

Object-Oriented
Construction Handbook

This page intentionally left blank

Object-Oriented
Construction Handbook

Developing Application-Oriented Software
with the Tools & Materials Approach

Heinz Züllighoven
IT-Workplace Solutions, Inc., and
University of Hamburg, Germany

With contributions by

AMSTERDAM ● BOSTON ● HEIDELBERG ● LONDON ● NEW YORK ● OXFORD

PARIS ● SAN DIEGO ● SAN FRANCISCO ● SINGAPORE ● SYDNEY ● TOKYO

MORGAN KAUFMANN PUBLISHERS IS AN IMPRINT OF ELSEVIER

HEIDELBERG

as lead authors
Robert F. Beeger
Wolf-Gideon Bleek
Guido Gryczan
Carola Lilienthal
Martin Lippert
Stefan Roock
Wolf Siberski
Thomas Slotos
Dirk Weske
Ingrid Wetzel

as co-authors
Dirk Bäumer
Petra Becker-Pechau
Holger Breitling
Ute Bürkle
Rolf Knoll
Anita Krabbel
Daniel Megert
Dirk Riehle
Axel Schmolitzky
Wolfgang Strunk
Henning Wolf

Zull-FM.qxd 31/8/04 2:38 PM Page iii

Copublished by Morgan Kaufmann Publishers and dpunkt.verlag

Morgan Kaufmann Publishers dpunkt.verlag
Senior Editor: Tim Cox Senior Editor: Christa Preisendanz
Publishing Services Manager: Simon Crump
Project Manager: Brandy Palacios
Editorial Assistant: Richard Camp
Cover Design: Frances Baca Design
Cover Image: Montage of tools in boxes, courtesy of Digital Vision and Getty Images
Text Design: Julio Esperas
Composition: Newgen Imaging Systems
Technical Illustration: RDC Tech
Translators: Angelika Shafir, Bob Bach
Copyeditor: Harbour Fraser Hodder
Proofreader: Graphic World Inc.
Indexer: Graphic World Inc.
Interior printer: The Maple-Vail Book Manufacturing Group
Cover printer: Phoenix Color Corp.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

Available in Germany, Austria, and Switzerland from
dpunkt.verlag
Ringstraße 19B
69115 Heidelberg, Germany
http://www.dpunkt.de

© 2005 by Elsevier Inc. (USA) and dpunkt.verlag (Germany)

Designations used by companies to distinguish their products are often claimed
as trademarks or registered trademarks. In all instances in which Morgan
Kaufmann Publishers is aware of a claim, the product names appear in initial
capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying,
scanning, or otherwise-without prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.com.uk.
You may also complete your request on-line via the Elsevier home-page (http://elsevier.com)
by selecting “Customer Support” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

MK ISBN: 1-55860-687-4
dpunkt ISBN: 3-89864-254-2

This book is printed on acid-free paper.

For information on all Morgan Kaufmann publications,
visit our website at www.mkp.com.

Printed in the United States of America
04 05 06 07 08 5 4 3 2 1

CONTENTS

Preface xvii

1 Introduction
1.1 APPLICATION ORIENTATION — THE SUBJECT OF THIS BOOK 1

1.1.1 Motivation 1
1.1.2 Structure of This Book 3

1.2 THE TOOLS & MATERIALS APPROACH (T&M) 4
1.2.1 The T&M Approach in a Nutshell 4
1.2.2 T&M As a Method 8

1.3 PROJECTS BEHIND THIS BOOK 9
1.3.1 The Scope of the T&M Projects 10

1.4 THE EQUIPMENT MANAGEMENT SYSTEM EXAMPLE 14
1.5 REFERENCES 15

2 The T&M Object Metamodel

2.1 THE OBJECT METAMODEL 17
2.1.1 Introduction 17

2.1.2 Definition: The Object Metamodel 18
2.1.3 Context: What’s the Purpose of an Object Metamodel? 18
2.1.4 Context: A Classification of Programming Languages 19
2.1.5 The Object Metamodel and the Software Model 20
2.1.6 Definition: Objects 20
2.1.7 Discussion: Object Identity 24
2.1.8 T&M Design: Structuring an Interface 25
2.1.9 Definition: Classes 25
2.1.10 Discussion: Generic Operations 27
2.1.11 T&M Design: Generic Operations 27
2.1.12 Discussion: The Object Life Cycle 28
2.1.13 T&M Design: The Object Life Cycle 29

2.1.14 Definition: Inheritance 30
2.1.15 Discussion: Inheritance 30
2.1.16 T&M Design: Inheritance 31
2.1.17 Discussion: Role Relationships as an

Alternative to Inheritance 32
2.1.18 Definition: Use Relationships 32
2.1.19 Discussion: Use Relationships 33
2.1.20 Definition: Polymorphism 33
2.1.21 Definition: Abstract Classes 34
2.1.22 Discussion: Specification and Implementation 35
2.1.23 Definition: Loose Coupling 35
2.1.24 Discussion: Loose Coupling 36

2.2 MODULARIZATION 36
2.2.1 Introduction 36

2.2.2 Context: Modules and Object Orientation 36
2.2.3 Definition: Principles of Object-Oriented

Modularization 37

2.3 THE CONTRACT MODEL 38
2.3.1 Introduction 38

2.3.2 Definition: Contract Model 38
2.3.3 Discussion: The Contract Model 39
2.3.4 Context: The Contract Model and Abstract Data Types 39
2.3.5 T&M Design: The Contract Model 40

2.4 TYPES 40
2.4.1 Introduction 40

2.4.2 Definition: Types 41
2.4.3 Context: The Theoretical Concept of Types 41
2.4.4 Discussion: Types 42

2.5 CLASSES AND TYPES 43
2.5.1 Introduction 43

2.5.2 Classes in Your Design 43
2.5.3 Differences between Types and Classes 43
2.5.4 Discussion: Classes versus Types 44
2.5.5 Background: Programming Languages and Types 44
2.5.6 T&M Design: Classes and Types 45

2.6 VALUES AND OBJECTS 45
2.6.1 Introduction 45

2.6.2 Characteristics of Values and Objects 46
2.6.3 Using Values 47
2.6.4 Context: Values and Objects in Programming

Languages 48
2.6.5 Definition: Domain Values 49

vi C O N T E N T S

2.6.6 T&M Design: Domain Values 49
2.6.7 Implementing Domain Values 49

2.7 METAOBJECT PROTOCOLS 50
2.7.1 Introduction 50

2.7.2 Motivation for a Metaobject Protocol 51
2.7.3 Definition: Metaobject Protocol (MOP) 51
2.7.4 Representing Your Application Model 51
2.7.5 Representing Your Runtime System 53

2.8 REFERENCES 55

3 Guiding Metaphors and Design Metaphors

3.1 INTRODUCTION 57

3.2 DESIGNING APPLICATION SOFTWARE 57
3.2.1 Definition: The Usage Model 58
3.2.2 Background: Methodology Books versus

Design Guidelines 58

3.3 GUIDING METAPHORS FOR APPLICATION
SOFTWARE 59
3.3.1 Background: Guiding Metaphors in Software

Development 60
3.3.2 The “Object Worlds” Guiding Metaphor 60
3.3.3 The Direct Manipulation Guiding Metaphor 61
3.3.4 Discussion: Guiding Metaphor of Direct Manipulation 61
3.3.5 The Guiding Metaphor of the Factory 62
3.3.6 Discussion: The Factory Guiding Metaphor 62

3.4 DESIGN METAPHORS 63
3.4.1 Definition: Metaphors 63

3.5 T&M GUIDING METAPHORS AND
DESIGN METAPHORS 64
3.5.1 A T&M Guiding Metaphor: The Expert Workplace 64
3.5.2 Background: The Supportive View 65
3.5.3 Discussion: Metaphors and Patterns 66
3.5.4 Definition: A Tool 67
3.5.5 The Tool as a Design Metaphor 67
3.5.6 T&M Design: Software Tools 67
3.5.7 Definition: Material 68
3.5.8 Material as a Design Metaphor 68
3.5.9 T&M Design: Software Materials 68
3.5.10 Definition: The Work Environment 69

C O N T E N T S vii

3.5.11 The Work Environment as a Design Metaphor 69
3.5.12 T&M Design: The Work Environment 70
3.5.13 Definition: Automatons 70
3.5.14 The Automaton as a Design Metaphor 70
3.5.15 T&M Design: Software Automatons 71
3.5.16 Definition: The Container 71
3.5.17 The Container as a Design Metaphor 72
3.5.18 T&M Design: Containers 72
3.5.19 Discussion: Design Metaphors 73

3.6 WORKPLACE TYPES 73
3.6.1 Definition: Workplace Types 74
3.6.2 T&M Design: The Expert Workplace Type 74
3.6.3 T&M Design: The Functional Workplace Type 74
3.6.4 T&M Design: The Back-Office Workplace Type 75
3.6.5 T&M Design: The Electronic Commerce Frontend

Workplace Type 76

3.7 REFERENCES 77

4 Patterns, Frameworks, and Components

4.1 INTRODUCTION 79

4.2 BACKGROUND: PATTERNS, FRAMEWORKS,
AND COMPONENTS 80

4.3 PATTERNS 80
4.3.1 Definition: Patterns 80
4.3.2 The Characteristics of a Pattern 81
4.3.3 A Taxonomy of T&M Patterns 83
4.3.4 Conceptual Patterns 83
4.3.5 Design Patterns 84
4.3.6 Programming Patterns 85
4.3.7 T&M Design: Design Patterns 86
4.3.8 T&M Design: Models, Metaphors, and Patterns 86
4.3.9 Background: Pattern Form 88
4.3.10 T&M Design: Pattern Form 88
4.3.11 Pattern Collections 89

4.4 FRAMEWORKS 90
4.4.1 Background: Class Libraries 90
4.4.2 Definition: Frameworks 91
4.4.3 Application Frameworks 91
4.4.4 Black-Box and White-Box Frameworks 92
4.4.5 Connectors between Frameworks 94
4.4.6 JWAM Framework: Layered Framework Architecture 95

viii C O N T E N T S

4.5 COMPONENTS 96
4.5.1 Background: Software Components 96
4.5.2 Definition: Components 97
4.5.3 Current Component Products 98
4.5.4 Components and Frameworks 98

4.6 REFERENCES 99

5 Application-Oriented Software Development

5.1 INTRODUCTION 101

5.2 APPLICATION-ORIENTED SOFTWARE 101
5.2.1 Application Software 102
5.2.2 Definition: Application Orientation 102
5.2.3 Background: Application Orientation 103
5.2.4 Usage Quality 104
5.2.5 T&M Design: Structural Similarity 104

5.3 THE DEVELOPMENT PROCESS 105
5.3.1 Definition: Software Development 105
5.3.2 The Application-Oriented Development Process 105
5.3.3 Discussion: The Development Process 106
5.3.4 The Author-Critic Cycle 107
5.3.5 Discussion: The Author-Critic Cycle 107
5.3.6 Evolutionary System Development 108
5.3.7 Documentation in Software Development 108
5.3.8 Discussion: Documentation 109
5.3.9 Application-Oriented Development Documents 109
5.3.10 Discussion: Application-Oriented Document Types 110
5.3.11 T&M Design: Application-Oriented Document Types 111
5.3.12 Discussion: T&M Document Types 113
5.3.13 Project Documents 113
5.3.14 Documentation Guidelines 114

5.4 REFERENCES 115

6 Software Development as a Modeling Process

6.1 INTRODUCTION 117

6.2 A SIMPLIFIED SOFTWARE DEVELOPMENT MODEL 117
6.2.1 Discussion: A Descriptive Software Development Model 118

6.3 THE APPLICATION DOMAIN 119
6.3.1 Definition: Application Domain 119
6.3.2 Discussion: Analyzing the Application Domain 119

C O N T E N T S ix

6.4 THE DOMAIN MODEL 120
6.4.1 Modeling Your Application Domain 120
6.4.2 Discussion: Modeling Your Application Domain 122

6.5 THE APPLICATION SYSTEM MODEL 122
6.5.1 Context: The Application System Model 122
6.5.2 Definition: Application System Model 123
6.5.3 Discussion: Structural Similarity and Macrostructures 125

6.6 THE APPLICATION SYSTEM 125
6.6.1 Definition: The Application System 126
6.6.2 Discussion: The Application System 127

6.7 SOFTWARE DEVELOPMENT CONTEXTS 127
6.7.1 Discussion: Software Development Contexts 127
6.7.2 The Application Domain Context 127
6.7.3 Discussion: The Application Domain Context 128
6.7.4 Applied Technique 128
6.7.5 Handling and Presentation 129
6.7.6 Discussion: Handling and Presentation 130

6.8 CONTEXTS INFLUENCING THE SOFTWARE
ARCHITECTURE 130
6.8.1 Discussion: How Contexts Influence

Your Software Architecture 130

6.9 REFERENCES 132

7 T&M Conceptual Patterns

7.1 CONCEPTUAL PATTERNS 135
7.1.1 Conceptual Patterns in the Development Process 136
7.1.2 The T&M Conceptual Patterns 136

7.2 A GUIDED TOUR OF THE T&M CONCEPTUAL
PATTERNS 137

7.3 THE INTERRELATION OF TOOLS AND MATERIALS PATTERN
139

7.4 THE MATERIAL DESIGN PATTERN 142

7.5 THE TOOL DESIGN PATTERN 146

7.6 THE WORK ENVIRONMENT PATTERN 152

7.7 THE CONTAINER PATTERN 159

7.8 THE FORM PATTERN 164

7.9 THE AUTOMATON PATTERN 167

7.10 THE DOMAIN SERVICE PROVIDER PATTERN 171

x C O N T E N T S

7.11 THE TECHNICAL AUTOMATON PATTERN 176

7.12 THE PROBE PATTERN 179

7.13 THE ADJUSTING TOOL PATTERN 181

8 T&M Design Patterns

8.1 INTRODUCTION 185

8.2 A GUIDED TOUR OF THE T&M DESIGN PATTERNS 187

8.3 THE ASPECT PATTERN 190
8.3.1 Construction Part: Using Inheritance or Interfaces to

Implement Aspects 195
8.3.2 Construction Part: Using Object Adapters to

Implement Aspects 198
8.3.3 Construction Part: Using Development Tools to

Realize Aspects 200
8.3.4 Construction Part: Alternatives to Using Aspects 201

8.4 THE SEPARATING FUNCTION AND INTERACTION
PATTERN 202

8.5 THE TOOLS COMPOSITION PATTERN 204
8.5.1 Construction Part: Using Components to Build Tools 208
8.5.2 Construction Part: Using Components to

Build Combination Tools 209
8.5.3 Construction Part: Identifying Tool Boundaries 210

8.6 THE FEEDBACK BETWEEN TOOL PARTS PATTERN 212
8.6.1 Construction Part: Event Pattern 214
8.6.2 Construction Part: Event Objects 215
8.6.3 Construction Part: Chain of Responsibility 217
8.6.4 Construction Part: Tool Component with Reaction

Mechanisms 219

8.7 THE SEPARATING FP AND IP PATTERN 221
8.7.1 Construction Part: Interactive Part (IP) 225
8.7.2 Construction Part: FP 226

8.8 THE SEPARATING HANDLING AND
PRESENTATION PATTERN 227

8.9 THE FEEDBACK BETWEEN INTERACTION FORMS AND
IP PATTERN 232

8.10 THE DOMAIN VALUES PATTERN 236
8.10.1 Construction Part: Domain Value Classes 238
8.10.2 Construction Part: Immutable Domain Value Objects 240
8.10.3 Construction Part: Mutable Domain Value Objects 242

C O N T E N T S xi

8.10.4 Construction Part: Implementing Domain
Values as Streams 243

8.10.5 Construction Part: Domain Value Types by
Configuration 243

8.11 THE DOMAIN CONTAINER PATTERN 244
8.11.1 Construction Part: Using Technical Containers to

Implement Domain Containers 246
8.11.2 Construction Part: Loading Materials 247
8.11.3 Construction Part: Tables of Contents for Containers 248
8.11.4 Construction Part: Implementing Tables of Contents as

Materials 249
8.11.5 Construction Part: Implementing Tables of Contents as

Domain Values 249
8.11.6 Construction Part: Coping with Changes to

Containers 250

8.12 THE FORM SYSTEM PATTERN 252

8.13 THE AUTOMATONS IN TECHNICALLY EMBEDDED
SYSTEMS PATTERN 258

8.14 THE DOMAIN SERVICES PATTERN 264

8.15 THE ENVIRONMENT PATTERN 268

8.16 USING THE T&M DESIGN PATTERNS FOR THE JWAM
FRAMEWORK 271
8.16.1 Materials Construction 271
8.16.2 Tools Construction 272
8.16.3 Domain Values 274
8.16.4 Presentation and Interaction Forms 278
8.16.5 Forms 278
8.16.6 Domain Services 279
8.16.7 Work Environment 279

8.17 REFERENCES 279

9 T&M Model Architecture

9.1 THE T&M MODEL ARCHITECTURE 281

9.2 THE DOMAIN CORE OF A SOFTWARE
ARCHITECTURE 283
9.2.1 The Use Context 285
9.2.2 The Product Domain 287
9.2.3 The Business Domain 289
9.2.4 How Different Domains Relate 293

9.3 CONCEPTS AND ELEMENTS OF A T&M MODEL
ARCHITECTURE 295

xii C O N T E N T S

9.3.1 Components of an Object-Oriented Software Architecture 296
9.3.2 Elementary Rules for Combining Elements of a

Software Architecture 296
9.3.3 Protocol-Based Layer Architectures 297
9.3.4 Object-Oriented Layer Architectures 299
9.3.5 The Layer Concept of the T&M Model Architecture 303
9.3.6 The Three-Tier Architecture 305
9.3.7 The T&M Model Architecture 307

9.4 DESIGN PATTERNS FOR THE T&M MODEL
ARCHITECTURE 314
9.4.1 The Role Pattern 315
9.4.2 The Product Trader Pattern 327

9.5 REFERENCES 339

10 Supporting Cooperative Work

10.1 BACKGROUND: COMPUTER-SUPPORTED
COOPERATIVE WORK 341
10.1.1 CSCW 341
10.1.2 Technical and Domain Transparency 344

10.2 IMPLICIT COOPERATION 345

10.3 EXPLICIT COOPERATION BY EXCHANGING
MATERIALS 346
10.3.1 Cooperation Medium: Mailboxes 346
10.3.2 Cooperation Medium: Mailing System 349

10.4 EXPLICIT COOPERATION MODEL: TRANSACTION PROCESSING
SUPPORT 350
10.4.1 The Concept of Process Patterns 353
10.4.2 Cooperation Medium: Routing Slips 354

10.5 REFERENCES 356

11 Interactive Application Systems and
Persistence

11.1 BACKGROUND: INTERACTIVE APPLICATION
SYSTEMS 357

11.2 PERSISTENCE SERVICES 358
11.2.1 Software Registry 358
11.2.2 The Basic Concept of a Software Registry 360
11.2.3 Cooperation Model for a Registry 361

C O N T E N T S xiii

11.2.4 Usage Model for a Registry 364
11.2.5 JWAM: Architecture for a Software Registry 365
11.2.6 The Generic Persistence Service 369

11.3 DESIGN CRITERIA TO IMPLEMENT PERSISTENCE 373
11.3.1 Client-Server Architecture 374
11.3.2 Identifiers 375
11.3.3 Technical Data Modeling and Structural Mapping 376
11.3.4 Querying and Data Warehousing 378
11.3.5 Load-on-Demand 379
11.3.6 Transactions and Locking 381
11.3.7 Class Evolution 382
11.3.8 Legacy Databases 382

11.4 REAL-WORLD EXAMPLES 383
11.4.1 JWAM Projects 383
11.4.2 MedIS and SyLab 386

12 The Development Process

12.1 BACKGROUND: EVOLUTIONARY AND TRADITIONAL PROCESS
MODELS 393
12.1.1 The Context of Our Process Model 394
12.1.2 The Process Model’s Application Orientation 394
12.1.3 The Classic Waterfall Model 395
12.1.4 The Spiral Model 397
12.1.5 An Idealized Evolutionary Process Model 398

12.2 TOPICS FOR A DEVELOPMENT STRATEGY 400
12.2.1 Sequence of Development Activities 400
12.2.2 Objectifying the Development Process 401
12.2.3 Lehman’s Software Classification 402
12.2.4 The Cooperative Development Process 405
12.2.5 Organizational and Domain Integration 406
12.2.6 Developing an IT Organization 409

12.3 QUALITY ASSURANCE IN THE DEVELOPMENT
PROCESS 413
12.3.1 Direct User Integration 413
12.3.2 Prototyping 414
12.3.3 Reviews 414
12.3.4 Pair Programming 416
12.3.5 Refactoring 418

12.4 QUALITY ASSURANCE IN CONSTRUCTION 419
12.4.1 Characteristics of OO Testing 419
12.4.2 Testing OO Programs 421

xiv C O N T E N T S

12.5 PROJECT MANAGEMENT 425
12.5.1 Fundamental Activities of the Management Process 425
12.5.2 The Contexts of the Management Process 427

12.6 PROJECT PLANNING CONCEPTS AND
TECHNIQUES 428
12.6.1 Project Calibration 428
12.6.2 Project Goals 430
12.6.3 Decision Principles 431
12.6.4 Project Establishment 432

12.7 STRUCTURING A PROJECT BY SYSTEM
DECOMPOSITION 432
12.7.1 Core System and Special-Purpose Systems 432
12.7.2 Core System and Extension Levels 434

12.8 SCHEDULING AND TASK PLANNING 437
12.8.1 General Rules for Time Estimates 437
12.8.2 Planning the Project Stages 438
12.8.3 Using Base Lines for Detailed Planning 441
12.8.4 The UP and T&M Project Planning 443

12.9 DISCUSSING T&M, UNIFIED PROCESS, AND XP 451
12.9.1 Structure of the UP and T&M Development Processes 451

12.10 REFERENCES 456

13 T&M Document Types

13.1 SCENARIOS 459
13.1.1 Using Scenarios in the Development Process 462
13.1.2 Subtypes of Scenarios 464
13.1.3 Scenarios and UML 466

13.2 INTERVIEWS 467
13.2.1 The Interview Process 468

13.3 THE CONCEPT MODEL 472
13.3.1 Using a Concept Model in the Development Process 475
13.3.2 Concept Models and UML 475

13.4 GLOSSARIES 475
13.4.1 Using a Glossary in the Development Process 477
13.4.2 Glossaries, UML, and UP 479

13.5 SYSTEM VISIONS 479
13.5.1 Using System Visions in the Development Process 480
13.5.2 System Visions and XP 482
13.5.3 System Visions and UML 482

C O N T E N T S xv

13.6 PROTOTYPES 483
13.6.1 Using Prototypes in the Development Process 485
13.6.2 Prototypes and UP 487

13.7 COOPERATION PICTURES 488
13.7.1 Cooperation Pictures in the Development Process 490
13.7.2 Cooperation Pictures and UML 494

13.8 PURPOSE TABLES 494
13.8.1 Using Purpose Tables in the Development Process 495
13.8.2 Purpose Tables and UML 496

13.9 TECHNICAL DOCUMENT TYPES IN UML 496
13.9.1 Class Diagrams 497
13.9.2 Object Diagrams 497
13.9.3 Use Case Diagrams 498
13.9.4 Interaction Diagrams 498
13.9.5 Statechart Diagrams 498
13.9.6 Activity Diagrams 498
13.9.7 Component Diagrams 498
13.9.8 Deployment Diagrams 498
13.9.9 Application-Oriented and Technical Documents 499

13.10 REFERENCES 499

Index 501

xvi C O N T E N T S

xvii

We have written this book because developing good application software is so hard to
do. We have been trying to develop good application software for more than a decade,
and we wrote this book because we hope to give some help to those who realize that
technology and tools are not enough to develop good software.

This is a book about application orientation, which means structuring large inter-
active software systems along the concepts, interactions, and relations of an application
domain. But this also means organizing software projects so that domain experts—the
potential users—can actively participate and shape the future system. And, last but not
least, it means using metaphors to analyze, design, use, and talk about systems.

We have worked on the idea of application orientation for many years and have
used it in a large number of commercial and scientific projects. Over the years we have
collected a repertoire of metaphors, concepts, techniques, strategies, patterns, and best
practices for designing and constructing software and for managing and conducting
projects. This collection, together with a specific way of looking at software develop-
ment, we call the Tools & Materials approach (T&M).

0 .1 T H E R E A D E R

This book is intended for the following target groups:

● Software developers
● Project managers
● Computer science students
● Method developers

It is neither a programming textbook nor a book about GUI design.

0.1.1 Target Groups

Now, in more detail, who are the readers who will benefit from this book? Admittingly,
we were quite ambitious, as we defined several target groups:

● Experienced practitioners who develop object-oriented application software. By
our definition, they are familiar with at least one popular object-oriented
language, disposing of basic project experience. They feel challenged to develop

Practitioners

P R E F A C E

new components or frameworks in future projects, use existing frameworks, and
integrate ready-made components. They understand the fundamental meaning of
design patterns. With this background, experienced practioners are looking for an
approach that allows them to combine and embed different—both old and
new—concepts and technologies with their own experience to form a suitable
approach. This book is intended to provide answers for experienced developers
and “software architects” who have different questions relating to the design and
construction process. To this end, we have tried to put our concepts and
experiences together in the form of patterns and have arranged these patterns as
collections in the relevant chapters of this book. The example used throughout
this book, and its implementation with a Java framework, “the application
example” will show how large-scale application software can be developed.
Finally, we will explain how these concepts and construction approaches can be
represented in an iterative and document-driven development process.

● Experienced project managers running object-oriented projects who are keen to
learn the ideas of an evolutionary approach, but who are looking for a feasible and
reproducible project organization. They have found that rigid waterfall models
merely create the illusion of a controllable project. They know that technical
software know-how and tools are useless unless you also have some application-
specific knowledge. They also understand that you cannot achieve persistent
software development and high usage quality of your products unless you have
technical concepts and excellent tools. They probably have explored the
Unified Modeling Language (UML) and the Unified Process and have heard
contradictory rumors about agile processes like eXtreme Programming. They
may wonder how these technologies can be used in a specific project.

We have elaborated concepts, guidelines, and document types for these
project managers to help them prepare their own application-oriented approach
for their teams and the entire organization. Our approach attempts to combine
the proven strategies of evolutionary software development with useful aspects
of agile processes. We thereby hope to achieve precise planning, high flexibility
for changes, and constructive quality assurance.

● Committed students who have a solid education in computer science and are
looking for an integrated view of all aspects involved in object-oriented
software development. They have studied relevant technical tools and know how
to write code in an object-oriented language. Though they know the UML
notation, they may have used it only in small examples. In this book we try to
show such students our approach from practical experience, where our patterns
will be useful. In teaching software engineers, we have often found that much
depends on direct cooperation and joint experience in real-world projects.
However, this is not sufficient. Our systematic and annotated collection of
patterns in this book will help the student to grasp an overall view of design
and construction problems. Again, we will use an example showing how to
implement methodological and technical ideas in UML notation in order to
build real-world projects.

● Critical method developers who are challenged to select and tailor methods for use
in real-world projects. They are probably interested in getting a detailed insight
into the extent of the T&M approach and in order to estimate whether or not

xviii P R E F A C E

Project managers

Students

Method
developers

this approach can be transported to their use contexts. We think that purely
conceptual representations are not sufficient, so we attempt in this book to collect
current knowledge and opinions from various groups and experts working actively
in promoting the T&M approach. The contents of this book will give experienced
method developers an overview of the lessons learned in this approach.

Who should not read this book?

● Beginning programmers who are interested in learning an object-oriented language
like Java. This book is not a programming textbook. All programming examples
included in the text itself are only sketches to illustrate construction ideas. For this
reason, they are not even good examples of particularly “clever” constructions in a
respective programming language. They are designed for experienced programmers
who will know how to transport these examples into their own contexts. Since we
want to focus on the concept behind constructions, this book does not include
extensive code examples. Instead, we often use only class or interaction diagrams.
The full code example can be downloaded at http://books.elsevier.com. Readers
with no programming experience will find most of these constructions hard to
understand.

● User interface designers who want to learn more about designing sophisticated
graphical user interfaces for object-oriented software. We discuss the overall
design of interactive software within the frame of a comprehensive usage model.
We illustrate this aspect/approach by showing the basic ideas of combining
functionality, interaction schemes, and GUI elements. As the actual GUI
design is not important for this discussion, our screenshots of user interfaces
show very simple examples. From the viewpoint of software ergonomics, they
may look rough or clumsy. Elaborate user interfaces are an advanced topic in
their own right and are beyond the scope and purpose of this book.

● IT managers interested in gaining an overview of object orientation. This book
does not answer questions like “What is object orientation?” or “Is object
orientation suitable for real-world projects?” This book assumes that such
questions have been answered and understood. Even the sections in the first
part of this book that discuss these concepts are intended for an advanced
exploration of object orientation.

What are the prerequisites needed to profit from reading this book?

● Fundamental knowledge of software engineering.
● Knowledge of programming in an object-oriented language.
● “Access” to Design Patterns by Gamma et al.;1 this seminal work on design

patterns has coined the lingo of object-oriented software developers all over
the world. We also deal extensively with the patterns described in Gamma’s
work and reference them in our own design patterns.

● Access to a book about UML notation.2 Though we will explain our own
interpretation of UML, we will introduce the notation only briefly.

T H E R E A D E R xix

Not a
programming
textbook

Not a user
interface design
guideline

Not a general
introduction to
object orientation

How to profit
from this book

1. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison-Wesley, 1995.
2. For example see, G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language. Reading, Mass.:

Addison-Wesley, 1999.

0 . 2 G U I D E L I N E S F O R U S I N G T H I S B O O K

This section explains how to use this book and what its various parts mean. We rec-
ommend different ways to read this book for each of our target groups.

0.2.1 Different Ways to Read This Book

This book is conceived as a reference guide, ordered by topic. The first German edition
demonstrated that formulating each chapter independently, that is, each with its own
self-contained topic, was a good idea. References to other chapters are intended to rep-
resent further reading on a specific issue. Chapters 7 and 8 are built as pattern collec-
tions. Of course, each chapter makes a different presumption of the reader’s knowledge
of the topic dealt. But in general, interested readers will find answers to their questions
in each chapter without having to read the entire book.

On the other hand, nothing in this book prevents you from reading it con-
secutively from beginning to end. We arranged the chapters so that you should be
able to identify some direction of development. We also hope that there are not too
many irritating redundancies. However, since this book was mainly designed as a
reference guide, there may be some redundancies, which is another reason why
we opted for a the pattern form of organization rather than a strictly linear
exposition.

Chapters 7 and 8 of this book are organized as pattern collections in the sense of
the familiar design patterns. At the beginning of Chapter 7, we will introduce the pat-
tern form to be used. You will also find a pattern-type structure in the rest of this book,
which, we thought would facilitate reading. In general, we used the following structure
for this book.

● Introduction
This section is a short summary of what the chapter discusses and what the
special lessons to be learned are. It often includes a note about the target group
that would profit most from that section.

● Definition
This section defines important terms introduced in the chapter.

● Background
This section contains background information, that is, it reports about the
state of discussion on the issue concerned. It also includes historical comments
or cross-references to other topics. This section provides food for thought and
is aimed at readers interested in getting more detail on a topic.

● Discussion
This section discusses concepts introduced in the chapter as well as the pros
and cons of the solutions.

● T&M Design
This section gives instructions for the specific development process. It normally
includes recommendations as well as positive and negative experiences gained
from real-world projects.

xx P R E F A C E

Reference guide

Pattern-type
organization

0.2.2 Recommended Reading by Target Group

Experienced practitioners should read the following sections:

● The first part of this book is conceptual and forms the basis for a common
language between the authors and their readers. Experienced developers will
find the terms and concepts used throughout this book. The basic terms and
definitions pertaining to object orientation are clarified in Chapter 1. On this
foundation, we go on to explain and complete the concepts of the T&M
approach in Chapters 2 to 5 in order to establish a common language for
development teams.

● Chapters 7 and 8 include conceptual and design patterns that have been
completed by construction approaches for interactive software, thus it
represents the most important part of the book for experienced practitioners.
Depending on the issues and problems of concern, they then will focus on
particular sections of Chapters 9 to 11 and deal with the implemented example
extensively.

● Chapters 12 and 13 look at the process side of our approach. They explain how
to get the T&M approach working. They also include our proposals for dealing
with application-oriented document types and their correspondence to the
UML notation. Thus this is also a particularly interesting part of the book for
developers.

Project managers should read the following sections:

● This target group will find sections on models and design metaphors, application-
oriented software development, and software development modeling in Chapters
2 to 5 of this book. They will learn what the T&M approach is meant to be.

● This target group can skip Chapters 7 to 11. However, project managers will
find useful definitions of terms.

● The last two chapters of this book are conceived for project managers interested
in implementing an evolutionary document-driven approach in a planned and
controlled way. In Chapter 11 they will find the principles as well as various
techniques and strategies of our iterative evolutionary process. They will see
how this process fits in with relevant and proven aspects of agile processes like
eXtreme Programming. Chapter 12 introduces the appropriate document types.
Managers will learn how UML can be taken to work within an evolutionary
strategy and where additional application-oriented document types make sense.

Students should read the following sections:

● The first 6 chapters provide the defining basis. Students can check whether or
not their knowledge will allow them to understand our concepts. It is necessary
to read this part of the book to better understand the rest of our discussion.

● This target group should work through Chapters 7 and 8 systematically, because
the pattern collection represents a step-by-step introduction to building
interactive software. In addition, they should analyze the corresponding
examples. The other chapters discuss advanced issues that this target group may
read as needed or according to their interests.

G U I D E L I N E S F O R U S I N G T H I S B O O K xxi

Software
developers

Project managers

Students

● This target group can read Chapters 12 and 13 selectively; they deal mainly
with aspects of using notations for application-oriented modeling and applying
this approach in evolutionary and cyclic project models.

Method developers should read the following sections:

● The first 6 chapters provide an important overview of the basic concepts of the
T&M approach, but method developers can skip Chapter 1, which deals with
the object metamodel.

● Of particular interest for this target group is Chapter 7, because it explains our
design approach.

● We recommend that developers read Chapters 12 and 13.

The Equipment Management System (EMS) example described below is used through-
out this book. We intentionally kept this example small and easily manageable so that
readers would be able to understand its professional and technical aspects. This exam-
ple, which appears in various places in the text of this book, serves to illustrate the
basic idea of the T&M approach. Note that we have not even tried to turn this exam-
ple into a “realistic” application system. This holds true both for the Java code and for
the user interface examples we use. They primarily serve as simple and clear illustra-
tions of the issue we are introducing. Thus they are neither meant to be efficient code
nor good interactive GUI designs.

A complete implementation in Java, using the JWAM Java framework, can be
downloaded from the website of this book.3 Whenever we discuss the EMS example we
denote our discussion by a note in the margin.

We tried to create a “real-world look and feel” to our book by using examples from
our project practice. For example, we repeatedly describe designs produced for banks,
insurance companies, or hospitals. Again, we will highlight each example in the margin.

To build the examples included in this book, we used mainly Java and some C��
and Smalltalk as programming languages. As mentioned above, we have no intention
to teach programming in these languages. We used these popular programming lan-
guages so that the reader will get an impression of how a construction might look in
the respective language.

The notations used in this book are based on the de facto standard defined in UML
(Version 1.5). We assume that most of our readers are familiar with these notations.
Chapter 12 includes a description of the notations and the special variants used in this
book.

0 . 3 T H E W R I T I N G P R O C E S S A N D S O U R C E S

This section explains how we wrote this book and the sources involved. It makes clear
that the writing of this book was motivated mainly by two goals: first, to bring together
the practical work and experience of many different people from many professional con-
texts, and second, to produce a uniformly designed and written work.

xxii P R E F A C E

The EMS
example

Practical project
examples

Programming
languages and

notations used in
this book

3. http://www.mkp.companions/1558606874/.

Method
developers

0.3.1 Motivation for This Book

We developed our particular way of writing and publishing a book during our work on
the first German edition. Since we first published a comprehensive presentation of the
T&M approach in 1994, much has happened, which naturally pleases us. Many design
discussions in various cooperation projects, new design ideas, and a changing techni-
cal foundation all had their influence on the T&M approach. We held discussions in
different contexts and assessed our experiences. In 1998, the time was right for a design
and construction book on the T&M approach. This book reflects our view of the state
of the art.

However, several years have passed since the publication of the German edition,
and many new results have accumulated. Therefore, this English edition has been com-
pletely revised, but in it we still use an editorial concept similar to that in the first
German edition:

Lead authors: We agreed on a list of core topics. Each topic was accepted by one or two
persons in the role of lead authors. They fully revised this text and coordinated the
work of the other authors.

Coauthors: Each coauthor contributed essentially to this book. This can mean that he
or she was an author (or lead author) of the German edition, or that he or she
made a major contribution to the English edition.

Primary author: Beyond authoring major parts of this book, Heinz Züllighoven edited
all sections of the book, ensured uniform style, and established cross-references.

Translator: American native speaker Angelika Shafir translated and adapted the
German text to English. All modifications made in the course of the translation
were discussed with the lead authors and the primary author, in order to minimize
semantic shifts from translation.

Editor: Tim Cox served as the editor for this edition of the book for the publisher. We
discussed with Tim the concept of the revision for this edition as well as the read-
ability and coherence of every chapter after its translation. Stacie Pierce, Richard
Camp, Mamata Reddy, Brandy Palacios, and Suzanne Kastner then greatly helped
to bring the manuscript into production.

Reviewers: After translation, every chapter was reviewed by specialists in the field.
These reviewers contributed significantly to the second round of revisions.

With this rather complicated and labor-intensive editing and translation process, we
hope to have done justice to the various contributors and their contributions to the
development of the T&M approach without denying the reader a book with uniform
style.

0.3.2 Sources

The coauthoring arrangements do not by a long shot cover all sources of the T&M
approach for this book. Therefore, we list here those persons whose publications and
ideas also contributed significantly to this book. Since many of these sources were pub-
lished in German only, we do not provide a detailed list of references.

First, we want to mention the spiritual fathers of the ideas behind the T&M
approach: Reinhard Budde and Karl-Heinz Sylla.

T H E W R I T I N G P R O C E S S A N D S O U R C E S xxiii

The editorial
concept

xxiv P R E F A C E

The following people, with their dissertations and theses contributed greatly to
the further development of the T&M approach:

Christian Beis, Holger Bohlmann, Marlies Eschner, Malter Finsterwalder, Boris
Fittkau, Frank Fröse, Michael Gatzhammer, Achim Gehrke, Thorsten Görtz, Andreas
Hartmann, Andreas Havenstein, Andreas Kornstädt, Holger Koschek, Timm Krauß,
Sven Lammers, Klaus Müller, Lara Niemeyer, Fabian Nilius, Björn Ostermann,
Michael Otto, Jörg Penning, Thomas Pfohe, Sabine Ratuski, Joachim Sauer, Norbert
Schuler, Michael Skutta, Eike Steffen, Olaf Thiel, Horst-Peter Traub, Matthias Witt,
and Ulfert Weiss.

1

Introduction

1 .1 A P P L I C AT I O N O R I E N TAT I O N —
T H E S U B J E C T O F T H I S B O O K

Recent major changes in global markets have encouraged, if not forced, many
corporations to review their corporate strategies, with “customer orientation” being
the ubiquitous catchword. This section discusses the motivation behind customer ori-
entation, what it means, and why it requires a new approach toward software devel-
opment—the application orientation. This discussion demonstrates that application
orientation relates both to software products and how projects should be managed.

1.1.1 Motivation

The global economic environment has motivated many companies to orient themselves
more closely to their customers. Customer wishes, requirements, and expectations are
central factors in your corporate strategy, and products and services have to be tuned to
this environment. The more individual you want your products and services to be, the
more specialized the application systems you use in your organization have to be. This
flexibility translates into high demands on any software development project.

Does this sound far-fetched? Not really. In fact, these could be the introduc-
tory words of a speech about the Tools & Materials Approach (T&M). They could
provide the economic background to motivate potential listeners or readers in an
intuitive way to deal with this approach. Note, however, that these words mean
more than just a marketing strategy. Customer orientation not only has become one
of the modern catchwords in the business but is also a term expressing a visible
change in many organizations. Customer orientation means understanding that for an
organization to be successful in the current harsh economic climate, it has to distin-
guish itself from its competitors, and customer orientation is what can help it achieve
this goal. As Peters and Waterman have observed, customer orientation may have
been the trigger that released the current reorganization processes for the following
reasons:

● Competition is becoming increasingly fierce, so that corporate managers are
forced to rethink their assumptions.

● Many products and services are introduced to the markets, so that a large
number of these become interchangeable from the customer’s perspective.

1

Customer
orientation

● Poor service drives customers away, while many organizations overlook the fact
that the acquisition of new customers is generally more expensive than keeping
their existing customer base.

● Companies increasingly look for ways to distinguish themselves with above-
average service or additional service offers to win more satisfied customers and
a more loyal customer base.

In this tense situation, customer orientation translates into a continuous effort to
improve customer satisfaction in order to achieve long-term customer loyalty and ensure
the company’s success. As a consequence, success-oriented organizations have been crit-
ically reviewing their work processes, organizational structures, and corporate strate-
gies. One of the most important factors within this reorientation effort is information
technology. It has quickly become clear that information technology must only be a
means to an end and never an end in itself.

In the field of software development, this scenario challenges us to ask how tradi-
tional approaches, methods, and principles can contribute to customer orientation.
The practitioner does not normally have a clear answer to this question, encountering
serious doubts when taking a closer look at the technologies and tools used in the real
world. Can new products and approaches give rise to hope for a decisive improvement
of the current situation? When observing the current euphoria about Java and J2EE,
application servers, and Internet services, you may easily think so.

The authors of this book are more critical. Methods, technologies, and tools are
just the means to an end. We think that the idea of customer orientation in an organ-
ization should lead to application-oriented information technology. This means that an
organization’s staff can act in a customer-oriented way provided that they have the
corresponding technical support at the workplace. Let’s look at application software as
a relevant and integral part of information technology in the sense of our discussion.
We can then ask how this application software should be designed to actually con-
tribute to customer orientation. Our short answer is that only application-oriented
software development can supply the prerequisites required to achieve this goal.

The central purpose of this book is to explain what application-oriented software devel-
opment is and how it can be conceptually and constructively designed by use of object-oriented
means.

When we talk about application software in this book we mean large, interactive, and
long-lived software systems. By our definition, “large” means object-oriented software
systems with more than 1,000 classes developed by a team composed of at least five to
ten people over a period of more than a year. “Interactive” means application software
that can help do the job via different technical and marketing channels within a spe-
cific application as a means to its end, where the way the program runs is influenced by
both user intervention and system feedback. And “long-lived” means that this appli-
cation software can be used over a period of several years and has to be adapted con-
tinually to business and usage conditions as they change. Finally, we consider a piece
of application software to be “large” when more than one project within the same
application domain works with components or versions of that system.

We also think that frameworks, platforms, and components are an indispensable
part of these dimensions. Frameworks (nowadays often called platforms) form the
architectural backbone of the system, and large software systems cannot be built at an
acceptable cost and with satisfactory technical quality without this backbone. But

2 I N T R O D U C T I O N

Application
orientation

Large-scale
application

software

frameworks are no panacea. Both the development and the use of large frameworks are
extremely complex, so that many software projects are simply overtaxed. For this
reason, we will explain how you can develop and use frameworks. The attentive reader
will note that application orientation plays a decisive role once again. We think that
one of the major problems with existing frameworks is their technical orientation. In
the course of this book we will show how application-specific concepts and structures
can influence the architecture of software systems on both micro and macro levels.

Since the beginning of the nineties we have observed vehement discussions about
the use of components as an alternative to frameworks. As Clemens Szypersky put it,
“A software component is a unit of composition . . . [It] can be deployed independently
and is subject to composition by third parties.” At this point, we should ask how and
in what context this composition is supposed to take place. We will explain that
components and frameworks can complement one another well.

Another thing that plays a major role in the description of frameworks and com-
ponents are patterns. Relying extensively on the seminal work of Gamma et al. and our
own work, the main part of this book will describe conceptual and design patterns that
are used to develop interactive application software. We will use the presentation
means of the Unified Modeling Language (UML) for technical figures.

However, we don’t want to stop at the architecture of a software system and its
construction. We think that application orientation requires an altogether different
approach to software development. There is currently much discussion about the role
and proper use of the Unified Process (UP). We will show that an application-oriented
approach is compatible with the principles of UP. In fact, this approach can be seen as
a user-oriented interpretation of UP. Among other things, this new approach will lead
to different software products and a different development process. This book is about
both of these issues.

1.1.2 Structure of This Book

This book is divided into three main parts:

● The T&M approach did not emerge ad-hoc or without any concept. The first
part of this book, which includes Chapters 1 to 6, describes the T&M idea,
what motivated it, and which important object-oriented concepts and
modeling rules it uses to achieve an evolutionary approach.

● Part 2, encompassing Chapters 7 to 11, discusses in detail how to build
interactive application software. We will first explain how you can use metaphors
to design an interactive system. Then we show how to systematically convert this
conceptual design into the implementation of tools and all the other elements of
the T&M approach. Chapter 9—a central chapter of Part 2—describes a
framework-based architecture for large application systems. The remaining
chapters of this part discuss other approaches and constructions; important issues
include the support of cooperation and coordination, and persistency.

● Part 3 begins with Chapter 12, which discusses the development process;
Chapter 13 describes document types. We will explain how we see industrial
software projects from the management perspective, and how these management
aspects can be planned within an evolutionary approach. One of the central
issues discussed in this context are the document types proposed in UML and the

A P P L I C A T I O N O R I E N T A T I O N — T H E S U B J E C T O F T H I S B O O K 3

Zull-01.qxd 20/8/04 7:27 AM Page 3

basic approach defined in the Unified Process. In this context, application
orientation requires a set of document types that extend UML. Agile processes like
eXtreme programming are often seen as an alternative to “heavy-weight” strategies
like UP. Having participated in the early discussions about agile processes, we
disagree. We will introduce a balanced integration of agile and evolutionary
approaches, pointing at their underlying unifying concepts—the need for
software developers and users to understand each other and to cooperate.
Therefore, it appears meaningful to interpret the general statements of the Unified
Process from an application-oriented view. This issue forms the focus of this part.

1 . 2 T H E T O O L S & M AT E R I A L S A P P R O A C H (T & M)

This section provides a brief overview of the most important ideas behind the Tools &
Materials (T&M) approach. It describes models and central design metaphors, such as
tools, materials, automaton, and environment, as well as the general principles of and
useful document types for our approach. It discusses why the T&M approach differs
from many object-oriented methodologies.

1.2.1 The T&M Approach in a Nutshell

The T&M approach attempts to achieve application orientation in software develop-
ment. Application orientation focuses on software development, with respect to the
future users, their tasks, and the business processes in which they are involved.

Application-oriented software is thus characterized by high usage quality, in other
words, on the characteristics that a system should show when actually used. We can
identify some important characteristics of this type of software:

● The system functionality is oriented to the tasks to be solved within the
application domain.

● The system is easy to use and manipulate by its designated users.
● The processes and steps defined in the system can be easily adapted to the

actual requirements, depending on the individual application domain.

Based on object-oriented design and techniques, this approach combines many
different elements, such as a model with design metaphors, application-oriented docu-
ments, and an evolutionary development strategy with prototyping. But the T&M
approach is not only a collection of best practices. The underlying idea links its differ-
ent elements in a way that makes designing good application software easier. You start
by choosing a guiding metaphor and fleshing it out by appropriate design metaphors.
So, for example, you decide to build a software system as an expert workplace for a
customer advisor (guiding metaphor) in a bank. You add different form sheets, folders
and trays as well as tools like an interest rate calculator or an account finder as equip-
ment to an electronic desktop (design metaphors). Constructing the system you look
at the patterns like “Interrelation of Tools and Materials” related to the design
metaphors. They fit into the proposed model architecture. As you set up your project
you will find guidelines and document types that put the application-oriented idea
to work.

4 I N T R O D U C T I O N

Zull-01.qxd 20/8/04 7:27 AM Page 4

Building large object-oriented systems is a demanding task. Today, many developers
have realized the need for a clear architectural concept for these systems. The central
architectural idea behind the T&M approach is that the structures of the application
domain and the software system should be similar. This structural similarity means that
objects and concepts from the application domain are taken as a basis for the technical
software model. The result should be a close correspondence between the application-
specific terminology and the software architecture. This is not a new idea as it was the
initial spark for Simula, the first object-oriented language. But we took the idea from
designing systems from the small ones (e.g., on the GUI level) up to the overall structure
of large distributed systems.

Having similar structures for the two worlds, that is, the application domain and
the software model, offers two major benefits. First, the application system represents
the real-world objects and work-specific terms for the users. This means that these users
can organize their work in a familiar way. Second, the developers have a development
plan for their system. They get an idea of how to structure the “landscape” of the
domain. At a more fine-tuned level they can put software components and application
concepts in specific relationships, so that they can be easily identified when the soft-
ware needs to be adapted to real-world changes.

To deserve the term “interactive,” an application software has to combine a task-
oriented functionality and suitable handling and presentation means. From this per-
spective, software development is a design challenge in the original sense: both
the form and the contents have to match. This brings up the question of what
“shape” a software product should take and how it should be handled to help com-
plete the task. Software developers should be supported in this design challenge.
Within the scope of the T&M approach, this support is provided in the form of a
“guiding metaphor.”

A guiding metaphor for our purposes is a pictorial term that characterizes a unifying
view in the software development process. As a familiar term it helps both users and
developers to understand and design the application software. This means that it is not
used for GUI design but to shape the functional and behavioral characteristics of the
entire application.

Currently, our most successful guiding metaphor is the expert workplace.
This metaphor has proven valuable in the large number of software projects we
have conducted in the banking and service industries. These industries primarily
support office work done by qualified staff, in other words, activities that, in addition
to industry-specific knowledge and experience, require some amount of independent
work and initiative.

When looking at the expert workplace as a guiding metaphor, the reader should
realize some fundamental ideas related to it:

● A workplace is a place where people accomplish their work tasks.
● It is furnished or equipped with the necessary things for doing the job.
● An expert workplace is meant for a person who knows how to cope with the

different work tasks of the job.
● The expert is the actor; the workplace simply offers the means to an end.

Other guiding metaphors, such as the functional or back-office workplaces, have
also proven to be valuable in different working contexts or domains.

T H E T O O L S & M A T E R I A L S A P P R O A C H (T & M) 5

Model and design
metaphors

Zull-01.qxd 20/8/04 7:27 AM Page 5

A guiding metaphor should be “granular” to ensure that it can really be under-
stood. To achieve this goal, we use a set of matching design metaphors that describe
that “leading” metaphor in more detail.

A design metaphor uses an object from the real world to describe a concept or a
component of the application system. Such a design metaphor creates a common basis
of understanding for developers and users, as it clearly refers to a common background
of experience and represents an understandable term.

To match the guiding metaphor of a workplace, we use the following design
metaphors: tool, material, automaton, and work environment. Obviously, these metaphors
originate from the context of human work. When working, people take intuitive deci-
sions between the things that represent their work objects, and things they use to get
their jobs done. Accordingly, our definition of the fundamental metaphors, or tools and
materials, is as follows:

A tool supports recurring work processes and actions. It is normally useful for a dif-
ferent set of tasks and objectives. A tool is handled by its users according to the require-
ments of a situation and put aside when it is not needed. It does not dictate fixed work
steps or processes. If it is a software tool, it allows users to manipulate work objects
interactively.

A material is a work object that is manipulated so that it will eventually become
the work result. Materials are manipulated by use of tools. Software materials embody
“pure” domain-specific functionality. They are never used directly and are never active
on their own. A software material is normally characterized by its behavior rather than
its structure.

In an office environment, there are more than tools and materials. Today, many
tedious work routines are done automatically. We thus introduced the automaton as an
additional design metaphor:

An automaton completes a task that has been fully specified in advance and pro-
duces a defined result in defined variants. Once parameterized, an automaton can run
without intervention over a lengthy period of time. A software automaton normally
runs in the background. It is initially configured by the user, fed with additional infor-
mation upon demand, or stopped in case of emergency. An automaton may have a
simple interactive interface.

Tools, automatons, and materials need a place where they can be provided,
arranged, and stored. This is the purpose of the work environment metaphor.

A work environment is the place where work is completed and the required work
objects and tools are provided. Work environments embody a spatial concept and
ordering principle. We distinguish between personal workplaces, allowing privacy and
an individual arrangement of things, and generally accessible rooms in a work envi-
ronment. In an organization, we can often define meaningful workplace types with a
matching set of characteristic equipment.

In the context of office work, and in many other domains as well, it is no longer
sufficient to support individual work. Application systems for cooperative work repre-
sent new challenges to software developers. Our experiences in this field led to the
conclusion that cooperative work can be supported by work tools and objects similar
to those for the individual workplace. However, cooperative work involves new
resources that address the special character of cooperation. This includes design
metaphors like archives, circulation folders, and dockets.

6 I N T R O D U C T I O N

What is a tool?

What is a
material?

What is an
automaton?

What is a work
environment?

What is
cooperative

work?

Zull-01.qxd 20/8/04 7:27 AM Page 6

This expansion of our design metaphors to include cooperative work needs to fit
into the context of the selected guiding metaphor. In cooperative work, as in individual
work, there are users who have to decide within their work situation whether they handle
a predefined standard process, or whether specific changes to the workflow and the
work distribution are meaningful. Other workplace types and forms of cooperation
represent other requirements for cooperative work support. Based on the cooperation
types, we have put together a basic choice of cooperation tools and media.

For developers, application orientation means that they have to understand the
tasks they are supposed to support with appropriate software systems. To achieve this
goal, they have to gain access to the specialized knowledge and experience of the experts
in the application domain. The keyword here is evolutionary system development,
because this type of development process is oriented to close cooperation between
the developers and the users. However, cooperation needs a foundation. Therefore, we
use application-oriented document types and the prototyping concept.

Using application-oriented document types as a necessary basis to understand the
concepts and tasks of an application domain is nothing new. What’s important to
understand is that these document types describe the application under development
in the specialized user language. These document types are considered an expansion
and specialization of the UML standard documents. We use the “classic” UML
document types for the technical design. In addition, we use the following application-
oriented document types:

A scenario is an interpretation of an organization’s business use cases. It describes
the current work situation, focusing on the tasks within the application domain and
how these tasks will be completed by the use of tools and work objects. Scenarios are
formulated by the developers based on interviews with users and other groups involved
in the application domain.

A glossary defines and reconstructs the set of terms of the specialized language in
the work environment. Glossary entries are written by the developers parallel to the sce-
narios. They provide initial ideas about the materials needed in designing the system.

System visions correspond to use cases. They are at the transition point between the
analysis of the application domain and the construction of the future system. Based on
the scenarios, system visions anticipate the future work situation. They are oriented
primarily to the developers and help build a common system vision. They describe the
ideas about the domain functionality and how tools, materials, automatons, and other
system components should be handled.

A prototype is an executable model of the application domain, representing an
important and constructive enhancement of the system visions. A prototype makes the
ideas about the system “tangible.” In particular, so-called “functional prototypes” are of
central significance not only in the developers’ communication with the users, but also
in giving developers the necessary experience and experimental basis for the technical
construction of the system. This means that prototyping plays a central role in our
approach.

To analyze cooperative work and design that is appropriate to application software,
we need to extend the set of document types described above. Scenarios, glossaries, and
system visions can be used to describe the different set of tasks and activities from the
workplace perspective. What’s missing is an overall view. To solve this problem, we
have successfully used so-called cooperation pictures.

T H E T O O L S & M A T E R I A L S A P P R O A C H (T & M) 7

Evolutionary
system
development

Application-
oriented
document types
and UML

Scenarios

Glossary

System visions

Prototypes

Zull-01.qxd 20/8/04 7:27 AM Page 7

A cooperation picture is an extension of use case diagrams, which are used for group
discussion and workshops. Cooperation pictures are essentially based on well-understood
pictograms that represent the work objects and information to be exchanged between all
participating parties or “actors.”

Once we have defined our guiding and design metaphors, together with document
types and prototypes, we have a set of interrelated concepts and techniques on hand to
support software development that is focused on the application domain. This means
that the developers have all the prerequisites to start working towards the goal set: high
usage quality. However, whether or not this goal can really be achieved depends largely
on the right implementation of the concepts and the use of tools during the develop-
ment process. Therefore, we think that it is mandatory also to prepare a set of instruc-
tions for the design of this process for the developers. The basic principle is then to
look at software development not as a primarily technical or formal task but as a com-
munication and learning process. Learning and communicating are evolutionary
processes driven by constant feedback between the participants. This means that we
agree with the basic principles of the Unified Process.

This evolutionary process between development and feedback includes basically
all documents pertaining to that project. It is not a matter of completing milestone
documents sequentially in a defined order, but of linking the analytic, modeling, and
evaluation activities as needed. This obviously conflicts with the principles of the clas-
sic waterfall or phase models, but it can be harmonized with the core workflows of the
Unified Process.

The evolutionary process, in our definition, is realized in the form of so-called
author-critic cycles in all our projects.

Our author-critic cycle means switching between analyzing, modeling, and evaluat-
ing activities, where the developers are normally the authors. Their work objects are
documents and prototypes. The critics are normally all participating parties who have
the required specialized or domain knowledge. In the sense of application orientation,
these are normally the users. Ideally, the author-critic cycle is iterated quickly and
often.

To better understand our approach, it is important to bear in mind that the prob-
lems identified in the feedback process determine what activities should follow next
and which documents should be prepared. In this sense, there is no predefined
sequence of documents and work steps. You could basically prepare any document at
any given time. Of course, there is no doubt that the entire set of activities have to be
planned and controlled in every project and cannot be subject to individual arbitrari-
ness. What we should take home from these definitions is that the basic process itself
is determined by application-oriented issues rather than by a technical mechanism.

1.2.2 T&M As a Method

This book discusses the T&M approach. Now, what is it? Shouldn’t we simply speak of
a T&M method?

A large amount of object-oriented literature contains a collection of graphical
notations and associated instructions for use, including UML literature. Unfortunately,
notations, diagrams, and graphical CASE (Computer Aided Software Engineering)
tools are not sufficient to fully support a specialized software development process,
because this notation does not tell you what should be modeled.

8 I N T R O D U C T I O N

Cooperation
pictures

The development
process

Author-critic
cycles

What is a
method?

Zull-01.qxd 20/8/04 7:27 AM Page 8

At the other end of the spectrum, you find books on methods, organized similarly
to cookbooks or do-it-yourself handbooks for model construction kits, with instruc-
tions like, “Take this, do that, be careful about a third thing, and . . . your object-
oriented application system is ready.” We are somewhat skeptical about such books,
because almost thirty years of software engineering history and experience have taught
us that this type of instruction does not work in the real world. That’s why we say: the
methodical approach should provide a set of techniques and means of representation.
In addition, there should be a set of instructions telling how to use these techniques
and means of representation based on concepts.

In her seminal work, Christiane Floyd draws the following conclusion: despite all
similarities, each software project is definitely different from its predecessors. So, for a
method to be successful, you cannot simply apply it, you have to work it out in your
project.

Consequently, the T&M approach is not a ready-to-use method but

● a view of object-oriented application development;
● a collection of proven construction, analysis, and documentation techniques in

the form of patterns;
● a description of matching concepts and architectural models;
● an evaluation of different and extensive project experience; and
● a set of guidelines to develop a concrete construction technique and a

matching approach.

In short, the T&M approach is designed to help elaborate a method tailored to a
specific project and a specific development organization.

To achieve this goal, it is important for our readers to be able to reconstruct our
views to a sufficient extent. Views evolve on the basis of experiences and value concepts.
This background cannot be represented in a handbook. Nevertheless, this basic under-
standing between the author and reader has to be established. For this reason, we com-
ment on all concepts and constructions, show examples, and report on the experience we
have gained from our real-world projects. We think that this will create the right context
for our readers to understand the T&M approach and use it in their own work.

Finally, a word about originality. We never intended to create something totally
new, or to knowingly distance ourselves from others with the T&M approach. Those
readers who find known constructions, representation means, or ideas in this book should
know that this was our intention exactly. After all, as software engineers we don’t want
to be “originality geeks,” but instead rely on work that has proven reliable and meaning-
ful. In this sense, we also do not distance ourselves from UML or the Unified Process. We
rather interpret both techniques and concepts in the application-oriented sense, giving
developers a set of instructions about how to handle these diagrams and principles in
their project organization. The goal of this set of instructions is to combine high usage
quality in our software with state-of-the-art software technologies.

1 . 3 P R O J E C T S B E H I N D T H I S B O O K

In the following we give an overview of the scope of the projects where the authors of
this book were actively involved and in which T&M played a major role. The reader

P R O J E C T S B E H I N D T H I S B O O K 9

The T&M
approach is a
methodical
framework

Views

Originality of
T&M
Relationship to
UML and UP

Zull-01.qxd 20/8/04 7:27 AM Page 9

will thereby understand more of the background of this book and get a better feeling
about the relevance of our approach to his or her everyday work.

1.3.1 The Scope of the T&M Projects

For almost fifteen years the T&M approach has evolved. A lot of people from different
fields and organizations have contributed their ideas about software development and
application orientation. But the essential driving force of our approach has always been
project work. The experiences of many projects in many areas have both served as
a usability test and as an inspiring source for new ideas or revisions of concepts and
techniques.

The projects where the T&M approach has been used covers a wide area, from
workplace solutions to technical embedded systems. Examples include:

● An IDE (Interactive Development Environment) for logic programming;
● Workplace systems for banking;
● Fleet management for a car rental company;
● Workflow editor for e-commerce;
● Certified aircraft engine software;
● Embedded medical lab system; and
● Maintenance management for municipal water works.

In the following, we will look at some projects in more detail.

AN OBJECT-ORIENTED PROGRAMMING ENVIRONMENT

FOR LOGIC PROGRAMMING

In the mid-1980s in a software technology department of a national research institute,
we developed a programming environment for logic programming in Prolog. The
architecture of this environment featured the nucleus of many technical T&M
concepts—we used tools and materials for the first time. Through discussions with
users, we realized the importance of usage quality and a clear domain-oriented usage
model. The programming environment was used for several years at universities and
research institutes for research and training.

A WORKPLACE SYSTEM FOR RETAIL BANKING

A software and service center for a major German banking group was faced with an
urgent customer demand for a new workplace system that would comprehensively sup-
port their customer advisors. An initial software project along the traditional lines of
a waterfall model and procedural programming had failed. A rather desperate manage-
ment ventured to relaunch the project with object-oriented techniques and an
application-oriented strategy. We trained and coached the team and consulted
management. The T&M approach was used both for all basic constructions and for
designing the different workplace types with their usage models. Within an incremen-
tal process of almost three years the workplace system was developed in several exten-
sion levels and is working at almost 2,000 workplaces in more than 300 banks. It
received an outstanding reception by its users. Several external evaluations and reports
showed the high level of usage quality.

10 I N T R O D U C T I O N

Zull-01.qxd 20/8/04 7:27 AM Page 10

REORGANIZING THE IT DEPARTMENT OF A BANKING SOFTWARE

AND SERVICE CENTER

Motivated by the unexpected success of the workplace system project, the software
and service center just mentioned decided to reorganize their IT department. Object-
orientation was chosen as the main technology for application development. All other
IT activities were to be grouped around this strategic concept. We consulted IT man-
agement, trained and coached teams, and cooperated in major conceptual projects.
Over a period of six years, more than 150 developers and technical staff were trained
in object- and application-oriented concepts and techniques. We coauthored the com-
pany’s project strategy and handbook. Together with the company’s architecture group,
we designed the architecture of their banking framework, which was a major source for
the T&M model architecture. The consistent conceptual view of the T&M approach
and the concept of structural similarity proved to be the fertile basis for the growth of
a common development culture in the company. The company played an outstanding
technological and strategic role among the software and service centers of the banking
group.

A FLEET MANAGEMENT SYSTEM FOR A CAR RENTAL COMPANY

The German branch of a European car rental company needed a system for the strate-
gic management of their vehicle fleet. They used to work with their company-wide
central information system. This system, however, gave no proper support for ordering,
buying, or selling vehicles, or for the bookkeeping related to them. First, we analyzed
the business processes involved and cooperated with the technical departments in
restructuring these processes on the basis of cooperation pictures and presentation pro-
totypes. In subsequent project stages we developed an integrated fleet management sys-
tem (plus a specialized bookkeeping module) with interfaces to the central information
system. Both management and users were convinced by the combination of usability
and complex domain logic of the system.

A GRAPHIC WORKFLOW EDITOR FOR E-COMMERCE

An Internet company had the idea of a new e-commerce application by which the
business organization staff could design and model e-commerce business processes.
The application consisted of a graphic editor for designing workflow processes and a
generator component that transformed the graphic models into Internet applications.
We contracted for the design and implementation of the graphic editor. As a promo-
tion show at an international IT trade fair was already scheduled, we had roughly three
months to analyze, design, and implement a fully functional prototype. We set up a
programming team of eight people who used an agile process incorporating the princi-
ples of eXtreme programming. The project was a complete success under all technical
and domain aspects. We delivered the prototype with all requested features precisely
on time and on budget. Unfortunately, the product never met a market as the Internet
company became insolvent after the trade fair.

A CERTIFIED AIRCRAFT ENGINE SOFTWARE

A German race car engine-tuning company had the idea of using an augmented stan-
dard vehicle engine as the basis for an aircraft engine for sporting airplanes. A new
electronic motor control unit had to be developed. This embedded software system had

P R O J E C T S B E H I N D T H I S B O O K 11

Zull-01.qxd 20/8/04 7:27 AM Page 11

to be certified by national and international avionic authorities. We contracted for
elaborating a development and quality assurance process that could be certified. In
order to meet the very high demands for software quality and for a clearly documented
and reproducable development process, we combined the main features of our application-
oriented development strategy, that is, Design by Contract, our interpretation of
eXtreme programming (especially engineering cards and test first, of Sections 12.4.2
and 13.5.2) and the UML document types. Within six months, we designed a meta-
model and a software development process according to the FAA’s (Federal Aviation
Administration) RTCA (RTCA Inc is an association of aeronautical organizations of
the U.S.A. from both government and industry) requirements, which was then certi-
fied by all relevant avionic authorities. The IT department was happy about the devel-
opment strategy and the quality assurance process, which on the one hand fulfilled all
the formal requirements, and on the other hand fitted well into the actual teamwork
and programming practices. The new aircraft engine went into production and was a
major market success.

REDESIGNING A REVERSE AUCTIONS APPLICATION

An Internet company successfully provides an application for reverse auctions, where
buyers publish their tender offers and potential suppliers can place their bids. These
suppliers then have the opportunity to undercut their competitors. The existing soft-
ware for this application, however, had grown rather complex and was hard to under-
stand and maintain. We analyzed the system, wrote a report, and proposed a complete
redesign. The T&M conceptual patterns and the model architecture helped to clarify
the pros and cons of the existing system and to highlight the improvements of the new
design. Within several architecture workshops, the development team discussed
our proposals and was able to work out a scheme for completely refactoring the reverse
auction system.

AN EMBEDDED MEDICAL LAB SYSTEM

A market leader for medical labs wanted to develop a new generation of medical lab
systems with a higher throughput of samples and a more efficient control system. The
task was demanding, as a smooth integration of low-level automation, interactive
analysis workplaces, and high-level system calibration was required. Major parts of the
lab’s hardware and basic software were custom-made. We redesigned the entire second-
level automation software and the control system and added tailored integrated work-
place systems. Starting with the core design metaphors of the T&M approach, we
refined our tool construction and the workplace types. We were able to design a system
with a clear technical and usage model that overcame a few severe shortcomings of the
previous generation. While the prototypes of the system were very satisfactory, the first
live tests unveiled major structural and performance problems in the database connec-
tion. The database mapping and the access interface had to be redesigned. Then the
system ran smoothly and went into production.

PRODUCT DESIGN SYSTEM AND CONTRACT MANAGEMENT

FOR AN INSURANCE COMPANY

A German insurance company, one of the middle-sized enterprises in this domain,
wanted to redesign its host-based legacy system for contract management and at the

12 I N T R O D U C T I O N

Zull-01.qxd 20/8/04 7:27 AM Page 12

same time implement a new concept for designing insurance products. We worked as
consultants and software architects with their software team. Introducing eXtreme pro-
gramming, we used techniques like pair programming, story writing, and tracking to
improve programming skills, product quality, and project management. The T&M
design metaphors helped to create a common vision of the future workplace system.
The model service architecture was used as the basis for designing and implementing
the new components and services for product design and contract management. The
layer architecture provided the interface concepts for the connection to the host back-
end and its stepwise displacement. The first desktop tools with related services are
operative, as well as an Internet portal for insurance agents.

COOPERATIVE WORKPLACE SYSTEM FOR CORPORATE BANKING

A major Swiss bank had the need to redesign its workplace system in the corporate
customer department due to poor acceptance and performance. The existing system
was implemented with a 4 GL (i.e., a 4th generation database manipulation language)
system on top of a complex host network. As the system had been installed just a year
before with the goal of improving the rather poor user support, the banking staff was
not amused by the idea of yet another software project. In addition, a new development
team of twelve with many graduates was hired, who had few skills in object-oriented
design and little project experience. We were contracted as consultants and software
architects. In a pilot project we combined object-oriented training with team forma-
tion and becoming acquainted with the banking domain. The T&M approach served
both as a guideline to object-oriented development and as the overall view on appli-
cation development. The actual project started after almost one year and ran for one
and a half years. By the end the team size had doubled. An entirely new workplace sys-
tem with different workplace types and several rather complex software tools was
designed, implemented, and evaluated at some pilot banks. The different workplaces
were linked with a clear cooperation model for the underlying flexible workflow man-
agement system. A few weeks before the actual roll-out the bank merged with another
company of equal size. The top management decided that for the new company’s
corporate banking the business strategy of the other bank was to be used. Thanks to
the layers of the T&M model architecture we had used, the team was able to substitute
the entire business logic within three months, reusing most components for handling,
interaction, and cooperation. The system successfully went operative.

REDESIGN OF A MANAGEMENT SYSTEM FOR MUNICIPAL DAY-CARE CENTERS

The public administration of the municipal day-care centers of a major German city was
developing a management system. The small development team had little background
for developing a complex system of this size and had chosen to use Visual Basic. We
worked as trainers and software architects. The T&M model architecture and the con-
ceptual patterns were a substantial help in getting across the idea of designing and
implementing a large and complex system. As the programming skills within the team
varied considerably, the distinction between tools, materials, and services were essen-
tial to establish a fitting division of work. The T&M design patterns proved to be on
the right level of abstraction, as we could easily specialize them for a system imple-
mented in Visual Basic. Most redesigned modules have seen integrated successfully and
the project is in good progress.

P R O J E C T S B E H I N D T H I S B O O K 13

Zull-01.qxd 20/8/04 7:27 AM Page 13

A WORKPLACE FRONTEND FOR A TELEPHONY SYSTEM

A manufacturer was supplying server software for distributed telephony systems. They
had a call-center application with a rather poor interface. We worked as software archi-
tects and developers. The task was both to design a highly usable frontend for call-center
applications and an architecture for this software components that would fit into the
overall architecture of the telephony system. We introduced the concept of different
workplace types and design metaphors. Although the general characteristics of tools,
materials, and automata were applicable to this domain, we found it useful to refine
some of these design metaphors. So we proposed the conceptual patterns of adjustment
tool, probe, and technical automaton. This led to an improved usage model, as the users
could understand potential delays and missing reactions when they tried to adjust the
actual telephone switches encapsulated in a technical automaton with a tool. The new
call-center software was implemented using these patterns and was a success from the
very beginning, as a network of distributed call-centers managed the nationwide mar-
keting campaign of one of the biggest German IPOs in years without major problems.

1 . 4 T H E E Q U I P M E N T M A N A G E M E N T S Y S T E M
E X A M P L E

In this section we introduce the Equipment Management System (EMS). It is the main
example we will be using throughout the book. This example is of small size and mod-
erate complexity. It should meet the background of most software developers and
shows a lot of characteristics of a domain, where interactive workplace solutions are
useful.

Imagine that we are a small software company developing the JWAM framework
as a platform for its project work. The JWAM team comprises approximately twenty
people, with the usual fluctuation. Each developer has access to a networked work-
station. In addition, there are the following devices: two servers, two printers, one
integration computer, and one fax machine.

All developers have to rely intensively on their computers, so that the underlying
infrastructure is a critical task. Our ficticious software company calls this task
“Equipment Management,” and an equipment manager is responsible for it. The equip-
ment manager finds himself in a constant target conflict: members of the staff keep ask-
ing for better-performing computers, but the budget for device procurement is limited.

The central tasks of our equipment manager include:

● Procurement of new devices: A device is normally procured upon the request of a
member of the staff (see the scenario “Buying a new device” in Section 13.1). In
such a case, the equipment manager has to carefully weigh the requirement against
the budget. The employee’s old device is either disposed of or passed on to another
employee (see the action study “Sorting out a device” in Section 13.1).

● Minimizing costs in device procurements: To procure a device the equipment
manager has to get several cost estimates from different vendors to ensure
economic management (see the scenario “Buying a new device” in Section 13.1).

● Upgrading existing devices: Existing devices are checked regularly as to their
performance and upgraded, if necessary, for example, by adding main memory or
hard disk capacity (see the system vision “Updating devices” in Section 13.5).

14 I N T R O D U C T I O N

Zull-01.qxd 20/8/04 7:27 AM Page 14

● Updating the office plan: The team members are allocated to projects, and
projects are located in adjacent rooms. Therefore, equipment and team
members frequently have to change offices. An office plan showing a plan of all
rooms with the team members and their equipment has to be updated with
every change. A manual version of this office plan, that was used before the
new system was developed, is shown in Figure 1.1.

The company estimates that the number of computers to be managed will double
within the near future, because new members of the staff are going to join the JWAM
team. This will, of course, increase the equipment manager’s workload.

1 . 5 R E F E R E N C E S

D. Bäumer, G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle, H. Züllighoven: “Framework
Development for Large Systems”. Communications of the ACM, October 1997, Vol. 40, No. 10,
pp. 52–59.

This article describes the model architecture for large application frameworks based on the
T&M approach.

R E F E R E N C E S 15

Building D

Room D-211
Robert Baldwin

1 Sparc2, 64MB, 1991,
File-Server
1 PC-Pentium II 300,
 PC-Server, 1998

1 UltraI, 64MB, 1997,
17"-Color

1 MacIIci, 1991, 19"

3 SunSparc4, 32MB, 1995, 17"-Color,
1 Sun-IPX,16MB, 1991

4 Pentium 166 MMX-PCs, 1997
1 UltraII, 1996, 17"-Color, PC/Solaris-Server
1 UltraII, 1997, 20"-Color, PC/Solaris-Server

Room D-212/213
Software Lab

1 Apple-Laserwriter IIg,1991

1 PC 486, 32MB, 1992, 17"-Color,

Room D-214
Chris Robin
Ed Bear

1 Pentium II, 1998
 (Video-Desktop-System)

1 Pentium 133-PC,1996

Room D-215
Carol Lillile
Gideon Wolfe

1 PC-Pentium 166 MMX,
1997

1 Pentium II,1998

Pinkus Potter
Room D-209

1 Pentium 166 MMX,
1998

Martina Ritchie
Room D-208

1 Pentium 133,
1996, 17"-Color

1 PC-Laptop 64 MB,
1998

Chris Caroll
Room D-207

1 Pentium II, 1998

Guy Strangelove
Room D-206

1 Pentium II, 1998

Iris Young
Room D-205

1 Pentium 133, 1996

Ralph Kempinski
Room D-204

1 Pentium 166 MMX,
1997

FIGURE 1.1 The EMS example’s room plan.

Zull-01.qxd 20/8/04 7:27 AM Page 15

G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language. Reading, Mass.: Addison-
Wesley, 1999.

The current standard work on UML.

R. Budde, H. Züllighoven: “Software Tools in a Programming Workshop”. In C. Floyd,
H. Züllighoven, R. Budde, R. Keil-Slawik (eds.): Software Development and Reality Construction.
Berlin, Heidelberg: Springer-Verlag, 1992.

This publication is a short version of the dissertation of both authors, discussing the concep-
tual background of the T&M approach.

U. Bürkle, G. Gryczan, H. Züllighoven: “Object-Oriented System Development in a Banking
Project: Methodology, Experience, and Conclusions”. In Human-Computer Interaction, Special
Issue: Empirical Studies of Object-Oriented Design, Vol. 10, Nos. 2 & 3. Hillsdale, New Jersey,
England: Lawrence Erlbaum Associates Publishers, 1995, pp. 293–336.

This is a detailed report about the approach and experiences gained in our first and largest
application project based on the T&M approach.

C. Floyd: “Outline of a Paradigm Change in Software Engineering”. In G. Bjerknes, P. Ehn,
M. Kyng (eds.): Computers and Democracy: A Scandinavian Challenge. Aldershot, Hampshire:
Dower Publishing Company, 1987; pp. 192–210.

The seminal work, where the author also describes our understanding of software engineering.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison-Wesley,
1995.

The seminal work on patterns, which formed the basis of our construction handbook.

T. Peters, R. H. Waterman: In Search of Excellence: Lessons from America’s Best-Run Companies.
New York: Harper & Row, 1982.

One of the best books (albeit criticized) that initiated the discussion about customer relations.

C. Szyperski: Component Software. Reading, Mass.: Addison-Wesley, 1997.

A popular and substantial book on software components.

16 I N T R O D U C T I O N

Zull-01.qxd 20/8/04 7:27 AM Page 16

17

The T&M Object
Metamodel

2 .1 T H E O B J E C T M E TA M O D E L

2.1.1 Introduction

Work on object-oriented development projects requires all developers to share a
common understanding of the basic terms relating to object orientation. In this
respect, the authors of this book have a different conception from those of method
books.1 In addition, relying on an object-oriented programming language won’t
help either since various languages implement the concepts more or less cleanly.
For this reason, we begin this section with a definition of our so-called object
metamodel.

A metamodel essentially provides the elements and relations that can be used to
build models. In the context of our work it means that an object metamodel helps us
to understand the concepts behind, for example, UML diagrams or the Java language
constructs.

Our object metamodel reflects the principle of application orientation. We will
show how the elements of technical object-oriented models correspond to the con-
cepts and notions used for domain-specific analysis and modeling.

By the end of this chapter readers will know what the authors mean by, for exam-
ple, inheritance. They will also understand the importance of relating the terms of an
application domain to a hierarchy of classes.

When this chapter is used by a software team, it helps developers to arrive at
a common understanding of object-oriented modeling and programming from the
perspective of the T&M approach.

2

1. The authors of various method books diverge considerably on the basic concepts that will be discussed
here.

Zull-02.qxd 20/8/04 7:29 AM Page 17

2.1.2 Definition: The Object Metamodel

Object orientation offers a set of concepts to describe domain-specific and technical
models:2

An object metamodel describes

● elements,
● relationships,
● element properties, and
● formation rules,

which are all available for object-oriented modeling.

The most important elements are objects and classes, linked by a use relation-
ship and inheritance. In addition, there are (mostly pragmatic) rules specifying
how to link elements by relationships.

Among the most important elements in our object metamodel are classes. A class
has specific properties, for example, an interface with admissible operations and a hid-
den description of attributes and implementations of operations. An inheritance rela-
tionship is one of the most important relationships used to link classes. An inheritance
relationship has certain properties. For example, a subclass inherits all attributes of its
superclass. Inheritance as a pure software concept may be used in many different ways.
One important formation rule of our object metamodel says that you should use inher-
itance mainly to model domain-specific generic terms and semantic members of these
terms. Therefore, our Equipment Managment System (EMS) example, BusinessCard,
is a specialization of the generic concept, Form.

The rules of composition are thus of great importance. They give us guidelines for
utilizing various elements and relations in modeling. They thereby support a common
understanding of models and a clean use of the elements from a software engineering
viewpoint.

2.1.3 Context: What’s the Purpose of an Object Metamodel?

In the context of this book, we look at object-oriented application development from
a software engineer’s perspective, that is as a way of designing models (see Chapter 6).
In fact, the core of the T&M approach is to create a domain-specific and technical
object-oriented model, based on the objects and terms of that application domain, and
to derive an object-oriented program from it. To do this, we need an exact under-
standing of what all the basic terms of object-oriented modeling mean and how they
should be used.

At this point, you may be asking yourselves why we have gone to all this trouble,
since each known programming language in practice implements such an object meta-
model. This is true. Each program written in one of these languages shows what the
elements of the language mean. But the problem with object-oriented languages is sim-
ilar to those with method books. In recent years, we have used different object-oriented

18 T H E T & M O B J E C T M E T A M O D E L

What is an object
metamodel?

2. When speaking of technical models in the course of this book, we always mean technical software models.
When discussing the modeling of technical embedded systems, we will make that clear.

Zull-02.qxd 20/8/04 7:29 AM Page 18

(and conventional) programming languages in our projects based on the T&M
approach. What we have found is that each language implements a more or less dif-
ferent object metamodel. This leads to situations that we do not find useful, neither
from the software development nor from the user’s perspective. It has proven useful
instead to turn a uniform object metamodel into the basis for conventions and program
macros in our projects in order to achieve a common understanding of our modeling and
programming efforts.

These issues led to the following requirements for our object metamodel: We have
to define our object metamodel so that it can be used to describe the domain concepts
of our future application. It has to be defined as closely as possible by the concepts of
an object-oriented programming language so that we really can implement a domain
model. And finally, our object metamodel should encourage software quality charac-
teristics such as easy understanding and easy modification.

2.1.4 Context: A Classification of Programming Languages

When we talk about the basic elements of an object metamodel, we use the accepted
classification of programming languages proposed by Peter Wegner. He defines a three-
level model, where each level comprises the programming language characteristics that
a language has on that level. The classification leads from object-based via class-based
to the last level of object-oriented programming languages (see Figure 2.1).

According to Wegner’s classification, a language is object-based if it creates and lets
you manage objects as a primary language construct. In contrast, class-based languages
have the class concept in addition to the object concept. This means that similar
objects can be defined in appropriate classes, and that these classes are then responsible
for creating objects as instances. Finally, an object-oriented language adds the inheritance

T H E O B J E C T M E T A M O D E L 19

e.g.

object-based

Ada (Packages)
Modula (Modules)

objects +
classes

class-based

CLU
Euclid
Mesa

objects +
classes +
inheritance

object-oriented

Simula
Smalltalk

C++
Eiffel
Beta
Java

FIGURE 2.1
Wegner’s
classification of
programming
languages.

Zull-02.qxd 20/8/04 7:29 AM Page 19

concept to the features of a class-based language. This inheritance concept allows you
to create a hierarchy of subclasses and superclasses. Such class hierarchies have to be
supported by a polymorphic-type system to be able to call an object of a subclass indi-
rectly in the context of a superclass, that is, through a typed identifier. In the course of
this book, we will only deal with object-oriented languages. Based on this classification,
we will describe the important elements of our object metamodel in detail.

2.1.5 The Object Metamodel and the Software Model

One of the fundamental ideas of the T&M approach is that the terms of the software
model can be put in relation to the terms of the application domain. Figure 2.2 shows
how the elements of the domain and the software models interrelate. The processes
called generalization, specialization, use, and composition lead to a concept model
based on domain-specific objects and concepts of the application domain. This con-
cept model can be mapped onto a software model, formed by the elements and rela-
tionships specified by the object metamodel. Note that mapping the concept model
onto the software model does not break the model, because the structure and meaning
of the elements used in both models are similar.

However, precisely this similarity represents a central rule of our object meta-
model. For example, the model elements called term, generalization, specialization,
composition, use, and hierarchy of terms correspond to the elements of the object
metamodel called class, inheritance, aggregation, association, and class hierarchy. This
means that terms are modeled by objects and that their behavior is modeled by opera-
tions, as shown in Figure 2.2.

This interrelation will become clear in this section as we continue interpreting the
elements of the object metamodel from both the domain and the software perspectives.
Note that we elaborated the software side of the object metamodel in more detail,
because the main part of this book focuses on views relevant to the creation of the
software model. Nevertheless, we will continue dealing with the domain modeling and
the interrelation between the domain and the software models in later chapters (see
particularly Chapters 6 and 9).

2.1.6 Definition: Objects

This section defines the term object from our two perspectives, that is, for the domain
model and the software model.

20 T H E T & M O B J E C T M E T A M O D E L

Relations of the object metamodel:

Domain model Technical model

Thing Object

Interaction Operation

Concepts Class

Generalization, Specialization Inheritance

Composition Aggregation, Association

Sub- and Superconcepts Class hierarchy

FIGURE 2.2
Interrelations

between the
domain and the
software models

defined in the
object

metamodel.

Zull-02.qxd 20/8/04 7:29 AM Page 20

In the domain model, an object is a concrete thing or an ideal concept used in daily
work and forms the starting point to model an application as software objects.
These objects are characterized by their behavior, that is, how they can be han-
dled and manipulated.

We distinguish probing and altering behavior:

● What information can be drawn from an object? Which domain states
are relevant?

● What changes can be affected in an object without destroying or transform-
ing it into another object? What actions can I invoke on an object?

In the software model, objects encapsulate data and operations to form a pro-
gram component. They are the units of the operative software system. An object
can be uniquely identified across the entire system, and it has a state represented
in a private memory location of the object.

The operations of an object that can be seen from the outside form the interface.
Each of these operations is defined by its signature. The operations assigned to an
object provide information about that object and can change the object’s state.
These operations are the only means to read or change the state of an object. To
activate an operation, you have to send a message to that object. In addition, a
contract (see Section 2.3) can be used to make assertions about an object’s
behavior at the interface.

Figure 2.3 shows how we describe a device within our EMS example, described in
Chapter 1.

Both the structure and the behavior of similar objects are defined in the common
class of these objects. This class also defines the visible and hidden properties of an
object. From the software model, we need to ask ourselves to what extent the language
we use supports encapsulation of an object’s properties. For example, with the appro-
priate declaration, we can access the internal structure of an object from the outside in
both Java and C��; Smalltalk, on the other hand, does not let you protect operations
from being called by clients at all.

Furthermore, a type is assigned to each object. In most statically typed object-
oriented programming languages (e.g., C��), the type is defined by the class that an
object belongs to.

Each object has to be created explicitly at runtime. To create an object at runtime,
you call a creation operation of the relevant class. While they are created, objects are
allocated in memory, and then perhaps initialized and bound to an identifier. Once cre-
ated, this object is an instance of that class as long as it lives. Note that the type of an
object also remains the same for an entire lifetime. On this basis it is important to

T H E O B J E C T M E T A M O D E L 21

Visible and
encapsulated
object properties

Class and type

Creating an
instance

Device
Name
Classify
Order at dealer
Purchase at date
Describe with text
Due for upgrade?

FIGURE 2.3
Object-oriented,
domain-specific
description of a
device from the
EMS.

Zull-02.qxd 20/8/04 7:29 AM Page 21

understand the difference between static and dynamic types of object identifiers:

Static identifier type: To be able to use your object in a program, you have to
bind it to an identifier, using a reference. This identifier obtains a static type
(in statically typed languages) by declaration.

Dynamic identifier type: At runtime, due to polymorphism, objects of a subtype
can be bound to an identifier by either assignment or parameter passing. This
defines the dynamic type.

Objects are direct instances of their creating class. This means that, at runtime,
these objects have the structure of attributes (also called fields) defined in the class.
Such attributes can contain values (see Domain Values in Section 2.6.5) or references
to other objects.

As mentioned above, each object has a state.

A state is specified by the particular 3 values of the object’s attributes and refer-
ences. The state of an object is protected against access from the outside; it can
be probed or altered only by operations defined at the interface.

Each operation you declare for an object defines the name of this operation and its
argument types and return type. All these elements together form the signature of an
operation. The set of all signatures of the public operations of an object form its inter-
face (see Figure 2.4), where public means that these operations are visible to the out-
side. In contrast, an internal interface can be accessed only by the object itself.

The interface of an object defines its services. We expect from an object to offer a
set of domain services. The services an object offers at its interface are often realized so
that services provided by other associated, that is, referenced, objects are used. In this
connection, we often speak of a call-in or incoming interface, as opposed to a call-out or
outgoing interface. For a programming language, the call-in interface is always explicit

22 T H E T & M O B J E C T M E T A M O D E L

Static or dynamic
identifer types

in
te

rf
ac

e

operation
name

parameter
objects

result
object

signature

operation

operation1(arg1:Type1):Return Type1

{

...

}

+operation1 (arg1:Type1) :ReturnType1

+operation2 (arg2:Type2) :ReturnType2

...

+operationN (argN:TypeN) :ReturnTypeN

TypeA

FIGURE 2.4
An object’s

interface.

State

Interface,
visibility

Services

3. State refers to the values of all attributes at a given point in time.

Zull-02.qxd 20/8/04 7:29 AM Page 22

(because it is the public interface of an object), while the call-out interface can nor-
mally be determined only by analyzing the program code.

The idea of services supplies a basic interpretation of the use relationship between
objects: one object offers services, acting as a provider, and another object, acting as a
client, uses these services. An object can be both a provider and a client for other
objects (see Figure 2.5).

We have to distinguish the interface of an object and the call of services over this
interface, both as terms and as concepts.

Conceptually, the interface’s elements are called operations, that is, executable
steps or activities running on a computer system. In terms of programming languages,
these operations are implemented by the constructs of each language and are then
called procedures, methods, or routines.

When we call an operation, we often speak of sending a message to the called
object. Such a message includes the identifier of the object (as the addressee), the
name of the operation, and the call parameters. When polymorphism is used, then the
respective operation in its specific implementation is executed at runtime. This is also
called late or dynamic binding.

When handling objects, we often find that operations cannot always be called in
any state of the object. The reason is that an object obeys a certain use or state model,
which can be explicit (e.g., as a finite state automaton) or implicit. We speak of the
protocol of an object:

● An object’s protocol is a set of rules, defined processes, or operation calls that
each client has to observe to enable the object to render certain services. This
depends on the state of the object. To be able to observe a protocol, the
client must at least know the appropriate interface.

T H E O B J E C T M E T A M O D E L 23

uses

service

service

service

service

client provider

client

provider

reference

FIGURE 2.5
Objects acting
as providers and
clients of
services.

Operations,
messages,
routines,
procedures, and
functions

Protocol

Zull-02.qxd 20/8/04 7:29 AM Page 23

Occasionally, the literature dealing with object orientation uses the terms protocol and
interface synonymously. Our definition of protocol originates from the field of distributed
systems, where the term describes the interplay beween two partner instances, which, in
our sense, provide a bundle of services. However, popular object-oriented programming
languages offer no way of representing a protocol at the interface, except for assertions in
Eiffel.

Although the interface of an object defines the operations and perhaps attributes
of the object that are visible from the outside, encapsulation means that you cannot
access any property not explicity exported from the outside. This is normally called
information hiding.

Information hiding in object-oriented languages means that encapsulation is used
to hide the specific representation of an object’s state, that is, its structure.
Dave Parnas recommends localizing design decisions in an object. The clients
of an object depend only on the elements of the interface. You can change
the implementation without losing the object’s consistency from the client’s
perspective.

The encapsulation concept also means that, though the client knows the signa-
ture of an operation and can draw conclusions about that operation’s behavior from the
contract model (see Section 2.3), the implementation is totally hidden. In this respect,
any change to the implementation should be made in such a way that no change in the
specified behavior is visible from the outside.

2.1.7 Discussion: Object Identity

It is important to understand that an object’s identity has nothing to do with it being
addressable. The fact that an object is addressable means that you can access an object
from within one or more contexts (which might then lead to the so-called dynamic
alias problem; see Section 2.6.2). Addressability is an external object quality and
depends on the context.

In contrast, the identity of an object allows you to uniquely identify this object,
regardless of the path you have to use to reach this object. From a software-specific
stance, identity means first and foremost that whether or not two identifiers point to
the same object or to two objects in the same state can be determined on the level of
programming language. This means that identity is an internal object quality, that is,
it belongs to the object, regardless of its context and the way its structure and opera-
tions are defined.

In addition, we need a concept to obtain a domain-specific identity. This domain-
specific identity has to be independent of the software-specific identity of an object.
Two objects with a different software identity can have one single domain identity. For
example, a bank customer can be a debtor in one context and a portfolio owner in
another. The identity of that person must be unique, regardless of the behavior in the
respective context. This means that the developers have to be able to express what
they mean by identity and how this identity relates to equality: Do they mean equal
values, equal behavior of objects, or equal domain identity of an object? Note that the
domain identity can never be a global property of an object. It can be modeled in

24 T H E T & M O B J E C T M E T A M O D E L

Encapsulation,
information

hiding

Zull-02.qxd 20/8/04 7:29 AM Page 24

a meaningful way only in dependence from the application domain. We will propose a
possible solution to this problem in Section 9.4.1.

2.1.8 T&M Design: Structuring an Interface

As mentioned earlier, objects have a state that can be probed or altered. Depending on
this state, sometimes operations cannot be called for software and domain reasons. To
better understand this relationship in the domain and software models, the domain
description of how objects are handled and the description of their interfaces should
be arranged similarly (see Figure 2.6).

● From the domain-specific view, an object is organized as follows:
– Instructions (in the sense of commands, actions) change the state of an

object, resulting in procedures.
– Requests supply information about the object in the form of domain-specific

result objects, resulting in functions.
– Tests are a special form of requests that probe the domain-specific state of an object

and return a Yes/No answer, resulting in predicates, which are used in assertions.
● From the software-specific view, the interface of an object is organized as follows:

– Procedures alter the (externally visible) state of an object. This change of
state is not necessarily admissible at any given point in time. It normally
depends on the actual internal state of an object.

– Functions return result objects, without changing the externally visible state
of the object, that is, a function always returns the same result, while the
state and arguments of the object remain the same. A function can be partial,
if it returns a result only for specific arguments and object states.

– Predicates probe the state of an object and return a boolean result. They do
not change the state and can be called at any given time.

We distinguish the concept of procedures, functions, and predicates rather than
using a syntactic differentiation of a signature in input, input/output, and result param-
eters. Nevertheless, it is important to see how this differentiation is supported by a pro-
gramming language to better understand our concepts. For example, in C�� each
operation has the syntactic form of a function, and there is (currently) no primitive
boolean type; in Smalltalk, on the other hand, each operation returns a result object.

2.1.9 Definition: Classes

We define a class as follows:

In the domain model, classes model the concepts and terms behind the objects we
use in our daily work. This means that a class is an abstraction of similar objects,

T H E O B J E C T M E T A M O D E L 25

Supplier

orderAtDealer(order:Order)

purchaseAtDate(date:Date)

getDescription():Description

IsDueForUpgrade():Boolean

instruction

request

test

FIGURE 2.6
Organizing an
interface in
statements,
requests, and
tests.

Zull-02.qxd 20/8/04 7:29 AM Page 25

based on the common behavior of different domain objects. The similarity of
terms can be thought of as a generic term. Such generalizations or hierarchies of
terms are part of the respective domain language, which forms the basis for
cooperation and furthers a better understanding of the application domain.
Hierarchies of terms are modeled by subclasses and superclasses.

In the software model, a class is a piece of program text describing the funda-
mental properties of the objects it can create. A class is defined by its name, its
inheritance relationship to its superclasses, and a set of object properties (see
Figure 2.7). These properties include the interface of objects and their internal
implementation by algorithms and data structures. This means that a class
defines the creation and behavior model of its instances. An object is always an
instance of exactly one class.

Thus, in addition to the behavior at runtime, a class also defines how its instances
are created and initialized. Each object you create differs from all other instances of a
class in that each one has its own memory location. In the example shown in Figure 2.7,
this would be for each Room object the reference to the respective lists of devices.

Encapsulation is used to protect the internal representation of an object against
inadvertent use. For example, the reference to the object with the devices identifier in
Figure 2.7 is not visible in objects belonging to the RoomMap class; it belongs to the
internal representation.

Classes define internal interfaces, in addition to the public interface. The internal
interfaces of a class are first the so-called inheritance interface, which is used only for

26 T H E T & M O B J E C T M E T A M O D E L

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<class>>
RoomMap

devices : DeviceList

putBusinessCard()
putDeviceCard()
dimension()
isConsistent()
...

<<class>>
Room

devices = devicesA101

devices = devicesA103

<<object>>
:RoomMap

<<object>>
:RoomMap

<<object>>
a101:Room

<<object>>
a103:Room

FIGURE 2.7
Classes describe

the interface
and representa-

tion of their
instances.

Generic
operations

Zull-02.qxd 20/8/04 7:29 AM Page 26

subclasses of a superclass and not by clients, and the private interface, which denotes the
operations for use within one and only one class.

Many programming languages can protect, that is, hide, their internal interfaces
by use of language constructs (e.g., protected and private in Java or C��).

You often find in the literature and programming environments that a reading and
a writing operation are supplied for each attribute of a class. These are generic opera-
tions, not to be confused with “generic components” or “genericity”:

Generic operations are normally a pair of read and write operations (set and
get) for each attribute of a class.

2.1.10 Discussion: Generic Operations

Generic operations are used in graphical interactive programming environments (e.g.,
VisualAge) to make application objects “accessible” for graphical interface elements.
The same approach is often found in database application software.

These generic operations can violate the information-hiding principle at the pub-
lic class interface, because they publish the internal structure of an object, at least in
part. In addition, they can easily destroy the domain consistency of an object. In gen-
eral, we recommend not using such generic operations.

Let’s look at a class, Account, where the generic operations could be setBalance
and getBalance. When designing the class, the developer will have considerable trou-
bles to implement the bank-specific handling of accounts using these operations. A better
way would be to use deposit, withdraw, and calculateFees to define the
conditions when a balance may be modified.

2.1.11 T&M Design: Generic Operations

Note that the T&M approach does use generic operations, provided that they are used
at the internal interface.

It has proven to be a good idea from the software viewpoint to use generic oper-
ations to implement all probing and state-altering operations. Generic operations
should thus be used in their defining class and all subclasses. More specifically, the
generic operations are defined in the class that introduces the corresponding attribute.
At this point, the attentive reader will probably ask whether these generic operations
can be protected as internal interfaces by the mechanisms provided by the program-
ming languages. The answer is that, C�� or a similar programming language have a
special language construct (protected). But you can only implement this by appro-
priate categories and related programming conventions in Smalltalk.

In the example shown in Figure 2.8, the class Note offers an operation,
enumerate, with a parameter object of the class Number. Internally, this operation
uses the protected generic operation, setNo, to set the encapsulated private attribute
_No of type integer. This introduces a form of data abstraction to the internal rela-
tionship between classes. This approach can be used to implement abstract things. For
example, generic operations can be abstracted to serve as template operations in super-
classes, where their attributes are then added to subclasses.

T H E O B J E C T M E T A M O D E L 27

The Bank
example

Zull-02.qxd 20/8/04 7:29 AM Page 27

2.1.12 Discussion: The Object Life Cycle

In the interplay between objects and classes, there are a few operations that limit
the life cycle of an object; they are considered “critical situations” in software
modeling and construction:

● Create,
● delete, and
● transform into another object.

Conceptually, none of these operations can be assigned to the object itself,
because an object cannot create, delete, or transform itself. These operations belong to
the metalevel (see Section 2.7).

In programming languages where classes themselves are available as objects in the
system, creating is normally implemented as a class operation, that is, for each class
there is at least one operation (constructor) that can create instances of that class. In
compiler languages, which do not represent classes as objects, the compiler generates
code to create objects, and the actual instantiation is normally handled by the runtime
system. The creating procedure is then normally defined as a specialized operation
within the class text. In many cases, implementing another operation that puts the
object in an initial state, in addition to the creating operation, has proven to be a good
idea. This initialization operation can be called when creating an object and whenever
needed during the object’s lifecycle.

Deleting technically specifies how an object is removed from the runtime memory.
In object-oriented systems, this process comprises two steps:

● There is no more reference to the object in any location of the application
system, and the object can no longer be reached in the application system.4

● An object is removed from the heap. This can be handled by the garbage collector,
if available, when the object is no longer referenced. Otherwise, the delete operation
has to be specifically written, and problems relating to lost objects, dangling
pointers, and the correct deletion order of related objects have to be dealt with.

Transforming means transfering an object into another one. This is normally the
case when an object is processed so that it changes its “character” due to a specific
action, resulting in a “different” object.

28 T H E T & M O B J E C T M E T A M O D E L

Note

-_No:int

-_To:String

setNo(no:int)

getNo():int

setTo(to:String)

getTo():String

+ enumerate(no:Number)

{

...;

this.setNo(no);

...;

}

FIGURE 2.8
Generic

operations at
the internal

interface of a
class.

Life cycle of
objects

Creating objects

Deleting objects

Transforming
objects

4. We will not be discussing problems with objects stored in a database, where they can be accessed as a result
of database queries, at this point.

Zull-02.qxd 20/8/04 7:29 AM Page 28

Such a transformation of an object into another one is normally necessary for
domain-specific reasons and rather difficult to reproduce in an object-oriented envi-
ronment. From the technical stance, this often means that the object has to change its
class and type membership, which is not supported in strongly typed object-oriented
languages. Normally, if an objects needs to change class, you first create a new instance
of the “target” class, then you transfer the required values from the old object to the
new one, and finally, you delete the old object. Though this solution is simple, it can
be problematic, because it can happen that both the software and the domain identi-
ties of the original objects are lost.

2.1.13 T&M Design: The Object Life Cycle

When we design the usage model (see Section 3.2.1) of an interactive system, we have
to clarify how objects can be created. The users of our system have to clearly under-
stand how and from where they can obtain new domain instances of their task-related
objects. In practice, it has proven a good idea to use tools or domain containers (e.g.,
form files) to create new materials. In addition, the tools themselves can be created by
use of toolboxes or tool managers.

The same rules apply to deleting objects. The question here is the domain view
that a user has about the “deletion” of an object. We can easily see that there is a big
difference between the software and domain views. To allow users to easily express that
they no longer need an object, we recommend defining an explicit “location” for the
domain-specific deletion of objects, for example, a tool or a domain container (e.g., a
desktop bin).

Let’s look at these things in our EMS example. Assume that a developer changes
offices. The device manager updates the room plan, using the Device Organizer tool,
then puts the updated room plan into a device file and closes the device Organizer.
The usage model assumes that both the room plan and the tool are still available for
work. However, from the software view, once the room plan and the tool settings were
saved, both objects could be deleted from the runtime system. If, however, the device
manager moved an old work copy of the room plan to the bin and then empties
the bin, this action tells us that he no longer has any use for this plan. Still, the actual
software-specific deletion of the object could be postponed until the system is shut
down.

We already said that transforming an object into another one is normally due to
domain reasons. Let’s look at a bank example:

A customer consultant prepares for a meeting with a customer, filling in personal
information in an application form for a small loan. Some information will be added
in the course of his meeting with the customer. Next, the form is printed and signed
by the customer, the customer consultant, and a second consultant. This means that
the application form is now a contract for all participating parties. The customer con-
sultant selects the “Contract signed” option in the form editor. From that point, no
changes should be made to this contract object.

For the software implementation of this scenario, we could use different wrappers
around an “object core” instead of changing the object’s class. We will introduce a
more complex technique for role modeling in Section 9.4.1. For example, the roles of
a core object could be “contract” and “form.”

T H E O B J E C T M E T A M O D E L 29

Changing class

The EMS
example

The Bank
example

Zull-02.qxd 20/8/04 7:29 AM Page 29

2.1.14 Definition: Inheritance

An inheritance relationship is an essential feature that distinguishes object-oriented
languages from conventional ones.

From the domain view, an inheritance relationship organizes classes in hierarchical
structures. This allows us to model a hierarchy of terms using generalizations
and specializations.

From the software view, inheritance facilitates the reuse of classes. For inher-
itance, all descriptions of a superclass are initially descriptions of its subclasses.
Then a subclass can modify the properties it inherited from its superclass:

● Inherited operations can be implemented (or defined) in a subclass, while
they are merely specified in its superclass.

● Operations can be redefined when a new implementation in the subclass
overrides (hides) the implementation existing in the superclass.

● New attributes (descriptions of the storage structure) and operations can
be added.

● Access rights can be modified.

We speak of single inheritance when the inheritance hierarchy is arranged in a
tree, that is, if a class has only one direct superclass and an arbitrary number of
subclasses.

In contrast, multiple inheritance is given when a class has more than one direct
superclass.

The inheritance unit is a class, and the inheritance relationship remains
unchanged during runtime, at least in statically typed languages. Note that many
object-oriented languages allow you to restrict the access to inherited properties (par-
ticularly for operations):

● First, you can generally restrict the interface for clients, that is, an inherited
property that is visible in the superclass no longer belongs to the public
interface in the subclass. Examples include the private inheritance in C��,
where the subclass relation is lost, or the non-export in Eiffel, where type errors
can occur due to the subclass relation.

● Second, you can restrict the interface, with the exception of specific classes, that
is, only specific client classes can access the properties. For example, this can be
implemented by selective export in Eiffel, or by breaking the data encapsulation
between classes, for example, by using the friend construct in C��.

2.1.15 Discussion: Inheritance

You can think of inheritance as a mechanism that allows you to reuse specifications and
code. In Simula 67, inheritance is called program concatenation. In addition, inheritance
forms the basis for polymorphism in connection with the appropriate type system.

The way you use inheritance determines its meaning for the domain model and
the software model. There has been vigorous discussion about single and multiple inher-
itance among language developers. Languages like Smalltalk or Beta support only single

30 T H E T & M O B J E C T M E T A M O D E L

Using inheritance

Zull-02.qxd 20/8/04 7:29 AM Page 30

inheritance, while multiple inheritance is supported in Eiffel and C��. Java supports
single inheritance on the class level, and the multiple inheritance concept can often
be replaced by named interfaces.

Note that you should be careful when restricting access to inherited properties.
This technique can be useful when building frameworks or implementing complex pat-
terns. The downside, however, is that this often reduces the readability of your code or
design. Major problems can occur with type or runtime errors, particularly with the
non-inheritability of friend constructs in C��.

2.1.16 T&M Design: Inheritance

In our T&M design, we pragmatically assume consistent use of single inheritance when
modeling concepts and terms in the domain model, because it ensures that our concept
model is clear. After all, a concept model built in the form of a tree is easier to under-
stand than a mesh of complex relationships, although our everyday language has many
examples of meshed terms (like the relations of bird—flying animal—fast runner—
ostrich). On the other hand, we do not simply map our everyday language to our appli-
cation systems but reconstruct a domain language instead. This reconstruction should
be easy to understand in our targeted application domain. And it should be as clear and
minimal as possible.

In contrast, multiple inheritance is often useful in the software construction, provided
that it is used in a disciplined way and supported by an appropriate low-cost language
implementation. Section 8.3.1 shows an example that uses multiple inheritance.

Let’s look at these things in our EMS example. It is important for our device man-
ager to be able to copy both the current business cards of all staff and a device identi-
fication card. For this reason, the class design for our EMS includes a copyable
interface and the copy() operation. This interface implements two classes,
BusinessCard and DeviceCard. However, the operation is implemented in a dif-
ferent way, because the data to be copied from business cards and device cards differ.

Concept modeling is the primary domain motivation for the use of inheritance.
From the software view, we are additionally motivated by the separation of
specification and implementation into a superclass and a number of subclasses (see
Section 2.1.22).

Another software motivation is the use of inheritance for the incremental transfer
and modification of properties from fixed class descriptions that cannot be changed in
the source text. This is often the case in commercial class libraries. With a commercial
library, if you want to change a property you often have no other way but subclassing
to implement a change. In this way, you can implement changes even when the impact
of such a change on client objects cannot be fully anticipated. In this case, you can
encapsulate the change in a subclass, because dynamic binding lets you use both the
instances of the new and the old class (polymorphic).

Finally, the last of the uses of inheritance we consider acceptable and useful serves
to abstract common properties from existing classes. You should always carefully make
sure that these common properties are motivated from the domain view, rather than
reusing existing code and extracting attributes for the sole reason that you have a piece
of code available. In fact, by our definition, inheritance is not about the reuse of exist-
ing code but about the abstraction of a common behavior. This view also justifies
our critique of “extracting” common attributes into superclasses. These superclasses are

T H E O B J E C T M E T A M O D E L 31

Single and
multiple
inheritance

The EMS
example

Using inheritance
to build a
hierarchy of terms

Using inheritance
for incremental
modifications

Be careful when
reusing existing
code and
extracting
attributes

Zull-02.qxd 20/8/04 7:29 AM Page 31

oriented to the internal structure, having not much to do with behavior-specific
abstractions. Structure-oriented inheritance hierarchies are often found in projects
based on “traditional” data modeling.

In summary, our practical experience has shown that “artificial” superclasses ori-
ented to code reuse and the internal structure tend to become hard to understand,
thereby hindering further development of such a system.

2.1.17 Discussion: Role Relationships as an
Alternative to Inheritance

As we have said, we use inheritance primarily for concept modeling. We interpret super-
classes and subclasses in “Is-a” or “Seen-as” relationships. In this sense, a folder is a spe-
cial form of a container. However, when developing large-scale application systems, we
often incur a problem that cannot be elegantly solved in this way. In an organization with
several departments or groups, each having a different view of the same work object in
different contexts, you obviously have to deal with many different views that could be
better modeled by different roles rather than by generalizing and specializing a term.

A generalization relationship connects objects solely through their common
abstraction. A folder is a container, and a file is a container; that’s the only thing these
two objects have in common. A folder is not a file only because both objects are con-
tainers. Things are different with changing roles. For example, a customer of our ficti-
cious bank can be both a debtor and a portfolio owner, depending on the situation. We
say that the customer plays different roles. Depending on the role, the customer has a
different meaning for the bank. We could say that the customer has a different behav-
ior. Nevertheless, when mapping that customer and his or her roles onto the applica-
tion system, we have to ensure the customer’s domain identity in each of his or her roles.
We have developed our own role pattern (see Section 9.4.1), because inheritance or use
relationships won’t let us build these roles. This means that we add a role relationship
to our application development process, in addition to specialization and generalization.

2.1.18 Definition: Use Relationships

A use relationship corresponds to the traditional call relationship or module import. In
fact, it is the classic form of connecting two program components.

A use relationship realizes the relation between clients and service providers from
the domain perspective. This relationship can be regulated by a contract (see
Section 2.3).

In the software model, a use relationship interconnects both objects and classes.
On the class level, the use relationship is expressed by a (static) type declara-
tion. At runtime, operations of different objects of the same type or subtype can
be called using one identifier, based on polymorphism.

Let’s see what this looks like in our EMS example. Our device manager will occa-
sionally want to copy the business card of an employee or a device identification card,
for example, to use it as a template. He uses a photocopier for this purpose. To copy a
business or identification card, we need a copy() operation. The photocopier is not
interested in any other operation of the BusinessCard and DeviceCard

32 T H E T & M O B J E C T M E T A M O D E L

Roles as
additional

relationships
between classes

The EMS
example

Zull-02.qxd 20/8/04 7:29 AM Page 32

classes. For this reason, we declared an identifier of the type copyable in the Copier
class. At runtime, objects from both the type-confoming classes BusinessCard
and DeviceCard are bound to this identifier.

2.1.19 Discussion: Use Relationships

A lot of practical experience and knowledge about the meaningful use of this form of
component relationship has been collected in the modularization camp. This appeared
to have been forgotten in the initial euphoric phase in the advent of object-oriented
programming. For example, many modern method and construction textbooks still dis-
cuss the pros and cons of inheritance relationships, totally ignoring the use relation-
ship. In our approach, the use relationship between classes ranks high, and its
methodological use will be discussed in Section 2.3.

In the object-oriented model, the use relationship is generally based on pointers
or references, and a static type is declared for an identifier. At runtime, this identifier
can be bound to pointers or references to instances of classes of a conforming type. The
idea behind this concept is reference semantics, which is covered in the classic
Smalltalk literature, for example, by Adele Goldberg and David Robson. However, you
will note quickly that this concept cannot be maintained for (arithmetic) calculations,
where we need values in the mathematical sense. Section 2.7 discusses what all of this
means for our object metamodel.

2.1.20 Definition: Polymorphism

On a class level, the use relationship means that the class text includes a static defini-
tion of the relationships that are basically allowed between the objects of that class and
other classes. The actual relationship between objects is then determined by the prin-
ciple of polymorphism at runtime.

The general meaning of polymorphism is the quality or state of being able to
assume different forms. In object-oriented programs, polymorphism is the abil-
ity to bind objects of different types to an identifier at runtime.

If the types of objects have a subtype relationship to the statically declared identi-
fier type, then we speak of constrained or controlled polymorphism, while unre-
strained polymorphism means that arbitrary objects can be bound to an identifier.

Most statically typed languages use the inheritance relationship to control poly-
morphic binding. This means that objects of the declared class and all subclasses can
be bound to an identifier. This polymorphism is typesafe, that is, all operations of the
declared class can also be called in its subclasses as long as the relationship between the
superclass and its subclasses is a type-subtype relationship.

Dynamically typed languages like Smalltalk allow unrestrained polymorphism.
This means that whether or not an operation is supported by an object can be decided
not at compile time but only when that operation is called. If that object doesn’t support
the called operation, then the system reports a runtime error. This means that
programming conventions should be used to control unrestrained polymorphism. The
reason is mainly that, unless you can tell from the identifier names, the class text tells
you nothing about the objects that are actually bound at runtime.

T H E O B J E C T M E T A M O D E L 33

Modularization
and the use
relationship

Reference
semantics

Unrestrained
polymorphism

Zull-02.qxd 20/8/04 7:29 AM Page 33

Dynamic binding is the prerequisite for polymorphism in connection with redefin-
ing operations in subclasses. Dynamic binding means that the runtime environment
decides what implemented operation will be executed when you call it.

When you can bind different objects to one identifier at runtime, then these could
have different implementations by the same operation names. It means that the static
program text defines only the messages sent to an object.

In our EMS example, we defined an aspect class, copyable, for the photocopier.
At runtime, instances of the BusinessCard and DeviceCard classes can be
bound to identifiers of this type. The message copy() is bound to the operation
implemented in either the BusinessCard or the DeviceCard class, depending on
the specific case.

2.1.21 Definition: Abstract Classes

In object-oriented languages we often use their ability to separate classes by specifica-
tion and implementation, for example:

● A superclass contains the specification, that is, it specifies behavior on an
abstract level.

● The subclasses of this superclass contain implementations, that is, the behavior
specified in the superclass is implemented on a concrete level.

From the software view, we implement specifications either by abstract classes or by
named interfaces, as in Java.

● An abstract class is a class from which no instances can be created. They
ususally contain at least one nonimplemented (i.e., abstract) operation.

● Abstract classes are used to specify a common interface and an abstract
behavior for all subclasses that implement the concrete behavior.

● The abstract class itself can implement some operations, which will then be
inherited.

We say that a class is abstract (or deferred) when at least one of its operations is
abstract. Some object-oriented languages (e.g., Java and Eiffel) let you mark a class as
an abstract class, even if it contains no abstract operations. In other languages, abstract
classes have to be denoted as such by convention, or implicitly by a deferred method.

Abstract classes are often more than pure interface specifications. The operations
declared in an abstract class can be used right there in the abstract class. Using these
abstract operations you can implement several operations. They can be called to serve
as template operations or standard implementations by client classes. This technique
is important for building frameworks.

Ralph Johnson and Vince Russo distinguish three types of operations in abstract
classes:

● Abstract operations are not implemented, that is, their implementation is
left to subclasses. But abstract operations specify an interface mandatory
for all subclasses. An operation specifying only a default implementation
but intended for redefinition in subclasses is often called a hook.

● Template methods implement an algorithm based on abstract operations.
This algorithm is fully specified, but it lacks the implementations of the
abstract operations to be actually executable.

34 T H E T & M O B J E C T M E T A M O D E L

Dynamic binding

The EMS
example

Zull-02.qxd 20/8/04 7:29 AM Page 34

● Base operations are the operations already implemented in the abstract
class in full and executable.

Figure 2.9 shows an abstract class whose interface includes the following opera-
tions: templateOperation, abstractOperation, and baseOperation.
Both baseOperation and abstractOperation were used to implement
templateOperation, while abstractOperation itself will be implemented
later in the inheriting class.

The subclasses of abstract superclasses are normally used on the basis of polymor-
phism. However, we often have to expand or specialize an interface in subclasses for
domain or software reasons. If we want to use the instances of subclasses both polymor-
phic and by their dynamic type, we will soon find that we need a metaobject protocol
(see Section 2.1.15).

2.1.22 Discussion: Specification and Implementation

An important way to use inheritance is to separate the specification from the imple-
mentation. A common superclass specifies the interface and the abstract behavior of
all subclasses. The fact that no objects can be created from an abstract class tells us that
we cannot use it directly. The subclasses are responsible for implementing the concrete
behavior. On the other hand, it is normally sufficient for a client to know the abstract
class with its abstract behavior. For example, you can hide an entire class tree “behind”
the abstract superclass.

With their interface and behavior specifications, abstract classes define how their
subclasses can be handled, thus defining in certain limits the entire system design.

Abstract classes with a hidden class tree form the basic idea for a fundamental
design pattern, the so-called Family pattern of Erich Gamma,5 and expanded con-
structions like the Bridge pattern of Gamma et al. work similarly. The T&M design lets
you implement aspects in this way (see Section 8.3.1) by use of aspect classes.

2.1.23 Definition: Loose Coupling

The use of abstract classes is one example of how you can develop systems with loosely
coupled components.

T H E O B J E C T M E T A M O D E L 35

Example

<<abstract>>

AbstractClass

templateOperation()

abstractOperation()

baseOperation()

...

baseOperation();

abstractOperation();

...

abstractOperation()

SubClass
FIGURE 2.9
Specializing an
abstract class.

Separating
specification from
implementation

Patterns with
abstract classes

5. E. Gamma: Objektorientierte Software-Entwicklung am Beispiel von ET++. Berlin, Heidelberg: Springer-
Verlag, 1992.

Zull-02.qxd 20/8/04 7:29 AM Page 35

A component is loosely coupled to another component when the client does not
know the entire interface of the provider but only a section of that interface (and
its behavior). This part of the entire interface should be defined by a type and
contain only operations actually needed by the client for this coupling.

As a result of loose coupling, you can replace both individual classes in the pro-
gram code and objects at runtime by appropriate components with the same interface
and similar behavior but a different implementation.

2.1.24 Discussion: Loose Coupling

Loose coupling was motivated by the discussion of modularization concepts (see Section
2.2). These concepts say that components should have little dependencies to the out-
side while having a strong contextual coherence inside. One technique to achieve
loosely coupled components addresses only the type or interface of other components
when using these components, without knowing the concrete classes and their imple-
mentation (Gamma et al.: “Program to an interface, not an implementation” p. 18). We
take this concept a step further, reducing loose coupling to the section of the interface,
which is the minimum required for use. Section 8.3 will discuss aspects for implement-
ing loosely coupled tools and materials.

When using loose coupling between a client class and the abstract superclass it
uses, we have to solve a construction problem: The concrete subclass has to be known
at the location where we actually create an object. Initially, this seems to conflict with
our decoupling idea. A number of mechanisms have been proposed to be able to create
concrete objects without losing the decoupling concept. Gamma et al. describe these
mechanisms in the form of creational patterns. Section 9.4.2 will introduce a creational
pattern, the Product Trader, which is particularly useful for our T&M approach.

2 . 2 M O D U L A R I Z AT I O N

2.2.1 Introduction

Classes are traditional modularization units for object-oriented design. More recently,
larger design and construction units, like design patterns or packages, have been pro-
posed as modularization units. This section discusses the basic principles of modular-
ization in view of using them in our object-oriented design.

2.2.2 Context: Modules and Object Orientation

In the software model, you can think of classes as a further development of the modu-
lar concept. As Bertrand Meyer says, “Classes provide the basic form of module”. This
means that basically the same principles of maximum cohesion and minimum coupling
apply to both modularization and the use relationship.

Unfortunately, these traditional modularization principles cannot simply be trans-
posed to object orientation. First, classes or objects have a different granularity than
common modules. Although it is customary to build an application system from far less
than a hundred modules, the number of classes or objects can easily reach ten times
that number in a moderately complex application. Each class includes a manageable
number of operations.

36 T H E T & M O B J E C T M E T A M O D E L

Loose coupling
and object

creation

Modules and
classes

Zull-02.qxd 20/8/04 7:29 AM Page 36

If we think of objects and classes as the “atoms” of our object-oriented design, we
obtain a totally different view. Obviously, we design and build our application in units
or components, formed of more than one class or one object. Such a unit could be a con-
tainer with a table of contents and markers or iterators (see Section 3.2.7). To imple-
ment such a container, we need mutual-use relationships. Note that some successful
patterns, such as those described by Gamma et al., for example, Visitor, Observer, or
Mediator, are also based on mutual use.

Recent discussion has led to the understanding that the conceptual design and con-
struction units used in object orientation are often beyond a single class, and it has also
led to the development of design patterns, clusters, subsystems, and frameworks. This
means that the modularization principles in our object metamodel have to be reformu-
lated in view of these design and construction units. We will attempt to reformulate
them for the basic design units in Section 2.2.3 and for frameworks in Section 9.3.

2.2.3 Definition: Principles of Object-Oriented Modularization

Maximum cohesion and minimum coupling are the fundamental factors for traditional
modular design.

Cohesion is the “inner connection” between the properties of a design or con-
struction unit. The principle of maximum cohesion requires a strong bond
within a design or construction unit.

Coupling is the relationship between different design or construction units.
Minimum coupling attempts to reduce the bond between units, particularly to
avoid cyclic use.

Bertrand Meyer proposed a list of criteria and rules to facilitate the transfer of the
modular concept to object orientation. We will briefly introduce some of these criteria
and rules below.

One of the most important features of object orientation in this context is the
open-close principle.

Open-Close Principle: A design or construction unit is open if it can be extended.
In contrast, a design or construction unit is closed if it can be used by clients in a
stable way.

A design and construction unit should meet the following important criteria:

● Decomposability: A design problem should be decomposed in smaller and less
complex partial problems, which are mapped to design and construction units.
These units should form a simple and independent structure.

● Composability: Design and construction units should be composed by simply
recombining them into new software systems in different application domains.

● Understandability: Each design and construction unit of a software system
should be understood independently of the other units.

● Continuity: A change to the design problem resulting from the domain or
software system context should lead to changes only in one or a few design and
construction units.

