am I quixotically advocating a revolutionary overthrow of all 
corporate design processes, in favor of creative chaos? I am not. 
Many of the reasons for process noted above are inescapable. At 
some point, corporate approval to go ahead must be obtained; at 
some point, experience should be tapped to catch obvious over-
sights; at some point, a product schedule and budget must be 
agreed. The trick is to hold “process” off long enough to permit 
great design to occur, so that the lesser issues can be debated 
once the great design is on the table—rather than smothering it 
in the cradle.

Follow-on Products. Further, a product design process will 
always have an important role because most designs are not 
intended to be highly innovative. This is for good reasons. Once 
users get their hands on a successful and truly innovative prod-
uct, at least four separate effects follow:

Use reveals shortcomings that need to be corrected in follow-• 
on products.
Users will put the innovation to unexpected uses, enlarging • 
the product concept, usually in an incremental way.
The innovation’s demonstrated usefulness creates a demand • 
for a more capable product, and a readiness to pay more 
for it.
Yet simultaneously with all these drivers for change, popu-• 
larity breeds lock-in; users don’t want the next product to be 
“revolutionary”—they want what they know and like.
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Thus, follow-on products are much more highly constrained 
and have less room for true innovation. At the same time, suc-
cess breeds multiple opportunities and possible directions for 
enhancements in follow-on products. Yet no organization can 
do everything. So these follow-on products must be carefully 
selected from the range of possibilities. Their development must 
be monitored to ensure that the product stays on track to accom-
plish its chosen objectives and reach its forecasted customers. 

Product processes, with their repeated cycles of 

Product definition• 
Market forecast• 
Cost estimate• 
Price estimate • 

efficiently accomplish this selection and this monitoring. 
But accurate market forecasting depends on having some 

sales experience with similar products. Accurate cost estimating 
depends on having some development and manufacturing expe-
rience with similar products. 

Thus, product processes are, properly, designed for follow-on 
products. For innovation, one must step outside of process.

Raising the Level of Design Practice. Product design and 
release processes cannot turn good designers into great ones. 
They rarely produce great designs without a great designer. But 
the disciplines imposed can bring up the low end of the design 
curve and improve the average performance of the art. That’s 
nothing to sneeze at. 

The software engineering community has given much atten-
tion to its development processes. It has needed to, for I know of 
few design communities where average practice is so far behind 
best practice, and where worst practice is so far behind average 
practice.

The work of Watts Humphrey and the Software Engineering 
Institute in developing the Capability Maturity Model and ener-
getically prosecuting its adoption has been valuable.4 The CMM 
is a disciplined measure of components of a good design process 
that have generally been found to be useful. When a design shop 
does a CMM audit and scores poorly, it is time to look not only 

From the Library of Wow! eBook



ptg

The Clash: Process Stifles, Process Is Unavoidable; What to Do?  237

at its own practices but at those of more successful shops. Process 
improvement is most valuable in raising the floor of a commu-
nity’s practice. The CMM has done a good job of that.

There is no magic there. No amount of process improvement 
can raise the ceiling of the community’s practice. Great designs 
do not come from great processes; they come from talented peo-
ple doing hard work. Apple is quoted as saying, “We’re at Level 
I [on the Capability Maturity Model] and will always be.”5 Yet 
Apple’s results speak for themselves.

Isn’t Process Necessary Even for Innovative Designs? I’ve 
been asked, “Surely the S/360 project, coordinating international 
labs and the business needs of multiple markets, made use of a 
great deal of process. How did you harness it without being sti-
fled by it?” 

Our core design team was well insulated from normal IBM 
oversight processes, with strong support from several levels of 
bold managers. We had exceptional capabilities to recruit talent 
from other company groups. We had enough money.

Getting the designs out as products required going through 
the standard processes. From the top came the word that this 
gamble was known to be revolutionary, and that it would require 
some bending of normal processes. The weekly struggle was 
our team’s pushing for more innovation in forecasting, estimat-
ing, pricing, and so forth, and the process teams’ proper pushing 
back. The talents of the process people were, however, of high 
order, and their skills were essential to our success.

The Clash: Process Stifles, Process Is Unavoidable;  
What to Do?

Great Designs Come from Great Designers; Find Them!

As a tone-deaf nonathletic man, I think it evident that not only 
are talents, whether for music, pitching, dancing, or design, 
unevenly distributed, but the range for any particular talent is 
enormous. 

Even within a team of people of similar education and experi-
ence, gifts vary widely. I have had some team members and some 
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students who were superbly gifted designers—they glitter in my 
memory. The history of the arts is bejeweled with examples.

Moreover, no two people have the same bundle of talents. 
(I think God did this so that each one of us will have something 
unique to give to other people, some unique way to serve.) Hence 
a wise leader organizes by drawing responsibility boxes around 
the people he has and can get, rather than putting people into the 
boxes he dreams up as abstractly ideal.

Our right and fundamental democratic concern is that all 
people be equal before the law and, a much more difficult goal, 
have equal opportunity. But pursuit of these goals must not blind 
us to the wildly unequal distribution of native talents, and the 
unequal drives to grow, hone, and express native talent.

Hence our structures and processes must cold-bloodedly 
recognize that people who have done great designs are more 
likely to make yet others if entrusted with freedom and author-
ity to do so.6

Great Designers Require Bold Leaders Who Demand 
Innovation

First and foremost, the top leader of the organization must pas-
sionately want innovative products with great designs. This was 
clearly true of Apple under Steve Jobs’s first reign, less true under 
his successors, and true again when he resumed the throne. It was 
true of IBM under both Thomas J. Watson (CEO 1914–1956) and 
Thomas J. Watson, Jr. (CEo 1956–1971). other examples abound.

How to Make a Process That Encourages Great Designs?

I have suffered under burdensome processes, and I have some 
experience in bypassing or violating such, but I have no experi-
ence in pruning or restructuring them. Every organization needs 
to do that from time to time. I should want to delegate that job 
to a first-class talent with a sweeping authority for a limited task 
and time.

If one is designing a new product procedure or restructuring 
an existing one, how does one build in the counterforces neces-
sary to overcome the natural inhibitory tendencies? How can one 
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make a process that allows, enables, and even encourages great 
designs?

First, the product procedure must explicitly identify the mat-
ters of fundamental importance and constrain those, and those
only. It is inherently a protective mechanism. It must securely 
protect the crown jewels, but, equally important, it must eschew 
building high fences around the garbage cans. This requires dis-
cretion and restraint—the instinct of protectors is to overprotect. 
Chapter 27, “Case Study: A Joint Computer Center Organiza-
tion,” illustrates how the separate identification of matters of fun-
damental importance worked in a specific case.

Second, the product procedure must provide easy and swift 
exception mechanisms, exercisable at the appeal of any project 
manager and the approval of only one sufficiently high-level boss. 
In other words, judgment and common sense must be explicitly 
provided for and readily available: “All rules can be broken.”

Go for Conceptual Integrity: Entrust Your Design to a 
Chief Designer

Since conceptual integrity is the most important attribute of 
a great design, and since that comes from one or a few minds 
working uno animo, the wise manager boldly entrusts each design 
task to a gifted chief designer.7

Entrusting has many implications. First, the manager him-
self must not second-guess the design. This is a real temptation, 
because the manager is quite apt to be a designer, but one whose 
design gifts may not be as great as the best who report to him 
(design and management are very different jobs), and one whose 
attention is surely fragmented among other tasks. 

Next, it must be crystal clear to all that the chief designer, 
although perhaps managing only a few assistants, has complete 
authority over the design, and that he ranks equal with the proj-
ect manager sociologically. 

Third, the chief designer must be shielded from watchbirds 
from outside the project and protected from time diversions. 

Fourth, he must be provided with tools and help as he sees 
the need. What he is doing is of prime importance. 
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Notes and References

Air Force Studies Board [2008], 1. Pre-Milestone A and Early-Phase Sys-
tems Engineering, states that it is true for many of the most success-
ful and innovative weapons development projects.

This universal phenomenon hits software as well, as convincingly 2. 
documented by Lehman and Belady’s classic study of the growth 
of entropy over time in IBM’s operating System/360: Lehman and 
Belady [1971], “Programming system dynamics.” A more thorough 
treatment is in an important paper: Lehman and Belady [1976], “A 
model of large program development.”

See the essay “Template zombies,” Chapter 86 in DeMarco [2008], 3. 
Adrenaline Junkies and Template Zombies. I do not believe this IBM lab 
was afflicted with the form-versus-substance disease of the template 
zombie but was just conscientiously following the written rules sent 
from afar.

This has been recognized by the award of a National Medal of Tech-4. 
nology in 2005.

James Robertson of the Atlantic Systems Guild gave me the Apple 5. 
quote in 2008 (personal communication). 

Cross [1996b], “Winning by design,” is a delightful case study of 6. 
the methods of Gordon Murray, a winning racing car designer. The 
account reports a chief-designer team, avoiding most kinds of pro-
cess, and benefiting from constraints.

The British Deputy Prime Minister sought from the Royal Academy 7. 
of Engineering a report on how to make rail travel safer. The RAE 
delegated the task to a committee of only one person: its President, 
Sir David Davies. The report was done in record time and is crisp 
and forthright, rich with concrete recommendations (Davies [2000], 
Automatic Train Protection for the Railway Network in Britain).
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20
Where Do Great Designers 
Come From?

Genius will live and thrive without training, but it does 
not the less reward the watering pot and pruning knife.

marGaret Fuller [1820–1850], diary entry 

Every man who rises above the common level has 
received two educations: the first, from his teachers; the 
second, more personal and important, from himself.

edward GiBBon [1789], memoirs 
of my Life and wriTings 

John Cocke (1925–2002), computer genius
IBM Watson Research Laboratory
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I have just argued that great designs come from great designers, 
not from great design processes. Although technical designs are 
now always the work of teams, we still identify the great design-
ers around whom the teams formed: John Roebling (the steel-
cable Brooklyn Bridge), George Goethals (the Panama Canal), R. 
J. Mitchell (the Spitfire), Seymour Cray (the CDC 6600, the Cray 1 
supercomputers), Ken Thompson and Dennis Ritchie (UNIX).

A peculiar concern facing producers of high-technology 
designs is the inherent conflict between the solo design paradigm 
that has yielded great works in the arts, literature, and engineer-
ing, and the team design paradigm now demanded by the com-
plexity of our artifacts and the tempo of our economies.

How can we grow great designers?• 
How can we develop design processes that support and • 
enhance great designers instead of shackling them and 
homogenizing their work?
How can we best support great designers with teams?• 

We Have to Teach Them to Design

Our formal education of designers is often dead wrong. Schön,1 
paraphrased, says: “Technical Rationality holds that all profes-
sions should be taught as engineers still are taught: first the rel-
evant basic and applied science, then the skills of application.”

Schön strongly disagrees with Technical Rationality on this 
point. He argues that all professional skills are mastered by cri-
tiqued practice. He argues that this is true of medicine, law, the 
ministry, architecture, art, music, social work, and indeed engi-
neering. Medical education recognizes this, and from third year 
on, students spend more and more of their time in clinics, in 
grand rounds, and taking responsibility for patients. Architec-
tural education has never lost sight of this truth, so studio domi-
nates in all years. 

On the other hand, in America most engineering designers 
spend most of their formal education in the classroom, or in the 
lab doing prescribed experiments, not doing designs to be cri-
tiqued. The same is even more true of software engineers.

From the Library of Wow! eBook



ptg

We Have to Recruit for Design Brilliance 245

Schön’s argument rings true to me. In such education we are 
misusing the most precious commodity in the education process: 
student time. Increasingly, engineering schools are reinserting 
critiqued design practice into the curriculum, in spite of the high 
faculty investment required.

It has been argued that engineers, hardware or software, 
have to know the basic science underlying their practice, and 
they have to know it first. The best modern engineering educa-
tion refutes this and starts critiqued design in the freshman year, 
concurrently with science education. Only rarely do computer 
science curricula do that.

Similarly, strong engineering curricula often include “co-op” 
or “sandwich” programs, in which students intersperse on-the-
job practice (and company training) between initial and final aca-
demic education. This practice is still far too rare in computer 
science curricula.

The weakness of much academic formal education is its reli-
ance on lectures and readings, as opposed to critiqued practice. 
Effective education in design styles will have the pupil doing 
a well-constrained computer architecture in the style of Cray, a 
fugue in the style of Bach, or a building in the style of Wren. A 
knowledgeable and discerning mentor will then point out stylis-
tic inconsistencies and critique the overall excellence of the design 
for its constrained objectives. 

Such critique requires a certain confidence, even boldness, on 
the part of the mentor in engineering and computer science. Our 
emphasis on science has made us perhaps reluctant to engage in 
free-form subjective criticism, and inexperienced in offering it. 
Yet such is essential for teaching design.

Students can also mentor each other in such critiqued prac-
tice. The most effective way for a designer to learn other design 
styles is to undertake to teach them to other designers.

We Have to Recruit for Design Brilliance

All too often a manager recruiting new designers assesses them 
subconsciously on the criteria for the manager’s own job— 
”Could he do well the job I’m doing?” This favors the articulate, 
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the leader, the person who will be effective in meetings. It tends 
to overlook the introvert, the slow-spoken, and especially the 
unconventional. But brilliant designers come in these packages, 
too! (I do not assert that brilliant designers are more likely to 
come in such packages. I don’t know.) We managers overlook 
these gifted ones to our great loss, theirs, and society’s.

How can we select better? First, by reminding ourselves what 
we seek. Second, by looking at portfolios of the design work 
itself, not just oral presentations about the work. Microsoft, for 
example, has candidates craft programs; this is not yet a univer-
sal practice among software engineering firms.

We Have to Grow Them Deliberately

Most substantial industrial and military organizations have elab-
orate and well-developed processes for growing people from 
worker to manager to executive to top executive. At each career 
stage, there is another education program for the new lieutenant, 
new major, new general. Promising talents are identified early 
and tracked. Mentors are assigned. Rotation of assignments gives 
a carefully planned variety of experience. The most promising 
are assigned to hitches as aides to the top professionals. The most 
promising young lawyers clerk for Supreme Court justices.

God trains many leaders this way. Moses, by a “fluke,” was 
trained to lead a nation by growing up as a prince in the court of a 
pharaoh. David, as King Saul’s harpist, observed how a kingdom 
was run and fair judgments were made. The apostle Paul was 
prepared to articulate and expound a totally new understanding 
of God’s ways by a superb education in the Old Testament at the 
feet of Gamaliel, the greatest rabbi of his day.2 He was then radi-
cally transformed by an encounter with the risen Jesus Christ and 
sent for a period to the desert, to think it all through afresh.3

I do not see most technical organizations giving thought to 
crafting a similar in-the-trenches approach to the development of 
nonmanagerial technical leaders, much less the great designers 
on whom the company will critically depend.
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Make the Dual Ladder Real and Honorable

The first task for growing designers, as opposed to managers, is to 
craft a proper career path for them, one whose compensation and 
sociological status reflect their true value to the creative enter-
prise. This is commonly called the dual ladder. I have treated this 
elsewhere; here I only repeat that it is easy to give corresponding 
salaries to corresponding rungs (and market forces tend to make 
that happen), but it requires strong proactive measures to give 
them equal prestige: equal offices, equal staff support, reverse-
biased raises when duties change.4

Why does the dual ladder need special attention? Perhaps 
because managers, being human, are inherently inclined to con-
sider their own tasks more difficult and important than design 
and need to deliberately assess what makes creativity and inno-
vation happen.

Plan Formal Educational Experiences

Budding designers, like budding managers, need a combination 
of continuing formal education interspersed with actual hands-
on practice that is guided and critiqued by a master designer.

Why formal education? Today’s world continually changes. 
In the high-technology disciplines, the rapid obsolescing of a 
technical education is self-evident, and almost frightening. Since 
I got into the computer field in 1952, my professional intellec-
tual life has been a big sea bath in a heavy surf. As soon as one 
stumbles up after one breaker, here comes the next! Thoroughly 
invigorating, thoroughly enjoyable, and ever varying. So the first 
reason for formal education is continual retooling.

I have personally found formal short courses an effective and 
economical method for retooling—I have averaged one per year. 
Why? Can’t one keep up by journal-reading and conference-
going? Indeed one can! But I am a believer in formal education— 
a good teacher who carefully prepares a balanced overview of 
a subject can improve my learning efficiency by a factor of two 
or more and can quickly give a balance and perspective that 
would require studying literally dozens of journals. As a teacher 
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who undertakes to deliver that kind of learning efficiency to my 
customers, I try also to buy it for myself. 

A second reason is deepening and broadening. This is most 
effectively done by studying both good and bad designs of pre-
decessors and contemporaries. For this purpose the principal 
advantage offered by formal education is detachment—the profes-
sional teacher is more apt to study competing design concepts 
and styles. As the culture inside any design shop emphasizes its 
own traditions and viewpoints, so does company-sponsored for-
mal education. This is the best reason for budding designers and 
their mentors to seek formal education outside.

My most productive single act as an IBM manager had noth-
ing to do with product development. It was sending a promising 
engineer to go as a full-time IBM employee in mid-career to the 
University of Michigan to get a PhD. This action, which at the 
time seemed to a busy computer architecture manager to be just 
a quite incidental personnel activity, had a payoff for IBM beyond 
my wildest dreams. Ted Codd’s PhD prepared him for a research 
career; his research led him to invent the relational database con-
cept and to receive a Turing Award.5 Relational databases have 
been the principal application of IBM’s most profitable computer 
line for over 25 years.

Plan a Varied Set of Work Experiences

As the best organizations now do for budding managers, so 
we need to do for budding designers. The critical word is plan; 
the course of the young career should itself be designed—for 
variety, for depth of involvement, for spiraling challenge and 
responsibility.

Often the most fruitful of early assignments have young 
designers serving in the organizations of the users of the objects 
they design. My own short-term jobs in a commercial data- 
processing shop building a 40-state payroll program, in a scientific 
computing shop calculating rocket trajectories, in a cryptanalytic 
shop, in a telephone switching laboratory identifying dialers on 
four-party lines, and in an engineering-physics lab measuring 
ground vibrations in milli-inches have been priceless in help-
ing me understand computer users’ requirements viscerally. As 
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described in an earlier chapter, my two-week stint as an appren-
tice computer operator, hanging tapes in a glass house, also gave 
me a blast of reality when I designed an operator console. Dewey 
was right that we learn by doing; the effective growth curriculum 
of the designer must include a variety of experiences.

Plan Sabbaticals Outside the Organization

The mid-career designer can be refreshed and broadened by a 
sabbatical outside the organization—perhaps on loan to a cus-
tomer; perhaps teaching at a university; perhaps on assignment 
with a federal agency. Preventing stagnation of creative people is 
a great investment.

We Have to Manage Them Imaginatively

The John Cocke–Ralph Gomory story. John Cocke was prob-
ably the most brilliant and surely the most creative person I have 
ever known. We both joined IBM in its Stretch supercomputer 
project in July 1956, with fresh PhDs, and we shared a bullpen 
then and later a two-person office. That arrangement was fine 
because John, single, worked at night, and I worked in the day-
time. John was passionate about computers, all aspects. I suspect 
he spent more hours every day thinking about computers than 
he did thinking about everything else combined. He understood 
in depth not only computers, but all the supporting science 
and technology.6 And he was a rare combination—both deeply 
thoughtful and outgoing; like the Ancient Mariner, “he stoppeth 
one in three” to explain his latest ideas. It was impossible not 
to love John—genial, generous to an extreme degree, and always 
excited. Harwood Kolsky’s memoir vividly captures many aspects 
of John’s personality, style, and presence.7

Cocke attracted great collaborators, who helped capture and 
helped implement his incredibly numerous ideas. Three of these 
ideas, each worthy of the Turing Award, were instruction pipelin-
ing with Kolsky,8 global compiler optimization with Fran Allen 
and Jack Schwartz,9 and the reduced-instruction-set computer 
architecture with George Radin.10
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Now how could an idiosyncratic genius like John Cocke, who 
couldn’t manage a group, rarely published anything, and mostly 
just thought and talked to bright people, make so many major 
contributions? There are two geniuses in this story, and the other 
is Ralph Gomory, IBM’s Director of Research and Senior Vice Pres-
ident for Science and Technology. Like Cocke, Gomory received 
the National Medal of Science for his own contributions.

Gomory created an organization, atmosphere, and organi-
zational management style that aimed to enable each person in 
IBM Research to contribute in the way that best suited his par-
ticular bundle of talents. Ralph says, “I didn’t treat John any dif-
ferently from anyone else.” But his statement misses the point: 
he treated each of his great minds differently—according to their 
nature and needs. He also says, quietly proud, that “John was the 
highest-paid person in IBM Research, because he was the highest 
contributor.”11

We Have to Protect Them Fiercely

Protect Them from Distraction

Once we have great designers, we want them to design. Design 
productivity requires flow, an uninterrupted mental state of 
high creativity and concentration. We designers have all experi-
enced and covet its delights. DeMarco and Lister have an excel-
lent discussion of flow, its importance, and how to achieve it in 
Peopleware.12

The modern organization has many hindrances and diver-
sions to prevent flow:

Meetings• 
Phone calls• 
Emails• 
Rules and constraints• 
Staff bureaucracies and “service” groups, who make rules to • 
simplify their own jobs
Customers• 
Professional visitors and journalists• 
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Many creative organizations have adopted procedures such 
as “quiet mornings” to enhance flow. When IBM was trying to 
catch up with Apple after the introduction of the first personal 
computers, CEO John Opel established a closed laboratory in 
Boca Raton to develop IBM’s entry. Other IBM employees, includ-
ing even corporate staffers with defined relevant responsibilities, 
simply were not permitted to go in.

Similarly, I closed the System/360 project to non-project visi-
tors, both IBMers and customers, from January to April 1964. We 
had too much work that needed flow.13

I interviewed Jeffrey Jupp, Technical Director of Airbus UK, 
on the design and manufacture of wings in Britain for Airbus 
planes whose fuselages were designed and manufactured in 
France. Late in our fascinating conversation I asked if I could 
speak with his chief designer. “No” was the simple answer. I 
understood and respected it.

Protect Them from Managers

A mediocre or insecure manager can smother any designer’s cre-
ativity. Often a mediocre manager fails to recognize the jewels 
on his team. Sometimes he doesn’t realize the crucial nature of 
design to his team’s success. Sometimes he doesn’t understand 
his own role of enabling design magic.

Sometimes the manager resents, or cannot admit, that the 
“subordinate” designer is in fact the better designer. Sometimes 
the manager is offended if the exceptional designer is paid more 
than he. The result is lack of encouragement, lack of facilitation, 
petty put-downs.

The task of higher management is then quite clear: they must 
actively change the first-line manager, ideally by raising his vision 
of his own talents and special role, and by training him in team 
encouragement and leadership.

Protect Them from Managing

I have seen potentially great designers sidetracked from design 
into management. They never reached their potential. The culture 
of our organizations, alas, encourages or even forces this. Inten-
tion, nay, determination, is required to swim against that culture.
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Seymour Cray, the greatest supercomputer designer ever, 
furnished an inspiring example. Cray was a designer of first-
generation vacuum-tube computers in the hotbed at St. Paul, 
Minnesota, first at Engineering Research Associates, and then at 
Control Data Corporation. To design the CDC 6600, he moved 
his team of “thirty-five people including the janitor” away 
into seclusion and disentangled himself from all other CDC 
responsibilities.14 

When the dramatic success of the 6600 involved him again in 
CDC management, he arranged a departure, with CDC’s bless-
ing, to found Cray Computer Corporation, working on a secluded 
prairie site. He personally oversaw all aspects of the Cray 1, from 
circuits to refrigeration to the Fortran compiler.

Then, as Cray Computer blossomed with success and involved 
him again in management, he pulled a team away to Colorado to 
form Cray Research Corporation. Only a drunk driver ended the 
determined pattern.15

Growing Yourself as a Designer

Suppose you are a technical designer and want to improve. Is 
there any counsel from outside your own discipline that can 
help? I think so. You must start by planning your own growth 
program.16 You alone are responsible for it.

