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Foreword

Perhaps, “Going Beyond Objects” should be the subtitle of this volume, as a large portion
of the contents departs from the early and popularly perceived image of “Objects.”

The object-oriented programming paradigm has now been firmly accepted in the soft-
ware community as offering the most powerful and promising technology for software de-
velopment currently available, and its expressiveness and modelling power have been
much appreciated. But, one of the greatest promises it made in its early stage was a dra-
matic improvement in the ease of software composition and reuse, which is yet to be
achieved. (People are sometimes entangled with webs of class hierarchies.) And the re-
search continues.

About ten years ago, Dennis and Oscar, moving from Toronto, founded the Object Sys-
tems Group at the University of Geneva, and started a number of research projects to ex-
tend the object-oriented paradigm in various ways. It did not take more than a couple of
years for the group to become the most active and visible research centre of object-orient-
ed technology in Europe. In the mean time, part of the group became involved in a large
ESPRIT project called ITHACA which aimed at producing an application development
environment based object-oriented technology. This volume presents, in a written form,
the fruits of the group’s ten-year research and development, as directed by Dennis’ clear
philosophy on research and innovation. The group attacked real problems and problems
firmly based on reality. Dennis’ early career as a recursive function theorist, taught by
Alonzo Church in Princeton, also encouraged foundational work in the group, and some
chapters in this volume represent it.

“Beyond Objects” was the title of the panel discussion at the European Conference on
Object-Oriented Programming (ECOOP’91), which was organized by Oscar Nierstrasz
and Dennis Tsichritzis in Geneva in July, 1991. They already had clear visions of where
we/they should go from the “Objects” that only partially fulfil the early promise. One of
their visions was the “Component-Based” approach for software construction. Future
software construction for flexible open application should be performed by composition
and configuration of plug-compatible software components that generalize objects,
agents and functions. Oscar and Laurent explain this approach in the first chapter of this
volume.

Now in the mid 90’s, advanced researchers are struggling to go beyond “Objects” in
search for better software development approaches. Intelligent Agents, Coordination Lan-
guages, Integration of Constraints and Objects, Component-Based Development ... The
contributions in this volume offer valuable clues and suggestions to those who wish go be-
yond “Objects.”

University of Tokyo, January 1995 Akinori Yonezawa
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Preface

Object-oriented technology has been with us since the mid 1960s, but has begun to have a
significant industrial impact only since the mid 1980s. There are both good and bad
reasons for adopting the technology, and even the success stories suggest that it is not so
easy to introduce object-oriented techniques where they were not practised before. Some
of the questionable reasons for “going OO” are:

* “Object-oriented programming is a better kind of structured programming” — per-
haps, but structured programming methods won’t help you very much in developing
object-oriented applications. Object-oriented programming is not just structured
programming wearing a new hat.

* “We'll be able to build applications more quickly because objects are reusable” —
there can be a huge gap between software written in an object-oriented language and
a truly reusable framework of object classes. Frameworks are hard to develop, and
not always easy to use.

» “Itwill be easier to sell our products if we can tell our customers that they are object-
oriented” — the cost and risk of adopting object-oriented technology can be very
high, and should not be taken lightly.

Still, there are good reasons for adopting object-oriented technology: so far it appears
to offer the best means to cope with complexity and variation in large systems. When fam-
ilies of similar systems must be built, or single systems must undergo frequent changes in
requirements, object-oriented languages, tools and methods offer the means to view such
systems as flexible compositions of software components. It may still require a great deal
of skill to build flexible systems that can meet many different needs, but at least object-ori-
ented technology simplifies the task.

Object-Oriented Software Compositiadopts the viewpoint that object-oriented tech-
nology is essentially aboabmposinglexible software applications from softwar@m-
ponentsAlthough object-oriented languages, tools and methods have come a long way
since the birth of object-oriented programming, the technology is not yet mature. This
book presents the results of a series of research projects related to object-oriented software
composition that were carried out within the Object Systems Group at the University of
Geneva, or by partners in collaborative research projects, during a period of about ten
years. As such, this book is an attempt to synthesize and juxtapose ideas that were devel-
oped by a group of people working closely together over several years.

Although many different topics are treated, by presenting them together, we intend to
show how certain ideas and principles are closely related to software composition, wheth-
er one considers programming language design, formal specification, tools and environ-

Reproduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and
may not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. Itis not
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Xiv Preface

ments, or application development. Common threads running throughout the book
includeplug compatibilityas a way of formalizing valid ways of composing components,
active objectsas being fundamental to the development of open syspeatscolsas a
necessary aspect of plug-compatibility for active objéagher-order functional compo-
sitionas complementary to object composition, enalutionof objects and object frame-
works as an essential aspect to capture in the software lifecycle.

This book should appeal to researchers and practitioners familiar with object-oriented
technology, who are interested in research trends related to software composition. Al-
though this book was not designed as a textbook, it would be suitable for an advanced sem-
inar on object-oriented research. Individual chapters can be read independently. The order
of presentation has been selected mainly to illustrate a progression of ideas from program-
ming language design issues to environments and applications. Not only is the “Geneva
view” of object-oriented development presented, but considerable effort has gone into
placing the work in context, and several of the chapters contain extensive surveys of relat-
ed work.

The Object Systems Group was founded by Dennis Tsichritzis in 1985, after he had
spent several years directing research in the area of Office Information Systems. At the
time, it became clear that (1) object-oriented modelling was essential to modelling office
systems, but these models were not yet well developed, and (2) prototypes of advanced of-
fice tools would be easier to develop using object-oriented tools and techniques, but the
technology was not available. These two observations led us to conclude that, since object-
orientation was a critical factor for the construction of advanced and complex applica-
tions, we should concentrate on developing this technology rather than carrying on re-
search in office systems with inadequate tools and methodological support.

The first chapter of this book summarizes the relationship between object-oriented
approaches and component-oriented development, and surveys the principal research
problems in the design of programming languages, tools, environments and methods to
support compositional development.The distinction between objects and components is
discussed in detail, and the impact of compositional development on software lifecycles is
introduced. An important theme that runs through this book is the notion that the role of a
component engineer -as a person who is responsible for defining component frame-
works — must be explicitly represented in the software lifecycle. Although this book
focuses on technological issues, there is a progression of concerns from programming lan-
guages and systems towards tools, frameworks and methods.

The first two research projects of the group focused on programming language issues.
Hybrid was an early attempt to integrate classes and inheritance with other, “orthogonal”
features such as strong-typing, concurrency and persiskamamvere active objects that
could migrate from computer to computer within a local area network, and dynamically
change their behaviour according to rules triggered by internal conditions or the state of a
communications blackboarinosbear close comparison to what are now known as “in-
telligent agents.” The work adybrid ultimately led to more detailed investigations by
Michael Papathomas into the relationship between concurrency and reuse (chapter 2), and
by Dimitri Konstantas into distribution support for flexible open systems (chapter 3). The
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work onKnosled to fundamental work by Eduardo Casais into more disciplined forms of
evolution of object-oriented libraries and to new techniques to reorganize class hierarchies
(chapter 8).

This initial phase of experimentation allowed us to gain essential insight into both the
theoretical and practical issues of object systems. As a first consequence, the group’s in-
terest in the formal aspects of programming language semantics and the specification of
object systems became deeper, and led to work by Michael Papathomas and Oscar
Nierstrasz on notions of “plug compatibility” for active objects (chapter 4), by Costas Ar-
apis on modelling and reasoning about temporal aspects of collaborating object systems
(chapter 5), and by Laurent Dami on new models of compositionality, extensibility and
subtyping for objects (chapter 6).

In parallel with these theoretical investigations, the group developed new interests in
the area of software tools and development environments. Eugene Fiume, who was visit-
ing from the University of Toronto, and Laurent Dami in 1988 developed a prototype of a
“temporal scripting language” for animated objects. This was the group’s first foray into
applying object-oriented technology to the domain of multimedia applications. The
notion of a “script” as a high-level specification of coordination amongst a set of pre-
packaged objects became a key theme in the group at the time, though it was not clear how
the idea could be carried over from the domain of animation to software objects in general.

At about this time we became involved in ITHACA, a large Technology Integration
Project of the European Community’s ESPRIT programme. The lead partner was Nixdorf
Informationssysteme (later Siemens-Nixdorf) in Berlin, and other partners included Bull
(Paris), Datamont (Milan), TAO — Tecnics en Automatitzacio d’Oficines (Barcelona)
and FORTH—the Foundation of Research and Technology, Hellas (Heraklion). The goal
of the project was to produce a complete, application development environment based on
object-oriented technology, including a state-of-the-art fourth-generation persistent ob-
ject-oriented programming language and its associated tools, and a set of application
“workbenches” to support development in a selected set of domains. A key component of
ITHACA was the “software information base” (SIB) that was to serve as a repository for
all reusable software artefacts (see chapter 7, by Panos Constantopoulos and Martin Dorr).
The SIB was intended to drive application development from requirements collection and
specification (according to stored domain knowledge and requirements models), through
design (according to reusable generic designs), all the way to implementation (according
to reusable software components and frameworks). The key insight of this approach is that
the potential for reuse offered by object-oriented technology lies not only in libraries of
object classes, but runs through the entire software development process. To exploit this
potential, however, one needs more than object-oriented languages and tools: the software
lifecycle must reflect the role of reuse; the analysis and design methods must reflect the
new lifecycle; the project management strategy must support the lifecycle and the meth-
ods; and some form of software information system is needed to store and manage the re-
usable artefacts.

Our contribution to ITHACA was more specifically to develop a “visual scripting tool”
for dynamically configuring applications from visually presented software components.
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We developed a first prototype, called VST, in which the notions of ports and “plug-
compatibility,” and the idea that a script could be packaged up as a component, emerged
naturally. Eventually we came to realize the term “script” carried too much semantic
baggage from other domains in which timing was a concern (such as animation). More to-
the-point was the view of an application a®empositiorof software components, and so

we began to speak wisual compositiomather than “scripting.” A framework for visual
composition was elaborated and realized by Vicki de Mey as part of the ITHACA project
(chapter 10).

An important aspect of a software information system is a convenient interface for nav-
igation. Whereas traditional browsers based on class hierarchies display software artefacts
only according to fixed relationships, affinity browserdynamically adapts its presenta-
tion according to changing notions of affinity between entities. New techniques were de-
veloped by Xavier Pintado and incorporated into a prototype (chapter 9).

Within ITHACA, object technology was applied to the areas of office systems and
public administration. In Geneva, we also explored its application to the domains of
multimedia systems and financial applications. A multimedia laboratory was built up over
several years, and was used as an experimental platform for a multimedia framework. The
framework, designed by Simon Gibbs, allowed heterogeneous hardware and software
multimedia components to be encapsulated as objects that could be connected according
to a standard set of paradigms (chapter 11). One of the uses of the visual composition tool
developed within ITHACA was its application to the multimedia framework, thus
allowing one to compose multimedia objects interactively instead of having to code C++
programs to glue them together explicitly.

A second framework for the visualization of real-time financial data was designed and
realized by Xavier Pintado. In this framework, a complementary approach was taken to
visual composition. Instead of requiring that components provide standard plug-compat-
ible interfaces, the bindings between components are encapsulgiteahastchapter 12).

Various themes run through this book. The dominant theme is that flexible, open appli-
cations should be seen not only as object-oriented constructions,dmumagsitions of
plug-compatible software componenthe distinction between objects and components,
and the notion of plug-compatibility must be specified with care. A second theme is that
concurrency and distribution are fundamentalit that integration of concurrency and
other dynamic aspects into the object model of a programming language poses various
technical difficulties. New computational models are needed that take behavioural aspects
of objects to be fundamental rather than orthogonal. A third theme is that development of
open systems should leamework-drivenand that this in turn requires new lifecycles,
methods and tools. In particular, the development of component frameworks by compo-
nent engineers is an evolutionary process, which must be supported by software informa-
tion management tools. Application developers similarly need appropriate tools that
facilitate instantiation of applications from frameworks and component libraries.

Our research on object systems resulted in a number of Ph.D. theses (by Casais, Arapis,
Papathomas, Konstantas, de Mey, Dami and Pintado), produced between 1991 and 1994,
which form the basis for seven chapters of this book. Since most of the authors have now
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left the group, the book also represents the end of a cycle (and the beginnings of new ones).
Work on high-level coordination languages, on distributed object systems, and on finan-
cial frameworks is continuing in Geneva, whereas some of the other research directions
are being pursued at new locations.

It is a hopeless task to try to indicate such a moving target as current activities in a me-
dium as archival as a book. Up-to-date information on the activities of the Object Systems
Group can be found on the World Wide Web at:

http://cuiwww.unige.ch/OSG/
More information concerning the editors and authors of this book can be found at:
http://iamwww.unibe.ch/~oscar/OOSC/
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Chapter 1

Component-Oriented
Software Technology

Oscar Nierstrasz and Laqurent Dami

Abstract Modern software systems are increasingly required to be open and
distributed. Such systems are open not only in terms of network connections
and interoperability support for heterogeneous hardware and software
platforms, but, above all, in terms of evolving and changing requirements.
Although object-oriented technology offers some relief, to a large extent the
languages, methods and tools fail to address the needs of open systems
because they do not escape from traditional models of software development
that assume system requirements to be closed and stable. We argue that open
systems requirements can only be adequately addressed by adopting a
component-oriented as opposed to a purely object-oriented software
development approach, by shifting emphasis away from programming and
towards generalized software composition.

1.1 Introduction

There has been a continuing trend in the development of software applications away from
closed, proprietary systems towards so-called open systems. This trend can be largely at-
tributed to the rapid advances in computer hardware technology that have vastly increased
the computational power available to end-user applications. With new possibilities come
new needs: in order to survive, competitive businesses must be able to effectively exploit
new technology as it becomes available, so existing applications must be able to work with
new, independently developed systems. We can see, then, that open systems must be
“open” in at least three important ways [49]:

1. Topology open applications run on configurable networks.
2. Platform:the hardware and software platforms are heterogeneous.

3. Evolution:requirements are unstable and constantly change.

Oscar Nierstrasz and Laurent Dami, “Component-Oriented Software Technology,” Object-Oriented Software Composition, O.
Nierstrasz and D. Tsichritzis (Eds.), pp. 3-28, Prentice Hall, 1995.
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4 Component-Oriented Software Technology

Object-oriented software development partially addresses these needs by hiding data
representation and implementation details behind object-oriented interfaces, thus permit-
ting multiple implementations of objects to coexist while protecting clients from changes
in implementation or representation. Evolution is only partially addressed, however, since
changes in requirements may entail changes in the way that the objects are structured and
configured. In fact, to address evolution, it is necessary to view each application as only
one instance of generic clas®f applications, each built up of reconfigurable software
components. The notion of component is more general than that of an object, and in
particular may be of either much finer or coarser granularity. An object encapsulates data
and its associated behaviour, whereas a component may encagsyiegeful software
abstraction. Since not all useful abstractions are necessarily objects, we may miss oppor-
tunities for flexible software reuse by focusing too much on objects. By viewing open ap-
plications as compositions of reusable and configurable components, we expect to be able
to cope with evolving requirements by unplugging and reconfiguring only the affected
parts.

1.1.1 What Are Components?

If we accept that open systems must be built in a component-oriented fashion, we must
still answer the following questions: What exactly are components, and how do they differ
from objects? What mechanisms must programming languages and environments provide
to support component-oriented development? Where do components come from in the
software development lifecycle, and how should the software process and methods ac-
commodate them?

In attempting to answer these questions, we must distinguish between methodological
and technical aspects. At a methodological level, a component, we will argue, is a compo-
nent because it has beggsignedo be used in a compositional way together with other
components. This means that a component is not normally designed in isolation, but as
part of aframeworkof collaborating components. A framework may be realized as an ab-
stract class hierarchy in an object-oriented language [23], but more generally, components
need not be classes, and frameworks need not be abstract class hierarchies. Mixins, func-
tions, macros, procedures, templates and modules may all be valid examples of compo-
nents [3], and component frameworks may standardize interfaces and generic code for
various kinds of software abstractions. Furthermore, components in a framework may
also be other entities than just software, namely specifications, documentation, test data,
example applications, and so on. Such components, however, will not be discussed in de-
tail in this paper: we will mainly concentrate on some technical aspects related to software
components.

At a software technology level, the vision of component-oriented developmentis a very
old idea, which was already present in the first developments of structured programming
and modularity [32]. Though it obtained a new impulse through the compositional mech-
anisms provided by object-oriented programming languages, component-oriented soft-
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Figure 1.1  Static and dynamic views of an application.

ware development is not easy to realize for both technological and methodological
reasons. For a programming language to support component-oriented development, it
must cleanly integrate both themputationabnd thecompositionabhspects of software
development. An application can be viewed simultaneously as a computational entity that
delivers results, and as a construction of software components that fit together to achieve
those results (figure 1.1). A componpat sedoes not perform any computation, but may

be combined with others so that their composition does perform useful computations,
much in the way that the parts of a machine do not necessarily perform any function indi-
vidually, but their composition does. The integration of these two aspects is not straight-
forward, however, since their goals may conflict. To take a concrete example, concurrency
mechanisms, which are computational, may conflict with inheritance, which is a a com-
positional feature, in that implementation details must often be exposed to correctly im-
plement inheriting subclasses [26] [31] (see chapter 2 for a detailed discussion of the
issues). To complicate things even further, the distinction between “composition time”
and “run time” is not always as clear as in the picture above: with techniques such as dy-
namic loading, dynamic message lookup or reflection, applications can also be partially
composed or recomposed at run-time.

In order to achieve a clean integration of computational and compositional features, a
common semantic foundation is therefore needed in which one may reason about both
kinds of features and their interplay. As we shall see, the notiatgauits functionsand
agentsappear to be the key concepts required for such a foundation. In consequence, we
will adopt a definition of software component which is sufficiently abstract to range over
these various paradigms.

In short, we say that a component fstatic abstraction with plugs”By “static”, we
mean that a software component is a long-lived entity that can be stored in a software base,
independently of the applications in which it has been used. By “abstraction”, we mean
that a component puts a more or less opaque boundary around the software it encapsulates.
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Figure 1.2 A software component and its plugs.

“With plugs” means that there are well-defined ways to interact and communicate with the
component (parameters, ports, messages, etc.). So, seen from the outside, a component
may appear as in figure 1.2: a single entity, which may be moved around and copied, and
in particular may be instantiated in a particular context, where the plugs (the small black
rectangles) will be bound to values or to other components. In fact, such visual represen-
tations of components can be very convenient for supporting interactive composition of
applications from component frameworks (see chapteSb&ware compositighen, is

the process of constructing applications by interconnecting software components through
their plugs. The nature of the plugs, the binding mechanisms and the compatibility rules
for connecting components can vary quite a bit, as we shall see, but the essential concepts
of components, plugs, plug-compatibility and composition remain the same.

1.1.2 Where Do Components Come From?

Once the programming language and associated tools support the development of com-
ponents, we are still left with the question, “Where do the components come from?”
Although we argue that a component-oriented approach is necessary to deal with evolving
requirements, it turns out that components themselves only emerge through an iterative
and evolutionary software lifecycle. This is reasonable, if we consider that components
are only useful as components if they can be easily used in many contexts. Before a “re-
useful” component can be designed [23], one must first collect, understand and analyze
knowledge about these different contexts to determine how their different needs can be
addressed by some common frameworks. When component frameworks are put to use,
they must be evaluated with respect to how easily they can be applied to new problems,
and improvements must then be introduced on the basis of new experience. Component-
oriented development is thereforecapital-intensive activitythat treats component
frameworks as capital goods (or “reusable assets”), and requires investment in component
development to achieve economic benefits in the long-term [53]. This means that not only
must the programming language technology and support environment address the
technical requirements of component-oriented development, but the entire software
process, including the analysis and design methods, must incorporate the activity of
“component engineering” into the software lifecycle.

Udell, who has provocatively proclaimed the “failure of object-oriented systems to
deliver on the promise of software reuse,” [50] supports this view by arguing that sets of
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components, such as those delivered with VisualBasic are a much more successful
example of software reuse than object-oriented programming. An animated discussion
followed on the Internétwhich finally came to the obvious agreement that successful
software reuse is a matter of methodology and design, more than technology; so object-
oriented systems cannot be taken as responsible for lack of reusability: they are more
likely to help in producing reusable software, provided that the right design decisions are
taken in the first place. Additional arguments on the same line can be found in [22], where
various authors discuss software reuse not only in terms of technology, but above all in
terms of economical, human and organizational factors.

Our position is that both software methods and development technology need to under-
go some significant changes in order to take advantage of component-oriented develop-
ment. We will first focus on some of the foundational issues concerning the difference
between objects and components, and their integration in programming languages and
environments; then we will briefly survey related technological and methodological
problems to be resolved; finally, we will conclude with some prospects for the future of
component-oriented development.

1.2 Objects vs. Components

Object-oriented programming languages and tools constitute an emerging software tech-
nology that addresses the development of open systems in two important ways:

1. as arorganizing principle;
2. as garadigm for reuse.

In the first case, one may view an object-oriented application as a collection of collab-
orating objects. The fact that each object properly encapsulates both the data and the cor-
responding behaviour of some application entity, and that one may only interact with this
entity through a well-defined interface means that reliability in the face of software mod-
ifications is improved, as long as client—server interfaces are respected. In the second case,
one may view applications as compositions of both predefined and specialized software
components. Application classes inherit interfaces and some core behaviour and represen-
tation from predefined abstract classes. Interactions within an application obey the proto-
cols defined in the generic design. Inheritance is the principle mechanism for sharing and
reusing generic designs within object-oriented applications.

Despite these two significant advantages of object-oriented development, it is still true
that present-day object-oriented languages emphpgiggammingover compaosition
that is, they emphasize the first view of applications to the detriment of the second. In
general, it is not possible to reuse classes without programming new ones — one cannot
simply compose object classes to obtain new classes in the way that one can compose

* The discussion took place during September 1994 in the newsgroup comp.object, under the subject head-
ing “Objects vs Components.”
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functions to obtain new functions. Furthermore, one is either forced to define a given com-
ponent as a class, whether or not the object paradigm is an appropriate one, or, if other
kinds of components are supported, the list is typi@aliioc(for example, mixins, mac-

ros, modules, templates).

If we consider the various dimensions of programming languages supporting some no-
tion of objects, we discover a mix of features concerned with computational and compo-
sitional issues. Wegner [54] has proposed a classification scheme with the following seven
“dimensions”: objects, classes, inheritance, data abstraction, strong typing, concurrency
and persistence. According to the criterion that sets of features are orthogonal if they occur
independently in separate programming languages, it turns out that objects, abstraction,
types, concurrency and persistence are orthogonal. But this does not tell us how easy or
difficult it is to cleanly integrate combinations of features within a single language.

In fact, if we consider just objects, classes and inheritance, it turns out that it is not at all
straightforward to ensure both object encapsulation and class encapsulation in the pres-
ence of inheritance [47]. One way of explaining this is that classes are overloaded to serve
both as templates for instantiating objects and as software components that can be extend-
ed by inheritance to form new classes. Typically, these two roles are not cleanly separated
by the introduction of separate interfaces. Instead, vaaubsecrules must be introduced
into each object-oriented programming language to determine what features of a class
may be visible to subclasses. Since these rules cannot possibly take into account the needs
of all possible component libraries, the net effect is that encapsulation must often be vio-
lated in order to achieve the desired degree of software reusability.

A reasonably complete programming language for open systems development should
not only support objects and inheritance, but also strong typing and concurrency. Types
are needed to formalize and maintain object and component interfaces, and concurrency
features are needed to deal with interaction between concurrent or distributed subsystems.
(Fine-grain parallelism is also of interest, but is not an overriding concern.) Though types
and concurrency are supposedly orthogonal to objects and inheritance, their integration is
not a simple matter.

One source of difficulty for types is that objects are not simply values taken in isolation,
like integers, strings, higher-order functions, or even more complex constructs such as ab-
stract datatypes. Objects typically belong to a global context, and may contain references
to other objects in that context. Furthermore, since they are dynamic entities, they may
change behaviour or state, and hence the meaning of references changes over time. Hence,
extracting static type information from such dynamic systems is considerably more diffi-
cult. Modelling inheritance is also problematic, due to the two different roles played by
classes. Many difficulties in early attempts arose from efforts to identify inheritance and
subtyping. It turns out, on the contrary, that subtyping and inheritance are best considered

* We say that encapsulation is violated if clients of a software component must be aware of implementa-
tion details not specified in the interface in order to make correct use of the component. In particular, if
changes in the implementation that respect the original interface may affect clients adversely, then encap-
sulation is violated. If the inheritance interface cannot be separately specified, then encapsulation can be
violated when implementation changes cause subclasses to behave incorrectly.
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as independent concepts [1] [7]. It may even be convenient to have a separate notion of
type for the inheritance interface [28].

When concurrency is also brought into the picture, the same conflicts are seen to an ex-
aggerated degree:

1. Concurrency features may conflict with object encapsulation if clients need to be
aware of an object’s use of these features [45] (see chapter 2).

2. Class encapsulation may be violated if subclasses need to be aware of implementa-
tion details [26] [31].

3. Type systems generally fail to express any aspect of the concurrent behaviour of ob-
jects that could be of interest to clients (such as the requirement to obey a certain
protocol in issuing requests — see chapter 4).

The source of these technical difficulties, we claim, is the lack of a sufficiently compo-
nent-oriented view of objects. Components need to be recognized as entities in their own
right, independently of objects. A class as a template for instantiating objects is one kind
of component with a particular type of interface. An object is another kind of component
with an interface for client requests. A class as a generator for subclasses is yet another
kind of component with a different kind of interface. Each of these components has its
own interface for very different purposes. It is possible to provide syntactic sugar to avoid
a proliferation of names for all of these different roles, but the roles must be distinguished
when the semantics of composition is considered.

The other lesson to learn is that each of these dimensions cannot simply be considered
as an “add-on” to the others. An appropriate semantic foundation is needed in which to
study the integration issues. If state change and concurrency are modelling requirements,
then a purely functional semantics is not appropriate. As a minimum, it would seem that a
computational model for modelling both objects and components would need to integrate
bothagentsandfunctions since objects, as computational entities, can be viewed as par-
ticular kinds of communicating agents, whereas components, as compositional entities,
can be seen as abstractions, or functions over the object space. Moreover, since compo-
nents may be first-class values, especially in persistent programming environments where
new components may be dynamically created, it is essential that the agent and function
views be consistently integrated. From the point of view of the type system, both objects
and components are typed entities, although they may have different kinds of types.

1.3 Technical Support for Components

Component-oriented software development not only requires a change of mind-set and
methodology: it also requires new technological support. In this section, we will review
some of the issues that arise:

* What are thparadigmsandmechanism#or binding components together?
* What is thestructureof a software component?
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» At which stage do composition decisions occur, i.e. how can we characterize the
composition proce8s

» How do we formally model components and composition, and how ceeriyehat
fragments are correctly composed?

» To which extend does@ncurrentcomputational model affect software composi-
tion?

These questions obviously are interrelated; moreover, they depend heavily on the compo-
sition paradigm being used. We have argued that, ideally, a complete environment for soft-
ware composition should somehow provide a combination of objects, functions and
agents. So far, these paradigms have evolved quite independently. In order to combine
them into a common environment, considerable care must be taken to integrate them
cleanly. In the following, we examine the specific contributions of each paradigm to soft-
ware composition, we discuss how they may be integrated, and we summarize the princi-
ple open research problems.