M O D U L A R I Z A T I O N 37

Object-oriented
design and
construction units

Modularization
criteria

Zull-02.qxd 20/8/04 7:29 AM Page 37

To meet these criteria, we have to observe the following rules:

● Direct mapping: The structure of the software system should closely relate to the
structures identified in the application domain.

● Few interfaces: Each design and construction unit should interact with as small
a number of other units as possible.

● Small interfaces: When two design and construction units interact, then they
should exchange as small an amount of information as possible.

● Explicit interfaces: When two design and construction units interact, then this
exchange should be explicit.

● Information hiding: Clients should see and access only relevant properties of a
design and construction unit.

● Open-closed principle: Design and construction units should be both open and closed.

2 . 3 T H E C O N T R A C T M O D E L

2.3.1 Introduction

We want to use an object-oriented approach to develop not only expandable, reusable,
and modifiable but also correct and robust classes. We try to achieve robustness by
modeling behavioral objects, that is, modeling objects characterized by their behavior
and not by their inner structure—their attributes. We use the contract model to sketch
a concept allowing us to specify the behavior of operations in a “semiformal” way. This
contract model represents an important contribution to better software quality and
should form the basis of each development project. It provides what Bertrand Meyer
calls “contracting for software reliability.”

2.3.2 Definition: Contract Model

We can define the essence of the contract model as follows:

A contract model specifies the use relationship between classes as a relationship
between service providers and clients, based on a formal contract.

A contract specifies the pre-condition that a client must meet before the service
provider supplies its service. The service supplied is specified in a post-condition.

Contracts are described on the provider side; they have the form of
assertions, that is, they are pre- and post-conditions as well as invariants.

The use relationship between classes is interpreted as a service relationship
between a client and a provider (see Figure 2.10). In this context, a class offers a ser-
vice that another class, acting as the client, wants to use. These two classes enter a con-
tract relationship, where the contract specifies all underlying assertions as well as the
rights and obligations of both parties relating to that service.

The contract model is implemented by pre- and post-conditions for operations as
well as for class invariants, having the form of boolean expressions and residing in the
provider class.

Contracts established between classes always refer to operation calls, that is,
requests for services. The pre-condition specified for a contract defines the rules that

38 T H E T & M O B J E C T M E T A M O D E L

Modularization
rules

Contracts are
operation calls

Zull-02.qxd 20/8/04 7:29 AM Page 38

have to be observed to be able to call an operation. The client is responsible for observ-
ing this pre-condition. More specifically, the client has to ensure that the specified con-
ditions are met. In order for the client to meet this obligation, the predicates used as test
questions in the pre-condition have to be accessible at the provider’s interface. Before
calling an operation, the client can then test for observation of the pre-condition and
establish the required state, if that pre-condition is not yet met.

Once the pre-condition is in place, the requested operation is executed, and the
provider declares that they guarantee the post-condition. This condition is also com-
posed of boolean expressions and does not have to be tested by the client. The client
can assume that the condition holds when the operation has terminated.

An invariant is formulated for a class as an overall property of that class, which
preserves its consistency. This holds true for each service provided, that is, its obser-
vance is tested upon each call.

2.3.3 Discussion: The Contract Model

By stating assertions within the interplay between clients and service providers, we can
make a significant step towards the correctness and reliability of our software system.
In this context, correctness refers to the conformity between specification and imple-
mentation. We want to use invariants and pre- and post-conditions to describe parts of
a behavior specification contained in the class text and make them checkable. This
means that the contract model helps us to

● reduce design and construction errors;
● improve the understanding of our classes; and
● use an appropriate exception mechanism to catch runtime errors early.

2.3.4 Context: The Contract Model and Abstract Data Types

From the software view, classes should be implementations of abstract data types. Using
known language features available in most object-oriented programming languages we
can only define operations and attributes. However, if we want to use types to model “a
set of programming language objects with similar behavior,” we need an adequate means

T H E C O N T R A C T M O D E L 39

<<use>>

<<use>>

Service

contract with
assertions

Client

Client

Supplier

+ serviceMethod1 (arg1) :returns1

+ serviceMethod2 (arg2) :returns2

...

<<interface>>

Service

- attr1

- attr2

- ...

+ serviceMethod1 (arg1) :returns1

+ serviceMethod2 (arg2) :returns2

...

<<implementation class>>

Supplier

FIGURE 2.10
Service provider
and client in
the contract
model.

Invariants

Using classes as
abstract data
types

Zull-02.qxd 20/8/04 7:29 AM Page 39

of expression. The reason is that the specification of abstract data types involves
axiomatic semantics, which is normally expressed by axioms and equations. Object-
oriented programming languages do not normally support such axiomatic semantics. We
can use the contract model, which Bertrand Meyer describes as “design by contract,” to
overcome the gap between specification and implementation of abstract data types.

2.3.5 T&M Design: The Contract Model

The contract model is currently supported only by Eiffel among the object-oriented
languages, where assertions can be formulated as an independent sublanguage (see
Figure 2.11). However, it has proven useful in practical projects to try to transport the
assertion concept to other programming languages. For example, our JWAM frame-
work implements the assertion concept in Java.

As in the case of a commercial contract, we have to check for the observance of a
contract, and the violation of the contract has to have corresponding consequences.
The contract model is more than a pure piece of documentation only if contract vio-
lations are sanctioned. For this reason, we should link assertions to an appropriate
exception mechanism. An exception will then be thrown at the client’s end as soon as
a pre-condition is violated, while a violation of post-conditions and invariants will lead
to exceptions at the provider’s end.

2 . 4 T Y P E S

2.4.1 Introduction

Current object-oriented programming languages use classes and types interchangeably.
Though this is practical, it blurs the conceptual differences we want to observe to

40 T H E T & M O B J E C T M E T A M O D E L

pop is

 require

 not empty

 do

 number_of_elements := number_of_elements - 1;

 ensure

 not full

 end;

 ...

class stack

 feature

 invariant

 empty implies (number_of_elements = 0)

end -- class Stack

Pre-condition

Post-condition

Invariant

FIGURE 2.11
Example
showing

assertions in
Eiffel.

Contract
violations

Zull-02.qxd 20/8/04 7:29 AM Page 40

ensure a clean software system. This holds true particularly when we use a dynamically
typed programming language like Smalltalk, or when we have additional type
definition options for interfaces, as in Java.

2.4.2 Definition: Types
A type traditionally denotes a set of values and the admissible operations on
these values. From the software view, a type is used to declare identifiers and
parameters for a program to test its typesafe use.

In the object-oriented world, a type specifies the behavior of objects in the
sense of an abstract data type.

A type specifies the syntax of an interface, that is, it names the operations you
can use to call an instance of that type. In addition, a type can describe the
behavior of objects in the sense of a protocol.

In contrast to a class, a type does not include information as to how the state
and implementation of operations should be represented.

With this definition of type, we have determined at least the checkable interface
used by instances of that type. This means that an identifier we declared to have that
type can be bound only to objects that meet this interface. In other words: a type
should be checked. For this reason, we like typed languages, because declared identi-
fiers and parameters of our program can then be checked for typesafe use either
statically (at compile time) or dynamically (at runtime).

In addition, we want to specify potential limits for the behavior of these instances.
As we saw in Section 2.3 on the contract model, it is not easy to transfer the axiomatic
semantics of abstract data types to an object-oriented construction. Nevertheless, we
expect that instances of a specific type behave in a “semantically compliant” manner.
Accordingly, assertions should also be included in the definition of a type.

A type in the sense of an abstract data type does not tell us anything about the con-
crete implementation of the interface and its behavior. This means that implementations
and information about the internal structure are not part of the definition of a type.

2.4.3 Context: The Theoretical Concept of Types

The concept of types is primarily motivated by software-specific factors. We use types
to specify our construction units. Following the general definition developed by Luca
Cardelli and Peter Wegner, a type is a set of objects with similar behavior. In their for-
mulation, Cardelli and Wegner didn’t focus on the object-oriented elements, that is,
classes and objects, but generally refer to programming language objects. When we try
to transfer this to object orientation, we could say that, for example, the two rooms,
a101 and a103, in Figure 2.12 have the same interface and a similar behavior, so that
we can use the type Room to describe them.

Traditionally (e.g., by the definition of Hoare), an object of a programming lan-
guage may have one and only one type. The object-oriented inheritance principle
requires us to expand this concept of types. By this principle, an object is exactly the
instance of a (creating) class, but it can have more than one type.

T Y P E S 41

Type and
behavior

Zull-02.qxd 20/8/04 7:29 AM Page 41

A type is characterized by the set of its properties. For example, an object x is
of type T exactly when object x meets the properties characterized by type T. The
following properties can be described by a type:

● the class of an object;
● the names of operations or the entire signatures of an object; and
● the behavior of operations (e.g., pre- and post-conditions and invariants).

Real-world type systems normally offer only a fraction of these properties.

Types can be organized in type hierarchies by forming subtypes.

A type hierarchy according to Barbara Liskov consists of subtypes and super-
types. A subtype supports at least the operations specified in its supertype, with
the following variants:

● the operations have identical signatures; and
● the types of parameter and result objects can themselves be of a subtype

or supertype of the original type (covariance and contravariance).

At runtime, an instance of a subtype must be able always to assume the place of
an instance of the supertype, where either identical or similar behavior is
required, that is:

● an instance of a subtype does not cause any observable change to the
program; and

● an instance of the subtype behaves similarly in that it produces the
expected behavior and never a runtime error.

Conceptual methods used to specify the behavior of subtypes are discussed in the
seminal work of Barbara Liskov and Jeannette Wing. The problem relating to the
covariant redefinition of parameter types and a proposed solution are discussed by
Bertrand Meyer.

2.4.4 Discussion: Types

Building subtypes is primarily a specification concept that we can use to express that
objects behave similarly. This concept reaches beyond the usual check for identical
interface names. This means that it is not sufficient to simply be able to interpret the
called operation by the object. The reason for this is that it only means that the call does
not immediately cause a runtime error. What we normally need is a way to interpret all

42 T H E T & M O B J E C T M E T A M O D E L

FIGURE 2.12
From objects to

the type.

<<instanceOf>>

<<instanceOf>>

putBusinessCard()

putDevice()

getDimensions()

isConsistent()

...

<<implementation class>>

Room

devices : DeviceList

<<type>>

Room

putBusinessCard()

putDevice()

getDimensions()

isConsistent()

...

devices : DeviceList

<<object>>

a101:Room

devices : DeviceList

<<object>>

a103:Room

Zull-02.qxd 20/8/04 7:29 AM Page 42

operations specified by a type interpret, which leads us to the concept of similar behav-
ior. Similar behavior is a much “softer” formulation than the identical behavior recom-
mended by many computer scientists. Unfortunately, it is difficult to check it formally.
In contrast, when we implement an object or redefine its properties, we expect it to
behave both “in the sense of ” the specification and formally compliant with its type.

Types and behavior specifications become increasingly important in the use of com-
ponents. When components are shipped merely as binary units, then all that remains to
evaluate their functionality is basically the interfaces and thus the type information.
In that case, it is important to know what other characteristics are assigned to types, in
addition to the signatures, for example, assertions of a contract model.

2 . 5 C L A S S E S A N D T Y P E S

2.5.1 Introduction

In the advent of object-oriented programming, many developers used classes and types
synonymously. The reason for this was that the construction of classes was the only way
to introduce user-defined types. Over the course of time, object-oriented programming
languages have been improved and expanded so that the typing concept is now more
pronounced. For this reason, developers should understand the conceptual differences
between classes and types.

2.5.2 Classes in Your Design

From the domain-specific perspective, classes are our elementary design and construc-
tion units. In the design, we model the common features of similar objects in classes.
These common features apply to objects in their behavior and state. In this context,
class hierarchies should correspond to the domain-specific concept model. This means
that they model the basic concepts or abstractions of your application domain.

On the construction level, a class defines how its instances behave and how they
are built. In this context, class hierarchies express the generalization or specialization
of this behavior and construction. The compiler and the runtime system ensure that
the correct instances are created based on a set of “complete” class descriptions.

2.5.3 Differences between Types and Classes

Compared to a class, a type is primarily a specification concept that defines an “external”
view of declared identifiers and program objects. Note that the emphasis is more on the
software implementation rather than on the domain modeling and construction side.
A type defines the syntactic and (to a limited extent) the semantic characteristics that
can be guaranteed for the structure of the program.

Let’s take a closer look at these differences.

● Besides the interface, a class also defines the behavior and structure of its
instances, that is, their internal state and the implementation of their operations.

● The type of an object refers intially only to its interface, that is, a set of
messages to which the object can respond. The type of an identifier specifies
what objects can be basically bound to it.

C L A S S E S A N D T Y P E S 43

How classes and
types differ

Zull-02.qxd 20/8/04 7:29 AM Page 43

● To be able to define the behavior of the instances of a type, in addition to the
interface, we can implement types by classes. As long as the type hierarchy and
the class hierarchy match, you can use assertions and controlled redefinitions to
achieve a similar behavior of objects.

● Some languages (e.g., Java) can use named interfaces instead of classes to
introduce user-defined types. Most object-oriented programming languages
provide primitive data types (e.g., integer) that are not defined as classes.

● An object can have different types, and objects from different classes can have
the same type.

● One part of the interface of an object can be characterized by a type, and other
parts by other types.

● For two objects to be of the same type, it is sufficient that only part of their
interfaces are equal.

2.5.4 Discussion: Classes versus Types

Classes and types can be totally separate concepts if the type refers strictly to the
interface definition. If a type represents only a named interface definition, then it
merely guarantees that instances of that type recognize a certain set of messages.
Each type names operations that have to be defined in some place of your program.
A class can then declare the types it meets in the sense of named interfaces. The
actual class that defines these operations is irrelevant and independent of the class
hierarchy.

Of course, if the programming language we use couples the class and type con-
cepts, then there is a relation between class and type. In that case, the class defines a
type. When we say that “an object is an instance of a class,” we imply that the object
supports the interface defined by the class. A type-compliant call of a message requires
the object to understand the message, in other words, that the object’s class imple-
ments the called operation.

We can go one step further in coupling classes and types when we use the type def-
inition to specify the behavior of instances. In this case, it appears to be meaningful to
use an appropriate class to define the behavior of the instances of a type. If the type
hierarchy and the class hierarchy match, then we can define and limit the concrete or
abstract behavior of objects of a type by the class hierarchy. Appropriate means for this
approach would be the contract model and the mapping of our concept model onto
domain-specific class hierarchies, which are designed by the principles of generaliza-
tion and specialization.

2.5.5 Background: Programming Languages and Types

Popular object-oriented languages use different type and class concepts, for example:

● Java separates classes and types by introducing interfaces, as does Objective C
with its protocols. In these languages, a class can declare, besides its superclass,
which named interfaces it meets. Classes can be grouped by class hierarchies
and by their interfaces. This means that classes can fall under a common named
interface, even when there is no inheritance relationship between them.

44 T H E T & M O B J E C T M E T A M O D E L

Java, Objective
C: named
interfaces

Zull-02.qxd 20/8/04 7:29 AM Page 44

● C�� and Eiffel use the class construct to define both the type of an object and
its implementation. In addition, these languages let you write pure specification
classes, from which no instances can be created. Similar to C, C�� also
supports types that are not classes.

● In Smalltalk, there are no type declarations for identifiers and program units, that
is, there is no type checking during compilation. Consequently, whether or not
an object is called by the appropriate message through an identifier is not
checked, so that a runtime error occurs if the object does not offer the called
operation. The Smalltalk world works with message conformity rather than with
type conformity, in other words, not a specific class or type relationship is in the
foreground, but the question of whether or not an object understands a message.

2.5.6 T&M Design: Classes and Types

In our T&M design, we need a clear understanding of the possibilities offered by classes
and types as constructs, and which concepts we want to use in our applications. Do we
want to separate a named interface from the definition of its behavior? Should there be
a hierarchy of named interfaces, in addition to the class hierarchy, and what does this
mean in our design? What kind of reliability would we like to have when calling mes-
sages, and when (at compile time or runtime) do we want to check this reliability? The
answers to these questions determine whether or not we can easily deal with the con-
structs of a language, how we use that language, and whether or not we should add our
own mechanisms, such as runtime type checks in Smalltalk.

Some answers originate from practical experience with the T&M design. For
example, type systems represent a major support for the save construction of software
systems. Dynamically typed languages like Smalltalk offer more flexibility during the
actual construction phase, compared to statically typed languages. However, it is often
meaningful to design in Smalltalk as if that language were typed. To be on the safe side,
we will add dynamic type checks at important points in our software system.

Inheritance hierarchies should correspond to domain hierarchies, thus defining a
similar behavior. This means that we normally work towards class hierarchies in the
form of type hierarchies.

In cases where we cannot or do not want to fall back on multiple inheritance to
implement software architectures technically, named interfaces are a meaningful alter-
native. We then have to stick to design conventions to ensure similar use behavior.

2 . 6 V A L U E S A N D O B J E C T S

2.6.1 Introduction

Values and objects are two fundamental concepts for the development of interactive
software. This section explains that the differentiation of values and objects is not a
terminological trick, but important for the design and construction of software systems.
We use the term domain values to introduce an important concept of the T&M
approach. Domain values can be used as the “atomic” design and construction units for
application-oriented software development.

V A L U E S A N D O B J E C T S 45

C��, Eiffel:
classes act as
types

Smalltalk: no
type declarations

Zull-02.qxd 20/8/04 7:29 AM Page 45

2.6.2 Characteristics of Values and Objects

To better understand the following discussion of the terms value and object, it appears
meaningful to understand first where these two terms differ. The taxonomy in Figure 2.13
is schematic and in no particular order, but shows the essential characteristics of values
and objects. It is based on the seminal article by Bruce J. MacLennan. We will explain
the differences listed in Figure 2.13 in a moment.

● A value has no temporal or spatial dimensions. This means that concepts like time,
duration, and location are not applicable. Values have no beginning and no end,
and they exist in no particular place. No values are created in expressions, and
they are not consumed. For example, it wouldn’t make sense to talk about time in
the equation 40�2�42, or about the fact that the addition “creates” a new
value. And it would be equally useless to talk about “the 42 on top of this page”
when referring to the value and not to its concrete representation in digits.

● In contrast, objects exist in time and space, and they have a beginning and an
end. Any two objects can differ from one another merely because they reside in
different locations. For example, you can create a folder. Two otherwise
identical folders can be in different locations. It would make sense to talk about
“the folder I used yesterday.”

Another difference between values and objects is that a value is abstract and has
no identity.

● A value is an abstraction from all concrete contexts. It is not bound to the
existence of concrete things. And because it has no identity—only equality—it
wouldn’t make sense to talk about several instances of a value (although it
would make sense to talk about its different representations). For example, $50
is a value. Though there are many bank notes representing this value, there is
not more than one instance of the value itself. Also, it would only make sense to
talk about whether or not a bank note is worth $50.

● In contrast, objects are concrete instances of a generic concept (a class) that have
an identity. There can be many equivalent but different instances of a class. For
example, you can create several instances of an application form on your
electronic desktop that differ in that they reside in different folders.

46 T H E T & M O B J E C T M E T A M O D E L

A value is: An object:

● timeless ● exists in time and space
● abstract ● has identity
● immutable ● is concrete
● stateless ● can be instantiated
● unique ● is changing
● spaceless ● is stateful

● is created and destroyed
● can be used cooperatively

FIGURE 2.13
Characteristics

of values and
objects.

Zull-02.qxd 20/8/04 7:29 AM Page 46

Yet another difference is that a value is immutable or invariable.

● Though you can calculate and relate values to other values, they won’t change.
Values can be named. The value of a name or an identifier (of an “unknown
quantity”) cannot yet be calculated or can be undefined. The same name can be
bound to another value, depending on the context. For example, when looking
at the equation 40�x�42; pi�3.14, the idea that adding x would
change the value of the number 40 to 42 is wrong. Also, x is not a variable, but
has a calculable value. We can call the number 3.14 by the name pi and use
the same name to bind it to the value 3.1415 in another context.

● In contrast, an object can change over time, that is, its state can change without
losing its identity. And this identity does not have to be linked to a specific
name. For example, you can edit an application form that you created yesterday
and sign it tomorrow. You could change the form’s name from “New application”
to “Edited application” without risking that it might lose its identity.

Yet another difference relates to how you can use values and objects.

● Considering that a value has no identify and no location, and that it is
invariable, it would be hard to build communication and cooperation on the
basis of values alone, because values cannot be exchanged or edited. In
situations where you have to communicate and cooperate on the basis of values,
you often use a specific value to “build” an identity. For example, an abstract
value of $500 won’t be of much use in the banking business. It will become
useful only if it is connected with an account, and if this account is seen in its
temporal change. Only then can you use that value for cooperative work. For
instance, to build an account in a value-based database, you can use the account
number for unique identification of all other values related to this account.

● In contrast, objects can be used jointly, if you can access them by references.
Then they can be known by different names in different locations, and you can
use them as a common work object. Unfortunately, there is an alias problem to
be solved: An object can be changed in one context without another context
taking notice of that change. For example, a form can be accessed by identifiers
on two different electronic desktops. This means that two employees can use it
for cooperative work and coordinate their work through this form. Problems
will arise when one employee does not see that the other employee changed
the form without prior agreement to do so.

2.6.3 Using Values

When we think of using values, we probably first think of mathematics or engineering,
where numerical analysis is of prime interest. For example, mathematical problems are
solved by operations on numbers, a form of values. However, in our everyday lives, val-
ues and numbers have a much broader meaning. We use them to identify, characterize,
count, or order things and eventually to represent them as measurable entities.

We basically always use values when we model abstract entities and do not want
to be distracted by concrete and objective characteristics. In doing this, we also abstract
from the context of the thing represented by a value. In this sense, the authors of a
popular textbook, Richard Bird and Philip Wadler, discussed functional programming

V A L U E S A N D O B J E C T S 47

Using values

Zull-02.qxd 20/8/04 7:29 AM Page 47

as follows: “Somewhere, in outer space perhaps, one can imagine a universe of abstract
values, but on earth they can only be recognized and manipulated by their
representations. There are many representations for one and the same value” (p. 5).

What does this mean? It probably means that we always need values and numbers
when we have to calculate or order things. There is no doubt that we then need inte-
gers or real numbers, as well as currency values or periods of time. Even when we try
to represent measurable parameters, ignoring the concrete circumstances of an object,
values like bank codes or the current Dow Jones index are certainly useful values.

2.6.4 Context: Values and Objects in Programming Languages

Many object-oriented languages support both value and object concepts. The differ-
ence between these concepts is normally implicit and hardly discussed explicitly. The
conceptual separation is least clear in a language like Smalltalk. When talking about
values, it is important to understand that a truly smooth transfer of the abstract con-
cept of values to programming languages was successful only in purely functional lan-
guages, such as Miranda or Hope. These languages let us write value-oriented program
code; for example:

● They use expressions that are almost algebraic, consisting of functions.
Functions have no side effects, so that they are similar to the concept of
algebraic expressions.

● They use mathematical variables. A variable is a name for a known or yet
unknown value (as in “an equation in two unknowns”), but this value
cannot change.

The idea behind functional languages is referential transparency.

● Referential transparency means that an expression can be fully understood on
the basis of its partial expressions.

● Each partial expression (subexpression) is independent of its context.
● A variable is a name for a (known or unknown) immutable value.

Object-oriented programming languages suggest a totally different programming
model.

● They use objects that encapsulate an internal state, which can only be changed
through permissible operations.

● They use an imperative variable concept. A variable is an identifier for a memory
location or container, the state (or value) of which can be changed through
assignment.

● Each expression depends on its context, that is, on the state of all participating
objects. An object can be known by different names in different contexts, so
that changing the parts of an expression will normally lead to side-effects.

A closer look at values in object-oriented programming languages shows that many
languages use values as so-called primitive types, such as integers, floating point num-
bers, or booleans. These value types behave as we would expect from values or numbers
(apart from precision errors caused by representing them on a finite computer).

Some “puristic” languages—like Java, Eiffel, or Smalltalk—embed these value types
in the normal class concept. However, such embedding can be problematic, because

48 T H E T & M O B J E C T M E T A M O D E L

Values in the
object metamodel

Zull-02.qxd 20/8/04 7:29 AM Page 48

certain properties of objects cannot simply be transferred onto “value objects.” For exam-
ple, arithmetic expressions would lose their mathematical semantics if an operation
would change object 3 to an internal value 4. This is why we find it confusing when text-
books, such as the Smalltalk handbook of Adele Goldberg and David Robson, use num-
ber arithmetics as one of their primary examples for objects and their operations. We
want to have numbers that behave like values, and objects that have all object properties.

2.6.5 Definition: Domain Values

The primitive built-in value types of an object-oriented programming language are
easy to use. A problem can normally occur when you try to introduce user-defined
value types. We refer to these values as domain values, because they are motivated by
the application domain of a system.

A domain value is a user-defined value. It represents values from the application
domain.

A domain value type is a data type with a defined set of values and defined
operations. Its internal representation of values is hidden.

Object-oriented languages define domain value types as classes. It is important
to understand that the instances of a domain value type always have value
semantics, that is, once you set a value, you can’t change it.

The motivation for domain values is obvious. Language developers have tried to
supply such data types, specific to an application domain, since the development of
early programming languages. The only difference is that it was not as obvious as it is
today, because most early applications were oriented to number-crunching tasks.

2.6.6 T&M Design: Domain Values

Domain values are of prime importance in the T&M approach. When we say we want
to use classes and objects to model the concepts and things of our application domain,
then this also applies to the values that play a role in that application domain.

Let’s look at the idea of domain values versus conventional programming in our
bank example. Assume that we have accounts with account numbers. In an object-
oriented application system, a specific account is an instance of the class Account. The
account number in this object should be a domain value of the type AccountNumber.
The appropriate attribute would have an identifier, AccountNumber.

In conventional programming, we would also have an attribute called
AccountNumber, but declare it as an attribute of the type integer. The fact that
it represents an account number can be seen only in the identifier AccountNumber.

2.6.7 Implementing Domain Values

In object-oriented languages, we have to use the class construct to build user-defined
domain values. This is because classes are the only way to add new types and instances
of these types to the system. This appears to have several benefits:

In a user-defined class, you can specify the set of values that can be created as
instances of a type. To do this, a class can take an external representation of the desired
value and only create a domain value object when the representation can be trans-
ferred into a valid (well-formed) value.

V A L U E S A N D O B J E C T S 49

The Bank
example

Zull-02.qxd 20/8/04 7:29 AM Page 49

In this connection, we could implement further concepts, such as adding a so-called
“undefined” (bottom) value and other special values to the set of valid values. The ben-
efit is that you can distinguish explicitly between defined and special values, as suggested
by Ward Cunningham. For example, many developers would use a workaround like
999 for a yet-unknown account number they have to represent as an integer. This means
that, by convention, they turned a defined value of type integer into a special undefined
value. Problems occur in programs that do not observe this convention; the above
method would cause serious domain errors that such a program would not catch. To avoid
this problem, you must not handle domain values as a simple set of values.

We have known since the seminal work of Tony Hoare that typing should include
not only the defined set of values, but also the operations permissible on values of that
type. Although this had been hard to implement for user-defined types in classic imper-
ative languages, we actually get this option “for free” in object-oriented languages.

For example, we can think of permissible operations on values of the type
AccountNumber. This is not as trivial as it may sound, because our account num-
bers should allow addition as well as relational operations. The reason is that the sum
of account numbers is normally transmitted as a checksum in batch money transfers
between banks. In addition, some banks add additional information to an account
number. For example, you can derive the customer number or the type of account from
an account number. All of these are permissible operations of the type.

Together with the introduction of special values, you can also define appropriate
semantics for handling these values. In our bank example, an attempt to add an unde-
fined account number to a “normal” number could lead to an exception.

On the other hand, implementing domain value types as classes has some drawbacks.
To avoid a serious trap we have to take care that values belonging to domain value
classes are always handled by value semantics rather than by reference semantics. This
means that a domain value object must not be accessible for modification over two
identifiers. More specifically, a domain value object should not be modifiable at all.
This is the only way to maintain the referential transparency of the values we require.
Some of the proposed solutions will be discussed in Section 8.10. In summary, we have
compiled the following different techniques for building domain values:

● Domain values are instances of “normal” classes. Domain value objects are
always passed as copies. This is an insecure programming convention.

● Domain values are built from classes allowing one single value-setting operation,
while otherwise offering only probing operations. This uses a lot of memory.

● Refined techniques to build value objects are known from the literature by the
name of body/handle (see James Coplien).

● A pattern that implements value objects with minimum space requirements is
the Flyweight pattern of Gamma et al.

2 . 7 M E TA O B J E C T P R O T O C O L S

2.7.1 Introduction

When developing interactive programs, we often observe that it is not sufficient to write
program code to implement domain concepts or objects. We additionally have to be able

50 T H E T & M O B J E C T M E T A M O D E L

Operations on
values subjects

The Bank
example

Building domain
values

Zull-02.qxd 20/8/04 7:29 AM Page 50

to handle the elements of our program, that is, we have to be able to query and modify
properties of objects and classes in our program. How important this meta-information
really is becomes clear when we work with components. We have to rely on components
giving us information about their interfaces and other properties, because such program
code is normally inaccessible. This section discusses such meta-information. It is aimed
at the more advanced reader because using or even designing metaobject protocols is not
an everyday task. But when dveloping programming tools or components, you should
understand the concepts and means of this type of meta-programming.

2.7.2 Motivation for a Metaobject Protocol

Simply speaking, we have used objects in object-oriented application development to
model the concepts and things of a real-world application domain. Now let’s have a look
at software engineering as a potential application domain. We normally do this when
building programming tools or other software development tools. If software engineer-
ing is our application domain, then there is nothing that would deter us from selecting
an object-oriented program as our object of modeling. To work with this object, we need
a metaobject protocol, which should sound familiar to Smalltalk programmers. The fol-
lowing section explains what a metaobject protocol is all about. Figure 2.14 shows a
schematic view of modeling an application domain versus modeling a software program.

2.7.3 Definition: Metaobject Protocol (MOP)
A metaobject protocol (MOP) is based on the constructs of the programming
language you use to write your program. These constructs themselves can be
modeled as objects. Such objects are called metaobjects. Like all objects,
metaobjects are instances of classes, only we call them metaclasses. The set of
interfaces of these metaclasses form a metaobject protocol.

Metaobjects can be classified in two categories:

1. Objects representing the (static) application model (e.g., which operations
does an object offer).

2. Objects representing the runtime system (e.g., how an operation is executed;
how an object accesses its attributes).

The organization of metaclasses and the behavior of metaobjects are described
in a metalevel architecture. Metalevel architectures can be used for many different

M E T A O B J E C T P R O T O C O L S 51

executable
program with MOP

meta
constructs

application domain
model of the
application

domain

program
model of the

program

executable
program

FIGURE 2.14
Modeling an
application
domain versus
modeling a
software
program.

Zull-02.qxd 20/8/04 7:29 AM Page 51

technical purposes. However, they are normally required only for large-scale application
systems. The following section will, therefore, focus only on well-known applications.

2.7.4 Representing Your Application Model

We briefly mentioned in Section 2.1.20 that utilizing polymorphism in your develop-
ment project means that the reference you obtain on an object may not be of the same
type as the object itself but of a supertype of the object’s type.

In some situations, this supertype reference is not sufficient. What we need is a
so-called downcast, or a conversion of a supertype reference into a subtype reference.
Downcasting is useful in the following situations:

● In a specialized team of classes, one partner obtains the reference to another
partner as a reference of the type of the abstract superclass, but it requires the
full interface.

● A container with objects pertaining to different classes can only return a reference
to the common superclass of the objects it contains. If you need to access an
object taken from the container over its full interface, then you need a downcast.

● One example for a special case is building an object table for the entire system.
This table includes references to all objects existing in the system and is
continually updated. Such a table can be used to run queries on objects, similar
to querying a database: for example, “Find all devices purchased more than
three years ago.” For this purpose, we need to be able to query the class
membership of each object as well as the references on objects having the same
type, as the queried class has to be converted to the queried type.

To recover the original type information, each MOP lets you query the type of an
object at runtime. You would normally represent the type of an object by its class
object. Downcasting on an object level triggers a test for an inheritance relationship
on the class object level (metalevel).

To make our programming lives easier and to hide the complexity of the metalevel,
MOPs of typed languages (e.g., Java) offer a special operator to implement a downcast.
This operator internally accesses the class metaobjects and checks for conformity of the
downcast before it runs it. If there is no such protection mechanism, a downcast can
cause critical errors in programs (e.g., as in C��), and it should be used only together
with strictly controlled programming conventions.

Direct access to the state representations of objects, and avoiding their interface,
is normally one of the most serious programming sins you can possibly think of. You
should bear in mind that the class offers a set of domain-oriented operations, hiding
access to the internal state representation. However, there are also technical tasks, for
which a specific interface should allow direct access to the state representation. The
following are examples for tasks that have to have access to the state representation of
an object:

● Generic relational and copy operations; for example, copying business cards
and identification cards to a clipboard and subsequently inserting the copy into
the room plan by use of generic copy operations.

● Object input and output; for example saving objects to files, connecting to
relational databases, or transporting objects within a distributed system.

● Garbage collection.

52 T H E T & M O B J E C T M E T A M O D E L

Using Runtime
Type Information

(RTTI) to
implement a

downcast

Information on
the state

representation to
implement

generic
operations

Zull-02.qxd 20/8/04 7:29 AM Page 52

If access to the representation of an object state is allowed, then we can specify an
algorithm for these services for all classes. Otherwise, we would have to program the
corresponding operations for each class. You can access the state of an object in either
of the following two ways:

● The required information is implicitly available, because the required operations
are generated automatically. For example, Eiffel uses relational copy and input
and output operations for each class, without the developer’s intervention. This
approach has several benefits. The developer does not have to program
anything manually. The encapsulation of objects cannot be violated. And
finally, the runtime behavior is improved, especially in compiler languages. On
the other hand, a major drawback is poor flexibility: the developer cannot
modify access operations or add new operations.

● To represent an object state, the developer can use a so-called attribute dictionary.
This list maintains one attribute metaobject for each attribute, including the
following information (which may differ, depending on the language):
– name of the variable;
– type of the variable;
– size of the variable;
– reference to the variable (for actual access); and
– other attributes (e.g., properties like “persistent” or “not persistent”).

● Based on the above information and information about the superclasses, the
developer can write operations that iterate over the attribute metaobject list,
running a specific action for each variable (e.g., copy, compare, save to database).
Major drawbacks of this variant are loss in state encapsulation and poor
runtime behavior.

It may be desirable in many cases to open up an application to the “outside,” that is,
to allow other applications to call arbitrary public operations. For example, you can use
an external interpreter to program frequently recurring processes in a script.

Take our device management system as an example. If, after upgrading all PCs of
one type, you want to update the device data in the room plan you could write a script.
This script could then iterate over all old devices in a room plan and update the device
data automatically.

To allow this flexibility, a MOP should support an operations list, similar to the attrib-
ute list described above, to handle queries on existing operations and call such operations.
Languages like Java support this technique by the so-called introspection. Such an opera-
tions list maintains a metaobject entry for each operation with the following information:

● name of the operation;
● signature of the operation; and
● other attributes.

To then call an operation, you either use the operation’s metaobject or a special opera-
tion (metacall) of the public object. This operation will then call the actual operation
with the name you passed and the passed parameters.

2.7.5 Representing Your Runtime System

Though software developers are normally happy when they don’t have to know the
details behind the implementation of a language, there are situations where you have

M E T A O B J E C T P R O T O C O L S 53

Information
about interfaces
to implement
dynamic
operation calls

Zull-02.qxd 20/8/04 7:29 AM Page 53

to deal with the implementation. For this purpose, an MOP can present a well-defined
interface, allowing you to redirect the control flow within the runtime system. This is
of interest, particularly in two places:

1. where you store instance variables, and
2. where you call operations.

To disclose the storage algorithm of instance variables, you need two additional
operations, that is, one to read an instance variable and another to set an instance
variable.

For example, Smalltalk uses the method instVarAt: i to return the value
of the ith instance variable. The method instVarAt: i put: value assigns
value to the ith instance variable. These two methods are called every time an
instance variable is accessed. By overloading these methods, the standard storage algo-
rithm can be replaced by your own algorithm for all classes or part of the class tree.
Overloading the standard storage algorithm may be useful for efficiency reasons, or to
store objects externally.

For objects with many instance variables that are seldom used, it may prove more
efficient, in terms of required storage space, to create entries for each of these instance
variables in a hash table instead of storing them in a consecutive memory block.

When the state of an object is to be updated immediately to reflect each change
to a database, you also need to manipulate the storage mechanism. You can use the
mechanisms to represent your application model (see Section 2.7.4) only to implement
explicit operation calls to save entire objects.

You can use a metaoperation, to which each operation call is directed, to access
the operation call mechanism. This metaoperation can run arbitrary actions either
before or after the actual execution. Redirecting operations is useful for the following
application domains:

● Distributed applications: In this case, the above mechanism lets you redirect
operation calls for an object to another computer. To redirect operation calls,
you pack the name and arguments of the operation before it is called (also
called marshalling) and send the package to the server, where the actual
operation runs. The result is then returned to the client, where it is unpacked
and forwarded to the caller. The static CORBA (common object request
broker architecture) interface is normally implemented in this way.

● Persistent objects: In a manner similar to the mechanism used for distributed
objects, when an operation is called for an object not residing in the main
memory, the call is caught. Based on the object reference, the referenced object
is then loaded from a database, before the actual operation call of the freshly
instantiated object is executed. In CORBA, this would correspond to the
“incarnation” of an object by an object adapter.

● Additional handling of operation calls: There is a large number of algorithms you
may want to apply on an operation call before or after it is executed. Good
examples are the logging or auditing of operation calls. Another more
sophisticated algorithm is used to check the authenticity of the caller and to
guarantee to a certain extent that the client really is authorized to call that
operation. This is relevant for virtually all software systems.

54 T H E T & M O B J E C T M E T A M O D E L

Manipulating the
storage of

instance variables

Manipulating
operation calls

(redirecting
operations)

Zull-02.qxd 20/8/04 7:29 AM Page 54

There are different implementation techniques to catch an operation call and have
it handled by a metaobject before or after it is executed on the actual target object.
The most common technique hides the target object from the client by using an inter-
mediate proxy object. The proxy object catches the operation call and redirects it to
the metaobject in charge. In simple cases, it can assume the metahandling itself, as in the
example relating to security proxies described in Erich Gamma et al. (Chapter 4) or
Frank Buschmann et al. (Section 3.4).

Another implementation technique modifies the virtual machine of a language so
that it can work with enhanced object references. The enhancement is the so-called
pointer swizzling, where a call is forwarded to a corresponding metaobject. For example,
the object-oriented database ObjectStore uses this technique; although it does not for-
ward calls to a generically accessible metaobject. Instead, it merely uses a restore mech-
anism to wake up the called object in the database.

2 . 8 R E F E R E N C E S

This chapter on the T&M object metamodel has been kept quite concise. For readers
who want to delve deeper into the material, we have assembled an annotated list of
references that contains both practical and theoretical work.

R. J. Bird and P. Wadler: Introduction to Functional Programming. New York: Prentice Hall,
1988.

A seminal textbook on functional programming.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-Oriented Software
Architecture—A System of Patterns. Chichester, New York: Wiley & Sons Ltd, 1996.

A well-received pattern collection book.

L. Cardelli, P. Wegner: “On Understanding Types, Data Abstraction, and Polymorphism”.
Computing Surveys, Vol. 17, No. 4, Dec. 1985.

Seminal work on type systems.

J. Coplien: Advanced C��: Programming Styles and Idioms. Reading, Mass.: Addison-Wesley, 1992.

Coplien introduces, among others, the body/handle pattern.

W. Cunningham: “The CHECKS Pattern Language of Information Integrity.” In J. O. Coplien and
D. C. Schmidt (eds.): Pattern Languages of Program Design. Reading, Mass.: Addison-Wesley,
1995. Chapter 3, pp. 145–156.

This is an interesting work on (domain) values in object-oriented languages.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison-Wesley, 1995.

The present chapter refers to patterns from this book.

A. Goldberg, D. Robson: Smalltalk-80: The Language. Reading, Mass.: Addison-Wesley, 1989.

This is a classic among programming language textbooks.

C. A. R. Hoare: “Notes on Data Structuring.” In O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare:
Structured Programming. London: Academic Press, 1972.

This is a theoretical classic on the concept of type and data types.

R E F E R E N C E S 55

Zull-02.qxd 20/8/04 7:29 AM Page 55

R. E. Johnson, V. F. Russo: Reusing Object-Oriented Designs, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1991.

This work offers more on abstract classes.

G. Kiczales, J. des Riverieres, D. G. Bobrow: The Art of the Metaobject Protocol. Cambridge, Mass:
MIT Press, 1992.

This work offers more on metaobject protocols.

B. Liskov: “Data Abstraction and Hierarchy.” OOPSLA 1987 Addendum to the Proceedings,
ACM SIGPLAN Notices, Vol. 23, No. 5, May 1988, pp. 17–34.

B. Liskov, J. W. Wing: Family Values: A Behavioral Notion of Subtyping. Technical Report,
Carnegie Mellon University, CMU-CS-93–187, 1993.

These fundamental theoretical works treat abstract data types and the concept of type.

D. C. Luckham, J. Vera, S. Meldal: Three Concepts of System Architecture. Technical Report CSL-
TR-95–674. Stanford, Calif.: Stanford University, 1995.

This work offers more on interfaces.

B. J. MacLennan: “Values and Objects in Programming Languages.” ACM SIGPLAN Notices,
Vol. 17, No. 12, Dec. 1982.

This classic article distinguishes values and objects in programming languages.

P. Maes, B. Nardi (eds.): Meta-Level Architectures and Reflection. The Netherlands, Amsterdam:
North-Holland Publishers, 1988.

This book offers more on the metaobject protocol.

B. Meyer: Object-Oriented Software Construction. Second Edition. New York, London: Prentice-
Hall, 1997.

This fundamental book covers the concepts and mechanisms of object-oriented programming
and programming languages. The explanation of the contract model is particularly important.

D. L. Parnas: “On the Criteria to Be Used in Decomposing Systems into Modules.”
Communication of the ACM, Vol. 5, No. 12, December 1972, pp. 1053–1058.

This classical software engineering paper introduces important principles of modularization
and information hiding.

T. Reenskaug, P. Wold, O. A. Lehne: Working with Objects. Greenwich: Manning, 1996.

This book presents interesting aspects of object-oriented design, especially regarding role-
modeling.

R. W. Sebesta: Concepts of Programming Languages. Reading, Mass.: Addison-Wesley, 1998.

This is a good practice-oriented textbook about the concepts and constructs of programming
languages; it presents design alternatives as examples.

P. Wegner: “Concepts and Paradigms of Object-Oriented Programming.” OOPS Messenger, Vol. 1,
No. 1, August 1990, pp. 8–87.

This conceptual article contains the fundamental definition of the term “object-oriented.”

C. Zimmermann (ed.): Advances in Object-Oriented Metalevel Architectures and Reflection. Boca
Raton, Florida.: CRC Press, 1996.

Another interesting paper on metaobject protocols.

56 T H E T & M O B J E C T M E T A M O D E L

Zull-02.qxd 20/8/04 7:29 AM Page 56

57

Guiding Metaphors and
Design Metaphors

3 .1 I N T R O D U C T I O N

Application-oriented software development requires more than the purely technical
elements of an object-oriented model. What we also need is a design view and a lan-
guage to be able to think and talk about our daily development work, the tasks related
to it, and its support. At the same time, our future system should initially develop as a
kind of “vision” in the minds of the developers. To support this design process, our
approach uses guiding metaphors and design metaphors, helping us to form a view to
orient ourselves in the design of an interactive application software. They also give us
a common language so that we can discuss our designs and systems.

This chapter outlines the “essence” of the T&M approach, a view of software
development involving the guidance provided by concepts like guiding metaphor and
design metaphors that make the T&M approach different from other method books.
By the end of this chapter the reader will better understand the specific application-
oriented perspective through which all the techniques, methods, and strategies
described in the rest of this book may be seen as a uniform approach to software devel-
opment.

3 . 2 D E S I G N I N G A P P L I C AT I O N S O F T W A R E

An object-oriented model defines the elements we can basically use to model our soft-
ware. Though this specifies the means to express ourselves, it does not tell us what we
should model or how. What and how we should model is initially a domain-related
question, because unless we have a suitable model of the application domain and its
constructive implementation in a workable system, application software has no right
to exist.

Unfortunately, a pure domain model won’t answer the question about how we
might design an interactive application system based on our ideas. Design refers to the

3

Designing an
application system

Zull-03.qxd 20/8/04 7:30 AM Page 57

layout of the graphic user interface (GUI) and different options to interact with
the computer, that is, what is usually called the look & feel of the software. But more
importantly, we think that design also refers to a usage model. The following section
explains what a usage model means and what we use it for.

3.2.1 Definition: The Usage Model
A usage model by our definition is a domain-specific model telling how an appli-
cation software can be used to do a job within the specified application domain.

A usage model is based on an idea about how the software should be manipulated
and represented, and it includes all domain objects, concepts, and processes
supported by this software.

It makes sense to use design metaphors based on a guiding metaphor to realize
a usage model.

Following along the line of this definition, a usage model will give us an idea or
image of how the developers and the future users see the system in the application con-
text. This means that the usage model should tell us what means we should use and
what kind of support we should provide for the tasks on hand. Thus we can say that
our usage model goes “below” the mere GUI design and encompasses the mental model
of interacting with the system in a task-oriented way.

The idea or image of a usage model that the participating parties have should not
be solely oriented to a single purpose. In fact, it should be a harmonious design, so that
we will be able to speak of a unity of form and content when referring to our applica-
tion software. For this reason, we look for guidelines to direct us in formulating our
usage model. Obviously, knowledge of purely object-oriented model elements won’t do
the trick.

3.2.2 Background: Methodology Books versus Design Guidelines

A look at methodology literature has proven to be of little help in designing applica-
tion software. The reason is that this topic is normally dealt with only briefly, although
we consider it a real problem. Falling back on the design of conventional application
software also leads to a sobering result: The dominance of the analysis of work
processes and their flow-oriented modeling, combined with hierarchical decomposi-
tion methods, have led to a huge number of rather one-sided systems that all link menu
trees to screen sequences. Even modern workstation computers with their graphical
user interfaces can change little in such a sequential system design. Unfortunately,
menus and screens borrowed from vintage mainframe applications have found their
lucky revival in the form of menu bars and modal dialogs.

If we really want to utilize the possibilities of object orientation and modern
system platforms, then we need design guidelines describing how such a system should
look. These design guidelines should primarily have a technical character, because
their purpose is to help us in our daily jobs. Beyond pure technologies, we find
approaches, such as software ergonomics, HCI (human computer interaction) or
CSCW (computer supported cooperative work) that deal with the ergonomic aspects
of modern software. The reader should understand that this book is not dealing with

58 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Design guidelines

Zull-03.qxd 20/8/04 7:30 AM Page 58

software ergonomics and HCI, so you should not look for brilliant interface designs in
our examples. We try to impart the idea of how to design a task-oriented usage model
with its elements and fundamental interactions. Chapter 10 is dedicated to CSCW.

A rather well-known and sophisticated usage model for object-oriented applica-
tion systems is “People, Places, and Things” proposed by Taligent. This usage model
represents an important step towards what we discuss in this book, only we focus on a
“human interface.” What we try to achieve is a unity of domain contents and the forms
in which they are represented. In that respect, we feel like toolmakers or machine
designers, except that we don’t have a century of tradition to look back on. We still
know little about what good interactive software should look like and how it should
support its specific purpose.

3 . 3 G U I D I N G M E TA P H O R S F O R A P P L I C AT I O N
S O F T W A R E

Our starting point for the development of a usage model is a concrete image of how our
future system will be used. Naturally, we cannot give a general definition of this image.
What we can anticipate are ideas about how work is conceived and what kind of sup-
port is expected. We refer to such a basic image as a guiding metaphor.

A guiding metaphor—or leading motif—is a theme or other coherent idea, clearly
defined and named, whose purpose is to represent or symbolize a person,
object, place, idea, or state of mind.

In German, we originally used the term “Leitmotif” which was coined for a recurring
theme in music (by the German Composer Richard Wagner) and then used in psy-
chological or philosophical disciplines. More recently, it has been used in connection
with software development. But for the English edition, we decided to introduce the
term ‘guiding metaphor’:

For our purposes, a guiding metaphor is a basic viewpoint that helps us perceive,
understand, and design a piece of reality.

In software development, a guiding metaphor provides a common orientation
for all participating groups throughout the development process. It supports
the design, use, and evaluation of software and is based on value concepts and
objectives.

A guiding metaphor can have a constructive or an analytical function.

When a guiding metaphor is used to help the development team to transfer the
model of an application domain to the design of a future system, it has a constructive
function. However, we can also use a guiding metaphor in its analytical function, that
is, when we want to evaluate existing application software. A guiding metaphor plays
a similar role when it is used by users to better understand and use an application
program. In this book, as in the T&M approach in general, we use guiding metaphors
primarily in their constructive function, for software development.

G U I D I N G M E T A P H O R S F O R A P P L I C A T I O N S O F T W A R E 59

A guiding
metaphor has
onstructive and
analytical
functions

Zull-03.qxd 20/8/04 7:30 AM Page 59

3.3.1 Background: Guiding Metaphors in Software Development

In the software development discipline there are various explicit or implicit guiding
metaphors. For example, you can find the guiding metaphor of a factory or a computer
as a communicating partner. Exploring all kinds of guiding metaphors would go beyond
the scope of this book; we will use a few guiding metaphors of interest in view of object
orientation to show what properties are relevant (see Table 3.1). The first property you
should note is that a guiding metaphor introduces roles with different values for all
participating people, particularly developers and users.

3.3.2 The “Object Worlds” Guiding Metaphor

Let’s look at the object worlds guiding metaphor that is often found in the Smalltalk
community, where object orientation has virtually become a guiding metaphor in its
own right. This guiding metaphor is based on virtual worlds, populated with active and
communicating system objects. These objects are occasionally triggered from the
outside, and then they act in their respective roles as “actors” or “agents.”

This guiding metaphor fits well into the concept of artificial, intelligent artifacts.
Users of such a system are often reduced to marginal figures, merely giving impulses or
initial orders but having little to do with the actual things that happen in the system.
In contrast, the developers are the creators of these miniworlds. They overlook all
interactions and plan the entire “game.”

If we try to transfer the object worlds guiding metaphor to our EMS example, we
are faced with problems. Our objects would most likely be employees, devices, and
rooms. What would be missing is a simple idea about how procurements should be
handled. How should we inform devices and employees when and how a new device is
to be purchased or updated? All rules and special cases for procuring new devices or
upgrading old ones would have to be defined either in device objects or in employee

60 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Actors, agents,
and artifacts

The EMS
example

TABLE 3.1
Using guiding
metaphors in

software
development.

Role of
Guiding Metaphor Design Goal Role of Users Developers

Object Worlds Virtual worlds Originators of initial Creators of miniworlds
populated with active orders; triggers
objects (e.g., agents)

Direct Manipulating working Independent Constructors of artifacts
Manipulation objects like using our workers, actors

hands

Factory Guiding and Machine operators Machine constructors
controlling work in and machine fitters
assembly line–like
fashion

Expert Workplace Supporting experts in Experts Tool designers, work
their work by creating a place designers
work environment with
adequate equipment

Zull-03.qxd 20/8/04 7:30 AM Page 60

objects. If this is not possible, we have to introduce a person acting as device manager to
the game, which wouldn’t be an easy task. This problem is often solved by introducing a
procurement object or a buyer agent. But still, all conceivable events relating to a pro-
curement process would have to be reflected in the actions of these objects.

3.3.3 The Direct Manipulation Guiding Metaphor

Interactive systems primarily use a guiding metaphor based on direct manipulation of work
objects. This means that individual objects of a complete application system should be
designed so that we have the illusion of manipulating them directly with our hands, as
in the real world. These objects are often represented as direct (mimetic) images. A
once well-known example was the HyperCard system on the Macintosh, the first system
of its kind; it was introduced in the 1980s and was probably the most popular hypertext
system. HyperCard was based on the idea of using linked user-defined filing cards.

If we consider the concept of a guiding metaphor based on direct manipulation in
our EMS example, the device manager could create device identification cards and
business cards, directly manipulate all these cards, and file them in electronic files and
folders. A room plan could be used, and the device manager could drag an identifica-
tion card and drop it onto a room in the room plan on his desktop.

3.3.4 Discussion: Guiding Metaphor of Direct Manipulation

The guiding metaphor of direct manipulation introduced in the previous section is
very simple and easy to understand. However, its simplicity also means that is rather
limited. More complex functions, such as statistics on procurement costs, budget cal-
culations, and similar functions, cannot be created as easily as cards in a cardbox sys-
tem, based on direct manipulation. In particular, the interaction of several objects in a
work situation is difficult to formulate consistently within a system.

In fact, looking again at our bank example, we can see how difficult this would be.
Consider this problem: A bank wants to implement complex financial operations, such
as granting business credits by analyzing and evaluating corporate balance sheets, tak-
ing the last account movements and the current business plans into account. Within
the guiding metaphor of direct manipulation, rating a customer would be a problem.
Objects like balance sheet, account, and business plan would either have to directly
interact for rating or the user would have to drop the relevant objects on a creditwor-
thiness object for this purpose.

Although the guiding metaphor based on direct manipulation seems rather lim-
ited for complex application systems, the role distribution appears to be much more
useful than that of the active objects in virtual object worlds. The reason for this is
that, in the direct manipulation guiding metaphor, users are always the main players,
determining independently what should happen with which objects. In this scenario,
the developers play the role of suppliers of such useful objects. They become the con-
structors of artifacts, or mappings of known objects. What’s missing in this guiding
metaphor is control over the entire system. In fact, the developers are limited to devel-
oping single components. Though some may consider this a welcome self-constraint,
it often has the drawback that the individual components do not fit well.

In summary, these examples show another important feature of guiding metaphors:
They can become more intuitive by use of appropriate metaphors like filing cards or forms.

G U I D I N G M E T A P H O R S F O R A P P L I C A T I O N S O F T W A R E 61

The EMS
example

The Bank
example

Zull-03.qxd 20/8/04 7:30 AM Page 61

3.3.5 The Guiding Metaphor of the Factory

One of the classic guiding metaphors is the factory, because this guiding metaphor has
been extremely important in traditional software development. The factory guiding
metaphor relates to a factory worker who works by fixed rules. Human work is modeled
in a “Tayloristic” style, that is, detached from its environment and reduced to repetitive
movements.

If we transfer this model to the use of an application system, then this means that users
are guided through their work process by rigid rules, in a manner similar to an assembly
line. The user of such a software system becomes a machine operator. The machine (soft-
ware system) controls the speed and steps (required input) to control the work process.

It is characteristic for the factory guiding metaphor that the worker is considered
a potential source of failure and error. As a consequence, this source of error should be
either replaced by automation or restricted by control. In this situation, software engi-
neers see themselves as machine constructors, designing and building these software
machines or automatons. On site, less qualified machine fitters would then tune the
machine to the specific work situation.

If we apply the factory guiding metaphor to our EMS example, we might have the
following scenario: The device manager selects the “Change current room plan” option
from the main menu, and then the option “Change device description” from the sub-
menu. The system presents a list with all devices and prompts the device manager to
“Select the devices to be edited.” The device manager doubleclicks a device name to dis-
play options to delete, edit, and create identification cards for devices. Once the device
manager selects the “Edit device configuration” option, a screen template is displayed for
the device manager to enter new data for that device. Subsequently, the program runs
a calculation to check whether the modified data match the specified side conditions
(the device class referring to the employee), and whether or not the data is consistent
with pending procurement processes. In the positive case, the system outputs an appro-
priate message. In the negative case, the system reports an inconsistency and takes the
user back to the input menu. If the device manager knows nothing about the procure-
ment process for a specific device, then she has to return to the main menu and select
the “Edit procurements” option. The entire device management functionality is handled
like this, that is, sequentially and based on a rigid user interface.

3.3.6 Discussion: The Factory Guiding Metaphor

The EMS example shows the character and limits of the factory guiding metaphor. The
user is guided step by step by the program and has a few options to choose from
after each selection. This rigid user interface means that such an application could be
“operated” by people with little knowledge of computers and some limited knowledge
of the application domain. On the other hand, a rigid flow control like this hinders
flexible action. For instance, there is no parallel view of procurement processes and
room plans in our example, which means that it is simply unavailable. The device
manager has to adapt to the program flow.

In software engineering, the factory guiding metaphor, here called software factory,
is still a current issue. It is interesting to note that the driving motivation for the intro-
duction of the software factory is said to have been a lack of qualified programmers or
costs of programmers.

62 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Users become
operators

The EMS
exmaple

Zull-03.qxd 20/8/04 7:30 AM Page 62

The factory guiding metaphor is the best-known example of a generic process-
controlled view. This view is characteristic for conventional application software
development.

Developing application software based on a process-controlled view means that we
implement operations that replace or regulate and control human work. Here, the pro-
gram has control over the process or sequence of human work steps. This means that
the process-controlled view is behind the concept of automation, which pursues the
general goal of replacing human work by machines, or at least reducing it to data input.
For this purpose, plans and regulations, which are implemented by algorithms on com-
puters, are normally used.

This process control idea has been used in areas outside the classic factory based
on the ideas of Henry Ford. For example, office automation has been implemented
under the catchword “workflow management system.” Behind the process-controlled
view, there is always the goal of refining individual actions so that they can be executed
or controlled by a machine.

It is worth noting at this point that this view is not fundamentally bad. In fact, soft-
ware automatons have been built for many jobs that were considered tedious, expensive,
health-damaging, or simply disturbing. Today, however, many work situations are too
complex to allow their formalization and implementation in software based on the
process-controlled view. We will explore this issue further in Section 12.2.2.

3 . 4 D E S I G N M E TA P H O R S

This section discusses design metaphors. We first provide a definition of what design
metaphors are, and then discuss some background of using metaphors and what
metaphors mean in the context of our T&M design.

Design metaphors round out the image evoked by a guiding metaphor. They pro-
vide the necessary details and the actual elements of a usage model. On the construc-
tive side, they relate the usage model to conceptual and design patterns. Metaphors are
an essential characteristic of application-oriented software systems developed accord-
ing to the T&M approach.

3.4.1 Definition: Metaphors

In the generic context, a metaphor is a figure of speech in which a word or phrase liter-
ally denoting one object or idea is used in place of another to suggest a likeness or anal-
ogy between them. Metaphors are a figurative language that we use daily and to such
an extent that we are hardly aware of it. For example, if someone says a sentence like,
“that was close to the limit,” who would think of a borderline between two countries?

A metaphor in its generic form takes a figurative expression (e.g., garbage) from a
context (e.g., household) and uses it to replace the actual expression (e.g., useless
data in storage). Metaphors (like garbage) emphasize certain properties or views
in the original expression (e.g., useless things one wants to get rid of).

In the T&M our context, we use metaphors purposefully to better convey our
guiding metaphors, thereby increasing their effect. For example, when talking about

D E S I G N M E T A P H O R S 63

Process-
controlled view

Workflow
management
systems

Generic
metaphors

Design metaphors

Zull-03.qxd 20/8/04 7:30 AM Page 63

the guiding metaphor of direct manipulation, the metaphor of a filing cardbox and its
cards makes it easier to understand what we mean. To emphasize that we are using
metaphors to design software systems in our context, we speak of design metaphors.

A design metaphor is a figurative and objectified idea that details a guiding
metaphor from the domain and software views.

A design metaphor structures the perception and contributes to our concept
model. It guides the idea and communication of what should be analyzed, mod-
eled, and implemented from the domain perspective.

A design metaphor serves to design software systems by facilitating their
handling and functionality for all participants. It becomes part of the usage
model. In the T&M approach, a design metaphor is also related to appropriate
construction guidelines and design patterns.

For example, design metaphors for an office environment appear to be very useful
for office communication systems. We saw this earlier in the section discussing the
direct manipulation guiding metaphor. We very quickly got used to moving folders
back and forth on an electronic desktop, putting documents in folders and others in
the recycle bin. However, most of us also noticed the limits of these metaphors, when
they are the only ones available. In fact, we find that they are helpful only for ele-
mentary tasks. In more complex applications, such as a graphics editor, this guiding
metaphor is normally insufficient. What’s missing are special tools to do routine jobs,
like clicking a tools’ palette to draw ovals and rectangles quickly and shortcuts for con-
necting many boxes by arrows.

3 . 5 T & M G U I D I N G M E TA P H O R S A N D D E S I G N
M E TA P H O R S

In the T&M approach, we look for suitable guiding metaphors that can direct us in
turning the domain model into a design of our future system. Each guiding metaphor
should be realized by intuitive and figurative design metaphors, giving us detailed
guidelines to refine our design of the system components involved. After all, the dif-
ferent roles and their values given by a guiding metaphor should fit the requirements
of our future users. This means that we have certain requirements for a guiding
metaphor and its design metaphors.

● The guiding metaphor and its design metaphors have to fit seamlessly.
● The guiding metaphor and its design metaphors should support us in analyzing

the application domain, the design, and the use of our future system.
● The design metaphors should allow both a domain-specific and a software-

specific interpretation.

3.5.1 A T&M Guiding Metaphor: The Expert Workplace

The T&M approach is based on two historical and conceptual roots, that is, the
work of software developers and the office work in the financial and service industries.

64 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Zull-03.qxd 20/8/04 7:30 AM Page 64

For these two application domains, we often use the expert workplace for autonomous
activities—in other words, as our explicit guiding metaphor (see Table 3.1). Examples
include the workplace of an account manager in a bank, a software developer in a soft-
ware company, and a device manager in a software development team.

This guiding metaphor is based on a supportive view. Experts are supported in
their work in that we create an work environment for them. In this work environment,
these experts should find the tools and materials they need to complete their tasks.

Initially, we use tools and materials as our design metaphors to elaborate the guid-
ing metaphor for the expert workplace. While folders, forms, and program code fall
under the term materials, things like debugger, profit model calculator, and room
planner belong to tools, according to our definition. For example, Figure 3.1 shows a
simplified workplace for an account manager in a bank.

In the course of our training seminars and courses, we have observed that assign-
ing daily work objects to either the tools or the materials category appears to be intu-
itive, with occasional discussions about whether or not a folder should belong to tools
or materials. We also often notice that a pen is considered a tool when students use it
to write on paper, but not when they use it in combination with a sharpener to sharp
it. In summary, we need to bear in mind that assignments will have to be oriented to
the specific work situation in a project.

What should be understood for now is that when experts are completing their
daily tasks, they use tools to manipulate materials, which eventually become part of the
finished work result.

3.5.2 Background: The Supportive View

The guiding metaphor we presented in the previous section is linked to a primary
objective and set of values that we call the supportive view. By this view, qualified
human work is seen as irreplaceable in many disciplines. Many human engineering sci-
entists and economists have suggested that the objectives of the process-controlled
view is no longer a desirable work environment, at least in large part. Rather, they suggest
that human work should be seen as an important factor that can contribute to securing

T & M G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S 65

FIGURE 3.1
Example
showing tools
and materials
for a bank
workplace.

Tools and
materials

• Transfer Papers

• Contracts

• Customer Files

• Form Sheets

• Account Papers

• Pens

• Calculator

• Folders

• File Cabinets

Bank Workspace

Zull-03.qxd 20/8/04 7:30 AM Page 65

market positions and producing high-quality services. Wherever these objectives are in
the foreground, then human work should not be replaced by software automatons but
instead be supported by flexible software components. All of this changes the image of
the ‘naive’ user or ‘operator’ to a domain expert who cannot and should not be replaced
by software.

Another characteristic of the supportive view is that the tools and materials are of
utmost importance in modeling the application system, while generic routines and
processes are less important. The reason is that the domain expert should be able, in
any situation and based on his or her experience and skills, to do what needs to be done
to complete the tasks on hand in a creative or self-regulated way. This important char-
acteristic of expert activities has to be encouraged rather than blocked by an applica-
tion system. The logical consequence for our approach is that humans should maintain
control of the use of tools and materials.

Expert activities are not planless actions, but the plans on which they are based
have no rigid instructions for action. Rather, they help the expert in a form of objec-
tified experience. Like a city map, they give some orientation, without dictating each
turn to take. Like a recipe, they provide step-by-step instruction, but no detailed direc-
tives for those with no cooking experience at all. Section 10.4 will discuss ways that
we can integrate plans into the T&M approach based on the supportive view.

Brief Excursion into the Cultural and Philosophical History of Tools and
Materials.

Cultural history tells us that human work has been characterized by handling
tools and materials. Although the question whether the use of tools contributed
to the evolution of humankind remains unanswered, there is agreement about
the fact that human work is essentially based on the use of tools. For example,
in his Being and Time, Martin Heidegger suggested the complementary signifi-
cance of using tools and materials in the context of work. In particular, he
argues that humans take the use of tools and materials (the ‘stuff’) for granted.
This applies not only to handicraft or producing disciplines, but also to office
work. Other authors, including Lewis Mumford have suggested the important
role of containers in human culture.

3.5.3 Discussion: Metaphors and Patterns

Design metaphors help us to better understand and analyze an application domain.
They also play an important role when we speak of designing and using application
systems. This describes the domain-specific meaning of design metaphors. However,
design metaphors are not sufficient for us in our job as software engineers. After all, we do
not want to leave up to individual developers how a metaphor is turned into a software
design and how this design should be implemented. Apart from all the domain-specific
differentiation required in each application system, we want our design metaphors to
give some guidance for how they can be turned into a software design and fitting archi-
tecture. This is the point where design patterns and frameworks come in handy. Chapter 4
is dedicated to patterns and frameworks. For now, it is important to understand what
design metaphors are, how they relate to the T&M approach, and more specifically,
how they prove useful in designing an expert workplace. The following sections define

66 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Expert activities
and plans

Excursion

Zull-03.qxd 20/8/04 7:30 AM Page 66

what tool, material, work environment, automaton, and container all mean, and then
discuss how they can be used as design metaphors and how they relate to the T&M
approach.

3.5.4 Definition: A Tool

This section defines the term ‘tool’ in the context of daily chores, such as, handicraft,
household, or office work.

In this context, a tool is an object that people can use to alter or probe materials
to complete specific tasks.

Tools are normally suitable for different domain-specific purposes and to handle
different materials. Naturally, the main prerequisite is to handle them properly.
Tools are particularly useful for recurring actions that they, to a certain degree,
embody.

Many conceptual properties of (hand) tools can be transferred to software
tools, but it normally makes no sense to directly map the way a tool is handled
and its form to a software system.

3.5.5 The Tool as a Design Metaphor

When talking about the characteristics of a tool it is important to understand that
altering and probing states cannot be separated. For example, only when we hear the
sound of a hammer and see and feel the nail’s resistance can we continue driving a nail
into a wall without incurring a problem.

A tool is linked both to a domain function (“it serves a specific purpose”) and a
specific way to handle it (“it is easy to use”). Obviously, this emphasizes the domain
functionality. If you want to drive a nail into a wall, then you have to use a suitable
tool. However, when you have more than one option to complete this chore, you may
want to choose between different types of hammers.

Handling tools normally requires some experience. For example, you would not be
able to trim wood unless you knew how to use a chisel. Depending on the situation and
the job we want to get done, we normally decide when to use what tool; in other words,
we usually use several tools alternately to handle materials.

A tool embodies a physical routine or series of actions. For example, a hammer
embodies the act of hammering. Unless you know what hammering means, you won’t
have a clue what a hammer is used for.

3.5.6 T&M Design: Software Tools

In this section, we look at tools in the context of computer software. A software tool
should be able to probe or alter a material. We, as users, decide when to pick it up or
lay it aside, depending on the situation. A software tool should be suitable for various
purposes and materials.

The downside is that for a large number of common physical tools it is rather
useless to simulate them in computer software. When we try to transfer a physical tool

T & M G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S 67

Altering and
probing

Handling tools

Zull-03.qxd 20/8/04 7:30 AM Page 67

to software, we usually lose most of its characteristics. Even if we can transfer the
domain concept behind the routines to be completed by means of a tool, the way that
tool will be handled will change. Along with change to the way a tool is handled,
we also have to change the tool’s shape. For example, it wouldn’t make sense to simu-
late a pen, with its usual shape and handling, on a computer. The attempt to combine such
an electronic pen with a computer mouse and use it for writing will result in illegible
gibberish. (Those who remember the first version of MacDraw on the Macintosh will
know what we are talking about.) It is important to understand the different functions
of a pen, that is, writing, drawing, marking, pointing, striking, to be able to implement
it in one or more software tools.

Let’s assume that the device manager in our EMS example has used until now only
a few simple, general-purpose tools, such as a pen, ruler, and eraser, for the sake of sim-
plicity. When we take these tools as the starting point of our domain design, we have
to understand the functions of these tools in view of the tasks to be completed by using
them. Some of these tasks are: update the room plan, and concile procurement
processes and device lists. Our software tools should offer better support for many
things the device manager had to write down on notes or memorize. Assume that we
have developed a Device Organizer tool. This tool should be used similarly to a pen to
add device identifiers to rooms. Additionally, the tool should probe and indicate
whether or not the information added to a device identification card matches the speci-
fied room sizes and number of employees.

3.5.7 Definition: Material

According to our basic definition, tools and materials are complementary concepts.

A material is an object that will eventually become part of a work result. Materials
are handled by use of tools and automatons and embody domain-specific
concepts. They have to be suitable for a given task.

The properties of existing objects of work can often be usefully transferred to
software materials.

3.5.8 Material as a Design Metaphor

It is important to note that a material, like a tool, has a domain functionality. We think
of specific ways of using a material for different purposes. As we usually use tools to
work on a material, it has to be suitable for being handled by use of the tools.
Depending on the task at hand, we will often want to handle different materials to
achieve a specific result.

A specific work situation will show us clearly what is a tool and what is a material.
However, it can happen that a thing is needed as a tool in one situation (“using a pen
to write”), while it is a material in another (“using a sharpener to sharpen a pen”).

3.5.9 T&M Design: Software Materials

Practical experiences have shown that it is easier to transfer objects of work than tools
from an application domain onto the computer. In an initial orientation, always look
at the materials existing at a specific workplace as potential candidates for implementing

68 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

The EMS
example

Software
materials

Zull-03.qxd 20/8/04 7:30 AM Page 68

software materials. But note that materials in the real world and in software are always
more than “data bags.” In order to design good software materials, it is crucial to under-
stand the different ways, that objects of work are handled in an application domain.

If we return to our EMS example, we can immediately think of a few materials,
such as the room plan itself and the device identification cards, which hold informa-
tion about devices and their performance features and procurement processes, as well
as employee information. When considering these conventional materials, we try to
understand their specific use in the application domain. This means that we cannot
content ourselves with generic operations, such as create, modify, and delete, because
new devices are purchased, employees move to other workplaces, and a purchase order
may be canceled.

3.5.10 Definition: The Work Environment

The guiding metaphor of an expert workplace shows clearly that another important set
of design metaphors is the workplace and its environment, that is, the work environ-
ment, which represents the location where a job supported by our application software
is completed.

A work environment is the location where tools, materials, and other objects
pertaining to a task are available and arranged in a domain-specific manner.

The actual work is done at the workplace, while the work environment as a larger
concept includes additional locations accessible within this workplace.

The (individual) workplace is normally protected against unauthorized access.
When only the work of a single user is to be supported, then the workplace and
work environment are usually identical.

3.5.11 The Work Environment as a Design Metaphor

We learned from the above definition that the work environment is the location where
tools, materials, and other objects pertaining to a job are available. We said we distin-
guish between the immediate workplace, where the job itself is completed, and the work
environment, which may include additional locations (rooms and places) relating to
that job. We take it for granted that we equip our workplaces according to our tasks,
order principles, and preferences. During our work, we usually prepare the objects we
need to produce the desired work result. Other things that we may need in rare cases
or when problems arise are normally within reach, that is, in our work environment,
or we know where to find them.

To start with, let’s assume that our software system has to support a single workplace
used by one person. In this scenario, we ordinarily use the terms “work environment” and
“workplace” synonymously. As soon as we have to support cooperative work, we will have
to distinguish between work environment and workplace (see Section 4.1). Then it is
important to decide which locations are for individual use only and which ones are
shared or public spaces.

The work environment metaphor introduces a spatial concept to our approach.
This understanding of an environment as a location fits well into the guiding metaphor
described thus far. The environment represents an important conceptual and spatial

T & M G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S 69

The EMS
example

Zull-03.qxd 20/8/04 7:30 AM Page 69

dimension with specific limits. First of all, we can see our individual workplace as our
private work sphere, where we can use various tools to handle materials. Within the
environment of our workplace, we have additional tools and materials that we don’t
need to use often. Then we have places where we can deposit and access shared
materials. We also need locations or media to exchange information about our work.

3.5.12 T&M Design: The Work Environment

This section explores how a work environment is seen in our T&M design. The con-
cept of the environment has not been fully utilized in most current application systems.
What you mainly find are electronic desktops. What you seldom find is an extended
concept of an environment, except in computer games.

When we try to transfer the spatial concept to a software system, we have to deal
with several effects on our design. For example, it is hardly conceivable to use tools
available at different workplaces concurrently to handle a specific material. And it is
equally hard to imagine that a single material could be in two environments at the
same time. This means that we have to see the concept of an environment in a larger
context to be able to support cooperative work processes. It will then make sense, for
example, to distinguish an individual workplace from jointly used rooms.

We will meet a different design challenge when developing software in the domain
of technical embedded systems. Here it frequently pays to design the individual workplace
as a control station. Nevertheless, we want to maintain our spatial and temporal concepts.

In our EMS example, we could simulate the work environment as an electronic
desktop. Considering that this system is mainly used for office work, a desktop would
indeed fit into the device manager’s familiar work. On that electronic desktop, we
could make tools and materials available that are useful and required to manage
devices. The device manager can arrange these objects on the desktop according to his
preferences.

3.5.13 Definition: Automatons

Not everything we need in a work environment to complete certain tasks can be
classified into our tools and materials categories. Whether we have an office or a work-
shop, we will find machines doing tiresome routine jobs for us. We call these machines
automatons.

An automaton is a device used to handle a material. It relieves us from tedious
routine work, normally consisting of a defined and recurring sequence of steps,
leading to a predefined result, mostly without human intervention.

Automatons normally run in the background, once they have been set and fitted
in the work envrionment. Their state can be checked and set to produce a
specific result.

3.5.14 The Automaton as a Design Metaphor

Automatons are well-known concepts in our everyday lives, although we mostly use the
word “machine.” We speak of a cigarette machine and washing or vending machines, but
we mean the same concept.

70 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

The EMS
example

Characteristics of
automatons

Zull-03.qxd 20/8/04 7:30 AM Page 70

One of the most important characteristics of automatons is that they complete
their work based on a number of setting options and over lengthy periods of time with-
out human intervention. An automaton virtually works at the push of a button.

However, such an automaton will seamlessly fit into our work environment only if
it runs a routine activity or a defined process with well-known results. So, today, copiers,
printers or fax machines are automatons in almost every office. While the use of
automatons is simple and straightforward in standard cases, it can be difficult to take
an automaton back into operation when it fails or breaks down, then it normally
requires an expert.

3.5.15 T&M Design: Software Automatons

The automaton design metaphor fits well into our guiding metaphor of an expert work-
place, because it assumes routine work assigned by the user. This means that the user
explicitly transfers tiresome repetitive steps or work processes to an automaton to free
time for more creative work. We refer to such automatons as small automatons.

Like tools, automatons can handle materials, and they also have a domain-specific
functionality. However, they are not handled directly by users. More specifically, a user
starts an automaton and intervenes when necessary. As mentioned before, automatons
run in the background. This suggests a software-specific modeling of automatic processes.

A different kind of automaton is what we refer to as big automatons. A big automa-
ton dictates the speed or pace of work. As in factories or control plants, the user inputs
specific data and work steps and controls the automaton’s work result.

At first sight, it seems hard to imagine an automaton in our EMS example. This is
quite a common situation with expert office work. However, our system in the EMS
example has to check all devices to determine whether or not they have to be updated
or scrapped in regular intervals. For such a recurring task, we could use an automaton
that runs in the background, doing these checks monthly or upon each system start.

This could lead to a T&M design guideline: for supporting expert work, think of
designing tools working on materials; for supporting routine tasks, embody the routines
as an automaton.

3.5.16 Definition: The Container

When we developed the T&M approach, we initially used containers as materials.
Such a container held other materials and was handled by the use of tools. Their only
characteristics were that they played a major role in many different application
contexts, such as folders or files, and that they had to be modeled explicity for
material collections in object-oriented systems. Over time, however, their significance
emerged.

A container can hold, manage, order, and dispense materials. To handle these
tasks, the container normally includes tables of contents.

You can store many similar objects or a defined set of different objects in a
container.

Containers often represent processes or workflows (e.g., a credit file is both
a collection and a process) and contribute to cooperation and coordination.

T & M G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S 71

The EMS
example

Zull-03.qxd 20/8/04 7:30 AM Page 71

3.5.17 The Container as a Design Metaphor

Obviously, containers play a major role in organizing our everyday working life. First of
all, they are useful for storing things that we are not currently working with. But even-
tually we need to find and retrieve these things again. Then it is important that con-
tainers embody specific ordering principles. Tables of contents are another important
characteristic of containers.

When we look at cooperative work, containers show additional characterstics:
they temporarily combine those materials that are needed for a specific cooperative
task or workflow. Frequently, routing slips fixed to such a container help to coordinate
distributed work.

Note that containers, in our view, are clearly domain-related and have little to do
with data structures like arrays or doubly-linked lists—although we might use these data
structures to implement the storing functionality of a container.

3.5.18 T&M Design: Containers

In our effort to transfer the concept of containers to a software system, we primarily
take their contents and to a lesser extent their forms. As just mentioned, containers
collect different materials, putting them together to a domain entity, such as a cus-
tomer file. Such a collection is normally listed in a container’s table of contents. It is
easy to update tables of contents for electronic containers. They show the documents
that a container holds. Here, for example, software containers go beyond physical ones,
for we expect a container to automatically update its table of contents. In a similar way,
many domain containers help to maintain consistency of materials. For example, a
clerk can see what documents are still missing, or whether or not a document has been
temporarily removed.

Containers can represent one or more orders, such as a registry composed of folders
and files. Beyond the pure ordering of the materials they hold, in alphabetical or
chronological order, for example, domain containers can also represent different
objects. For instance, it is customary to keep pending applications and forms separate,
where so-called resubmission or hold files are often used. In contrast, archives normally
hold completed and closed files that are kept either because they may serve as back-
ground information later on or because required by law.

The credit file example just mentioned shows another important aspect of
containers. Domain-specific containers often represent workflows or processes, that is
the granting of a credit in the bank example given in Section 3.3.4. This means that
containers make a process better understandable and reproducible. When we consider
that processes are rarely represented by conventional object-oriented methods, we can
see the importance of domain containers for the T&M approach. You will frequently
find conventional approaches where workflows are realized as processes in the sense
of a program procedure, that is a predefined sequence of functions applied on
data. Section 4.1 discusses the role of containers in relation to our cooperation and
coordination principles.

In summary, there is no doubt that containers represent a conceptual and lin-
guistic enrichment of our set of design metaphors.

In our EMS example, we will encounter several containers. Of course, we need
containers for storing our device identification cards and business cards, and most

72 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Ordering
containers

Containers and
processes

The EMS
example

Zull-03.qxd 20/8/04 7:30 AM Page 72

probably they will be designed as files or card boxes. We will design a more elaborate
container for storing devices, where its table of contents will show, for example, pur-
chase dates as well as the dates for the next update check. One could even discuss look-
ing at the room plan as a very specific type of container that can be rearranged and that
holds domain knowledge about room occupants, devices, and capacity rules.

3.5.19 Discussion: Design Metaphors

A closer look at the characteristics of the design metaphors introduced so far shows
that as far as the concepts are concerned, we are focusing on the daily work of people
in the application domain. This is the core of application orientation, but it should not
lead us to conclude that we are merely mapping existing situations to software systems.
Software development always means that new or additional tools, automatons, and
materials have to be integrated based on the existing work concepts. This approach
may lead to totally new workplaces with new tasks and work processes. But then, these
new workplaces and tasks should also fit smoothly into the existing concepts, experi-
ences, and system.

The supportive view (see Section 3.5.2) encourages us to turn away from looking
at the use of computers and application software as something exceptional. Software as
seen from an application-oriented viewpoint, should be just another means of coping
with well-known tasks in a familiar way. Developers should ensure that the domain
requirements are implemented in that computer system in an easy-to-understand and
intuitive way. Design metaphors help to reach this goal.

3 . 6 W O R K P L A C E T Y P E S

We mentioned earlier that the T&M approach was originally designed for individual
workplaces in the financial and service industries. Later, the T&M approach was also
used to develop laboratory systems and health care systems. In the course of these appli-
cations, we were challenged to review our guiding metaphor of an individual expert
workplace for autonomous activities.

We didn’t want to force a universal guiding metaphor onto all application domains,
which would have conflicted with our application-orientation idea; our software should
reflect the real-world needs of each workplace in an organization. Of course, we can’t
take each single workplace and model and support it in our software, but we can identify
groups of workplace types within an organization.

The following sections describe several workplace types that have proven to recur
in different application domains, and discusses the most important influences that a
workplace type can have on your design of an application software. The reader should
note that the approach of identifying and supporting workplace types for software
systems is radically different from the one-size-fits-all approach of many application
software system. Although the latter strategy seems to be inevitable for most “shrink-
wrapped” software, it goes well beyond the possibilities for tailored workplace software.
In order to combine an optimum of workplace support with a minimum of develop-
ment efforts, the T&M approach combines workplace types with a service architecture
(see Section 7.10).

W O R K P L A C E T Y P E S 73

Zull-03.qxd 20/8/04 7:30 AM Page 73

3.6.1 Definition: Workplace Types

Depending on the different tasks and work situations to be supported by a software sys-
tem, we distinguish between different types of workplaces. Each workplace type can be
based on its own guiding metaphor.

A workplace type supplies a basic abstraction of the corresponding real-world
workplaces. We distinguish workplace types by the following characteristics:

● The amount of flexible and repetitive activities involved in a workplace type.
● The kind and extent of equipment involved in a workplace type, including

materials and tools.
● The amount of domain knowledge and skills of the employees that use a

workplace type.
● The amount of IT knowledge and skills of the employees that use a work-

place type.

3.6.2 T&M Design: The Expert Workplace Type

Within our T&M design, this workplace type is directly assigned to our original guid-
ing metaphor, that is, the expert workplace for people who have to complete different
and complex tasks in a flexible way. To better illustrate this workplace type, we have
used a few practical examples, for example, account managers in a bank, or the device
manager in our EMS example.

Our definition of a workplace type in the previous section tells us a lot about the
characteristics that distinguish the number of workplace types. This means that we can
characterize this workplace type based on four basic aspects:

1. Amount of flexible and repetitive activities: High flexibility, low rate of routines
for many and complex activities.

2. Kind and extent of equipment: Extensive equipment with tools, materials, and
small automatons; usually a combination of individual workplace and
common work environment.

3. Amount of domain knowledge: High degree of domain skills and knowledge;
little need for domain help systems.

4. Amount of IT knowledge: Medium to high, as the user has been trained utilizing
the application software; low importance of process control or self-explanatory
features.

3.6.3 T&M Design: The Functional Workplace Type

This workplace is one of the more common types. We have identified this work-
place type in most of our projects, including medical laboratories and health care
systems as well as banks. Let’s take a look first at the guiding metaphor behind this
workplace type.

This is a workplace for experts who should get optimal support for repetitive
but less specialized tasks. Examples would be an X-ray analysis workplace for an X-ray
physician, or a laboratory workplace for a complex semiautomatic blood analysis, operated
by a qualified lab technician, or a workplace of a stock trader in a bank.

74 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Zull-03.qxd 20/8/04 7:30 AM Page 74

We can easily see that we have to select a different guiding metaphor, because the
characteristics of the expert workplace don’t apply. What still remains is the basic
concept of an electronic workplace, but with different types of tasks and a different
usage model. We have to differentiate with regard to the range of different tasks and
the support needed to meet the requirements. We also have to consider the amount of
computer knowledge and software skills required at this workplace. Accordingly, we
identify the following characteristics:

1. Amount of situational flexibility and repetitive activities: Low flexibility; few tasks
with highly repetitive character.

2. Type and amount of workplace equipment: Few materials; few otpimized special
tools or automatons.

3. Amount of required domain skills: Medium to high, that is, the system does not
have to support domain guidance for the user.

4. Amount of IT skills required: Low to medium, that is the system should focus on
self-explanatory features and well-built process control.

We can see that the functional workplace is much more a means to an end than
the expert workplace. X-ray physicians, lab technicians, or stock traders don’t want to
deal with the details of our application software. The most important thing they expect
from a software system is to get support in their tasks, such as analyzing X-ray images
or blood samples, or stock trading information at minimum expense.

We can conclude clear requirements for our software design. The few tools
required should be highly specialized. We will probably also need a control automaton
to cover all standard situations. In special cases, this control automaton could be dis-
abled so that the user can manually intervene. Usually, the workplace will be designed
more like a control panel than a flexbile desktop.

3.6.4 T&M Design: The Back-Office Workplace Type

This is another very common workplace type, particularly in offices and service com-
panies. The underlying guiding metaphor tells us that this is a workplace for employees
who are expected to complete a manageable number of routine tasks without special
skills.

One example would be the large number of different back offices in banks or
insurance companies, where clerks compile customer files, edit forms, and do routine
domain tasks.

This workplace can be modeled as an electronic desktop. The following charac-
teristics distinguish this workplace type from the other types:

1. Amount of situational flexibility and repetitive activities: Limited flexibility within
defined routine tasks; average amount of repetitive work in a manageable
number of activities.

2. Type and amount of workplace equipment: Few materials and simple tools,
including automatons.

3. Amount of required domain skills: Rather low, that is, the software system should
provide a high amount of domain user guidance.

4. Amount of IT skills required: Low to medium, that is, the system should focus
on self-explanatory features and well-built process control.

W O R K P L A C E T Y P E S 75

Zull-03.qxd 20/8/04 7:30 AM Page 75

Obviously, the back office workplace should be easy to handle. It seldom dictates
the exact steps and can be optimized only to a limited extent. As soon as the employees
see that there are nonstandard processes that they cannot complete independently
based on their skills and authorizations, they should be offered a way to delegate their
‘semi-finished’ work to others, for example, using normal office communication tools.

Again, the above characteristics give us an idea about the requirements for our
software design: The tools are adapted to the domain skills of the employees. These
tools are standard, but small automatons will often help check the work results or
subtasks. The software system has to support cooperative work. Here, checklists and
routing slips are valuable means for supporting and standardizing workflows.

3.6.5 T&M Design: The Electronic Commerce Frontend
Workplace Type

The last workplace type introduced in this section, the electronic commerce frontend
workplace, is based on a completely different guiding metaphor. It is most commonly
found in electronic banking applications. First of all, an electronic commerce frontend
is not a workplace in the traditional sense, because it is normally only occasionally used
by customers for (banking) services. Such a workplace provides services that are
exactly tailored to customers by the organization, such as money transfers and simple
investment transactions.

Our guiding metaphor for this workplace type is an application environment for
the customers of an organization who do not have to have special skills to be able to
use these services.

Depending on the available frontend technology, we have to think what metaphor
would be suitable for this application system. This can range from a room concept (i.e.,
the service providing organization as a building), to an electronic desktop with a few
simple tools and materials, to an Internet browser interface based on forms. We obtain
the following characteristics for the electronic commerce frontend workplace type:

1. Amount of situational flexibility and repetitive activities: The full range from high
flexibility to a few well-defined routine tasks; tailored for occasional users.

2. Type and amount of workplace equipment: Few materials and simple tools,
including automatons; mostly requiring comfortable presentation.

3. Amount of required domain skills: None to average, that is, the software system
should offer an easily adaptable user interface and high domain user guidance.

4. Amount of IT skills required: None to average, that is, the software system
should be self-explanatory and have a well-structured process control.

When we look at an electronic banking frontend as one of the typical examples
for this workplace type, we can see that, in contrast to the bank account manager’s
workplace, the individual materials are not freely accessible. They are allocated to a
service, and that service is presented in such a way that the customer does not need to
know what materials are required for the service. An underlying control automaton
will assist the customer in obtaining the desired information or services.

Though users of this workplace type are responsible for what they expect and accept
from the service-offering company, they are always customers who do not normally want
to deal with the details of the system they use, but instead obtain information or use a

76 G U I D I N G M E T A P H O R S A N D D E S I G N M E T A P H O R S

Zull-03.qxd 20/8/04 7:30 AM Page 76

service quickly. In addition, we cannot assume that these customers will acquire spe-
cialized skills to be able to use our system. This means that the service-providing end
has to ensure high quality of the software system and particularly of its user interface.

3 . 7 R E F E R E N C E S

R. Budde, H. Züllighoven: “Software Tools in a Programming Workshop.” In Ch. Floyd,
H. Züllighoven, R. Budde, R. Keil-Slawik (eds.): Software Development and Reality
Construction. Berlin, Heidelberg: Springer-Verlag, 1992.

Here are the basics of the Tools & Materials approach.

S. Cotter, M. Potel: Inside Taligent Technology. Reading, Mass.: Addison-Wesley, 1995.

This work describes the “People, Places, and Things” concept, which has interesting
metaphors for application design.

C. Floyd, W.-M. Mehl, F. M. Reisin, G. Schmidt, G. Wolf: “Out of Scandinavia: Alternative
Approaches to Software Design and System Development.” Human-Computer Interaction,
1989, Vol. 4, No. 4, Hillsdale, New Jersey, England: Lawrence Erlbaum, pp. 253–350.

Basic article about alternative approaches to software design.

S. Maaß, H. Oberquelle: “Perspectives and Metaphors for Human-Computer-Interaction.” In
C. Floyd, H. Züllighoven, R. Budde, R. Keil-Slawik (eds.): Software Development and Reality
Construction. Berlin, Heidelberg: Springer-Verlag, 1992, pp. 233–251.

This article considers various guiding and design metaphors for software development.

M. Heidegger: Being and Time. Blackwell Publishers, 2000.

L. Mumford: Myth of the Machine: Techniques and Human Development. Harcourt Brace, 1983.

This classical contribution in the area of the sociology of technology also discusses the mean-
ing of containers for human culture.

B. Shneiderman: “Direct manipulation: A step beyond programming languages.” IEEE Computer,
1983, Vol. 16, No. 8, pp. 57–69.

This is an important article about direct manipulation as a design metaphor.

Taligent Inc.: Taligent’s Guide to Designing Programs: Well-Mannered Object-Oriented Design in
C��. Cupertino, Calif., U.S.A.: Taligent Press, 1994.

Taligent famous approach to designing application frameworks.

R. J. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing Object-Oriented Software. New York,
London: Prentice-Hall, 1990.

This book about object-oriented design is still worth reading; it explains the guiding metaphor
and object worlds.

R E F E R E N C E S 77

Zull-03.qxd 20/8/04 7:30 AM Page 77

This page intentionally left blank

79

Patterns, Frameworks,
and Components

4 .1 I N T R O D U C T I O N

Chapter 2 introduced the basics of object-oriented programming, describing the
fundamentals at the programming level. Now we move on to the next level of object
technology. This chapter discusses the concepts and terms relating to patterns, frame-
works, and components. These topics have gained increasing importance for software
development over the last few years. Today they form the advanced handcraft of every
developer who wants to build high-quality object-oriented software.

Patterns objectify the experience of software engineers in a structured and easy to
access way. Patterns, being more abstract than program code, show us the idea behind
a good solution for a recurring construction problem. But most importantly, they pro-
vide us with a language to talk about the different aspects of the design and construc-
tion of large software systems. In this chapter we break down the concept of patterns
into design patterns, conceptual patterns, and programming patterns. Next, we
describe what pattern collections are and what they are used for.

Frameworks, now sometimes called platforms, are prefabricated software structures
that usually implement design patterns. They realize essential structural and dynamic
parts of an application and thus enable the reuse of concepts and software on a high
level. We will explain the difference between concept frameworks, application frame-
works, and black-box and white-box frameworks. We will also learn what pieces are
required to connect frameworks.

Components are software building blocks that can speed up the development
process considerably while increasing the quality of the final product. As we will
explain components, as we use them in our T&M approach, should be combined with
framework technology.

This chapter includes important terms and concepts necessary to understand our
approach. First we relate these technical topics to the domain issues of application soft-
ware development. By the end of this discussion the reader should understand how all
these terms and concepts fit together within our application-oriented approach.

4

Zull-04.qxd 20/8/04 7:33 AM Page 79

4 . 2 B A C K G R O U N D : P AT T E R N S , F R A M E W O R K S ,
A N D C O M P O N E N T S

Patterns, frameworks, and components are closely related, because they are all integral
parts of the second-generation of object orientation. The first generation can be thought
of as the period where “simple” object-oriented programming gradually evolved into a
comprehensive approach including all phases, from analysis to design to construction.
The second generation is characterized by a transition from purely object-oriented
programming and class libraries to patterns, frameworks, and higher-level design and
construction units, such as components. Patterns have been widely accepted to describe
concepts and design decisions behind frameworks and components.

This chapter is important for better understanding the T&M approach, because
the following sections describe and discuss patterns, frameworks, and components of
interest in our T&M architecture.

4 . 3 P AT T E R N S

Patterns became a hot issue in object-oriented software development when Gamma
et al. introduced their seminal book. We took an active part in this discussion from the
very beginning, because we consider patterns to be an important concept for software
architectures. This is the reason why we decided to present the constructive part of this
book, that is, the description of the important elements of a T&M model architecture,
in the form of patterns (see Chapters 7 and 8).

It should be understood that this chapter is not intended to provide a compre-
hensive discussion of patterns. Instead, what we should take home from this chapter is
a sound understanding of the set of essential terms and concepts of our T&M design.

4.3.1 Definition: Patterns

Let’s start with a general definition.

A pattern in the generic sense is an abstraction of a concrete form, occurring
repeatedly in certain nonarbitrary contexts.

The definition that software developers are familiar with relates to software design.
Christopher Alexander, a California architect, whose seminal work is appreciated by
many software engineers, describes patterns as follows:

Each pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use this solu-
tion a million times over, without ever doing it the same way twice.1

Alexander also explains that a pattern represents a relation between different forces
recurring repeatedly in certain contexts, and in a configuration that binds these forces.
In addition, he sees a pattern as a rule describing how this configuration can be created.

80 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

1. Quoted after Gamma et al., p. 2.

Zull-04.qxd 20/8/04 7:33 AM Page 80

4.3.2 The Characteristics of a Pattern

Patterns have forms and purposes.

● The form of a pattern consists in a number of identifiable and distinguishable
components and their connections.

● The purpose of a pattern is to create, identify, and compare instances of that
pattern. The pattern supplies a term or notion allowing us to discuss a solution
to a problem.

● A pattern occurs only in certain contexts that determine the underlying forces,
which produce the pattern in its specific form.

● Although the form of a pattern is finite, this does not mean that the number of
instances of that pattern is finite. The context of a pattern is also potentially
unlimited.

● A pattern can be understood only on the background of experience and
reflection within the application domain. A pattern should be presented in the
terms and concepts of the intended application domain.

We define the form of a pattern by its representing elements, their relationships, and
their interactions. This means that a pattern has both structural and dynamic properties.

The elements of a pattern are not necessarily software components. They can also
be other technical and nontechnical objects. This section explains the elements that
different kinds of patterns are made of.

Let’s return to our EMS example. When we analyze the application domain using
the T&M approach, we will more or less consciously divide all objects, like room plans
and devices, into tools and materials. When we look at a room plan as a material and
transfer it into an appropriate piece of software, we are using a metaphor. This leads to
our concept of design metaphors (see Section 3.5). Using metaphors to analyze the
elements of an application domain opens up new insights. The dominant relationship
between most elements is the fact that we use tools to handle materials. In this sense,
we can think of the interaction of tools and materials as a fundamental pattern. Thus,
using metaphors has led us to a general solution of a recurring problem: People use
tools to work on materials in order to cope with their work tasks. We have formulated
this solution as a so-called conceptual pattern (see Section 4.3.4).

A pattern, in general, is a concept based on experience. Reflecting about our experi-
ence, we can recognize recurring patterns. Once we have understood these patterns,
then they will guide our perception. We then use a pattern to recognize its occurrences
or instances. More strictly speaking, patterns exist only in the form of their instances.
But a pattern can also be used constructively to create an instance of it.

A pattern guides our perception; it predefines the “structures” we will realize in our
environment. When we name a pattern, we introduce a notion that characterizes both
the problem related to the pattern and a solution to this problem. Patterns have a
language-building character, which means that they are important both in the real
world and in our software worlds.

Let’s go back to our EMS example. A conceptual pattern, say the interrelation of
tools and materials, helps us to identify the concrete occurrences of the pattern. On that
basis, we think of a pen as a tool that we can use to change information in a room plan
as the underlying material. We could discuss with the device manager which tools and

P A T T E R N S 81

The EMS
example

The EMS
example

Zull-04.qxd 20/8/04 7:33 AM Page 81

materials are relevant elements of the work and of the future system. We can see that
patterns contribute to understanding an application domain.

We can also use the above example to show the constructive or generative func-
tion of patterns. This means that we could use our conceptual pattern, interrelation of
tools and materials, to support the design. We thus design a specialized graphic editor,
let’s call it Device Organizer, as a tool that will be used to edit an electronic room plan.
Continuing along the line of this domain-specific conceptual design, we will then need
more design patterns to build a sound software architecture, where tools and materials
are again the most important components on the object and class levels.

We know from Section 4.3.1 that a pattern is a specific form in a specific context.
We could alternatively say that a pattern always appears on a certain background. To
better understand this idea, visualize the drawings of M. C. Escher or picture a puzzle
for a moment. Both have this in common: we first have to understand the background
before we can identify the things in the foreground. This means that a pattern always
has a background or context. A context defines the pattern; a context produces a
pattern, while a pattern matches only a specific context. If we change the context,
then the pattern will change too, and once the pattern has changed, the context will
change.

In our EMS example, if we identify the room plan that is currently handled manu-
ally by the use of a pen, then we can relate the room plan (material) and the pen
(tool) to a certain type of work context as the background. We assume that the device
manager understands her trade, that is, that she is able to independently procure a new
device, update existing devices whenever she thinks this is necessary, select the tools
she thinks are appropriate, and so on. This tells us how we should understand the con-
ceptual pattern, interrelationship of tools and materials, on the background of a specific
type of human work.

The description of a pattern consists of a finite number of elements and relation-
ships. However, concrete variants of a pattern can have an arbitrary number of ele-
ments, which are recursively defined and created upon demand.

For example, the work of Gamma et al. describes a pattern called chain of respon-
sibility with client, handler, and successor as its elements. This finite pattern can be
instantiated into a recursive chain of handler-successor pairs in an arbitrary length.

Patterns grow from experience and can be applied only by experienced people.
The author of a pattern description will want to include what he or she considers rel-
evant and meaningful in describing the context. For a newcomer to this discipline, this
can mean that this person won’t understand the problem to which that pattern is sup-
posed to provide a solution. In addition, when using a pattern, there should always be
sufficient experience to be able to develop the correct variant for the context at hand.
There is no question, however, that all experiences distilled into a pattern are useful
for everybody, including newcomers.

The interrelation of tools and materials pattern assumes that its users are familiar
with the basics of developing interactive software for workplace systems. Otherwise,
they will not be able to implement the interaction between tools and materials as
interactive software. These prerequisites given the pattern helps you to identify relevant
elements of the application domain and introduce them to your software design.

Application orientation is extremely important, even if we do not want to restrict
the use of patterns to software development. Obviously, the prime use of patterns is to

82 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Context of a
pattern

The EMS
example

Elements of a
pattern

Understandable
pattern

descriptions

Zull-04.qxd 20/8/04 7:33 AM Page 82

facilitate the pattern author’s work. The true potential of a pattern shows when it is
accepted and reused by others. This proves that it is indeed a generalized form to solve
a recurring problem in a specific context.

An important thing to remember is that we should name our patterns, and that
these names should be descriptive enough to ensure that everyone participating in a
project will understand what we tried to introduce in the design.

Conceptual patterns, like the interrelation of tools and materials pattern, are nor-
mally named with plain language. This will ensure that these patterns can be under-
stood in many different application domains. In general, in the application-oriented
T&M approach all conceptual patterns should have names that are meaningful in the
respective domain language.

4.3.3 A Taxonomy of T&M Patterns

Chapter 6 will describe different models that play an important role in our software
development approach. We will distinguish between the application-domain model,
the design model, and the implementation model. It has also proven useful to distin-
guish the different types of patterns, with their respective purposes based on these
models. We distinguish patterns as follows:

Conceptual patterns describe elements and concepts pertaining to the applica-
tion domain. They are based on corresponding design metaphors. Although
design metaphors provide a basis for discussion among all participating groups,
conceptual patterns help the developers in particular in modeling their applica-
tion domain.

Design patterns describe the software system on software levels. They are micro
architectures for software construction. The most prominent examples are
listed in the book of Gamma et al.

Programming patterns are the most concrete and technical patterns. They
describe constructs or idioms on the source code level, for example:

for (int i � 0; i � max; i��) {. . .}

4.3.4 Conceptual Patterns

A model of an application domain (see Chapter 6) should be designed so that all
participants can understand it. Patterns can increase the readability of a model, if they
use concepts and metaphors specific to the application domain. We call such patterns
conceptual patterns, as already defined. They are also used in the usage model.

Conceptual patterns reach beyond design metaphors, because they are intended
for developers who support individual activities during the application domain modeling
process. They also guide us during the analysis of the application domain. Conceptual
patterns help us to see better which objects of an application domain—and which rela-
tionships between these objects—are relevant for the underlying model. We learn
about the relevant tasks involved in our application system and make this explicit in
our model. At the same time, we normally select those elements and patterns for our

P A T T E R N S 83

Intuitive pattern
names

Zull-04.qxd 20/8/04 7:33 AM Page 83

model that we can use in our domain-specific and software-specific design of the future
application system. Conceptual patterns are a guideline to perceive, interpret, and
change the application domain.

Once again, this shows that, for a developer, the analysis and modeling of an
application domain is always connected to the design of the future system.

In our approach, however, this is not a task only for the developers. The author-
critic cycles of our evolutionary approach require all participants to actively take part
in the design process. For this purpose, we have to ensure that the conceptual patterns
are closely related to the design metaphors.

The conceptual pattern interrelation of tools and materials, introduced in Section 7.3
is a basic pattern for application modeling. When writing scenarios (see Section 13.1)
we use instances of this pattern such as room plan and pen, to describe how tasks are
completed by use of tools and materials. When designing our future system, we have to
ensure that this specific type of interaction is not lost in the system visions, which
means that a tool, such as the device organizer, can be used to handle a material, such
as an electronic room plan, in a similar way.

Considering that conceptual patterns, like all other patterns, are not universal, we
have to allocate them to a specific context. The author of a conceptual pattern usually
tries to avoid the extremes of being too general or too special.

We think that a pattern like actively cooperating objects would be too general to be
a useful conceptual pattern. To turn device organizer and room plan into a conceptual
pattern wouldn’t make much sense either, because we only use it in our example. The
conceptual pattern interrelation of tools and materials, however, has proven to have a
suitable abstraction level for office systems. In fact, it is similar to other conceptual pat-
terns, such as agent or medium. On the other hand, an attempt to transfer the interrela-
tion of tools and materials pattern to real-time systems with their inherently rigid
temporal requirements would not be very successful.

4.3.5 Design Patterns

The design model occupies a central position between the application domain model
and the implementation of a software system (see Chapter 6). It represents our under-
standing of the application domain and already takes the restrictions and formal
requirements of a software system into account.

● Design patterns connect the domain statements of the conceptual patterns
with the constructive requirements of an object-oriented design.

● They help you analyze and reorganize existing software designs.
● Design patterns help you to understand software architectures (e.g., class

libraries, frameworks), as long as the architectures are documented using well-
known design patterns.

● You can think of design patterns as “micro architectures” that experienced
developers can take and map onto an implementation, similarly to components
in a larger software architecture. This means that you can reuse design
solutions rather than code.

● Design patterns represent the elements of a language that we use to think and
communicate about software architectures.

● And finally, design patterns support us in refining the design model and
increase the quality of our designs (e.g., reusability and scalability).

84 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

The EMS
example

Zull-04.qxd 20/8/04 7:33 AM Page 84

We use design patterns to describe and to understand our design model. Design pat-
terns define the structure and dynamics of the element that a design model contains,
and they help us better understand the interaction and responsibility of each of these
elements. From the view point of software construction, they take the conceptual
and structural requirements of the conceptual patterns an important step towards
executable software code.

In our approach, it is essential that the application domain model and the design
model for our application contain as few semantic differences as possible. To ensure
this, the design patterns should be closely related to the conceptual patterns and the
design metaphors upon which they are based. The elements and relationships defined
by design patterns should then allow easy mapping to the implementation, without los-
ing their structure.

Design patterns are closely related to frameworks. Frameworks contain and instan-
tiate design patterns. In an ideal situation, frameworks are developed on the basis of
design patterns. At a minimum, the documentation of a framework should specify the
design patterns that were used in building a framework.

The literature and practice of software development deal with design patterns
in totally different ways, that is, by allocating them to different levels, ranging from
problems of large-scale software architectures to so-called micro architectures.

The conceptual pattern interrelation of tools and materials describes the basic design
elements, tools and materials, in the context of expert work. With a design pattern
called coupling tools and materials, we take the interrelation of tools and materials
pattern a step further: we describe the explicit interface of two design units (a tool and
a material) and specify that they should be loosely coupled. For this purpose, we rec-
ommend specific object-oriented constructions. Finally, we use our framework-based
model architecture to show where the general interaction between tools and materials
can be encapsulated within a framework.

4.3.6 Programming Patterns

In addition to the usage and design models, we define the implementation model as our
third software development model (see Chapter 6). This model is normally not sepa-
rate from the program code but “embodied” in the program sources. The programming
language we select supplies the notations for this model. To better describe and under-
stand this model, we use programming patterns. In other words, whenever we write pro-
gram designs and the actual implementations we use programming patterns.

Programming patterns differ, depending on the programming language and cul-
ture. It is worth noting that even on this relatively low technical level, there are such
things as programming cultures and styles. Programming patterns are often referred to
by different names; Coplien, for example, calls them idioms. A detailed discussion of
programming patterns would go beyond the scope of this book. However, we will give
a rough idea of what programming patterns are all about.

The following small example for a programming pattern is a loop structure known
from C; you will find a similar syntax in any Java, C, or C�� program.

P A T T E R N S 85

Design patterns
and frameworks

Example

Programming
patterns

for (int i � 0; i � max; i��) {. . .}

Zull-04.qxd 20/8/04 7:33 AM Page 85

Above the programming language level, you will find the classification of class inter-
faces based on the programming pattern instruction–function–predicate, which we pro-
posed in Section 2.1.8, following Meyer’s work. This pattern fits the design-by-contract
model proposed by Meyer, which can be thought of as a design pattern.

4.3.7 T&M Design: Design Patterns

In the context of this book, T&M design patterns consist of a general descriptive part
and one or several construction parts.

● The general descriptive part of a T&M design pattern defines the elements
available for software design regardless of a specific programming language. For
this purpose, it uses object-oriented concepts (e.g., use, role, components,
generalization, specialization).

● The construction parts of a T&M design pattern describe the elements for your
software design. The form is oriented to the concepts of the selected
programming language (e.g., procedures, objects, classes, inheritance).

This breakdown of design patterns is in line with the general T&M approach.
Although we generally orient to specific application domain, that is, the financial and
service sectors, we do not orient ourselves to a specific programming model.
Nevertheless, we need a guideline for constructive solutions that take the particular-
ities of specific programming models into account.

Thus, each design pattern is described on a level independent of any programming
language. On this level, T&M design patterns show the basic constructive ideas
behind concepts, for example, the tools, materials, and automatons within a work
environment.

Section 8.3 introduces the design pattern aspect. The general desciptive part of
this pattern builds a relationship between a tool, a material, and aspects. Next, this
pattern is concretized by the use of four different construction parts. This example
shows how we can implement alternative aspects in different languages.

A construction part uses the elements and relationships of the selected program-
ming model to better explain the structure and dynamics of a design. A construction
part is always the concrete part of a T&M design pattern. It shows the implementation
alternatives for a design pattern. In this book, we use construction part examples for
programming models in C��, Java, or Smalltalk. In a real-world project, design
patterns are often described directly in the form of construction parts, particularly
when the programming language basis is inflexible.

In practice, it is also sometimes necessary to develop construction parts for
languages other than object-oriented languages, as we did in several projects. In such
cases, we always had to clarify whether and what object-oriented design concepts
should be retained for the implementation level. We intentionally don’t use such
construction parts in this book, because this issue could easily fill a separate book.

4.3.8 T&M Design: Models, Metaphors, and Patterns

Obviously, there is a relation between design metaphors, patterns, and models in soft-
ware development based on the T&M approach. We have defined a design metaphor
as a visual and objective idea that fits and concretizes a guiding metaphor from both

86 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Generic
description part of

a design pattern

Example

The construction
parts of a design

pattern

Zull-04.qxd 20/8/04 7:33 AM Page 86

the domain and software views. A design metaphor helps all people involved in the
design of a software system to find a common basis of perception and understanding.
Design metaphors are based on everyday language, making the application domain
easier to understand and facilitating the future handling and functionality of the appli-
cation system under development.

In contrast, patterns are primarily relevant for the activities of the developer. As
early as the domain modeling phase, developers should try to concretize design
metaphors, because they need to know what things in the application domain are rel-
evant in view of the future system and to what detail they should be described.
Conceptual patterns can help them find an answer to this question.

In the T&M approach, it is important to understand that design metaphors are
related to technical interpretations in the form of construction guidelines. Conceptual
patterns bridge the gap between the domain-related view of design metaphors and the
construction perspective of design patterns. Design patterns describe the basic elements
of the software design. These elements are then instantiated by the use of construction
parts and programming patterns.

Our guideline for handling patterns is this: Analyze the application domain and work
out the application domain model by the use of design metaphors and conceptual patterns; then
create the software-specific design by the use of design patterns; and finally, use the program-
ming patterns to implement these design patterns.

Let’s have another look at our tools and materials example. Tools and materials are
common-language design metaphors that should be familiar to every developer or user.
The conceptual pattern on this level is the interrelation of tools and materials pattern, as
described in Section 7.3 and shown in Figure 4.1. Within an office work context and
expert activities, it appears meaningful to view the relevant tasks on hand in terms of
using tools to manipulate materials. This is expressed by the conceptual pattern.

For the software design we use the design pattern aspects. We refine the concept
pattern by first introducing two design components, tools and materials. Their interaction

P A T T E R N S 87

Example

FIGURE 4.1
Example of
conceptual
pattern, design
pattern, and
construction
part.

Design pattern Construction partConceptual pattern

Context: Office work

works on

uses

realizes

Collection

Tool
e.g. DeviceEditor

Material
e.g. RoomPlan

<<interface>>
OrganizableRoomPlan

Tool

Material

Material

Aspect

Tool

Zull-04.qxd 20/8/04 7:33 AM Page 87

and the way in which one element fits to the others is expressed by aspects. An aspect
tells us the properties that a material should have so that a tool can be used to manip-
ulate it. On the other hand, a tool knows all of its materials only under a specific
aspect. This relationship is specified in the general part of our design pattern. In our
example, we could think of a naive instantiation of the pattern in that a device organ-
izer knows only the aspect OrganizableRoomPlan but not the concrete material
RoomPlan.

Finally, we have to implement our design on the constructive level. More specifi-
cally, we have to define how aspects can be implemented by the use of features
provided by the programming language. This is described by a construction part. The
example in Figure 4.1 is a solution that uses aspects as interfaces.

4.3.9 Background: Pattern Form

Hoare once said that each abstraction needs a representation to give it the necessary
form. This statement also applies to patterns. In general, the literature agrees that
patterns should also be described in a structured pattern form.

If we compare the large number of different pattern descriptions, we can see that
whether the pattern description you select is suitable depends largely on the intended
purpose.

Following Alexander’s classic definition, a pattern description consists of three
segments: problem, context, and solution. This form proves useful when you use a pattern
to work out solutions to a given problem.

The problem segment briefly describes the problem to be solved. The context seg-
ment identifies typical situations where the problem occurs, as well as the forces and
conditions hindering a possible solution. And finally, the solution segment tells you
how to restrict or eliminate these forces in this particular context. One major charac-
teristic of this form is that it can be used for generic problem-solving tasks. The solu-
tion is normally described so that the pattern for a specific problem can be easily
instantiated. Other pattern descriptions are primarily of a descriptive nature, that is,
they focus on the structure and dynamics of a construction pattern.

4.3.10 T&M Design: Pattern Form

The description for patterns used in this book is loosely based on the form proposed by
Gamma et al. We structure pattern descriptions with the following segments, although
not every pattern has to include all segments:

● A name for the pattern.
● The problem to be solved by the use of that pattern.
● The context around the problem to be solved, and its counteracting forces.
● A solution, representing the elements of the pattern in their roles and how they

interact, and the way they interact.
● An example to better illustrate the issue; we use the EMS example throughout

the book as well as small examples from our projects.
● A discussion of the different construction approaches.
● The positive and negative consequences of using patterns.

88 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Zull-04.qxd 20/8/04 7:33 AM Page 88

4.3.11 Pattern Collections

Patterns like the ones described in this section do not exist in isolation. They are con-
nected within their common application domain, and they follow the mesh of relations
given by the selected design metaphors. In the T&M approach, patterns are linked,
that is, one pattern includes another one or interacts with others.

If patterns include other patterns, they can be arranged as pattern collections. Our
pattern collection is hierarchical, which means that the context of one pattern
includes the context of another pattern. Understanding the contextual pattern helps
us to understand the pattern that it includes. In this sense, the more comprehensive
pattern precedes the included pattern logically and in its description. In the T&M
approach this also applies to a pattern type; for example conceptual patterns precede

P A T T E R N S 89

Example

FIGURE 4.2
The T&M
pattern
Roadmap.

Interrelation of Tools
and Materials

Materials Design

Domain Service
Provider

Container Form

Tools Design

Work
Environment

Automaton

Technical
Automaton

Probe

Environment

Adjusting Tools

Automatons in
embedded
systems

Tools Composition Separating function and
interaction

Aspect

Domain Service Domain
Containers

Form
Construction

Domain Values

Feedback
between IP and

IF

Separating
handling and
presentation

Feedback
between tool

parts

Separating FP
and IP

Zull-04.qxd 20/8/04 7:33 AM Page 89

the related design patterns, and domain-specific patterns include the corresponding
software-specific patterns. In short, the order is conceptual patterns before design
patterns before programming patterns.

The conceptual pattern interrelation of tools and materials describes the context
in which tools and materials interact. This basis is necessary for us to meaningfully
discuss the related design pattern aspect. This, in turn, forms the conceptual basis
for understanding design patterns as tool construction and then the pattern separation
of interaction and function. This latter pattern precedes the design pattern feedback
between tool parts. In their construction parts, the respective technical solutions
use well-known patterns, for example the observer. Figure 4.2 shows how all of the
T&M patterns described in Chapters 7 and 8 relate. A diagram like this is often
called a pattern roadmap as it shows potential ways through a collection of related
patterns.

4 . 4 F R A M E W O R K S

This section begins with some historical background about frameworks and the con-
cept of class libraries, which is important for understanding frameworks. Later sections
explain the difference between and purpose of application frameworks and black-box
and white-box frameworks. Finally, as a practical example, we describe a layered archi-
tecture with the JWAM framework.

4.4.1 Background: Class Libraries

Re-use was an important technique before the first object-oriented programming
languages were introduced. In traditional procedural languages, you can use construc-
tion units, such as modules, only in the way they were provided. If you want to use the
concept in a slightly different form, you have to copy and modify the program text. The
two object-oriented constructs, class and inheritance, allow you to reuse a class in a
subclass. More specifically, you take the class and redefine it for your specific use, with-
out changing the original class. Meyer calls this the open-closed principle of object
orientation (see Section 2.2.3).

The open-closed principle made class libraries an integral part of object-oriented
programming languages.

A class library groups a set of individually usable classes.

Class libraries are used either directly or by subclassing.

A class library does not define the control flow of an application system.

Unlike module libraries, class libraries are not unordered collections of ready-to-
use elements; rather, they form a flexible hierarchy consisting of extensible building
blocks and concepts. This results in two things: first, the given programming language
is extended on type level, and second, class libraries form the basis for new user-defined
type and class hierarchies.

90 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Zull-04.qxd 20/8/04 7:33 AM Page 90

In general, you can use each class from a class library, regardless of the other classes
included in that library. For this reason, objects created by classes of a library do not
automatically cooperate with other objects instantiated from the same library. The
interaction between these objects, or the control flow, is defined in the program code
of the application system.

A good example of this is the container library, which expands the classic data-
structure library. In container libraries, container classes can be utilized on a basic level
by instantiating and using container objects.

But recent container classes are more than a group of passive data structures based
on access operations. These container classes add explicit markers, cursors, or so-called
robust iterators to data structures, so that containers can be easily searched and edited.
That gives us not only a container class, but an interaction between a container and
one or more iterators. Also, specific requirements for the elements maintained in a
container are formulated in an abstract superclass. This interaction can generally be
expressed in class structures and the objects created from these classes.

4.4.2 Definition: Frameworks

The preceding example of a container shows us an interrelated functionality that is
reflected in the structure and dynamics of the elements involved, for example, in the
construction’s control flow. It means that such container collections are a transition to
what we normally call frameworks.

A framework is an architecture of class hierarchies that offers generic solutions
to similar problems within a specific context.

With frameworks you reuse the entire construction of interacting elements
rather than single classes. This means that a framework defines the control flow
for your application.

A framework can be developed into a specific application by specializing selected
classes or creating predefined parameter objects.

This definition indicates how frameworks and patterns relate. A pattern is an
abstraction of a concrete form that recurs in certain nonarbitrary contexts. A frame-
work is more concrete than a pattern, as it is given not only in verbose form but as a
“semi-finished” implementation of class structures.

On the one hand, the class structure of a framework identifies the architecture and
control flow of your application system. On the other hand, it has specific points (Pree
calls them “hot spots”) where you can attach your specific solution.

4.4.3 Application Frameworks

Frameworks can be used to solve problems in all kinds of domains. A framework that
defines the design and relevant constructions for a complete application system is
called an application framework.

An application framework is intended for developing application software within
a given application domain.

F R A M E W O R K S 91

How frameworks
and patterns
relate

Zull-04.qxd 20/8/04 7:33 AM Page 91

It specifies the software architecture and the relevant domain-specific abstractions
in the form of a generic solution.

From the technical view, an application framework is normally structured into
several subframeworks.

Currently, technical frameworks intended to implement graphical user interfaces
or a persistence mechanism have been used most frequently. Application frameworks
are much more complex, because they have to define both an abstraction of a concrete
application domain and a suitable software architecture. For this reason, an application
framework is normally structured into several frameworks, each representing a separate
aspect of the application. This book describes general design and architectural princi-
ples for application frameworks within the T&M approach and by using the Java
JWAM framework as an example (see Section 8.16).

4.4.4 Black-Box and White-Box Frameworks

Frameworks are often divided into black-box and white-box frameworks on the basis
of their use.

A black-box framework is normally used when you build a complete application by
configuration rather than by additional programming. For this purpose, objects
are created from predefined classes, which are normally parameterized by spe-
cific configuration objects, so that you can adapt them to application-specific
requirements.

In contrast, white-box frameworks are designed so that you can derive subclasses
from specific classes. The objects of these subclasses can be used directly in
application systems or in other frameworks. They can also be used to configure
objects, which were also created by the classes of a framework.

This means that, when using a black-box framework to develop your application
system, you create objects from framework classes available especially for this purpose.
In many cases, you can use other objects to configure these objects. Such configuration
objects are also instantiated from classes of the same or another black-box framework.

Let’s use a simple example to see how this works. Assume that we use the interest cal-
culator shown in Figure 4.3. If a software developer wants to create a savings account
based on decursive interest, then he could use the account and interest calcu-
lator frameworks. First, he would instantiate an object from the SavingsBook class;
then he would pass an object from the class DecursiveInterestCalculator to
the former object. This means that our developer sets the interest calculator used for
SavingsBook to decursive interest earning. Calling calculateInterest of
SavingsBook would call the operation calculate when the program reaches the
DecursiveInterestCalculator interest strategy.

Although you don’t need to know the internals to use black-box frameworks,
white-box frameworks can only be used when you know the internal structure of a
framework, in particular, the interaction of the objects modeled in their respective
classes. White-box frameworks are normally used to develop applications so that
specific classes of the framework are specialized in subclasses that thus connect the
framework to the other classes of your application system.

92 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Using black-box
frameworks

Using white-box
frameworks

Zull-04.qxd 20/8/04 7:33 AM Page 92

Objects created from the subclasses of a white-box framework can be used in two
different ways:

1. You can use the objects created directly in your application system. For exam-
ple, the account framework could be designed so that it implements the
account class and the abstract interaction with the objects of the
interestCalculator class. The concrete subclasses of account would
not be included in the framework, so that you would have to build them by
subclassing. A subclass would then inherit the interaction with the
interestCalculator from the framework, so that the subclass doesn’t
have to implement this interaction itself.

2. You can use the objects of your subclasses for configuration purposes. For example,
the framework could supply concrete account classes (checkingAccount,
savingsAccount, etc.), but no interest-producing strategies. In a real-world
application system, you would have to build a suitable subclass from the
abstract class interestCalculator, where the objects of this subclass
would then be used to configure specific account objects.

We can see in these examples that black-box frameworks are easy to understand and
use, while white-box frameworks are somewhat more complex but more flexible.
Experience from real-world projects has shown that black-box frameworks often evolve
from white-box frameworks by successively adding standard solutions. This means that
software developers do not use frameworks only to build application systems, but also
as a basis for developing other more specialized frameworks.

F R A M E W O R K S 93

Comparing
black-box and
white-box
frameworks

account framework

anInterestRateStrategy

interest calculator
framework

calculate(Amount, Term)

InterestCalculator

calculate(Amount, Term)

AdvanceInterestCalculator

calculate(Amount, Term)

DecursiveInterestCalculatorLoanAccount
Savings
Book

Current
Account

Account

setlnterestStrategy
 (InterestCalculator)

calculateInterest(Term)

...
_Interest =
anInterestRateStrategy.calculate(Amount, Term)
...