Constantly Sketch Designs

Designers learn to design by designing. Some of the sketches 
need to be fully detailed, for the devil is indeed in the details, 
and many a grand scheme has foundered on a little submerged 
rock. Leonardo’s Notebooks are a rich example of how this is best 
practiced. The aspiring young software designer might well keep 
a notebook of patterns he encounters and invents in his own 
constructions.

Seek Knowledgeable Criticism of Your Designs

Donald Schön, in his superb book Educating the Reflective Prac-
titioner, argues extensively that critiqued practice is in fact the 
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only successful method of teaching practice. He cites discipline 
after discipline—law, medicine, architecture, masonry, the medi-
eval craft guilds—as having evolved (probably independently) to 
this method of teaching.17 The modern PhD dissertation is exactly 
such a method of teaching the practice of research.

Study Exemplars and Precedents

In this practice, you emulate many great designers. Robert 
Adam studied Christopher Wren. Wren studied Palladio. Palla-
dio begged support from his father to go to Rome and measure 
and draw the remnants of great Roman buildings. The Romans 
studied and fused the architectural styles of the Etruscans and 
the Greeks. Each great designer mastered the rich legacy of his 
predecessors and then added his own new concepts. 

The proper study of exemplars demands humility of 
approach. Those precedents whose reputations have survived 
centuries of criticism have some deep excellence. In newer fields, 
the available span may be only decades. But however deep the 
pool of precedents, the task of the student is to find and master 
the excellence that has gone before, even if his muse or his new 
circumstance then drives him in a totally different direction. 

The computer architect needs to study the whole variety of 
commercially produced machines. Someone thought they were 
good enough to merit the investment of real money. (The much 
more numerous published-only architectures have passed no 
such stringent test and hence merit far less study.) 

In approaching a precedent design, it is crucial to assume 
competence—the right question is 

“What led such a smart designer to do that?”

rather than 

“Why did he do such a fool thing as that?” 

Usually, the answer lurks in the designer’s objectives and con-
straints; discovering it usually brings new insights. Whereas in 
marital disagreements, the wise and usually truthful answer to the 
“Why did you . . . ?” or “Why didn’t you . . . ?” question is “Lack 
of sense,” that is rarely true when one probes a design decision.
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When possible, listen to contemporary designers discussing 
their work. When possible, read what designers have written 
about their works. 

Gerry Blaauw and I have found it very instructive to cast our 
own studies of others’ computer architectures into a common 
format—common structure, standard sketch scale, common prose 
description elements, common formal description language—with 
a short prose critique of the highlights and peculiarities of each.18 

A Self-Education Project—Floor Plan for a 1,000-Square-
Foot House

From a beginning design course at the North Carolina State Uni-
versity School of Design comes a useful self-education exercise 
for designers, no matter what their design disciplines.

The Program. Design the plan of a 1,000-square-foot home for a 
family with two parents and two children, a son aged three and 
a daughter aged six. The site is in northern Virginia, suburban, 
50 feet on the street, 70 feet deep, somewhat wooded, and facing 
south.

Journal. Keep a dated journal of your design questions, deci-
sions, and reasons. Here are some questions to address: 

Fabricate a more detailed architectural program, using your • 
imagination. Put it in your journal.
What constraints did you deduce from the given program?• 
What was the budgeted commodity? How did you • 
manage it?
What desiderata did you follow, explicitly or implicitly?• 
How did you decide which of two design alternatives was • 
better?
Did you use a CAD tool? If so, assess it versus sketching, for • 
the different phases of your task.
How did you proceed? Analyze your journal and sketch your • 
design trajectory.
Assessment: What are the good points in your design? The • 
weaknesses?
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Notes and References

Schön [1986], 1. Educating the Reflective Practitioner.

Acts 22:3; Wikipedia on “Gamaliel” (http://en.wikipedia.org/ 2. 
wiki/Gamaliel), accessed on April 25, 2008.

Galatians 1:17–18; Acts 22:3. However, in contrast with all of these, 3. 
Jesus was blocked from getting training by the Old Testament 
experts and had to rely on memorizing the Scriptures and coming to 
a totally new understanding of them by meditating on them in the 
carpenter shop for many years (Luke 2:41–52).

Brooks [1997], 4. The Mythical Man-Month, 118–120, 242.

Edgar Frank Codd, if you want to seek his work.5. 

Even in his last illness, though chair-bound, Cocke regaled me with 6. 
some new science and his latest ideas for how it could be applied 
to computers.

http://www.cs.clemson.edu/~mark/kolsky_cocke.html, accessed on 7. 
November 26, 2008.

Cocke and Kolsky [1959], “The Virtual Memory in the STRETCH 8. 
Computer.” This is really about instruction pipelining, not virtual 
memory as we know it today.

Cocke and Schwartz [1970], 9. Programming Languages and Their 
Compilers; Allen and Cocke [1971], “A catalog of optimizing 
transformations.”

The Reduced Instruction Set Computer (RISC) concept is often mis-10. 
understood. The basic idea is not a reduced set of instructions, but a 
set of reduced instructions, that is, more primitive. In extreme form, 
there are no subsequenced instructions, not even a Shift N Bits or a 
Multiply. This enables the accumulator-adder-accumulator loop to 
be minimized, and with instruction cache and an optimizing com-
piler, everything goes faster. I know of no one besides John whose 
mastery of both computer design and compiler optimization could 
have so wedded those concepts. George Radin was an important 
collaborator, but the original papers, Radin [1982], “The 801 mini-
computer,” and Radin [1983], “The IBM 801 minicomputer,” should 
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have borne Cocke’s name as lead author, although I suspect he 
didn’t write a word.
Ralph Gomory personal communication [November 2008].11. 
DeMarco [1987], 12. Peopleware.
Samples of the letters of February 4, 1964, to the head of the Market-13. 
ing Division, and to my boss and the laboratory manager are on the 
book’s Web site.
Murray [1971], 14. The Supermen. 
http://americanhistory.si.edu/collections/comphist/cray.htm, 15. 
accessed on August 12, 2009.
The best advice I’ve seen for planning an academic career is given 16. 
in Gilbert Highet’s Art of Teaching [1950], 21: 

When a young German scholar was beginning his career, he used 
to choose three or four large fields in which he felt a real interest, 
on which there was a good deal of work to be done, and which—an 
important point—were all linked with one another, and which—most 
important of all—he felt to converge on the very center of his sub-
ject. He would contrive as far as possible to make these the subjects 
of his first classes and seminars. He would write groups of lectures 
on them, and nurse and nourish each group until it grew into a book. 
If he were energetic enough and percipient enough, he would thus 
become the author of three or four books, each of which would recom-
mend and illuminate the others. He would then continue . . . enlarg-
ing [each field] strategically from year to year until he had built up a 
really authoritative knowledge of the whole subject. … Scholars who 
planned their learning and their teaching in that way usually found 
… that they had enough interests and nearly enough knowledge to fill 
three careers.

Schön [1986], 17. Educating the Reflective Practitioner.
Blaauw and Brooks [1997], 18. Computer Architecture, Chapters 9–16,   
“A computer zoo.” The standard format is described in Chapter 9.
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VI
Trips through 
Design Spaces: 
Case Studies

In retrospect, most of the case studies have a striking common 
attribute: the boldest design decisions, whoever made them, 
have accounted for much of the goodness of the outcome. 
These bold decisions were due sometimes to vision, sometimes 
to desperation. They were always gambles, requiring extra 
investment in hopes of getting a much better result.
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21
Case Study:  
Beach House “View/360”

The Most Beautiful House in the World 
(is the one you build yourself).

witold ryBczynSki [1989]

Main-floor and Tower plan of “View/360” beach house 

From the Library of Wow! eBook



ptg

260 21. Case Study: Beach House “View/360” 

Highlights and Peculiarities

Why This Case? It documents for a simple, understandable 
structure how very many decisions must be specified and the 
numerous considerations affecting them.

Bold Decision. Place the house as close to the ocean as possi-
ble, while still on the warranty-deeded lot. It is about 40' forward 
of all the neighbors’ houses, at somewhat greater risk of wash-
away.

Budgeted Resource. For this house design, the budgeted 
resource turned out to be inches of oceanfront, hence of view and 
breeze.

Serendipity of the Spiral Staircase. This wooden staircase, 
included because of floor-space cramping, turned out to be a 
piece of spatial art and a visual delight.

In-Construction Changes. Changes in the design made dur-
ing the construction process substantially improved the visual 
delight, the feel of the house, and its commodity. Not all of the 
opportunities created by in-construction changes were exploited, 
which was a mistake.

Placement of Pilings. Both the amateur and the professional 
architect failed to give careful thought to the placement of the pil-
ings under the centers of weight, and their distribution so that the 
load on each was about the same. The pilings settled unevenly 
into the sand, and the house sagged where pilings should have 
been and weren’t.

Introduction and Context 

Location: 

321 Caswell Beach Road, Caswell Beach, NC; Latitude 
33º53.6' N, Longitude 78º2.1' W. The site is on an east-west 
island with one central road. One row of lots lies between the 
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Atlantic Ocean and the road, a second row between the ocean 
and the Cape Fear River and its marshlands. The house is on 
the oceanfront and faces 15° west of south!

Owners:

Frederick and Nancy Brooks family

Designers:

Frederick and Nancy Brooks, architecture; Arthur Cogswell, 
FAIA, structural engineering and roofline for Tower

Dates:

1972, shell closed in and occupied  
1997, construction completed

Local Family as of August 1972:

Parents: Frederick and Nancy 
Children: Kenneth, 14; Roger, 10; Barbara, 7 
Grandmother: Octavia, 71 
Close child friend: Chandler, 10

Objectives

Primary Goal. Our primary goal was to build a comfortable, 
informal vacation home for family and friends that would capi-
talize on the natural riches of an oceanfront setting. The house 
was not intended as a rental.

Other Objectives. 

Capitalize on the view.• 
Create a casual, unpretentious, restful interior.• 
Capitalize on the sea breeze for day and night.• 
Sleep 14 on beds and feed 22 at one seating.• 
Provide a Grandmother/Guest Room, a Master Bedroom, a • 
Boys’ Dorm, and a Girls’ Dorm—4 bedrooms.
Provide plenty of showers and toilets.• 
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Build the house to withstand hurricanes with winds of at • 
least 100 mph. Hurricanes threaten about two times a year 
and hit about once a decade.
Design the Kitchen to be workable for one but also for 4 to 6 • 
workers.
Isolate the noise from our boys and their friends.• 
Keep maintenance requirements low.• 
Make the house a do-it-together project for family training • 
and bonding.

Opportunities

Building Site. The lot has 75' of ocean frontage. To the south-
east there is a fine view of Bald Head Island (Cape Fear) and ship 
traffic in and out of the Cape Fear River. Front is defined as the 
ocean side, not the road side, of the house. The soil is coarse beach 
sand; the vegetation is low scrub, sea oats, and smilax vines.

Dunes. The house can readily be as close as 65' to the high-
water mark because it is protected by a row of dunes.

Views. Due to the narrowness of the island, there is not only a 
180º view of the beach from the front of the house, there is a 135º 
view of the Cape Fear River and its marshes from the back. 

Breeze. The house site naturally faces 15º west of south. The 
prevailing sea breeze is south to southwest and blows most of the 
time in warm weather.

Constraints

Budget. There was not enough money to build a finished four-
bedroom house at one time.

Time. The family’s available time for construction during any 
one summer was limited.
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Code and Deed Requirements.

The house must be on 16' pilings, 8' of which must be in the • 
ground.
The setback requirement from each lot side was 10'.• 
The house must be a single-family residence.• 
Electric and septic tank codes must be met.• 

Foredune. The foredune could be disturbed only minimally, for 
example, by a boardwalk over it.

Services. The site was serviced with only electricity and water, 
not gas or sewer.

Deed. Some 65' of the ocean-side part of the lot had accreted 
since the lot was platted in 1938. We have a quitclaim deed, not a 
warranty deed, to this land.

Appearance. External appearances were not constrained, nor 
did we consider them important.

Design Decisions 

Build the house over a relaxed period of time.

Have a dried-in campable shell put up at once, with one • 
bathroom plumbed, the septic tank installed, and temporary 
electricity provided to the house.
Invest all initially available cash in maximizing square foot-• 
age and windows.
The family would do all interior work, including walls, doors, • 
cabinets, wiring, and most of the plumbing.

Exploit the 75' lot width. Most beach lots are 50'. Most ocean-
front houses are long and narrow. In order to use most of the 
55' allowable width, we turned the house sideways, so that it is 
wider than it is deep. Therefore, a custom floor plan was needed, 
not a book exemplar.
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Exploit the views.

Set the house as far forward on the lot as feasible, but stay on • 
the warranty-deed land.
Build a view-maximizing Tower room on the front of the  • 
second floor, with glass on four sides.  
Corollary: The roof pitch is limited. The ridge can be no 
higher than the windowsill level of the Tower.
Put numerous and large windows in all the elevations. • 
Corollary: The structure had to be strengthened against 
skew.

Exploit the breeze.

Give every bedroom some ocean frontage.• 
Plan to keep the house open to the breeze—install no central   • 
air conditioning.  
Corollary: Expect to have moisture and salt spray everywhere.
Put a 6' sliding-door pair in the front of the Living Room.• 
Provide an ample front deck, with protection from the sun.• 
Use casement windows, which maximize the opening • 
area and can be directed to scoop in the breeze.  
Corollary: Install the windows to open facing southwest or 
northeast.

Build to resist moisture. The house needed to resist both nor-
mal breeze-borne moisture and hurricane leaks. Use wooden 
paneling to minimize drywall. Use no carpets, just separate rugs, 
many of them small.

Optimize for spring, summer, and fall use. Provide heat for 
occasional winter use. Use electric baseboard heat instead of cen-
tral heating; it has a higher operating cost per day used, but a 
substantially lower capital cost.

Localize/minimize noise.

Provide each of the Girls’ Dorm, Boys’ Dorm, and Master • 
Bedroom with a private external door so early risers can slip 
out to the beach without disturbing sleepers.
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Divide the house into a bedroom zone and a public-room • 
zone; partition off the bedrooms, baths, and Hall serving 
them from the public areas.

Isolate the boys’ noise. Put the Boys’ Dorm at the far end of the 
bedroom zone.

Design a casual, unpretentious, restful interior. Use paneling, 
not paint or wallpaper, for all walls. Use dark paneling and floor-
boards for the Living Room and Tower where glare is the great-
est; for the Kitchen and Dining Room public rooms; and for the 
Boys’ Dorm. In all cases, provide a dark, quiet, cool feeling. Use 
light paneling for the other bedrooms for cheer. Use arctic white 
paneling for the Halls, which get no daylight.

Sleep 14. Four can sleep in the Boys’ Dorm, 4 in the Girls’ 
Dorm, 2 in the Master Bedroom , 2 in the Guest Bedroom, 2 in the 
Living Room, and 2 in the Tower. Provide two sofas, suitable for 
sleeping, in the Living Room. Provide convertible/storable beds 
for two in the Tower. Provide two fold-up bunks and two perma-
nent single beds each in the Girls’ Dorm and Boys’ Dorm.

Feed 22. Fill the middle of the house with three tables—two for 
8 each, one for 6.

Don’t install ceilings. For economy and visual effect, use no 
ceilings except in the bathrooms and the Living Room. The rafters 
are doubled 2 x 12s on 4' centers, designed for a load of up to 1' of 
snow. The roof consists of tongue-in-groove 2 x 6s with an insulat-
ing pad on top, then built-up tar-cloth roofing, then white stones 
to reflect heat. The visible part of the interior is just varnished. 
Corollary: The open ceiling complicates hiding the wiring.

Optimize the footprint of the Tower stairs. To put the Tower 
forward, the stairs have to be in the front of the house, where 
space is precious. The Living Room is to be the only front public 
room, so the stairs go there.

If the Living Room is to maximize its view on the south and 
be open to the other public spaces on the north, the stairs must 
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be along the east or west wall. The east wall has windows for 
view, light, and breeze, so the stairs go on the west wall.

It seemed a better use of precious space to give the stairs a 
square footprint rather than a rectangular one, which would nar-
row the whole Living Room. So we used spiral stairs. Salt spray 
argues strongly against steel, so the stairs are wooden. Given the 
stairs as a necessity, feature them as a bit of sculpture.

Design the eaves for light control. The eaves must be 4' to 
admit midday sun into the front rooms from September to March, 
but not from March to September.

Rationing the Frontage

The opportunities and constraints give a maximum house width 
of 55', or 660". Since ocean breeze and ocean view are to be maxi-
mized, frontage becomes a critical design budget. 

Living Room. The Living Room has the highest claim on ocean 
view and breeze. Clearly it gets a substantial chunk. An arbitrary 
decision was to make it 16' wide. The Living Room can have 
side windows as well as front window and doors, so we put the 
Living Room in the southeast corner of the house to exploit the 
southeast view, the mouth of the Cape Fear River and shipping.

West Deck. Run a narrow deck along the west end of the house, 
to provide direct beach access and major breeze to the Master Bed-
room and to provide a direct path from the beach to the interior 
showers without having wet people track through the house.

Bedrooms versus Dining Room–Kitchen. Given the decision 
not to air-condition, breeze for sleeping becomes very important. 
Direct bedroom access to the beach is secondary, but more than 
just a nicety, given the personalities of our children. So the bed-
rooms go forward and divide the remaining frontage.

Girls’ Dorm, Boys’ Dorm. These are the highest priority among 
the bedrooms, since they will be used on every beach trip (as 
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opposed to the Guest Room) and may need to serve as reading 
retreats for the children.

Guest Room. The Master Bedroom is needed primarily for 
sleeping. The Guest Room may well be used as a reading retreat, 
so it wins out for a position on the front.

Configuring the Boys’ Dorm. Site the Boys’ Dorm on the 
house’s southwest corner for isolation. One bed goes under the 
front windows, and one bunk on the west wall overlapping it. 
Another bunk can go high (for adventure) if it goes on the north 
wall near the ridgepole. The closet therefore goes on the east wall. 
The minimum room width equals door width plus bed length.

Configuring the Girls’ Dorm. The lower beds feel much less 
confining if not completely under an upper bunk. Put a bed 
under the window, a bunk on the east wall. Another bunk can 
also go on the east wall and share a ladder. Put another bed on 
the north wall and a closet on the west wall. The minimum room 
width equals door width plus bed length.

Configuring the Guest Room. This room needs only a double 
bed. It needs no door to the beach. The minimum width equals 
bed width plus passage around the bed. There is plenty of room 
depth, so put the closet on the north wall.

Sizing the House

Square Feet. The available money led to an upper bound of 
2,000 ft2, given the abundance of windows.

Roof Structure and Room Depth. The deflection of a uniformly 
loaded beam supported at both ends is very sensitive to length:

d = k l4 / w2 t

where w is the width of the timber, t the thickness, and l the effec-
tive length. The effective length is shortened by any cantilever 
beyond the point of support. I chose 4' eaves, based on summer 
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and winter sun angles. The whole calculation yielded a maxi-
mum horizontal span length of 16' for twinned 2 x 12s on 4' cen-
ters. This determined the depth of the front bedrooms, the Living 
Room, and the Tower.

Sizing the Dining Room–Kitchen. It appeared that the Master 
Bedroom would benefit from a door directly into the Kitchen, as 
well as the one into the Hall. The critical dimension then became 
the Kitchen west wall, whose length had to be at least one work 
surface width plus a stove width plus a refrigerator width and 
a bedroom door width, plus a work surface between stove and 
refrigerator.

I chose to make the Kitchen depth also the depth of most of 
the back of the house, for simplicity. This gave a good working 
size to the Kitchen. It also required the addition of flitch plates to 
the roof beams to support the 17' span.

False Starts

Breaking-Wave Roof. Initially I planned to make the roofline 
suggest breaking waves, as shown in Figure 21-1. 

Cogswell strongly advised against it: “My architecture prof 
told us, ‘If you can design a house to keep the rain out, boys, you 
will have done well.’ Maybe you can find a contractor in Bruns-
wick County who will make that trough so it won’t leak, but I 
doubt it.” I followed his back-to-fundamentals advice.

Figure 21-1 Brooks’s proposed roofline 
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Figure 21-2 East elevations by Brooks and by Cogswell 

Dull Symmetric Tower Roofline by Brooks. I did a perfectly 
dull roofline for the Tower. Cogswell substantially improved it as 
shown in Figure 21-2. 

Design Changes after Design, before Construction

Designed two exterior showers on the ground floor. To keep 
sand, salt, and wet bathing suits out of the house, we designed 
two ground-floor exterior showers; changing to and from bathing 
suits would occur there. We provided each with ample dressing 
space for multiple occupancy, so parents can help children.

Replaced the planned shower off the Hall with closets. That 
space became a big linen closet and a full-height miscellany 
closet, 12' wide, with a shelf to store a rollaway bed below, win-
dow screens above.

Moved the eating area from the Dining Room to the 
Kitchen. Mock-up studies showed this to make serving much 
more convenient. This made a sitting, working, game, puzzle 
area in the Dining Room.

Doubled the size of the ground-floor enclosed Storage Room 
from 8' x 16' to 16' x 16'.

Swung the Master Bedroom screen door the other way. When 
the bathroom window was open, the screen door wouldn’t 
open—a design goof discovered during construction.
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Design Changes after Shell Construction and Initial 
Occupancy

Decided against constructing a partition between the bedroom 
zone and the public rooms.

Installed let-in diagonal braces. Braces on the east and west 
walls of the Living Room, the north wall of the Guest Room, and 
the west wall of the Boys’ Dorm improved parallelogram skew 
resistance to wind. The work was done after the shell was up, 
before any paneling.

Installed hurricane clips. The shell contractor did not install 
the specified vertical tie rods, so we substituted these to hold the 
roof down in high winds.

Added water faucets on the deck for rinsing.

Provided an awning for the big front deck. An awning pro-
vided shade for all or part of the deck. We used a trailer awning, 
designed for 70 mph wind speeds on the highway. Much later, 
we replaced the awning with a fixed roof, extending halfway out 
to enable sitters to choose sun or shade.

Replaced and enlarged the Tower windows. Hurricane Diana 
(1984) blew out all the original Tower windows, glass and frames. 
We replaced the front multiple small panes with two single large 
panes. These afford a much better view in both size and pres-
ence—and stronger wind resistance.

Added a door in the West Hall. This allows the north half-bath 
to be either grouped with the Master Bedroom into a suite, or 
made part of public toilet facilities.

Made removable plywood shutters. We use these for board-
ing up the two windward sides of the house for winter and for 
hurricanes.

Ripped out the extra sound insulation (and wall thickness) 
between the Living Room and the Guest Room, after framing, 
before paneling. Grandmother Brooks died in 1973, so the room 
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became the Guest Room instead of Grandmother’s Room and no 
longer needed the special sound isolation.

Replaced the east railing of the front deck with a bench, espe-
cially for facing breeze and sunsets.

Installed a foundation sill (1997) to stabilize settling pilings.

Installed supports under the west wall of the Boys’ Dorm 
(2000). The original plan had the pilings under the edge of the 
west deck rather than under the west load-bearing wall, an error 
in the structural design.

Assessment (after 37 Years)

Delight 

Tower. The Tower has turned out to be a wonderful study, with 
horizon views to rest the eyes, the ability to watch action on the 
beach, a fine southeast view for watching shipping in the ocean 
channel, a fine northeast view for watching shipping traverse the 
river, and plenty of light. Much of The Mythical Man-Month was 
written there.

Open Plan. Omitting the partition originally planned between 
the Kitchen and the Hall substantially adds delight. It increases 
the visual space, enhancing one’s perception of roominess upon 
entering the house. It brings daylight and sea breeze to the main 
passageway. The cook can see the ocean through the Girls’ Dorm 
and its open exterior door—a big morale booster. The colored 
bedroom doors became major decorative elements, and the white 
Hall wall is ideal for hanging maps.

Spiral Staircase. The oak spiral staircase is a visual delight as a 
sculpture. In daylight, it is silhouetted against the glass front wall.