1.3.1 Paradigms for Assembling Components

Probably the most fundamental composition mechanism to mentiorcteonalcompo-

sition. In this paradigm one entity is first encapsulated and parameterized as a functional
abstraction, and is then “activated” (instantiated) by receiving arguments that are bound to
its parameters. Obviously this compositional mechanism occurs in nearly every
programming environment, and is by no means restricted to functional programming
languages. Many languages, however, do not allow arbitrary software entities to be treated
as values, and therefore do not support functional composition in its most general form.
Parameterized modules, containing variables that can be bound later to other modules, for
example, are still absent from many programming languages. At the other end of the spec-
trum, functional languages use functional composition at every level and therefore
providehomogeneityany aspect of a software fragment can be parameterized and then
bound to another component, thereby providing much flexibility for delimiting the
boundaries of components. Furthermore, functional programming subigbrés-order
composition, i.e. components themselves are data. In consequence, composition tasks
themselves can be encapsulated as components, and therefore some parts of the composi-
tion process can be automated. Finally, functional composition has the nice property of
being easily verifiable, since functions can be seen externally as black boxes: under some
assumptions about the parameters of a function, it is possible to deduce some properties
of the result, from which one can know if that result can safely be passed to another func-
tion. Current functional programming languages have developed sophisticated type sys-
tems to check correctness of composed software [37][21].

Functional composition is a local composition mechanism, in the sense that it only in-
volves one abstraction and the values passed as parameters. By contrast, agent environ-
ments typically use a global composition mechanism, often calledckboard A
blackboard is a shared space, known by every component, in which information can be put
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and retrieved at particulbcations For systems of agents communicating through chan-
nels, the blackboard is the global space of channel names. Even without agents, global
memory in traditional imperative programming also constitutes a kind of blackboard.
Blackboard composition supporsary assemblies of components (whereas local com-
position mechanisms are mostly binary); furthermore, free access to the shared space im-
poses less constraints on the interface of components. The other side of the coin, however,
is that blackboard composition systems are much more difficult to check for correctness
because interaction between components is not precisely localized. As a partial remedy to
the problem, blackboard composition systems often incorporate encapsulation
mechanisms for setting up boundaries inside the global space within which interference is
restricted to a well-known subset of components. By this means, at least some local prop-
erties of a blackboard system can be statically verifiedrddaculus [35], for example,

has an operator to restrict the visibility of names; in the world of objsletsds[19] have

been proposed as a means to protect local names and avoid certain traditional problems
with aliasing.

Finally, object-oriented systems have introduced a new paradigm for software compo-
sition with the notion oéxtensibility— the possibility of adding functionality to a com-
ponent while remaining “compatible” with its previous uses. Extensibility, typically
obtained in object-oriented languages through inheritance or delegation, is an important
factor for smooth evolution of software configurations. The delicate question, however, is
to understand whatompatibility means exactly. For example, compatibility between
classes is usually decided on the basis of the sets of methods they provide, possibly with
their signatures; in the context of active objects, this view does not take into account which
sequences of methods invocati@ans accepted by an object. Chapter 4 studies how to
capture this aspect through so-called regular types. Moreover, compatibility can be
meaningful not only for classes, but for more generalized software entities; in particular,
object-oriented systems based on prototypes and delegation need to understand com-
patibility directly at the level of objects. Chapter 6 investigates a functional calculus in
which compatibility is defined at a fundamental level, directly on functions.

Figure 1.3 is an attempt to represent visually the different paradigms. Functional com-
position is pictured through the usual image of functions as boxes, with parameters repre-
sented as input ports and results of computation as output ports. Connections between
components are established directly and represent bindings of values to formal para-
meters. The blackboard paradigm has an addressing scheme that structures the global
space; it sometimes also uses direct connections, but in addition, components are put at
specific locations, and they may establish connections with other components through
their locations. Here locations are pictured as coordinates in a two-dimensional space for
the purpose of the visual illustration. In practice, the common space will most often be
structured by names or by linear memory addresses. Finally, extensibility is pictured by
additional ports and connections added to an existing component, without affecting the
features that were already present. Seen at this informal level, it is quite clear that some co-
habitation of the paradigms should be possible, but it is also clear that many details need
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Figure 1.3 Composition paradigms.

careful study. The next subsections discuss the notions of components (the boxes), mech-
anisms (the arrows), and software configurations (the assemblies).

1.3.2 Components as Static Abstractions

In the introduction, we described components in terms of their usage: a software fragment
is a component if it is designed for reuse and is part of a framework. This does not tell
much about the structural aspects of a component. Some global invariants seem to be valid
within any composition paradigm: components typically sie¢ic entities moreover,

they always consist of some kind afstraction.Both notions, however, deserve more
careful examination.

There are many different kinds of static software entities: procedures, functions, mod-
ules, classes and so on. In each case, they have a persistent existence independent of their
surrounding context, allowing them to be manipulated and stored individually. Once as-
sembled into a program, these static entities control the creation and evolution of dynamic
entities, which in current languages are usuatiycomponents (procedure activations,
objects, dynamic data structures). Several examples can be found, however, of dynamic
entities that could be interesting as reusable software fragments, but cannot directly par-
ticipate in a composition because of limitations of the software environment. For example,
in most object-oriented languages the classes are static, but the objects (instances) are not.
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In such languages various strategies are typically used by programmers to have objects as
composable entities, such as defining a class that encapsulates a single object (instance).
Another strategy, heavily used in the NeXTStep environment [39], is to define complex ar-
chiving procedures so that groups of objects can be stored into files (so-called “nib” files);
the corresponding files can then be composed and the resulting configuration used to rec-
reate at run-time the collection of objects defined in the individual groups. In cases like
this, where the structure of the objects composing a user interface is known statically and
does not evolve at run-time, the ability to directly store objects would be much more con-
venient than writing programs or description files that will dynamically recreate a config-
uration of objects.

Another limitation to composition occurs in exactly the reverse situation: saying that
components are static entities does not mean that they should be always assembled stati-
cally. Open systems have an increasing need to dynamically manipulate and exchange
components, and dynamically link them with a running application. Recent languages for
distributed agents such as Telescript [66Pbliq [5] are good examples of this new
direction. Dynamic assembly means that software can be configured at the latest stage,
according to user’s needs, or that several running applications can dynamically collab-
orate to exchange information.

The notion of a component is also closely related to that afbatraction a self-
contained entity, with some kind of boundary around it, which can later be composed with
other entities. A procedure is an abstraction for a sequence of instructions; a class is an ab-
straction for a collection of objects; a module is a set of named abstractions. The fact that
abstractions have boundaries is crucial for software composition, since it provides a
means for structuring software, controlling interaction between components, and verify-
ing proper assembly. Unfortunately, most software environments impose some restric-
tions on the use of abstractions: boundaries cannot be drawn arbitrarily, according to
user’'s needs, but must follow specific patterns. For example, in most object-oriented
systems, boundaries cannot cross inheritance paths, i.e. a class cannot be defined without
explicitly referencing its superclass. Only CLOS [27] supports a notion of inheritance
throughmixinsin which the superclass need not be known and can be bound later. Full
flexibility for drawing abstraction boundaries requires all software components to be
treated agirst-class valueshat can be passed as parameters to other components. As
discussed above, the languages that are most advanced in that direction are functional
languages, where “everything is a function,” and functions are data. Since functional
abstraction is the only abstraction mechanism, programmers have great flexibility in
choosing which aspects to fix in a function definition and which aspects to leave open in
parameters.

Besides treating components as values, another property of abstractions that has a great
impact on compositionality scalability namely the possibility to use the same abstrac-
tion and composition mechanisms at every level of a configuration. Again this is obviously
the case with functions, where an assembly of functions is a function again. The advantage
is the economy of concepts, and the fact that there is no limit on the granularity of compo-
nents. Through their inheritance interface, classes can be seen as scalable, since the incre-
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mental modifications of a subclass, together with the parent class, form a class again. By
contrast, modules are usually not scalable: an assembly of modules is not a module itself.
An environment without scalability imposes a fixed granularity of composition (modules
can only be assembled into programs), and therefore restrict reusability of components.
Furthermore, the absence of scalability often creates problems for formal studies of pro-
gramming and composition environments, because formal theories are most successful
when they can rely on a small set of universal operators. A striking example can be ob-
served in the area of concurrency, where theoreticians typically use process calculi with
scalability (a pool of agents or processes is itself a process), while most practical imple-
mentations involving concurrency clearly distinguish between a process and a system of
processes.

1.3.3 The Composition Process

In traditional environments for software development the various phases for building an
application are well-defined and distinct: first one has to write a collection of modules,
possibly with some interdependencies, and with some dependencies to predefined mod-
ules stored in libraries; then one hasdmpilethe modules, in order to generate machine
code and, in strongly typed systems, to check type correctness of the modules; finally, one
has tolink the various pieces of machine code together, using a global name space to
resolve all cross-references. This, of course, is the schema for compiled languages, but it
accounts for the great majority of development environments in current use. Therefore, in
such systems, the granularity of components seen by programmers is basically the same
as the granularity of units manipulated by the development environment.

In order to get more flexible composition environments, this well-established scheme
of program development has to be reviewed. There are several reasons why a component-
oriented lifecycle is needed, and there are several tendencies in modern languages that
demonstrate the possibility of improving the traditional three-phase assembly of software.

We discussed above the necessity for open systems to be able to dynamically link new
agents into a running system. This implies that the information that is normally discarded
at link-time, namely the association between global names and memory addresses, needs
to be kept both in the running system and in the agent that will be added to it. In other
words, even a complete system can no longer considered to be totally closed: names may
be locally resolved, but they still need to be considered as potential free variables that can
be linked later to a dynamic entity.

In some object-oriented systems, this is true to a further degree: not only the linkage in-
formation, but also a major part of compile-time information is required at run-time —
this is necessary to implement features such as delegation or even reflection. Early advo-
cates of object-oriented programming were often arguing in favour of the high level of
flexibility offered by fully dynamic object-oriented systems, even if they admitted that
such choices have a cost in terms of resources: dynamicity typically consumes more mem-
ory and more computing power than statically optimized code. Later, some thought they
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had found the adequate compromise with C++: use objects and classes, but compile away
a maximum of information, only keeping what is strictly necessary (namely tables for
dynamic binding of virtual functions); this is one of the main reasons why the C++ com-
munity grew so rapidly. Indeed, C++ has been and is very successful for a large number of
applications, but one could say that the original target of proponents of object-oriented
programming has shifted: C++ is being used as a replacement for C, for applications in
which interaction with operating system, efficient use of resources, tractability for large-
scale projects are essential. We are slowly rediscovering, however, that if flexibility,
openness, fast prototyping are really important issues, then the choice of C++ is no longer
justified. In the recent years, demand for qualified Smalltalk programmers has been stead-
ily increasing, and large-scale high-level platforms for application development like
OpenStep0] are being based on Objective-C instead of C++; both languages differ from
C++ in that they maintain full information about objects, classes and methods in the run-
time environment. So the market is progressively acknowledging that efficiency is not
necessarily the most important feature in any case, and that it also has its cost in terms of
lack of openness and flexibility.

We are not saying that the future of software components is necessarily in fully inter-
preted languages, but that flexible open systems need to deal with components in many
possible forms, ranging from source code to machine code through several intermediate
representations, partially compiled and optimized. Some modern languages in various
areas already demonstrate this tendency, and show that much progress has been done for
such implementation strategies. For example, both the scripting language Perl [52] and
the functional language CAML-Light [30] are compiled into an intermediate form that is
then interpreted; actually, interpreted Perl programs are sometimes faster than equivalent
compiled programs written in C, and the implementation of the CAML-Light interpreter
is faster than compiled versions of the original CAML language! Another example is the
Selflanguage [51], which provides a very high level of run-time flexibility, and yet has ef-
ficient implementations based on the principleamhpile-by-needhe run-time system
includes a Self compiler, and methods are compiled whenever needed. Static compilation
of a method in an object-oriented system is sometimes complicated, because one has to
make assumptions about the context in which it will be called (taking inheritance into
account); if, instead, the method is compiled at run-time, then more information is known
about the context (i.e. which actual object the method belongs to), which allows for a more
efficient compilation of the method. In other words, the time lost to compile the method at
run-time may be quickly recovered through subsequent calls to the same method.

Ideally, the responsibility of switching between high-level, human-readable represen-
tations of components and low-level, optimized internal representations should be left to
the composition environment. In practice, however, programmers still often need to guide
these choices. This means that the granularity of components manipulated by the system
is visible to programmers. In itself, this is not necessarily a disadvantage, but the problem
is that this granularity is often identified with the granularity of logical components of a
software system. In other words, programmers are forced to think in terms of “compila-
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tion units,” instead of thinking in terms of “modules.” Leroy [29] explained very clearly
the distinction:

Modularizationis the process of decomposing a program in[to] small uniasl{

uleg that can be understood in isolation by the programmers, and making the rela-
tions between those units explicit to the programn&eparate compilatiois the

process of decomposing a program in[to] small oisnpilation unitsjhat can be
type-checked and compiled separately by the compiler, and making the relations be-
tween these units explicit to the compiler and linker.

Identifying the two concepts is very common, and yet is limiting, as Leroy points out in
the context of the SML language [37]. Modules — i.e. logical units of a program — may
be structurally much more complex than compilation units, especially if, as discussed
above, one wants to be able to treat them as first-class values and to perform higher-order
module combinations, either statically or even dynamically. In this respect, SML has
probably the most sophisticated module system for an existing programming language,
yet it does not support separate compilation. Several researchers are currently working on
removing this limitation [29][16].

1.3.4 Verification of Composition

Whenever components are assembled to perform a common task, there is always an im-
plicit contract between them about the terms of the collaboration. In order to be able to ver-
ify the correctness of a configuration, the contracts need to be made explicit and to be
compared for eventual discrepancies. This issue can be addressed by a type system. How-
ever, conventional type systems cannot capture in general all the aspects of a contract, be-
cause of their limited expressiveness. Two approaches can be taken for dealing with this
problem. One approach, taken by Meyer in the Eiffel language [33], is to enrich the inter-
faces of components with additional constraints expressing the expectations and promises
of each partner in the contract. Part of the constraints are checked by the type system, and
part of them are verified at run-time, each time that an actual collaboration (control pass-
ing) between two components takes place. The other approach is to improve the expres-
siveness of type systems. Much research has been done in this direction, especially in the
area of functional programming languages. Polymorphic type inference in languages such
as ML or Haskell [21] actually provides a level of security that is much higher than in a tra-
ditional language like Pascal, without putting any additional burden on the programmer.
However, as soon as one leaves the functional model, such results are no longer applica-
ble: in systems with blackboard composition (imperative programming languages, con-
current systems) one cannot infer much type information. As far as object systems are
concerned, this is still an open question, examined in detail in a survey by Fisher and
Mitchell [11]. The addition of subtyping makes both type inference and type checking
considerably harder, so despite important progress made over the recent years, no object-
oriented language with an ML-like type system has yet been developed.
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To capture the recursive semantics of objects at a type level, most researchers use ex-
plicitly typed systems with either recursive types or existential quantification; such solu-
tions have improved the state of the art for object typing, but are not likely to be applied
soon in real languages, since the complexity of the resulting type expressions would prob-
ably appal most programmers not familiar with type theory. Therefore we believe that
practicability of object typing will be achieved through type inference rather than through
explicit typing; preliminary results in that direction are discussed in [18]. The difficult
point, however, is to be able to infer types that are both “minimal” in the sense of sub-
typing, and “principal” in the sense of Curry type schemes (a type scheme is principal for
a term if and only if it can generate all other types of that term by substitution of type
variables). To our knowledge, this is still an open problem; but some recent results on prin-
cipal types for objects are collected in [15].

Coming back to the problem of explicit contracts between components, we should
mention another family of solutions that puts the contract, not inside components, but out-
side. For interlanguage composition, this is even the only possibility, since it would be
quite difficult to compare contracts specified in different languages and models. An exam-
ple of a contract being outside of the components is a database schema that specifies the
conditions under which a common database may be accessed, and which must be respect-
ed by every program doing transactions on the database.While providing a glue between
heterogeneous components, this kind of solution has the disadvantage of being quite rigid:
the terms of the contract are specified from the beginning and can hardly be changed later;
moreover, this approach cannot support scalability, since components are clearly distinct
from configurations of multiple components. Contracts outside of components are also
found inmodule interconnection languageghose job is precisely to perform composi-
tion of software components. The amount of information handled in such languages varies
from one system to the other; Goguen, for example, advocates an algebraic approach to
capture semantic information about the components [13]. It should be noted, however,
that module interconnection languages seem to have lost part of their importance in the
literature in favour of more homogeneous approaches in which the distinction between
components and component assemblies is less strict. Object-oriented approaches fall into
that category, as do functional approaches to an even greater degree.

Type systems and algebraic specifications aim at verifying correctness in a machine-
checkable way by statically looking at a software configuration. They belong, therefore,
to the world of static semantics. By contrast, a number of techniques have been developed
for studying the dynamic behaviour of programs, like denotational, algebraic, operational
or axiomatic semantics. Since such techniques deal with dynamic information, and are
therefore not decidable in general, they are commonly used for studying programming
languages and environments rather than particular software configurations. It is therefore
not our purpose here to discuss them in detail. It should be noted, however, that several of
the points discussed above for the evolution of component-oriented software development
will have some impact on these analysis techniques. For example, most of these semantics
are compositional, but they are not modular (for denotational semantics, this is acknowl-
edged by Mosses [38]). In the scenario of iterative compositional development, it should
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be possible to progressively refine the semantics of a component according to the availa-
ble knowledge about its context: we know more about a component inserted into a given
configuration than about this component seen in isolation. Instead of the usual distinction
between static semantics, dynamic semantics, and what Jones [25] calls “binding time
analysis,” we should again have a whole range of intermediate steps, corresponding to the
various intermediate stages of assembly.

Finally, it should be noted that traditional semantic techniques induce an equivalence
relationship over software components — they have been designed to be able to state
whether two components are equal or not. In the context of object-oriented programming,
this is no longer sufficient, since the idea is to extend components — to produce new com-
ponents that are not just “equal’ to previous ones (plug-compatible), but in some sense are
“better” (extended). To deal with this aspect, theoreticians of object-oriented languages
have developed the notionpdrtial equivalence relationships (PER4), which equates
components not universally, but relative to a given type: for example the records {x=1,
y=3}, {x=1, y=4, z=10} are equivalent as type {x:Int}, but not as type {x:Int, y:Int}. An
alternative approach is proposed in this book in chapter 6, in which components are this
time universally related, but bycampatibilitypartial order instead of an equivalence re-
lationship.

1.3.5 Objects as Processes

Earlier in this chapter we argued tkamponentandconcurrencyare both fundamental
concepts, and cannot be considered as “add-ons” to programming languages. Further-
more, the semantic issues are sufficiently subtle and complex that it is essential to have a
formal object model and a semantic foundation for reasoning about all language features.
What, then, should the object model look like, and what would be an appropriate semantic
foundation?

Let us consider the features we would need to model in a language that supports com-
ponent-oriented development:

1. Active Objectsobjects can be viewed as autonomous agents or processes.

2. Componentscomponents are abstractions, possibly higher-order, over the compu-
tational space of active objects.

3. Compositiongeneralized composition is supported, not just inheritance.

4. Typesboth objects and components have typed interfaces, but, since objects are dy-
namic entities and components are static, the type system must distinguish between
them.

5. Subtypessubtyping should be based on a notion of “plug compatibility” that per-
mits both objects and components to be substituted if their clients are satisfied [55].
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An object model must therefore cope with both objects and components. Objects en-
capsulateservicesand possesdentity, stateandbehaviout. The services are obtained
through the behaviour according to some client/sgmeeocol Components, on the other
hand, ar@abstractionsised to build object systems, i.e., they are functions over the object/
process space. Although functions are fundamental, we cannot model objects as function-
al entities because they are long-lived and concurrent. Since input and output are on-go-
ing, and the same input may produce different results at different times, objects are
essentially non-functional. Ideally, abject calculug41] would merge the operational
features of a process calculus with the compositional features)otéheulus.

Interestingly, recent progress in the study of process calculi addresses many aspects of
the semantics of concurrent object-oriented systems. The original work by Milner on a
Calculus of Communicating Systems (CCS) [34] resulted in a highly expressive process
calculus that nevertheless could not be used to model “mobile processes” that can ex-
change the names of their communication ports in messages. This, of course, is essential
to model objects. Work by Engberg and Nielsen [10] borrowed and adapted concepts from
theA-calculus to deal with this, and Milner [36] refined and simplified their results to pro-
duce therr-calculus, a true “calculus for mobile processes.” In the meantime, Thomsen
[48] developed the first “Calculus for Higher-Order Communicating Systems” (CHOCS)
which essentially added term-passing to CCS. From an object systems point of view, this
should allow one to model objects and components as values at run-time. Milner extended
the -calculus to a polyadic form [35], which allows one to express communication of
complex messages, and he introduced a simple type system for the calculus. Following on
work by Milner, Sangiorgi [46] developed a higher-order process calculus)(M@ose
semantics can be faithfully preserved by a mapping to the unadeoadcllus, and Hen-
nessy [17] has developed a denotational model of higher-order process calculi. Honda
[20] has also developed thecalculus, a process calculus based on asynchronous com-
munication, whose semantics is obtained dactionof the features of the-calculus.

Going in the opposite direction, Dezaial.[9] have investigated synchronous parallel-

ism and asynchronous non-determinism in the classicalculus. In the object-oriented
community, there have been several other attempts to develop object calculi that take their
initial inspiration from either process calculi or thealculus, or both [8] [20] [41].

We propose that a formal model of objects and components based on recent develop-
ments in process calculi anetalculi should form a good basis not only for understanding
and explaining abstraction and composition in a component-oriented software develop-
ment method, but can actually serve as an abstract machine for developing a new genera-
tion of component-oriented languages [43] [44], much in the same way thatdh=ilus
has served as a semantic foundation for modern functional programming languages.

* The distinction between “state” and “behaviour” is admittedly artificial, but is useful for conceptual rea-
sons, since state is thought of as hidden and behaviour as visible. In fact, the notions are dual, and one can
consider the “state” of an object to be its “current behaviour.”
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1.3.6 Summary of Research Topics

In this section we have listed some very ambitious wishes for the future of component-
oriented development environments, but we have also shown that several directions al-
ready present in modern programming languages can give us some confidence about ful-
filment of that program. To summarize, here are the points that we consider as most
important research issues:

* Merge current notions of abstraction in process calculi, functional languages and
object-oriented languages into a single notiorcahponentwhich should be a
firstclass, storable entity equipped with the notions of parameterization (leaving
some aspects of the component “open”) and instantiation (ability to generate a
“copy” of the component in a given run-time context), and furthermore should
support scalability (possibility to encapsulate a partial configuration of components
as a new component).

» Develop software manipulation tools that are able to deal with partial configurations
and support an iterative assembly process, by using various levels of intermediate
representations of components. Current tasks of type checking, compilation to
machine code and linkage will be replaced by incremental change of intermediate
representation.

» Find expressive, yet decidable type inference/partial evaluation systems, that will be
able to statically decide about the correctness of a partial configuration, in a way that
is transparent to (or requires minimal typing information from) programmers.

It can be seen that these research directions require a tight integration between current
research being done both at a theoretical level (semantics and types of programming
languages) and at a practical level (implementations, compiler/interpreter design).

1.4 Component Engineering

Once we have a language and environment that permits us to develop software component
frameworks, there remains the question how these components should be developed,
maintained and applied. With traditional software development, applications are in prin-
ciple designed to meet very specific requirements. Component frameworks, on the other
hand, must be designed to meet many different sets of requirements, and should even be
built to anticipate unknown requirements.

Consider the following scenaFi{)42] for application development: an application de-
veloper has access teaftware information syste(8IS)that contains not only descrip-
tions of available component frameworks, but domain knowledge concerning various
application domains, descriptions of requirements models, generic designs, and guide-
lines for mapping requirements specifications in the problem space to designs and imple-

* This scenario was elaborated as part of the ITHACA project (described briefly in the preface).
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mentations in the solution space (see chapter 7 for a description of a such a system). A
software information system is closer in spirit to an expert system than to a repository; in
fact, the principle of a SIS is that it should encode and present the knowledge acquired by
a domain expert.

To use the SIS, the application developer first enters into a dialogue to identify the rele-
vant application domain. The information pertaining to this domain can be referred to as a
Generic Application Frame (GAF)The GAF determines the context for application
development. The next step in the dialogue is to specify the requirements. Since the GAF
includes domain knowledge and requirements models, the requirements specification is
largely performed according to existing patterns. The specific requirements will then lead
the SIS to suggest, according to stored guidelines, generic designs and component frame-
works that can be used to build the application. The guidelines may also suggest how com-
ponents should be instantiated or specialized to meet specific requirements. (Chapter 10
contains a brief description of RECAST, an interactive tool for requirements collection
and specification, based on this scenario.)

The process of completing requirements specifications, making design decisions and
refining and composing components results in a new information structure that we will
call aSpecific Application Frame (SAFJhe SAF consists not only of the completed
application, but all the information that was generated along the way. When application
requirements evolve, the SIS is again used, but in this case the dialogue results in pre-vious
decisions being reconsidered and a new SAF being built from the old.

This scenario is very appealing, but suggests more questions than it answers. How is do-
main knowledge to be captured and represented in the SIS? How are generic designs and
component frameworks developed and described? How are guidelines determined and en-
coded? Who is responsible for maintaining the SIS and its contents, and how are the con-
tents evaluated and maintained? Is the scenario even realistic? How much will the SIS
need to be supported by human experts? We believe it is, because successful generic ap-
plications and component frameworks do exist, but nobody knows how far this scenario
can be pushed to work well in practice. Will it only work for very restricted and well-
understood application domains, or is it also valid for more complex and evolving
domains?

This suggests that the rolea@@mponent engineering fundamentally different from
the more traditional role @pplication developmenflthough the same person may in
some cases play both roles, it is important to separate them in order to keep the different
sets of requirements distinct. In particular, the clients for each are very different. The cli-
ents of an application are (ultimately) the end-users, whereas the clients of a component
framework are the application developers.

Why is it necessary to elevate component engineering to a distinguished activity?
Should it not be possible to find reusable components by scavenging existing object-
oriented applications? A plausible scenario might have application developers use tradi-
tional methods to arrive at an object-oriented design, and then search for reusable objects
that would at least partially meet the specifications. The “found” objects would then be
tailored to fit the task at hand.
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The problem with this scenario is that you do not get something for nothing. Software
components are only reusable if they have lmmignedor reuse. A repository of soft-
ware objects from previous applications is like a “software junkyard” that, more likely
than not, will not contain just what you are looking for. The cost of searching for and
finding something that approximately meets one’s needs, and the additional cost of
adapting it to fit may exceed the cost of developing it from scratch. Worse, the tailored
components are not maintainable, since such an approach will encourage a proliferation
of hacked-up, incompatible versions of somewhat similar components, none of which is
ultimately reusable Systematicrather than accidental software reuse requires an
investment in component framework development and in software information
management [53].

1.4.1 Benefits and Risks

A component that has been designed for reuse always forms part of a framework of com-
ponents that are intended to be used together, much in the way that modular furniture is
made of components that can be combined in many ways to suit different needs. Clearly
the development of a component framework represents an investment that must be evalu-
ated against the expected return. The benefits can be measured in two ways: a component
framework should make it easier (i) to fill (at least partially) the needs of many different
applications, and (ii) to adapt a given application to changing needs. (These are also the
main selling points of modular furniture.) If either or both of these requirements are
present to a sufficient degree, it may be worthwhile developing a component framework,
or investing in the use and possible adaptation of an existing framework.

In fact, one can easily argue that component frameworks salwdgisbe used: long-
lived applications necessarily undergo changes in requirements with time that can be more
easily met with the use of a framework, and short-lived applications must typically be de-
veloped under tight time constraints, which can also be facilitated by the use of an existing
framework. The risks, however, must also be considered:

1. A steep learning curve can be associated with the use of a framework. Developers
must be willing to invest time and effort into learning a framework before the bene-
fits can be realized. Tt invented hersyndrome can be difficult to overcome.