FIGURE 4.3 Example showing an interest rate calculator.

Zull-04.qxd 20/8/04 7:33 AM Page 93

Note that there is no rigid separation between black-box and white-box frame-
works. In fact, frameworks are normally grouped depending on the way they are used
in a software project. Though frameworks designed for white-box use are mainly used
as such, they can also contain standard solutions similar to black-box frameworks. In
turn, most black-box frameworks can also be used as white-box frameworks.

4.4.5 Connectors between Frameworks

We know from Section 4.3.5 that design patterns can be used to describe complex
interactions between elements. For example, design patterns can describe responsibil-
ities and the cooperation of a number of classes that solve a specific design problem. If
the classes of a design pattern are distributed over several frameworks that we want to
connect, then this design pattern describes the protocol we should use to allow inter-
action between these frameworks.

Framework Connectors: Interacting frameworks can be coupled or connected by
simply calling the interface of a corresponding framework class. But often the
interaction between frameworks is more complex, so that it should be described
on the interface level by a design pattern. We call these design patterns frame-
work connectors.

To give an example of framework coupling, let’s have another look at our account and
interestCalculator frameworks (see Figure 4.4). The interestCalculator
is a black-box framework, and used to build the account framework. The
interestCalculator classes can be used as strategies in the account classes. To
simplify the example, we will create the strategy objects that we need in the concrete
account classes. Now, if you look at the strategy pattern as our connector, you can see
which classes of the account and interestCalculator frameworks have what
responsibilities within the strategy pattern. The account class is responsible for the
context, while the interestCalculator class is responsible for the strategy.

Note that the construction in the figure does not define the specific interest-
producing strategy from the interestCalculator framework that will be used to
implement an account class within the account framework. This information has
no impact on the architecture; it merely represents domain-specific details, which can
be used later when we build the concrete account class.

94 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

FIGURE 4.4
A strategy

pattern
connecting two

black-box
frameworks. Strategy

InterestCalculator
as
Strategy

Account
as
Context

interest calculator
framework

account
framework

Zull-04.qxd 20/8/04 7:33 AM Page 94

4.4.6 JWAM Framework: Layered Framework Architecture

Application frameworks are normally very complex. To facilitate handling and using
them in software projects, such frameworks are often organized in layers. Section 9.3.5
will describe layered architectures in detail.

In large-scale software systems and frameworks, a layered architecture assumes
the role of a corporate organization chart, that is, it maps units with specific responsibil-
ities and regulated communication between these units for the domain-specific tasks.

A layer organizes the software-specific components in a design and construction
unit, based on domain-specific and software-specific motivations. The layers of an
architecture are organized in a hierarchy. We use class libraries and frameworks as the
components of a layer. In this sense, frameworks could also contain other frameworks.

To support software developed by the T&M approach, we built a generic application
framework in Java called JWAM. This framework is generic, that is, it is not tailored to a
specific application domain, but it has the basic features required to build interactive
application systems. Figure 4.5 shows the layered architecture of the JWAM framework.

In the example shown in Figure 4.5, each layer contains frameworks for specific
purposes.

● The domain-specific application layer is not part of JWAM. It is developed within
an application project and includes frameworks and class libraries relating to
the respective application domain.

F R A M E W O R K S 95

FIGURE 4.5
The JWAM
framework
structure.

Database

GUI
connection

Domain container

Domain-specific
application

Work environment

Handling and
presentation

Forms

Registry

Desktop

Tool
construction

Material
construction

Message broker Technology
Host

encapsulation

Testing

Design by Contract

Language extensions

MOP

Domain values

Component model

The JWAM
example

Zull-04.qxd 20/8/04 7:33 AM Page 95

● The handling and presentation layer includes frameworks that implement the
reusable elements of interactive application software. For example, these
frameworks include those that implement the control flow within a tool based
on the observer pattern.

● The technology layer includes frameworks that encapsulate the technologies
used in the way we would like to use them at higher layers. Thus underlying
technologies can be exchanged more easily.

● The language extensions is actually not a layer. Java doesn’t support some
language elements that we would expect from a good object-oriented language.
For this reason, we have implemented these elements in the form of frameworks,
that all layers can access. This includes basic concepts such as domain values,
Meyer’s contract model, or a metaobject protocol.

Note that such layered architecture serves as an example; it does not have to be
identical for all projects. Other application frameworks, such as IBM’s San Francisco,
are based on different architectures. Depending on the specific layers used by an applica-
tion framework, the objective is always to keep the different dimensions of your
application software independent of one another. We will address the issue of these
dimensions of software construction in Section 6.9.

4 . 5 C O M P O N E N T S

This section begins with some background on components, and then defines the term
component. Next, we describe how components and frameworks relate, and finally we
look at components in the T&M example. The reader will thus understand that
combining components with frameworks provides the best solution for supporting the
construction of large software systems.

4.5.1 Background: Software Components

Software components have been desirable elements for many developers, especially IT
managers. This desire is based on the need to decompose software systems so that you
have ready-to-use components for many different application domains. The literature
speaks of software ICs.

The discussion on components has recently heated up over the idea of a booming
component market where IT managers would be able to buy low-cost turnkey subsystems.

The daring among the component advocates promise that this would mean a dra-
matic change in application software development in the near future. They argue that
trained users should select standard components, which they could then edit and adapt
in a graphical editor to build complete systems. We don’t think so.

Nevertheless, disregarding overly optimistic hopes and ideas, there are still a large
number of arguments that may make it worthwhile to take a closer look at components.
In addition, some commercial component products, for example, Microsoft’s Distributed
Component Object Model (DCOM) or Visual Basic Extension (VBX) (see Section
4.5.3), show that turnkey software components can indeed be useful. The introduction
of IBM’s Eclipse component model as an Open Source product has been another major
step towards making components a technically and commercially feasible solution.

96 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Zull-04.qxd 20/8/04 7:33 AM Page 96

4.5.2 Definition: Components

The literature uses a large number of different component concepts. For example, here
is a well-known definition proposed by Clemens Szyperski: “A software component is
a unit of composition with contractually specified interfaces and explicit context
dependencies only. A software component can be deployed independently and is sub-
ject to composition by third parties.” p. 34.

In contrast, the definition of components proposed by Oscar Nierstrasz and coau-
thors is more general, basically specifying a service that will be bound later, from the
client perspective, and which has plug-compatible interfaces. Although there is a wide
spectrum of different definitions of components, we can derive the following rough
classification:

Programming components: These components are available in the source text,
representing a technical or domain-specific solution, and they are suitable for
reuse in a similar context. They normally become (an undistinguishable) part of
the application program.

Implementation components: These components are normally available in binary
form. They are produced independently of one another and can be purchased
and integrated into the system at compiletime.

Runtime components: These components are available in binary form; they can be
purchased and used directly. They are normally added at runtime.

More recent discussions propose the following main characteristics of components:

● Components can be reused.
● Components have one or more explicit interfaces, which they use to offer

coherent domain-specific services.
● Over an explicit interface, components specify the services they need from

other components or from the environment that embeds them.
● Components hide their internal structure and their implementations.
● Various versions or variants of a component can be selected “late”, that is,

when the component is installed or loaded, or while the application system
executes.

Our approach is based on an application orientation, so our general definition of
components is as follows:

A component represents the software solution of a technical or domain-specific
problem.

For use in an application system, a component is equipped with a domain-spe-
cific interface. The component uses this interface to offer its services. When
components require other components, they have to declare this over defined
interfaces. Components can be interchangeably fitted into the interfaces of a
framework.

Depending on the time and the way in which they are integrated into the applica-
tion system, we distinguish between programming, implementation, and run-
time components. We see components as coarsely granulated units or modules
that can have several interfaces and classes.

C O M P O N E N T S 97

Zull-04.qxd 20/8/04 7:33 AM Page 97

4.5.3 Current Component Products

We have observed in a number of our real-world projects that components normally
come in two sizes, that is, either small or very big, such as visual components used to
display and select the date on a calendar sheet, or as a complete enterprise resource
planning (ERP) system, such as SAP R/3.

Many component models are based on the assumption of a booming component
market, but profitable markets seem to have opened up for just a few domains. Probably
the most successful component market is that of graphical user interface (GUI) elements,
where VBX (or OCX) of Microsoft or JavaBeans of Sun Microsystems have been among
the most successful products.

For these component kits we frequently find tailored development environments
allowing direct manipulation of components to build a composition graphically. For
example, the event outputs of one component can be graphically linked to the event
inputs of another component. Our experience has shown that this is useful only for very
small applications, even when prototyping, because developers can easily lose track of
the overall picture. This situation suggests that components should better be linked by
the use of well-written glue code.

Enterprise JavaBeans represents a component kit based on binary compatibility
but not especially designed for a general component market. The so-called EJBs are
primarily used to deploy large-scale software systems and for distribution over a net-
work. A system is structured into domain-related components without a graphical
representation (see also Section 8.14) or those parts implementing specific handling
and presentation. For handling and presentation, either JavaServlets, Java Server
Pages, or Swing, are used, depending on the technology used.

IBM’s Eclipse component model was originally designed as the basis for the Eclipse
Java IDE, a flexible programming environment with plug-in technology. Since IBM
decided to publish Eclipse as an Open Source product, the underlying component model
was freely accessible and soon became a basis for many new components and plug-ins,
mainly in the area of design and development tools. As the Eclipse component model is
small and well designed, and as it can be used completely independently of the Eclipse
IDE, we expect it to become quasi-standard for components and plug-ins.

In summary, we see a relevant trend for the use of components as design and
construction units to build large-scale distributed systems. In addition, there is a well-
established market for generic GUI components, and an emerging market for develop-
ment tools and IDE plug-ins. It currently does not seem that there will be a significant
market for domain-specific application components.

4.5.4 Components and Frameworks

Component and framework approaches appear to pursue the same goals, at least at first
sight: extensive reusability and better structuring of application systems. From the
technical stance, these two approaches are different. When you use frameworks, you
have to write code. Predefined classes are used or inherited for individual application
software projects. When you use components, you work by the idea of composition
rather than writing code. Inheritance is not used at all, and the components are treated
as black boxes. The programming part is normally minimal, that is, just enough to
write the glue code required to link your components.

98 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Zull-04.qxd 20/8/04 7:33 AM Page 98

Frameworks could also tend to develop in this direction. On the other hand, com-
ponents used for complex distributed architectures, such as EJBs (Enterprise Java-
Beans), can also be thought of as a kind of white-box framework.

It seems, however, to be useful to distinguish between components and frame-
works. According to our understanding, frameworks determine the overall architecture
of an application, supplying the important abstract concepts of that architecture. In
contrast, components encapsulate additional solutions for specific technical or
domain-related purposes for the application developer to select.

We think that the component and framework technologies can complement each
other well. You can use one framework as the interacting platform for a family of compo-
nents, where the individual components can build on a uniform technical infrastructure
of the programming language and the component model used. This includes the basic
concepts and abstractions of the framework. This also means that you can define domain
interfaces on a higher level than the ones typically defined with JavaBeans. The Eclipse
platform works this way, and the components of the JWAM framework for the T&M
Approach use this concept as well. For example, a component in the JWAM framework
can rely on the existence of the concepts tool and material.

4 . 6 R E F E R E N C E S

C. Alexander: The Timeless Way of Building. New York: Oxford University Press, 1979.

C. Alexander, S. Ishikawa, M. Silverstein: A Pattern Language. New York: Oxford University
Press, 1977.

Two classic works by C. Alexander about the use of patterns in architecture that have trig-
gered the discussion of design patterns.

K. Beck, R. Johnson: “Patterns Generate Architectures.” ECOOP’94, Lecture Notes on
Computer Science 821, Conference Proceedings. Berlin, Heidelberg: Springer-Verlag, 1994,
pp. 139–149.

An important contribution on patterns and frameworks.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-Oriented Software
Architecture: A System of Patterns. Chichester, N.Y.: Wiley & Sons, 1996.

A well-known book on patterns.

Communications of the ACM. Special Issue on Agents. July 1994, Vol. 37, No. 7.

This issue describes different conceptual patterns such as agent and medium.

J. Coplien: Advanced C��: Programming Styles and Idioms. Reading, Mass.: Addison-Wesley,
1992.

Programming patterns in C��.

J. Coplien, D. C. Schmidt (eds): Pattern Languages of Program Design. Reading, Mass.: Addison-
Wesley, 1995.

The first known collection of pattern languages.

M. Fowler: Analysis Patterns: Reusable Object Models. Reading, Mass.: Addison-Wesley, 1997.

A well-known book about business patterns.

R E F E R E N C E S 99

Zull-04.qxd 20/8/04 7:34 AM Page 99

M. Fowler: Patterns of Enterprise Application Architecture. Boston, Mass.: Addison-Wesley, 2003.

An important contribution to the literature for the software architects.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison-Wesley, 1995.

The key reference for this chapter.

C. A. R. Hoare: Notes on Data Structuring. In O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured
Programming, London: Academic Press, 1972.

R. E. Johnson, B. Foote: “Designing Reusable Classes.” The Journal of Object-Oriented
Programming, June/July 1988, Vol. 1, No. 2, pp. 22–35.

More on the subject of black-box and white-box frameworks.

T. Lewis (ed.): Object-Oriented Application Frameworks. Greenwich: Manning, 1995.

An important early work on frameworks.

B. Meyer: Object-Oriented Software Construction. Second Edition. New York, London: Prentice-
Hall, 1997.

The information about the contract model is particularly important.

Oscar Nierstrasz, Simon J. Gibbs, Dennis Tsichritzis: Component-Oriented Software
Development. Communications of the ACM, 1992, Vol. 35, No. 9, pp. 160–165.

W. Pree: Design Patterns for Object-Oriented Software Development. Reading, Mass.: Addison-
Wesley, 1995.

A presentation of patterns with a high degree of abstraction.

D. Riehle: “The Perfection of Informality: Tools, Templates, and Patterns.” Cutter IT Journal,
Joshya Kerievsky, September 2003, Vol. 16, No. 9, pp. 22–26.

This is a paper clarifying the difference between design patterns for human use and design
templates which can be used automated software construction and conformance checking.

D. Riehle: Framework Design. Dissertation, Swiss Federal Institute of Technology (ETH). Zurich,
No. 13509, 2000.

D. Riehle, H. Züllighoven: “A Pattern Language for Tool Construction and Integration Based
on the Tools and Materials Metaphor.” Chapter 2, pp. 9–42. In J. O. Coplien, D. C. Schmidt
(eds.): Pattern Languages of Program Design. Reading, Mass.: Addison-Wesley, 1995.

D. Riehle, H. Züllighoven: “Understanding and Using Patterns in Software Development.”
Theory and Practice of Object Systems, Vol. 2, No. 1, 1996, pp. 3–13.

Three of our contributions to the patterns and frameworks discussion.

M. Shaw, D. Garlan: Software Architecture: Perspectives on an Emerging Discipline. New York, London:
Prentice-Hall, 1996.

Primarily a book about software architectures, but important here because of the pipes and
filters pattern.

C. Szyperski: Component Software. Reading, Mass.: Addison-Wesley, 1998.

Fundamental book about software components.

100 P A T T E R N S , F R A M E W O R K S , A N D C O M P O N E N T S

Zull-04.qxd 20/8/04 7:34 AM Page 100

101

Application-Oriented
Software Development

5 .1 I N T R O D U C T I O N

In object-oriented software development, software as a technical product is often the
focus of the entire development work. We believe that this is not sufficient to ensure
the development of high-quality software. Therefore, we propose an application-
oriented approach. The main arguments are as follows:

● Object-oriented software development should always be a means to an end. For
application software this goal usually is supporting the customer-related
business processes and services of an organization or company.

● Application software should primarily be targeted at the usage quality of the
product. Usage quality covers those characteristics of software that are
important and can be assessed by actually using it in a work context.

● High usage quality can be achieved only through an application-oriented
evolutionary development process.

The reader will learn that in order to develop application software of high usage quality it
is necessary to focus on the tasks and concepts of the respective domain. Combining a
high level of usage quality with desirable technological characteristics like changeabil-
ity, re-usability, or understandability leads to the principle of structural similarity. In
the final sections of this chapter we explain that good software can only be developed
if we find the right ways and means to actively integrate the users and other domain
experts into the process.

5 . 2 A P P L I C AT I O N - O R I E N T E D S O F T W A R E

This book is about the development of interactive application software. The specific
ways and means we employ to develop this type of software in the T&M approach go

5

Motivation for
application-
orientation

Zull-05.qxd 26/8/04 11:31 AM Page 101

under the label of “application orientation.” We explain this concept starting with the
term application software.

5.2.1 Application Software
In our definition, application software is a purposeful means to support domain-
specific tasks in one or several application domains. For this purpose, existing or
new problem-solving strategies are implemented in software.

In other words, application software helps people to cope with their tasks in a
more effective, less strained, or more satisfying way.

Application software models a section of the real world, oriented to a usage concept.
This section of the real world can be specific (for a dedicated system) or generic (for stan-
dard software).

Application software serves to control technical processes or support work processes.
When designing application software, it is important to ensure both the appropriate
domain logic and easy manipulation and presentation for the user.

The implementation of application software requires a system base, normally
consisting of hardware and the underlying system software.

Regarding application software, we usually take the following prerequisites
as given:

● Application software development is professional team work.
● The software product and its development process are closely related.

5.2.2 Definition: Application Orientation

Application orientation, to us, is a specific way of looking at software development. We
see it as the required connecting piece between customer orientation as a corporate
strategy and object-oriented software development as a construction technique.

Within a software development process, application orientation is aimed at the
following software characteristics:

● The functionality of a software system is oriented to the tasks involved in
the application domain.

● The manipulation of a software system is user-friendly.
● The processes and interactions defined within a software system can be

easily adapted to the actual requirements of a working context.

Though these characteristics may seem trivial at first sight, we will discuss some
particularities to show their importance.

One elementary requirement is that application software has to have the specified
functionality. However, we define this functionality1 primarily according to the tasks to
be completed within an application domain rather than to a specific workflow.

102 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

What is
application
software?

Application
orientation and

tasks

1. The functionality is not part of the tasks but is oriented toward the tasks (rather than to a specific workflow).

Zull-05.qxd 26/8/04 11:31 AM Page 102

To better understand this idea, we first give a brief definition of tasks.

A task is handled or addressed by a qualified person within an application
domain. A task forms a meaningful and targeted unit of work, which can nor-
mally be named. A person will choose the adequate activities or steps to
complete a task. This sequence of activities or work steps may change according
to the specific situation at hand, so there may be different ways to arrive at the
result of a task.

The handling and presentation of an application system should not be based solely
on general ergonomic principles. Every application system needs a comprehensive
usage model. This usage model should reflect the working experiences and domain
concepts of its users. In this connection, we must think carefully of the objects and
work processes that form the basis for manipulating our future application system.

In summary, application orientation means that the wishes and requirements of
our customers should be optimally met. To achieve this goal, we have to offer fitting
software support, where we must decide which processes in the system should be pre-
defined and where the user should be able to work in a more flexible way, depending
on the specific working context.

5.2.3 Background: Application Orientation

Application software has traditionally (and successfully) automated human routine
work. Human work has been replaced or reduced to a few necessary input activities
by software. Good examples can be found in the banking industry, where programs
are used to transfer money or calculate account fees. These programs show little
application-specific characteristics or usage quality. In fact, they have traditionally
been oriented to pure data-processing or number-crunching tasks. A closer look at
their user interfaces reveals their typical mainframe-oriented combination of menus
and screens, or what could be called “data windows.”

This situation changed dramatically when graphic applications on workstations
and personal computers were introduced. The focus shifted from automating human
routine work to supporting daily jobs. This shift came about naturally, because the first
graphic user interfaces (GUIs) for office applications were intentionally built around
the desktop metaphor (see Section 3.5.12). Graphic user interfaces represented an
important step towards improving the usage quality of application software. Suddenly,
software design became visible and “touchable.” Daily working activities were simu-
lated on computers. Users could use several tools to work on different objects to com-
plete their tasks. They could put things aside and continue using them later, just as in
the real world.

This also had implications for software developers. They obviously had to deal
more intensively with the issue of which tasks people have to handle as part of their
work, in particular what objects they use to complete these tasks. This means that
application orientation became an important requirement in software development.
We define application orientation in the form of a leading metaphor and design
metaphors (see Section 3.3).

A P P L I C A T I O N - O R I E N T E D S O F T W A R E 103

Usage model

Human routine
work

Support of daily
work

Zull-05.qxd 26/8/04 11:31 AM Page 103

5.2.4 Usage Quality

Another result of developing tools and materials on an electronic desktop was that it
was no longer necessary to specify routines to automate tasks in software. Instead, users
can themselves determine when and with which tool they want to process an object.
This removed a major problem in software development, that is, writing algorithms for
complex and situation-specific work processes. On the other hand, if software compo-
nents are to be used for different work situations, then their usage quality becomes a
critical quality characteristic.

Usage quality is important for the use of interactive application software. In
simple terms, usage quality is what you see and realize when you are working
with a piece of software to do your work. Thus, usage quality is determined by
the users and other parties involved, based on external quality characteristics in
real-world use. According to international standards, the evaluated characteristics
are suitability, transparency, controllability, fault tolerance, self-description,
conformity with expectations, and fault robustness.

5.2.5 T&M Design: Structural Similarity

The main idea behind the T&M approach is to take relevant objects and concepts
from the application domain and use them as a basis for the development of the
software-specific models (see Section 6.8). However, the result should be more than an
application-oriented system from the user’s perspective. We also require a close corre-
spondence between the concepts and the terms of a domain (now often called “ontology”)
and the software architecture.

Within the T&M approach, structural similarity refers to the relationship
between the software and the application domain. The technical components of
a software system should model the relevant concepts and objects of the appli-
cation domain. Thus, the architecture of the application system should reflect
the most important relationships between the concepts and objects of the
application domain.

This structural similarity offers two main benefits. First, the application system
represents the objects of its users’ work in familiar terms, so that they can organize their
work in familiar ways. Second, the developers can relate software components and
application concepts, and identify mutual dependencies when they have to implement
domain-specific and software-specific changes.

Structural similarity has been a primary object-oriented design principle for years.
In the 1970s, Alan Kay coined the phrase “computing is simulation.” But this principle
was mainly used for modeling an object-oriented system “in the small.” So we would
expect to find domain concepts like account or bill or truck as classes of an application
system. In this book we show how to apply structural similarity to the architecture of
large interactive and distributed system (see Chapter 9).

104 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

Benefits of
structural
similarity

Zull-05.qxd 26/8/04 11:31 AM Page 104

5 . 3 T H E D E V E L O P M E N T P R O C E S S

If application orientation, usage quality, and structural similarity are important char-
acteristics of application software, then this also influences the software development
process itself. With the Unified Process becoming quasi-standard, iterative strategies
are accepted as state-of-the-art in software development. We interpret iterative strat-
egies in an application-oriented way. This means that we propose to add techniques and
document types to the process in order to establish close feedback cycles between the
developers and the domain experts.

5.3.1 Definition: Software Development

We begin with a definition:

The term software development describes all activities that lead to a software
system that is being used. We distinguish these activities as follows:

● Product-oriented activities, such as analysis, design, and programming,
and their results, as in the form of defining documents directly used in
the product.

● Process-oriented activities, which support product-oriented activities
and include cooperation and coordination during a project as well as
product management and quality assurance.

Note that the identification of requirements is already stamped by these charac-
teristics, because our context is the daily work situation:

For developers, application orientation means that they have to understand the
tasks involved in each of the workplaces in an application domain.

To be able to identify and understand the domain-specific tasks, developers ana-
lyze how objects are handled within the current work processes at workplaces.

Modeling is aimed at reconstructing the domain-specific language of the users,
that is, both the models and the software system express the relevant terms and
concepts of the application domain.

5.3.2 The Application-Oriented Development Process

A new application system normally has a major impact on the work environment and
the tasks involved, and the use context often changes within a project, so that it is neces-
sary to ensure that both the product and the development process are application-
oriented.

An application-oriented development process is characterized by the following
characteristics:

● Increased involvement of the users over the entire project.
● Continuous feedback about the results in easily understandable documents and

prototypes.
● Reorientation of the developers away from a technical construction view at the

computer to interaction with the users and other participating groups.

T H E D E V E L O P M E N T P R O C E S S 105

Characteristics of
an application-
oriented
development
process

Zull-05.qxd 26/8/04 11:31 AM Page 105

To ensure that our development process is application-oriented, we have to elabo-
rate a set of prerequisites, which will be explored further in the course of this book:

● On the one hand, an evolutionary process should be flexible to allow all
participants to participate actively in the project. This means that the process
should be such that it can be adapted to changing situations. On the other
hand, we want to ensure that our project can be controlled and planned (see
Section 12.5).

● Application-oriented analysis and development documents are the
prerequisites for the active cooperation of all participants (see Chapter 13).

● The developers should be able to implement the structural similarity between
domain-specific and technical models (see Chapters 7 to 9).

5.3.3 Discussion: The Development Process

We normally expect the objectivity and independence of specific persons in our develop-
ment processes, based on two questionable assumptions. The first assumption is that
application software has to represent a solution to a given problem, as when solving a
mathematical problem. Section 12.2.2 discusses the basic issues of this assumption, and
Section 12.2.4 relates it to development strategies.

The second assumption is linked to the first one. It assumes that software, on the
basis of unambiguous descriptions, can be constructed based on a division of labor and in
a temporal sequence similar to assembly belts. Section 12.2.1 discusses this assumption.

Let’s look at these assumptions from the standpoint of our notion that software
development is first and foremost a communication and learning process between the par-
ticipants. We said that this is the only way for developers, who are normally not experts
in the application domain, to acquire the domain-specific knowledge required to
develop an application system with high usage quality. However, the future system is
not a “unique solution” to a well-defined problem. All groups involved have to discuss
and agree on both the future tasks and the support the system under development
should provide. Some aspects of this process can be specified in documents, so that
these documents can be understood and used by other people. On the other hand, the
essential experiences, views, and values that come with every development project
cannot be described in these documents.

The application-oriented development process we suggest cannot be handled in
ad-hoc ideas and procedures. It does not means just “muddling through” such that all
parties just talk to each other. In fact, the T&M development process is “document-
driven,” that is, the elaboration of application-oriented documents is one of its major
requirements. This orientation corresponds to what is known as “use case driven” in
UP, where business use cases describe the work processes and tasks, while use cases
specify the functional requirements of the system under development, based on UML
documents. In the T&M approach, we add more application-oriented document types.

A suitable choice of documents (see Section 5.3.11) should ensure that the most
important domain-specific and technical issues are included and dealt with.

Application-oriented and technical document types in connection with a leading
metaphor and matching design metaphors provide developers with the necessary basis
for working towards their ambitious goal: high usage quality. Whether or not this goal
can be achieved depends on the adequate realization of the underlying concepts.

106 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

Prerequisites for
an evolutionary

development
process

Software
development

should be
objective and

independent of
people

Software
development is a
communication

and learning
process

Document-driven
development

process

Zull-05.qxd 26/8/04 11:31 AM Page 106

5.3.4 The Author-Critic Cycle

In our view, it is essential to give the developers a guideline for their design of the
development process. The fundamental principle is to think of software development
as a communication and learning process. This principle has to be encouraged by con-
tinuous feedback between the participating groups. We ensure and structure this feed-
back in so-called author-critic cycles.

The author-critic cycle means that all documents and operative software versions are
included in an evolutionary process between all participating groups. Alternating
between analyzing, modeling, and evaluating work, the participants exchange
feedback on the results and goals within their software development process. This
is based on the rule that the authors of a result should never be their own critics.

By analyzing the tasks within a specific application domain, the developers gain
initial access to the application concepts and the objects and processes involved. This
understanding is represented as domain-specific and technical models in the form of
documents and prototypes. Evaluating the modeled aspects means that the critics
become involved. Critics are primarily the users of the system under development, but
also technical experts, such as IT organizers or network administrators, who are con-
tributing to the development process from their specialized disciplines.

The author-critic cycle is not about sequentially working on milestone documents
in a fixed order. It is the continuous exchange of feedback between all participating
groups, as illustrated in Figure 5.1. This obviously conflicts with the classic waterfall or
phase models (see Section 12.1), but we think it is a fundamental prerequisite to
ensure successful handling of an application-oriented software project.

5.3.5 Discussion: The Author-Critic Cycle

To better understand our approach, it is important to realize that the problems identi-
fied in the feedback process determine the subsequent activities and the selection of
documents to be edited. For this reason, the author-critic cycle is not based on a
defined and rigid sequence of documents and phases. In the ideal case, you can edit any
document at any given point in time. Naturally, all activities within a specific project

T H E D E V E L O P M E N T P R O C E S S 107

FIGURE 5.1
Schematic
presentation of
the author-critic
cycle.

Analyzing

Modeling

Evaluating

Vision
Glossary

Scenario

Design

Class

Library

Prototype

Zull-05.qxd 26/8/04 11:31 AM Page 107

have to be planned and controlled; they cannot be subject to ad-hoc ideas. However,
it should be clearly understood that the process itself is basically determined by
application-oriented issues rather than by software-specific mechanisms.

Let’s see this principle in the context of our EMS example. Assume that our devel-
oper team interviews the person in charge for equipment management at their work-
place (analysis). The results from this interview are documented in scenarios, glossary
entries, and in a business use case diagram (modeling). These documents are then
reviewed and commented on by the interview partner and developers (evaluation).
These comments encourage the developers to further familiarize themselves with the
task on hand, that is, device procurement, and to conduct additional interviews if
deemed necessary. Next, they will write system visions and create use case diagrams
and an initial presentation prototype. This presentation prototype is then evaluated by
the device manager and the developers in a workshop. Finally, the workshop partici-
pants agree that they overlooked the necessity of moving staff to different rooms. They
arrange for a meeting with the corporate management and follow up on whatever steps
may be involved. This is how the author-critic cycle evolves.

5.3.6 Evolutionary System Development

The view of a software development process described here fits well with the leading
metaphors and design metaphors described earlier (see Chapter 3). The discussion in
Section 3.3 about the roles in a software project showed that developers are not spe-
cialists in every conceivable domain. They are the partners of future system users. This
means that application orientation involves both a new construction method and a
matching development strategy. This is based on the general principle of evolutionary
system development.

Evolutionary system development is aware of the evolutionary character of software.
Software is subject to frequent changes, so that evolutionary system development
deals with such changes in a meaningful way.

● Mutual learning between developers and users is introduced.
● Changes in the domain-specific and technical contexts are taken into

account systematically.
● The actual use of the system under development will lead to new

requirements, in turn triggering additional development cycles.

5.3.7 Documentation in Software Development

Although “documentation” is probably one of the most frequently used catchwords in
software development, software engineers do not always agree about the meaning of
documentation and how it is best used when designing software. We define documenta-
tion as follows.

Documentation denotes the process that includes the activities required to
create and modify documents (e.g., “I have to finish this specification”).
Documentation denotes the product that represents a set of documents for a
specific purpose at a specific time (e.g., “These are the documents we should
use for review.”)

108 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

The EMS
example

Zull-05.qxd 26/8/04 11:31 AM Page 108

A document is a record representing a fact. A document can include text and
other elements. In software development, documents are used to represent the dynamics
and statics of the software system under development. Additionally, there exist
metalevel documents (i.e., documents about documentation).

5.3.8 Discussion: Documentation

The only point on which IT experts agree when it comes to documentation is that it
is important, but problematic. Those involved in designing and implementing a soft-
ware product normally consider documentation a nuisance. For developers in their role
as potential authors, documentation is an additional cumbersome task that seems to
keep them from their actual development work. Users, on the other hand, when work-
ing with prototypes and application systems, become frustrated when they find that
there is not enough documentation available.

Traditional milestone documents based on fixed schedules have proven to be too
inflexible in software development. Documentation should no longer be an end in
itself. Strategies like eXtreme programming (XP) show that so-called lightweight or
agile development processes for very flexible application systems manage with a mini-
mum of conventional documentation. However, software cannot be developed profes-
sionally unless there is specific and systematic documentation.

Writing documentation while a project progresses is time-consuming and some-
times beyond the point of justification. When subsystems are already documented but
then are not accepted by the users, we think we have wasted time in documentation.

Documentation that is developed during the course of your software project tends
to be very complex. Therefore, it is difficult to see whether or not all models have been
fully and consistently described so that they can be understood at the end of the
project. Many developers tend to misinterpret this point. The consequence is that
important development decisions and results cannot be reconstructed and thus
documented at the end of a project.

5.3.9 Application-Oriented Development Documents

So far in this chapter, we have emphasized the importance of application orientation
for our approach. This section transfers this concept to the documents used in our
development process.

Application-oriented development documents are common objects of work for
developers and users. The representations, concepts, and notions used are ori-
ented to the domain language. Application-oriented development documents
model the domain tasks, objects, and concepts in a way that all participating
groups can easily understand. They are created, evaluated, and edited in the
course of author-critic cycles.

Elaborating documents is an effort primarily focused on the underlying com-
munication and learning processes. To achieve this goal, our documents have to rep-
resent the domain, the application system, and the development process in an
adequate form.

T H E D E V E L O P M E N T P R O C E S S 109

Documentation
problems

Zull-05.qxd 26/8/04 11:31 AM Page 109

All application-oriented development documents have to be written in the special
language of the application domain. This rule distinguishes application-oriented devel-
opment documents from the other technical documents involved in the development
process. When using UML, this means that only a few documents or diagrams defined
in UML (e.g., business use cases, use cases, and diagrams) are suitable for cooperation
between users and developers (see Chapter 13, which is dedicated to T&M document
types). Note that the respective documents in themselves do not represent any value,
but rather form the basis for our communication and learning processes.

To ensure the systematic use of our documents in the course of a project, it is impor-
tant to classify and describe them as document types, in the sense of the UML standard.
However, while UML concentrates strongly on diagrams, we normally add standardized
text to these diagrams. For this reason, we define document types as follows.

A document type defines a set of similar documents in the object-oriented sense,
that is, the description of a document type specifies how the instances of such a
type behave. As with every type definition, the internal structure of these docu-
ments is not important, but their possible and meaningful forms of behavior is.
Descriptions of document structures are meant as examples.

5.3.10 Discussion: Application-Oriented Document Types

When we say that all relevant development documents should be common objects for
developers and users, we encounter another problem, in addition to the general problems
relating to documentation already mentioned.

Let’s first see what we mean by one of the important aspects of application orienta-
tion: establishing a common project culture. What does this mean? It means primarily that
the participating groups speak a common language. If we achieve this goal, then the
developers will understand the tasks and problems involved in the application domain,
and the users will understand how the system under development will support their work.

Unfortunately, this project culture doesn’t come about on its own. We have to
work to establish it, based on the communication and learning processes discussed
above. The ideal learning goals could be formulated like this: The developers of a soft-
ware component know the tasks and activities involved in the application domain to
the point that they can estimate and discuss the domain-specific implications of each
of their technical design decisions. The users have a sufficiently precise picture of the
possibilities offered by the software system under development, so that they can articu-
late their domain-specific requirements.

To work towards this ideal situation, we use different application-oriented devel-
opment documents. These documents become the basis for our common work, that is,
they are created, evaluated, and revised within the author-critic cycles.

It should be understood that application-oriented documents were not invented to
keep ourselves busy. In fact, it is serious work aimed at eventually creating an applica-
tion system with maximum usage quality and optimum utilization of all human and
material resources available. To achieve this goal, our documentation has to represent
the different aspects of software development. In our approach, these are the product-
specific and the process-specific aspects. We further divide the product-specific aspects
into modeling of the existing application domain and the future software system.

110 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

Documents
written in special

language of the
domain

Common project
culture

Application-
oriented

development
documents

Zull-05.qxd 26/8/04 11:31 AM Page 110

All documents existing for an application system are created with respect to con-
structive quality assurance. This means that we have to consider quality assurance
when writing and revising them in the author-critic cycle. How the appropriate level
of quality can be reached via so-called base lines and thereby becomes part of project
planning is described in Section 12.8.3. This kind of constructive quality assurance is
very important for ISO9000 certification as well.

For the actual implementation of software, eXtreme programming has become an
issue of hot discussions. We have used this approach in several software projects with
good results and will explain it in Section 12.3, which discusses development strategies
and quality assurance.

5.3.11 T&M Design: Application-Oriented Document Types

This section gives a brief overview of the characteristic document types used in the
T&M approach (see Figure 5.2). We will introduce only the important application-
oriented document types. Chapter 13 is dedicated to document types, including a
detailed discussion of UML within the T&M approach.

Development documents represent the application system during its entire life cycle.
This means that these documents have to be seen on a different level than user documents
(e.g., user manuals or help documentation), which will not be described in this book.

Historically, scenarios, glossary entries, and system visions have been the core of
application-oriented document types in the T&M approach. We will briefly describe

T H E D E V E L O P M E N T P R O C E S S 111

Constructive
quality assurance

FIGURE 5.2
Documents in
the development
process.

Scenarios

Glossaries

System
Visions

Prototypes
Cooperation

Pictures

Purpose
Tables

Concept
Model

Influencing
factors

leitmotif

domain knowledge

user groups

pilot
organizations

Project
documentations

protocols

project
contract

identified
requirements

project stages

base lines

documentation
guidelines

design
guidelines

programming
guidelines

design
patterns

Metadocuments

Development
Documents

Zull-05.qxd 26/8/04 11:31 AM Page 111

these fundamental concepts:

● Scenarios describe the current work situation. They focus on the tasks involved
in the application domain and the way these tasks are completed. Scenarios
can be compared with the business use cases of UP.

● A glossary defines and reconstructs the relevant concepts and terms of the
domain language. Though the use of glossaries plays an important role in UML
and UP, they are not “official” UML documents.

● System visions are at the transition between the analysis of the application
domain and the construction of the future system. Based on scenarios, system
visions anticipate the different characteristics of the future application system.
This means that system visions roughly correspond to use cases in UML. They
are specialized according to our application-oriented view.

Using the T&M design in a wide range of different domains, we have seen that addi-
tional application-oriented document types were required. For the analysis and model-
ling of cooperative tasks, we found that we didn’t have appropriate representations on
hand. Cooperation pictures and purpose tables have proven to be important additions
to our choice of application-oriented document types. They represent a graphical and
textual model of the cooperation between workplaces or roles, showing more clearly
the kinds of objects and information that should be exchanged and for what purpose.
This means that they reach further than UML use case diagrams and are much more
application-oriented than most diagrams, such as collaboration diagrams. Chapter 13
describes cooperation pictures and purpose tables in detail.

Development documents can be classified or grouped in different ways. For
example, we have document types (e.g., scenarios, cooperation pictures, purpose tables,
and glossaries) that basically describe the actual state of an application domain.
Sections 5.3.12 and Chapter 13 will show the importance of these documents. In con-
trast, there are other document types (e.g., system visions, software designs, and vari-
ous technical documents) that describe the different (future) development stages of an
application system, from the initial design to the final installation.

In contrast, the difference between the statics and dynamics is of rather theoretical
interest in connection with our models. Similarly to how we document the dynamic
properties of an object-oriented program at runtime and the static structure of the pro-
gram sources, for example, by interaction and class diagrams, we also concentrate on
either of the two aspects in our document types. It shows that we have a much larger
choice of application-oriented development documents to describe the dynamics (e.g.,
scenarios, system visions, purpose tables) than to describe the statics (e.g., glossary,
some forms of cooperation pictures), although these aspects are more balanced for
technical development documents.

An important approach is to divide documents by their ranking within the commu-
nication process. From this vantage point, it initially appears that application-oriented
document types (e.g., scenarios, glossary, cooperation pictures, and prototypes) are
more important that those document types that primarily address the developers, like
class diagrams and framework architectures. On the other hand, structural similarity
implies that technical document types become more important. In fact, the main part
of this book describes the principles and constructions of these technical models.

112 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

Classification of
document types

The basic T&M
document types

Zull-05.qxd 26/8/04 11:31 AM Page 112

In line with the increasing importance of the support of cooperative work, we see a
growing need for such document types, which are suitable particularly for software
development work in this area. We will discuss the documents relating especially to the
support of cooperative work in Sections 13.6 to 13.8.

5.3.12 Discussion: T&M Document Types

The document types we have proposed and the related evolutionary strategy should be
thought of as integral parts of the T&M approach. For this reason, it doesn’t make
sense to see them as individual document types that can be arbitrarily selected and used
in isolation. On the other hand, we are not trying to say that they should be used exclu-
sively in this approach. It means that you should carefully adapt and handle them if you
intend to use them in a different context.

Many of the document types we introduce in this book are described in the litera-
ture in similar forms but with different names. For example, “scenario” is often used
for completely different document types. We will not discuss this issue at length, but
rather comment where necessary to ensure better understanding. Note that the docu-
ment types we propose are not based on doing everything in a new and different way.
As software engineers, we don’t want to “reinvent the wheel,” but rather rely on
proven technical tools, such as UML diagrams. What’s important to understand are the
new accents or flavors that application-oriented document types add to proven nota-
tions or diagrams. Thus we want to encourage a “rethinking” process.

At this point, a word of caution must be noted. Those who are familiar with
traditional document types, or so-called milestone documents, will tend to transfer the
document types described in this book to their familiar background, only to find out
that nothing “really” new is proposed here. Such an attempt risks maintaining the
traditional way of analyzing, designing, and documenting a software system. This risk
is not trivial. For example, it could mean overlooking that a method exists only within
the tension between given techniques and tools, a view and a concrete usage context.
In this respect, we strongly distinguish the application-oriented document types intro-
duced here from conventional documents. Application-oriented document types were
developed during several concrete projects and in line with the application-oriented
perspective presented in this book. We often observed in real-world projects that most
developers found it a little hard to get used to our document types, but that they found
them very helpful as they went along in the project.

5.3.13 Project Documents

The processes within a project have to be documented, just as the software under
development, to ensure that it can be planned, controlled, and evaluated. This issue
has been dealt with in the object-oriented literature only recently, while much work is
oriented to traditional project management concepts. For this reason, we dedicated an
entire section to project management (see Section 12.5). Here, we simply give an
overview of the document types relevant in this respect.

A project or a subproject should be explicitly initiated. This means that it
should always be based on a project contract, even for in-house development projects.

T H E D E V E L O P M E N T P R O C E S S 113

Project contract

T&M documents
are not like
milestone
documents

Zull-05.qxd 26/8/04 11:31 AM Page 113

This contract regulates the project details and responsibilities. The project should
clearly state the entities who are responsible for resources, staff, design decisions, and
acceptance of the system.

A project contract should document the system to be developed, the entities who
develop it, and what resources will be used to develop it. In this respect, the principles
of evolutionary system development require a formulation of the contract as a letter of
intent rather than as a complete project specification. In the center is the goal and the
vision rather than a detailed description of the properties of a system and how it will
be implemented.

A document type called identified requirements describes the concepts, properties,
and requests relating to the system under development as they result in the course of
the project. The identified requirements represent something similar to a diary about
the results of discussions relating to the system characteristics. System characteristics
can include both domain-specific and software-specific aspects. In contrast to the pro-
ject contract, the identified requirements are continually updated to reflect the history
of system requirements as they change.

For daily work within a project, the actual project control documents are important.
They describe the so-called base lines and project stages. For a microplan of the con-
struction process, the story cards from eXtreme programming have proven to be useful.
Section 12.8 will describe different methods for project control based on temporal and
qualitative guidelines.

5.3.14 Documentation Guidelines

No project will automatically produce documents in a uniform and ordered way. What
we need are instructions describing the documentation process and a common under-
standing of all document types used. The document types that hold these descriptions
are called metadocument types. All metadocument types obey the following rule: the
shorter and more practical they are written, the better. This means that it is intuitive
to always have only the most current version of such a document type out in use. It also
means that it is not sufficient to use UML descriptions as your only documentation
guideline for a project.

Documentation guidelines describe different documentation types. This refers to the
outer form, the structure, and the contents. In addition, there are regulations and com-
ments about the documentation process itself, notes about how these document types
should be created. You may think of Chapter 13 as a general example for documenta-
tion guidelines.

Another important element in many conventional projects are design guidelines for
the design of interactive systems and their use interfaces, such as common user access
(CUA) guidelines of IBM. We have observed in our real-world projects that design
guidelines can be formulated briefly and easily, if a guiding metaphor, including its
design metaphors, is part of the development culture of an organization. It will then
become clear that design guidelines represent more than the user interface layout; they
also include fundamental ergonomic aspects of interactive software systems. In the pro-
fessional development of interactive systems, this issue, which will not be further dealt
with in this book, has at least been recognized, though most companies do not have a
qualified staff necessary to support it.

114 A P P L I C A T I O N - O R I E N T E D S O F T W A R E D E V E L O P M E N T

Identified
requirements

Project control
documents

Documentation
guidelines

Design
guidelines

Zull-05.qxd 26/8/04 11:31 AM Page 114

Another important element are programming guidelines. No major software project
would work over the long run without programming guidelines. This book focuses on
design patterns (see Section 4.3.5), so programming guidelines will not be discussed
further here.

5 . 4 R E F E R E N C E S

K. Beck: Extreme Programming Explained. Reading, Mass.: Addison-Wesley, 2000.

The standard work by the “inventor” of eXtreme Programming.

K. Beck, M. Fowler: Planning Extreme Programming, Reading, Mass.: Addison-Wesley, 2000.

The book that is most frequently quoted for planning with XP.

G. Booch: Object Solutions: Managing the Object-Oriented Project. Reading, Mass.: Addison-
Wesley, 1995.

More on the topic of project management in OO projects.

G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language. Reading, Mass.: Addison-
Wesley, 1999.

The current standard work on UML.

A. Goldberg, K. S. Rubin: Succeeding with Objects: Decision Frameworks for Project Management.
Reading, Mass.: Addison-Wesley, 1995.

More on the topic of project management in OO projects.

I. Jacobson: Object-Oriented Software Engineering: A Use Case Driven Approach. Reading, Mass.:
Addison-Wesley, 1992.

More on the topic of project management in OO projects.

I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process. Reading, Mass.:
Addison-Wesley, 1999.

Currently the standard work on procedures in projects in the context of UML.

A. C. Kay: Microelectronics and the Personal Computer. Scientific American, 1997, Vol. 237,
No. 3, pp. 230–244.

The paper outlining the visionary ideas of Alan Kay.

G. Succi, M. Marchesi: Extreme Programming Examined. Reading, Mass.: Addison-Wesley, 2001.

Based on contributions submitted at the first XP conference (Italy, June 2000), this book offers
an overview of conceptual and practical discussions on the topic of eXtreme Programming.

R E F E R E N C E S 115

Programming
guidelines and
design patterns

Zull-05.qxd 26/8/04 11:31 AM Page 115

This page intentionally left blank

117

Software Development
as a Modeling Process

6 .1 I N T R O D U C T I O N

This chapter describes application development from a software-engineering view. We
discuss how software development can be seen as a modeling process in the sense of the
Unified Process. We distinguish the domain model from the application system model,
and we discuss the actual state of the application domain and the design of the future
system.

The message of this chapter is that you should have an explicit model of the
application domain in its actual state. This model helps to understand the relevant
tasks and the concepts behind them. In our application-oriented approach, under-
standing the tasks and concepts naturally leads to the design of the future system.

6 . 2 A S I M P L I F I E D S O F T W A R E D E V E L O P M E N T
M O D E L

One view of software engineering sees software development primarily as a modeling
process, because different executable and nonexecutable models are created in the
course of a project. This view has become popular with the proliferation of UML
and UP.

This section begins with a simplified model of the object-oriented software
development process. It shows the segments of reality that we are dealing with
(sometimes called the “Universe of Discourse”) and the models we build from this
reality for our software development. Finally, we will look at contexts as they influ-
ence our modeling efforts. We show that there are two fundamental models, the
domain model and the application system model, that you need when developing
software.

6

Zull-06.qxd 20/8/04 7:37 AM Page 117

6.2.1 Discussion: A Descriptive Software Development Model

Here, we will not attempt to present a development strategy giving instructions for
concrete software projects, or what should be done by whom and when. These ques-
tions will be dealt with in Section 12.8. What we need in the context of this chapter
is a descriptive model that can represent issues and questions that we have identified so
far for our software project as a basis for discussion.

Figure 6.1 shows such a descriptive model. It represents the application domain as
its starting point, that is, the segment of reality for which we develop an application
system, and the resulting application system itself.

To be able to build such an application system, we basically need two models: one
domain model, and one application system model.

Two contexts are particularly relevant for modeling. First, the desired handling
and presentation of the application system, or something that is often called the “look
and feel” of an application. And second, we need the technologies that we intend to
use in our development, for example, the systems, languages, and tools to make our
application system workable.

Obviously, the application domain takes the dominant position within the mod-
eling and development process. To keep our example simple, we left out the differen-
tiation of individual modeling activities or the required author-critic cycles. The
example in Figure 6.1 is further simplified, because we left out the feedback in the
course of the application system under development (e.g., prototyping) on the models
and the application domain.

118 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

A descriptive
software

development
model gives no

instructions

Contexts for
modeling

FIGURE 6.1
Simplified
model for

object-oriented
software

development.

Application
domain

is basis for is basis for
is basis for

affects affects affects

Model of
application

domain

Model of
application

system

Application
system

Handling
& Presentation

Technology
used

Zull-06.qxd 20/8/04 7:37 AM Page 118

6 . 3 T H E A P P L I C AT I O N D O M A I N

One of the prerequisites for the development of a software system is that we have a
definition and a clear understanding of the contents of the application domain con-
cerned. This is the part of an organization for which we are to develop application
software. This means that the application domain is our starting point and the context
for our software development.

Many development methodologies take this understanding of the application
domain for granted. They assume that the developers somehow know what domain
they have to deal with. In our experience, however, this is a crucial issue within a
software project, so we make it explicit in our application-oriented approach.

6.3.1 Definition: Application Domain

Application domains can either be very extensive or very limited. In this book, we see
application domains mainly in the context of commercial or governmental organiza-
tions, but they could easily be in social or private organizations. Application domains
include banks, insurance companies, or hospitals. In this book, equipment manage-
ment for a small software company is our main example. Internet applications have
become increasingly important, especially for the home and entertainment domains.

An application domain is the segment of reality for which a software system is
developed. It is the background or starting point for the actual-state analysis
and the creation of a domain model.

An application domain can be an organization, a department within an organiza-
tion, or a single workplace.

The concept of an application domain is at least as wide, so that the domain con-
cepts and relations relevant for the construction of models can be well under-
stood during the analysis of the actual state of the domain. On the other hand,
its extent should always be limited, that is, never be too complex.

An application domain normally includes a domain-specific language. This
means that people in this domain use specific terms and concepts and think
about their domain in a specific way.

6.3.2 Discussion: Analyzing the Application Domain

The application domain is very important, because it is critical for our application-
oriented way of developing software. The developers analyze and describe the actual
tasks and situations (see Section 6.41) that characterize the application domain in the
domain-specific language. This corresponds to an actual-state analysis, where the typical
processes and the objects used in these processes are represented in their domain-specific
use contexts, for example, as scenarios or glossary entries (see Section 5.3.11). It is similar
to the business model in UP. At the same time, the application domain is the basis for
the construction of a domain model. Together with the analysis and description of the
actual state within the application domain, we are gradually building the domain model.

T H E A P P L I C A T I O N D O M A I N 119

Zull-06.qxd 20/8/04 7:37 AM Page 119

This model represents the segment of the actual application domain to be supported
by the software system under development. Obviously, our domain model is similar to
the domain model in UP. Later in this chapter, we will explore the question whether
or not the UP domain model can meet all our requirements, that is, easy to understand
and easy to construct, as one model.

This interest of developers in an application domain is not limited to the segments
that will be mapped in the domain model; they will also deal with segments required
to understand the current work situation within the actual-state analysis. It is at once
a risk and an art to find the right limits for the actual-state analysis, and not to let it
get out of hand both in terms of time and content. Experiences from traditional data-
modeling projects have shown that it is simply not possible to achieve a complete
analysis of the entire application domain. The first notion of the future application sys-
tem will help developers find the right point to stop analyzing. This means that the
developers have to gain quick insight about the points of the application domain
where software support could be useful and feasible.

Our recurring example has made clear so far that the software support for equip-
ment management in our small software company has been rather poor. Once we dis-
cussed the possibilities of supporting the management’s work with the employees, we
soon found out that they wanted us to design a more extensive planning system for all
tasks involved in the company’s business. However, the developers found that the addi-
tional domain issues and problems would far exceed the project is resources. For this
reason, we knowingly reduced the analysis of the relevant management and planning
tasks to the actual equipment management. Issues like scheduling or job distribution
were no longer taken into account.

6 . 4 T H E D O M A I N M O D E L

In the T&M approach, object-oriented software development means the reconstruction
of domain terms. As trivial as it may sound, this requires that the developers understand
the underlying concepts.

Developers create an explicit domain model with all the domain objects, terms, and
relationships existing in that application domain. This model is oriented to the
existing situation in the application domain and the domain business processes.

Besides the Unified Process not very many development strategies acknowledge an
explicit model of the application domain. But within an application-oriented approach,
modeling the application domain and designing the future system are intertwined. Thus
a well-designed domain model is a strong foundation for the software system to be built.

6.4.1 Modeling Your Application Domain

The domain model describes the elements and relationships to be supported by our
application software from the domain view. In our T&M approach, we begin with the
tasks and then identify relevant objects and their usage forms or interactions.

An interaction is a characteristic action that can be done on or with an object.

120 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

Building a
domain model

The EMS
example

Reconstructing
domain terms

Zull-06.qxd 20/8/04 7:37 AM Page 120

Once we have identified the objects and interactions and abstracted the terms, we
map them to the domain-specific language and model their relationships, using object-
oriented concepts like generalization, composition, and dependence. This means that we
model the application domain.

The domain model includes all aspects of the application domain to be potentially
supported by an application system. This model is oriented to the tasks and the
relevant objects, including their interactions. Generalization and composition
are used to represent the related terms in a domain concept model. When cre-
ating this model, we orient ourselves to a guiding metaphor and its design
metaphors.

The domain model consists of the concept model and selected application-
oriented documents (e.g., scenarios, glossary entries, and cooperation pictures).

When modeling the application domain, we usually write scenarios and glossary
entries (see Sections 13.1 and 13.4). This corresponds to what is called “business mod-
eling” in UP. As we continue dealing with the application domain, we identify depen-
dencies and similarities behind the key terms and notions in these documents and
eventually collect them in a separate concept model (see Section 13.3). This could be
compared to the business modeling in UP.

When identifying the relevant objects, terms, and relationships, the guiding
metaphor and its design metaphors (see Chapter 3) are extremely helpful, as they guide
us in dividing all the things relating to a workplace into categories, such as, tools,
materials, automatons, or containers, and to look for appropriate properties that char-
acterize them.

The example in Figure 6.2 shows a segment from a bank-specific concept model,
or, the securities hierarchy for a loan system. In this scenario, a bank requests some
form of security before it grants a credit to provide collateral in case the borrower
defaults in payment. The model’s broad differentiation in width and depth means that
several author-critic cycles have been completed.

As we work towards a concept model, another useful tool is CRC cards. We can
use CRC cards to identify services offered by a domain object. We also include those

T H E D O M A I N M O D E L 121

Mapping domain
objects to model
concepts

FIGURE 6.2
Example
showing a bank-
specific concept
model.

Security

Mortgage Pledge Movable
Asset

Assigning
Machine

Assigning
Car

Assigning
Warehouse

ObligationGuaranteeLienAssignment Assignment

The Bank
example

Zull-06.qxd 20/8/04 7:37 AM Page 121

122 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

The EMS
example Device

classify a device Signature
order a device
approve an order Device State
upgrade a device
approve an upgrade Date
check the status of a device
dispose of a device

FIGURE 6.3
A CRC card for

our EMS
example.

objects that are used by an object to provide its own services. Figure 6.3 shows a CRC
card from our EMS example.

6.4.2 Discussion: Modeling Your Application Domain

To be able to limit the extent of our application domain model, we have to organize a
negotiation process between all participating groups to define a domain frame for the
software system under development. This effort will usually put us in a contradictory
situation:

● To develop our application system, we need a domain model of the application
domain.

● To model the application domain, we need to know the domain frame of the
future application system.

This paradoxical situation cannot be solved by structuring our modeling work in
a linear sequence, that is, we cannot create the entire domain model before we deal
with the application system model. This is another reason why we recommend a cyclic
approach.

6 . 5 T H E A P P L I C AT I O N S Y S T E M M O D E L

Working from the logical basis of our domain model, we create an application system
model. In this model, we add the required technical characteristics, as given by the
programming language we use or a database, to our design with its application-specific
characteristics.

This section demonstrates that there need not be a wide structural or semantic gap
between the model of the application domain and the more technical models of the
software system.

6.5.1 Context: The Application System Model

We saw in Section 5.2.5 that we need to achieve a high structural similarity for our
application system model. Accordingly, we transfer the domain concept model to a simi-
lar class model. However, an initial inspection shows that the application system model
includes not only classes and operations already identified in the concept model, but

The paradox of
software
modeling

Structural
similarity

Zull-06.qxd 20/8/04 7:37 AM Page 122

also additional classes and operations motivated by the underlying technique. For this
reason, we can speak only of a structural similarity between the domain and software
models. In addition to the technology we use, we also have to consider different forms
of manipulation and presentation in our application system model.

6.5.2 Definition: Application System Model

We know that the application system model should be a basis for common work that,
involves both users and developers, so it has to unify domain and software aspects.
These aspects require different kinds of submodels or representations.

An application system model represents both the domain and software view of the
system under development.

This model shows a clear structural similarity with the domain model, particu-
larly with regard to the concept model.

In order to represent the different perspectives, we can divide the application
system model into

● a usage model,
● a design model, and
● an implementation model.

These three submodels are described in the following sections.

THE USAGE MODEL

The close relation between design metaphors and patterns plays an important role for
the usage model (see Section 3.2.1). For example, objects previously identified in the
domain model, such as tools or materials, can be transferred in a structurally similar
form to the matching concept and design patterns.

The usage model shows how the functionality of the system is represented at the
interface and how it can be accessed by its users. It should be formulated explicitly. For
this purpose, we can use different types of system visions, which we can treat here in
the sense of domain use cases.

Presentation prototypes are an important means to highlight the dynamics of a
usage model. Our usage model should clearly show its relation to the domain model.
In addition, we have to deal with independent software or ergonomic aspects.

THE DESIGN MODEL

In addition to the domain usage model, the application system model is represented by
two software models, the design model and the implementation model.

The design model is a software model showing the interrelations between the
software construction units (e.g., classes, patterns, frameworks) as well as their
domain and software properties.

Representing the design model, we can use suitable UML diagram types, such as
class, object, state transition, or interaction diagrams, in addition to technical
system visions.

T H E A P P L I C A T I O N S Y S T E M M O D E L 123

Zull-06.qxd 20/8/04 7:37 AM Page 123

Note that there does not necessarily have to be a design model for the entire system.
Particularly for developments in well-known domains, we can often translate the struc-
tures of the domain model directly into program code, and the specific design model is
then limited to segments of the system. This also holds true for teams familiar with XP
(see Section 13.5.2), where story and engineering cards can be interpreted as an incre-
mentally growing design model. All T&M projects have shown that it is a good idea to
build explicit functional prototypes (see Section 13.6) to dynamically model the design.

THE IMPLEMENTATION MODEL

Although the design model is oriented to the domain and software concepts, the
implementation model is written as code in the selected programming language.

An implementation model implements the design models in program code.
This code is transformed into executable software by use of appropriate tools
(e.g., compilers and linkers).

EXAMPLES

Figure 6.4 uses the concept model from Figure 6.2 to show a class model for a bank loan
system. Figure 6.4 shows the structural similarity between the concept model and the
software model very clearly.

Let’s see how these things would look in our EMS example. Assume that the
analysis of our equipment management domain showed that a device is a key concept,
as it has particular significance to the tasks to be supported. For example, think of the
following typical ways of working with a device:

● classify a device;
● check the status of a device;
● buy a device;
● upgrade a device; and
● dispose of a device.

124 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

The Bank
example

Assigning
Warehouse

Assigning
Car

Assigning
Machine

Movable
Asset

PledgeMortgage

Assignment ObligationGurantee AssignmentLien

Security_Impl

Security

The EMS
example

FIGURE 6.4
Example for a
bank-specific
class model.

Zull-06.qxd 20/8/04 7:37 AM Page 124

If the software developer has understood how devices are to be handled in the equipment
management system, he or she can now create a class model with structural similarity
based on our guiding metaphor and its design metaphors. For example, the developer
could create a material class, device, with operations like classify(),
purchaseDate(), signPurchase(), isValidDeviceStateSuccessor().

However, these operations are based on pure domain motivations, and are not suffi-
cient to create an operative software system. We want to display a device on an elec-
tronic desktop for the device manager to be able to manipulate it (see Section 3.5.12).
To represent a device on the desktop, the developer decided in this case to use an icon,
in addition to a description of the device. For this purpose, the developer has to connect
the domain material, device, with its graphical representation. A simple solution could
expand the class interface, by adding an operation, getIcon(), to the class interface of
device. We have chosen a more general construction, where each thing on the desktop
can return a thingDescription.

When trying to implement the room plan, the developer finds that the room plan
requires only a small fraction of a device’s functionality. In addition, working with
room plans is often based on fictitious devices used to run plan simulations.

On the above grounds, the developer decides to consider the set of potential inter-
actions depending on the work situation. He or she implements a class, deviceProxy,
in addition to the device class. This new class can be used as a substitute for the actual
material class for room plans. For the attributes in device and deviceProxy, the
developer uses domain values, implemented by use of the Flyweight pattern proposed by
Gamma et al.

Figure 6.5 shows an interface definition of the device class, which is very similar
to the description of the device on a CRC card, as shown in Figure 6.3.

6.5.3 Discussion: Structural Similarity and Macrostructures

In our examples in this chapter, structural similarity refers to the model elements
described in Section 2.1.5, such as, software objects vs. things and classes vs. concepts.
In software systems, these model elements are also called microelements.

As useful as these microelements may be, they are not suitable for large-scale
software systems with thousands of classes. What we need are higher structuring forms,
or macrostructures, to be able to handle large systems. The application orientation
of the T&M approach gives us a direction in which to search for such macrostruc-
tures. Section 9.3 will discuss the macrostructures we could use in the application
domain to design large software systems. In this context, we use the term software
architectures.

6 . 6 T H E A P P L I C AT I O N S Y S T E M

Once the application system model is ready to a point where we have an implementa-
tion model, we can use this model in combination with the required libraries
and frameworks, and use development tools to create an operative application software
system.

T H E A P P L I C A T I O N S Y S T E M 125

Zull-06.qxd 20/8/04 7:37 AM Page 125

6.6.1 Definition: The Application System

We use the terms application system and software system interchangeably, ignoring the
fact that the software part is normally closely linked to specific hardware components,
especially in embedded systems.

An application system is composed of new and existing software, reused in the
form of libraries, frameworks, and components, including their connections to
the system base elements.

An application system represents the domain and software models, and at
the same time influencing these models. When used, the application system
changes the application domain.

In the T&M approach, an application system is normally designed and installed
as a core system with extension levels (see Section 12.7).

126 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

public class Device extends RegisterableImpl implements
CopyAble

{
// copy and name

public CopyAble copy()
public void rename(String name)
public dvDeviceName deviceName()
public void nameDevice(dvDeviceName deviceName)

// describe

public String description()
public void describe(String description)
public dvRegisterableDescription registerableDescription()

// classify

public dvDeviceClass deviceClass()
public void classify(dvDeviceClass deviceClass)

// handle life cycle

public dvDate purchaseDate()
public void purchaseOn(dvDate purchaseDate)
public void signPurchase(dvUserIdentificator signer)
public dvUserIdentificator purchaseSigner()

public dvDate upgradeDate()
public void upgradeOn(dvDate upgradeDate)
public void signUpgrade(dvUserIdentificator signer)
public dvUserIdentificator upgradeSigner()

public dvDeviceState deviceState()
public boolean isValidDeviceStateSuccessor(dvDeviceState
deviceState)

public void changeState(dvDeviceState state)
public dvI36U18State i36U18State()

}

FIGURE 6.5
Domain-specific
interface of the

device class.

Zull-06.qxd 20/8/04 7:37 AM Page 126

6.6.2 Discussion: The Application System

We could argue against our understanding of application systems that it is oriented too
closely to the traditional “programming” of software. New concepts like the tool-based
generation of code from higher models, or the composition of applications from
turnkey components, play an increasing role in our approach. However, we still have
certain reservations about the generation approaches of modern CASE tools as they
are mostly unsuitable for cyclic (or round-trip) software engineering. On the other
hand, we have observed in real-world projects that the Enterprise JavaBeans compo-
nent kit is widely accepted in practice.

Another aspect of this issue is that the application system influences the applica-
tion domain and application system models even before it is completed, because it
evolves as an idea or vision in the early phases of analysis and domain modeling.

The application system that is actually used changes the situation and the work
processes in the application domain directly. This should be taken into account, espe-
cially in an evolutionary approach where system versions are installed gradually, start-
ing with a core system (see Section 12.7.1). We observed in many projects that even
prototypes can cause changes in the application domain. While evaluating, prototypes
users immediately start rethinking their work situation and start getting accustomed
more or less consciously to changed processes.

6 . 7 S O F T W A R E D E V E L O P M E N T C O N T E X T S

When modeling an application system, we have to take a few important factors into
account. These factors influence the structure of the application system and its func-
tionality. We call these factors together the system development contexts, which we will
explain and discuss in the following sections.

6.7.1 Discussion: Software Development Contexts

We have identified the following contexts:

● the application domain (e.g., equipment management in a software company);
● handling and presentation and its technical implementations (e.g., electronic

desktop with icons that the user can manipulate);
● applied technique within a development method, including design patterns and a

software architecture (e.g., the flyweight pattern and its language-specific
implementation).

These contexts influence the software construction, depending on the project. We
often want to have a specific context in the foreground that affects the structure and
dynamics of the system. For example, the design patterns that developers use to discuss
their design will determine the implementation of domain classes.

6.7.2 The Application Domain Context

The application domain forms the future usage context of the software system under
development. This context provides the basis with which we start constructing the
application domain model, along with the application system model.

S O F T W A R E D E V E L O P M E N T C O N T E X T S 127

Code generation
and CASE tools

Software
development
influences the
application
domain

Zull-06.qxd 20/8/04 7:37 AM Page 127

6.7.3 Discussion: The Application Domain Context

The application domain is the primary context of our software development model.
The other contexts have a different influence on modeling and construction.

Regardless of this differentiation, we have to bear in mind that domain modeling
determines technical modeling. Note that this is not a one-to-one transformation of
all domain terms into classes and all interactions into operations. Nevertheless, the
concept model as part of the application domain model can be transferred to classes
and class relationships without violating the model or the desired structural similarity.

6.7.4 Applied Technique

The applied technique is the context that primarily characterizes the application system
model. Based on the architectural concepts, design guidelines, and technological mod-
els on this level, and the specific technical components of our system base, the applied
technique is an independent dimension of the application system.

Applied technique includes first of all the generic tools and methods important in
software development but not part of the application system itself. This type of
applied technique is independent of the domain requirements of the application
system under development.

Applied technique can also flow into the product either directly or indirectly.
It is then used to design the application system so that it meets the domain
requirements.

We can treat the applied technique as a concrete component or as a technology.

Notice that the applied technique is not totally independent of the domain context.
Take our EMS example: when designing an electronic workplace as a desktop, we are
not free to select an arbitrary screen size and user interface. Still, the applied technique
offers some freedom of design that we can utilize.

The technical concepts we use and their descriptions, such as, programming guide-
lines, flow through the application system model into our product. In addition, things
like the GUI system, the underlying design guidelines, the relational model, and a
database, all become part of our application system. These technical concepts and tools
should never be seen in total isolation from the domain requirements.

The IDE or the office system used by the software team are applied techniques that
are quite independent of the application domain and will not become part of the appli-
cation system.

THE SYSTEM BASE

If the applied technique for our system is available in the form of real components,
then we can use it directly. In the implementation model, these components are then
used through interface libraries or frameworks. All these components combined are
called the system base.

The system base includes the set of all interfaces to the (external) technical com-
ponents used in the implementation model.

128 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

The EMS
example

Zull-06.qxd 20/8/04 7:37 AM Page 128

To be able to use a software system in different hardware and software environments,
the system base is normally encapsulated in a portability layer. But an explicit system
base layer isn’t necessary when portability is supported by a large number of commercial
APIs (Application Programming Interface), as in Java.

THE TECHNOLOGY

The system base and the technical concepts used are normally connected, because the
developer has to have models of the applied technique to be able to build a design or
implementation model.

Technology denotes the developer’s conceptual knowledge of the applied tech-
nique. When creating the application system model, this knowledge has to
reflect in an explicit or implicit model of the applied technique.

If we consider this statement in our EMS example, we could implement the registry for
devices and room plans by the use of a relational database. However, it is not sufficient
simply to install such a database. The software developer has to have an implicit or
explicit model of this technique. This is the only way for him or her to identify the
need to add mapper classes to the domain classes of his or her model, so that the data-
base can be linked. The same applies to the use of program libraries or frameworks; you
can hardly use them meaningfully unless you have an idea about software architectures
and design patterns. This knowledge of the underlying concepts behind the technical
components is called technology.

6.7.5 Handling and Presentation

The third context, handling and presentation, is relevant in the development of interac-
tive application software. This context denotes how a software system is presented to
the users and how users can manipulate it.

Handling and presentation is the way in which we implement the usage model of
an application system.

● The usage model of an application system shows in its handling and
presentation.

● Handling defines the ways how you interact with a software system, while
its presentation defines how it looks and feels from the users’ perspective.

For a single system functionality (as part of the business logic), there may be more than
one type of handling and presentation within an applications system, depending on the
workplace type and guiding metaphor. The same also applies to a certain extent to
applied technique, which means that given a specific technique you have several
options to realize the handling and presentation of a system.

There are separate concepts and models for the handling and presentation of an appli-
cation system. Concepts like electronic desktop, direct manipulation of graphical icons,
and mouse interaction are obvious components of a system’s handling and presentation.

For systems based on the T&M approach, handling and presentation is a particu-
larly important context, because these elements clearly show the fundamental concepts
of T&M, like structural similarity and application orientation.

S O F T W A R E D E V E L O P M E N T C O N T E X T S 129

The EMS
example

Zull-06.qxd 20/8/04 7:37 AM Page 129

6.7.6 Discussion: Handling and Presentation

To combine the different concepts for handling and presentation into a uniform
picture, we select a guiding metaphor with matching design metaphors (see Section 3.3).
Though a guiding metaphor with its design metaphors does not define a specific usage
model for an application system, it gives the developer some orientation for designing
the software. This guideline is strengthened by a selection of the matching workplace
type. Nevertheless, considerable freedom of decision remains for the design of an appli-
cation system’s handling and presentation.

The fact that handling and presentation form an independent context, similar to
the application domain and applied technique, is often overlooked. The reason is the
matter-of-factness in which we use interactive software today, as well as the uniformity
of current workplace systems, at least as far as this aspect is concerned.

However, we should bear in mind that the selection of so-called “middleware” and
frontend technologies have a strong influence on how a software system can be manipu-
lated and presented. For example, an Internet-based PC application implemented in
HTML and Java Server pages offers very limited interactive feedback to user-input.
Though a WAP (wireless application protocol) solution for mobile phones uses an
interaction model similar to the PC-based browser solution, the much smaller display
size limits your freedom of design.

When designing application systems like the one in our EMS example, interaction
with the system is often a major problem. How should we represent the room plan and
the available devices? What manipulation can we support for the tools? How would
working with the room plan influence the staff list? The answers to these questions may
be totally different, even for the same application domain and the same applied tech-
nique, but our practical experiences have shown that they will always contribute to the
usage quality of an application system.

6 . 8 C O N T E X T S I N F L U E N C I N G T H E S O F T W A R E
A R C H I T E C T U R E

We know from previous sections that the individual contexts involved in a software
development project are relatively independent so that they can change indepen-
dently. When preparing an architectural model, we should take these potential changes
into account. The idea is to isolate the influence of the different dimensions from the
software architecture. According to the principle of structural similarity, every context
dimension should be reflected by a set of system components. Changes to one context
have to be encapsulated in the components of your application system in such a way
that they will not affect other components. This section discusses how contexts may
influence your software architecture.

6.8.1 Discussion: How Contexts Influence Your Software
Architecture

Experience has shown that contexts can change more or less independently. For
example, window systems with new functions are introduced to the market; some busi-
ness requirements in the application domain have changed; users want to see modern

130 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

Handling and
presentation is an

independent
design context

The EMS
example

Contexts change
independently

Zull-06.qxd 20/8/04 7:37 AM Page 130

interaction forms (e.g., hyperlink navigation in the World Wide Web) implemented in
their application system.

A closer look reveals that, although the three software development contexts discussed
here are autonomous, they are not entirely independent of one another. Accordingly, as
soon as there is a change to one context, we have to find out how this change may affect
the application system and the other two contexts. To facilitate this job in software pro-
jects, we clarify and discuss the costs, problems, and influences of such a change.

Let’s see how these issues might look in our EMS example. Assume that some people
suggest in the planning phase that we should use Java instead of C�� for our equipment
management project. At first, this change appears to affect applied technique and thus only
the implementation model. A closer look reveals that we cannot link all existing compo-
nents in Java, because some proprietary interfaces may not be available. Considering that
Java and C�� use different object metamodels (e.g., no multiple inheritance), we have to
change the software architecture and the patterns. Switching to current GUI libraries
results in additional new handling and presentation opportunities that we should utilize.

In this example, the impact on the domain model is negligible. After all, we want
to develop an interactive application system, and Java is suitable for our application
domain. If we transfer these considerations to a simplified dimensional model of the
three contexts, we get the scenario shown in Figure 6.6.

C O N T E X T S I N F L U E N C I N G T H E S O F T W A R E A R C H I T E C T U R E 131

The contexts as
semi-autonomous
dimensions

The EMS
example

analysis design

Application
domain

Model of
application

domain design
model

implemen-
tation
model

usage
model

Model of
application system

framework
& libraries

application
system

architecture &
design patterns

technology
of system basis

design
guidelines

system
basis

guiding metaphor &
design metaphors

Handling
& Presentation

Technology
used

FIGURE 6.6 Software development contexts and models.

Zull-06.qxd 20/8/04 7:37 AM Page 131

Let’s return to our EMS example. Once the equipment management system has
been used successfully at the device manager’s workplace, the device manager suggests
making the system available as well for secretarial workplaces. He argues that this
would allow the secretary to enter personnel changes and moving requests, things han-
dled by the secretary, directly into the room plan. Naturally, the change resulting in
the application domain has a direct impact on our domain model. If we are to imple-
ment this idea, we need at least a simple client-server model and an appropriate imple-
mentation. In addition, it turns out that we should implement at least a minimal
cooperation model on the handling level to allow the device manager and the secre-
tary to concurrently use the staff list or the room plan. Though this is primarily a
domain-specific change, it affects the other contexts, as shown in Figure 6.7. We have
to think about extent that these changes should have over the other dimensions, and
how this would influence our application system.

6 . 9 R E F E R E N C E S

D. Bäumer, G. Gryczan, R. Knoll, C. Lilienthal, D. Riehle, H. Züllighoven: “Framework
Development for Large Systems.” Communications of the ACM, October 1997, Vol. 40, No. 10,
pp. 52–59.

An article on modeling in framework design.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison Wesley,
1995.

Some patterns described in the book are referenced in this chapter.

132 S O F T W A R E D E V E L O P M E N T A S A M O D E L I N G P R O C E S S

Handling & Presentation

installation
of a 2nd device

management system

Application domain

use of
Java

Technology used

FIGURE 6.7
Examples of

influences
between the

development
contexts.

Zull-06.qxd 20/8/04 7:37 AM Page 132

I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process. Reading, Mass.:
Addison-Wesley, 1999.

This book also contains important aspects of software modeling.

A. Krabbel, I. Wetzel, H. Züllighoven: “On the Inevitable Intertwining of Analysis and Design:
Developing Systems for Complex Cooperations.” In G. van der Veer, A. Henderson, S. Coles
(eds.): DIS’97 Designing Interactive Systems: Processes, Practices, Methods, and Techniques,
Conference Proceedings, Amsterdam, The Netherlands, August 1997, pp. 205–213, 1997.

A more detailed description of our approach to modeling.

J.J. Odell: “Managing Object Complexity, Part I: Abstraction and Generalization; Part II:
Composition.” The Journal of Object-Oriented Programming, September, October 1992. Vol. 5,
No. 5 & 6.

An important work on object-oriented modeling.

R E F E R E N C E S 133

Zull-06.qxd 20/8/04 7:37 AM Page 133

This page intentionally left blank

135

T&M Conceptual
Patterns

This chapter builds on the T&M guiding metaphors and design metaphors introduced
in Chapter 3 by describing them as conceptual patterns. The sections of this chapter
deal with tools and materials, automatons, containers, and the work environment.
While Chapter 3 showed how metaphors can help to build a common universe of
discourse between developers and other concerned parties in a software project, this
chapter takes these everyday metaphors into the realm of software design.

The conceptual patterns discussed in this chapter form the basis both for the tech-
nical construction and the usage model of a system, occupying an important intermedi-
ate position. Chapter 8 will discuss the important conceptual patterns as design patterns,
as they support our technical construction of an interactive application system.

By the end of this chapter readers will better understand the basic idea of application-
oriented development. You start with relevant and familiar things, terms, and concepts
of the application domain. Then, in an interative process, you evolve these elements
into a model and implementation of the software system, avoiding conceptual and
structural gaps.

7.1 C O N C E P T U A L P AT T E R N S

While design metaphors provide a common point of view and terms to discuss the appli-
cation domain, conceptual patterns are mainly for the use of developers. Conceptual
patterns take the objects and concepts of the application model and help us design our
visions of the future system. This means that conceptual patterns are both the means
and guidelines at the important connecting point between analysis and design, or actual
state and planned state.

T&M conceptual patterns do not describe the details of the internal construction
of application systems; these details are described by design patterns (see Chapter 8).
Conceptual patterns describe those elements of the system that are visible to users
in the usage model; they describe the overall design and architecture from the
domain view.

7

Zull-07.qxd 20/8/04 7:38 AM Page 135

7.1.1 Conceptual Patterns in the Development Process

Within the development process, conceptual patterns come into play when we begin
dealing with the domain concepts of the application, and when we have finished iden-
tifying the relevant work objects, based on T&M metaphors. Let’s look at the situation
from the logical view rather than as a temporal project phase.

● The application domain is identified and the workplaces in each department to
be supported by the application software are clear.

● The tasks completed at these workplaces and the way they are completed are
clearly understood. We have already gained an initial notion of the workplace
types involved (see Section 3.6).

● The materials relevant for these tasks are understood and described.
● The concepts behind these tasks and materials are understood.

In the next step, we have to design the components of the future system and their
interaction to technically build the system. At this point, we have design metaphors
available for modeling. However, as we know from the introduction of T&M metaphors
(see Chapter 3), it is normally not meaningful or possible to directly transfer daily work
objects to software components. Conceptual patterns are intended to help us solve the
following design problems:

● How can an application system be divided into manageable components? How
can tools, materials, automatons, and containers be arranged to represent the
domain work environment?

● What is the relationship between the objects and concepts of the current
application domain and the components of the application system? Can all
things be transferred?

● How are work processes supported by the system components? Which processes
should be modeled by the use of automatons? Which processes should be
supported by tools?

In the following discussion of conceptual patterns, we will try to find answers to
these questions.

7.1.2 The T&M Conceptual Patterns

This section introduces the following conceptual patterns based on design metaphors:

● interrelation of tools and materials (Section 7.3);
● material design (Section 7.4);
● tool design (Section 7.5);
● work environment (Section 7.6);
● container (Section 7.7);
● form (Section 7.8);
● automaton (Section 7.9);
● domain service provider (Section 7.10);
● technical automaton (Section 7.11);
● probe (Section 7.12); and
● adjusting tool (Section 7.13).

136 T & M C O N C E P T U A L P A T T E R N S

Setting the scene

Problems
addressed by

conceptual
patterns

Zull-07.qxd 20/8/04 7:38 AM Page 136

Each conceptual pattern is described separately. We take up the general pattern
form from Chapter 4.3.10 and modify it due to the character of conceptual patterns.

● Pattern name.
● Intent: What is this pattern good for?
● Problem: Which problem does the pattern solve?
● Relate to: Which other conceptual or design metaphor precedes this pattern?
● Solution: The central solution concepts.
● Background: What has led us to this pattern? (A section that can be skipped on

first reading.)
● Trade-offs: Pros and cons of using this pattern.
● Example: An example, usually with a short discussion.
● Rationale: When should you use this pattern?
● What next: Which patterns will be useful next?

We begin this chapter with an overview of the T&M conceptual patterns as a guided
tour. The reader will thus understand how the patterns of this chapter belong together.

The patterns discussed in this chapter can be arranged in as a pattern roadmap
(see Figure 7.1). We will use Figure 7.1 for a reference as we continue describing each
pattern in detail.

7. 2 A G U I D E D T O U R O F T H E T & M C O N C E P T U A L
P AT T E R N S

THE INTERRELATION OF TOOLS AND MATERIALS PATTERN

The central pattern is the interrelation of tools and materials. It provides the main context
for the design metaphor of tools and materials, as introduced in Chapter 3.5, to be moved

A G U I D E D T O U R O F T H E T & M C O N C E P T U A L P A T T E R N S 137

Interrelation of Tools
and Materials

Concepual
Patterns

Material Design

Domain Service
Provider

Container Form

Tool Design

Work
Environment

Automaton

Technical
Automaton

Probe Adjusting Tool

FIGURE 7.1
Hierarchy of
T&M
conceptual
patterns.

Zull-07.qxd 20/8/04 7:38 AM Page 137

forward into the system design process. Given the fact that tools and materials are closely
related, we will think of them as design guidelines within one conceptual pattern. We
will also try to find answers to recurring questions during the design of this basic pattern.

THE MATERIAL DESIGN PATTERN

This pattern focuses on the material design metaphor as introduced in Chapter 3.5.7.
It helps us to transfer concrete materials found at the real workplace into materials for
the software system. Design guidelines are discussed as well as the misleading designs
of materials.

THE TOOL DESIGN PATTERN

The pattern of the tool design transfers the idea introduced by the tool design
metaphor in Chapter 3.5.4 into the system design of the application. The important
question is, what kind of tool might be the right one within your software application.
This is of great importance because in contrast to the material design metaphor, tools
cannot be translated directly from the real workplace into the software system.
Typically, we design specialized tools to support the users task in an optimal way.

THE WORK ENVIRONMENT PATTERN

Like the tools and materials design metaphor, the metaphor of the work environment
(see Section 3.5.10) is also used to design the system. Therefore, this pattern is
described to let developers design a location where tools and materials are stored and
used within the context of a specific workplace.

THE CONTAINER PATTERN

As we saw in Chapter 3.5.16, the concept of a container is relevant in the application
domain and might be useful within the software system as well. This pattern describes
how domain containers may be designed for the application under construction, and
how this pattern relates to tools and materials.

THE FORM PATTERN

The form pattern is a special way of looking at certain materials of the application
domain. We have observed that a large number of materials show behavior similar to that
of what we call forms. In contrast to fully fledged materials, they have little material-
specific interactions. They offer generic ways of handling, that is, to fill in some values in
predefined fields and to read them. We dedicate a special pattern to the design and
behavior of forms as a conceptual unit, because it is the most common generic material
that can be combined with prefabricated generic tools in application development.

THE AUTOMATON PATTERN

The automaton design metaphor describes the main motivation for introducing
automatons in the T&M approach. In this related conceptual pattern we discuss what
kind of automatons we typically design in software systems.

THE DOMAIN SERVICE PROVIDER PATTERN

When we go from the design metaphors to the software design using the T&M con-
ceptual patterns, we need to think about the basic structural layout of the application.

138 T & M C O N C E P T U A L P A T T E R N S

Zull-07.qxd 20/8/04 7:38 AM Page 138

Topics like distribution and multichanneling arise. As the technologies behind these
issues are often complicated and hard to use, they introduce new kinds of problems that
might be relevant from the users’ point of view. Therefore, we introduce a matching
conceptual pattern that deals with these issues: the domain service provider. Although
no direct design metaphor leads to this conceptual pattern, we can think of a service
provider as a conceptual unit of pure business logic that provides and handles
materials. Tools typically interact with domain service providers.

THE TECHNICAL AUTOMATON PATTERN

The pattern called technical automaton was directly derived from the generic automaton
pattern, which is, in turn, related to probe and adjusting tool. Both are based on the
pattern relating tools and materials and the work environment pattern.

7. 3 T H E I N T E R R E L AT I O N O F T O O L S
A N D M AT E R I A L S P AT T E R N

INTENT

Tools and materials are the central elements of an interactive application system
designed by the T&M approach. Given the fact that tools and materials are distin-
guished by their respective work context, it is important to design them in a comple-
mentary way. Figure 7.2 shows how tools and materials interrelate.

PROBLEM
We have to divide an interactive application system into elements so that users
can complete their tasks as required in their work situation. The elements
should be based on domain motivations and a visible context with the objects
already present at the workplace. We have to transfer our tools and materials
metaphors to the application system.

RELATE TO

This pattern is related to the design metaphors tool design, material design, and work
environment.

T H E I N T E R R E L A T I O N O F T O O L S A N D M A T E R I A L S P A T T E R N 139

Interrelation of Tools
and Materials

Material DesignTool Design

Work
Environment

FIGURE 7.2
Interrelation of
tools and
materials.

Zull-07.qxd 20/8/04 7:38 AM Page 139

SOLUTION
We model an application system from the user’s view in the core as a meaningful
collection of materials and tools suitable to complete different tasks at a single
workplace.1 For this purpose, we first define the current tasks to be supported
by the future system and the task that will be handled in the same conventional
way once the system is in place. The tasks to be supported define the work con-
texts in which users handle tools to manipulate materials.

Our application system should allow for completion of the tasks on hand so that it
reflects the way these tasks were handled before the system was in place. This similar-
ity is initially reflected in the application-oriented core of the materials. This means
that the important materials in the application domain form the platform from which
we start modeling the software materials. We always think of materials as objects in the
computer, which have to be manipulated as before.

In this connection, we use tools that show us the relevant aspects of the materials
manipulated and offer us the required work options. A tool should be handy so that we
feel comfortable using it to manipulate materials. After all, we want to concentrate on
the material rather than on the tool. The tool lets us access and interact with a mate-
rial, but then remains in the background.

Tools are normally designed for recurring tasks; they are well-suited to complete
the tasks at hand. Software tools are not images of real-world tools. They represent
domain principles and recurring actions necessary for the completion of tasks. In this
respect, they support work forms appropriate for specific materials and support possible
interactions in software. Tools may be thought of as the means to support recurring
activities, which may differ depending on the material and the situation.

EXAMPLE

Let’s return to our EMS example. We have seen that the device manager has used until
now a few simple, general-purpose tools, such as a pen, ruler, and eraser. But she has
worked on a variety of materials: the room plan, device identification cards, and
employee information. It seems sensible to start our design from these work objects and
tools familiar in the application domain. The work materials look like good candidates
for elements of our usage model for the application. At the same time, it is obvious that
we cannot transfer the available tools such as a pen or ruler into one-to-one software
elements. Nevertheless, the overall idea looks promising. We want to design an appli-
cation where the device manager can work with appropriate tools on room plans,
device identification cards, and so on. Even the basic interactions seem to be appro-
priate for our usage model: a tool should support the purchasing of devices; when an
employee moves to another workplace there should be a tool to modify the room plan;
and so on.

BACKGROUND

Objects (in the sense of things) are used in daily work to complete tasks. At our work-
place we arrange these objects so that they are available, depending on the work situa-
tion. We normally have no problem classifying most of these objects as either a tool or

140 T & M C O N C E P T U A L P A T T E R N S

1. Chapter 10 will take a closer look at distributed and cooperative work situations.

Similarity of
materials

Tools

The EMS
example

Zull-07.qxd 20/8/04 7:38 AM Page 140

a material. Depending on the work context, we select appropriate tools suitable to han-
dle materials so that we eventually obtain the desired work result.

The conceptual pattern interrelation of tools and materials helps us to take these
work contexts as our platform for the software design. The corresponding components
of an application system should be understood as tools and materials and designed
accordingly. In this attempt, we cannot simply transfer existing tangible tools and
materials to software. In fact, this is not even desirable. Tools and materials should be
designed to fit the potential of application software, where we have to observe several
side conditions.

An analysis of the application domain results in a domain model. This model rep-
resents the relevant work objects and their usage forms or interactions. These interac-
tions result from the way the objects are altered and probed when completing the
relevant set of tasks. This defines the domain core of the materials, because we assume
that the important tasks will be maintained beyond the introduction of our application
system.

There is an important difference to note when mapping work objects from the real
world onto the domain model: when actively completing their tasks, users have to use
software tools to be able to manipulate materials. Users cannot simply grasp software
materials in their hands. This means that we have to design a tool suitable for each
case. In your software system, a material is always the object that is manipulated by a
tool (or an automaton) within a work situation.

A tool can be understood by looking at the ways it is used to manipulate materials.
Tools present materials fitting for the work situation, offering users the desired func-
tion. A tool represents recurring manipulations of materials. The quality of the work
depends largely on how well the tools are suited to produce the results. In turn, the tool
quality depends on properties like easy handling, efficiency, and consistency.

This means that tools and materials are closely related, so we always need to deal
with them together. The same applies to the software design of tools and materials. A
tool can be conceived only by its use to manipulate materials. A material is what we
can do by the use of tools.

We can thus exclude the possibility of directly transferring existing objects to
software components. For this reason, we have to look at the concepts behind the
materials existing in the application domain, and the activities to complete the set of
tasks. They represent the work relationships that we can use as guidelines in the design
of tools and materials for an application system.

We further assume that a material can be probed and manipulated in different
contexts, thus taking on different states. This corresponds to a normal work situation.
Depending on the tasks at hand, users are interested only in specific properties or spe-
cific states of a material. This means that a material is normally manipulated by the use
of different tools, and that we handle a material in different ways, depending on
different states. For example, once a user has purchased a device, it should not be pur-
chased again. On the other hand, a device should be planned, if it is to be positioned
on a room plan.

A tool is not suitable for only one specific function. It is generic in that it can be
used for different tasks and purposes, that is, it has more than one function. Only a few
tools are designed for a special use and a single material. Matured tools can be used to
manipulate different materials in a similar way.

T H E I N T E R R E L A T I O N O F T O O L S A N D M A T E R I A L S P A T T E R N 141

From analysis to
a domain model

Objects and
materials

Tools and
materials

Using work
relationships on
design helpers

Zull-07.qxd 20/8/04 7:38 AM Page 141

RATIONALE

The concepts behind tools and materials are closely related to each other. We always
have to look at them in combination. We have to define a coherent set of tools and
materials to support the user in an optimal way in his or her daily tasks.

WHAT NEXT

The patterns for material design and for tool design take a look at each of the concepts
introduced here in more detail.

7. 4 T H E M AT E R I A L D E S I G N P AT T E R N

INTENT

Materials are both objects and outcomes of work activities. They form the domain basis
for the application system. Therefore, we take a closer look at how to choose and
design material.

PROBLEM

We have to bridge the gap between the work objects of the application world and the
conceptual material units for the application system. Therefore, we have to solve the
following design problem:

We want to identify the main material concepts of the application domain that are
relevant to the daily tasks of the users. As materials should be conceptual units,
we have to choose and design them well regarding the system under construction.

Materials are probed, manipulated, and embedded in other materials. They can
take different work states; when working with them, users concentrate on manipulat-
ing them.

We have said that we use design metaphors to analyze the materials relevant in the
application world. We have also used them to model appropriate usage models. We

142 T & M C O N C E P T U A L P A T T E R N S

Material
Design

Interrelation of Tools
and Materials

Domain Service
Provider

Container Form

Tool Design

FIGURE 7.3
Material design.

Zull-07.qxd 20/8/04 7:38 AM Page 142

simply named materials, using names familiar in the application domain. In addition,
we defined general concepts in the context of our application domain. These existing
materials and general concepts form the basis for designing materials on another
level—the material classes.

RELATE TO

The pattern material design is related to the conceptual pattern interrelation between
tools and materials and the tool design metaphor (Figure 7.3).

SOLUTION

The T&M approach does not put the presentation and manipulation of materials in
the foreground, because they are normally displayed and handled by a tool or an
automaton within the usage model. Therefore,

We can focus on the domain functionality when designing materials. We identify
the relevant functionality by looking at the various tasks, we work with the
respective materials.

For each existing material, we have to check the actual contribution it makes in
completing tasks. In many cases, we will find that objects are used solely because they
are required by existing (automated or manual) data processing forms. We think that
this is the only explanation for why there are so many control lists and change request
forms. Such things can often be removed by application-oriented software support.

One of the most important ideas behind the T&M approach is to add abstract
concepts, represented as materials, to the system, in addition to the obvious things
found in the application domain.

We briefly mentioned several examples of such concepts, such as bank accounts or
credits, in previous sections. Note that these notions do not exist as concrete objects.
You will not find an account in a bank as a “tangible thing.” What you will find at the
workplace are forms, for example a form to open an account or make a money transfer
or deposit, and representations of these forms on the screen. However, bank employees
have to handle accounts, and they have clear notions about these accounts, depend-
ing on the department and the workplace. This suggests that the account as an abstract
concept should be modeled as an independent material rather than as a collection of
related objects and representations.

Materials offer more than certain domain interactions, which can be modeled by
operations of a class. Materials also represent a conceptual unit, encapsulated in the
design. This means that, in our design, we also define the domain integrity of a material
to ensure that it will be retained. For this purpose, we encapsulate the internal states of
a material class, that is, we hide it from direct access, as opposed to those domain states
that are externally visible. Depending on these material states, we can define reliable
interactions. Next, we define the protocol for a material class, which ensures the inter-
nal domain consistency of a material. We can use state charts (see Section 13.9.5) in this
modeling process. The internal consistency is ensured by assertions for all state-changing
operations, based on the design-by-contract model (see Section 2.3).

EXAMPLE

In the design of our EMS example, we first analyze the tasks at hand and how they are
completed. We have already seen that the device manager handles several materials,

T H E M A T E R I A L D E S I G N P A T T E R N 143

Concentrating
on the domain
functionality

Materials form a
conceptual unity

Relationships
between
materials

The EMS
example

Zull-07.qxd 20/8/04 7:38 AM Page 143

including room plans, employees lists, and device order forms. We can elaborate a domain
description of how these materials should be handled. We have several concepts, such as,
room, device, employee, and room occupancy. We also have a pretty clear picture of the work
situation and the steps involved: the room plan is edited; employees or devices are moved
to different rooms; new devices are purchased; and the device statistics is evaluated.

From all the above, we can derive clear indications for our material design. We
could adopt the existing materials and their domain interactions in our design. For
example, we could model a class, Employees, to accommodate all information relat-
ing to a team member’s employment contract. It also appears meaningful to reflect
about implementing the room, device, and room plan concepts in software.

At this point, we will probably think about a way to represent employees in the
room plan, where extensive information about the employment contract is not
required. One solution would represent employees by business cards in the room plan.
This would reflect a familiar notion for the set of information we want to find about an
employee in the room plan.

This solution could be used to work out several domain interactions. For example,
the device manager could look at a business card to see whether or not this employee
is authorized to occupy a separate room, or whether he or she should share a room with
other employees, depending on their positions. In the past, the device manager had to
run these checks manually, but we can now use the potential of software and transfer
this background check to the material in our design. As an object, the business card
can tell us whether or not an employee is eligible for a separate room. This means that
we develop domain interactions for a material beyond the material’s current properties.

Similarly, we could discuss another class, Device, and a device identification
card to represent a device object in a room plan.

TRADE-OFFS

We cannot look at each of the materials of an application system in isolation. There
are essentially two different relationships between materials: a contains relationship and
a use relationship (see Section 2.1.18).

For example, a room in the room plan of our EMS example can either contain or
use devices. Whether a relationship is a contains or use relationship can be seen only
from the domain-specific context. To facilitate this issue, it is often useful to ask
whether or not a material would make sense both with and without its “neighboring”
material in the application system. As far as our EMS example is concerned, we can
say that devices can also be meaningfully handled even when they are not allocated to
a room. For this reason, we model rooms that use devices.

We have said that we can handle a material only provided that we have a tool (or
automaton). Nevertheless, we have to bear in mind that a material should also be suit-
able for interaction. To support this aspect, the material should offer probing opera-
tions for all properties that users would like to see in that material. This means that we
have to include operations that make a material suitable for interactive handling and
presentation in our design. We conclude that the close relation between conventional
materials and tools also applies to software materials.

On the other hand, even software materials are independent of tools in comput-
ers. The domain interactions are the stable elements in our modeling effort, and we
classify and group materials based on the similarity of their interactions.

144 T & M C O N C E P T U A L P A T T E R N S

Material and
interaction

Zull-07.qxd 20/8/04 7:38 AM Page 144

The fact that we have primarily discussed a material’s interactions does not mean
that the material state is negligible from the domain view. Structural information is
required to be able to implement material states in the first place. We can combine
materials from other materials or let them use other materials. However, the state of a
material is eventually based on values. Each probing of a material returns state infor-
mation, determined on the basis of the material’s own values. For design purposes, the
internal state should be separated from the externally represented state information in
our implementation. This information-hiding principle is primarily implemented by
the use of domain values (see Section 2.6.5).

DISCUSSION: GENERIC OPERATIONS

Each change to a material is effected by changing structural information. We saw in
Section 2.1.10 that a class can define generic operations, which can be used by
the operations of that class to access the internal structure of an instance of that
class. Although this is often intuitive and supported by different development envi-
ronments, when modeling materials, we pay particular attention to ensure that
these generic operations are not made public to represent the domain interface of a
material.

Many inexperienced developers tend to design materials as pure value collec-
tions. Occasionally, this indicates that the domain was not well understood, particu-
larly if material designs are developed starting from a user interface. Such designs
often resemble interactive tools from GUI elements, which present material informa-
tion and make the material manipulable. What often happens in such designs is that
the entire domain functionality and the integrity of materials reside in a tool and its
GUI elements (widgets), while the materials themselves degenerate to containers of
value lists.

Admittedly, modeling materials based on domain interactions at the beginning of
a project is difficult in many cases. These conventional materials are often paper forms,
consisting of a series of fields used to write or read values. Section 7.8 describes such
forms in detail. Our experience has shown that forms-based materials often develop
into material during the course of the development process, that is, when we add
domain interactions to their interfaces. For this reason, we should not think of
materials and forms as two totally different things.

RATIONALE

Designing materials for the application system is one of the central activities of
developing an application-oriented system. Materials form the basis for the entire
system. Therefore, materials should be designed in a careful and conceptually mean-
ingful way.

WHAT NEXT

Closely related to materials are the tools to manipulate them in the application system
(see Figure 7.3). Therefore the following tool design pattern should be read next.
Managing large collections of materials is a task that we usually allocate to a domain
service provider, as described in Section 7.10.

Special material conceptual patterns are forms and containers, as described in
Sections 7.7 and 7.8.

T H E M A T E R I A L D E S I G N P A T T E R N 145

Material state

Zull-07.qxd 20/8/04 7:38 AM Page 145

INTENT

Tools present materials and allow us to probe and alter materials in a tool-specific
manner. They are the key elements of an application system and provide the central
interface between the user and the system. Therefore, the tool design has a high impact
on the usability of the application.

PROBLEM

Tools introduce special requirements to our design, which means that we have to solve
two design problems.

First, we have to define the domain contents or functionality of a tool. Second,
we have to give the tool a shape appropriate for representing it in software.

Obviously, we cannot solve these two problems independently of one another.
Unfortunately, we don’t have clear references along the lines of the Bauhaus slogan,
“form follows function.” So what shape or form results from the domain functionality
of a tool for a bank account manager or a device manager?

RELATE TO

This pattern is related to the conceptual pattern interrelation between tools and materials
and the material design metaphor (see Figure 7.4).

SOLUTION

Considering that we are dealing with software as the fundamental “fabric” that our
tools will be made of, there are only a few “material-specific” restrictions to be taken
into account. This means that, in designing software tools, we basically have to rely on
a few good examples of interactive systems and our imagination.

The domain functionality of a tool grows from our experience with recurring activ-
ities. For each tool, we have to identify all those recurring activities that should

146 T & M C O N C E P T U A L P A T T E R N S

Functionality
of a tool

Material Design

Domain Service
Provider

Tool Design

Work
Environment

Automaton

Interrelation of Tools
and Materials

FIGURE 7.4
Tool design.

7. 5 T H E T O O L D E S I G N P AT T E R N

Zull-07.qxd 20/8/04 7:38 AM Page 146

be embodied as a function of that tool. This effort is aimed at providing a tool
to simplify but not totally automate these activities. Consequently, tools should
support short, interrelated activities that can be implemented by algorithms.

We have to find an answer to the question regarding what the difference is
between automating or supporting activities. We can find an answer to this question in
the granularity of the tool functions that we modeled. Each function should be atomic
from the user’s view; that is, it should be such that we can break it down into smaller,
easier manageable subsets of the domain functions or activities. Of course, we can
determine such a decomposition only on the domain level and not in code lines.

In our EMS example, if a device identification card is moved from one room to
another, it is certainly atomic. The same is true in our bank example, when we calcu-
late interest rates based on customer information. In this connection, it is absolutely
irrelevant that the icons representing these identification cards are moved by the use
of a computer mouse, or that the algorithm for interest calculation is composed of a
sequence of instructions.

In contrast, the complete creation of a room plan, including all its rooms and
devices and employees, can surely be thought of as automation.

EXAMPLE

Let’s look at these issues in the context of our EMS example, where tool design is no
trivial task. We can exclude a simple transfer of the pen to edit a room plan or to fill
out a purchase form from the outset, because these actions do not provide substan-
tial support for the device manager’s tasks. We know that we can utilize the poten-
tials of software, to design a set of different tools for the device manager to facilitate
his activities.

We first study the set of different scenarios to identify the tasks and activities
involving the room plan. The device manager has to allocate employees and devices
to rooms. For this task, the lists of available employees and devices should be visi-
ble. For a tool to be suitable, it should create a new room plan and edit an existing
room plan. In addition, it may be useful to design a second tool to maintain
the device park. This second tool could then be used to edit and display device
information.

This solution appears to be better than creating a single complex tool to manage
room plans and devices. However, we aren’t done yet. What we also need to support
are device procurement processes. The important thing here is to introduce business
transactions. The state of affairs in a procurement transaction has to be represented in
the tool intended for managing devices.

Let’s summarize our ideas about the design of a tool for editing room plans. This
tool, let’s call it Device Organizer, should be as unobtrusive as a pen used to add the
name of an employee to a list. On the other hand, we would waste the important tech-
nical options we have if we only provide for writing on a room plan. At the very least
we would expect that when the device manager moves business cards between rooms,
the tool should indicate whether or not such an occupancy might conflict with other
options. This is a good point to note that although the basic business transactions
remain, our software tools and materials offer more functions than their conventional
counterparts.

T H E T O O L D E S I G N P A T T E R N 147

Automation and
support

The EMS
example

Zull-07.qxd 20/8/04 7:38 AM Page 147

Figure 7.5 shows an initial draft of our device organizer design with the functionality
just described.2 The right pane on this screen shows the list of employees, and the cur-
rent room plan is displayed on the left. Note that two rooms of the room plan are
already populated with employees and devices. The color and the description of the
room show whether the selected occupancy can cause a conflict (red). In this example,
the occupancy is alright (green). A mouse is used to manipulate the device organizer.
For example, the device manager may select an employee, and a business card icon rep-
resents the mouse pointer. The device manager can drag and drop a business card to
allocate an employee to a room.

Next, we have to match our tool design with materials. First, we check whether or
not the room plan and the employee object already have the probing and altering
interactions that we need in the tool. For this purpose, an employee object has to be
able to return a business card object, but it also has to return the employee’s name on
request. Finally, we combine all interactions that a tool like our Device Organizer
expects from a material like our Employee object into one aspect, for example,
EditableByOrganizer (see Section 8.3).

TRADE-OFFS

We combine meaningful activities to complete a set of related tasks, but tools do
not define a number of fixed sequences of functions or processes. Although a tool
should normally support specific tasks or subsets of tasks, we cannot define the exact
sequences of work steps, because they depend on actual situations.

148 T & M C O N C E P T U A L P A T T E R N S

Tools and
processes

Device Organizer

Material Actions Settings

SWT-Roo Edit

Remove

D 211 (Ok) D 212/213 (Ok) D

Employees

UC

KK

Devices

devpc1

IP

AB

D 209 (Empty) D 208 (Empty) D 207 (Empty) D 206

FIGURE 7.5
Designing the

Device
Organizer Tool.

2. We want to underline again that these GUI examples are schematic sketches of the design concepts and
should in no way be seen as paradigms of ergonomic interfaces.

Zull-07.qxd 20/8/04 7:38 AM Page 148

Moreover, we have to bear in mind that a task is normally not completed in one
shot, that is, without interruption or intermediate steps. If a tool is to support users’
activities, we have to give the user enough freedom to decide the sequence in which
they want to call the operations of a tool, and when they need to interrupt their work.
This relates to the flexibility of a tool.

A user should be able to call an operation of a tool independently of other opera-
tions. As for material designs, it is often meaningful to give the tool its own domain
working states, so that certain tool operations cannot be executed at any time on a
material. It is important to make these states visible at the tool’s user interface. These
logical dependencies between the operations of a tool can be expressed by means of the
design-by-contract concept (Section 2.3) and a state chart (Section 13.9.5) in the
software model.

A tool is normally suited for a specific set of activities and not for everything that
may arise in the context of a job. This statement gives us an initial indication of the
size of the tools we want to design. Just as different tasks and activities are separated in
a job organization, tools are developed for manageable and consistent tasks and activ-
ities; in addition, suitable tool collections can be created for the entire set of activities
involved in a job. This means that instead of designing extremely complex megatools,

T H E T O O L D E S I G N P A T T E R N 149

Tool state

Size of a tool

Scenario A

Scenario B

Scenario C

Scenario D

Object X

Object Y

crystallization point
for potential tools

FIGURE 7.6
From scenarios
to tools.

Zull-07.qxd 20/8/04 7:38 AM Page 149

we create individual tools that can be easily combined. Again, it is hard to say when a
tool is too complex and when it is too simple. All we can say is that tools that offer
only one domain function are as poorly designed as tools that cover all requirements of
a complex workplace.

How then should we design a tool? To answer this question, let’s assume that we
have identified all the relevant tasks involved in a workplace. Different scenarios show
different processes, in which the same work object may occur. We know that scenarios
describe how we handle work objects to complete specific tasks. In this connection, we
can often identify similar usage forms, interactions, or elementary activities that are
related to single or combined work objects in different scenarios. This “overlapping” of
activities and processes in different scenarios form our initial crystallization points for
tools. More specifically, we combine similar activities with similar materials and try to
find out whether or not we can design a fitting tool for this combination. Figure 7.6
shows an example of such crystallization points.

DISCUSSION: DESIGN CHARACTERISTICS OF TOOLS

Unfortunately, the above crystallization points will not give us any clue about the
shape or usage model of a tool. To identify the characteristics of a tool, we have to use
a tool metaphor, from which we can derive several design characteristics:

● A tool can always be identified as such. It has a name and a graphical
representation. It can be activated by its graphical symbol or icon.

● A tool always shows a view of the material currently manipulated and gives
immediate feedback about changes to this material. A tool never hides a material.

● As long as it is actively used, a tool remains visible, that is, while manipulating
a tool, you can always see the tool you handle. The illusion that the material
can be manipulated directly, or without any visible tools, is created only for the
purpose of moving and arranging materials on the desktop. The appropriate
desktop tool is normally represented only by a mouse pointer.

● A tool supports several handling modes to allow flexible manipulation of a
material. Normally, this domain functionality has to be explicitly represented,
in contrast to traditional manual tools. For this purpose, we use graphical
elements, such as buttons or sliders and menu options.

● A tool has a memory and can be adjusted for specific materials or functions, that
is, it at least shows the settings for how a material is represented. In addition, we
normally use a status indicator for tools to display the effects when the user
presses buttons or selects menu options, or to display the status as a tool
function progresses.

Figure 7.7 shows the schematic design of a simple tool; note that this is not
intended to give a layout example.

As mentioned earlier, the way a material is represented and the feedback provided
for users as they manipulate materials is very important for tool design. Both the kind
of representation and the system feedback depend on the type of tool. When building
a tool, we define which state changes of a material it should support and how these
states are displayed. We make this decision from the perspective of the users and the
activities we want to support. This means that we have to find an answer to the ques-
tion of what a user expects to see when he or she uses a tool to manipulate a material.

150 T & M C O N C E P T U A L P A T T E R N S

Designing tools

Zull-07.qxd 20/8/04 7:38 AM Page 150

Therefore, it is important to understand the work context for which our future tools
are intended.

One frequent problem is to find out how a tool should be initialized when it is
activated without a specific material. In many cases, users want to select a material,
thus starting the allocated tool implicitly (e.g., by double clicking). However, it is
sometimes more useful to directly start a tool to ensure maximum flexibility. One
solution to this problem is the “empty” representation of such a tool, that is, without
material. On the other hand, this may confuse users. An alternative solution repre-
sents a blank material or selection dialog, showing the materials suitable for
that tool.

RATIONALE

A tool is, aside from materials, the second fundamental conceptual pattern for appli-
cation-oriented software development using the T&M approach. Tools represent the
interface used by the user to interact with the materials to complete daily tasks.
Normally, tools are designed to match the users’ needs in terms of tasks.

WHAT NEXT

The next conceptual pattern, work environment, describes the location where tools and
materials are combined. In addition further components used by tools are automatons
and service providers, which are both described as conceptual patterns later in this
chapter.

A more detailed look at the technical construction of tools, as well as complex
and compound tools, is provided in the discussion of various design patterns in
Chapter 8.

T H E T O O L D E S I G N P A T T E R N 151

Material Actions

EMS-Registrar-EMS Registry Manager

Name TypeCopy to Workspace
Move to Workspace
Release Original
RemoveSearch

devpc1 (ems-registry:31)
manspc3 (ems-registry:34)
itlp6 (ems-registry:33)

Device Search

actions

view of

material

name

settings

icon
EMS Registry Manager

FIGURE 7.7
Schematic
design of a tool.

Zull-07.qxd 20/8/04 7:38 AM Page 151

7. 6 T H E W O R K E N V I R O N M E N T P AT T E R N

INTENT

Tools and materials do not exist in isolation; they are used in a work environment. The
work environment represents a spatial notion suitable for a software system and, at the
same time, is a conceptual shell for the organization of work.

PROBLEM
We want to identify some kind of a conceptual work environment as part of
the application. We thereby want to add a spatial dimension to software
systems.

People are used to having a certain location where they can work. These people
have to be able to set up their workplaces and work environment at that location. The
location should allow them to organize their work, including whatever objects they
may need. In this respect, spatial orientation plays an important role. Software systems
do not have a physical notion of space. This means that they lack a crucial category
that humans use to structure their workplaces.

RELATE TO

The work environment pattern directly relates to the work environment design metaphor
presented in Chapter 3.5.10 and should be understood on the background of the con-
ceptual pattern interrelation of tools and materials (see Figure 7.8).

SOLUTION
We model an explicit work environment that can be personalized, and where
tools, materials, and other things required to complete the tasks on hand have
their place. In this work environment, we represent a space concept motivated
by the application domain, which is also a conceptual unit within the system
context.

152 T & M C O N C E P T U A L P A T T E R N S

Interrelation of Tools
and Materials

Work
Environment

FIGURE 7.8
The work

environment
pattern.

Zull-07.qxd 20/8/04 7:38 AM Page 152

A work environment defines the spatial and logical dimensions used to organize tools,
materials, and other pieces of equipment. It should meet the following requirements:

● A work environment should implement spatial and logical dimensions similarly to
how people perceive spatial organizational forms. This includes a way to
manipulate objects without time delay and show the effects immediately. For this
purpose, a work environment should support the mechanisms required and manage
the components from the moment an application starts until it terminates.

● A good work environment combines those tools, materials, and automatons
that are meaningful in dealing with the tasks at hand. It should be possible for
organizers or even individual users to personalize the work environment.

● A work environment should explicitly objectify logical order principles. It
should maintain consistent conditions between tools and materials.

● The integrity of a work environment should be maintained by regulating access
and visibility from the outside.

● If required, a work environment should support and reflect various forms of
cooperation.

EXAMPLE

Let’s return to our EMS example for a moment. The work environment of a person
who creates room plans appears to have a very simple structure: there is a current room
plan, employees, business cards, a registry with devices currently available, and the
tools used to create and edit room plans and employee and device lists. The registry
holds both current and old room plans, employee lists, and procurement cases. In addi-
tion, there is a trash can. All objects are represented in the form of icons on a desktop.
Figure 7.9 shows the work environment of the Device Manager in our EMS example.

This work environment is different from that of an employee who deals essentially
with the development of the company’s framework and just needs to occasionally have
a look at the current room plan.

T H E W O R K E N V I R O N M E N T P A T T E R N 153

Requirements
of a work
environment

Material Actions Settings

Device Organizer

SWT-RoomMap

D 211 (Empty) D 212/213(Overfilled) D

Emplo

Devic

itlp6

SWT-RoomMap EMS Registry ManagerMaterial Templates

EMS-RegistrarTrashCan

Toolbox

DeviceCheckerCenter

Device Organizerwam

Device-Editor

FIGURE 7.9
Work
environment of
the Device
Manager.

The EMS
example

Zull-07.qxd 20/8/04 7:38 AM Page 153

Note that elementary order principles have been established: devices can be
placed only on the desktop and in device folders, in the registry or in the trash can.
Devices can be edited only in the device organizer, but not directly in the room plan.
Registries cannot be nested.

The Device Organizer shows whether or not a room plan is consistent. It checks
this on the basis of the room plan; however, the room plan allows conflicting occu-
pancy. This tool merely ensures that you can’t add devices that are not listed in the
device folder to the room plan. However, the Device Organizer allows you to place too
many devices in one room. If this happens, it changes the color and label of that room
on the plan. The user can see whether or not a room plan has been archived in its cur-
rent version when he or she tries to file that room plan in the registry. Since the registry
must be used in a distributed environment, being an external component, we did not
include it in the regular consistency checks of this work environment.

BACKGROUND: THE WORK ENVIRONMENT

People use various tools to manipulate various materials to do their tasks. These
tools and materials have to have a location, which is normally a personal workplace.
But even when there is no individual workplace available, objects and tools needed
to complete a job have to be placed and arranged and made available at some
location.

Our metaphor of a work environment describes the location where tools and mate-
rials have their place. We have to be able to equip this location for our tasks, order
principles, and preferences. In addition to a spatial arrangement, there is often a delimi-
tation and a conceptual order within the work environment.

This means that the work environment should represent a conceptual unit. We
speak of “our” work environment, so we should be able to represent the things belong-
ing to the work of a person or a group. A work environment is generally not a publicly
accessible place, so it should be protected against free access from the outside.

An environment helps us organize our work. We place things we want to do first
on a stack, while a second stack includes less important documents. Similarly, we
arrange the tools we need. The organization of tools, materials, and other objects
required to complete tasks is an important part of qualified human work, and it should
allow for individual preferences. The characteristics of work organization should be
transferred to interactive application systems in an appropriate form.

In addition, the work environment is a location where people cooperate. We hold
things ready for others, and we keep documents in files and mail trays, pending further
handling. All these elements pertaining to the support of cooperative work should be
transferred to our application software.

The fundamental categories of location and spatial arrangement cannot be
directly reproduced in software. What we have are name spaces, but they are nothing
more than an abstract concept, and what’s more, they are technically motivated. This
is the reason why traditional application systems based on mainframes did not have a
spatial concept. Users selected a command from a menu or typed a command in the
command line, and the system responded with the output of data in template or tabu-
lar form. When hierarchical file systems, for example, the file system of the UNIX oper-
ating system, were introduced, it was the first time that users could create their own
orders, even though they were represented as abstract trees.

154 T & M C O N C E P T U A L P A T T E R N S

The work
environment as a

location

The work
environment as a

conceptual unit

Organizing work

Location for
cooperation

Representation
problems

Zull-07.qxd 20/8/04 7:38 AM Page 154

Graphic application systems allow us to model work environments so that they
almost correspond to an intuitive usage model. The electronic desktop with its graphic
icons was an important step in this direction. Suddenly, people could use a mouse to
point and click, that is, arrange and identify things. Nevertheless, graphic user inter-
faces (GUIs) are still extremely restricted, compared to a normal physical work envi-
ronment, so that we cannot simply map a physical work environment on the electronic
desktop. One of the most important drawbacks is that there is normally no third
dimension. As the desktop is too small or the resolution is too low we cannot attempt
to provide a “virtual” 3rd dimension. Consequently, we have to find design guidelines
that allow us to implement the environment concept and, at the same time, corre-
spond to current software on today’s workstations and PCs.

We can safely say that the usual design of electronic desktops lags far behind the
possibilities. For example, you will hardly find an equivalent representation of both
objects and tools. Instead, you often find the classic Smalltalk interaction model, that
is, “object—action,” where you select an object and then activate one of a choice of
actions. Also, the spatial notion is overly plain in many systems, that is, a desktop with
files and other generic containers, in which these files can often be recursively nested
in an arbitrary order. The T&M approach tries to overcome these limitations in appli-
cation software.

TRADE-OFFS

The first design criterion of the T&M approach is: The work environment is the loca-
tion where people work. Everything that a qualified person does within his or her work
environment using tools and materials should immediately show a reaction and become
visible to the user. This means that we have to solve a feedback problem, which was
briefly mentioned in Section 7.5. As far as the usage model is concerned, only actions
referring to objects within a work environment should have immediate effects. The user
should be able to see what “inside” and “outside” mean.

Let’s look at this issue in our example of an account manager workplace in a bank.
The account manager can directly fill out and edit a form because it is available within
the work environment. In contrast, opening a new account is something that occurs
externally. The account manager will want to use appropriate tools to see whether or
not an account has been opened. She should never get the impression that she has an
account “on her desktop,” because such a model cannot be maintained from the tech-
nical and domain aspects.

When implementing the spatial notion, we often think of the desktop as the best
known metaphor. Tools and materials are represented as icons, and they can be directly
manipulated, that is, activated and dragged and moved in spatial relationships. The
desktop is represented as a workspace, offering a location for tools and materials in a
representation appropriate for human perception. When designing such a desktop, we
should be careful to distinguish that, although the desktop visualizes the user’s work
environment, it is not identical with that environment. In modern software design, an
electronic desktop may be built either on the basis of widget toolkits or rebuilt from
existing system software.

Your expectation for finding your desktop in the morning exactly as you left it on
the previous day should also apply to shutting down and starting your application sys-
tem. The work environment is responsible for maintaining and restoring this state.

T H E W O R K E N V I R O N M E N T P A T T E R N 155

The Bank
example

Implementing the
notion of space

Maintaining the
work state

Zull-07.qxd 20/8/04 7:38 AM Page 155

The actual maintenance and recovery of the state of tools, materials, and automatons
could be delegated to other components (e.g., the registry). From the technical
perspective, it would also make sense to let the environment manage the startup and
termination of tools or automatons.

The electronic desktop is not the only conceivable form of representing a work
environment and objects arranged on it. If there is a potential need to have many
materials and different tools available, then structuring the work environment could
be a good idea. For example, we have successfully implemented toolboxes and material
or document folders in real-world projects.

Another concept that uses multiple work contexts takes the above solution a step
further. Such work contexts are fully set up by the users and can then be changed. One
possible implementation includes the virtual desktop interfaces offered by many UNIX
window systems, which create the image of several exchangeable desktop interfaces.
Another solution lets the user explicitly start, name, and change a work context for
each new business process. In this case, the user, such as a clerk in an insurance com-
pany, defines a new work context for a new customer file under the name of that cus-
tomer. If the user has to interrupt working on this customer case, as when he needs to
call another customer, he can put this context—including all tools and materials used
so far—aside to talk to the other customer and use the tools and materials relevant for
that case. When he is finished, he can put the second context aside and return work-
ing with the first one.

Permissible actions for the objects used within a work environment have to be
immediate, that is, they can be executed directly and show an immediate effect. This
means that the user should be able to see which tools and materials within the work
environment can be used without further “access protection.” When working in an
environment, the user should also be able to directly switch between different sets of
tools. In addition, the effects of manipulating a material with one tool should immedi-
ately be visible via other tools working on that material.

Each work environment refers to a specific use context. This use context is more
specific than the general application domain (see Section 9.2.1), because it is critical
for the tasks and work situations for which this environment was designed.
Accordingly, we assume that there will be different work environments within one
application domain that differ mainly in their combination of tools, materials, and
automatons. This means that the respective segment of an application domain deter-
mines the character of a work environment, and the selected workplace type, depend-
ing on the chosen guiding metaphor (see Section 3.3).

Having different work environments raises the question whether and to what
extent they can be personalized. Many application domains require a user to identify
and legitimate themselves to the system. In the T&M approach, this often leads to a
personalized work environment, which shows users’ last or desired combinations of
tools and objects when they start the system. In addition, the set of functions available
for a tool often depends on the user, based on the user’s role rather than on the user.
The environment is a suitable solution for both construction tasks. Users log in and
out of the system, and they can request the tools they need, based on their authoriza-
tion status. Once the basic user identification model has been implemented for an
environment, then additional concepts, such as user groups for cooperative work (see
Chapter 10) can be added.

156 T & M C O N C E P T U A L P A T T E R N S

Work contexts

Implementing the
use context

Personalizing a
work environment

Zull-07.qxd 20/8/04 7:38 AM Page 156

In a traditional work environment, we are careful about where certain things
belong and how they fit. We explicitly transfer these order principles to application
software. This facilitates dealing with the environment for the user. One simple mecha-
nism is the “cleanup” principle. When we can specify a basic order for a work envi-
ronment, which can be user-defined at the same time, then we facilitate keeping an
overview in complex work environments. This also requires options for the users to be
able to save and restore the environment in their orders.

The elementary order principles also say that the objects of a work environment
should be known. For example, when a user misplaced a material, they should be able
to search the environment for it. Order principles also include lists of materials and
tools used within a specific period.