Design Rationale. My consulting architect, Arthur Cogswell, 
once derisively called “View/360” “the damned-logical beach 
house” because of the detailed rationale described here and 
shared with him. I’ve never been sure with what he was contrast-
ing it. The rationality is a private delight for me when I’m there. 
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Exterior. The house is interesting but not beautiful from the 
exterior—form follows function (Figure 21-3). Cogswell’s asym-
metrical roofline for the Tower is just right; it seems to leap 
forward.

Usefulness

Objectives Met. The house is very livable. 

Design Changes. The changes made after the original design 
proved to be big improvements.

Wall Omission. The omission of the wall originally planned 
between the Hall and the Kitchen makes the biggest Kitchen 
work surface available from the Hall. Meals are served buffet-
style from that work surface, a convenience not contemplated in 
the design. Multiple cooks can more readily work.

Toilet in Tower. Putting a toilet in the Tower makes it a sepa-
rate bedroom suite, an unexpected benefit. 

Figure 21-3 “View/360” house from the southeast
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Dining Room. Providing a separate sitting/conversation/ 
work/game area in the original Dining Room has added to liva-
bility. Essentially what was designed as an adjunct to the Kitchen 
has instead become a second living room. It sometimes serves as 
a second study, although it is not isolatable.

Master Bedroom. The Master Bedroom provides yet an unex-
pected third study, set apart, and with views over the marsh. 

Accommodates Groups. Although not explicitly designed for 
groups, the house accommodates weekend groups of up to 25, 
but not beyond, based our on success and failure experiences. 
Sleeping (including rollaways and floor), feeding, bathroom, and 
meeting spaces are packed but workable at 25.

Family Size. The house now (barely) accommodates a simul-
taneous family gathering: our three children, two children-in-
law, nine grandchildren, and us—quite a change from the family 
designed for.

Kitchen. The Kitchen readily accommodates a crew of cooks, 
but a single cook finds the sink somewhat far from the work 
surfaces-stove-refrigerator.

Deck. The deck along the west end of the house was a major 
mistake. It used 42" of the critical budget commodity, namely, 
the buildable ocean frontage. The deck is rarely used. The space 
would have been much better used elsewhere. 

The late decision to put the major beach-serving showers on 
the ground floor obviated the need to provide an outside path 
from the beach to the master bath. Substituting the linen closet for 
the second interior shower further reduced the need. I should have 
rethought the deck decision when the shower decision was made.

Master Bedroom. The exterior door to the Master Bedroom 
is often opened for breeze but rarely for passage. The Master 
Bedroom occupants have quiet access to the beach through the 
Kitchen and back door. The Master Bedroom usually gets plenty 
of breeze via its west windows and its two interior doors. Its mea-
ger ocean view doesn’t matter much because it was intended as 
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a sleeping space, not a living space. So that door could be elimi-
nated if the deck was.

Main Bathroom. The outside door to the main bathroom stays 
open most of the time, ventilating the whole house. If the deck 
were not there, one would want a Dutch door with the bottom 
half nailed shut.

Privacy. The openness of the Living Room, Dining Room, and 
Kitchen area is a disadvantage with respect to privacy of conver-
sations and makes it hard to find a retreat from the hubbub of a 
full house. The Tower is visually and socially isolated but cannot 
be closed off acoustically.

Firmness 

The house has resisted direct attack by three hurricanes and 
miscellaneous other storms.

1978 storm. We lost the built-up (tar-impregnated cloth mono-• 
coque) roof off the Tower. Wind and the Bernoulli effect lifted 
it off and deposited it in the backyard. 
1984 Hurricane Diana. The eye came within 10 miles, and • 
peak local winds were 135 mph, from the south. The wind 
lifted all the built-up roof except that of the Tower and depos-
ited it as a unit in the backyard. Sixteen inches of rain leaked 
into the house. The storm blew out all the window glass and 
window frames in the Tower and blew mattresses, rugs, and 
lamps out into the marsh. 
1996 Hurricanes Bertha and Fran. The eyes came within 10 • 
miles. There was no damage except to one shutter and one 
windowpane.

Radically different loads on the pilings produce different set-
tling rates in the sandy soil. The design did not take variable 
settling into account. This is a strange oversight, since every house 
on pilings in sandy soil must be subject to this problem. The pil-
ings under the two south corners of the Tower bore extra-heavy 
loads, hence settled more. The pilings under non-load-bearing 
walls settled less. This was particularly bad under the center of 

From the Library of Wow! eBook



ptg

Assessment (after 37 Years) 275

the big double Living Room door. The door track bowed upward 
in the middle, so that the sliding doors did not close properly. We 
installed in 1997 a 4" x 6" x 16' subterranean sill bolted to all three 
of the pilings under the Tower south wall, so future settling will 
be less, and uniform.

The westernmost row of pilings was put under the edge of the 
deck, rather than under the west wall holding the ridgepole and 
the roof weight. The floor joists bent under the unsupported 
weight. Pilings had to be added under that wall in the 28th year. 
Clearly this was just a general oversight. Neither Cogswell nor I 
carefully compared the main-floor plan and the piling plan.

Casement windows were a mistake. The breeze-scooping 
action worked well as planned. Although the windows were of 
wood, the crank-out mechanisms were of steel and had to be 
replaced every five years on the ocean-spray sides of the house, 
and every 15 years on the lee sides. So at the 35th year, as the old 
window frames were deteriorating, we replaced most of the case-
ment windows with double-hung. 

What factors led to the casement window mistake? Inad-
equate weighting of maintenance in a long-life project, combined 
with inadequate attention to all the materials of construction.

If I “Threw One Away”?

Suppose I were designing this house for this site and the 1972 
family situation; what would I design differently, based on what 
I know now? The “Assessment” section above details various 
lesser miscalculations and mistakes; here are the big ones:

The first big lesson I would apply from the essays (Chap-
ter 10) is to pay even closer attention to the budgeted resource, in 
this case, inches of ocean frontage. Now understanding that criti-
cality, I would study the details of the side-line setback require-
ments (as to whether eaves count), and I would design to exploit 
every available inch, even breaking the square-foot budget.

The second big lesson (Chapter 11) would be to notice that 
the early addition of the under-house showers to the plan had 
removed the desideratum/constraint of outside access to the 
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main bathroom. Hence I would remove the west deck and real-
locate its 42" of frontage.

General Lessons Learned

The lessons learned here in the small apply generally to every 
substantial design project, whether hardware, software, or 
buildings:

Check your professional architect’s work very carefully, and 1. 
ask for rationale. Even honest, competent, and conscientious 
architects make mistakes.
Inspect often and thoroughly during construction. Even hon-2. 
est, competent, and conscientious builders make mistakes. 
Think hard about all aspects of maintenance. One maintains 3. 
any successful design a long time.
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22
Case Study: House Wing 
Addition

In fact, architecture can almost be taken as a prototype for 
the process of design in a semantically rich task domain.

HerBert Simon [1981],   
The sciences of The arTificiaL

Plan of house after 1991–1992 wing addition
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Highlights and Peculiarities

Why This Case? For this design, we have some 235 pages of the 
contemporaneous log of design issues, pros and cons, and deci-
sions made over 60 months. From this log we undertook a formal 
design-tree documentation, as detailed in Chapter 16. This case 
illustrates the interplay of design and the discovery of require-
ments treated in Chapter 3.

Bold Decision. Defer budget constraints; design for function; 
then value-engineer. This decision was made halfway through 
the design process when nothing was working.

Bold Decision. Move the Master Bedroom to the midst of the 
public and semipublic spaces. This decision was made late in the 
design process when a low-frequency use case revealed a hith-
erto unperceived requirement. This decision seemed at the time 
to mean essentially abandoning the east end of the house. As the 
family has subsequently grown, having that “hotel” end has been 
quite useful.

Key Decision. Buy a 5' strip of land from the neighbor to solve 
an intractable design problem. The story is told in Chapter 3.

Phasing. Undertake the total house remodeling in two phases, 
to simplify our design and supervision task, as detailed in this 
chapter and the next one.

Plenty of Design Time. Design until we were satisfied, uncon-
strained by any construction schedule goal. In the event, the 
design happened over some 60 months (with substantial inter-
ruptions), whereas construction took only 9.

Introduction and Context

Location: 

413 Granville Road, Chapel Hill, NC 
The house faces precisely north, so descriptions will be 
given in N, S, E, W terms.
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Owners: 

Frederick and Nancy Brooks

Designers: 

Frederick and Nancy Brooks 
Advised at times by Wesley McClure, FAIA, and Alex Jones, 
ASID 
Construction drawings by another draftsman

Builder: 

Additions Plus (Stanley Stutts, contractor; Gary Mason, proj-
ect master carpenter)

Dates: 

Design, 1987–1992 
Construction, 1991–1992

Supplementary Web Site: 

During the design process, Fred and Nancy kept a detailed log 
of design issues, problems, thoughts, consultations with friends 
and professionals, and decisions, some 235 pages. Sharif Raz-
zaque encoded the more significant parts of this as a Compen-
dium graph, showing the decision tree, but not the detailed 
rationales for each decision. This tree may be consulted on the 
book’s Web site, www.cs.unc.edu/brooks/DesignofDesign.

Context

1964–1965
The original house (Figure 22-1), built in 1960, was acquired in 
1964, chosen largely because of the large wooded, creek-bordered 
lot and convenient location, and in spite of obvious house short-
comings. The most serious single design flaw was the traffic pat-
tern, especially the bottleneck between the Dining Room and the 
Kitchen, through which all east-west traffic flowed. Moreover, 
each room in the house was experienced as somewhat too small 
for its function. 
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Figure 22-1 Main floor as of 1987

When in 1965 we moved in, we had two sons, aged 7 and 3, 
and a 6-month-old daughter. To be near the children, we used the 
Red Bedroom as the Master Bedroom, and the other three east-
end bedrooms for the children. The original Master Bedroom, at 
the west end, was used as a guest suite from 1965 to 1986.

1972
We finished the basement as an apartment and relocated our 
older son there; the second son joined him later. This enabled us 
to remove the partition and closets between the two northeast 
bedrooms, creating one large bedroom, the Yellow Bedroom, for 
our daughter. The Green Bedroom became Nancy’s Study.

1987
Our daughter graduated from college in 1986 and became an Army 
officer. Our sons were in graduate school or professional practice; 
one was married, with no children. With our children gone, we 
had more time for other activities, hence felt a need for more of 
certain spaces. Nancy Brooks had been teaching violin in the home 
since the mid-1960s; now she was able to teach more pupils.

Nancy’s widowed father, Dr. Joseph Greenwood, had just 
come to live with us permanently, living in the Master Bedroom 
(Guest) suite at the west end. Nancy had inherited her parents’ 
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grand piano. This supplemented the one we owned, enabling 
two-piano music.

In various ways, the house was ready for a 30-year update. 
Fred’s Study was in the (ground-level-access) basement apart-
ment, in what had been the sons’ quarters. Given our ages, it 
seemed wise to enable normal indoor living using only the main 
floor, should that become necessary.

Off and on over previous years we had tried to see how 
a 500 ft2 addition might be used to make the house more spa-
cious, ideally by shuffling functions so that each room’s func-
tion got upgraded in space. These design efforts had been 
unsuccessful. 

So now we began in dead earnest to design an addition.

Objectives 

Original Objectives

Improve the traffic pattern.• 
Make more space in almost every room.• 
Build a Music Room (MR) large enough to hold two grand • 
pianos, a small organ, and a string octet with a 1' teaching 
margin around the outside of the octet. The room must also 
hold music files. This size would get the two grand pianos 
out of the Living Room, where they were filling the north 
end and made a narrows for entry from the front door. The 
Music Room should also accommodate small student recitals 
with an audience of parents. Ideally, it would have a separate 
entrance.
Bring Nancy’s Study (NS) from the southeast corner Green • 
Bedroom to make it convenient to the Music Room and to 
Fred’s Study. Enlarge it.
Get Fred’s Study (FS) upstairs to the main floor.• 
Provide more function spaces: rooms and/or alcoves.• 
Add a front porch (FP) large enough for a porch swing and • 
other seating.
Provide a screened back porch (this became the Sun • 
Porch, SP).
Modernize and enlarge the Kitchen (K).• 
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Enlarge the Dining Room (DR).• 
Make the main entrance obvious as one approaches from the • 
driveway (Figure 22-2).
Improve the esthetics of design, especially outside, perhaps • 
with a more interesting roofline. 
Enhance, or at least don’t hurt, the yard and site.• 
Preserve trees to the southwest and southeast, flowers to the • 
north.
Capitalize on the view of the yard and gardens from within • 
the house, especially from the public rooms.

Discovered Objectives

Better accommodate the biweekly meetings of a student • 
group we advise, about 40 people.  
Accommodate some 40 coats for attendees at recitals and stu-• 
dent meetings.
Provide storage for family goods currently in rental storage.• 

Figure 22-2 North part of house site
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Constraints

Existing Structure. The plan, placement, and orientation of the 
existing structure determined the scope of the remodeling.

Site. The north property line and 15' setback, and the 17' 
shadow-casting requirements, constrained expansion.

Tree. A large black oak in the upper backyard was a main fea-
ture of the lot that we wished to keep.

Lot. The topography falls off fairly steeply to the west, starting 
at the end of the existing house.

Budget. our target was $100K, and the expected cost of the 
addition was $100/ft2.

Non-Constraints

Budget. Our target of $100K was not an absolute constraint, as 
the purchase mortgage had been fully paid.

Resale Value. There was no need to consider whether invest-
ment in the addition would increase the resale value. From life 
expectancies and our plans not to move, we could expect some 30 
years to amortize the addition before selling the house, by which 
time it would be ready for another update anyway.

Acreage. There was plenty of land; the lot has more than 1½ 
acres.

Time and Effort. We had plenty of design time and willingness 
to invest lots of design effort.

Events

Several events changed the design as it proceeded:

Dr. Greenwood died in late 1988.• 
The architect’s draftsman hired to make construction draw-• 
ings misaligned the foundations drawing with respect to the 

From the Library of Wow! eBook



ptg

286 22. Case Study: House Wing Addition

main-floor drawing. This discrepancy was discovered after 
the foundation was poured. The fix was to enlarge the main 
floor by 1' to the west and 1' to the north. The chapter frontis-
piece shows as-built, rather than as-designed.

Design Decisions and Iterations

Explorations 

Flip the House End for End. Redo the interior radically, mak-
ing the existing bedroom wing into the public rooms—Music 
Room, Living Room, perhaps Nancy’s Study—and fitting the 
master and guest bedrooms into the old Music Room. Plusses:
There would be easy main and student entrances, and we could 
perhaps add studies as an extension to the southeast. Minuses:
This would be a costly change; we would need more bathrooms 
at the west end; we would waste the fireplace; and we would 
separate the Living Room from the Dining Room with all traf-
fic coming through the Kitchen. We abandoned this option 
quickly.

Southeast Wing. Build a new Master Bedroom suite out from 
the southeast of the house, perhaps incorporating the Green 
Bedroom. We abandoned this idea to preserve the white oak 
and red oak trees at the southeast of the house, and the access 
from the driveway to the apartment and the backyard.

McClure’s pavilions (Figure 22-3). Plusses: The Music Room 
(North Pavilion) becomes almost entirely separate, with easy 
access from the driveway and good acoustic isolation from the 
house. The Living Room (South Pavilion) has superb views 
into the garden and yard. The freed-up Living Room converts 
to an inglenook around the fireplace for reading and conversa-
tion. Minuses: The South Pavilion would require sacrifice of the 
magnificent four-trunk black oak. We would not be able to use 
the living space to enhance the Music Room for recitals.

The South Pavilion was abandoned rather soon, so with it 
went the redesign of the Living Room to include the attractive 
inglenook.
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Figure 22-3 McClure’s pavilion sketch

The North Pavilion stayed in the main line of design, under-
going many shape and configuration explorations and ultimately 
becoming the north wing, incorporating the Music Room, Fred’s 
Study, Foyer, and Front Porch.

Partitioning the Design Problem

As we proceeded, it became clear that we could partition the 
house redesign into three almost separate problems: 

Old East: the bedroom end, perhaps including the Playroom• 
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Center: the Kitchen, the North Hall and its closets, Playroom, • 
Laundry/Toilet, basement stairs
Old West: the Music Room, Dining Room, and West Bedroom • 
suite, together with the new addition, New West

This partitioning proved liberating; all later design used it. 

Phases. Fairly early, we decided to have two design and build 
phases, several years apart, chiefly to give manageability to the 
design and supervision tasks. Phase I would be the Old West– 
New West part; Phase II, the Kitchen and Playroom part. Phase II 
is treated as a separate case study in Chapter 23.

East End

Various East End redesigns were done, all aimed at giving the 
Master Bedroom its own shower-toilet and providing a comfort-
able suite for Dr. Greenwood. Some rather tentative explora-
tions looked at moving the basement stairs to the Red Bedroom 
or sharing between it and the Playroom. After Dr. Greenwood’s 
death, the requirement for a bedroom/bath suite in addition to 
the Master Bedroom vanished. As a result, after we moved the 
Master Bedroom to the West End late in the design process, we 
abandoned the East End redesign effort and left it as it was. 

It serves as the Guest Suite, unheated and uncooled except 
when there are visitors. Roger’s family now has five children; 
Barbara’s has four. A visit from either fills this suite and the base-
ment apartment.

Function Placement within West Half

The most extensive exploration concerned placement of func-
tions in both Old West and New West, which were considered as 
one allocable space, although existing room walls were implicitly 
honored in most deliberations.

These explorations occurred before the decision to keep the 
Master Bedroom in the West End; the old Master Bedroom was 
assumed to be part of the allocable space. So all the early delib-
erations concerned only where to put the Music Room, the Living 
Room, the Dining Room, Library, Nancy’s Study, and Fred’s Study. 
The plan in the chapter frontispiece is misleading at this stage. 
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Having ruled out extension to the south, we considered addi-
tions to the north, to the west, and in both directions. Function 
allocations considered were

Music Room west and Living Room north• 
Music Room north and Living Room west• 

Change of Approach: Forget the Budget as a Design 
Constraint

As these explorations proceeded, it became evident that the bud-
getary constraint, translated into 1,000 ft2, was inhibiting our 
thinking. So we decided to design to meet the objectives, then 
later cost-engineer and/or decide to spend more money if it then 
seemed worth it. This radically freed up our thinking.

I have for some years advocated this approach to the design 
of computer graphics systems. In that domain, I had discovered 
that the best way to make a cost-effective application system is to 
make an effective one, then cost-reduce it, rather than making a 
cheap one and augmenting it until it is useful. It took me too long 
to come to this same approach on the house.

Newly Discovered Requirement: Where to Put the Coats?

In November 1990, we were checking a tentative design by run-
ning various (extemporaneous and undocumented) use cases 
against it. We did this in more detail than we had earlier, because 
the design was more congealed. We ran the biweekly scenario of 
a dinner meeting of the 30- to 40-person student group for which 
we are faculty advisers and hosts.

As the guests enter in winter, they place their coats some-
where. Where? The Foyer coat closet clearly wouldn’t hold them. 
On the music instruments? All over our Studies? Where do they 
put them now? On the bed in the Guest Room, adjacent to the 
Living Room. oh—that room is gone in this design.

One solution would be to enlarge the coat closet, quite sub-
stantially. Another would be to keep the Guest Room in the West 
End, move into it as the Master Bedroom, and quit redesigning 
the East End. The gross cost: making the westward extension 
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larger, by at least the present width of the Guest Room. The net 
cost: gross cost less the East End costs not undertaken.

Problem. If there is a westward extension beyond the Master 
Bedroom, it must be integrated with it to meet code requirements 
for sleeping spaces; there can’t be a closable door between the 
bedroom and windows. 

Corollary 1. If we put Nancy’s Study as the westward exten-
sion, that integration is not problematic. No other room could go 
there. (Fred often studies while Nancy sleeps, but not vice versa, 
so his study can’t go there.)

Corollary 2. If the Music Room isn’t to be in the west exten-
sion, it should be in the north one. This keeps it isolated from the 
main living quarters and makes it convenient for access from the 
driveway.

Convergence of Function Placement

Things then rather rapidly fell into place.

Living Room. In order to meet the recital requirement, it would 
be desirable to integrate the Living Room and the Music Room 
sometimes, but not most of the time. This was solved by a 12' 
sliding door (four panels), moving into a new pocket on the out-
side of the north wall of the Master Bedroom.

The Living Room enlargement was accomplished by absorb-
ing the original Foyer, the original Foyer coat closet, and the 
original Guest Room closet—all to be replaced in the new wing. 
Of course, moving the two grand pianos out to the Music Room 
made an immense difference in the Living Room’s effective size.

Fred’s Study. The logical place for this now became a filling-in 
of the corner between the north wing and the west one. This was 
done with space for a new Master Bedroom closet off Nancy’s 
Study and other closets. The North Hall also accommodates the 
copier, centrally adjacent to the Music Room, Nancy’s Study, and 
Fred’s Study.

Sun Porch. The desired south porch nicely fits into the south-
west corner of the New West wing. Originally we envisioned it 
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as a ground-level porch. When we saw how the necessary steps 
down from the main floor would eat into its space, we kept it on 
the main-floor level. Likewise, use-case checking led us to glass 
it in, with many operable windows, rather than screening it. An 
outdoor porch would be underutilized—too cold in winter; too 
hot in summer.

Front Porch. The Front Porch went through several iterations; 
originally it covered the whole east face of the north wing. In 
the event, we kept the original diagonal orientation of McClure’s 
North Pavilion, facing out directly toward the approach to the 
house from the driveway. It was made big enough to accommo-
date two facing porch swings, which has created an unexpect-
edly useful conversation site.

The porch gable created by the 45° orientation solved two 
problems. First, it provides an obvious entrance for the house. 
Second, it neatly smooths over the joint between the old house’s 
8' ceilings and the new wing’s 9' ceilings and their corresponding 
eave lines (Figure 22-4).

Figure 22-4 View of the remodeled house from a northeast approach 
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Basement Storage. A late-discovered opportunity was the pos-
sibility of putting cheap storage space under the west wing, 
because the terrain falls off so rapidly. Modest excavation and 
low-cost finishing yielded a 530 ft2 closed-in storage area under 
the Music Room, a small workshop, and space for the new wing’s 
mechanicals. This enabled us to give up remote storage we had 
been renting, with more convenient access.

The Property-Line Setback Constraint. Chapter 3 tells the 
story of the most interesting single design problem and decision. 
The Music Room objectives were quite specific and constrained 
it to be rather squarish. This and any reasonable configuration 
of Fred’s Study conflicted with the 17' shadow-casting setback 
requirement of the Town of Chapel Hill. Extensive design itera-
tions couldn’t solve the problem. We finally bought a 5' strip of 
land from our neighbor.

Dining Room. A simple extension of the Dining Room to the 
south was designed. This would put the long side of the room 
north-south instead of east-west. It required a roof gable, as well 
as some awkwardness in the deck along the south side of the 
house. After cost estimation, we gave it up, purely as part of our 
cost engineering.

Changes during Construction

Fred’s Study Windows. As designed, the west windows in 
Fred’s Study were 4' tall, starting 3' from the floor. During fram-
ing it became evident that the westward-falling terrain meant 
that the view from those windows would be just treetops. So the 
windows were changed to 6' tall, starting 1' from the floor. This 
did indeed improve the view and the feel of the room.

This is the sort of problem that plans and elevations would 
never reveal, but that a virtual-environment simulation would 
have shown during design.

Organ Niche Window. Son Ken Brooks suggested putting a 
narrow window behind the bench of the new organ. This pro-
vides light to the Music Room from a third side.1
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Assessment—Successes and Unresolved Drawbacks

Some 17 years have elapsed since the completion of the Phase I 
project, 14 years since Phase II, the Kitchen-Playroom redesign.

We have no “Wish we had done that differently” list. The 
unusually long design effort, with close attention to detail, paid 
off in livability, function, and delight. Of course, not all ideals are 
achievable, given the constraints.

Kitchen–Living Room Door. Cutting the door from the Kitchen 
into the Living Room had the most dramatic effect. This radi-
cally eased the traffic pattern of the house and gave end-to-end 
visibility.