2. Development of new frameworks is a costly and long-term activity. The long-term
benefits must be justified in terms of the opportunities for recovering the invest-
ment.

3. Individual projects have short-term goals and deadlines that conflict with the long-
term goals of component-engineering. Management must commit to developing a
service-oriented infrastructure to support the provision of frameworks to projects
[14]. If the use of frameworks introduces too much overhead, projects will not adopt
them.
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4. New frameworks evolve rapidly in the beginning, and may undergo several com-
plete redesigns before they stabilize. The costs of re-engineering client applications
of a redesigned framework may be quite high, though the long-term benefits of re-
engineering can be significant. In principle one should not use unstable frameworks
for a large base of client applications, but on the other hand, a framework will not
evolve to the point that it stabilizes unless it is applied to many different kinds of ap-
plications.

The reason that each of these points can be considered a risk is that present software
engineering practice actuallijscouragesomponent-oriented development by focusing
on the individual application rather than viewing it as part of a much broader software
process. To address these points we need to rethink the way software is developed and
introduce new activities into the software lifecycle.

If we reject the “software junkyard” model of software reuse, we can still consider it as
a starting point for component engineering. A component engineer processes and digests
the results of previous development efforts to synthesize (i) domain knowledge and
requirements models [2], (ii) design patterns [12] and generic architectures, (iii) frame-
works [24] and component libraries, (iv) guidelines to map from problem to solution do-
mains (i.e. from requirements to designs and implementations). The result of component
engineering, therefore, resembles a well-designed cookbook — it is not just a collection
of prepackaged recipes, but it contains a lot of background information, generic recipes,
suggestions on how to combine and tailor recipes, and advice on how to meet specific
needs. The “cookbook” is intended to compensate for the fact that not everyone can afford
the time and expense required to become an expert, and so the acquired expertise is re-
duced to a standard set of guidelines and rules. Naturally one cannot hope to answer all
possible needs with such an approach, but a large class of relatively mundane problems
can be addressed.

Note that component engineering is not concerned only with developing software com-
ponents, but touches all aspects of software development from requirements collection
and specification, through to design and implementation. The point is that the most bene-
ficial artefacts to reuse are often not software components themselves but domain knowl-
edge and generic designs. Software reuse is most successfydldmsfer it in advance.

By waiting until after requirements are specified and the systems are designed, many op-
portunities for reuse may have been wasted, and one may not even be able to find suitable
components to reuse.

Component engineering can only be considered successful if the results are used to
build more flexible applications. Ideally, these results actdale the application devel-
opment process: an application developer should be quickly positioned in the software
information space to some GAF, and the activities of requirements collection and
specification, application design, component selection and refinement should follow from
a flexible dialog between the developer and a software information system on the basis of
the contents of the GAF.
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1.4.2 How to GetThere from Here

However attractive such a software information system might be, little is known about
how one should build one that would be successful in practice. (See chapter 7 for a discus-
sion of some of the issues.) Good results have been achieved by introducing a so-called
“Expert Services Team” of individuals who are responsible for introducing reusable as-
sets into projects [14]. In this way, some of the domain expertise is formalized in terms of
reusable assets, but the knowledge of how to apply them to particular situations remains a
responsibility of this team. The hard parts remain: (i) how to identify the reusable assets
applicable to a given situation (identifying the GAF), (ii) mapping the results of analysis
to available architectures and designs, (iii) elaborating missing subsystems and compo-
nents, (iv) adapting frameworks to unforeseen requirements.

More generally, there are various aspects of component-oriented development that can
only be considered open research problems. Some of the more significant problems are:

1. Domain knowledge engineeringow should domain knowledge be captured and
formalized to support component-oriented development?

2. Synergy between analysis and desigaditional software engineering wisdom
would keep design issues separate from analysis, but opportunities for reuse can be
missed unless one plans for it. How can analysis benefit from the knowledge that
frameworks will be used in system design?

3. Framework designwhat methods apply to framework design? Object-oriented
analysis and design methods do not address the development of frameworks.
Guidelines exist, but no methods [23].

4. Framework evolutionframeworks evolve as they stabilize. What principles should
be applied to their evolution? How do we resolve the technical difficulties of main-
taining applications based on evolving frameworks? [6]

5. Reuse metricdraditional software metrics are of limited use in the development of
object-oriented software. Less is known about measuring the cost of developing
component-oriented software. How does one measure potential for reuse? The size
and cost of framework-based applications? The cost of developing and maintaining
reusable assets? [14]

6. Tools and environmentszhat software tools would facilitate component-oriented
development? How can the software information space be managed in such a way
as to provide the best possible support both for application developers and compo-
nent engineers?

1.5 Conclusions

Component-oriented software development builds upon object-oriented programming
techniques and methods by exploiting and generalizing object-oriented encapsulation and
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extensibility, and by shifting emphasis from programming toweodsposition Present
object-oriented technology is limited in its support for component-oriented development
in several ways. First and foremost, the notion edfaware componems not explicitly

and generally supported by object-oriented languages. A component, as opposed to an
object, is a static software abstraction that can be composed with other components to
make an application. Various kinds of components can be defined with object-oriented
languages, but their granularity is typically too closely linked with that of objects — in
addition to classes, both more finely and coarsely grained abstractions are useful as com-
ponents.

Supporting both components, as software abstractions, and objects, as run-time enti-
ties, within a common framework requires some care in integrating corresponding
language features within a common framework. In particular, it is not so easy to devise a
satisfactory type system that captures “plug compatibility” in all its useful forms and
guises. Concurrency and evolving object behaviour pose particular difficulties, as is seen
in chapters 2, 4 and 5. For these reasons, we argue, it is necessary to establish a suitable
semantic foundation of objects, functions and agents that can be used to reason about
software composition at all levels.

Foundational issues, though important, address only a small part of the difficulties in
making component-oriented development practical. Even if we manage to produce com-
puter languages that are better suited to expressing frameworks of plug-compatible soft-
ware components, there is a vast range of technological and methodological issues to be
resolved before we can expect that component-oriented development will become wide-
spread. The most fundamental question — where do the components come from? —is the
hardest to answer. In a traditional software lifecycle, application “components” are tailor-
made to specific requirements. In a component-oriented approach, the actioitypoi-
nent engineeringnust be explicitly incorporated into the lifecycle, and supported by the
software process, the methods and the tools. “Software reuse” is not something that can be
achieved cheaply by arbitrarily introducing libraries or “repositories” into an existing
method. In fact, rather than focusing on software reuse, we must concentrate on reuse of
design, of architecture and of expertise. Component engineering is the activity of distilling
and packaging domain expertise in such a way as to make component-oriented application
development possible.
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Chapter 2

Concurrency in
Object-Oriented
Programming Languages

Michael Papathomas

Abstract An essential motivation behind concurrent object-oriented
programming is to exploit the software reuse potential of object-oriented
featuresin the development of concurrent systems. Early attempts to intfroduce
concurrency to object-oriented languages uncovered interferences between
object-oriented and concurrency features that limited the extent to which the
benefits of object-oriented programming could be realized for developing
concurrent systems. This has fostered considerable research intfo languages
and approaches aiming at a graceful integration of object-oriented and
concurrent programming. We will examine the issues underlying concurrent
object-oriented programming, examine and compare how different
approaches for language design address these issues. Although it is not our
intention to make an exhaustive survey of concurrent object-oriented
languages, we provide a broad coverage of the research in the area.

2.1 Infroduction

Considerable research activity in the past few years has concentrated on the design of con-
current object-oriented programming languages (COOPLS). This research activity aimed
at providing an integration of object-oriented and concurrent programming. The follow-
ing points discuss some motivation for concurrent object-based programming:

» Toaugment thenodelling poweof the object-oriented programming paradigm. One
goal of object-oriented programming can be seen as to model the real world directly
and naturally [89]. Concurrency then adds to the modelling power by making it easier
to model the inherently concurrent aspects of the real world.
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» To take advantage of tle®ftware design benefits object-oriented programming
and the potential f@oftware reuse the development of concurrent and distributed
systems. Concurrent and distributed systems are becoming more widespread and the
need to develop concurrent programs is becoming more common. This is witnessed
by the support provided for concurrent programming at the application level provid-
ed by modern operating systems.

» To supportsharing of distributed persistent datdhe object-oriented paradigm
lends itself well for providing location transparency by encapsulating within objects
access to distributed persistent data. However, as information has to be shared, ac-
cess to the objects has to be scheduled in a way that avoids interference and provides
support for recovering from failures in the distributed environment. Although this
could be left to the language implementation, as is the case in database management
systems, taking advantage of the semantics of object types to ensure atomicity has
substantial benefits with respect to performance and availability. This, however,
requires the use of concurrency control mechanisms for the implementation of object
types[90].

» To take advantage gbarallelism in the implementation of object classes for
increased execution speeds. Data abstraction can be used to conceal parallel
implementations of objects from programs that use them so as to increase their per-
formance when run on parallel machines. Parallelizing compilers could be used to
generate parallel implementations of object classes, thus avoiding the need for con-
currency constructs. However, better results are generally achieved by the use of ex-
plicit parallel algorithms as implicit approaches for parallel execution uncover and
exploit only a number of restricted classes of parallelism [46]. Moreover, as data ab-
straction hides the details of the implementation of classes, users of these classes
need not be aware of their concurrent implementation.

In all of the above cases it is necessary to combine the concurrent and object-oriented
programming paradigms, provide linguistic support for concurrent object-oriented pro-
gramming and, ideally, exploit the reuse potential of object-oriented programming for
concurrent software.

However, combining object-oriented and concurrency features has proven to be more
difficult than might seem at first sight. Clearly, devising a language that has both concur-
rent programming and object-oriented constructs poses no problem. There has been a
large number of proposals for combining object-oriented and concurrency features. How-
ever, they are not equally successful in drawing the benefits of object-oriented program-
ming for concurrent software development. The problem is that these features are not
orthogonal, and consequently they cannot be combined in an arbitrary way. Most of the re-
search in the area is devoted to devising graceful combinations that limit the interference
of features.

In this chapter we present a design space for the approaches for combining object-
oriented and concurrency features and a set of criteria for evaluating the various choices.
We use the criteria to evaluate some proposals and identify approaches that do not
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adequately support object-oriented programming as well as approaches that do achieve a
graceful combination of the features.

In section 2.2 we present a design space for combining object-oriented and concurren-
cy features with respect to several aspects of language design. In section 2.3, we discuss
the issues that have to be addressed to provide the benefits of object-oriented program-
ming. Section 2.4 examines the impact of some proposals on the integration of the pro-
gramming paradigms and their potential for reuse. Finally, in section 2.5 we present our
conclusions, discuss open problems and directions for further work in the area.

2.2 Design Space

We start by presenting three aspects of COOPLs that we consider for constructing the de-
sign space, and then we discuss the design choices with respect to each of these aspects.
Later, in section 2.4, we will examine more closely some existing languages showing how
the design of their features situate them in the design space.

2.2.1 A Design Space for Concurrent Object-Oriented Languages

We seek to evaluate language design choices with respect to the integration of their con-
currency and object-oriented features and the degree to which software reuse is supported.
In particular, we wish to understand how choices of concurrency constructs interact with
object-oriented techniques and affect the reusability of objects. As such, our classification
scheme concentrates on the relationship between objects and concurrency. We shall con-
sider the following aspects:

» Object modelshow is object consistency maintained in the presence of concurren-
cy? The way objects are considered with respect to concurrent execution may or may
not provide them with a default protection with respect to concurrent invocations.
Furthermore, different languages may favour or enforce a particular way of structur-
ing programs to protect objects.

* Internal concurrencycan objects manage multiple internal threads? This issue con-
cerns the expressive power that is provided to objects for handling requests. Note that
the execution of internal threads is also related to the protection of the internal state
objects, which is determined by the choice of object model.

» Constructs for object interactioow much freedom and control do objects have in
the way that requests and replies are sent and received? The choice of concurrency
constructs for sending and receiving messages determines the expressive power that
is provided for implementing concurrent objects. Moreover, the design of constructs
for conditional acceptance of messages interacts with the use of class inheritance.



34 Concurrency in Object-Oriented Programming Languages

In the presentation of the design space, it will become apparent that these aspects are not
entirely independent: certain combinations of choices are contradictory and others are re-
dundant or lack expressive power.

2.2.2 Concurrent Object Models

There are different ways one can structure a concurrent object-based system in order to
protect objects from concurrency. A language may support constructs that favour or even
enforce one particular way, or may leave it entirely to the programmer to adopt a particular
model. There are three main approaches:

» The orthogonal approachConcurrent execution is independent of objects.
Synchronization constructs such as semaphores in Smalltalk-80 [40], “lock blocks”
as in Trellis/Owl [68] or monitors as in Emerald [19] must be judiciously used for
synchronizing concurrent invocations of object methods. In the absence of explicit
synchronization, objects are subject to the activation of concurrent requests and their
internal consistency may be violated.

» The homogeneous approadit objects are considered to be “active” entities that
have control over concurrent invocations. The receipt of request messages is delayed
until the objectis ready to service the request. There is a variety of constructs that can
be used by an object to indicate which message it is willing to accept next. In POOL-
T [6] this is specified by executing an explicit accept statement. In Rosette 8] an
abled sets used for specifying which set of messages the object is willing to accept
next.

* The heterogeneous approa®@oth active and passive objects are provided. Passive
objects do not synchronize concurrent requests. Examples of such languages are Eif-
fel // [26] [27] and ACT++ [45]. Both languages ensure that passive objects cannot
be invoked concurrently by requiring that they be used only locally within single-
threaded active objects. Argus [55] provides bguilardians(active objects) and
CLU clusters(passive objects) [52].

2.2.3 Internal Concurrency

Wegner [87] classifies concurrent object-based languages according to whether objects
are internally sequential, quasi-concurrent or concurrent:

» Sequential objectgossess a single active thread of control. Objects in ABCL/1 [94]
and POOL-T and Ada tasks [9] are examples of sequential objects.

* Quasi-concurrent objectsave multiple threads but only one thread may be active at
a time. Control must be explicitly released to allow interleaving of threads. Hybrid
domains [47][70][71][72] and monitors [42] are examples of such objects.
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Internal concurrency
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Figure 2.1 Approaches to internal concurrency.

» Concurrent objectslo not restrict the number of internal threads. New threads are
created freely when accepting requests. palskagesand POOL-Tunitsresemble
concurrent objects (though they are not first-class objects). Languages like Small-
talk-80 that adopt the orthogonal object model also support concurrent objects. From
the point of view of the called objects, a new local thread is effectively created when-
ever a method is activated in response to a message.

According to the above classification, the threads of concurrent objects are created free-
ly when an object receives a message. However, there are languages where objects may
have internally concurrent threads that are not freely created by message reception. In or-
der to include these languages in the classification and to capture more information about
the way that threads are created, we generalize the concurrent object category to include
any language in which objects have concurrent threads, irrespective of the way they are
created, and consider separately the issue of thread creation.

We identify three, non-exclusive ways for the creation of threads within objects as fol-
lows:

» By message receptioThread creation is triggered by reception of a message. An ob-
ject cannot create a thread on its own unless it can arrange for a message to be sent to
it without blocking the currently executing thread. Depending on whether objects
may control the creation of threads, we have the following subcategories:

— Controlled by the objectThe object may delay the creation of threads. For
example, in the language Sina [84] a new concurrent thread may be created for
the execution of a method belonging to a select subset of the object’s methods
only if the currently active thread executesdbé&achprimitive.

— Unconstrained creationThreads are created automatically at message recep-
tion. This is the default for languages with an orthogonal object model.

» Explicit creation Thread creation is not triggered by message reception but the ob-
ject itself initiates the creation of the new thread. For instance, in SR [12] there is a
construct similar to a “cobegin” [11] to initiate the execution of concurrent threads.
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Thread creation
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Figure 2.2 Approaches to thread creation.

Another way to create a new thread, in the absence of a special construct, is to call
asynchronously an operation of the object. This requires, however, that such calls are
not blocked at the object’s interface. This approach is used in a recent version of Sina.
Such calls bypass the normal method synchronization constraints as well as the re-
guest queue at the object’s interface. Finally, it would also be possible to create new
independent objects to call the object methods in parallel. However, this is cumber-
some and it also requires some means of bypassing the message queue at the object’s
interface.

Thenextandbecomeprimitives in Rosette and ACT++ can be viewed as a controlled
creation of threads, with the additional restriction that concurrent threads may not share
the object’s state since they execute on different “versions” of the object.

In Guide [48], an object may be associated with a set of activation conditions that
specify which methods may be executed in parallel by internally concurrent threads. In the
default case, as with any language following an orthogonal approach for concurrency, ob-
jects may be viewed as concurrent with unconstrained creation of threads triggered by ex-
ternal messages.

The creation of threads by reception of external messages or by execution of a special
construct are neither mutually exclusive design choices — as illustrated by SR, which
supports both — nor redundant, as we will see in section 2.3.

2.2.4 Constructs for Object Interaction

We classify these constructs with respect to the degree of control that can be exercised by
objects in the client and server roles. We specifically consigdy schedulingwhich
concerns the degree of flexibility the client has in accepting a replyeqnest schedul-

ing, which concerns the control the server can exercise in accepting a request.
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2.2.4.1 Issuing Requests

The following important issues can be identified with respect to the constructs supported
for issuing requests:

» AddressingHow are the recipients of a request specified and determined? How and
where is the reply to be sent? Flexible control over the reply destination can reduce
the amount of message passing required.

» Synchronization for requests and repli€sin the current thread continue after issu-
ing the request? What mechanisms are supported for matching replies to requests?
How does the client synchronize itself with the computation and delivery of the re-

ply?
» First-class representation of requests and repl2s:requests and replies have a

first-class representation that permits them to be forged or changed dynamically?
What aspects (e.g. destination, method name) can be changed dynamically?

We further discuss these issues below and present how they are addressed by different
proposals.

Addressing

In most languages the recipient of a request is specified directly by using its object identi-
fier. However, there are some proposals allowing for more flexible ways of addressing
where the system determines the recipient of the request. We review some of these propos-
al below.

Types as Recipients in PROCOL

In PROCOL [49] [85] an object type may be used to specify the recipient of a request. In
this case the potential recipients are any instance of the type that is in a state such that it
may accept the request. The system determines one recipient among the set of potential re-
cipients and delivers the request. It is important to note that this feature does not support
any form of multicast; exactly one message is exchanged with the chosen recipient in a
point to point fashion.

ActorSpace

ActorSpace [2] is a general model providing a flexible and open-ended approach to object
communication that has been developed in the context of the actor model.

In this modedestination patternsay by used to designate the recipients of a request.
Patterns are matched against attributes of actors in an specified actorspace — a passive
container of actors — to determine a set of potential recipients. A message may be sent by
either one of two primitivesendor broadcasiThe former delivers exactly one message
to arecipient chosen non-deterministic by the system. The latter provides a form of multi-
cast by delivering the request to all potential recipients.
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Figure 2.3 Client-server interaction mechanisms.

Extra flexibility is provided in this model by allowing the dynamic inclusion and
removal of actors from ActorSpaces as well as by allowing the dynamic modification of
actor attributes. Moreover, ActorSpaces may be nested.

Synchronization for Requests and Replies

We initially distinguish betweenne-way message passiogmmunication primitives

and constructs supportingequest/replyprotocol. The latter provide support for object
interactions where requests will be eventually matched by replies. These mechanisms
vary in flexibility when sending requests and receiving replies. Strict RPC approaches en-
force that requests will be matched by a reply and delay the calling thread until the reply
is available. Further flexibility is provided by “proxy” objects which disassociate the
sending or receiving of messages from the current thread of control. Examples of built-in
proxy objects ar@uture variable§94] andCBoxeg92].

One-Way Message Passing

Whether communication is synchronous with one-way message passing, as in CSP [43]
or PROCOL [85], or asynchronous, as in actor languages, clients are free to interleave
activities while there are pending requests. Similarly, replies can be directed to arbitrary
addresses since the delivery of replies must be explicitly programmed.
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The main difficulty with one-way message passing is getting the replies. The client and
the server must cooperate to match replies to requests. As we shall see in section 2.3, the
additional flexibility and control provided by one-way message passing over request/re-
ply based approaches can only be properly exploited if objects (i.e. servers) are imple-
mented in such a way that the reply destination can always be explicitly specified in a
request.

Remote Procedure Call

With RPC the calling thread of the client is blocked until the server accepts the request,
performs the requested service and returns a reply. Most object-oriented languages sup-
port this form of interaction, though “message passing” is generally compiled into proce-
dure calls.

Supporting RPC as the only means for object interaction may be a disadvantage when
objects are sequential as we will see in the next section. Although it is trivial to obtain a
reply, it is not possible to interleave activities or to specify reply addresses.

Proxies

An alternative approach that provides the client with more flexibility in sending and re-
ceiving replies is to introdugeoxies The main idea is to delegate the responsibility of de-
livering the request and obtaining the reply to a proxy. (The proxy need not be a first-class
object, as is the case withture variableg94].) The actual client is therefore free to
switch its attention to another activity while the proxy waits for the reply. The proxy itself
may also perform additional computation or even call multiple servers.

If necessary, the reply is obtained by the original client by an ordinary (blocking) re-
guest. This approach, variants of which are supported by several languages [27][94][92],
maintains the benefits of an RPC interface and the flexibility of one-way message passing.
In contrast to one-way message passing, however, there is no difficulty in matching replies
to requests.

A closely related approach is to combine RPC with one-way message passing. In
ABCL/1, for example, an object that externally has an RPC interface may internally use
lower-level message-passing primitives to reply by sending an asynchronous message to
the client or to its proxy. The use of such facilities is further discussed in section 2.4.2.

First-Class Representation of Requests and Replies

The ability to have a first-class representation of requests and replies may enhance sub-
stantially the expressive power of a language. There is a range of aspects of requests and
replies that may have a first-class representation in a language. This varies from (almost)
no first-class representation at all to a full first-class representation of all aspects of re-
guests and replies. Below we discuss how this issue is addressed in some languages that
are characteristic of the various possibilities.
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Minimal First-Class Representation

Apart from the method’s arguments and the target, all other aspects, such as the method
name and the return address, cannot be specified dynamically. This the case for languages
such as POOL-T, Hybrid and Trellis/fOwl. One could argue that since the target and the ar-
guments can be specified at run-time, there is a first-class representation of some aspects
and that the categorization is not accurate. In fact, in older language proposals such as CSP
[43] the targets of messages were determined statically. This, however, is uncommon in
more recent languages since it makes it hard to develop software libraries: a server that
must be statically bound to its potential callers has a low reuse potential. A first-class rep-
resentation of the target and arguments can be considered as a minimum that one should
expect to find in every language.

First-Class Representation of Method Names and Reply Addresses

PROCOL supports the first-class representation of method names. The name of the meth-
od to call may be supplied as a string. This allows the method names for a request to be
passed in messages or computed at run-time.

With ABCL/1 it is possible to specify dynamically and explicitly the object that is to re-
ceive the reply of a request. The benefits of the use of this feature are discussed in section
2.4.2.

Full First-Class Representation

As one would expect, full first-class representation of requests is provided in reflective
languages such as ABCL/R. However, it is also provided in languages such as Smalltalk
and Sina which are not fully reflective. In fact, the latter two illustrate the usefulness and
the possibility of having such features in any concurrent language which is not fully
reflective. Briot [23] has used the features of Smalltalk to build a several object-oriented
programming models using the relative primitive concurrency features provided in the
Smalltalk system. Aksiet al. [4] show how these features may be used to abstract and
reuse several object coordination paradigms.

2.2.4.2 Accepting Requests

A main concern from the point of view of an object acting as a server is whether requests
can be conditionally acceptédVhen a request arrives, the server may be busy servicing

a previous request, waiting itself for a reply to request it has issued, or idle, but in a state
that requires certain requests to be delayed. We distinguish initially between conditional
and unconditional acceptance of requests. Conditional acceptance can be further discrim-
inated according to whether requests are scheduled by explicit acceptance, by activation
conditions or by means of reflective computation (see figure 2.4).

* A secondary issue is whether further activity related to a request may continue after the reply has been
sent as in the Send/Receive/Reply model [39], but this can also be seen as concern of internal concurrency
where follow-up activity is viewed as belonging to a new thread.
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Figure 2.4 Approaches to scheduling requests.

Unconditional Acceptance

Unconditional acceptanaef requests is illustrated by monitors [42] and by Smalltalk-80

[40] objects. The mutual exclusion that is provided by monitors could be considered as an
implicit condition for the acceptance of requests. However, the mutual exclusion property

is captured by viewing monitors as quasi-concurrent objects so we consider request ac-
ceptance to be unconditional. Note that message acceptance for languages with an orthog-
onal object model is by default unconditional.
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Explicit Acceptance

With explicit acceptancagequests are scheduled by means of an explicit “accept” state-
ment executed in the body of the server. Accept statements vary in their power to specify
which messages to accept next. Acceptance may be based on message contents (i.e.
operation name and arguments) as well as the object’s state. Languages that use this
approach are Ada, ABCL/1, Concurrent C, Eiffel//, POOL-T and SR. With this approach
objects are typically single-threaded, though SR is an exception to this rule.

Activation Conditions

With activation conditionsrequests are accepted on the basis of a predicate over the ob-
ject’s state and, possibly, the message contents. The activation condition may be partly im-
plicit, such as the precondition that there be no other threads currently active within the
object. An important issue is whether the conditions are expressed directly over a particu-
lar representation of the object’s state or if they are expressed in more abstract terms. In
Guide, for example, each method is associated with a condition that directly references the
object’s instance variables, whereas in ACT++ the condition for accepting a message is
that the object be in an appropriatestract statevhich abstracts from the state of a par-
ticular implementation. Another approach is to specify the legal sequences of message ac-
ceptance by means of a regular expression, as in path expressions [24] and PROCOL [85].

There are also some proposals sudyashronizer§38], separate method arguments
[66] andstate predicatefr4], for activation conditions that depend on the state or the
computation history of other objects.

A synchronizer [38] is a special object associated with a group of objects. When a meth-
od of any of these objects is called a condition in the synchronizer is evaluated. Depending
on the outcome, the execution of the method may proceed, or be delayed until the con-
dition becomes true. Synchronizers may have their own variables that are used to store
information about the computation history of a group of objects.

Separate method arguments [66] can be used to constraint the execution of a method by
preconditions on the argument declared as “separate.” The execution of the method is de-
layed until the preconditions are true and the separate objects are “reserved” for the dura-
tion of the call. That is, they can only be used in the body of a method.

With state predicate notifiers [74], the execution of a method can be constrained by the
notification that another object has reached a state that satsthés predicatd his fea-
ture has synchronous and asynchronous forms. In the synchronous variant, the notifying
object waits until the method is executed and the method gains exclusive access to the
object. In the asynchronous variant the notifying object proceeds independently.

Reflective Computation

With reflective computatiotine arrival of a request triggers a method of the senveta-
object The meta-object directly then manipulates object-level messages and mailboxes as
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objects. This approach is followed by the language ABCL/R [86] and it is also illustrated

in Actalk [23] where some reflective facilities of the Smalltalk-80 system are used to in-
tercept messages sent to an object and synchronize their execution in a way that simulates
message execution in actor-based languages.

2.3 Criteria for Evaluating Language Designh Choices

So far we have presented a design space covering the most significant choices in the design
of concurrency features for OOPLs, but we have said little about how the various ap-
proaches compare. Since our goal is to arrive at COOPLSs that provide the advantages of
object-oriented programming for the development of concurrent systems, we must first
formulate our requirements as precisely as possible, before beginning to compare the
approaches. We first discuss the issue of developing object classes that have high reuse
potential. Then, we turn our attention to the support for reuse at a finer granularity than
objects and examine the issues related to the use of inheritance and the reuse of synchro-
nization constraints.