However, most organizational work beyond the above is done by the use of specific
tools rather than direct manipulation within the work environment. For example,
documents belonging to a customer file are handled by the use of a customer file tool.
We can use such a tool to check complex consistency conditions and represent them so
that users can easily understand them. For example, we can use the interplay between a
tool and materials to ensure that, once a credit agreement has been signed, it is filed in
a different folder, and that changes can be made only to copies of the agreement in
another folder.

We know that tools are suitable for certain materials, and vice versa. This means
that users should be able to see in their work environment which tools and materials
match. Even when the environment technically delegates this to a manager or the tool
in question, the usage model of the work environment should show these matches. It
is customary to use different graphic icons for this purpose; for example, when a
material is moved on a tool, the user should see whether there is a match or not. The
same rule applies to materials and containers. We cannot put materials in containers at
random. In addition, containers cannot be arbitrarily nested. If we have once chosen to
distinguish between files and folders and cabinets, then it wouldn’t make sense to allow
arbitrary nesting of these things.

A sophisticated order principle that can actually be seen as a consistency concept
is the current work object. The current work object is always motivated by the applica-
tion domain and local to the environment. For example, it could be a customer cur-
rently handled by a bank account manager. Although different tools can currently
manipulate different materials, this current work object is known within the environ-
ment. To make the current work object known, we could call an explicit operation,
such as “set current customer,” or use a specific tool, such as “find customer.” If there is
such a current work object in a work environment, then we could implement opera-
tions, such as “transfer current data” in different tools. For example, a forms editor
could use these operations to add a customer’s name, number, and address to a form
without explicit user action.

Finally, there are consistency conditions for certain work situations, which cannot
be formulated on the level of a single tool or material. For example, a credit agreement
is not really completed when the user has filled out and electronically signed a specific
software form. For the case to be legally valid, the contract information has to be trans-
ferred from the workplace system into the operative database held on a host and
accepted there. The work environment can help us turn this case into an appropriate
usage model. For example, the work environment could link contract editors, customer

T H E W O R K E N V I R O N M E N T P A T T E R N 157

Implementing
order principles

Consistency
checks

Current work
object

Case checks

Zull-07.qxd 20/8/04 7:38 AM Page 157

files, outgoing mailboxes, and the automaton for host communication such that the
user obtains an application-specific view of the state of a contract case and understands
when a fully edited contract will become effective. For example, it means that the user
can see that the case is complete but not yet legally effective due to transmission prob-
lems to the host database.

This example shows a general principle for consistency checks: a consistency
check runs “from the inside to the outside,” and it is local to the respective context.
For example, the first thing to check is domain information as context-free domain val-
ues (see Section 2.6.5). Next, the domain values are checked in their interplay with
the material (the credit agreement, in our example) that embeds them. Subsequently,
the tools check whether or not a credit agreement can be added to the customer file
in the current work situation. The entire work context is then checked by the work envi-
ronment, which then calls a consistency check in the host. In summary, everything
that can be checked within a local context is checked, and all checks beyond this level
are delegated upwards. The consequence for a secure usage model is that the user has
to be able to reproduce these nested contexts to understand when and where to expect
responses. We meet this requirement by representing the set of contexts in the form of
tools and materials and by implementing a spatial notion in the work environment.

The work environment is always the outer shell, protecting the tools and materials
against the outside, that is, these objects are protected against external access and
external visibility. The type of work environment determines what is outside and what
is inside. The individual workplace is protected against all other workplaces and users,
which means that the work environment is a domain-specific interpretation of a name
space. The known protection and encapsulation mechanisms apply accordingly, that
is, objects of a work environment are not visible or accessible from the outside. From
the technical perspective, the consequence is that many workplaces may be imple-
mented sequentially or even as single-process systems.

Regardless of this technical solution, there is generally no access to a material, for
instance from a tool in another environment. An explicit action or operation has to
be used to move an object from one work environment to another.

Unless workplaces are designed as pure single-user systems, encapsulation cannot
be complete. We then create well-defined outputs and inputs for workplaces and work
environments, similar to the export and import interfaces of a module, connecting
them to the outside. In many cases, we will use automatons to implement connections
to different types of system components, such as hosts. This form of opening up to the
outside does not reach beyond a single-user system in the usage model, because a user
can cooperate with others only implicitly by exchanging data. An explicitly extended
space concept or cooperation model will be discussed in Chapter 10.

When the exchange of information with other work environments or being able
to view other workplaces is both part of the job and an explicit part of the application
system, then we have to devise appropriate usage models. In most cases, as a minimum,
we will have to implement simple cooperation and coordination mechanisms in appli-
cation systems.

Such cooperation and coordination concepts that change our notion of the envi-
ronment include mailboxes or a common registry. Together with the introduction of
the spatial metaphor, we extend the quality of our environment concept; that is, we
create joint spaces and common work environments. We will not discuss this issue any

158 T & M C O N C E P T U A L P A T T E R N S

General principle
of consistency

checks

Implementing an
encapsulation

Encapsualtion
and data
exchange

Implementing a
cooperation

Zull-07.qxd 20/8/04 7:38 AM Page 158

further at this point, because it goes beyond the primary question about the design of
tools and materials of a work environment of interest here, but we will come back to
it in Chapter 10.

RATIONALE

The work environment describes a conceptual unit that is directly related to the design
metaphor. It represents a physical and logical place. Tools and materials can be used
within the context of a work environment.

WHAT NEXT

The environment design pattern takes the conceptual pattern of a work environment
and details it for the system construction (see Chapter 8.15). Aside from the more
detailed technical design patterns, you may want to complete your impression of a
work environment by reading the rest of the conceptual patterns in this chapter.
In addition to tools and materials, the work environment provides the context for
them as well.

7. 7 T H E C O N TA I N E R P AT T E R N

T H E C O N T A I N E R P A T T E R N 159

Interrelation of Tools
and Materials

Material Design

Container
Form

FIGURE 7.10
The Container
Pattern.

INTENT

The possibility of representing tools and materials in a software system poses the
requirement of storing and ordering these objects.

PROBLEM

Users often have to edit and move collections of similar or related materials. These col-
lections are application-specific, that is, they are not only motivated by the underlying
techniques. They have different use forms than traditional technical data structures
(e.g., arrays). Therefore,

How can we model collections of related items and their management within an
application-oriented approach?

Zull-07.qxd 20/8/04 7:38 AM Page 159

RELATE TO

The conceptual pattern of a container relates to the material design metaphor as well as
the container design metaphor. It can also be seen as a special variant of the conceptual
pattern of a material in this section (see Figure 7.10).

SOLUTION
We want to transfer the metaphor of a container to application software.

Storing materials and collecting things are among the elementary human activities.
For this purpose, we often use containers, for which we earlier introduced a design
metaphor. It is important to remember that containers are motivated by the applica-
tion domain and should be thought of as independent objects that are part of the usage
model. In the T&M approach, domain containers are positioned at the border between
materials and tools or automatons. They are worked or processed, which makes them
a material. They manage, probe, control, and create other objects, which takes them
near to tools and automatons.

In continuation of our above problem, assume that we want to model domain con-
tainers as explicit objects that we want to use to store materials. Containers, similar to
other materials, can be manipulated by the use of tools. They have their own interac-
tions to manage and edit stored materials.

In the T&M approach, containers offer the following services:

● Containers can be used to store, collect, and order materials.
● A container can manage the materials it stores and give information about its

collection.
● Containers, including their materials, can be moved to other locations, which

means that containers support cooperation and coordination.

EXAMPLE

For our EMS example, Figure 7.6 showed four containers: a toolbox, a template folder,
a trash can, and a registry. Note that all four containers rudimentarily resemble tradi-
tional containers. For example, the toolbox shows a list of all available tools, which
can be activated from within this list. The template folder outputs current forms again
and again, never becoming empty.

The trash can is well-known from other electronic desktop applications. Note that
the trash can in our example has, in addition to a storage function, a “self-cleaning”
function, and that it takes specific protection and use conditions into account. The
trash can does not accept protected or active objects without warning the user.

The registry can have a different character, depending on the application system.
For example, if the device manager workplace is designed as a single-user workstation,
it represents only the location where room plans and device information are held and
managed (see Figure 7.11). The user cannot see nor is normally interested in the fact
that there is a database or a file system behind it. After all, the other containers should
also ensure that their materials are persistent and permanently available.

On the other hand, when the registry is used in a distributed application system,
such as connected as well to a secretarial workplace, it has to have additional proper-
ties. In this case, several people, as in the device manager and a secretary, will probably
access this registry. For this reason, we need a cooperation model (see Section 11.2.3),

160 T & M C O N C E P T U A L P A T T E R N S

Services of a
container

The EMS
example

Zull-07.qxd 20/8/04 7:38 AM Page 160

at least in a rudimentary form, to let users interact on jointly used objects. More specif-
ically, this means that the secretary should be able to see which room plan is current,
and whether or not somebody edits another room plan. The device manager should
obtain information about changes to room plans effected by the secretary. This coor-
dination can be modeled in a rudimentary cooperation model, using registry status
information.

TRADE-OFFS

Each collection is always linked to a selection principle. We know what belongs to a
collection and what doesn’t. From the technical view point, this raises the question of
whether or not similar or different objects should be stored in a container. An impor-
tant contribution to a clean handling of containers, both from the technical and the
domain views, is to let the container explicitly check the selection principle, while
allowing the user to see whether or not a specific objects “fits” into a container.

The safest solution to this problem would be appropriate typing, which may also
be constrained polymorphic (Section 2.1.20). More specifically, we could specify an
abstract class that, acting as a supertype, would specify the expected minimal interface
for all objects stored in a container. If the programming language you use is not strongly
typed, then the selection principle has to be checked at runtime. Eventually, this will
let the user see whether or not an object can be dragged and dropped onto a container,
based on direct manipulation. (We will discuss a more complex model, using special-
ized containers, in a moment.)

Polymorphic containers in strongly typed languages are often problematic in that
the objects a container holds are known only through their supertype and thus the
abstract superclass. This makes sense, as far as storage in containers is concerned.
However, we normally want to handle such objects in their specialized forms, once we
have retrieved them from a container. This means, for example, that a folder storing
documents can also accept letters, if Document is a superclass of Letter.
Unfortunately, the folder will only be able to return objects of the Document type to
a tool. If that tool wants to edit letters, then we have to use type conversion, or so-
called downcasting or reverse assignment.

Containers normally represent orders. Only a few conventional containers are
conceived as “rummage boxes,” even when they occasionally are used as such. To avoid

T H E C O N T A I N E R P A T T E R N 161

Container
contents

Polymorphic
containers

Order principles

Toolbox

EMS-RegistrarTrashCan

Material Templates

SWT-RoomMap
DeviceCheckerCenter

Value-Definer

FIGURE 7.11
Containers at
the Device
Manager
workplace.

Zull-07.qxd 20/8/04 7:38 AM Page 161

this risk, we explicitly build orders in our domain containers. This means that a
container knows its order principle and ensures that it is observed. Similarly, objects
are stored in their correct place when they are added and this place is maintained for
other altering operations as well.

In our discussion of design metaphors for container in Section 3.5.18, we already
mentioned that domain containers have a management function. In conventional sys-
tems, the user of a container manages the objects stored in that container by taking
explicit actions, such as manually inserting documents at the right place or keeping
index lists. We could implement this expensive and error-prone manual management
work as additional internal features for domain containers. This would include tables
of contents, consistency checks, and operations on collections. A good example would
be a shares portfolio as a bank-specific container that calculates the portfolio value
based on current stock rates.

Taking this management idea a step further and combining it with consistency
control, we could think of specialized containers such as a credit application file.
Although the content of such a container is heterogeneous, it is defined within narrow
limits. We often model such containers using pockets or tabs to clearly show in the
usage model that this container manages a specific combination of documents. This
definition of contents and internal consistencies allows us to answer a number of ques-
tions about the contents on the container level. For example, a credit application file
can provide information about the credit contract state, that is, whether or not sol-
vency has been checked and the application has been granted.

A container is also a useful metaphor where requested materials have to be col-
lected and forwarded for further processing. This is often the case in database applica-
tions. For example, a user has to collect a number of customers that meet a specific
selection criterion. A conventional database query outputs a set of results. In the
object-oriented world, there is no such thing as a “set of results.” Instead, it has to be
represented in a domain-specific way. It is often useful to implement a set of results as
a collection of similar materials in a known container, such as a folder. This raises
another question: How can we model non–object-oriented databases in T&M systems?
If we want to use such a database essentially to store objects, we could use an automa-
ton or a service provider for encapsulation (see Section 11.2).

So far, we have just touched upon the transport aspect. In fact, it plays a subor-
dinate role in a single workplace. On the other hand, it is convenient to move
around an entire material collection in a container. The transport aspect comes into
play if we want to move entire collections between different rooms within one envi-
ronment or between different environments. In this case, a container could be the
“natural” transport medium, simulating the way we move folders or containers in the
real world (see Sections 10.3.2). These transport containers could also be useful to
allow coordination in a collaborative work environment. When you put a file onto
your colleague’s desk, then this normally indicates what has to be done and who is
in charge.

BACKGROUND: CONTAINERS

From the conceptual and constructive perspectives, you could think of a container as
a material. In fact, we generally assume that most complex tools operate on one or
more containers to facilitate users to select the desired materials.

162 T & M C O N C E P T U A L P A T T E R N S

Material
transport

Implementing a
management

function

Specialized
containers

Implementing a
transport medium

Zull-07.qxd 20/8/04 7:38 AM Page 162

On the other hand, containers occupy a special position versus “normal” materials,
because containers are always designed to contain other materials, as well as to organ-
ize these materials by calling operations on these materials. In real-world projects, this
has often led to the problem that containers have been modeled as a kind of tool with
corresponding interfaces and an observer mechanism (see Section 8.11.6).

In workplace systems developed by the T&M approach, domain containers (e.g.,
a collection of bank accounts) assume management and aggregate functions, such as
managing account lists or summing daily sales figures. This means that they have
moved away from the classical data structures and collection classes.

From the developer’s view, we have to distinguish containers motivated by the
application domain from the technical data structures. For developers, data structures
are typical software containers that they handle all the time when programming.
Therefore, from the developer’s view, containers like lists, trees, and hash tables are
“domain-specific” containers used to manage data. In traditional software engineering,
data structures have been specified as abstract data types, but they are also thought of
as imperative composite data types of a programming language. This situation changed
when object-oriented languages introduced active technical containers, offering their
own navigational concept (with operations like first and next) by the use of
so-called markers, in addition to encapsulated states by means or access operations.
These technical containers are called collection classes and were used in many object-
oriented applications.

In contrast, the T&M approach distinguishes technical containers from domain
containers, the latter being independent work objects. For domain containers, we iden-
tify the interactions motivated by the tasks of the application domain. In addition, we
design variants of domain containers, where we are not limited to a generic concept of
folders and files.

There is another reason why we have to explicitly model containers. In object-
oriented languages, a class doesn’t automatically give you a collection of all of its
instances. In this respect, object-oriented languages are totally different from a rela-
tional database. In fact, one of the main features of the relational model is that you can
use a relation, implemented as a table, to also address all pertaining tuples or records.
This is something we hardly ever need in an application-oriented model. Instead, we
often want to store the different instances of a class in different locations, because this
lets us elegantly model different stacks for closed and pending cases or applications and
represent them in a usage model.

RATIONALE

Containers are an important concept of our daily work. We often have to deal with a
number of materials. We keep them together, order them in separate folders, or move
around briefcases containing materials. Therefore, domain containers became an
elementary part of application-oriented software development.

WHAT NEXT

In addition to the container pattern, which might be regarded as a special kind of
material, another special kind of materials may be found in forms, as discussed in the
next section. Also, Chapter 8.11 presents the next step in implementing containers
using design pattern domain container for this purpose.

T H E C O N T A I N E R P A T T E R N 163

Containers and
data structures

Domain-specific
interactions and
specializations for
containers

Zull-07.qxd 20/8/04 7:38 AM Page 163

7. 8 T H E F O R M P AT T E R N

INTENT

Paper forms and electronic forms play an important role in many application domains,
particularly in office environments. In the T&M approach, these forms are a special
kind of material.

PROBLEM

When analyzing an application domain, we often find materials for which it is rather
difficult to identify an individual domain-specific usage. We normally find that users fill
out the fields of a form and read its contents, for example, customer information forms,
purchase order forms, or application forms. An attempt to model such objects often
ends with a number of generic operations to set and get data. It seems, therefore, to be
superfluous to design and implement them as individual materials. In addition to this
generic domain-specific usage, forms are also characterized by their layout, which is
usually distinguished between fixed and editable fields.

When designing appropriate tools for these forms, we also often find that their
domain operations are rather limited or nonexisting, because we look primarily for an
electronic version of a pen. In this attempt, we often end up with editors that can be
used to set and get information more or less generically. Therefore,

How can we integrate the concept of paper forms into the overall modeling
approach of application orientation? Is it sufficient to model forms as materials
or do they show characteristics of their own?

RELATE TO

Forms are a special kind of material. Therefore, they are closely related to the conceptual
pattern of material design as well as the material design metaphor (see Figure 7.12).

SOLUTION
We deal with forms as independent conceptual patterns, because they represent
special materials across all development phases, from design to construction.

164 T & M C O N C E P T U A L P A T T E R N S

Interrelation of Tools
and Materials

Material Design

Form

FIGURE 7.12
The Form

pattern.

Zull-07.qxd 20/8/04 7:38 AM Page 164

Therefore, we model forms as a special type of material with generic interfaces.
Modeling forms as a type of material with generic usage solves many analytical and
construction problems. This usage of forms is motivated by the application domain. It
corresponds to the conventional way that forms are handled; for example, users fill in
application forms or enter information in customer forms. When we transfer this usage
to software construction, we can model operations to enter and read data for forms.
Our construction becomes more elegant if we implement the write and read operations
generically.

In addition to the generic interface that we promote for form-type materials, we
keep our design open to ensure that we will be able to further develop forms into more
complex domain materials as we gain experience.

In many application domains, forms are designed in a specific way. When design-
ing electronic forms, we also have to use layout information, such as to present forms
on the screen. Also, we normally want to print electronic forms in specific formats, for
example, printing form information on printed form templates.

Many forms have to meet consistency conditions to ensure that they can be prop-
erly edited and filed. Consistency conditions can be defined and checked on two
different levels. Many fields of a form take specific value types, such as a date or date
ranges (e.g., dates of birth), money, and so on. For this reason, each field of a form
should contain a domain value that can then be checked for validity.

In addition, there are consistency conditions that cannot be checked for a sin-
gle field, that is, without context or a customer form. For example, if we say that a
customer’s billing address is different from the shipping address, we have to enter
both addresses. This consistency condition can be checked only over the entire form.

If forms can be modeled generically, we can also implement generic tools. The
following tools are frequently used for forms:

● A forms editor can be used for all types of forms.
● A forms viewer displays forms on the screen.
● A forms copier lets you copy and paste the contents of a form in another form.
● A forms printer lets you output forms on a printer, using either plain paper or

preprinted form templates.

When working with forms, we have to solve a problem related to form versions. More
specifically, we have to ensure that we always work with the most recent version. To
this end, we can use a forms service. For example, when a user needs to fill out a form,
he or she can get a new copy of the form from a central forms server, which always
maintains the most recent version.

EXAMPLE

In our EMS example, when a new employee is hired, a form with this employee’s per-
sonal information is created. In this context, the form has no individual interactions;
it merely serves to enter staff information.

Assuming that the personnel department has this information, these employee
forms may be edited by a simple forms editor. It would be sufficient to represent and fill
the required fields according to their labels. Figure 7.13 shows a generic forms editor
that we designed for our EMS example.

T H E F O R M P A T T E R N 165

Layout of forms

Consistency
conditions

Form tools

The EMS
example

Zull-07.qxd 20/8/04 7:38 AM Page 165

TRADE-OFFS

The forms concept can facilitate our analysis and design work considerably. However,
we have to beware of the hammer syndrome: “To a man with a hammer, everything
looks like a nail” (accredited to Mark Twain). In many cases, the idea of forms will
seduce us to think of materials as pure data containers. We often observe this tendency
at the beginning of a project, when developers do not have a full understanding of the
domain contexts. We have to recognize this risk and avoid it. An application domain
consist of forms and nothing else only in very rare cases. We have to constantly ask
whether or not the material we study is really used as a form, or whether other domain
interactions may be meaningful. We have to carefully study which materials can be
modeled as forms. The more domain functionality we allocate to a material, the easier
it will be for us to develop it further. Eventually, we will be able to deal consistently
with domain changes in one place.

We could begin with a form-based design and gradually develop it further. If, dur-
ing the course of our project, we find that forms offer additional domain interactions,
then we could first model additional domain operations for these forms. For example,
we could model the calculation of the total price for a purchase order form. If we can
add many such operations to a form, then it is often useful to turn it into a “normal”
material. However, it does not necessarily have to replace the form. Both the form and
the “normal” material can coexist in the usage model. For example, we could have a
purchase order form and a more comprehensive material, such as the purchase order
itself.

166 T & M C O N C E P T U A L P A T T E R N S

Employee-FormEditor

Acronym hf

Surnaame Franz

Hans

Franzstraße 20

87765

877 / 8372628

hans@franz.de

First Name

street

ZIP

E-Mail

Telephon

Position Manager

Manager

Team Member
FIGURE 7.13

A generic forms
editor.

Forms and
“other” materials

Zull-07.qxd 20/8/04 7:38 AM Page 166

RATIONALE

Forms are a special kind of material. Forms contain mostly named fields that
can be filled out or read. This very simple usage of forms (that we observed in the
application world in a similar way) allows us to implement those materials in a
generic way.

WHAT NEXT

A specialized design pattern for forms may be found in Chapter 8.12.

7. 9 T H E A U T O M AT O N P AT T E R N

INTENT

Not every task within an application domain can be completed by the sole use of tools.
The automaton pattern describes how tedious routine activities or routine work can be
supported by means of the T&M approach.

PROBLEM

Tools are used to support human work. When recurring activities have to be done, we
call them routing activities or routine work. If such routine activities always produce
the same results, we can automate them. If there is only a tool available for the user,
then the same tool operations have to be repeated interactively. Such routine work is
an ideal candidate for automation. Therefore,

We are looking for a concept to support recurring routine activities with fixed
results in an unobstrusive way. The question is what the conditions are and how
such routine work could be automated by use of T&M metaphors.

T H E A U T O M A T O N P A T T E R N 167

Interrelation of Tools
and Materials

Material Design

Domain Service
Provider

Tool Design

Automaton

Technical
Automaton

FIGURE 7.14
The Automaton
pattern.

Zull-07.qxd 20/8/04 7:38 AM Page 167

RELATE TO

This pattern relates to the design metaphor of an automaton and can be seen as
complementary to the conceptual pattern tool design.

SOLUTION
We implement the recurring parts of a job as an automaton. From the
user’s view, an automaton encapsulates a specific sequence of work steps
without relating to any context to produce a well-defined result, without
interruption.

We build an automaton so that it operates similarly to tools on materials, where
the input that the automaton requires is limited to a small number of settings or
initial interactions.

We refer to such automatons as “small automatons.” They are normally imple-
mented to take over tedious routine work and can be used at the user’s discretion
within a work environment that includes tools, materials, and containers. If such
automatons are suitable for the materials involved, then they can be reconfigured
optionally like tools for use within larger work contexts. In this respect, they cover
standard cases. For this purpose, a small number of parameters may be set, and
the automatons can then run without manual intervention. This limits their use. In a
well-ordered work environment, there should be special tools available for special
cases, to maintain some flexibility.

Such automatons can be used for various purposes in an application system, with-
out destroying the basic character of a workplace designed for autonomous activities.

Automatons play an important role for functional workplaces (see Section 3.6.3). If
we want to optimally support well-known sequences of activities, we design an automaton
that integrates the components required. This integration is possible in different granu-
larities. In a loosely coupled environment, single tools are arranged within the “realm” of
an automaton. In this case, the tools maintain their own interaction component, but their
interconnection and exchange with materials is controlled by the automaton. In a more
strongly integrated environment, the automaton uses the functional component to
directly access single tools, itself representing an interaction component. Finally, inde-
pendent tools can totally disappear while the automaton uses selected subsets of tools for
a specific task, but it directly implements important parts of the domain functionality. This
means that the workplace has the character of a control panel.

The higher the integration, the more the automaton of a functional workplace
will become a “large automaton,” that is, it actively decides about the sequence of
activities involved to complete a well-defined task.

EXAMPLE

In our EMS example, we can see only one domain automaton, which inspects the
device park regularly for outdated devices, to then mark them for disposal or upgrading.
This automaton could interact, for example, with the in-tray of the device manager’s
mailing system. Then, whenever the device manager activates her electronic desktop,
the automaton will check the device inventory for outdated devices in the background.
If appropriate, it will produce a short note and place it in the device manager’s inbox.

All other activities are completed by using tools on specific materials.

168 T & M C O N C E P T U A L P A T T E R N S

Small
automatons

Automatons for
functional

workplaces

Zull-07.qxd 20/8/04 7:38 AM Page 168

DISCUSSION: AUTOMATON VERSUS TOOL

One question we frequently ask is what makes the implemented routine of an automaton
different from the algorithm of a tool operation. The answer is nothing, at least from
a purely technical viewpoint. In fact, both the routine of an automaton and the
algorithm of a tool operation are implemented by instructions, having a well-defined
effect on an object or returning a well-defined result.

The most important difference between a tool and an automaton is the use
context and the extent of the implemented domain operation, in particular the
following:

● Focused on the result to be achieved, a tool is only a means to an end for the user,
and its use depends on the work progress and the situation. The tool user has
control over each step in the entire work process. In this sense, we expect a
software tool not to be “self-operating” but manually directed by a user. For this
reason, the tool’s functions should be atomic, from the user’s perspective. Like an
elementary action with a manual tool, it wouldn’t make sense for a user to divide a
tool’s operation any further. For example, a “sort” operation for a tool that is used
to work with business cards is atomic. The user is not interested in the fact that a
sorting algorithm has to be executed to implement the steps of that operation.

● In contrast, the use of an automaton means that the control over a defined
sequence of activities is passed from a user to an automaton. The user is not
interested in actively executing the steps involved in a work process. As long as
the standard situation, for which the automaton was built, and the defined
result meet the user’s expectations, then the user has no interest in intervening
in the process.

In the T&M approach, automatons correspond to our notion of technical
processes as an automatism. From the user’s perspective, a computer runs many auto-
mated processes to support the expected functionality, where the user is normally not
interested in the details. We use this notion of processes in computers to represent
domain processes in a suitable way.

In this sense, we have used automatons to encapsulate non–object-oriented com-
ponents of a system platform, for example, a relational database (see Section 11.2.5) in
early T&M projects. We have used such automatons for two reasons. First, they encap-
sulate the concrete protocol and the interface. Second, they implement a domain
interpretation of a technical component within the T&M usage model. For example,
an automaton for host communication can be used both for the concrete transport of
operative data from an object-oriented application system, and to use an appropriate
tool to inform users whether or not their connection to the host is established and their
data are being transferred.

Similarly, we have encapsulated transport mechanisms over a local area network
(LAN) for client-server connection, or to implement a mail system in automatons.
In these cases, rather than representing the automaton itself, the automaton was
“hidden” behind a transport medium, such as an outgoing mailbox or a jointly used
registry.

More recently, we have been modeling automatons where an essentially param-
eterizable domain result is to be produced. Today, we would think of bundling a set of
services or business transactions as domain service providers (see Section 7.10).

T H E A U T O M A T O N P A T T E R N 169

Differences
between tool and
automaton

Encapsulating
technical
interfaces and
components

Zull-07.qxd 20/8/04 7:38 AM Page 169

TRADE-OFFS

The implementation of routines and processes in automatons has proven useful in the
following domains:

● To automate tedious human routine activities, where the automaton replaces
recurring steps otherwise performed by the use of tools to manipulate materials.

● To control processes at functional workplaces, where the automaton requires
minimal user input to produce a specific result using specific materials.

● To map technical processes running relatively independently of the application
system in embedded systems. In this case, an automaton represents external
technical processes or components that have to be controlled or represented by
the application system based on hard or soft real-time constraints.

The automation of tedious routine activities is an important design notion in the
development of interactive application systems based on the T&M approach. From the
user’s perspective, we first have to identify the routine activities that could be potential can-
didates for automation. In this respect, many developers act too quickly once they have
identified apparently “tedious” recurring steps. To answer this question on solid ground, we
should ensure that the following prerequisites are met for designing a small automaton:

● The activities to be automated are in a well-defined and schematic sequence,
and there are only a few alternatives that can be determined in advance.

● The set of activities produces a well-defined result, requiring certain identical
or similar materials.

● The process can be completed by an automaton once the materials to be
handled and the activities have been selected.

● The result can be seamlessly integrated in larger units of activities.

We have introduced the concept of a large automaton in combination with func-
tional workplaces. The autonomy that is characteristic for all our guiding metaphors
tells us that we have to observe a certain limit as to how much autonomy such a large
automaton should have. The reason is that there will always be a problem when the
concrete situation requires a deviation from an automaton’s standard run. For a large
automaton, we should also combine the benefits of an optimally supported work
process with the flexibility required for special cases. For example, a functional work-
place could offer other tools, in addition to an automaton, which would then be used
for special cases. Unfortunately, this solution does not always fit the usage model
because, for example, the user does not have the skills or possibilities to use these tools.
In that case, we could at least offer some cooperation options to allow a user to del-
egate special cases to other workplaces.

There is no general answer to whether or not automatons should have their own
interactive user interfaces for resetting or restoring them in case of failure, or whether
they are themselves manipulated by adjusting tools. Either solution should be moti-
vated by the underlying technology or the application domain.

RATIONALE

Tedious routine activities or routine work should not be supported by a tool. If the sin-
gle steps of the tedious routine work can be clearly identified, the user can be supported
by means of an automaton.

170 T & M C O N C E P T U A L P A T T E R N S

Automating
routine activities

Criteria for the
automation of

routines

Large
automatons

Zull-07.qxd 20/8/04 7:38 AM Page 170

WHAT NEXT

Matching design patterns for automatons can be found in the next chapter. Additional
conceptual patterns for automatons in the embedded world can be found at the end of
this chapter. Also the domain service provider pattern should be considered to take the
relationship between automatons and services into account (cf. Figure 7.14).

7.1 0 T H E D O M A I N S E R V I C E P R O V I D E R
P AT T E R N

INTENT

Modern technologies support new forms for an organization to present its services and
products. In addition, they allow an organization to open up new sales and service
channels to better support both customers and suppliers.

PROBLEM

We want to use modern technologies, including the Internet, to realize open systems
that integrate various applications and legacy systems within a uniform development
and architectural concept.

We need a design concept that encapsulates business logic into units indepen-
dent of interaction mechanisms or front ends, making them available for different
channels, technologies, and workplace types.

RELATE TO

This pattern is related to the concepts discussed in the patterns tool design and
automaton. For distributed systems it shows how to extract and encapsulate the business
functionality of these two elements (see Figure 7.15).

SOLUTION
We integrate different sales channels and workplace types. We use domain ser-
vice providers to offer bundled services and allow both users and customers and
suppliers to easily handle related products and services.

T H E D O M A I N S E R V I C E P R O V I D E R P A T T E R N 171

Interrelation of Tools
and Materials

Material Design

Domain
Service
Provider

Tool Design

Automaton

FIGURE 7.15
The Domain
Service Provider
pattern.

Zull-07.qxd 20/8/04 7:38 AM Page 171

By our definition, a domain service provider is a domain-specific conceptual unit within
a large distributed application system. A domain service provider represents business
logic in a way that encapsulates the reproducible and interrelated interactions of an
application context with the pertaining materials.

Domain service providers are addressed by application components or other
domain service providers and respond by supplying their services. To provide a service,
they use the materials they manage.

Domain service providers are implemented so that the specific way these services
are rendered and which interaction model is used to present the results at a user inter-
face remains open.

If domain service providers are not oriented to a specific presentation and handling
or interface technology, then a number of different sales channels could package the ser-
vices and present them differently, depending on the customer type and technology.
Different service providers could each support various workplace types and other services.

EXAMPLE

In our bank example, assume that there is a central service provider,
AccountManagement. From his or her desktop system, an account manager could
request portfolio information for a customer from this service provider. An account man-
ager working in the field, for example, selling a new insurance package offered by the
bank, could request account information for the same customer on a laptop application
in an ftp (file transfer) session. In addition, this customer uses the AccountManagement
service provider in a Web browser over the Internet, for example, to view account state-
ments and make payments from the account.

In this example, the domain service provider, AccountManagement, supports
a domain-specific functionality jointly used by different workplace types and frontend
technologies.

BACKGROUND: DOMAIN SERVICE PROVIDERS

Modern technologies have had a major impact on how organizations handle their busi-
ness as they open up different sales channels to reach customers. Many companies offer
their products online, and electronic commerce is regaining its pace, especially in the
B2B (business to business) sector. A major change can be observed, particularly in the ser-
vice industry, where companies expand their activities by adding services on demand,
call centers, or mobile field services. Currently, many of these service forms are still
found in isolation, somewhat blocking integrated services at customer sites, because
the underlying applications are primarily linked on a data level rather than over con-
ceptually higher business transactions. For example, many database applications are
based on isolated data for accounts, deposits, contracts, and other data pertaining
in some way to a customer, but a general concept customer with links to all related
entities is missing.

The Internet allows people to compare products and services directly. Potential
customers can obtain information about prices and services of different vendors quickly
from their homes. The Internet also allows competing vendors, including vendors from
different industries, to penetrate the core businesses of organizations. This means that
these organizations feel a need to be present in this medium. The reason is the increas-
ing trend that open markets and new technologies dissolve narrow industry boundaries.

172 T & M C O N C E P T U A L P A T T E R N S

The Bank
example

Zull-07.qxd 20/8/04 7:38 AM Page 172

For example, many insurance companies have started offering bank services, while
banks have expanded into the insurance business, and do-it-yourself companies offer
travel packages.

Though this change challenges many traditional organizations, it offers a chance
to bundle different services in a few concentrated sales or service points.

The downside is that most currently deployed application systems are too limited
to support these new business trends. In addition, many host-based applications have
reached the point where they can no longer be maintained or upgraded. While many
workplace applications have been replaced by other technologies or implementations,
we can see the same happening in an attempt to support new sales channels.

Unfortunately, there are not many integrated applications to support these organi-
zations in their efforts to grab these business opportunities. Domain functionality is
developed in many and different ways. If you find some degree of domain-specific inte-
gration, it is mostly found on the level of the host database and data-exchange.

Multiple implementations of application logic is the central problem that
new technologies must overcome. This problem is further aggravated by a technical
problem, because most new applications are implemented as client-server systems.
These systems are mostly structured on the basis of the so-called three-layer architec-
ture (see Section 9.3.6). This architecture suggests an integration of the functions or
applications involved on the data level. In summary, there is a lack of domain-specific
integration.

This chapter introduces domain service providers as a relatively new concept
within the T&M approach. Note that the concept of domain service providers com-
plements the other concepts rather than replaces it.

DISCUSSION: DOMAIN SERVICE PROVIDER

To ensure a uniform image toward the customer, coordinated sales activities, and a
continuous customer service, we have to integrate all systems used in an application
domain on a high domain-specific level. Regardless of their workplaces and tasks, all
users should be able to handle their activities, such as business transactions, services,
customer files, or product sales and support, in one system. Otherwise, we won’t be able
to open up application systems for both users and business partners. Domain services
represent this high level of cooperation and common access to the system. Based on
the principle of structural similarity, they encapsulate domain-specific tasks and objects
and their distribution as independent processes and elements.

Domain service providers are “behind” all application system frontends and chan-
nels, allowing us to represent a uniform service concept and a uniform customer-
oriented image. Note that all these different sales channels complement each other.
Regardless of whether customers contact their bank over online banking or in person,
they will always see their accounts reflecting past and current bank relationships and
obtain end-to-end service.

DISCUSSION: COMMON WORK OBJECT COLLECTIONS

We often find jointly used collections of objects, such as customer files, in central
archives or filing systems. In most application domains, objects are constantly needed
at different workplaces. On the functional level, the only important characteristic of
this jointly used collection is that it can accept and return materials.

T H E D O M A I N S E R V I C E P R O V I D E R P A T T E R N 173

Zull-07.qxd 20/8/04 7:38 AM Page 173

Let’s study this issue in the context of an example, using the JWAM registry. The
JWAM registry represents a central location to manage and register documents as they
are filed or retrieved by users, without taking any further specialization or additions
into account.

We define the following T&M design guideline:

A more or less generic container interface does not qualify a domain-specific
collection as a domain service provider, because there is no domain-specific han-
dling of materials.

DISCUSSION: DOMAIN SERVICE PROVIDERS AND RESOURCES

Materials are often handled and checked in a standardized form. These domain-specific
functions are independent of work relationships, where they are used in a specific man-
ner. The important thing to understand is that this is where domain functionality and
a collection of materials meet. Such basic services can be integrated either in existing
workplace concepts or by accessing other service components.

Even if a central task of a domain service provider consists in permanently storing
materials, it is not a pure material collection. In addition, the domain service provider
monitors the entire life cycle of a material. This means that we can add application
logic to creating, modifying, and deleting operations. The application developer can
then concentrate on the domain-specific use of materials, without having to bother
about a database interface.

Domain service providers of this type normally offer services like “use material B
to do activity A,” “check whether material A meets property B,” “use properties A, B,
C to create a material,” or “delete material A.”

It appears meaningful for this type of service provider to prevent the direct dis-
pense of copies of managed materials to clients or to accept modified materials from
clients. Instead, the service provider offers all changes to materials as operations at
its interface, in particular when these changes are highly atomic, so that several
clients can change materials concurrently. The reason is that all these dispensed
copies may cause a locking problem, or updates may get overwritten before they can
be saved.

A domain service provider is stateful, because it serves as a storage location for
objects representing the domain services of the application. Toward the outside, the
service provider changes its state as soon as a material it manages is modified.
Independent of the internal construction, a domain service provider appears stateful,
because a change to a material causes probing operations on the service to produce dif-
ferent results.

Consider this example. A car rental company manages its car pool. When the
market situation for used cars changes, then the depreciation rates for individual car
types have to be revised.

We define the following T&M design guideline:

The central domain-related management of material collections is a good
argument in favor of a domain service provider, because it would encapsulate a
material collection with the domain-specific interactions.

174 T & M C O N C E P T U A L P A T T E R N S

Example

Design guideline

Example

Design guideline

Zull-07.qxd 20/8/04 7:38 AM Page 174

DISCUSSION: DOMAIN SERVICE PROVIDERS AND BUSINESS TRANSACTIONS

Many companies supply their products and services in the form of business cases or
transactions, where such a business transaction often “visits” several departments. The
drawback of traditional transaction processing is that it is hard to follow up on each of
the transactions as they flow between workplaces. Centralized electronic transaction
management is normally used to solve this problem. This means that each active trans-
action is either processed at a defined workplace or stored in a central repository.
Finished business transactions can be archived or dissolved in subsets stored in differ-
ent locations.

A domain service provider can manage information about complex relationships
and the implications of business transactions for clients, facilitating their work in the
application domain. It encapsulates potential sequences of work steps and responsibil-
ities, representing a case or transaction by a material, such as in the form of routing slips.

Business transactions can be efficiently represented by domain service providers,
especially if we add the model of a user session. To activate a transaction, the user can
then select the domain service, which will “remember” the user until the transaction
is complete. In this case, we could do without representation of a transaction by a
material in the usage model.

Service providers that encapsulate business transactions could also be used to store
and retrieve materials. This means that the service provider’s task would partly over-
lap with a domain-specific resources management. However, a transaction service
provider often manages materials while a transaction is pending, passing control to the
resources management service provider when the transaction is closed.

Let’s look at a practical example. A new health insurance contract flows across
several departments or stations. More specifically, it arrives in the organization in the
form of an application. Later, the company requests specific documents from the
insured and his or her physician. Eventually, the contract is signed, posted for regular
payment of the premium, and the payments by the insured are posted to an account.
During the life cycle of this contract, the insured can call and request information
about a current business transaction.

We define the following design T&M design guideline:

Business transactions handled by several actors in a standardized from, and
which have to be located while they are active, can be easily managed by a
domain service provider.

These transactions are often represented as a domain-specific collection of mate-
rials, such as folders with routing slips, and they can be managed and processed in a
specified manner.

DISCUSSION: DOMAIN SERVICE PROVIDERS AND COLLECTIONS OF FUNCTIONS

Some domain-specific functions or calculations are recurring or repeatedly required in
the activities of an organization. Normally, there is an entire collection of interrelated
functions. These functions are independent of a workplace. They correspond to the
mathematical notion of a function, because they receive all data required as values for
call parameters, and return a value as a result of that function.

T H E D O M A I N S E R V I C E P R O V I D E R P A T T E R N 175

Example

Design guideline

Zull-07.qxd 20/8/04 7:38 AM Page 175

Domain service providers that are used as collections of functions are normally
stateless and not based on a session model. Ideally, they have pure value semantics.
However, if the calculations produced by a service provider build one on the other,
then we often have to store intermediate results or subtotals. In this case, a collection
of functions could tend to have a session character that is similar to the service
providers used for transaction processing.

Let’s look briefly at a practical example. Assume that the financial mathematics of a
bank can be implemented as a collection of functions, where all functions have to be
verified. It appears meaningful to implement a centralized collection of functions across
the organization, which can then be used in tools or automatons at different workplaces.

We define the following T&M design guideline:

A centralized collection of functions, to which we pass all parameters as values,
and which calculates result values without side effects, does not represent a
domain service provider. Rather, it is a mathematical collection of functions that
do not encapsulate interactions with materials.

RATIONALE

The introduced concept of domain service providers has become a central element of
our software systems. They provide the means to encapsulate domain-specific logic
from the specific frontend technology or workplace type. They complete the picture
outlined by tools, materials, and automatons.

WHAT NEXT

The construction of domain services is described as a design pattern in the next chapter.

7.11 T H E T E C H N I C A L A U T O M AT O N P AT T E R N

176 T & M C O N C E P T U A L P A T T E R N S

Example

Design guideline

Interrelation of Tools
and Materials

Tool Design

Automaton

Technical
Automaton

Probe Adjusting Tool

FIGURE 7.16
The Technical

Automaton
pattern.

Zull-07.qxd 20/8/04 7:38 AM Page 176

INTENT

The patterns of automatons and tools described in the previous sections are not suffi-
cient for use in embedded systems because they do not meet all technical requirements.
This section describes the additional concepts that are relevant—technical automaton
and related elements—in the context of embedded systems.

PROBLEM

So far, we have limited the concept of an automaton to reactive devices that are
activated by user interaction, such as the device park checker automaton described
earlier. Technical automatons, on the other hand, in our application system
model must include components that can be active without user intervention.
This special property of embedded systems has to be considered both in design and
construction.

What we need is a concept to control an embedded software system. This appli-
cation component has to be able to control or represent technical components
under hard or soft real-time conditions.

RELATE TO

This pattern is directly related to the concepts discussed in the automaton pattern (see
Figure 7.16).

SOLUTION
We design a technical automaton that maps domain-specific states of (real) tech-
nical devices to integrate them into the application system model. It informs
other components of the application system about state changes and repre-
sents an additional source for events.

Technical automatons represent a conceptual pattern for real, physical devices, such
as a lab system, a telephony system, or any other machine. Naturally, technical
automatons are also real, but they are a model implemented in software that replaces
physical devices. Technical automatons are a more specific variant of the generic
notion of an automaton used in the T&M approach for use in embedded application
systems.

We encapsulate the characteristics of embedded systems in technical automatons.
In an embedded application system, a technical automaton represents an addi-
tional source of events, which can trigger actions on an equal rank with user-enabled
actions.

DISCUSSION

The state of the technical context is extremely important for embedded application
systems, so it must be explicitly modeled. This state model has a purely conceptual
nature. It reflects the domain view that a software developer has of the technical
configuration, that is, the embedded hardware components. The state model includes
all aspects of the technical context that the developer deemed relevant for the design

T H E T E C H N I C A L A U T O M A T O N P A T T E R N 177

Zull-07.qxd 20/8/04 7:38 AM Page 177

and construction of the application system. This means that this state model can be
compared with the domain model when we develop interactive application systems
(see Section 6.4).

From the purely technical perspective, the state model of a context contains
mainly the interfaces available between hardware and software (e.g., readers or barcode
scanners), and the events and state changes of that technical context, which are visi-
ble at these interfaces. In a medical lab, for example, this could include sample trays or
sample flasks (see Section 11.4.2). In contrast, in the state model we normally abstract
from the technical details of hardware components.

Embedded application systems are used to operate and monitor or control technical
equipment. The state model of such an equipment is the equipment model.

The equipment model of an embedded application system is the software devel-
oper’s abstract view of the embedded hardware configuration. At runtime, the
equipment model maps the state of the application system’s actual technical
context, that is, the state of the equipment to be operated. From the technical
perspective, the equipment model includes the interfaces between hardware
and software, and the events and state changes of the equipment visible at these
interfaces. The equipment model is a conceptual model and is not implemented
in software.

Obviously, we cannot analyze and create the equipment model and the applica-
tion system model independently of one another, because they interact at runtime.

BACKGROUND

Technical devices in combination with application software are increasingly used outside
the manufacturing industry, for example, analytical automatons in medical laboratories
or call centers in telephony systems. These processes or technical components are usu-
ally characterized by the fact that they are used under continuous operation and real-time
requirements, widely independent of individual workplaces. For example, the telephony
system behind a call center or automatons in a medical lab should ideally be available all
the time and at an optimum throughput of materials, such as calls or lab samples.

At the same time, there are normally workplaces where these devices are controlled
and that request services or information about these devices. For example, a call center
may have functional workplaces for the marketing staff and an expert workplace for the
group manager who supervises and controls the call workplaces. Or the lab workplaces in
a medical lab may be used to monitor analytical automatons and run special analyses.

Real-world projects have shown that it is often meaningful to encapsulate the
technical processes or components in independent automatons. These automatons dif-
fer from the automatons described earlier in that they basically have to be modeled as
distributed or concurrent systems. They are independently active in a high availability
rate, and the only way to address them is through asynchronous communication mecha-
nisms. At first, this concept of a so-called “technical automaton” appears to conflict
with the reactive character of workplaces developed by the T&M approach. To refresh
your memory, these workplaces depend on their users’ activities. However, the simple
registry presented as an example in Section 7.10 represents a component that can be
modified by other users. At this point, we have to consider a second characteristic. The
technical components of an embedded system exist “outside” of our application software.

178 T & M C O N C E P T U A L P A T T E R N S

Representing
technical

processes and
components

Automatons
handle technical

processes

Zull-07.qxd 20/8/04 7:38 AM Page 178

In fact, they are generally independent hardware and software systems, using sensors and
actuators to interact within their environment. This effect on the environment is not
within reach of the “direct access” of our application software. This is reflected in the
fact that the application software would not be able to detect or influence that a lab
sample flask tipped over or that a phone handset is off the hook.

Let’s look at an example of a complex technical automaton for a telephony sys-
tem. Obviously, a device of this telephony system changes its state when it receives
an incoming call. We can describe this status change by implementing a “ringing”
state for a phone extension. Accordingly, the “telephony system” automaton, that is,
the control model we implemented in the software, also has to change its state. To bet-
ter understand this process, imagine this telephony system in an interactive application
software. The “ringing” state would have to be displayed by an interaction component
that, in turn, is represented to the user by a suitable icon. This means that we have two
equal-ranking sources of events: the user and the telephony system automaton.

WHAT NEXT

The subsequent patterns Probe and Adjusting Tool complement this pattern.

7.12 T H E P R O B E P AT T E R N

T H E P R O B E P A T T E R N 179

Telephony
example

Interrelation of Tools
and Materials

Tool Design

Automaton

Technical
Automaton

Probe
Adjusting Tool

FIGURE 7.17
The Probe
Pattern.

PROBLEM

Clients of a technical automaton are not always interested in the entire state of an
automaton. In many application cases, it is sufficient to know a partial state of the

Zull-07.qxd 20/8/04 7:38 AM Page 179

technical automaton. This is also reflected in our design principle that the model of an
application system should include only states motivated by the application domain. In
addition, we should bear the software-specific rule in mind that unnecessary commu-
nication traffic between the technical automaton and its clients would slow down the
system’s runtime or performance.

We want to design a unit related to a technical automaton where the client of an
automaton can select an interesting section of the state space mapped by
the automaton. We want to integrate this unit so that it will interfere as little as
possible with the automaton.

RELATE TO

This pattern is directly related to the concepts discussed in the technical automaton
pattern (see Figure 7.17).

BACKGROUND

The domain-specific states of a technical automaton can be grouped into two cat-
egories. Characteristic properties of an automaton that never change fall into the first
category. These properties may be read directly at the automaton. The domain-specific
states of an automaton that change in regular or irregular intervals fall into the second
category; these are variable reading values.

Unfortunately, it contradicts the very idea of a technical automaton to interfere
with its operation to read variable reading values. Instead, we want to see it operating
without interruption.

We are familiar with this kind of determining reading value from technical sys-
tems, where we normally use probes. Like sensors, probes sense or detect physical con-
ditions for reading purposes, without interfering in such conditions. We take this
concept and, using it as a metaphor, transfer it to the T&M approach. In doing this,
we show clearly that probes exist only on the application software level, and that,
unlike sensors, they are never part of a physical equipment.

SOLUTION

We design a probe as a component that can determine a measurable value of a
technical automaton with high accuracy. A probe can be set so that it reads and
updates this value in specific time intervals and with specified tolerances.

We attach probes to a technical automaton to read domain values (see Section 2.6.5)
based on typed reading values specified in the automaton, and make these values
available in the application system. In the design of our technical automaton, we will
specify the types of probes that can be attached. The automaton can be queried for
available probes.

DISCUSSION

In the T&M approach, a probe is an object that reads a defined reading value type from
an automaton and returns these values in specific intervals, for example, in domain-
specific intervals, or when specific values change.

A probe allows us to represent single reading values, relevant for the application
domain, from an automaton. A probe can aggregate the states of a physical device and

180 T & M C O N C E P T U A L P A T T E R N S

Zull-07.qxd 20/8/04 7:38 AM Page 180

use them to calculate domain values. The automaton knows the basic requirements of
the probe. Accordingly, it returns a result to the specified probe according to its state
changes. The probe is loosely coupled to its clients, and informs these clients when
new values are available.

RATIONALE

Technical automatons with probes are a useful conceptual pattern to design embedded
application systems. Technical automatons and probes form a conceptual unit. This
unit represents a source of events in the application system.

WHAT NEXT

The subsequent pattern Adjusting Tool complements this pattern. Technical construc-
tions can be found in the related design pattern of Section 8.13.

7.13 T H E A D J U S T I N G T O O L P AT T E R N

T H E A D J U S T I N G T O O L P A T T E R N 181

Interrelation of Tools
and Materials

Tool Design

Automaton

Technical
Automaton

Probe
Adjusting Tool

FIGURE 7.18
The Adjusting
Tool pattern.

PROBLEM
With technical automatons and probes, we have useful concepts to port data
from embedded systems to a T&M environment. What we also need is a tool to
be able to modify a technical system.

The components of an embedded system have to be set in regular intervals, in
addition to other tasks such as control and maintenance work. However, these technical

Zull-07.qxd 20/8/04 7:38 AM Page 181

components are normally not installed in the immediate neighborhood of the
workplaces supported by the underlying application system. What we need are
interactive tools in the work environment to be able to do these setting, control, and
maintenance jobs within an embedded application system.

RELATE TO

This pattern is directly related to the concepts discussed in the technical automaton and
the probe patterns (see Figure 7.18).

BACKGROUND

Though automatons can have an interactive component, it is not always possible in
technical automatons. The technical device or equipment, represented by an automa-
ton, may be in a location outside the work environment in which this automaton is
used. In many cases, security reasons may require that the technical automaton, which
controls a technical device and maps it to the application model, runs on a separate
computer, independently of the application system. Nevertheless, we need a way to
modify it from within the application system.

We observed in many real-world projects that all of the automatons used in these
projects had to be set in more or less frequent intervals. For example, the technical
automatons behind a telephony system supporting workplaces in a call center have to
be continually maintained. A user has to be able to configure this automaton to the
number and distribution of incoming calls over the call center staff.

In out search for a suitable concept, we oriented ourselves to the daily work with
“real” equipment and technical devices, which are normally maintained and set by
qualified engineers in regular intervals. The maintenance staff normally uses special
tools to set various parameters for these technical devices.

SOLUTION

We design an adjusting tool, which is a special tool used to maintain and control
technical automatons. Based on domain-specific motivation, it shows a seg-
ment of the state of one or more technical automatons, allowing us to set
parameters for these automatons.

Basically, a technical automaton can have a domain interface for that purpose.
The adjusting tools interact between the user and the technical automaton. The user
can use these tools to visualize and change the parameters of a technical automaton.

DISCUSSION

To be able to represent the states of an automaton, we connect the adjusting tool to
the automaton, for instance, by the use of a probe, so that it can be fed with state infor-
mation. We can use such an adjusting tool to specify both the type of information and
the interval in which these state descriptions should be returned. Depending on the
application domain, we can display a subset of the states of an automaton or the entire
range of domain states. In addition, we cannot generally specify how state information
should be updated in the adjusting tool. Based on typical requirements, state informa-
tion is refreshed upon each change of the automaton’s state or in fixed time intervals.

182 T & M C O N C E P T U A L P A T T E R N S

Zull-07.qxd 20/8/04 7:38 AM Page 182

Thus far in our real-world projects, we have rarely seen a case where a user operates the
adjusting tool explicitly to request state information.

Modifying the parameters of a technical automaton requires a slightly different
concept than what was described earlier for the design of tools and materials. In inter-
active application systems, the user normally has full control over everything that he
or she does with tools and materials. In contrast, technical automatons have a certain
“life of their own,” because they map independently running technical devices.

For this reason, adjusting tools cannot directly access a technical device; instead,
they send requests to the technical automaton. How or to what extent the automaton
will then be able to change state as a result of such a request, or whether it rejects a
requested state change, should be based on domain and software requirements.

RATIONALE

Technical automatons with probes and adjusting tools are a useful conceptual pattern
to design embedded application systems. Adjusting tools frequently will be used
together with probes; they manage this source of events in the application system.

WHAT NEXT

Technical constructions may be found in the related design patterns of Section 8.13.

T H E A D J U S T I N G T O O L P A T T E R N 183

Zull-07.qxd 20/8/04 7:38 AM Page 183

This page intentionally left blank

185

T&M Design Patterns

8 .1 I N T R O D U C T I O N

Chapter 7 described T&M conceptual patterns. In this chapter, we introduce their
matching T&M design patterns. These build on the conceptual patterns and are a
major constructive step toward actual software implementation. The major portion of
these design patterns deals with technically designing and implementing tools and
materials. In addition, we introduce patterns that complement the core elements of our
approach. This chapter discusses the following concepts, which have been introduced
in previous chapters:

● tools and materials;
● tool construction and composition;
● domain values;
● containers;
● forms;
● automatons;
● domain services; and
● work environments.

Each concept is described as one or more separate patterns (cf. Figure 8.1). We
take up the pattern structure from Chapter 7 and complement it with a few items based
on the character of design patterns:

● Pattern name:
● Intent: What is this pattern good for?
● Relate to: Which other conceptual or design patterns precede this pattern?
● Problem: Which problem does the pattern solve?
● Solution: The central solution concepts.
● Schema: The elements of the pattern and their interrelation.
● Background: What has led us to this pattern? (A section that can be skipped on

first reading.)
● Trade-offs: Pros and cons using this pattern

8

Zull-08.qxd 31/8/04 2:35 PM Page 185

● Example: An example, usually with a short discussion.
● Construction part: How can this pattern be implemented? Here we use short

examples from different programming languages (Java, C��, Smalltalk).
● What next: Which patterns will be useful next?

We begin this chapter with an overview of the T&M design patterns as a guided
tour. The reader will thus understand how the patterns of this chapter belong together.
In the final section we close with a discussion of the details of implementing the
patterns discussed in our JWAM framework. This section should serve both as another
example showing the interplay of the patterns and as a sketch of how to build a frame-
work that supports the constructive ideas of the T&M approach.

186 T & M D E S I G N P A T T E R N S

Interrelation of Tools
and Materials

Conceptual Patterns

Material DesignTools Design

Domain Service
Provider

Container FormWork
Environment

Automaton

Technical
Automaton

Probe Adjusting Tool

Automatons in
Embedded
Systems

Aspect

Domain Service Domain
Container

Form System

Environment Tools Composition Separating Function and
Interaction

Domain Values

Feedback
between IAF and

IP

Separating
Handling and
Presentation

Feedback
between Tool

Parts

Separating FP
and IP

Design Patterns

FIGURE 8.1
Hierarchy of
T&M design

patterns.

Zull-08.qxd 31/8/04 2:35 PM Page 186

8 . 2 A G U I D E D T O U R O F T H E T & M D E S I G N
P AT T E R N S

Based on the conceptual patterns discussed in Chapter 7, this section describes T&M
design patterns. We will now show how conceptual patterns and design patterns are
related. We then discuss which design patterns belong together. In this way we present
something like a roadmap, with comments for the reader, that continues the guided
tour to the T&M patterns.

The following guided tour is based on the T&M design patterns illustrated in
Figure 8.1.

THE ASPECT PATTERN (SECTION 8.3)
The central conceptual pattern is called interrelation of tools and materials. It was
introduced in Chapter 7.3 and shows how tools and materials complement each
other in the human work process. This chapter starts with a design pattern called
aspect that shows how the two components match.1 The aspect pattern explicitly
represents the interplay between tools and materials. We will discuss two construc-
tion parts, aspect classes and interfaces, in some detail, because they are suitable for
most cases. In addition, we will briefly describe a number of alternatives for special
cases.

THE SEPARATING FUNCTION AND INTERACTION PATTERN (SECTION 8.4)
This pattern is directly related to the conceptual pattern tool design (Section 7.5).
Designing and implementing tools is a major challenge to software developers as
here everything comes together: domain functionality, handling and presentation
that is based on a clear usage model, and the implemention of interactive graphic
components.

In order to deal with the complexity of this task, the separation of concerns is the
prime aim. This is addressed at a general design level by the pattern separating function
and interaction. It shows a proven method to implement the two fundamental charac-
teristics of a tool as two separate modeling and construction units. This pattern is based
on the idea of dividing tools internally into a function and an interactive part (IP).
A similar form of this separation appears in the Model View Controller concept well-
known in Smalltalk systems.

THE TOOL COMPOSITION PATTERN (SECTION 8.5)
Similar to the pattern separating function and interaction, the pattern tool composition
directly relates to the conceptual pattern tool design (Section 7.5). It addresses the
problem of scaling up tools by showing how we can build simple tools and then how
we can combine them to build complex tools. In this connection, we will think of tools
as components that can be implemented internally in different ways. Three construc-
tion parts give detailed guidelines on how to solve various construction problems.
Several other patterns introduced in this chapter ensure that tools may be combined

A G U I D E D T O U R O F T H E T & M D E S I G N P A T T E R N S 187

1. In this context, we use “aspect” as a separate concept, not related to “aspect-oriented programming.”

Zull-08.qxd 31/8/04 2:35 PM Page 187

into complex tools even when we implement the single tools differently. This includes
the following patterns:

● Feedback between Tool Parts
● Separating Handling and Presentation
● Feedback between Interaction Forms and IP

THE FEEDBACK BETWEEN TOOL PARTS PATTERN (SECTION 8.6)
This pattern directly follows the patterns tool composition and separating function and
interaction. With respect to tool composition and separation of function and interac-
tion, we have to answer the question how the single parts involved should interact.
The so-called reaction patterns play an important role in answering this question.
They control part of the communication between dependent components and are
described in the pattern feedback between tool parts, which is used, for example, in the
pattern separating FP and IP (Section 8.7). The central idea is again the separation of
concerns: this time we make sure that two or more construction units, which interact,
know as little of each other as possible.

THE SEPARATING HANDLING AND PRESENTATION PATTERN (SECTION 8.8)
Regardless of whether or not tools are divided into functional and interactive parts, we
can use another pattern called separating handling and presentation. Together with the
concept of interaction forms, we will introduce a proven and easy-to-implement con-
cept that allows us to abstract GUI design from the concrete user interface and GUI
toolkit. Some readers may think that this abstraction is superfluous in the days of Java
and Swing, but our project experience shows that independence from a specific GUI
library will pay in the long run. Of course, the trade-offs between direct GUI access and
another abstraction layer must be discussed.

THE FEEDBACK BETWEEN INTERACTION FORMS AND INTERACTION PART

PATTERN (SECTION 8.9)
This pattern is the logical consequence of the pattern called separating handling and
presentation. Once we have separated the concrete GUI classes from the general inter-
action of a tool, we need to bring together these two construction units. Showing
another application for the reaction pattern, this pattern describes a feedback between
IAF and IP. It concludes the patterns explicitly addressing tool construction.

THE DOMAIN VALUES PATTERN (SECTION 8.10)
As materials objectify pure domain functionality, little can be said about the concrete
construction of materials. So, although there is a conceptual pattern called material
design, there is no directly matched design pattern called material construction. On
the construction level, there is, however, a fundamental T&M concept called domain
values. We addressed that concept in Section 2.6.5, when we discussed the fundamental
elements and characteristics of the object-oriented programming model.

Domain values form the basic components that we use to compose materials. The
pattern domain values introduces different implementation techniques as construction
parts. In addition, we will show how special domain-value interaction forms (see also
separating handling and presentation in Section 8.8) or special domain-value widgets can
be used to simplify the development of sophisticate user interfaces.

188 T & M D E S I G N P A T T E R N S

Zull-08.qxd 31/8/04 2:35 PM Page 188

THE DOMAIN CONTAINER PATTERN (SECTION 8.11)
We have introduced containers as a conceptual pattern directly related to materials. On
the constructive level the pattern domain containers shows how containers can be imple-
mented. Although we have said that it is of little value to have a dedicated design pattern
for materials in general, we must solve special design problems for domain containers.
Today, developing technical containers, sometimes still called dynamic data structures, is
no longer a problem. There are good standard libraries for all common programming
languages. For this reason, we deal with this issue only briefly, simply explain the rela-
tionship between domain and technical containers.

THE FORM SYSTEM PATTERN (SECTION 8.12)
On the conceptual level, we have established forms as another materials category, in
addition to containers. Forms are suitable to implement simple materials with only few
domain-specific operations. The directly related design pattern form system shows how
we can implement forms and how they can be combined with a small set of standard
tools to speed up our application development process. Forms cannot exist “indepen-
dently” from materials. For this reason, we will also explain how forms can evolve
toward more complex materials with their own domain functionality.

THE AUTOMATONS IN EMBEDDED SYSTEMS PATTERN (SECTION 8.13)
The concept pattern automatons discusses the main characteristics of automatons. We
have already said that an automaton usually runs in the background. This reduces an
automaton almost entirely to the implementation of a domain or technical algorithm,
and there is little left for a general design pattern.

The matter is different with technical automatons in a distributed environment.
Therefore we discuss the design and construction of software within embedded appli-
cation systems as the design pattern automatons in embedded systems. More specifically,
we will explain how automatons can be built to fit into the T&M approach, taking
asynchronism and process distribution into account.

THE DOMAIN SERVICES PATTERN (SECTION 8.14)
The concept pattern domain service provider deals with collections of materials and the
domain interactions with these collections. As a direct logical consequence, the design
pattern domain service offers a way to represent the notion of service providers as soft-
ware units, resulting particularly in a possibility for flexible configuration of client-
server systems. For example, we could support totally different workplace types with
frontends (rich clients or thin clients on PC, Webtop clients, laptop clients, etc.) and
easily connect back-end systems (e.g., host, SAP). We will use the domain service pat-
tern to show how domain service providers may be implemented to realize these ideas.

THE ENVIRONMENT PATTERN (SECTION 8.15)
The concept pattern work environment discusses the characteristics of the workplaces
and their environments according to the T&M approach. It defines the boundaries of
a workplace and embeds tools and materials in this workplace. In addition, it allows
the workplaces of this environment to communicate with other environments. The
design pattern environment explains how we can implement this generic concept and
what features we would normally need.

A G U I D E D T O U R O F T H E T & M D E S I G N P A T T E R N S 189

Zull-08.qxd 31/8/04 2:35 PM Page 189

USING THE T&M DESIGN PATTERNS FOR THE JWAM FRAMEWORK

(SECTION 8.16)
The last section of this chapter describes how design patterns interact. Based on our
EMS example, we show how the design problems discussed in this chapter can be
solved by a framework approach. We show the general elements of an interactive
T&M application that we have moved into our JWAM framework in Java. Besides see-
ing the interrelation of the T&M design patterns, the reader can get an idea about
designing a generic application framework that is domain-independent but still
provides a good basis for implementing T&M applications.

The References at the end of this chapter includes useful sources for further study
of the material discussed in this chapter.

8 . 3 T H E A S P E C T P AT T E R N

190 T & M D E S I G N P A T T E R N S

Interrelation of Tools
and Materials

Material DesignTool Design

Aspect

FIGURE 8.2
The Aspect

pattern.

INTENT

Users handle tools to work with materials in completing their tasks. Tools and materi-
als should not be combined arbitrarily, because a tool matches some materials but not
others, and vice versa. Aspects link matching tools and materials.

PROBLEM
To identify a construction principle, ensure that tools and appropriate materials
match.

This principle should apply to the design, before we get to writing code. It appears
to be meaningful to identify more than a single material for a tool (and vice versa). The
domain-specific relations between tools and materials should emerge in the technical
design.

Zull-08.qxd 31/8/04 2:35 PM Page 190

RELATE TO

The aspect pattern is related to the conceptual pattern interrelation between tools and
materials (see Figure 8.2).

SOLUTION
We represent the interplay between tools and materials by the use of aspects.
Such an aspect objectifies the interrelated use of a tool and the materials it
operates on.

The characteristics of an aspect are:

● It represents both the syntactic interface and as much of the semantics of the
relation as possible.

● It ensures that a material meets the requirements specified in the aspect for its
use by a tool.

● In our construction, we pay careful attention that the tool uses its allocated
materials exclusively over the interface specified in the aspect.

● An aspect explicitly solves the technical problem of combining different
protocols or interfaces in our design.

To better understand the solution, consider the example shown in Figure 8.3. In
this example, a Tool uses an Aspect. This Aspect specifies the services that a

T H E A S P E C T P A T T E R N 191

Tool
e.g. DeviceEditor

Material
e.g. Device

Aspect
e.g. DeviceOrganizable

FIGURE 8.3
Pattern schema
to bind tools
and materials.

Zull-08.qxd 31/8/04 2:35 PM Page 191

Material has to provide for a Tool. The Material meets the interface prom-
ised by the Aspect and the behavior defined in the interface. Note that we are not
saying at this point that the material always must inherit from the aspect, because
several construction approaches for the pattern will use inheritance between
Material and Aspect while others will not, depend on the programming language
we use.

EXAMPLE

Let’s return to our EMS example for a moment to better understand how we can use
an aspect to bind tools and materials (see Figure 8.4).

In the EMS example, DeviceOrganizer is a tool that uses materials, includ-
ing the RoomPlan material. However, our DeviceOrganizer needs only part of
the features offered by RoomPlan. The DeviceOrganizer is responsible for
allocating Devices and Employees to rooms, giving the user an overview of the
distribution of devices and persons over the rooms. Figure 8.5 shows the interface of a
material, RoomPlan, and the aspect DeviceOrganizable, representing that part
of the interface the DeviceOrganizer is interested in.

BACKGROUND: MATCHING TOOLS AND MATERIALS

The way tools and materials interrelate within a work process is extremely important
for understanding human work. Handicraft traditions and underlying standards ensure
that tools match materials. The correct handling of tools and materials is part of every
crafts person’s training. Standards (e.g., the ISO standards) specify the appropriate
match of many tools and materials, such as screwdrivers, screws, and nuts.
Unfortunately, there are very few such solid traditions and standards for software tools
and materials. One of these few examples is the CORBA-IDL interface definition for
services. For this reason, we have to ensure in our construction that software tools and
materials match and that they can be combined.

192 T & M D E S I G N P A T T E R N S

DeviceOrganizer

RoomPlan

FIGURE 8.4
Using the

Device
Organizer tool

to edit the
Room Plan

Material.

Zull-08.qxd 31/8/04 2:35 PM Page 192

If we think of tools and materials as components for our application systems, then
this match means that we need appropriate interfaces. Based on the usage model, users
are supposed to use tools to work with materials; we obviously have to add an interface
to a material, so that it can be used by a tool.

Most component models currently available define generic component interfaces,
including a set of operations that can be used to request actual domain-specific opera-
tions at runtime. These approaches are too generic for the purpose of matching tools
and materials. What we want is an explicit domain-specific abstraction that describes
the match of tools and materials. This also tells us explicitly which conditions a
material has to meet to be suitable for a tool.

Our conceptual pattern interrelation of tools and materials (see Section 7.3) shows
that a tool should ideally be suitable for different materials. This means that a tool’s inter-
face to a material is narrower or more abstract than the full interface of a specific material.
If no explicit interface between a tool and a material is specified, then the question is
what segment of a material’s interface will be used by a specific tool. This information
cannot be easily derived from the design, because the interface that a tool expects cannot
simply be extracted from the material; it is determined by that tool’s requirements. Unless
we introduce additional components to the design, then analyzing the program text of
that tool is the only way to determine the interface between a tool and a material.

This basic problem becomes more serious if several tools use a single material. The
concrete interface of a material becomes “wider,” while the reference between tools
and materials drifts further apart. If we want to introduce new materials to an existing
application system, we must solve the following problem: To be able to handle the new

T H E A S P E C T P A T T E R N 193

DeviceOrganizable

+dimension () :Dimension

+tableOfContents :TableOfContentsDV

+hasRoom(String):boolean

+room(String): Room

+dimension () :Dimension

+setDimension(Dimension)

+putRoom(Room, Point)

+removeRoom(Room)

+reputRoom(Room, Point)

+tableOfContents :TableOfContentsDV

+hasRoom(String)

+room(String): Room

RoomMap

FIGURE 8.5
Material and
aspect
interfaces.

Component
models and their
interfaces

A single tool for
different
materials

Different tools for
a single material

Zull-08.qxd 31/8/04 2:35 PM Page 193

material using existing tools, we have to identify the interface that materials should
have. Unfortunately, we won’t find this information either in the tool nor in other
materials used by that tool.

TRADE-OFFS

A material is responsible for providing a set of coordinated operations that a tool can
use to fulfill a specific task. For this purpose, an aspect should specify features beyond
the purely syntactic interface and describe the behavior of materials.

Thanks to these features, aspects are also suitable to define the relationship
between automatons and the materials these automatons require. This means that
automatons and tools can be equally combined with materials.

The means available in object-oriented programming languages to specify
the behavior of aspects are limited. We want to use an aspect at least to specify an inter-
face. We want to define the interface as a type to ensure that its requirements are met,
which is basically supported by a static type concept available in all languages. In stati-
cally typed languages, you can use an abstract class to implement an aspect. Our use of
inheritance to link tools and materials is based on our experience with practical proj-
ects, where we used C�� and Eiffel. Considering that Java and similar languages offer
a named interface concept, these languages are even better for this kind of construction.

In contrast, we will have to deal with certain problems when trying to use a type
to implement aspects in languages that know only single inheritance and no inter-
faces. If we want to use classes to implement aspects, and if there is no one-to-one
relationship between tools and materials, then a material has to inherit from several
aspect classes. For example, Smalltalk knows only single inheritance, and the fact that
Smalltalk does not support static type checking represents an additional problem. In
that case, we have to test the interfaces of materials for compliance either at runtime,
or we check and change the program text in the course of our development process.

We can also use aspects to specify the behavior of materials in different
“strengths.” For example, one solution uses aspect classes with abstract implementa-
tions and appropriate hook operations. If we do not want abstract implementations for
the specification of behavior, then we could use the contract model described in
Section 2.3, at least in part, to define the conditions for operation calls and legal states
for a material. Note that these solutions require the use of class types to implement
aspects; otherwise, all that remains is the pure interface test.

When discussing Java and its way of defining interfaces, we have to deal with
the following questions. Should we use classes to define aspects at all? Or would it be
better to define aspects as named interfaces?

RATIONALE

If you have to design and implement complex or generic tools using more than one
type of material, then you should explore the different constructions realizing the
aspect pattern. For simple tools or those working on one material, subtyping of the used
material will do.

WHAT NEXT

There are no specific T&M design patterns for materials as they implement “pure”
application logic.

194 T & M D E S I G N P A T T E R N S

Specifying the
behavior of

aspects

Aspects and
single inheritance

Aspects and
materials

Construction
approaches for

aspects

Zull-08.qxd 31/8/04 2:35 PM Page 194

8.3.1 Construction Part: Using Inheritance or Interfaces
to Implement Aspects

If you use a class to model an aspect, then a material can inherit this aspect directly.
This approach normally uses inheritance such that all operations of an aspect class are
visible at the material’s interface.

In contrast, languages like Java let you use a language construct directly to define
named interfaces. In fact, this is necessary in Java, because the language does not
support multiple inheritance between classes.

Note that there is a real type-subtype relationship between an aspect and a material,
because a material inherits and implements the full interface of an aspect. In all places
where you need an aspect type, you can use any object of a material class that is
conforming to the type of the aspect.

EXAMPLE

Let’s look at an aspect interface in the context of our EMS example (see Figure 8.6). The
aspect interface shows the operations of a material expected by the DeviceOrganizer.

TRADE-OFFS

Aspect classes allow you to specify the aspect interface between a tool and its material
in an abstract class. This means that, although aspect classes can be used as types, you
cannot use them to directly create objects, as when using interfaces in Java. This con-
struction should be used so that tool classes never operate directly on a material class;
instead, they use abstract aspect classes (see Figure 8.7).

If classes implement aspects, then the material classes inherit from these aspect
classes and implement the features they inherited. Using polymorphism, tool classes
call operations implemented in materials.

Materials are normally not used by a single tool. Figure 8.7 shows that doing so would
cause a material to inherit from several aspect classes. However, a tool can also operate
on several materials. This means that the entire interface of a material includes the indi-
vidual interfaces of each aspect class. In summary, this case requires multiple inheritance.

Note that the schema shown in Figure 8.7 is simplified, as each tool uses one aspect
class to access one material. In the real world, complex tools would normally use more
than one material, and thus more than one aspect. Also, it is customary to combine
elementary aspect classes with more complex ones by the use of multiple inheritance.

By modeling aspects in classes, we can define standard implementations for opera-
tions, which complies with the basic idea of aspects. In fact, the more accurately the
behavior of materials is described, the more probable it is that a tool will be able to

T H E A S P E C T P A T T E R N 195

FIGURE 8.6
Example of an
aspect interface.

The EMS
example

Aspects and
multiple
inheritance

Aspect classes
and standard
implementations

public interface DeviceOrganizable
{

public Dimension dimension ();
public TableOfContentsDV tableOfContents();
public boolean hasRoom(String name);
public Room room (String name);

}

Zull-08.qxd 31/8/04 2:35 PM Page 195

work on a material, both in terms of syntax and semantics. In addition, these standard
implementations allow us to model the material state that a tool requires early on,
that is, in the aspect class. Material classes can override the defined operations or add
attributes to expand a state.

However, a construction that also defines attributes in aspect classes should be
handled carefully. The reason is that such a construction conflicts with the idea that
aspects are interfaces, as well as with the object-oriented design principle that abstract
classes should be lightweight. As a consequence, all material classes we derive are
“burdened” with these attributes. Even if this may be justified in the original design of
an application system it does not necessarily mean that future material classes under an
aspect class should actually be defined with these attributes.

If we use interfaces to implement aspects, as in Java, then the pattern schema
would look like the one in Figure 8.8.

In this case, however, we could not provide for a standard implementation in the
aspects. This limitation caused by the use of interfaces is offset by the fact that we will
not erroneously define attributes for our aspects that would burden all derived material
classes. In addition, the problem of many tools using many materials is solved, because
Java supports multiple inheritance for interfaces.

CONSEQUENCES OF STATIC ASPECT TYPING

One major benefit of static typing by means of an aspect class or an aspect interface is
that the compliance of a material with an aspect is checked at translation compile time,
which is like asking: “Does the material implement the type defined in the aspect?” In
addition, it ensures that a tool can use “its” materials only under that aspect, which is like
asking: “Does a tool exclusively use materials of that aspect type?” In a class-based solu-
tion, we can use standard implementations or template methods to specify behavior. And
finally, if we are careful, we can implement a state for materials at that early stage.

196 T & M D E S I G N P A T T E R N S

Material 1 Material 2 Material N

Tool 1

Aspect 1

Tool 2

Aspect 2

Tool 3

Aspect 3

Tool M

Aspect M

FIGURE 8.7
Tools use aspect

classes to
operate on
materials.

Zull-08.qxd 31/8/04 2:35 PM Page 196

The idea of aspects does not have to be limited to coupling tools and materials. In
fact, we have extended it to the relationship between automatons and materials. If we
think of aspects as protocols that a class should meet, then we can find additional
applications for this modeling type. Examples include a protocol for the use of con-
tainer classes, or between containers and managed objects, or to distribute objects. In
all cases, objects expect a specific protocol, or generally more than one operation.
At the same time, we have to answer the question whether separate classes for these
protocols would eventually be too expensive and confusing.

Unfortunately, using abstract superclasses to model aspects for materials has some
drawbacks.

When aspects are bound to materials, the inheritance mechanism is used differently
than in domain modeling. To better understand the relation between domain and soft-
ware design, we use inheritance primarily to model domain concept hierarchies, where
single inheritance is an essential composition rule. When using inheritance to imple-
ment aspect classes, we describe the match of tools and materials in one single work
context. This is a totally different notion, because an aspect can unite a set of materials
that have no similarity from the domain view. They are all totally different, apart from
the fact that they can be manipulated by the same tool. For example, a printer could
print the set of different materials and a trash could delete them.

Different ways to use inheritance can make your design harder to understand.
One solution for solving this problem is name conventions. For example, we name all
classes that model domain objects with nouns (e.g., Folder, Form, Account),
while using adjectives for aspect classes (e.g., Editable, Storable).

This problem does not initially occur when using interfaces to implement aspects.
However, it is meaningful to use interfaces for other things, in addition to aspects, in

T H E A S P E C T P A T T E R N 197

Material N

Tool M

<<interface>>
Aspect M

Tool 3

<<interface>>
Aspect 3

Material 2

Tool 2

<<interface>>
Aspect 2

Tool 1

<<interface>>
Aspect 1

Material 1

FIGURE 8.8
Using interfaces
to implement
aspects.

Generalizing
aspects

Problems with the
construction
approach

Interfaces used
for aspects

Zull-08.qxd 31/8/04 2:35 PM Page 197

languages that don’t support multiple inheritance for classes, such as Java. For this
reason, it is always a good idea to use the name convention proposed previously.

Another question is of a more general nature: Will inherited aspects cause materials
to be too closely coupled to tools? After all, inheritence means that a material has to
implement static interfaces that may be required only temporarily or in specific use.

Another important thing to remember when working with aspect classes and
multiple inheritance in large systems are the costs for compiling and linking, especially
in languages like C��. In addition, we may have to deal with an enormous amount
of superclasses, resulting in confusing code.

If we develop a complex framework based on the T&M approach and use
appropriate mechanisms to structure these frameworks (see Section 8.15), we will have
to deal with problems when attempting to allocate aspect classes to subsystems.

Considering that aspect classes describe the interface of a tool to one or more
materials, they actually belong to the tool classes that use them. On the other hand,
material classes must inherit from aspect classes. This means that material subsystems
would depend on tool subsystems, because a material subsystem inherits from classes
belonging to the tool subsystem.

Another thing is that we cannot simply allocate an aspect to a material class,
because we want the aspect to be basically valid for many materials.

On the other hand, if we build an independent subsystem for aspect classes, then
we will have to go through a tiresome amount of work to reconstruct the domain con-
text; and the material subsystems would depend on the aspect subsystems. Despite all
these problems, this is the road we will take, for example to avoid relationships
between material packages and tool packages in a Java environment. In summary, we
explicitly create aspect packages.

RATIONALE

We would use this solution of adapter classes for large and complex systems imple-
mented in languages that provide multiple inheritance.

8.3.2 Construction Part: Using Object Adapters
to Implement Aspects

Languages based on single inheritance do not let you use superclasses of materials to
build aspects. We propose the use of an adapter, as described by Gamma et al., as an
alternative solution.

You can use the adapter pattern to let classes collaborate, which they could not do
otherwise due to incompatible interfaces. In general, an adapter matches a specific
interface (the interface of the object to be adapted) to an interface expected by a
client. The adapter pattern comes in two flavors: the class adapter is based on multiple
inheritance (and corresponds to our aspect class), and the object adapter, which is the
one we want to use here (see Figure 8.9).

TRADE-OFFS

The obvious benefit of using object adapters is that the aspects can be clearly identi-
fied as independent classes in the design. Another important benefit is that this
solution also works for languages with single inheritance.

198 T & M D E S I G N P A T T E R N S

Aspect classes
and subsystems

Zull-08.qxd 31/8/04 2:35 PM Page 198

In addition, you can also use object adapters if the interface of a material does not
comply with the interface required by a tool. In this case, you can use operations of that
material when implementing the aspect so that it emulates the required interface. This
method of implementing aspect classes so that the material interface is adapted to a
tool can also be useful where aspect inheritance is supported. The operations declared
in the aspect class will not be visible in the materials. And the materials remain lim-
ited to their pure domain interface, while tool interactions are defined in special
adapters.

Another important benefit of the object adapter transpires when you need
materials with different functionality in different use contexts. In such a case, the
object adapter will prevent a material object from being loaded with functionality that
is required in only one place.

When using adapters, you can statically check for aspect compliance, and the
aspects will be visible as independent classes in the design. The material interface has
to be suitable basically for an aspect and can be adapted in the aspect adapter class, so
that the material remains “slim” (i.e., with a minimum of operations and attributes).
Consequently, another benefit of this approach is that you can incrementally improve
or expand your project.

Finally, you can link aspects to tools without destroying the overall architecture,
as discussed in Section 8.3.1.

Despite all these benefits, the adapter pattern also has drawbacks. One major
drawback is that you have to implement a concrete adapter subclass for each material.
When implementing generic tools, such as editors or list generators to edit many
different materials, you will soon observe an inflation of concrete adapter classes.
This adds complexity to your design, reducing the benefit of having explicit aspect
classes.

More serious problems arise in many contexts resulting from the two objects, such
as an adapter object and a material object, that actually make up the material. One of
these serious problems is a loss of identity: from a tool’s perspective, a material has a
different technical identity than its adapter. However, we need the domain identity of
materials in many situations. For this reason, we have to ensure that the domain iden-
tity of a material is maintained after we have attached an adapter, despite a different
technical identity. A feasible though rather complex solution uses the role pattern
described in Section 9.4.1. In any event, we cannot directly compare objects, but
have to define an additional identifier for comparison purposes. For example, in C��
you can elegantly solve this problem by overloading the comparison (relational)

T H E A S P E C T P A T T E R N 199

Tool Aspect

Aspectlmpl Material

FIGURE 8.9
Using object
adapters to
implement
aspects.

Adapting
materials to
different use
contexts

Zull-08.qxd 31/8/04 2:35 PM Page 199

operator. The additional identifier for objects is required anyway in complex applica-
tion systems to ensure unique identifiers in connection with persistence and coopera-
tion support.

Finally, we have to solve a construction problem. How and from where should we
create aspect objects? If we use direct aspect inheritance to build them, we can simply
pass a material to a tool, but the additional adapter objects for each tool-material binding
have to be available. The tool should not be able to know and create a special adapter
object. It should merely use the abstract aspect class. One possible solution would use a
“class object” of the abstract aspect class for the late creation of the concrete adapters. To
this aspect class object we would then pass the respective material as a specification for
the concrete adapter (see also the pattern product trader in Section 9.4.2).

Another more general solution would be the use of the factory pattern (see Gamma
et al.) for creating adapter objects.

RATIONALE

We recommend that the adapter object solution for languages that use single inheri-
tance without explicit interface construct and for large applications with different
workplace types, where material objects migrate between these workplaces. This
solution may also be combined with the aspect inheritance solution.

8.3.3 Construction Part: Using Development Tools
to Realize Aspects

The previous sections introduce solutions that use aspect objects to build aspects.
These solutions check at runtime whether or not there is an adapter object for a mate-
rial in compliance with the underlying aspect. More specifically, each material offers
operations for use by its aspects, and each tool uses only the material operations
declared in the aspect. The part of this test that is really critical at runtime has to be
done only once, namely when a tool or material is created. Once we can rest assured
that a material offers all required aspect operations, or that a tool uses only aspect
interfaces, then this situation will never change during that component’s life cycle. All
we have to do in addition is to ensure that tools and materials are bound correctly.

When using a language like Smalltalk, we can move expensive checks from the
time an object is created forward to its class definition. Aspect compliance is then tested
during the programming phase rather than at the program’s runtime. This solution
requires appropriate development tools, which shouldn’t be a problem in Smalltalk,
because all popular Smalltalk versions support an open development environment.
Such an environment lets you modify browsers and program text editors so that aspects
appear as independent categories that can be included in parsing.

A development tool for aspect editing purposes, say AspectBrowser, can be
used to copy the operations of an aspect to material classes. This means that you can
both use abstract superclasses to implement aspects and to define standard implemen-
tations for operations.

You can also use the AspectBrowser to define new aspect classes. Subsequently,
you can implement the operations you copied, if they are available only in textual form,
or replace a standard implementation from the aspect class by a material-specific one.

200 T & M D E S I G N P A T T E R N S

Zull-08.qxd 31/8/04 2:35 PM Page 200

Finally, you can use the AspectBrowser to check that all operations have been
implemented.

TRADE-OFFS

For this solution to work, the language you use should allow you to expand it during run-
time. To take full benefit of the solution, the language should offer a powerful metaobject
protocol (see Section 2.7). Notice that, even with the appropriate support by the
programming environment, this solution is insecure, because the standard tools of the
development environment do not know aspects, which can lead to an inconsistent system.

RATIONALE

We recommend this solution only for Smalltalk or comparable languages that can be
extended at runtime as an alternative to interface objects.

8.3.4 Construction Part: Alternatives to Using Aspects

Sometimes, tools use their materials directly instead of using aspects. In this case, a tool
always knows the full interface of a material. Polymorphism is used only if the materials
themselves form an inheritance hierarchy.

TRADE-OFFS

One major benefit of using this alternative to aspects is naturally that working without
aspects will simplify the coupling of tools and materials, because no extra work is
required conceptually or constructively to let a single tool use a single material. In addi-
tion, the coupling will be typesafe.

One drawback of this approach emerges when we try to let one tool use more than
one material. In this case, we have to make some constructive effort and maintain sev-
eral interfaces. If several tools are to operate on one material, it might become difficult
to see which parts of the material’s interface are suitable for which tool. Notice that
the coupling of tools and materials is not made explicit in the design. Consequently,
working without aspects will make it more difficult for us to change or expand our
design.

Nevertheless, there is enough justification for small and “young” projects to do
without aspects. Designs that have not yet reached their maturity often show a one-to-
one relationship between tools and materials. Languages that support dynamic typing,
such as Smalltalk, often develop prototypes or initial pilot systems without aspects. In
addition, extremely specialized materials may require a close tool coupling, that is the
tool must know the full material interface. This applies also to special tools used for a
single material.

And finally, aspects represent an abstraction of the work relationships between
tools and materials, so that often they can be implemented only once we have a clear
picture of these work relationships.

RATIONALE

We recommend using this solution when starting a new project and then creating
aspects successively as required in the course of the project. This solution works equally
well for simple tools and materials or very specialized ones.

T H E A S P E C T P A T T E R N 201

Zull-08.qxd 31/8/04 2:35 PM Page 201

8 . 4 T H E S E P A R AT I N G F U N C T I O N
A N D I N T E R A C T I O N P AT T E R N

202 T & M D E S I G N P A T T E R N S

Interrelation of Tools
and Materials

Tool Design

Tools Composition
Separating

Function and
Interaction

Separating FP
and IP

FIGURE 8.10
Separating

function and
interaction.

INTENT

This pattern describes how to utilize an important architectural principle of interactive
software systems, that is, the separation of interaction and function as one essential
design principle for interactive tools.

PROBLEM
We want to maintain the separation of concerns between a tool’s handling
and presentation on the one hand and on the other hand its functionality in
software. We want to be able to modify the interactive parts of the tool without
having also to adapt its functionality.

RELATE TO

The conceptual patterns tool design and interrelation between tools and materials show
how to design tools and materials on a conceptual level (see Figure 8.10). When we
have understood what a tool is good for and how users should be able to interact with
it, we can deal with the problems addressed in the current pattern.

Zull-08.qxd 31/8/04 2:35 PM Page 202

SOLUTION
When implementing tools, we observe the following conceptual division:

● Define the characteristic domain functionality for each tool independently of
its shape. We call this its function.

● Define a specific shape and a characteristic handling and presentation for
each tool based on its function. We call this its interaction.

BACKGROUND: TOOL CONSTRUCTION

We said that we define software tools to be interactive. For this purpose, we assign a
domain functionality as well as handling and presentation to each tool. To elaborate
on these guidelines, we search for answers to the following questions:

● Function: What domain purpose does a software tool have?
● Handling: How can a software tool be used?
● Presentation: How can a software tool and the material it works on be

represented?

Obviously, a tool must be good for something. It lets us handle tasks in that we can
use it to work on suitable materials. This means that a tool has a domain functional-
ity. The conceptual pattern relating tools and materials indicate how to design the
functionality of a tool.

A tool never becomes active on its own; it is always handled by a user, so that handling
is essential for a tool. The domain functionality of a tool is accessible only by handling it.
The conceptual pattern relating tools and materials shows that the domain functionality can
be utilized by different usage forms or interactions. This means that, although handling
refers to functionality, it can also be implemented independently of the functionality.

For a tool to be usable, it has to have a representation of its own. Considering that a
tool shows the state of the material it manipulates, the tool has to represent the material.
This representation is the only way that a tool can give feedback for the user needed for a
reliable working with tools and materials. Handling and presentation are closely related.

TRADE-OFFS

There are several ways to separate the function and interaction of tools. First, we can
implement both concepts in a single construction unit by representing these two con-
cepts as distinct interfaces (see design pattern tool composition in Section 8.5).

An alternative would be to further divide tools along the basic concepts. This will ini-
tially produce two construction units; we call them functional part (FP) and interactive part
(IP). We have described the appropriate design pattern separating FP and IP in Section 8.7.

When further dividing a tool, we take the three fundamental responsibilities of an
interactive tool into account. As mentioned earlier, each tool has a GUI representation
that can be manipulated by users, in addition to its domain functionality. The original
model-view-controller (MVC) paradigm found in Smalltalk systems uses separate
classes for each of the three responsibilities. Considering that presentation and user
input are closely coupled in modern GUIs, the separating FP and IP pattern combines
the presentation and manipulation of user inputs, originally separated as view and
controller, in a class—the interactive part.

We can identify a number of arguments in favor of each of the solutions intro-
duced here for internal tool construction. For prototypes, simple tools, and small or
young software projects, a separation based on the MVC paradigm or FP-IP model can

T H E S E P A R A T I N G F U N C T I O N A N D I N T E R A C T I O N P A T T E R N 203

Design guidelines
for tools

Responsibilities of
an interactive
tool

Zull-08.qxd 31/8/04 2:35 PM Page 203

introduce too much overhead. In these cases, we suggest the use of monolithic tools
instead (see Section 8.16.2).

However, the latter solution should be handled with care, because there is a
tendency to miss the right point when a tool with its different responsibilities should
be divided into separate classes. If this job is done late, it could become expensive.

For complex tools or large software systems, tools that were divided from the outset
are much easier to maintain and reuse, compared to monolithic tools.

RATIONALE

Always conceptually separate a tool’s interaction and function. For complex tools there
should be distinct construction units; also, if the interaction is likely to change frequently.
Otherwise, you could just represent interaction and function as different interfaces.

WHAT NEXT

The construction part using components to build tools of the design pattern tools
composition shows how to represent interaction and function as two interfaces.

The design pattern separating FP and IP shows how to implement interaction and
function as two construction units.

8 . 5 T H E T O O L S C O M P O S I T I O N P AT T E R N

204 T & M D E S I G N P A T T E R N S

Separating
Handling and
Presentation

Feedback
between Tool

Parts

Interrelation of Tools
and Materials

Tool Design

Tools Composition
Separating Function

and Interaction

FIGURE 8.11
The Tools

Composition
pattern.

Zull-08.qxd 31/8/04 2:35 PM Page 204

T H E T O O L S C O M P O S I T I O N P A T T E R N 205

Sub Tool

Tool
Composition

Context Tool

SimpleTool Combination Tool

Tool

FIGURE 8.12
Building tools
by composition.

INTENT

This pattern shows how you can build complex tools by composing subtools that are
responsible for handling well-defined tasks.

PROBLEM

A tool, including its manipulation and presentation and its domain functionality, can be
very complex, depending on the work and tasks. Using a few construction units to map
this complexity to one single tool is normally not a feasible software solution. In addition,
each tool has to be developed from scratch, even when we implement similar subsets of
functions. For this reason, we should try to build tools on the basis of existing tool com-
ponents to reduce the complexity of each component and make them reusable. Therefore

How can we divide a tool into subtools, and how should these subtools be inte-
grated into one tool?

RELATE TO

The conceptual patterns tool design and interrelation between tools and materials show
how to design tools and materials on a conceptual level (see Figure 8.11). Once we
have understood how a tool is related to the individual tasks in the application
domain, we can address the problem of how complex tasks or entire workflows should
be handled by a composition of tools.

SOLUTION
We develop tools so that they are responsible for a defined task or set of activ-
ities. We integrate the subtasks of these simple tools to form a combination
tool. We build a context tool that integrates several subtools. Each tool can
basically be embedded in the context of an enveloping tool, thus becoming a
subtool. For this purpose, we design a generic component interface.

The schema in Figure 8.12 shows the pattern and technical relations.
In our tools composition, we will ensure that context tools know their subtools

and can call their operations directly.

Zull-08.qxd 31/8/04 2:35 PM Page 205

BACKGROUND: BUILDING SUBTOOLS

We design tools for the domain tasks on hand, that is, we normally design one tool for
each task. We want to be able to combine tools for simple tasks to complete more com-
plex interrelated tasks. Therefore, new tools should be built on the basis of existing
ones. This allows us to reduce the complexity of single construction units and reuse
existing components.

Tools designed to support complex activities are normally built so that they can
manipulate one material and even material containers. The work that a tool is
designed for can normally be divided into subtasks, that is, working with single
materials and containers.

To combine tools from components, we first need to define several terms.

A tool used as a technical construction unit within another tool is referred to as
a subtool.

A context tool embeds subtools, both from the technical and conceptual views,
that is, it implements a domain combination tool.

A combination tool combines different domain services to complete a complex
task. It is composed of subtools in software, and it is a domain element of the
usage model.

A simple tool is domain-specific and represents one elementary task or
functionality. On the software side, it has no subtools. Simple tools are also
domain elements of the usage model.

The term functionality of simple tools has to be strictly separated from the term
function. The reason is that simple tools do not implement functions the way we know
from the structured design (e.g., create a record). Simple tools normally also have
states.

Since we are talking about simple and combination tools in our domain design, we
are now interested in how subtools and context tools relate. This composition can be
recursive. For this reason, a tool can occur as a context tool for its subtools and be itself
a subtool. In addition, we look for a view of tools as components to facilitate the
composition.

EXAMPLE

Figure 8.13 shows an example for a complex tool—the DeviceOrganizer we know
from previous sections. This example shows each room by a subtool. The actual room
plan embeds these tools. The right-hand part of this figure shows a special room—the
storage room, which is also represented by a subtool.

We could build this tool in different ways:

● We design separate tools for each task (a DeviceHandler), allocating
employees to rooms (a RoomHandler) and managing the storage room (a
StorageHandler).

● We build a complex tool that can display rooms and the storage room and run
operations on these rooms and devices.

● We build one complex tool by combining the single components.

206 T & M D E S I G N P A T T E R N S

A taxonomy
of tools

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 206

In our DeviceOrganizer example, we have chosen the following solution. The
DeviceOrganizer is a combination tool implemented by one context tool and sev-
eral subtools, where these subtools know nothing about each other. They are con-
trolled by the context tool so that the entire task of the combination tool, such as
organizing devices in rooms, is fulfilled.

TRADE-OFFS

When building separate tools, we often find it difficult to establish a relationship
between these tools. For example, when we move a device from storage to a room, then
this involves both the room and the storage. To produce this relationship, we would
either have to link the two tools or use their material to link them.

Linking the two tools directly means that one of the two tools (e.g., the storage
handler) has to know the other tool. This is not a good solution, because the storage
handler would lose its independence; it could be used only in combination with the
DeviceOrganizer.

Using the material to link the tools is also ruled out by our construction princi-
ples, because the material would then know about the existence of the tools, or at least
have to have some notification mechanism.

Though we could build one single complex tool, this solution is not appropriate
from the software view, because we would not be able to use the single parts, that is the
DeviceOrganizer, room handler, and storage handler, separately. For example, we
would have to write a new room handler for the room planner to create and arrange
rooms.

T H E T O O L S C O M P O S I T I O N P A T T E R N 207

Device Organizer

Material Actions Settings

SWT - RoomMap

D 211 (Empty) D 212 /213 (Overfilled) D

D 209 (Empty) D 208 (Empty) D 207 (Empty) D 206

Derices

Employees

itlp6

devpc2

devpc1

manspc3

FIGURE 8.13 Example of a complex tool: the DeviceOrganizer.

Design
alternatives for
related tools

Zull-08.qxd 31/8/04 2:35 PM Page 207

For these reasons, it appears meaningful to encapsulate all subtasks in independent
tool components. We could then compose tools based on the building block principle.
This means that existing tools should

● be usable as components in new tools, that is, we can reuse their functionality
for subtools in extended contexts; and

● whenever sensible, be able to act as combination tools, using the functionality of
new components.

We are looking for a construction part where simple tools can be composed into
combination tools based on a uniform schema.

RATIONALE

Whenever you have to design and implement a tool you should think about reusing
existing ones. Thus, for every tool design and construction, this pattern should be
checked for applicability.

WHAT NEXT

The design pattern separating handling and presentation shows how to further subdivide
tools with an elaborated user interface.

The design pattern feedback between tool parts shows the basic principles and
constructions of how to couple tool components in tool hierarchies.

8.5.1 Construction Part: Using Components to Build Tools

To enable an integration of tools as components, all tools have to support a common
tool interface. Figure 8.14 shows a minimal tool interface.

In this example, the tool interface has to let us initialize the tool (equip).
Subsequently, the tool can be activated (activate) and deactivated
(deactivate) or closed (close). The tool’s Interaction interface allows us to
show or hide the tool representation. The Functionality interface supports all
domain-specific operations on the tool and in addition, those operations required for
tools and materials to interact—mainly setting and probing the material. Specific tools
specialize this interface.

TRADE-OFFS

We build tools so that they behave like components. This means in particular that
their internal representation is hidden. This approach allows us to combine tools
with different internal construction to one single system. It even allows us to combine
complex tools from different other tools, which do not have to be built by the same
internal schema.

On the other hand, this construction approach leads to a generic interface
that may not fit perfectly in all situations. If, for example, we want to work with
multiple materials, then we have to use setMaterial() for changing the
materials. This is not very elegant and leaves the tool in an undefined state during
the changes.

208 T & M D E S I G N P A T T E R N S

Building tools like
components

Zull-08.qxd 31/8/04 2:35 PM Page 208

RATIONALE

Use this pattern whenever you have to combine subtools with different internal
structures or reuse existing tools that are built without a clear separation of function
and interaction.

8.5.2 Construction Part: Using Components to Build
Combination Tools

When building subtools and context tools that, together, form a combination tool, we
have to answer the question of how the functionality of each of the above simple tools
should behave within that combination tool.

To implement a combination tool, we use simple tools that provide the function-
ality we need. Accordingly, the functionality of each simple tool is used as a subfunc-
tionality. To combine several subfunctionalities, we build an additional context tool.
This context tool implements the interaction of the subfunctionalities and delegates
subtasks to the responsible subfunctionality. Remember that we are here talking of the
conceptual functionality of a tool, which does not necessarily mean that there has to
be an independent class for this functionality. The responsibility defined by a func-
tionality can also be assumed by the tool class. In this case, the tool class would directly
provide this functionality (see the discussion of monolithic tools in Section 8.16.2).

Delegating subtasks to subfunctionalities means that we clearly distribute tasks
over components. This means that the context tool does not have to handle all sub-
tasks itself. In one direction, from the context functionality to the subfunctionalities,

T H E T O O L S C O M P O S I T I O N P A T T E R N 209

<<interface>>
Interaction

+show()
+hide()

<<interface>>
Functionality

+setMaterial(m : Material)
+removeMaterial(m : Material)
+materials : Material[]
+updateMaterial(m : Material)

<<part of>> <<part of>>

+equip()
+activate()
+deactivate()
+close()

Tool

FIGURE 8.14
Minimal tool
interface.

Constructing
combination tools

Zull-08.qxd 31/8/04 2:35 PM Page 209

there should be tight coupling, because the context functionality delegates specific
tasks to the subfunctionalities, so it must know their interfaces.

For the context tool to be able to assume its coordinating function, it needs infor-
mation about relevant changes in the subfunctionalities. On the other hand, we don’t
want subtools to know their context tools, which would cause cyclic dependencies and
eventually make the system more difficult to understand and maintain. For this reason,
we use loose coupling in this direction.

In general, subfunctionalities should be built to be independent of their context
functionality, so that we can use them in different contexts. Since as we want to build
reusable tool components, it will eventually not be clear when building a tool that it
will be used as a subtool and integrated in a specific context tool.

We develop single tools so that they can also be used as subtools. For this purpose,
the tool functionality has to support a defined subtask. We use a context functionality
to integrate subfunctionalities into a combination tool. The context functionality will
then delegate subtasks to its subfunctionalities and coordinate them. In doing this, we
use the event pattern or observer mechanism to solve feedback problems.

Figure 8.15 shows how the observer mechanism is used. In this example, the con-
text functionality is the observer and the subfunctionalities are the observed.

EXAMPLE

In our EMS example with the DeviceOrganizer, the context functional-
ity DeviceOrganizerFunctionality coordinates a subfunctionality,
RoomEditorFunctionality.

When a user drags and drops a device from one room onto another room, then the
DragDropManager removes the device from the source room and adds it to the tar-
get room, as shown in Figure 8.16. This causes the source room editor and the target
room editor to send an event (using the announce operation) saying that their device
sets have changed. The DeviceOrganizer has registered for this event and obtains
the new device sets from the source and target rooms. The DeviceOrganizer can
now have the screen representation updated.

RATIONALE

This pattern should be used to combine well-designed subtools into combination tools.

8.5.3 Construction Part: Identifying Tool Boundaries

We have seen how tools can be recursively combined to form complex tools. However,
when looking at a tool component, this construction does not tell us automatically

210 T & M D E S I G N P A T T E R N S

Designing a
context tool

The feedback
problem

1. addObserver(contextFunc) 2. addObserver(contextFunc)
3. update()

4. update()

contextFunc:Functionality

subFunc1:Functionality subFunc2:Functionality

FIGURE 8.15
Feedback

between a
context

functionally
and its

subfunction-
alities.

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 210

whether or not it is the top-level context tool or an embedded subtool. But we can
always decide at runtime whether or not a tool component marks the tool boundary.
This means that this is the only tool component in this combination tool that has no
higher-level context tool.

A tool has to fulfill certain software and domain responsibilities, which we want
to manage in a dedicated instance. A good example for such responsibilities would be
information about tool names, presentation icons, vendor names, and tool versions, or
a list of aspects that the tool can manipulate. This information could be accommo-
dated in the context functionality of a tool. On the other hand, we could argue that
this information rather refers to the tool as a whole.

EXAMPLE

Figure 8.17 shows a class diagram for our combination tool, the DeviceOrganizer.
The DeviceOrganizer has a functionality, DeviceOrganizerFunctionality,
which formulates the domain handling of that tool. The DeviceOrganizer
can have an arbitrary number of subtools of type RoomEditor. In turn,
each RoomEditor has a functionality, RoomEditorFunctionality. The
DeviceOrganizerFunctionality knows the RoomEditorFunctionality
objects, while the context tool, DeviceOrganizer, does not know the other parts
of the RoomEditor’s tool interface.

T H E T O O L S C O M P O S I T I O N P A T T E R N 211

putDevice()
announce()

DragDropManager
RoomEditor

Functionality
DeviceOrganizer
Functionality

getDevices()

FIGURE 8.16
Control flow
when adding a
device.

The EMS
example

1..n

DeviceOrganizer DeviceOrganizer
Functionality

RoomEditor
RoomEditor

Functionality

FIGURE 8.17
Functionalities
in the Device
Organizer.

Zull-08.qxd 31/8/04 2:35 PM Page 211

RATIONALE

Use this pattern whenever tools have to be represented by a single instance in your sys-
tem and when a tool as a whole has to offer specific services that cannot be allocated
to a tool part.

8 . 6 T H E F E E D B A C K B E T W E E N T O O L P A R T S
P AT T E R N

212 T & M D E S I G N P A T T E R N S

Feedback
between Tool

Parts

Interrelation of Tools
and Materials

Tool Design

Tools Composition Separating Function
and

Interaction

FIGURE 8.18
The Feedback
between Tool
Parts pattern.

INTENT

This pattern tells you how to realize a feedback mechanism between tool parts, so that
one part knows as little as possible about the other.

PROBLEM

When composing tools from single components, we often find that there is an
asymmetric relationship between these components. A component, such as the context
tool, knows its subtools from their interfaces. On the other hand, a subtool should know
as little as possible about its context tool when state change messages are exchanged.

We can formulate the general problem that this pattern solves as follows:

Two components should be linked together so that one component is the service
provider and the other is the client. The client is responsible for reacting to the

Zull-08.qxd 31/8/04 2:35 PM Page 212

results of service requests. The client then needs to know how the provider’s
state has changed once its services have been used.

RELATE TO

This pattern solves a problem that emerges when you use the patterns separation of
function and interaction or tool composition (see Figure 8.18).

BACKGROUND: FEEDBACK MECHANISMS

Let us look at a subfunctionality that should have a way to inform its context func-
tionality about state changes. As mentioned earlier, we want to use loose coupling in
this direction to avoid cyclic dependencies. This inversion of the control flow is called
feedback problem (see Figure 8.19).

The literature describes several construction approaches and patterns to imple-
ment the required feedback mechanism. All of these construction approaches are
either based on their use contexts or are bound to specific language mechanisms.

Feedback mechanisms can be distinguished by whether the observer is generally
informed about the changes of the subject, or whether the subject informs its
observer about state changes in specific ways. In addition, a feedback mechanism may
be able to address a specific observer or an unknown number of observers arranged in
a hierarchy.

Event patterns initially appear suitable for our purpose of using and combining
tool components. A similar solution would be the observer pattern proposed by Gamma
et al., but if we have to deal with increasingly complex dependencies, it is better to use
a variant of the event pattern, which includes explicit event objects. In contrast, we
use a chain of responsibilities (Gamma et al.) for hierarchies of potential handlers.
A component can then send a request to these unknown handlers.

SOLUTION
We build a feedback mechanism, which informs observers about changes to a
subject in an abstract way so that these observers can respond to such a change.

The following construction parts spell out different concepts and related
construction approaches to solve this problem on a more concrete level.

T H E F E E D B A C K B E T W E E N T O O L P A R T S P A T T E R N 213

<
<
e
v
e
n
t
>
>

<
<
e
v
e
n
t
>
>

:Context
Functionality

:Sub
Functionality

:Sub
Functionality FIGURE 8.19

Feedback
problem of a
combination
tool.

Zull-08.qxd 31/8/04 2:35 PM Page 213

8.6.1 Construction Part: Event Pattern

This construction part uses combination tools, composed of tool components. The
event pattern will serve us as feedback mechanism (see Figure 8.20).

A subfunctionality informs its context functionality anonymously about each
relevant state change. In this example, the context functionality assumes the role of an
observer, while the subfunctionality acts as subject. If a tool is internally built from
separate functional and interactive parts, then the event pattern can also be used by
functional parts to inform interactive parts (see separating FP and IP in Section 8.7). In
this case, the interactive part is the observer and the functional part is the subject.

An observer knows its subject and calls operations that change or probe it. The
feedback mechanism works in the opposite direction, that is, the subject informs the
observers about events when a relevant state change has occurred. In order to avoid an
uncontrolled “firing” of events, we divide the operations at the interface of a class into
statements, requests, and tests (see Section 2.1.8). We apply this rule to the interaction
between context functionality and subfunctionalities:

● Requests and tests are probing operations (functions) with no side-effects.
Requests inform the calling context functionality, for example, about the state
of a material or about the configuration of a subtool. Tests are often used to
show whether or not other operations of a subfunctionality may be called, such
as to test pre-conditions for other operations. Probing operations must not
cause a visible side-effect at the interface of a subfunctionality. In particular,
they must not lead to informing the context functionality in its role as
observer. For this reason, requests and tests can be called at any time as a
response to a notification of the subfunctionality.

● Statements are operations (procedures) that change a state. They are used by
the context functionality to have a subfunctionality manipulate a material or
change the work state of a subtool. After a statement, the context functionality
can call a probing function to check whether or not the last subfunctionality
call was executed successfully. Most statements lead to a notification. For this
reason, a statement should never be used by a subfunctionality as a response to
an event it received.

TRADE-OFFS

The example of the FP-IP coupling by means of the observer pattern shows a clear
benefit of this anonymous notification: It is very easy to have arbitrary observers
observe a subject at any later point in time.

214 T & M D E S I G N P A T T E R N S

Observer

Subject

1.addObserver(contextFunc)
2.addObserver(contextFunc)

3. update()

4. update()

contextFunc:Functionality

subFunc1:Functionality subFunc2:Functionality

Observer

FIGURE 8.20
Using the Event

pattern for
combination

tools.

Structuring the
interface and

interaction
between

functionality
and sub-

functionalities

Interaction
between observer

and subject

Zull-08.qxd 31/8/04 2:35 PM Page 214

The subject (here the functionality) must not know how its observers respond to
changes. All the subject should know is that the observers can potentially respond to
changes. The idea is to have the subject inform the observers with minimum knowledge
of the interface when their own states or the material state has changed. Considering
that we don’t deal with languages that have an anonymous signaling mechanism built
in (e.g., Events in HyperTalk), we have to use the regular call mechanism for this
notification.

We have to take action to prevent an undesired “oscillation” between a subject
and observers. The reason is that, when observers cause another state change to the
subject as a response to being notified by the subject, then this leads to a notification.
Obviously, this process could continue infinitely and never end. Another problem can
occur when several observers register for the same event. In this case, observers that
get notified later will not find the subject in the state that was signaled to them. They
would then take wrong assumptions, such as calling operations on the subject that can
be called in the signaled subject state, but no longer in the current subject state. We
call these problems collectively “reactive change” and request that reactive changes be
constructively avoided.

If, however, these rules are observed, then the event pattern can be used safely. But
note that there are cases where we will combine a procedure with a function, such as
for reasons of better performance or understandability. Then, the operation looks like
a function but semantically is a procedure with a return value. In order to avoid con-
fusion and reactive changes, we should carefully document this type of procedure and,
perhaps, use naming conventions.

RATIONALE

This is the standard mechanism for a feedback mechanism with loose coupling of
clients and related service providers. It works well for all simple tools, that is, tools with
few different events.

8.6.2 Construction Part: Event Objects

We build an event class and create an independent event object for each relevant state
change in the subfunctionality. We extend the subfunctionality’s interface so that each
event can be polled at the interface. The context functionality can register for events
available at the subfunctionality’s interface. It can optionally pass an operation
together with the event.

The context functionality normally registers directly with each event. In many
languages (e.g., C�� and Java), an operation called by an event can be passed
together with an event more or less elegantly, that is, typesafe.

EXAMPLE

This section describes how we can implement the event pattern, extended to
include event objects, for the DeviceOrganizerFunctionality and
RoomEditorFunctionality in our EMS example (see Figure 8.21).

The class RoomEditorFunctionality implements the interface
EventSubject. DeviceOrganizerFunctionality implements two inter-
faces, that is, EventSubject and EventObserver, where the latter indicates that
DeviceOrganizerFunctionality is also an observer. None of the two classes
has to implement operations. Note that EventSubject and EventObserver
serve merely for typing and hiding the mechanism used to signal events.

T H E F E E D B A C K B E T W E E N T O O L P A R T S P A T T E R N 215

Avoiding the
“oscillation”
problem

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 215

At its interface, the RoomEditorFunctionality offers one operation for
each event that it announces; in our example we only have the operation
deviceCreated(). This operation returns a corresponding event object, which is
created during the initialization of the RoomEditorFunctionality (step 1). The
DeviceOrganizerFunctionality registers directly with this special event,
deviceCreatedEvent.

The DeviceOrganizerFunctionality requests an event object for a spe-
cific change that it is interested in from RoomEditorFunctionality (step 2).
The DeviceOrganizerFunctionality uses register() to register one of its
methods with this event object, deviceCreatedEvent (step 3). As this is a Java
example, the DeviceOrganizerFunctionality registers with the event using
an anonymous inner class.

If RoomEditorFunctionality calls the operation putDeviceProxy,
then the appropriate state change (e.g., adding a device to a room) will be executed.
Next, RoomEditorFunctionality calls the announce() operation at the
event object, deviceCreatedEvent (step 4). This means that, rather than inform-
ing all observers of RoomEditorFunctionality about an effected change, only
the observers registered for this specific event object are informed (step 5).

Once the control flow has reached the DeviceOrganizerFunctionality
after calling reactOnDeviceCreated, DeviceOrganizerFunctionality
can then respond to this event. It uses the operation that has been passed as a call back.
This means that it knows the state change effected in RoomEditorFunctionality,
so that it can poll the new values from devices and update its representation.

TRADE-OFFS

Complex tools show particularly well that the simple signaling of an observer can cause
noticeable runtime effects. A considerable number of possible state changes need to be
requested from a subfunctionality, or detected in the context functionality. This is the
reason why different state changes to the subfunctionality should lead to different
events, which can be distinguished early on, that is, in the subfunctionality. The con-
text functionality can then register for specific events.

The different states of a subfunctionality need to be observable at its interface. We
could develop a dedicated observer that monitors changes specified at a subfunctional-
ity’s interface.

216 T & M D E S I G N P A T T E R N S

1. new

2. deviceCreatedEvent() 3. register(...)

4. announce()

5. update(this)

:DeviceOrganizerFunctionality

:RoomEditorFunctionality deviceCreatedEvent:Event

FIGURE 8.21
Even pattern

with event
objects.

Complex tools
and the observer

mechanism

Zull-08.qxd 31/8/04 2:35 PM Page 216

In practice, we often find that subfunctionalities and their events are strongly
tailored to existing observers. This means that subfunctionalities offer only events
needed by existing observers. On the other hand, it also means that a subfunctionality
is more strongly coupled to observers, so that it may be difficult to replace observers
later on. To avoid this implicit dependence, we can model the states and events of
a subfunctionality solely from the domain view. In this respect, the design of state
automatons for subfunctionalities has proven to be a useful technique (see Figure
8.22). For this purpose, we define the domain states that a subfunctionality can take,
as well as the changing operations that initiate state transitions. Each state transition
will then be an event. For example, we can deduce the events called
deviceCreated, deviceLoaded, and deviceStored from the state diagram
shown in Figure 8.22. This is a nice way to design subfunctionalities that are inde-
pendent of specific observers.

RATIONALE

This is a rather elaborate feedback mechanism for complex tools with several events
and a broad probing interface of the observed subject.

8.6.3 Construction Part: Chain of Responsibility

When using the event pattern between subfunctionalities and their context function-
ality, we often find that there are messages sent from a subfunctionality to its context
functionality, which are not caused by a state change of that subfunctionality. These
are messages by which the subfunctionality signals that it cannot supply a requested
service. In addition, it is often difficult to identify the entity that can actually supply a
requested service. To allow sending such messages, we can build a chain of responsibility
between a subfunctionality and its context functionality; this chain can then be used
to send such messages.

T H E F E E D B A C K B E T W E E N T O O L P A R T S P A T T E R N 217

close

close

close

create device

load device

store devicestore devicestore device

editing

device editor
empty

creating

FIGURE 8.22
State model for
the Device
Editor in the
EMS.

Zull-08.qxd 31/8/04 2:35 PM Page 217

A chain of responsibility adds functionalities to a tool tree, in addition to
the event pattern. Requests can then be sent along the chain of responsibility. We
represent requests in a separate class, say Request, and we can then derive more
specialized request classes. For example, we could introduce a special request for a
closing procedure (see Figure 8.23).

BACKGROUND: CHAIN OF RESPONSIBILITY VERSUS EVENT PATTERN

For example, if a user wants to close a tool, he or she will most likely click a button
representing that subtool on the screen. However, the subtool cannot terminate itself
or its context tool. Also, it does not know whether or not the context may reject such
a closing attempt. Therefore, the subtool has to delegate this task to its context.
Depending on the construction, the context can consist of a context functionality, a
tool object, or the work environment.

If we select the event pattern to let the subtool’s context send a close request, then
we will violate several concepts of this pattern:

● An event is sent, although the functionality’s state has not changed.
● The event pattern should be used exclusively for signaling, but not to request

services from the context, in the sense of an operation call.
● If a subtool wants to close, then the observing object will not simply delete the

subtool from the memory. It will normally delete the subtool and call several
cleanup operations. For example, in C�� we would automatically call the
destructor. So we would have a reactive change leading to a system behavior
that is hard to control.

EXAMPLE

Let’s see the above idea in our EMS example. The DeviceEditor can edit several
devices concurrently. If a user closes a card tab, then the corresponding subtool sends
a request announcing that it wants to be closed (see Figure 8.24, step 1). The context
tool responds to this request by closing the subtool (step 2). If the user closes the con-
text tool itself, then the context tool will send a request to the environment (step 3),
causing the work environment to close the entire tool (step 4).

218 T & M D E S I G N P A T T E R N S

StoreRequest

Request

CloseRequest ...

FIGURE 8.23
Often used

Requests.

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 218

TRADE-OFFS

Regardless of whether or not you use a chain of responsibility, deleting objects can
cause problems in some programming languages, in particular when there are still
operation calls on objects on the callstack that are to be deleted.

In languages like C��, where you have to delete objects explicitly, problems
often arise while the callstack is being processed. To avoid having to remove the
callstack of objects that have already been deleted, we could integrate a trash bin
object into the system. When you then delete objects, they will be moved to that trash
bin, while the callstack can be further processed, and observers can be deregistered.
Objects in the trash bin will be actually deleted from the system when you empty the
trash bin. We place the trash bin emptying task before a new request to the event loop
of the window system, because we can assume that, at this point of the control flow,
there will be no more active objects.

In a language like Java, which has its own garbage collector, we don’t need a
dedicated trash bin to delete tool hierarchies. Java’s garbage collector only deletes
objects that can no longer be reached by a thread running in the virtual machine. This
prevents the deletion of objects that are still referenced in the callstack.

RATIONALE

Use a chain of responsibility for passing requests to the context. Whenever a subfunc-
tionality or a subtool or another subordinate element cannot handle a request for
service on its own, this is the right construction approach.

8.6.4 Construction Part: Tool Component
with Reaction Mechanisms

The component model for tools allows us to compose combination tools from
simple tools. However, for a fully generic tool interface, we have to integrate reaction

T H E F E E D B A C K B E T W E E N T O O L P A R T S P A T T E R N 219

1. handleRequest(closeRequest) 2. close()

DeviceEditor

3. handleRequest(closeRequest) 4. close()

Environment

MultiDeviceEditor

FIGURE 8.24
Chain of
responsibility
for our EMS
example.

Using C��

Using Java

Zull-08.qxd 31/8/04 2:35 PM Page 219

220 T & M D E S I G N P A T T E R N S

<<interface>>
RequestHandler

+handle(r:Request)

<<interface>>
Interaction

+setVisible(b:Boolean)

<<interface>>
Functionality

+useMaterial(t:Thing)
+unuseMaterial(t:Thing)
+Materials:Thing[]
+storeAndUpdateMaterials
 (t:Thing)

Tool

+equip()
+activate()
+deactivate()
+close()

<<interface>>
EventSubject

<<interface>>
EventReaction

+update(e: Event)

<<part of>>

<<part of>>

<<call>>

<<call>>
<<call>>

FIGURE 8.25 A tool component with reaction mechanisms.

mechanisms. Figure 8.25 shows these interfaces, which support both the event pattern
and the chain of responsibility.

RATIONALE

Use this construction part as a reaction mechanism when you assemble combination
tools from simple tools.

Zull-08.qxd 31/8/04 2:35 PM Page 220

8 . 7 T H E S E P A R AT I N G F P A N D I P P AT T E R N

T H E S E P A R A T I N G F P A N D I P P A T T E R N 221

Interrelation of Tools
and Materials

Tool Design

Tools Composition Separating Function
and Interaction

Separating
Handling and
Presentation

Feedback
between Tool

Parts

Separating
FP and IP

FIGURE 8.26
Separating FP
and IP pattern.

INTENT

This pattern details the essential concepts for designing an interactive tool. Even if you
decide to implement the function and interaction of a tool as one construction unit,
you should understand the principle behind this pattern.

PROBLEM

There are a number of different ways to constructively implement the conceptual
division of function and interaction.

The pattern separating function and interaction that we previously introduced
described the basic tool design principles. When developing a tool, we will not see the
usage quality of its handling and presentation before it is actually used. Since requests
for changing the handling and presentation of a tool will arise from its use, we want to
implement the requirements for different handling and presentation in software without
having to adapt the domain functionality.

The presentation of a tool depends largely on the GUI elements, so we also
have to take the changes in the GUI into account. We want to change the interaction

Zull-08.qxd 31/8/04 2:35 PM Page 221

of a tool by exchanging window systems or GUI frameworks, without affecting the
function. Therefore,

We need an internal division of interaction and function into two construction
units, which allows us to exchange the tool interaction without impact on the
tool functionality.