Master Bedroom. The plan is indeed somewhat weird in having 
the Master Bedroom surrounded by other functions. The design 
depends upon resale value not being a consideration. Few fami-
lies would need the big Music Room, Fred’s Study, and Nancy’s 
Study.

Music Room. This space works well for lessons and individual 
practice, because it can be closed off. It accommodates a big organ 
very well. It works for recitals and an annual workshop because 
of the wide opening into the Living Room. But it has no separate 
access. Students put shoes and instruments in the Playroom, then 
trek through the Kitchen and Living Room.

Living Room. Getting the pianos out makes it a new room. The 
enlargement via closet incorporation is welcome. But the greater 
breadth would have worked better with a higher ceiling.

Photo and video projection is awkward. There is no good 
place to put the screen.

Dining Room. This room is still cramped. The table can be 
extended into the Living Room, and auxiliary tables set up there, 
so the house can feed a lot of seated people. 

Front Porch. The two facing swings make a separate conversa-
tion nook that is often used. The main entrance is now evident; 
the appearance, much improved.
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New Functions

The redesigned house turned out to meet needs that we didn’t 
know we had. As noted in previous chapters, this is usually, not 
exceptionally, the case for products.

Sun Porch as Meeting Venue. The Sun Porch has turned out to 
be a very suitable room for meetings of up to a dozen people. A 
new Christian school was founded there and held its board meet-
ings there for some years.

Music Room as a Living Room Extension for Meetings. An 
initial requirement was that the Living Room serve as a Music 
Room extension for musical recitals. It works well for that. Stu-
dents and their parents, about 25 people, sit in rows of chairs that 
start in the Music Room and extend back into the Living Room. 

The converse has unexpectedly turned out to be true. Meet-
ings of the graduate InterVarsity Christian Fellowship normally 
run 30 to 40 people but have occasionally attracted over 50. These 
meetings focus on speakers by the Living Room fireplace, and 
the Music Room accommodates seating for the outer rows.

Deck, Steps, and Yard as Meeting, Eating Area. The deck along 
the south exterior wall was brought down to the upper backyard 
with broad steps and equipped with a fold-down table. This has 
proved to be a good outdoor eating and meeting space for the 
IVCF chapter. The steps provide a lot of seating. 

General Lessons Learned

Spend time on design. We spent much more time per square 1. 
foot than might have been cost-effective if the designer time 
were part of product price. The same thing is doubtless true 
of much of Linux. on operating System/360, we would have 
benefited greatly from more design time before implementa-
tion got under way. I do not think the product would have 
cost more in total.
Talk many times, lengthily, with the principal user(s), show-2. 
ing prototypes they can understand.
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Run lots of use scenarios.3. 
Double-check the work of professionals, such as architects, 4. 
draftsmen, and decorators. Make sure you understand it, and 
that it’s accurate.

Notes and References

Alexander1.  [1977], A Pattern Language, advocates ensuring that each 
room is daylighted from at least two sides, preferably more. We fol-
lowed this scrupulously, putting a skylight in Nancy’s Study and 
Fred’s Study (but carefully not in the Master Bedroom), and a win-
dow in the interior wall between Nancy’s Study and the Sun Porch. 
Thus, each of the new rooms has some daylight from three sides.
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23
Case Study: Kitchen 
Remodeling

If you can’t stand the heat,  
get out of the kitchen.

Harry S. truman 

Virtual-environment model of remodeled kitchen
Effective Virtual Environments Research Project,  
University of North Carolina at Chapel Hill
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Highlights and Peculiarities

Why This Case? This simple case illustrates the power of design 
tools. Drawings, computer-assisted design (CAD) software, scale 
models, full-scale mock-ups, and a virtual-environment (VE) 
walk-through each benefited the design. The VE and the mock-
up each added value that the other did not.

Bold Decision: Move the exterior wall. This change trans-
formed the design.

Bold Decision: Cut a door between the Kitchen and the Living 
Room. Creating this door transformed all house traffic.

Skylights. Two skylights transformed the dark, north-facing 
kitchen into a bright, pleasant space.

Introduction and Context 

Location:

413 Granville Road, Chapel Hill, NC

Owners:

Frederick and Nancy Brooks

Designers:

Frederick and Nancy Brooks

Advised by Mary June Magó and Alex Jones, ASID

Dates:

1995–1996

Context

This design was Phase II of a 1990s remodeling of a 1960s house. 
Phase I consisted of the addition of a West Wing, a Foyer, and a 
Porch. It is described in Chapter 22. Phase II was scheduled a few 
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years later than Phase I to enable ample design time for Phase II 
and plenty of oversight for Phase I construction.

Objectives

Primary Goals. Our principal objectives were to enlarge, re-
arrange, and brighten a small, dark, north-facing kitchen–break-
fast room.

Other Objectives. In decreasing order of importance:

Improve the traffic pattern for the house, in which all traffic • 
between halves passed through the narrows by the basement 
stairs. We also needed to accommodate violin student traf-
fic coming in the back door, emptying their cases, storing the 
cases in the Playroom, moving to the Music Room, and back. 
Move the kitchen table to the garden window for view.• 
Arrange the spaces so the cook can talk with a seated non-• 
working visitor.
Make the kitchen convenient for each of• 

One cook preparing breakfast• 
One (short) cook doing general cooking, baking, and • 
canning
Multiple (up to three) cooks preparing a big meal• 

Conveniently serve, via buffet, groups of 30 to 40 students.• 
Add substantially more counter space.• 
Install a bigger sink.• 
Design a walk-in pantry.• 
Keep the exterior appearance pleasing.• 
Brighten the “back” entrance to the house, which is the prin-• 
cipal entrance for family, students, and often for informal 
guests.
Subordinate the back door in the exterior façade.• 
Add a decorative bird mural to the dull brick chimney wall.• 
Conceal miscellany in cabinets.• 
Display a small amount of glassware.• 
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Opportunities

Smaller Family. The family had shrunk, due to the children 
growing up. So normal kitchen-eaten meals would be for two, 
occasionally three, exceptionally four, rather than routinely five.

Space Available in the Playroom. Due to the 1992 construction 
of a music-teaching studio in the new West Wing, a 5' x 5' space 
formerly occupied by an organ became available, as well as a 2' x 
6' space formerly occupied by hi-fi equipment.

Three-Foot Eaves. Due to Frank Lloyd Wright’s inspiration of 
1960s ranch-style houses, this house had deep eaves.

Design Time and Effort Budget. These were essentially 
unlimited.

Constraints

User Height. The primary user of the kitchen is 5'1" tall.

Construction Budget. The budget was not cramped, but did 
not admit of major structural changes.

Exterior of House. The exterior of the house was finally made 
attractive by the 1991 addition (Chapter 22), which we didn’t 
want to mess up.

Existing Kitchen. The size and shape of the existing kitchen 
(Figure 23-1) would determine the shape of the new one.

Brick Chimney Wall. This wall was 8" thick and constrained 
the traffic pattern.

Basement Steps. These could not be relocated.

Playroom Exterior Door. The function of this door was essen-
tial, but the placement was movable.

Back Door. Placement in the brick wall made moving it 
expensive.
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Existing Laundry/Toilet. This room did not need to be 
changed.

Pantry. We needed to preserve the pantry’s function and capac-
ity, but not its placement.

Closets. The North Hall closets’ functions and sizes had to be 
retained, but not their placement. This is an interesting example 
of the importance of probing existing use scenarios closely. The 
requirement could not readily have been inferred from a wealth 
of precedent kitchen designs. The strength of this requirement 
comes from the fact that we had followed particular use scenar-
ios for 30 years and would suffer a high “chaos cost” if the closet 
contents were severally dispersed all over the house.

Structural Considerations. The structural vertical members in 
the basement staircase wall supported the roof.

Rest of House in Use. Other rooms would be in constant use 
during construction.

Figure 23-1 Kitchen plan before remodeling
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Rationing the Critical Width Budget

Needed Width North to South 

In all the early attempts to find a workable design, the width 
proved to be the stumbling block. Consider the objectives of

An eating area by the window• 
A sink where one could see out the window• 
A sink where one could visit with people at the eating area• 
Easy east-to-west traffic through the kitchen• 
Enough counter/cabinet space• 
A short stove-sink-refrigerator triangle• 

Tentative Design

This suggests an island with a sink, facing the window and eat-
ing area. Putting a counter with the stove against the south wall 
seems necessary.

Now the width at the tightest pinch point must be rationed 
among, from north to south:

Eating table (not less than 30")• 
Passage for traffic (not less than 24")• 
Sink island (not less than 24")• 
Walk/work space between sink and stove (originally esti-• 
mated at not less than 36")
Stove and counter (not less than 27")• 

This is a total of not less than 12'3". The original width was 12'. 
The objective of seating up to four at the table occasionally 

can be satisfied by having the visitors sit in the passage, effec-
tively blocking it. This is acceptable, since only occasional.

Mock-up studies, however, showed that the sink-stove space 
really needed 44", rather than 36", because of swing-out/pull-out 
cabinets, stove doors, and dishwasher pull-out. So the total width 
needed was not less than 12'11". 

Alternative Width Solutions

Eliminate the Traffic Passage. A rejected design would have 
eliminated the passage and routed east-to-west traffic between 
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the sink and stove, utterly interfering with cooking. Rejecting it 
meant the needed width was ≥12'11". This suggests

Taking over the pantry and basement stairs’ space, moving • 
them elsewhere, or
A bay window for the eating area, or• 
Pushing the whole north wall of the kitchen out as the eaves • 
allow

In either of the latter two cases, one would move the pantry 
elsewhere to pick up 9".

Move the Basement Stairs? Extensive studies of moving the 
stairs elsewhere showed that the only workable alternative would 
be a spiral staircase tower outside the house, connecting to the 
Playroom’s south exterior door. other solutions either didn’t 
work with existing or reasonable partitioning upstairs, or with 
reasonable partitioning in the basement.

The stair tower alternative was pursued for some months. It 
was finally rejected as expensive and unesthetic, although work-
able for traffic.

For the design process, concluding that all “move the stairs” 
alternatives were unworkable or unacceptable was a critical 
moment, radically narrowing the field of possible designs. This 
subdesign was a good example of Simon’s “search the tree” pro-
cess, as I explored multiple instances of the “spiral stair” design 
and, when none worked, went up a level on the design tree and 
ruled out moving the stairs at all.

Bay window or push the whole north wall outward? Exterior 
mock-up studies showed that pushing the whole kitchen wall out 
northward would look much better than a bay window, and costs 
appeared roughly comparable. So that alternative was selected. 
The same mock-up studies showed that push-outs of 18" to 24" 
worked esthetically, given the 36" eaves.

Resulting Width Design

With an extra 24" from push-out and 9" from moving the pantry, 
the width constraint was greatly relaxed. The island was widened 
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from 24" to 36" to provide serving, staging, and storage space. 
The north passage was widened to 39"; the south passage, to 44".

Rationing the Length Budget

The Length Pinch. The south wall became the length pinch. It 
had to accommodate the 48" stove, a work counter to its right, 
and a work counter to its left. The west work area was chosen as 
the breakfast-cooking corner, so it had to accommodate a micro-
wave oven and a toaster, for a total of not less than 36".

The east work counter is the major general cooking and bak-
ing area, with access to dry ingredients, spices, mixers, and other 
cooking needs. Mock-up studies showed that a 48" counter length 
would be desirable.

Design. The south wall was lengthened eastward by 18",
increasing the separation of Kitchen and Playroom into two 
rooms. Mock-up studies with the new Pantry in place showed 
that the 5' (diagonal) opening would suffice and yield a good 
visual effect.

Figure 23-2 Kitchen plan after remodeling
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Other Design Decisions

Doors. Should we cut a door from the Living Room to the 
Kitchen? Yes, even though it meant cutting through 8" of brick 
wall, hence was expensive. The house traffic pattern demanded 
it. From the Dining Room to the Playroom? No, the wall space in 
each room was more valuable.

Closets. Another decision was where to move the North Hall 
closets. We decided to move them to the Playroom east wall.

Pantry Shelves. We moved the pantry shelves (originally on the 
south wall) to a new Pantry built out from the Playroom north 
wall, into the space vacated by moving the organ elsewhere.

Configuration of the Kitchen-Playroom Opening. Positioning 
the Pantry door diagonally increased the visual opening.

Traffic. The south passage is for cooks only; the north passage 
is for visitors and all east-west house traffic.

Cabinets. Hanging cabinets over the sink island was an option, 
but a virtual-environment walk-through showed these to inter-
fere with the visual space of the room.

Perimeter of the Sink-Stove-Refrigerator Triangle. The Small 
Homes Council recommends that the triangle joining these three 
workstations have a maximum perimeter of 26'. our final design 
yields a 24' perimeter.

Storage for Plates, Glasses. Putting these items in drawers 
worked better than cabinet storage for the shorter user.

Rolling Auxiliary Island. The 26" x 26" island with a 12" flip-
up extension provides storage for silver, glasses, and implements. 
It also provides staging for the refrigerator and an optional exten-
sion to the main island for buffet service.

Low East Work Counter. The east work counter was made 
low for the convenience of the shorter user. It also enables a tall-
appliance garage.
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Appliance Garage. This space is embedded in the adjacent 
closet through the south wall.

Lighting

Skylights. Two skylights, 2' x 4', were placed at the ends of the 
island and over the darker south part of the room. This design 
decision was suggested by Alexander’s pattern of “Every room 
should have daylight on two, or preferably three, sides.”1

Back Door. We replaced the solid back door with a glass one.

Windows. We installed new kitchen windows to fit the entire 
breakfast nook.

Artificial Lighting. Seven circuits yield different configurations 
for uses, moods, and traffic pattern emphasis.

Color Scheme. Off-white aids brightness and allows accent col-
ors. We kept the old paneling in the Playroom and east Kitchen 
wall and covered the brick chimney with white drywall.

Assessment

Size. The 2'9" width enlargement by the push-out and the Pan-
try move changed working space and traffic space. Moving the 
closets lengthened the visual space by 2'3". The square footage in 
the Kitchen increased by almost 54 ft2.

Traffic. The costly door to the Living Room radically trans-
formed the whole house. Almost all east-west traffic goes 
through the new door. From the Kitchen one can see out the 
east windows in the Yellow Bedroom and the west windows in 
Nancy’s Study.

Brightness. Skylights, glass, the off-white color scheme, and 
lighting transformed the room’s feel.
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Effect on Playroom. The Playroom became noticeably narrower 
because of the closets, but it still proves quite adequate for

Music student staging and instrument cases• 
Music student siblings playing during lessons• 
Grandchildren playing• 

South Door. The path to the south exterior door is somewhat 
cramped.

Other Desiderata Satisfied.

The eating area works well as a guest area. There is also an • 
entrancing view of the bird feeder.
The breakfast-cooking corner is convenient—standing in • 
one place, one can reach the microwave, electric frying pan, 
toaster, drawer, stove, and dishes.
Multiple cooks can work comfortably.• 
The new Kitchen works well for group buffet feeding:• 

Traffic enters through the Dining Room and leaves through • 
the Living Room.
People take serve-yourself silver from the southwest coun-• 
ter drawer.
Trays, plates, and supplies are stored in the southwest • 
counter cabinet.

The new Pantry is much more capacious and convenient.• 
The exterior appearance was not hurt.• 

Use of Drawings, CAD, Models, Mock-ups, and Virtual 
Environment in the Design

Much effort was put into the design because

Kitchen satisfaction accounts for much of the total satisfac-• 
tion with a house.
Kitchens are intensively used.• 
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This remodeling project was tightly constrained by the exist-• 
ing structure and its traffic pattern, creating difficult design 
problems.
The designers had no limitation on the design effort budget.• 

The design turned out to use a full range of design tools.

Drawings and CAD. Most design was done with sketches, 
then rationalized into coherence and consistency with the exist-
ing structure, using the MiniCad architectural CAD system on a 
Macintosh. The MiniCad file served as the design document.

Most CAD work was done at 1/4" = 1' (1:48) scale, but the 
CAD system and a two-page monitor made it easy to do detail-
ing at on-screen scales up to 1:6. Scales 1/2" = 1' and 1" = 1' were 
often used.

The CAD design was layered, with layers for original kitchen, 
removed construction, added construction, and appliances and 
furniture.

Design Log. The rationale behind substantial design decisions 
and the wanderings in arriving at them were contemporaneously 
captured in a design log. Edited sample pages are shown on the 
Web page for this book. 

Isometric Drawing Kit. We also used a kitchen design kit that 
provided a set of isometric grids and a set of isometric drawings 
of appliances, cabinets, counters made to the proper scale and 
printed on electrostatically active plastic. It was easy to use, fast, 
and produced good results. The chief limitations were the set of 
furnishings provided and monochromaticity.

Models. Nancy made from 1/2" = 1' drawings a set of simple 
cardboard models to get a feeling for the 3-D geometry. These 
models proved to be substantially richer than the isometric draw-
ings: they enabled one to view the interior of the kitchen from 
any angle, even though in miniature.

Mock-ups. Full-scale mock-ups were used to test the most criti-
cal design decisions. These proved invaluable.
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The pushed-out exterior wall was mocked up with cardboard 
mattress boxes for prediction of external appearance. Interior 
counter arrangements were mocked up with tables, cardboard, 
and sawhorses, in a large interior space in another building. Then 
kitchen scenarios were carried out with various inter-unit spac-
ings. This proved to be a very effective way to establish both the 
minimum tolerable spacings and the amount of ease effected by 
measured relaxations of those spaces.

This mirrored a previous experience I had on a church build-
ing committee. We ended up mocking up the church kitchen’s 
spacings. It proved the only satisfactory way to determine them.

Virtual-Environment Visualization. Because my UNC research 
team was developing a virtual-environment laboratory, Nancy 
and I tested the lab by testing our proposed kitchen design using 
it. The chapter frontispiece shows one of the views produced in 
the head-mounted display as the viewer walked about in the 
virtual kitchen. Our tracking technology allowed free walking 
movement over a 15' x 18' space, which encompassed almost the 
whole kitchen. 

The illusion of presence during a 20- to 40-minute kitchen 
design session was very strong—one forgot the VE apparatus 
and concentrated on the kitchen.

VE Findings 

The most important finding of the VE sessions was that the • 
hanging cabinets flanking the sink broke up the visual space 
and made the kitchen feel small and cramped. So we rede-
signed to remove those cabinets and still keep the required 
amount of shelf space.
A hanging lamp at the breakfast-cooking corner was intrusive • 
and needed to be replaced with a recessed ceiling fixture.
The VE experience confirmed the desirability of the bird • 
mural planned for the large chimney wall.
The diagonal arrangement of the hardwood flooring was • 
seen to be effective.
Other findings showed improvements needed in the VE • 
apparatus and techniques.
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General Lessons Learned

The kitchen is indeed the most important room in the house. 1. 
It rewards extensive design work.
Fourteen years later we can think of only minor details we 2. 
would have done differently on this project. This happy 
outcome is partly due to the fact that as with Linux, the 
designers are the users, hence the use cases are realistic and 
representative. 

Another large factor is the time and effort invested in the 
design. As with the System/360 architecture (Chapter 24), we 
had plenty of time. Whereas with software, one wants to use 
extended design time to test prototypes with real users, we 
used much of it to test pseudo-prototypes—mock-ups and 
VE models—with extensive use cases.

I am convinced that most projects need to devote a larger 
share of the total schedule to design.
Very wide consultation with friends yielded crucial good 3. 
ideas, including the basic configuration.
Full-scale mock-ups, together with use scenarios, proved 4. 
invaluable.
Virtual-environment technology provided important informa-5. 
tion beyond that which floor plans and even mock-ups pro-
vided, especially about visual space and the feel of the room.

As a practical matter, VEs will become cheaper and 
easier. Mock-ups won’t. So, the key question is not “Did VE 
add value beyond that provided by mock-ups?” but “Do 
mock-ups deliver key value that isn’t subsumed in what VE 
delivers?” 

Both my experience in designing spaces and scientific 
results from our VE laboratory say “Yes.” Insko found that 
adding Styrofoam mock-ups that could be felt (even though 
seen only as model images) to a VE experience significantly 
improved the sense of presence.2 Those trained in a VE that 
included a touchable mock-up as well as a visual image tra-
versed a real maze (blindfolded) significantly faster and with 
radically fewer errors than those trained in the same VE with 
only the visual images.
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Consequently, I believe mock-ups, exercised by use sce-
narios, will continue to be worth their substantial effort and 
cost when one is designing an intensively used space, such 
as a kitchen, or one that will be widely replicated, such as an 
office in a multi-office building.

Notes and References

Alexander [1977], 1. A Pattern Language.

Insko [2001], “Passive haptics significantly enhances virtual environ-2. 
ments”; Whitton et al. [2005], “Integrating real and virtual objects in 
virtual environments.”
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24
Case Study: System/360 
Architecture

IBM’s $5,000,000,000 gamble

tom a. wiSe [1966], forTune maGazine

[The IBM System/360 mainframe and its compatible 
successors]… was the workhorse of computers 
for such a long time and continues to be.

Gordon Bell [2008]

Basic programming model of the IBM System/360
Blaauw and Brooks [1997], Computer Architecture, Figure 12-78
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Highlights and Peculiarities

Boldest Decision. Drop all further development of each of 
IBM’s six existing product lines in favor of one new product line, 
exposing the existing customer base to competitors’ computers 
compatible with the existing IBM product lines. Needless to say, 
this decision was made by the CEO, Thomas J. Watson, Jr.

Bold Decision. Make the new six-computer product line strictly 
upward- and downward-binary-compatible, with exactly one 
architecture. This initiative came from Donald Spaulding, and 
Bob O. Evans made it a decision.

Bold Decision. Base the architecture on an 8-bit byte, making 
obsolete all existing I/o and auxiliary devices, even card punches.

Introduction and Context 

Owner:

IBM Corporation

Designers: 

Gene Amdahl, Architecture Manager; Gerrit Blaauw, Second 
Architect and manual author; Richard Case, George Grover, 
William Harms, Derek Henderson, Paul Herwitz, Graham 
Jones, Andris Padegs, Anthony Peacock, David Reid, William 
Stevens, William Wright; Frederick Brooks, Project Manager

Dates: 

1961–1964

Context

Few computer architectures have had their rationales so thor-
oughly discussed as the IBM System/360 product family. The 
“Notes and References” section gives some of the most important 
rationale discussions.1 This case-study essay will therefore hit 
only the high spots.
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In 1960 it was clear that IBM’s second-generation (discrete-
transistor technology) computer product lines were running out 
of architectural gas (memory-addressing capacity, principally). 
IBM’s existing mutually incompatible product lines, each with its 
own software and market support, were

IBM 650 (first-generation, vacuum tubes) and its incompat-• 
ible transistorized successor, the 1620
IBM 1401 and its incompatible successor, the 1410• 
IBM 7070-7074• 
IBM 702-705-7080• 
IBM 701-704-709-7090• 
IBM 7030 (Stretch, nine copies, no further marketing)• 

Of these, the first two, some two-thirds of the total fielded 
machines, were the responsibility of the General Products Divi-
sion (GPD); the rest were the responsibility of the Data Systems 
Division (DSD). The 1410 and the 7070 competed directly with 
each other, as did the 7080 and the 7074. The several product 
lines represented quite distinct architectural philosophies and 
basic decisions.

DSD had started developing, in 1959, a new product line, the 
“8000 Series,” based on second-generation discrete transistor tech-
nology, reflecting Stretch architectural philosophy and designed 
to serve as successor replacements to the 7074, 7080, 7090, and 
Stretch. The first of these engineering models was running, and 
four models of the 8000 series had been through “zero-level” cost 
estimating, market forecasting, and pricing by January 1961. A 
key component of the market forecast was a new set of applica-
tions based on telephonic computer communications.