2.3.1 Object-Based Features — Support for Active Objects

The main issue for reuse at the object level is that concurrency in an object-oriented lan-
guage should not diminish the benefits of object-based features with respect to reuse. For
instance, encapsulation should still protect the internal state of objects from surrounding
objects and it should still be possible to insulate objects’ clients from implementation
choices. This should make it possible to change the implementations without affecting the
clients provided that the interfaces are maintained and that changes are, in some sense, be-
haviourally compatible.

Object-oriented and concurrent programming have different aims that incur different
software structuring paradigms. Object-oriented programming aims at the decomposition
of software into self-contained objects to achieve higher software quality and to promote
reusability. Concurrent programming aims at expressing and controlling the execution,
synchronization and communication of conceptually parallel activities. Its primary goal is
to provide notations that are suitable for devising solutions to problems that involve the
coordination of concurrent activities [11].

In order to compare language designs it is necessary to adopt a programming model for
concurrent object-based programming and evaluate how well the various languages sup-
port this model. Our view regarding the way the two programming paradigms should be
combined is by structuring programs as cooperating objects that exchange messages. This
is similar to the way sequential object-oriented programs are structured, however, in con-
current programs objects may encapsulate one or more concurrent threads that implement
their behaviour. Moreover, the operations of an object may be invoked by concurrently ex-
ecuting objects.
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We use the terractive objectdor this programming model to emphasize that objects
themselves rather than the threads that invoke their operations have the responsibility to
schedule concurrent requests. Requests should be scheduled in a way consistent with the
object’s internal state and the possibly spontaneous execution of internal threads. The ob-
jects developed following this model are independent self-contained entities. They can be
reused across applications and they may be refined to support different scheduling poli-
cies for invoked operations. The programs that use the objects should not be affected by
such changes.

Although any language combining concurrent and object-oriented features could be
used to develop software following this model, as will be illustrated in section 2.4, not all
combinations of concurrent and object-oriented features are equally successful in sup-
porting this programming model. Below we develop a number of requirements on the lan-
guage features to adequately support programming following an active object model. In
section 2.4 we will use these requirements to evaluate language design choices and iden-
tify the shortcomings of some approaches.

2.3.1.1 Requirements

According to the active object model discussed above, we would like languages to support
the development of self-contained objects with high reuse potential. A general principle
for achieving this is that reusable object classes should make minimal assumptions about
the behaviour of applications that will use them. Furthermore, the choice of constructs
should not constrain the possible implementations of a class. We can formulate our re-
guirements as follows:

1. Mutual exclusion — protecting the objects’ stafée internal state of objects
should be automatically protected from concurrent invocations so that it will be
possible to reuse existing objects in concurrent applications without modification.

2. Request scheduling transparenéyr object should be able to delay the servicing
of requests based on its current state and on the nature of the request. This should be
accomplished in a way that is transparent to the client. Solutions that require the co-
operation of the client are not acceptable from the point of view of reusability since
the client then cannot be written in a generic fashion.

3. Internal concurrencyThe concurrency constructs should allow for the implemen-
tation of objects that service several requests in parallel or that make use of
parallelism in their implementation for increased execution speed in the processing
of a single request. This could be done either by supporting concurrent threads
within an object or by implementing an object as a collection of concurrently
executing objects. Whatever approach is chosen, it is important that internal
concurrency be transparent to the object’s clients so that sequential implementa-
tions of objects may be replaced by parallel ones.

4. Reply scheduling transparendyclient should not be forced to wait until the serv-
ing object replies. In the meantime it may itself accept further requests or call other
objects in parallel. It may even want replies to be directly sent to a proxy. Request
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Clients Workload manager Workers

Administrator

Figure 2.5 The administrator example.

scheduling by the client should not require the cooperation of the server since this
would limit the ability to combine independently developed clients and servers.

2.3.1.2 An Example

In order to compare the design choices and their combinations with respect to the reuse re-
guirements, we shall refer to an instance of a “generic” concurrent program structure: the
administratorinspired by [39]. The administrator is an object that uses a collection of
“worker” objects to service requests. An administrator application consists of four main
kinds of components. Thadientsissue requests to the administrator and get back results.
The administratoraccepts requests from multiple concurrent clients and decomposes
them into a number of subrequests. Woekload managemaintains the status of work-

ers and pending requestgorkershandle the subrequests and reply to the administrator.
The administrator collects the intermediate replies and computes the final results to be re-
turned to clients (see figure 2.5).

The administrator is a very general framework for structuring concurrent applications.
For example, workers may be very specialized resources or they may be general-purpose
compute servers. The workload manager may seek to maximize parallelism by load bal-
ancing or it may allocate jobs to workers based on their individual capabilities.

The components described above identify functionally distinct parts of the application
that could have been developed independently and reused as indicated above to construct
a new application.These components do not have to be implemented as single objects, and
indeed, as we see later, depending on the constructs provided by certain languages, several
objects will be necessary for realizing the desired functionality. However, it should be pos-
sible to modify the implementation of the above components without affecting the rest as
if they were single objects.

The following points relate the language design requirements listed above to the reuse
issues in the case of the example application:
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» Mutual exclusion(i) Workload manager reuse — the workload manager must be pro-

tected from concurrent requests by the administrator. There may be cases where the
administrator does not invoke the workload manager concurrently. Although in such
cases no protection is needed, workload managers that are not protected could not be
reused in different concurrent implementations of the administrator. In such a con-
current implementation the administrator may use a collection of proxies that may
invoke the workload manager concurrently. (ii) Worker reuse — workers should
similarly be protected so that arbitrary objects may be used as workers with various
implementations of the administrator, including concurrent ones.

Request scheduling transparen@y) Genericity of clients, reusing the administra-

tor with different clients — the administrator must be able to interleave (or delay)
multiple client requests, but the client should not be required to take special action.
In fact it should be possible to implement any object as an administrator and it should
not matter to the object’s clients if the serving object happens to be implemented as
an administrator.

Internal concurrency(iv) Client/worker reuse — the administrator should be open
to concurrent implementation (possibly using proxies) without constraining the in-
terface of either clients or workers;

Reply scheduling transparendy) Worker reuse — must be possible for the ad-
ministrator to issue requests to workers concurrently and to receive their replies
when it chooses without special action by workers;

2.3.2 Inheritance and Synchronization

There are two main issues concerning reuse at a finer granularity than objects.
» The firstis to maintain in concurrent languages the reuse potential offered by inher-

itance in sequential languages. Several early papers have reported difficulties in us-
ing class inheritance in COOPLs as well as in the design of languages that integrate
class inheritance and concurrency constructs [19] [6] [22]. In some cases inheritance
was left out as it was deemed difficult to integrate and of limited use. The need to syn-
chronize the execution of inherited, overridden and newly defined methods, without
breaking the encapsulation between classes, makes it more difficult to take advan-
tage of class inheritance than in sequential languages. For instance, if mutexes are
used for synchronizing method execution, a method defined in a subclass would have
to access a mutex defined in a superclass in order to be synchronized with superclass
methods. This would break encapsulation between classes. The design of concurren-
cy constructs should be made in way to avoid such problems.

The second is to make it possible to reuse algorithms, often sgtietronization

constraints for scheduling the execution of methods of a class. For instance, a class
may implement a synchronization algorithm that schedules its methods according to
the readers and writers synchronization scheme. It would be desirable to be able to
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reuse this algorithm in other classes taking into account the reader/writer property of
its methods.

In most languages the reuse of synchronization constraints is achieved through class
inheritance and the termheritance of synchronization constraimgften used for this
issue. We have chosen the terruse of synchronization constraisisace class inherit-
ance is only one possible means to achieve reuse. Furthermore, it is questionable whether
class inheritance should be used for this purpose. We will further elaborate on this point
below. Then, we will discuss separately the requirements for supporting class inheritance
and for reusing synchronization constraints.

Inheritance is often considered as the most prominent feature of object-oriented pro-
gramming. The most widespread object-oriented languages such as C++, Smalltalk and
Eiffel provide an inheritance mechanism that may be used for different purposes. These
include: the reuse of the implementation of a class in the implementation of a new class;
the specification of a type compatibility relation between a class and its parent classes,
considering for type-checking purposes that instances of the class are of the same type as
instances of its superclasses; finally, it may be used to express that the concept or entity
modelled by the subclass is, in some sense, a refinement of the concepts or entities repre-
sented by its parent classes.

The use of a single mechanism for all these purposes can, on one hand, be a source of
confusion and on the other, limit the effectiveness of the mechanism for each of these dif-
ferent purposes. For instance, subtypes have to be related to a class inheritance relation-
ship even if they do not share any part of their implementation. In order to use part of the
implementation of a class in a new class, all the methods have to be inherited to comply
with the subtype relation that is also expressed by the inheritance link.Wegner and Zdonik
[88] provide a general and in-depth discussion of inheritance as an incremental modifica-
tion mechanism and illustrate its use for different purposes. Guide [48] and POOL-I [8]
are concrete examples of languages with mechanisms that distinguish between the differ-
ent uses of inheritance. Both languages distinguish between class inheritance as a code re-
use mechanism and typing. POOL-I goes even further by also allowing the specification
of behaviourally compatible classes.

In section 2.4.3 we will examine more closely the approaches for the reuse of synchro-
nization constraints followed by different languages. This will illustrate the interactions
that class inheritance may have with the reuse of synchronization constraints in these dif-
ferent approaches.

2.3.2.1 Class Inheritance

The issues listed below have to be addressed in order to take advantage effectively of the
reuse potential of inheritance. The first two are concerned with the reuse of superclass
methods. The third one concerns the use of inheritance for providing generic algorithms
through the definition and refinementatistract classel86] [44].

» Separate specification of the synchronization constralhtste code that imple-
ments the synchronization decisions related to the execution of methods is included
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directly in methods, inherited methods typically will have to be modified to account
for the synchronization constraints of the subclass [45].

Interface between methods and the synchronization constréh@separate speci-
fication of synchronization control actions and method code does not necessarily
mean that the execution of methods once started should be carried out without any
further interaction with the synchronization constraints. Such an approach limits the
expressive power of a language. Instead, there should be a well-defined interface be-
tween methods and the synchronization constraints that allows several actions in the
execution of the method to interact with the synchronization constraints associated
with the various classes where it is reused.

Consistency with other uses of inheritance for software compogNpamt from re-

using individual methods, inheritance serves to facilitate sharing of algorithms and
designs [36]. For this purpose, inheritance is paired with other features such as invo-
cation of methods through pseudo-variables susklésr superin Smalltalk.

2.3.2.2 Reuse of Synchronization Constraints

The issues discussed below are important for evaluating and comparing the proposals for
the specification and reuse of synchronization constraints:

* Flexibility of the binding mechanisnthe mechanism that is used to apply con-

straints to a particular class determines the flexibility with which constraints may be
reused. Depending on the mechanism, constraints are bound to exactly one class (the
class where they were introduced), or to any class that inherits from the class that
introduced the constraints. Additionally, method names appearing in a constraint
specification may be considered as variables to be substituted at binding time with
method names defined in a particular class.

Compositionality and extensibilityrhis concerns the support provided for reusing
previously defined constraints in the definition of new ones. A related issue is extend-
ing the application of constraints to methods that are introduced at a later stage.

PolymorphismThe potential applicability of constraints to different classes. This is
related to the binding mechanism and modularity; constraints could be specified in a
way that would allow them to be applied to different classes. However, this may be
impossible or inconvenient because of the absence of an appropriate binding mech-
anism.

Modifiability and locality of changé&:here are circumstances where it may be desir-
able or necessary to change the implementation of a class or of just the synchroni-
zation constraint. Depending on the approach, this may be achieved easily through
some local modification or it may require a cascade of changes in synchronization
constraints. In some cases it may even be needed to modify the inheritance hierarchy.
Most of the other aspects discussed above come into play when considering this
issue.
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2.4 Exploring the Language Design Space

We now propose to compare the various approaches to the design of COOPLs by system-
atically exploring the language design space and evaluating design choices against the re-
guirements specified in the previous section. Since the various aspects of the design space
are sometimes intertwined, we will find ourselves returning to common issues on occa-
sion. Basically we will take the following course: first we briefly consider the three
categories of object models; then we consider object interaction mechanisms in combina-
tion with internal concurrency; finally we explore inheritance and synchronization con-
straints as a topic worthy of separate study. We summarize our conclusions in section
2.4.4,

2.4.1 Object Models

By the requirement of mutual exclusion, we can immediately discount the orthogonal
object model as it provides no default protection for objects in the presence of concurrent
requests. The reusability of workers and workload managers is clearly enhanced if they
will function correctly independently of assumptions of sequential access.

The heterogeneous model is similarly defective since one must explicitly distinguish
between active and passive objects. A generic administrator would be less reusable if it
would have to distinguish between active and passive workers. Similarly worker reusabil-
ity is weakened if we can have different kinds of workers.

Thehomogeneougbject model is the most reasonable choice with respect to reusabil-
ity. No distinction is made between active and passive objects.

Note that it is not clear whether the performance gains one might expect of a hetero-
geneous model are realizable since they depend on the programmer’s (static) assignment
of objects to active or passive classes. With a homogeneous approach, the compiler could
conceivably make such decisions based on local consideration — whether a component is
shared by other concurrently executing objects is application specific and should be inde-
pendent of the object type.

2.4.2 ObjectInteraction Mechanisms

Request-reply mechanisms such as an RPC-like interface provide more support for object
reuse. Using our administrator example, we can see that one-way message passing has
several disadvantages over RPC for reusing objects.

A concurrent client may issue several requests to the administrator before it gets a reply.
In this case it is important for the client to know which reply corresponds to which request.
Are replies returned in the same order as requests? In the case of synchronous message
passing an additional difficulty is that the administrator may get blocked when it sends the
reply until the client is willing to accept it. Requiring the client to accept the reply imposes
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additional requirements on the client and makes reuse more difficult. Either a different
mechanism has to be supported for sending replies or proxies have to be created.

One-way message passing is also inconvenient for coping with the interaction between
the administrator and worker objects. A difficulty with using one-way messages is getting
the replies from workers: as there will be several workers that are invoked in parallel, as
well as potentially concurrent invocations of single worker, it can be difficult for the ad-
ministrator to tell which reply is associated with which request.

A solution to this problem is to create a proxy for each request. The proxy would carry
out the request and then send a message to the administrator containing the worker’s reply
plus some extra information used for identifying the request. As with sequential RPC the
administrator will also have to manage local queues for partially completed requests.

2.4.2.1 Sequential Objects

We argued that an RPC interface for objects provides better support for object reuse than
one-way message passing. However, we quickly discover that if objects have a single
thread of control and RPC is the only communication mechanism, the request and reply
scheduling requirements of the administrator are not satisfied. We further discuss the lim-
itation of this design choice combination below. Then we show additional mechanisms
that may be used to overcome these limitations without giving up the RPC-interface or
completely discarding sequential object design choice. The limitation of the combination
of sequential objects (“modules” in their case) and RPC is discussed at length in [54].
However, they reach the conclusion that either the sequential object or the RPC choice
should be discarded.

Limitations of the Sequential Object-RPC Combination

In particular, a sequential RPC administrator will not be able to interleave multiple clients’
requests as it will be forced to reply to a client before it can accept another request. The
only “solution” under this assumption requires the cooperation of the client, for example:
the administrator returns the name of a “request handler” proxy to the client, which the cli-
ent must call to obtain the result. In this way the administrator is immediately free to ac-
cept new requests after returning the name of the request handler. Such an approach is,
however, incompatible with the requirement on request scheduling transparency since
scheduling of requests by the administrator is not transparent to its clients.

Consider for instance that we would like to replace the sequential implementation of an
existing object class by a parallel implementation where instances of the class act as ad-
ministrators for a collection of appropriate worker objects. In accord with our require-
ments we would like to take advantage of encapsulation and data abstraction to replace the
old implementation without having to modify the programs that used it. This, however, is
not possible since, as discussed above, in order to be able to process client requests con-
currently, an object, implemented as an administrator, has to have a different interface than
an object having a sequential implementation.
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The sequential RPC combination also provides limited support for reply scheduling by
the administrator. If the administrator invokes workers directly using RPC, its single
thread will get blocked until the invoked worker computes the result and returns the reply.
The sequential RPC combination prevents the administrator from invoking several work-
ers in parallel, or accepting further client requests while a worker computes the result and
receiving the workers’replies at a later time.

Itis also possible to have the workers cooperate with the administrator so that it does not
block when delegating work to them, but such solutions require workers to be coded in a
special way to implement the cooperation. This is incompatible with our requirement of
request scheduling transparency, which would allow any object to be potentially used as a
worker.

Using Proxies for Reply Scheduling

The limitation of the sequential RPC combination for reply scheduling can be overcome
by the use of “courier” proxies used by the administrator to invoke workers. Each time the
administrator needs to invoke a worker it creates an appropriate courier proxy that will in-
voke the worker instead. To get a worker’s reply, the administrator could invoke a method
of the corresponding courier or alternatively the courier could call an administrator’s
method when the reply becomes available.

The former alternative has the disadvantage that the administrator may get blocked if it
invokes the courier too early. This may never occur with the latter approach. However, the
administrator has to manage local queues for replies that are sent to it and that it cannot use
immediately. Furthermore, each time a reply is returned, it should check whether all the
replies needed so far for handling a client’s request are available so that it may proceed
with the client’s request.

The use of proxy objects for carrying out requests and for storing replies is also needed
in the case of one-way message passing for allowing requests to be paired with replies.

Although proxies are a general programming approach, it is cumbersome to program
and use them explicitly. In fact unless the language supports classes with type parameters
and a flexible manipulation of method names, a new proxy class would have to be defined
for each different worker class in an administrator application.

Future variablesn ABCL/1 [94], theprocesstype in PAL [18] and CBox objects in
ConcurrentSmalltalk [92] provide functionality which is somewhat similar to the courier
proxies that were used by the administrator to call workers. These mechanisms could be
used by the administrator to call workers without getting blocked and for collecting work-
er replies at a later time.

The advantage of these mechanisms over program-defined proxies is that they can be
used for calling workers of any class. Future variables, however, are not first-class objects
and so are not as flexible. For instance, a future variable cannot be sentin a message allow-
ing a different object than the one that made the request to receive the reply.
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A difficulty with built-in proxies is that the administrator may at some point in time
have to get blocked and wait for a further client request or the reply to a previous worker
request. Unless there exists a synchronization mechanism that allows the administrator to
wait on either of these events, the administrator may get blocked to obtain a reply or re-
guest that is not available and will thus be unable to accept other requests or replies. This
problem could be circumvented either by polling if a non-blocking request acceptance
mechanism is supported or by additional, explicitly programmed proxies that would re-
turn the replies by invoking some administrator’s operation especially provided for that
purpose. This way a synchronization mechanism for selectively accepting requests would
allow the administrator to be woken up either for receiving the results of a previous re-
quests or for accepting new requests.

Still, the administrator’'s code may get quite involved. If there is no way to prevent being
woken up by messages containing client requests or worker replies that cannot be used
right away, local message queues will have to be managed by the administrator. So, it ap-
pears that built-in proxies combined with single-thread objects provide limited support for
reply scheduling by the administrator since one should again rely on the use of explicitly
programmed proxies.

Combining Request/Reply and One-Way Message Passing

It is also possible to relax the RPC style of communication without going all the way to
supporting one-way message passing as the main communication primitive. This has the
advantage that it is possible to present an RPC interface to clients and, at the same time,
obtain more flexibility for processing requests by the administrator. This possibility is il-
lustrated by ABCL/1 [94] which permits the pairing of an RPC interface at the client side
with one-way asynchronous message passing at the administrator’s side. Moreover, the
reply message does not have to be sent by the administrator object. This provides even
more flexibility in the way that the administrator may handle requests since the replies
may be directly returned to the client by proxies. The following segment of code shows
how this is accomplished.

The RPC call at the client side looks like:

result := [ administrator <==:someRequest argl ... argn] ...

A message is sent to the administrator to execute the requeBequest with arguments
argl,...,argn. The client is blocked until the reply to the request is returned and the result is
stored in the client’s local variahiesult.

At the administrator’s side the client’s request is accepted by matching the message pat-
tern:

(=>:someRequest argl ... argn @ whereToReply
.... actions executed in response to this request ...)

When the administrator accepts this request, the arguments are made available in the
local variablesarg1,...,.argn and thereply destinatiorof the request in the local variable
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whereToReply. The reply destination may be used as the target of a “past type,” i.e. asyn-
chronous, message for returning the reply to the client. As a reply destination may also be
passed around in messages, it is possible for another object to send the reply message to
the client. This action would look like:

[ whereToReply <==result]

wherewhereToReply is a local variable containing the reply destination obtained by the
message acceptance statement shown abovesand the result of the client’s request.

Another interesting way of using the possibility to combine one-way message passing
with RPC is for flexible reply scheduling by the administrator. In the previous section, on
built-in proxies, we mentioned that a difficulty was that the administrator should be able
to wait to accept both returned replies and further requests. A way to circumvent this prob-
lem was to use explicitly programmed proxies that would return results by invoking some
operation provided by the administrator. In this way, replies were returned by requests so
that a request acceptance mechanism was sufficient for allowing the administrator to wait
for both requests and replies. A different approach is possible by pairing one-way
messages to the RPC interface supported by workers. With this approach, the
administrator may use a past type message, with itself as reply destination, for calling the
workers which present an RPC interface. The replies from the workers can then be
received by the administrator as any past-type message request. This allows the
administrator to use the message acceptance mechanism for receiving both requests and
replies.

This approach has, however, some of the drawbacks of one-way message passing: some
extrawork is needed in order to find out which reply message is related to what request and
also that the administrator has to manage queues for replies that may not be used immedi-
ately.

2.4.2.2 Multi-Threaded Objects
Another way for allowing the administrator to service several concurrent requests is by
supporting multiple concurrent or quasi-concurrent threads. A separate concurrent thread
may now be used for handling each client request. However, depending on the mecha-
nisms provided for thread creation and scheduling, it may still be necessary to resort to the
solutions discussed previously in order to achieve a satisfactory level of concurrency in
the processing of client requests.

We consider in turn quasi-concurrent and concurrent approaches and examine the sup-
port provided by the thread creation and scheduling mechanisms for programming admin-
istrators.

Quasi-Concurrent Approaches

A traditional example of “objects” with quasi-concurrent thread structure is provided by
monitors [42] [21]. However, monitors present some well-known difficulties such as
“nested monitor calls,” and they unduly constrain parallelism [56] [77] [20] when used as
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the main modular units of concurrent programs. These limitations are due to some extent
to the quasi-concurrent structure of threads. However, an approach based on monitors
would also constrain concurrency among different objects because of its limited support
for reply scheduling. Assuming that the administrator is a monitor, then when calling a
worker the monitor would remain blocked until the invoked operation would return. This
situation, calledemote delay53], makes it impossible for the administrator to accept
further client requests or to call a second worker.

Consequently, certain object-oriented languages have adopted more flexible varia-
tions. For example, Emerald [19] uses monitors as defined by Hoare [42]. However, not all
operations of an object have to be declared as monitor procedures and also several inde-
pendent monitors may be used in the implementation of an obgetblocksandwait
gueuesn Trellis/Owl [68] also allow for more flexible implementation schemes than if
objects were identified to monitors. With this approach, however, objects in these lan-
guages are not quasi-concurrent any more.

The restricted support for concurrency among objects by monitors is not due to the
guasi-concurrent structure of objects, but rather to the limited flexibility for reply
scheduling. This is illustrated by the second quasi-concurrent approach we examine
which by providing a more flexible reply scheduling scheme does not restrict concurrency
among objects.

Hybrid [71] is another language which adopts a quasi-concurrent thread structure for
objects. However, in contrast to monitors, deéegated calinechanism provides a more
flexible reply scheduling approach that does not restrain concurrency among objects. The
administrator may use the delegated call mechanism to invoke workers. In such a case a
new thread may be activated in the administrator for processing another client request in
the meantime.

The delegated call mechanism is satisfactory for allowing the administrator to accept
further client requests while a worker is executing a previous request, thus providing sup-
port for concurrency among several client requests. However, it is of no help for allowing
several workers to execute in parallel for a single client request.

This may only be done by using proxies for invoking the workers or by a construct for
specifying the creation of a new quasi-concurrent thread. Such a construct was proposed
in the original design of Hybrid. The newly created quasi-concurrent threads would
resume each other by using delegated calls. This construct was not included in the proto-
type because it substantially increased the complexity of the rules for message accept-
ance.

Concurrent Objects

With concurrent threads it is straightforward to process several client requests concurrent-
ly by creating a new thread for processing each client request. Provided that satisfactory
mechanisms are supported for constraining the creation and activation of concurrent
threads, this does not result in the mutual exclusion problems of languages with an orthog-
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onal object model. The concurrent execution that may take place is explicitly specified by
the programmer and the scope of the potential interference of the concurrent threads is re-
stricted to the state of a single object.

Provided that there is some way to suspend the execution of a concurrent thread or avoid
its creation, languages that support concurrent threads provide adequate support for re-
guest scheduling and for internal concurrency to the extent that several client requests may
be processed concurrently.

A differentissue that is not necessarily addressed by the support for concurrent threads
is the possibility to use concurrency for processing a single request. Unless the creation of
multiple threads can be initiated by the object, the support for reply scheduling of concur-
rent threads is not sufficient for processing a request in parallel.

For example, the language Sina [84] makes it possible to use several concurrent threads
within an object for processing requests; there is no direct means, however, for one of
these threads to create more threads for calling the worker objects in parallel. This is done
indirectly by creating a courier proxy, as described previously. It is therefore not necessar-
ily redundant to support both multiple threads and non-blocking communication primi-
tives.

A satisfactory way for calling workers in parallel without using proxies or asynchro-
nous message passing is to support a construct by which more threads may be created in
the object. In this case a worker can be called by each of these threads in an RPC fashion.
With quasi-concurrent threads, a call to a worker should trigger the execution of another
thread. In SR the code segment of the administrator that is used for issuing requests to
workers in parallel would look like this:

co resultl :=wl.doWork(...) -> loadManager.terminated(w1)
I result2 := w2.doWork(...) -> loadManager.terminated(w?2)
oc

globalResult := computResult(resultl,result2);

2.4.3 Inheritance and Reuse of Synchronization Constraints

A large body of research has concentrated on the issues of making effective use of inher-
itance in COOPLs as well as on the related issue of reusing synchronization con-
straints.We will provide a brief overview of this work. Then we will turn our attention to

the issues discussed in section 2.3.2 and illustrate the issues and how they are addressed
by various language designs putting particular emphasis on some points that have not
received the attention they deserved in related work. More extensive presentations and
systematic comparisons of the proposals for supporting inheritance and the reuse of
synchronization constraints may be found in [63] [60] and [16].
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2.4.3.1 A Brief Overview of Related Research

Eiffel// [26][27] and Guide [34][48] were two of the earliest proposals that attempted to
combine inheritance and synchronization constraints by removing the constraints from
the bodies of methods.

These approaches presented some shortcomings with respect to the ability to extend the
synchronization constraints to account for new methods introduced by subclasses. The
problems were independently identified by Kafura and Lee [45] and Tomlinson and Singh
[83], who in turn proposed their own approaches for overcoming them. A common aspect
of these proposals is that constraints are specified by associating sets of methods to ab-
stractions of the object state in which they can be executed. The main idea was that the set
of methods would be extended in subclasses with the additional methods.

Matsuokaet al. [62], however, showed that there existed certain cases, sdikit-
ance anomaliesvhere new state abstractions would have to be introduced in subclasses,
consequently requiring extensive redefinition of inherited methods. Matsuoka later pro-
posed his own approach, where he retained the idea of sets of acceptable methods, and
provided a combination of guards and accept sets allowing the best technique to be used
for the problem at hand.