RELATE TO

This pattern directly follows the pattern separation of function and interaction or tool
composition. It leads to the feedback problem already addressed by the pattern feedback
between tool parts (see Figure 8.26).

SOLUTION
We divide a tool into a functional part (FP) and an interactive part (IP). We combine
FP and IP so that an IP knows and uses its FP, while the FP knows as little as possi-
ble of its IP. For this purpose, we use a suitable feedback (or reaction) mechanism.

The FP implements the functionality of a tool, while the IP implements the
tool’s interaction. We loosely couple the two parts, so that the primary direction of
the control flow, from the user into the system, is observed, thus maintaining the FP’s
independence of IP.

The following division of tasks for FP and IP results from this general separation
of function and interaction:

● The functional part (FP) is the acting and probing part of a tool. It defines the
domain functionality of a tool. The FP handles the material and knows the
work context supported by that tool. To handle or manipulate materials, the FP
uses operations specified in one or more aspects. To be able to support the work
context, the FP manages a work state—the tool’s memory.

● The interactive part (IP) defines the tool’s user interface. More specifically, it
accepts events, calls the FP, and controls the GUI presentation. To allow the IP
to abstract from the concrete interactions and the window system used, it
normally uses so-called interaction forms.

The T&M approach pays much attention to discussing tools and their domain inter-
actions with the future users. In this context, it makes sense to design the FP of a tool
first. The next step then defines the way a tool should be handled and the desired pres-
entation. This development approach ensures that all tools are motivated by the appli-
cation domain, and that the responsibilities of FP and IP are separated.

Notice that this guideline does not conflict with our use of prototypes, such as
when decisions are taken about how to proceed in the design based on presentation
prototypes. The reason is that these prototypes, essentially showing representation and
manipulation aspects, are built on the basis of a domain tool design, forming our plat-
form for discussions with future users.

EXAMPLE

In our EMS example, the material is the room plan as a collection of rooms. The user
wants to add a room to this collection. To do this, the user uses the RoomMap Designer
(see Figure 8.27). This RoomMap Designer shows the rooms, and its menu can be used
to create new rooms and edit existing ones. It creates and displays a new room when
the user selects the NewRoom option from the Actions menu.

222 T & M D E S I G N P A T T E R N S

Task division
between FP

and IP

FP is the starting
point

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 222

The interaction form, activator, converts the system event (e.g., NewRoom)
into a program event and sends it to the IP. The IP calls the FP’s operation, addRoom.
Next, the FP adds a new room to the room plan. This means that the user’s action has
led to the desired material manipulation. What’s missing now is some feedback about
the action’s success, where the following construction guidelines are important.

The IP decides whether and how it wants to represent the modified room plan.
The IP does not automatically add a new room to the rooms represented on the screen,
and it does not represent that change immediately. It needs information that the FP
actually created a new room. In addition, it does not know what standard name the FP
used for the new room.

On the other hand, the FP does not automatically display the new room when it
calls an IP operation, because the IP is responsible for this task. The FP does not have
information about the display of a new room. It merely offers a list with information
about all the rooms in the room plan. This information is available by calling a prob-
ing operation. The list is completely separate from the material, RoomPlan. The FP
decides about the form it wants to use to create the list with room information from
the room plan. Consequently, we need a feedback mechanism. The event pattern has
proven useful in these cases, too (see Figure 8.28).

BACKGROUND: A TOOL AS A REACTIVE SYSTEM

If you look at it from the technical perspective, a tool is built as a so-called reactive sys-
tem, that is, each tool activity is triggered by an explicit user action, such as clicking the
mouse or pressing a key (see Figure 8.29, step 1). These actions are directed to the tool
in the form of a stream of events (step 2). The tool reacts to each user action. To allow
the tool to do this, these events are interpreted by the IP. The IP converts these events
into FP calls or into a different presentation (step 3). The FP uses appropriate aspects to
handle the material (step 4). After manipulating the material the FP anounces the state

T H E S E P A R A T I N G F P A N D I P P A T T E R N 223

Actions Settings

D 211 D 212/213 D 214

D 209 D 208 D 207 D 206 D 204

Material

SWT - R New Room

Edit Room Map Properties

Room Map Designer

Edit Room Properties

FIGURE 8.27
The RoomMap
Designer from
our EMS
example.

Displaying state
changes

Zull-08.qxd 31/8/04 2:35 PM Page 223

change (step 5). The IP reacts on the announced event and updates the presentation
(step 6), which is recognized by the user as a program reaction (step 7).

TRADE-OFFS

The division of FP and IP described so far specifies responsibilities within a tool that
improve the legibility of your design. In addition, it supports two important design
goals: flexibility and reusability.

A tool’s user interface can normally be changed independently of its functionality.
Given that the domain components of a system, that is its functional part, aspects, and
materials, do not make any assumptions about the interactive environment in which
they are embedded, they can easily be ported to different system platforms.

Many development environments offer attractive support for visual programming.
GUI tools allow you to simply drag and draw GUI elements to your layout. You can
then gradually add more functionality to these GUI elements. Remember that we have
already mentioned some risks inherent to this design method (see Section 7.4).

224 T & M D E S I G N P A T T E R N S

2. addRoom 0

3. Event1. addRoom 0

:ipRoomEditor

:fpRoomEditor

:RoomPlan

FIGURE 8.28
Feedback
problem

between FP
and IP.

1. User Actions

4. Operations

7. Program Reactions

6. Update of Presentation

5. Events3. Operations

2. System
Events

Tool

:InteractionPart

User

:FunctionalPart

:Material

FIGURE 8.29
A tool can be

seen as a
reactive system.

Visual
programming

Zull-08.qxd 31/8/04 2:35 PM Page 224

In connection with tools construction, this method normally leads to tools that
are developed with the interaction part (IP) as its basis. Our experience has shown
that this does not always take fully into account the domain contents of a tool. In fact,
the tool could easily become a “window” on the material, which then appears to be
manipulated directly. The tool itself often has no own elaborate domain functionality,
beyond that of the material.

In addition, this method leads to a one-to-one relationship between tool and
material. In such systems, all tools have the character of an editor. For example, you
can use a tool to read attributes from a material, or set such attributes, and save changes
to a material. Though these applications use object-oriented technologies for imple-
mentation, they do not utilize them to the user’s benefit. Basically, such systems are not
much easier to use than conventional software systems.

RATIONALE

Whenever you have to design and implement a medium-sized complex tool that has a
good chance of needing frequent changes to its handling and interaction, this pattern
provides the basic design and construction priciples.

WHAT NEXT

The design pattern separating handling and presentation shows how to further subdivide
a tool’s interaction part to encapsulate the actual GUI used.

8.7.1 Construction Part: Interactive Part (IP)

As already mentioned in the previous Section 8.7, we build a separate class that encap-
sulates all IP tasks for each specific IP. Before we continue discussing this construction
approach, it will be useful to understand a few facts about IP.

An interactive part takes a stream of system events, triggered by user actions, as
program events and interprets them. In this respect, it converts presentation-
specific events (e.g., scrolling in a list or menu), while passing application-
specific events to its FP.
An interactive part implements the manipulation and presentation of a software
tool. It can call the widgets of the underlying window system or use generic input
and output components, the so-called interaction forms (e.g., 1:n selection,
activator), and call these interaction forms for representation and user input.

Returning to our discussion, the IP’s tasks are specified by its responsibility for
interaction within a reactive system. Each user action arrives over input channels as a
system event (e.g., the user pressed the left mouse button at a specific point on the
screen) at the event context of a tool. Modern systems use an event dispatcher, that is,
the normal distribution mechanism for system events in window systems, to route
system events to the appropriate event context.

TRADE-OFFS: SEPARATING TASKS BETWEEN IP AND INTERACTION FORMS

System events do not directly reach a tool’s IP from the outside. As one option, the IP
can use building blocks, the interaction forms introduced above, to react to interaction
events. Interaction forms encapsulate the specific window system and convert system
events into program events. System events are events generated by the system base,
while program events are events generated by the application program. The general idea
is to abstract the design of interactions from the specific system base. The IP can be

T H E S E P A R A T I N G F P A N D I P P A T T E R N 225

Characteristics
of an IP

Zull-08.qxd 31/8/04 2:35 PM Page 225

thought of as a shell around interaction form objects. Naturally, the IP can also interact
with the widgets of a window system. Even a combination of direct widget calls and
the use of interaction forms is feasible.

The main task of an IP is to interpret incoming events and manage the user inter-
face. Interpreting incoming events means that the IP decides whether or not an event
is to be passed on as an FP call, or whether it entails a change to the GUI presentation.

A specific implementation of widgets or interaction forms and their arrangement
based on a specific layout (horizontal, vertical, proportional, etc.) does not have to be
handled by the IP in modern window systems. In fact, this part of a tool design can be
specified separately by the use of a GUI builder or similar development tools or gener-
ators. The GUI resulting from this method is normally linked with the tool at runtime.

TRADE-OFFS: SEPARATING TASKS BETWEEN IP AND FP
To maintain a fair division of tasks between IP and FP, the IP must not make any
assumptions about the logical relation of FP operations or results from operation calls.
This method ensures that the IP will not automatically change the GUI representation
of information after an altering FP operation has been called. This is important,
because it would mean that the IP knows the effect of an operation call on the FP state,
thus breaking the semantic encapsulation of operations in the FP. Again, we must deal
with the general feedback problem. An appropriate solution was introduced in our
discussion of the event mechanism in Section 8.6.

RATIONALE

Whenever you have to design a complex tool with an elaborate user interface, it is use-
ful to implement the interaction part as a separate component. When the application
is supposed to work over a long period of time, you may consider abstracting interac-
tion design from the actual GUI system by means of interaction forms.

8.7.2 Construction Part: FP

The construction approach discussed in this part uses a separate class that encapsulates
FP tasks for each specific functional part (FP). First, let’s look at the terminology.

A functional part (FP) implements the domain functionality of a software tool. It
manipulates material via the interfaces of aspects.

An FP uses probing operations to provide information about its own working
state and that of a material. It manages its own working state and the tool
memory, depending on user actions and material states.

In the construction approach, the FP is the acting and probing part of a tool,
where the services of a tool are implemented. The FP defines what application-specific
activities can be performed by a tool.

The FP encapsulates the following design decisions:

● Access a specific material: When a material is to be manipulated, the IP always
calls the FP, passing information to the latter. In turn, the IP uses a material-
independent FP interface to obtain information for presenting a material. The
IP does not directly access a material. In some cases (e.g., to handle complex
tabular materials), the IP may be granted reading access to materials.

226 T & M D E S I G N P A T T E R N S

Responsibilites
of FP

Zull-08.qxd 31/8/04 2:35 PM Page 226

● Changes to the material: The IP can obtain information about the working state
of a material to the extent that such information is provided by the FP, which
means that a material never causes a representation to change.

● Managing a work context between different materials and a tool: The FP ensures for
a work context that all participating materials are edited consistently. For this
reason, the IP cannot at any time call the FP’s altering or proving operations. It
can call such operations only provided that the FP is in a suitable work state.
Tests can be used at the interface to identify the FP’s work state.

TRADE-OFFS: SEPARATING FP AND IP
In order to ensure the separation of interaction and function, the functional part
should not make any assumptions about the handling and presentation of the interac-
tion part. This is in line with our discussion about the responsibilities of the IP. An FP
should know nothing about the ways and means by which a user interface and its
interactions are realized. This, by the way, facilitates testing the functionality.

According to the general design principle, the FP never calls the IP directly to
cause a change of the representation. Here we have another instance of the general
feedback problem discussed earlier in Section 8.6.

RATIONALE

When you decide to implement the interaction part and functional part as separate
components, you should consider this construction part.

8 . 8 T H E S E P A R AT I N G H A N D L I N G
A N D P R E S E N TAT I O N P AT T E R N

T H E S E P A R A T I N G H A N D L I N G A N D P R E S E N T A T I O N P A T T E R N 227

Interrelation of Tools
and Materials

Tool Design

Tools Composition Separating Function
and Interaction

Separating
Handling and
Presentation

Feedback
between IAF

and IP

FIGURE 8.30
The Separating
handling and
presentation
pattern.

Zull-08.qxd 31/8/04 2:35 PM Page 227

INTENT

This pattern details the essential concepts of designing the interactive part of a tool.
Even if you should decide to implement the interaction of a tool as one construction
unit, you should understand the general principle behind this pattern. This helps clarify
the different concerns covered by an interaction.

PROBLEM

We know from previous discussions on the separating interaction and function pattern
that it is meaningful to separate the functionality of an interactive tool from its inter-
action. Since we are dealing primarily with the construction of interactive workplace
systems, the interaction will normally be initiated by users and implemented on a
graphical interface. There is a large number of commercial and public libraries and
development components for the design of graphical user interfaces. We collectively
call them user interface toolkits, or toolkits for short.

How can we encapsulate a user interface toolkit so that we reduce the
dependence of our IP on a specific toolkit to a minimum?

RELATE TO

The design patterns tool composition and separation of function and interaction provide
the conceptual background to understanding this pattern (see Figure 8.30).

BACKGROUND: SEPARATING HANDLING AND REPRESENTATION

The most important task of an application developer is to convert the domain
functionality of a tool into interactions and then use the latter in combination with
graphic components to implement suitable handling and presentation forms. Such
graphic components are readily available in many toolkits, such as Motif, TCL/TK, or
the Swing framework. These graphic components are often called widgets, and they are
used to create graphic user interfaces. Using these turnkey components to build your
user interface has several benefits. One major benefit is that you can quickly implement
complex user interfaces at relatively little programming cost. In addition, turnkey com-
ponents contribute to a uniform look and feel for your user interfaces, facilitating the
use of your application system. For example, Java’s Swing framework even let’s you
replace the look and feel of a GUI without having to change the toolkit.

Let’s first see how the components of a toolkit may be used to build tools (see
Figure 8.31).

The user interface of an IP is built by combining elements from the toolkit. In
doing this, we have to observe the following important points:

● Each toolkit makes assumptions about the control flow within an application.
This may conflict with your ideas about the tools to be implemented.

● The way widgets are linked with the IP is defined by the toolkit developers.
This means that, depending on the toolkit, different system events may have to
be linked with callback operations. These callback operations have to be
implemented in the IP.

Another motivation for loose coupling of IPs to the toolkit you use is the latter’s
volatility. The historical development of toolkits has shown that the interfaces of
toolkits have changed, often to the point where they were actually completely
redesigned, while other toolkits disappeared from the market. One example is Java: the

228 T & M D E S I G N P A T T E R N S

Designing the
GUI of an IP

Zull-08.qxd 31/8/04 2:35 PM Page 228

introduction of the Java Foundation Classes and the related Swing toolkit almost
entirely replaced the former GUI library, the Abstract Windowing Toolkit (AWT).

Figure 8.32 shows a segment of the Swing library’s class tree in Java 2. Important
features of this library include components arranged in an inheritance tree. Notice that
inheritance is used mainly to be able to reuse an implementation, as in other toolkits.
Such inheritance hierarchies generally violate the type-subtype hierarchy in many
ways. For example, you often find operations that can be called in many but not all
subclasses in the root class of the toolkit. In some cases, calling such operations can
either lead to a runtime error, or an exception is thrown, or the call does not lead to
any result at all.

T H E S E P A R A T I N G H A N D L I N G A N D P R E S E N T A T I O N P A T T E R N 229

User
Interface
Toolkit

Tool

Interaction

Functionality

FIGURE 8.31
Linking a tool
to a GUI
toolkit.

Exaple for a
toolkit library

Component

Container

JComponent

JTable JTextComponent JList JAbstractButton

JFrame

Frame

Window

JButtonJMenuItemJTextAreaJTextField

FIGURE 8.32
Components of
the Swing
library
(excerpt).

Zull-08.qxd 31/8/04 2:35 PM Page 229

SOLUTION

When building the IP, we want to ensure that it is not dependent on the toolkit we
use. Rather, we want to abstract the GUI design from a toolkit. For this purpose, we
introduce interaction forms.

The solution proposed in this section reduces the dependence of an IP on a spe-
cific toolkit.

We encapsulate different types of potential manipulations for a tool in interac-
tion forms. Next, we compose an IP from the instances of our set of interaction
forms. And finally, we ensure that the IP exchanges only domain values with its
interaction forms.

Let’s first look at some terminology to better understand our idea.

● An interaction form (IAF) is an abstract form of handling a tool. It represents a
domain way of using a tool and has no side-effects on that tool.

● An IAF represents and returns only domain values, which means that is has no
global effect. An IAF is used by an IP. An IAF’s interface does not make
assumptions about a toolkit, which means that the IP is totally independent of
a selected toolkit.

Figure 8.33 shows examples of common interaction forms (IAFs).
When building an IP, developers normally select interaction forms based on their

decision about how the functionality of the FP should be converted into useful user
interactions. Developers then create one object out of the set of available interaction
forms for each type of user interaction.

All information represented by an interaction form on the user interface, and the
results this IAF returns, are domain values. These domain values are supplied and accepted
by the IP. This allows an interaction form to run stateless and without side-effects.

Of course, an interaction form has to be represented at the user interface. On
the other hand, the type of widget used from a toolkit to represent an IAF at the GUI
is not important for an interaction. Also, the interaction form is not interested in the
size and position in which it is represented. This information can be encapsulated in
presentation forms. To better understand this, we discuss the following terminology:

A presentation form (PF) implements the specific representation and handling of
a domain interaction form (IAF) at a tool’s user interface.

Presentation forms encapsulate widgets of a GUI toolkit, implementing a
protocol that allows us to link it with interaction forms.

230 T & M D E S I G N P A T T E R N S

InteractionForm

Activator SingleSelection MultiSelection FillIn

FIGURE 8.33
Examples of

common
interaction

forms (IAFs).

Zull-08.qxd 31/8/04 2:35 PM Page 230

Presentation forms are managed outside a tool, but they are linked with
interaction forms inside a tool.

Depending on the GUI toolkit we use, the widgets of the toolkit could also
assume the role of presentation forms. In this case, there is no need to program
additional presentation form classes.

EXAMPLE

Returning to our EMS example, we want to see how a DeviceDescription is
filled out in the DeviceEditor. Figure 8.34 shows an interaction form used to fill in
a value, FillIn. We used such an interaction form in the DeviceEditor tool,
and selected a matching presentation form, JTextFieldPF. The value for
DeviceDescription is passed to the interaction form and read from it after an
interaction.

TRADE-OFFS

Interaction forms and presentation forms represent a good way to abstract from con-
crete toolkits. The tool is completely decoupled from the concrete GUI representation.
Presentation forms can be easily adapted to toolkits as they change, without a need to
change the tool interaction. In such a case, the interactive part does not have to be
changed. In addition, interaction forms decouple the material from its interactive
manipulation.

To allow the use of interaction forms independent of a context, they have to
exchange domain values or basic data types with the IP. This is the way to ensure that
the IP will have full control of what an IAF represents and which results it returns.

The set of interaction forms that can be identified no longer depends on the options
available in a specific toolkit. For example, it does not matter for interaction forms
whether or not there is a special widget available on the platform used. Most toolkits have
to deal with this problem, if they really want to be portable. Either they must reduce their
set of widgets to the smallest common set for all supported platforms, or they must reim-
plement exotic widgets not directly supported by a specific platform, which is expensive.

The presentation forms allow us to implement a presentation of the interaction
required by a tool for the platform used. For example, Microsoft Windows systems have
floating menu bars and toolbars in application windows, while the Macintosh displays
menu bars and toolbars for the active application in a generic program bar in the top
part of the screen. Similarly, buttons were represented differently in Windows 95 or
Windows 3.1. There are, however, still some fundamental problems in implementing
complex tree or table interactions independent of the specific GUI toolkit.

T H E S E P A R A T I N G H A N D L I N G A N D P R E S E N T A T I O N P A T T E R N 231

The EMS
example

DeviceEditor JTextField

JTextFieldPF

<<interface>>
Fillln

FIGURE 8.34
An interaction
form, Fillin, is
represented by a
JTextFieldPF in
the Device
Editor.

IAFs and domain
values

Encapsulating the
system platform

Zull-08.qxd 31/8/04 2:35 PM Page 231

By separating the interaction from the presentation form, we overcome the direct
coupling to single, specific GUI widgets from within a tool, so that we can respond
much more flexibly to changing presentations and toolkits. Of course, the indepen-
dence of a specific toolkit does not come for free. The cost is that we lose part of the
control over the widgets of a GUI toolkit. For example, we can no longer use interac-
tion forms to directly control a specific representation from within a tool (e.g., to set
the color of button labels). However, experience has shown that a very detailed con-
trol over widgets is normally not necessary for most tools. Representation details, such
as font colors, can normally be defined statically in the GUI builder. For tools where
exact control is required, we may have to access the presentation forms or widgets
directly. In summary, the interaction forms concept shows clearly which tools depend
on a specific GUI toolkit and which don’t.

RATIONALE

Whenever you need a decoupling of a tool’s interaction and presentation from the
concrete GUI toolkit you may use this pattern.

WHAT NEXT

The design pattern feedback between interaction forms and IP shows how to implement the
appropriate reaction mechanism between the interactive part and its interaction forms.

8 . 9 T H E F E E D B A C K B E T W E E N I N T E R A C T I O N
F O R M S A N D I P P AT T E R N

232 T & M D E S I G N P A T T E R N S

Material Design

Domain Values

Interrelation of Tools
and Materials

Tool Design

Tools Composition Separating Function
and Interaction

Separating
Handling and
Presentation

Feedback
between IAF

and IP

FIGURE 8.35
The Feedback

between
interaction

forms and IP
pattern.

Zull-08.qxd 31/8/04 2:35 PM Page 232

INTENT

We introduce a solution that uses the command pattern (Gamma et al.) to solve the
feedback problem between interaction forms and IP.

PROBLEM

User actions such as mouse or keyboard movements are accepted by the window sys-
tem. The window system converts these actions into system events, which are initially
passed on to the representation and interaction forms. For this purpose, representation
forms are normally linked to the appropriate widgets of the window system over a call-
back (or over subclasses and the bridge pattern). Interaction forms convert system
events into program events by alerting the IP. This requires an interaction form to be
linked to the IP. The IP can then identify the FP operations that must be called (see
Figure 8.36).

Interaction forms, however, must not know the specific type of the IP they
collaborate with, otherwise we could not use interaction forms with different IPs. As a
consequence, we would have to reimplement all interaction forms for each new IP. As
in the feedback between FP and IP (see Section 8.7), we have to solve the problem of
loose coupling between interactive components.

How can we implement a suitable feedback mechanism between interaction
forms and IPs to allow loose coupling and meet the special requirements of an
IP at the same time?

RELATE TO

The design pattern separating handling and presentation precedes this pattern conceptually
(see Figure 8.35).

SOLUTION
We use the command pattern to bind the interaction forms to the IP, achieving
loose coupling.

One way to solve this problem is to define suitable command classes (e.g.,
Command, DropCommand) for the program events sent by interaction forms to IPs.
Another way is to have a generic command class that identifies the appropriate inter-
action form. We can build a command class so that the interaction form will feed it
with appropriate domain values (see Sections 2.6.5 and 8.10). These domain values are
required to further process the events in the IP.

If an IP then wants to obtain information about a user action from an interaction
form object, it generates a command object. The IP passes a reference to the operation
to be called to this command object; this operation will be called as soon as the com-
mand object is activated. Subsequently, the IP registers the command object with the
corresponding interaction form object. The different interaction forms each accept a
set of command objects matching their interactions.

The interaction form object activates the command object registered with it when
the corresponding user action occurs. This causes the command object to call the IP’s
operation registered with it. In Java, a typical implementation of this pattern is based

T H E F E E D B A C K B E T W E E N I N T E R A C T I O N F O R M S A N D I P P A T T E R N 233

Zull-08.qxd 31/8/04 2:35 PM Page 233

on an interface that contains an execute method. Next, the interaction form calls
this operation from the registered command object. This allows the IP to implement
this interface and register directly as a command object, using anonymous inner classes
of Java.

If a user action means the input or selection of domain values (e.g., a user enters
an account number), then the IP requires these values. A command class used for such
user actions expects a parameter from the interaction form. The operation the IP
passed to the command object has to accept arguments from the command object or
probe the IP.

EXAMPLE

Let’s look at the DeviceEditor tool in our EMS example. This tool allows us to
save changes to a device. The DeviceEditor tool includes an interaction form,
Activator, for this user action. This interaction form is implemented by a button,
that is, a presentation form, in the GUI. Activator is an interaction form that
accepts only one type of command objects, namely Command. It is a command class
that does not expect any parameter.

The sample code in Figure 8.37 was taken from a Java implementation of the
DeviceEditor. The constructor creates the interaction form object for the button
and the command object. In addition, the IP of the DeviceEditor tool registers the
command object with the button.

When a user clicks the button to save device information, then the button
triggers the command object registered with it, and the command object calls the
storeDevice operation in the IP of the DeviceEditor tool.

TRADE-OFFS

One possible implementation variant to the solution introduced in this pattern would
pass only the name of the called operation as a character string to the command object
as callback. Java lets you use CoreReflection to call such a named operation at runtime.
But this solution is not as performant and less typesafe. In other languages, such as
C��, you have to use a method pointer or a “normal” class.

234 T & M D E S I G N P A T T E R N S

Implementation
variant: passing
operation names

FIGURE 8.36
Flow of events
in a tool with

interaction
forms.

click on button
execute(cmd)

doSomething()

Activator Interaction Functionality

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 234

An IP often represents the same interaction form in different places of a tool’s
GUI. In our preceding example, device information entered in the DeviceEditor
tool could be saved by clicking a button or by selecting a menu option or by typing a
value in a popup menu. In this case, the IP can register the same command object with
three interaction forms. Regardless of which of the three interaction forms activates
the command object, all three cases would call the same operation of the IP to save
device information.

One important benefit is that undo and redo mechanisms are prepared so that they
can be implemented directly in the command object, where the relevant context for
undoing or redoing the command can be stored. Previously executed command objects
are stored in a list that maintains the command history. This means that we can
implement unlimited sequences of undo and redo by traversing this list.

T H E F E E D B A C K B E T W E E N I N T E R A C T I O N F O R M S A N D I P P A T T E R N 235

FIGURE 8.37
Using the
command
pattern for
interaction
forms.

Multiple
registration of
command objects

public class DeviceEditorIP extends InteractionImpl
{
//constructor
public DeviceEditorIP(IAFContext iafsContext, ...)
{
// create command object
_storeCommand=new Command()
{

protected void doExecute ()
{
storeDevice(this);

}
};

// get interaction form
_store = (ActivatorIAF) iafsContext.interactionForm

(ActivatorIAF.class,”store”);
// attach the command object to the interaction form
_store.attachActivateCommand(_storeCommand);
...

}
// callback operation for the command object
public void storeDevice (Command cmd)
{
...

}
// attributes
// interaction form
private ActivatorIAF _store;
// command object
private Command storeCommand;

}

Zull-08.qxd 31/8/04 2:35 PM Page 235

RATIONALE

When you use interaction and presentation forms, you will have to solve the feedback
problem that this pattern addresses.

WHAT NEXT

The design pattern domain values discusses how to extend the basic data types provided
by object-oriented programming languages. Domain types are needed for decoupling
interaction forms from the interaction part, and the interaction part from the func-
tional part.

8 .1 0 T H E D O M A I N V A L U E S P AT T E R N

236 T & M D E S I G N P A T T E R N S

Interrelation of Tools
and Materials

Material Design

Domain
Containers

Form System

Domain
Values

FIGURE 8.38
The domain

values pattern.

INTENT

For application-oriented program design it is important to use the different value types
relevant in an application domain. This pattern explains how to design and implement
these domain values.

Zull-08.qxd 31/8/04 2:35 PM Page 236

PROBLEM

When using object-oriented programming languages to develop large systems, we
quickly notice a major shortcoming. The standard data types available in the languages
are not sufficient to implement the full bandwidth of basic values for an application
domain. Even a value as simple as a money value cannot be elegantly mapped on a
standard data type. The type REAL available in most languages has an arbitrary num-
ber of decimal places, while we need exactly two to represent a money value.
Moreover, calculations on REAL numbers lead to rounding errors, which are unac-
ceptable for money values in commercial applications. In addition, the arithmetic
operations defined for standard data types are generally not suitable for arithmetic
operations required in an application domain. For example, there are precise calcula-
tion rules for the conversion between currency values that differ from REAL
arithmetic.

At the same time, we cannot simply use classes and objects to extend the set of
primitive data types, because instances of classes have reference semantics, while data
types have to obey value semantics (see Section 2.6.5). Therefore,

How can we extend the primitive data types of object-oriented programming
languages to user-defined domain values based on value semantics?

RELATE TO

The conceptual pattern material design is the conceptual context for this pattern
as domain values are a consequence of our application-oriented approach to
modeling (see Figure 8.38).

SOLUTION
We implement domain values in an object-oriented language, similarly to other
user-defined types, using classes. However, in the implementation we ensure
that the instances of these classes behave like values.

Our new data types for domain values can be divided into two groups by general
typing principles: elementary domain values and composite domain values. An elementary
domain value (e.g., a time of day) represents exactly one “atomic” domain value,
which is implemented internally as one or more encapsulated standard data types. At
its interface, it offers only operations that are relevant for the domain to handle values
of that type (e.g., adjust the time).

Composite domain values build on elementary and other composite domain values.
They group different values into a new structured value (e.g., a period consisting of two
time values). At their interfaces, there are operations that compose domain values from
elements and access individual elements (constructors, selectors), in addition to the
domain operations.

In addition, we can classify values based on their cardinality, that is, finite
domain values and infinite domain values. Finite domain values correspond to an
enumeration type, which means that they have a fixed number of values (e.g., days
of the week). In contrast, infinite domain values cannot be limited (e.g., date), or
they extend over a range that can be divided into an arbitrary number of parts (e.g.,
time).

T H E D O M A I N V A L U E S P A T T E R N 237

Zull-08.qxd 31/8/04 2:35 PM Page 237

BACKGROUND: DOMAIN VALUES

Programming languages normally offer a limited set of data types that follow
value semantics. These standard data types, such as INTEGER, REAL, or BOOLEAN,
are either related to mathematics or oriented to implementation aspects. An attempt
to introduce domain value types to a programming language has not proven to be very
helpful, as we know from some so-called fourth-generation languages. In contrast,
functional programming languages, such as Miranda, are based on a totally different
approach. They use powerful type constructors for user-defined types based on value
semantics. Unfortunately, object-oriented programming languages have a serious
shortcoming in this respect, as they offer only the class concept for user-defined types.
It appears that language designers forgot the importance of domain-value data types for
the application system to be developed.

RATIONALE

For systems based on the T&M approach, domain values are an essential concept for
introducing domain-motivated values as the “atoms” of programming.

WHAT NEXT

The design patterns domain-specific containers and form system use domain values as an
implementation concept.

8.10.1 Construction Part: Domain Value Classes

We use classes to implement different domain values. They are arranged in a class
hierarchy, where the top class is the DomainValue class. This superclass is an
abstract class, specifying the following operations for its subclasses:

● Operations that test a passed parameter for a valid external representation of
a domain value. Parameters can be strings or number values as a type of the
representation (e.g., InterestRate.IsValid(“2,5”) or InterestRate.
IsValid(2.5)).

For composite domain values, this test refers to the individual elements.
These operations have to be implemented in the interface of a class or as class
operations, depending on the programming language used. If classes are first-
order objects, like in Smalltalk, and class methods are inherited, then these
operations should be implemented as class methods. In contrast, if using C��,
we would implement a prototype object. Clients would call this prototype
object, which represents the class object, to do the test there. Java let’s us use
inner classes to statically embed factory classes in each domain value class, and
to accommodate methods in these factory inner classes. Also, we could use the
Singleton design pattern (Gamma et al.) to ensure that there is one and only
one factory for each domain value type.

● Operations like hasFiniteNumberOfValues() or getAllValues()
allow us to request the set of values valid for a domain value type, if this set is
finite. These operations show us whether we are dealing with a finite or an
infinite domain value. For example, this aspect is relevant when representing
domain values by separate interaction forms. Alternatively, we could
implement a special class, such as Enumerable.

238 T & M D E S I G N P A T T E R N S

Zull-08.qxd 31/8/04 2:35 PM Page 238

● The operation toString() returns the value of a domain value in the form
of a string. Most window systems accept only standard data types at their
interfaces. Therefore, a domain value should be able to return its value in a
string representation.

● Both C�� and Smalltalk let us overload operators, so that we could define
relational operators (e.g., <,<=,>,>=,==,and !=) for domain values in
the DomainValue class. Notice that == and != are semantically required for
all data types, as suggested by Hoare. In any event, we have to ensure that
these operations have tests to make sure that two values can actually be
compared. It can also prevent relational operators from executing in domain
value classes with objects that cannot be compared (e.g., it wouldn’t make
much sense to use the greater-than operator on Color). Also, comparing with
objects of the superclass is invalid.

Depending on the application domain, a class like DomainValue will apparently
be the root of different inheritance structures of domain value classes (see Figure 8.39).
Each of the domain value classes has to implement the operations specified in
the superclass, DomainValue, for their specific values. To ensure that the value
of a previously created domain value object cannot be changed, for example in
C��, no public procedures that change the internal state should be offered.
Instead, there should be one or more special constructors with corresponding parame-
ters available.

To ensure that domain value objects are used according to value semantics, there
are two different solution variants, more or less suitable, depending on the program-
ming language: immutable and mutable domain value objects. The construction parts
described in Section 8.10.2 to 8.10.5 explain these solutions.

DISCUSSION: USING DOMAIN VALUES

The T&M approach uses domain values as elements of materials. If you think of a
material as a tree of objects, then the leaves of this tree are domain value objects that
in turn, use standard data types for their implementation. Therefore, we have to build
appropriate domain value classes for each special application domain, so that these
domain value classes can be used as elementary components of materials.

When building tools on the basis of the FP-IP pattern, domain values are the
only objects passed from the FP to the IP, in addition to standard data types. In any
case, interaction forms are called with domain values. This explains another reason

T H E D O M A I N V A L U E S P A T T E R N 239

DomainValue

Date Currency Range TableOfContents

FIGURE 8.39
Domain value
classes.

Domain values
for FP-IP
interaction

Zull-08.qxd 31/8/04 2:35 PM Page 239

why domain values should be built by value semantics. Only the function and not
the interaction should be able to directly manipulate a material (see Section 8.4).
For this reason, an FP must not pass references to a material to the IP. If the FP passed
domain values to the IP, then the IP would receive copies of the domain value
objects, at least from the conceptual perspective. If a user changes a value, then the
IP passes this value to the FP, and the FP will update the material to reflect this
change.

To display domain values in the IP, we can use specialized interaction and presen-
tation forms (see Section 8.8). These interaction forms for domain values are built to
match a domain value class, and they can directly check user input for validity. This
prevents that, for example, checking a date input for correct syntax is left to the FP,
which then activates a feedback mechanism to alert the user. Accordingly, we let
domain values do such checks that are not related to context. This means that domain
values offer the means to let an interaction form test user inputs for validity. Domain
values will then only have to be tested for consistency in the respective context. For
example, if users have to enter a date of birth and a wedding date in forms, then the
FP or the form itself could check whether the date of birth is older than the wedding
date.

8.10.2 Construction Part: Immutable Domain Value Objects

This solution variant implements domain values as invariable objects so that changes
to domain value objects are excluded. More specifically, we do not allow altering
operations at the interfaces of domain value classes. This solution can be used in all
object-oriented programming languages. It can be implemented both by the dynamic
creation of objects (in Java or Smalltalk) and by the static creation of objects (in
C��).

TRADE-OFFS

Unfortunately, this solution has the following drawbacks:

● New memory space has to be requested for each change to a domain value object.
● Programming with domain value objects from classes that do not offer altering

operations is not elegant, because we have to create a new identifier for each
change, and then assign the result of a change to that identifier.

The storage problem inherent in this solution can be solved by using the flyweight
and factory design patterns. These design patterns ensure that we do not have to create
a technical copy for each change. The flyweight pattern ensures that there will always
be only one object for each individual value, while the factory pattern creates objects
by means of appropriate operations. A factory stores all previously created domain
value objects. When a new domain value is requested, then the factory verifies
whether or not an object has been created for this domain value. If it finds such an
object, it will return this object; otherwise, it will create a new one. This ensures that
different components using the same domain value can share the same domain value
object.

The flyweight pattern requires that all previously created domain values are stored
by the factory, so that the factory obtains a reference to a domain value object, even if

240 T & M D E S I G N P A T T E R N S

Drawbacks
of solution

Using flyweight
or factory

Domain values
for IAFs and PFs

Zull-08.qxd 31/8/04 2:35 PM Page 240

an object is no longer used. This means that a garbage collector cannot remove a
domain value object from the memory as long as this factory exists. This leads to an
expanding system. Java lets you implement an elegant solution to this problem. You
can use weak references to manage objects, as in a WeakHashMap. Objects in
this hash map will be removed by the garbage collector when nothing in the system
references them, except the hash map. The flyweight factory can use Java’s
WeakHashMap to store domain value objects and let the garbage collector remove
them, as appropriate.

EXAMPLE

Figure 8.40 shows how we use several elementary domain values, such as Date and
EmployeePosition, in our EMS example. TableOfContents can be thought
of as a composite domain value that includes ThingDescriptions. Moreover, two
device objects, that is, Device: PC-1234 and Device: PrinterMax, share the
same date from the flyweight pattern.

The flyweight pattern is suitable to manage domain value objects, in particular for
domain values that have a finite and relatively small value range, such as days of the
week or month. Domain value objects for these classes are often created when the
application starts and deleted when the application is closed.

RATIONALE

Use this approach for domain value types with a limited number of values and a high
number of occurences of these values in your programs. Check whether the program-
ming language you use offers simpler means for “immutable” objects.

T H E D O M A I N V A L U E S P A T T E R N 241

The EMS
example

FIGURE 8.40
Using domain
value objects in
the EMS room
plan.

PartOf

PartOf PartOf

PartOf

PartOfPartOf

PartOf

PartOf

PartOf PartOf

PartOf

buildingD : Building

michael : Employee aPC : Device

D207 : Room

aPrinter : Device

td1 : ThingDescription

e : Engineer d : Datetoc : TableOfContents

td2 : ThingDescription

D105 : Room

Zull-08.qxd 31/8/04 2:35 PM Page 241

8.10.3 Construction Part: Mutable Domain Value Objects

To avoid problems inherent in the program-specific handling of immutable domain
value objects, we can choose a solution variant that uses mutable domain value objects.

In this solution, the domain value classes provide all altering operations required.
If the domain value objects created by these classes should be used exclusively by value
semantics, then the application programmer has to either copy the domain value
object before each altering operation, or the domain value classes have to use an
internal copying mechanism.

TRADE-OFFS

The first of these two variants is basically workable. We can use the flyweight pattern
to implement an internal performant copying mechanism. However, we have to
prepare programming guidelines to ensure that the application programmers will really
create a copy before each change to a domain value object.

We can use the body/handle pattern to implement the copying mechanism for
objects within our domain value classes. The body/handle pattern is extensively
described in the literature; Gamma et al. refer to it as “copy-on-write” in connection
with the proxy pattern. The body/handle pattern is based on the idea of building a
second class tree, a so-called “shadow tree,” in addition to the existing class tree, with
both trees having an identical structure. The class tree for domain values is the
body tree, and there is an additional isomorphic handle tree. Figure 8.41 shows an
example.

Notice that this solution is well balanced; it let’s you implement your storage man-
agement easily by counting the references in the body object, especially in C��. The
major drawback of this solution is that handle objects must not be used by reference

242 T & M D E S I G N P A T T E R N S

FIGURE 8.41
Domain value
classes, using

the body/handle
pattern.

DomainValueHandle DomainValueBody

TableOfContentsHandle

RangeHandle

CurrencyHandle

DateHandle

TableOfContentsBody

RangeBody

CurrencyBody

DateBody

Using the body/
handle pattern

Zull-08.qxd 31/8/04 2:35 PM Page 242

“from the outside.” In addition, this rule has to be established in programming guidelines.
Another drawback is that parallel inheritance hierarchies have to be maintained.

RATIONALE

Use this approach with a language like C�� or when you opt for a simple but
potentially error-prone solution.

8.10.4 Construction Part: Implementing Domain
Values as Streams

We often find simple values, similar to elementary units, used as domain values in
many applications. This hides the fact that complex domain values can be large and
extensive. One good example for such a domain value is a table of contents. When you
build a table of contents for a selection from a database, you at least have to deal with
its size and ask yourself whether it is necessary to keep the complete composite domain
value in memory.

It is often a better idea to implement such a domain value as a stream. At the
public interface, such streams often present themselves as usual domain values
(with the difference of throwing additional exceptions). However, they are internally
implemented so that they contain only the amount of data required to meet the
interface. If more elements of a composite domain value are required, then these are
generated or loaded “on demand.”

RATIONALE

Use this approach with very complex and exceptionally large domain values.

8.10.5 Construction Part: Domain Value Types by Configuration

When analyzing an application domain, we often find a large number of similar domain
value types, such as different types of amounts. These domain values often differ only
in their value ranges and not in their operations. Such differences can basically be
expressed by inheritance. For example, CreditAmount and DebitAmount would
then be subclasses of Amount. However, subclassing can lead to a large number of
domain value classes, making maintenance more difficult.

One construction approach uses dynamic configuration of domain value classes.
More specifically, we develop only domain value classes for domain values with differ-
ent operations. Then we express the difference in value ranges by configuration, thus
saving the differences in configuration files or databases.

When creating a new domain value object, we additionally define an identifier
(e.g., String) for the configuration to be used. We would then develop only the class
Amount and configurations for CreditAmount and DebitAmount. These configu-
rations will specify that both the credit amount and the debit amount must be positive
values.

RATIONALE

Use this approach when a considerable number of domain value types have the same
interface and differ only in value ranges.

T H E D O M A I N V A L U E S P A T T E R N 243

Zull-08.qxd 31/8/04 2:35 PM Page 243

8 .11 T H E D O M A I N C O N TA I N E R P AT T E R N

244 T & M D E S I G N P A T T E R N S

Interrelation of Tools
and Materials

Material Design

Container

Domain Values

Domain
Containers

FIGURE 8.42
The domain

container
pattern.

INTENT

Design domain containers on the basis of the containers you have identified in the
application domain and implement them using technical containers.

PROBLEM

Containers serve to hold objects. When we are modeling based on the T&M approach,
we distinguish between two types of containers: domain and technical containers.

Domain containers are designed on the basis of existing containers (e.g., folders)
that we identified when we analyzed the application domain (see Sections 3.5.16 and
7.7). In contrast, technical containers correspond to traditional data structures, such as
lists, arrays, or complex technical structures like WeakArray in Smalltalk. They are
normally used to implement domain containers.

We think that it is no longer necessary to build our own technical containers,
since all common object-oriented programming languages include class libraries with
powerful and standardized technical containers, so that we shouldn’t expect major

Zull-08.qxd 31/8/04 2:35 PM Page 244

interface changes. Therefore,

We want to model domain containers as a special type of materials that provide
a place to store other materials and define an order principle for these materials.

RELATE TO

The conceptual pattern container explains the domain-related context for this pattern.
The design pattern domain value explains a useful implementation concept used here
(see Figure 8.42).

BACKGROUND: DOMAIN CONTAINER

The object-oriented methodology discussion has not taken domain containers into
account. Most programming manuals and class libraries model and implement exclu-
sively technical containers.

In general, there is no clear view of what domain containers are and how they can
be designed. In contrast, we often find that collections and orders of materials are very
important in daily work. However, when we implement existing container concepts in
our application system model, we often map more than the container functionality,
that is, we also try to utilize the potential of interactive software.

SOLUTION
We build a domain container as an independent domain-specific object, which
has the character of a material, but shows some specific interactions.

The elementary interactions of domain containers include storing and editing a set of
materials, and accessing elements of this set. Usually a domain container provides a
table of contents, which it updates internally.

Containers are materials that can contain materials. This means that we can add
other containers to a container, structuring the contents of a container.

Like any other material, domain containers have an identity and normally user-
defined names. They are active in the sense that they have their own “navigational
model,” that is, a specific way that we can navigate from one element to another.
Internally, they manage their elements themselves. These interactions can be gener-
ally modeled for domain containers.

EXAMPLE

In the context of our EMS system, we could think of the room plan as a container
for rooms. The room plan would be consistent when all the rooms it contains are
consistent (i.e., no excessive occupancy by persons or devices). This consistency
check can be elegantly implemented in the room plan. It will then be available for
all tools that use room plans, so that we do not have to reimplement it as we add
new tools.

TRADE-OFFS

We do not assume that we can directly transfer containers from an application domain
to the software model. For example, we want to have large domain containers manage

T H E D O M A I N C O N T A I N E R P A T T E R N 245

The EMS
example

Modeling real-
world containers

Zull-08.qxd 31/8/04 2:35 PM Page 245

their own tables of contents. Domain containers can also encapsulate a persistence
mechanism, if there is no independet persistency service.

When building domain containers, we often observe that there are certain inter-
actions not found in containers existing in the application domain due to physical limi-
tations. We usually will add such interactions, such as consistency checks, to domain
containers.

You can think of a domain container as a means to collect a set of materials. We
often find that a domain activity or operation should be executed not only on single
elements but on the entire set of materials. This is easy to model in containers. Though
we use technical containers to implement domain containers, we will not derive our
domain containers as a specialization of technical containers.

RATIONALE

For systems based on the T&M approach, which show characteristics of a workplace,
domain containers are usually an essential element.

8.11.1 Construction Part: Using Technical Containers
to Implement Domain Containers

In cases where we have access to a technical container library, we may consider a way
to relate domain containers to technical containers. Should our domain containers
inherit from or use technical containers?

In our approach, technical containers always serve to implement domain contain-
ers. Consequently, when implementing domain containers, we can use the full choice
of variants and interactions offered by technical containers, regardless of the interfaces
our domain containers should have.

BACKGROUND: INHERITANCE IN THE T&M APPROACH

It should be obvious from the discussion so far in this book that we should use an inher-
itance relationship in our domain modeling only provided that the two classes to be
linked have a subclass-superclass relationship. A domain container should not be seen
as a subtype of a technical container. In addition, its interface should primarily have
operations motivated by the application domain, which means that they are not always
compliant with the interface of a technical container. For this reason, we use a use
relationship between domain and technical containers.

EXAMPLE

To better understand this idea, let’s look at room plans as domain containers in our EMS
example (see Figure 8.43). A domain container, RoomMap, uses a technical container
to manage the set of rooms. The class RoomMap knows nothing about the concrete type
of the technical container (HashMap) used. Instead, it works with the specific tech-
nical container exclusively over the abstract interface of a Map. In addition, the
RoomMap can generate iterators if needed, and use them to traverse the set of rooms.

RATIONALE

Whenever a suitable class library for technical containers is available, you should use
it to implement domain containers.

246 T & M D E S I G N P A T T E R N S

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 246

8.11.2 Construction Part: Loading Materials

If we do not want to cache all materials in the main memory, then we have to
answer the question about what component should be responsible for loading a material
on demand. This is the case especially when we want to encapsulate and provide per-
sistent mass data in an object-oriented system. So far, we have implemented the
following two strategies within our T&M approach.

The easiest way is to let the using tools load materials into containers. This solu-
tion shows at a container’s interface that this container holds an identifier for each
material element instead of holding all materials. In this state, a container resembles a
table of contents. With a container in this state, a tool cannot use the full interface.
Though it can display material names and delete or add materials, there is no way yet
to edit a material. If a tool wants to edit a material, then the tool will first get that
material’s identifier from the container and load the material itself by use of a persis-
tence service (see Chapter 11.2). Subsequently, the tool replaces the material’s identi-
fier by the material itself. One major drawback of this construction approach is that the
tool construction is more expensive, and there may be consistency problems.

Another solution lets containers load materials. Using the domain values (see
Sections 2.6.5 and 8.10) identified in the table of contents, a container can use a per-
sistence service (see Chapter 11.2) and request the material. If we use this construc-
tion approach, then the container must know the interface of the persistence service
it wants to use. In addition, we have to define the depth in which the material is to
load. Materials held in a container can consist of complex submaterial structures,
requiring a relatively large amount of storage and long loading times. Notice that the
entire material has to be loaded, since it is normally not known during the loading
process what parts of a material a user wants to edit.

Yet another solution uses proxy objects, where the loading process is hidden from the
containers and the tables of contents. Each pointer to a material object in a container
references a proxy object. This proxy object can be thought of as a placeholder, and it
behaves like a smart reference. When this proxy object is called, then it loads the mate-
rial object into the memory. This material object can manage more references to other
proxy objects, so that materials are loaded only on demand, even deeper material levels.
In this solution, the proxy objects either have to know the interface of the persistence
service they want to use, or we implement a kind of generic loader to request materials.

T H E D O M A I N C O N T A I N E R P A T T E R N 247

Loading materials

FIGURE 8.43
Domain and
technical
containers.

aHashMap:HashMap

room1:Room

room2:Room

room3:Room

aRoomMap:RoomMap

Loading
containers

Zull-08.qxd 31/8/04 2:35 PM Page 247

TRADE-OFFS

The following points are important when loading materials from containers:

● The container or proxy object must know the interface of the persistence
service they want to use.

● The container or proxy object must know the location from which to load. This
can turn into an expensive task if we cannot assume that all materials are
maintained in the same persistent location. This problem becomes even more
serious when materials can be maintained in different persistent services or media
over the system’s runtime. In this case, the knowledge about a specific persistence
service cannot be coded into the container or proxy object. This information has
to be provided when a container loads or a proxy object is created.

● In cases where materials are not loaded completely, we have to deal with
concurrent access by several users in a special way. For example, if an object is to
be loaded from different sources, then we have to identify users who may modify
the object. This problem is directly related to the question how exceptions
should be handled. Since loading is now taking place in a material, there is no
easy way to send feedback to users, such as when a load request fails.

● In cases where containers can load their elements themselves, we obviously
have to anchor some technological knowledge in the containers. This means
that containers lose an important material property, that is, their independence
of underlying technologies. These issues will be further discussed in connection
with different types of database systems (see Chapter 11).

● Depending on the persistence service used, a container or proxy object may
have to handle transactions explicitly, some operations may require the
transaction context as a parameter.

RATIONALE

Whenever you have to store complex or numerous materials in a persistence medium,
you should consider this construction approach.

8.11.3 Construction Part: Tables of Contents for Containers

When working with large collections in an application domain, we often find that we
use tables of contents to access these collections. From the domain perspective, we
could argue that tables of contents are independent components in the construction
phase. From the technical view, we can justify the separation of a table of contents
from its collection.

Most containers hold large quantities of complex materials. For efficiency reasons,
we often have to avoid that all materials managed in a container are loaded in the
main memory. For the user to understand this point, we normally use the concept of
an independent table of contents. A table of contents provides users with an overview
of the materials (container elements) available in a container. The users see the table
of contents as an object, avoiding the wrong impression that they can access elements
in a container directly. In addition, the users understand that there is some delay
involved in retrieving elements from a container.

A table of contents gives users structured access to the contents of a container.
Each container can create a table of contents, including a defined set of information

248 T & M D E S I G N P A T T E R N S

Loading materials
from containers

Zull-08.qxd 31/8/04 2:35 PM Page 248

about the container’s elements. To list container elements, we need only a small part
of the information about a container element. We normally display the name and one
additional attribute, such as a domain value (see Sections 2.6.5 and 8.10). When a user
selects a container element for editing purposes from the table of contents, then the
complete element is loaded or instantiated at this time.

EXAMPLE

In our EMS example, if we think of the room plan as an example for a domain
container, then its table of contents would include the room names. The room plan
would return an entire room only when requested to do so.

RATIONALE

As soon as you have numerous materials in one or more domain containers, the
question of a table of contents arises and you should consider this approach.

8.11.4 Construction Part: Implementing Tables of Contents
as Materials

If we implement a container’s table of contents as an independent material, we can
treat it like any other material, for example, representing it by an icon on the desktop.
The user can see that the table of contents exists independently of the container. The
usage model shows clearly that the table of contents does not necessarily show the
current state of a container. In summary, the table of contents shows the state of a
container that prevailed when the table of contents was created, and the user can
explicitly update it.

RATIONALE

If you want to represent a table of contents as a material of its own, for example,
represented as an icon on the desktop, you should use this approach.

8.11.5 Construction Part: Implementing Tables of Contents
as Domain Values

If we implement tables of contents as domain values, it will be clear both from the
domain and the technical views that a table of contents reflects the state of a container
that prevailed when it output its table of contents. In this case, being a domain value,
the table of contents cannot automatically update itself to changes in its container.
Such tables of contents can be handled more easily in tools. In contrast to materials,
domain values can be easily treated by GUI elements, as we can easily create a sepa-
rate GUI element for a list of tables of contents. This list would show all tables of
contents and directly supply identifiers for selected entries.

For tables of contents that become very big (e.g., tables of contents for persistent
containers), we could implement them as domain value streams (see Section 8.10.4).
The example of persistent containers shows clearly that the table of contents can fetch
as many elements from its container as are currently requested by the user. However,
implementing tables of contents as domain values means that we cannot arrange them
on the desktop as we can any other material. If we need this functionality, we can
embed a domain value, such as “table of contents,” in a material by the same name.

T H E D O M A I N C O N T A I N E R P A T T E R N 249

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 249

RATIONALE

If you always handle a table of contents by means of a tool, then this approach is
recommended.

8.11.6 Construction Part: Coping with Changes to Containers

Users can display the table of contents of a container and concurrently operate a tool
on a container element. A user could change a material so that such a change could
influence the table of contents.

A simple solution to this problem can be derived from the metaphors for materials
and containers: To be able to change a material, this material has to be removed from
its container. The container’s table of contents marks this material accordingly to
reflect that it has been removed. Removing materials means that the container is being
changed by the use of a tool. This tool informs all other tools operating on this
container over the work environment (see Section 8.15). All tools that receive such
an announcement can decide whether or not they have to update their container
representation. If a tool changes a material removed from a container, then all tools
interested in this particular material will be informed. Each change will become effec-
tive, and an announcement to this effect will be sent once the tool has placed the
material back into the container.

EXAMPLE

Returning to our EMS example, let’s assume that a clerk is fetched from the registry.
The name of this employee has changed due to marriage. When the user finishes
editing, this employee is returned to the registry, and the registry updates the table of
contents. When the editing user removes the employee from the registry, then all tools
(e.g., other finders) currently using the registry are informed. When the employee’s
data is corrected, the employee editor receives an announcement, if it currently dis-
plays this employee, and if it registered for changes to this material. Once the employee
is returned to the registry, all tools operating on the same employee will be informed
and can then display the updated table of contents.

TRADE-OFFS

Implementing this reactive behavior can be expensive, especially if there are process
borders between containers and tables of contents. In this case, tables of contents
should have a way to handle exceptional situations, such as network failures.

BACKGROUND: MATERIALS AND REACTION MECHANISMS

In the constructions based on the T&M approach, reaction or feedback mechanisms are
used only between active components, that is, between tools, tool components, automa-
tons, and the work environment. In addition, access to persistence and distribution ser-
vices is limited to these components. Materials are treated as components that, in turn,
are limited to their domain functionality, without interactive or reactive characteristics.

The reason for this construction principle is found in the metaphor for materials.
Materials are located in a place, where they can be accessed. Materials do not address
their contexts or the technology used by their own initiative when they have been
changed. Moreover, it is also meaningful for the technical implementation to keep
materials clear of any knowledge about work contexts. A material should not know
whether or not its change is relevant for other components. If it knew, then the material

250 T & M D E S I G N P A T T E R N S

The EMS
example

Materials usually
are not reactive

Zull-08.qxd 31/8/04 2:35 PM Page 250

would have to decide whether or not a change to it is relevant for tools that directly
operate on it or for other tools that operate on the underlying containers.

When generalizing a reaction mechanism, all materials in a use relationship to a
changed material will eventually be informed. This would lead to an unmanageable cas-
cade of announcements that make the entire construction too complex. We generalized a
mechanism that is relevant for interactive applications only. Even when we merely divide
an application into client and server systems, the pure reaction mechnism is no longer
useful. For this reason, we generally discard this solution for materials held in containers.

DISCUSSION: COMPLEX MATERIALS AND CHANGES TO CONTAINERS

The situation gets more difficult if we have complex composite materials with parts
containing domain crossreferences, but where the elements still can be manipulated
individually by tools. In such a case, the container is actually the only simple means to
ensure domain consistency of the composite material. On the other hand, changes to
a material component should have an immediate effect on other parts, even though
these parts are currently not used by a tool. In such a case, we cannot go the simple way
of using a reaction mechanism. Still, we should bear in mind that we have already
expanded the container concept. A container manages the consistency of materials
that are modified either in this container or outside. But rather than including the
table of contents in our announcements, we let the individual material components
coordinate themselves via a container that will then update the table of contents.

When containers are expanded to a coordinating context for complex materials,
they often take the character of an automaton. In such a case, we check whether or
not the desired functionality can be provided by a “real” automaton (see Section 8.13)
or a service (see Section 8.14).

A combination of container, service, and automaton has proven useful, particu-
larly for jointly used materials. More specifically, a container resides in a separate ser-
vice and can never migrate to user workplaces. These containers are always accessed
over an appropriate service, where the service may reside on a server “in front of” the
container. Especially in workplace systems, we often find either technical proxies or
independent automatons that access a service. Since the service is the only thing that
accesses a container, it can easily ensure that container’s consistency. In addition, the
service can send messages as soon as a container has changed. This means that tools at
other workplaces can respond elegantly to changes effected to a jointly used container.

EXAMPLE

The object chart represented in Figure 8.44 shows how a Finder tool edits a registry.
The Finder starts a SnifferAutomaton to find room plans in the registry that
match a specific search term in their names. The SnifferAutomaton requests match-
ing room plans from the RegistrarService and receives a table of contents with all
matching room plans. Note that the RegistrarService obtained these room plans
from the RegistryContainer. The Finder displays the table of contents.

The user can select a room plan from the displayed list and place it on his or her
desktop. This action causes the RegistrarProxy to be called, which forwards the
request to the RegistrarService. The RegistrarService requests the room
plan from the RegistryContainer, which marks it internally as logically removed
and returns it (as a technical copy) to the finder via the RegistrarProxy. Finally,
the Finder places the room plan on the desktop.

T H E D O M A I N C O N T A I N E R P A T T E R N 251

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 251

When the room plan is (logically) removed from the RegistryContainer,
the RegistrarService sends a message to all tools registered for that type of
message. These tools can now update their tables of contents.

RATIONALE

When you have complex or compound materials, which are changed by many users, then
you should be aware of the potential pitfalls and solutions described in this approach.

8 .12 T H E F O R M S Y S T E M P AT T E R N

252 T & M D E S I G N P A T T E R N S

FIGURE 8.45
The Form

System pattern.

Interrelation of Tools
and Materials

Material Design

Form

Domain Values

Form
System

FIGURE 8.44
Object chart of

an automaton
for domain. Client

:Finder

:SnifferAutomaton

:RegistrarProxy

:RegistrarService

Server

:RegistryContainer

Zull-08.qxd 31/8/04 2:35 PM Page 252

INTENT

When you have identified the frequent use of forms in an application domain,
it is useful to transfer this concept into a system of software forms with appropriate
tools.

PROBLEM

Converting the conceptual pattern of forms into a construction appears to be easy at
first sight. However, we often find that a large number of forms has to be implemented
in a similar way. Implementing generic operations for forms is relatively expensive
and does not offer tangible benefits, compared to simple “data containers.” In
addition, building tools to operate on such generic forms is normally just as expensive.
Therefore,

How can we support the use of forms inexpensively to become part of an
application?

RELATE TO

The conceptual pattern forms outlines the background of what forms are and how they
relate to materials. The design pattern domain values provides the essential elements for
handling domain-motivated data in the form system (see Figure 8.45).

SOLUTION
We build a form system, consisting of classes for forms, form templates, form
elements, element lists, and form fields, where we base the form fields on exist-
ing domain value classes. We add generic form tools for defining and editing
form templates and instances of forms.

Forms are composed of form elements. The simplest structure of a form element is the
form field, which contains a single domain value. These parts are sufficient to imple-
ment a simple form: the appropriate form fields are selected from a predefined set and
parameterized by fitting domain value types.

If we build a form from individual form fields, then complex forms will soon
become unclear and hard to handle. To avoid this problem, we structure form elements
based on the composite pattern of Gamma et al. To utilize the full potential of the com-
posite pattern, we treat the form itself as a subclass of a form element within the inher-
itance hierarchy, so that a form can, in turn, have subforms as its elements. It also
allows us to reuse forms when building other forms. Figure 8.46 shows such a forms
hierarchy.

If we want to use a specific form, we have to have already define a the elements
that this form should contain. For normal use, we want to prevent changes to the
structure of a concrete form. For this reason, we specify operations that change the
structure at the interface of the class Form. But then, how should we initially define a
form?

We can solve this problem by separating the usage of a specific form from its
form definition. Consequently, we describe the form’s structure in a form template,

T H E F O R M S Y S T E M P A T T E R N 253

Zull-08.qxd 31/8/04 2:35 PM Page 253

which will then be used to create similar types of forms. Let’s look at the interface
of the form class:

Once we have defined a form, we cannot change its structure. A form is defined
by a template called DynamicForm. A form can be defined only once. Changing the
structure of an instantiated form would conflict with the requirement we just saw,
namely that we want to prevent arbitrary changes to the structure of a form.

class Form
{
public int elementCount ();
public FormElement elementAt (int index);
public boolean hasElement (String name);
public FormElement elementByName (String name)
public FormElement[] elementsByType (Class type)
public boolean hasField (String name);
public FormField fieldByName (String name);
public boolean isValid ();
public String[] validationHints ();
public void setGeneralNote (String note);
public String generalNote ();

}

254 T & M D E S I G N P A T T E R N S

FIGURE 8.46
A forms

hierarchy.

Form
Element

Form
Field

Domain
Value

Dynamic
Form

Form

1..N

Zull-08.qxd 31/8/04 2:35 PM Page 254

EXAMPLE

Let’s see these ideas in the context of our EMS example. When developing the device
manager, we initially represent employees as employee forms. The corresponding class
for an employee is inherited from the DynamicForm class and defines its structure
once in the constructor, that is, by composing an appropriate form template.

That’s all our sample class contains. The single fields in an employee form can
generically be accessed from operations of the superclass. The forms editor uses the
FormEditable aspect to work on the form superclass. Figure 8.47 shows the relation
between generic components and the employee form used in our example. Note that
the gray classes are generic parts, such as from a framework.

TRADE-OFFS

Using forms can mean a significant reduction of our development cost. We can quickly
implement a basic functionality and save tedious implementations of recurring
functionalities.

Unfortunately, using the forms concept can also entail some problems. The forms
concept may entice developers to model materials as forms, when these materials
should have various domain operations. Inexperienced developers especially will often
tend to design data collections instead of materials.

Another risk is seen in a reduction of the type safety in typed programming
languages due to generic forms. In many cases, this can mean that the compiler can no

public class Employee extends DynamicForm
{
public Employee()
{
addElement(new FormField(StringDV.Factory.instance(), "ini-

tials", "Initials"));
addElement(new FormField(StringDV.Factory.instance(), "name",

"Name"));
addElement(new FormField(StringDV.Factory.instance(), "first-

name", "First Name"));
addElement(new FormField(StringDV.Factory.instance(),

"street", "street"));
addElement(new FormField(StringDV.Factory.instance(), "zip",

"ZIP"));
addElement(new FormField(StringDV.Factory.instance(), "email",

"E-Mail"));
addElement(new FormField(StringDV.Factory.instance(), "tele-

phone", "Telephone"));
addElement(new FormField(EmployeePositionDV.Factory.

instance(), "position", "Position"));
};

}

T H E F O R M S Y S T E M P A T T E R N 255

The EMS
example

Zull-08.qxd 31/8/04 2:35 PM Page 255

longer check whether assignments of form objects to identifiers are meaningful. In
particular, there is no static way to ensure that fields accessed in a form actually exist
under the specified names, and that they have the expected (domain value) type. This
problem is particularly serious when forms are changed.

Changing field names and types represents a particular risk, because it may mean
that the compiler cannot detect inconsistencies caused by such changes. We can
reduce this problem if we make field contents accessible only via access operations.
Then only these operations will be used whenever a known field needs to be accessed.
Generic queries for field values will then be left exclusively to generic tools.

Another problem arises in connection with the persistence of forms. If a user loads
an older version of a form, then this form may have some fields missing that were added
in later versions. The only way to prevent this problem is by explicit programming.
Once a form has been loaded, an extended form has to generate the new fields, that are
missing in the older version and fill them with default values.

DISCUSSION: DEVELOPING FORMS

In the course of the development process, we may find that a material once identified
as a form has actually more domain interactions than initially expected. In this case,
we need to develop it from a generic form into a more specialized material.

Our general development strategy supports “migration.” This means that we can
implement additional interactions in the form class, without needing to replace the
generic implementation of the superclass. For example, if we want to add the total
price to a purchase order form, we could implement an appropriate operation in the
purchase order form class. The purchase order form class could then request informa-
tion such as number of units and cost per unit from the generic part of the form, then
do a calculation, and finally return a result. From the domain view, the purchase order
form no longer uses the generic form fields, for example, to fill them in or read them;
it now also has a specialized interaction.

256 T & M D E S I G N P A T T E R N S

ToolFormEditor
Form

Editable

Form

Employee

FIGURE. 8.47
An employee

form used in the
EMS example.

Zull-08.qxd 31/8/04 2:35 PM Page 256

When developing a “normal” material from a form, this does not necessarily have
to replace the existing form. The “normal” material can output its data like a form and
update itself from a completed form.

Basically, materials know nothing about their representation on the screen or on a
printed hard copy. For this reason, we have to store layout information in another place.
This layout information may then be read by a tool or automaton and used to process
forms. This allows us to strictly separate the form from its screen representation.

For example, we could specify layout information in configuration files, indepen-
dently of our program code. This allows us to define a layout for forms independently of
the forms. Even programming novices could then create and adapt the layout of forms.

We saw how consistency can be checked independently of a context in connec-
tion with domain values (see Section 8.10). We may now use this consistency check
for forms and ensure that each field of a form contains a valid value. Intra-form
consistency checks are initially left to each single form. A form then has to provide
probing operations indicating that it was properly filled in or whether there are any
problems.

We also saw that it is important to allow inconsistent forms to be saved. This is a
fundamental requirement for expert work with forms. Users can put an incomplete or
inconsistent form aside and continue editing it later. However, some special tools or
automatons may refuse further processing of a form if they find that consistency
conditions are violated.

SOLUTION: TOOLS FOR FORMS

A framework can provide the generic tools we need to create generic forms. A generic
forms editor can easily be used to fill in and represent fields in a form. Such a tool actu-
ally needs only to support the generic form interface. It does not have to know specific
forms, such as a purchase order form.

We often find in practice that a generic tool is not sufficient, that is, it has to be
adapted to a specific task. If such requirements concern only the user-interface of a
tool, then it appears useful to split the tool into an FP and an IP, as discussed under the
separating FP and IP pattern (see Section 8.7). All we have to do then is to specialize
the IP, including the GUI resources it uses, by subclassing. This means that we use the
basic functionality of the generic IP, while specializing the layout or other features.

However, we must frequently expand the functionality of a tool and adapt it to the
set of a user’s task. This is normally necessary when a generic form develops gradually
into a specialized material. In that case, we have to adapt a generic tool to the
specialized form to be able to utilize the new interactions with the material. Note,
however, that this is not a general rule. Once a form has been expanded by a more
specialized interaction, this may be of interest for only a single tool. At this point,
remember our discussion of the aspects design pattern (see Section 8.3), which repre-
sents relations between tools and materials. We can add a new aspect to a generic form
to make it suitable for manipulation by a specialized tool.

The important thing to remember is that we should continue taking advantage of
the generic parts of a form and the relating tools. When a form grows to become a
special material, then this doesn’t mean that we have to give up our generic use of this
form. This also applies to tools, where we could use the generic FP of a forms editor to
easily fill in fields in a form and send the appropriate events to the IP.

T H E F O R M S Y S T E M P A T T E R N 257

Layout of forms

Consistency
conditions

Zull-08.qxd 31/8/04 2:35 PM Page 257

RATIONALE

Consider building a form system when you have to support an office-like work context
with many different paper forms as the relevant objects of work.

8 .13 T H E A U T O M AT O N S I N T E C H N I C A L LY
E M B E D D E D S Y S T E M S P AT T E R N

258 T & M D E S I G N P A T T E R N S

FIGURE 8.48
Automatons in

technically
embedded

systems.

Interrelation of Tools
and Materials

Tool Desgin

Probe Adjusting tool

Automaton

Technical
Automaton

Automatons
in embedded

systems

INTENT

Technically embedded systems can be interpreted as automatons sending autonomous
events. These automatons can be probed and adjusted. This pattern shows how to
implement these concepts.

PROBLEM

Technically embedded systems often use automatons to model the system’s external
components. This allows us to embed an autonomous technical device as an additional
source of events in our application system.

Zull-08.qxd 31/8/04 2:35 PM Page 258

We can call altering operations on a technical automaton to set the technical
device. These settings change the automaton’s state. In addition, there are external
events that cause a change of the automaton’s state. This means that, in addition to an
event channel for the window system, we also have to consider an additional event
source in interactive applications. Therefore,

How can we implement an embedded application system based on the
conceptual pattern for a technical automaton?

RELATE TO

The conceptual patterns technical automaton, adjusting tool, and probe introduce the
concepts that this design pattern explains on a construction level (see Figure 8.48).

SOLUTION: ADJUSTING TOOLS
We connect adjusting tools and technical automatons over asynchronous
communication within a multiprocess space. Then we connect probes to the
automatons.

The conceptual pattern technical automaton has introduced a way of interpreting techni-
cal systems within the T&M approach. Technical automatons model the real-world
devices and machines. Within the software model, we use special software tools, so-called
adjusting tools, to let users operate and set these automatons. Such adjusting tools are
normally tailored to their automatons. To achieve a flexible way to model the commu-
nication between technical automatons and their adjusting tools, we often use probes to
represent parts of an automaton’s state. In addition, probes are helpful in modeling the
control flow, because they are connected to the tool over an observer mechanism.

Probes are normally connected to a technical automaton and fed with measure-
ment readings by the automaton. Clients can register for events with the probe. They
will then be informed about readings in the intervals they chose.

The FP of a tool or the IP of an automaton (if you decide to add a user interface to
an automaton) can request a probe from the automaton and register with the automa-
ton to probe it for domain values. Together with the registration, an FP or IP can spec-
ify a preferred method to obtain information about changes (e.g., by sampling rate or
event). Figure 8.49 shows an IP that uses an automaton and one of two available probes.

T H E A U T O M A T O N S I N T E C H N I C A L L Y E M B E D D E D S Y S T E M S P A T T E R N 259

FIGURE 8.49
An IP using an
automaton and
one of two
probes.

<<event>>

Probe

Automaton

InteractionPart

Zull-08.qxd 31/8/04 2:35 PM Page 259

Like other tools, adjusting tools are embedded in an environment. The adjusting
tool itself will usually consist of an IP and an FP, and it uses an automaton. The IP rep-
resents the automaton state and supports requests for changes. The IP does not have
its own memory, so it must rely on an FP to obtain the current domain state.
Figure 8.50 shows the basic architecture of an adjusting tool.

The FP informs the IP about the domain state and coordinates the connection to
the automaton. Though each automaton has its own state, we always need an FP to
supply the necessary domain interpretation for the values of an automaton. If a tool is
used to control several automatons, then the FP assumes the domain coordination and
combination of technical event sources.

An FP buffers the probing results from an automaton, and it can interpret differ-
ent values and calculate new values for the IP. Moreover, the FP can combine domain
states and the settings of several automatons in one single tool.

SOLUTION: ADJUSTING TOOLS AND AUTOMATONS

IN A MULTIPROCESSING SPACE

We want to implement adjusting tools and automatons so that the automatons operate
as independent components on separate computers. To this end, we have to connect
processes. We call this environment a multiprocess space. Let’s look at the terminology
before we continue our discussion.

260 T & M D E S I G N P A T T E R N S

FIGURE 8.50
The basic

architecture of
an adjusting

tool.

Automaton Automaton

Probe

Interaction

Functionality

Zull-08.qxd 31/8/04 2:35 PM Page 260

A multiprocess space is the domain and technical space spanned by an application
system when that system’s tools and automatons run in different processes
connected over a communication medium. We assume that the distribution of
components over this space is explicit, both in the design model and in the
implementation model.

The separation of components in a multiprocess space requires a connection
concept beyond the approaches described so far. In this respect, we speak of asynchro-
nous coupling.

Asynchronous coupling means the connection of two objects over an asynchro-
nous communication medium in a multiprocess space. We distinguish three
variants:

● operation call without expecting a direct result;
● operation call and expecting a (direct) result; and
● abstract communication via events only.

An asynchronous communication medium always has to expect connection errors
to occur. For this reason, we need connection information on the metalevel.

EXAMPLE

We use the three asynchronous coupling variants to distribute adjusting tools and
technical automatons. The sequence diagram in Figure 8.51 shows as an example of
how tools and automatons can interact in different processes. Notice that we added
two elements to this chart. First, the objects of a process are grouped at the top of
the chart, so that several communicating processes can be represented in the same
chart. Second, we introduced a broker object to better explain the interprocess
communication.

Let’s look at the processes and events in Figure 8.51:

● Registering: The FP uses the proxy to register with the remote automaton. Note
that there is a time delay in this asynchronous process. When the automaton
receives the registration request, it generates an observer proxy. If the FP
cannot be registered for technical reasons (e.g., because the network
connection broke down), then the client process is informed about the failure.
This error message is sent to the proxy object after a timeout specified by the
system. The proxy converts the error into a communication status event. If the
FP can successfully register for the corresponding event, it can now respond.

● Adjusting: To adjust the automaton, the FP calls the appropriate operation on
the proxy. The proxy creates a data packet and sends it over the
communication system; then the control flow is returned to the FP.

The data packet is sent to the automaton’s Entry object with a time delay,
where it is converted into an operation call on the automaton. The automaton
sets the requested values, and the control flow is returned to the communication
system via the Entry object. When several clients communicate with the
automaton in this way, then all adjusting requests are serialized by the
communication system. Each successful change leads to an announcement
about an effected state change. The consecutive execution of all requested
changes determines the final state that is announced to the clients. This

T H E A U T O M A T O N S I N T E C H N I C A L L Y E M B E D D E D S Y S T E M S P A T T E R N 261

Sequence
diagram for
interprocess
communication

Zull-08.qxd 31/8/04 2:35 PM Page 261

ensures the fundamental construction principle that all interested tools have to
be informed about changes to materials (or the automaton, in this example).

● Announcing: The automaton changes its state upon request, and because it
represents an independent technical device, this situation occurs frequently. A
probe is informed about each state change. The probe informs the observer proxy
about each state change. Once the observer proxy has been fed with the current
state information, it converts this information into parameters and passes them
to the communication system. Subsequently, the control is returned to the probe.

After a time delay, the communication system informs the automaton proxy
that it has received data. The automaton proxy encapsulates the conversion of
data packets arriving from the communication system, interprets the contents,
and changes its internal state. Subsequently, the automaton proxy passes this
state change to the responsible probes, which inform all observing local objects,
such as a tool’s FP. The FP of a tool can probe both the probe itself and the
automaton, because the current model of the automaton state is present in both
objects. This entire process of announcement and probing can be thought of as a
synchronous communication at the tool process end, which guarantees all
required consistency criteria. Subsequently, the control over the probe and the
automaton proxy is returned to the communication system. Finally, the control is
returned to the tool’s user via the window system.

262 T & M D E S I G N P A T T E R N S

Process

ToolFP

Automaton

Proxy

Local

Broker Entry

Observer

Proxy Automaton

1. Registering

2. Adjusting

3. Announce

register()

change

Settings()

changeSettings()changeSettings()changeSettings()

Probe

tell()

tell()

sendEvent()

sendEvent()

probing

probing

receipt

receipt

Automation

Proxy

receiveEvent()receiveEvent()receiveEvent()

constructor()

Event

Event

Event

probe

produced

data

FIGURE 8.51 Asynchronous communication between a tool and an automaton.

Zull-08.qxd 31/8/04 2:35 PM Page 262

The multiprocess architecture just described offers a nice way to handle reactive
user inputs in one process and forward new automaton states concurrently. This archi-
tecture has been implemented in several projects, based on a special integration of
events in the event queue of the window system.

To better understand this approach let’s look at the flow of control among the
three processes of the above example. Figure 8.52 shows how these three processes
interact. The circled areas in this figure denote each of the three processes.

TRADE-OFFS

The usage model for faultless and quick asynchronous communication in multiprocess
spaces does not have to differ substantially from the synchronous model that we would
use in a single-process system. Communication errors will be handled on the basis of
known principles. Users are normally informed via a modal dialog when a request is
unsuccessful, for example, because a remote component did not respond.

It has proven useful to symbolize the network state for remote components that
are used frequently in a system. To this end, we could use entries in a status line or
small icons that change their appearance, depending on the status.

There are similar options to represent time delays of communication processes.
We could also use status line entries or icons to display the progress of communication

T H E A U T O M A T O N S I N T E C H N I C A L L Y E M B E D D E D S Y S T E M S P A T T E R N 263

FIGURE 8.52
Flow of control
and interaction
between the
three processes
of Figure 8.51.

ChangeValue()

Broker Process

Event Queue

Receive Event()

Receive
Package()

Automaton Process

Return from Call

Call

Send Event()

Event Event

Tool Process

Automaton

Entry

Broker Proxy

Tool FP

Automaton Proxy

Broker Proxy

1

2

3

4

5

8

10

0

9

7

6SendPackage()

ChangeValue()

Usage model for
distributed
communication

Zull-08.qxd 31/8/04 2:35 PM Page 263

processes for the user. On the other hand, we found in many projects that the use of a
“sleeping mouse pointer” (e.g., represented by an hourglass) is less successful. The
reason is that most users know this symbol from synchronous interprocess communica-
tion, expecting that they cannot continue working in this phase.

RATIONALE

Consider this pattern when you have to integrate autonomous technical components
as part of an application system.

8 .14 T H E D O M A I N S E R V I C E S P AT T E R N

264 T & M D E S I G N P A T T E R N S

FIGURE 8.53
The Domain

services pattern.

Interrelation of Tools
and Materials

Tool Design Material Design

Domain Service
Provider

Domain
Service

Domain Values

INTENT

Domain services offer the means to separate domain functionality, both from different
front-ends and back-ends. They abstract from the various interaction models of
frontend technologies.

PROBLEM

When looking at the equipment of different workplace types, we often find that many
common domain features are implemented in several tools. If we subtract the interaction

Zull-08.qxd 31/8/04 2:35 PM Page 264

parts of these tools with their different technologies, we can identify a domain function-
ality that is independent of different representations.

In this context, independent representation means for us independence both of
the presentation and the interaction. For example, in Internet applications based on
HTML, clients not only look different than clients in a fully fledged desktop applica-
tion, because an HTML browser uses different GUI elements, they also behave differ-
ently. Although it is absolutely common for a desktop application to change a series of
field contents immediately upon some user action without any noticeable delay, we
normally cannot and will not implement this behavior for HTML clients.

This example leads to another issue. Many servers (HTML and other) implement
domain functionality by directly accessing a database. This is another issue of inde-
pendence that we could call back-end independence. In short,

We are looking for a concept to implement the same domain functionality, but
use different interaction options, and design it for different workplace types and
different technical front-ends (desktop, webtop, etc.). The solution we search
for would also be useful for many issues relating to the distributed client-server
architecture.

RELATE TO

The conceptual pattern domain service provider sketches the concept realized here.
Domain values are useful for implementing the interface of a domain service (see
Figure 8.53).

SOLUTION
We combine functionality and knowledge about a service or about the use of a
product, regardless of the specific user interface. We make this domain service
available in the form of a bundled service package. This means that we encapsu-
late the materials it manages in this domain service.

A domain service is built internally so that it can handle materials. Domain services
can also delegate a requested service to other services or automatons. References
to materials within a domain service are never made public. This means that the
interface either offers values, or it provides a copy of a material (the difference between
a technical and domain copy of a material is explained in Section 10.1.1).

A domain service is implemented so that it meets the following requirements:

● It provides services at its value-based interface.
● It accepts domain requests at its interface, that is, clients delegate standardized

subtasks to the service.
● It encapsulates the materials it manages and the specific implementation of the

domain interactions.
● It can be implemented to act as an equipment component and have different

plug-in components to that end.
● It does not make any assumptions about the interaction model and the

representation at the user interface.
● It basically supports multiuser and distributed systems.
● It should offer an appropriate state and session model.

Technically, a domain service can be implemented in a totally different way, but
this shouldn’t change its semantics. For example, if we implement a domain service as

T H E D O M A I N S E R V I C E S P A T T E R N 265

Requirement for
domain services

Zull-08.qxd 31/8/04 2:35 PM Page 265

an Enterprise Java Bean (SessionBean), we have to add a home interface for technical
reasons. However, this does not change the domain use of that service.

EXAMPLE

To better understand the domain service concept, we use the example of a helpdesk.
Users can send their questions to providers and obtain answers from experts over this
helpdesk. Figure 8.54 shows the domain service Helpdesk, which can be used by
desktop tools and servlets or over a mail gateway. In this example, the requests sent by
users are the materials of this application. The domain service manages these requests.
To this end, it uses a registry. The dashed line separating the frontends from the
domain service denotes a logical separation. The important thing for our client-server
distribution is where we introduce an intermediate layer that connects clients to the
domain service.

Let’s look at the details of the example in Figure 8.54. The Web server appears use-
ful for HTML-servlet clients. However, we could also opt for a two-layer solution,
including a Web server and a separate server for the domain service.

For desktop tools, the FPs discussed in Section 8.7 appear to be suitable candidates
to connect to the domain service. For simple tools, we could even do without separating
IP and FP as different classes. The tool connects directly to the domain service. Since our
tools should be highly interactive, we accommodate them on the client side. Practical
experience has shown that it normally makes no sense to move a tool’s FP to a server.

266 T & M D E S I G N P A T T E R N S

Desktop

WAP
HTTP

HTTPRMI

Queries in
registry

Domain Service Helpdesk

HTML-Client

Servlets

WML-Client

Servlets

Email-Client

Email-Gateway

SMTP
POP3

FIGURE 8.54
Domain Service

Helpdesk.

Zull-08.qxd 31/8/04 2:35 PM Page 266

Figure 8.55 shows the logical layers and their client-server separation. The domain
service is usually located on a separate server and the user interface on the client. Then
we need an intermediate layer that transforms the functionality of the service to the
different interaction model of the frontends. We call it an interaction service, which
can reside either on the client or the server.

TRADE-OFFS

The technical features of a domain service include the requirement that we treat its
operations as being atomic, to the widest possible extent. This means that we should
try to design all services to be stateless. Naturally, stateless services will have an impact
on the interface. All implicit or explicit parameters required for a method have to be
passed with each call. Parameters always have value semantics, that is, they do not
include references to parameter objects. In general, you cannot use a domain service to
directly access any of the materials it contains. To access a specific material, it is often
useful to exchange unique identifiers across process boundaries.

Clients of many domain services need to be informed about state changes. For this
reason, we generally allow clients to register with the interface of a domain service, so
that they can receive announcements. This means that we specify an additional tech-
nical dependence, depending on the eventing mechanism used. Note at this point
that the interaction model of some frontend types (e.g., HTML browsers) does not

T H E D O M A I N S E R V I C E S P A T T E R N 267

Operations of
domain services
should be atomic

Coping with state
changes

FIGURE 8.55
Logical layers of
a service
architecture.

Frontend/
Workplace Type

Interaction
Service

Domain
Service

Backend/
ERP-System

Frontend
represents and
interacts

Interaction Service
selects and
translates

Domain Service
encapsulates
domain knowledge

Backends
encapsulate
the data

Zull-08.qxd 31/8/04 2:35 PM Page 267

support such announcements. In this case, we have to provide expensive auxiliary
constructions in the interaction service.

RATIONALE

Whenever you build a distributed application with different workplace types and technical
front-ends, consider encapsulating the domain-related funtionality as domain services.

8 .15 T H E E N V I R O N M E N T P AT T E R N

268 T & M D E S I G N P A T T E R N S

FIGURE 8.56
The

Environment
pattern.

Interrelation of Tools
and Materials

Work
Environment

Environment

PROBLEM

A work environment is a very important concept in the development of workplace sys-
tems for a specific application domain.

We use tools and materials within a limited space, such as on a desktop. In such
an environment, we find a number of tools and materials. To manipulate a material by
use of a tool, we bring both together and can always identify when we need which tools
to work on which materials.

How can we implement an environment so that it is an abstraction of all the
limited work spaces? How can an environment help to couple the appropriate
tools and materials?

RELATE TO

The design pattern environment realizes the concepts outlined by the conceptual
pattern work environment (see Figure 8.56).

Zull-08.qxd 31/8/04 2:35 PM Page 268

BACKGROUND: ENVIRONMENT

The environment delimits the area that users move in to complete their tasks within
an application domain. Since the environment can be different for each user, and each
user can have their individual environment, different environments normally have to
know their individual users, for example, by identifiers (user IDs). We can use these
identities for building communication channels between environments.

Also, an environment manages tool and material types. It knows all tools its users can
activate, and all the material types, for which its users can create instances. We know that
tools operate on materials. An environment can determine which tools can manipulate
which materials. In fact, an environment knows aspects, in addition to tool and material
types. It can use these aspects to find out which tools and materials can be combined.

In addition to this management function, an environment knows which tools are
active at a time, and which materials are currently manipulated by these tools. If sev-
eral tools manipulate one single material, then they should always show the most
recent material state. To this end, all tools have to be coordinated. The environment
has the fundamental knowledge to coordinate tools.

While a tool manipulates a material, it is within the environment. It is not
removed from the environment and passed to a tool for exclusive use. This corresponds
to our notion of an environment, where we can use tools to manipulate materials,
allowing several tools to operate on the same material within their environment. Also,
it confirms our notion of spatial and logical dimensions discussed in Section 7.6.

If we say that a material must remain in its environment while it is manipulated by
one or more tools, then we have to protect it so that the work effected on the material
by a tool cannot be compromised. For example, we want to prevent a user from
dragging a material to the trash can while another user is editing the same material.

In summary, an environment knows the following domain elements:

● user identification;
● workplace identification;
● existing tool types;
● existing material types;
● active tools; and
● materials currently manipulated by tools.

We have said in respect to tools construction that a tool object is used as a con-
text representing the entire tool. If we split a tool into subtools, then the tool can be
an observer of its subtools. This means that it represents the context of its subtools.
Moving to the next higher level, we can think of the environment as the context of
all the tools it contains. If the environment represents the context of its tools, then it
has to implement the domain context of all of its tools.

SOLUTION
We use a class to build a environment. This class includes a so-called workspace,
where we can arrange all objects needed in that environment. In addition to
objects that an individual may require, the workspace also includes a number of
permanently available containers, which are part of the basic equipment of an
environment, for example, a template folder, a toolbox, and a trash bin to
remove objects no longer used from the environment.

T H E E N V I R O N M E N T P A T T E R N 269

An environment
is a personalized
space

Tools and
materials in an
environment

Concepts of an
environment

Zull-08.qxd 31/8/04 2:35 PM Page 269

EXAMPLE

In the example in Figure 8.57 we sketch the standard equipment of an environment.
The standard containers of an environment shown in Figure 8.57 can be imple-

mented as domain containers. Based on the management functions of domain
containers, we can implement a number of useful features.

● The toolbox can be used to identify tools generally available. An appropriate
tool can be used to display the toolbox for the user and let users start tools from
within the toolbox.

● A template folder could be used to hold available material types and return
new instances of a material type upon demand. This expands the options we
have from traditional manual template folders, where you normally find a finite
set of templates. Once this reserve is exhausted, we have to refill it with new
templates. In addition, materials held in template folders can age when the
original is modified. We can solve both problems by using a software template
folder. This folder is part of the environment, copying the original and
returning copies upon request. Consequently, the template reserve will never
be exhausted, and users always get the most recent version of the original.

● Material metainformation from within the environment show which tools can
be used for which materials.

● As we have said, a tool cannot be started without a material. If no material is
started when a tool is activated, then the system should use a new default material.
Such a default material can be easily created for a tool from the template folder.

● When a tool modifies a material, then the tool can inform its environment to
this effect. The environment can use the workspace to determine other tools
that may manipulate the same material, and inform them about the first tool’s
modification to the material.

270 T & M D E S I G N P A T T E R N S

Features of an
environment

FIGURE 8.57
Environment

and workspace.

Environment

Workspace

Service Provider

Tools

Toolbox

TemplateFolder

TrashCan

Materials

*

1

1

1

* *

Zull-08.qxd 31/8/04 2:35 PM Page 270

TRADE-OFFS

As an alternative to using domain containers, we could implement toolboxes, template
folders, and workspaces by technical containers (e.g., arrays or lists). In this case, how-
ever, we have to implement the domain functionality in the environment. Since an
environment generally assumes a lot of tasks, it is recommended to use domain con-
tainers to keep the environment clear and easy to understand.

RATIONALE

Whenever you design and implement workplace systems you should consider using an
environment. Even if you don’t need a desktop interface, environments are useful for
encapsulating and identifying a workplace in a distributed environment.

8 .1 6 U S I N G T H E T & M D E S I G N P AT T E R N S
F O R T H E J W A M F R A M E W O R K

In this section we show the interplay among various T&M patterns. We have used
these patterns in implementing the JWAM framework, which is a generic framework
for constructing interactive applications in line with our approach. This section briefly
describes these implementations and how they relate. Our description focuses on the
relations and interplay between patterns.

The section begins with a description of the materials construction, followed by a
description of the tools construction. Subsequently, we explain how we support
domain value construction and domain container construction.

With its component model, the JWAM framework supports different options for
user interface connection, including the concept of interaction forms (IAF) and pre-
sentation forms (PF). The forms concept supports the construction and use of forms.
Similar to IAFs, forms are also components.

In a later section, we explain how domain services are built in JWAM, and finally
how we implement a JWAM environment.

8.16.1 Materials Construction

Materials construction is essentially supported by the Thing interface (see Figure 8.58)
and the ThingImpl superclass. The level of Thing defines that each material has a
name and a unique ID of the type IdentificatorDV across the entire system, where
IdentifierDV is built as a domain value.

public interface Thing extends Serializable
{
public void rename (String newName);
public String name ();
public String[] toStrings ();
public void setID (IdentificatorDV id);
public IdentificatorDV id ();
public String typeDescription ();
public ThingDescriptionDV thingDescription ();
}

U S I N G T H E T & M D E S I G N P A T T E R N S F O R T H E J W A M F R A M E W O R K 271

FIGURE 8.58
The Thing
interface.

Zull-08.qxd 31/8/04 2:35 PM Page 271

In addition, each material can return a description in the form of the
ThingDescriptionDV class (see Figure 8.59) about itself. This description is also
a domain value. It includes information about material names, material IDs, the class
a material belongs to, and so on.

Specific materials inherit from ThingImpl or fulfill at least the Thing interface.
In addition, subclasses of ThingDescriptionDV can be defined for specific materials
to provide additional information. One of the most frequent requirements in real-world
applications is that the ThingDescription for a special material should carry
additional information, but it should not define new operations. This means that no
subclass should be derived from ThingDescriptionDV. It is normally sufficient to
pass such additional information as a list of named values to ThingDescriptionDV
when it is created. These value lists can then be output in tables.

Note that we derive not only materials but also all “things” from Thing or
ThingImpl, respectively. In addition to materials, this includes tools, domain con-
tainers, automatons, and domain services.

8.16.2 Tools Construction

We use the Tool interface and the ToolImpl superclass for our tools construction.
Specific tools inherit from ToolImpl or implement the Tool interface as a minimum
requirement. Since tools are also “things,” Tool inherits from Thing and ToolImpl
inherits from ThingImpl. In addition, ToolDescriptionDV is a subclass of
ThingDescriptionDV, which describes a tool in more detail.

Each tool can provide information about its functionality and its interaction. This
information is represented by two interfaces, Functionality and Interaction.

Depending on whether or not we want to separate function and interaction when
building a tool, a tool can be derived from ToolFpIpImpl (see Figure 8.60) or
ToolMonoImpl (see Figure 8.61). ToolFpIpImpl represents a tool with its FP and
IP separated, and ToolMonoImpl is the superclass for monolithic tools with their FP
and IP not separated. In this case, the tool object returns itself when it is queried for
its functionality or interaction.

At their interfaces, functionalities define events in the form of objects of the
Event class. Objects that define events at their interface have to implement the

public class ThingDescriptionDV extends DomainValueImpl
{
public String name ();
public Class thingClass ();
public String iconName ();
public IdentificatorDV id ();

// Management of named values
public int entryCount ();
public String valueName (int index);
public DomainValue value (int index);
}

272 T & M D E S I G N P A T T E R N S

FIGURE 8.59
The Thing

DescriptionDV
interface.

Zull-08.qxd 31/8/04 2:35 PM Page 272

EventSubject interface. Therefore, the functionality interface inherits from
EventSubject. The observers register directly with the events and concurrently
pass objects, the classes of which implement the EventReaction interface. Since
EventReaction has only one defined operation (update), we would normally
work with anonymous inner classes, which are defined by an observer. In the JWAM
framework, observers can be functionalities and interactions. Figure 8.62 shows the
classes of the event mechanism.

A chain of responsibility existing between subtools and context tools is imple-
mented by use of the RequestHandler interface and the Request class. Note that
the tool objects are actually request handlers, which means that the Tool interface
inherits from the RequestHandler interface. Each functionality knows its successor
under the RequestHandler interface and can pass objects of the Request class to
this request handler for further processing.

JWAM-based tools should not depend on a specific user interface. Therefore,
rather than letting Interaction directly use the AWT or Swing windows and

U S I N G T H E T & M D E S I G N P A T T E R N S F O R T H E J W A M F R A M E W O R K 273

ToolFunctionalityImpl

ToolImpl

ToolInteractionImpl

<<interface>>
Tool

+functionality()
+interaction()

<<interface>>
Functionality

<<interface>>
Interaction

ToolFPIPImpl
FIGURE 8.60
A tool with
separate
interaction and
functionality.

Zull-08.qxd 31/8/04 2:35 PM Page 273

widgets, it uses GUI contexts. A GUI context is an abstraction of windows and panels.
A GUI context contains a set of user interface elements and may include embedded
GUI contexts. Figure 8.63 shows an overview of the tools construction.

8.16.3 Domain Values

The JWAM framework uses classes to implement domain values. Domain value objects
are always created by a related factory. Since there has to be a factory class for each

274 T & M D E S I G N P A T T E R N S

<<interface>>
Thing

ThingImpl

ToolImpl
<<interface>>

Tool

+functionality()
+interaction()

<<interface>>
Functionality

<<interface>>
Interaction

ToolMonoImpl

FIGURE 8.61
Monolithic

tools.

Zull-08.qxd 31/8/04 2:35 PM Page 274

domain value class, this relation is expressed in that the factory classes are inner classes
of the domain value classes. There are two generic interfaces: DomainValue for
domain values and DomainValue.Factory for factories. In addition, abstract
implementations are made available: the class DomainValueImpl and the class
DomainValueImpl.Factory (see Figure 8.64).

U S I N G T H E T & M D E S I G N P A T T E R N S F O R T H E J W A M F R A M E W O R K 275

FIGURE 8.63 Tools construction overview.

Event

+register()
+unregister()
+announce()
+owner()

<<interface>>
EventSubject

+isAnnouncing()
+startAnnouncement()
+endAnnouncement()

<<interface>>
EventReaction

+update(e: Event)

FIGURE 8.62
Example for an
event pattern.

<<interface>>
GUIContext

<<interface>>
Interaction

<<interface>>
Tool

<<interface>>
RequestHandler

<<interface>>
Request

<<interface>>
EventSubject

<<interface>>
Functionality

<<interface>>
EventReaction

<<interface>>
Event

Zull-08.qxd 31/8/04 2:35 PM Page 275

Each domain value can use the operation toString specified in Object to
return a string representation of itself. The operation equals, also specified in
Object, can be used to check whether two values are equal. To this effect, the
standard implementation specified in Object has to be redefined, because it compares
object references. It is often sufficient to base the equals operation on the toString
operation. No suitable one-line string representation can be found for complex domain
values, so that we additionally use the toStrings operation, which returns a multi-
line string representation of a domain value.

For domain value objects, we have to solve the conceptual problem of “special
values.” Though these values are outside the valid range, we still need to model them.
Therefore, we distinguish domain value objects in the JWAM context by three states,
which can be tested by the use of appropriate operations. These states are:

● defined: The object represents a valid value of the domain value’s type.
● undefined: The object represents an undefined value (i.e., the value is not

known yet).
● invalid: The object represents a value, which is not a valid domain value type.

As Java objects know their classes, so each domain value object in JWAM knows
the factory that created it. The creating factory can be determined by use of the
factory operation.

The domain value factory provides operations that refer to the domain value type
rather than to the domain value. canCreateFromString can be used to check
whether or not the domain value factory can create a domain value object from a string
representation. Theoretically, we could expect this operation for each domain value
type. However, it would be unpractical. The reason is that there is a number of domain
value types that users would never enter as strings, and where expensive parsing would
be necessary to create a domain value object from a string representation. Examples for

public interface DomainValue extends Serializable
{

public DomainValue.Factory factory ();
public String[] toStrings ();
public boolean isDefined();

public interface Factory extends Serializable
{

public boolean canCreateFromString ();
public DomainValue value (String s);
public boolean isValid (String s);
public boolean hasUndefinedValue();
public DomainValue undefinedValue();
public DomainValue defaultValue ();
public Class type ();
public void unregisterValue (DomainValue value);

}
}

276 T & M D E S I G N P A T T E R N S

FIGURE 8.64
The Domain

Value and
DomainValue.

Factory
interfaces.

Zull-08.qxd 31/8/04 2:35 PM Page 276

such domain values are ThingDescriptionDV and TableOfContentsDV. The
operations isValid and value may be called only provided that a domain value
object can be created from a string representation. isValid can be used to check
whether or not a string represents a valid domain value representation, while value
can be used to determine the represented domain value.

Not every domain value type knows undefined values. hasUndefinedValue can
be used to check whether or not this is the case. If, and only if this is the case, then we
can use undefinedValue to resolve the undefined value. defaultValue returns
the default value used to initialize things, for example, on the user interface.

Using the type operation, the domain value factory can provide information
about the domain value type it can create objects for. Finally, unregisterValue
allows you to delete values from the DomainValueUniverse. This function is use-
ful particularly for enumeration types managed by users.

The optional construction shown in Figures 8.65–8.68 is suitable for frequently recur-
ring domain values. To save storage space, we create new value objects from domain value
factories, provided that the requested value object does not exist yet. If a value object has
been previously created, then it is searched and returned from a pool of created domain
values. This means that domain values are implemented by the flyweight pattern. To let
the garbage collector remove domain value objects that are referenced only by the domain
value factory from the memory, we store value objects in a WeakHashMap.

public class TableOfContentsDV extends DomainValueImpl
{

public int entryCount();
public ThingDescriptionDV description (int index);
public ThingDescriptionDV description (IdentificatorDV id);
public boolean hasDescription (IdentificatorDV id);

}

public interface Container extends Collection
{

public void clear ();
public boolean isAddable (Thing t);
public void add (Thing t);
public boolean isRemovable (IdentificatorDV id);
public void remove (IdentificatorDV id);

}

public interface Collection extends Thing
{

public int count ();
public boolean has (IdentificatorDV id);
public TableOfContentsDV tableOfContents();

}

U S I N G T H E T & M D E S I G N P A T T E R N S F O R T H E J W A M F R A M E W O R K 277

FIGURE 8.65
The Collection
interface.

FIGURE 8.66
The Container
interface.

FIGURE 8.67
The interface of
TableofContents
DV class.

Zull-08.qxd 31/8/04 2:35 PM Page 277

8.16.4 Presentation and Interaction Forms

We have seen in the preceding sections that JWAM supports tool construction based
on the notion of components. Naturally, this also applies to the user interface. For
example, you can use AWT or Swing to develop and integrate your GUI, or alterna-
tively you can use the interaction forms (IAF) concept. Since the use of interaction
forms is not mandatory, JWAM treats interaction forms as an optional concept.

Interaction forms are implemented as Java interfaces, and commands are used to
support feedback from an IAF to a tool.

The interfaces defined by IAFs are implemented by the use of presentation
forms (PF). Presentation forms are simply subclasses of JavaBeans, which implement
additional operations from these interfaces. A presentation form can implement several
interaction forms. Similarly, one single interaction form can be implemented by totally
different presentation forms. The following interaction forms are currently supported:

● ActivatorIAF
● SingleSelectionIAF
● MultiSelectionIAF
● FillInIAF, and the following specializations: FillInTextIAF,
FillInIntIAF, FillInFloatIAF, and FillinDomainValueIAF

● SingleOfContentsSelectionIF

8.16.5 Forms

The JWAM framework lets you easily specialize forms by subclassing the Form super-
class. A form has a set of form fields of the class FormField. Each form field can store
a domain value and return it for editing purposes. Since domain values can basically
have an arbitrary complexity, this simple construction allows you to implement com-
plex forms. We have successfully used the construction described in Section 8.12 in
JWAM.

As mentioned there, generic standard tools are important for forms. The JWAM
framework includes FormEditor, FormViewer, and FormCopier, For example,
you can use the FormCopier to copy field values between different forms, even if
these forms are of different types.

The component-like tools construction in JWAM lets you easily embed such
standard tools in your own tools.

public class TableOfContentsIterator implements Iterator
{

public TableOfContentsIterator (TableOfContentsDV toc);
public TableOfContentsIterator (TableOfContentsDV toc,

Class type);
public boolean hasNext();
public Object next();
public ThingDescriptionDV nextDescription();

}

278 T & M D E S I G N P A T T E R N S

FIGURE 8.68
The interface

of the TableOf-
Contents

Iterator class.

Zull-08.qxd 31/8/04 2:35 PM Page 278

8.16.6 Domain Services

Domain services are things, like materials, containers, and tools. This means that the
Service interface inherits from the Thing interface. The ServiceImpl class
represents an abstract basic implementation for services.

8.16.7 Work Environment

The JWAM framework represents an environment by the class Environment. The
implementation is based on the singleton pattern, which ensures that there is only one
environment for each workplace. The environment uses a domain container by
the name of Workspace to manage tools and materials. All tools generally available are
held in a Toolbox. In turn, the Toolbox is a domain container in the Workspace.
Material templates are stored in a domain container, TemplateFolder, which is also
in the Workspace. We have shown these relations earlier in Figure 8.57.

8 .17 R E F E R E N C E S

J. Coplien: Advanced C��: Programming Styles and Idioms. Reading, Mass.: Addison-Wesley,
1992.

Besides the concept of programming patterns Coplien describes the body/handle pattern.

E. W. Dijkstra: “The Structure of the T.H.E. Multiprogramming System.” Communications of the
ACM, August 1968, Vol. 18, No. 8, pp. 453–457.

Dijkstra’s classical paper introduces the principles of layered architectures.

E. Evans: Domain-Driven Design. Reading, Mass.: Addison-Wesley, 2003.

As the title indicates this book introduces another application-oriented approach to software
development.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison-Wesley, 1995.

The fundamental reference for all basic patterns in this chapter.

A. Goldberg: Information Models, Views, and Controllers. Dr. Dobb’s Journal, July 1990,
pp. 54–61.

A relevant paper on model—view—controller.

C. A. R. Hoare: “Notes on Data Structuring.” In O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare,
Structured Programming. London: Academic Press, 1972.

Seminal work on the classical type concept.

A. Koenig, B. Moo: Ruminations on C��. Reading, Mass.: Addison-Wesley, 1997.

Another version of the body/handle pattern.

R E F E R E N C E S 279

Zull-08.qxd 31/8/04 2:35 PM Page 279

G. Krasner and S. Pope: A CookBook for using the Model-View Controller User Interface in
Smalltalk-80. ParcPlace Systems 2400 GengRoad Palo Alto, CA 94303, 1988.

A classical paper on model—view—controller.

B. Meyer: “Design by Contract.” In D. Mandrioli, B. Meyer (eds.): Advances in Object-Oriented
Software Engineering. New York, London: Prentice-Hall, 1991, pp. 1–50.

This paper explains the design by contract principle.

R. T. Monroe, A. Kompanek, R. Melton, D. Garlan: “Architectural Styles, Design Patterns, and
Objects.” IEEE Software, Vol. 14, No. 1, January/February 1997, pp. 43–52.

A relevant paper on architectural styles.

D. Notkin, D. Garlan, W. G. Griswood, K. Sullivan: “Adding Implicit Invocation to Languages:
Three Approaches.” In S. Nishio, A. Yonezawa (eds.): Proceedings of JSSST-93, LNCS 742,
Berlin, Heidelberg: Springer-Verlag, 1993, pp. 489–510.

This paper introduces coordination mechanisms for interactive components.

D. L. Parnas: “On the Criteria to be Used in Decomposing Systems into Modules.”
Communication of the ACM, Vol. 5, No. 12, December 1972, pp. 1053–1058.

The seminal paper on modularization principles and information hiding.

A. Weinand, E. Gamma: “ET�� A Portable Homogeneous Class Library and Framework.”
In T. Lewis: Object-Oriented Application Frameworks. Greenwich: Manning Publications Co.,
1995, pp. 154–194.

This paper introduces relevant concepts for framework construction.

R. J. Wirfs-Brock, B. Wilkerson, L. Wiener: Designing Object-Oriented Software. New York,
London: Prentice-Hall, 1990.

This books introduces the concept of responsibilities and other relevant object-oriented
design principles.

280 T & M D E S I G N P A T T E R N S

Zull-08.qxd 31/8/04 2:35 PM Page 280

281

T&M Model
Architecture

Conceptual and design patterns can be used as guidelines for designing and
implementing the elements or components of application software. Medium-sized to
large systems need a structure beyond these “micro architectures,” but we cannot define
the overall software architecture of a concrete application as it depends on the business
logic of the domain at hand. We can, however, at least outline the structuring princi-
ples of an application built in line with the T&M approach.

This chapter describes these essential elements and features of what we call a
model architecture for families of interactive application systems based on the T&M
approach. This model architecture uses frameworks and components. Our model archi-
tecture is based on the two general principles described in earlier chapters: application
orientation and structural similarity.

This chapter addresses readers who work as software architects, that is, those who
design the overall structure and relationships of a software system. Frequently they
need to develop a whole family of logically and technically related applications within
an organization. This chapter provides answers to issues arising from these kinds of
tasks.

The various topics presented in this chapter are based on our project experience,
but we do not claim to have destilled this experience into a set of architectural patterns.
Nevertheless, we frequently structure our reasonings along the lines of the pattern
format used in Chapters 7 and 8.

9 .1 T H E T & M M O D E L A R C H I T E C T U R E

When developing large-scale software systems, we no longer choose a “big-bang”
approach by building the entire system within one project. Evolutionary and itera-
tive strategies tell us to partition a large complex system into a family of related appli-
cation components, for example, according to the principles of core system and
extension levels (see Section 12.7). Following this approach, we need an explicit

9

Zull-09.qxd 20/8/04 7:40 AM Page 281

software architecture. This has also been recognized in the Unified Process (UP),
which is probably the reason why UP is also called an architecture-centric process. The
T&M approach guides such a process with its principles of application orientation
and structural similarity. According to these principles, we need to identify concepts
and things found in an application domain, which can be used as elements of a soft-
ware architecture.

We defined the elements of the object metamodel discussed in Chapter 2 so that
we can use them as microelements to model application systems. To develop large
object-oriented systems, however, we need macrostructures that allow us to organize
these systems in a clear and easily manageable way. We have to map these macrostruc-
tures to corresponding modeling units. We call this structuring of software with mod-
eling units that correspond to the macrostructures of our application domain software
architecture.

A software architecture describes the elements of the model and of the concrete
construction of a software system in their static and dynamic interplay. A soft-
ware architecture itself can be represented as an explicit model. It describes a
specific system in its application context.

This means that we think of software architectures in project-specific terms,
because they determine how we build a software system.1 For this purpose, we have to
define modeling units, identify domain and software elements for all our models, and
put them in static and dynamic relationships.

Consequently, we will not describe a concrete software architecture that could be
used as is for many projects. What we will discuss here is a basic software architec-
ture, including generalizations and examples. We call such a generalization model
architecture.

A model architecture abstracts from the characteristic features of a set of similar
software architectures. It defines the kind of elements used, their connection,
and the rules for their combination. In addition, a model architecture includes
criteria for the composition of elements into modeling and construction units,
and guidelines for the design and quality of a specific architecture.

Notice that other authors use the term architectural style when talking about the
basic elements of a software architecture, along with its links and rules. Our definition
of “model architecture” also includes an instructive model to build families of applica-
tion systems based on the T&M approach. This means that a model architecture has a
similar function for the software construction as the guiding metaphor with its design
metaphors for domain modeling.

With regard to iterative or sustained application development projects in an
organization, we recommend using frameworks and components for such a model
architecture.

282 T & M M O D E L A R C H I T E C T U R E

Elements of a
software

architecture

Model
architecture

1. Many developers use the term “software architecture” in a more general sense, including among other
things, e.g., the way a system is distributed over different processes or computers. We do not use the term in
this sense.

Zull-09.qxd 20/8/04 7:40 AM Page 282

9 . 2 T H E D O M A I N C O R E O F A S O F T W A R E
A R C H I T E C T U R E

We encourage developers to build the domain core of an application system on the basis
of the large structures of the application domain in question. We illustrate this approach
with examples from the financial and services industries. Based on workplace types
found in the application domain, we define the use context layer. The products and
services form the product layer of our architecture. Communication and cooperation of
the individual workplaces can be supported by a system, provided that the domain core
of a model architecture is built on a common understanding of the domain.

PROBLEM

We want more than to simply design application software based on our principles of
application orientation and structural similarity within a micro world, that is, on work-
place level. Therefore, we are looking for macrostructures in the application domain
that can form the basis for modeling architectural units. They should serve to achieve
a structural similarity between domain and software system on the macro level.

BACKGROUND: THE APPLICATION DOMAIN CORE

Large (and object-oriented) systems are often structured on the basis of technical cri-
teria. For example, a division of systems into user interface, application logic, and data
repository is customary in practice. This structure is normally called three-tier architec-
ture and is very popular today. We will discuss this architectural approach in more
detail in Section 9.3.6.

In contrast, application orientation suggests that, rather than orienting ourselves to
technical criteria when structuring a software system, we look for suitable macrostruc-
tures in the application domain. In this connection, we take the following requirements
(see Section 2.6.8) into account:

● The domain model of the application domain determines the technical model
for our application system.

● The concept model as part of the application domain model should be mapped
without mismatches to classes and class relationships. To this end, domain
concepts and their structures have to be recognizable in their system
representation. Classes and their relationships form the microelements of a
software architecture.

SOLUTION

Many software applications are developed for specific organizations or parts of an
organization. When identifying macrostructures for our software architecture, we ori-
ent ourselves to the structures prevailing in that organization.

DISCUSSION: THE APPLICATION DOMAIN CORE

Once a large system has been introduced, basic architectural decisions can hardly be
changed due to the high costs such changes involve. For this reason, we should structure
the system so that the macrostructures we select will remain valid over the long term.

Application orientation suggests that we should find these structures inside the
organization that will be using our application software. In this respect, we are interested

T H E D O M A I N C O R E O F A S O F T W A R E A R C H I T E C T U R E 283

Macro structures

Zull-09.qxd 20/8/04 7:40 AM Page 283

in structures that represent macrostructures and a relatively high life cycle, that is, more
than ten years.

Economists normally distinguish between the company organization structure and
the flow organization. We are less interested in the flow organization, where we often
observe quick changes in the dynamics of task allocation and completion due to infor-
mation technology. The same applies to the work organization, which deals with the
organization of the work of individuals and groups.

The organization structure represents the static aspect of a company. This corre-
sponds to the notion of software architectures, which primarily describe the static
aspects of a software system, rather than its dynamic behavior at runtime.

Our experiences in the design of software architectures are based mainly on the
financial and service industries, where companies are normally organized by business
sectors, product lines, or other object-specific principles. We describe a model archi-
tecture that has proven useful for this corporate type.

This does not mean that other organizational types are not suitable for structuring
software architectures. The important point here is that we want to characterize the
organizational type behind the application domain of the framework-based architec-
tural model we selected to ensure that our model is highly applicable.

BACKGROUND: THE OBJECT PRINCIPLE AS AN ORGANIZATIONAL STRUCTURE

This section will discuss companies that are organized by business sectors. This
organizational structure treats products, regions, or customer groups as objects, while
the corporate organization is oriented to these objects. For this reason, economists
often refer to this organizational principle as the object principle.

In a bank, for example, you normally find credit, securities, account management,
or corporate customer divisions, where each division is responsible for a specific group
of financial products (see Figure 9.1).

The object principle follows the goal of allocating a product or service within a
division so that it has maximum independence of the other divisions in completing
its job. This independence of divisions means that the work objects of a domain have
little or no relationship to the work objects of other domains.

In banks, for example, this object principle is normally realized so that customers
can handle all their business in relation to their checking accounts at a bank’s counter

284 T & M M O D E L A R C H I T E C T U R E

Organization
structures as

macro elements

FIGURE 9.1
Simplified chart

of a bank
organization by

the object.

Management

Accounts Loan department Securities Corporate customers

Zull-09.qxd 20/8/04 7:40 AM Page 284

or teller. Only when a customer expresses interest in taking a mortgage or another
important transaction is this customer referred to the credit division.

In this organizational form, the work objects are in the center. Each workplace and
its organizational unit is responsible for carrying out a complex task with the work
object. The object principle matches our expert workplace T&M guiding metaphor
(see Section 2.3.5). This means that it is oriented along objects, where these objects
can be specific products or services for customer groups. In our context, we can speak
of work objects in either case.

This type of corporate organization represents a macrostructure that we are look-
ing for as a foundation for our model architecture. It is relatively long-living and sta-
ble. In addition, it offers an organizational principle similar to the modularization
principles of Parnas or Yourdon. This means that it allows us to apply two important
concepts, minimum coupling and maximum cohesion, to the macrostructures of a soft-
ware architecture.

9.2.1 The Use Context

Domain analysis and modeling by the T&M approach are based on the central idea of
dealing with the specific tasks at each individual workplace, because these are the loca-
tions where our future application system will run. When studying the number of
different workplaces in financial and service industries, we often observe that many
workplaces handle related products or “service packages,” due to the customer orien-
tation of these companies (see Section 1.1.1).

In this connection, customer orientation means that the needs, expectations, and
requirements of the customers are the center of attention. Basically, customer orienta-
tion is implemented so that the company orients the organization of its “interface” to
the external world primarily to customer needs and wishes, in addition to its product
and service offer.

The “internal structure” of many service companies is divided by appropriate busi-
ness sectors or divisions, while the customer-contact domains have been reorganized.
This means that we often find customer-oriented workplaces that are no longer ori-
ented to single product domains but rather to customer requirements. This leads to a
wide product and service range that has to be represented and handled differently at
different workplaces. If we want to develop application systems for these workplaces,
then these systems also have to offer differentiated support for a large number of prod-
ucts. In addition, such companies often operate separate application systems that are
used by their customers.

At the same time, the above reorganization means that the customer image
changes, that is, there is no longer the customer. Customers are segmented in different
groups. The aim is to identify and address homogeneous customer groups, depending
on their requirements and potentials. The result is that the same product or service
package is offered in many different ways.

First, let’s define our notion of use context.

The term use context refers to the part of an application domain where specific
work is supported by an application system. A use context includes the specific
work context supported by an application system within an organization.
This work context is normally realized as an independent workplace based on a

T H E D O M A I N C O R E O F A S O F T W A R E A R C H I T E C T U R E 285

Modularization

Customer
orientation

Use context

Zull-09.qxd 20/8/04 7:40 AM Page 285

well-defined set of tasks. Products and services from different divisions or
areas can be handled, depending on the use context.

The use context forms the background or starting point for domain analysis and
modeling. It also defines the extent of each workplace system.

EXAMPLE: USE CONTEXT

Modern banks are increasingly shifting from traditional banking services to compre-
hensive financial services. Thus the financing of a house purchase is no longer only
implemented as a mortgage. Investment opportunities as well as life insurance to secure
loans and cover long-term repayments are offered during the capital structuring phase.

This example can be used to show a differentiated product presentation. We find that
loans granted within the context of personal advisory services are geared to retail banking
customers. Very well-off private customers are often offered a separate service that includes
more sophisticated credit products. Then there is a standardized spectrum of credit prod-
ucts in the service center, simple customer loans in home banking, and online banking.

DISCUSSION: USE CONTEXT AND WORKPLACE TYPES

Use contexts can often be easily mapped to the different workplace types in the appli-
cation domains discussed in this book. This means that specific tasks are completed at
specific workplaces, handling related products or services in a customer-oriented way.
For example, we identified the following workplace types in the banking industry:

● Workplace for personal account manager: This workplace type is intended for
private customer account managers. Products from the loan, investment, and
securities departments are offered based on the “one face to the customer”
principle, concentrating on flexible work oriented to the customer (and the
bank). The objective is to offer private customers personal assistance in their
banking business.

● Workplace for product specialists: This workplace type offers specialized support
for various product areas, such as loans, investments, and securities. The
respective bank specialists deal with customer requirements that cannot be
handled by private account managers.

● Workplace for tellers and general retail banking activities: The important
characteristic of this workplace type is quick and reliable support for
standardized services. Examples include workplaces in service centers and
monitoring of transfer traffic in banks or back-office areas.

● Home banking and self-service terminals: This workplace type offers standardized
banking services for people who are not familiar with banking or software,
providing support for inexperienced users.

The above bank-specific workplace types correspond to the general workplace
types described in Section 3.6. This means that we can allocate them to different guid-
ing metaphors:

● The workplace types for personal account managers and product experts fall
in the category of the expert workplace (see Section 3.6.2). An application
system for this workplace type should support the account manager or product
expert in their tasks while giving them maximum flexibility. While the system
for account managers offers a broad range of products from different product

286 T & M M O D E L A R C H I T E C T U R E

Bank example

Bank example

Workplace types

Zull-09.qxd 20/8/04 7:40 AM Page 286

areas for the so-called 80 percent case (i.e., covering 80% of all business cases),
the product specialist should be supported in all the details of a product area.

● The workplace types for tellers or business correspond to the functional workplace
type, as discussed in Section 3.6.3, which is focused on quick independent
completion of standardized tasks. An appropriate application system should
offer several standard products from different areas or easily provide optimized
support for frequently recurring tasks.

● The home banking and self-service area corresponds to the workplace type for
the electronic commerce front-end (see Section 3.6.5). From a banking view,
different products have to be covered and presented in an intuitive manner for
nonexpert users. This workplace type has to be easy to use and intuitive.

DISCUSSION: USE CONTEXT AND WORKPLACE TYPES

The identification of different use contexts in an application domain is an important
step towards reducing complexity for analysis and modeling purposes. This means
that we do not have to construct a monolithic system that covers all tasks and every
functionality required. Moreover, we do not have to cover all application contexts in
one project; instead, we can gradually do our work step-by-step based on domain and
software priorities. This is in line with our development strategy, as described in
Section 12.7.

Relating use contexts and workplace types solves a second major design problem.
For different detailed tasks people with different qualifications should have shared
access to the products and services of an organization. In proposing a workplace con-
cept for software systems within an organization, we suggest equipping these work-
places in different ways. Thus, the way a loan is offered at different workplace types can
be differentiated in a technical sense, and the presentation and handling of each work-
place type can also vary in the usage model. Nevertheless, we want to ensure that it is
based on the same banking functionality.

Consequently, we assume that workplace systems have to be designed differently,
depending on the use context, in order to meet the respective requirements. This
means that each use context always forms a separate modeling unit. It is, however,
important that these systems can be used in the same way, allowing an intuitive under-
standing of common domain concepts. Bank employees often move between different
workplaces or assume different roles, sometimes more than once on the same day. This
means that a family of application systems is based on a common usage model so that
interaction forms familiar to a user can be transferred.

Common design metaphors and patterns help us in designing a family of inte-
grated and uniform application systems. In addition, tools, materials, automatons, and
all the other design elements of the T&M approach form constructive software devel-
opment units.

We demand that application systems for different use contexts be constructed
through an extensive combination of elements that have already been implemented in
the individual product domains.

9.2.2 The Product Domain

In the financial sector, we often find companies that are organized according to busi-
ness or technical departments. Each organizational unit groups itself around a product

T H E D O M A I N C O R E O F A S O F T W A R E A R C H I T E C T U R E 287

Relating use
contexts and
workplace types

Zull-09.qxd 20/8/04 7:40 AM Page 287

or service type. Examples in the banking sector include the loan and securities depart-
ments. This classification has the advantage that it produces homogeneous technical
units that are coherent in themselves and have no major cross-references to the prod-
ucts and services of other units.

One of the most important prerequisites for the model architecture we propose is
that these departments are units motivated by the domain and largely independent of
other units. In this case, the products or services located there can be modeled so that
the individual models, in turn, incorporate minor dependencies.

This business organization is also important when specific use contexts, as pre-
sented in the preceding section, are customer-oriented. Product domains offered at the
different workplace types can still be identified.

DEFINITION

We separate the term product domain from the specific organizational unit, that is, we talk
about a product domain even if a company no longer has a corresponding department.

A product domain is a domain group of relating products or services. Within an
organization, there are normally several identifiable product domains, reflected
also in the organization’s internal language. In addition, there may be several
organizational units, each in charge of one product domain.

From the software development view, a product domain is a part of the
application domain, which can be analyzed, modeled, and built independently of
other product domains. A product domain is a macrostructure relevant for the
software architecture, and this macrostructure can be used as a modeling unit.

EXAMPLE

A banking example can be used to illustrate the product domain concept in its tradi-
tional and current form.

A customer’s financing request to build a house is dealt with extensively in the
loan department. This is a classic business organization. This means that the product
domain, a loan, still corresponds to an organizational unit.

Alternatively, a bank has a service center where customers can obtain simple con-
sumer credits along with other standard products. A person in the service center
advises customers about the range of products offered and looks after their require-
ments. However, there is still a clear understanding among the bank employees that
the services offered at this center, such as loans, investment advice, and teller services,
belong to different product domains.