During the first half of 1961, there was a raging product fight 
within DSD as to whether to proceed at once with the 8000 Series, 
as I mistakenly advocated, or to wait three years and design a 
new product line to be produced with the forthcoming new inte-
grated-circuit technology. The latter plan, championed by Bob 
O. Evans, won out. The 8000 Series effort was stopped, and in 
June work started on a new integrated-circuit DSD product line. 
Evans put me in charge, a totally unexpected action by a very 
big-minded man.
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Meanwhile, corporate technical staffer Donald Spaulding 
became convinced that IBM needed a unified, corporate-wide 
new product line, not just a new DSD line that addressed only 
the upper half of the market. He persuaded Vice President T. V. 
Learson, who convened a corporate-wide strategy committee, the 
SPREAD committee, to develop such a plan. The committee was 
shrewdly put under the leadership of John Haanstra, Engineer-
ing VP of GPD, who might have been expected to most vigor-
ously oppose any constraint on GPD autonomy, and whose 1401 
product line was proving immensely successful (the first com-
puter to sell more than 10,000 copies). The SPREAD committee 
produced its report at the end of 1961, and the Corporate Man-
agement Committee adopted its recommended New Product 
Line as the successor for all existing product lines.2 This stun-
ningly bold move was later called, by Fortune magazine, “IBM’s 
$5,000,000,000 gamble.”3 Evans called it “You bet your company.” 
I was appointed Corporate Processor Manager to coordinate all 
the development activities. Fortunately, besides this staff-type 
corporate-wide authority, I had line responsibility for the market 
requirements and architecture efforts for the whole project, and 
line responsibility for the DSD computer engineering and all the 
programming efforts. Staff authority is paper signoff authority; 
line authority has money and people.

The SPREAD report called for six computers to be developed 
initially, with an ultra-low-cost machine and a super-supercom-
puter to come within a couple of years. The first six were chris-
tened Models 30, 40, 50, 60, 64, and 70; the later two, Models 20 
and 90. Models 20 and 30 would be GPD responsibilities; the oth-
ers, DSD responsibilities.

Objectives

Primary Goals 

Create a strictly • upward- and downward-binary-compatible com-
puter architecture.
The computers must be suitable and competitive for • busi-
ness data processing, scientific engineering computing, and 
telecomputing.
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Broaden the capabilities for new applications so that IBM • 
would have a steadily growing sales dollar volume, even as 
cost per computer dropped in half. We could not expect IBM’s 
market share of existing applications to increase substantially, 
or for those applications’ volumes to double quickly.
Make • each of the models cost-effective (competitive) in its own 
market, from the very low-cost to the fastest supercomputer.

Other Important Objectives 

Develop a single new total software support, exploiting • 
binary compatibility to enable a single rich system to replace 
the multitude of incomplete second-generation systems. This 
must include a new operating system incorporating the fast-
developing concepts from second-generation computers’ 
operating systems experience.
Devise ways to help customers convert to System/360 from • 
their second-generation systems, even as competitors offered 
compatible successor machines to IBM’s discontinued prod-
uct lines.
Provide an architecture, sometimes to be implemented in • 
hardened technology, meeting the needs of IBM’s Federal 
Systems Division for both military and government civilian 
(such as NASA) products.
Achieve new levels of reliability and maintainability, includ-• 
ing ultra-reliable multiprocessor systems.

Opportunities as of June 1961

A New Architecture Necessary. Magnetic-core memories had 
proved to be quite reliable, and their costs had fallen radically. As 
a consequence, all customers wanted more memory. Since all the 
existing product lines had exhausted their addressing capacities, 
one or more major architectural revisions would be necessary. 
This gave us the opportunity to apply many lessons learned from 
first- and second-generation computer uses and users. These les-
sons were hard to exploit within the old architectures.
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New, Cheaper Technology. IBM’s technology division was in 
hot pursuit of integrated circuits and would have an important 
way-station, called Solid Logic Technology (SLT), ready for vol-
ume manufacture in 1964. This promised cost savings of about a 
factor of two for computers of any given complexity, along with 
smaller sizes, lower power, and higher reliability. This drastic 
performance/cost increase promised to be incentive enough for 
customers to go through the painful and costly process of conver-
sion to a new incompatible system.

Plenty of Design Time. The timing of the new technology 
meant that for once the system architects would have plenty of 
time, almost two years, to do a thorough and careful job.

New Kind of I/O Device. Random-access disk technology had pro-
gressed rapidly, enabling entirely new data-processing approaches 
and a radically different approach to operating systems.

New Telecomputing Capability. Computer communications 
technology, originally developed for air defense, was beginning 
to be attractive for commercial applications and had been pio-
neered in airline reservation systems.

Challenges and Constraints

Compatibility—Address Size. By far the greatest technical 
challenge was the achieving of strict (binary) upward and down-
ward compatibility, while enabling each level of computer to 
compete in its own market against rifle-shot competitors. How to 
keep the smallest machine low-cost, without thereby overly con-
straining the supercomputer? How to enable the super computer 
to be super-fast without burdening the low-cost one? The princi-
pal problem was address size. The top of the line needed lots of 
address bits; could the bottom of the line (serially implemented) 
afford the memory bit investment and the performance hit of 
fetching lots of empty address bytes?

Compatibility—Operation Set. How to provide complex 
operations such as floating-point for scientific applications 
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and  character-string operations for business data without com-
promising the cost objectives of the machines?

Broader Application Scope. A third major challenge was 
achieving the total systems diversity needed for new applications 
(especially communications and remote terminals), for compute-
intensive systems, and for data-processing-intensive systems.

Conversion from Existing Systems. Conversion from second-
generation systems was a nightmare that we didn’t spend much 
effort thinking about during the first year of the design.

Most Significant Design Decisions 

8-Bit Byte. The byte is 8 bits rather than the 6-bit byte that had 
characterized all first- and second-generation computers (except 
Stretch). This was the biggest and most hotly debated decision. It 
has many ramifications: floating-point precision argued for 48-bit 
words and 96-bit double words, hence 6-bit bytes. An instruction 
length of 24 bits was too small; 48, too large. What would be the 
demand for the lowercase alphabet, almost unknown in earlier 
computers?

The future application promise of the lowercase alphabet was 
convincing to me. We settled on 8-bit bytes, 32-bit data words 
and single-address instructions, and 32- and 64-bit floating- 
point words.

Failed Stack Architecture. We started with a stack architecture 
as an attack on the address-length problem. After pursuing this 
for six months, we found it worked fine for mid-range and up, 
but killed performance at the bottom of the line, where the stack 
had to be implemented in main memory, rather than in registers.

Design Competition. After the stack architecture failed, 
Amdahl proposed that we have an internal design competition. 
His idea worked brilliantly—Amdahl’s team and Blaauw’s team 
each independently came up with a base-register solution to the 
address-size problem. So we adopted that.
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24-Bit Addresses. We reluctantly settled on this size, with 
addressing to the byte. We knew, and I publicly predicted in 
1965, that we would at some point in the life of the architecture 
have to go to 32 bits, but we couldn’t afford it for 1964 imple-
mentations.4 Various wise provisions were made for that future 
jump, but unfortunately, the Branch and Link subroutine call 
instruction was inadvertently designed to use the upper 8 bits of 
address that should have been left untouched. 

This is a clear example of the danger of team designs. I had 
failed to indoctrinate the whole team strongly enough with our 
vision for future expansion, and none of the reviews caught this 
mistake.

Standard I/O Interface. To enable a wide diversity of special-
ized application systems, we designed a standard logical, elec-
trical, and mechanical interface for the attachment of all I/O 
devices, as Buchholz had first done on Stretch. This radically 
reduced configuration and software costs and simplified engi-
neering development of I/O devices and control units.

Supervisory Control Provisions. A carefully thought-out set 
of supervisory capabilities was designed, so the systems could 
be controlled by an operating system without manual interven-
tion. These included an interruption system, memory protection, 
a privileged instruction mode, and a timer.

Single-Error Detection. Complete end-to-end single-error 
detection was mandated for all S/360 implementations, in spite 
of no evident customer desire to pay for such. This substantially 
helped in achieving the stiff reliability and maintainability goals.

Commercial data-processing computers from all manufactur-
ers had from the initial UNIVAC incorporated extensive checking. 
Scientific computers, from the initial Burks, Goldstine, and von 
Neumann paper, had not. This seems inverted; surely a hardware 
error in calculating an atomic explosion matters more than one in 
a utility bill. I think the difference is that the scientific community 
routinely incorporated global checks such as energy conservation 
in their programs.

We had observed that people were by 1961 trusting the 
answers from their computers, so as a matter of professional 
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responsibility we incorporated the hardware checking and hoped 
the extra cost would not kill the market.

Decimal Arithmetic. In order to simplify conversion and user 
training for the huge data-processing market, we decided to 
incorporate decimal arithmetic as well as binary arithmetic. (All 
addressing was binary, in contrast to earlier 650, 1401, 1410, 7070, 
7074, and 7080 systems.) 

Providing a decimal datatype was probably a mistake; we 
should have instead seen to it that CoBoL and other languages 
handled that problem by keeping money amounts in integral 
pennies, so there would be no fractional conversion error. How 
much omitting the decimal datatype would have hurt marketing, 
one can only speculate. The hardware cost was not substantial; 
the software cost and the added conceptual complexity were.

Multiprocessing. Provisions were made for multiple processors 
to be configured into a single system, with system control operat-
ing on whichever one was not failing.

Microprogrammed Implementation. We mandated, in the 
SPREAD report, microprogrammed implementation unless a 
particular engineering manager could show a 33 percent perfor-
mance/cost advantage for conventional logic. This enabled the 
lower-end processors to include the fairly rich uniform opera-
tion set with the only cost being a little more control memory. 
Models 60 and 64 started development with conventional logic 
and switched during development to a single Model 65, with a 
microprogrammed implementation. Models 75 and 91 used con-
ventional logic.

Emulation of Earlier Architectures. Stewart Tucker saw that 
the 32-bit-4-parity-bit memory and datapath word of the Model 
65 implementation could gracefully accommodate the 36-bit-no-
parity word of the 7090. He invented a microcoded 7090 emulator 
that used the Model 65 datapaths quite effectively. This break-
through proved to be a major solution to the conversion problem 
for 7090, 7074, and 7080 customers.5 

At a crucial point in January 1964, William Harms, Ger-
ald Ottoway, and William Wright devised almost overnight 
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a microprogrammed emulation of the 1401 on the Model 30. 
This mightily addressed the biggest single customer conversion 
problem.

No Virtual Memory. During S/360 architecture definition, vir-
tual memory was invented on the Cambridge Atlas, and operating 
systems using it were developed at Cambridge, MIT, and Michi-
gan. We debated long and hard about whether to switch our 
design over. We decided not to, for performance reasons. This 
was a mistake, which was rectified in the first successor genera-
tion, System/370. 

New Random-Access I/O Devices. The project spent a lot of 
development effort on a new drum for operating system resi-
dence and new disk files. We saw this as fundamental for new 
applications and for diversity of system configurations. Similarly, 
new single-line and multiline communications controllers were 
developed.

Input-Output Channels. I/O was handled by independently 
operating channels, essentially specialized stored-program units, 
some optimized for rapid block transfer and some for multiplex-
ing up to 256 communication lines.

Milestone Events

Summer 1961. Work starts in DSD on the architecture of the new 
product line. Amdahl, Boehm, and Cocke from IBM Research join 
Blaauw’s architecture team from the 8000 series. Work begins on 
the stack approach.

January 1962. A corporate-wide effort is organized.

Spring 1962. The first performance evaluations show the stack 
architecture to be noncompetitive. A design competition leads to 
base-register addressing.

Summer 1962. The byte-size debate is settled.

Fall 1962. A first draft of the architecture manual is produced.

Fall 1963. The architecture manual is frozen.
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January 1964. There is a major product fight between S/360 
Model 30 and GPD’s 1401S, a six-times-faster 1401 successor 
pushed by Haanstra, now Division President of GPD. S/360 won 
by the invention of 1401 emulation on Model 30.

April 1964. The announcement is made of Models 30, 40, 50, 65, 
and 75, with a hint that Model 90 is coming.

February 1965. The first S/360 is shipped (Model 40).

August 1972. System/370 virtual memory is announced.

Early 1980. System/370 XA 31-bit architecture is announced.

2000. z-Series 64-bit architecture is announced.6

Assessment

Firmness 

One definition of firmness for a computer architecture would be 
“durability.” I predicted that the architecture would endure in var-
ious implementations for 25 years, with modifications to provide 
larger addresses.4 It is now 45 years since the S/360 announce-
ment, and the architecture endures as progressively augmented. 
One recent implementation is the IBM z/90, announced in March 
2007. It is still backward-compatible; S/360 programs will still 
run. These so-called mainframes continue to do a large portion of 
the world’s database work, running a descendant of MVS/360, 
VM/360, or, increasingly, Linux as the operating system. 

Another definition of firmness would be “impact on the field.” 
Gordon Bell, himself a great computer architect for DEC, recently 
identified the System/360 as the most influential computer in 
history, referring to intellectual influence, not market presence, 
where the PC would win handily.7 The S/360’s switch to the 8-bit 
byte changed computer architecture completely and permanently. 
Its heavy emphasis on disk-based input-output configurations 
also changed system design radically.8

Gene Amdahl licensed S/360 architecture and implemented 
it exactly in the highly successful Amdahl Corporation computer 
family. RCA licensed the architecture and used it in its Spectra 70 
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family. Although RCA faithfully implemented all the architecture 
affecting Problem Mode, its architects chose to do an idiosyncratic 
version of the Supervisory Mode architecture. RCA’s version was 
licensed and extensively used by Siemens, Fujitsu, and Hitachi 
and was copied by the Soviets.

S/360 architecture clearly influenced DEC’s VAX family and 
the PDP-11 computer family and its numerous microcomputer 
descendants such as the Motorola 6800, 68000.

Usefulness—Competitiveness, Market by Market

Commercially, the System/360 gamble was a big success. IBM 
annual reports show an average annual growth in revenue of 21 
percent from 1964 to 1968, and an average growth of 20 percent 
in profit from 1964 to 1968. 

Some 144 new products were announced on April 7, 1964. 
Many of these were various memory options. Most, however, 
were a stunning array of 8-bit input-output devices: multiple 
printers, some with variable character sets; multiple disks, some 
with replaceable cartridges; new tape systems; a spectrum of com-
munications terminals and network devices; new card punches, 
readers, and printers; and miscellaneous devices such as check 
sorters and factory-data-input terminals. The richness of this col-
lection, developed in many far-flung laboratories, enabled a near-
infinite variety and scale of system configurations. The standard 
I/O interface and its software support meant that configuration 
growth and change were easy. CPU compatibility meant that the 
machine at the center of a configuration was often upgraded to a 
different model over a weekend, without changing the I/O con-
figuration or the software.

All the models did well in their respective markets. The 
Model 30, with its disks and printer, was an instant success. The 
upward-compatible Model 20 did very well when it appeared 
soon after. 

The Model 65 was a major success in applications previously 
performed on 7090, 7094, 7094 II, 7080, 7074, and other models. 
The new database techniques were well served by this model, 
and it and its descendant models dominated the field. It also did 
very well as the engineering computing workhorse. The serious 
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competitors were mostly themselves computers with S/360 archi-
tecture, the so-called plug compatibles, usually running OS/360 
software.

Models 75, 91, and others in that family were designed as sci-
entific supercomputers. They split that market pretty evenly with 
the contemporary CDC and Cray machines, but the Cray descen-
dants came to dominate it. Four Model 75s provided the ground-
based computing for the Apollo program; hardened derivatives of 
System/360 served as the on-board computers. 

Delight 

The original architecture was rather clean, as was the care-
ful conceptual separation of architecture, implementation, and 
technological realization.9 The requirement of strict upward and 
downward compatibility imposed a strict discipline that pro-
tected the low end from functional deficiency and the high end 
from excess. (Similarly, any writer learns that a strict page limit 
often yields cleaner and more effective writing.) Blaauw left well-
placed spaces in the operation-code list for future additions. And 
additions there certainly have been, with the result that the oper-
ation-code set is no longer as orderly as it was.

Our biggest mistake technically was the failure to adopt vir-
tual memory at the outset. This was a case of expert designers 
going wrong in a big way (Chapter 14).

Our biggest mistake esthetically and conceptually was our 
failure to recognize that an I/O channel was just another com-
puter. Cray’s peripheral processors, introduced on the CDC 6600, 
are a superb embodiment of an elegant and powerful concept. 
Each of many concurrent I/O flows is controlled by an architec-
turally separate simple small binary computer, all implemented 
with one time-shared dataflow.

The ugliest thing in the original CPU architecture was the 
SS instruction format, which provided a base register but not a 
separate index register, as did all the other formats. As remarked 
above, Branch and Link uses high-order address bits that should 
have been reserved for the expansion to 32-bit addresses. Load 
Address cleared those same high-order bits.
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A smaller mistake is that we initially failed to provide a 
guard digit in the definition of floating-point operations. We had 
to field-modify the first S/360 computers after delivery.

Perhaps the most telling esthetic critique of our effort would 
be a jeer that the S/360 was really three architectures under one 
cover: the basic 32-bit binary machine, the 64-bit floating-point 
machine with a different dataflow, and the byte-by-byte proces-
sor, with a quite different dataflow and even decimal arithme-
tic (chapter frontispiece, Figure 24-1, and Figure 24-2). In fact, 
when one adds selector channels and multiplex channels, there 
are really five architectures present. Microcoded implementations 
make it all work. 

What was achieved by these multiple concurrent architec-
tures was a truly general-purpose computer family, adaptable by 
suitable processor, memory, and especially I/O configurations, to 
all kinds of applications and performance needs.

Memory
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Figure 24-1 System/360 floating-point dataflow
Blaauw and Brooks [1997], Computer Architecture, Figure 12-79 
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Figure 24-2 System/360 byte-by-byte dataflow
Blaauw and Brooks [1997], Computer Architecture, Figure 12-80

General Lessons Learned

Allow plenty of project time for design. It makes the product 1. 
much better and useful longer, and it might even make deliv-
ery sooner by reducing rework.
Having multiple concurrent implementations of the same 2. 
architecture strongly protects the architecture from bad com-
promises, when it is discovered that an implementation has 
(usually inadvertently) departed from the architecture. With 
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only one implementation, it is always easier, cheaper, and 
faster to change the manual rather than the machine. Chap-
ter 6 of The Mythical Man-Month treats this and other meth-
ods of ensuring conformity of implementation to architecture 
(rather than the reverse) in some detail.
Amdahl’s proposal for a 3. design competition when our first 
design ran aground proved very fruitful. It produced great 
concurrence on many issues, and it quickly spotlighted the 
crucial differences. Moreover, it had a powerful positive 
effect on team morale. In 2008, I heard for the first time in 
over 40 years from Doug Baird, who had been a junior archi-
tect on the team. He still remembered appreciatively that his 
rather junior team had had a chance to put their design for-
ward on the same basis as all the distinguished architects on 
the team.
For totally new designs, as opposed to follow-on products, 4. 
from the beginning devote part of the design effort to estab-
lishing metrics for performance and other essential proper-
ties, and approximate cost surrogates (such as bits of register 
for third-generation computers).
Market forecasting methodology is designed for follow-on 5. 
products, not radical innovations (a lesson elaborated in 
Chapter 19). Designers of totally new products should spend 
lots of early effort getting forecasters on board with the new 
concepts. 

Notes and References

The most important treatments of the S/360 architecture ratio-1. 
nale are

Amdahl [1964], “Architecture of the IBM System/360”• 
Blaauw and Brooks [1964], ”Outline of the logical structure of • 
System/360”
Blaauw and Brooks [1997], • Computer Architecture, Section 12.4
Evans [1986], ”System/360: A retrospective view” • 
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IBM Corp. [1961], “Processor products—final report of SPREAD • 
Task Group, Dec. 28, 1961.” 
IBM Corp. [1964ff],•  IBM System/360 Principles of Operation, Form 
A22-6821-0 
IBM Systems Journal • 3, no. 2 (all)
Pugh [1991], • IBM’s 360 and Early 370 Systems 

IBM Corp. [1961], “Processor products—final report of SPREAD 2. 
Task Group, Dec. 28, 1961.”

Wise, “IBM’s $5,000,000,000 gamble.”3. 

Brooks [1965], “The future of computer architecture.”4. 

Tucker [1965], “Emulation of large systems.” In the event, he did not 5. 
map one 7090 floating-point word to one S/360 word, but spread 
out the parts.

http://en.wikipedia.org/wiki/System_370 contains an excellent 6. 
treatment of the evolution of the architecture and of the highlights 
of the basic architecture (accessed December 2008). So does http:// 
www.answers.com/topic/ibm-system-360, as of August 2009.

Bell [2008], “IT vet Gordon Bell talks about the most influential 7. 
computers.”

Bell and Newell [1971], 8. Computer Structures, Section 3, 561–637, gives 
another assessment and a quite detailed discussion.

Blaauw and Brooks [1997], 9. Computer Architecture, treats this impor-
tant three-way distinction in detail in Section 1.1.
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25
Case Study: IBM 
Operating System/360 

The central tension in the software process comes 
from the fact that we must go from an informally 
identified need that exists in-the-world to a 
formal model that operates in-the-computer.

 Bruce Blum [1996], Beyond Programming

Peach and cherries, a metaphor for the OS/360 big control program and 
the several smaller and independent language compilers and utilities 
that complete the OS/360 support package 
© P. Desgrieux/photocuisinet/CoRBIS. All rights reserved.
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Highlights and Peculiarities1

Bold Decision. Develop one software package: one operating 
system and set of compilers and utilities for an entire range of 
computers and I/O configurations. It can be generated to fit and 
exploit a variety of memory sizes and I/o configurations.

Bold Decision. Mandate a random-access device for operating 
systems residence.

Bold Decision. Do not require an operator. Design the operating 
system so that it can run the computer system without manual 
input or intervention. Operators serve as the computer’s hands 
and feet for mounting disks, tapes, card decks, and printer paper. 
Alternatively, the same operating system can be configured to be 
fully controlled by a human operator.

Bold Decision. Incorporate multitasking for the concurrent safe 
execution of jobs and programs not specifically designed to be 
run concurrently.

Device-Independent I/O. Programs are written for abstract 
I/O datatypes, called access methods. I/O device types, specific 
devices, and space on them are automatically allocated when a 
job is scheduled for execution. The same merge-sort program, 
for example, can be run disk-to-disk for one run and tape-to-tape 
for another. Whether output is printed or stored can readily be 
changed at run time, without program alteration.

Industrial-Strength. OS/360 was an industrial-strength operat-
ing system, designed to run 24/7, to log and restart automati-
cally after failures. Through its generations this characteristic has 
been strengthened, so that its descendants are still widely used 
for 24/7 database systems.

Teleprocessing. The system powerfully supports remote access 
for real-time database access and batch job execution.

Primitive Time-sharing. The system is not designed for interac-
tive terminal programming and debugging, so it supports it in 
less efficient ways.
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Virtual Memory Added Somewhat Later. As originally shipped, 
S/360 computers and the OS/360 package did not provide vir-
tual memory. Both were changed in the first subsequent iteration, 
and all versions had virtual memory by 1970.

Assembler versus High-Level Languages. Although by 1961 
probably a majority of computer programming was done in the 
high-level languages Fortran, CoBoL, and Report Program Gen-
erator, assembler-language thinking affects some parts of the 
OS/360 design. A powerful macro-assembler, reflecting the quite 
different macro use traditions of the scientific-computing and the 
commercial data-processing communities, was provided as one 
of the language packages. By 1966, measurements of some large 
installations showed that application programs written in assem-
bler accounted for only about 1 percent of computer time.

Introduction and Context

From its inception in 1961 until mid-1965, I had the once-in-a-
lifetime opportunity to manage the IBM System/360 Computer 
Family Project—first the hardware and then the Operating Sys-
tem/360 software package. This computer family, announced on 
April 7, 1964, and first shipped in February 1965, defined “third-
generation” computers and introduced (semi)-integrated-circuit 
technology into off-the-shelf computer products. 

Just as the first-generation operating systems were devel-
oped for second-generation computers, so OS/360 is the first of 
the second-generation software support packages, developed for 
the first of the third-generation computers. There were few prec-
edents of integrated operating systems.