The issue of extending and combining inherited constraints was also addressed in var-
ious other proposals, notably: Synchronizing Actions [69], Scheduling Predicates [59],
Ceiffel [57], Fralund’s framework [37], PO [29], SINA [16] and SPN [74]. It is important
to note that Synchronizing Actions and SPN are two of the very few proposals to consider
the issue of suspending method execution, which is important for reply scheduling.

The language DRAGOON [13] [14] supports the specification of generic synchroniza-
tion constraints and provides a special inheritance mechanism separate from class inher-
itance of sequential aspects of classes for reusing these synchronization constraints.

Meseguer [67] has proposed a somewhat different approach for avoiding the problems
related to the use of inheritance in COOPLSs. He proposes to eliminate the synchronization
code which causes inheritance anomalies. His language is based on a concurrent rewriting
logic; the use of appropriate rewrite rules allows the specification of synchronization with-
out introducing inheritance anomalies.

Synchronizers [38] is an approach for the specification of synchronization constraints
that allows constraints to be associated to objects dynamically. An interesting point about
this proposal is that constraints may depend on the state and computation history of sever-
al other objects.

2.4.3.2 Binding Mechanisms for Synchronization Constraints

The most direct way to associate synchronization constraints to methods is to specify
them together as part of a class definition. Constraints defined in a class are inherited by
the ordinary class inheritance mechanism. Such an approach is followed by most
COOPLs, such as Guide, PO, PROCOL and ACT++, to name a few. This approach, how-
ever, has the shortcoming that it may be difficult to apply constraints to different classes.
A first problem is with method names: if constraints refer to particular method names of
the class in which they are defined, it will be difficult to apply them to classes where meth-
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with SIMPLE; class body UNI_BUFFER is
class UNI_BUFFER
introduces ' ... definition of the instance variables and
procedure PUT(l :in SIMPLE.ITEM); implementation of the operations...

procedure PEEK (NB: out INTEGER);

end UNI_BUFFER;
end UNI_BUFFER,;

() (b)

behavioural class READERS WRITERS is

ruled WOP, ROP;

where

(c) per (WOP) <=> active(WOP) + active(ROP) = 0;

per(ROP) <=> (active(WOP) = 0) and (requested(WOP) = 0);

end READERS_WRITERS;

class READERS_WRITERS_UNI_BUFFER
(d) inherits UNI_BUFFER
ruled by READERS_WRITERS
where
PUT =>WOP,
PEEK =>ROP
end;

Figure 2.6 Constraint definition in DRAGOON.

ods have different names. Another problem comes from the use of class inheritance for
reusing constraints. If one uses class inheritance to reuse the constraints, the methods
defined in the class are also inherited. Below we examine some approaches that have been
proposed for addressing these problems.

Genericity of Synchronization Constraints in DRAGOON

DRAGOON [13][14] is an example of a language that supports the specification of gener-
ic synchronization constraints and of one that dissociates inheritance from the mechanism
used for binding synchronization constraints to a class’s methods. Generic constraints are
defined as behavioural classes (b-classes). The constraints may be apsiezpitméal

class having no associated constraints, through the b-inheritance (behavioural) mecha-
nism. This mechanism is independent from the inheritance mechanism (f-inheritance)
used for sequential classes. Figure 2.6 shows an example of the use of the constraint defi-
nition and binding mechanism in DRAGOON. A clas8 BUFFER is defined in (a) and

(b) with method®UT andPEEK used to insert a new element into the buffer and to exam-

ine the number of elements in the buffer. In (C) a generic cONREADERS_WRITERS
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is defined for controlling execution of the methods of a class according to the readers, and
writers, scheduling policy [81]. This synchronization constraint is bound to the class
UNI_BUFFER in (d) wherePUT is associated with the constraints for writersreEgk with

the ones for readers.

Using the Inheritance mechanism of Beta

A similar effect for specifying and binding constraints may be achieved by usingéhne
mechanism of Beta. In Beta a method in a subclass is associated with the superclass meth-
od it specializes. Instead of the subclass method explicitly invoking the superclass method
through the use @gupermechanism, as in Smalltalk, the superclass methaid&s/sin-

voked, and subclasses may only introduce additional behaviour at the point where the key-
wordinner occurs. In a sense, the execution of the superclass method is wrapped around
the invoked subclass method. First are executed the actions in the superclass method that
precedenner, then the subclass method is executed, then the actions of the superclass
method that follownhner are executed.

This feature may be combined with low-level synchronization mechanisms, such as
semaphores, to implement classes that encapsulate generic synchronization policies that
can be applied to methods defined in subclasses in a way similar to how it is done in DRA-
GOON.

Assume there is a clarsaderWriterSched (not shown) with methodsader andwriter
that use semaphores to implement a reader/writer scheduling policy for the nmetthods
er andwriter. This synchronization may be applied to a ctasshedBuffer with operations
empty, get, put as follows:

SynchedBuffer: @ | ReaderWriterSched
(# ....Iinstance variables....

peek: Reader(# ...implementation of peek... #)
get: Writer(# ...implementation of get... #)
put: Writer(# ....implementation of put..#)

#)

This allows the execution @kek to be constrained according the synchronization con-
straints of a reader, wheregsandput are synchronized according to the synchronization
constraints that apply to writers. More on the use of inheritance in Beta to define generic
synchronization policies can be found in [58].

Method Sets and Abstract Classes in ABCL/AP100

Themethod seteature provided in this language may be combined with abstract classes

to define generic synchronization constraints that can be applied to several classes. Meth-
od sets are specified as part of class definitions, and are associated with synchronization
constraints. Method sets can be inherited and modified in subclasses. Systematic use of
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methods sets solves the problem of applying constraints to classes with different method
names. The possibility of combining method sets with abstract classes (classes where not
all methods are defined) can be used to provide facilities similar to those of DRAGOON.
Abstract classes, making systematic use of method sets in synchronization constraints,
can be used to represent generic constraints similar to DRAGOON's b-classes. However,
in contrast to DRAGOON, programmers have to use the features provided by the language
in a disciplined way. Another interesting feature of this language, discussed below, is that
it is possible to combine synchronization constraints.

2.4.3.3 Polymorphism and Synchronization Constraints

Polymorphism of synchronization constraints is concerned with the potential applicabili-
ty of constraints to different classes provided that the language supports an appropriate
binding mechanism. There are two potential deficiencies with respect to this issue in ap-
proaches for specifying synchronization. The first is related to the use of instance varia-
bles in conditions constraining the activation of methods. The second concerns the use of
constraints that specify mutual exclusion among methods in languages that support intra-
object concurrency.

The first deficiency, also discussed by Bergmans [16], occurs in the proposals of
Frglund [37] and Matsuoka [63], and in Guide and PROCOL, to cite a few examples. In
these languages the conditions that are used in their constraints reference the object’s in-
stance variables. This makes it difficult to apply the constraints to classes implemented in
a way that does not require these instance variables. Moreover, it makes it difficult to
change the implementation of a class without having to consider the instance variables ref-
erenced in the constraints and, eventually, modifying the constraints as well. The problem
may also be more severe than just modifying the constraints of a single class, as the con-
straints to be modified may be used by other subclasses as well. This could cause the re-
examination and adjustment of the constraints of several subclasses of the class that was
modified.

Two approaches have been be followed for alleviating this problem. First, instead of ac-
cessing directly the instance variables, conditions could be specified through a function
that accesses the object state indirectly. If the implementation had to be modified, only
these functions would need to be modified to account for the changes in the object state.
This approach is followed for this precise reason by Sina in the way conditions are speci-
fied in wait filters [16] as well as in the specification of state predicates [74]. A second
approach is to use condition variables to maintain an abstract state that is separate from the
actual class implementation and is used purely for synchronization purposes. This
approach is followed Synchronizing Actions, DRAGOON and PO.

The second potential deficiency occurs in languages with intra-object concurrency. In
several languages with intra-object concurrency, such as Guide, DRAGOON and PO, syn-
chronization constraints specify mutual exclusion properties among methods. The main
reason for imposing mutual exclusion constraints on method executions is that method
implementations access common instance variables. However, a different or modified im-
plementation of a class may use a different set of instance variables and may have different
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needs for mutual exclusion. Consequently, constraints that specify mutual exclusion prop-
erties among methods may find limited applicability to classes with a different implemen-
tation. Also, modifying the implementation of a class to which such constraints are
attached, as discussed above for guards that reference instance variables, may cause the
modification of the constraints attached to several classes. This problem, however, has not
received any attention by other work in the area.

2.4.3.4 Extensibility and Compositionality

In languages such as DRAGOON, the issue of combining synchronization constraints is
avoided by the way the language is designed; inheritance is not allowed among classes that
are associated with synchronization constraints, r-classes, or the classes (b-classes) that
are use to describe the constraints themselves. This approach has advantages and
disadvantages. The separation of constraints from classes allows the use of inheritance
between f-classes without having to be concerned how the associated constraints would
have to be combined. The disadvantage is that there is no support for reusing constraints
in the definition of new ones.

In other languages the issue of combining constraints is addressed either because class
inheritance mechanism is tight up to the constraint binding mechanism or to allow con-
straints to be defined incrementally.

Fralund [37] proposed an approach for combining constraints of a class with those in-
troduced in subclasses based on the view that constraints should become stricter in sub-
classes. The proposed approach for combining constraints supports this view by
incrementally combining conditions that disable method execution. This way conditions
may only become more strict in subclasses.

Matsuoka [63] provides a more elaborate way of combining constraints through modi-
fication ofmethod setand by the fact that method sets are recomputed in a subclass taking
into account the full set of methods including the methods inherited from all superclasses.
For instance, the method agexcept(LOCKED), whereLOCKED is another method set de-
fined elsewhere, denotes all the object’s methods except the coexi&D. This method
set is recomputed in subclasses to account for additional methods defined in the subclass
or inherited from other superclasses. Such features enable the definition of mixins that can
be combined with the constraints of other classes to obtain the synchronization behaviour
specified by the mixin. An example of such a mixin class is presented in [63].

A powerful way of composing synchronization constraints is also provided by wait fil-
tersin Sina. In order to get accepted, messages are matched against paitetfitefs
Wait filters are associated with conditions, a form of guards, that must be true to let match-
ing messages go through the filter. Filters can be stacked at the interface of an object and
messages have to traverse all of them before being accepted by the object. Bergmans
shows in [16] how this approach can be used for the locking mixin and for other constraint
composition examples. The locking mixin discussed above can be realized by a class that
provides a walit filter that matches all messagesrbutk and is associated with a condi-
tion, Unlocked, that is true only when the object is unlockestk anduUnlock methods
change the state of a lock object so as to rendentbex condition false and true respec-
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tively. A lock object can be used in the definition of another class in such a way that mes-
sages have to go through its filter first. In this way the synchronization constraint defined
by lock can be reused in other classes.

PO [29] also supports the composition of constraints defined in superclasses of a class.
In contrast to the proposals of Frglund and Matsuoka, where objects are single-threaded,
PO constraints are designed for objects with internal concurrency. Constraints on the par-
allel execution of methods are partially ordered in a lattice with fully parallel execution of
methods at the top and mutual exclusion among all methods at the bottom of the lattice.
When incompatible constraints are inherited from different superclasses, they are com-
pared according to this order and the more strict constraint is retained.

2.4.3.5 Combining Inheritance with Request/Reply Scheduling

In most work on the design of mechanisms for the specification and reuse of synchroniza-

tion constraints, little attention has been paid to the eventuality that methods may have to

be suspended halfway through their execution. However, as we discussed in section 2.4.2
this may be necessary to support reply scheduling. The possibility of suspending methods

using mechanisms designed for the reuse of synchronization constraints is addressed in
Synchronizing Actions [69] and in the design of skege predicat¢74] mechanism.

Synchronizing Actions are based on multi-thread objects. The execution of a method
may be suspended by calling, throwsglf, another method with a pre-action such that the
call is delayed. This approach may be used to support request and reply scheduling for the
administrator as shown in figure 2.7. The administrator calls workers by creating proxy
objects that do the actual call. After creating a proxy the administrator thread is suspended
by calling the methoslispend. The proxy calls the worker and when the call returns it calls
theworkerDone method to cause the administrator thread to be resumed. Figure 2.7 illus-
trates the implementation of the administrator concentrating on the synchronization as-
pects. Other languages that support internally concurrent objects and flexible
specification of synchronization constraints, for instance Guide or Sina, could be used in
a similar way. This approach, however, has some shortcomings. First, its complexity
would make it difficult to use in practice. Second, it relies on the assumption that methods
invoked through self are subject to the same constraints as invocations from other objects.
This may not be appropriate when self is used in conjunction with inheritance to reuse al-
gorithms defined in abstract superclasses.

The state predicate approach [74] provides a simpler and more direct way for suspend-
ing method execution based on a state predicate. The effect is similar to the one achieved
by the approach discussed above. However, the resulting code is simpler as thread suspen-
sion and resumption is supported by the language and the complications deriving from the
need to call the objects methods through self are avoided.

2.4.4 Summary

Below we present our observations with respect to reuse issues resulting from our explo-
ration of language design approaches.
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class Admin; method workerDone()
concurrency_control: matching (true)

boolean worker_finished := false, pre { worker_finished :=true }
admin_idle :=true; action { }
post{}
method suspend()
matching (true) method request()
pre {admin_idle :=true } matching (admin_idle)
action{ pre { admin_idle :=false}
selflwaitWorker () action {
} do some local processing...
post { admin_idle := false} request := worker_proxy.doWork();
selflwaitWorker ();
method waitWorker() ...some more processing...
matching (worker_finished ); }
pre { worker_finished := false;admin_idle := false post{admin_idle :=true };
}
action {}
post{};

Figure 2.7 Request/reply scheduling with synchronization constraints.

Object-Based Features

Homogeneous object models promote re@seicurrent applications can safely re-
use objects developed for sequential applications; efficiency need not be sacrificed.

Sequential objects with strict RPC are inadequiequest scheduling and internal
concurrency can only be implemented by sacrificing the RPC interface; the solution
is either to support concurrent threads or to relax the strict RPC protocol.

One-way message passing is expressive but undesitahde higher-level request-
reply protocols must be explicitly programmed, development and reuse of objects is
potentially more error-prone.

Acceptance of concurrent requests is handled well either by concurrent threads or by
explicit request/reply scheduling.

Issuing concurrent requests is handled well by one-way message passing, by proxies
or by internal concurrencyThe combination of both concurrent threads and non-
blocking communication primitives may be appropriate for handling the separate
issues of accepting and issuing concurrent requests.

Built-in proxiesused bysequential objectw&ith non-blocking request issuing mech-
anisms provide adequate support for reply scheduling but are weak at combining
reply and request scheduling.

Both concurrent objects and multi-object approaches are useful for internal concur-
rency: These approaches for internal concurrency are both useful for different pur-
poses. Concurrent threads make it easy to implement objects that may service several
concurrent requests that do not modify the objects state. Multi-object approaches are
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interesting when the implementation of a new object class, with internal concurren-
cy, may be realized by using several concurrently executing instances of existing
object classes.

Inheritance and Synchronization Constraints

» Synchronization constraints should not be hardwired in methidtie: synchroniza-
tion code that schedules the execution of methods is hardwired in methods, it will be
necessary to modify the method code in order to meet the constraints of other classes.

» Multiple threads are needed to cope with reply schedulinogupport reply sched-
uling it is important to be able to suspend the execution of a method. However, it
seems difficult to do this if synchronization code is kept separate from methods to
support inheritance.

* Method suspension and resumption should be taken into account by synchronization
constraints Taking into account the suspension of method execution by the mecha-
nism that implements the synchronization constraints makes it simpler to program
reply scheduling problems without compromising the reusability of methods.

» Specification of mutual exclusion may lead to non-polymorphic constisiutsal
exclusion properties of methods are often related to the way methods access instance
variables. Such constraints may thus not be applicable to classes with different
instance variables or in which methods access instance variables in a different way.
Including mutual exclusion specifications in constraints makes them less reusable.

* Itis advantageous to separate the reuse of constraints from inheritaisceasier to
reuse synchronization constraints is they are specified generically and if their appli-
cation to different classes is not accomplished through class inheritance.

2.5 Conclusion

Integrating concurrency and object-oriented programming is not as easy as it may seem at
a first sight. There is no major difficulty in introducing both object-oriented and concur-
rency features in a single language. However, arbitrary combinations of concurrency and
object-oriented features do not allow programmers draw the benefits of object-oriented
programming for the development of concurrent systems. These difficulties have fostered
substantial research in the past few years in the design of languages that gracefully in-
tegrate both kinds of features. However, the interference of the features occurs in several
aspects of language design and the various proposals are not equally successful in all these
aspects.

In this chapter we have discussed a number of issues that should be addressed in various
aspects of language design, and we have formulated some criteria to use in evaluating de-
sign choices. We have used these criteria to evaluate various proposals, and we have illus-
trated the issues by examining specific languages. The languages discussed were chosen
to illustrate particular points rather than to present a complete survey of all existing pro-
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posals. It was not our intention to compare individual languages; other issues not dis-
cussed in this chapter would have to be considered in such an endeavour. Different
considerations come in to play, for example, when designing a language for rapid proto-
typing or a language for programming embedded systems.

We have presented some guidelines for the design of languages that support the basic
object-oriented features promoting reuse. Although these seem to be necessary conditions
more is needed to achieve reuse at a larger scale. These are research issues which are dis-
cussed in other chapters. The further development and the use of techniques for reuse at a
larger scale for developing concurrent systems may provide more criteria for evaluating
language features and may result in more requirements on language design.
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Chapter 3

Interoperation of
Object-Oriented
Applications

Dimitri Konstantas

Abstract One of the important advantages of the object-oriented design and
development methodology is the ability to reuse existing software modules.
However the introduction of many programming languages with different
syntax, semantics and/or paradigms has created the need for a consistent
inter-language interoperability support framework. We present a brief overview
of the most characteristic interoperability support methods and frameworks
allowing the access and reuse of objects from different programming
environments and focus on the interface bridging object-oriented
interoperability support approach.

3.1 Reusing Objects from Different Environments

One of the problems that people face when travelling from one country to another con-
cerns the operation of electric appliances, like electric razors and coffee machines. A per-
son living in Switzerland, for example, travelling to Germany will not be able to “plug in”
and use his coffee machine as he is used in doing when back home. The reason is simply
that the “interfaces” for connecting to the electricity distribution network, that is the plug
of the appliance and the wall socket, are different. Our traveller will need to employ a
small inexpensive adaptor in order to bridge the differences of the “interfaces”. But things
are not always that simple. If the same person is travelling to North America he will dis-
cover that not only is his (Swiss) plug different from the (North American) wall socket, but
also that the electricity voltage differs. Fortunately also in this case a simple solution ex-
ists: the use of a transformer that will convert the North American voltage (110 V) to the
Swiss standard (220 V).
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In object-oriented programming where the reuse of objects is highly encouraged we
face similar problems when we wish to access or reuse objects that are programmed in
different programming languages. A programmer implementing an application in C++
cannot easily (re)use (if at all) objects and code written in Smalltalk [5] or even replace,
without resorting to extensive reprogramming, a C++ object with some other one
performing the same function but under a different interface. What we need are concepts
similar to the electricity transformer and plug adaptor that will allow us to bridge the dif-
ferences between the interfaces and paradigms of objects programmed in different lan-
guages.

In general we can classify the problems of bridging the differences between objects into
three categories. The first category includes the computation differences between the ob-
jects, like the low-level data representations; the second category includes the syntactic
particularities of the object interfaces, like the operation names and the required parame-
ters; the third category includes the differences of the semantic and functional behaviour
of the objects, like the representation of a collection of objects as an array or as a linked
list. We will refer to the bridging of all these differences for the reuse and access of objects
written in one or more languages asittteroperabilitysupportproblem.

Interoperabilityis the ability of two or more entities, such as programs, objects, appli-
cations or environments, to communicate and cooperate despite differences in the imple-
mentation language, the execution environment or the model abstractions. The motivation
in the introduction of interoperability support between entities is the mutual exchange of
information and the use of resources available in other environments.

During the past few years several approaches have been taken for the introduction of in-
teroperability support. We classify these approaches in two ways. First depending on the
way that they solve the interface differences’ problem and second on the point at which the
interoperability support is handled.

For the first classification, interface differences, we identify two general categories:

» Theinterface bridgingapproaches bridge the differences between interfaces. They
are characterized by the notions of offered and requested interface and define an in-
terface transformation language. The interface transformation language requires the
existence of two interfaces and allows one to express how the offered (requested) in-
terface can be transformed to the requested (offered) interface. Note that the interface
transformation language is programming language dependent.

» Theinterface standardizatioapproaches standardize the interface under which a
service (functionality) is offered. They are characterized by an interface definition
language that allows one to express in a programming language independent way a
specific interface. From the abstract definition of an interface a compiler will produce
the necessary stub-interface in the implementation language selected. The compiler
will always generate the same stub-interface for the selected target programming
language.

For the second classification depending on the point at which interoperability support
is handled, we also identify two categories:
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» Theprocedure-oriented interoperabilitgpproaches that handle interoperability at
the point of the procedure call.

» Theobject-oriented interoperabilitppproaches that handle interoperability at the
point of the object.

In the rest of this chapter we present a brief overview of some representative projects
from different interoperability approaches, discussing their advantages and disadvantag-
es, and describe in detail the object-oriented interoperability approach of the Cell frame-
work [12].

3.2 Procedure-Oriented Interoperability

The problem of interface matching between offered and requested services has been iden-
tified by many researchers [6][15][18][21][22][25][26] as an essential factor for a high-
level interoperability in open systems (see also chapter 12). Nevertheless, most of the
approaches taken in the past are based on the remote procedure call (RPC) paradigm and
handle interoperability at the point of procedure call. We call this type of interoperability
support approacprocedure-oriented iteroperability (PQINn POI support it is assumed

that the functionality offered by the server’s procedures matches exactly the functionality
requested by the client. Thus the main focus of the interoperability suppoddaiiten

[21] of the actual parameters passed to the procedure call at the client side to the requested
procedures at the server side.

3.2.1 Interface bridging

An example of this approach is the one taken irPiglith system [21]. The basic as-
sumption of the approach is that the interface requested by the client (at the point of the
procedure call) and the interface offered by the server “fail to match exactly”. That is the
offered and requested parameters of the operation calls differ. A languagéltdiBicE

has been developed that allows programmers to declare how the actual parameters of a
procedure call should be rearranged and transformed in order to match the formal param-
eters of the target procedure. The supported parameter transformations include coercion
of parameters, e.g. five integers to an array of integers, parameter evaluation, e.g.the trans-
formation of the strings “male” and “female” to integer values, and parameter extensions,
i.e. providing default values for missing parameters. The types of the parameters that are
handled are basic data types (integers, strings, Booleans, etc.) and their aggregates (arrays
or structures of integers, characters, etc.). The programmer specifies the mapping between
the actual parameters at the client side and the formal parameters at the server side using
NIMBLE and the system will then automatically generate code that handles the transfor-
mations at run-time.
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3.2.2 Interface standardization

Whereas NIMBLE focuses on bridging the differences between the offered and requested
service interfaces, th@pecification Level Interoperability (SL3upport of théArcadia

project [25] focuses on the generation of interfaces in the local execution environment
through which services in other execution environments can be accessed. The major ad-
vantage of SLI is that it defines type compatibility in terms of the properties (specification)
of the objects and hides representation differences for both abstract and simple types. This
way SLI will hide, for example, the fact that a stack is represented as a linked list or as an
array, making its representation irrelevant to the interoperating programs sharing the
stack. In SLI the specifications of the types that are shared between interoperating pro-
grams are expressed in theifying Type ModglUTM) notation. UTM is a unifying mod-

el in the sensethat it is sufficient for describing those properties of an entity’s type that
are relevant from the perspective of any of the interoperating programs that share instanc-
es of that typ§25]. SLI provides a set of language bindings and underlying implementa-
tions that relate the relevant parts of a type definition given in the language to a definition
as given in the UTM. With SLI the implementer of a new service will need to specify the
service interface with UTM and provide any needed new type definitions for the shared
objects and language bindings that do not already exist. In doing so the user will be assist-
ed by theautomated assistance toolhich allow him or her to browse through the exist-

ing UTM definitions, language bindings and underlying implementations. Once a UTM
definition for a service has been definedab®mated generation towlill produce the
necessary interface in the implementation language selected plus any representation and
code needed to affect the implementation of object instances. This way the automated
generation tool will always produce the same interface specification from the same UTM
input. However, SLI can provide different bindings and implementations for the generated
interface allowing a service to be obtained from different servers on different environ-
ments, provided that they all have the same UTM interface definition.

An approach similar to SLI has been taken inGbenmon Object Request Broker
chitecture(lCORBA) [18] of the Object Management Group (OMG). The Object Request
Broker (ORB) provides interoperability between applications on different machines in
distributed environmeritd 8] and it is a common layer through which objects transpar-
ently exchange messages and receive replies. The interfaces that the client objects request
and the object implementations provide are described throughtéréace Definition
Language (IDL) IDL is the means by which a particular object implementation tells its
potential clients what operations are available and how they should be invoked. An inter-
face definition written in IDL specifies completely the interface and each operation’s
parameters. The IDL concepts are mapped accordingly to the client languages depending
on the facilities available in them. This way, given an IDL interface, the IDL compiler will
generate interface stubs for the client language through which the service can be accessed
using the predefined language bindings.
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3.2.3 Advantages and Disadvantages

Although the above approaches can provide interoperability support for a large number of
applications, they have a number of drawbacks that severely restrict their interoperability
support. The first drawback is the degeneration of the “interface” for which interoperabil-
ity support is provided to the level of a procedure call. A service is generally provided
through an interface that is composed of a set of interrelated procedures. What is of impor-
tance is not the actual set of the interface procedures but the overall functionality they pro-
vide. By reducing the interoperability “interface” to the level of a procedure call, the inter-
relation of the interface procedures is lost, since the interoperability support no longer sees
the service interface as a single entity but as isolated procedures. This will create problems
in approaches like Polylith’s that bridge the differences between the offered and requested
service interface, when there is no direct one-to-one correspondence between the inter-
face’s procedures (interface mismatch problem).

Interoperability approaches like SLI and CORBA, on the other hand, do not suffer from
the interface mismatch problem, since the client is forced to use a predefined interface.
Nevertheless, the enforcement of predefined interfaces (i.e. sets of procedures with
specified functionality) makes it very difficult to access alternative servers that provide the
same service under a different interface. This is an important interoperability restriction
since we can neither anticipate nor we can enforce in an open distributed environment the
interface through which a service will be provided. With the SLI and CORBA approaches,
the service’s interface must also be embedded in the client’s code. Any change in the serv-
er’s interface will result in changes in the client code.

Another restriction of the above interoperability approaches is that they require the
migration of the procedure parameters from the client’s environment to the server’s envi-
ronment. As a result oniyigratabletypes can be used as procedure parameters. These are
the basic data types (integers, strings, reals, etc.) and their aggregates (arrays, structures,
etc.), which we calllata typs. Composite non-migratable abstract types, like a database
or keyboard type, cannot be passed as procedure parameters. This nevertheless is a
reasonable restriction since the above approaches focus in interoperability support for
systems based on non-object-oriented languages where only data types can be defined.

The need for allowing non-migratable objects as parameters to operation calls was
identified in the CORBA and a special data type was introduced célject reference
CORBA object references are data types that encapsulate a handle to a (non-migratable)
object and are globally valid. However object references are a low level primitives which
must be explicitly referenced and de-referenced by the server and the client. A higher-
level primitive allowing direct access to object is clearly needed if we wish to have con-
sistent access in an object-oriented environment.