DISCUSSION: PRODUCT DOMAIN AND USE CONTEXT

The banking example shows that use contexts and product domains seldom form a
one-to-one relationship in today’s companies. Use contexts supported by appropriate
workplace types are subject to high dynamics, and they are oriented towards the needs
of customers and changes in the market.

In contrast, business domains are more stable conceptual dimensions that can eas-
ily be analyzed and modeled one by one. We could say that, at the domain level, they
correspond to the modularization principles of Parnas or Yourdon. They normally show
strong coherence and weak coupling.

288 T & M M O D E L A R C H I T E C T U R E

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 288

Modeling the different product domains as separate modeling and construction
units has the following advantages:

● Within an overall project, each domain can be modeled and implemented in a
separate subproject.

● Tools, materials, and other equipment elements used to support a product
domain can be arranged differently for different workplace types, depending on
the use contexts.

● Product domains can serve as a basis for the logical architecture (see Section 9.37)
and for dynamic components, that is, domain services (see Section 8.14).

9.2.3 The Business Domain

The previous section demonstrates the importance of uniformity in the design of differ-
ent application systems. This uniformity must have a technical and a domain basis,
which means that it is not sufficient to ensure that all elements of a family of applica-
tion systems behave in the same way, such as tool-like or material-like. They also have
to be backed up by a uniform domain structure of terms and concepts. This is something
we have to ensure beyond the use contexts and product domains already discussed, since
there the emphasis is on the domain differences between products, services, and tasks.

When looking at the individual product domains, we can identify conceptual
overlaps. For example, the loan and securities departments in a bank need to share
concepts, such as account or currency. In addition, there are overlaps not immediately
apparent, for example, concepts like “borrower” and “securities holder” can relate to
the same customer.

These overlaps should not come as a surprise, since a common business stands
behind the different product domains. After all, employees at different workplaces are
able to communicate with one another about their work, although they all have dif-
ferent stores of detailed knowledge and a different understanding of specialized terms.
In this sense, we can still say that all use contexts and product domains share the same
common abstractions.

The uniform structure of terms and concepts is important for another reason. It is
the only way to support cooperative tasks that extend beyond one workplace or prod-
uct domain. Naturally, the people involved have to speak a common language to be
able to cooperate. In addition, cooperation works only provided that there are com-
mon work objects and materials. For example, when a bank employee forwards a trans-
fer form in an electronic folder, and this form appears identically on the electronic
desktop of a colleague, then these two employees can cooperate smoothly.

EXAMPLE

Let’s look at another example. In a bank almost all workplaces need to have basic infor-
mation about customers in a consolidated form. Technically, this is called a customer
information first screen. In the securities area, this screen contains the deposits belong-
ing to a customer, the shares contained, and general information about this customer
(e.g., name, number, and a listing of all activities with the bank). Detailed information
about deposits is not necessary for customer information first screens in the loan depart-
ment. This department’s prime interest are the securities provided by a customer for
collateral of credits, in addition to credit accounts and credit data.

T H E D O M A I N C O R E O F A S O F T W A R E A R C H I T E C T U R E 289

Business domains
overlap

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 289

However, both departments need to know that this customer is represented by
the same information, such as name or customer number. Without such a common
domain basis, two bank employees could not talk about the same customer across their
departments.

Evaluating this example shows that modeling the conceptual commonalities of an
application domain as part of the different product domains leads to problems. The
common identification data about a customer would have to be managed in duplicate
in both product domains, in this case loans and securities. From the technical and
domain viewpoints, this leads to inadequate solutions. In addition, it entails the risk of
introducing inconsistencies in further development.

DEFINITION

We need a common domain basis to be able to build integrated application systems.
We build this basis by use of an independent modeling unit called business domain.

A business domain includes the domain concepts or core abstractions that are
fundamental for different product domains. It characterizes the business of an
organization on a general abstraction level. The business domain forms the domain
and constructive basis for all product domains. It is a separate modeling unit.

DISCUSSION: BUSINESS DOMAIN

A business domain includes common basic concepts for the different product domains,
defining the domain language necessary to a common understanding and common
work objects. Constructively, the business domain represents a model common to all
product domains. The elements contained in this model and their relationships are
binding for all product domains.

This may initially sound like the requirements associated with corporate data
modeling. We know that corporate data modeling is difficult. In the banking industry
especially, there have been many unsuccessful attempts (at least from the user’s per-
spective) to implement standard data and conceptual models. To avoid such problems,
we have to bear the following things in mind:

● A business domain must include all concepts and objects necessary for com-
munication and cooperation between individual product domains. These
concepts have to be represented in commonly used construction units. If the
business domain is overly constricted, then it will either be difficult for the
product domains to communicate, or domain elements have to be modeled
several times for each product domain. This hinders the development of
integrated application systems.

● The business domain should be minimal, that is, it should not include concepts
or objects required in only one or a few product domains. This would make the
idea of the business domain unclear and unnecessarily increase the number of
constructive dependencies between a business domain and product domains.

● The concepts and objects included in the business domain should ideally be
implemented in the form of interfaces and abstractions. The business domain
should specify only those implementations that may be useful for all product
domains concerned. Accordingly, few elements of a business domain are
normally provided as components or completely implemented classes.

290 T & M M O D E L A R C H I T E C T U R E

Criteria for
designing

business domains

Zull-09.qxd 20/8/04 7:40 AM Page 290

THE BUSINESS DOMAIN AS AN IDEAL RECONSTRUCTION

One of the most important characteristics of a business domain is that it does not have
a direct correspondence in the company’s organization; instead it is a conceptual entity,
we can only identify on the modeling level of the domain model and the system model.
There is normally no business unit or department which represent the business domain
directly. The business domain is an abstraction form the entire common business of a
company. However, this is not constructive, because we cannot model the organization
or its business as such. We are always confronted with specific workplaces or product
domains as organizational units. Behind these organizational units, there are common
elements that we want to model in the business domain, but which are idealizations
and normally not physically present. In a way, we have to reconstruct the core abstrac-
tions behind these common elements or notions.

In addition, the people in an organization seldom look at their work in the sense
of our business domain. We already mentioned its difference from traditional data
modeling. This difference also applies to business process engineering, where modeling
is focused on processes and rational flows or value-adding chains rather than on the
common abstractions behind work objects and interactions.

We can conclude, then, that modeling a business domain is a complex and
demanding task for development teams, and one that should be handled with great
care and based on extensive experience.

EXAMPLE

We can use bank accounts to understand the problems inherent in an ideal business
domain. Almost all departments and workplaces deal with customers and accounts.
However, there are different views of what characterizes these customers and accounts,
and which tasks have to be completed in what form.

Using bank accounts as our example shows a major problem. There is no location
in a modern bank where developers can see an account as such. The days when accounts
existed in the form of entries in ledgers and cashbooks are long gone. Accounts have
become virtual artifacts that ultimately can only be reconstructed. We understand what
an account is when we analyze how it is processed at the various workplaces involved.

Looking at existing bank applications doesn’t help us either, because in conven-
tional banking mainframe software, data belonging to the account concept is stored at
various locations, and its processing is distributed over many separate programs.

AN APPROACH TO BUSINESS DOMAIN MODELING

As we have seen, modeling a business domain is a demanding task that can only be
handled with a suitable approach. For example, you will have to build a separate busi-
ness domain only if your software has to support at least two overlapping product
domains (for example accounts and loans). If this is clear in advance, you can identify
and model an initial business domain during the construction phase of the first prod-
uct domain (for example accounts) by generalizing potential candidates. This means
that developers need to have domain knowledge, in addition to being able to create
good object-oriented designs. The reason is that they have to anticipate which objects
and concepts will be part of the business domain.

Our project experiences have shown that we must begin developing a common
business domain when we model a second product domain (for example loans). This

T H E D O M A I N C O R E O F A S O F T W A R E A R C H I T E C T U R E 291

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 291

appears to be the only way to ensure that two product domains remain independent of
one another. Normally we are tempted to develop the second product domain on the
basis of the first one especially when there are hard deadlines (see Figure 9.2). This is
not a good idea, because we would then introduce unnecessary interdependencies
between the two product domains, so that changes in the first (accounts) could have
unwanted implications in the second (loans). It would prevent the two product
domains from developing independently, which is one of the most important reasons
for our search for macrostructures as the basis of our model architecture.

EXAMPLE

Assume that we have to deal with the following situation. The product domain for teller
business in a bank has been modeled and an application system has been built. The devel-
opers elaborated a simple concept model for account realized by a superclass, Account,
and two derived classes, CheckingAccount and SavingsAccount (see Figure 9.2,
step 1). When requested to additionally support the bank’s loan business (see step 2), the
developers find that important characteristics of a loan account had already been modeled
in the CheckingAccount class. They merely add the management of securities in the
subclass LoanAccount to CheckingAccount and specify a precondition to ensure

292 T & M M O D E L A R C H I T E C T U R E

Step 1

Account

Account

Checking
Account

Checking
Account

Savings
Account

Account

Checking
Account

Savings
Account

Savings
Account

Investment
Account

LoanAccount

LoanAccount

LoanAccount

Step 2

Step 3

FIGURE 9.2
Problematic

coupling of two
product

domains.

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 292

that the loan account cannot appear on the credit side. During modeling of yet another
product domain (see step 3), the bank’s investment business, it becomes clear that the
class InvestmentAccount, positioned on the same level as CheckingAccount
and LoanAccount, would describe the concepts and relations more appropriately. But
this change would have an undesired impact on the application for the loan business.

This example shows that we need to continuously adapt and enhance the business
domain to support newly added product domains. This is the only way to ensure flaw-
less extensions of an integrated application system.

9.2.4 How Different Domains Relate

We analyzed the organizational structures in the application domain to structure large-
scale software systems, focusing on companies organized by the object principle.

For these companies, we have identified different workplace types and use con-
texts as our primary level for application-oriented modeling. We identified various
product domains as the important underlying macrostructure for the domain concepts
and objects. Finally, we reconstructed the basic concepts for the business domain of a
company. When we try to transfer these structures to the potential modeling units, we
can see the following relations:

● The business domain is modeled only once for each application domain. Its
elements are the fundamental concepts and objects of the company. If a company
has more than one business (e.g., a hospital with clinical departments and a
nursing school), then we have to check whether or not we should model separate
business domains. This depends on tasks spanning these domains and the need to
support them within the new system.

● The business domain is reconstructed on the basis of several product domains. It
is part of the application system model, because it has no direct counterpart in
an organizational unit.

The product domains model appropriate units of the corporate
organization. Each product domain is represented as a current concept both in
the application domain model and in the software model. The models of the
set of product domains should be independent of one another. When modeling
a new product domain, we either extend existing concepts of the business
domain or introduce new concepts for that product domain.

● Corresponding to the workplace types in a company, there are different use
contexts. Each use context associates a workplace type with the appropriate
application system. Each use context is considered a modeling unit in the domain
model. In addition, we create one software model of every use context for each
application system. One use context can cover several product domains.
Accordingly, our application systems are normally composed of elements from
the product domains we need.

EXAMPLE

In our banking example, we can see the models involved and some of the elements
each of these models contains (see Figure 9.3).

The bank in this example has use contexts that are bound to specific workplace
types, including account manager, securities specialist, or teller workplace. In addition,
there are self-service terminals for bank customers.

T H E D O M A I N C O R E O F A S O F T W A R E A R C H I T E C T U R E 293

Macro structures
and modeling
units

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 293

We already mentioned the traditional product domains of a bank, including loan,
investment, securities, and teller divisions. All of these product domains have the cus-
tomer and account concepts in common. More specifically, all of them use the object
checking account, because this does not require any specification in the product domains
involved. In contrast, the customer concept is extended in the loan domain. A totally
new interaction is the management of securities, which is added to the application.

In the business domain, there are initially the bank-specific values, such as
amount, interest rate, and account number. In addition, there are basic concepts, such
as person and customer, where customer extends the concept of person.

IMPACT OF DOMAIN CHANGES TO THE ARCHITECTURE

New workplace types that can be implemented on the basis of existing product
domains do not cause any problem. The same applies when we can create a new prod-
uct domain with its own workplace types so that the existing business domain and
other use contexts are not affected.

If conceptual changes in the business domain are required due to the introduction
of a new product domain, then they will not be problematic as long as we can extend
existing concepts of the business domain. Also, it would be relatively easy to add a new
element to the business domain. Both types of changes are covered by the open-closed
principle proposed by Meyer (see Section 2.2.3).

294 T & M M O D E L A R C H I T E C T U R E

Business
Domain

ProductAccountPerson/
Customer

Domain
Values

Form
System

...

Account
Manager

Securities
Specialist

Teller Self-Service
Terminal

... Use
Context

Investment

Portfolio
Chart

Analysis

Bonds ...

Loans

Securities
Debtor
Loan

Account

Private
Loans

...
... ...

Product
Domain

FIGURE 9.3 Business domain, product domains, and use contexts for a bank.

Changes due to
new products

New concepts

Zull-09.qxd 20/8/04 7:40 AM Page 294

In contrast, extensive changes are required if we have to move a concept from an
existing product domain, that is, when we have to generalize it in the business domain.
In this case, we have to modify both the business and the product domain.

We will have to deal with serious modeling problems if we find that the concepts of
the business domain are poor or wrong abstractions. Such problems typically stem from
a limited comprehension of the application domain on the developer’s side. The risk of
such errors can never be totally eliminated. It is especially high when developers try to
create a complete model based on the idea of the waterfall model (see Section 12.1.3).

A fatal problem occurs when the concepts of the business domain no longer match
the real-world work situation of an organization due to fundamental changes in an
organization’s business. If even the underlying abstractions have changed considerably,
the application software is normally no longer useful and will have to be rewritten to
the new business of an organization.

HANDLING DOMAIN CHANGES WITHIN THE PROJECT TEAM

We assume that several project teams work in parallel to implement one domain con-
cept model in different technical models for an entire organization. The question is,
who should estimate and implement changes to this concept model?

● As long as new use contexts and workplace types are implemented, there
should be no changes at all, or minor changes may be implemented by each
project team directly.

● We have to carefully consider two important aspects for each new product
domain. First, are there unidentified common concepts in parallel projects? Does
the modeling effort in one product domain entail changes to the business
domain, and what impact would these changes have to the other product
domains? These changes have to be coordinated among all projects.

● The business domain itself has to be verified regularly to ensure consistency. Any
impact on dependent product domains has to be identified and implemented
involving all projects.

The above factors have organizational consequences. All changes have to be
coordinated or implemented by a cross-project instance. We suggest a so-called archi-
tecture group (see Section 12.2.6) for this purpose.

9 . 3 C O N C E P T S A N D E L E M E N T S O F A T & M
M O D E L A R C H I T E C T U R E

The previous sections describe corporate organizational structures and show a way to
use them in our modeling process. We define macrostructures and modeling units that
primarily concern the application domain model, but also represent a fundamental
definition of structures for our software model. This section explains the technical con-
cepts and elements required to define a model architecture.

To define a model architecture we initially orient ourselves to the principles of a
classic layered architecture. We use this layered architecture to explain the basic idea
of a model architecture and explain why the popular three-tier architecture entails
a number of problems. Next, we will define important rules that an object-oriented
layered architecture should observe.

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 295

Moving concepts

Bad abstractions

Changing
business

Zull-09.qxd 20/8/04 7:40 AM Page 295

BACKGROUND: WHAT TYPES OF ARCHITECTURAL CONCEPTS ARE REQUIRED?
Section 9.2 divided the domain concepts of an example domain into possible model
elements. However, we dealt with neither the technology required for programming
nor the aspect of handling and presentation (see Section 6.7.5).

To build interactive application systems based on the T&M approach, the underly-
ing software architecture has to include important object-oriented characteristics, such
as abstraction, polymorphism, or dynamic binding (see Chapter 2). To this end, we have
already presented general software engineering principles, such as, cohesion and coupling
or the open-closed principle, which are used to build design and construction units.

We have to understand the interacting elements of a software architecture, as well
as how they can be described in a model architecture. For this purpose, we define how
these elements are organized and structured. One particularly important point is to
understand how these elements interact. Examples for this interaction include an oper-
ation call on an object or the eventing mechanism between functional parts (FP) and
interactive parts (IP).

Since we talk of an object-oriented model architecture, the use relationship and
the inheritance relationship are suitable mechanisms to link elements. However, since
we deal with frameworks or components as the elements of our architecture, it is rea-
sonable to describe the interaction of these elements on a higher conceptual level. For
this purpose, design patterns are ideal, as described in Chapter 4. We will present two
additional patterns in Section 9.4, which have proven useful for large software archi-
tectures for interactive systems.

9.3.1 Components of an Object-Oriented Software Architecture

Based on our discussion thus far, we can identify the following elements and connec-
tors of an object-oriented software architecture (see Chapters 2 and 4):

● Elements include class libraries, components, and black-box and white-box
frameworks, because they are object-oriented macroelements above classes
and objects.

● Connectors include inheritance and the use relationship, typically structured
according to design patterns. Both connector types, inheritance and use
relationship, can couple frameworks. For components, connectors are restricted to
the use relationship. According to our idea of components (see Section 4.5), there
should be no inheritance relationship between components and the embedded
application system. Class libraries are normally linked by inheritance and use.

9.3.2 Elementary Rules for Combining Elements
of a Software Architecture

Based on software engineering principles and our project experiences, we can describe
the following general rules for combining the elements of a software architecture:

● Frameworks can be connected in various ways, but the coupling should be
minimal in all cases, and loose coupling is the preferred method (see Section
2.1.23).

● Cyclic structures should be avoided, since they can make the development and
configuration of new elements more difficult. If structures have to be linked

296 T & M M O D E L A R C H I T E C T U R E

Interaction of
elements

Zull-09.qxd 20/8/04 7:40 AM Page 296

reciprocally, then loose coupling should be used in one direction (see, e.g., the
observer pattern between FP and IP in Section 8.6).

● Components should always be used, and they should employ only interfaces of
the embedding environment. Inheritance relationships should be avoided.

● Class libraries should be used as basic elements only; they should not depend
on other elements of the architecture.

● A well-defined and sufficiently documented set of valid design patterns should
be available for each specific software architecture. This set should be extended
only gradually and by careful coordination; otherwise, there is a risk that new
patterns will not become part of the common development culture.

9.3.3 Protocol-Based Layer Architectures

We assume an application domain as our starting point for the domain core of a soft-
ware architecture. Figure 9.3 depicts this layered structure, as we saw earlier. These
three layers are, from bottom to top, common abstractions of the business domain,
the set of different parallel product domains, and the use contexts. Each of these lay-
ers depends on the next lower layer. If we look at these domains as modeling
units, then we obtain a structure that is commonly called layer architecture in soft-
ware engineering.

EXAMPLE: THREE-TIER ARCHITECTURE

The most common example of a layer architecture in the literature and in practice is
a three-tier architecture, normally used for client-server applications (see Figure 9.4).
This architecture divides a software system into a presentation layer, a functional layer,
and a data layer. On the top of the architecture, the presentation layer is responsible for
graphical representation of an application. The functional layer implements the busi-
ness logic. And finally, the data layer at the bottom of this architecture represents data
and provides an interface to a database, if the system uses one.

A three-tier architecture meets the fundamental requirements for a layered
architecture, that is, elements may access only elements of their own or a lower layer.

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 297

Presentation layer

Functional layer

Data layer

FIGURE 9.4
A three-tier
architecture.

Zull-09.qxd 20/8/04 7:40 AM Page 297

This means that each layer provides an interface for the next higher layer, and this inter-
face represents a service, that abstracts from specific characteristics of the lower layer.

CHARACTERISTICS OF A PROTOCOL-BASED LAYER ARCHITECTURE

Using the example of a three-tier architecture, we can easily identify the characteristics
of a specific type of layer architecture, commonly called protocol-based architecture:

● A protocol-based layer architecture groups related elements in a layer. This
layer provides a protocol for the use of a coherent set of bundled services.

● This architecture organizes its layers in a hierarchy, which means that the services
of one layer are available to the elements of this layer and the next higher layer.
Thus one layer knows the next lower layer but it does not know a higher layer.
A three-tier architecture shows that the next higher layer should be informed
when there are changes, such as, to data objects, in its lower layer. Otherwise, we
would not be able to update the presentation at the interface. To allow layers to
inform their upper layers about such changes, we should use a minimal signaling
mechanism.

● The hierarchy should express an abstraction between the layers. The lowest layer
is then the concrete basis for abstraction. Higher layers abstract from the
characteristics of the lower layers by providing more abstract and extensive
protocols. We will discuss this issue for our example of a three-tier architecture in
Section 9.3.6.

● For downward communication, it appears meaningful to limit use to the
immediate lower layer, because the deeper layers should be hidden by protocols
residing at the upper layers.

● Each layer is normally implemented in the form of a module, which offers a
protocol at its interface, while strictly encapsulating the implementation of this
protocol. The protocol is separated from its implementation to ensure that any
change to the implementation will not have any impact on the use of this layer,
according to the information-hiding principle. Of course, protocol changes will
have an impact on the elements of higher layers that use this protocol.

We can use these characteristics to define the term protocol-based layer architecture:

A protocol-based layer architecture organizes a system in a hierarchy. A layer
provides a protocol of well-defined services for the elements of its own layer
or the next higher layer. Each layer abstracts from the next lower layer by
offering a higher protocol, where higher means that the protocol is closer to the
application domain.

The protocol is separated from its implementation to ensure that changes to
one layer will be limited to local impact and that each layer can be developed
independently of all other layers.

DISCUSSION

Building software along protocol-based layers is suitable particularly when (technical)
components or concepts have to be encapsulated and provided in an application-
specific way. We can encapsulate the technical components of one layer and use a more
abstract protocol to offer them to higher layers. In addition, strict encapsulation
ensures that each protocol-based layer can be developed independently and that
changes will have no impact on other layers.

298 T & M M O D E L A R C H I T E C T U R E

Characteristics of
a protocol-based

layer architecture

Zull-09.qxd 20/8/04 7:40 AM Page 298

Such a layered architecture is well suited for the implementation of a client/server
application.

EXAMPLE: THREE-TIER ARCHITECTURE FOR DISTRIBUTED SYSTEMS

The layers of a three-tier architecture are often implemented as independent processes
that run on separate computers. The presentation layer assumes the role of a client, the
functional layer assumes the role of a server for the user interface and the role of a
client for data objects, and the data layer acts as a server. This allows us to describe spe-
cific configurations for front-end PCs, local application servers, and centralized back-
end machines. Figure 9.5 shows an example of a three-tier architecture.

9.3.4 Object-Oriented Layer Architectures

We have to understand what a protocol-based layer architecture means in the object-
oriented sense. Obviously, we use frameworks, components, and class libraries to
implement layers. If we consider only the static logical architecture of an application,
then a layer organizes its elements in a logical unit, but a layer is not a software ele-
ment itself. This means that a layer does not have its own interface; instead, it offers
the interfaces of its elements.

DEFINITION

In contrast to protocol-based layer architectures, we define object-oriented layer archi-
tectures as follows:

An object-oriented layer architecture is composed of layers, forming a software
or domain unit. The layers are organized hierarchically by the principles of

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 299

Front-Ends

Local Servers

Back-Ends

Presentation layer
(Client)

Functional layer
(Client/Server)

Data layer
(Server)

FIGURE 9.5
A specialized
three-tier
architecture.

Zull-09.qxd 20/8/04 7:40 AM Page 299

generalization and specialization. The microstructures of their elements are
classes or interfaces. The classes or interfaces of a layer may use only the classes
or interfaces of their own or lower layers. The inheritance relationship is valid
within one layer. Elements of one layer may also inherit form elements from
lower layers.

The following sections will explain why it is reasonable for object-oriented layers
not to limit inheritance and use to the next lower layer.

DISCUSSION

If we need to implement the interaction of elements of a layer to its next higher layer,
then we have to use an abstract interface, as in the case of the observer mechanism (see
Section 8.6). The concepts of the observer mechanism (e.g., the Observer or
Observed interfaces) have to be located within one layer. Only the objects that
implement this pattern at runtime can then belong to different layers. Since they are
known only by the type of their abstract mechanism, there will be no undesired
dependence between layers.

A protocol-based layer architecture does not make full use of object orientation.
We will discusss in the next section how we can transfer the generalization and spe-
cialization concepts to an object-oriented layer architecture, and how this is compati-
ble with a protocol-based layer architecture.

We know that generalization and specialization are expressed by the inheritance
relationship in the object-oriented world. This is obvious for the classes within one
layer. But what does it mean for superclasses and their subclasses in different layers?

EXAMPLE

Figure 9.6 shows a simplified example of an object-oriented layer architecture with a
product domain, investment business, and a banking business domain as well as three
classes. We know from our discussion in Section 9.2.3 that the business domain con-
tains the core abstractions of an organization, which are specialized in different prod-
uct domains and then represented in the respective use contexts. If we maintain the
arrangement of the protocol-based layer architecture in an object-oriented layer archi-
tecture, then the business domain forms the basis underneath the respective product
domain, while the use contexts are above it. In the example shown in Figure 9.6, the
Account class resides in the business domain. In the product domain layer, the classes
InvestmentAccount and SavingsAccount are derived from Account. This
is conceptually in line with our previous discussion, except for the representation: the
superclasses and subclasses are upside down.

Notice the result: It is sensible to allow inheritance across layers in an object-
oriented layer architecture. The concepts of a higher layer, closer to the application,
specialize the generic concepts of a lower layer.

BACKGROUND: THE OPEN-CLOSED PRINCIPLE AND THE LAYER ARCHITECTURE

If we look at the open-closed principle discussed in Section 2.2.3, we can further jus-
tify the use of inheritance between the layers of an architecture. Applied to an object-
oriented layer architecture, this principle means that a layer with its elements should
be open for extensions but closed for modification.

300 T & M M O D E L A R C H I T E C T U R E

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 300

This requirement can be met in an object-oriented layer architecture if we allow
inheritance between layers. This means that we can provide a generic concept, such as
Account in the business domain, in the form of a “closed” class. Its required special-
izations are then moved to the higher product domain layer by inheritance.

If we implement these generalization and specialization relationships between the
classes of different layers, using the program language means, that is, abstract class,
inheritance, polymorphism, and dynamic binding, then we can observe an interesting
effect: Objects that are instances of classes from a higher layer are used by objects of a
lower layer. The superclass in a lower layer defines a type in our object metamodel (see
Chapter 2). At runtime, polymorphic objects of a subtype, or a subclass, can then be
assigned to variables of this type. This subclass can be an element of a higher layer.
Operations called on objects are defined in the superclass. As long as the inheritance
hierarchy represents a type hierarchy, this usage of the open-closed principle is
straightforward and trouble-free.

In summary, let’s look at a few important points relating to the open-closed prin-
ciple of an object-oriented layer architecture. Inheritance, polymorphism, and dynamic
binding bridge the contradiction between open and closed characteristics of construc-
tion units. This means that layered architectures with permissible inheritance between
layers allow us to implement required extensions for one layer in higher layers.

EXAMPLE

Figure 9.7 uses a banking example to show the open-closed principle. In this example,
within the business domain a class, Customer, manages a list of accounts of that cus-
tomer. These accounts are of a generalized type, Account, which was implemented as
an abstract class. A product domain defines two subtypes, InvestmentAccount

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 301

Account

Investment
Account

Savings
Account

Product domain: Investments

Business domain: Banking

FIGURE 9.6
Layered
architecture and
inheritance.

Inheritance
between layers

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 301

and SavingsAccount. Both accounts are subclasses of the Account class. The
operation, getBalanceTotal(), of the Customer class is implemented by call-
ing the operation getBalance on each account object contained in the list and
summating the result.

The inheritance relationship between the class Account and the two classes,
InvestmentAccount and SavingsAccount, forms a type hierarchy. The reason
is that an object of the type InvestmentAccount or SavingsAccount can be
used in all places where an object of the type Account is expected in the class
Customer.

The object diagram in Figure 9.8 shows that the Customer object resides in the
business domain. It uses a list to access Account objects that were created in the prod-
uct domain. The semantics of the customer operation getBalance Total() is
defined by the implementation of the deferred Account operation, getBalance(),
in the subclasses of the product domain.

DISCUSSION: IMPLEMENTING THE OPEN-CLOSED PRINCIPLE WITH LAYERS

The example in Figure 9.8 shows that we can use inheritance across layers to imple-
ment a “closed” layer and concurrently hold it “open” for extensions in higher layers.

302 T & M M O D E L A R C H I T E C T U R E

Customer

_Accounts : List

getBalanceTotal()

For all accounts k do

b = b + k.getBalance()

return b;

InvestmentAccount

getBalance()

payin()

payout()

calculateInterest()

getBalance()

payin()

payout()

calculateInterest()

SavingsAccount

getBalance()

payin()

payout()

calculateInterest()

Account

Business domain

Product domain

FIGURE 9.7
A bank example

showing the
open-closed

principle.

Zull-09.qxd 20/8/04 7:40 AM Page 302

Inheritance, polymorphism, and dynamic binding represent only one technical
means to implement the open-closed principle. For example, changes and extensions
can also be implemented by the use of a callback method. Another technique uses
reflexive architectures that let you modify construction units at runtime, similarly to
the Smalltalk system. Yet another important technique to implement extensions is the
role concept introduced in Section 9.4. From a conceptual point of view, the role con-
cept allows us to change the type of application-specific objects at runtime (although
this feature is implemented based on inheritance and polymorphism).

9.3.5 The Layer Concept of the T&M Model Architecture

The previous sections clearly showed that protocol-based and object-oriented layer
concepts each have respective strengths, so it makes sense to combine them in the
T&M model architecture. For this purpose, we use the layer concept as follows:

● A layer aggregates the software elements of a model architecture as a design and
construction unit, which is coherent from a domain-related and a technical
viewpoint. A layer itself has no interface and no relationship to other layers;
interfaces and relationships are provided by the included elements only.

● The layers of a model architecture are built hierarchically. Depending on the layer
visibility and usage, we speak of a protocol-based or object-oriented layer. We use
class libraries, components, and frameworks as elements within a layer. These
elements are linked by use relationships or inheritance, where the connector
structure is governed by design patterns.

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 303

_balance = 50,000

_rate = 3.2

s : SavingsAccount

_balance = 120,000

_rate = 1.5

i : InvestmentAccount

Product domain

l : List
_name : John Smith

c : Customer

Business domain

FIGURE 9.8
Object diagram
for the customer
and account
classes.

Using the layer
concept

Zull-09.qxd 20/8/04 7:40 AM Page 303

DISCUSSION: COMPARING THE TWO LAYER CONCEPTS

Neighboring layers of an object-oriented architecture are built by the generalization
principle. For example, the business domain layer contains common concepts, which
can be specialized in the product domains. This kind of relation is rather rare between
the layers of a protocol-based architecture. The presentation layer of the three-tier
architecture uses objects of the functional layer to represent them. This is not a form
of specialization.

Another important question relates to the transparency of layers. The use of pro-
tocol-based layers is opaque. More specifically, they show a protocol but hide the
underlying layers, because they abstract from their implementation. In contrast,
object-oriented layers follow the generalization and specialization principles, which
means that they can’t completely hide the underlying layers. Only if lower layers
remain visible for higher layers are the developers able to utilize existing concepts,
either directly in the form of classes that can be instantiated, or as an extension point
for a specialized implementation.

In this respect, it is rather difficult, both from the conceptual and constructive
viewpoints, to unify both layer types in one layer. In some cases, this problem can be
solved by introducing a separate protocol-based layer on top of an object-oriented
layer. This new layer allows access to a lower layer, and at the same time ensures proper
decoupling.

EXAMPLE: DIRECT COMBINATION OF LAYERS

In the example shown in Figure 9.9, a class, CustomerEditor, of the product
domain uses the generic class, RelationalDatabase, which is available from a
database library in the system base layer, to implement a service, storeCustomer().
Note that, between the product domain layer and the system base layer, only protocols
are used, and there is no generalization relationship. The class CustomerEditor
includes a reference pointing to an abstract class, Customer, of the business domain.
Polymorphism can be used to bind an object of the CorporateCustomer class to
this reference.

One major drawback of this simple solution is obvious: A layer representing
domain concepts has direct access to a technical base layer. Each change to the proto-
col of this base will have an impact on the conceptual layer. Object-oriented tech-
niques offer a more elegant solution, compared to the direct use in this example. For
example, the bridge pattern proposed by Erich Gamma et al. is suitable to separate a
technological concept from its technical implementation. This opens up a way to let a
conceptual domain layer, such as the product domain layer, to access a conceptual soft-
ware layer, such as, the technology domain, while deferring the actual implementation
of the technological concepts to the system base layer. In effect, the system base
behaves like a protocol-based layer towards the technology domain, although it uses
object-oriented techniques.

Unfortunately, it is often difficult to clearly separate these two concepts in real-
world applications. This is due to the way modern class libraries or technical frame-
works are implemented. For example, many persistence frameworks require a common
interface, such as Persistent. All classes to be saved to a database normally have
to implement this interface. With a simple coupling of the persistence framework, this
interface would “show through,” and application-specific classes would have to implement

304 T & M M O D E L A R C H I T E C T U R E

Transparency of
layers

Bank example

Zull-09.qxd 20/8/04 7:40 AM Page 304

an interface of the system base layer. There are several solutions to solve this problem,
including the use of other design patterns, such as adapter. In summary, we have to find
pragmatic compromises, but this does not affect the basic distinction between the two
layer types for a model architecture.

EXAMPLE: USING THE BRIDGE PATTERN TO COMBINE LAYERS

The example discussed in this section is based on the banking example shown in
Figure 9.9. However, we have modified it, as shown in Figure 9.10, so that the class
CustomerEditor now has access to the abstract concept and protocol of the class
Database in the technology domain. Our new example uses a bridge class to connect
the CustomerEditor class to the root class, RelationalDatabase, in an
implementation hierarchy, thus decoupling the tool from the concrete object store.

9.3.6 The Three-Tier Architecture

The previous sections discussed several important characteristics of the three-tier
architecture. We can conclude that many aims related to this architecture cannot be
fulfilled. Instead, we propose a multitier architecture.

One important argument in favor of the three-tier architecture is that it separates
domains, so that each layer handles and encapsulates a coherent set of related con-
cepts. The logical consequence is the maximum independence of the implementations
and optimum support for their modification. For example, popular network protocols

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 305

Product domain

CorporateCustomer

CustomerEditor

_customer : Customer

storeCustomer()

Business domain

Customer

RelationalDatabase

System base

FIGURE 9.9
An object-
oriented layer,
or the product
domain layer,
uses a protocol-
based layer, or
the system base
layer.

Bank example

Zull-09.qxd 20/8/04 7:41 AM Page 305

use a layer architecture to provide several abstraction levels, ranging from bit block
transport up to application-specific services. On the other hand, there is no similar set
of stepwise abstractions in the three-tier architecture.

Though many argue to the contrary, the three-tier architecture does not meet
the requirement that changes should remain local to their layers. For example,
changes to the user interface normally extend to the domain functionality and the
data objects. The reason is that newly added information leads to new attributes in
data objects. Domain changes to the handling of the system, such as items repre-
sented in menu options, require extensions to the functional layer. In turn, changes
to data objects mean that the representation has to be changed, as when additional
attributes have to be represented at the user interface. This shows that the layers are
not really independent of one another in either direction, and they cannot be devel-
oped separately.

Consequently, the three layers do not decompose an application system into inde-
pendent models or macrostructures. Nevertheless, a common approach in this archi-
tecture is to develop the user interface, the functionality, and the data objects
separately. This often leads to application systems that map the domain functionality

306 T & M M O D E L A R C H I T E C T U R E

Database

Technology
Domain

_DBImpl

Relational Database

RelDB_A RelDB_B

ImplementationImplementationImplementation

Abstraction Business domain

Customer

Product domain

CorporateCustomer

CustomerEditor

_customer : Customer

storeCustomer()

Bridge

FIGURE 9.10 Using a bridge pattern to decouple a protocol from its implementation.

Drawbacks of the
three-tier

architecture

Zull-09.qxd 20/8/04 7:41 AM Page 306

as pure data objects in software, where large parts of the domain dynamics are implicitly
implemented in the GUI component. This type of applications is hard to understand
and makes further development difficult.

Though a three-tier architecture does not exclude inheritance between layers, this
is normally not possible due to a lack of “is-a” relationships (see Section 2.1.16). For
example, it is not reasonable to subclass functional layer classes from data layer classes,
and the situation is similar between the presentation and the functional layers.

In terms of its character, the three-tier architecture is a protocol-based layer archi-
tecture. One major problem is related to mixing three contexts, that is, application
domain modeling, handling and presentation, and technical realization. As mentioned
in Section 9.2.4, we want to separate these contexts in our model architecture to
ensure their independent development. In summary, we have seen that the popular
three-tier architecture is not suitable to form the basis for a generic T&M model archi-
tecture. However, we still consider it very suitable as a process architecture.

9.3.7 The T&M Model Architecture

We propose a model architecture that takes the three dimensions of an application sys-
tem into account. The design of suitable layers allows us to introduce a separation of
concerns early on at the logical level. The layers are arranged so that changes in one
dimensions will have little or no impact on the other dimensions.

BACKGROUND: THE T&M MODEL ARCHITECTURE

Section 6.8 introduced the three dimensions proposed in the T&M model architecture
that determine the contexts of an application system. When we orient a model archi-
tecture along the lines of these contexts, then this primarily means that we encapsu-
late each dimension in a separate layer or at least in a distinct hierarchy of layers.
Skillful selection of the dependencies between the layers of different dimensions
ensures that we prevent changes in one dimension to affect the layers of another
dimension.

Figure 9.11 shows that many important design decisions and parameters can be
allocated to one of these dimensions. For example, the workplace type influences the
way we design the handling and presentation of a system, as well as the technological
decision for a specific front-end system.

PROBLEM

We want to define a layered architecture that allows us to encapsulate the set of soft-
ware development contexts. Next, we have to arrange the layers so that they allow
maximum potential for changes to each dimension of these contexts. In addition, such
a model architecture should scale to the size of the application system and the tech-
nologies used.

SOLUTION

We propose implementing a model architecture for interactive application software
based on the U model shown in Figure 9.12. The U is formed by the system base, the
technology, and the handling and presentation. These are called the generic or tech-
nical layers. They embed the domain core of a specific application domain.

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 307

Zull-09.qxd 20/8/04 7:41 AM Page 307

DISCUSSION

The requirements and principles for the construction of a model architecture as
discussed in the previous sections can be evaluated as follows:

● The technical foundation used to build a software system decomposes into a
system base and the technology used. In addition, we may need to supply
auxiliary implementations to substitute necessary but missing programming
language features.

● Handling and presentation determine how an application can be used. In our
approach, they conform to a guiding metaphor and its design metaphors.

● The structures of the software model should be oriented to the application
domain structures. This means that the concept model of the application
domain has to be mapped to the software model. In addition to these
microelements, the application-specific macrostructures (see Section 9.2.4)
should be reflected in the layers of our model architecture.

These points characterize the basic structure of our model architecture. Note that
this is a static, logical structure, which should be present at least when you are devel-
oping families of application systems based on the T&M approach.

ELEMENTS OF THE T&M MODEL ARCHITECTURE

Our model architecture is built as a layered architecture, where protocol-based and
object-oriented layers ideally should be separated.

308 T & M M O D E L A R C H I T E C T U R E

Technology
used

EJB

CORBA

OODBMS

SAP R/3

DB/2

Thin-Clients

Internet

Host

Desktop

Laptop

Webtop

Experts

Routine
jobs

Handling &
presentation

Bank

Operational
business

Back
office

Commodities

Domain
functionality

...

...

Production

Customer
orientation

...

FIGURE 9.11
Software

development
contexts in

relation to the
model

architecture.

Criteria for a
model

architecture

Zull-09.qxd 20/8/04 7:41 AM Page 308

Protocol-based layers encapsulate the implementation of services provided for
higher layers. If the protocol-based layers are hierarchical, then the protocols of the
higher layers are closer to the application domain and abstract from the implementa-
tion of services in the lower layers.

Object-oriented layers are connected by inheritance and use relationships. Again,
the higher layers are closer to the application domain than the lower ones, but in the
sense that they extend lower-layer concepts. Inheritance is used only within one layer
and from a lower to a higher layer. This means that inheritance can extend over more
than one layer boundary or skip a layer. The reverse is true for a use relationship,
which, if it spans layers, is always directed from a higher to a lower layer.

LANGUAGE EXTENSIONS

Language extensions are actually not a layer. They provide interfaces and implemen-
tations that we would like to have in a programming language for all layers of our
model:

● In programming languages with weak metalanguage properties, such as C��,
we would like to have generic elements for object-oriented construction, such
as reflection, a garbage collector, or serialization mechanisms to transform
object structures into flat structures, and vice versa.

● Support for the implementation of domain value types (which should behave
as far as possible like primitive types and not like object types.

● Support for the design-by-contract programming approach (see Section 2.3).

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 309

FIGURE 9.12
A U model for
the architecture
of interactive
application
software.

Handling & presentation

Technology

System base

Language extensions

Application
contexts

Product domains

Business domain

Zull-09.qxd 20/8/04 7:41 AM Page 309

Note that the elements of language extensions are totally independent of the
specific application domain. What we implement, and how we do it, depends merely
on the programming language we use. This means that we can assume that the corre-
sponding interfaces will be pretty robust. Language extensions will be used by all other
layers through use and inheritance.

The following sections describe the actual layers of the T&M model architecture
in more detail.

THE SYSTEM BASE LAYER

Section 6.7 already introduced the system base layer on a conceptual level. This layer
includes all interfaces to existing technical and legacy systems. The systems themselves
are encapsulated in black-box frameworks and class libraries, that is, they are hidden
from the higher layers. The system base layer includes (among others) the following
services: encapsulation of the operating system, of the used middleware, and of persis-
tency providers, such as relational or mainframe databases or electronic archives.

The elements of this layer are completely independent of a specific application
domain, which means that they can be used to build interactive application systems for
arbitrary domains. Since the elements of this layer normally encapsulate third-party prod-
ucts and standard software, we usually have to expect changes. Accordingly, this layer has
to be implemented very carefully, keeping the set of protocols as generic as possible to
ensure that a potential replacement of construction units will not have a negative impact.

The construction units of this layer are used by all higher layers, particularly by the
technology layer, which will be described in the next subsection.

The size of the system base layer depends on the programming language we use and
the available standard libraries and frameworks. For example, in Java-based systems the
system base layer is typically small or completely omitted, because most required
abstractions are already provided as standard libraries.

THE TECHNOLOGY LAYER

The technology layer represents the concepts described in Section 6.7, that is, it groups
all models of the technologies we use. The relationship between this layer and the sys-
tem base layer is characterized by the bridge pattern we commonly use. While the inter-
faces of implementation units reside in the system base layer, the technology layer
groups the more general technological concepts. The technology layer consists mainly
of white-box frameworks, which can be completed by extensible black-box frameworks
to support turnkey standard solutions:

● A framework to store and load objects in and from a persistence medium, such
as a generic data repository concept.

● A framework to communicate with other environments or processes, such as, a
generic communication concept.

● Interaction forms to link tools with the window system.

This layer can also be reused for different specific applications. However, it only
provides concepts required for the concrete system under development.

THE HANDLING AND PRESENTATION LAYER

This layer accommodates both concepts and concrete objects, and it objectifies the under-
lying guiding metaphor and its design metaphors. This means that this layer is closely

310 T & M M O D E L A R C H I T E C T U R E

Zull-09.qxd 20/8/04 7:41 AM Page 310

related to the T&M approach. Since tools, materials, automatons, and other metaphors
realized in this layer determine the user interaction with the application software, the rep-
resentation of these basic elements in a separate layer is useful. For example:

● The selected environment concept with electronic desktop or other spatial
metaphors.

● Collections (containers, folders, and stacks) to organize workplaces.
● Default implementations of design patterns for tools, materials, automatons,

and service providers.
● Support for the connection of Web applications to service providers.
● Implementations of generic tool components, such as listers.

This layer is not yet oriented to a specific application domain, so that it can be
used for all systems that correspond to the selected guiding metaphor and its design
metaphors. Naturally, if you develop a totally different application type, e.g., a data
warehouse, you may have to replace this layer, for example, by a database-specific layer.

The handling and presentation layer accesses the technology layer and may access
parts of the system base layer. It consists mainly of white-box frameworks, comple-
mented by default implementations of tools, and other elements. This means that, by
our definition, it is an object-oriented layer.

THE BUSINESS DOMAIN LAYER

The business domain layer groups the fundamental abstractions of an application domain,
to the extent that it is structured on the basis of the principles described in Sections 9.3.3
and 9.3.4. This means that the core abstractions from all product domains converge in this
layer. Obviously, these generalizations can only be built as white-box frameworks. In
addition, there are normally a few objects used generally in the application domain,
so that they can be implemented in this layer. For example, this could be the class
CheckingAccount in a bank. Other candidates for this layer are specific domain value
types, which are implemented based on language extensions. These common generic
classes and domain value types are normally built as part of open black-box frameworks.

The business domain layer itself builds on the technical layers of the U model. We
should attempt to make minimal use of the system base layer, while using as many ser-
vices as possible through encapsulation in the technology layer. Also, the business
domain layer contains only a few handling and presentation aspects, so that their ref-
erences to this layer are limited.

Obviously, the business domain layer is closely connected to an application
domain. So the question is whether or not this business domain layer can be developed
only for a particular company, or for an entire industry. Naturally, there are concepts
and notions that generally characterize the business of each industry. Otherwise, com-
panies in specific industries, such as banking, could not cooperate or merge. On the
other hand, the core business of each business within an industry differs so that a busi-
ness domain cannot simply be transferred. This is not a new insight, because people
have had to deal with this fact in the development of corporate or industry-specific
standard software. For example, it has been observed in the banking industry that
cross-industry models were too abstract to be useful.

For this reason, we suggest checking each individual case for which of the domain
concepts of a business domain are valid beyond the company for which that business

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 311

Implementing the
handling and
presentation layer

Implementing the
business domain
layer

Zull-09.qxd 20/8/04 7:41 AM Page 311

domain was modeled. Once we have a clear answer to this question, we can identify
the parts of the business domain layer that can be reused.

THE PRODUCT DOMAIN LAYER

Section 9.2.2 explained that we model a separate product domain for each application-
specific unit formed according to the object principle. All these product domains are
implemented in the product domain layer as separate modeling units. This means that
the concepts and objects in a product domain should ideally be implemented so that
they do not overlap to ensure that they have no references to other product domains.

The elements of the product domains in this layer are mainly black-box frame-
works, built on the basis of the business domain’s white-box frameworks. Also, they use
the technology layer and to some extent the system base layer. In this respect, we have
to take care that all specializations and extensions take the open-closed principle into
account. Frameworks of a product domain often specialize several white-box frame-
works from other domains. We only develop separate white-box frameworks for the
product domain layer if they can be reused to build other frameworks for the same
product domain. The use context layer described in the following section uses exclu-
sively black-box frameworks from different product domains.

Note that no frameworks from neighboring product domains should be used. This
applies both to the use and inheritance. A product domain is more strongly tailored
to the specific application domain than the business domain. After all, it maps the
fundamental principles of a company’s business to specific products and processes.

A product domain is the place where the differences between the different com-
panies of an industry manifest. Therefore, we do not expect that this layer can be
reused in other corporations.

THE USE CONTEXT LAYER

The use context layer was conceptually described in Section 9.2.1 it is composed of dif-
ferent modeling units. The elements of a use context must not have references to other
contexts, as is the case for product domains.

Application systems are built on the basis of the black-box frameworks developed
in product domains. Additional frameworks are developed only if special workplace
types require particular technological or domain aspects, for example, if touch screens
are used for self-service terminals.

RULES TO BUILD A LAYERED ARCHITECTURE

The T&M model architecture defines on a logical level technological and domain soft-
ware layers, where each layer consists of defined elements and their connectors. The
layers themselves are not interconnected, only their elements, so we cannot specify
rules relating to the layers. However, we can limit the relationships between elements
(i.e., class libraries, components, black-box and white-box frameworks) of the layers by
defining the following dependence rules:

● Elements of one layer may use only elements of the same or the next lower
protocol-based layer.

● Elements of one layer may use only elements of the same or an arbitrary lower
object-oriented layer.

312 T & M M O D E L A R C H I T E C T U R E

Implementing the
product domain

layer

Implementing the
use context layer

Relationship
between elements

Zull-09.qxd 20/8/04 7:41 AM Page 312

● Elements of a product domain or use context should not use elements of
another product domain or use context.

If we develop the frameworks of different product domains based on the system base,
technology, handling and presentation, and business domain layers, then we can ensure
that they can be easily combined and integrated in the use contexts of our application
system. An additional benefit of this approach is that it promotes a uniform appearance.
The system base and the technology layers contribute to better technical coherence,
while the business domain ensures a coherent domain model. In addition, a uniform look
and feel for our application system is ensured by the handling and presentation layer.

EXAMPLE: A LAYERED ARCHITECTURE FOR THE BANKING INDUSTRY

The example described in this section shows how we can develop a layered architecture
for a bank based on the T&M model architecture, which was developed in a similar
form in the so-called GEBOS projects which designed and implemented a workplace
application system for a German banking group. We describe how the existing system
fits into our model architecture as discussed in the previous sections. Figure 9.13 shows
this layered architecture.

C O N C E P T S A N D E L E M E N T S O F A T & M M O D E L A R C H I T E C T U R E 313

Bank example

Database

Domain container

Work environment

Domain values

Component model

Testing

Contract model MOP

Forms

Registry

Desktop

Tool
construction

Material
construction

Application contexts

Self-service
terminals

Securities
specialist

Account
manager

Teller

GUI
link

Loan ...Security

Product domains

Person
customers

Account Product ...

Business domain

Handling &
presentation

Host
encapsulation

Message switch Technology

Language extensions

FIGURE 9.13 Example of a layered architecture for the banking.

Zull-09.qxd 20/8/04 7:41 AM Page 313

The white-box framework for tools construction in the handling and presentation
layer ensures that all tools created on that basis can be added to an electronic desktop
in our application system. Similarly, the database framework in the technology layer
ensures consistent storage of objects in a relational database. This means that each
application system can access objects stored in this database.

The two white-box frameworks, Person/Customer and Account, from the
business domain form the domain basis for the construction of the Credit frame-
work. The white-box frameworks in the business domain layer depend on the existing
frameworks in the technology and handling and presentation layers. This layering of
frameworks facilitates the technical combination and integration of frameworks in the
product domain layer, which are based exclusively on frameworks of the business
domain layer. Frameworks in the business domain layer can embed domain concepts in
a common technical basis, so that their uniform technical use is guaranteed.

All frameworks of the business domain and product domain layers define their own
domain materials and tools, which are linked to the tools construction framework
following the aspect design pattern.

The frameworks in the technology layer form the technical basis for the product
domains and the use contexts, while the business domain layer forms the domain basis.
Both ensure that a family of application systems can be assembled by combination of
elements from (possibly several) product domains.

TECHNICAL IMPLEMENTATION OF A MODEL ARCHITECTURE

The previous sections explains the domain and technical design of frameworks from
the elements of a T&M model architecture. Another aspect of this approach is how we
can partition and assemble an application system for deployment in the different use
contexts at hand. In this respect, we have to consider several points. The system has
to be shipped in different configurations, and each version should be minimal, that is
it shouldn’t include unnecessary parts. The layered architecture can help us solve this
problem, because it makes clear which parts depend on which other parts.

The directories and program packages should be organized so that the organiza-
tional principle of the layered architecture becomes clear. For this purpose, we nor-
mally use an appropriately structured directory, and each layer is mapped to a separate
subdirectory. In turn, our use contexts and product domains are subdirectories of the
product domain or use context directory. Also, our frameworks are substructures within
their layer directories.

Java lets us use packages to elegantly implement this structural similarity. Each layer
is a separate package, and the components and frameworks contained in it are subpack-
ages. Figure 9.14 shows how we can arrange directories for layers and frameworks.

9 . 4 D E S I G N P AT T E R N S F O R T H E T & M M O D E L
A R C H I T E C T U R E

We often have to deal with the following two problems when trying to loosely couple
elements in a framework-based architecture:

● We cannot directly implement the role concept by generalization and
specialization and by inheritance.

314 T & M M O D E L A R C H I T E C T U R E

Zull-09.qxd 20/8/04 7:41 AM Page 314

● In many cases, we can achieve loose coupling between elements by using an
abstract (super)class. But there is still one place where the specific class has to
be known, namely the point where the object is created.

On this foundation, we introduce two design patterns, which can help solve the
above problems:

● The role pattern offers a way to handle a domain object in different roles
without violating its domain identity.

● The trader pattern is a creator pattern that moves the knowledge of a specific
class to be created from the actual application to a separate one.

9.4.1 The Role Pattern

INTENT

You can use the role pattern to adapt an object dynamically to special client require-
ments. In the context of the T&M model architecture, this means that attributes and

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 315

FIGURE 9.14
Directories for
layers and
framework
structures.

1 2 3 4

handling

technology

system

lang

toolconstr.

materialconstr.

...

handling

de

jwam

jwamx

jwamdev

jwamalpha

technology

system

testing

doclet

Zull-09.qxd 20/8/04 7:41 AM Page 315

interfaces can be dynamically added to or removed from objects instantiated by classes
of the business domain, depending on a client’s view.

PROBLEM
Sometimes we need to model a domain-motivated entity that shows different
characteristics (roles) in changing contexts but is still regarded as one identity.

Two objects with different technical identities can represent one identity from the
domain-specific view. Within the T&M model architecture this applies particularly to
objects of the application domain, which are described as concepts in the business
domain but which are seen with different interactions and domain states in different
product domains. In this case, we have to ensure that an object that moves from one
product domain to another product domain shows these different interactions and
states, while keeping the same domain identity

We always model an application system under a specific view. This means that
classes, representing objects or concepts of the application domain, are characterized
by the view we have when developing the application domain. This is particularly true
for different product domains (see Section 9.2.2). This differentiated view won’t cause
any problems as long as we model different objects of the application domain from a
view of the respective product domains. However, if a concept of the business domain
has different attributes and interactions depending on the different product domains’
views, then we need solutions that help us prevent having to model all views within
this single concept. Otherwise, the concept as part of the business domain would have
dependencies on the product domains. Obviously, such dependencies lead to one com-
mon domain that includes all product domains and the business domain.

EXAMPLE

We use another example from the banking business to show that the same domain
object is modeled differently for different product domains. Assume that we have two
concepts, borrower (loans product domain) and investor (investments product
domain), which are different specific views of the general concept customer. Let’s
further assume that a borrower manages securities transferred to the bank for
collateral. This type of information is insignificant for the investor concept, so
we won’t model it for this concept. In addition, properties modeled from the view of
one product domain often represent dynamic aspects of a domain object. For example,
a customer becomes a borrower of a bank when he or she takes out a loan. Otherwise,
that customer will not have the properties related to a borrower.

DISCUSSION

In this example, a naive solution based on object-oriented means would model the
three notions customer, borrower, and investor as classes. The customer
concept would be part of the business domain, while the borrower concept would
be part of the loan product domain, and the investor concept would be an element
of the investments product domain. Since the investor and borrower concepts
extend the customer concept, and investor or borrower objects can be used
instead of a customer object (a borrower “is a” customer), we could implement the
Customer class as a generalization of the two classes, Borrower and Investor.
The class Customer would then model properties like a customer number or a
getBalanceTotal() operation (see Figure 9.15).

316 T & M M O D E L A R C H I T E C T U R E

Bank example

Zull-09.qxd 20/8/04 7:41 AM Page 316

For example, if a customer, say John Smith, is managed as an investor and borrower
(i.e., an object from both classes is created) at the system’s runtime, then the imple-
mentation shown in this example duplicates the attributes modeled in the Customer
class. The reason is that the object of the Investor class and the object of the
Borrower class both have common attributes, that is, _accounts and _name. This
means that we need expensive synchronization mechanisms to maintain the domain
identify of these objects. Changes to one object have to be propagated to the other
object; in other words we have to use value equality to simulate their domain identity.

Technical implementation in the form of multiple inheritance (if this is possible),
which forms a subclass, BorrowerAndInvestor, of the two classes, Investor and
Borrower, prevents duplicating attributes of the Customer class, but it also leads to
an increasing number of subclasses. This flood of subclasses will quickly make the design
unclear and hard to understand. In addition, all product domains use the combined
classes (e.g., the loans and investments product domains both use the class
BorrowerAndInvestor). Another problem of this solution relates to object migra-
tion. For example, a customer is not necessarily a borrower and an investor at the same
time. He or she may initially be managed as an investor. This customer may addition-
ally become a borrower when he or she takes out a loan from the bank. When this hap-
pens, a new object of the class BorrowerAndInvestor has to be created with the
attributes of the investor object. In addition, all references pointing to the “old” investor
object have to be set to point to the new object. Unless we have suitable language support
(e.g., become: in Smalltalk), this process of changing references is difficult; also, bear in
mind that some languages, such as Java, do not support multiple inheritance.

SOLUTION

We will model the different views of a domain object in separate objects, or so-called role
objects. These role objects can be dynamically added to and removed from a core object.
A core object shows the characteristics of a domain object common to all contexts or
domains. We ensure that the core and role objects share the same domain identity.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 317

Borrower

_securities : List

getSecuritiesTotal()

Investor

_investments : List

getInvestmentsTotal()

Customer

_accounts : List
_name : String

getAllActivities()

Account

getBalance()

deposit()

withdraw()

calculateInterest()

For all accounts a do
 b = b + a.getBalance()
return b; FIGURE 9.15

Using
inheritance to
specialize a
customer for a
product
domain.

Zull-09.qxd 20/8/04 7:41 AM Page 317

BACKGROUND

The literature (e.g., Gottlob et al. and Reenskaug) uses the term role to discuss the
problem inherent in modeling domain objects dependent on the respective view
(product domain) and the time when they are viewed. Kristensen and Østerbye define
the term role as the set of properties of an object in its behavior toward a set of other
objects.

A tool used to edit customer securities works with customer objects under the
special view (role) of a borrower.

A core object represents the characteristics of a domain object modeled in the
business domain, that is, characteristics which are independent of the product
domains.

To better understand these concepts, let’s look at a few important definitions:

A role object represents the set of attributes and operations that an object has in
an application-specific view.

A core object is an object that can play different roles in one system. It can include
states and operations that, regardless of a specific view, are represented exter-
nally by all of its role objects. A core object can exist independently of its role
objects.

For example, the core object for a customer includes the address, a customer num-
ber, and a checking account. This core object and its role objects are designed on the
basis of the information hiding principle. All attributes are manipulated exclusively by
operation calls. This means that a role object has no direct access to the attributes of
its core object. Since a core object has to be able to live independently of its role
objects, it must not use operation calls to access them. Otherwise, dependencies would
form between the core object and its role objects, and, in turn, to dependencies
between the product domains.

To implement role objects and core objects we use classes. To be able to relate
classes to the different kinds of objects, we call a class that models a core object a core
concept and one that models a role object the role concept. Figure 9.16 shows an exam-
ple of the objects involved.

Note that the technical distinction between a core object and a role object allows
us to differentiate our notion of identity. The core object has its own technical iden-
tity, which is different from the technical identities of the role objects. At the same
time, together with its role objects, the core object forms a logical unit with a domain
identity. For example, if we have a core object, customer, with two role objects,
borrower and investor, then all three objects have both their own technical
identity and a common domain identity, namely that of the logical unit, consisting of
the core object, customer, and its role objects (see Figure 9.16). Following
Kristensen and Østerbye, we call this logical unit subject.2

A subject is the logical unit, consisting of a core object and all current roles of this
core object. It represents a domain identity, also called a subject identity.

318 T & M M O D E L A R C H I T E C T U R E

2. Kristensen and Østerbye distinguish further between a subject and a closured subject. A subject includes the
core object plus an arbitrary number of role objects, while a closured object represents the core object plus
all its role objects. This means that the term subject as we use it is identical to the definition of closured
subject by Kristensen and Østerbye. We did not need a further differentiation in our application domains.

Zull-09.qxd 20/8/04 7:41 AM Page 318

PATTERN STRUCTURE

Figure 9.17 shows the structure of the role pattern. The specification (Spec) used in
this figure is similar to the specification of the trader pattern, which will be described
in Section 9.4.2

PARTICIPANTS

Subject (the subject customer):

● Models the subject in the form of domain operations, for example,
changeAddress or getPhoneNumber. The operations are defined as
abstract operations and have to be implemented in the core concept. Since role
objects must be used polymorphically instead of the core object, the role
concepts also implement the subject’s interface.

● Provides operations for role management (query, add, and remove roles, and
check for their existence). The simplest specification would use the name of a
role as a character string or the role concept type.

● Does not define attributes, because it represents the logical unit, composed of
core object and role objects.

CoreConcept (the customer’s core concept)
● Manages the role objects added to a core object.
● Implements abstract domain operations of the subject.

THE ROLECONCEPT
● Manages a reference to the core object.
● Offers a standard implementation of the subject’s abstract domain operations,

which delegates operation calls to the core subject.

SpecificRole (borrower, investor)
● Models and implements an extension of the core concept for an domain view.

In our model architecture, this is a product domain’s view of a core concept
from the business domain.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 319

FIGURE 9.16
A core object,
customer, with
two role objects,
borrower and
investor.

Subject:

Customer

Role object:

Investor

Core object:

Customer

_role

_myName = "John Smith"

_myNo = 5555408587638

_customerID = 858848

Role object:

Borrower

_investments = "..."

anInvestor

_credit = 250,000

_securities "..."

aBorrower

aCustomer:

Zull-09.qxd 20/8/04 7:41 AM Page 319

INTERACTIONS

The interactions between core and role objects can be described as follows:

● A role object passes the subject operation calls it receives to the core object.
● All role objects of a subject use the same core object.

A client interacts with a core object and its role objects as follows:

● A client can add a role object to a core object. To do this, the client describes
the roles in the form of a specification object. If no Product Trader is
used, then the client creates a new role object directly.

● A client requests a desired role from a core or role object. If the requested role
object exists, then it is used for further processing.

● If the core object does not have the desired role object, then it informs the
client by sending an error message. Core objects never create role objects
directly; they always have to be added to the core object by a client.

TRADE-OFFS

The role pattern offers the following benefits:

● The core concept has a high degree of cohesion, because it does not include
interfaces and attributes motivated by one specific view (e.g., product domain).

320 T & M M O D E L A R C H I T E C T U R E

Subject

domainOperation()

hasRole(Spec)

addRole(Spec)

removeRole(Spec)

getRole(Spec)

SpecificRoleB

_newStateB

newOperationB()

SpecificRoleA

_newStateA

newOperationA()

RoleConcept

domainOperation()

CoreConcept

_state

domainOperation()

core.domainOperation()

core

roles

ClientA

ClientB

FIGURE 9.17
The Role
pattern.

Zull-09.qxd 20/8/04 7:41 AM Page 320

● Role concepts can be developed independently of one another, because no
changes to the core concept are required.

● Role objects can be dynamically added to and removed from core objects. At
runtime, the main memory contains only objects that are actually used.

● Within our T&M model architecture, we can separate product domains easily,
because changes effected from a product domain’s view to a role have no
impact on the role concepts of other product domains.

The role pattern has the following drawbacks:

● Rules referring to the interaction between role objects and their core object
cannot be checked by the type system. For example, if adding a role depends on
an existing role, then this can be tested only at runtime.

● The role pattern introduces additional coding on the client side. In general,
clients have to first request a role object from a core object. If the requested
role object does not exist, then the client has to create it. In addition, the
client has to ensure that the core object can actually play that role, so that it
can later address the subject in the desired role.

● The role pattern introduces additional coding to implement the subject
identity. This means that the subject, the core concept, and the role concept
need appropriate methods to be able to map the subject identity to the
technical object identity of core and role objects.

IMPLEMENTATION
● Role and core objects have to have the same interfaces, otherwise, we cannot use a role

object in place of a core object. This requirement can only be implemented by
inheritance in a typed object-oriented programming language. This means that
role concepts have to inherit from core concepts. In addition, inheritance allows
us to extend properties of the core concept in a role concept. However, since all
role objects share the attributes of their core object, they have to decorate their
core object. In the implementation, this leads to the abstract class Subject, which
defines the deferred operations. These abstract operations are the core’s interface.
The class CoreConcept implements the core. A class RoleConcept defines
the interface for specific roles and the interaction with the core object. However,
a core object is always used over the subject’s abstract interface.

● The creation of specific roles should be hidden from the client. This ensures that the
client does not need to know which roles are implemented by what classes. We
can solve this requirement easily by using the trader pattern (see Section 9.4.2).
The abstract class RoleConcept would act as trader, procuring roles for a
core concept. The client would deal with the core object over the subject’s
interface to create the desired role.

● Managing role objects. The class Subject has to provide a suitable abstract
interface, which is implemented by the specific core concept to ensure that a core
object can manage its role objects. The core object manages its role objects in a
hash table. If a role can be added only once to a core object, and if it is guaranteed
that several roles cannot be viewed under a common abstract role, then we can
use the role specification in Figure 9.17 for creation as our key. Otherwise, we
would have to use different specifications to create and manage roles.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 321

Zull-09.qxd 20/8/04 7:41 AM Page 321

● Core objects have to be dynamically extended by role objects during their lifecycle.
The requirement for dynamics can be implemented only by a use relationship
between the core object and role objects. The reason is that popular object-
oriented programming languages do not support dynamic reclassification, such
as by changing the inheritance relationship at runtime.

● The use relationship between the core object and role objects can be used to implement
the required subject identity. When all role objects that extend a core object
know this object via a use relationship, we can use the technical identity of the
core object as a subject identity. Role objects will then have the same subject
identity when they reference the same core object.

● The state integrity of the conceptual subject identity has to be maintained. The
properties of an object in the application domain can be modeled in several
technical classes by use of the role concept. This means that the identity of that
object is distributed over several technical identities. Apart from the fact that we
have to build an additional domain subject identity, this form of implementation
can cause problems with regard to the state integrity of the subject. The reason is
that the state space of a domain object is distributed over several state spaces in
the software model. If there are dependencies between the individual state
spaces, then suitable mechanisms (e.g., the observer pattern) are required to
synchronize them.

● Extending the properties of a core concept in a role concept can cause problems. To
better understand this statement, consider changes to a customer address as a
practical example. Assume that the operation changeAddress is extended
both in the borrower role and in the investor role (technically, this can be
implemented both for the borrower and for the investor by redefining the
operation changeAddress). In this situation, if you call the operation, you
will obtain three different results, depending on whether changeAddress is
processed by the Investor, the Borrower, or the CustomerCore object,
for example:
– If the core object is called, then none of the extensions will be executed.
– If one of the role objects is called, then the extension (redefinition) in that

role object is processed, but without affecting the other role objects.
The problem is that a subject is implemented as several classes, so that only
one of the three operations will be executed. However, from the application-
specific view, all of these objects should behave like a subject. For this reason, if
we need to change an address, we have to run all three operations. To solve
this problems, we could implement the core and role concepts so that they rely
on the observer pattern or template operations.

● The roles of roles. We can implement roles by applying the role pattern to role
concepts recursively (see Figure 9.18). For example, the role customer of the
core concept person in the example shown in Figure 9.15 has been
decomposed again into a core concept, CustomerCore, and the role concepts
investor and borrower, by use of the role pattern.

Note that the recursive application of the role pattern produced two core
concept classes. For this reason, we have to distinguish between a root concept
and a core concept in an implementation.

322 T & M M O D E L A R C H I T E C T U R E

Zull-09.qxd 20/8/04 7:41 AM Page 322

● Managing a subject identity. In addition to the technical identity of core and role
objects, there is a domain identity, which identifies the role objects and their
core object as one subject. Since all role objects know their core object, this
subject identity can be easily maintained through the core object’s technical
identity. Two role objects are part of the same subject if they extend the same
core object. In a recursive application of the role pattern, the subject identity is
realized by the root object. Two role objects, such as Investor and
CorporatePartner, are based on the same subject if they refer to the same
root object, such as NaturalPerson.

● Combining inheritance and role hierarchies. Since they are implemented by the use
of normal inheritance, role hierarchies can be easily combined with inheritance
hierarchies. Both core and role concepts can be specialized by inheritance. For
example, the classes NaturalPerson and LegalPerson specialize the core
concept Customer, and the classes CorporatePartner and Associate
specialize the Shareholder concept.

The object diagram in Figure 9.19 shows a subject, Person, which consists of a
core concept, NaturalPerson, and two role concepts, CorporatePartner and
Customer. The role Customer assumes additionally the Borrower role.

SAMPLE CODE

The program code in Figure 9.20 shows how we can implement the following example:
a core concept, Person, should get a role, Customer. To keep this example simple,

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 323

core

roles

core

roles

Natural

Person

Legal

Person

CustomerCore CustomerRole

Investor Borrower

Corporate Partner

getPhoneNo()

Shareholder Associate
_CustomerID

getCustomerID() getCustomerID()

Customer

getCustomerID()

PersonRole

getName()

PersonCore

_myName

getName()

Person

getName()

hasRole(Spec)

addRole(Spec)

removeRole(Spec)

getRole(Spec)

FIGURE 9.18
Recursive
application of
the Role pattern.

Zull-09.qxd 20/8/04 7:41 AM Page 323

it does not consider that a role can be added to a core object more than once. This
means that we will not distinguish between a specification to create and one to manage
roles. First, let’s see how we implement the class Person (see Figure 9.20).

This implementation defines the superclass for the two classes PersonCore and
PersonRole. The class PersonCore is implemented as shown in Figure 9.21.

Next, we implement the class PersonRole as the superclass for all role concepts
(see Figure 9.22). It delegates all abstract operations to the core object wrapped by a
role object. In addition, this class defines an abstract operation for the domain opera-
tions that extend a role concept.

The subclasses of the class PersonRole define specific role concepts. The code
in Figure 9.23 implements the role Customer.

A client would deal with a Person and a Customer role as shown in
Figure 9.24.

324 T & M M O D E L A R C H I T E C T U R E

aNaturalPerson

_myName = "John Smith"

_myNo = 555221233

_roles

aCorporatePartner

_company = "NewComp Inc."

_myNo = 55533445566

_core

aCustomerCore

_core

_customerID = 4711

_roles

aBorrower

_core

_securities = "..."

_credit = 250,000
FIGURE 9.19

An object
diagram

showing roles of
roles.

public abstract class Person {
// domain-related operations

public abstract PhoneNo getPhoneNo();
public abstract void setName(String aName);
...

// role management
public abstract boolean isSameSubjectAs(Person aPerson)
public abstract PersonRole getRole(Spec aSpec)
public abstract void addRole(Spec aSpec);
...
protected abstract PersonCore getRootCore();
protected abstract Map getRoles();

}

FIGURE 9.20
Code example

for class
Person.

Zull-09.qxd 20/8/04 7:41 AM Page 324

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 325

public class PersonCore extends Person {
public PhoneNo getPhoneNo()

{return _myNo;}
public void setName(String aName)
{

_myName � aName;
// make operation extendable
// for all roles call
//_aRole.setNameImpl(aName)

...
public PersonRole getRole(Spec aSpec)
{

return _roles.get(aSpec);
}
public void addRole(Spec aSpec)
{

getRoles().put(aspec,
PersonRole.createFor(aSpec, this));

}

protected PersonCore getRootCore() {return this;}
protected Map getRoles()

{return _roles;}
private PhoneNo _myNo;
private String _myName;
private Map _roles;

}

FIGURE 9.21
Code example
for class
PersonCore.

FIGURE 9.22
Code example
for class
PersonRole.

public class PersonRole extends Person {
PersonRole (PersonCore aCore)
{

core - acore;
}
public PhoneNo getPhoneNo()
{

return getPersonCore().getPhone();
}
public void final setName(String aName)
{

getPersonCore().setName(aName);
}
public void addRole(Spec aSpec)
{

getPersonCore().addRole(aSpec);
}
...

(Continued)

Zull-09.qxd 20/8/04 7:41 AM Page 325

326 T & M M O D E L A R C H I T E C T U R E

// trader operations
protected static PersonRole createFor (Spec s,

PersonCore po)
{

...
}
protected abstract PersonCore getPersonCore();
protected PersonCore getRootCore()

{return core();}
protected Map getRoles()
{

return getPersonCore(), getRoles();
}
//allow Roles to extend setName()
protected void setNameRoleSpecific(string aName) {};
private PersonCore core;

}FIGURE 9.22
(Continued)

public class Customer extends PersonRole {
public CustomerID getCustomerID()
{

return _myCustomerID;
}
protected void setNameRoleSpecific(String aName)
{

// extended Implementation
...

}
protected Customer(PersonCore aCore)
{

_core � aCore;
}
protected PersonCore getPersonCore()
{

return _core;
}
protected abstract CustomerCore getCustomerCore();

private PersonCore _core;
private CustomerID _myCustomerID;

}

FIGURE 9.23
Code example

for class
Customer.

Zull-09.qxd 20/8/04 7:41 AM Page 326

RATIONALE

The role pattern should be used in the following cases:

● If core concepts in different contexts should have specific interfaces and attributes.
● If we need to dynamically add the context-specific view to a core object and

remove it again.
● If the subject, consisting of a core object and role objects, should have a subject

identity.
● If the different set of views (roles) of a core concept should be independent

with regard to further development.

The role pattern should not be used when there are strong dependencies between
the roles.

9.4.2 The Product Trader Pattern

INTENT

Clients do not have to instantiate objects directly by calling the explicit create operation
(constructor) of the concrete class. They can use the product trader to have these objects
created indirectly by the abstract superclass of this class. The trader procures between
clients and suppliers, which are here interpreted as service product providers. This means
that the product trader detaches a client from the specific class hierarchy of the suppli-
ers, offering the prerequisites for easy adaptation and development of this class hierarchy.
This particularly facilitates the evolution of frameworks and application systems.

PROBLEM
Only an abstract interface should be used, even for object creation, to strictly
maintain loose coupling between clients and service providers.

In most common object-oriented languages, we have to know the specific class to
be able to create objects. This is undesirable, such as when concepts of the business
domain within the T&M model architecture are concretized by objects from higher

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 327

Person aPerson �
DataBase.loadPerson("Jackie Jones");

Customer aCustomer � (Customer)
aPerson.getRole(Customer.class);
if (aCustomer ! � null)
{

aCustomer.setName("Jackie Johnson");
// has married

System.out.println("Changed name for customer id" +
aCustomer.getCustomerID() + "to" + aCustomer.getName()};

}

"Changed name for customer id 55585878889 to Jackie Johnson"

FIGURE 9.24
Code example
for using
Person.

Zull-09.qxd 20/8/04 7:41 AM Page 327

layers. The specific classes of these objects must not be known in creating operations
of the business domain’s classes, because it would mean that these layers would be
invalidly coupled.

BACKGROUND

We know from our discussion of the T&M model architecture in Section 9.3.7 that
objects in a lower layer (e.g., the business domain) can reference objects in a higher
layer due to polymorphic assignment. A referenced object is handled over the interface
of an abstract superclass, which is also part of the lower layer. This technique forms the
basis for the open-closed principle, allowing us to implement anticipated extensions of
one layer in higher layers.

Objects from higher layers must not be instantiated in lower layers by directly call-
ing the specific create operation. This would cause dependencies of lower-layer classes
on higher-layer classes. Such dependencies are not allowed in our model architecture.

In many cases, however, we want to create objects in such a lower layer. On the
abstract class level, we could then describe the interaction of objects and define how
they should be specifically created.

EXAMPLE

Figure 9.25 shows a class hierarchy for a bank domain that represents the relevant
(banking) values. Examples of domain values include the classes AccountNumber,
Amount, InterestRate, and Date (see Section 8.10). Domain values are used in
almost all frameworks of the business and product domain layers as well as in the use
context layer, as in the case of electronic forms, modeling bank forms in classes. The
fields of these forms are represented by domain values.

328 T & M M O D E L A R C H I T E C T U R E

DomainPF
Domain
Value

SignatureForm

Application
Form

Account
NoPF

DatePF

Loan
AmountPF

LoadApplication

Interest
RatePF

Amount
PF

Account
No

Interest
Rate

Amount

Forms
Editor

Business Domain

Product Domain
Loan

Date

FIGURE 9.25 Example of class hierarchy in a bank domain.

Zull-09.qxd 20/8/04 7:41 AM Page 328

A program fragment of the class LoanApplication, limited to the most impor-
tant characteristics, modeling a domain object, LoanApplication, could look like
the code in Figure 9.26.

A forms editor used to represent and edit forms on the screen requires appropriate
presentation forms to represent domain values (see Section 8.8). These presentation
forms utilize the specific representation and editing options for domain values. For
example, an amount with decimal places for thousands in a bank application is sepa-
rated by commas, and the sign is put after the amount. Figure 9.25 also shows a class
hierarchy, corresponding to the domain values and presentation forms (PFs). A pres-
entation form, LoanAmountPF, specialized for the bank’s loan business, represents
the domain value Amount with a leading sign.

Figure 9.25 shows how the classes are distributed in the T&M model architecture.
For example, the classes LoanAmountPF and LoanApplication are part of the
Loan product domain. All other classes reside in the business domain layer, because
they represent core concepts for the product domains.

The example discussed in this section uses a forms editor for editing signature
forms. This forms editor has to create a matching presentation form for all domain val-
ues it requests by calling the getFields method. We can identify the following
important points for this example:

● The forms editor contains a large case statement to create a suitable presentation
form, depending on the domain value type. Since the editor has to create the
specialized presentation form, LoanAmountPF, for a loan amount, an invalid
dependence to a class (LoanAmountPF) in a higher layer is produced in the
class FormsEditor. In addition, the case statement has to be adapted for each
extension of the domain value hierarchy. Each change to the class hierarchy of
the domain values can cause the business domain to be opened.

● The domain values implement a so-called factory method (as proposed by
Gamma et al.), which creates an instance of the appropriate presentation form.
The allocation of a domain value to a presentation form cannot then be
dynamically configured. Instead, it is specified once and then used to create the
same presentation form in all applications when the factory method is called.
For example, if we allocate the presentation form AmountPF to the domain
value Amount in the factory method, then we wouldn’t be able to adapt this
allocation for a loan application without having to change the code or set
additional parameters. Again, we would have to open the business domain.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 329

public class LoanApplication extends ApplicationForm
{

public DomainValue[] getFields(){...};
...
private AccountNo _accountNo;
private Date _openingDate;
private Amount _loanAmount;
...

}

FIGURE 9.26 Code example of class LoanApplication.

Zull-09.qxd 20/8/04 7:41 AM Page 329

● An abstract factory as proposed by Gamma et al., hides the creation of objects
from a client (FormsEditor, in this example), by providing an abstract
operation to create a matching presentation form for each domain value. A
specific factory implements abstract operations by creating the desired
presentation forms. Though this design pattern allows a specific factory for the
loan domain to allocate the domain value Amount to the presentation form
LoanAmountPF, it has a few problems. The FormsEditor has to implement
an expensive case statement to determine which operation of the abstract factory
has to be called, depending on the domain value type. New domain values lead
to new abstract operations in the abstract factory. Changes to the domain value
hierarchy or the presentation forms require us to open the business domain, even
when these changes are implemented in one single product domain.

● Alternatively to using a factory, the forms editor could be specialized in each
product domain, with specific requirements to the representation and editing of
domain values. Unfortunately, this may cause problems when the forms editor is
required in a use context where specialized value representations from several
product domains are required. In this case, we would have to add another
specialization of the FormsEditor class in this use context. To implement
such a specialization, we would have to use multiple inheritance of copy code.
None of these two implementation methods is elegant.

SOLUTION
We design an instance that assumes the role of a trader for services. Clients can
then request the trader to determine a product, that is, a class or object that
provides the requested service. The trader searches for a matching service sup-
plier. This means that the client does not need information about the specific
service or its supplying product.

The trader acts as a procuring instance. In our example, the forms editor could
address this instance for all domain values and would thus obtain the matching
presentation form.

In the object-oriented world, services are provided by objects3 offering operations
to other objects. In general, a client requests a service from a service provider in the
form of a specification, where specifications themselves can be objects. Such specifica-
tion objects can be different, including:

● objects that should cooperate with the service provider;
● service descriptions, such as the runtime behavior of an operation; and
● unique identifications, such as a class number or metaclass.

These specification objects form the basis for a further interpretation of the client-
provider model of the use relationship (see Section 2.1.6). More specifically, the client
passes its requirements for a service in the form of a specification to the trader. The trader
uses this specification to identify the specific supplier of the requested service and initi-
ates this creation. It is important to note that the specific type of the desired service prod-
uct will be defined at runtime. Since the client requests the desired product over an
abstract interface, it can use only this interface to access the object. The specific service

330 T & M M O D E L A R C H I T E C T U R E

3. These objects can be instances of a class or class objects.

Zull-09.qxd 20/8/04 7:41 AM Page 330

provider remains totally hidden from the client. In addition, allocation of a specification
to a service can be adapted to changing conditions at runtime. The mechanism used
by the trader ensures that the frameworks of one layer are closed with respect to object
creation while still remaining open for changes. This means that traders facilitate the
evolution of class hierarchies, frameworks, and application systems.

EXAMPLE

To better understand this discussion, let’s return to our previous example to introduce
a trader. If the allocation of a domain value to a presentation form is done by a trader,
instead of using the editor, domain values, or a factory, as in the previous example
given in Section “Example”, then the trader can create a suitable presentation form for
a domain value. In this example, the class DomainPF could assume the role of a
trader. The class DomainPF procures an instance of a domain presentation form based
on a specification (i.e., the domain value to be edited). In Java, the class DomainPF
would have to support the following class operation:

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 331

public class FormsEditor
{

public void edit(SignatureForm aForm)
{

DomainValue[] aValueList�
aFrom.getFields();

for (int i�0; i�aValueList.length; i��)
{

DomainValue aValue�aValueList[i];

// create the matching PF
DomainPF aPF=
DomainPF.createFor(aValue);
// position the PF
...

}
}
...

}

public static DomainPF createFor(DomainValue dv);

The FormsEditor would then implement the creation of a presentation form
to represent and edit a domain value as shown in Figure 9.27.

Internally, the class DomainPF would have to manage only the allocation (e.g.,
a hash table) that would match the dynamic type4 of a domain value to a specific pres-
entation form. This process is efficient and runs within a constant period of time.

FIGURE 9.27
Code example
for class
FormsEditor

4. In C��, we could use the Runtime-Type Information (RTTI) interface to determine the dynamic type of
an object. Java offers similar metalanguage features.

Zull-09.qxd 20/8/04 7:41 AM Page 331

STRUCTURE

The structure shown in Figure 9.28 assumes that products procured by a trader each
have to be created upon request. We have made this restriction because it simplifies
the presentation of this structure. Note that procuring an object that exists in the sys-
tem instead of creating a new object saves resources and does not cause any problems.

The dotted arrow pointing from the abstract class Creator to the abstract class
Product shows that all the Creator class has to know is the type of the Product
class to declare the return value (a reference to an object of the type Product) of the
operation create(). To compile the class Creator, the compiler does not have to
know anything about how the Product class is built. This means that there is no
cyclic dependence between the ProductTrader, Creator, and Product classes.
Notice that the product trader is generally never used directly by a client. Objects are
always created through the Product class. In Figure 9.28, this is shown by a dashed
arrow pointing from the client to the trader.

PARTICIPANTS

Client (FormsEditor)

● Creates a specification describing the desired product (object).
● Initiates the creation process by requesting either the class product or the

product trader. The desired product is described in a specification.

Product (DomainPF)

● Defines the interface of the class hierarchy, which is used to create (procure)
products.

● Can use a product trader to create products.

332 T & M M O D E L A R C H I T E C T U R E

SpecificProductA
SpecificCreatorA

create() : Product

SpecificCreatorB

create() : Product

TypeSpecification IDSpecification
return new SpecificProductB();

isEqual (Spec) : Boolean

hashValue() : int

Specification (Spec)

SpecificProductB

Product

static createFor(Spec) : Product

static objectTrader

getTrader()

Client

Creator

// creates a new

// object

create() : Product

ProductTrader

createFor(Spec) : Product

add(Spec, Creator)

remove(Spec)

substitute(Spec, Creator)

determine(Spec) : Creator

FIGURE 9.28
The structure of
a product trader.

Zull-09.qxd 20/8/04 7:41 AM Page 332

SpecificProduct (AmountPF, DatePF, LoanAmountPF)

● Represents a specific product.

ProductTrader

● Manages and maintains the allocation of specifications to a specific product or
a creator object, which can instantiate a specific product.

● Initiates a product to be created based on a specification.

Creator

● Defines the interface used to create an instance of a specific product.

SpecificCreator

● Creates exactly one specified product.

Specification (a domain value)
● Describes a service so that the product trader can create a matching supplier for

that service (product).
● Has to be a unique identification of the desired service (product).

INTERACTIONS

The interactions shown in Figure 9.29 are implemented between the objects as follows
at runtime:

● The client passes a specification, together with a request to create an object, to
a ProductTrader.

● The ProductTrader manages a hash table, which it uses to determine the
correct Creator for the specification it received.

● The ProductTrader calls the operation create on a specific creator (e.g.,
an object of the type SpecificCreatorA).

● A SpecificCreator instantiates a specific product by calling the new
operator and returns this object to the ProductTrader.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 333

aClient aSpec aProductTrader aCreator aSpecificProduct

new

determine

create

HashValue

createForcreateForcreateFor

new

FIGURE 9.29
Cooperating
objects in the
design pattern.

Zull-09.qxd 20/8/04 7:41 AM Page 333

TRADE-OFFS

The product trader design pattern has the following benefits:
● Clients can be fully decoupled from specific products, because they create

objects indirectly through a product trader instead of using the new operation.
The client describes the requested product in a specification.

● Clients can instantiate lower-layer products from higher layers without creating an
undesirable dependence. If a client accesses a specific product over the interface
of the deferred product class, then it can use a trader to reference a specific
product without knowing the specific product class.

● A specific product class, from which we want to create an object, can be determined
at runtime. The desired service is then described in a specification and passed to
the product trader for creation.

● The allocation of a specification to a specific product can be configured. Using the
operations add, remove, and replace, implemented in the product trader,
we can change an allocation statically either when the system starts or at
runtime. This allows us to tailor application systems on the basis of frameworks
and class libraries.

● We can use different context-specific product traders for one class hierarchy. An
abstract product class could manage several product traders (not shown in
Figure 9.29, to keep the example simple), which means that your application
system can choose from different product traders to have products created
specifically for a context. In our FormsEditor example, the class DomainPF
could manage two different product traders. Depending on the form to be
edited, it would select either the generic product trader to edit the domain value
Amount with an AmountPF, or a specialized product trader, which allocates
the LoanAmountPF to an Amount. To avoid duplicate allocations, your set of
different product traders should be linked over a chain of responsibility.

● The class hierarchy of products can be easily developed and extended. Since the client
depends only on the abstract product class, you can easily change specific product
classes. In addition, new product classes can easily be added to an existing
framework or application system. All you have to do is adapt the configuration
descriptions that define the allocations of specifications to specific product classes.

This means that we can use the trader design pattern to close frameworks in
one layer against object creation, but still keep them open for changes. This flexi-
bility is not given with other popular constructions. Consequently, the trader design
pattern facilitates the extension of class libraries and frameworks. At the same time,
it allows you to quickly tailor your application systems (see example in Figure 9.30).

The trader design pattern has the following major drawbacks:

● It adds complexity to structures and dependencies in programs. The process of
creating objects is no longer described statically in the program code to
increase flexibility. This means that the compiler is no longer able to check for
object creation. In addition, the program code becomes more difficult to read,
because it does not show the class where an object is to be created.

● Our code becomes more error-prone. Wrong configurations, that is, allocations of
specifications to particular product classes, can introduce additional errors that
are hard to find, because the program code does not include a new operation.

334 T & M M O D E L A R C H I T E C T U R E

Zull-09.qxd 20/8/04 7:41 AM Page 334

● Extended configuration description (in C��). A product trader can be used to adapt
your system’s configuration to changing conditions both statically and at runtime.
We need special configuration descriptions to be able to write a configuration in
the first place, and to ensure that the linker pays attention to specific product
classes when linking a library or application system, if we use C��. The
configuration description references the specific product class explicitly. This
referencing is required, because the client code does not include calls to a new
operation (the product is procured through the trader). In addition, specific
product objects are addressed only over the interface of the product class. This
means that no operation of the specific product class is called anywhere in the
code. We will discuss several alternatives to a configuration description in the
section on implementation that follows.

● Ambiguous specification. Depending on the type of specification, it can happen
that several specific products match one specification. For example, if a product
trader is supposed to select a tool matching a material, then there could be
several matching tools in an application system that includes several product
domains. To solve this problem, we either have to make the specification unique,
based on additional knowledge of the context, or we have to state rules to solve
this conflict. Additional context knowledge would be the product domain where
the tool should be implemented. Rules could refer to the specialization degree of
the specific product class. We could describe this by the distance between the
specific product class and the abstract product class within the class hierarchy. In
our previous example of presentation forms for domain values, the class
LoanAmountPF has a higher specialization degree than the class AmountPF.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 335

DomainPFCreator
Domain
Value

DataPF

Interest
RatePF

Amount
PF

DataPF
Creator

Interest
RatePF
Creator

AmountPF
Creator

Date

Interest
Rate

Amount

Loan
AmountPF

Loan
AmountPF
Creator

Product Domain
Loan

Forms
EditorBusiness Domain

FIGURE 9.30 Constructors in the business and product domains.

Zull-09.qxd 20/8/04 7:41 AM Page 335

● Parameters for objects construction. If specific product classes require additional
parameters when creating objects, then these have to be passed. If parameters
are passed by the usual mechanism based on a parameter list, then we can pass
only parameters that are identical for all product classes. The reason is that the
product trader knows only the type of the abstract product class.

Different parameters can be passed in generic parameter lists, but we have
to ensure that the client does not make implicit assumptions about the product
to be created. Otherwise, changes to the configuration could cause errors when
another object than the one implicitly assumed is instantiated.

IMPLEMENTATION

When implementing the product trader design pattern, we have to deal with the fol-
lowing four aspects: the specifications, the creators, the product trader, and the configu-
ration descriptions. A specification can be easily allocated to a specific product (via a
create object) by using a hash table.

● Specifications can be implemented both as primitive data types (e.g., numbers or
character strings) and in an independent class hierarchy. Modeling a class
hierarchy has the benefit that we define a uniform interface for specification
objects in the form of an abstract specification class (see under “Solution”).
Product traders can then be implemented on the basis of this interface, so that
they can be easily extended to new specification types.

● Creators can be implemented in the form of prototypes or special creator
objects. Regardless of the method we select, our implementation should not
result in the manual implementation of a constructor class for each specific
product class. The two different implementation techniques are as follows:
– Prototypes: This implementation technique lets the product trader manage

one prototype object for each specific product. If it needs to create a new
instance of this product, then the product trader copies the prototype.

– Using an independent creator class (C��): To avoid having to write separate
code for classes in C��, we can use creator templates. In this case, we
need a template for the class Creator and another one for the class
SpecificCreator. We can use the class of the abstract product to
configure the template for the Creator class, and a specific product class to
instantiate the template for SpecificCreator. They both implement the
abstract operation create in the Creator.

– Using an independent creator class (Java): Java lets us use inner classes or
anonymous inner classes to easily implement creator classes.

● The product trader manages the allocation of specifications to specific products
in the form of a hash table. Since it triggers the actual creation of objects, it is
product-specific. For this reason, we have to implement a separate product
trader for each class hierarchy with classes that should be instantiated by a
product trader. We can describe a generic trader by using templates in C��.

● The client describes desired services in the form of a specification. This means
that the product trader configuration, that is, the allocation of specifications to
specific products, has to be defined for each application system, with the

336 T & M M O D E L A R C H I T E C T U R E

Zull-09.qxd 20/8/04 7:41 AM Page 336

following options:
– Register objects: We can use register objects for products where the specification

is allocated to a specific product class on the basis of a static definition (see
Bäumer and Riehle). These register objects are implemented as class variables
of the specific product class, so that they are created and initialized auto-
matically when the application system starts. During its initialization, a register
object registers a creator object that matches its product class under a statically
defined specification with the product trader of its abstract product class.

In the previous example using domain values and presentation forms, the
register object of the class DatePF would instantiate a creator object of
the type SpecificCreator and then register it with the product trader of
the class DomainPF. The underlying specification would be the type of the
class Date.

However, register objects have two major drawbacks: First, changes to the
configuration require adaptations of the specific product class, which causes
the corresponding framework on the relevant layer to be opened. For this
reason, we should use register objects only in highly stable configurations or
standard cases.

Second, the use of register objects does not lead to external referencing of
the specific product class (the product class is referenced in the product class
itself). In C��, for example, the linker would be unable to ensure that all
classes required at runtime are actually linked.

– Configuration scripts: Each product trader is defined in a special configuration
script. This script defines the creator objects to be created and their
registration with the product trader configured in the specification. This
means that a product trader can be easily configured and extracted from the
specific product classes.

● If we combine these two options, the configuration scripts and register objects,
we can write standard cases in the program code of the respective classes and
describe changes in the scripts. For example, we could use register objects to
register the presentation forms with the trader DomainPF for specific domain
values. Next, all we have to do is describe changes in the configuration script.
However, we have to ensure that our register objects and configuration scripts
are processed in two steps. First, the system should process all register objects
and then the configuration scripts.

● If we don’t want to combine configuration scripts and register objects for standard
case and changes, then configuration scripts are the preferred method over
register objects, because they are easier to understand. In addition, they describe
a system’s configuration in one place, and because they belong to the application
system, they can be easily adapted without having to open a framework.

SAMPLE CODE

The previous section that discussed the product trader design pattern showed a detailed
example, so we will just give a brief summary of two additional examples in this sec-
tion. The first example creates objects, which are loaded from a file or a relational data-
base. The second example shows how we can create tools that match materials.

D E S I G N P A T T E R N S F O R T H E T & M M O D E L A R C H I T E C T U R E 337

Zull-09.qxd 20/8/04 7:41 AM Page 337

In almost every large application system there is normally a need to store
objects persistently in a file system or a relational database, and later load them from
there (see Chapter 11). When these objects are stored, the dynamic type of each object
is included in the form of a class identifier or class name. When an object is loaded,
this identifier is used to create an “empty” object, which is then filled with stored
values. We can use a trader to manage the allocation of an identifier to a creator object.
To create an object, a client just passes the identifier to the trader. For example, if there
is an aspect, Storable, to store and load objects, then we could let this class manage
an appropriate trader, which could look like the code displayed in Figure 9.31.

The second example shows how we can use the product trader pattern to create a
tool. Assume that we use tools to handle materials in an application system. Basically,
these tools have to be suitable for the materials in question. On the other hand, a
material should be suitable to be manipulated by a specific tool, depending on the con-
figuration, the work context, or other runtime factors. Therefore, we should use a
trader to dynamically allocate a material to a tool. In this example, the environment
would generally assume the role of a trader, and the material class would be used as the
specification to determine the matching tool.

RATIONALE

The product trader should be used in the following situations:

● When a client should not know which services are provided by which
suppliers. This means that the client is totally detached from the existence of
specific suppliers.

● When the specification of a requested service cannot be determined earlier
than at runtime.

● When the allocation of a specification to a service provider should be adapted
statically or at runtime, without violating the open-closed principle, for
example, when there are several suitable presentation forms for one domain
value.

The product trader should not be used as a general replacement for direct object cre-
ation or for the factory method or abstract factory patterns. The reason for this is that
the use of product traders has some drawbacks: for example, it introduces complexity
and makes the application system more error-prone.

338 T & M M O D E L A R C H I T E C T U R E

public class Storable {
// abstract operations for storing and loading
...

public static Storable createFor(long ClassNo)
{

return _aTrader.createFor(
IDSpec(ClassNo));

}
private static ProductTrader _aTrader;

}

FIGURE 9.31
Example code

for class
Storable.

Zull-09.qxd 20/8/04 7:41 AM Page 338

9 . 5 R E F E R E N C E S

D. Bäumer, D. Riehle: Product Trader. In: R. C. Martin, D. Riehle, F. Buschmann (eds.): Pattern
Language of Program Design 3. Reading, Mass.: Addison-Wesley, 1998, pp. 29–46.

More concepts and discussions about the product trader pattern.

E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Reading, Mass.: Addison-Wesley,
1995.

The key reference for this chapter.

G. Gottlob, M. Schrefl, B. Röck: Extending Object-Oriented Systems with Roles. ACM
Transactions on Information Systems, 14(3), July 1996, pp. 268–296.

Important paper about the concepts behind the role pattern.

B. B. Kristensen, K. Østerbye: Roles: Conceptual Abstraction Theory and Practical Language Issues.
In: Theory and Practice of Object Systems, 2(3), 1996, pp. 143–160.

Important paper about the concepts behind the role pattern.

B. Meyer: Object-Oriented Software Construction. New York, London: Prentice-Hall, 2nd ed.,
1997.

Contains the introduction of the open-close concept.

D. L. Parnas: On the Criteria to be Used in Decomposing Systems into Modules. Communication of
the ACM, 5(12), December 1972, pp. 1053–1058.

The classical paper on modularization.

T. Reenskaug, P. Wold, O. A. Lehne: Working with Objects. Greenwich: Manning, 1996.

An approach to object-oriented design with the modeling.

E. Yourdon, L. L.: Structured design: fundamentals of a discipline of computer program and systems
design. 2nd ed., York: Yourdon, 1978.

The Seminal work on modularization criteria.

R E F E R E N C E S 339

Zull-09.qxd 20/8/04 7:41 AM Page 339

This page intentionally left blank

341

Supporting
Cooperative Work

This chapter explains how the support of cooperative work processes can be integrated
seamlessly into the T&M approach. We first discuss some background to better under-
stand the concept of computer-supported cooperative work, and then introduce several
cooperation models, showing how they can be implemented by T&M concepts.

The T&M approach focuses on workplace applications. This usually means a dis-
tributed system both in a technical and a domain-related sense. When looking at the
support for distributed work in current software systems we will mostly find it on a tech-
nical level. There a few explicit cooperation mechanisms. But cooperation has rarely
become an integrated part of the application system.

This chapter tries to overcome this problem. Application developers will learn
how they can integrate an application-oriented concept for shared work into their soft-
ware systems.

1 0 .1 B A C K G R O U N D : C O M P U T E R - S U P P O R T E D
C O O P E R AT I V E W O R K

This section introduces the terms and concepts related to computer-supported cooper-
ative work (CSCW). It is both introductory and presents our application-oriented
notion of this topic.

10.1.1 CSCW

Computer-supported cooperative work is one of the most important areas of the cur-
rent and future office application domain. It includes many different kinds of office
applications, distributed systems support, document management and storage, and
multimedia information exchange. In developing our T&M design approach, we origi-
nally built support for individual workplaces primarily in the software engineering
environments and in the banking sector. Soon, however, we found that we had to
integrate components to support cooperative work, since cooperation among every
organization’s staff is an integral part of people’s work.

10

CSCW as
important design
issue

Zull-10.qxd 20/8/04 7:42 AM Page 341

As a consequence, we have extended our approach to include the support of coop-
erative work. While our original approach was task-oriented, involving users and soft-
ware system components, our shift to include cooperative work is characterized by the
following issues:

● to combine functionality and cooperation within tasks;
● to distinguish between explicit and implicit ways of cooperation; and
● to find the means and media to support cooperation and the cooperative

process itself.

In this chapter, we explain which types of cooperative work we should support and
how this support can be accomplished.

A good basis for our attempt to support cooperative work is the identification of
different workplace types. Each workplace type provides adequate equipment (i.e.,
tools, materials, automatons). More specifically, we start working from the underlying
principle that workplace types are related to how work is organized in an application
domain. We discussed workplace types in Section 3.6 and tools, materials, and automa-
tons in Chapters 7 and 8.

DEFINITION: COOPERATION AND COORDINATION

The way in which people cooperate is different, depending on the tasks and
goals. We thus say that there are different cooperation models.

A cooperation model is a usage model that describes and regulates a cooperative
situation either explicitly or implicitly. For our purposes, we are looking at
cooperation models that are an integral part of a software application system.

Computer-supported cooperative work (CSCW) describes coordinated activities
performed by a group of participants in order to reach a common result
supported by a computer system.

The term groupware, which is commonly used in the literature, describes an actual
support system for CSCW, that is, the implementation of specific tools enabling
coordinated group activities. The tools forming such a system can range from group
decision support programs (e.g., spreadsheets, statistical analysis tools, or brainstorm-
ing support) or online group communication facilities (e.g., multicast communication
mechanisms or intelligent message filtering systems) to complete coordination envi-
ronments (e.g., intelligent agents that perform complex group activities in a semiauto-
mated way and controlled by sophisticated user interfaces.

In the T&M approach, we are mainly interested in the following characteristics of
cooperative work:

● The cooperation participants want to produce a common product or service.
● They have to share limited resources, which means that, in the simplest case,

they have to share the work object, or a material.
● They have to coordinate their work activities to maintain temporal and logical

sequences or processes.
● They have to reach a common understanding of what will be done by whom.

This means that cooperative work is always related to coordination. In many cases,
there are common conventions among the participants about how their cooperation

342 S U P P O R T I N G C O O P E R A T I V E W O R K

Important
characteristics of
cooperative work

Zull-10.qxd 20/8/04 7:42 AM Page 342

should be controlled and coordinated, in addition to having well-established coopera-
tion rules.

In this context, coordination is a process or mechanism used to coordinate
shared tasks within cooperative work. This coordination can be based on
mutual—sometimes implicit—conventions or explicit rules.

If we want to use application software to support cooperative work, we should not
forget that we also have to take the coordination aspect into account, in addition to
the actual cooperation. In the simplest and most common case, cooperation and coor-
dination are modeled in application software in an extremely rudimentary way. Often,
the participants cooperate without system support. We will look at such a case in an
example in a moment.

First, let’s look at different domain-motivated cooperation models:

Implicit cooperation: In an implicit cooperation model, the concurrent access of
several users to joint resources is permitted and visible in the usage model.
However, the application system does not include a model that specifies and
regulates or polices the participants’ cooperation (see Section 10.2).

Explicit cooperation: The cooperation is modeled and policed explicitly in
the application system. For example, joint rooms are used, processes are
supported, and forms of complex cooperation are visible (see Section 10.3
and 10.4).

Each of the above cooperation models requires cooperation tools and media to
become feasible.

In our discussion, a cooperation material is a domain object that supports
cooperation. It represents the cooperation or the underlying coordination.
Examples for cooperation materials include transaction files and routing slips.
A transaction file allows us to forward or distribute documents within a shared
process. A routing slip represents the sequence of cooperative steps and the
people involved.

A cooperation medium is a domain object enabling cooperation in an application
system. All cooperation media have in common that they can be used to
exchange materials or information. Examples for cooperation media include
electronic mailing systems, group mailboxes, or electronic blackboards.

EXAMPLE

Assume that a device manager works independently and autonomously. To manage
and plan devices in that organization, the device manager uses a single-user system.
The manager coordinates his steps with his colleagues by distributing and discussing
printed and manually edited room and equipment plans.

The same system runs on several workstations, or computers at different work-
places, connected over a local area network (LAN), so that all staff involved can access
a common file system, which is the cooperation medium. This means that the device
manager and his cooperating employees can file and access the same room or equip-
ment plans (see Figure 10.1). There is no further system support for this cooperation.

B A C K G R O U N D : C O M P U T E R - S U P P O R T E D C O O P E R A T I V E W O R K 343

Zull-10.qxd 20/8/04 7:42 AM Page 343

An important notion for working with materials within a cooperative context is
the notion of place and time:

Notion of place and time: A material can be available at exactly one location at any
given time. If a user handles a material at his or her workplace, then it cannot be
handled by other users (at the same time). In general, it is not visible to other
users.

Another important notion is that of original and copy.

A material can be handled as an original or a copy. Materials in general, and
documents in particular, are often available as originals and copies in most work
environments. To follow the usual meaning of these terms, copies are materials
in their own right, which can be handled and edited, like photocopies. There is
no technical connection between an original and its copies, so that changes to
one have no impact on the other.

Notice that technical copies are different from the copies such as these. Technical
copies can be created for software reasons, for example to minimize access times.

10.1.2 Technical and Domain Transparency

Most discussions about distributed systems and CSCW use the term transparency. People
understand different things by the term transparency, depending on whether it is used
in a technical or an application-oriented sense. In the technical sense, transparency in
distributed systems means that the distribution of components should be invisible in the
application development and the application software. As a fully transparent glass pane,
distribution should not be visible at all. This notion is based on the idealized case of
infinitely fast, infinitely large systems totally independent of a specific location.

In our T&M approach, we talk of transparency in the application-oriented sense.
This means that distribution should be visible, or transparent, in a cooperative system.
We want to give users (and application developers) a comprehensible image of limited
resources and their spatial distribution to better understand the cost and consequences

344 S U P P O R T I N G C O O P E R A T I V E W O R K

FIGURE 10.1
Two workplaces

cooperate over a
common file

system.

Technical
transparency

Application-
oriented

transparency

Zull-10.qxd 20/8/04 7:42 AM Page 344

I M P L I C I T C O O P E R A T I O N 345

TABLE 10.1 Application-oriented transparency.

Type of Transparency Realized by Use of the Workplace Design Metaphor

Locality The users know where a material is located. A material is always in a specific
location. This location is either the workplace or a location within the
common environment, from where a material can be procured.

Access Users at the workplaces know the locations where materials can be accessed
directly or by explicit request.

Migration To move a material from one location to another within a work environment,
the user has to initiate an explicit activity.

Simultaneous access Different workplaces cannot have write access to the same material. Joint write
access is replaced by the concept of copies and original.

Copy management The users are responsible for the management of modified copies and the original.

Failure A system failure at remote, jointly accessible locations, where materials are
supplied to the work environment, is not hidden from the entire application
domain.

of accessing nonlocal components. Table 10.1 describes our interpretation of the appli-
cation-oriented notion of transparency.

1 0 . 2 I M P L I C I T C O O P E R AT I O N

We speak of implicit cooperation whenever a user shares a cooperative work situation
with other users within a work environment, in which the cooperation does not initially
transpire. Our assumption is that there are common work materials.

This form of cooperation transpires when several users access materials concur-
rently from their workplaces, as in the example given above. We define the following
important characteristics for this form of cooperation:

● To complete a cooperative task, the users involved have to share a common
material.

● There are several workplaces within one common work environment.
● None of the workplaces can see the other workplaces.
● The participants coordinate their joint work through conventions outside the

application system.

But there is a major problem inherent in implicit cooperation—the transparency
when jointly using the same materials. In this context, transparency means that a user
can see in the application system that there is a competitive situation:

● The system shows that more than one user wants to use the same material.
● The notion of location and time is maintained while a material is used.
● The coordination is essentially based on conventions outside the system.

Important
characteristics
of implicit
cooperation

Transparency
in implicit
cooperation

Zull-10.qxd 20/8/04 7:42 AM Page 345

In implicit cooperation, the application-oriented cooperation model is primarily
limited to supporting a cooperation material. The underlying coordination processes are
normally implemented outside of the technical environment.

Popular cooperation materials for implicit cooperation include common archives
or a common registry. Since the registry is an important form of persistence service it
will be discussed in Chapter 11, when we will also describe the appropriate usage
model.

1 0 . 3 E X P L I C I T C O O P E R AT I O N
B Y E X C H A N G I N G M AT E R I A L S

A simple form of explicit cooperation allows users to directly exchange materials. We
all know this form of cooperation from the inter-office domain. Files, folders, or docu-
ments are exchanged between a limited number of users, and each of these users knows
the role that he or she plays in completing a common task.

Explicit cooperation by exchanging materials differs from implicit cooperation
mainly in that the cooperation itself is visible. Users know what material they pass to
others and who is in charge for what part of their common task.

We identify the following important characteristics of explicit cooperation by
exchanging materials:

● The cooperating participants exchange work materials explicitly within a joint
task.

● Cooperation media (see Section 10.1) are used to connect the electronic
workplaces involved within a common work environment.

● Each workplace involved can see what other workplaces are basically present or
actually involved in the task.

● The participants know the type of their cooperation based on conventions. In
addition to a way to pass materials, they do not require any particular
mechanism within the application system to coordinate their work.

We can see that this form of cooperation expands the set of T&M metaphors,
that is, we have different cooperation media in addition to cooperation materials.
Depending on the type of cooperation and the desired support, we can select from

● joint mailboxes;
● point-to-point connections, or
● a mailing system.

We can combine all of the above methods with cooperation materials to explic-
itly provide coordination support. These cooperation media and models will be
discussed in the following sections.

10.3.1 Cooperation Medium: Mailboxes

Mailboxes are a simple form of explicit cooperation by exchanging materials that are
normally supported in office environments. If we want to transfer the conventional

346 S U P P O R T I N G C O O P E R A T I V E W O R K

Important
characteristics of

explicit
cooperation by

exchanging
materials

Zull-10.qxd 20/8/04 7:42 AM Page 346

concept of mailboxes to application systems based on the T&M approach, at first
glance it seems as though we simply have to extend the registry concept. Considering
this aspect more closely, we can identify several properties that make mailboxes an
independent cooperation medium.

COOPERATION MODEL

In an office environment, a common mailroom with its mailboxes is accessible to each
workplace. Each user can place a material in any of these mailboxes or remove materi-
als from them. All users can see the contents of these mailboxes (see Figure 10.2).
Removing means that a material is taken from one mailbox and placed on a desk. As
soon as this happens, this material is no longer visible and accessible to other users.
Within the group that jointly uses these mailboxes, there are conventions regulating
who may place or remove what from which mailbox.

In summary, mailboxes can not only be allocated simply to individual users but can
also be allocated to groups, departments, or roles.

DISCUSSION

Mailboxes in a common mailroom represent an important expansion of the space con-
cept. In addition to the individual workplace, there is a room accessible to all members
of a group concurrently. This open concept of mailboxes has the following benefits:

● Materials can be exchanged on the basis of a simple model that everybody can
see and understand.

● No special mechanisms are required to coordinate the group’s cooperation,
because each member of the group can see when a material was placed in their
mailboxes or on their desks.

E X P L I C I T C O O P E R A T I O N B Y E X C H A N G I N G M A T E R I A L S 347

cf gg cl ak

dm ws ts hz

aw tz uk iw

lb hw db dr

FIGURE 10.2
Two workplaces
cooperate
through
common
mailboxes.

Benefit of
unrestricted
mailboxes

Zull-10.qxd 20/8/04 7:42 AM Page 347

● Since each participating user can (technically) access all mailboxes, it is easy to
establish conventions to regulate work loads, free capacities, and staff
replacement rules outside the system.

CONSTRUCTION APPROACH

The mailbox concept can be implemented in a very simple common file system for all
workplaces involved to store jointly used materials. We could use an automaton for
each workplace to regularly check for incoming and outgoing materials and to register
these materials with the components that represent these mailboxes.

Of course, we could try to implement more sophisticated technical concepts. For
example, we could implement an independent domain service to distribute and man-
age jointly used materials. This service could internally use a standard E-mail service
provided, for example, by the Java E-mail API.

The materials handled by such a domain service could be connected to proxies in
each workplace process represented in the mailboxes. The proxy is then replaced by
the material object as soon as a user moves a material from a mailbox to his or her desk.
Finally, the service itself could use a persistence mechanism.

EXAMPLE

Assume that in our EMS example there is an office environment with a separate mail-
box for each employee. Employees can place notes in the device manager’s mailbox to
request a change to their computer equipment.

When such a change request is dealt with, the device manager places a note in
that employee’s mailbox. On the following day, the device manager checks whether or
not this employee has removed the note from his or her mailbox.

PERSONALIZED MAILBOXES

Figure 10.3 shows that we could replace the mailbox concept discussed in this section
to personalized mailboxes. We can see in Figure 10.3 that the employees do not have to
address a receiver, because each mailbox is unique to a workplace.

Users can place arbitrary documents or other materials in these personalized mail-
boxes. If a material is to be passed on to another cooperating person, then it can be
sent automatically or by the push of a button. On the other hand, users see that new
material has arrived in their mailboxes.

348 S U P P O R T I N G C O O P E R A T I V E W O R K

FIGURE 10.3
Using

personalized
mailboxes to

support the
cooperation of

two workplaces.

gg in

gg outwb in

wb out

Zull-10.qxd 20/8/04 7:42 AM Page 348

10.3.2 Cooperation Medium: Mailing System

A mailing system is another medium to support cooperative work. If we look at a mail-
ing system as a cooperation medium, then we can see that it transports materials in a
more flexible way than mailboxes.

COOPERATION MODEL

When using this cooperation model, a user can place materials to be forwarded in a
dispatch folder. A dispatch folder is a domain container normally used to hold work
materials, such as documents. The user normally adds an address to the dispatch folder.
This address can describe a physical person (e.g., Mrs. Jane Smith), or a role (e.g., bill
auditing). This shows clearly who should receive the dispatch folder. A dispatch folder
is placed in the outgoing mailbox of the sending user and transported similarly to the
simple or personalized mailboxes discussed in the previous section.

DISCUSSION

In addition to the conventional transport of materials to specific persons, a mailing sys-
tem allows us to address materials to roles, as briefly mentioned above, so that we can
derive several design alternatives:

● An algorithm is used by the mailing system to transport the dispatch folder to a
specific workplace, if the user of that workplace can assume the role.

● There is a mailbox for the entire group or this role, and all potential role
owners can access this mailbox, so that the dispatch folder is allocated to a
specific workplace within the group by convention in a controlled way.

E X P L I C I T C O O P E R A T I O N B Y E X C H A N G I N G M A T E R I A L S 349

out

in

outout

inin

out

in

outout

inin

out

in

outout

inin

out

in

outout

inin

FIGURE 10.4
Using a mailing
system to
support
cooperation
between several
workplaces.

Zull-10.qxd 20/8/04 7:42 AM Page 349

Notice that the integration of such a mailing system into the work environment
represents a relatively sophisticated concept for explicit cooperation, to the extent that
this cooperation refers to the exchange of materials. On the other hand, the coordina-
tion of work is still based on conventions, and it is implemented by forwarding mate-
rials. Each of the cooperating participants has to have intuitive knowledge of the tasks
involved and how they can be completed by use of a given material, because there is
no such model in the system.

CONSTRUCTION APPROACH

The dispatch automaton of a mailing system uses generic dispatch folders to transport
materials between workplaces. The dispatch folders do not make any assumptions
about their contents. Even if users can mark or label folders, there should be no need
for the system to run consistency checks, because this would limit its use or add unnec-
essary complexity to the construction. Another property of dispatch folders is that they
carry sender and receiver addresses, so that the dispatch automaton can respond to a
failure. In the implementation, it is often meaningful to use existing transport mecha-
nisms (e.g., for file transfer (ftp) or E-mail, and as a network protocol (TCP/IP) on a
lower layer) as our system base.

In addition, we have to build a mechanism for role resolution, such as tables.
Naturally, we could use more complex strategies with proxy control and load algo-
rithms. Although there is no absolute need to implement such complex constructions,
we should always keep things simple.

Finally, we intentionally do not want to use visible logging of the transport to reg-
ister the whereabouts of folders at this point, because this aspect will be discussed as an
independent concept.

EXAMPLE

Let’s return to our previous EMS example and assume that the device manager wants
to buy a new computer. He places all the cost estimates that he has received and his
recommendation in a dispatch folder. Next, he uses the mailing system to send this
dispatch folder to one of his corporate managers. Once the corporate manager finishes
checking the documents, she adds a note stating her approval. Finally, the corporate
manager returns the dispatch folder to the device manager.

1 0 . 4 E X P L I C I T C O O P E R AT I O N M O D E L :
T R A N S A C T I O N P R O C E S S I N G S U P P O R T

We intentionally use cooperation types commonly found in office environments to
discuss the support of cooperative work. We also use these cooperation types when dis-
cussing the support of transaction processes in organizations. The example discussed in
this section involves shared processes, which are supported by an explicit cooperation
and coordination model in the system, in addition to exchanging material.

More specifically, we are interested in cooperation forms to support transaction
processes that flow in separate temporal and spatial steps. It is characteristic for these
forms that different persons, usually with different qualifications, cooperate to solve a
task at different points in time.

350 S U P P O R T I N G C O O P E R A T I V E W O R K

Technical view
on a mailing

system

Zull-10.qxd 20/8/04 7:42 AM Page 350

EXAMPLE: LOAN APPLICATIONS

Let’s use a simplified banking example to better understand the concepts discussed in
this chapter. Let’s further assume that you are an account manager in the loan depart-
ment of a bank. Your department distinguishes between new and old customers, where
new customers do not yet have a business relationship with your bank. In contrast, old
customers are known to your bank. If you receive a loan application from an old cus-
tomer, you already have some information to prepare for a meeting with this customer.
For example, you may easily prepare several financing alternatives.

The bank employs other account managers, and the customers are allocated to
specific account managers, for example, by customer names or account numbers.

When you process a loan application, you probably fill out the application form
with some information, either before or during your meeting with that customer. In
addition, you probably make notes about the meeting. Once you approve your cus-
tomer’s loan application, you need to obtain approval from other account managers or
corporate managers.

This final approval is based on the loan application and meeting records you pre-
pared. As soon as a second person has countersigned the application, the case is
returned to you. You check the loan application case once more and send copies to the
departments in charge, such as the loan and controlling departments. Payment against
the loan application is effected over a setoff account, specially set up for this purpose.
Loans can be paid out by the account manager or at a teller.

Table 10.2 shows how we can use a modified purpose table (see Section 13.8) to
describe the most important activities involved in loan applications and the purpose
and cooperation type of each.

Table 10.3 shows the dependencies between the activities involved in processing
a loan application. The columns earliest and latest make statements about the time
when these activities should be completed. The last column describes whether an
activity is mandatory (M) or optional (O).

Decisions about loan applications are taken on the basis of a well-established pro-
cedure. The previous (simplified) tables were prepared on the basis of scenarios and
interviews with account managers within a bank project. They reflect the (rarely suc-
cessful) attempt to handle complex work processes, which recur on a regular basis but
in different variants.

This type of transaction processing is also called routinized cooperation.

● In general, the cooperating persons know each other personally and have
developed a certain cooperation pattern.

● Within this cooperation, the participants exchange materials as part of the
aspired work result or for information, such as transaction files or folders, to
allow spatial and temporal separation of a complete task.

● The number of people participating in this cooperation is limited. A major
requirement for this cooperation is that all participants have a common
understanding of their work and underlying rules.

● The number of activities to be completed is also limited, and both the content
and purpose of each activity are known to all participants.

● The person who is actually handling a joint transaction has control over the
progress of this cooperation. This person knows what has to be done next and
which steps are taken by whom.

E X P L I C I T C O O P E R A T I O N M O D E L 351

Important
characteristics
of routine
cooperation

Zull-10.qxd 20/8/04 7:42 AM Page 351

352 S U P P O R T I N G C O O P E R A T I V E W O R K

With
Who Does What Whom/What What For?

1 Account manager forwards customer, other customers are allocated
account based on the bank’s
manager established conventions.

2 Account manager prepares for customer to check basic
meeting with information and requirements for granting
customer documents loan.

3 Account manager advises customer to be able to decide on loan
approval.

4 Account manager fills in loan application to have a basis for granting
a loan.

5 Account manager writes meeting notes for legal and administrative
reasons.

6 Account manager passes loan second account for crosschecking (four-eyes
documents to manager principle).

7 Second account signs loan application for final loan approval.
manager and other

documents

8 Second account returns loan account to inform account manager
manager documents to manager of final approval.

9 Account manager sets up setoff account to have a special account
for loan payout.

10 Account manager/ pays out loan over setoff to give customer the
teller account approved loan.

11 Account manager checks and loan application for further processing and
distributes control.

12 Back-office checks loan application, to control loan payments.
employee documents, and

account

TABLE 10.2 A purpose table for credit application cases.

● We cannot identify or implement a general workflow in this transaction
processing, though certain forms of cooperation have been established between
the participants. This could be due to the following reasons:
– Many activities can be done by one person at one workplace in parallel.
– Results from previous activities are mandatory only for part of the activities.
– Depending on the situation, some activities may be skipped, or special

activities can be added.

Though routinized cooperation can basically be described, it will normally not
produce an exact map of a concrete routine case. This is one of the difficult points of

Zull-10.qxd 20/8/04 7:42 AM Page 352

achieving support for cooperative work, which is based on two fundamentally different
design alternatives.

First, we can try to find a process description that implements the entire logics of
a transaction. This description has to anticipate and handle all potential special cases
that may occur in a specific situation. Experience has shown that such a complete
process description is rarely possible or reasonable.

As a second alternative, we could try to make the cooperation model explicit and
editable to coordinate cooperation between different persons. This alternative would
let us cover situations that cannot be embedded in a standardized schema.

We opted for the second variant for our T&M approach. We call the underlying
concept a process pattern, and will discuss it in the following section.

10.4.1 The Concept of Process Patterns

Process patterns represent the cooperation during transaction processing. They can be
used by the people involved in completing a transaction. Process patterns can be
described and modified, and they make the selected cooperation model explicit.

A process pattern is a material representing the regular flow within a routinized
cooperation. This material supports the mutual coordination of steps and respon-
sibilities when a transaction case is completed in several steps. A process pattern is
based on conventions and the common understanding of all participants. The idea
is to use process patterns not only as an explicit model for transaction processing,
but also so that they can be modified to reflect current situations.

Process patterns are not designed for full control of a cooperative work process.
Rather, a process pattern is a model of the normal case, which evolved in the course of
practical experience. While a transaction case is being processed, the process pattern
also represents the current process state.

First and foremost, a process pattern is a concept. This concept can be realized as
routing slips, which will be described in the next section.

E X P L I C I T C O O P E R A T I O N M O D E L 353

TABLE 10.3
Dependencies in
loan application
cases.

Mandatory
Activity Earliest Latest or Optional

1 Customer allocation – before 2 M

2 Preparation for meeting after 1 before 3 O

3 Meeting with customer after 1 before 6 M

4 Fill in loan application during 3 before 6 M

5 Write meeting notes after 3 before 10 O

6 Forward loan documents after 4 before 7 M

7 Approve loan after 6 before 8 M

8 Return loan documents after 7 before 10 M

9 Open setoff account after 1 before 10 M

10 Pay out approved loan after 9 before 11 M

11 Process loan after 8 – M

12 Control loan after 4, 9 – O

Process pattern

Zull-10.qxd 20/8/04 7:42 AM Page 353

Figure 10.5 shows part of a process pattern called loan application. Domain
relations are defined for some of the activities involved. These dependencies are shown
by directed arrows in the figure and should be interpreted in the sense of “should be
completed before another activity.”