System/360’s strict binary compatibility enabled us to design 
a single software support package that would support the whole 
product family and could be cost-shared across the entire fam-
ily, with its large combined market forecast. This in turn enabled 
building a software support package of unprecedented richness 
and completeness. I shall describe the OS/360 software package 
in the present tense, since its linear descendants are still major 
players in the mainframe world.
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The term Operating System/360, or OS/360, is used ambigu-
ously to describe both an entire software support package— 
operating system proper, language compilers, and utilities—and, 
more narrowly, just the operating system itself. As the chapter 
frontispiece suggests, our team sometimes thought of the entire 
package as a big peach and a lot of smaller, distinct cherries. I 
shall usually use the term to describe only the operating system 
proper.

Besides the OS/360 support package, there was initially 
planned and delivered a Basic Tape Support package, including 
a Fortran compiler, for small-memory systems with no disk, and 
a Basic Punched Card Support Package. The OS/360 package 
was originally targeted for all systems with 16K of memory or 
more. We couldn’t fit that size with even minimal function, so we 
raised our minimum memory requirement to 64K. Concern for 
small-system customers and OS/360 delays led the company to 
initiate an entire separate support package optimized for smaller 
memory sizes, known as Disk Operating System/360, or DOS/360.2 
It, too, evolved, and its descendants are alive today.

The System/360 Computer Family

Chapter 24 describes the market context for the computer fam-
ily and gives its chief architectural properties. A radical concep-
tual innovation was that all of the models (except the cheapest, 
Model 20) would be logically identical, upward- and downward-
compatible implementations of a single architecture. Blaauw 
and I define a computer architecture to be precisely the set of 
computer properties visible to the programmer, not including 
speed.3 In software engineering terms, a computer architecture 
in our precisely restricted sense is equivalent to an abstract 
datatype. It defines the sets of valid data, their abstract repre-
sentations, and the syntax and semantics of the set of operations 
proper to those datasets. Each computer implementation then is 
an instance of that type. So is each emulator, or each simulator. 
In practice, our first hardware implementations ranged from 8 
to 64 bits wide in dataflow and had various memory and circuit 
speeds. 
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Software Context as of 1961

Operating Systems. First-generation operating systems were 
sharply differentiated as to whether they were designed for sci-
entific computing or for commercial data processing. They were 
batch operating systems, designed to control the sequential pro-
cessing of a stream of independent jobs.

Each had three components that had evolved separately. A 
supervisor, resident in memory all the time, had evolved from 
earlier interruption-handling routines. A data-management compo-
nent had evolved into a standard library of input-output routines 
that were linked into the application program. A scheduler, typi-
cally resident on tape, was rolled into memory between jobs to 
specify the mounting of tape (and card) files and the disposition 
of the output produced. Operating systems provided for the use 
of disk files, but generally the operating system itself was resi-
dent on tape.

Late-first-generation IBM operating systems provided for 
Simultaneous Peripheral operation on Line (SPooL), so that at 
any given time a second-generation computer could be executing 
one main application and several card-to-tape/disk, tape/disk-
to-card, tape/disk-to-printer utilities. These latter were “trusted 
programs,” carefully written so as not to corrupt or intrude on 
the main application, which usually ran tape-to-tape or disk-to-
disk. Thus a computer would be preparing tapes for the next job, 
running a main job, and printing output from the previous job, 
all at once.

Language Compilers. IBM customers were using a wide vari-
ety of high-level languages, and IBM was committed to provid-
ing compilers for those. Most popular were Fortran and CoBoL. 
ALGoL was popular in Europe. At the lower end of the spec-
trum, Report Program Generator (RPG) was popular with those 
converting from punched-card installations. 

The evolution of assembler programs was technically inter-
esting. The classical two-pass assembler had sprouted two pre-
liminary passes that constituted a macro-operation generator 
with rich compile-time capabilities, including branching and 
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looping. Such macro assemblers were used in two quite differ-
ent ways. 

The scientific computing community typically used pro-
grammer-written macros as open subroutines for frequent 
higher-level operations, such as matrix operations. Macros gave 
not only coding ease but run-time speed, avoiding the overhead 
of subroutine calls.

In contrast, many business data-processing shops had evolved 
the practice of having a small group of gurus write a “house” 
macro library that essentially defined new datatypes, with data 
structures and operations defining a specialized programming 
language for that firm’s business practices. The larger body of 
programmers just used this macro library, typically not creating 
any new macros of their own.

Utilities. A variety of utilities, hardly noticed but necessary and 
nontrivial, completed each computer software package: sort pro-
gram generators, media translators, format translators, debug-
ging aids, memory dumps.

Free Software. In those days, manufacturers gave away operat-
ing systems and compilers to stimulate the sale and use of hard-
ware. Hence the cost of the software packages had to be built into 
the prices of the hardware.4

Challenges Accepted

The occasion to do an all-new software support package brought 
forward many challenges of what would constitute the “next 
step” in software support. Some were accepted, others rejected.

Universal Applicability. Whereas previous-generation software 
support packages were sharply differentiated by application 
areas and performance level, the OS/360 package was designed 
to cover the entire spectrum of applications. The very name   
System/360 had been chosen to indicate an “all-around computer 
system.” It was also designed to cover a very large performance 
range, from a modest 64K-memory system to the most elaborate 
supercomputer system or massive database configuration. 
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The response to this challenge mostly affected the languages 
and their compilers. A new, general-purpose programming lan-
guage, PL/I, was developed in cooperation with the scientific and 
commercial IBM user associations. Multiple compilers optimized 
for different memory sizes were built for each of Fortran, CoBoL, 
Assembler, and PL/I. The teams responsible for the compilers or 
utilities assessed the ideas in their several user communities, and 
each incorporated advances over the previous-generation prod-
ucts. Here I will discuss only the most innovative component, the 
operating system proper.

Disk Residence. The new availability of an inexpensive disk 
drive, the IBM 2311, with its then-immense capacity of 7MB, 
meant that we could design the operating system to assume 
operating system residence on a “random-access” device rather 
than on magnetic tape. This made the biggest single difference in 
the design concepts. Operating system modules could be quickly 
rolled into memory as needed, and they could be made small and 
function-specific.

A new, word-parallel magnetic drum provided low-latency, 
high-data-rate operating systems residence for higher-perfor-
mance computer systems.

Multiprogramming. OS/360 made the big leap to concurrent 
operation of independent, untrusted programs—a leap made pos-
sible by the hardware supervisory capabilities of the System/360 
architecture. Early OS/360 versions supported multiple tasks of 
fixed size, for which memory allocation was straightforward. 
Within two years the MVS version supported multiprogram-
ming in full generality. This proved much more difficult than we 
expected.

The OS, Not the Operator, in Control. A key new concept, now 
routine, is that the OS, not the operator, controls the computer. 
As late as 1987, some supercomputers such as the Control Data 
Corporation’s spin-off ETA’s ETA 10, were still running under 
manual operator control. A corollary of OS control, pioneered in 
Stretch, and routine today, is that the keyboard or console is just 
another I/O device, with very few buttons that directly do any-
thing (for example, Power, Restart).
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Teleprocessing, but Not Time-sharing. OS/360 was designed 
from the ground up as a teleprocessing system, but not really 
a terminal-based time-sharing system. This concept contrasts 
with that of the contemporary MIT Multics System. OS/360 was 
designed for industrial-strength scientific and data-processing 
applications of all sizes; Multics was designed as an exploratory 
system, primarily for program development.

24/7 Robust Operation. OS/360 is designed to provide check-
point-restart points automatically, to sense hardware errors, and 
to restart after either a hardware or a software failure. When used 
in a multiprocessor configuration, diagnostics enable a well pro-
cessor to sideline a sick one and to assume its workload. From the 
beginning, OS/360 was intended to be usable around the clock, 
although it took some evolutionary steps to get there.

Design Decisions5

System Structure

In OS/360, the three independent streams of control program 
evolution come together. The Supervisor evolved from early 
interrupt-handling routines; the Scheduler, from earlier tape-
based job schedulers; the Data Management System, from earlier 
packages of I/O subroutines. The system structure mirrors this 
diverse ancestry.

The Supervisor. Whereas original supervisors handled only 
program interruptions, and thereby allocated the processor’s 
instruction counter among tasks, a multiprogramming supervisor 
must allocate main memory space as well. The OS/360 Supervi-
sor allocates memory blocks and computer cycles among tasks 
according to priority.

The OS/360 Supervisor keeps control of the computer by con-
trolling the instruction counter. It lends that control to one program 
at a time. Any program fault, including attempted violation of   
any of the system protection mechanisms, causes an interruption, 
giving the instruction counter back to the Supervisor. Asynchronous   
event reports from I/O devices, such as operation completions,   
do the same. Moreover, the Supervisor controls a protected 
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elapsed-time clock that interrupts, so it can seize control after 
any specified interval, thus stopping endless loops in buggy 
programs. Only the Supervisor can set the various memory and 
other protections and perform other privileged operations such 
as input-output control.

When an ordinary application program wants a service from 
the Supervisor, such as an additional memory block, it makes 
its request by a Supervisor Call hardware operation. This is an 
intentional interruption, with the instruction carrying parameters 
to the Supervisor. So the only access to the Supervisor is a hum-
ble access, on the Supervisor’s terms.

The Supervisor also provides mechanisms for mutually 
unaware programs to communicate with each other at run time.

The Scheduler. The OS/360 Scheduler prepares the concurrent 
execution of independent “jobs” and then manages the sequen-
tial execution of “tasks” within each job, such as compilation, 
linking to libraries, execution, output transformation. When a 
job is ready to be scheduled, the Scheduler checks the job prior-
ity, allocates any needed I/O devices, gives operator instructions 
for the mounting of any off-line data volumes, and enqueues the 
job for execution. The Supervisor then allocates initial memory 
and initiates the first task. As output is produced, the Scheduler 
manages its disposition and the dismounting of any finished data 
volumes.

oS/360, more explicitly than any of its predecessors, recog-
nizes scheduling time as a binding occasion distinct from compile 
time with its rigidities and run time with its overheads. Not only 
are separately compiled program modules bound to each other 
at scheduling time by a Linker, but dataset names are bound to 
particular datasets on particular devices only at scheduling time. 
This binding is specified by the Job Control Language, which is 
executed by the Scheduler.

Data Management. Although strict program compatibility was 
the most distinctive new concept of the System/360 computer 
family, the rich set of I/O devices was its most important system 
attribute in terms of application breadth, configuration flexibil-
ity, and performance enhancement. The single standard mechani-
cal, electrical, and logical I/O interface radically reduced the 
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engineering cost for new I/O devices, radically simplified sys-
tem configuration, and radically eased configuration growth and 
change. 

The crucial software innovation complementing and exploit-
ing the standard hardware I/O interface was a standard software 
interface—a single system of I/O control and data management 
for all kinds of I/O devices. I consider it the most important 
innovation in OS/360.

A resulting new feature was device-independent input-output. 
The application programmer wrote in terms of dataset names. 
Bindings to particular datasets, to particular reels of tape, to tape 
versus disk, to disk versus communication line or printer, all 
were usually deferred to scheduling time.

Four access methods were designed especially for exploita-
tion of the fleet of new disk types, across the range of disk appli-
cations. These embodied different trade-offs between dynamic 
flexibility and maximum-performance buffered or block transfer:

Sequential access method—tape-like, buffered  • 
Example: for sorting (works for tapes, printers, and card 
decks, as well as for disks) 
Direct access method—pure random access to a record  • 
Example: for airline reservations
Partitioned access method—fast fixed-block transfer  • 
Example: for operating system modules
Indexed sequential access method—sequential, buffered, but • 
rapidly handling random queries  
Example: for utility billing

Two other access methods were designed especially to pro-
vide full flexibility and ease of use for both terminals and high-
speed telecommunications.

Of all the I/O devices, the check sorters alone, curiously 
enough, posed a rigid constraint on operating system perfor-
mance—the time of a paper check’s flight between the reading 
head and the sorter pocket is fixed and short. In banks’ check-
routing and check-processing facilities, these machines read the 
magnetic-ink numerals along the bottom of the check at a read-
ing station and then route the check into one of some 24 pockets, 
at a rate of up to 40 checks/second.6
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Assessment

The Successes 

Full Function, Universal Applicability. OS/360 established a 
new baseline for operating system function. It did indeed sup-
port a surprisingly wide range of applications, system configura-
tions, and performance.

Robustness. The level of robustness has become peerless. It is 
the industrial-strength operating system and has become a stan-
dard for the massive database applications that consume most 
mainframe cycles.

Data Management System. Device-independent input-output 
was a major simplification of the programming task and a major 
flexibility for data center operation and evolution. Weekend 
reconfigurations of processors and I/O devices are routinely per-
formed. After such reconfigurations, most applications can still 
be run without recompilation.

Teleprocessing Support. OS/360 became the basis for wide net-
works of terminals for banking, retail, and most other industries.

Accommodated Virtual Memory. When IBM adopted virtual 
memory on the System/370 successor line, OS/360 served as the 
base for oS/360 Multiple Virtual Systems (MVS), an extension, 
but not a total rewrite.

Amdahl, Hitachi, and Fujitsu. Most manufacturers of S/360 
plug-compatible computers did not undertake software systems 
but used the OS/360 package. 

Weaknesses in the Design

The System. OS/360 is too rich. Systems residence on a disk 
removed the size constraint that had disciplined earlier OS design-
ers—we put in many functional goodies of marginal usefulness.7 
Featuritis is even now not yet dead in the software community.

Two quite different debugging systems are provided, 
one conceived for interactive use from terminals with rapid 
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recompilation, the other conceived for batch operation. It was the 
best batch debugging system ever designed, yet totally obsolete 
from birth.

The system-generation process of oS/360 is wondrously flex-
ible and wondrously onerous. We should have configured a small 
number of standard packages to meet the needs of most users 
and offered these to supplement the fully flexible configuration 
process.

Control Blocks. Communication among modules is by sys-
tem-wide shared control blocks, each with a structured set of 
variables read by and written by the several modules. Every pro-
grammer had access to all the control blocks. Had we understood 
and adopted in 1963 the information-hiding strategy Parnas set 
forth in 1971, we would have avoided much grief in original con-
struction and all subsequent maintenance. Object-oriented pro-
gramming is today’s embodiment of information hiding; we all 
recognize its superiority.

Virtual Memory. As discussed in Chapter 24, we missed the 
early boat on virtual memory in the initial processors and had 
to retrofit it just a few years later. The required extension to 
OS/360 was more difficult and costly than if it had been origi-
nally designed in.

The Scheduler’s Job Control Language. The Job Control Lan-
guage is the worst programming language ever designed by 
anybody anywhere—it was designed under my management. 
The very concept is wrong; we did not see it as a programming 
language but as “a few control cards to precede the job.” I have 
elaborated on its flaws in Chapter 14.

Complexities in the Data Management System. We should 
have cut loose from the key-count-data variable-length block 
structure established for IBM’s earlier disks and designed for one 
or two sizes of fixed-length blocks on all random-access devices.

The I/O device-control unit-channel attachment tree is unnec-
essarily complex.8 We should have specified one (probably vir-
tual) channel per device and one (probably virtual) control unit 
per device. 
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I believe we could have invented one sequential disk access 
method that would have combined the optimizations of the three: 
SAM, PAM, ISAM. 

Weaknesses in the Process

I have treated this topic at length in The Mythical Man-Month. 
Here I will highlight only two points. 

I am firmly convinced that if we had built the whole thing 
in PL/I, the best high-level language available at the time, the 
OS would have been just as fast, far cleaner and more reliable, 
and built more swiftly. In fact, it was built in PLS, a syntactically 
sugared assembler language. Using PL/I (or any high-level lan-
guage) would have indeed required careful training of our force 
in how to write good PL/I code, PL/I source that would compile 
to fast run-time code.

We should have maintained rigid architectural control over 
all the interfaces, insisting that all declarations of external vari-
ables be included from libraries, not crafted anew in each instance. 
Many bugs would have been prevented.

The Designers

About 1,000 people worked on the entire OS/360 software pack-
age. Here I identify both the teams and those individuals who 
contributed most to the conceptual structure.

Key Players

Labs: Poughkeepsie, Endicott, San Jose, New York City, Hurs-
ley (UK), La Gaude (France)

OS/360 Architect: Martin Belsky

Key: Bernie Witt, George Mealy, William Clark

Control Program Manager: Scott Locken

Compilers, Utilities Manager: Dick Case

OS/360 Assistant Project Manager: Dick Case

OS/360 Manager from 1965: Fritz Trapnell
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The best single document is the Concepts and Facilities man-
ual, written by Bernard Witt.9,10

General Lessons Learned

Give the system architect full authority over the design 1. 
(Chapter 19). This “multimillion-dollar mistake” is more fully 
discussed in The Mythical Man-Month, pages 47ff.
Take the time necessary to do a sound design and proto-2. 
typing, whatever the schedule pressures. The project will 
be completed sooner, not later, because of time so invested. 
Chapters 21–24 illustrate the benefits of enough design time; 
this one illustrates the opposite.

Notes and References

This essay is derived from Brooks [2002], “The history of IBM Oper-1. 
ating System/360,” in Broy and Denert [2002], Software Pioneers. The 
material is taken largely from IBM Systems Journal 5, no. 1 [1966]. 

http://en.wikipedia.org/wiki/DOS/360_and_successors, accessed 2. 
August 2009.

Blaauw and Brooks [1997], 3. Computer Architecture, Section 1.1.

Grad [2002], “A personal recollection,” describes the 1969 unbun-4. 
dling of software and hardware.

Pugh [1991], 5. IBM’s 360 and Early 370 Systems, gives a detailed his-
tory of the OS/360 initial development.

More information and a photo of a successor machine is at http://6. 
www.thegalleryofoldiron.com/3890.HTM, accessed August 2009. 

Brooks [1995], 7. The Mythical Man-Month, Chapter 5. 

Blaauw and Brooks [1997], 8. Computer Architecture, Section 8.22.

IBM Corp. and Witt [1965], 9. IBM Operating System/360, Concepts and 
Facilities, Form C28-6535-0.

Witt [1994], 10. Software Architecture and Design, elaborates on the design 
concepts and approaches.
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26
Case Study: Book 
Design of Computer 
Architecture: Concepts 
and Evolution

Oh that my words were now written; oh 
that they were printed in a book!

JoB 19:23

Book writing has logarithmic convergence.

Dust jacket of Blaauw and Brooks [1997], Computer Architecture
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Highlights and Peculiarities

Bold Decision. Stick with a narrow but quite precise definition 
of computer architecture as the scope of the work. Although we 
first introduced the term in 1962, and a quite precise definition in 
1964, it had come to be broadly used in a much looser sense. We 
carefully define and distinguish architecture, implementation, and 
realization. We treat only architecture, defined as exactly those 
properties of the computer that govern what programs will run 
and what results they will produce, and not how fast. This preci-
sion enables one to define program compatibility.

Bold Decision. Incorporate a “zoo” of 30 computer architec-
tures, described in a standardized format. The format includes 
a prose description of “highlights and peculiarities,” a short 
description of the historical and technical context, a drawn pro-
gramming model, enumeration of the design decisions, and pre-
cise drawn and APL descriptions of the data representations, 
formats, and significant operations.

Bold Decision. Build, test, and publish executable simulators 
of the zoo computer architectures, all written in APL. Each zoo 
machine includes an executable APL program simulating the 
machine’s instruction fetch, decode, and calling of the appropri-
ate data-fetching and operation routines. The significant opera-
tions are also described with executable APL functions. Building 
these simulators forced our close scrutiny of the machines and 
that added great precision to these descriptions. It is not evident 
that many people have ever used the simulators.

Matrix Organization. The design decisions constituting a com-
puter architecture are treated twice, once systematically in order 
of the decision domains, and then again in the context of all the 
interrelated decisions in each specific machine.

Decision Trees. We use decision trees as a formal tool for repre-
senting design choices. The 80-some trees are linked together into 
a single vast unified decision tree for computer architecture. This 
formalism, of course, treats design as problem solving by search 
of a well-defined space, which model I argue vigorously against 
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in this book! My view of design has broadened and deepened 
since we did that book.

Computer Architecture Evolution: Divergence and Conver-
gence. We cover the evolution of computer architecture from 
the very beginning (Babbage) up through 1985, showing the wide 
experimental divergence and the subsequent convergence to a 
surprisingly standard architecture. This brings together docu-
mentation of many early computers, as well as modern ones.

Research Monograph as Well. Our work on System/360 and 
on the book itself yielded many research results that were not 
piecemeal publishable. Hence the book contains many newly 
published results, enumerated in its Preface. This is peculiar for 
what looks like merely a text for practitioners and students.

Comprehensive Reference. Terms are carefully defined. An 
extensive subject index leads especially to those definitions and 
their substantial treatments, as well as all occurrences. There are 
separate person-name and machine-name indexes. The bibliogra-
phy contains over 500 items. The book may be useful as a refer-
ence long after the didactic material is useful for teaching.

Introduction and Context 

Authors: 

Gerrit A. Blaauw and Frederick Brooks

Dates: 

~1971–1997

Context

Both of us had left the practice of computer architecture and were 
teaching courses in the subject. The book grew as we needed course 
material. After about two course administrations apiece, we under-
took to design a book, not principally as a text for students, but as 
a systematic treatment for practitioners. We did include extensive 
exercises, designed for both class use and self-study.
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Objectives

From the Preface to Computer Architecture: 
“Our aim in this book is to give a thorough treatment of the 

art of computer architecture. This work is not intended primar-
ily as a textbook, but rather as a guide and reference for the 
practicing architect and as a research monograph setting forth a 
new conceptual framework for computer architecture. We have 
given enough of the historical evolution that one can see not 
only what present practice is, but how it came to be so, as well 
as what has been already tried and discarded. Our goal is to 
display unfamiliar design alternatives, and to analyze and sys-
tematize familiar ones.

“It seems useful to provide a compendium of the issues aris-
ing in the design of computer architecture, and to discuss the 
factors pro and con on the various known solutions to design 
problems. Each architect will then be able to provide his own set 
of weightings to these factors as dictated by his application, his 
technology, and his taste and ingenuity.”

Opportunities

Because we had worked closely together for eight years at IBM, 
communication was easy and thought patterns familiar. This 
made our telecollaboration easy, as described in Chapter 7.

We had worked together on the design of three computer 
architectures, and each of us had participated in the design of 
others. These projects had occasioned our studying the designs of 
our predecessors, and teaching had solidified our understanding 
of those works and their significance. We owned programming 
manuals for most of those machines.

The design of System/360 architecture was not hurried, 
because its semi-integrated circuit technology would not be 
ready before 1964. Hence those design decisions were thoroughly 
debated, and we had studied the pros and cons of many architec-
ture issues in that context. 

Book preparation time and effort budget were essentially 
unlimited. Or so we thought. This was a major mistake. In the 
event, the book was too late to be of maximum influence and use.
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Constraints

Each of us had active research programs and teaching schedules, 
as well as growing children. After starting this book, each of us 
published a related book. So this book often languished.

Design Decisions

Sequence. In any expository writing, sequence is the hardest 
single design decision. The general graph of interrelated concepts 
must be cut to a tree structure, so it can be mapped onto the lin-
ear structure of the text.

We saw two major possible orders, each very important. So 
we incorporated both orders, with much cross-referencing. Part 
I treats design decisions systematically in conceptual order. But 
each real decision must be made in the context of all the other 
decisions for that computer. So we illustrate the design decisions 
in the contexts of the several computer specimens in Part II, “A 
computer zoo.” 

The “Highlights and peculiarities” section above enumerates 
other major design decisions that need no further elaboration.

Assessment

Firmness. As measured by permanence, the design is firm. After 
13 years, its usefulness is not diminished nor its treatments obso-
leted, although it must be supplemented by material describing 
more recent developments.

Commodity. The book came out too late for some of its poten-
tial uses. For a textbook for one or two architecture courses, one 
would use Hennessy and Patterson’s superb and continually 
updated Computer Architecture: A Quantitative Approach instead. 

The professional computer architect needs to be familiar with 
our work, both for familiarity with his predecessors’ works and 
as a guide and reference. It has a small but devoted following, 
mostly among computer architects.