3.3 Object-Oriented Interoperability

Although procedure-oriented interoperability provides a good basis for interoperability
support between non-object-oriented language based environments, it is not well suited
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for a high level interoperability support for environments based on object-oriented lan-
guages. The reason is that in an object-oriented environment we cannot decompose an ob-
jectinto a set of independent operations and data and view them separately, since this will
mean loss of the object’s semantics. For example, a set of operations that draw a line, arec-
tangle and print characters on a screen, have a different meaning if they are seen independ-
ently or in the context of a window server object where the rectangle can represent a
window into which the characters that represent the user/machine interactions are printed.
In object-oriented environments it is the overall functionality of the object that is of impor-
tance and not the functionality of the independent operations. We call this type of interop-
erability where the semantics of the objects as a whole are presdyjeetioriented
interoperability(OOI).

3.3.1 Interface Bridging

An example of interface bridging in object-oriented interoperability is the one provided
by the Cell framework [12] (where the concept of OOl was also introduced). The Cell is a
framework for the design and implementation of “strongly distributed object-based sys-
tems”. The purpose of the Cell is to allow objects of different independent object-based
systems to communicate and access each other’s functionality regardless of possible in-
terface differences. That is, the same functionality can be offered with a different interface
from different objects found either on the same or on different environments. The bridging
of the interface differences is done via bhierface Adaption LanguadéAL). From the
specification given in the IAL a compiler generates the required stub objects that support
the requested interface and translate the incoming operation invocations to the invocations
of the target object interface.

A more detailed presentation of the Cell interoperability approach is given in section
3.5.

3.3.2 Interface Standardization

The most important example of interface standardization in object-oriented interoperabil-
ity is version 2 of CORBA. In contrast to the first version of CORBA, which was oriented
towards C and C procedure calls, the second version is oriented towards a C++ environ-
ment and objects. Otherwise the functionality of CORBA and the basic elements are the
same as described in section 3.2.2.

3.3.3 Summary

Object-oriented interoperability is a generalization of procedure-oriented interoperability
in the sense that it will use, at its lower levels, the mechanisms and notions of POI. How-
ever OOl has several advantages over POI. First of all it allows the interoperation of appli-
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cations in higher-level abstractions, like the objects, and thus supports a more reliable and
consistent interoperation. A second advantage is that it supports fast prototyping in appli-
cation development and experimentation with different object components from different
environments. The programmer can develop a prototype by reusing and experimenting
with different existing objects in remote (or local) environments without having to change
the code of the prototype when the reused object interfaces differ. A last advantage is that
since OOl is a generalization of POI, it can be used to provide interoperation between both
object-oriented and conventional (non-object-oriented) environments. Furthermore when
IB-OOI support is used for non-object-oriented environments it provides a more general
frame than POI and can also handle cases where the requested and offered service inter-
faces do not match.

In table 3.1 we give a summary of the different approaches presented above and their
position in the two classifications.

Procedure-oriented Object-oriented
interoperability (POI) | interoperability (OOI)
Interface standardization (IS) SLI, CORBA V. 1 CORBAWV. 2
Interface bridging (IB) NIMBLE Cell

Table 3.1 Classification of interoperability support approaches.

3.4 Comparison of Interoperability Support Approaches

The interface bridging approaches provide a more general solution than the interface
standardization approaches for the access and reuse of objects from different program-
ming environments since they do not enforce any specific interface. The application
designer can choose the interface that he wants to use for accessing a service and use it for
accessing not only the target server but also alternative servers offering the same service
under different interfaces.

Another advantage of the interface bridging approaches is that they make no assump-
tions about the existence and semantics of types in the interoperating environments. Each
type, even the simplest and most banal integer type, must be explicitly related to a type on
the remote environment. This way they provide flexibility in the interconnection of di-
verse environments based on different models and abstractions.

One of the disadvantage of the interface bridging approaches comes from the fact that
they do not enforce a common global representation model for expressing the interopera-
bility bindings. Each execution environment is free to choose its own language. As a result
the interoperability interface adaption specifications for a server need to be defined inde-
pendently by the programmer for each execution environment in an interface adaption
language that is specially tailored for the programming languages of the two environ-
ments. However, bilateral mappings can offer a higher flexibility when the interoperating
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languages support special features. For example, a common interface definition language,
like the CORBA IDL, does not include the notion dfansaction thus, even when the in-
teroperating languages support transactions, like Argus [16] and KAROS [4], their IDL-
based interoperation will not be able to use transactions.

Object-oriented interoperability and procedure-oriented interoperability approaches
cannot be directly compared since they are designed for different programming environ-
ments: the first for object-oriented environments and the second for non-object-oriented
environments. Nevertheless OOl is a generalization of POI using at its lower levels the
same mechanisms as POI. Thus the major advantage of OOl over POl is that it can be ap-
plied as well to both types of programming environments and serve as bridge between ob-
ject-oriented and non-object-oriented environments.

Although the interface bridging and interface standardization approaches are distinctin
the way they approach the interoperability problem, they are not exclusive. An interoper-
ability support system can very well support both approaches and give the programmers
maximum flexibility in the reuse and access of objects in different programming environ-
ments. As an example we can consider CORBA which is an interface standardization in-
teroperability support system. In a large CORBA-based open distributed system it will be
difficult for all service providers to agree on a common interface for the servers they de-
velop. As a result a number of different server interfaces will be available providing the
same or similar services. However, applications being developed to access a specific
server interface will not be able to access any other server even if the interface differences
are minor. In addition, since it is not possible to anticipate the interfaces of future servers,
applications will not be able to take advantage of newer, more advanced services. What is
needed is to introduce interface bridging interoperability support. This can be easily done
with the introduction of aimterface adaptiorservice that will allow a client to adapt its
requested service interface to a specific offered interface and dispatch the service requests
accordingly.

3.5 Interface Bridging — Object-Oriented
Interoperability

We identify two basic components necessary for the support and implementation of inter-
face bridging OOI (IB-OOl)interface adaptiorandobject mappinglnterface adaption
provides the means for defining the relations between types on different execution envi-
ronments based on their functionality abstraction, and object mapping provides the run-
time support for the implementation of the interoperability links.

3.5.1 Terminology

In the rest of this section we use the tefiant interfaceto specify the interface through
which the client wishes to access a service, and thesegrrar interfaceo specify the ac-
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tual interface of the server. In addition we will use the teoateto specify the execution
environment of an application (client or server), e.g. the Hybrid [7] execution environ-
ment or the Smalltalk [5] execution environment. In this sense a node can span over more
than one computer, and more than one node can coexist on the same computer. Although
we will assume that the client is in tloeal node and the server in tr@amotenode, local

and remote nodes can very well be one and the same. By thesi@mmetewe mean the
operation call parameteasidthe returned values, unless we explicitly state differently.
Finally we should note that by the teuserwe mean the physical person who interacts

and maintains the interoperability support system.

3.5.2 Interface Adaption

In a strongly distributed environment [24] a given service will be offered by many servers
under different interfaces. As a result a client wishing to access a specific service from
more than one server will have to use a different interface for each server. Although we can
develop the client to support different interfaces for the accessed services, we might not
always be able to anticipate all possible interfaces through which a service can be offered,
or force service providers to offer their services via a specific interface. IB-OOI approach-
es this problem by handling all interface transformations, so that a client can use the same
interface to access all servers offering the same service. The interface adaption problem
consists of defining and realizing the bindings and transformations from the interface that
the client uses (requested interface), to the actual interface of the service (offered inter-
face).

Ideally we would like to obtain an automatic solution to the interface adaption problem.
Unfortunately in the current state of the art this is not possible. The reason is that we have
no way of expressing the semantics of the arbitrary functionality of a service or an opera-
tion in a machine-understandable form. In practice the best we can do is describe it in a
manual page and choose wisely a name so that some indication is given about the func-
tionality of the entity. Nevertheless, since nothing obliges us to choose meaningful names
for types, operations or their parameters, we cannot make any assumptions about the
meaning of these names. Furthermore even if the names are chosen to be meaningful, their
interpretation depends in the context in which they appear. For example a type named
Accounthas a totally different meaning and functionality when found in a banking envi-
ronment and when found in a system administrator’s environment. Thus any solution to
the interface adaption problem will require, at some point, human intervention since the
system can automatically deduce neither which type matches which, nor which operation
corresponds to which, or even which operation parameter corresponds to which between
two matching operations. What the system can do is assist the user in defining the bind-
ings, and generate the corresponding implementations.

We distinguish three phases in providing a solution to the interface adaption problem.

In the first phase, which we call thenctionality phasehe user specifies the type or types
on the remote environment providing the needed functionality (service). The system can
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assist the user in browsing the remote type hierarchy and retrieving information describ-
ing the functionality of the types. This information can be manual pages, information ex-
tracted from the type implementation or even usage examples.

In the second phase, which we callititerfacephase the user defines how the opera-
tions of the remote type(s) should be combined to emulate the functionality represented
by the client’s operations. This can a be a very simple task if there is a direct correspond-
ence between requested and offered operations, or a complicated one if the operations
from several remote types must be combined in order to achieve the needed result. As in
the functionality phase the system can assist the user by providing information regarding
the functionality of the operations.

The third phase is thgarameteiphase After specifying the correspondence between
the requested and remote interface operations the user will need to specify the parameters
of the remote operations in relation to the ones that will be passed in the local operation
call. This might require not only a definition of the correspondence between offered and
requested parameters, but also the introduction of adaption functions that will transform
or preprocess the parameters. The system can assist the user by identifying the types of the
corresponding parameters, reusing any information introduced in the past regarding the
relation between types and standard adaption functions, and prompt the user for any addi-
tional information that might be required.

3.5.2.1 Type Relations

In IB-OOI we distinguish three kinds of type relations, depending on how the local type
can be transformed to the remote type. Namely we éawivalent, translatedndtype
matchedypes.

Migrating an object from one node to another means moving both of its parts, i.e.data
and operations, to the remote node, while preserving the semantics of the object. However,
moving the object operations essentially means that a new object type is introduced on the
remote node. This case is presently of no interest to IB-OOI since we wish to support in-
teroperability through the reuse of existing types. Thus in IB-OOI, migrating an operation
call parameter object means moving the data and using them to initialize an instance of a
pre-existing equivalent type. This is a common case with data types, like integers, strings
and their aggregates, where the operations exist on all nodes and only the data need to be
moved. In IB-OO0I when this kind of a relation exists between a type of the local node and
a type of the remote node we say that the localxyipes arequivalentypeXx” on the re-
mote node.

Although data types are the best candidates for an equivalence relation, they are not the
only ones. Other non-data types can also exist for which an equivalent type can be found
on a remote node. For example, a raster image or a database type can have an equivalent
type on a remote node and only the image or database data need to be moved when migrat-
ing the object. In general, two types can be defined as equivalent if their semantics and
structure are equivalent and the transfer of the data of the object is sufficient to allow the
migration of their instances. In migrating an object to its equivalent on the remote node,
the IB-OOI support must handle the representation differences of the transferred data. In
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this sense thiype equivalencef IB-OOI corresponds t@presentation level interopera-
bility [25].

In an object-oriented environment we are more interested in the semantics of an object
rather than its structure and internal implementation. For example, consider the Hybrid
[17] typestring and the Cool[1] typeARRAY OF CHAR. In the general case the semantics
of the two types are different: thieing is a single object, while thRRAY OF CHAR is an
aggregation of independent objects. Nevertheless when in ComkRatY OF CHAR IS
used for representing a string, it becomes semantically equivalent and can be transformed
to a Hybridstring, although the structure, representation and interfaces of the two types are
different. In IB-OOlI this type relation is definedtgge translation

Translation of the local type to the remote type is done with a user-definable translation
function. This way the particularities of the semantic equivalence can be handled in a case-
specific way. The user can specify different translations according to the semantics of the
objects. For example, if the local node is a CooL node and the remote a Hybrid node, then
we can define two different translations forA®RAY OF CHAR — the first when thar-

RAY OF CHAR represents a character string and is translatedttmg@ and the second
when theARRAY OF CHAR represents a collection of characters that need to be treated in-
dependently and which is translated to a Hyhrial of integer (in Hybrid characters are
represented via integers).

Type translation can be compared to specification level interoperability, where the in-
teroperability support links the objects according to their specifications. Nevertheless,
type translation is more flexible than SLI since it allows multiple translations of the same
type according to the specific needs and semantics of the application.

A local type for which bindings to a remote type or types have been defined, as a solu-
tion to the interface adaption problem (i.e. bindings and transformations from the inter-
face that the client uses, to the actual interface of the service), is saigfe betchetb
the remote node. We can have two kinds of type matched types: multi-type matched and
uni-type matched types. Multi-type-matched types are the ones that are bound to more
that one type on the remote node, when for example one part of the requested functionality
is offered from one type and another part from a second type, and uni-type matched types
are the ones that are bound to a single type on the remote node.

The target of IB-OOlI is to allow access to objects on remote nodes. The basic assump-
tion being that the object in question cannot be migrated to the local node. However, the
access and use of the remote object will be done with the exchange of other objects in the
form of operation call parameters. The parameter objects can, in their turn, be migrated to
the remote node or not. Parameter objects that cannot be migrated to the remote node are
accessed on the local node via a type match, becoming themselves servers for objects on
the remote node.

Type relations are specific to the node for which they are defined and do not imply that
areverse type relation exists, or that they can be applied for another node. For example, if
the local node is a Hybrid node and the remote is a C++ node, the Hybrddigpe has

* Cool is a an object-oriented language designed and implemented in the ITHACA ESPRIT [20] project
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as equivalent in the C++ nodeian(integer) (Booleans in C++ are represented by inte-
gers), while the reverse is, in general, false.

3.5.2.2 ToType-Match or notto Type-Match?

Type matching is a general mechanism for interoperability support and can be used in all
cases in place of equivalence and translation of types. However, the existence of transla-
tion and equivalence of types is needed for performance reasons since accessing objects
through the node boundary is an expensive operation. If an object is to be accessed fre-
guently on the remote node, then it might be preferable to migrate it, either as equivalent
or translated type. For example, it is preferable to migrate “small” objects, like the data
types, rather than access them locally. Nevertheless the user always has the possibility of
accessing any object locally, even an integer if this is needed, as might be the case with an
integer that is stored at a specific memory address which is hard-wired to an external sen-
sor (like a thermometer) and which is continuously updated. This can be done by defining
a type match and using it in the parameter’s binding definitions.

A typical scenario we envisage in the development of an application with IB-OOI sup-
port is the following. The user (application programmer) will first define a set of type
matchings for accessing objects on remote nodes. These will be used in the development
of the application prototype. When the prototype is completed the user will measure the
performance of the prototype and choose for which types a local implementation is to be
provided. For these types an equivalency or translation relation will also be established,
possibly on both nodes, so that they can be migrated and accessed locally. This way the
performance of the prototype will be improved. This process can be repeated iteratively
until the performance gains are no longer justifiable by the implementation effort.

One of the major advantages of the IB-OOI approach is that in the above scenario the
application prototype will not be modified when local implementations of types are intro-
duced and the type relations change. The new type relations are introduced in the IB-OOI
support and do not affect the application programs.

3.5.3 Object Mapping

Whereas interface adaption maintains the static information of the interoperability tem-
plates, object mapping provides the dynamic support and implementation of the interop-
erability links. We distinguish two parts in object mapping: the static and the dynamic. The
static part of object mapping is responsible for the creation of the classes that implement
the interoperability links as specified by the corresponding type matching. The dynamic
part, on the other hand, is responsible for the instantiation and management of the objects
used during the interoperation.

* With the exception of a possible recompilation if dynamic linking is not supported.
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3.5.3.1 Inter-Classes and Inter-Objects

The essence of object mapping is to dynamically introduce in the local node the services
of servers found on other nodes. This, however, must be done in such way so that the ac-
cess of the services is done according to the local conventions and paradigms. In an object-
oriented node this will be achieved with the instantiation of a local object that represents
the remote server, which in IB-OOI we calliater-object An inter-object differs from a

proxy, as this is defined in [23], in three important respects. First in contrast with a proxy,
an inter-object and its server can belong to different programming and execution environ-
ments and thus they follow different paradigms, access mechanisms and interfaces. The
second difference is that while a proxy provides the only access point to the actual server,
i.e. the server can be acceseaty via its proxies, this is not the case with inter-objects.
Objects on the same node with the server can access it directly. An inter-object simply pro-
vides the gateway for accessing the server from remote nodes. Finally, while a proxy is
bound to a specific server, an inter-object can dynamically change its server or even access
more than one server, combining their services to appear as a single service on the local
node.

An inter-object is an instance of a type for which a type match has been defined. The
class (i.e. the implementation of a type) of the inter-object is created by the object mapper
from the type match information and we call itiater-classAn inter-class is generated
automatically by the object mapper and it includes all code needed for implementing the
links to the remote server or servers.

3.56.3.2 Dynamic Support of the Object Mapping

After the instantiation of an inter-object and the establishment of the links to the remote
server, the controlling application will start invoking the operations of the inter-object,
passing other objects as parameters. IB-OOI allows objects of any type to be used as
parameters at operation calls. The object mapper will handle the parameter objects
according to their type relations with the remote node. This way objects for which an
equivalent or translated type exists on the remote node will be migrated, while objects for
which a type match exists will be accessed through an inter-object on the remote node.

In the case where no type relation exists for the type of a parameter object, the object
mapper will invoke the type matcher and ask the user to provide a type relation. This way
type relations can be specified efficiently, taking into account the exact needs and circum-
stances of their use. In addition the dynamic definition of type relations during run-time
relieves the user from the task of searching the implementation type hierarchy for unde-
fined type relations. Also the incremental development and testing of a prototype becomes
easier since no type relations need to be defined for the parts of the prototype that are not
currently tested.

3.6 Interface Adaption

Expressing the relations and transformations between two (or more) interfaces can be
done using a language which we daterface Adaption Language (IAUAL, just like
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the existing interface definition languages (like the CORBA IDL) that allow the expres-
sion of an interface in an abstract language independent way, allows the expression of the
relations and transformations required for the adaption of one interface to another in an
abstract language independent way.

An 1AL for the object-oriented interoperability support of the Cell framework proto-
type [8][9][11] was designed and implemented at the University of Geneva. The main goal
of the Cell framework is to allow the objects of a node transparently to access and use serv-
ices found on other heterogeneous nodes using the OOI support. IAL allows the user to ex-
press the interface relations between object types of the different nodes. The syntax of the
IAL is very similar to the Hybrid language syntax [7][10][17], in which the Cell prototype
was implemented.

In the rest of this section we give an overview of the implemented IAL using examples
for the adaption of interfaces between Hybrid object types and CooL [1] object types. A
complete description of IAL can be found in [13].

3.6.1 Type Relations

A type relation in IAL is defined for a specific remote cell which is identified by its name.
For the examples given below we assume that the local Hybrid cell is Aigbngdell and

the remote CoolL cell is namedoLCell. The general syntax of a type relation on the Hy-
brid cell is

IdOfRemoteCell :: <TypeRelation> ;

where TypeRelation can be either equivalent, translated or type matched and
IdOfRemoteCell is the id of the remote cell, which in the case of the CooL cedhisCell.

3.6.1.1 Equivalent and Translated types
In both CooL and Hybrid, integers and Booleans are equivalent types. On the Hybrid cell
this is expressed as

CooLCell ::integer => INT ;
CooLCell :: boolean =>BOOL ;

Although the notion of atring exists in both languages, in CooL, strings are represented
as arrays of characters while in Hybrid theytsic data typed hus the relation between
them is of a translated type

CooLCell :: string +> ARRAY OF CHAR : string2arrayOfChar ;
In the CooL cell the corresponding definitions will be:

HybridCell :: INT => integer ;
HybridCell :: BOOL => boolean ;
HybridCell :: ARRAY OF CHAR +> string : arrayOfChar2string ;

In the definition of translated types we specify a translation function, like
string2arrayOfChar andarrayOfChar2string, which performs the data translation.
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type windowServer : abstract {
newWindow : (integer #{ : topLeftX #}, integer #{ : topLeftY #},
integer #{ : botRightX #}, integer #{ : botRightY #}) -> integer #{: windowId #} ;
newSquareWin : (integer #{ : topLeftX #}, integer #{ : topLeftY #}, integer #{ : side #} )
-> integer #{ : windowld #} ;
refreshDisplay : (display ) -> boolean ;
readCoordinates : ( mouse, keyboard, touchScreen, integer #{ : scaleFactor #} ) -> point ;
windowSelected : (mouse, keyboard, touchScreen ) -> integer ;

b

Figure 3.1 Hybrid type windowServer.

3.6.1.2 Type-Matched Types.
A type can be matched to either a single remote type or to a collection of remote types
(multi-type match For example, if we have on the local Hybrid cell a tylpgowServer,
which is matched to the typ@NDOW_CONTROL of the remote cell, the type match will
be expressed as

CooLCell :: windowServer -> WINDOW_CONTROL {<operation bindings>*} ;
while a multi-type match will be expressed as

CooLCell :: windowManager -> <WINDOW_CONTROL, SCREEN_MANAGER >

{ <operation bindings>} ;

When an object of the local nucleus in its attempt to access a service creates an instance
of a type-matched type (an inter-object), a corresponding instance of the target type will
be instantiated on the remote cell. However, there are cases where we do not want a new
instance to be created on the remote cell but we need to connect to an existing server. In
IAL this is noted with the addition @ at the of remote type name:

CooLCell :: personnel -> PERMANENT_PERSONEL_DB @ { <operation bindings>};

3.6.2 Description of the Running Example

In order to describe the IAL syntax we use as examples a Hybridityjp@Server and a
CooL typewINDOW_CONTROL. The HybridwindowServer defines in the Hybrid cell the
interface through which a window server is to be accessed (requested interface), while the
CooLWINDOW_CONTROL provides an implementation of a window server (offered inter-
face). For simplicity we assume that the operation names of the two types describe accu-
rately the functionality of the operations. That s, the operation nasn&@dndow creates
a new window, while the operatigat_Position returns the position pointed to by the point-
ing devices.

The Hybrid typewindowServer (figure 3.1 has five operations. Operatiafesvwindow
andnewSquareWin return the id of the newly created window or zero in case of failure. Op-

* The syntax of the operation bindings is described in detail in section 3.6.3.
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TYPE WINDOW_CONTROL =

OBJECT

METHOD create_win ( IN botRightX : INT, IN botRightY : INT,
IN topLeftX : INT, IN topLeftY : INT, IN color : INT ) : INT

METHOD redisplay_all (IN display : DISPLAY) : INT
METHOD get_Position (IN inDevices : I0_DEVICES, IN scaling : INT) : POSITION
METHOD select_Window (IN position : POSITION) : INT

BODY

END OBJECT

Figure 3.2 Cool type WINDOW_CONTROL.

eration refreshDisplay returns true or false, signifying success or failure. Operation
readCoordinates returns the coordinates of the active point on the screen as read from the
pointing devices and operatiaimdowSelected returns the id of the currently selected win-
dow or zero if no window is selected.

The CooL typewINDOW_CONTROL (figure 3.2) has four methods. The methods
create_win andselect_Window return the id of the newly created window and of the window
into which the specific position is found,<k in case of an error. Methestlisplay_all re-
turns 0 or 1, signifying failure or success, and metieodPosition returns the position
pointed by the 1/0 devices (i.e. keyboard, mouse, touch-screen) as adapted by the scaling
factor.

3.6.3 Binding of Operations

Although typewINDOW_CONTROL provides all the functionality that typendowServer

requires, this is done via an interface different to the onesth@dwServer expects. In

general in the IAL we anticipate two levels of interface differences — first in the required
parameters (order, type, etc.) and second in the set of supported operations, i.e. different
number of operations with aggregated, segregated or sligliffigrent functionality. The
resolution of these differences corresponds to the parameter and interface phases of the in-
terface adaption definition.

3.6.3.1 Parameter Phase

Assuming that the functionality of the provided operation corresponds to the requested
functionality, the differences between the parameters passed to the local operation call
(offered parameters) and of the parameters required by the remote operation (requested
parameters) can fall into one or more of the following categories:

» Different order of parameter&or example, the first parameter of the local operation
might correspond to the second on the remote operation.

* The termis used loosely and it is up to the user to define what is a “slight” difference in functionality.
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« Different representation of the information held by the paramEterexample a
boolean condition TRUE or FALSE can be represented locally by an integer while on
the remote operation the striffTqRUE” or “FALSE” might be expected.

+ Different semantic representation of the informatiéor. example if we have a Hy-
brid array with ten elements indexed from 10 to 19, an equivalent array in CooL will
be indexed 1 to 10. Thus an index, say 15, of the Hybrid array should be communi-
cated as 6 to the CooL cell.

« Different number of parametershe requested parameters might be more or less
than the offered ones. In this case the parameters offered might include all informa-
tion needed or more information might be required.

The IAL anticipates all the above differences and allows the user to specify the needed
transformations for handling them.

Migrated parameters

In our example we consider first the operatiengvindow andcreate_win which have the
same functionality specification. The bindinghefwindow to create_win is expressed in
IAL as follows:

newWindow : create_win($3, $4, $1, $2, 17 ) *RET ;

OperatiomewWwindow offers four parameters which are identified by their position with a
positive integer ($1 to $4). Methackate_win will be called with these parameters trans-
posed. Its first parameter will be the third passedelayvindow, the second will be the
fourth and so on. The fifth parametetehte_win is an integer that specifies the colour of
the new window. This information does not exists in the offered parameters. Nevertheless,
in this case, we can use a default value using a integer literal, like in the example the
number 17. The returned value frorsate_win, noted aRET in IAL, is passed back to the
Hybrid cell and becomes the value thatwindow will return.

In the above operation binding definition we assume that a relation for the CooL and
Hybrid integers exists. That is we assume that on the Hybrid cell we have

CoolLCell ::integer => INT ;
and on the CoolL cell
HybridCell :: INT => integer ;

This way migration of the parameters and returned values will be handled automatically.

OperatiomewSquareWin does not exist in the interfaceWwdfNDOW_CONTROL but its
functionality can be achieved by operatiente_win called with specific parameter val-
ues. That is we can have

newSquareWin : create_win (bottomRX($1, $3), bottomRY($2, $3), $1, $2, 17) * RET,;

where functionsottomRX andbottomRY are adaption functions. Adaption functions are
user-defined functions, private to the specific interface adaption. They provide the means
through which the user can adapt the offered parameters to a format compatible to the re-
guested parameters. They can be called with or without parameters. The parameters to be
passed to the adaption functions can be any of the offered parameters or even the result of
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another adaption function. In the type matching definition of the IAL the adaption func-
tions are included at the end of the interface adaption definition begeen@}. Thus
for the previous example we have the following adaption functions:

@{
bottomRX : (integer : topLeftX, side ) -> integer ;
{return (topLeftX + side) ;}
bottomRY : (integer : topLeftY, side ) -> integer ;
{return (topLeftY -side);}
@}

The adaption functions will be invoked locally (i.e. in our example, in the Hybrid cell)
and their result will be passed as parameter to the remotereat (win). An adaption
function is effectively a private operation of the inter-class and as such it can access its in-
stance variables or other operations.

Mapped Parameters

When the parameter cannot be migrated to the remote cell, i.e. when there is no corre-
sponding equivalent or translated type, it should be accessed on the local cell. This will be
done via anappingof a remote object to the local parameter according to an existing type
match. In our example this will need to be done forréfreshDisplay operation and
redisplay_all method.

The parameter passed rtireshDisplay iS an object of typeisplay which cannot be
migrated to the CooL cell. Thus it must be accessed on the Hybrid cell via a mapping on
the Cool cell. For this a type match must exist on the CooL cell to the Hydpiig type.