10.4.2 Cooperation Medium: Routing Slips

We have implemented process patterns as routing slips in most of our projects. This is
not a new idea, but it is simple and it works. Routing slips are normally used in con-
nection with transaction files, which can be sent to several persons and coordinated.

A transaction file is a special form of dispatch folder and can be sent over a mailing
system. It contains all the documents required to process a transaction case. A routing
slip can be attached to each transaction file. This routing slip shows who should com-
plete which activities within the transaction case and the receivers of the transaction file.

COOPERATION MODEL

In the T&M approach, routing slips are both cooperation materials and working mate-
rials. We can identify several characteristics of handling routing slips (see Figure 10.6):

● A routing slip is a work object created by a user for a specific transaction case.
It includes information about persons in charge of activities, the flow of work
steps involved, and the documents required.

● A routing slip can be removed from a collection of readymade routing slips for
routine cases. If a new routine case comes up, then the user can add a prototype
routing slip (similar to a template) to the collection.

● Users can change or adapt routing slips to the requirements of specific
situations. Naturally, this does not apply to previously completed transaction
cases, which are documented and cannot be changed. A user can only change
responsibilities (e.g., when a person is on sick leave) and activities (e.g., when
the sequence of steps has changed).

● A routing slip is also an instruction to transport the transaction file concerned.
Based on the responsibilities noted on the routing slip, the mailing system
sends the folder to the workplace in charge.

354 S U P P O R T I N G C O O P E R A T I V E W O R K

Characterstics of
routing slips

Allocate Customer
Account Manager

Prepare Meeting
Account Manager

Meeting with Customer
Account Manager

Pay out Loan
Teller

Set up Account
Account Manager

FIGURE 10.5
A process

pattern for loan
application

cases.

Zull-10.qxd 20/8/04 7:42 AM Page 354

● Users can use routing slips to coordinate their cooperation, that is, to inform all
participants about the current state of a transaction case. Users can see who
completed what task and what remains to be done. They normally tick off
activities once they have been completed.

● Transaction files can be traced. For example, a user can request the mailing
system to provide information about the whereabouts of a transaction file. In
addition, the user can find out what steps within a transaction case have been
completed. However, such a request says nothing about whether and how the
contents of a transaction file is currently handled at a workplace.

CONSTRUCTION APPROACH

The implementation of routing slips requires little technical effort besides a mailing
system and dispatch folders. To function as transaction files, dispatch folders have to
be specialized to a minor extent to accept routing slips instead of addresses. As men-
tioned earlier, a mailing system can be simply expanded by a protocol mechanism to
document the transport of dispatch folders. If transaction files have unique identifiers,
then these can be built on top of a follow-up mechanism. The question of who may use
it and to what extent is not a technical but a domain problem. The desire to follow up
on transaction cases should be weighed against the undesirable control of people’s work
by third parties.

Similar factors apply to whether or not routing slips should be modifiable. In many
cases, the application management has an interest in standardizing transaction cases to
encourage uniform business processes. This desire has to be weighed against the flexi-
bility required in processing transaction cases.

There is relative freedom in how routing slips can be designed. The only condi-
tion is that the mailing system should be able to identify receivers clearly as either peo-
ple or roles. Sufficient information should also be available for cooperation and
coordination, so that a receiver does not first have to check things in a folder. The

E X P L I C I T C O O P E R A T I O N M O D E L 355

out

in

out

in

out

in

out

in

FIGURE 10.6
Using routing
slips to
coordinate
cooperation
between several
workplaces.

Using a mailing
system and
dispatch folders

Tracking
mechanisms

Modifying
routing slips

Designing routing
slips

Zull-10.qxd 20/8/04 7:42 AM Page 355

principle mentioned earlier applies here too, that is that a user is free to see informa-
tion about the contents and work steps pending completion. A mechanical consistency
test between folder contents, routing slip contents, and tools used is not given in the
standard version. We recommend this standard version for most application contexts
in office environments. On the other hand, the mechanical check of folder contents
or tools available at a workplace is very complex and does not contribute much to the
routine cooperative work discussed here. The participants are in a position to evaluate
these aspects easily themselves. Nevertheless, one of our bank projects required a spe-
cialization of transaction files so that they would know the important documents of a
loan application. This means that simple consistencies can be checked during a trans-
action process.

1 0 . 5 R E F E R E N C E S

A. Krabbel, I. Wetzel, S. Ratuski: Participation of Heterogeneous User Groups: Providing an
Integrated Hospital Information System. In: Proceedings PDC-Conference, Boston, November
13–15, 1996, pp. 241–249.

A paper on integrating users in the process of selecting standard software and an introduction
into using cooperation pictures.

A. Krabbel, I. Wetzel, H. Züllighoven: On the Inevitable Intertwining of Analysis and Design:
Developing Systems for Complex Cooperations. In: G. van der Veer, A. Henderson, S. Coles (eds.):
DIS’97 Designing Interactive Systems: Processes, Practices, Methods, and Techniques,
Conference Proceedings, Amsterdam, The Netherlands, August 1997, pp. 205–213.

Here we explain our ideas on developing cooperation support.

W. Prinz, S. Kolvenbach: Support for Workflows in a Ministerial Environment. In: Ackermann,
M. S. (ed.): Proceedings of the ACM 1996 Conference on Computer Supported Cooperative
Work, Nov. 16–20, 1996, Boston, Massachusetts, USA. New York: ACM Press, 1996,
pp. 199–208.

Paper on advanced workflow concepts.

356 S U P P O R T I N G C O O P E R A T I V E W O R K

Zull-10.qxd 20/8/04 7:42 AM Page 356

357

Interactive Application
Systems and Persistence

In most application systems, materials have to be managed over an extended period of
time. For this purpose, the most common core components of application systems are
database systems with their special services, such as efficient data repository, and multi-
user and security concepts.

For the T&M approach, it is important to find a domain-motivated architecture
to connect an application system to a database system. Based on the T&M concept for
workplace types (see Section 3.6), we introduce two important application types:

1. applications for expert workplaces, and
2. applications for functional workplaces.

From an application-oriented viewpoint, persistence seems to be of minor importance.
The reason is that we expect the different technologies available to have little or no
influence on the usage model. All we need is an adequate persistence medium to store
our materials.

But on closer examination, persistence does matter. First, because a poor coupling
of an object-oriented application with a database system will usually lead to annoying
performance problems. Second, if we are not careful about the way we integrate a spe-
cific persistence medium, this will corrupt our software architecture and we loose
important characteristics like structural similarity or maintainability.

This chapter, therefore, addresses readers who as application developers, software
architects, or technology experts have to deal with the issue of OO application systems
and persistence. Again, we use the structural elements of the pattern sections of this
book for better readability of the chapter.

11 .1 B A C K G R O U N D : I N T E R A C T I V E
A P P L I C AT I O N S Y S T E M S

The architecture of application systems has to embed database systems within a gen-
eral persistence concept. We will discuss this issue especially from the perspective of
application systems developed by the T&M approach. We want to find an answer to

11

Persistence and
workplace types

Zull-11.qxd 26/8/04 11:33 AM Page 357

the question of how we can overcome the paradigmatic conflict between object-
oriented application software and relational databases.

It is important to understand that we do not favor one single solution; instead,
we explicitly include the characteristics of an application in our search for a suitable
architecture. Based on the T&M concept of workplace types, we introduce the two
important application types for expert workplaces and for functional workplaces. For
these two application types, we describe suitable solutions, discussing functional work-
places in connection to embedded systems (see Section 3.6).

The solutions proposed in this chapter will be discussed on two levels:

1. Domain concepts for cooperative work (multiuser capability) for handling mass
data and for working with complex materials are used.

2. Architectural concepts, including client-server architectures for persistence ser-
vices, loading complex materials on demand, mapping options, and evolution of
materials over the application life cycle, and connection to different databases.

Another important question is how far we can utilize the services of database sys-
tems (e.g., transaction concept, multiuser capability using locking concepts, load-on-
demand in object-oriented databases), or whether we should implement these services
in our application. There can be several reasons to opt for the second option, for exam-
ple, to introduce “higher” domain concepts or a conflict between the object-oriented
and relational worlds.

We will characterize the application domain and list criteria that allow us to esti-
mate the cost of implementing a persistence concept early on in our project.
Experiences from real-world projects have shown how necessary this is.

11 . 2 P E R S I S T E N C E S E R V I C E S

This section describes two different approaches to connect an application system to a
database:

1. Software registry
2. Generic persistence service

A software registry provides a domain usage model for jointly working with mate-
rial archives at expert workplaces (see also Chapter 10).

The important features of a generic persistence service are efficiency and trans-
parency for functional workplaces and embedded application systems.

11.2.1 Software Registry

PROBLEM

We want to provide a domain-motivated persistence service. To solve this problem, we
look for a suitable usage model to file and manage jointly used materials. Based on the
T&M approach, we consider proven materials of the application domain and how they
are handled, to better understand how we can model our application domain. The
usage model developed to file and manage jointly used materials should produce a
generic component that can be used in different application domains.

358 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Domain and
architectural

contexts

Connecting
application
systems to
databases

Zull-11.qxd 26/8/04 11:33 AM Page 358

BACKGROUND

Rather than identifying the requirements of many specific application domains our-
selves, we analyze an existing generic concept that is commonly used for archive man-
agement—the registry.

Though most archive managements are based on outdated concepts, we can use
the experiences gained in this field to develop a domain model and a software
model for archiving and managing jointly used materials. On the one hand, these
models should reflect the familiar use of proven objects and, on the other hand, use the
potential of modern software to overcome some of the constraints inherent to
physical objects. In other words, we combine a new technology with proven practical
concepts.

The domain model has two aspects: In addition to the actual usage model at the
individual workplace, we have to consider the cooperation aspect (in the form of a
cooperation model) for our registry.

When designing the cooperation model, we have to bear in mind that documents
will be used in the form of originals and copies. Hence, we combine the registry con-
cept with the original-copy variant of documents, creating a simple cooperation model
that uses the extended capabilities of modern software. The actual usage model takes
the use of tables of contents into account, which contribute directly to technical
requirements, such as, efficiency.

THE ELEMENTS

One of the most important notions in managing joint documents is the registry.

A registry is the central instance for document management in commercial and
governmental organizations. It forms the core of a network of information and
interfaces to different independent departments.

A registry records each document once it has been created and filed in the registry.
The whereabouts of a document and who removed it from the registry are known at
any given time. The registry includes all documents not currently edited but required
for transaction cases. To better understand the registry concept, we first explain the
tasks assumed by the participating roles.

A registrar is responsible for registry management. The registrar coordinates
concurrent access to the registry, ensures consistency of the documents
managed, serves document requests, and accepts documents for management.

To meet its tasks, the registrar uses various registration means, including:

● Inventory directory: This is used to record each document managed in the
registry. A document is characterized by information, such as author,
registration date, and required retention period.

● File logbook: This logbook records all documents distributed. It can use
placeholders instead of documents removed from the registry. Each placeholder
should show the removal period and the current location.

● Scheduling book: The registrar uses this book to enter a date when documents
should be resubmitted for follow-up purposes. These dates are normally
provided by users.

● Reservation list: The registrar uses this list to enter user requests for documents.

P E R S I S T E N C E S E R V I C E S 359

A registrar uses
registration
means

Traditional
archive
management

Zull-11.qxd 26/8/04 11:33 AM Page 359

DISCUSSION

If we want to draw useful conclusions from traditional registries for our domain mod-
eling work, we have to be aware of a number of seemingly obvious points:

● The registrar manages a large number of documents. We assume that these
documents are not transient.

● Documents are managed and searched in file logbooks, which have good
structuring characteristics. Many registrars maintain several logbooks in
parallel to facilitate access based on different criteria.

● A registry contributes to implicit cooperation, based on conventions. This means
that other users are not directly visible in the usage model; they can be seen
indirectly by the user of a registry. For example, if a user removes a document
from the registry, he or she merely leaves a trace in the form of a placeholder.
The registry does not support explicit cooperation, as in a mailing system (see
Chapter 10).

● A registry offers registration means, such as placeholder cards, to support
coordination.

● A material can be exactly in one location at a time. A document is either on a
user’s desk or in the registry, but never in two locations at the same time.
Before a document can be edited at a workplace, it has to be transported there.

● Documents managed in a registry can relate, that is, belong to the same business
transaction case. To allow joint editing of documents, they are normally held in
files or folders. The registry manages such business transaction cases as one
single object.

● Documents can be copied; an original and its copies are not connected in any way,
and are treated as separate materials. Changes to a copy do not affect the original.

11.2.2 The Basic Concept of a Software Registry

PROBLEM

We can develop a matching usage model from our analysis of conventional registries
and combine it with a cooperation model to implement it in our application system.

BACKGROUND

A registry serves two purposes. First, with its registrar as the coordinator, it acts as a
cooperation medium. Second, it serves as a managed container in which to easily file
and find documents.

One important task is to integrate the possibilities offered by modern software into
the design of a software registry. We want to utilize as many of the familiar interactions
with a conventional registry as possible, while using the new technologies of modern
software. This idea is aimed at designing a simple usage model for a software registry,
which is intuitive and consistent.

SOLUTION

A software registry is used by a registrar to manage a persistent container, or the registry.
From the technical view, the registrar is a service provider, which supplies a specific
service based on well-defined rules, that is, to maintain the registry consistently and
handle concurrent access. A registry manages mainly documents, but the concept can
be expanded to other materials.

360 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Characteristics of
a registry

Zull-11.qxd 26/8/04 11:33 AM Page 360

11.2.3 Cooperation Model for a Registry

PROBLEM

We are looking for a cooperation model that explains in an understandable way how
to use the fundamental means of parallel read-and-write access to a registry. Different
variants of this general cooperation model should express the different degrees and
kinds of parallel handling. These different model variants should be options offered
by a registry component that can be configured to the requirements of a specific
application.

BACKGROUND: ORIGINAL AND COPY IN COOPERATIVE WORK

The difference between originals and copies explained in Section 10.1 can be used as
a sound basis for the cooperation model we are looking for. We analyze what it means
for a document to be an original or a copy within the context of cooperative work. We
can basically identify two common meanings of the terms original and copy, which are
closely related:

1. We use the term original to define legally binding documents, which may be on
special paper and include signatures and stamps. There can be several originals
(e.g., contracts) or special copies (e.g., duplicates). An arbitrary number of
copies can normally be produced from one original, and some copies may be
notarized. All of this is done when the copies are issued, and subsequent
changes require approval (e.g., by initializing copies). Duplicates are treated
like originals. Changes to copies are normally meaningless.

2. We use the term copy to describe the parallel use or distribution of information.
We produce copies of a text and distribute these copies, which serve as work-
ing documents. Users can add comments to their copies.

SOLUTION

We distinguish as follows when transferring the concepts of original and copy to a soft-
ware registry:

1. Exclusive access to a material for one user; there are no copies.
2. Exclusive access to an original; copies can be made.
3. Access is permitted to copies only.

Some application domains differentiate strictly between legal originals and copies,
and the way they are handled. Variants 1 and 2 are particularly important for these
application domains. Other domains may focus primarily on parallel use of informa-
tion, so that they require computer-supported concurrent editing of materials. Variant 3
is of particular significance for these domains.

DISCUSSION: EXCLUSIVE ACCESS TO A MATERIAL; NO COPIES

If a material is removed from the registry, then this is obvious to other users, who can-
not access it.

● Modeling reason: A material should be available and editable in one location only.
● Application example: There are things that cannot be simply copied at

reasonable cost, or when working with modified or outdated copies can cause

P E R S I S T E N C E S E R V I C E S 361

Software registry
using originals
and copies

Zull-11.qxd 26/8/04 11:33 AM Page 361

problems. For example, a company’s annual financial statement or a credit
report should reflect the most current information from the original.

● Consequence: Users should be informed about who has removed a material from
the registry, so that they can contact the current user, if necessary. Otherwise,
there may be interruptions or errors in the work process. To avoid such
problems, the registry provides information about the whereabouts of materials
removed from the registry. Users can coordinate this process by E-mail or
outside the system.

DISCUSSION: EXCLUSIVE ACCESS ON AN ORIGINAL; COPIES CAN BE MADE

Only one user can remove the original of a material from the registry. Other users are
aware of that, but they can produce work copies for themselves. The registrar always
keeps a copy of the original, so that more copies can be made and distributed. When
the original is returned, it replaces the registrar’s copy.

● Modeling reason: Work copies should be available even when the original of a
material is currently being used.

● Application example: It is sufficient in many application cases to just have a look
at a material. It wouldn’t make sense to prevent this.

● Consequence: The users are responsible for coordination of concurrent changes.
Changes to the original do not cause automatic changes to its copies. People
who use copies can be informed as soon as the original is returned.

DISCUSSION: ACCESS TO COPIES ONLY

Each user receives only a working copy with a time stamp. The user may want to return
the work copy for the original later on. In this case, the time stamps on the working
copy and the original are compared. If the original’s time stamp is more recent than
that on the work copy, then the original has been modified in the meantime. The user
is informed of the conflict and what caused it.

● Modeling reason: A user normally cannot have permanent exclusive access to
an original (e.g., an account). Especially for read access, many users can have
concurrent access. There is no automatic regulation for the small number of
conflicting concurrent editing procedures.

● Application example: It is usually not a good idea to allow the originals to be
turned over to a user when work is being carried out on an organization’s
customer files. Customer files are frequently provided as copies of currently
relevant segments at workplaces. As the work procedure nears completion, it is
compared with the original customer files. The user is informed of any
discrepancies and must then decide on the basis of his or her professional
expertise how these discrepancies can be solved.

● Consequence: A user is informed that a conflict occurred and can communicate
with other users about how the conflict can be solved.

The term original takes on a new meaning when it comes to forms. Forms are dis-
tributed and edited as copies of form templates. For the most part, there is no problem
with parallel work on a form as long as it relates to different business processes. An
editable form template is stored in the forms archive to ensure that only the current
version of a form is used once the template was modified.

362 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Zull-11.qxd 26/8/04 11:33 AM Page 362

TRADE-OFFS

We have just introduced three variants for the cooperation model of a registry. The
strategy that a software registry implements depends on the application case.

In all three cases, it may be meaningful to allow users to be informed when an orig-
inal is replaced or updated. For this purpose, the work environment should have an
independent generic messaging system, so that users can register for messages from the
software registry. In addition, we should allow users to reserve documents.

Section 12.2.5 describes the design decision used in the JWAM framework for the
copying behavior in a JWAM software registry. Figure 11.1 shows the cooperation
model resulting from these considerations.

In this figure, a user puts documents in the registry from his or her personal work-
place and removes documents from there. The registry provides information about
users who removed documents. A user can see clearly that another user has removed a
document or that another user is editing a document.

EXAMPLE

Returning to our EMS example, the device manager uses the room editor to update the
equipment plan, because a new device was purchased for a workplace. For this purpose,
the device manager removes the current equipment plan from the registry.

While the equipment plan is on the device manager’s desk, the inventory list in
the registry includes a removal entry showing when the device manager removed the
plan. Users can only use copies of the plan, but they can see that the device manager
is editing the plan.

This concurrent situation is characteristic for implicit cooperation. The cooperation
is implicit, because another user, the device manager in our example, does not explicitly
show to the other users. The device manager merely leaves his traces as a competitive
user of a material. In this way, cooperation can be coordinated. For example, a user can
call the device manager and ask when the equipment plan will be available.

P E R S I S T E N C E S E R V I C E S 363

User feedback

FIGURE 11.1
A registry
based on a
cooperation
model.

Zull-11.qxd 26/8/04 11:33 AM Page 363

11.2.4 Usage Model for a Registry

PROBLEM

How can we support the management of a large number of documents, while at the
same time facilitating the tracking of documents and information about these docu-
ments? In line with the cooperation model, we want to integrate the benefits and
aspects offered by a software solution into a simple usage model.

BACKGROUND

Using software to implement a registry has the following benefits:

● Software manages a large number of documents persistently in a minimum
amount of space.

● Software lets users quickly access documents, regardless of both the user’s and
the document’s location.

● Software provides tables of contents with several categories, which allow us to
expand the wealth of categories by additional information (metainformation)
without additional maintenance cost.

● Software can support requests to facilitate locating documents.
● Software maintains consistent storing of documents based on transactions.

Beyond these benefits, however, we also have to consider efficiency, for example,
limit our tables of contents to keep them optimal for transmission over a network.

SOLUTION

The registrar works on a registry. A registry is designed as a domain container. Like all
domain containers built according to the T&M approach, the registry can create and
offer a table of contents for the materials’ it manages.

To allow different views on the registry contents or a targeted selection, we intro-
duce the concept of a sniffer. A sniffer is an automaton that operates on the registry and
accepts search criteria from users. A sniffer creates a directory of the materials’ match-
ing search criteria.

DISCUSSION

To implement the solution discussed in this section, we use a domain container. This
means that the registry can be used just like all other containers and as a local work-
place registry, independent of the registrar.

The table of contents created by the registry includes a list of metainformation of all
materials managed in the registry. Depending on the document types used, we can supply
different types of metainformation, so that individual tables of contents can be designed.

We use a sniffer to limit large amounts of materials. The sniffer automaton also con-
tributes to efficiency. More specifically, if we have large data repositories in distributed
applications, we do not have to transmit the entire table of contents over a network.

Documents are often filed for a business transaction case involving several steps.
These transaction cases then, are normally represented in folders. For this reason, the
registry should be able to create and find these folders, in line with the general defini-
tion of a database transaction. A transaction ensures that several actions on documents
are grouped into an atomic unit as a single storage operation, which is then executed
entirely or not at all.

364 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

A sniffer

Using domain
containers

Using a sniffer

Zull-11.qxd 26/8/04 11:33 AM Page 364

COMBINING THE COOPERATION AND USAGE MODELS

When we combine the cooperation model and the usage model, we actually unify two
different aspects in the table of contents. The table of contents provides information
about the existing documents and about their status of availability, which means that
it discloses their whereabouts within the application system. Concurrent use under
these two aspects can lead to unexpected behavior on the part of the registrar. For
example, while checking the table of contents, a user finds a document marked as
available. When she then asks for removal of that document, she finds that it cannot
be forwarded to her desk. The reason could be that in the meantime the document was
removed or is being edited by another user.

11.2.5 JWAM: Architecture for a Software Registry

The registry concept can easily be made available for application development as part
of a framework. Figure 11.2 shows what the architecture of a software registry for use
in a distributed environment may look like.

Figure 11.3 shows the same architecture at runtime. We can see the components
of the registry with a potential distribution of processes. In this example, a tool used by
a user does not directly operate on the registry. Instead, the registrar on the server is

P E R S I S T E N C E S E R V I C E S 365

client

Desktop
Application

Server

Registrar-Proxy

Database

client

Server

Registrar

Registry

Database-Proxy

FIGURE 11.2
Architectural
structure of a
registry.

Zull-11.qxd 26/8/04 11:33 AM Page 365

used through a proxy. Access to the registry is implemented by means of the proxy
pattern (see Section 8.13).

Notice that we implemented this concept in the handling and presentation layer
within the JWAM framework. Though the registry concept does not include any user
interface elements, it influences the way in which the system can be manipulated.
Figure 11.4 shows the most important classes of the registry concept in the JWAM
framework. The framework classes are shown in gray.

As described in connection with the domain cooperation model (see Section 11.2.4),
tools do not directly access materials managed in the registry. Instead, they request
materials from the registrar. We implemented the registrar as an automaton based on
the proxy pattern. The local proxy forwards requests for the registrar to the server,
where concurrent access to materials is coordinated. The registrar proxy encapsulates
the distribution mechanisms, so that tools running in different client processes within
a distributed environment do not have to know the middleware used. The way tools
interact with the registrar is motivated by the application domain. Figure 11.5 shows a
part of the registrar’s interface.

366 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

FIGURE 11.3
Cooperation

model for a
registry.

Client process 1 Client process 2

Tool1 Tool2

:RegistrarProxy

:Registrar

:Registry

Server process

:RegistrarProxy

Zull-11.qxd 26/8/04 11:33 AM Page 366

P E R S I S T E N C E S E R V I C E S 367

Collection

creates

TableOfContents

MyTool Registrar Registry

RegistryFilelmpl MyMaterial

Registerable

0..N

FIGURE 11.4
Classes for a
registry.

public interface Registrar extends Sniffable

{
public void add (Thing thing);
public boolean isAddable (Thing thing);

public void clear ();

public RegistrationNumberDV registrationNumberByID
(dvIdentificator id);

public boolean has (RegistrationNumberDV regNo);
public boolean has (IdentificatorDV id);

public boolean isRegistered (Registerable r);
public void register(Registerable r);

public void replace(Registerable r);

public Registerable lastRegistered();
public boolean hasLastRegistered();

public Registerable thing(RegistrationNumberDV regNo);

public void remove(RegistrationNumberDV regNo);

public dvTableOfContents tableOfContents (Class type);

public boolean hasMissingCard
(RegistrationNumberDV regNo);

public MissingCard missingCard
(RegistrationNumberDV regNo);

}

FIGURE 11.5
Interface for a
registrar.

Zull-11.qxd 26/8/04 11:33 AM Page 367

The registrar is the coordinating instance in the server process. Requests from
tools running in different process spaces converge here, where they are coordinated
by the registrar. The registrar returns materials, registers new materials, and puts back
previously removed materials. In addition, the registrar manages the logbook and
announces events in the registry to tools. The registrar uses a registry to manage mate-
rials (see Figure 11.6).

NOTIFICATION

It may be of interest to some tools to obtain information about actions in the registry.
For this purpose, we can easily implement a message broker in the JWAM framework.
Tools can register for specific messages with the message broker, so that they will be
informed when events matching the requested information occur (see Figure 11.7).

368 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

aTool

original(regNo)

original(regNo)

insert
MissingCard

aRegistrar-
Proxy aRegistrar aRegistrary

material

material

original(regNo)original(regNo)original(regNo)

materialmaterialmaterial

FIGURE 11.6
A registry
returns a
material.

Client 1

Message
Broker

Client 2 Client 3

FIGURE 11.7
Exchanging
information

through a
message broker.

Zull-11.qxd 26/8/04 11:33 AM Page 368

For example, a tool may be interested in knowing when a material is returned to the
registry. In this case, the tool can register for the message "ThingRestored" with the
message broker. In some cases, a tool may not be interested in all message types. For exam-
ple, a tool that displays a copy may want to reserve the original. It can request a notifica-
tion of when the original will be available in the registry. For this purpose, messages
received can be limited by the use of clauses. In this example, the clause could define a
material with a specific registry number. Since these clauses are maintained and checked
on the server, this mechanism is effective in minimizing network traffic. Figure 11.8 shows
the resulting runtime architecture. Note that the registrar can also send messages.

11.2.6 The Generic Persistence Service

PROBLEM

Functional workplaces are often used to control technically embedded systems. In
addition to basic problems that occur when modeling asynchronous processes, these
embedded systems normally require high performance and flexibility of the persistence
service used. On the other hand, the cooperation model is less important.

The overhead caused by the three-tier architecture of a software registry (client,
registry server, database server) can be excessive. Also, the cost involved in making a
registry server available can be considerable. We are looking for a concept to imple-
ment persistence in technically embedded systems.

BACKGROUND

With the software registry, we introduced a persistence concept based on a domain
usage model for jointly used materials. This usage model has proven effective in work-
places where users have a high degree of autonomy, such as expert workplaces.

Experience from our real-world projects has shown that this does not represent a
universal solution to the persistence problem. Depending on the context (technology,
application domain, workplace types), persistence concepts that are more technical
have to be used. This applies particularly to the construction of technically embedded
systems, such as laboratory information and control systems (see Section 11.4.2).

P E R S I S T E N C E S E R V I C E S 369

Message
Broker

a Tool

Registrar-Proxy

Registrar

Registry

FIGURE 11.8
Runtime
architecture
using a message
broker.

Technical
persistence
concepts

Zull-11.qxd 26/8/04 11:33 AM Page 369

The workplaces we normally find in an embedded system are oriented mainly to
the efficient use of functions, with little autonomy for the users. We have defined them
as functional workplaces (see Section 3.6). The functional workplace in strongly auto-
mated technical processes is oriented to flawless and efficient completion of each task.
We will show below that functional workplaces are important in our decisions for the
design of a persistence concept.

SOLUTION

We design a generic persistence service for a technically embedded system. The mini-
mum functionality of this persistence service is to file materials over a lengthy period
of time, and, for example, to return these materials upon request when the application
system restarts. We will implement this generic persistence service as a technical ser-
vice, operating on materials via a common aspect. This persistence service does not
make assumptions about a usage model.

DISCUSSION

The typical interface of a minimal persistence automaton that meets the interface
Storable and its most important helper classes could look like the code in Figure 11.9.

370 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

FIGURE 11.9
Sample code for

a persistence
automation.

public interface PersistenceAutomation{

void insert (Storable s);
// stores a new material

void update (Storable s);
// stores an updated material

void delete (Storable s);
// deletes a material

java.util.Collection select (Query q);
// returns a list of materials matching
// the predicate of the query

}

public class Query {

Query (java.lang.Object basetype) {/* ... */}
// returns a new query object; the query is evalutated
// on basetype and all subtypes

void addPredicate (Predicate p) {/* ... */}
// adds a predicate

}
public class predicate {

predicate (Slot s, Operator o, Integer i)
{/* ... */}

Functional
workplaces

Zull-11.qxd 26/8/04 11:33 AM Page 370

DISCUSSION: DATA CONSISTENCY

The application systems discussed here are not single-user systems. The generic
persistence service is often responsible for the joint use of materials in different work
environments. In this case, the minimal interface introduced above is not sufficient.
The joint use of materials means that we have to deal with concurrent access and solve
the data consistency problem.

The ACID transaction concept of databases appears to be a suitable solution to the
consistency problem. Here, the persistence service guarantees the ACID (Atomicity,
Consistency, Isolation, Durability) properties of transactions for clients. As in the case
of the registry concept, we apply the database transaction concept to containers (see
Figure 11.10).

We now change the interface of the persistence automaton as shown in Figure 11.11.

TRADE-OFFS

The names used for the methods described in the previous section are similar to the
(generic) SQL interface of relational databases intentionally. They give us a rough idea
of how a generic persistence service for object-oriented systems can be added to con-
ventional database systems in a relatively straightforward way. Other design decisions,
including structural mapping, object identification, and so forth, will be addressed
further in the following discussion.

In contrast to the software registry, we make no assumptions about how materials
processed by the generic persistence service will be handled. There is neither a

P E R S I S T E N C E S E R V I C E S 371

// creates a predicate for an Integer field

predicate (Slot s, Operator o, String st)
{/* ... */}
// creates a predicate for a String field

// ... predicates for other database fields ...

Predicate (Slot s, Storable st) {/* ... */}
// creates a predicate for a reference field

}

public interface Transaction {

void insert(Storable s);
// marks a new material for persistent storing

void update(Storable s);
// marks an updated material for persistent storing

void delete(Storable s);
// marks a persistent material for deletion

}

FIGURE 11.9
(Continued)

FIGURE 11.10
Applying the
transaction
concept to
containers.

Zull-11.qxd 26/8/04 11:33 AM Page 371

cooperation model for access to jointly used materials (e.g., original and copy), nor a
usage model (e.g., folders and tables of contents). The existence of concurrent users is
obvious only where the execute method fails or where there is a reload method
for resynchronization. The only organizational structure for materials is
CollectionOfStorables, returned by the select method; it is the elementary
solution.

The software registry requires a domain model that specifies the parts of a (nor-
mally complex) mesh of materials, such as assumptions of the software registry about
the removal of originals or the production of copies. This is also obvious from the use
of folders, which model a group of items that belong to one business transaction case.
This means that we can hide the underlying technical transactions from the applica-
tion developer.

However, if the persistence service we use has high performance and throughput
requirements, then we may have to allow “manual” optimization of the technical trans-
actions, for instance to improve the implementation and the conflict resolution.

Let’s look at an example. Based on the structure of the application or empirical
studies, we assume for the time-critical part of the application system that a very high
number of transactions can run without conflicts. In view of optimal performance, it
may be meaningful to do without a domain-motivated cooperation mechanism.
Instead, we provide for subsequent handling of (rare) conflict cases. This optimistic
conflict resolution strategy can be easily implemented in a persistence automaton, such
as by calling the reload method for materials involved in a conflict.

The generic persistence service is a feasible alternative to a domain-motivated
software registry, where performance and flexibility requirements would otherwise
exceed the usual limits of interactive application systems. At the same time, a user’s
autonomy in completing their tasks should be of secondary importance. This applies
primarily to functional workplaces in technically embedded systems. Figure 11.12
shows the architecture of a generic persistence service.

372 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

public interface PersistenceAutomaton {

boolean execute(Transaction t);
// executes a transaction; the return value
// indicates whether a transaction has terminated
// successfully, i.e. without conflicts

void reload(Storable s);
// re-synchronizes the material with
// the persistently stored vallues

java.util.Collection select(Query q);
// returns a list of materials
// matching the predicate of the query

}

FIGURE 11.11
An interface for

a persistence
automaton.

Zull-11.qxd 26/8/04 11:33 AM Page 372

Notice at this point that software registry and generic persistence service are not con-
flicting approaches, that is, we could prefer either one, but we could also easily combine
both concepts. If we combine them, we obtain the structure shown in Figure 11.13.

11 . 3 D E S I G N C R I T E R I A T O I M P L E M E N T
P E R S I S T E N C E

When implementing a software registry or a generic persistence service, we should care-
fully consider the following points, which will be discussed in the following sections:

● Client-server architecture
● Identifiers
● Technical data modeling and structural mapping
● Evaluation and data warehousing
● Load-on-demand
● Transactions and locking
● Class evolution
● Legacy databases

D E S I G N C R I T E R I A T O I M P L E M E N T P E R S I S T E N C E 373

Database

client Server

Process
Automation

Persistency
Service

Database-Proxy

FIGURE 11.12
Architecture of
a persistence
service.

Zull-11.qxd 26/8/04 11:33 AM Page 373

11.3.1 Client-Server Architecture

Software registries and generic persistence services are normally used in multiuser envi-
ronments and implemented over a client-server architecture. The persistence func-
tionality described here can be distributed over clients and a server in different ways.
We distinguish between two architectures:

1. Persistence-capable client: In this architecture, the selected persistence mecha-
nism is fully implemented on the client. In the simplest case, a file system (e.g.,
Network File System (NFS) server of the UNIX file system) or a commercial
database server is used as server. The persistence mechanism is implemented
using the programming interface of the database (normally in C for relational
databases, or Java Data Base Connectivity (JDBC) and C��, Java, or
Smalltalk for object-oriented databases).

A typical application for a persistence-capable client architecture is the
generic persistence service. But we can also use it for the software registry.

374 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

FIGURE 11.13
Combining

software registry
and persistence

service.

client

Desktop
Application

server

Database

client server

Registrar-
Proxy Registrar

Registry

Persistency-
Service

Database-
Proxy

Two architectures
for distributing

persistence

Zull-11.qxd 26/8/04 11:33 AM Page 374

In this case, the registry server is integrated in the application, and its cooperation
model is implemented over data stored on the server. This solution has two
major drawbacks: the size of the software to be installed on the clients, and the
client configuration. The reason is that drivers for the persistence service have
to be installed and properly configured in each client.

2. Persistence-capable server: In this architecture, parts of the persistence mecha-
nism are implemented in the application and others on a dedicated persistence
server. In turn, this server acts as a client, using the services of another server.
This additional server can be a file system or database, as in the above archi-
tecture, or the interface to a proprietary host system. Additional interprocess
communication is required to let clients communicate with the persistence
server. To implement such a communication mechanism, commercial middle-
ware, such as CORBA or EJB (Enterprise JavaBeans) is normally used.

Obviously, the software registry is a candidate for a persistence-capable
server architecture. We implement the registry server and thereby the domain
usage model for materials in the persistence server. In contrast, our experience
has shown that the persistence-capable server architecture is rarely used to
implement a generic persistence service. It is used in rare cases when the
server’s multiuser capability is limited, as is the case with a batch interface of a
host system, so that the persistence service acts as a concentrator.

TRADE-OFFS

One major benefit of the persistence-capable client architecture is that its implemen-
tation is relatively easy. For example, we don’t have to implement a separate multiuser-
capable registry server. If the main memory of the registry server cannot hold the entire
material stock permanently, and if there are high data security requirements, then the
persistence-capable client variant is normally performing better than the persistence-
capable server architecture. The reason is that the database is accessed without a
detour over the registry server. In addition, the registry server has to do a costly things
to ensure data security. It normally either uses the database’s transaction mechanisms
in the sense of a write-through cache, or protects itself directly against potential data
loss. Several products introduced to the market more recently (e.g., EJB servers)
include mechanisms to implement your own server.

The major benefit of the persistence-capable server architecture is that it is easy to
implement domain cooperation models, such as a software registry. Another benefit is
that the persistence-capable server architecture supports lean client applications lim-
ited to domain functions. In addition, we do not need the linked code to access a data-
base as we do with persistence-capable clients, which is an important argument in view
of limiting data traffic over networks.

11.3.2 Identifiers

Objects in an object-oriented model have a unique identity, regardless of the values of
their attributes. The tuples of a relational model, which unfortunately are also often
called objects, can be distinguished only by the values of their key attributes.

Object identity is asserted only within a process space in popular object-oriented
programming languages, such as by their storage address in C��. If we want to extend

D E S I G N C R I T E R I A T O I M P L E M E N T P E R S I S T E N C E 375

Persistence –
capable clients

Persistence –
capable servers

Zull-11.qxd 26/8/04 11:33 AM Page 375

the life cycle of a single object or a mesh of objects beyond the duration of the creat-
ing application, then we need a mechanism to secure the identity of objects, regardless
of their current process space.

One commonly used solution specifies an additional attribute, a so-called object
identifier (OID), for each persistent object. Each OID has a unique value across the
entire system, which is specified when an object is created, and which cannot be
modified. We normally define OIDs in the superclass of all persistent materials.

There are several methods for implementing unique OIDs across the entire system:

1. One obvious solution uses a centralized service to assign an OID to an object.
We normally use a database to implement this service, because many databases
support a mechanism to create unique numbers.

2. Another solution uses random numbers for OIDs. With a current random num-
ber generator, the probability that a number will be assigned more than once is
clearly smaller than the probability of a programming error that destroys objects.

3. Using random numbers for OIDs, we could optionally add more elements, such
as the ID of the network card or a combination of IP address and process ID, to
make the OID even “more unique.”

TRADE-OFFS

Though the above solution (1) is obvious, it has a number of drawbacks. First, our
application programs always have to be connected to the centralized service when new
materials are created. Today, this is not the case for an increasing number of systems.
The cost to centrally create unique OIDs in large distributed applications can easily
exceed the object creation cost, due to network latency, so that it can quickly turn into
a system bottleneck. Second, people in distributed applications often have to work
offline, that is, their systems are not permanently connected to a centralized service.

Random numbers (2) or combined random numbers and IP addresses (3) are seri-
ous alternatives. Java uses a library class (VMID) that can create unique numbers
without having to access a centralized administrative instance. This mechanism uses a
combination of IP address, process ID, and an incremental counter.

11.3.3 Technical Data Modeling and Structural Mapping

When opting for technical data modeling, we have to select a model for the persistence
mechanism to store its managed materials. This means that we have to decide how to
technically store and reconstruct material information.

There are several methods to address this issue, which will be briefly described in
the following subsections.

USING OBJECT-ORIENTED DATABASE SYSTEMS

If we use an object-oriented database (OODB) system, we can normally use the
domain class design and the implementation model for persistent objects of this
OODB to design our technical data model. Most OODB vendors include special super-
classes in their products, from which the classes concerned have to inherit their per-
sistence properties (mix-in inheritance). More recent OODBs include post-processors
that derive from the persistent superclass automatically and generate appropriate

376 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Implementing
unique OIDs

Zull-11.qxd 26/8/04 11:33 AM Page 376

object code. Such solutions are suitable for programming languages like Java, because
Java’s bytecode is standardized. This means that we can make third-party classes
persistent, even if they are available only as bytecode.

In contrast, if we want to implement the persistence service manually, then we
have to convert the complex object structures serially into a data stream, and then
make them persistent. Java’s Serializable is not really suitable for this purpose,
because individual handling of the byte stream can be very costly.

USING RELATIONAL DATABASE SYSTEMS

Most large commercial projects use a relational database management system
(RDBMS) to implement data storage. Normally, they opt for an RDBMS for strategic
reasons, such as data security or compatibility with existing database applications. The
question is how we can map the relationships of materials, like classification, aggrega-
tion, association, and inheritance, to the relations of an RDBMS. Several solutions
have been proposed for this structural mapping.

● Not decomposing the object structures at all is the approach that is closest to
the object-oriented solutions described in the previous section. Instead, BLOB
(binary large objects) fields are used to serially store objects in a relational
database. An object’s OID can be used as a key to retrieve that object. In this
solution, the relational database simply acts as a file system that facilitates
object retrieval extended by a transaction concept and other features (e.g.,
online backup, transaction logging, hot standby) for data integrity. Besides the
BLOB entry, such object attributes are duplicated in table rows by individual
programs that should be used by database queries.

● Mapping classes to relations is the method more frequently used in a relational
database. The attribute values of the objects of a class are stored in the fields of
the corresponding relation, with the following important details:
– Associations such as use relationships between classes are mapped by means

of foreign keys, maintaining the structural similarity.
– The relational model supports as the types of fields of a relation only standard

data types due to the first normal form. This means that nested table structures
are not permitted. Class aggregation, or the structural composition of classes
from attributes, which are themselves classes, cannot be mapped in RDBMS
without losing structural similarity. Instead, we can use associations to simulate
aggregation relationships.

HANDLING INHERITANCE IN RELATIONAL DATABASES

A very interesting question is how we can map inheritance relationships between
classes to relations. There are several solutions to solve this problem:

● The most intuitive solution creates a relation for each class of the class hierarchy.
Next, the attributes of the superclass are exclusively stored in the superclass
relation and those of the subclass exclusively in the subclass relation. The
attributes of an instance of a subclass have to be distributed over several relations.
The OID serves as a common key to reconstruct a specific object from the
database, using a join operation over these relations. The major benefit of this
solution is the nonredundant storage of attributes. Another benefit is that
superclasses can be queried efficiently.

D E S I G N C R I T E R I A T O I M P L E M E N T P E R S I S T E N C E 377

Structural
mapping

One relation for
each class

Zull-11.qxd 26/8/04 11:33 AM Page 377

One major drawback of this solution is that we always have to run a
relatively expensive join operation when reconstructing objects from a subclass.
However, we can reduce this cost, for instance, by optimized stored procedures.
Another drawback is that, when storing subclass objects, there are several
relational insert operations, depending on the hierarchical depth.

● An alternative solution also creates a relation for each class. However, in
contrast to the above solution, the attributes of superclasses are replicated in
the relations of subclasses. This avoids the cost introduced by join operations.
On the other hand, this solution requires more storage space due to redundant
attributes. In addition, each new or modified object can cause a number of
relational insert or update operations. Creating subclass objects and modifying
their attributes at runtime can be relatively expensive.

We can see that, although this solution replicates attributes in the
relations of subclasses, it stores objects in the relation allocated to the creating
class. The major benefit of this model is that expensive joint operations are
avoided. Another benefit is that we can also use simple insert or update
operations to create and modify subclass objects. One major drawback of this
solution is that all polymorphic query operations, where the class/relation to be
selected is not static, must walk through all relations in the class hierarchy.

TRADE-OFFS

Which of these solutions we should use in a specific project depends primarily on the
(expected) way that classes or relations should be accessed at runtime.

Commercial products more recently introduced to the market support database
mapping for a number of object-oriented programming languages and relational data-
bases. Most of these products use libraries and tools to support mapping. The best form
of structural mapping depends largely on the application’s characteristics. This means
that, when selecting a commercial product, we should carefully consider whether or not
the selected product includes the preferred mapping form at the required performance.

Though structure-preserving mapping of classes to tables represents a good basis
for relational data modeling, it normally requires some improvements. In general, very
small classes (e.g., domain value classes) are embedded to increase performance.

At least in an initial project phase, or when there are no strict requirements for
data volumes and throughput, a project can often do without mapping tools. Instead,
we can write special mapper classes ourselves. These mapper classes write objects into
the relational database and reconstruct these objects on retrieval.

In contrast, projects with demanding requirements to data volumes and through-
put should normally consider the structural mapping problem as a major risk, which
should be dealt with at an early project phase.

11.3.4 Querying and Data Warehousing

One of the most important aspects of designing large application systems are the
expected requirements of users with regard to the querying of the operative data cre-
ated and managed in the application system. Most practitioners assume that the oper-
ative data storage should ideally not be used directly for quantitative evaluations,
because it is normally not optimized for set-oriented queries.

378 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Replicating
superclass

attributes in sub-
class relations

Querying
operative data

Zull-11.qxd 26/8/04 11:33 AM Page 378

In a worst-case scenario, expanding the operative data model by redundancies to
optimize queries can cause a total loss of domain-related structural mapping of the
material design. If this happens, it seriously hinders the maintenance and further
development of our software system.

To solve this problem, we can use a data warehouse with separate data storages, where
the data structure of each separate data storage is optimized to the expected evaluations.
These data storages are synchronized at specific intervals (e.g., every night, weekly, etc.).

Since data warehouses are often used in combination with SQL for ad-hoc queries,
it can even happen in object-oriented application systems that an OODB is used for
the operative data, while the data storage for queries is transferred to a data warehouse
based on an RDBMS.

11.3.5 Load-on-Demand

An object mesh can become very large so that, when using an RDBMS, it may be
stored over several tables, which can cause inacceptable load times. In most cases,
however, only a part is needed, rather than the entire object mesh. Figure 11.14 shows
an example of such an object mesh.

If we wanted to edit Customer in this example, we would load not only
Customer, but all of its orders and all articles referenced in these orders.

To solve this problem, many OODBs offer a mechanism to load objects on demand.
This technical mechanism works very well for many application cases, but can cause
considerable problems in others, such as workplace systems. For example, a user can
remove materials from a registry and place it on his or her personal desk. To ensure
clean implementation of this concept, we have to define material boundaries. For
example, if we use the original-copy concept, we have to lock the entire material mesh
rather than only the part actually loaded into the client’s main memory. Another prob-
lem occurs when a registered material references another material in the registry. If we
use the load-on-demand mechanism, the referenced material is also loaded automatically
on demand from the database. However, the registrar does not know about this access,
so it cannot update its management information.

Not all OODBs are capable of implementing such a load-on-demand mechanism
in multi-tier applications. Assume, for example, that part of a material is transmitted

D E S I G N C R I T E R I A T O I M P L E M E N T P E R S I S T E N C E 379

Data warehouses

Using load on
demand

Customer

0..n

0..n
Order Position

Product
1..1

FIGURE 11.14
Object
structures.

Zull-11.qxd 26/8/04 11:33 AM Page 379

from an application server to a client. Let’s further assume that a user activates a load-
on-demand reference in this material. Since neither the database itself nor the drivers
for accessing this database reside on that client, this access leads to an error.

TRADE-OFFS

All of these problems can basically be solved. However, the cost involved is normally
very high, at least if workplace systems have to be supported. It is often better not to
use a technical load-on-demand mechanism and instead consider domain solutions
early on in the modeling phase.

This means that we have to define clear material boundaries. In this respect, we
can define two different types of references between materials:

1. Strict inclusion relationship: One material is completely included in another
material. There is no other material containing the same material. We can
choose the use relationship between objects to model this kind of inclusion.

2. Loose referencing: To model this reference type, we use domain identifiers
instead of technical object references. These identifiers are normally expressed
as domain values or OIDs. When a tool that handles a material finds such a
domain reference, then the tool has to resolve it directly. For example, the tool
can use the identifier to request the referenced material from the software reg-
istry. The tool has to handle a situation where the requested material is not
available, either because it is being used or it was deleted.

One good example for using identifiers for domain references is a simple order-
processing application: a customer object knows its orders. Each order includes a set of
positions, and each position references a product. Between order and position, there is a
strict inclusion relationship, which is modeled as an object reference. The situation is dif-
ferent between the customer and its orders, and between positions and products, that is,
we use domain references. More specifically, we use order numbers for the first case and
product numbers for the second. This example shows that we often find domain refer-
ences used in real-world applications to specify loose referencing. For this reason, it is
often a good idea to use the domain references of the application domain in system mod-
eling, at least in the beginning. Figure 11.15 shows a class diagram of the above example.

380 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Problems of
load-on-demand

References
between

materials

A simple example

FIGURE 11.15
Sample classes. Customer

0..n

0..n

Order

OrderNumber

Position

Product

Product
Number

1..1

1..1

1..1

Zull-11.qxd 26/8/04 11:33 AM Page 380

At runtime, the example of Figure 11.15 results in the object diagram shown in
Figure 11.16.

At first, this type of modeling with domain references may not appear object-ori-
ented. Notice, however, that it provides a simple solution to the problems relating to
load-on-demand, granularity of database locks and material transport over a network.

11.3.6 Transactions and Locking

All databases include access control mechanisms; most use transactions and locks. A
transaction encapsulates a number of database operations, which have to be executed
jointly in each case. The database guarantees that the operations belonging to the
same transaction run either together or not at all. Locks can be used to lock single units
of a database (e.g., relations in an RDBMS or objects in an OODBMS). We normally
distinguish between different locking strategies (optimistic, pessimistic) and lock types
(read lock, write lock).

We have to determine the view we want an application developer to have on a
persistence medium. If we use a database automaton (see Section 11.2.6), this view will
be close to the database, which means that transactions are visible in the interface of
that database automaton. This technical proximity to the database offers the benefit
that its implementation is easy. The downside is a closer coupling between the data-
base automaton and the persistence service. For example, if we want to replace the
transaction concept in the database by a persistence service that doesn’t support a

D E S I G N C R I T E R I A T O I M P L E M E N T P E R S I S T E N C E 381

FIGURE 11.16
Sample objects.

123:OrderNumber

:Order

456:OrderNumber

:Product abc:ProductNumber

:Product xyz:ProductNumber

xyz:ProductNumberPos2:Position

abc:ProductNumberPos1:Position

:Customer 123:OrderNumber

Transactions

Using a database
automaton

Zull-11.qxd 26/8/04 11:33 AM Page 381

transaction concept, then we have to implement the transaction concept as a part of
the automaton, which introduces considerable cost.

Using a registry means that the transaction and lock concepts will be hidden from
the application developer. In this case, application developers would use domain con-
cepts (e.g., original-copy). Mapping these concepts to technical database features is
not always obvious, but it is relatively simple. For example, a persistence medium with-
out transaction support could easily be replaced by another one that does support trans-
actions. This means that we could work with a prototype on top of the file system,
which could then be replaced by a relational database in the productive system.

11.3.7 Class Evolution

Another important persistence aspect in object-oriented application systems is class
evolution. In fact, one major benefit of object orientation is that the internal represen-
tation of a class can be changed easily without affecting the rest of the system.

As soon as objects are stored, we will have to deal with problems when we attempt
to further develop our system. The reason is that if only the class definition is changed,
then the modified class definition no longer matches the stored objects. This means
that it is not sufficient to continue developing only the class. We also have to convert the
data stored in objects. Though database structures can be changed manually, and spe-
cial conversion programs can be written, both methods are expensive. In particular,
this approach destroys a major benefit—easy modification. We have frequently
observed that a project’s productivity decreased considerably with the introduction of
a database.

Consequently, we are looking for general mechanisms to support the evolution of
persistent data. For this purpose, we could increase the functionality of a database
automaton or of a registry. Either of the two would then verify upon system start
whether or not the persistent class structure still matches the current class structure. If
the two structures don’t match, then our mechanism should adapt them automatically.

Java is one of the programming languages that include mechanisms for such an
automatic conversion. However, they work only provided that we use the standard
serialization. This means that it is suitable for storage in files and database BLOBS, but
not for a full mapping on an RDBMS. Most OODBs offer conversion mechanisms similar
to those of Java.

11.3.8 Legacy Databases

We seldom develop object-oriented software projects out of the blue. In fact, we nor-
mally find an existing IT environment that cannot be replaced from one day to the
next. In addition, object-oriented and conventional systems will continue to exist for
quite a while. This means that we have to link object-oriented and conventional appli-
cations to prevent an unhappy coexistence of two different applications for the users.
There are two basic options for dealing with this problem:

1. Object-oriented programs access existing data storages directly, bypassing
legacy applications.

2. Object-oriented programs use existing database transactions as services to write
and reconstruct data to/from existing databases.

382 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Co-existense
of OO and

conventional
systems

Using a registry

Zull-11.qxd 26/8/04 11:33 AM Page 382

TRADE-OFFS

The major drawback of the first solution is that consistency checks are redundant and
may have to be maintained twice, that is, once in the object-oriented system and once
in the legacy applications. Another drawback of this solution is that consistency
checks often exist only implicitly in code in legacy software, and developers are not
aware of it. This means that the consistency checks have to be reengineered from the
code, which is expensive.

Consistency checks are normally maintained when an object-oriented application
calls a conventional program. However, many conventional applications are not
designed to be called by other programs. Often there is no way to pass parameters when
calling a program. The reason is that domain functionality and dialog control are often
strongly intertwined in these applications so that user interaction is required to let an
object-oriented application control such a program. In many cases, conventional appli-
cations have to be refactored to a pure API.

The road we want to take depends largely on the size of the legacy applications
and databases. Our experience has shown that direct access to legacy databases is
meaningful for small systems, while calling conventional programs appears to be the
better solution for large systems.

Regardless of whether we access data or programs, legacy databases are normally
not sufficient to store all data required by an object-oriented application. It has proven
to be a good idea in many projects to build a second database for the object-oriented
system, in addition to the legacy database. This approach allows us to separate legacy
and object-oriented application on the data level, which facilitates our development
work. The additional cost introduced by this approach is normally acceptable, as long
as there is no requirement for redundant data management. This means that this
approach is useful particularly when data has to be copied in one direction only.

Finally, we also have to bear in mind that each change to jointly used data stor-
ages will cause additional cost for coordinating developers of conventional and object-
oriented projects.

If the existing application systems are host-based, then we can store centralized
and decentralized data in separate databases. In many cases, we will want to maintain
object-oriented data in a decentralized location, such as on departmental servers, while
keeping the legacy databases on the host.

11 . 4 R E A L - W O R L D E X A M P L E S

This section describes real-world experiences with persistence, discussing some of the solu-
tions that we implemented and the reasons why we opted for one solution over others.

11.4.1 JWAM Projects

We developed and supervised a number of projects based on the JWAM framework.
This section describes our experience gained from linking applications to a database.
Most applications were basically implemented as expert workplaces, supporting users
in typical office work:

● search and edit documents;
● print documents; and
● respond to customer inquiries (e.g., on the phone).

R E A L - W O R L D E X A M P L E S 383

Zull-11.qxd 26/8/04 11:33 AM Page 383

In these projects, the major challenge was to design flexible workplaces supporting dif-
ferent work styles and customer requirements. Though we had to transfer data from
legacy systems, there was no need for parallel operation and inclusion of the existing
database structures, because new system parts were added to the legacy applications.

Though the persistence media used held large data storages, we observed that they
were not frequently accessed. Normally, a user searches the database for a specific material
and moves it to his or her desktop. The user then keeps the material over a lengthy
period, editing it locally, to eventually return it to the database. This meant that we
did not have to meet high performance requirements. It also meant that we were able
to use a registry and did not have to worry too much about linking to a database.

DISCUSSION: RDBMS MAPPING

Many people argue in favor of using an RDBMS by saying that it can be easily com-
bined with third-party products. For example, you can implement report generators
directly on top of RDBMS structures. This is an enticing option, especially in Java
projects where printing is supported in a rudimentary way. For this reason, we decided
on complete RDBMS mapping in one specific project.

In the course of this project, however, this approach caused a number of problems.

● For nontrivial materials, complete mapping leads to extremely complex
structures in the database, so that loading materials slowed down dramatically.
We then implemented load-on-demand mechanisms manually, because RDBMS
does not support such mechanisms.

Unfortunately, the load-on-demand mechanism we implemented led to
other problems. Materials were loaded directly into the main memory, bypassing
the material manager, which meant that we had to integrate an additional
object management into the work environment. When a tool requests a
previously loaded material from the material manager, then this material will
not be retrieved from the database again; instead, only the reference to the
previously loaded object is returned.

● The idea of being able to directly print from within the database turned out to
be an illusion for several reasons.

First, print reports now depended on the internal structure of materials.
Every time the internal structure of a material changed, we had to adapt the
reports involved.

The database structure generated automatically was not really suitable for
print list formatting, which means that it became unnecessarily complicated to
create print lists. Eventually, we even had to expand our mapping to store
information required for printing only to the database.

In workplace systems, users frequently want to print materials that they
handle locally on their desktops. Local materials are normally stored in a
different way, compared to materials fully residing in the common registry. In the
project discussed here, it was sufficient to store local materials in the file system.
Only materials residing in the registry on the server were stored in the form of
BLOBs in a dedicated database. The result was that materials currently on local
desktops were not included in the print lists.

384 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Problems with
RDBMS
mapping

Zull-11.qxd 26/8/04 11:33 AM Page 384

● Changes to materials led to even bigger problems. For example, we had to
update the database structure for almost every change to a material. Initially, we
tried to update it manually. However, we soon found that this was impractical.
To be able to read objects from the database, we had to store administrative
information together with the user information, which meant that all this
information had to be updated. Automatic conversion was not possible, because
the database used in the project did not support the SQL features required.
Eventually, we found that the link options of Java’s JDBC differed a lot,
depending on the database vendor.

DISCUSSION: USING OODBS

In the further development of the project discussed here, we evaluated several OODBs,
only to find that, instead of the problems just described, we had to deal with new
problems.

● All persistent objects must inherit from a “persistent” superclass. Unfortunately,
Java allows only one superclass, and our domain materials already inherit from a
superclass of the JWAM framework. For this reason, many OODBs include post-
processors that let you manipulate the bytecode created by the compiler; for
example, you can subsequently derive the material superclass of the JWAM
framework from the OODB class Persistent. We then observed that the
performance of each OODB we tested differed considerably. For example, only
one of the post-processors we tried was able to convert the Java Develop-
ment Kit (JDK)-defined classes (e.g., Date, Vector, List) into easily storable
equivalents. In the other products, we would have to replace all container
attributes by OODB classes. Naturally, this would have meant that our material
model would depend on the OODB we use.

● Load-on-demand worked in a multi-tier environment only in one of the
products we evaluated. And even with this product, we would have had to
install the OODB drivers on each client workplace.

● Similarly to the RDBMS mapping, the load-on-demand mechanisms of the
OODBs we tested bypassed the material manager.

SOLUTION: RDBMS AND BLOBS

For this project we eventually selected a solution that stores materials in the form of
BLOBs in an RDBMS. More specifically, we created a separate table for each material
type. This table included a column for material object IDs (OIDs) and a column for
material data BLOBs. Java serialization is used to write and read material data to/from
the BLOB field. This method allowed us to use the Java mechanism to convert objects
for class evolution purposes. In addition to these two columns, the table included other
columns for duplicated entries of material attributes, depending on the material type.
These columns serve to search and select materials. Their values can be calculated
from the material BLOB whenever necessary, and they are not required for loading.

This project showed that only a relatively small part of the material attributes is
actually required in search-and-select activities. Consequently, the storage overhead
caused by duplicate search attributes was not critical.

R E A L - W O R L D E X A M P L E S 385

Problems with
using OODBs

Zull-11.qxd 26/8/04 11:33 AM Page 385

Eventually, we opted for the use of a report generator, operating on relational
structures, to print materials. We used CSV (comma-separated values) files to
define these structures. In this respect, we found it extremely useful that this data is
written but not used to load materials. It meant that we needed only a small amount
of administrative information.

DISCUSSION: EXPERIENCES FROM JWAM PROJECTS

This section summarizes the results gained from our JWAM projects.

● The expert workplace type has modest requirements for the performance of a
database. The use of a registry has proven to be a good idea for this system type.

● You can replace the persistence medium used by the registry at little cost. In
fact, the registry can encapsulate the complete persistence mechanism that we
use. A simple solution to store objects (BLOBs in an RDBMS) is sufficient in
most cases.

● In most cases, it is not recommended to use a separate database for different
purposes (e.g., for material storage and printing).

● Class evolution can cause problems in application programming, unless we use
a suitable mechanism to adapt the database structures.

● Many application projects use only a small part of the database functionality,
such as store, load, and search. The use of transactions and locks directly by the
registry is limited. The generic load-on-demand capabilities available in a
database are not useful when we develop multi-tier systems with private work
domains.

11.4.2 MedIS and SyLab

BACKGROUND

MedIS GmbH is a German company that specializes in measuring instruments for car-
diovascular diagnostics, using the latest technology. They are leaders particularly in the
fields of impedance plethysmography, impedance cardiography, and photoplethysmo-
graphy. The company sells diagnostic devices for doctors, as well as solutions for
researchers and equipment manufacturers. The software for the company’s laboratory
information and control system (LIS) was developed with the T&M approach. The
LIS SyLab system developed by MedIS is used primarily for the following tasks:

● A large number of analytical orders (approximately 40,000 to 50,000 per day)
have to be acquired by use of different acquisition media (e.g., document
scanners or digitizing tablets) within a short time (maximum four hours).
These entries include patient information (e.g., name, date of birth, health
care system, and clinical data) and are supported by OCR (optical character
recognition) technology.

● Small bottles with blood or other body liquids are transported automatically
from the sampling station to the appropriate analytical automatons.

● The analyses in these automatons are automated, but still controlled and
monitored by people.

● The system supports laboratory staff and physicians in validating and
interpreting the lab results. Finally, the system outputs results and bills.

386 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Tasks covered
by SyLab

Zull-11.qxd 26/8/04 11:33 AM Page 386

Since all samples are transported under real-time conditions, and the analytical
automatons have to be controlled and monitored, SyLab can be classified as a techni-
cally embedded system.

We used UNIX derivatives, that is Solaris and Free-BSD, to write the entire code
for SyLab in C��. The development took almost fifty person-years and a period of five
years. SyLab currently includes approximately 2,000 classes, distributed over a number
of libraries in the underlying T&M architecture, technical and domain services, and
approximately thirty different user applications. In addition, the system uses more than
fifty different background programs to control the technical components connected to it.
SyLab uses the relational database system Sybase as its persistence medium, and currently
operates in the largest installed configuration, including 100 connected workplace com-
puters and application servers for almost 200 distributed background processes.

Most SyLab workplaces are designed for efficient completion of functions (within
the company’s laboratory operations), giving their users relatively little autonomy over
the way they complete their tasks. Most SyLab users are highly qualified staff, such as
laboratory staff and physicians. The special characteristics of functional workplaces
have a great influence on the decisions made for their implementation.

DISCUSSION: CLIENT-SERVER ARCHITECTURE

The client-server architecture of SyLab is primarily based on the relational database
system Sybase, assuming the role of a server and several user applications or back-
ground processes as clients of the database server. The persistence functionality of all
SyLab programs is implemented exclusively on the clients, using the generic persis-
tence service described in Section 11.3.1. In turn, this service directly uses the data-
base’s API. There is no separate persistence-capable server to connect the database,
such as a software registry. By our definition, this means that the SyLab programs are
persistence-capable clients.

We chose this approach both for its conceptual and technical aspects.

● Within the SyLab system, materials are handled either in asynchronous
background processes, for instance by device drivers for analytical automatons,
or by user programs of functional workplaces that operate in a set-oriented way.
For example, most functional workplaces use statistic quality control to monitor
and visualize the operation of analytical automatons. Subsequently, entire
blocks of results validated in this way are released. It’s difficult to find a domain-
oriented cooperation model, such as original-copy, for this type of handling
materials, and a cooperation model would be meaningless for background
processes. In this project, we could not model private workplaces or conflict
resolution strategies for qualified user actions. Users at functional workplaces
normally handle large quantities of materials. The explicit representation of the
underlying cooperation model and the user interactions related thereto, such as
to handle originals and copies, is usually considered too ineffective or even
disturbing in the work process. Instead, the cooperation concept implemented
in SyLab is based directly on the state model (object-life cycle) of materials. A
material can be changed by a background process or functional workplace when
it is in a permissible state within its life cycle. In any other state, the material
can only be probed, or may not even be accessible.

R E A L - W O R L D E X A M P L E S 387

Using
persistence-
capable clients

Zull-11.qxd 26/8/04 11:33 AM Page 387

● On the technical side, efficiency is the main reason against the use of a three-tier
architecture with a persistence-capable server in the middle layer. For example,
the sheer quantity of analysis orders processed, as mentioned above, leads to
extreme requirements for the performance of the persistence mechanism. A more
or less rigid real-time control of technical components, for example, to transport
samples and control analytical automatons, increases these performance
requirements by another order of magnitude. These are the reasons why we chose
persistence-capable clients to directly access the database server, especially for
the components of the SyLab system with extreme performance requirements.1

Notice that this decision also determines the persistence mechanism of all other
components. For example, it wouldn’t make sense to implement a three-tier
architecture with a persistence-capable server in the middle when individual
persistence-capable clients access the database server directly, bypassing the
persistence-capable server; thus all cooperation concepts reside in the middle tier.

DISCUSSION: IDENTIFIERS

An efficient and highly available service to create unique object identifiers (OIDs) is
important for the performance and operation of the entire system. If this service is not
implemented efficiently, it can become a bottleneck for all applications that create per-
sistent objects, due to frequent access.

In the SyLab system, this includes applications for order acquisition and result-
producing background processes as well as various applications that store persistent
complex object structures (e.g., job lists) to manage the actual transaction data.

If we cannot guarantee high availability, then all applications have to implement
special and normally costly mechanisms to cope with a service failure. Due to the nor-
mally related logical and technical problems, this additional cost is not justified. Our
experience has shown that it should rather be invested in service availability.

For the SyLab system, we chose a very simple, performing implementation of a
service to create OIDs. More specifically, a table called ID with only one integer field,
nextId, was created on the database server. The field nextId is initialized to 0, and
subsequently contains the OID most recently generated. The ID table is accessed
exclusively through the generic persistence service which, in turn, calls an SQL trans-
action, sp_nextId, encapsulated in a stored procedure. To increase performance, we
previously created and precompiled this transaction on the database server:

The generic persistence service uses the stored procedure, sp_nextId, implicitly
whenever a new object is stored in the database. From the perspective of a developer

388 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Service
availability

CREATE PROCEDURE sp_nextId @nextIdParam INT OUTPUT AS
BEGIN TRAN nextIdTran
UPDATE id SET nextId � nextId � 1
SELECT @nextIdParam � (SELECT nextId from id)
COMMIT TRAN nextIdTran

1. Since even the best performing database server cannot guarantee response times in multiuser operation, the
generic persistence service may be used only in asynchronous mode to guarantee the required response time.

Zull-11.qxd 26/8/04 11:33 AM Page 388

of a SyLab client, the use of a stored procedure is a private implementation detail of
the persistence automaton, that is, it is not visible.

DISCUSSION: TECHNICAL DATA MODELING AND STRUCTURAL MAPPING

When we decided to use a relational database system, in addition to the object-
oriented approach, for the SyLab project, we not only considered strategic factors
(compatibility to existing applications, license agreements). In fact, when we started
this project in 1994, we found that the existing object-oriented databases were not
sufficiently stable and performing.

Consequently, we had already identified the so-called structural mapping problem
upon the project is start. The question was how the structure of persistent classes in an
object-oriented system could be mapped to relations of an RDBMS.

Also, the pilot customer defined the additional requirement to use SQL queries to
access all data in the SyLab system, without having to first use a data warehouse. For this
reason, we had to do a relational decomposition of the class structures. We couldn’t use
a standard serialization or BLOB fields. Instead, we implemented a model that mapped
the material classes defined in the SyLab system one-to-one to corresponding relations of
the RDBMS. In this model, we used foreign keys to map associations between classes in
structural similarity, while associations were used to simulate class aggregation.

BACKGROUND: THE MATERIAL STRUCTURE OF THE SYLAB SYSTEM

To explain the selected structural mapping, this section briefly describes the technical
class hierarchy and the object structure of the most important persistent materials in
the SyLab system.

AnalysisOrders are grouped by patient into a Request and processed together
with a common OrderNumber. Samples representing the sample bottles received
are allocated to a Request. In the course of processing each AnalysisOrder one or
several objects of a concrete subclass of Result can be created. In addition, Comments
can be added to a Request and to AnalysisOrders, Samples, and Results.
These comments serve to document particularities of the object.

From the technical perspective, all of these objects are arranged in a tree, where
the tree’s root is a Request. The objects in the tree are linked over a joint superclass,
Node. Figure 11.17 shows this structure.

At a certain point within the processing course, a typical request tree could look
like the example in Figure 11.18.

DISCUSSION: DIFFERENT APPROACHES FOR CLASS MAPPING

To map the class hierarchy from Figure 11.18 to relations, we first selected the follow-
ing intuitive solution from an object-oriented view. We created a relation for each class
and placed the attributes of the superclass exclusively in the superclass relation, and
those of the subclass exclusively in the subclasses relation. In addition to being able to
store attributes without redundancy, this solution also complied with our assumption
that there would be frequent polymorphic queries to the Node, Result, or Comment
superclasses (e.g., “Find all results with order number x”).

The persistence automaton implements potentially polymorphic queries in two
steps: in the first step, it queries the superclass to determine the OID and type of
requested objects; in the second step, it reconstructs the objects found one by one from

R E A L - W O R L D E X A M P L E S 389

Placing
superclass
attributes in
super class
relations only

Zull-11.qxd 26/8/04 11:33 AM Page 389

the database, using a relational joint operation and the OID as the key. The use of
previously optimized stored procedures for join operations allowed us to achieve an
acceptable performance for polymorphic queries in component tests.

The weaknesses of this approach emerged only in the course of the project when
more and more applications were implemented and were evaluated in integration tests
with respect to their (combined) database performance.

The actual number of polymorphic queries of the type described above was rela-
tively small. Instead, there were many queries for types known in advance (e.g., “Find
all samples currently in analysis automaton x”). This means that our two-step poly-
morphic mechanism was inappropriate for this type of query.

Another more serious weakness was the effect of the chosen structural mapping on
the number of insert operations required. At least two relational insert operations were
necessary for each object, depending on the hierarchical depth. So, creating an average
request tree with seven AnalysisOrders and two Samples, in addition to the
Request, translated into a total of twenty insert operations, which had to be grouped
into a single transaction for data consistency reasons. However, our component tests

390 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

FIGURE 11.17
Request classes.

Storable

Node

OrderNumber

parent : Node

Type

OID

AnalysisOrder Sample Result

TextResultNumberResult

_value :
String

_value :
Float

Comment

Request

Zull-11.qxd 26/8/04 11:33 AM Page 390

showed that the performance we achieved with this “request transaction” was still
within the performance specified by the customer.

The real problems transpired later when we started integration and mass data tests:
we observed aborted request transactions, deadlocks, and other database anomalies.
Eventually, we realized that these problems were due to the fact that almost half of all
insert operations were operated on the Node relation, growing dramatically so that it
quickly turned into a bottleneck for the entire system. This problem became even more
serious because moving specific common status attributes from Node subclasses to a
common Node superclass, which was meaningful from an object-oriented view, caused
an extreme update load on the underlying table.

In summary, we saw that the selected solution was not up to the requirements of a
multiuser operation, and what’s more, it did not scale. We also learned that replicating
superclass attributes in subclasses (see Section 11.3.3) was not the right way to go.
Though it would have eliminated the (relatively harmless) need of relational joint
operations for polymorphic queries, it would definitely have increased the bottleneck
problem in the superclass tables, because each change to a superclass attribute required
a number of update operations.

The alternative we eventually implemented successfully replicated the attributes
to subclass relations, while storing objects exclusively in the relation allocated to their
creating classes. With this solution, the most important operations on persistent mate-
rials in the SyLab system, and first-time creation and manipulation of attributes can be
easily mapped to insert and update operations. In addition, as we gained more practi-
cal experience with this solution, we found that a relational database system can eas-
ily handle polymorphic queries. With the structural mapping we selected for this

R E A L - W O R L D E X A M P L E S 391

re:Request

orderNumber =123

parent =NULL

ao2: AnalysisOrder

orderNumber =123

analysis ="Blood Type"

parent =re1

ao1: AnalysisOrder

orderNumber =123

analysis ="Cholesterol"

parent =re1

s1:Sample

orderNumber =123

materialType ="Blood"

parent =re1

: NumberResult

orderNumber =123

value =180

parent =ao1

: AnalysisOrder

orderNumber =123

analysis ="A Rh+"

parent =ao2

:Comment

orderNumber =123

text ="sample is old"

parent =s1

FIGURE 11.18
Request objects.

Storing objects in
the relations of
their creating
class

Zull-11.qxd 26/8/04 11:33 AM Page 391

project, these queries must visit all relations of the underlying class hierary. They
always use the OID as the primary key and do not require expensive join operations.
However, note that this holds true only provided that the part of the class hierarchy
involved in frequent polymorphic queries does not grow much and the corresponding
tables can be held in the database server cache.

392 I N T E R A C T I V E A P P L I C A T I O N S Y S T E M S A N D P E R S I S T E N C E

Zull-11.qxd 26/8/04 11:33 AM Page 392

393

The Development
Process

As a professional product based on the division of labor, application software cannot
be regarded independently of the process that led to the product’s creation. This is a
general insight of more than thirty years of software engineering. Looking at the T&M
approach we can add: Software development is an intimate intertwining of an appli-
cation-oriented software product and an evolutionary development strategy.

This chapter describes the fundamental characteristics and methods of evolution-
ary system development with prototyping (see Sections 12.1.5 and 12.3.2). We show
what practical project planning and management can look like, and we explain how
an evolutionary development process differs from conventional project models. Finally,
we discuss how the approach we recommend can be interpreted within the Unified
Process (UP).

We have been involved in numerous projects with very tight deadlines, limited
resources, and complex development tasks. For some projects, we also elaborated and
introduced complete, new process models. The experience gained in these projects
provides the background for this chapter.

This chapter addresses not only project managers. It is essential for software devel-
opers to understand the mechanisms of an application-oriented software process,
because this will guide the design and construction of an application system in a
specific way.

12 .1 B A C K G R O U N D : E V O L U T I O N A R Y
A N D T R A D I T I O N A L P R O C E S S M O D E L S

We propose an evolutionary process model with prototyping and versioning that can
be used to shape the development process. Instead of giving you a recipe for step-by-
step implementation of a software project, however, we present guidelines that will
help you help yourself. This means that a process model should not be thought of as a
set of “how-to” rules, describing all the activities involved. Rather, our objective is to
give you guidelines to work out a suitable approach for your software team and the
project at hand.

12

Zull-12.qxd 20/8/04 7:46 AM Page 393

An evolutionary development process cannot and should not distinguish itself
from traditional methods by being interpreted to mean that a project can be managed
by muddling through without plan or regulations. This would conflict with out profes-
sional claim for quality and lead to risks. To better understand the difference between
our specific approach and traditional ones, we have compiled a number of topics
from real-world project planning and management and use them in the “Discussion”
sections of this chapter.

12.1.1 The Context of Our Process Model

Professional software development is organized as projects that can differ considerably
in their orientation. These projects have different characteristics that determine the
specific approach best suited for their needs and the methodological or technical sup-
port required.

DISCUSSION

This section describes the concepts and techniques we developed and validated for
process models with the following software project characteristics in mind:

● Project goal: Software should be developed in reusable components, as a
collection of building blocks, or as a dedicated solution.

● Project: The project itself can be a new application, an improved variant of an
existing application, or a reengineered software.

● Application orientation: Software should be used in one or more related
application domains, which normally have a high level of domain complexity.
Software should be usable over a relatively long period of time (one to several
years) by different users with different profiles and qualifications.

● Organizational context: The development team is part of the user organization or
works in a contract relationship between the contractor and the customer. A
small software team normally includes three to five people. The team can scale
up to several parallel teams with up to sixteen people each. (The mechanisms
of formal user participation, extensively tried in Scandinavia and Germany,
will not be considered here.)

● Technical context: Software is normally embedded in its environment, both from
the technical and the social perspectives. It is a combination of hardware and
software, and usually regarded as part of a landscape of heterogeneous software
products.

12.1.2 The Process Model’s Application Orientation

Andersen et al. proposed different dimensions for software projects (see Figure 12.1). We
identify a strong similarity between the development and the management processes,
which means that we see application orientation as the foundation of both processes.

DISCUSSION

We can construct high-quality software products only if our development process is ade-
quate. Using the author-critic cycle (see Section 5.3.4), we propose an approach that
alternates between analysis, modeling, and evaluation steps within our development

394 T H E D E V E L O P M E N T P R O C E S S

Software project
characteristics

Zull-12.qxd 20/8/04 7:46 AM Page 394

activities. Sound understanding of the current situation is important for the develop-
ment process and the target system. Section 12.1.5 takes a closer look at the relation-
ship between actual state and target state modeling.

To better understand our discussion, let’s look at a few important definitions:

The development process deals with a software product, involving analytical,
modeling, and evaluation activities.

The management process deals with a software project aimed at making the
development process easier to manage and plan, depending on the actual
situation.

In addition to a suitable approach, application-oriented diagrams and document
types are required to allow the participating groups to contribute their expertise and
experience to the development and management processes.

12.1.3 The Classic Waterfall Model

Historically, the waterfall model was the first process model for software development
and still shapes the thinking of many software developers and managers.

DISCUSSION

The classic waterfall model (made popular by Barry Boehm) was the first linear step-
wise model. It sees software production as a chronological sequence of self-contained
activities. The numerous variations (see example in Figure 12.2) all require named
and standardized development steps that are supposed to be executed one after

B A C K G R O U N D 395

Management

steering

planning controlling

Development

analyzing evaluating

modeling

Software Project

RealityVisionReality

process-oriented

Re-
flection

Action

product-oriented

Vision

FIGURE 12.1
Dimensions of a
software project.

Zull-12.qxd 20/8/04 7:46 AM Page 395

another. This stepwise approach results in a number of documents (called “milestone
documents”) that should be specified in both their form and structure. During this
approach, it is usually permitted and practiced to fall back to previous steps.
However, taking a step or more back within this approach suggests errors and short-
comings that should be avoided in the course of an optimal project and should be
minimized.

There has been a great deal of criticism of waterfall models (see for example Budde
et al. 29, Parnas and Clement 85, Pomberger and Blascheck 96). The key problems
with this model are that they poorly support application orientation and planning. We
can summarize the following weaknesses:

● The activities of the process model are oriented to software technology rather
than to the application domain’s interest.

● The linear approach of this model is hard to maintain and plan.
● Essential requirements cannot be identified in advance and change constantly.
● Pure milestone documents are not reliable results, because their consequences

are difficult to predict.
● The model does not consider developers’ learning processes, and no prototypes

are available.
● There is no systematic design feedback.

396 T H E D E V E L O P M E N T P R O C E S S

Analysis und
Definition

Design

Implemen-
tation

Test

Use and
Maintenance

Specification

System
Specification

Program
Code

Program

Weeknesses of
the waterfall

model

FIGURE 12.2
Example of a

waterfall model.

Zull-12.qxd 20/8/04 7:46 AM Page 396

12.1.4 The Spiral Model

The spiral model (see Pamas 88) is regarded as an important improvement to the
waterfall model. However, we think that it creates similar problems.

DISCUSSION

The improvement represented by the more flexible spiral model over the waterfall
model is also based on named and standardized development steps. However, these
steps are repeated multiple times within a process, until the product is completed (see
Figure 12.3). Though the spiral model includes a cyclical alternation between the
activities involved and integrates prototyping to deal with the difficulties of identify-
ing requirements, we think that its concept has the following flaws:

● The model sees the object of a development process as a new and self-
contained product, as does the waterfall model.

● The model forces you to run the activities involved one after another.
● The model separates software development from use and maintenance.
● The activities are oriented to technologies rather than the application.
● The model does not consider versioning or extensions.

B A C K G R O U N D 397

Flaws of the
spiral model

FIGURE 12.3
Example of a
spiral model

Determine objectives,
alternatives, constraints

Cumulative
costs

Progress through steps

Evaluate alternatives;
identify, resolve risks

Develop, verify
next-level productPlan next phases

Risk analysis

Risk analysis

Risk analysis

Prototype 1 Prototype 2 Prototype 3

Life-cycle
plan

Development
plan

Integration
and test

plan

Concept of
operation

Requirements
validation

Software
product
design

Software
requirements

Coding

Implemen-
tation

Acceptance
test

Integration and
test

Unit
test

Detailed design

Design validation and
verfication

Operational
Prototype

Simulations, models, benchmarksSimulations, models, benchmarksSimulations, models, benchmarks

Zull-12.qxd 20/8/04 7:46 AM Page 397

12.1.5 An Idealized Evolutionary Process Model

This section formulates an idealized evolutionary process model, that is, an alternative
to the waterfall or spiral model. It can be thought of as a fundamental reorientation of
the software development process. Each project should reflect this ideal, depending on
the individual case.

DISCUSSION

Our idealized evolutionary process model is shown in Figure 12.4. You will probably
not be surprised that this model combines the basic principle of the author-critic cycle
with application-oriented document types. Two major principles define this process
model:

1. The general activities, namely analysis, modeling, and evaluation should be
alternated as often and quickly as possible in each software project. This applies
to both the development and the management of your project. Special atten-
tion should be paid to selecting suitable authors and critics.

2. All document types that we select for a project should be editable during the
entire course of the project; there is no predefined processing sequence. Each
document type should be selected in view of its purpose and how easily it can
be understood by both authors and critics.

We can identify the following requirements from the basic similarity between the
development and management processes, based on our interpretation of general appli-
cation orientation:

● Document-based modeling: The development process is based on documents
representing a model of the application system (i.e., a “model-driven” approach
in the sense of UP). This may not sound like doing something new. However, a

398 T H E D E V E L O P M E N T P R O C E S S

Principles of the
evolutionary

process model

FIGURE 12.4
An idealized
evolutionary

process model.

Analysis

Evaluation

Modeling

Use
CaseGlossary

Scenario

Koop.
picture

Class

Framework

Prototype

The development
and the

management
process

Zull-12.qxd 20/8/04 7:46 AM Page 398

closer look shows that those involved in the process create and evaluate only
documents that represent relevant aspects of the application system. This
means that each activity should have a purpose, and each document should
contribute to the application system. All participants involved in the project
should have a clear understanding of which document types are suitable for
which target group and problem, and cooperate on this basis. We will come
back to this issue in Chapter 13.

As one consequence, we do not use additional documents for the
management process. The fewer dedicated management documents developers
have to create, the stronger their commitment to the development process.
Therefore, development documents should be systematically used in the
management process. Naturally, this does not mean that you won’t have to deal
with planning documents in the evolutionary approach. We will discuss this
issue in detail in Section 12.6.

● Actual and target states adjustment: Software development is not an end in itself;
rather it is a service that should demonstrate its contribution to the
corporation objective. We know that use contexts and domain-specific
requirements may change considerably in the course of a project. For this
reason, we often have to adjust our assessment of the current situation and the
goals for the system under development. While traditional process models
emphasize the target concepts, we stress the importance of documents
representing the current situation (similar to UP). Target modeling requires the
selection of appropriate prototypes (see Section 13.6 for more details).

At the same time, application-oriented documents and prototypes form
the basis of our management process. The more effectively they describe a
current situation or vision of the system, the more likely that our management
process will be able to check and review the project goals and allocation of
resources for our project.

● Constant feedback: The document authors should receive an evaluation of how
well their work can be understood and what use quality is expected. This is an
important aspect of constructive quality assurance. It means that we assure the
quality of a result during the entire construction processes. Quality assurance
traditionally tends to be a control process, in which a software product is either
accepted or rejected after a special test procedure, that is, when its
development is complete. In addition to constructive quality assurance,
constant feedback promotes the communication and learning process between
the participants. Developers should be in a position to really understand the
domain-related concepts and requirements. Section 12.3.1 describes how such
feedback processes may look.

For the management process, continuous feedback also means that we
constantly check and revise our project plan, using mechanisms similar to
those used in the development process. This means that we have to
document the management process. We have to record project goals,
distribution of tasks, responsibilities, and deadlines, in documents accessible
to all involved. Moreover, all activities should be checked regularly by those
in charge. As a result, we may have to introduce new goals and steps. This
means that the management process is subject to author-critic cycles similar
to those involved in the development process.

B A C K G R O U N D 399

Zull-12.qxd 20/8/04 7:46 AM Page 399

12 . 2 T O P I C S F O R A D E V E L O P M E N T S T R AT E G Y

Software projects normally raise similar questions: Which development activities are
meaningful and when? Which types of programs can be developed in separate work
steps? Can the project be organized on a decentralized basis? Who should we involved
in the project team, and how should we organize the team? Which organizational form
would be most suitable?

We have compiled the list of topics in the following section based on our experi-
ence with many software projects.

12.2.1 Sequence of Development Activities

Many critics of evolutionary process models argue that the sequence of development
activities must always follow an inner logic, such as that design comes before con-
struction. On the contrary, we argue that specific projects can and should specify a
sequence of development steps, but not in a general process model.

DISCUSSION

It may seem logical that requirements should be analyzed first and a design should be
created before we build a product. Without discussion, software projects involve basic
work steps (e.g., editing, compiling, versioning, documenting), handled in a particular
sequence. However, the “who,” “what,” and “when” in a project do not follow a fixed
(software-motivated) life cycle scheme, but rather should be oriented to the circum-
stances of the application domain. Many critics argue that there is a certain technical
“subject logic” that by nature follows a waterfall approach. This is true for the
microlevel, where it actually makes sense to think first what a piece of a program
should do and how it should be structured, in terms of architecture, so that it can even-
tually be implemented and tested. However, these constraints apply less frequently on
a broader project level. The Unified Process, with its parallel arrangement of activities,
takes this into account. The following criteria are important when we try to identify
activities and their sequence:

● The activities are not allocated to separate work steps or project phases.
● Each activity refers to a specific goal, that is, it is application-oriented, and

takes the underlying technology into account (see Section 12.5.1).
● Modified domain requirements should continuously be taken into account to

determine activities.
● Documents are not allocated to specific activities, which means that they will

be updated whenever necessary, rather than “frozen.”
● The learning process of all participants is supported by integrated project teams,

but primarily by feedback from application-oriented documents and prototypes.

EXAMPLE

In one of our projects, the developers decided not to take the conventional approach,
that is, to begin with an analysis of the application domain. Instead, they constructed
a technical prototype on a totally vague domain basis, showing little more than basic
interactions at the user interface. Later on, they began familiarizing themselves with

400 T H E D E V E L O P M E N T P R O C E S S

Identifying the
sequence of

activities

Zull-12.qxd 20/8/04 7:46 AM Page 400

the situation and the requirements of their application domain by conducting
interviews and attending lectures and seminars on the subject matter.

This approach was taken for the following reasons: First, it was the first time this
team used Smalltalk as their development platform. Second, they felt that potential
users in the application department didn’t think much of the capabilities of their
development department, because they had been disappointed with previous software
projects.

For these reasons, our development team wanted to make sure that they mastered
their technical tools before they addressed activities in that application domain, which
was new to them. As the project progressed, this decision proved to have been right for
that situation.

12.2.2 Objectifying the Development Process

We have said that software development is a document-driven modeling process. This
statement raises the question of whether these documents may be the best prerequisite
for an objectified development process. The aim is to substitute team members freely or
to allocate analysis, design, and programming to different people. Our answer is that an
objectified form of development is not feasible for most parts of an application system.

DISCUSSION

Objectification of the development process is often propagated as the software engi-
neering idea, including the idea of creating software so that it can be produced by
different people; in other words specialists with different qualifications and experiences
(and different rates) should be used for the different sets of activities involved in a
process model. For example, analysts would create the domain model, designers would
produce the software design, software ergonomists would design the user interface,
and programmers would write the actual program code. In addition, maintenance
programmers and customer service staff would be available for post-development
work. Another popular goal is to gain personnel independence within the groups
involved; people who leave should be replaced without negative impact, and scheduling
bottlenecks should be resolved through additional staff.

Project documents (e.g., milestone documents) should contain all information
about the step currently worked on and the next step to ensure that this division of
labor and objectification will work. For this purpose, the documents should be unam-
biguous, consistent, objective, and formalized to the widest possible extent.

We think that these are illusionary traps in traditional software engineering, con-
nected to two problematic assumptions:

1. Software is a solution for a given problem similar to solutions for problems such as
mathematical equations. This is true for a small number of cases only, where prob-
lems can be described precisely, as in mathematics.

2. We can write unambiguous specification to have software built by different people and
in a depersonalized process similar to a production line. This assumption doesn’t
hold for most development projects.

We argue against this view with the philosophy that software development is first
and foremost a communication and learning process between the people involved.

T O P I C S F O R A D E V E L O P M E N T S T R A T E G Y 401

Division of
labour and
depersonalization
in software
development

Zull-12.qxd 20/8/04 7:46 AM Page 401

This is the only way that allows developers, who are not experts in a particular domain,
to gain the knowledge required to fully understand the activities in the application
domain and how they should be handled. Practically speaking we cannot let others do
the learning for us. Developers will be able to develop high-quality application systems
only if they understand the tasks and concepts of that application domain.

The system under development is not a “unique” solution to a well-defined prob-
lem. The groups involved have to negotiate the tasks to be dealt with in the future and
ensure that these tasks are supported in the development process. Normally, we can
specify only some aspects of this process in sufficient detail to produce documents that
serve as a secure work basis for the team. The experience, views, and values inherent
in each development project cannot be represented in documents. We summarize the
resulting dilemma as follows.

A software system should be formally documented, and these documents should be
consistent, correct, and complete. On the other hand, both the goal and purpose of
such a system cannot be described fully and objectively.

What impact does this dilemma have on cooperative software development? It would
be naive not to allow a division of labor in a software project, expecting that the same peo-
ple will work on it from the beginning to the end. In fact, this naive assumption contra-
dicts our way of thinking. After all, we want to present the T&M approach as the
appropriate basis for cooperative software development. This includes the fact that differ-
ent people and groups are involved in the design and construction of system components.

The following section explains why the classification into S, P, and E programs
proposed by Meir M. Lehman is helpful. Related to objectified development, this clas-
sification means that different program types can be described and implemented on the
basis of a division of labor, with different degrees of success.

12.2.3 Lehman’s Software Classification

The software classification proposed by Lehman is useful in describing the degree to
which software can be developed based on written specifications. Lehman distin-
guishes between specification-type programs (S programs), problem-solving programs
(P programs), and embedded programs (E programs).

BACKGROUND

Lehman proposes the following classification for software:

● The characteristic of S programs (cf. Figure 12.5) is that there is a complete,
formal specification describing well-defined problems and their basic solution.
Examples of such problems include sine calculations and the Eight Queens
problem. This means that we can normally define what an S program should
achieve, regardless of a particular situation or use. The prerequisite for such
problems and solutions is that they have to be generalized or abstracted before
you can represent them formally in an objectified mathematical form. Using a
mathematical method, we can then check whether or not the S program can
be fully derived from its formal specification. This kind of verification can be
achieved for a small number of well-known problems. Date-checking routines
and model calculators to compute results are application-oriented examples of
using S programs in real-world projects.

402 T H E D E V E L O P M E N T P R O C E S S

The dilemma of
software

development

Zull-12.qxd 20/8/04 7:46 AM Page 402

● P programs (see Figure 12.6) are based on clear tasks, that is, they can be
specified and solve a known problem. In some cases, P-type programs may even
allow us to formally describe a task, which means that they relate to S
programs. Chess and other games are good examples of P programs. They differ
from the S program in how they solve a given problem, which must first satisfy
the formal conditions of the task. For example, a chess program may not make
a move that would be against the rules. In addition, we have to specify how
well, or at what speed, precision or capacity, a P program should solve its task.
This decision is normally taken by the developers, but ultimately evaluated and
accepted by the users. For example, a novice will have different requirements
for the performance and response time of a chess program than a master player.
In the context of our projects, we often find P programs in place, for example
to check the completeness and consistency of forms. A domain expert can
easily tell what a consistent form is, and we know that an inconsistent form
cannot be used officially, such as for contracts. On the other hand, when things
should be checked and with what effort and precision is normally hard to
define before the application is used.

● E programs (see Figure 12.7) are developed to support an application domain,
for example in specific work situations. This means that a subjective aspect is
already included in the conceptual definition of an E program. Whether and to
what extent a state is considered a “problem” and what type of support is
required depends largely on the observer’s view. Consequently, it will be hard to
find something like a self-contained and objective specification of a task or
problem. This is the reason why solutions or algorithms are not defined
abstractly for E programs; instead, they can only be evaluated and accepted by
the participants. An office automation system is a good example. There is no

T O P I C S F O R A D E V E L O P M E N T S T R A T E G Y 403

Formal
problem

Formal
solution

Construction by
transformation

Program

Verification

FIGURE 12.5
An S program
in Lehman’s
classification.

Zull-12.qxd 20/8/04 7:46 AM Page 403

404 T H E D E V E L O P M E N T P R O C E S S

User context

Formal
problem

Formal
solution Requirements

EvaluationConstruction

Program

Verification

User
knowledge

Application Domain

User knowledgeRequirements

Evaluation
Construction

Program

FIGURE 12.6
A P program in

Lehman’s
classification.

FIGURE 12.7
An E program

in Lehman’s
classification.

Zull-12.qxd 20/8/04 7:46 AM Page 404

abstract way to tell when and in what situation such a system is a good solution
for a problem; even identifying something as a problem depends on the
participants and their tasks.

Correctness in a mathematical sense cannot be demonstrated for E
programs. Whether or not an E program is right for a given work context and
the people involved is a more important question. Most of the examples given
in this book are E programs according to the classification here discussed.

DISCUSSION

What is the meaning of Lehman’s classification in relation to objectified software
development? It primarily means that the program types can be described and imple-
mented in different ways. In a traditional sense, S and P programs are well suited to
specify an objectified basis. This is not the case with E-type programs, that is, we need
to understand the parts of the context and work situation of an application system that
cannot be formalized to be able to develop E programs.

In addition, the evaluation of S and P programs has different requirements.
Although we can easily check S programs for correctness, this is difficult for some
important properties of P programs. On the other hand, the evaluation of E programs
is an ongoing process between all participants, since both the evaluation and the use
may introduce changes to the requirements during our development process. In fact,
new operative components and expansions change the team’s and, even more so, the
users’ ideas about the application system. For this reason, it is important to achieve a
high degree of continuity in the developer team to ensure evolutionary adaptation of
the system as the requirements change.

12.2.4 The Cooperative Development Process

Application software is developed for different use contexts. The T&M approach nor-
mally supports different workplace types, as described in previous chapters. At the
same time, it is important that existing components should be reused for workplaces in
our system under development. This means that we have to deal with issues related to
distributed development.

DISCUSSION

Lehman’s classification of the development process in S, P, and E programs is helpful
for finding an answer to the question of which elements we can create for an applica-
tion in separate steps or by different teams within our development process. Suitable
system parts are those we can specify as independent domain or technical services in
the context of a workplace concept. When we have to develop a new service, then we
need to clearly understand the application context. This is the only way to implement
a service independently. One example from our own projects is the implementation of
a workplace system, which was connected to a large host-based customer management
system, in separate steps.

However, we have to understand that the implementation of system parts by inde-
pendent work groups always represents the starting point for subsequent joint design
decisions. We have to bear in mind that each new system element changes the context
that integrates other elements. The E program concept shows clearly that it is not
enough to identify a service and implement it to complete a development process.

T O P I C S F O R A D E V E L O P M E N T S T R A T E G Y 405

Applying
Lehman’s
classification to
software projects

S, P, and E
programs and the
author-critic cycle

Zull-12.qxd 20/8/04 7:46 AM Page 405

We also need to do evaluations and obtain user acceptance to complete the cycle, since
only the actual users can finally approve the system elements and services. This means
that our understanding of E programs is based on the interplay between construction
and evaluation. It also means that we need author-critic cycles throughout our devel-
opment process to define and evaluate subtasks constantly.

The classification into S, P, and E programs also shows whether and to what extent
external cooperation partners or subcontractors can adopt components. In fact, this
classification shows that S program can generally be defined as separate tasks. For
example, an application component for a banking application can be specified with
reasonable complexity to calculate different types of credit ratios.

P-type programs are suitable for loose cooperations, but the cooperation partners
should have sufficient expertise, and the components should be integrated and evalu-
ated in regular intervals. A good example are the elements used for chart analysis in a
bank’s securities management system. This involves balancing the financial parameters
against usability and manageability requirements.

In contrast, complex E-type application systems require a very high level of con-
stant coordination and feedback in a project team and with users, so that they are hard
to develop in distributed projects. Therefore, although system parts of E-type applica-
tion systems can be developed as independent services by different people “in-house,”
it is rather unlikely that they will be suited for subcontracting to third parties.

An important management function in each development organization is to iden-
tify separate S and P elements within the entire application system under develop-
ment. These elements can then be implemented jointly by cooperation partners and
external contractors in separate steps. However, there are always risks inherent in this
approach. Experience with formal specifications has shown that the effort required to
create such a specification usually exceeds the implementation effort. For this reason,
the corporate management should be careful to avoid having the preparation and
assessment of external orders consume more internal resources than absolutely neces-
sary, in comparison to developing the system part in-house.

If an organization has exhausted its possibilities for outsourcing the development
of system elements, and there are still scheduling and manpower bottlenecks, then the
organization could choose an insourcing option (see the following Section).

12.2.5 Organizational and Domain Integration

Project teams should be formed so that there is a high level of personnel continuity and
different expert knowledge. Minimum staff fluctuation in a development process is a
prerequisite for the learning processes involved, and it helps build a solid basis for sys-
tematic work based on documents. The domain integration establishes the application
orientation and should reflect changes in that domain. The options available to use
external developer capacities could also be evaluated against this background.

DISCUSSION

We think that the ideal of objectifying development documents as a basis for project
organization is not a good idea, because objectification should not become the primary
principle of a project. In practice, dividing a project into separate self-contained steps
for independent teams does not produce the desired results. Instead, we encourage the

406 T H E D E V E L O P M E N T P R O C E S S

P-type programs

E-type programs

Zull-12.qxd 20/8/04 7:46 AM Page 406

use of integrated developer teams, composed of domain and technical staff members, and
strive for continuity of personnel within a project. This means that the same members of
all groups should ideally work in the project team throughout the entire project.

This integration and continuity should extend beyond the individual project. Our
project experience has shown that a development culture should unfold that influences
the entire software development, and it should not disappear once a project is officially
completed. For example, we see an architectural group (see Section 12.2.6) as a catalyst
for a common development culture. It can ensure continuity beyond an individual
project, based on its experience and knowledge of the context.

Of course, not all team members are normally able to handle each task in a proj-
ect with the same skill. There is always the likelihood that some expert team members
won’t be available for the entire project. Nevertheless, we should try to solve the prob-
lem; purely technical skills are not sufficient to develop application software on the
basis of written requirements.

ORGANIZATIONAL INTEGRATION

Organizational integration is one solution to solve the continuity problem. The “relay
principle” is applied to projects and “project families.” When athletes run in groups
during a relay race, they make sure that a pole will be handed from one runner to
another. Similarly, each project allows sufficient time for “overlapping” staff when
personnel changes occur. During this period, the departing team member and the new
employee exchange information about the project directly. This is a primary pre-
requisite for a good understanding of the project and development documents.

INSOURCING

A valid mechanism within organizational integration to work with external partners is
insourcing, or local presence.

Insourcing means that external partners cooperate with the development team.
The prerequisite is that the development style of these external partners is compatible
with the method selected. The people concerned should not be substituted at will, nor
should they be given other tasks. We have acquired some useful experience in various
projects, where external advisors, who were not familiar with the application domain
and the T&M approach, were used for programming support. The external partners
worked in pairs (see “Pair Programming” in Section 12.3.4) with two or three team
members, helping them to solve existing construction problems.

Pair programming is a good means of transfering the knowledge of external experts
into a project.

EXAMPLE

A Smalltalk development environment was supposed to be applied to a banking proj-
ect. The team involved was not familiar with Smalltalk. Although the members of the
team received training, it soon turned out that problems were occurring—particularly
with the use of the GUI tools and visual programming components. To solve the prob-
lems, a six-month contract was signed with a consulting firm that had already carried
out various Smalltalk projects with this environment. A consultant was available to
the project three days each week. Each day the consultant worked with a team mem-
ber at the person’s workplace. The in-house person would explain the current

T O P I C S F O R A D E V E L O P M E N T S T R A T E G Y 407

Zull-12.qxd 20/8/04 7:46 AM Page 407

construction problem, which the consultant then solved jointly with the team
member. This resulted in a dramatic reduction in the development time for the appli-
cation components and a considerable increase in construction knowledge in the
team—without the need for writing complicated specification and requirement papers
and the formal acceptance of externally created components.

COORDINATION PHASE

If a local presence based on the insourcing principle is not possible, then preplanned
and continuous coordination is essential between participants. It should be noted that
communication media such as E-mail, telephones, and video conferencing are usually
an unsatisfactory substitute for direct cooperation between people. A modified form of
insourcing can be helpful, with an experienced team member working for a substantial
period of time on the team of the external partner. Our experience with this approach
is, however, not as good as with actual insourcing. Problems often occur when the two
projects subsequently start to proceed differently. Different views about the need of
feedback cycles and the significance of documents have a particularly detrimental
effect. Subcontracts to partners in the form of so-called “fixed-price” projects in this
connection have a universally negative effect. We found that there is always a dispar-
ity between the expectations and conceptions of the client and the readiness of the
contractor to meet these requirements. As a result, both parties are dissatisfied with the
project result, and an atmosphere of mutual distrust instead of a cooperation will pre-
vail during the course of the project.

DOMAIN INTEGRATION

The domain integration has to be added to the organizational integration of personnel.
This integration relates to the developer organization structure and the work style in
the application domain.

What has happened in many developer organizations is that the organizational
structure of departments and domains, such as sales and central and distributed devel-
opment, has sometimes created considerable friction in projects that work with appli-
cation-oriented and evolutionary project strategies. Thought should therefore be given
to avoiding this separation at the project level and within a project family. The spe-
cializations required of individual team members and the different knowledge each of
them has to contribute must be used in a beneficial way in domain-integrated teams.

In contrast, we still find a department-oriented project organization, where certain
activities or project types are only handled by the employees of a specific department,
which does not only apply to development. Experience shows that this approach is also
important for bug fixing and further development.

Projects in which interactive workplace systems are being developed are those that
particularly end up in a dilemma. On the one hand, in accordance with the principles
of eXtreme Programming, all team members should be able to master all aspects of a
project. On the other hand, due to the growing number of complex technologies, it is
necessary that different types of knowledge about technologies are represented in the
project team. XP designates the role of a consultant here. Even independently of XP,
individual team members will specialize in areas like interactive software development,
distributed systems, networks, databases, and mainframe applications. Although it is

408 T H E D E V E L O P M E N T P R O C E S S

All-rounders
versus specialists

The down side of
fixed-price

projects

Zull-12.qxd 20/8/04 7:46 AM Page 408

sensible to have specialists for the different technology and application subjects, it is
important to disseminate knowledge about these subjects to all team members in a
project so that they can use it meaningfully in application development.

Technical integration in a developer organization must be appropriate to the
domain integration. There are obvious trends, at least in the financial services sector.
The common factor is an application orientation that today is referred to as customer
orientation. What is meant is the tendency in businesses that deal directly with cus-
tomers to move away from the traditional separation of business sectors and instead be
customer-oriented, thus providing more comprehensive individualized services. In
other words, the processes and the organization of a company or enterprise should
be oriented to the customers in order to guarantee maximum customer satisfaction.
In addition to the generalization this requires, the signs are that specialization in the
consulting and marketing areas will always exist for dealing with very demanding
services and products.

The “natural” allocation of projects and development activities along the tradi-
tional product lines and departments of the user organization must therefore be
rethought. In Sections 12.2.6 and 12.7, we describe how this affects the design of appli-
cations software. In summary, we have to form integrated teams to guarantee consis-
tency in the development documents and eventually the usage quality of the
application system. These teams should consist of members with domain and technical
expertise.

EXAMPLE

Customer orientation in banking is shown through the merging of savings and credit
customer account services, tellers, and the securities business in service centers and the
imminent integration of cross-selling products (e.g., insurance, property, mortgage
services). There is a trend that new workplace types, such as professional customer
advisory services, standard consulting services, teller services, and self-service facilities,
emerge in the customer area. On the other hand, the traditional product-oriented or
business line separation may well be retained in the back-office area in the near future.
In the middle, we find controlling and monitoring activities, where customer-centered
and product-oriented access probably needs to be combined. These different trends are
leading to different use contexts in which customized workplace systems are being
developed. Yet these systems must be developed with the same domain and technical
basis. Here, the architectural concepts explained in Chapter 9 can help.

The best place to start a family of projects is with the customer-oriented work-
places, because this is where the new orientation is most obvious and is the easiest to
evaluate its repercussions on other areas.

12.2.6 Developing an IT Organization

Evolutionary system development based on the T&M approach usually has conse-
quences for the developer organization. If several object-oriented projects or whole
project families are to be organized in one company, then it appears reasonable to use
frameworks or component technologies. This requires further changes to the organiza-
tional structure, and consideration should then be given to establishing an architec-
tural group and a team for product planning.

T O P I C S F O R A D E V E L O P M E N T S T R A T E G Y 409

Customer
orientation

The Bank
example

Zull-12.qxd 20/8/04 7:46 AM Page 409

DISCUSSION

The establishment of application-oriented projects for the development of an
interactive workplace requires changes to the developer organization. Our demand for
technical and organizational integration can seldom be implemented smoothly into
existing organizational structures. In practice, the mere question regarding which
department is to provide the project management and how team members from vari-
ous other departments will report to this management is enough to cause difficulties
that can hamper the progress of a project.

Our concept of a core system with extension levels (see Section 12.7) transcends
these organizational issues. Today, such a system with its different workplaces and com-
ponents should actually be constructed through the use of (application) frameworks
and component technologies. Section 12.7 describes the relevant domain and techni-
cal concepts. This section discusses the consequences for the organization and the
management of the total process. It should be noted that only very few developer
organizations have made the transition from conventional to application-oriented and
evolutionary software development. The following observations are based on experi-
ence and provide some clarity about the trends described.

Figure 12.8 shows the interplay between design patterns, frameworks, and appli-
cation components in the development of an application system with different exten-
sion levels. The framework architecture is the key to the technical and domain-related

410 T H E D E V E L O P M E N T P R O C E S S

Using
frameworks and

component
technologies

FIGURE 12.8
Cycle of an

application-
oriented
software

development
process.

Application
domain

Architecture
group

Framework

Extension level

Design
pattern

Application
components

Project team

Requirements

Product
planners

Zull-12.qxd 20/8/04 7:46 AM Page 410

integration of the application system. Different actors (or “workers,” in UP terms) are
necessary to put this into practice.

The role of the application domain as the central domain instance for application
development in its different aspects is described extensively in this book. Here we want
to emphasize that the application domain fundamentally defines the requirements of a
system and establishes its usage value.

PROJECT TEAM

The development of the application components that make up a system’s extension
levels is carried out by project teams. Together with the product planners, the applica-
tion software developers form the core of every application project. Individual experts
that come directly from the application department and one or two software architects
are part of this core. These integrated teams design and implement the respective
application systems or components. The principle of continuity in personnel is applied.
This also means that a high percentage of the project members work on only one proj-
ect and continue doing so. Having a person work on several projects at the same time
has proven to be counterproductive.

Along with an understanding of the domain and tasks and requirements, a solid
technical foundation is necessary for project work. It is mainly the application devel-
opers who need a grasp of these fundamentals. But it is also important that the other
team members have an elementary technical knowledge.

The project work encourages further development of frameworks and components
and the formulation of new patterns.

PRODUCT PLANNERS

The design of an application system with its components and extension levels depends
not only on actual requirements of the application domain. What is also important for
the organization in which the developers work are the strategic decisions taken during
the development of a product line. The responsibility for this lies with a department or
with a group of people we call product planners. These product planners coordinate the
development of new application components and the use of different extension levels,
based on domain requirements and corporate policies.

Consequently, this group finds itself in a position of conflict, balancing user
requirements on the one hand and the technical feasibility and the strategic concerns
of the developer organization on the other. These team members need to be well-
qualified in various fields. The ability to communicate is the main prerequisite for
merging the different interests. Domain knowledge is obligatory. In addition, a solid
understanding of the technical concepts of object-oriented application development is
needed. Accordingly, conceptual patterns represent an important element in the lan-
guage of product planners. It has also proven useful if product planners have some basic
programming experience and are even able to construct presentation prototypes them-
selves. The existence of these capabilities noticeably helps to improve cooperative
work with developers and architects. Lastly, it helps for this group to have a feel for
company strategy and management capabilities.

ARCHITECTURE GROUP

A framework-based architecture is the backbone of the type of application develop-
ment described here. The conceptualization and development of this architecture is

T O P I C S F O R A D E V E L O P M E N T S T R A T E G Y 411

Zull-12.qxd 20/8/04 7:46 AM Page 411

the responsibility of, what Ivar Jacobson has called, the architecture group. As described
in Section 9.3.7, the architecture specifies the basic technological concepts, the
principal tool construction, and, above all, the main domain concepts of a system.
From its view of the entire system, the architecture group has to initiate the domain-
oriented coordination between the projects through the main concepts of the business
domain (see Section 9.2.3). It has to ensure that these concepts form a consistent foun-
dation for the entire system.

Software architects represent the software-engineering viewpoint in application
development. However, they also have sufficient domain knowledge to find the
abstractions needed for the further development of frameworks and the “distillation”
of domain components. To ensure that their knowledge and experience is reflected in
the project work and can constantly be updated there, architects also always work as
senior consultants in application projects. They are used there during design and
implementation as well as for selected management tasks. However, they should not
function as project managers. The domain-oriented architects are assisted by selected
technology specialists, recruited for the implementation and further development of
the technology basis across all platforms.

The architecture group is responsible for the architecture management of the
whole project. Architecture management can be divided into a domain part and a
technical part. Both parts form the architecture’s core. This system core is the prereq-
uisite for constructing a family of application systems and enabling the reuse of con-
cepts and components. The technical architecture management concerns itself with
those requirements that concern the constructive basis for the domain-related projects.

The cross-project tasks of the architecture group include glossary management
(see Section 13.4), plus the management of cross-project concept models and the
entire glossary. This cross-section function is an important prerequisite for presenting
users with a consist domain-specific taxonomy that extends across all integrated appli-
cation functions. It requires project members to acquire a common work language that
can be applied to several projects. Glossary management monitors the consistency of
the terms used in the work language, building a foundation for a coordinated domain-
related architecture.

Another important responsibility of the architecture group is to maintain close
cooperation with product planning. As goals and priorities are established, the archi-
tecture group has to clarify which development options are possible considering the
current state of technology and architecture as well as the current project activities.

This discussion shows clearly that high demands are expected from the architecture
group members. Only developers who have extensive experience should be part of that
group. In addition to excellent software engineering knowledge with a solid theoretical
or conceptual basis, they also need sufficient domain knowledge. Communication capa-
bilities also appear high on the list of priorities. Of course, this describes an employee
profile that only a very few are able to fit—or as someone recently quipped, “software
gods.” But we want to make clear that the requirements for application-oriented soft-
ware development using frameworks and component technologies are ambitious. Each
developer organization should therefore examine whether existing personnel resources
can meet such a challenge. In summary, Figure 12.8 shows a cyclic process that inte-
grates different participants and development results.

412 T H E D E V E L O P M E N T P R O C E S S

Software
architects
combine

technology and
domain

knowledge

Tasks of the
architecture

group

Qualification
profile of the
architecture

group

Zull-12.qxd 20/8/04 7:46 AM Page 412

12 . 3 Q U A L I T Y A S S U R A N C E I N T H E
D E V E L O P M E N T P R O C E S S

As a professional product created by cooperating groups, the quality of application
software cannot be regarded independently of the process that developed this product.
We therefore present different measures that can guarantee the quality of the process.
These measures “build quality” into the product.

The proposed measures influence different groups involved in the development
process. Direct user integration, prototyping, and informal reviews are carried out by
project team members in conjunction with the users. Formal reviews, pair-program-
ming, and refactoring are techniques used within the actual developer teams.

12.3.1 Direct User Integration

In the T&M approach the author-critic cycle (see Section 5.3.4) is the key for inte-
grating users. As a feedback technique, the author-critic cycle encourages communi-
cation and the learning process between the groups participating in the project. Thus
the quality of model elements can be checked and improved, if necessary.

DISCUSSION

The author-critic cycle demands constant alternation between analysis, modeling, and
evaluation. During these cycles, project members design models by writing documents,
diagrams, and program code. The authors of the different models must receive feedback
about how easy their work is to understand and about its level of domain-related qual-
ity. This is important for constructive quality assurance. Critics enable an author to
improve the quality of his or her models and to add new model elements. The general
principle guiding the author-critic cycle says that authors and critics should be differ-
ent people. The best experts available should be selected for critics roles. In the sense
of usage quality the critics often have to evaluate not only the domain-related cor-
rectness of a model but also whether the modeled system part provides appropriate sup-
port for day-to-day work. This kind of assessment can usually be best made by the users
themselves.

For cooperative work with users, developers select those document types that
directly relate to the users’ work, such as scenarios, glossary entries, cooperation pic-
tures, purpose tables, and, to some extent, visions (see Chapter 13).

Other representation means, such as most UML diagram types of the software
model and the program code, cannot be assessed by the users. These model elements
are authored by a project member and then turned over to technical experts, such as
database administrators, or other project members who act as critics. Again, critics are
used to improve the quality and open the door to overlooked issues.

The author-critic cycle should consist of short time periods to allow authors and
critics to be in constant contact. These short cycles should ideally be repeated until all
participants have reached a common understanding of the current problem and its
potential solution. This enables model elements to be developed in an evolutionary
way and to achieve improved quality at the same time. Of course, we have to plan
these cycles within a realistic time and resource frame (see Section 12.6).

Q U A L I T Y A S S U R A N C E I N T H E D E V E L O P M E N T P R O C E S S 413

Application-
oriented
document types

The author-critic
cycle

Zull-12.qxd 20/8/04 7:46 AM Page 413

12.3.2 Prototyping

Prototyping is the key feedback process for system evaluation, involving both users and
developers.

Different tasks within our software development process may be supported by pro-
totyping, including project initiation, application domain analysis, and the design and
construction of the application system. One or several kinds of prototypes (see Section
13.6) will be well suited for such tasks.

DISCUSSION

Prototyping has been a well-known and proven technique in software development for
a long time. It is something that cannot be dispensed within an application-oriented
approach, because there are few other means available for users to evaluate a system
under development. Yet simply programming an executable piece of software is not
sufficient.

Prototyping should always be related to a specific problem—the one that the pro-
totype is supposed to deal with. The problem must be defined clearly before the proto-
type is constructed. This prevents a situation where aspects for which the prototype was
not designed are evaluated after we built the prototype. If the problem is not carefully
defined, there is the danger of “muddling through.” In other words, we build executable
software versions and, if people like them, they are accepted as a success, but if they are
not well received, they are discarded with the attitude “it was just a prototype.”
Different kinds of prototypes address certain problems (see Section 13.6). For example,
no meaningful performance tests can be carried out on pure presentation prototypes.

Different kinds of prototypes are normally built during the entire development
process. In large projects, we use the whole spectrum of prototypes, depending on the
problem. However, this means that prototyping is not simply reduced to just another
phase in the development process.

Prototyping, as we see it, is strongly focused on domain-specific problems and the
usage quality of the software system. But this should not rule out the importance of the
software engineering aspects and the demands on the architecture. Therefore, a
methodological approach should be applied to allow for refactoring in the prototyping
process. This means that existing functional prototypes have to be revised from a soft-
ware engineering view to create a solid basis for evolutionary prototype development
towards the target system (see Section 12.3.5).

In contrast, presentation prototypes are normally handled as “disposable” prototypes
and retain that character. In real-world projects, we often find that an attractive user
interface tempts the corporate management to turn a presentation prototype into the
future system platform. Developers should always make clear that presentation proto-
types are only design drafts. They demonstrate what the domain analysis and design have
produced, but they are not developed for a specific target architecture or for technical
quality. Presentation prototypes support the essential learning and cooperation processes
in system development and the development of domain-related system visions.

12.3.3 Reviews

Informal reviews are events that are not bound to formal guidelines. We include
road shows and user work groups in this category, that is, meetings that provide an

414 T H E D E V E L O P M E N T P R O C E S S

Prototypes
address problems

Zull-12.qxd 20/8/04 7:46 AM Page 414

opportunity for project ideas and results to be discussed in larger groups. In contrast,
formal reviews are carried out in fixed settings and based on certain rules. The follow-
ing subsections discuss these forms of the author-critic cycle.

ROAD SHOWS

One way to make the project ideas and results accessible to a broad interest group is
through road shows. These events are informal to the extent that no uniform rules dic-
tate how to prepare or conduct them. Most road shows are organized in the application
domain, so that other people who are not direct users can learn more about the proj-
ect work. Often, it is also useful to hold road shows within the IT department, for
example to invite other developers interested in the project topics. New object-
oriented projects in particular tend to create a mixture of interest and suspicion among
other developers. Road shows normally represent a good opportunity to motivate these
people.

The project team usually decides whether documentation material should be dis-
tributed to the participants of a road show before the event takes place. During the
event, partial results are presented and discussed. The feedback that project members
receive from such discussions can be beneficial for their project work. For the project
setting, it can improve the flow of information and consequently often results in higher
project acceptance.

USER WORK GROUPS

User work groups are normally composed of a selected number of potential users. These
users assume the role of the critics, while the project members are the authors. The
project team invites users to these work groups with the objective of obtaining com-
prehensive feedback about a project result in an early phase. It is important that
this feedback comes from a group of users and not from an individual person. Anything
that is unclear due to different situations in user organizations can be discussed and
clarified in a larger group. Therefore, the important thing is not to have an individual
document, such as a scenario, validated by a user, but instead to identify and possibly
consolidate different views on a topic.

A user work group should be arranged as soon as an application domain model,
including scenarios, and a concept model are ready. These meetings should then be
used to create and discuss cooperation pictures to generate a common view of the tasks
and processes involved in the particular domain. Similarly, each functional prototype
should be presented to these groups so that hints and critical comments can be
obtained for further development.

FORMAL REVIEWS

The concept of formal reviews has established itself as a feedback technique in many
developer organizations. As the name already implies, this is a review type involving a
fixed sequence of activities, in contrast to informal reviews. Formal reviews allow proj-
ect members to obtain in-house feedback from other colleagues not involved in the
project. It is important to guarantee independence between the authors and their crit-
ics (reviewers). Consequently, only those reviewers to whom the producers do not
have a dependency relationship should be allowed to participate in formal reviews.

Q U A L I T Y A S S U R A N C E I N T H E D E V E L O P M E N T P R O C E S S 415

Creating
cooperation
pictures and
evaluating
prototypes

Rules for formal
reviews

Zull-12.qxd 20/8/04 7:46 AM Page 415

The detailed procedure of formal reviews varies according to the organization and its
culture. The following rules have proven useful:

● The documents used for a review should be distributed to participants at least
one week before the actual review date.

● During the review, all reviewers should first present their positive and then
their critical comments, and all comments should be documented.

● A review is conducted by a review manager who has the responsibility to
ensure that there is no discussion of content and that the only questions raised
are those concerning the comprehension of critical comments.

● Unlike road shows, there are normally no system presentations in formal
reviews. It is assumed that all reviewers are familiar with the documents
distributed before the event.

● When the minutes of the review are available, the project management meets
with the taker of the minutes and the review manager to elaborate a catalog of
measures derived from the review. Notes are also taken at this meeting. These
notes are then used in planning future stages and iterations.

12.3.4 Pair Programming

Pair programming is an aspect of eXtreme programming that can considerably improve
the quality of software development. With this technique two programmers work
together at one computer in order to complete a programming task.

With pair programming each pair has two roles. One partner (the driver), namely
the one who operates the keyboard and mouse, thinks concretely about how, for exam-
ple, a certain operation should be implemented. The other partner (the reviewer)
instead focuses on the design and implementation strategy. The reviewer controls the
syntactic and stylistic aspects and decides whether the chosen approach is promising
or whether the problem can be solved in another way. Each pair is formed according
to the problem at hand and the availability of staff.

The roles (driver/reviewer) in pair programming should be changed as frequently
as possible, up to several times per hour. This allows the work carried out during a day
to be very concentrated because of the constant change in emphasis in what each part-
ner is doing.

The physical arrangement of desks and computers is very important for pair pro-
gramming. It has proven helpful to have the computer used jointly by both program-
mers placed at the corner of a desk (see Figure 12.9).

In such an arrangement, the two programmers can alternate their roles quickly,
because they both have direct access to the keyboard. Alternatively, both can also sit
normally at a desk. However, the seating position should not influence the role distri-
bution. The programmers should be able to change roles without changing their seats.

DISCUSSION

Pair programming has several advantages:

● It can improve the quality of the source code, because two people work together.
There is a greater chance that concepts and programming conventions will be
maintained. Formal and semantic errors are usually discovered right away.

416 T H E D E V E L O P M E N T P R O C E S S

eXtreme
programming

techniques

“Local
arrangements”

Advantages of
pair programming

Zull-12.qxd 20/8/04 7:46 AM Page 416

● When pairs change systematically, knowledge about the overall system is
dispersed throughout the team. The departure or unavailability of a developer
thus has no serious effect on project progress.

● The developers frequently question design decisions. Any blocked thinking or
dead ends are avoided in development.

In addition to these advantages, which mainly apply to homogeneous pairs, pair
programming can also be used for team training. For example, an experienced pro-
grammer works with the new team member in pairs. Two things are important when
using pair programming for team training:

● New team members should have good basic programming knowledge; this is
particularly important for retraining in a new technology. Without minimum
qualification and experience, the gap between experienced and novice team
members is too great, with the result that the inexperienced person does not
understand the work at hand and is usually too timid to ask questions.

● Experienced programmers should keep an eye on the training task assigned to
them. It should be made clear that this task does not focus on development work.

Training in pairs is efficient, but it requires a high degree of patience and discipline
from the experienced programmer. We have successfully used this approach in projects
and found that the technical and domain knowledge of new team members was quickly
brought up to the level of the other members.