Delight. Others must assess that.
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Lessons Learned

Probably a less ambitious work sooner would have been 1. 
more useful to the profession. When I now teach a single 
course from Computer Architecture, I feature the zoo and its 
specimens, treating design decisions as they are encoun-
tered in vivid examples, rather than systematically. Perhaps 
we should have written and published that part of the book 
separately, first, and more quickly. That would not have been 
easy; much of the zoo discussion assumes the concepts intro-
duced and expounded in Part I, “Design decisions.” 
Book writing has logarithmic convergence. Checking the last 2. 
few uncertain facts, fixing the last few glitched figures, veri-
fying the last few obscure references—these tasks take inordi-
nate proportions of the total effort. The hardest little tasks get 
put off until the end. 
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27
Case Study: A Joint 
Computer Center 
Organization:  
Triangle Universities 
Computation Center

The purpose of computing is insight, not numbers.

ricHard w. HamminG [1962], numericaL
meThods for scienTisTs and engineers

Triangle Universities Computation Center (TUCC) organization chart 
as of 1980
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Highlights and Peculiarities

Bold Decision. Establish this as a joint center. Three univer-
sities would pool their resources, co-own, and operate a single 
high-performance computation center.

Pooling Resources. To exploit the quadratic performance/price 
curve, resources would be pooled. At the time, and for many 
years, spending n times as much typically bought at least n2 times 
as much computing capability. This fact provided a strong eco-
nomic incentive to overcome the real and foreseen difficulties in 
co-owning a center.

No Organizational Models. The concept of a joint academic 
computation center was unexplored, so far as we knew, so there 
were no models for the organization.

Decision-Making Power. The budgeted commodity in the 
design was power. How to protect individual owners’ distinct 
interests, while enabling efficient decision making?

Diverse Applications. Some of the owners used the center for 
both academic and administrative computing; others, for aca-
demic computing only.

Neutral Site. A building was acquired in the Research Triangle 
Park, about equidistant from each campus.

Telecomputing Crucial but Not Sufficient. The IBM System/360 
equipment acquired was designed and software-supported for 
remote job entry and interactive computing. It was initially used 
in remote-job-entry mode, but with a priority system that empha-
sized quick turnaround for small jobs. A courier service hauled 
tapes and disk packs back and forth in a station wagon to pro-
vide “high-bandwidth” transmission of large datasets.

Statewide Influence. In 1964, few higher-education institu-
tions in North Carolina (other than the TUCC owners) had any 
computing capability or know-how. A separate organization, the 
North Carolina Computer Orientation Project under the North 
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Carolina Board of Higher Education, rented TUCC capacity and 
offered other North Carolina universities and colleges 

A year of free computer time at 100 jobs per month• 
A year’s free use of a teletype machine installed on their • 
campus
The free services of “circuit riders” who introduced computing • 
by visiting campuses, teaching teachers, holding workshops, 
providing telephonic consultation, and troubleshooting

Some 100 institutions took advantage of this service, many 
continuing their TUCC use at their own expense for years.

Durability. The TUCC organization proved effective for 18 
years, even as the relative needs of the three co-owners diverged. 
It was made obsolete by the minicomputer revolution, although 
the institutions operated a joint supercomputer center specialized 
for scientific applications for many years thereafter, under a dif-
ferent organizational model.

Introduction and Context 

Location:  

Research Triangle Park, NC

Owners:

Duke University, a private university (Durham, NC)

North Carolina State University (Raleigh, NC)

University of North Carolina at Chapel Hill 

Organization Designers: 

TUCC Board of Directors

Dates:

1964–1992
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Context

Duke University, North Carolina State University, and the Uni-
versity of North Carolina at Chapel Hill each had first-genera-
tion computers, operated by centralized computer centers. Each 
needed to upgrade in capacity and capability. Each wanted more 
computer than it could afford.

The three universities decided to pool their resources and 
operate a single modern high-performance facility (more than 
they could collectively afford without help).

The National Science Foundation made a substantial grant, 
partly to fund exploration of the novel organizational model for 
providing academic computing service for research.

IBM, having located a new product development and manu-
facturing facility in Research Triangle Park, helped quite substan-
tially with funding for the first three years, by renting a night 
shift.

The design problem was how to organize the joint facility 
administratively.

Objectives1

Primary Goals 

Primary Goal of the Center. Deliver a prompt, high-quality 
computing service to clients with a wide variety of applications 
and a wide range of sophistication.

Primary Goal of the Organization Design. Develop a smooth-
running governance plan for a joint computer center owned 
equally by three different institutions with different needs and 
objectives.

Other Objectives

Maintain the financial stability of the center.• 
Ensure that decisions are made efficiently and expeditiously.• 
Ensure that each owner’s users get a fair share of all • 
resources.
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Ensure that each owner’s financial investment is protected.• 
Ensure that no owner loses on an issue of critical self-• 
interest.
Enable the center to operate as a single center, not three parti-• 
tions, for economies of scale—one staff, one set of equipment, 
one job stream.
Enable owners to change their contributions to the joint cen-• 
ter and thereby get more or less service.

Opportunities

Economies of Scale. At the time of design, the economies of 
scale of running one big center instead of three little ones were 
substantial. They consisted of staff savings—especially impor-
tant for 24-hour operation—and computer rental savings, since 
computers, memory, disks, and other I/O devices all followed 
square-law performance/price curves.

Teleoperation Possible. New technologies available with the 
new third-generation computers for the first time made it pos-
sible to submit and receive computing jobs remotely and to hold 
interactive computing sessions remotely. 

National Prototype. By moving swiftly, TUCC could pioneer a 
model of a joint regional computing center. A big center would 
be nationally visible and add to the visibility of North Carolina’s 
relatively new Research Triangle. A new prototypical organiza-
tion would reinforce an existing reputation for innovation and 
for uncommon local cooperation among universities.

Attract Government Support. The economies of scale could 
attract extra U.S. government support because the novel concept 
offered increased value for money to funding agencies. Moreover, 
the pioneering nature of the model would also attract the atten-
tion of funders.

Attract Industrial Support. The scale and national visibility of 
a joint center would make it a likely candidate for substantial 
support from industry.
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Constraints

Speed of Operating Decisions. Daily operations had to be 
managed crisply and efficiently.

Frequent Capacity Upgrades Necessary. Both demand and 
funding were expected to increase rapidly, so configuration 
changes would have to be made routinely and responsively.

Protection of Owners’ Different Vital Interests. Duke, as the 
smallest of the institutions, had to be sure it wouldn’t be called 
on to contribute more than it could afford. NCSU, as the heaviest 
user, had to be sure it could count on needed capacity. Duke had to 
be sure the two state-owned branches of the UNC system would 
not vote together to private-institution Duke’s disadvantage.

TUCC Budget Stability. TUCC itself must make moderately 
long-term commitments (leases, officer contracts), so it had to be 
assured of budgetary stability.

Owners’ Budget Stability. The owners’ own budgetary pro-
cesses required long lead times for any increase in TUCC’s 
funding.

University CEOs with a Lot at Stake. Each owning university’s 
CEO stood to benefit by enhancement of the Research Triangle. 
Each was responsible for the self-interests of his own institution.

University CEOs with Little Time to Participate, but Authority 
Not Delegated. Not all campuses had chief information offi-
cers with authority to commit the campus, so decisions might 
be slow.

Some Fractious and/or Stubborn Individuals. Some of the 
players had reputations of being strong-willed and stubborn.

Design Decisions

Careful Separation of Policy and Operations. Policy was to be 
determined by a board of directors, meeting monthly; operating 
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decisions were to be made by a staff under a CEO, the Director 
of TUCC.

Board Composition. The board had to be small enough to 
work, but big enough to represent various segments of each cam-
pus. We ended with ten members—three chosen by and from 
each owning campus, plus the TUCC Director. The Director of 
the North Carolina Computer Orientation Project also had a seat 
at the table. Since NCCOP was housed in the TUCC building, its 
Director had substantial informal influence on what happened.

Voting Alternatives Considered for the Board

Unanimous consent of members• 
Simple majority of members• 
Unanimous consent of institutions, each institution vote • 
decided by a majority of its board members
Majority of institutions• 

Unanimous Consent Not Required. We decided early on that 
the unanimous consent of members would make it too hard to 
get decisions. Avoiding the requirement of consensus greatly 
eased decision making.

Majority of Members Rather than Majority of Institutions. We 
decided that we wanted to encourage the board to think as a unit, 
and to discourage division according to institutional affiliation. 
Hence we specified that normal decisions would be made by a 
simple majority of the directors present and voting.

“Issues of Fundamental Importance.” These were explicitly 
recognized as requiring more than normal consensus and were 
spelled out in the By-Laws:

Selection or discharge of a TUCC Director• 
An annual budget increase of more than 10 percent• 
Modifying the Articles of Incorporation or the By-Laws• 

A unanimous vote by the owning institutions was required 
for Issues of Fundamental Importance. Note that this did not 
require all members of the board to agree even in such a case. 
Two-thirds of any owner’s delegation decided its vote.
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Escape Hatch. Any owner institution could declare any issue 
to be an Issue of Fundamental Importance, requiring unanimity 
by institutions. This procedure was made suitably onerous—the 
institution’s representatives could table an issue for a month. 
Then the institution’s CEO could by letter elevate the matter to 
Issue of Fundamental Importance status. So any institution could, 
with deliberate effort, stop any action it deemed inimical to its 
vital interests.

Rotating Chairmanship. The chairmanship of the TUCC board 
rotated, with two-year terms, among the owners.

Rationing Power

In all of these decisions, thought had to be given to the rationing 
of power:

Between staff and board• 
Between majority and minority, by institutions and fractious • 
individuals
Between academic users and administrative users• 

Assessment

Firmness 

Durability. The TUCC organization worked through 18 years, 
two Directors, three generations of computer mainframes, 
and substantial shifts away from the three-equal-owner-users 
model.

Escape Hatch. It was never used, as I recall. Its presence was 
a great psychological comfort and, I think, avoided sessions in 
which any group felt trapped and forced to fight for its life.

Operation as a Single Entity. The staff, as expected, operated as 
a single enterprise. So did the board, a gratifying outcome. Only 
rarely did divisions occur along institutional lines. Differences of 
opinion more often divided the board along faculty/administra-
tor or bold/conservative lines.
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Usefulness

Model Flexibility. As NCSU’s usage increased, various ad hoc 
arrangements were adopted whereby it put in more money for 
specific capacity enhancements (for example, more memory) in 
return for an increased usage share of the whole resource. Such 
devices long preserved the form, if not the substance, of the three-
equal-owners premise under which TUCC was begun. After the 
minicomputer revolution, Duke usage declined. Much computing 
service at Duke went to departmentally managed minicomputers.

Finally, the notion of unequal shares was formalized. The 
sticky point was equal versus proportional representation on the 
board. This was resolved by defining a use-fraction that would 
trigger another representative.

Tension between On-Campus and TUCC Computing Capac-
ity. From the beginning, each TUCC owner had also a campus 
computing center with a staff to help its users, and hardware 
for entering input and printing output from TUCC. This hard-
ware also (unavoidably) had the capacity to run some of the 
campus’s jobs.

Each campus center director therefore faced continual deci-
sions as to how much of his budget to put into TUCC capacity 
and how much into the on-campus facility.

NCSU tended to meet most user needs at TUCC, satisfying 
its growth requirements by buying an ever-larger share of the 
growing TUCC resource. Duke tended to meet most of its needs 
with its declining share of TUCC—that one-third initial share was 
a big fraction of the Duke computing budget. UNC continued to 
use its third of the growing TUCC resource, but it tended to meet 
its excess growth requirements by building up the on-campus 
installation rather than by enlarging its share of TUCC.

Lessons Learned

Careful and explicit identification at the beginning of the vital 1. 
interests of each of the three university partners and of the 
central facility’s director was a big help in arriving quickly at 
agreed-upon organization mechanics.
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Providing an ultimate appeal procedure, though not easy to 2. 
invoke, assured each participant that it wouldn’t be trodden 
upon.
Recognizing that there were differing interests within each 3. 
partner, and hence getting their representation in each part-
ner’s delegation, paid off. To a surprising degree, divisions 
of opinion on many issues were by area of responsibility, 
rather than by school: the finance-house representatives 
from all three of the schools often voted together, as did the 
three campus-computer-center representatives, and the three   
faculty-user representatives. 

I do not remember that any steps were taken to ensure 
that each campus delegation would represent these several 
interests, but the several administrators who appointed each 
delegation were wise enough to get it right.
It is easy for a governing board for such an enterprise to 4. 
become just a rubber stamp for the management. We found it 
necessary to meet monthly to avoid this hazard.
Some CEOs tend to fill board meetings with presentations, 5. 
rather than discussions of real issues. Perhaps CEOs overes-
timate the untoward consequences of being overridden if a 
CEO takes a real issue to the board. 

Nor, in my experience, do many CEos use their board 
members severally, as advisers in their areas of expertise. I 
think this a real loss.

Notes and References

The By-Laws of the Triangle Universities Computation Center are posted 1. 
on the Web at http://www.cs.unc.edu/~brooks/DesignofDesign.
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28
Recommended Reading

The Bibliography includes complete citations for all the refer-
ences in the text, plus other relevant and high-quality items on 
the design process. I here point to certain of these works that I 
find exceptionally valuable for those interested in the design pro-
cess as such. They are in alphabetical order by author, with brief 
comments.

Blaauw, G. A., and F. P. Brooks, Jr. [1997]. Computer Architecture: 
Concepts and Evolution. 

Section 1.1 distinguishes architecture, implementation, and real-
ization. Section 1.2 gives an overview of the design of computer 
architectures. It also formalizes and illustrates the concept of a 
design tree of individual design decisions. Section 1.4 undertakes 
to define and characterize what makes an architecture good.

Boehm, B. [2007]. Software Engineering: Barry Boehm’s Lifetime Con-
tributions to Software Development, Management and Research.

An indispensable set of papers covering many aspects of 
software design.

W. Bengough, “Scene in the old Congressional Library,” 1897
© CORBIS. All rights reserved.

From the Library of Wow! eBook



ptg

368 28. Recommended Reading

Brooks, F. P., Jr. [1975, 1995]. The Mythical Man-Month: Essays on 
Software Engineering, Anniversary edition.

Chapter 16, “No silver bullet,” separates design problems 
into the essential and the accidental (or incidental, if you prefer). 
Chapter 19 gives a 1975-to-1995 retrospective.

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Pre-
liminary discussion of the logical design of an electronic comput-
ing instrument.”

The most important computer paper ever written. Stunningly 
comprehensive. Available on line.

Cross, N., K. Dorst, et al., eds. [1992]. Research in Design Thinking.

Contains Cross’s devastating critique of Simon: real design-
ers don’t do it that way, and here are the studies that show it. 
Other papers in the book are also valuable.

DeMarco, T., and T. Lister [1987]. Peopleware: Productive Projects 
and Teams, 2nd edition.

Important research results and insights on the nontechnical 
factors affecting design quality.

Hales, C. [1987, 1991]. An Analysis of the Engineering Design Pro-
cess in an Industrial Context. 

Probably the most complete published documentation of a 
real, substantial design process, done by a co-designer who also 
served simultaneously as a scholarly observer. Originally Hales’s 
Cambridge PhD dissertation.

Hennessy, J., and D. A. Patterson [1990, 2006]. Computer Architec-
ture: A Quantitative Approach, 4th edition.

The definitive text on the design of computer architectures. 
Dramatically shows the convergence to a standard architecture.
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Hoffman, D., and D. Weiss, eds. [2001]. Software Fundamentals: 
Collected Papers by David L. Parnas. 

The other indispensable set of papers covering many aspects 
of software design.

Mills, H. D. [1971]. “Top-down programming in large systems.” 
In Debugging Techniques in Large Systems, ed. R. Rustin.

Teaches and argues for incremental design and 
programming.

Royce, W. [1970]. “Managing the development of large software 
systems.” Proceedings of IEEE Wescon. 

The classic paper describing and decrying the Waterfall 
Model. It advocates an alternative model.

Schön, D. [1983]. The Reflective Practitioner. 

Simon, H. A. [1969, 1996]. The Sciences of the Artificial, 3rd edition.

The most influential and articulate proposal of the Rational 
Model for design.

Winograd, T., et al., eds.[1996]. Bringing Design to Software. 

A very helpful collection, including important papers.

Wozniak, S. [2006]. iWoz: From Computer Geek to Cult Icon: How 
I Invented the Personal Computer, Co-Founded Apple, and Had Fun 
Doing It. 

An illuminating autobiography from an engineer’s engineer, 
giving many insights into design.
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paradigm, team, 244 
problem, intractable, 280 
process, 5, 17, 123, 157, 244 
process, action-centered, 

Denning and Dargan’s, 57 
process, speed and ease of, 195 
program, architectural, 27 
rationale, 156 
reasoning, appositional nature 

of, 30
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review, 77 
routine, 10 
schematic, 121 
software, 106, 135, 161 
space, 95, 187, Part VI 
space, working outside of the, 

28
spatial, 135 
style, 95, 246 
team, 17, 114, 119, 148 
theory, 30 
theory of, 153 
trajectory, 254 
tree, 15, 24, 280 
tree versus decision tree, 193 
verification, 108

Design of Design, The, Glegg, xv
Design Research Society, 9 
Design Studies journal, 9 
Design Thinking Research Society 

Symposium 7, 6, 10 
design-build process, 44, 46 
designer

airplane, 176 
chief, 239 
formal education of, 244 
great, Part V, 231, 249 
lone-ranger, 81

designer-computer interface, 204 
designer-implementer link, 177 
designers, in design case, 261, 

281, 298, 314, 343, 349, 357
“Designing Software for 

Ease of Extension and 
Contraction,” Parnas, 195

Desktop (Macintosh), 142 
development

cleanroom, 111 
distributed, 92 
incremental, 179

device-independent input-output, 
340

diagnosis of faults, 199 
diagramming tool, generic, 197 
Digital Equipment Corporation 

(DEC), 155, 159, 323

Digitek Fortran compiler, 124 
director

CEO of TUCC, 361 
of Triangle Universities 

Computation Center, 
selection of, 261

university computation center, 
363

discipline, for a design team, 
122

disciplines, multiple, 77 
disk, 324, 335, 356

accesses, 122 
residence of an operating 

system, 337 
Disney World, 151, 164 
display, 220

audio, 224 
context, 225
design, 225 
haptic, 225 
test cases, 225 
workbook, 223

distributed development, 92 
divergence of computer 

architectures, 349 
divorce, of designers from users 

and implementers, 175 
documentation, 55, 82, 148

maintenance, 156 
shared, 95

DoD Standard 2167A (DoD-STD-
2167A), 32, 36

drawing 
construction, 46, 223 
house, 225 
view, 220

dream system for designing 
houses, 219, Part IV

“dreariness of labor and the 
loneliness of thought,” 82

DRed (design rationale capture 
software), 197

dual ladder of promotion, 247 
Duke University, 151, 179, 357 
Dutch Golden Age, 145
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ease of extension, 145
ease of learning, 144, 145 
ease of maintenance, 145 
ease of recollection, 145 
ease of use, 144, 145 
economy of scale, 359 
EDSAC (Cambridge early 

computer), 158 
education

architectural, 244 
formal, 180, 244 
medical, 244 
technical, 248

Electric Boat Division, General 
Dynamics, 78, 83 

elegance, 142 
empirical measurement, 182 
empiricism, 105 
emulation, 321, 323, 334 
“Energy” (Sayers’s term  

for component of creat-
ing, same as “Implemen-
tation”), 4

engineer 
airplane, 91 
manufacturing, 198 
mechanical, 176

engineering 
computation, 134, 316, 324 
concurrent, 180 
drawing, 180 
product, 199 
software (see software 

engineering)
Engineering and Physical 

Sciences Research Council 
(UK), 198

Engineering Design Centre 
(Cambridge University), 
198

Engineering Research Associates 
(ERA), early computer 
manufacturer, 252

entropy, 240 
Epcot (Disney World), 151

epistemology, 109 
epistemology of practice, 31 
error rate, 81 
escape hatch, to protect vital 

interest, 362 
essence (Aristotle’s term), 5 
esthetics, 139, 204, 216 
estimate, cost, 237 
estimator (metric used for 

estimating), 25 
ETA 10 supercomputer, 337 
Etruscans, 253 
evolution 

biological, 54 
computer architecture, 347 
of design, representing, 192

evolutionary selection, 53, 55 
exemplar, 153, 207, 253, 350 
extensibility, 141 
exterior view, 222 
extraneousness, 143 
eye height, 213, 214 
EyeBall viewpoint specification 

device, 213, 222, 225

FAA (Federal Aviation 
Administration), 130

face-to-face time, 93, 97 
facial expression, 97 
failure, 167, 173 
fallen human, 44, 52 
fallibility, 106, 107 
fan club, 232 
FBI (computer) sytem, 41 
Federalist Papers, The, 109, 147 
Fetchmail software, 54 
firmness, in design case, 274, 323, 

341, 351, 357, 362
firmness, Virtuvius’s design 

criterion, 139, 140
first to market, 67 
first-generation computer, 358 
fixed-price contract, 45 
flow, uninterrupted 

concentration, 250
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follow-on product, 235 
forecast, market, 236, 237, 327 
“forget the budget,” 289 
“Form is liberating,” 127 
formal education, 244, 247 
formal method, 108 
formal model, 331 
formal proof, 108 
formal specification, 111 
formal synthesis method, 181 
Fortran programming language, 

136, 169, 170, 232, 252, 333, 
334, 335, 337

Fortune magazine, 316 
free software, 335 
Fujitsu, 324, 341 
function 

point, 121, 122 
set, 144 
too rich, 341

functional design, of a building, 
204

functional space, in a building, 
205

General Dynamics, 78 
General Electric (GE), 159 
general-purpose design, 127, 133 
generality, 70, 72, 135, 144, 173 
generation process for operating 

system (“sysgen”), 332 
genius, 231, 243, 249, 250 
geometric model, 57 
Georgian house architecture, 205 
gIBIS (Conklin’s graphical 

version of Issue-Based 
Information System), 196, 
197, 198

gift-prestige incentive and 
reward, 55

glass house (mainframe 
computing center), 233

global communications, 67 
global market, 67

Global Positioning System (GPS), 
85, 120 

global strategy, 99 
global village, 89 
goal, 14, 68 
goal iteration, 22 
goal-defining document, 114 
goal-setting process, 23 
good practice, rules of, 161 
Google, 72, 85, 124 
Gothic architecture, 148 
grant proposal, 120, 123 
graph, non-planar, 186 
graphical representation, 78 
great design, 231, 244, Part V 
great designer, 231, 243, Part V 
greed, 44 
Greeks, 253 
GRIP system (UNC molecular 

graphics system), 179, 203, 
216

group review, multidisciplinary, 
77, 108

growing yourself as a designer, 
252

guess, 116

Handbook of Software Architectures, 
Booch, 161 

hands-free operation, 223 
haptic delight, 140 
haptic display, 220, 225 
haptic display, passive, 310 
hardware 

error, 338 
computer, 109

Harvard Mark IV, 107 
Harvard University, 107 
head-mounted display, 96, 179 
heir, project, 224 
Hewlett-Packard, 159 
hierarchical order, 186, 190, 206 
high-level language, 158, 333, 335 
highbrow style, 150
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highlights and peculiarities of 
design case, 260, 280, 298, 
314, 332, 348, 356

Hitachi, 324, 341 
house 

beach, 259 
design, 120, 133, 168, 203, 219, 

226, 259, 279 
remodeling, 279 
virtual, 225 
wing addition, 279

humble access to supervisor 
program, 339

humility, 144, 253 
hurry to market, 67, 351

I/O (input-output) 
attachment tree, System/360, 

342
channel, 322, 326 
configuration, 326, 332 
control, 339 
device, 232, 339 
device, 8-bit, 99, 324 
device, random-access, 211, 

337
device-independent, 332, 340 
interface, 320, 324, 325, 339

IBIS (Issue-Based Information 
System), 196 

IBM (International Business 
Machines Corp.), 70, 85, 92, 
108, 159, 234, 237, 238, 248, 
249, 313, 350, 358

1401, 155, 323 
1401S (never delivered), 323 
1410/7010 operating system, 

171 
2311 disk, 337 
704, 155, 170 
7074, 321 
7080, 321 
709, 178 
7090, 321 
8000 series (never delivered), 