HybridCell :: DISPLAY -> display{.... };
This way the binding akfreshDisplay toredisplay_all is expressed as
refreshDisplay : redisplay_all ($1 : display <- DISPLAY ) int2bool(RET) ;

meaning that the first parameter of the methddplay_all will be an object mapped to the
first parameter passed to the operatoashDisplay, according to the specified type match
on the CooL cell. In addition the returned valueedfsplay_all, which is an integer, is
transformed to a Boolean via the adaption fundti@bool which is defined as follows:

@{
int2bool : (integer : intval ) -> boolean ;
{return (intval ~=?0);}

@}
Multi-type mapped parameters
In IAL we also anticipate the case where the functionality of a type is expressed by the
composite functionality of more than one type on the remote cell. In our example this is

the case for the CooL typ® DEVICES, which corresponds to the composite functionality
of the Hybrid typesnouse, keyboard andtouchScreen.

HybridCell :: 10_DEVICES -> < keyboard @, mouse @, touchScreen @ >{...};
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Note that in this example the_DEVICES inter-object will be connected to the existing
keyboard, mouse andtouchScreen objects on the Hybrid cell.

The definition of multi-type match operation bindings is similar to that of single type
match bindings, but with the definition of the operation’s type. If, for example, we assume
that typelO_DEVICES has a methoekad_keyboard which corresponds to the operation
readinput of the Hybrid keyboard type, the binding would be expressed as

read_keyboard : keyboard.readlnput (...)"...;

In fact this syntax is the general syntax for the definition of an operation binding and can
be used in both single- or multi- type matchings. Nevertheless for simplicity in single-type
matchings the definition of the corresponding type can be omitted since there is only one
type involved.
In our example, the binding of the Hybrid operatiesiCoordinates to the operation
get_Position will be expressed as
readCoordinates : get_Position (

<$2, $1, $3 > : < keyboard, mouse, touchScreen > <- |0_DEVICES,
$4) RET

assuming that we have on the CooL cell the relation
HybridCell :: POSITION +> point ;

3.6.3.2 Interface Phase
When defining the operation bindings between two types from different environments
there will be cases where the functionality of the local operation is an aggregation of the
functionality of more than one remote operation. Adapting a requested operation interface
to an offered one might require anything from simple combinations of the operations up
to extensive programming. In order to simplify the user’s task, IAL allows the definition
of simple operation combinations in the type match specification. For example, the func-
tionality of the Hybrid operatiowindowSelected can be obtained with the combination of
the CooL methodget_Position andselect Window. The operation binding is thus:

windowSelected : select_Window (WINDOW_CONTROL.get_Position (

<$2, $1, $3 > : < keyboard, mouse, touchScreen ><-0_DEVICES, $4)) *RET;

This defines that the methgek_Position will first be called on the remote CoolL cell and
its result will not be returned to the calling Hybrid cell but it will be used as the first param-
eter to theselect_Window method. Since the result of the:_Position method is not re-
turned to the Hybrid cell, there is no need for a type relation of the Coob®Og&EON to
exist on the Hybrid cell.

3.7 Object Mapping

Whereas interface adaption provides the means to express in an implementation lan-
guage-independent way the relations between heterogeneous interfaces, object mapping
provides the required language-dependent run-time interoperability support. The first task



88 Interoperation of Object-Oriented Applications

CoolL cell
ne Nucleus

brid cell
Membrane

Nucleus Membr

windowServer

Inter-Object
e Window N WINDOW_CONTROL
newSquareWin create_win
refreshDisplay -
readCoordinates y redisplay_all

windowSelected

Figure 3.3 Object mapping.

of object mapping is to generate from the interface adaption specifications the inter-
classes at the client side. Instances of an inter-class provide the client with the requested
service interface and their principal task is to forward the operation invocation to the target
server according to the specified interface transformations and adaptions.

In the following we describe the functionality of object mapping via the previously de-
scribed example of interface adaption between the Hylingbwserver and the CooL
WINDOW_CONTROL. In figure 3.3 we present the binding between the operations of the
Hybrid inter-object and the CooL server and describe the actions taken when an operation
of the windowServer inter-object is called. For our example we consider the operation
readCoordinates, which is called with four parameters —kegboard object, anouse object,

a touchScreen object and amteger (figure 3.4) — and which is bound to the method
get_Position.

readCoordinates : get_Position (
<$2, $1, $3 > : < keyboard, mouse, touchScreen > <- |0_DEVICES,
$4) RET

From the four parameters passed to operattiCoordinates, the first threekeyboard,
mouse andtouchScreen) cannot be migrated to the CooL cell but must be accessed locally
via a multi-type match of the CooL typ® DEVICES. The fourth parameter is an integer
for which an equivalent type exists on the CooL cell and thus it can be migrated to it. The
object mapping server will thus instantiate on the CooL cell two objects: an inter-object of
typelO_DEVICES connected to the Hybrid objects/board, mouse andtouchScreen, and
anINT object initialized to the value of the integer parameter (figure 3.5).
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Figure 3.4 Operation call forwarding.
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Figure 3.5 Parameter transfer.

When the transfer of the parameters has been completed the object mapping server will
proceed with the invocation of the remote operation. The opetgtidrosition will be in-
voked with theo_DEVICES inter-object and theNT object (figure 3.6) as parameters. The
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Figure 3.6 Remote operation invocation.

result, an object of typrOSITION, will then need to be returned to the Hybrid caller. Be-
cause for the CooL tyOSITION there exists a translation to the Hybrid tgpat, the
object mapping server will instantiate an object of gg»& on the Hybrid cell which will

be initialized to the translated value of H@SITION object. This object will be the result
returned to the caller of theadCoordinates operation.

During the transfer of parameters the object mapping server might encounter a type for
which no type relation has been defined. For example, it might be that on the CooL cell
there is no type relation for the tyyge DEVICES. In this case when the instantiation of an
|IO_DEVICES inter-object is requested, the type-matching server will dynamically request
the definition of the type match. The user will be required to define on the fly a type match
for thelO_DEVICES type. Once this is done the object-mapping server will resume the
transfer of the parameters. This way an application can be started even without any type
relations defined. The object-mapping server will prompt the user to define all needed type
relations during the first run of the application.

3.8 Conclusions and Research Directions

One of the important advantages of object-oriented design and development methodology
is the ability to reuse existing software modules. However, the introduction of many pro-
gramming languages with different syntaxes, semantics and paradigms severely restricts
the reuse of objects programmed in different programming languages. Althdgb
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solutions can be given to solve specific inter-language reuse cases, different interoperabil-
ity support methods provide the framework for consistent inter-language access and reuse
of objects.

We classify the interoperability support approaches in two ways: first depending on the
way that they solve the problem of the different interfaces, and second on the point at
which the interoperability support is handled. For the first classification we distinguish the
interface standardizatioapproaches, which standardize the interface under which a serv-
ice (functionality) is offered, and theterface bridgingapproaches, which bridge the
differences between interfaces. For the second classification we distingusbdbe
dure-oriented interoperabilitapproaches, which handle interoperability at the point of
the procedure call, and tbbject-oriented interoperabilitgpproaches, which handle in-
teroperability at the point of the object.

From the above approaches the interface bridging object-oriented interoperability
(IB-OO0I) approach is the most flexible one since it does not impose predefined interfaces
and can be applied equally well to both object-oriented and non-object-oriented environ-
ments. The Cell framework, which we describe in detail, provides an example of the
IB-OOI approach.

Because the IB-OOI is by no means incompatible with other interoperability approach-
es, its ideas and concepts can be incorporated into other interoperability frameworks, e.g.
the CORBA, and significantly enhance their openness and interoperability support. Fur-
thermore the flexibility and generality of the IB-OOI ideas can provide a framework for
the solution of software integration and software evolution problems related to legacy
systems.

3.8.1 Openness of Interoperability Platforms

One of the major disadvantages of existing interoperability frameworks, the most promi-
nent of which is CORBA, is that they arl®sed to themselveEhat is, client and server
applications interacting via the interoperability platform must be implemented making
use the specific platform interfaces. As a result, taking CORBA as an example, existing
applications cannot be incorporated in the CORBA “world” (non-CORBA clients cannot
use CORBA services, and non-CORBA servers cannot offer their services to CORBA
clients), nor can CORBA applications be moved to a non-CORBA environment.

Designing an interface adaption service for CORBA that will allow C++, for example,
client applications to access CORBA services via their IDL interface will significantly en-
hance the openness and acceptability of CORBA and will allow almost any application to
take advantage of the services CORBA offers.

3.8.2 Interoperability and Legacy System Migration

One of the major problems that companies are facing due to the rapid advances of the com-
puter software and hardware technologies is the migration of their legacy systems to a new
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platform. Most of the given solutions aadhoccase-dependent solutions; only recently

has some kind of methodology started appearing [2][3]. However, although the problem
of legacy system migration is in effect an interoperability problem, it has not been recog-
nized as such. The reason is that most of the work and research done in the area of inter-
operability support focuses on the interoperability support of new applications using the
interface standardization approach and does not consider existing legacy applications.

A prominent framework for the support of legacy system migration can be provided
with the interface bridging object-oriented interoperability (IB-OOI) approach. A smooth
incremental migration of a legacy system can be achieved by identifying its components
and their interfaces and using an IB-OOI support to replace the legacy components with
new ones, which most probably have a different interface [14]. This way new components
can be incrementally added to the system without affecting the remaining legacy ones.
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Annex |: Interface Adaption Language

typeMatchDef
typeMatch

remoteTypes
remoteTypelList
typeMatchSpec
adaptDefList
operMatchList
operMatch
remoteOpDef
argMatchList
argMatch

returnValDef

localArgldList
localTypelList
localArgld

localType
remoteType
remoteOpName
remoteCellld
transFunction
adaptFunct

Program

: remoteCellld ;" typeMatch *;’

: localType ‘->’ remoteTypes typeMatchSpec

| localType ‘=>' remoteType [ “;’ transFunction ]
| localType ‘+>’ remoteType [ ' transFunction ]
: ‘<’ remoteTypeList >’

: remoteType ['@'] [, remoteTypeList]

. {’ operMatchList '}’ [ adaptDefList ]

D '@{ Program '@}’ [adaptDefList]

: operMatch [operMatchList]

: localOpName ‘' remoteOpDef ‘('argMatchList ‘)’ ‘N returnValDef *;’
: remoteType ‘.’ remoteOpName

: argMatch [‘,” argMatchList]

: localArgld

| adaptFunct ‘(" localArgld ‘)’

| localArgld “’ localType ‘<-’ remoteType

| ‘<’ localArgldList >’ ' ‘<’ localTypeList >’ ‘<-’ remoteType
| remoteOpDef ‘(" argMatchList ‘)’

"RET

| adaptFunct ‘(" RET Y’

| RET “’ localType ‘->' remoteType

. localArgld ['," localArgldList]

: localType [ ‘," localTypeList]

D '$'SMALL_INTEGER
| INTEGER_LITERAL

: STRING
: STRING
: STRING
: STRING
: STRING
: STRING

: Program code in Native Language.
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Annex Il: Type Match Definition Example

CooLCell :: windowServer -> WINDOW_CONTROL {
newWindow : create_win($3, $4, $1, $2, 17 ) * RET ;
newSquareWin : create_win ( bottomRX($1, $3), bottomRY ($2, $3), $1, $2, 17)
ANRET ;
refreshDisplay : redisplay_all ( $1 : display <- DISPLAY ) ” int2bool(RET) ;
readCoordinates : get_Position
(< $2, $1, $3 > : < keyboard, mouse, touchScreen > <- |I0_DEVICES,
$4)~RET
windowSelected : select Window (
WINDOW_CONTROL.get_Position
(<$%$2, 31, $3 > : < keyboard, mouse, touchScreen > <- |0_DEVICES, 1)
) "RET;
}
@f{
bottomRX : (integer : topLeftX, side ) -> integer ;
{ return (topLeftX + side ) ; }

bottomRY : (integer : topLeftY, side ) -> integer ;
{ return (topLeftY - side ) ;}

int2bool : ( integer : intval ) -> boolean ;

{

return (intval ~=? 0) ;

}
@},
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Chapter 4

Regular Types for
Active Objects’

Oscar Nierstrasz

Abstract  Previous work on type-theoretic foundations for object-oriented
programming languages has mostly focused on applying or extending
functional type theory to functional "objects.” This approach, while benefiting
from a vast body of existing literature, has the disadvantage of dealing with
state change either in a roundabout way or not at all, and completely side-
stepping issues of concurrency. In particular, dynamic issues of non-uniform
service availability and conformance to protocols are not addressed by
functional types. We propose a new type framework that characterizes objects
as regular (finite state) processes that provide guarantees of service along
public channels. We also propose a new notion of subtyping for active objects,
based on Brinksma’s notion of exfension, that extends Wegner and Zdonik'’s
“principle of substitutability” to non-uniform service availability. Finally, we
formalize what it means to “satisfy a client’s expectations,” and we show how
regular types can be used to tell when sequential or concurrent clients are
satisfied.

4.1 Infroduction

Much of the work on developing type-theoretic foundations for object-oriented program-
ming languages has its roots in typed lambda calculus. In such approaches, an object is
viewed as a record of functions together with a hidden representation type [10]. While this
view has the advantage of benefiting from a well-developed body of literature that has a
great deal to say of relevance to OOP about polymorphism and subtyping — see, for ex-

* This chapter is a revised and corrected version of a previously publishedfa®@M. Proceedings
OOPSLA '93Washington DC, Sept. 26 — Oct. 1, 1993, pp. 1-15. Permission to copy without fee all or part
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Oscar Nierstrasz, “Regular Types for Active Objects,” Object-Oriented Software Composition, O. Nierstrasz and D. Tsichritzis (Eds.), pp.
99-121, Prentice Hall, 1995.

Reproduced with the permission of the Publisher, Prentice Hall (a Pearson Education company). This work is protected by copyright and
may not be reproduced other than when downloaded and viewed on a single Central Processor Unit (CPU) for private use only. Itis not
otherwise to be reproduced or transmitted or made available on a network without prior written permission of Prentice Hall. All other
rights reserved.



100 Regular Types for Active Objects

ample, chapter 6 of this book — the fact that objects in real object-oriented languages
change state is typically dealt with in an indirect way.

The mismatch is even more acute in concurrent object-oriented languages. In such lan-
guages, “active objects” may have their own thread of control and may delay the servicing
of certain requests according to synchronization constraints [20]. Such objects may fur-
thermore require a particular protocol to be obeyed (such as an initialization protocol) for
them to behave properly. Chapter 2 of this book presents a survey of such languages and a
thorough discussion of issues. See also chapter 12 for an example of an object-oriented
framework in which “gluons” encapsulate protocols to facilitate dynamic interconnection
of components. Existing notions of object types coming from a functional setting do not
address the issues of non-uniform service availability or conformance to a service proto-
col. (Although these issues are also relevant for passive objects and sequential OOPLs, we
draw our main motivation from object-based concurrency, and so we will refer in a general
way to “active” objects.)

We argue that, in order to address these issues, it is essential to start by viewing an object
as gorocessnot a function. (See [26] for other reasons.) By “process” we mean an abstract
machine that communicates by passing messages along named channels, as in Milner’s
CCS [24] or the polyadit-calculus [25]. Processes naturally model objects since they
represent pure behaviour (i.e. by message passing). Behaviour and “state” are indistin-
guishable in such an approach, since the current state of a process is just its current behav-
iour. Unfortunately there has been considerably less research done on type models for
processes than for functions, and the work that has been done focuses primarily on typing
channelsnot processes (see, for example [25] [33]).

Although processes in general may exhibit arbitrary behaviour, we can (normally) ex-
pect objects to conform to fairly regular patterns of behaviour. In fact, we propose on the
one hand to characterize #ervice typeassociated with an object in terms of types of re-
guest and reply messages, and on the other hand to characteanzailtislity of these
services byegular typeghat express the abstract states in which services are available
and when transitions between abstract states may take place. Services represent contracts
or “promises” over the message-passing behaviour of the object: in a given state the object
will accept certain types of requests over its public channels, and promises to (eventually)
send a reply along a private channel (supplied as part of the request message). When pro-
viding a particular service, an object may (non-deterministically) change its abstract state
to alter the availability of selected services.

Subtyping in our framework is based on a generalization of Wegner and Zdonik’s “prin-
ciple of substitutability” [34]: services may be refined as long as the original promises are
still upheld (by means of a novel application of intersection types [5] [31]), and regular
types may be refined according to a subtype relation — based on Brinkgteasione-
lation for LOTOS processes [7] — that we call “request substitutability.”

In section 4.2 we shall briefly review what we mean by “type” and “subtype,” and how
we may understand the notiorsobstitutabilityin the context of active objects. In section
4.3 we introducservice typeas a means to characterize the types of request messages un-
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derstood by an object and their associated replies, and we shointarsectionover
service types provides us with a means to refine these specifications.

In section 4.4 we defimequest substitutabilitfor transition systems and we demon-
strate its relationship to failures equivalence. In section 4.5 we introetpudar typesas
a means to specify the protocols of active objects. In section 4.6 we propose to use request
substitutability as a subtype relationship for regular types, and we demonstrate a simple
algorithm for checking that one regular type is request substitutable for another. Next, we
formalize a client’'s expectations in termseduest satisfiabilityand we show how regu-
lar types relate to this notion.

In section 4.8 we summarize a number of open issues to be resolved on the way to prac-
tically applying our type framework to real object-oriented languages. We conclude with
some remarks on unexplored directions.

4.2 Types, Substitutability and Active Objects

Before we embark on a discussion of what types should do for active objects, we should
be careful to state as precisely as possible (albeit informally) what we believe types are
and what they are for. Historically, types have meant many things from templates for data
structures and interface descriptions, to algebraic theories and retracts over Scott's seman-
tic domains. We are interested in viewing typepartial specifications of behaviof
values in some domain of discourse. Furthermore, types should express things about these
values that tell us how we may use them safely. Naturally, we would also like these speci-
fications to (normally) be statically checkable.

Subtyping is a particular kind of type refinement. irherpretationof a type for some
value space determines which values satisfy the type. A subtype, then, is simply a stronger
specification and guarantees that the set of values satisfying the subtyqpdsenf
those that satisfy the supertyper i§ a type (expression) aktlis some universal value
space of interest, then we shall wifeto mearx satisfieg, and[[ T] to mean{x Ox:T}
(i.e. whereJ is understood). Another tyjgas a subtype of, writtens<T, if xS x:T, i.e.
(s TI.

But specifically whakindsof properties should types specify? It is worthwhile to recall
Wegner and Zdonik’s principle of substitutability:

An instance of a subtype can always be used in any context in which an instance of a
supertype was expected. [34]

It is important to recognize that “can be used” impdiely “safely,” and nothing more.
It does not imply, for instance, that an application in which a type has been replaced by
some subtype will exhibit the same behaviour. We are not concerned with full behavioural
compatibility, but only with safe usage.

What does type safety mean in an object-oriented setting? First of all, that objects
should only be sent messages that they “understand.” We must therefore be able to specify
the types of request and reply messages exchanged by objects. If we think of objects as



102 Regular Types for Active Objects
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Figure 4.1 Non-uniform service availability.

“servers,” then the services they provide are promises that they understand certain types
of requests, and that, in response to a particular request, they will eventually send a certain
type of reply. Subtyping of services can then be defined in a fairly conventional way, in that

a subtype at least guarantees the promises of the supertype: at least the same requests are
understood (possibly more) and consequent replies to those requests are guaranteed to be
of the right type.

Services may not always be available, however. If requests must be sent in a certain or-
der, or if certain services may be temporarily unavailable, then, we argue, the object’s type
should describe this. Type safety, in this case, means that clients (or, more generally, envi-
ronments) that interact with such objects do not deadlock because of protocol errors. Type
substitutability is correspondingly defined so that sequences of interactions that are valid
for a supertype are also valid for a subtype. A client will never be unexpectedly starved of
service because a subtype instance has been substituted.

In order to explain our type approach, we will adopt an object model that views objects
as certain kinds of communicating processes [4][8][17][24]. (Although we could formal-
ize our model in process-theoretic terms, as in, for example, [30], for the purposes of this
presentation we will attempt to be rigorous and precise without being excessively formal.)

Figure 4.1 depicts an object’s behaviour in an idealized fashion. The large circles rep-
resent the object in its various states and the small circles represent its communication
channels, white for input and black for output. The input channels on the left side are for
receiving requests. Note that the set of “enabled” input requests changes over time.

In our object model, every object receives requests along uniquely identified channels,
one per request name. Each request consists of a message containing a number of argu-
ments and a unique reply address (also a channel name). The arguments must be of the cor-
rect type. (We will not be concerned with what kinds of values may be passed, but the
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reader may assume that any reasonable value — objects, object identifiers, channel
names, etc. — is fair game.)

An object, then, accepts requests addressed to it through its (public) request channels,
and it may issue requests to other objects it is acquainted withewiaequest channels.
Allreplies, however, are communicated alpnigatechannels that are temporarily estab-
lished by clients of requests. When an object accepts a request, it imglieithnteeso
(eventually) send a reply (of the correct type) to the client. This reply may be delivered by
a third party to which the reply address has been forwarded. Furthermore, the object may
vary the requests accepted over time by selectively listening only to certain request chan-
nels. When an object is ready to accept a message addressed to one of its request channels,
we say that the requesEBsabled and that the corresponding servicavailable We as-
sume that the complete set of public request channels is finite and fixed in advance for any
object.

We will now separately discuss the issues of specifying types of services associated
with an object (section 4.3), and specifying when those services are available (section
4.4).

4.3 Intersecting Service Types

We will start by introducing the following syntax for service types:
S::=all Onone OM(V)-VOS'S
V::=all Onone O(V,..) O...

whereM is a request name a¥ids a value type (i.e. types for argument and return values).
“ =" binds more tightly than®”. We assume thatincludes some base types, the typles
andnone, and tuples over value types.

We will write x : m(A) - R to mean that objegtmay receive a valueof typeA together
with a reply address along a request chaxpeind will consequently promise to return a
valuer of typeR. We may also write.m(a) : R to say thak understands the message)
and returns a value of type We call the type expressiafiA) - R aserviceof x, and we
say that offersthis service. Note that this does not imply anything about other services
thatx may or may not offer.

We may refine these expressions byititersectionoperator for types. Intersection
types have been studied extensively in functional settings (see [31] for a bibliography).
Here we propose to assign an interpretation to them for objects in a process setting. If we
write x:S11S2, we wish that to mean precisely that1 andx:S2. In set-theoretic terms,
then:

[s1rs2] = [s1] n [S2]

As specifications, we mean that bethands2 are true statements abaufs we shall
see, this device allows us not only to attribute sets of services to objects, but also permits
us to refine their types in interesting ways.
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The expressionsl andnone represent, respectively, the set of all objects and the empty
set. That isall tells us nothing about the services of an objectpamgddemands so much
that no object can possibly satisfy il Gndnone are the “top” and “bottom” of our type
hierarchy.)

Let us now briefly look at the subtyping properties of service types. Some facts are
clear:

1. T<all(i.e. for any value or service typg
2. none<T
3. m(none) - T =all (since no such request can ever be received)
4. R1<R2[ m(A)-R1<m(A)-R2
5. A2<A1[0] m(Al)-»R <m(A2) R (i.e. a contravariant rule)
Now, considering intersections, the following are straightforward:
6. S17S2<S1andsirs2 <S2
7. S<siands<s2[] S<S17s2
8. s1<s2 0 (S1782) = s1 (follows from (6) and (7))
Now consider:
9. m(Al) > R1"m(A2) - R2 < m(A1"A2) - (R1"R2)
Normally we may expect to write type expressions like:
put(all) — (Ok) " get() — (all)
but nothing prevents us from writing:
inc(Int) - Int ~ inc(Real) — Real
or even:
update(Point) — Point ~ update(Colour) — Colour

If an incoming message satisfies more than one request type in the intersection, then the
result must satisfgachof the result types. Our (informal) semantics of intersection types
requires thaall applicable service guarantees must hold. In this case, if:

cp:ColouredPoint,

whereColouredPoint = Point*Colour
thenx.update(cp):Point and x.update(cp):Colour. The result, therefore, must have tyjg
ouredPoint.

Notice that as a corollary of (9), via (6) , (4) and (7), we also have:

10.m(A) - (R1"R2) = m(A) - R1 A m(A) - R2
This also means, however, that we must take care not to intersect services with abandon.
For example, suppos@ andReal are disjoint types. Then:

size(Point) — Int * size(Colour) — Real
< size(ColouredPoint) — (Int*Real)
= size(ColouredPoint) — none
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Since the twaize services have contradictory result types, their intersection yields the re-
sult typenone.

As a final remark, notice that type-safe covariance is naturally expressed:
update(Point) — Point * update(ColouredPoint) — ColouredPoint

is a subtype of bottpdate(Point) — Point andupdate(ColouredPoint) - ColouredPoint. A cli-
ent supplying an instance@dlouredPoint as an argument can be sure of getting@ured-
Point back as a result, whereas clients that supgpiy arguments will only be able to infer
that the result is of the more general tppet.

4.4 Request Substitutability

Service types tell us what types of requests are understood by an object and what types of
reply values it promises to return, but they do not teNlusnthose services are available.

In particular, we are interested in specifying when an object’'s request channels are
enabled. The sequences of requests that an object is capable of servicing constitute the
object’sprotocol An object thatonformsto the protocol of another object is safely sub-
stitutable for that second object, in the sense that clients expecting that protocol to be sup-
ported will receive no “unpleasant surprises.”

Before tackling the issue of how to specify protocols, let us first try to formalize the ap-
propriate substitutability relation.

According to our abstract object model, objects can do four things: accept requests, is-
sue requests, receive replies and send replies. Since the behaviour of objects should be
properly encapsulated, clients should only need to know about the first and the last of
these, i.e. the requests accepted and the replies sent. If we can safely assume that an object
that accepts requests promises to deliver replies according to service type specifications,
then the only additional thing a client needs to know about an object’s protocol is when it
will accept requests. We therefore adopt an abstract view of an object’s protocol that only
considergequestgeceived along its request channels, igmdres all other messages
(Later, in section 4.7, we will model clients’ protocols by considering only requests is-
sued.)

In this view we model an object as a transition system where each state of interest rep-
resents atablestate of the object, in which it blocks for acceptance of some set of re-
guests. A transition takes places upon the receipt of some request and leads to a new stable
state. If an object in statecan accept a requeseading to a new statg we would write:

x5 X
Note that we ignore all intervening communications leading to the new state. If these
communications are purely internal to the object, we can view it as a closed system, but if
some of these communications are with external acquaintances, then an element of non-

determinism is introduced, since the transitions to new stable states may depend upon the
current state of the environment. In cases like this, we feel it is correct to view the object’s
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protocol as inherently non-deterministic, since it would be unreasonable to expect clients
to monitor the environment to know the state of an object’s protocol.

Clients are typically interested not just in issuing a single request, but in issuing series
of related requests. Suppass such a sequencer2,... of requests. If an object in state
can accept such a sequence, leading tost#ten we write:

x [ %

An important part of the protocol of an object is the set of sequences of requests that it
may accept. This is conventionally captured by the notion of sebefy 8] of a transition
system:

Definition 1 tracegx)={s0O,x I x'}.

Suppose we wish to express that an object inssistequest substitutabler an object
in statey, which we will writex:<y. Then clearly we must hatacegy) [] tracegx), for if
a client ofy expects to accept a sequence of requestind we substitutefor y, thenx
must accept the same sequesnicemay accept additional sequences, but since the client
does not expecthem, they are of no concern to us.

But the inclusion of traces is not enough to guarantee request substitutability, for sup-
pose that after a sequence of requestsvill move to statg’, butx will move to either
statex' orx". Furthermore, suppose that stais identical to/ — i.e. behaviour from that
point on is identical — and permits a requesto be accepted, bxit denies it. Then itis
possible thatracegy) [ tracegx), but nevertheless the client may receive a nasty surprise
if x is substituted foy and the requests refused after the sequencdraces tell us what
sequences are acceptable, but they do not tell us if theyxeeessarilyacceptable! For
this, we need the help of a finer notiorfafures|8].