315, 322

801 RISC computer, 160
9020 System for FAA air traffic 

control, 130 
computer product lines, 315 
corporate processor manager, 

316 
Corporate Product Procedure, 

234 
Data Systems Division (DSD), 

315, 323 
Disk Operating System/360 

(DOS/360), 334 
Future Series (FS, never built), 

73 
General Products Division 

(GPD), 315, 323 
MVS (Multiple Virtual System) 

Operating System, 25 
Operating System/360 

(OS/360), 25, 120, 164, 169, 
178, 240, 331

oS/360 Job Control Language 
(JCL), 169, 339, 340, 342

Research Division, 250
Stretch multiprogramming 

operating system, 178 
Stretch supercomputer, 48, 

158, 178, 249, 315, 320, 337 
System z/90, 323 
System/360 (“mainframe” 

computer family), 6, 76, 92, 
123, 130, 155, 158, 168, 234, 
237, 251, 310, 313, 333, 349, 
356

System/360 Model 20, 234 
System/360 Model 30, 323 
System/360 Model 75, 325 
System/360 Model 91, 325 
System/360 Models 30, 40, 50, 

65, 75, 90, 323 
System/360 name origin, 336 
System/370 computer 

family (descendant of 
System/360), 323
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z/90 computer family 
(descendant of 
System/360), 136

z/OS operating system, 115, 
232, 169

“IBM’s $5 billion gamble,” 316, 
324 

IBM Laboratory
Böblingen, German, 92, 234, 

240
Boca Raton, FL, 70, 251
Boulder, CO, 92 
Endicott, NY, 92 
Hursley House, UK, 70, 92 
La Gaude, France, 92
Lexington, KY, 92
Lidingö, Sweden, 92
Poughkeepsie, NY, 92 
San Jose, CA, 92 
Uithoorn, Netherlands, 92

IBM System/360 Principles of 
Operation (programmer’s 
manual), 7

“Idea” (Sayers’s term for 
component of creating, 
same as “Architecture”), 4, 5

Implementation (component of 
creating), 4, 5, 134, 143, 325, 
348

implementation 
incremental, 107, 111 
technology, 134, 177 
microprogrammed, 321, 326 
multiple concurrent, 327 
over-specified, 177, 327

implementer, 42, 77 
incidental (or “accidental” task 

component), 5 
incremental building of software, 

226 
incremental development, 179 
incremental implementation, 107, 

111 
index 

book, 187 
register, 141

industrial design, 140 
industrial-strength operating 

system, 338 
informal communication channel, 

93 
informal culture, 156 
innovation, 70, 92, 162, 238 
insight, 355 
instruction 

cache, 255 
format, 123, 143

integrated circuit, 158, 333 
integration, system, 68 
Intel 

8080A, 144 
microprocessor style, 156

intellectual property, 55 
“Interaction” (Sayers’s term for 

component of creating), 4 
interaction with users, 179 
interactive computing, 356, 359 
interactive debugging, 178 
interactive graphics, 179, 204 
interdisciplinary negotiation, 71 
interface

between system components, 
68, 344

clean, 94 
definition of, 94 
designer-computer, 204 
standard I/O, 92, 320 
two-handed, 207 
user, 143

interior view in architecture, 213, 
222

Internal Revenue Service 
(computer) system, 41

international engineering group, 
97

international venture, 91 
interruption, program, 320, 335 
introvert, 246 
investment, financial, 359 
Iron Bridge (Shropshire, UK), 

Pritchard and Darby’s, 66 
“iron sharpens iron,” 82
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“Issue of Fundamental 
Importance,” 361 

iteration, 17, 111, 171, 172 
iteration between problem and 

solution space, 53 
iterative design, 179, 182

job 
computation unit, 335 
concurrent execution of in 

scheduler, 339
two-person, 81

Job Control Language (JCL), 169, 
339, 340, 342

John Deere, 67 
joint computer center, 355 
journal, 254 
journal reviews of exemplars, 160
joy 

of ownership, 95 
of work, 95

Kenwood House, UK, Adam’s, 
136

kernel, formal proof of operating 
system, 110

keyboard, 212 
keyboard equivalent of menu 

commands, 208 
keypad, numeric, 213 
kinetic depth effect, 97, 216 
kitchen design, 178, 297

La Sagrada Familia cathedral 
(Barcelona), Gaudí’s, 151

language 
concept, distinct, in 

programming language, 
124

high-level, 170 
imperative, 207 
scheduling, 170

layering of drawings, 221, 308 
laziness, 162 
lead time, long, 46 
learning/teaching cost, 68

Leatherman (multipurpose tool), 
163

lessons learned, 173 
lessons learned from design case, 

276, 294, 310, 327, 344, 352, 
363

library, program and declaration, 
343

library of exemplars, 154, 155, 
206, 226

lifetime 
of a computer architecture, 136 
cost, 132 
product, 134

Lilac word-processing software, 
226

limiting resource, 120 
line authority, 316 
linearization of general graph, 186 
linker software, 339 
Linux operating system, 54, 55, 

56, 164, 177 
Lisp programming language, 141
locality, 212 
Lockheed F-117 (Nighthawk 

stealth fighter), 70 
log of design trajectory, 186, 223, 

280, 308 
London churches (Wren’s), 128
lone-ranger designer, 81 
look and feel, of an interface, 80 
Lotus software, 142 
lowbrow style, 150 
lower-case alphabet, 319 
Lufthansa Flight 2904 disaster, 110

MacDraw software, 72 
MacPaint software, 72 
macro assembler, 333, 335 
macro assembler, OS/360, 170 
macro-operation, 335 
mainframe computer (see also 

IBM System/360 computer 
family), 117, 313, 333

maintenance, 25, 77, 78, 120, 132, 
156, 186, 262, 275, 276, 317
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majority vote, in organization, 
361

management style, 250, 252 
manager, project, 123, 239 
Manchester University (UK), 

early computer successes, 
158

Manchester Atlas, 159 
manipulation, of virtual objects, 

207 
manual, user, 149 
manufacturing, 72, 77, 91, 176, 198 
manufacturing cost, 121 
“Many hands make light work—

Often; but many hands 
make more work—Always,” 
68

Marine Corps (USMC), 40 
market 

forecast, 236, 315, 333 
mechanism, 55

marketer, 42, 77 
marriage, 65, 81 
mass market, 71, 179 
massing, in architectural design, 

204 
mathematical linguistics, 67 
matrix organization, 348 
McGraw-Hill Construction, 224 
mechanical engineering, 16, 204 
meeting

as refuge from labor and 
thought, 63

face-to-face, 93 
whole-team, 93

Memex (Vannevar Bush’s 
information system), 186

memory 
addressing capacity, 317 
bandwidth, 120, 123 
dump, 336 
magnetic core, 318 
management, automatic, 168 
size, 122, 129 
size configurations for 

OS/360, 332, 334

mentor, 244, 245, 246 
menu, 208, 209 
menu, customizable, 212 
merge sort, 232 
meta-design, 4 
metaphor, 142 
microcomputer, 156, 157 
microdecision, 146 
microprogrammed 

implementation, 321 
Microsoft, 246

Excel spreadsheet, 142
PowerPoint, 85 
Project software, 196 
Visio, 197 
Visual Basic programming 

language, 141 
Windows, 232 
Word, 156 
Word document, 96

MIL-STD-498, U.S. Department of 
Defense, 36 

milestone, 39, 43, 47, 54 
military 

assault plan, 120 
weapon system acquisition, 

42, 72 
mind, 203, 219 
MiniCad software, 308 
minicomputer, 157, 233 
minicomputer revolution, 357 
Minneapolis I-35W bridge 

collapse (2007), 168 
miscommunication, 177 
misperceived constraints, 130 
mistake, 167 
MIT (Massachusetts Institute of 

Technology), 159, 322, 338 
MIT Whirlwind, 155 
MITRE Corporation, 130 
mock-up, 45, 78, 298, 307, 310 
model

sound, 225 
starting, 224, 226

modeling, computer, 66 
models, library of, 210
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Models of Designing, Part I 
Modern English Usage, Fowler, 148 
modular design, 194 
Monticello (Jefferson’s home), 139 
Morse code, 145 
mouse input device, 220 
multi-person discussions, 81 
Multics, 164, 338 
multidisciplinary review, 77 
multiple designers, 226 
multiprocessing, 321, 338 
multiprogramming, 332, 337

naïve technologies, 66 
name-space, 159 
National Medal of Science, 

awarded to Cocke and 
Gomory, 250

National Medal of Technology 
(awarded to Capability 
Maturity Model in 2005), 
240

National Research Council, 42 
National Science Foundation, xiii, 

358 
natural language, 142 
natural selection evolutionary 

process, 54 
Nautilus, U.S.S., submarine, 65 
Navy (U.S.), 210 
network management, 173 
North Carolina, 356

Computer Orientation Project 
(NCCOP), 356, 361

Museum of Art, 151 
State University (NCSU), 357 
State University, School of 

Design, 254 
notebook, 252 
Notes on the Synthesis of Form, 

Alexander, 194 
noun specification in computer 

interface, 210 
noun-verb rhythm, 207 
numeric keypad, 213

oak Park Church, Frank Lloyd 
Wright’s, 146 

object-oriented programming, 
179, 342 

objectives, 42, 73, 109, 123, 133, 
160, 254 

in design case, 261, 283, 285, 
299, 316, 336, 350, 358

discovered, 284 
Office of the Future, Fuchs’s, 89, 

98 
olfactory display, 220 
OmniPlan software, 196 
one-liner (APL program), 141, 150
open-source design, 54, 177, 226 
operating system, 67, 122, 156, 

161, 317, 320 
batch, 169 
evolution, 338 
first-generation, 332 
in control, 337 
industrial-strength, 332 
multiprogramming, 178 
second-generation, 333 
secure, 108 
tape-based, 172 
time-sharing, 159, 164, 168, 

178, 240, 331 
Operating System/360 (OS/360), 

7, 42, 115, 120, 122, 141 
operation set, 143 
operator, computer, 332 
operator’s console for computer, 

178 
opportunities, in design case, 262, 

292, 300, 317, 350, 359
optimization, 120, 255 
organization

design of, 108, 355 
multi-project, 83

originality, 82, 162 
ornamentation, 146 
orthogonality, 70, 72, 143 
overview chart, 199 
owner, of a design, 79
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ownership 
of a design, joy of, 95 
of a design, sequential, 95

paging, 159 
pair programming, 81, 85 
Panama Canal, 244 
paradigm

shift, 171, 173 
solo design, 244 
team design, 244

parsimony, 72, 135, 140 
participatory design, 70 
partitioning of a task, 68, 91, 92 
partitioning of a task, cost of, 68 
Pascal programming language, 

232 
pattern, system-structure, 156, 

252 
Pavilions (University of Virginia), 

Jefferson’s, 151 
perception, 3-D, 216 
performance, 141

parameter, 43 
range, 335 
simulator, 122

performance/cost 
curve, quadratic, 356, 359 
ratio, 120, 141, 318, 359

peripheral processor, 325 
personal computer (PC), 70, 232, 

323 
philosopher of technology, 54 
pipe, in UNIX and Linux, 55
pipelined data path, 144 
pipelining, instruction, 249 
pitch axis, 213 
PL/I programming language, 

170, 335, 337, 343 
Platonic ideal, 6, 7 
pointing, 208 
politics, 91 
postulating unknown user and 

use characteristics, 116

power 
decision-making in an 

organization, 356, 362 
dissipation, 121

Praeludium and Allegro in the style 
of Pugnani (music), Kreisler, 
150

precedent, design, 154, 253, 301, 
350

presentation, 97, 181 
prestige incentive, 226 
pricing, 132, 236, 237, 315 
pride, 44, 162 
problem, separable, 190, 192 
process

house design, 187
improvement, 237

processes and procedures, 
standardized, 43

processor, peripheral, 325 
product 

definition, 236 
development environment, 76 
engineering, 199 
fight, 76, 315, 323 
follow-on, 327 
line, 234, 315 
procedure, 232 
software, 111 
special-purpose, 127

professional responsibility, 320 
program 

architectural, 27, 45, 121, 254 
development, 121

Program Evaluation and Review 
Technique (PERT), 196, 200 

programmer, 176 
programming language, 124, 135, 

140, 142, 161, 169, 170, 171, 
172, 335

programming language, 
specialized, 336 

progressive discovery and 
evolution of requirements, 
52, 54, 57
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progressive refinement, 205, 217, 
224

progressive truthfulness, 204, 224 
project 

course, in education, 181 
management tool, 196 
manager, 123, 239

projection, 3-D to 2-D, 211 
proof, formal, 107, 108, 140 
propriety, property of a design, 

70, 72, 143 
protection

of great designers, 250 
of operating system, 338

prototype, 48, 57, 78, 107, 182, 
205, 344

punched card, 170, 171, 172 
purchaser, 72, 77 
Python programming language, 

232

quality control, statistical, 111

radiation-treatment, design of, 180 
random-access I/O, 122, 232, 318 
random generation, evolutionary 

process, 54 
Rational Model of designing, 13, 

52, 54, 58, 187 
Rational Model of designing, 

critique of, 21 
rationale-capture culture, 198 
rationale for design decision, 156, 

185, 223, 308, 314 
rationalism, 105 
rationed resource (see budgeted 

resource)
RCA (Radio Corporation of 

America), 323 
real-world experience, 82
real-world team design, 96 
realization of a design, 5, 325, 347 
recruiting great designers, 245 
Reduced Instruction Set 

Computer (RISC), 157, 159, 
249, 255

redundancy of human language, 
142

regression testing of software, 107 
relational database, 248 
reliability, 77, 111, 130, 317 
remodeling, house, 279 
remote access, 332 
remote job entry, 356 
Report Program Generator (RPG) 

software, 333, 335 
representation of design, 186 
requirement

creep, 42 
design, 33, 39, 54, 57, 190 
discovery of, 289 
statement, formal, 27 
system-level, 39 
top-level, 42

Requirements Traceability Matrix, 
43

requirements-setters, 42 
research 

monograph, 349 
problem, 226

Research Triangle (region of 
central North Carolina), 359

Research Triangle Park, NC, 357 
resolution procedure, 80, 81 
review, design, 77, 80, 81, 181, 198 
revolution, 235

microcomputer, 159 
minicomputer, 159 
RISC, 159 
technology, 157

rework, 94 
rhythm, noun-verb, 207 
RISC (see Reduced Instruction Set 

Computer)
RISC I (Berkeley computer), 160 
risk, 48, 57, 59 
robustness, 41, 338 
rocking about yaw axis, to aid 

depth perception, 216 
roll axis, motion about, 213
Rolls-Royce plc, turbine engines 

provider, 198, 199

From the Library of Wow! eBook



ptg

Subject Index 417

Roman architecture, 253 
rotation of assignments, 246 
Royal Academy of Engineering 

(UK), 240 
rules 

of good practice, 161
protection from, 250

sabbatical leave, 249 
Salisbury Cathedral, iv, xiv
sampling, 116 
sandwich education program, 245 
Santa Maria del Fiore cathedral 

(Florence), 75 
satisfice, 16, 18, 34, 82 
scale model, 45 
scenario (see use case) 
schedule 

project, 94, 123 
urgency, 42

scheduler, operating system 
component, 171, 335, 338, 
342, 169

scheduling 
language, 169 
time, between compilation and 

execution, 170, 171, 339 
schematic design, 120 
scientific computing, 67, 134, 178, 

316, 318, 320, 336, 356 
scope of object selection, 210 
screen size, 220 
scripting language, 169, 171 
search engines, 67 
search of design space, 15, 53, 

128, 153 
Second Life virtual world, 101
selection

menu, 212 
object, 209

self-expression, 162
semantics, 94, 210 
sensitivity analysis, 116 
separable problems, 192 
separation of policy and 

operations, 360

sequence, writing, 351 
shampoo, 66 
shared whiteboard, 97 
shipyard, 68, 180 
short course, education, 247 
Siemens AG, 324 
Silicon Valley CA, 90 
simulation, 107, 108, 213 
simulation, computer graphics, 

225 
simulator, 334

executable computer, 348 
performance, 122

sin, 39, 43 
Sitterson Hall (campus building, 

University of North 
Carolina at Chapel Hill), 165

situation awareness, 221 
size (of work surface), 220 
sketch, 211, 252, 254, 308 
Sketch Graphics Acts software, 99 
skill, specialized, 90 
skunk works, 70 
Slinky toy, 163 
sloth, 44 
Small Homes Council, 305 
SmartDraw software, 196, 197 
social justice, 70 
sociological advance of 

minicomputer, 
microcomputer revolutions, 
159

sociological status, in dual ladder, 
247

software 
custom application, 156 
engineering, 16, 22, 32, 67, 92, 

106, 122, 135, 155, 176, 204, 
225, 231, 236, 244, 252

engineering laboratory course, 
181, 200

failure, 338 
mass-product, 156 
process, 111, 231, 331 
product, 111, 231 
support package, 333
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Software Engineering Institute 
(SEI), 231, 236

Solid Logic Technology (SLT), 318
solo design paradigm, 244 
sort program generator, 336 
sound intensity plot, 225 
Soviets (USSR), 324 
space barrier, 93 
spacecraft, 120 
Spanish Architecture Museum 

(Barcelona), 151 
spatial design, 135 
special-purpose artifacts, 127, 133 
specialization, 67, 90 
specialization, technological, 93 
specification 

3-D, 211 
architectural, 223 
costly, 148 
formal, 111 
hierarchical, 148 
software design document, 48 
view, 223

Spiral Model, Boehm’s, 44, 51, 57 
Spitfire (World War II aircraft), 

70, 84, 232, 244 
SPooL (simultaneous peripheral 

operation on-line), 335 
SPREAD Report, of IBM 

committee, 316, 321 
St. Paul’s Cathedral (London), 

Wren’s, 69, 164 
Staatsbibliothek of Berlin, 153 
stability, financial, 358 
stack architecture, computer, 76, 

319, 322 
staff authority, 316 
stakeholder, 47, 73 
standard 

industry, 59, 161 
industry software 

development, 59 
of living, 90 
quality, 111

standardization, 43, 68 
statistical quality control, 111

stealth airplane, 232 
stress analysis, 109 
structural engineering, 204 
style, 139, 153, 162, 205, 245, 248 
style, corporate, 156 
submarine, 78, 80, 232 
subroutine, 149, 171, 172, 336 
Sunniberg Bridge, Menn’s, 63 
supercomputer, 121, 154, 158, 252, 

315, 325, 357 
supervisor, component of 

operating system, 335, 338 
surrogate for cost, 121 
Sweets File and Network, 224 
synchronization of tasks, 80 
synonym dictionary, 210 
syntactic analysis, 210 
synthesis rules, 161 
system 

architect, 73, 94, 130, 131 
generation process, 342 
integration, 94 
residence, operating, 337

Tacoma Narrows Bridge collapse 
(1940), 167

tailoring processes as necessary, 
43 

talent, 93, 238 
tape, magnetic, 178, 335, 356 
task, sequential execution of in 

scheduler, 339 
Task Architect software, 195 
taste and instinct, 70 
taxonomy, 206 
team 

design paradigm, 64, 71, 82, 
114, 119, 148, 244, 320

design, real-world, 111 
two-person, 81

Technical Rationality (Schön’s 
term), 31, 35, 244

technological sophistication, 66 
technology, telecollaboration, 98 
telecollaboration, 64, 79, 89, 350, 
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telecommunication, 64, 91, 92, 93 
telephone, for collaboration, 96 
teleprocessing, 173, 316, 318, 332, 

338, 341, 356, 359 
terminal, 169, 171, 338, 341 
test cases display, 225 
testing

dynamic stress, 109 
regression, 107 
software, 55, 111 
user, 107, 179

text, specifying, 212 
third-generation computer, 333, 

359 
thought-stuff, 108, 207 
thought-trail, branching, 224 
time

compile, 339
design, plenty, 280, 293, 294, 

307, 310, 318, 327, 344, 350, 
351

development, 42 
run, or execution time, 339
scheduling, in compile, 

schedule, execute sequence, 
339

specification, 210 
time-sharing, 115, 332, 338 
toolsmith, 98 
Toothpick (viewpoint 

specification device), 215 
top-down design, 204 
topology, configuration, 131 
Tower of Babel, 163 
Track Changes (feature of 

Microsoft Word), 96 
tracking (of budgeted resource), 

119, 120, 123 
traffic pattern, 215, 298, 299, 306 
trajectory of a design, 185 
trans-Atlantic interaction, 92, 95 
transcription scheme, 189, 196, 197 
transistor-diode logic, 159 
translation software

media, 336 
format, 336

transparency 
controlled for layers, 221 
property of a design, 144

“Tree and Leaf,” Tolkien, xiv
tree 

of decisions, 189 
of decisions versus tree of 

designs, 193 
of designs, 15, 189 
representation, hierarchical, 

186, 221 
search, 34, 303

Triangle Universities 
Computation Center 
(TUCC), 355

two-dimensional access, 96 
two-handed interface, 207, 211 
two-person interaction, 82 
two-person jobs, 81

U-2 (spy plane), 70 
unanimous consent, 361, 362 
unbundling of software and 

hardware pricing, 344 
UNC Effective Virtual 

Environments Research 
Project (EVE), 297

Unilever plc, 66 
UNIVAC I, 320 
University of Michigan, 159, 248, 

322 
University of North Carolina at 

Chapel Hill (UNC-CH), 
200, 297, 357

University of Pennsylvania, 157 
University of Toronto, 207 
University of Utah, 96 
University of Virginia, 151 
UNIX, 56, 164, 177, 232, 244 
uno animo (with one mind), 81, 239 
use case, 117, 135, 178, 205, 289, 

295, 301, 310, 311 
usefulness

in design case, 272, 293, 306, 
324, 341, 351, 363

Virtuvius’s design criterion, 139
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user 
analysis and profile, 178, 181 
association, 335, 337 
outside, 182 
representative, 176 
set, 116 
testing, 107 
and use model, 113, 134, 335

user-designer link, 177 
utility 

function, 10, 68 
software, 332, 335

value, added, 298 
value/cost ratio, 44 
venture, international, 91 
verb, 171, 173 
verb specification, 208 
Verein Deutscher Ingenieure 

Standard VDI-2221, 30, 32 
verification, design, 108, 109, 111, 

181 
version control, 80, 223 
veto, in an organization, 234 
video teleconferencing, 93, 96, 97 
videotape, 74 
view 

2-D context, 220 
3-D, 221 
context, 221 
detailed, 221 
direction specification, 214 
drawing, 220 
exterior, 215, 222 
interior, 213, 221 
of library of objects, 221 
ocean, 260, 266, 273 
of specifications, 223 
workbook, 223

View/360 beach house, 7, 15, 259 
View-Graph slides, 85 
viewing parameters, 213 
viewpoint specification, 213 
virtual design studio, 64 
virtual environment (VE), 23, 178, 

180, 298, 305, 307, 310

virtual environment (VE) model, 
78, 297

virtual memory, 157, 159, 322, 
323, 325, 333, 341, 342

virtual team, 64 
virtual worlds (networked), 101 
Visicalc spreadsheet, 142 
visual representation 

of design, 78 
of model of design process, 

52, 54 
vital interest, 359, 363 
vocabulary, common, 179 
voice 

command, 208, 209 
recognition, 209, 212

voting, in an organization, 360

walkthrough, virtual environment, 
23, 80, 109, 213, 

Waterfall Model 
of designing, 16, 30, 34, 41, 44, 

52, 196 
Royce’s critique of, 31

weakness in OS/360 design and 
design process, 342

web of knowledge, 186 
whirligig model of designing, 54 
whiteboard, 33 
whys, 156, 185, 223, 253 
wicked problem, 16 
WIMP interface (Windows-Icons-

Menus-Pointing), 154, 208, 
210

windows, multiple concurrent, 220 
Women’s Reserve Naval Service 

(WRENS) (UK), 145 
workbook display, 223 
workstation, house design, 219

yaw, 213, 222 
You Are Here, 214 
“You bet your company,” 316

zEBRA computer, 150 
zoo, computer, 348, 351 
zoom viewing parameter, 221 
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