First, we need to define tirgtials of an object — the requests which are initially ena-
bled:

Definition 2 init(x)={rO00' x &L x}.
Definition 3 The set ofailuresof an object x is
failurex) ={ (s,R) 0K, x 3 x,Ris finite R n init(x') =0 }.

That is,(s,R) is a failure ok if x may simultaneously refuse all of the requests in the set
R after accepting the sequencét may be the case thavill reach a state in which some
or all of the requests mwill be accepted, but we know that ipsssiblethat they will all
be refused. (NB: It is also important that the sktatee stable for the s& to be well-
defined, but we have already assumed that.)

Now, suppose that we wanky and we know thag,R) is a failure ok. Furthermore,
suppose thatis a sequence of requestsracegy). Then a client will be satisfiemhly if

it expected thak,R) was also a failure gf Note that is isnota sequence in the protocol
of y, then the client is unconcerned whetfgr) is a failure ofk or not, since it is in any

* Although we have not yet formalized clients’ expectations, we are implicitly assuming here that clients
aresequentigli.e. they only issue a single request at a time. Later, when we ifirest satisfiabilitywe
will see how request substitutability relates to concurrent clients.



Request Substitutability 107

case not expected to be handled. To express this notelatbfe failureswe need the fol-

lowing definition:

Definition 4 The set ofelative failuresof an object in statewith respect to an object
in statey is: failures,(x) ={ (s,R) U failureg(x) [s [ tracegy)}.

Now we come to the definition of request substitutability:

Definition 5 Anobjectin stateisrequest substitutabfer an object in statg written
x:<y iff: (i) tracegy) [tracegx)
(i) failures/(x) U failureg(y).

(This turns out to be identical to tb&tensiorrelation introduced by Brinksma [7]. See
also Cusack [13] for a discussion of various conformance relations, including extension,
in the context of CSP [8].)

That s, a client expectingto follow the protocol of will expect that all sequences of
requests supported pyvill also be accepted by and that any requests refused layjter
accepting one of those sequences might also have been refysétbtg/thak may (1)
accept additional sequences of requests that the client does not expect and therefore will
not use, and (2) may eliminate some non-determinisyrbinprovidingfewerpossible
transitions between states. On the other han@y introduce new transitions and states
as long as they can be explained from the viewpomtinfgeneral, eitherory may have
more or less states or transitions.

Note also that the set of failures of an object tells us all we need to know in order to de-
termine request substitutability, since the traces can be derived from the failures set by
projections, and relative failures can be determined from the failures of one object and the
traces of another.

Proposition 1 Request substitutability is a pre-order.
Proof
(1) :<is reflexive Ux, x:<x — immediate, sinctilures(x) =failuregx).
(i) :< is transitive Suppose:<y andy:<z. Thentracegz) [1 tracegy) [ tracegx).
Next, supposes,R) U failures,(x). Thens Utracegz) [ tracegy),
so(s,R) U failures (x) U failures(y). But then(s,R) U failures,(y) U failureg(z),
so we conclude<z.0
There exists a vast literature on process equivalences and pre-orders (see, for example,

[1][14] for some interesting comparisons). Interestingly, the equivalence induces by re-
quest substitutability is the same as failures equivalence [7][8].

Definition 6 Objects in stateg andy arefailures equivalentff failureqx) =
failuregy).
Proposition 2 xandy are failures equivalent i<y andy:<x.
Proof
[0) failureqx) =failureqy) O tracegx) =tracegy)
[ failures(x) =failures (x) = failures,(y) =failurey) Ul x:<y andy:<x.
0) x=<yandy:<x [ tracegx) =tracegy).
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Hencefailures (x) =failureg(x) [ failuresy).
By symmetryfailureqx) =failureqly). o

Although failures equivalence is exactly request equivalence, the inclusion of failures
sets does not imply request substitutability, nor vice versa. It suffices to consider:

a b a
a

It is easy to see thaky (but not the reverse, singeloes not permé.b) andfailureg(y) U
failureqx) (but not the reverse, singeb,{a,b}) is a failure ok but not ofy). See also Brin-
skma [7] for a detailed discussion.

4.5 Viewing Objects as Regular Processes

We now have a plausible definition of protocol conformance in terms of request substitut-
ability — what we still need is a way to specify protocols, and a way to check that an object
conforms to a protocol, or that one protocol conforms to another. In the most general case,
unfortunately, request substitutability will be undecidable since failures equivalence is
undecidable in general [18]. (If request substitutability were decidable, we could use its
decision procedure to check if two processes were failures equivalent according to propo-
sition 2.)

We therefore propose to specify protocolsegsilar processes.e. processes with a fi-
nite number of “states” or behaviours [6][11][15][23]. A regular process is essentially a fi-
nite state machine (hence the adjective “regular”), where transitions take place upon
communications with other processes. We will call the specification of such a process a
regular type since we intend to use it to specify object protocols. It turns out that by re-
stricting ourselves to finite state protocols, request substitutability is decidable by a simple
procedure.

Furthermore, although we cannot specify all protocols exactly with a finite number of
states, we caapproximatenfinite state protocols by non-deterministic regular processes.
These approximations can then be used in many cases to check request substitutability.

Let us consider a few canonical examples using various kinds of “container” objects
(bounded buffers, stacks, variables) each supporting (atdeeatdget requests. We can
associate with these objects a number of abstract states, each corresponding to a set of cur-
rently enabled requests. Since we assume that the total set of possible services is finite, a
finite number of abstract states suffices to characterize all the possible combinations of en-
abled requests (and normally only a few of these combinations should be needed). From
the client’s point of view, transitions may take place when services are provided (since this
is all the client may observe).
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First, consider a one-slot bounded buffer.

put

get

It has two abstract states: one in which orgytas accepted, and one in which onkyea
is allowed. Upon acceptingpat or aget request, the object changes state. We express this
by the protocol (regular type).

Now consider an uninitialized variable with the protocol

put

Var = m put, get

Its protocol requires thatat must first be requested, but thpenandget requests may be
interleaved arbitrarily. In this case, we seeVhatBuf since a client that expects an object
to obey thesuf protocol will never be “disappointed” if an object obeyagis substitut-
ed. The reverse does not hold, becauswill refuse the sequeneet.get.get, whereavar

will not.

In these two cases, the transitions are deterministic, Bui@ndvar are really finite
state protocols.

Now consider a stack (wihut andget instead opush andpop). Initially only aput is
possible. Then botbut andget are enabled. Furtheat requests will not change this, but
aget may bring us back to the initial state. The corresponding regular type is specified be-
low asNDStack.

put

NDStack = C):C):] put, get

get

It resemblesar except that after get, we do not necessarily know what state we are in.
Clearly, such a description is an approximation because we are attempting to express the
service availability of a deterministic process (the object) by means of a non-deterministic
one (the regular type).

We can try to add another intermediate state, B $tack?:

put put
get get put, get

but after twaut requests andget we again do not know what state we are in. In fact, we
would need an infinite number of states to describe completetyatikgorotocol.

As we argued before, however, non-determinism is inherent in some protocols, because
objects are not, in general, closed systems. Furthermore, the non-deterministic regular
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types are still useful to us. We can determine, for example, that an object conforming to the
NDStack regular type also conformsmaf sinceNDStack:<Buf.

Choosing a simplandreadable syntax for specifying regular types is somewhat prob-
lematic. For the purpose of this chapter we will opt for simplicity. We specify a regular
type by a pair,Xg,E) consisting of a finite system of equati@hsf the form:

E={x=t, ..}
wherex; is a distinguished start state, andttage regular type expressions of the form:

tr=rxdt+t
r is arequest name ards a state name. Evexyised irE must have exactly one defining
equation inE (except fomil, which stands for a dead state with no transitions). Regular
types have the following interpretation as transition systems:

1. init(nil) =00
rnil 5 nil
x=tOEDO rx &t

t1 rl t1' O t1+t2 rl t1'

22 0ua 3

With this simple syntax, then, we could specify the various regular types we have seen
as follows:
Buf = (b1, { bl=put.b2, b2=get.b1})
Var = (v1, { vl=put.v2, v2=put.v2+get.v2 })
NDStack = (s1, { s1l=put.s2, s2=put.s2+get.s2+get.s1})
NDStack2 = (s1, { s1=put.s2, s2=put.s3+get.s1,
s3=put.s3+get.s2+get.s3 })
At this point the reader may wonder why we cannot simply use regular expressions to
specify regular types. The reason is that regular expressions stand forleeguages
i.e. sets of strings, not regular processes. Regular expressions can consequently tell us
about the traces of a transition system but not its failures. Consider, for example, the reg-
ular types/ar andNDStack. If we consider any state to be a valid final state, then they rec-
ognize exactly the same regular language, namely:
€ + put.(put+get)*
But this does not tell us that after acceptipgt@ollowed by aget, NDStack mayrefusean-
otherget, whereasar never will. (A similar argument is elaborated in [16] to introduce the
difference between language and process equivalence.) For precisely the same reason, it
isnotgenerally possible to convert a non-deterministic regular process into a determinis-
tic one without losing information.

a bk DN

4.6 Subtyping Regular Types

We now propose to use request substitutability sisoéypingrelationship over regular
types. We are justified in this since we have shown that request substitutability is a pre-
order, so ifvar:<NDStack andNDStack:<Buf, then we can conclude thai:<Buf.
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The fact that regular types have finite states means that a simple algorithm exists for
checking the subtype relationship (not surprisingly, the algorithm is similar to that for
checking equivalence of finite state automata [2]). To derive the algorithm, we must intro-
duce a multi-state variant of request substitutability. First let us exigf)dand - to
work with sets of states:

Definition 7 init(x)={rMxOX,x,x & x'}.
Definition 8 x L X'iff X' ={x' [Ox0Ox,x & x'}.
Note in particular thats for sets of states isfanction not just a relation. In effect, we
are turning a non-deterministic transition system into a deterministic one in the traditional

way by expanding single states into sets of reachable states [2].
Now let us consider the following definition:

Definition 9 A set of object states is multi-state request substitutalfier a set of
statesy, writtenx:<<y, iff:
@) init(Y) Oinit(X)
(i) OxOx, A3y, init(y) O init(x)
(i) OrOinit(y), ifx L x"andy L v', thenx":<<Y'.

Condition (i) guarantees that all transitions possible from some statg®flso pos-
sible from some state &f Condition (ii) says that any failure possible in some state of
can be explained by a failure of some corresponding stateainey has the same or few-
er initial transitions possible). Condition (iii) is simply the recursive case.

Proposition 3 {x}:<<{y} = x«<y.

Proof
[0 ) Suppose thdix } :<<{y}, thentracegy) [ tracegx) by 9(i) and 9(iii).
Next, supposes(R) O failures,(x). Then¢',x 8 ', init(x) n R=0and3y/,y 8 vy,
init(y’) O init(x') by 9.ii and 9.iii sog,R) U failuresy) andfailures,(x) U failuregy)
hencex:<y.
0 ) Similar argument in reverse.

Note that this result is independent of whether we restrict our attention to finite state
transition systems or not. If the sets of reachable states are finite, howeveianey dre
regular types, then proposition 3 provides us with a simple procedure to check whether
x:<y by simply generating all the sets of states reachable{fiamd{y} by transitions in
tracegy) and checking conditions 9(i) and 9(ii) for all the comparable sets. Since the state
space is finite, the set of reachable state sets must also be finite, and so the comparison
must terminate in finite time.

The following iterative algorithm suggests itself: we maintain a LIST of comparable
sets of states and possible transitions, of the fotM g, whereX andY are the sets of
states ok andy reachable from some common tracdy, andRis the set of possible tran-
sitions (requests) fromithat the algorithm must traverse. We follow each possible request
to new comparable state sets until we have exhausted all transitions and checked all com-
parable state sets, or until we fail to satisfy one of the conditions in definition 9.
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Verify thatinit(y) O init(x), else FAIL

Add ({x},{ y},init(y)) to LIST

If possible, select somX,{Y,R from LIST whereRis not empty, else SUCCEED
Select somein Rand replaceX,Y,R by (X,Y,R{r}) in LIST

ComputeX' andY’, whereX L X andy & Y

If (X',Y',R) for someR is already in LIST, then go to step 3, else continue

If init(Y") O init(X"), then continue, else FAIL

If for eachx; U X' there exists somgl'Y' such that
init(y;) O init(x;), then continue, else FAIL

9. Add X,Y,init(Y")) to LIST and go to step 3.

Note that steps 2 and 7 guaranteeXhgenerated in step 5 will never be empty.

Since there is a finite number of reachableXatsdY to compare, the algorithm clearly
terminates. In the worst case, there will b&-9x(2™1) comparisons (i.e. the size of
LIST), wherenandmare the number of states reachable fx@amdy respectively, but nor-
mally there will be far fewer, since not all subsets of states will be generated, and not all
possible combinations will need to be compared. In the special case that one compares two
deterministic regular types, the maximum number of comparisons mjusbut may be
even as little am (in case of success, that is).

Let us briefly look at an example that compaego the regular type of a stack that
supports an additionalvap operation:

© N o g bk wbdE

put put, get, swap
get

NewNDStack = (s1, { s1=put.s2,
s2=put.s2+get.s2+get.sl+swap.s2})

We wish to check wheth&ewNDStack:<Buf. We start with({s1},{b1},{put}). Boths1 and
b1l permit gput, and they have the same requests enabled, so we can add this to our list:

({s1},{b1}.{put})
The only possible transition igut, so we remove it from LIST and generate:
({s2}.{b2},{get}). s2 enables at least the requests bhanables, so we add this to our list:

({s1}{b1}.{put})

({s2},{b2}.{get})
Now only aget is possible, so we generatel1,s2},{b1},{put}). We verify that1 ands2 each
enable at least the request®pand add this to our list:

({s1}.{b1}.{put})

({s2}.{b2},{get})
({s1,s2},{b1},{put})
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put put

Buf = m FaultyStack = put, get

get
get

put put

NDStack = m put, get

get get

et
put put g

NDStack? = C):C):CDput, get

get get
put put, get,swap

NewNDStack = m
put
Var = O_m put, get get

Figure 4.2 Some subtype relationships between regular types.

Now we can perform put, but this just generatgs?2},{b2},{get}), which is already repre-
sented in the list. There is nothing left to check, so we SUCCEED. (In the reverse direction
we would quickly FAIL in step 7 after a singl& because2 enables neitheut norswap.)

Note that the total number of comparisons (3) is far less than the worst case possible (9).

Note thatNewNDStack is request substitutable fBuf even though it is, in a sensess
deterministic thaBuf. The key point is that it is safe to use wherever we are expeating
like behaviour.

Figure 4.2 shows the subtype relationships between a few of the regular types we have
seen. CuriouslyybDstack andNDStack2 are not related (to see why, consider the sequence
put.get.get, which is intracegNDStack) but not intracegNDStack2), and the failure
(put.put.get,{get}), which is infailuregNDStack), but not infailuregNDStack?2)).

4.7 Request Satisfiability

Up to now our discussion has focused on the protocols of service providers. Request sub-
stitutability tells us when an object obeying some protocol can be safely substituted by
some second object, assuming that the first object satisfies the client’s expectations. But
we have not yet formalized what it means to satisfy a client. It turns out that we need to de-
fine a new relation, callegquest satisfiabilitywhich expresses this idea.
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If the protocol of a service provider expresses when its services are available, then the
protocol of its client expresses when those services are requested. We propose that a client
is satisfiedf its requests are always honoured. Up to now we have implicitly assumed that
clients issue at most one request at a time. In general, however, a client may issue multiple
requests simultaneously (particularly if the “client” is actually an environment consisting
of multiple concurrent clients) — in such cases, we do not ask that all of the requests be
honoured together, just that the client be guaranteed to make progress, i.e. at least one re-
guest must always be accepted. Since the current state of the client may not necessarily be
deterministic, the object must be prepared for the client to be in any one of its reachable
states. The object is allowed to terminate (i.e. refuse all further requests) only if it can be
sure that the client will issue no more requests. In short, we must ensure that an object can
only fail if the client makes no mouodfers

We can formalize this as follows:
Definition 10 The set obffersof a transition systemis:
offergc) ={ (s,R) Ok', c I ¢',R=init (c') }.

So, if(s,R) is an offer ok, then we know that may issue the sequence of requesiisd
then may issue the set of requesttt is also possible thatmay issue some other set of
request®’, if (s,R") is also an offer of.

Definition 11 An objectx isrequest satisfiablfor a clientc, writtenx i ¢, iff:
(s,R) [ failuregx)nofferdc) 0 R=01

If both client and server protocols are specified as regular types, then request satisfiability
can be determined by an algorithm along the lines of the one we demonstrated for check-
ing request substitutability.

4.7.1 Sequential Clients

How does request substitutability relate to request satisfiability? Clearly, we would expect
that ifx:.<y andy k ¢, thenx & c. It turns out that i€ is sequential, then this is in fact the case.

Definition 12 Aclientcissequentialf (s,R)offerdc) O |R|< 1.
Lemma 4 |If cis sequential, then:- cJ tracegc) [] tracegy).
Proof By induction on the length of traceswfi
Proposition 5 If cis sequential, then<y andy-c [ xkc.
Proof (s,R) [failuregx)nofferqc) O s [tracegc) U tracegy)

U (s,R) Ufailures)(x) U failuregy) 0 R=0. 0

We are taking advantage of the fact thiatsequential to conclude tlyatompletelysat-
isfies the expectations af(Note that it also suffices to require thrategc) O tracegy)
for the same result to go through.) But if there are different ways of satisfying a client (par-
ticularly a concurrent one), then it is no longer true that the client will necessarily be sat-
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isfied by a request substitutable service provider. Some additional preconditions must be
imposed.

4.7.2 Concurrent Clients

Let us consider a simple example of a concurrent client consisting of a producer and a con-
sumer connected by a bounded buffer. The producer and the consumer each have their own
view of the buffer, but we are interested in the requirements posed by their concurrent
composition.

Presently we might separately specify expectations of the producer and consumer re-

spectively as:
Prod = CD put Cons = CD get

We might write their concurrent compositionPasd&Cons, where:
cl 5 c1'0 cl&c2 L cl'&c2
and
c2 &L ¢2'0 c1l&c2 L c1&c?'

So we can conclude:
Prod&Cons = CD put, get

Note thatrod&Cons is hotsequential according to definition 12.

It is easy to check th&uf £ Prod&Cons, sinceBuf never refuses bojsut andget. But
what is the role of request substitutability now? Since we knowvthaBuf can we
necessarily conclude also tiat £ Prod&Cons? Unfortunately this is not quite right. The
reason is that a regular subtype may introduce additional behaviour that can perturb the
client’s expectations. Consider, for example, a deletable buffer:

ut
P del
vemut= (o ()
get

It is clear thabelBuf:<Buf. But suppose that we now compose the producer and consum-
er with a malevolent object whose only goal is to try to delete the buffer:

del

Now Buf £ Prod&Consé&Del but it is not the case thatlBuf - Prod&Cons&Del. In the first
case onlyel will be starved out becauBef provides no delete operation, but the client as
whole will still be satisfied sind&od&Cons continues to make progress.
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In the second case, however, the delete operation may succeed, then causing the client
as a whole to deadlock, and thus remain unsatisfied.

What we need to do in order to be sure thtguf can be safely substituted ®&uf is to
restrictits behaviour to that allowed IByf:

Definition 13 xv L x/¥'iff x L x andv L v’

What we mean to capture ki is that some object in statés restricted to accept only

the requests allowed by a second object whose state igSonvée do not know precise-

ly which state the second object s in, so we keep track of the set of possible states.
Usually the initial state of the second object is known, so we will simply wyita-

stead ok/{y}.

Proposition 6 x«<y[ x/y:<y.

Proof
(i) tracegxly) =tracegx) n tracegy). Butx:<y [1 tracegy) [] tracegx),
sotracegx/y) =tracegy).

(i) (s,R)Ofailuresxty) 0 Ok, x 3 x,{y} ¥ Y',suchthar n init(x') n init(y') = O
O Rninit(x’) n O{ init(y") Oy'0Y'}=H R init(x') ninit(y’) Oy'0Y'} =0
Butx:<y O {x}:<<{y}0 O/ O Y, init(y") Oinit(x")

(M y'OY,Rninit(y') =01 (s,R) Ofailureqy) O failureqxry) [ failureg(y).
Butfailures,(x/y) = failureg(x/y), soxly :<y.0

Finally, the result we want:
Proposition 7 x<yandyrcO xiytc.

Proof x:<y[ xly:<y (by proposition 6), stailuregx/y) [J failuregly).
Now (s,R) [ failureqxty) n offerqc) O (s,R) O failureqy) n offerdc) 0 R = [.
Hencex/yEc.O

So, for example, we can conclude that:
DelBuf/Buf E Prod&Consé&Del

since we effectivelidethe additional behaviour introducediBuf from the client.

This is not as strong a result as we might have hoped for, but it is a natural consequence
of the fact that multiple concurrent clients may interfere with one another if their expecta-
tions are not consistent. This is essentially the observation of Liskov and Wing [22] who
propose a new definition of subtyping that requires view consistency. Briefly, the idea is
that a type that extends the behaviour of another type may only be considered a subtype of
the second if the additional behaviour can always be explained in terms of behaviour that
wasalreadythere in the supertype.

In some cases we may get this consistency for free. Note, for example, that if the sub-
type’s behaviour is properly included in the supertype’s, in the sensailinats(x) = fail-
uregxly), then the subtype will be request substitutable for the supertype. We must be sure,
though, that the subtype behaviour is consistent with the restriction imposed by the super-
type. This leads to the following result:
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Proposition 8 If tracegx) =tracegy) and
failureqx) [I failureqly), theny e c [0 xkc.

Proof Follows from proposition 7 since
failureqx) =failuregxty). o

It may still be the case that a subtype provides additional behaviour thabtpeurb
the client. But to be sure that the subtype is truly substitutable, it is necessary to know more
about the client’s expectations. We have previously expiotechction equivalenceith
respect to the expectations of particular sets of observers, and found that equivalence with
respect to all possible observers (also) reduces to failures equivalence [27]. We expect that
relativizingrequest substitutability with respect to the expectations of specific classes of
clients will lead to more general and more useful results for the case of multiple concurrent
clients.

4.8 Open Problems

We have proposed service types as a means of characterizing the services an object pro-
vides, and regular types as a means to express non-uniform service availability. In both
cases we have presented an approach to subtyping. Furthermore, we have formalized what
it means to satisfy a client’s expectations, and we have shown the role that subtyping plays
in determining substitutability.

Although regular types appear to be a novel and promising approach for reasoning
about some of the dynamic (type) properties of concurrent object-oriented programs,
there remains much to be studied before we can claim to have a pragmatically acceptable
approach for type-checking object-oriented languages. Let us briefly summarize some of
these considerations.

4.8.1 Regular Service Types

So far we have treated the typing of services and their availability as orthogonal issues.
Service types express types of requests and replies, and regular types tell us when requests
are enabled. There is nothing to prevent us from proposing a syntax for regular service
types that simply expands request names in regular types to the complete service type
specification corresponding to that request. For example, an integer variable could be as-
signed the regular service type:

IntVar=(v1,{ vi1=put(Int) - Ok.v2,
v2 = put(Int) - Ok.v2 + get - Int.v2  })

Since this is somewhat verbose (the type ofptheservice must be given twice), it
seems more desirable to keep the type specifications of services and their protocols sepa-
rate.
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Itis conceivable, however, that the type of a service may itself change with time. In par-
ticular, the result types associated with certain requests may depend on the argument types
of earlier requests (as is the case with all of the container objects we have seen). To handle
this case, it would seem necessary to introduce term variables into regular types to express
the dependencies between services in the protocol (i.e. a la “dependent types” [32]). Itis
not clear, however, what effect this would have on the determination of request substitut-
ability.

It may also be interesting to consider bounded polymorphism in our framework, since
the integration of intersection types and bounded polymorphism has been previously stud-
ied [31], but only in a functional setting. Finally, we have not considered the issue of re-
cursively defined types, in which the regular type of an object may contain services whose
argument and return types refer to the object’s own type. Previous work on “F-bounded”
guantification [9] addresses subtyping for such types [3], and is likely to be relevant to our
framework.

4.8.2 Applying RegularTypes to Object-Oriented Languages

We have presented our type model without giving any concrete interpretation for types.
The objects to which we wish to assign types have been described only informally by
means of a very general model of objects as transition systems. The next step would be to
provide a concrete syntax for objects, either in terms of a programming language or a
process calculus that can model objects in a straightforward way.

We have been working towards aject calculughat incorporates those features of
process calculi that are most needed for expressing the semantics of concurrent object-
oriented languages [28]. We intend to use the object calculus as an (executable) abstract
machine for gattern language for (typed) active objej@8], and assign regular types to
the expressions of this language.

Since the type expressions we are dealing with can become rather unwieldy, it is espe-
cially important that we be able to do as much tgferenceas possible. In languages that
directly represent abstract states of objects (such as ACT++ [20]) this job will be easier.
The main difficulty will be in determining what transitions between the abstract states are
possible.

We have already pointed out that objects may satisfy many different regular types, and,
since regular types are only approximations, in some cases they may bead:haede-
am In order to assign regular types automatically to objects, it is necessary to generate
some type assignment which is perhaps not the finest possible but which assigns at least
one abstract state to every reachable subset of available services. (Recall thanowr first
Stack was such a minimal representation, whenga&tack2 had two distinct states with
the same services available.)

Another consideration, however, is whether a deterministic regular type can be as-
signed to an object. If such a type specification existsv@.gndsuf), then this is in any
case to be preferred to a non-deterministic regular type that may have less states. Such
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types not only completely describe service availability for an object, but are well-behaved
during type-checking since the sets of reachable nodes for a given trace are always single-
tons. (So LIST stays small.)

4.9 Concluding Remarks

We have proposed a type framework for object-oriented languages that expressas the
icesof an object as an intersectionsefvice typesharacterizing request and reply mes-
sages, andon-uniform service availability terms ofegular typesover a finite number

of abstract states associated with subsets of services. Subtyping of regular types is defined
by introducingrequest substitutabilifya novel pre-order over processes that has special
interest for object-oriented applications. Subtyping is easy to determine for regular types,
and a simple algorithm is presented. Satisfaction of client’s expectations is formalized as
request satisfiabilityand we show how request substitutability relates to it.

A number of technical issues must first be resolved before the framework can be prac-
tically applied to real object-oriented languages. In particular, we seek some results that
will simplify reasoning about substitutability with respect to multiple concurrent clients.

We expect that it will be easier to reason about regular types in the presence of concur-
rency if we interpret them either using a temporal logic or a modal process logic (such as
Hennessy—Milner logic with recursion [21]). A logical characterization of the concepts
we have presented will be the topic of further research.

Despite a number of open research problems, the approach seems to hold a great deal of
promise, since numerous tools and algorithms exist not only for analysing properties of
finite state processes [11][15][23] but also for reasoning about processes in general
[12][19]. This suggests that regular types may be more generally useful for reasoning
about temporal properties of concurrent objects.

We have concentrated on client—server-based protocols in which requests eventually
entalil replies. Can we accommodate other kinds of communication protocols (to support,
for example, transactions)? If so, must we modify our model of regular types to incorpo-
rate bidirectional communications (instead of just enabling of request channels)? Can we
easily accommodatxceptionsn our framework by, for example, allowing replies to be
union types?

Finally, our approach considers only objects with fixed sets of known services. Can we
accommodateeflectiveobjects that acquire new services with time? In such a setting,
would we have to consider not only services, but also types as first-class values?
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