Pair programming develops its full potential when used in conjunction with refactor-
ing (see Section 12.3.5), design by contract (see Section 2.3), test classes (see Section
12.4.2), continuous integration, and collective ownership. Continuous integration

Q U A L I T Y A S S U R A N C E I N T H E D E V E L O P M E N T P R O C E S S 417

FIGURE 12.9
Example of a
pair-
programming
session.

Pair
programming for
team training

Zull-12.qxd 20/8/04 7:46 AM Page 417

simply means that sources that have been changed are integrated as quickly as
possible. Integration should take place several times a day during the construction
phase.

Collective ownership means that each developer may basically change all docu-
ments and source texts of a project at any time. The overall project knowledge required
for this can be disseminated effectively in pair programming.

12.3.5 Refactoring

Refactoring is meant as an improvement of the internal structure of a software system.
This should not change the observable semantics of the program to the outside.

Refactoring is seen as a disciplined approach that allows code to be cleared with-
out building new errors into the software. Refactoring produces a subsequent enhance-
ment of software of design.

When programmers are given the task of writing program extensions, it is up to
them to check whether this extension would be easier to implement if the existing pro-
gram were first restructured. Programmers should continue asking themselves whether
it is possible to make a program easier even after a modification has been made.
Refactoring takes place in very small steps. In principle, each individual refactoring
(e.g., renaming a class, shifting an operation to a superclass) can be carried out in a few
minutes. Large refactoring jobs should always be decomposed into small refactoring
jobs to allow operative intermediate versions to be integrated periodically.

DISCUSSION

Refactoring is time-consuming by nature. Time pressures in a project often lead to deci-
sions to leave a system alone or to work around a problem. Nevertheless, refactoring
should always be considered if a system potentially has a long life span, if it has to be
reused and should remain capable of further development. The advantage of refactoring
is that it prevents the feared deterioration of a system’s structure. The question
of whether refactoring would be sensible should be raised as soon as source code is
duplicated.

Refactoring has the following benefits:

● Improved software design
● Comprehensible software
● Easier error location
● Shorter development times

At first glance the last point may cause some surprise. However, if you think about
it, you realize that a good design helps to quicken the software development process.
After all, the goal of developing something quickly is the reason for making a good
design. Without a good design, development may proceed quickly for a time, but
sooner or later a bad design will slow down the development. It takes a lot of time to
find and correct errors. Changes take even longer because one first has to understand
the code and then find the places where the code being changed was duplicated. New
elements always require more lines of code because places that were provisionally
patched have to be changed several times over again. A good design makes sure that
software development will not slow down over time. Refactoring thus helps to ensure

418 T H E D E V E L O P M E N T P R O C E S S

Benefits of
refactoring

Zull-12.qxd 20/8/04 7:46 AM Page 418

that software can continue to be developed quickly, because it prevents the architecture
of a system from deteriorating. Through refactoring the design should in fact improve
with time.

Like pair programming, refactoring has attracted a good deal of attention in the
object-oriented community in recent years. Historically, refactoring has been used
primarily in Smalltalk programming. In his book Refactoring: Improving the Design of
Existing Code, Martin Fowler compiled a catalog of refactoring procedures, which sup-
ply simple step-by-step directions for improving suboptimal designs.

12 . 4 Q U A L I T Y A S S U R A N C E I N C O N S T R U C T I O N

Besides the factors that assure the quality of a software product in the process, there are
procedures and techniques that relate directly to the product itself. Design by contract
(see Section 2.3) plays a key role here. It is used as early as in the domain design and
is reflected in the concrete programming.

Along with design by contract, testing can become an important form of con-
structive quality assurance. This is where design by contract and aspects of eXtreme
Programming can be merged.

Lastly, we take a look at the state modeling for the design of those classes that
incorporate the concept of a business process. Design by contract is also important in
this connection.

12.4.1 Characteristics of OO Testing

Compared to classic imperative programming, object-oriented (OO) programming has
some structural and dynamic particularities that have to be taken into account in
designing our tests. Testing object-oriented programs is an extensive topic, and we can
only provide an overview here. We refer our readers to the seminal work of Binder for
more detailed information.

ENCAPSULATION

The smallest constructive units of an object-oriented program are classes. A class has
operations that are different in character from the classic subprograms in modules.
In class construction the specification (interface) is separated from the implementation.
The specification is visible as the interface of operations to the class’s client. However,
an operation can be implemented by more than one procedure in different classes.

The procedures differ from classic subprograms in that their coupling (over jointly
used objects or through mutual calls) is much stronger. Due to a number of dependent
elements, the complexity inherent in classes is higher than with typical functional
modules.

A class not only encapsulates a number of procedures, it also normally contains
data that models the state of an object. The state of an object is determined by the val-
ues of its attributes. Most of these values are references to other compound objects,
rather than primitive data. Moreover, polymorphism can be used to bind differently
typed objects to identifiers, resulting in a large state space.

In summary, this means that the smallest testable unit that makes sense in object-
oriented programming is an operation in the context of a class.

Q U A L I T Y A S S U R A N C E I N C O N S T R U C T I O N 419

Zull-12.qxd 20/8/04 7:46 AM Page 419

INFORMATION HIDING

We can use the principle of information hiding (see Section 2.1.6) to encapsulate the
implementation of the operations of a class. This is a valuable principle in software
engineering, but it makes our testing of classes more difficult. In our experience, pure
black-box tests cover only one-third to half of the states or execution paths that a class
can have, because the test can cover only the structure visible externally.

When developing tests, however, we often need to know the specific state space
that an object can have, the embedding structure of a class, and the resulting depen-
dencies. Consequently, we need direct access to the encapsulated state of an object.
A class should offer a sufficient number of access functions to allow tests to identify an
object’s state.

COMPLEXITY AND DEPENDENCIES

Object-oriented application systems are constructed from objects. Objects communi-
cate with one another and influence each other’s state through the exchange of mes-
sages. Whether and how an object will react to a message is defined by its own state or
by the state that it can observe on another object. This means that objects are able to
form a time-dependent network of communicating units with several “entry points” at
runtime, but without a central entity that monitors the control flow. This clearly com-
plicates the testing of control flows in such systems. For example, Binder proposes
higher techniques, such as the use of stubs, mock types, and dummies, to deal with this
problem. These techniques let you create a test context for the object under test, with-
out the need to reconstruct the entire system environment.

At a semantically higher level, design patterns are helpful to identify dependen-
cies and communication relationships between classes and test strategies.

INHERITANCE AND POLYMORPHISM

Inheritance and polymorphism (see Section 2.1.20) make testing more difficult. As a
result, the specification and implementation can end up being distributed over several
classes. In particular, the structure of the source text no longer reflects the control flow,
which cancels out one of the key arguments in favor of structured programming. “Where
are all the places an implementation is used?” and “Was an operation redefined some-
where?” are some of the typical questions in connection to object-oriented testing.

The principle of information hiding is largely eliminated in an inheritance hier-
archy. Unless visibility is restricted, a subclass has unlimited access to all features
inherited from its superclasses. Consequently, all features of a class and its superclasses
have to be retested. This is the only way to ensure that no unexpected side-effects can
occur in the context of a new class.

Semantic differences between inherited and redefined operations are not seldom
and may surface only in specific contexts. Even if the pre-conditions and post-
conditions remain textually equal, they can have different meanings in the superclass
and a subclass.

Abstract classes are a special case in that they won’t let you instantiate test objects
without implementing abstract operations. This means that we cannot test them
dynamically, unless we do some additional implementation work. All operations
implemented in subclasses must be checked against the specification of their redefined
abstract operation.

420 T H E D E V E L O P M E N T P R O C E S S

Abstract classes

Zull-12.qxd 20/8/04 7:46 AM Page 420

Polymorphism requires special consideration in connection with inheritance.
Many parameters and return values of an operation reference objects. In statically
typed languages, they can reference objects of all polymorphic classes, and testing has
to ensure the compliance of these classes with the specification.

This may lead to a situation where errors occur within a class, A, which uses an
operation of class B that was redefined in a subclass C. In practice, design by contract
can help eliminate these problems to some extent.

12.4.2 Testing OO Programs

The special structural and dynamic features of object-oriented systems have some con-
sequences for testing. We will take a look at the class test, the integration test, and the
regression test. We conclude by explaining the concept of test cases and test classes.

TESTING CLASSES

We said before that the smallest construction unit is a class.

A class test checks the operations and interaction between operations of a class.
It most closely corresponds to the unit test in imperative programming.

The basis for a unit test is a precise specification of the expected behavior, for
example, by using the design-by-contract principle (see Section 2.3). The post-
conditions are then the different kinds of external behavior that are checked by
black-box tests. These tests are constructed in the form of separate test classes.

An integration test is used to locate errors in the “using” rather than in the
“used” code. Typical errors that the integration tests look for on the operation
call level include call of a wrong operation, incorrect use of a correct operation,
and unexpected results.

The large number of relationships known (use, inheritance, association, polymor-
phism) increase the significance of integration tests for object-oriented programs, for
example, to identify cyclic dependencies.

The use of inheritance and polymorphism means that inherited operations are also
tested, along with redefined and new operations in subclasses. If an operation was not
redefined, the test from the superclass can be used without modification. A redefined
operation must first satisfy the tests of the superclass. If the reimplementation of an
operation weakens the pre-condition or strengthens the post-condition, then addi-
tional tests are needed to check these new boundaries.

If a new class that redefines operations is introduced into a class hierarchy, the test
has to find in client classes all locations where that new dynamic type can occur. These
classes should then be tested using the new dynamic type.

In practice, there are problems in instantiating the objects of a subclass, so that
they can be bound to the superclass tests (number, type, kind of test).

When building complex classes, it is normally a good idea to specify the behavior
in a state diagram and use test cases to check for potential state transitions. This
requires the use of gray-box tests that know the internal representation of the states.

The problem of information hiding in the gray-box test can be reduced by imple-
menting classes with two interfaces. One is the public interface, which is subject to the

Q U A L I T Y A S S U R A N C E I N C O N S T R U C T I O N 421

Inheritance and
polymorphism

Gray-box tests

Zull-12.qxd 20/8/04 7:46 AM Page 421

black-box test. The object’s state is defined through private attributes that can be
probed or changed by protected operations, which can be overwritten in the subclass
(see Section 2.7).

In Java, this inheritance interface can be declared as protected. It is also visi-
ble for classes in the same package. However, the test classes then have to reside in
the same package that includes the classes under test. This is particularly suitable for
testing auxiliary functions of complex algorithmic operations.

The construction of class teams and tool classes leads to complex control flows.
Different design patterns that regulate the control flow are examples of patterns that
are used (e.g., mediators, events, chains of responsibility, adapters, template methods).
These are often based on abstract classes and their specialization. Testing the correct-
ness of the control flow is problematic.

The following strategy is recommended for gray-box tests: The tested classes are
implemented and modified in a derived subclass in such a way that we can track the
control flow (additional collector parameter in the operation call). Stubs should
be developed for the classes used. In the test class, the network of the tested class and
its stubs is instantiated and linked together. When operations are called, the test class
passes a collector parameter, and each successively activated operation or stub registers
with this parameter. The test class can then check the resulting list.

Tim Mackinnon et al. propose the concept of mock types. Based on this concept,
the state of a class should be manipulated and probed exclusively through protected
getter and setter methods. This makes tests of the state model more reliable. In addi-
tion, it reduces the chance that modifications of the underlying implementation of the
state model in subclasses jeopardize the correctness of inherited methods.

Classes should be organized in subsystems that are relatively autonomous in the
way they provide their services and are loosely coupled with other subsystems. This
reduces the number of control flows to be tested and the possible side-effects.

INTEGRATION TESTS AND REGRESSION TESTS

The classic waterfall model (see Section 12.1.3) commonly used in software develop-
ment distinguishes clearly between integration and regression tests.

An integration test runs during the development phase based on unit testing and
is used to find errors in the interaction between new classes or subsystems
when they are integrated into an existing system.

Regression tests are traditionally used during maintenance. Whenever a change
is made to the code, a regression test should ensure that this change has not
caused any errors.

The boundaries between these two kinds of tests blur in evolutionary object-
oriented application development. The same also applies to class and integration tests.
This is due to several reasons.

First, it is difficult to localize the effects of changes to the code (polymorphism,
control flows); second, a system develops during several evolution cycles, which means
that “maintenance” is necessary early on in the process. For refactoring to be consis-
tent, tests must constantly ensure that the changes implemented do not have any effect
on the system functionality.

422 T H E D E V E L O P M E N T P R O C E S S

Zull-12.qxd 20/8/04 7:46 AM Page 422

TEST CASES

For constructive quality assurance it is important that programs are constructed and
tested in parallel. Test cases can be written on the basis of domain-specific analysis and
design documents (see Chapter 13) and contracts.

Tasks and business processes are described in scenarios and system visions. This
reveals the activities to be supported by the application system. Application tests can
be conducted on the basis of these descriptions. The situation is similar with screen-
plays (see Section 13.6.1), which describe a realistic mix of activities at a workplace.
Screenplays can be the basis for end users to run application tests. Business and use case
diagrams that clarify the overall domain-related scope of the application under test
are another means that can be used for these application tests.

Feature acceptance tests can be specified effectively on the basis of detailed system
visions (e.g., tool visions) and contracts for the classes.

TEST CLASSES

A method for systemizing testing known from eXtreme programming specifies a sepa-
rate test class for each class. It also recommends that test classes be written before the
classes that are being tested. It will then be clear which problem is being solved under
which conditions before a class is actually implemented. It also ensures that statements
are well covered.

It has proven to be sensible to allow testing and programming to follow in quick
alternations, so that each new class and operation is tested immediately. At the end of
the day, all test cases for an integration should run successfully. Testing should thus
become a basic attitude in the development process.

Changes will not be safe unless we have test classes, particularly when refactoring
(see Section 12.3.5) is involved. Since refactoring changes the inner structure of soft-
ware, while the interface remains the same, your tests should run without error after
each refactoring step.

Systematic use of design by contract does not make test classes superfluous. While
assertions of the contract specify only a part of how an operation is used, such as
“extreme cases,” the test class can include other important states and parameter values.
This increases the level of test coverage.

In addition, a protocol is used implicitly as the basis for each contract but is not
checked explicitly, because each contract relates only to one operation. Critical or
illegal call sequences can only be checked in test classes. In summary, test classes offer
the following benefits:

● The source code is well suited for further development, because changes can
easily be checked for correctness.

● The debugging times are reduced, because errors can be localized more quickly.
● Interfaces become simple, as each programmer prefers to test simpler interfaces.
● Test classes show the use intended for a class by the developer and can be

interpreted as part of the documentation of the source code.

A suitable tool like JUnit should be used to automate testing.

STATE MODELING

State modeling is originally either a task in the development of technical systems or a
technique in database design for documenting changes of object-like items in database

Q U A L I T Y A S S U R A N C E I N C O N S T R U C T I O N 423

Benefits of test
cases

Zull-12.qxd 20/8/04 7:46 AM Page 423

tables. From the object-oriented view, an object actually has a state (the respective
bindings of its attributes) that can change while the object identity is preserved. We
therefore do not initially need an explicit state model.

This changes when we have to model a business process or workflow that relates
to a material, such as a set of documents. In the course of a workflow, the material often
adopts domain-specific and defined states. From the outside these states can be
observed at the interface. For safe handling of material it is important that certain
operations are only allowed in appropriate states. Note that these state transitions are
triggered by operations; in other words, they are not set as attributes directly by the
developer. It therefore makes sense to elaborate a state model at least at the design
level and to clarify the states and transitions through operations on the basis of a finite
automaton. State charts have proven an effective representation means (see Figure 12.10
and Harel 87). An explicit implementation of a state model, such as using state pat-
terns, is useful for critical objects.

When state transitions with objects manipulated in business processes are mod-
eled, the domain knowledge is transferred to the objects. These objects become more
than just data sets. Pre-conditions and post-conditions can also be derived from the dif-
ferent states. It is clear in each state which operations are permitted and which are not.
Furthermore, for each operation it can be identified from which source states (relevant
for the pre-condition) it is transferring the object and to which target states (relevant for
the post-condition).

424 T H E D E V E L O P M E N T P R O C E S S

FIGURE 12.10
Connection

between
management

activities.

Planned

Set purchase date

order

Set upgrade date

Set upgrade date

Set upgrade date

Sign upgrade

Age > 18 months

Age > 36 months

Ordered

Sign purchasePurchased

Present

Upgraded

Upgrade
signed

OK

Needs upgrade

Outdated

Zull-12.qxd 20/8/04 7:46 AM Page 424

12 . 5 P R O J E C T M A N A G E M E N T

The literature often sees project management as an independent task that is separate
from actual software development. We have found that this is not a good approach for
application-oriented software development based on the principles of object orienta-
tion. This section describes the relationship between application-oriented software
development and project management.

12.5.1 Fundamental Activities of the Management Process

In the evolutionary model, the different activities of the management process are
closely oriented towards the activities of the development process. The basic principle
of the author-critic cycle applies here as well. Analysis, modeling, and evaluation
become planning, steering, and control. In terms of content and scheduling, each proj-
ect must be planned, organized, and controlled.

PROJECT PLANNING

The objectives envisaged for a project and its various stages (see Section 12.8.2) must
be worked out and documented in a comprehensible way. The domain vision for the
system is the driving factor in a software project. Management must ensure that this
domain vision is compatible with the strategic goals of the company as well as with the
available resources and the technology being used. At the level of individual tasks, it
has proven useful to allow team members to work out the fine planning themselves.

PROJECT STEERING

There are many ways to manage different project activities. To simplify matters, com-
monly used management styles can be divided into a process-controlled or supporting
style. A process-controlled management style is characterized by orders from above and
detailed job specifications. It corresponds to the traditional hierarchical military man-
agement style. In contrast, the supporting management style more closely matches our
evolutionary approach. Here the project manager takes on the role of coach, spokes
person, and service provider for his or her team along the lines of Tom DeMarco and
Timothy Lister. The project manager creates the opportunities and conditions that
provide the team with an optimal way to work.

Based on eXtreme Programming, we recently tried “pair managing” in large proj-
ects and project families. In pair managing, two project managers of equal rank work
closely together in the steering of a project. Along with receiving better feedback on
their own work, another pleasant side-effect of this approach is that the project man-
agers still have the time and opportunity to get involved in the content of the project
subjects.

PROJECT CONTROL

A careful assessment of the situation is an essential starting point for each cycle in the
management process. The current situation in the application domain is as important
as the situation in the project itself. As a result, for the control aspect it is of prime
importance to evaluate the domain documents and compare them with the current

P R O J E C T M A N A G E M E N T 425

Process-controlled
management style

Supporting
management
style

Zull-12.qxd 20/8/04 7:46 AM Page 425

situation. The planning documents are checked to ensure that decisions are followed
and activities put into action correctly. Here the separation of roles between authors
and critics plays a particularly important part. Real-world projects have shown that it
is useful to have team members plan and run project meetings related to these topics.

THE INTERPLAY OF MANAGEMENT ACTIVITIES

Figure 12.11 shows the connection between the fundamental activities of the man-
agement process. For our purposes, it is important that none of these activities may be
viewed in isolation or without influence on the other activities. To ensure that this
interplay is maintained and reproducible in its consequences, we propose a quick alter-
nation between planning, steering, and control in our evolutionary process model.

Conversely, it has proved detrimental to have these activities scheduled as far apart
as suggested by the classic phase models. In these models, the “early” steps are directed
towards planning, while the management carries out the steering function within the
plan over a long period of time, and eventually executes the necessary controls at the
end of the project. The large number of milestones and milestone documents have a for-
mal control and monitoring function but give no real insight into the project.

426 T H E D E V E L O P M E N T P R O C E S S

Planning

.only possible if the
 situation is well-known

.requires knowledge
 about the feasibility of
 the solution

Controlling

.only possible when
 aims are clear

.controlling will change
 the current situation

Steering

.only possible when
 current situation and
 aims are clear

.modifies the situation
 and the aims

FIGURE 12.11
Connection

between
management

activities.

Zull-12.qxd 20/8/04 7:46 AM Page 426

12.5.2 The Contexts of the Management Process

The management process refers to different contexts: application domain, development
domain, and technology domain. All three contexts have an effect on the development
process and therefore must be taken into account by the management process (see Figure
12.12). The following subsections discuss the three contexts for our management process.

THE APPLICATION DOMAIN

The application domain is where the future software system will be used. In concrete
terms, this can be an organization, an organizational unit, or a workplace type. The
application domain determines largely how a project will be oriented and executed.

From the application developer’s perspective, it is desirable to keep the application
domain as small as possible to reduce the complexity of the project. For example, we
would not recommend building software support for an entire hospital as the applica-
tion domain. The tasks and processes are so diverse and complex that they would
extend beyond the scope of any project. On the other hand, the application domain
has to be large enough so that its context is still comprehensible. For example, it
wouldn’t make sense to reduce the application domain in a hospital project to the work
of a single ward nurse, because her work can only be understood and modeled in coop-
eration with doctors, administrative personnel, and other nurses.

When the application orientation is chosen, we have to answer the question of
who is considered a user. In addition to the “direct” users, the people who will use the
application system, there are probably other people affected by the results of the appli-
cation system and modified work processes, so that they too should be integrated in the
process. A good example is the issue of “customers of customers” in banks. Naturally,
we will want to integrate the bank’s employees and its customers, as both groups are
normally the direct beneficiaries of our application system.

THE TECHNOLOGY DOMAIN

The technological environment of a project determines which architectural concepts,
design guidelines, technology models, and concrete technical components for the

P R O J E C T M A N A G E M E N T 427

Z
Z

Telebanking
Service
center

Self-service

Counter
Loans

Foreign
exchange
dealings

Security Currency

Exchange rate

Application Domain

Development Domain

Technology Domain

FIGURE 12.12
Contexts of the
management
process.

The size of the
application
domain

Who is the user?

Zull-12.qxd 20/8/04 7:46 AM Page 427

system base can be selected and used in the development process (see Section 9.3.7).
The assessment of the technology domain is a separate and ongoing task, often under-
estimated by the management. The issue here is which new technologies and means
are necessary for implementing the system and whether new technologies should be
employed for strategic and technical reasons. A rule proven in our projects says that
only one fundamentally new technology should be introduced per project. We realize
that it is not always easy to stick to this rule.

The reason is that technologies are no longer selected by the corporate manage-
ment alone. For instance, as a result of the recent popularity of Internet and Java tech-
nologies, many application projects were experiencing major “external” pressure to use
these technologies with relative disregard of project objectives. We can therefore
assume that the technology domain will increasingly develop its own dynamic that
influences project direction. It is important that at least the type of technology is made
known as early as possible in a project since this often affects the approach taken and
the modeling.

THE DEVELOPMENT DOMAIN

The development domain is the organizational context in which a project team works.
This can be an in-house IT department, a contracted software house, or a vendor of
prefabricated software components. We do not take into account developers of stand-
ard software products that work for an “anonymous market,” because a fundamentally
different approach is followed in many of those areas.

The development domain is often given too little attention during planning. Yet
the objectives of the development team members and their strategic orientation are
very important. If the use of new technologies is being planned, then a provision has
to be made for further courses and training of the team. However, this usually involves
more than just new development tools and programming languages. What is often
overlooked is that good developers are the most important resource of any IT company.
The more qualified these people are, the easier it is for the IT department to handle
the central task of management.

A big problem is created when project teams are simply made up of the people who
just happen to be available and no clarification is provided as to the domain-related
and technological profile of a project and who can match it. We deal with the special
importance of domain knowledge in Sections 13.1 and 13.2.

12 . 6 P R O J E C T P L A N N I N G C O N C E P T S
A N D T E C H N I Q U E S

12.6.1 Project Calibration

Many books on project management and the Unified Process use an “average” project,
a project that develops an application system from scratch, as their starting point.
A closer look shows that these books present a general pattern for project planning and
execution. We are able to differentiate this project pattern for the T&M approach.
The key dimensions are runtime and project scope.

428 T H E D E V E L O P M E N T P R O C E S S

Selecting
technologies

Neglecting the
development

domain doesn’t
pay

Zull-12.qxd 20/8/04 7:46 AM Page 428

CLASSIFICATION OF PROJECTS

The following classification provides guidance on what is needed to plan different
types of projects:

● Large projects: At the top end, we see new developments or the reorganization
of complete application landscapes. An example would be the redesign of a
complete banking system for distributed and multichannel applications. This
sort of project involves a family of systems with thousands of classes that are
revised over a period of several years, gradually replacing a complete existing
application. The planning and organizational effort for such an undertaking
will incorporate all techniques described in this chapter.

● Medium-sized projects: At the middle level, we see the implementation of new
workplace applications and more substantial application components. The
scope of such projects lies in the new development of more than one hundred
nontrivial classes, and the time requirement is at least six months. Here trained
teams may work in a more or less familiar environment. The planning required
is still considerable, but due to the partially calculable risk involved and the
experience of the team, the number of very complicated or “heavyweight”
techniques can be reduced or only used in isolated cases.

● Small projects: At the bottom level, a minimum planning effort is required to
implement individual components and small applications. The tools of
eXtreme Programming in their “pure form” usually suffice. The short project
runtime of a few months and the scope of less than one hundred classes justify
these simpler planning techniques.

Consequently, the first (logical) planning task for every project based on T&M is
calibration. This means the selection of meaningful planning and control means that
match the concrete project.

DIMENSIONS OF PROJECT CALIBRATION

The key dimensions of calibration have already been mentioned.

● The scope of the project is related to its runtime and the size of the team. The
longer a project runs and the more people needed to participate, the more
complicated is the planning.

● The scope and complexity of the product: the more design and construction
units the system being developed comprise and the more nebulous the domain-
related and technological requirements are, the more extensive is the planning.

The following can serve as modifiers of the dimensions just listed:

● Strategic importance of a project: The more strategic importance a project gains,
the less management can deviate from specified objectives or identify trade-offs
for the performance characteristics of the application system. The planning
effort should be increased accordingly.

● Team experience: The more experienced a team is in the area of application
development in general and in the existing domain in particular, the better it
can assess and organize a project. Explicit planning techniques can then be
used on a reduced basis.

P R O J E C T P L A N N I N G C O N C E P T S A N D T E C H N I Q U E S 429

Large projects

Medium-sized
projects

Small projects

Important aspects
of project
calibration

Zull-12.qxd 20/8/04 7:46 AM Page 429

● Stable application context: The more precisely an application domain can be
modeled and the more stable the application context of the future system is,
the less the deviation between the actual and projected state in the respective
iteration cycles. This can also produce a noticeable reduction in the amount of
planning required.

The difference in the amount of planning required is reflected in the precision of
the planning numbers and the scope and quality of the pure planning documents. This
has little effect on the quality of the application system.

12.6.2 Project Goals

It is fundamental that the management of a development process elaborates the aims for
a project. As a vision of the future system, the project goal is the driving factor in the
project. It will change during the course of the development project but must be outlined
at the beginning so that the participating groups have the proper common orientation.

FORMULATING GOALS

The main questions that must be dealt with when goals are formulated are:

● What is the meaning and purpose of the software project? In other words,
which corporate objectives will benefit from the development project?

● What goals are to be achieved in the application domain? Do they have to be
achieved all at once, or can steps towards achieving them be identified?

● Which information technology tools are suitable to meet the goal and to what
degree? Which alternatives (e.g., which organizational measures or available
standard systems) are conceivable?

● Who determines when the goals have been achieved? Is it one person or
interest group or several?

● What kind of time frame is required to achieve the goals? How flexible is this
time frame?

Based on the specified set of goals, we plan the development project using plans
for the different stages, iteration plans, and base lines starting timewise from “back to
front,” that is, from the time targeted for project completion back to the time the proj-
ect began. The basic idea is to work out the steps necessary to reach a subgoal.

EXAMPLE

At the beginning of a bank project, we were able to identify the following aspects for
the general aims:

● The corporate customer business of the bank was to be restructured in such a way
that a profit of $1 million would be produced per year in this line of business.

● As part of the restructuring of the corporate customer business, the core
processes were to be supported by an interactive workplace system. The
planning and design of this workplace system was to be handled initially by the
in-house IT department. If necessary, suitable software available on the market
would be bought as an alternative.

● The board and the department management wanted to use reviews to
determine whether their objective was achieved and what contribution the

430 T H E D E V E L O P M E N T P R O C E S S

The Bank project

Zull-12.qxd 20/8/04 7:46 AM Page 430

software system made towards it. In addition, the management of the central
development department was to check the technical quality of the software system.

● In terms of the timetable, the plan was to complete the restructuring of all business
in this area, along with new IT support in all branches, within two to three years.

The subgoals were broken down as follows after discussion with application
management:

● In domain terms priority was given to restructuring the loan business.
● Within the loan business balance sheet analysis was seen as the area that could

profit most from IT support.
● The developer team received instructions to design a workplace for corporate

customer advisors that initially would cover balance sheet analysis.
● The time frame for the first pilot system was specified as one year.

12.6.3 Decision Principles

Along with a shared vision of goals, a common repertoire of principles governing deci-
sion-making is helpful in the planning and execution of the individual steps. Such
principles can affect risk handling, the form of cooperation in teams and with out-
siders, and the technical aspects of the implementation.

DISCUSSION

A team that works and makes decisions on the basis of shared principles is more flex-
ible in delegating tasks. Observance of these principles ensures that the results follow
a uniform view and structure.

While clearly defined project goals provide an orientation of the meaning and pur-
pose of a software project, well-defined principles ensure that a uniform picture is cre-
ated of the approach taken and joint actions. Typical principles at the overall project
level include:

● “Buy before make.”
● “Ensure platform-independence.”
● “Reduce the total cost of ownership.”

Although these principles are open to interpretation and thus are not solid con-
ditions, they provide the scope of decision-making for a project. They can often be
derived from IT or corporate strategy.

Other principles consider the special situation of a project in the context of polit-
ical forces and technological requirements. Examples include:

● “Risks first”: Complete the riskiest tasks and evaluate the biggest technical
issues first (as recommended by the UP).

● “Water principle”: Avoid confrontations with suppliers and plan defensively to
avoid obstacles on the path.

● “Look ahead but do not rush ahead”: Concentrate on essential requirements. Do
not implement project parts until concrete requirements exist and are needed.

● Use of other eXtreme Programming principles.

Guiding metaphors and design metaphors (see Chapter 3) that also highlight a com-
mon view for project planning are supportive for the definition of goals and principles.

P R O J E C T P L A N N I N G C O N C E P T S A N D T E C H N I Q U E S 431

Principles of
decision making

Zull-12.qxd 20/8/04 7:46 AM Page 431

12.6.4 Project Establishment

Each new project starts with an initial meeting. How well a team will be able to work
together is often already determined at this meeting. Establishing and initializing a proj-
ect explicitly makes it clear that the right start is important for how the project proceeds.

DISCUSSION

The start of a project has a particular impact on its success. If all the participants are
given the impression that they are taking part in a viable project with clear objectives
and that the project will be jointly executed by a team, chances are high that it will be
completed successfully in the timeframe planned.

A project is explicitly “established” so that a high level of motivation can be
achieved by the participants. The fundamental principles governing the project are
clarified while the project is being established. The project establishment is often ini-
tiated in a kick-off meeting, where the project goal is defined or explained in detail.
Existing deadlines are clarified, the infrastructure is fixed, and some initial rough plan-
ning takes place.

It is a good idea to clarify cooperation rules and discuss the project culture. The
project culture includes informal things like dress codes when dealing with customers
and users, project dinners, and dealing with deadlines. The actual project content plays
no role in this; only the project goal can hint at the content.

Along with the planning activities, project establishment involves defining the level
of cooperation that exists between project members. To motivate team spirit in a group,
DeMarco and Lister proposes arranging joint activities such as excursions and dinners.

12 . 7 S T R U C T U R I N G A P R O J E C T B Y S Y S T E M
D E C O M P O S I T I O N

As part of the process of defining the goals for a project, clarification is needed about
which part of the system should be realized by the project. It is rarely advisable to
implement an entire application system with all its envisaged functions in one project.
Instead, the target system is divided into subsystems that are realized in a step-by-step
process. We present the concept of a core system with extension levels and special-
purpose systems.

12.7.1 Core System and Special-Purpose Systems

The evolutionary development of application systems does not only mean that soft-
ware is implemented in close author-critic cycles. With large application systems it is
just as important that a complete system be developed in manageable units. The con-
cept of a core system and special-purpose systems provides an initial guideline for the
domain segmentation of large and complex application software.

THE CORE SYSTEM

An open core system can be defined once general objectives and subgoals have
been finalized. The core system should be coordinated with representatives of the
departments concerned. This agreement on a core system is an important factor in the
success of complex development projects.

432 T H E D E V E L O P M E N T P R O C E S S

Establishing the
“rules of the

game”

Zull-12.qxd 20/8/04 7:46 AM Page 432

A core system

● is a productively used part of the total system.

● fulfills prioritized subgoals of the project.

● supports the key tasks in a department (e.g., a product domain; see
Section 9.2.2) or in closely cooperating work groups.

● includes components (tools, materials, and automatons) to provide a
set of elementary services that can be used for further development.

● deals with acute demands (e.g., in accordance with legal and business
management requirements).

● supports the incorporation of special-purpose systems.

SPECIAL-PURPOSE SYSTEMS

A core system can be enhanced with special-purpose systems.
A special-purpose system

● includes components to support largely independent tasks.

● interfaces only to the core system and not to other special-purpose
systems.

● can be developed independently and in parallel with other special-
purpose systems.

Alternatively, special-purpose systems can be developed by other manufacturers or
can be bought as off-the-shelf components. The time sequence for introducing the dif-
ferent special-purpose systems is determined by the users. Consequently, application
orientation is an important aspect of project planning for these systems.

DISCUSSION

The basis for specifying a core system and optional special-purpose systems is a com-
mon understanding of the key tasks and division of labor in the application domain.
Decomposing the target system into different components can take place while the
project is being established. It can also be entrusted to a higher-level committee that
allocates subtasks to the individual projects. It has proven useful in new projects to par-
tition the overall system into the core system, special-purpose systems, and the exten-
sion levels within the context of a “pilot project.” In addition to decomposing the
system in as short a time frame as possible, the “core” team also builds a presentation
prototype. This prototype serves as the design outline for the actual project work.

The specification of the core system and the special-purpose systems is therefore
a task that is outlined but cannot be completed in its entirety at the beginning of a
project.

EXAMPLE

The core system in a hospital project essentially consisted of patient administration
and billing, the corresponding design of workplaces at the wards in the medical and
nursing areas, as well as basic services for ward communication with different service
suppliers, such as radiology, laboratory systems, and kitchens (see Figure 12.13).

S T R U C T U R I N G A P R O J E C T B Y S Y S T E M D E C O M P O S I T I O N 433

Domain
knowledge and
task orientation
are crucial for
system
decomposition

Zull-12.qxd 20/8/04 7:46 AM Page 433

Providing these basic services as separate components for the cooperation between
wards and function areas could ensure that the cooperation and coordination between
ward workplaces were uniformly designed. Since new legal rulings require a strong link
between administrative and medical data, we saw the need to integrate patient adminis-
tration and billing with the clinical areas in the core system.

Due to the large number of requirements from the different departments and areas,
we found that there was a need for a core system enhanced by several special-purpose
systems. The introduction of the core system contributed greatly to involving all
participants. They agreed on shared project goals and the different extension levels.
This provided a good basis for the planning and execution of the hospital project.

12.7.2 Core System and Extension Levels

The close connection between different departments and tasks usually makes a core
system very complex. As a result, consideration is given to decomposing the system fur-
ther, and, consequently, to the domain-motivated sequences for the development and
planning process. We therefore divide complex application systems into a core system
and extension levels.

MINIMAL CORE SYSTEM

When a core system cannot be realized “in one piece” due to its domain or technical
complexity, then we have to divide it into extension levels. First we will define a mini-
mal core system.

434 T H E D E V E L O P M E N T P R O C E S S

FIGURE 12.13
A core system

with special-
purpose systems.

…

…
Communication

Diagnosis

Billing

Patient Administration

C
or

e
sy

st
em

OP
System

Duty
Roaster

Archive Radiology

Laboratory

Kitchen

Zull-12.qxd 20/8/04 7:46 AM Page 434

A minimal core system comprises the minimal domain and software functionality
that an application system should offer as services. It is the smallest
autonomous and meaningfully executable part of the entire target system.

The following questions are helpful in specifying a minimal core system:

● Which task in the application domain has the greatest significance?
● Which task can be supported by a limited number of tools, materials, and

automatons with minimal technical complexity?
● Which software support will bring the greatest benefit for the users?

A minimal core system also often has strategic importance, because it usually is the
first real object-oriented application system, at least within the context of this
approach. The benefits of a “quick win” should therefore be exploited. With a minimum
of effort it is possible to demonstrate a major advantage through the introduction of a
minimal system in the application domain. At the same time, the special character of
the T&M approach should become clear through some well-designed tools with
matching materials. Of course, the basic idea can easily be transferred to pure Web
applications.

EXAMPLE

In one of our projects, sections of a bank’s loan department were to be restructured.
We developed an object-oriented workplace system, which was the first of its kind in
this bank application. Initially, there were many reservations about the project, partic-
ularly in the IT department. In search of a suitable minimal core system, we realized
that the mainframe interfaces would soon not be sufficient for interactively processing
loans. In talks with the loan department, we found that many loans were being paid
out on the basis of handwritten forms. So we built a small electronic payment system
with resubmission and copying functions. Although the tool did not offer any specific
functionality for dealing with loans, it elegantly supported some of the tedious work in
the loan department. The users were greatly in favor of similar support for the other
segments of the loan-processing workplace.

EXTENSION LEVELS

Once we complete our minimal core system, we have to analyze how the services
designed for the entire core system are logically based on one another. To this end, we
have to group these services and arrange them in successive extension levels of the core
system.

First, let’s look at the definition:

An extension level includes components that support related tasks and activities.
These components should logically depend on one another, or on an existing
extension level, but not on anything else.

Analyzing the logical dependencies between the components within extension
levels, we can identify the domain-related sequence in which we can build the com-
ponents of the system. Then we have to check if this sequence is feasible technically.
Once we finalize the planning of extension levels, we can define the users and their
tasks to be supported by the extension levels. At the same time, we have a schedule for
providing the technical infrastructure of the application.

S T R U C T U R I N G A P R O J E C T B Y S Y S T E M D E C O M P O S I T I O N 435

The Bank
example

Identifying the
minimal core
system

Zull-12.qxd 20/8/04 7:46 AM Page 435

DISCUSSION

It is important for the concept of the core system and extension levels that we decompose
the system according to a domain view, which is comprehensible to users. This inte-
grates users and technical departments into the planning process.

A careful definition of the minimal core system with its extension levels provides
developers and users with more clarity in recognizing and planning the consequences of
iterative system development and deployment with the resulting intermediate organ-
izational forms. At the same time, the extension levels support the task of planning
accurate time horizons for a project and assessing the effort involved.

Ideally, extension levels are selected so that they can be deployed as executable
versions or components, before the entire system is completed. At the very least, one
extension level should always be realized as a verifiable prototype.

EXAMPLE

The decomposition into extension levels is obvious in domains with a traditional sep-
aration of different businesses (such as banks with active and passive business, secu-
rities trading, tellers, etc.). Figure 12.14 shows that this type of system partitioning can
also be extended to domains with a totally different structure. The core system shown
here was planned for the process automation software of a hot rolling-mill in five
stages. The software components of the core system (level 0) are needed for the
components being constructed in extension level 1, for example, the “primary data
handler” is based on the “telegram handler.” The component for model computation
being developed in extension level 4 cannot be developed without the components of
extension level 3 (reading value processing, model control, and material tracking).

436 T H E D E V E L O P M E N T P R O C E S S

FIGURE 12.14
A core system

with extension
levels.

Display (passive)4 Report system

3 Model computation

2 Material trackingModel control Measured value processing

1 SimulatorConfiguration Set point serverPrimary data handler

Logging0 Telegram handler

Zull-12.qxd 20/8/04 7:46 AM Page 436

12 . 8 S C H E D U L I N G A N D TA S K P L A N N I N G

We have a list of the techniques and approaches for scheduling and task planning recom-
mended for different types of projects and systems:

● On the basis of set goals and a partitioning of the system into a core system and
extension levels, we recommend a process model and a time estimation for
each of the system components or extension levels being developed. For the
planning approach, we suggest a division into project stages and base lines.

● For very large systems or systems that are partitioned differently, we integrate
project stages and base lines with the general concept of cycles and iterations of
the Unified Process.

● At the micro level of large projects or for small and very flexible projects, we
propose the planning instruments of eXtreme Programming.

12.8.1 General Rules for Time Estimates

An overall time estimate has to be presented for large projects. For large and complex
projects, this time estimate can only be very rough and only provide an indication of
what is feasible in terms of time. However, the estimate can refer to figures from pre-
vious experience or general criteria.

DISCUSSION

An initial time estimate involves sketching the time frame in which the components
of an application systems could possibly be realized. A discussion of the different
imponderabilities in an application-oriented software project, such as those discussed
in this book, should make one thing clear: It is not possible to present an accurate over-
all time plan of a large project. However, “rules of thumb” based on figures from past
experience can be used for a rough estimate:

● Each prototype development cycle takes between one and three months. The
question, therefore, is how many prototype versions should be and can be
developed.

● When using XP techniques, we calculate between three and six months for a
release cycle with a delivered system version.

● Interviews and scenarios form an essential basis for every development project.
Approximately one day should be planned for the interview team per
interview, including the time needed for evaluation. Scenarios have to be
written, read by the interview partners, and then jointly discussed. A scenario
with an experienced interview team takes about one work week. Therefore, we
have to estimate the number of interview teams required to produce scenarios,
how many interviews and interview partners we will need, and to what extent
the work can be carried out in parallel.

● The time needed for the design and construction of a workplace system can be
estimated largely on the basis of tools, materials, and domain values. For
example, for trained developers building software along the lines of the T&M
approach based on a validated domain model, we calculate half a pair-day per
average domain value, one to three pair-days per material, and two to five pair-
days per typical T&M tool.

S C H E D U L I N G A N D T A S K P L A N N I N G 437

How to approach
scheduling and
task planning

Rules of thumb
for time estimates

Zull-12.qxd 20/8/04 7:46 AM Page 437

● Similar experience also exists for domain service providers and the connection
to ERP systems. We calculate two to three pair-days for a domain service
provider of average complexity, and one to two pair-days for database mapping.
In our experience, host developers, who are usually relatively good at this, are
the best at calculating the additional time needed for adjustments on the host
system side.

● The organizational installation and field test of the pilot system also need a
certain period of time that cannot easily be reduced. One should count on one
to three months here.

These simple rules of thumb (modified through the reader’s own project experi-
ence) can be used to estimate whether the time expectations of management or the
user organization are at all realistic. The time estimate obviously becomes less accurate

● when there is little familiarity with the respective application domain.
● when there is little familiarity with the type of application system being

developed and the methodology and technology used.
● the more system components and extension levels are incorporated into the

estimate.

This form of time estimation should not be confused with the normal scheduling in a
project. It serves as a kind of feasibility test to determine whether a project can be car-
ried out at all in the desired form.

12.8.2 Planning the Project Stages

If an application system has been suitably partitioned and a rough schedule planned,
then the actual project planning is carried out on the basis of project stages. These
stages define manageable project segments. They also link constructive quality assur-
ance with an application-oriented approach.

PROJECT STAGES

In the Sections 12.7.1 and 12.7.2 on the core system and its extension levels, we
stressed the importance of decomposing a complex application system into manageable
design and construction units. If such a unit is defined as a core system or an extension
level, the development process has to be planned in more detail.

We execute projects on a goal-oriented basis. When a goal for a project exists, we
can decide which means, or which application system components, will contribute
towards achieving this goal. It makes sense to define manageable subgoals and to work
through them in a project stage.

Project stages represent important events that are “visible to the outside” in a
project. They are specified with a view towards the overall goal and the project
stage goals derived from it. They serve to define the scope of the system under
development. A project stage is linked to an operative version or a prototype of
the system under development, and it defines the date when the project stage
goal should be achieved. Base lines (see next section) are used to plan each
project stage in detail, supporting a precise control of the project. The
evaluation of a project stage often leads to revisions in subsequent planning
phases.

438 T H E D E V E L O P M E N T P R O C E S S

Problems in
estimating time

Zull-12.qxd 20/8/04 7:46 AM Page 438

DISCUSSION

The completion date for a system under development is usually based on a rough time
estimate for the project and management’s own ideas on the subject. The basic idea of
planning based on project stages involves starting from the projected completion date
of a project and working backwards according to the different stages.

Using the goal as a starting point, we define the project stages working in the
reverse. The idea of project stages is comparable to the Unified Process. In so far as
operative versions are being developed, these in turn are usually realized in substeps as
the core system or the extension level of an application system, and these substeps are
revealed to all participants. The same applies when building “only” a prototype. A
project stage therefore produces a result visible to all participants, and at the same
time, it serves as a control instrument for further planning.

Each project stage is concluded with an event, where a prototype or the system ver-
sion is presented and evaluated. On this basis, the participants decide whether the
respective project stage goal has been achieved. It should be noted that different kinds of
prototypes are used in the respective stages, depending on the questions being dealt with.

There is another important difference from traditional management techniques:
All documents generated to that point are checked for the current project planning.
It is therefore common that feedback on a user interface prototype will clarify for users
and developers whether the domain analysis with scenarios was sufficient or requires
further detail. System visions are also repeatedly examined for their feasibility.

This examination can be a formal review with users or a simple presentation given
to a project committee. The important point is that key groups and decision-makers
are informed of the project’s progress and made aware of possible problems.

At the conclusion of each project stage, the project plan is revised in terms of con-
tent and schedule. Various aspects are taken into consideration:

● Has the goal set for the project stage been achieved? If not, is it still basically
achievable?

● What is the significance of the result of the project stage for the next stage? If
the result was worse than expected, what effect will it have on the next project
stage? Are modifications needed to the distribution of work, or is there a risk of
not meeting the next stage’s goal?

● What are the chances of still achieving subgoals or the overall goal with reduced
means (i.e., system features) if the result for a project stage is unsatisfactory?

If revisions to the plan are necessary due to the evaluated results of a project stage,
we again focus on the overall goal. Project teams should stick to this goal to the extent
possible, and when problems and timing bottlenecks occur, consider whether the goal
can be achieved using fewer or other resources. We have always had the same experi-
ence in projects: From the view of the users, a “thinner” application system with less
features than the ones originally planned, or a reduced extension level, can well be an
accepted and almost equally welcome solution to their current problems. A reduced
system version delivered on time is preferable to a long delay in almost all cases.

Project stages should normally extend over a period of between six weeks and
three months. A large number of short stages is not easy to manage and creates a hec-
tic situation. On the other hand, planning is difficult if the intervals are long, and they
also create problems for the author-critic cycles.

S C H E D U L I N G A N D T A S K P L A N N I N G 439

Planning
backward

Finishing a
project stage

Evaluating a
project stage

The “size” of a
project stage

Zull-12.qxd 20/8/04 7:46 AM Page 439

In practice, it has proven useful to have the team discuss the planning of project
stages. In projects with small teams, such plans can also be worked out jointly. With
large project teams, the plan can be prepared and then discussed in a project meeting,
revised if necessary, and adopted. In view of the application orientation we want to
achieve, users should also have an influence on the plan. All deadlines that affect users
should at least be agreed upon with them.

EXAMPLE

Figure 12.15 refers to the example of setting goals (see Section 12.6.2) and shows how
these goals can be implemented. This includes the definition of a minimal core system,
which is now planned with the help of project stages. Our approach of organizing this
plan from back to front is again important here. In this example, the completion date
for the core system was set for 02-15-2002. All other deadlines are calculated from this
date backwards.

BACKGROUND: PROJECT STAGE PLANS AND CONFERENCE PLANNING

Why do we plan stages from back to front? There is a simple reason: We often find that
some conventionally planned software projects exceed their time budget by far. In con-
trast, we have observed that most conferences actually take place exactly when and
where they have been planned long before the actual events. Conferences can obvi-
ously be planned according to a precise date.

What is the big difference between conventional project planning and conference
planning? We think that this difference has little to do with the fact that conferences
are not software systems. Conferences are simply planned differently, namely, from
back to front. Once a program committee has agreed on the location and date for a
conference, then certain intermediate results or stages are tied to certain dates. For
instance, if the conference proceedings are to be distributed among the participants, they
have to be available in printed form at the organizers’ two to three days beforehand.

440 T H E D E V E L O P M E N T P R O C E S S

Steering committee accepts
reorganized business
process

Kernel system for the account managers
workplace tested in one bank branch

30.09.01

Central development
accepts architecture

Breadboard with
server and rel.DB

16.05.01

Steering committee accepts
reorganization concept

Presentation prototype plus
scenarios, glossary, vision of
account manager workplace

31.03.01

Steering committee
accepts feasibility
of concepts

Extension level 1
Account manager workplaces
in three banks in test operation

01.12.01

Controlling accepts system Extension level 1
documented and tested

10.12.01

Extension level 1
accepted by steering
committee

Evaluation workshop with the user
Extension level 1 ready for roll-out

15.02.02

Goal: Implementation: When:
FIGURE 12.15

Example of
project stages.

Why planning a
project like a
conference?

Team planning

Zull-12.qxd 20/8/04 7:46 AM Page 440

This means that the print masters have to be at the printer, for instance, one month
before that date. This date, in turn, determines when the conference proceedings have
to be edited for content, and so on. This is how program committee meetings, dead-
lines for completed papers, and the dispatch of call for papers are planned and sched-
uled. Any planning deviations are always noticed very quickly while a conference is
being prepared. Organizers can then take suitable actions to ensure that the conference
is not jeopardized. For example, lectures are deleted from the conference program or
other speakers are invited on short notice when illness or another unforeseen circum-
stance prevents a scheduled speaker from participating.

On the other hand, we could argue that when we organize conferences we have a
much more accurate idea of the steps and results required and how they depend on one
another. However, our experience has shown that there is nothing against using these
fundamental planning principles in software projects.

12.8.3 Using Base Lines for Detailed Planning

Planning according to project stages is still so rough that it is difficult to identify any
work packages or responsibilities from it. Base lines are therefore used for fine planning
within a project stage.

BASE LINES

Planning based on project stages provides no information about the distribution of
tasks and responsibilities. In our experience, this type of finely granular planning usu-
ally becomes necessary and reasonable at the level of the current project stage. This is
where we use base lines.

Base lines are used in the detailed planning of project work within a project
stage and in constructive quality assurance. They are defined by the
development team and describe tasks relating to qualitative or quantitative
document and code states. Base lines define a checkable result. Someone is
responsible for each base line, which is validated on a regular basis. The
respective developers estimate the work involved and the time required.

DISCUSSION

A base line primarily describes the quality expected of the next document or program.
Ideally, documents and programs should be edited until the desired (and checkable) state
is achieved. The same applies when events are specified in base lines. It is important that
a base line identifies who will be responsible for ensuring that it is achieved. Though
this person is responsible, he or she doesn’t have to do the work on his or her own.

In the sense of our general approach, base lines define tasks. They bundle domain-
related and goal-oriented activities relating to a document or system component. The
respective tasks should be small enough that they can be completed by a minimum
number of people within a manageable amount of time. This also results in an appar-
ent contradiction: We said that base lines should only be oriented to quality charac-
teristics and not to time. At the same time, we demand that time and work estimates
should be linked through base lines. When base lines are distributed in a team, the
team members responsible for a base line gradually develop a very good feeling about
how long they will need to work on it.

S C H E D U L I N G A N D T A S K P L A N N I N G 441

Base lines need
to be checked

Zull-12.qxd 20/8/04 7:46 AM Page 441

Base lines should be discussed jointly in a team. The size of the team and the com-
plexity of the project determine whether the base lines are also worked out by that
team. In any case, certain means of representation are available. We have had good
experience with wall pictures where base lines and personnel resources are displayed
in tabular form. Depending on how they are arranged, these wall pictures show the
logical connections between base lines and facilitate planning and discussion of the
project scheduling (see Table 12.1 and Figure 12.16).

We can report from experience that the planning procedures described here have
also been effective for projects with very critical application and technology domains.
The cyclic approach and orientation to executable prototypes and system versions for
project stages are obviously the key factors that make this procedure successful. The
cyclic approach also helps projects dealing with imponderabilities. The concrete and
presentable intermediate results motivate the team and demonstrate to “outsiders” that
a project is progressing.

Base lines should be viewed as an alternative to the story cards of XP. They are
perhaps somewhat more “conventional” than story cards and therefore easier to use in
areas where the principles of eXtreme Programming cannot be applied.

Base lines are also used in the Unified Process. Here they are interpreted in a much
more conventional way, because they are “frozen” at a certain point, and an explicit
procedure is needed to change them again.

EXAMPLE

Let’s take another look at our previous example of a bank’s workplace system for cor-
porate customer advisors. The base lines in Table 12.1 are listed as a kind of purpose
table (see Section 13.8).

The list always includes the names of the people responsible (using abbreviations),
the base line, the purpose, the person-day estimates, and the type of checking used for
the base line. The form of presentation is not what is important here; it should only
indicate what has to be taken into account when the base line is worked out. We

442 T H E D E V E L O P M E N T P R O C E S S

Discussing
base lines

TABLE 12.1 Example of base lines.

The Bank
example

Who Does What with Whom/What Why p.d. How Checked

PB Arrange date with pilot bank Preparing interviews 1 e-mail to team

RS Elaborate interview guideline Preparing interviews 2 Presentation at meeting

PB Interviews with account Basis for scenarios 10 Minutes in project db
managers

DM build tool framework Preparing tool 16 breadboard
implementation prototype of tool

operative

AK design and implement tool for Test of framework 8 breadboard
call slip preparation of user workshop prototype of tool

operative

Zull-12.qxd 20/8/04 7:46 AM Page 442

can see that base lines can be planned very precisely, involving from one to a few
person-days in this example. Of course, this type of finely granular planning is only
recommended for projects with tight deadlines and a high degree of uncertainty. On
the other hand, experience has shown that it is not a good idea to have large work
packages, because it makes estimating them more difficult, and there is not enough
feedback to control the planning.

To carry our example a step further, Figure 12.16 uses the base lines of Table 12.1
as the foundation for detailed scheduling. The calendar overview, in this case divided
into weeks, shows the initials of each team member. The boxes are used to fill in
“absences” from the project: days off for vacation, committee meetings, or other rea-
sons. This part of the overview is usually generated early on in a planning meeting and
often shows in a sobering way the personnel resources available.

The individual base lines are then entered in the bottom part of the calendar,
which shows when these base lines have to be handled. For the sake of keeping things
simple, we left out cross-references between the bottom and top parts in Figure 12.16.

12.8.4 The UP and T&M Project Planning

So far, our project planning has been motivated primarily from the standpoint of sys-
tem partitioning into core system and extension levels. However, this planning instru-
ment can also be integrated into the general Unified Process approach. This means
that this technique is also appropriate for very large projects or systems that are parti-
tioned in a totally different way.

UP EVOLUTIONARY CYCLES

At its highest level, the development process using the Unified Process allows a ran-
dom number of evolutionary cycles that an entire system will pass through during its
lifetime.

S C H E D U L I N G A N D T A S K P L A N N I N G 443

FIGURE 12.16 Scheduling with base lines.

AS

DM

MW

Arrange date

Interview guideline

Interviews

Scenarios

Framework

Prototype

PB

RS

Who When

What CW 35 CW 36 CW 37 CW 38

Zull-12.qxd 20/8/04 7:46 AM Page 443

An evolutionary cycle is the least accurate unit of scheduling and planning in a
development process. Each cycle is organized as a project within a project
family. A cycle ends when a system release is complete and deployed. Cycles are
divided into stages.

A totally new system is developed in the first cycle, similarly to conventional devel-
opment projects. The development of this system is continued in an evolutionary way
over its entire life cycle. Our approach organizes this continued development in proj-
ects, that is, in the sense of UP, we talk about evolutionary cycles (see Figure 12.17).

Evolutionary cycles based on UP normally consist of four phases1 that can be
mapped to our concept of project stage.

A stage is a self-contained subproject in the development process; it has its own
goals and produces an executable system version. Each stage comprises all
necessary development activities and its structure follows its own project stage
plan.

Looking across projects, each stage according to T&M has concrete goals and par-
ticular topics: conceptualization, design, construction, and transition. We see them as
subordinate topics rather than steps like those in a waterfall model. Thus the topic
“design” is produced through activities that analyze, model, and construct things
within a stage. The following section discusses these topics.

DISCUSSION

This section interprets parts of the Unified Process from the view of the T&M
approach. We give priority to a cyclic and iterative approach in projects. Other authors
see this differently. For example, the literature often recommends defining the number
of cycles and work steps precisely, which means that these authors encourage classic
life cycle models.

Note that this section is not geared to “normal” development projects. Instead, we
examine the long-term evolutionary process of developing a large system, or better, a
family of applications in the course of several projects. An evolutionary cycle corre-
sponds to the development of a system version, or major system part. Each individual
project that contributes to the new version can be oriented towards general issues: con-
ceptualization, design, construction, and transition (see Figure 12.18). The results of
these subprojects are merged to create a complete system family at the end of the evo-
lutionary cycle. The goal of creating a uniform system family can only succeed inde-
pendently of organizational circumstances under the following conditions: if project

444 T H E D E V E L O P M E N T P R O C E S S

Time

Initial
Cycle

Evolution
Cycle 1

Evolution
Cycle 2

Evolution
Cycle n

Release

FIGURE 12.17
Evolutionary

cycles.

Interpreting
the UP

1. In UP lingo, these phases are called inception, elaboration, construction, and transition.

Zull-12.qxd 20/8/04 7:46 AM Page 444

members keep sight of the common basis of the subprojects and have a clear under-
standing of the fact that they all contribute to an existing whole.

THE UP PHASES

At the next level a T&M project is organized in stages. This is our interpretation of
what is called phases in the UP. Each stage within an evolutionary cycle has its own
goals. It is organized as a separate project. This means independent and consistent
planning. It is important that each of these subprojects includes all activities of a soft-
ware project, or the construction and evaluation work. This is in clear contrast to the
steps in the classic waterfall model.

A concrete stage has project-specific goals that cannot be described in general
terms. However, general issues or themes are abstracted to these goals. We explain
these general characteristics of the individual stages below. The document types and
tasks relevant for project stages will be described in more detail in Chapter 13.

The conceptual stage creates the concrete product idea for a new project. It can
refer to a new system or a functional extension of an existing system. The
objective of a conceptual stage is to examine the product idea for domain-
related consistency and basic technical feasibility.

The conceptual stage describes relevant business use cases (actual state), identifies
initial visions for the future system, and builds the first prototypes. These will initially
be presentation prototypes. If possible, however, they should be extended to include
functional and technical aspects in the form of a T-prototype (see Section 13.6).
A rough range of system features and the technical basis for the project should be final-
ized by the end of the conceptual stage. In addition, a description of the key (critical)
functions should be available. Cooperation pictures should be used to clarify the
planned cooperation model. The results of the conceptual stage set the foundation for
more accurate planning in the design stage.

The design stage elaborates system features and resource requirements for a
project more precisely. The objective of the design stage is to map the domain
requirements to an architecture, observing structural similarity.

Planning during the design stage is mainly based on the range of features defined
in the conceptual project stage. Further system visions and other documents of the tar-
get model are specified during this stage, until the desired range of features is covered,
and the project is ready for evaluation. The system visions are converted into domain
and technical design models and realized through prototypes. At the same time,
domain and software issues are further clarified. This stage focuses on providing fully

S C H E D U L I N G A N D T A S K P L A N N I N G 445

FIGURE 12.18
Stages in a
T&M project.

Conception Design Construction Transition

Initial Cycle

C D C T

Evolution Cycle 1

C D C T

Evolution Cycle 2

C D C T

Evolution Cycle n

C D C T

Interpreting UP
phases as project
stages

Zull-12.qxd 20/8/04 7:46 AM Page 445

operational prototypes and on specifying a logical architecture for the target system.
We then use the results of this stage to confirm what we said in the beginning of this
section, that this kind of decomposition into project stages is useful for large develop-
ment projects only, because its high cost would not be justified in small projects.

The construction stage primarily deals with the construction of technical models,
with particular emphasis on the implementation model. The objective of this
stage is to realize the architecture at the level of processes and implemented
components.

The construction stage uses unit tests to check the prototype resulting from the
earlier stages to assure its quality. This is the last stage where things like the assertions
of the contracts can be checked for completeness.

By now, the developing system should have matured so that certain questions
regarding performance or embedding into the context of the system can be answered.
Constant feedback, above all on the functional prototypes and pilot systems (see
Section 13.6), helps to make sure that the scope of system features corresponds to the
actual needs and ideas of the group involved.

The transition stage transfers the product to the actual users, including
deployment, training, user support, and maintenance. The objective of this
stage is the organizational implementation of the system.

If possible, the organizational implementation of the system should include the use
of pilot systems. Experience has shown that domain inconsistencies and implementa-
tion errors can often be identified in this stage. These errors usually result from the
special system configuration on site and are particularly unpleasant. The end of this
stage completes the entire cycle of the four stages described in this section.

PROJECT STAGE PLANS

A project stage plan contains the concrete planning for a cycle. It is directed towards the
concrete subgoals of a project. In general, the project stage plan should identify the
specifc topics relating to the four general stages of conceptualization, design, construc-
tion, and transition.

Along with the goals for the different stages, the project stage plan contains the
profiles of the project members and information about the resources required over the
course of the entire cycle. Figure 12.19 shows that resources are distributed in different
ways. In addition, the project stage plan contains rough details about the duration of
the iterations and the subtasks already associated with them. The project stage plan is
created early in the conceptual stage and edited as often as necessary. It shouldn’t be
more than two to three pages long.

Obviously, the length of the individual stages is not the same in each project. The
starting point for a project stage plan is a typical project profile with, for example,
the following characteristics:

● The project is of a moderate size and its cost is justified.
● The project is in the initial cycle.
● The project does not have a predefined architecture.
● The project has a limited number of risks and unknown factors.

446 T H E D E V E L O P M E N T P R O C E S S

Profiling a project

Zull-12.qxd 20/8/04 7:46 AM Page 446

This basic project profile can be adapted to a specific project, based on the
following rules:

● If the actual tasks are still not clarified at project start, that is, the requirements
are not clear, then the conceptual stage may have to be extended.

● If an appropriate architecture cannot be found because some things are still
unclear regarding system design, cooperative work is being supported, or a
group of new employees is to be integrated, then the design stage has to be
extended.

● If new technologies are to be used, a distributed system is performance-critical,
a high level of parallel system access is expected, or a large number of technical
problems exist, then the construction stage should be broken up to address
each problem specifically.

● If the second generation of an existing product is involved (a new evolutionary
cycle) and no far-reaching modifications are required, then the conceptual and
design stages can be shortened.

● If a product has to be available on the market quickly, either because the
development is seriously behind schedule or the customer wants to reshape the
market, and the product has been announced for a specific shipping date, then
the construction stage can be shortened and the transition stage extended.

S C H E D U L I N G A N D T A S K P L A N N I N G 447

FIGURE 12.19 Distribution of resources in a project stage plan.

Conception

1st Analysis

Specification
modeling

Technical
Modeling

Implementation

Test

Expertise
Modeling

Allocation

Glossary
management

Architecture
management

Project management

Iter. 1 Iter. 2 Iter. n

Design Construction Transition

Rules for
adapting a project

Zull-12.qxd 20/8/04 7:46 AM Page 447

● If the project involves a complicated installation, for example, replacing an old
system with no downtime allowed, or if the acceptance procedures are
particularly complex, then the transition stage has to be extended.

DISCUSSION

This section generalizes the concept of project stages and maps it to the general process
model of the Unified Process. Section 12.8.2 defined project stages as being goal-oriented
and producing an executable system vision or a prototype as the result. Stages are there-
fore very suitable as planning units in projects where the system is divided into a core sys-
tem and extension levels. However, this type of partition becomes superfluous when a
large system with the expectancy of a long span is reengineered (or refactored) on an evo-
lutionary basis. In this case, the system already exists with a full range of features.

In this section we therefore orient the project stages towards more general topics.
Each stage is planned as a separate project and implemented with all meaningful
activities. Therefore each stage has a project-specific objective. The four topics, of
conceptualization, design, construction, and transition should make clear that the
results of the stages can always be directed toward different general issues. This does
not mean that each stage only produces one concept, works out one design, constructs
one program, or ships one product. This obvious deviation from the principles of
the classic waterfall model is common to both the Unified Process and the T&M
approach. We are pleased to see that an evolutionary and iterative approach is gradually
catching on.

ITERATIONS

Each of the stages discussed can be divided into several iterations. All necessary tasks
are executed within each iteration in order to promote the maturing process of the
development documents and the code.

An iteration is the smallest unit that can be planned in the development process.
It is defined by a consistent set of base lines. Depending on the size of the entire
system, an iteration can end in a prototype or a system version or lead to a
sequence of builds or integrations based on the principles of eXtreme
Programming.

An iteration can be interpreted as a complete miniproject, where all key develop-
ment tasks are executed. The result of an iteration is an executable system version, usu-
ally a prototype, and a number of documents. An iteration therefore starts with a
planning and requirements analysis and ends with an internal integration or an exter-
nal release. We use the base lines of the T&M approach to identify the documents and
prototypes generated in each iteration, their purposes, and the people in charge of their
validation.

DISCUSSION

An iteration represents the finest granularity of incremental software development
that can be planned. The scope of an iteration depends heavily on the project calibra-
tion. It only pays to embed true miniprojects with their own planning horizons within
a stage if project families are arranged at the top end of the scale, that is, if they are to
run for several years.

448 T H E D E V E L O P M E N T P R O C E S S

Project stages

The scope of
an iteration

Zull-12.qxd 20/8/04 7:46 AM Page 448

The sensible length of a full-blown and planned iteration within a stage is one to
three months. We assume that a development process based on the principles of
eXtreme Programming (see Sections 12.3.4 and 12.3.5) should be selected for an iter-
ation duration of less than one month.

The iterations of medium-sized projects with an iteration duration of less than one
month are reduced to the scale of what is referred to as short releases in eXtreme
Programming and supported by planning games (see subsequent Section headed
“Using XP for Detailed Iteration Planning”). Small projects of short duration can
completely dispense with iterations within a stage since the entire stage can be planned
and controlled at the planning games level.

Development activities are carried out with varying degrees of intensity, depend-
ing on the stage, number of iterations, and problems. Though there can be different
focal points, all tasks pass at least one iteration (see Figure 12.20). As a consequence,
all document types and models are basically at hand for processing. Each document or
model is then handled with the intensity defined by logical and individual priorities.

Regarding content, each iteration is driven by selected visions or use cases selected
from the range defined for the system. After each iteration, a set of base lines is
checked to enable the detailed planning of the next iteration.

ITERATION PLANNING

The individual iterations are planned with the described base lines (see Section
12.8.3). Normally two iteration plans are important in a project in parallel:

S C H E D U L I N G A N D T A S K P L A N N I N G 449

Initial Cycle

C D C T

Evolution Cycle 1

C D C T

Evolution Cycle 2

C D C T

Evolution Cycle n

C D C T
Cycles

Stages

Iterations

Tasks

Iteration 1

Domain Analysis

Requirements Modeling

Domain Modeling

Technical Modeling

Implementation

Test

Preparation for Use

Iteration 3

Domain Analysis

Requirements Modeling

Domain Modeling

Technical Modeling

Implementation

Test

Preparation for Use

Iteration m

Domain Analysis

Requirements Modeling

Domain Modeling

Technical Modeling

Implementation

Test

Preparation for Use

Conceptualization Construction TransitionDesign

Iteration 2Iteration 1 Iter. mIter. 5 Iter. xIter. 4Iter. 3 Iter. 3

FIGURE 12.20 Example of using T&M iterations.

Zull-12.qxd 20/8/04 7:46 AM Page 449

● The current plan (for the iteration currently being run) for process tracking.
● The direct successor (for the next iteration) of the current plan that is

approximately begun midway through the current iteration and has to be
completed by the end of the current iteration.

USING XP FOR DETAILED ITERATION PLANNING

We use the story cards from eXtreme Programming to make work orders easier to man-
age and to establish new requirements. Story cards are file cards used to document the
requirements from the users’ view, similar to use cases in UML. In XP, customers and
users write the story cards themselves, which can create problems. We think that this
method doesn’t work well, unless both the customers and users are familiar with the
requirements. Moreover, they are often not able to evaluate the technological options
available. Therefore, developers using the T&M approach normally write the story
cards based on their understanding gained from customer and user interviews. The
story cards are then given to customers and users for comments.

Developers working in pairs (see “Pair Programming” in Section 12.3.4) often find
that some parts of the system require refactoring. If this need for refactoring is exten-
sive, then the developers can write their ideas on engineering cards. Engineering cards
are like story cards, except that they refer to technical aspects. In addition, task
cards are often used; they are similar to story cards, but go beyond a specific story. Tasks
that are useful for several stories can therefore be extracted from them.

Developers use these cards to plan individual iterations by sorting the cards based
on usefulness and urgency in cooperation with the customer. Each card describes cer-
tain tasks and can be used to check a base line. The achievement of a base line is con-
trolled on the basis of the cards assigned to this base line. For small to medium-sized
projects, the story and engineering cards can simply be used as a substitute for explic-
itly formulated base lines. The cards are then directly allocated to the project stages.

Although story cards can be used for small projects, they are also a good means for
coordinating several application projects with the development of a framework used.
Story cards are excellent planning and control mechanisms for small projects, where
the full set of system versions, core systems with extension levels, project stage plan-
ning, iteration plans, and base lines would be too extensive. Requirements are docu-
mented on the story cards and ranking by the customer according to usefulness and
urgency. The developers take the story cards to identify the construction tasks to be
handled, if necessary write task cards, and plan the individual tasks. These are then
processed in a way that allows the tasks to be checked. The story card method follows
a basic idea of the Unified Process to “define requirements when they become visible,”
while the “risk-first” principle applies to task planning. Finally, the set of defined
requirements is used to check whether they have been met. The Unified Process offers
use cases rather than story cards for this purpose.

Story cards are also used when several application projects work parallel to the fur-
ther development of a framework. The framework developers use story cards to write
down new ideas or document the requirements of the framework users (namely, the
application developers). In regular architectural meetings, the product manager and
framework users sort these story cards according to urgency, discuss individual problems
and solution approaches, and distribute the work among the framework developers.

450 T H E D E V E L O P M E N T P R O C E S S

Story cards

Engineering cards
and task cards

Using story cards

Zull-12.qxd 20/8/04 7:46 AM Page 450

This ensures that the requirements of the application developers are documented and
the requirements from the individual projects are compiled and examined in an over-
all context.

12 . 9 D I S C U S S I N G T & M , U N I F I E D
P R O C E S S , A N D X P

The evolutionary approach of T&M can be seen as an application-oriented interpre-
tation of the Unified Process. At the same time, we integrate the techniques and
presentation means of eXtreme Programming. The basic principles of UP coincide
with the ideas of XP and T&M. A shift in emphasis occurs when it comes to the ques-
tion of complexity and type of documentation and the size of the respective planning
units.

12.9.1 Structure of the UP and T&M Development Processes

UP and T&M are similar in the size of planning units. A development project based
on UP is divided into cycles, phases, and iterations. We know from Section 12.8.4 that
the system versions and extension levels of a family of application systems can be
developed in the cycles defined in UP. While UP looks at external and internal releases
including increments, the T&M approach shapes core systems, special-purpose sys-
tems, and extension levels from an application-oriented view.

In UP the phases are the next planning and control level. They can be seen as the
abstract units of what we call stages. In UP, phases are subdivided according to
the abstract topics, which are inception, elaboration, construction, and transition. The
stages in T&M are always oriented towards project-specific goals. When we look at
them in abstract terms, we see general topics. With a light shift of emphasis, compared
to UP, we call our stages concept, design, construction, and transition stages.

In UP, systems are developed cyclically in iterations (see Figure 12.21). We have
shown that the iterations of UP can easily be divided and planned through the use of
the T&M base lines.

We see from Figures 12.21 and 12.22 that the UP and T&M iterations are similar,
except that the T&M approach emphasizes the activities. As suggested by the work-
flows in UP, we first assume that all types of activities generally have to be done in
parallel to complete these tasks, and then repeated in each iteration, while the priorities
and actual sequence vary from one project to another. To better understand this basic
idea, both figures list the activities in columns instead of a horizontal time sequence.

The main differences appear in the number and type of activities. A brief com-
parison clearly shows this:

● UP: Requirements, analysis, design, implementation, test. These activities are
based on the traditional steps of the waterfall model. They are primarily seen
from the view of the developer. The UP authors suggest that these activities
serve as examples and can be divided up differently.

● T&M: Domain analysis, requirement modeling, domain modeling, technical
modeling, implementation, testing, preparation for use. T&M focuses on both
application-oriented and technical activities. At the same time, preparation for

D I S C U S S I N G T & M , U N I F I E D P R O C E S S , A N D X P 451

UP cycles

UP phase

UP iterations

UP workflows

The main
differences

Zull-12.qxd 20/8/04 7:46 AM Page 451

use is considered an explicit activity. A great deal of importance is attached to
actual domain modeling.

DISCUSSION

At the conceptual level, the T&M process model can be easily mapped to the general
UP development process. The concretization in the T&M approach is shaped by appli-
cation orientation. Domain analysis, requirement modeling, domain modeling, and
preparation for use are activities that explicitly include the users and run in author-
critic cycles. A characteristic feature is the strong focus on domain analysis and mod-
eling. Although this is also found as a business model in UP, it is not as important there
and not as integrated in the further modeling process.

The T&M approach works on the principle of structural similarity. This means
that the terms and concepts of an application domain first have to be understood on
the background of day-to-day tasks in that domain. Sound understanding of the actual
work situation remains important for developers, even if tasks and processes change with
the introduction of a new application system. This is the best way to ensure domain
knowledge throughout a project to assess potential modifications and implement them
into the system design.

MODELS IN THE DEVELOPMENT PROCESS

The different models in UP are allocated to workflows according to the breakdown of
the development process, as shown in Figure 12.22.

We can see the following important points from Figure 12.22:

● Although the business use case model and the business object model are both
specified in the UP book, they are not given the importance that other models
are awarded.

452 T H E D E V E L O P M E N T P R O C E S S

Initial Cycle

I E C T

Cycle 1

I E C T

Cycle 2

I E C T

Cycle n

I E C T Cycles

Phases

Iterations

Workflows

Inception

Iteration 1

Transition

Iter. m

Elaboration

Iter. 3Iter. 2 Iter. 4

Construction

Iteration m

Requirements

Analysis

Design

Implementation

Test

Iteration 3

Requirements

Analysis

Design

Implementation

Test

Iteration 1

Requirements

Analysis

Design

Implementation

Test

FIGURE 12.21
Example of UP

iterations.

T&M is
application-

oriented

The models
in UP

Zull-12.qxd 20/8/04 7:46 AM Page 452

● All models are relatively closely coupled to individual activities. This is
particularly obvious in the test model.

Figure 12.23 shows that the T&M approach produces a somewhat different pic-
ture. In the model of the application domain, the concept model appears explicitly
with the description of the actual situation. In addition, the model of the application
system is split into application-oriented and technical models. The test model is linked
to almost all activities, in compliance with the quality assurance concepts discussed in
Section 12.3.

D I S C U S S I N G T & M , U N I F I E D P R O C E S S , A N D X P 453

FIGURE 12.22
Up models and
workflows.

Analysis

Design

ImplementationTest

Business Object
Model

Business Use Case
Model

Use Case
Model

Deployment
Model

Design
Model

Implementation
Model

Test
Model

Requirements

Analysis
Model

The models in the
T&M approach

FIGURE 12.23
T&M models
and workflows.

Test model

Model of
application

domain

Model of
application
system

Application
system

Concept model
Glossary

Description of
actual situation

Description of
future situation

Usage model

Technical
design model

Implementation
modelProduct

Test
Distribution

Integration

Implementation

Technical
Modeling

Domain
Modeling

Requirements
ModelingDomain Analysis

Zull-12.qxd 20/8/04 7:46 AM Page 453

DISCUSSION

The fact that the domain models of the current situation are given so little emphasis
in UP can be interpreted to mean that these models are either not important enough
or are elaborated by people who are outside the actual development project. We con-
sider both interpretations to be dangerous: As we have stated, we find it important that
developers acquire a detailed understanding of an application domain. This requires
explicit models. However, these models also have to be elaborated in conjunction with
the users. This is the only way to encourage the learning process in the author-critic
cycles.

We have already explained the importance of application-oriented models.
Another thing that distinguishes the T&M approach is the notion of constructive
quality assurance. This is along the same line as what the authors of UP say in their
books. However, in our view it also includes the intertwining of programming and test-
ing. Section 12.4.2 describes different test types, which are closely linked to the design
and construction activities.

XP AND T&M
We have said that the techniques and representation means of XP are compatible with
the T&M approach. Both approaches are characterized by strong user orientation,
short development cycles, and quick releases. XP uses story, engineering, and task
cards, managing simpler document types than T&M. However, if you look at T&M
and XP as repertoires of methods rather than process models, then the cards and tech-
niques (e.g., planning games) of XP represent a valuable enhancement to the T&M
repertoire.

The differences between XP and T&M are found on the level of development
objects. T&M distinguishes between versions and, consequently, between core system,
special-purpose systems, and extension levels. Moreover, it allows for the construction
of prototypes. XP is always oriented towards executable releases. At the most, it dis-
tinguishes between internal and external release, which is not something that can be
seen to be of qualitative nature.

SUMMARY

Without claiming completeness, Table 12.2 lists the three approaches discussed here,
comparing the key planning units and development objects. One could argue that this
comparison refers to different orders of magnitude. This is true, since UP is the most
extensive and also most heavyweight approach, which means that UP can also be used
to plan and implement very large projects or project families involving complex docu-
mentation and development requirements.

XP concentrates on smaller or lightweight projects. The development objects are
also smaller, which means that larger projects first have to be partitioned. As an example
of this scope, the task cards sometimes relate to very small tasks that can be completed
in a few hours.

T&M (without XP integration) positions itself between the other two approaches.
It is suitable for medium-sized projects and recommends the partitioning of larger proj-
ects. On the other hand, the scale of planning of base lines is usually more extensive
than that of task cards in XP.

454 T H E D E V E L O P M E N T P R O C E S S

Zull-12.qxd 20/8/04 7:46 AM Page 454

Unified Process Extreme Programming Tools & Materials

Cycle Project Evolution Cycle
Cycles make up the life A system is developed A software system is developed in
cycle of a system. in projects of less evolution cycles. Each cycle is

A cycle results in a new than 20 people. organized as a project. An evolution
(external) release of a system. cycle results in a new version of a

system.

Phase Release Cycle Project Stage
Each cycle consists of four Within a planning game, A software project is subdivided into
phases: inception, elaboration, a set of stories are written project stages. These are relevant
construction, transition. and selected by the customer external events of a project.

that describe what the next A project stage has an explicit goal
release of a system should do. and produces a system version or a
A story should be estimated prototype. It lasts between 6 weeks
by the programmers between and 3 months.
one and a few days of team
programming effort. A release
cycle should take a max.
of 6 months.

Iteration Iteration Base line
Each phase is subdivided into Within the scope of a release Base lines are used for detailed
iterations. planning the developers use planning of a project stage and for

An iteration leads to stories to write task cards in constructive quality assurance. They
an increment. order to subdivide a release define tasks and checkable results.

cycle into iterations. Each They can be completed within a few
iteration takes a max. of person days.
4 weeks.

Workflow Task Task
A collaboration between workers Stories are realized by tasks. A task has a defined goal and
(developers) who are using and A task is what implements a comprises a set of related activities
developing artefacts. part of one or more stories. involving documents or system parts.

Core workflows are abstract The scope of a task is between A task is the smallest unit of
descriptions. UP uses several hours and two days. planning and should be finished
requirements, analysis, design, within a few hours.
implementation, test.

(External) Release Release Version
A (product) release is a A version of a software A system is shipped as versions. It
relatively complete set of system that makes sense to is usually partitioned into a kernel
models and documents the customer by containing system with extension levels plus
(including a build) delivered the most valuable business special-purpose systems.
to an external user. requirements.

Increment (Internal Release)
A small and manageable Every couple of hours the
part of a system. Each iteration new code is integrated with
results in a build which adds the latest release and all
an increment to a system. tests are run.

Build Build
An executable version of a An executable version of a
system, usually for a specific part. system.

TABLE 12.2 Comparing UP, XP, and T&M.

Zull-12.qxd 20/8/04 7:46 AM Page 455

12 .1 0 R E F E R E N C E S

N. E. Andersen, F. Kensing, J. Lundin, L. Mathiassen, A. Munk-Madsen, M. Rasbech, P.
Sørgaard: Professional Systems Development. New York, London: Prentice-Hall, 1990.

We have taken the general dimensions of a software project from this book.

K. Beck: Extreme Programming Explained. Reading, Mass.: Addison-Wesley, 2000.

The standard work by one of the outstanding promoters of extreme programming.

K. Beck: Test Driven Development. Reading, Mass.: Addison-Wesley, 2002.

This book explains the test first concept of eXtreme programming. For JUnit see
http://www.junit.org.

K. Beck, M. Fowler: Planning Extreme Programming. Reading, Mass.: Addison-Wesley, 2000.

The book that is most frequently quoted for planning with XP.

R. V. Binder: Testing Object-Oriented Systems: Models, Patterns, and Tools. Reading, Mass.:
Addison-Wesley, 1999.

A seminal work on OO testing.

G. Booch: Object Solutions: Managing the Object-Oriented Project. Reading, Mass.: Addison-
Wesley, 1995.

More on the topic of project management in OO projects.

B. Boehm: Software Engineering. IEEE Transactions on Computers, Vol. 25, 1976, pp. 1226–1241.

This paper made the traditional waterfall model popular.

B. Boehm: The Spiral Model of Software Development and Enhancement. Computer, Vol. 21,
No. 5., Mai 1988, pp. 61–72.

The seminal paper on the spiral model.

R. Budde, K. Kautz, K. Kuhlenkamp, H. Züllighoven: Prototyping. Berlin, Heidelberg: Springer-
Verlag, 1992.

One of our contributions to prototyping discussing traditional development strategies.

A. Cockburn: Agile Software Development. Reading, Mass.: Addison-Wesley, 2001.

A relevant contribution to agile methods.

T. DeMarco, T. Lister: Peopleware: Productive Projects and Teams. New York, N.Y.: Dorset House
Publ, 1987.

A standard reference for the supporting management style.

C. Floyd: A Systematic Look at Prototyping. In: Approaches to Prototyping. R. Budde, K.
Kuhlenkamp, L. Mathiassen, H. Züllighoven (Hrsg.). Berlin, Heidelberg: Springer-Verlag,
1984. pp. 1–18.

A seminal paper which has coined the terminology and concepts of prototyping

456 T H E D E V E L O P M E N T P R O C E S S

Zull-12.qxd 31/8/04 7:45 PM Page 456

M. Fowler: Refactoring–Improving the Design of Existing Code. Reading, Mass.: Addison-Wesley, 1999.

The seminal book on refactoring in eXtreme Programming.

A. Goldberg, K. S. Rubin: Succeeding with Objects: Decision Frameworks for Project Management.
Reading, Mass.: Addison-Wesley, 1995.

More on the topic of project management in oo projects.

D. Harel: Statecharts: A visual formalism for computer systems. Science of Computer Programming,
8/3, 1987, pp. 231–274.

The seminal paper on Statecharts.

J. Highsmith: Agile Software Development Ecosystems. Reading, Mass.: Addison-Wesley, 2002.

A relevant contribution to agile methods.

I. Jacobson: Object-Oriented Software Engineering–A Use Case Driven Approach. Reading, Mass.:
Addison-Wesley, 1992.

The book in which Jacobson originally introduced his use case concept.

I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process. Reading, Mass.:
Addison-Wesley, 1999.

Currently the standard work on procedures in projects in the context of UML.

M. M. Lehman: Programs, Life Cycles, and Laws of Software Evolution. Proc. of IEEE, Vol 68, No.
9, Sept. 1980, pp. 1060–1076.

Lehman explains in this paper this different types of software with respect to formalization.

T. Mackinnon, S. Freeman, P.: Endo-Testing: Unit-Testing with Mock Objects. In: G. Succi, M.
Marchesi (eds.): Extreme Programming Examined, Reading, Masss: Addison-Wesley, 2001.

This paper describes the concept of mock objects for class testing.

D. L. Parnas, P. A. Clements: A Rational Design-Process. How and Why to Fake It. In: M. Nivat,
H. Ehrig, C. Floyd, J., Thatcher (eds.): Formal Methods and Software Development,
Proceedings of TAPSOFT’85, Berlin, Heidelberg: Springer, März, 1985.

An important critical discussion of traditional development strategies.

G. Pomberger, G. Blaschek: Object-Orientation and Prototyping in Software Engineering. New York,
London: Prentice-Hall, 1996.

A relevant contribution to prototyping with a detailed discussion of development strategies.

Robert V. Binder: Testing Object-Oriented Systems: Models, Patterns, and Tools. The Addison-
Wesley Object Technology Series, 1999.

G. Succi, M. Marchesi: Extreme Programming Examined. Reading, Mass.: Addison-Wesley, 2001.

Based on contributions submitted at the first XP conference (Italy, June 2000): This book
offers an overview of conceptional and practical discussions on the topic of eXtreme
Programming.

R E F E R E N C E S 457

Zull-12.qxd 31/8/04 7:59 PM Page 457

This page intentionally left blank

459

T&M Document Types

This chapter describes the document types used in the T&M approach. Document
types, especially the application-oriented ones, are an essential element of our
approach. They are the material basis for making author-critic cycles really work.
Although little is new about the document types we propose, their interplay and their
consequent use for actively involving all relevant parties concerned in application
development is a trademark of the T&M approach.

The document types presented here have evolved from our project experience as
being relevant for dealing with central issues in the development process. The funda-
mental ideas relating to documentation are described in Section 5.3.7. We first focus
on the application-oriented development documents, that is, documents particularly
suitable for cooperative work with users, including:

● Scenarios (Section 13.1)
● Concept model (Section 13.3)
● Glossaries (Section 13.4)
● System visions (Section 13.5)
● Prototypes (Section 13.6)
● Cooperation pictures (Section 13.7)
● Purpose tables (Section 13.8)

We describe how these document types are structured and how they can best be
used in an evolutionary development process. As an important technique for the inter-
action with users and domain experts we describe qualitative interviews in Section 13.2.
Where possible or meaningful, we provide a reference to the UML diagrams and
models. We also describe our related experience in projects. The last section of this
chapter (13.9) discusses technical UML diagrams and models.

13 .1 S C E N A R I O S

A scenario is a prosaic text written in the users’ language that describes the
actual situation. The purpose of this description is to identify how and why
tasks are performed in an application domain.

13

Zull-13.qxd 31/8/04 2:37 PM Page 459

Scenarios always deal with a situation as it exists before the application system under
development is introduced. Existing applications are included in a scenario, but not
assumptions about how the new application system could change the actual situation.

We differentiate between scenarios according to the extent of their details; such
as, overview scenarios, task scenarios, and activity scenarios will be described later.

THE PURPOSE

Developers must understand the tasks and problems that users face at different work-
places in order to produce an appropriate application system that users can compre-
hend. Developers must therefore analyze and model day-to-day work situations with
their tasks and underlying concepts. The result is what we call a domain model (see
Section 6.4). We describe the task and process-oriented aspects of this model in a
document type called a scenario.

Scenarios are not only useful to describe tasks, work situations, and processes so
they can be understood equally by both developers and users. They also embody the
sense and purpose of different workflows, actions, and activities. They serve as an
excellent means of communication between the participating groups, and help devel-
opers to familiarize themselves with an application domain from the users’ view. These
benefits make scenarios useful documents in the analysis and development process.

Scenarios can be written on the basis of different sets of goals and with different
levels of detail. Naturally, scenarios for task analysis and domain design are primarily
elaborated at the domain level and ignore the technical implementation.

Scenarios are generally written by members of the development team and evalu-
ated by the users in author-critic cycles (see Section 5.3.4). This produces two effects:

1. It forces developers to tell a meaningful story that is comprehensible to users in
the language of the users. This assumes that the developers have understood
the work situation being described.

2. The scenarios give users an indication of how well developers have understood
their tasks. There is also a good chance that the scenarios will make users aware
of tasks they forgot to mention in the interviews (see Section 13.2), because
they are so commonplace. Thus scenarios also help reveal “blind spots” in the
users’ own understanding of their work as well as in how developers compre-
hend what they do.

THE STRUCTURE

Scenarios are written in prosaic form in the application domain language. To the extent
that this can be done easily with the available technical means, terms explained in a glos-
sary are highlighted. Each scenario also has a descriptive title. It is often useful to include
references to related development documents, such as other scenarios, in each scenario.

Since each project normally writes several scenarios, it makes sense to generate a
table of contents or, even better, an overview scenario.

THE CONTENT

Scenarios describe the aspects of the dynamics in an application domain, or the every-
day work situations, where people use tools and manipulate objects as part of their

460 T & M D O C U M E N T T Y P E S

Scenarios are a
part of the

domain model

Who are the
authors and who

the critics?

Zull-13.qxd 31/8/04 2:37 PM Page 460

work. This emphasis relates not only to individual actions (in the sense of workflows),
but also to the objects used in the process. Written in the form of a short prosaic text
in the language of the application domain, a scenario describes:

● everyday work situations;
● the flow of actions and activities;
● their meaning and purpose; and
● the objects and means used.

The description is primarily oriented to the tasks that a person handles.
Descriptions of machine processes are included in scenarios for embedded application
systems and their components.

Tasks are performed differently from case to case. It is, therefore, important that
the description includes the goal and content of the activities carried out in the tasks
being handled.

EXAMPLE: BUYING A NEW DEVICE

Returning to our EMS example, let’s assume that the device manager needs to buy a
new device. A scenario might read like this:

To procure a piece of equipment, the device manager obtains offers from different
hardware suppliers to ensure that procurements are made on a cost-effective basis. Offers
from three hardware suppliers are needed for a device costing $5,000 or less.

The device manager obtains the first two bids by phone. He provides the person rep-
resenting the hardware supplier with details of what is required in the device and has the
offer sent by fax. For the third offer, the device manager uses the World Wide Web. He vis-
its the website of a hardware supplier, prints the appropriate pages, and marks the device of
interest on the printout. When the device manager has all three offers in written form, he
puts a mark next to the best of the three offers. He writes a justification comment for the
procurement of the device and places it in a clear plastic folder, together with the three
offers. This plastic folder is then filed in the device manager’s procurement file in a cabinet
in his office. The procurement file contains all procurements in chronological order.
The device manager will use the procurement file to determine, for example, when to sort
out a device (see Activity Scenario: Sorting out a Device 13.12). When the offers are filed,
the device manager uses an order form to place the order for the device. First he makes two
copies of the order form. He keeps one copy in the plastic folder and sends the second copy
to the person who will be receiving the device. This second copy is distributed so the other
person can follow up on the active process.

When the device is delivered, the device manager places the delivery note into the
plastic holder with the offers, procurement justification comment, and order form. The
manager uses the delivery note to generate a description of the device. Finally, he adds a
unique identification for the device to the room plan.

COMMENT

This scenario identifies the acting persons and what they do to accomplish a specific
task. It shows the objects and means used and the way they are handled. Finally, the
scenario describes the purpose of the various activities, and it references another
scenario where a part of the task at hand is detailed (see Section 13.1.2).

S C E N A R I O S 461

What does a
scenario describe?

Task-orientation

The EMS
example

Zull-13.qxd 31/8/04 2:37 PM Page 461

BASIC ELEMENTS

Scenarios help developers to familiarize themselves with a domain work context,
allowing them to better understand work situations, ask questions about specific work
situations, and clarify concepts. However, scenarios should not be written exclusively
by and for individual developers, since this would greatly reduce the desired commu-
nication and learning process for the entire development team.

Members of the development team usually conduct interviews with future users
(see Section 13.2) to prepare a basis for scenarios and application-related glossary
entries (see Section 13.4).

In addition to interviews, developers can use other techniques to obtain the nec-
essary knowledge and experience for scenarios. The following techniques have proven
useful in several of our real-world projects:

● User observation: This gives developers an opportunity to “keep an eye” on users.
They observe users as they carry out their daily work over a short period and may
help them when possible. Though this method takes more time than interviews,
it gives developers a more intensive exposure to the application domain.

● Active participation: The more passive user observation method can be replaced by
active participation, which is like a short internship. Here, individual developers
are entrusted with selected tasks from the application domain for an average
length of time (several weeks). This often requires some training, after which they
work actively with users in their normal work activities. This even more time-
consuming familiarization with the application domain makes sense if a domain is
technically very complex and if a high level of comprehension of concepts and
tasks is necessary for modeling and a constructive cooperation with users.

● Ethnographic video-supported studies: When the users in a domain are difficult to
identify or are not readily accessible, such as people working in an airport or
department store, ethnographic studies are sometimes the only option available
to build a modeling basis. Videos are mainly used to document and then
analyze certain tasks or processes. They also identify recurring or conspicuous
behavior patterns. The use of video technology requires skilled specialist
knowledge in the developer team because there is a chance that relevant
information may not be captured.

13.1.1 Using Scenarios in the Development Process

The scenario is the primary document type in the communication between developers
and users at the project’s start. It supports the analysis and the modeling of an existing
task area.

Scenarios are also important for the entire development process because they help
to relate technical design decisions to relevant issues of the application domain. They
also support this task if parts of the application system are to be developed later. It has
therefore proven very useful to consult scenarios even with improvements that appear
to be purely technical, because many technical design decisions are only clear in the
light of a domain context. M. M. Lehman established that every five to eight lines of
program code contain a nondocumented assumption about the domain context of a
program.

462 T & M D O C U M E N T T Y P E S

Obtaining
domain

knowledge

Zull-13.qxd 31/8/04 2:37 PM Page 462

Because a scenario (agreed upon by users) describes an important situation in the
application domain, it is filed and not constantly updated. If the situation that a
scenario describes changes, then a new version of the scenario should be written.
A new scenario, discussed and agreed upon with the users, should also be written if the
level of knowledge about a application domain has changed.

NUMBER AND SCOPE OF SCENARIOS

Whether an application situation has been described adequately cannot be derived
from the number and extent of scenarios. Consequently, we cannot provide any rules
of thumb about how many task scenarios should be written or how detailed activity
scenarios should be. We do, however, warn against the misperception that scenarios
have to be written before all other documents. This perpetuates the illusion that we can
assess everything we need to know about an application domain at the start of a proj-
ect. It is important to remember that we are often unaware of aspects of an application
domain we should be looking at more closely until we are working on a project.

Therefore, a rough overview of the relevant tasks in the application domain
should initially be worked out and then described in an overview scenario.
Visualization in a business use case diagram (see Section 13.1.3) is also helpful. The
initial set of task scenarios are written on this basis. More detailed scenarios are not
written or additional task areas identified until there is a good idea about the tasks that
can be supported by an application system and how extensive this support should be.
Therefore, scenarios should accompany the entire development process.

Identifying and describing tasks in the application domain is a creative process
that can only roughly be supported by guidelines. Again, we want to emphasize that
scenarios (and other document types) represent a current understanding of a project
that develops dynamically. With the different subtypes of scenarios we are presenting
a way to record relevant situations in a document type. In this respect, we find all docu-
ment types to be a “materialized” understanding of situations in the development
process.

HOW SCENARIOS RELATE TO OTHER DOCUMENT TYPES

Expectations towards future work and weaknesses in current situations are frequently
mentioned in interviews. They must be identified and carefully examined to find the
document type in which they are established. Requests and ideas regarding future work
methods belong to the document identified requirements. Recognized weaknesses in
work processes or objects used in these processes belong in scenarios.

The identified requirements document is a document type that more appropriately
belongs with the project documents, comparable to a project order or offer. The reason
is that the perceptions, system characteristics, and requirements described in this docu-
ment type are not yet part of the agreed upon characteristics of the application system.

The terms used in scenarios are written in a glossary. This ensures that there is a
uniformity in the terms used in the different scenarios. A glossary also makes clear that
terms are used differently in different scenarios.

Scenarios are the basis on which system visions are created. Since scenarios are ori-
ented to user tasks, they can be used for the “rehearsal” of future tasks through the use
of newly designed tools and materials.

S C E N A R I O S 463

Scenarios are not
confined to the
start of a project

Identified
requirements

Glossary

Zull-13.qxd 31/8/04 2:37 PM Page 463

Scenarios help to produce screenplays which contain a description of work
situations that prepare the evaluation of prototypes.

The conceptual model, the class design, and the presentation of prototypes in
work groups create additional stimuli to refine a domain model. It often turns out that
the existing view of an application is still not consistent. Working on system visions
and technical designs will disclose uncertainties about the application domain, which
should be consolidated. It is important that revised scenarios are agreed upon with the
users and that old versions are kept.

Scenarios are becoming increasingly important for writing system tests. The reason
is that scenarios contain a description of the application situations to be supported by
the new system. Last but not least, scenarios can be used in the application domain as
job descriptions for new staff members.

The frequent cross-references to other document types highlight the central
importance of scenarios in the development process.

13.1.2 Subtypes of Scenarios

When describing complex work situations and large areas of responsibility, it is often
useful (but not mandatory) to divide scenarios according to the granularity or detail of
the contexts they describe. We present a classification that has evolved through our
experience on projects. We have tried to generalize specific requirements so that they
can be applied to new projects. The following subtypes show possible differentiations
that make sense when a domain-specific assessment of a current project cannot be
described at a uniform level of abstraction:

● Overview scenarios describe the overall picture of a workplace or an application
domain and summarize the important tasks.

● Task scenarios are established at the level of individual tasks and related activities.
● Activity scenarios consider individual actions, activities, and processes.

Figure 13.1 shows the connection between these scenario subtypes.

OVERVIEW SCENARIOS

An overview scenario provides a survey of the entire work situation under discus-
sion. It should give a picture of which people (in the sense of actors or roles) are
working together to accomplish which tasks.

464 T & M D O C U M E N T T Y P E S

Screenplays and
prototypes

System tests

FIGURE 13.1
Using a scenario

with subtypes.

Activity
Scenario

<<refines>> <<refines>>
Overview
Scenario

Task
Scenario

Scenario

Zull-13.qxd 31/8/04 2:37 PM Page 464

The aspects considered include:
● Type of participating workplaces
● Participating actors (or workers in UP terms)
● Complexity (and frequency) of tasks
● Sense and purpose of the tasks

The emphasis is on the tasks listed. The objective of an overview scenario is to
work out clearly which tasks are involved. The details in overview scenarios relate at
most to the current quantity structure of tasks. The concentration is on what and why
tasks are to be completed by different people in an application domain. What makes
overview scenarios special is that they provide the reader with an impression of the
tasks being handled by the people involved. It is usually very helpful to enhance an
overview scenario with a business use case diagram (see Section 13.1.3).

In overview scenarios the named tasks are allocated to actors (or workers).
References to detailed scenarios are also useful. In line with the terminology of the
Unified Process, we assert the following:

An actor is a collection of tasks and responsibilities assigned to a prototypical
workplace and a role. This role can then be “filled” by one or more people. This
assignment can change over time, it can be on a long-term basis, and it can be
informal or well-established within the corporate hierarchy. The important
point is that a role is named and specified. Actors are often linked to a certain
position or responsibility in a company.

The Unified Process distinguishes between roles in the development process and
roles in the application domain. In an application domain, users who interact with a
use case are referred to as actors in the sense that we use the term here. But UP also
calls machines that send events to a system actors. In the UP development process
roles are assigned to so-called workers. Thus, in many projects the developer role is
filled by people who are employed as “workers in a team,” which is a worker type.

TASK SCENARIOS

The scenario subtype task scenario describes what constitutes an individual task
and how this task is completed. This description has the character of a script or
narration of a small scene.

Alternatives to different decision points of the action are recorded but kept to a mini-
mum. A decision needs to be made weighing whether several alternatives to similar
actions for completing a task should be described (“the customer provides a name and
address or a name and account number”), or whether two basically different
approaches to a task should be written to two different scenarios (“a new customer sets
up an account and a standing order” and “a regular customer sets up another standing
order”). The guideline that can be followed is that simple case selections can still be
understood when read, whereas involved multiple-case selections or case selections
that also relate to previous selections tend to be incomprehensible.

The detail of a task scenario is such that individual actions recurring in different
tasks may be named, but they are not described in detail are and instead included in
separate activity scenarios. Specific actions important to understand how a task is han-
dled should only be described in special cases. It should be noted that this does not
result in an instruction on the specific handling of a certain task.

S C E N A R I O S 465

Focus on tasks

The Unified
Process

Zull-13.qxd 31/8/04 2:37 PM Page 465

ACTIVITY SCENARIOS

Activity scenarios describe the steps involved in completing a task in detail.

These are often activities, such as filling out certain forms and operating a specific
inspection that reoccur in the context of different tasks. A typical activity scenario
could describe certain details to be taken into account when a form is filled out or a
certain control procedure or calculation has to be executed several times in different
places. In this sense, activities are concrete physical movements, mental processes,
or mechanical actions that are oriented to work objects or means. They are the
most detailed form of dividing work in an application domain. From the description
of activities, we can determine exactly how something is done and what means
are used.

THE EMS EXAMPLE: ACTIVITY SCENARIO—SORTING OUT A DEVICE

As in the previous chapters, we use the EMS example to better understand the above
discussion.

To withdraw a device from service, the device manager has to update different files:

● The procurement file contains all procurements listed in chronological order.
The device manager finds the clear plastic folder for the device to be sorted
out, and identifies the device and purchase date from the specification sheet.
The manager removes the plastic folder from the procurement file and places it
in the disposed devices file.

● The disposed devices file contains all transparent folders for removed devices
sorted by removal date. The specification sheet for the respective device with
its history is kept on top in the folder.

● The device manager deletes the device from the room plan.

The device itself is collected by a waste disposal firm.

COMMENT

This activity scenario describes the sorting out of a device accurately enough so that
an outsider can understand the actions involved. Once they have been described, these
details need no longer be considered in the task scenarios concerned.

13.1.3 Scenarios and UML

Scenarios in the sense of the T&M approach correspond to business use cases described
in the Unified Process. Business use cases are a form of use cases describing a company’s
current business. It is important to know the workers and business entities involved in
the production of a useful result (called a work unit) for the customer (the end user).
Unfortunately, business use cases have been described only briefly in the Unified
Process. However, they play an important role as they make the context of a system
comprehensible. The analogy between the task-related way of looking at things in the
T&M approach and the customer-oriented view of the Unified Process is obvious.
Both approaches describe actors or workers and the objects they use to produce a work
result. In fact, business use cases are similar to task scenarios.

466 T & M D O C U M E N T T Y P E S

Business use
cases

The EMS
example

Zull-13.qxd 31/8/04 2:37 PM Page 466

BUSINESS USE CASE DIAGRAMS

Motivated by the Unified Process and UML, we have used business use case diagrams
to add a clear graphic representation of the identified actors and tasks in an applica-
tion domain to our textual overview scenarios. We use the standard UML notation
for use case diagrams. This simple form has proven useful for listing all subtasks
named in an overview scenario and the related task scenarios in the business use case
diagrams.

Figure 13.2 shows how we can use a business use case diagram in our EMS example.

13 . 2 I N T E R V I E W S

Qualitative interviews are an important method used by developers to familiarize
themselves with an application domain. They provide a sound basis for document
types, such as scenarios and glossaries, and for the domain design. This section presents
elements from the interview methods that we have used in real-world projects.

THE PURPOSE

Interviews are part of the learning process in application analysis. Qualitative interviews
are used to analyze an application domain. They are conducted by an interview team
with relevant representatives from the user community. Interviews are conducted to
provide a domain representation and interpretation of work situations and contents,
rather than representing a quantitative collection of facts and data.

I N T E R V I E W S 467

FIGURE 13.2
A business use
case diagram in
the EMS
example.

Cost
minimization

Acquisition of
new equipment

Upgrading
equipment

Managing
budget

Equipment
Manager

Team Member

Hardware
Vendor

Management

Qualitative
interviews

Zull-13.qxd 31/8/04 2:37 PM Page 467

THE STRUCTURE

An interview consists of the following optional parts that will be described in more
detail in subsequent sections:

● Presentation of the interview team and the goals of the interview.
● Role playing in a typical work situation.
● Open conversation with those being interviewed.
● Targeted questions asked by the interview team.

The following general principles apply to interviews:

● Interview partners should be guaranteed confidentiality and anonymity.
● The interviewer uses the language of the person being interviewed, that is, the

interview is conducted in the language of the application domain.
● The interview should take place at the workplace to ensure that the interview

partner is in a familiar atmosphere.

Interviews have the following general characteristics:

● They are verbal, personal, and nonstandardized. Standardized questions and
fixed questioning sequences should be avoided.

● They are open in terms of the questions asked; questions are formulated in such
a way that they can be answered with whole sentences and not only with a
“yes” or a “no.” The course the questions take is also open. The interview
partner is the one who structures the interview in terms of content and decides
how it is run.

● They are neutral and friendly in style, and should not be conducted in the
sense of an interrogation. The interviewer should be sympathetic to the
interview partner (and not to the responses).

● They take place as an individual interview to avoid outside influence.

13.2.1 The Interview Process

PREPARING INTERVIEWS

A main interview guideline is established when the content of the interview is
prepared.

The interview guideline covers all areas that the interviewers find important and
helps to direct the questioning so that unclear points are clarified. The guideline
is not a questionnaire with standardized questions. It outlines all topics that the
interview team wants to address.

During the preparation of a main interview guideline, the interview team often
becomes aware of a lack of certain background knowledge. The team must then decide
whether these gaps in knowledge can be closed in the interview or whether the team
should familiarize itself with the domain content before the interview.

As part of the preparation for an interview, the interviewers also have to mutually
agree on their roles:

● Interviewer: Conducts the interview and deals intensively with the interview
partners. The interviewer concentrates exclusively on the discussion and does

468 T & M D O C U M E N T T Y P E S

General
interview
principles

Characteristics of
interviews

Roles of the
interviewers

Zull-13.qxd 31/8/04 2:37 PM Page 468

not take notes. It is important that the interviewer “actively” listens so that he
or she always follows and motivates the interview partner to provide
assessments and statements about his or her tasks. This role demands a great
deal of concentration, and, in our experience, the interviewer frequently
changes roles with the moderator.

● Moderator: Presents the interview team, keeps the interview guideline in focus,
and carefully directs the course of the interview. Experienced moderators also
manage to take rough notes at the same time. However, caution is needed here.
A person often cannot concentrate both on taking notes and moderating
interviews at the same time.

● Note-taker: Takes notes and at most asks questions regarding clarification; can
use a tape or video recorder for support. It is important that an electronic
recording is never a substitute for active note-taking, because getting the idea
of what is said in the notes is what matters.

● Observers: This is a good role during the training phase when new members are
integrated into the development team. The observer follows the course of the
interview and afterwards comments on how well the interviewing technique
was mastered and which improvements would be useful.

There are other questions that typically need to be clarified in preparation for an
interview:

● When and how are the roles in an interview changed?
● What is expected at the workplace?
● Who in an organization has to be asked for permission and informed of an

interview beforehand?
● What kind of knowledge is available? Is it sufficient, or must additional

knowledge be acquired?
● Which preliminary discussions are necessary?
● Is it necessary to conduct a test interview for the interview guideline?
● Which material needs to be prepared? Background material about individual

projects, business cards, tape recorder?

INTRODUCING THE INTERVIEW TEAM AND APPROACH

For the actual interview, it is important that the interview partner is informed about
the meaning, purpose, and objective of the interview. This is the only way to ensure an
open discussion atmosphere. In addition, the interview partner and his or her work
environment should be informed about the approach to be taken in the project.
Employees in the operating departments of companies have often had some bad experi-
ences with software projects. It must be made clear to those involved that their active
participation is an important prerequisite for the success of an application-oriented
project. They need to understand that they are able to play a role in the creation of the
future system and that this role already starts with the interviews.

It has therefore proven useful to make a short round of presentations before the
actual interview takes place. Preliminary discussions conducted separately with all par-
ticipants provide a better opportunity for important information to be conveyed and
existing questions and objections to be discussed at the same time. The actual inter-
view will then take place in a more favorable atmosphere.

I N T E R V I E W S 469

Questions to
be clarified

Zull-13.qxd 31/8/04 2:37 PM Page 469

An introduction takes place before the start of the interview, even if a preliminary
round of discussions has already taken place. At a minimum, the interview team intro-
duces itself with its roles, a short explanation is given again of the context, and busi-
ness cards are distributed. The interview team should not forget to agree on the time
frame of the interview again.

ROLE-PLAYING

Role-playing is recommended if the interview partner frequently deals with customers
in her work. In this case, the interviewer assumes the role of the customer with the
interview partner playing herself. A small everyday situation is selected and recreated
as realistically as possible. This works particularly well if the interviewer is prepared to
become truly involved in the situation being acted out and plays the role of the cus-
tomer. Software developers sometimes have a problem with this situation and try to use
indirect speech only (“what would you answer if I had asked the following . . . ”).

Role-playing is an excellent addition to an actual interview, especially since users
tend to adopt their everyday behavior very quickly. This results in things and actions
being clarified that may otherwise not be noticed in a straight discussion. It also pro-
vides an opportunity to select situations that occur infrequently but are nevertheless
important to achieve an overall understanding of the tasks involved.

Another advantage is that a step-by-step review of the role-playing can be con-
ducted afterwards (in a sense in “slow motion”), and the interview partner has a
chance to make comments.

OPEN CONVERSATION

Open conversation is one of the most important characteristics of each interview. Here,
interview partners have an opportunity to clarify their assessments and interpretations.

For an open conversation, it is important that the interview partner feels a realis-
tic obligation to talk. Interview partners should be motivated to discuss their work
situations narratively. When interview partners get the hang of talking, they start
mentioning many things automatically. One could say that they are describing a movie
that is being run before their very eyes.

Interviewers mainly promote this narrative flow through short interjections and
concentrated listening. They can ask questions, but during this phase, they should
never try to control the issues of the conversation or change its direction. At this stage,
interview partners should explain their view of things. They will be prevented from
talking in their own language and presenting their own assessments about their tasks if
the interview is too tightly controlled.

The interviewer basically directs the conversation towards the current work situa-
tion. On their own initiative, interview partners will express judgements and assess-
ments about weaknesses in their work and desirable changes. This should be carefully
noted and documented as part of the identified requirements. The moderator and inter-
viewer should, however, make a concerted effort to avoid any discussion about the
detailed design of future systems at an early point in the project (i.e., when no proto-
types have been evaluated yet). Experience has shown that, although users often have
an idea of what is wrong with their work or where their is room for changes at the
beginning of a project, they seldom have enough technical experience and knowledge
to make recommendations on software technologies for a new system.

470 T & M D O C U M E N T T Y P E S

Benefits of role-
playing

Promoting the
narrative flow

Zull-13.qxd 31/8/04 2:37 PM Page 470

TARGETED QUESTIONS

After an open conversation, it is usually necessary to return to some of the statements
that were made. The note-taker reviews his notes and addresses points that he did not
completely understand or could not write down quickly enough. The interviewer will
ask additional questions if she finds that some of the issues have not been addressed in
the discussion, including the clarification of terms for the relevant domain concepts and
objects. This is also a good time to ask the interview partner for copies of materials that
were mentioned in the discussion.

INTERVIEW ASSESSMENT

Each interview is assessed by the interview team as soon as possible on the basis of the
interviewer’s memory and notes. Initially, this means that individual statements are
recollected. We recommend writing the minutes of the interview at the beginning of
a project or if the team is less experienced. This is not a record of how the interview
progressed, but rather a summary of results, grouping statements by topics. Such a
summary of results usually shows the areas where further questions—or perhaps even
another interview—are required. Moreover, the minutes are very useful for user
feedback (see next section).

As soon as the results of an interview have been recollected and agreed upon with
the interview partner, scenarios and related glossary entries are written.

USER FEEDBACK ON INTERVIEWS

Interview preparation and assessment cover the “author part” of an author-critic cycle.
A “critical” evaluation of the documents produced is a good complementary action.
The documents are presented to the interviewed users and discussed thoroughly with
them. According to the interview concept, it is suggested that the entire interview
team be present for this “circle of critics.” The documents are then revised as a result
of this analysis and evaluation process. This completes the author-critic cycle.

The goal of the interviews and documents should be two main aspects of the
analysis process:

● create diversity, and
● introduce synthesis.

Diversity is produced when interviews are conducted with different users and the
corresponding documents are always evaluated by these same interview partners. This
should enable developers to recognize the spectrum and bandwidth of the work forms
and processes involved. The developers should make sure that this diversity is encour-
aged in the interviews and not suppressed by rash cross-references to other interviews.

Synthesis is introduced on the basis of the recognized diversity. The documents pro-
duced are not discussed individually with the interview partners; instead, they can be
evaluated in a joint work session. The discussion partners are then specifically con-
fronted with the different positions presented. The aim of such a discussion is to iden-
tify points that have been agreed and disagreed upon, so that an integrated application
system can be created from the recognized diversity.

We have often experienced in such plenary meetings that many of the positions
that initially appeared to be controversal could in fact be combined into a joint
compromise, and that only a few real differences existed between the users. These

I N T E R V I E W S 471

Guideline for
analysis

Zull-13.qxd 31/8/04 2:37 PM Page 471

differences can be adopted in alternative system solutions and presented to the users
for their decision.

Both results are desirable: A compromise between different positions makes it
easier to develop a slim system, and early identification of relevant differences in
requirements clarifies where more flexibility is needed in the system design to cope
with variations.

13 . 3 T H E C O N C E P T M O D E L

A concept model is a taxonomy of terms based on the objects of the application
domain. The central concepts of the application domain are related to one
another and described in their characteristic interactions in the concept model.

Concept models are represented as a network of services (e.g., in the form of CRC
cards as introduced by Beck and Cunningham) or in the sense of a UP domain model
(in the form of class diagrams) from the concepts and relationships defined there.

A concept model is always based on the terms and objects identified in the
application domain. It represents the concepts that are central to the design of the
application system.

THE PURPOSE

While we are developing a common understanding of the “big picture” of the business
processes and tasks in our analysis of an application domain, we have to concentrate
our efforts very quickly. For we have to consider all important tasks, subprocesses, and
objects in view of further system development early on while we are analyzing the
application domain. This places us in a dilemma. We have to be familiar with the
future system, if we want to decide which parts of the current situation in the applica-
tion domain are important for the development of the system. At the same time, in
order to design the future system, we have to be familiar with the application domain.
This is where a concept model comes in handy.

A good concept model is the foundation for the domain architecture. It shows the
concepts that we further develop as classes of the software system, and it also guides the
ongoing domain analysis and modeling process. Our job is to group scenarios and glos-
sary entries around the central elements of the concept model. This means that we
have to concentrate on the topics, tasks, and processes linked to the concepts we
selected from the model.

THE STRUCTURE

A concept model is usually developed in two forms: as a set of CRC cards or as the class
diagrams of a domain model along the lines of UP.

CRC cards are particularly suitable for the actual modeling process. The relevant
concepts are selected from the scenarios and glossary entries (see Section 13.4) and
noted with their service relationships. It is important that the concepts and interac-
tions used are completely application-oriented; they shouldn’t be seen as programming
language elements (e.g., attributes or method names). The CRC cards that constitute
the core of the card network are those used for the concept model.

472 T & M D O C U M E N T T Y P E S

The dilemma of
analysis and

design

Zull-13.qxd 31/8/04 2:37 PM Page 472

Class diagrams are used in UP to represent domain models. We use class diagrams
for our concept models, with the following modifications:

● Concepts are represented as class rectangles with the compartment’s name and,
in some cases, responsibilities.

● Superconcepts and subconcepts are linked through the inheritance relationship.
● The general form of the use relationship means that two concepts are linked in the

form of service provider/client. The client relies on the service provider to obtain a
service. We use the dependency relationship (arrow with broken line) for this.

● The contains relationship is a special form of the use relationship. It associates a
container or collection with the elements kept in it. We represent this through
the association relationship (arrow with solid line).

THE CONTENT

We only place terms and notions from the application domain in the concept model
when we are fairly certain that they will play a major role for the future system. A con-
cept becomes important if it is central to the usage model of an application, and if it
occurs in the software architecture.

We first identify the relevant objects of the application domain and how they are
handled. The modeled objects of the application domain are then “coined” for the
concept. To abstract common features existing across several concepts, we use general-
ization to build a more general concept, or a superconcept. The structure of supercon-
cepts and subconcepts developed through generalization and specialization forms a
concept hierarchy. This is often referred to as an “is-a” relationship in the literature.

The mechanism used to build objects from other objects and then collect,
manage, and order these objects is called a composition or containment relationship.
The composition relationship between objects is retained between concepts at the
modeling level, because it often refers to application domain containers. We have
already said that collecting and ordering is one of the fundamental characteristics of
human work.

A dependency relationship means that an object can only provide a service with the
help of another object. For example, a loan contract can be processed only provided
that there is some form of security or collateral (see Figure 13.3).

It is often uncertain whether we should use a containment or dependency rela-
tionship. In such cases, we use the containment relationship when the object can
explicitly accept and release a collection of elements.

Note that these relationship forms have to be expanded, because they do not allow
for an elegant modeling of different views and work contexts in an application domain.
We use the role concept described in Section 9.4.1 to solve this problem. However, the
relationship types discussed here are normally sufficient to model an application
domain.

THE EMS EXAMPLE

Figure 13.4 shows a very “early” and simple concept model for our EMS example.
Assume that we already identified the relationships between the concepts. This con-
cept model provides the basis for the discussion of numerous decisions. For example,
the room plan should only use business cards and data sheets, but not devices or

T H E C O N C E P T M O D E L 473

Generalization

Composition/
containment

Dependency

Using class
diagrams for
domain models

The EMS
example

Zull-13.qxd 31/8/04 2:37 PM Page 473

employees. On the other hand, the device file contains employees and devices. The
data sheet is designed as a form.

BASIC ELEMENTS

Interviews, scenarios, and glossary entries obviously form the basis of a concept model,
showing the concepts in their context. However, not all concepts modeled in scenarios
and glossaries are adopted in the concept model. This takes us back to the same

474 T & M D O C U M E N T T Y P E S

contains

term

generalization

uses

Security

Folder

LoanFile LoanContract

Document

FIGURE 13.3
Generalization,

dependency and
composition.

FIGURE 13.4
Using a concept

model in the
EMS example.

Folder Form

Device File

Employee
Business

Card

Room Plan

Device Data Sheet

Zull-13.qxd 31/8/04 2:37 PM Page 474

dilemma. Analysis and current state modeling should not be separated from the design
of a planned system. Although no use cases or system visions have yet been written, the
initial perception of the system under development is an important factor for the con-
cept model. In summary, the concept model should not include concepts that do not
have to be supported in the application system.

13.3.1 Using a Concept Model in the Development Process

The concept model is particularly important at the beginning of the development
process as it links analysis and design. When we talk about the concept model, we are
still balancing the efforts for analysis and modeling of the application domain against
the efforts for building the software.

The concept model continues to develop in the course of the project. It should
always reflect the domain essence of the logical system architecture. The domain con-
cepts and their relationships are not only important in the application domain; they
also have to be represented in software, using classes. Thus regular examination of the
concept model can prevent an application system from being developed “away” from
the domain concepts.

Finally, a suitable description of the concept model often helps to clarify the basic
system design concepts to non-IT experts.

RELATION TO OTHER DOCUMENT TYPES

As we already mentioned, the concept model is based on interviews, scenarios, and
glossaries. CRC cards are another important tool. The concept model directly affects
class design and system visions or use cases, since it defines the domain core of these
documents.

As described in the previous section, there should always be feedback between the
class model and the concept model to ensure that the two do not develop in different
directions.

13.3.2 Concept Models and UML

In its description, the concept model corresponds to the domain model of the Unified
Process. Jacobson accurately speaks of a domain object model. He points out the risk of
constructing such a domain object model solely on the basis of the developers’ knowl-
edge. Instead, he recommends elaborating a business model systematically.

Our model of the application domain with its different document types and
aspects is definitely an interpretation of a business model. We place great importance
on a systematic approach towards business modeling. The concept model is an impor-
tant component of the application system model. In the sense of UML, we can there-
fore argue that our concept model can be thought of as a class diagram. Compared to
the Unified Process, it corresponds to the domain object model.

13 . 4 G L O S S A R I E S

A glossary is a directory of terms relevant in an application domain. These terms
relate to the objects used in the application domain, and to the associated
handling characteristics.

G L O S S A R I E S 475

Zull-13.qxd 31/8/04 2:37 PM Page 475

A term listed in a glossary represents a glossary entry, so that the glossary forms
a dictionary of terms used in the application system.

THE PURPOSE

A glossary is the central location for domain and technical terms relevant in an applica-
tion domain. It is therefore used to build a common project language, facilitating the
training of developers in the application domain. In addition, they document where the
developer team has agreed on a common understanding of a term.

THE STRUCTURE

The primary question that arises when glossary entries are created is, “What is the
purpose and meaning of the concept or object?” This does not relate to the structure
or inner construction, but to the use planned for an object. A form file is a good
example. A brief characterization would be the following: “A form file provides the
forms needed in a consulting or sales situation as copies sorted by the different
banking categories.” Information about the content based on the following scheme
would not be sufficient: “A form file contains the forms ‘Contract form for saving with
additional payment’”

Although there are many suggestions in the literature for the (conceptual) struc-
ture of glossary entries, we feel that overly rigid instructions for structure act as a hin-
drance in working with the glossary. It is important that a glossary entry starts with an
explanation of the meaning and purpose of the described object. The following exam-
ple for the structure of a glossary entry should only serve as a suggestion:

● Name
● Meaning, or a brief description of content (what it is, how it works, what it is

good for)
● Structure (how it is constructed, what parts it consists of)
● Example
● Context (what connection the term has with other terms and concepts)
● View (who created the description from which “role” and in which project)
● References to other development documents

The naming and structuring of a glossary entry depends on the respective context.
Although an informative entry can contain structural characteristics, it does not have
to comprise all components.

THE CONTENT

A glossary emphasizes the static aspects of the application domain we are to model, but
not the dynamic aspects that are described, for example, in scenarios and use cases.
Glossaries primarily explain objects and concepts rather than events or processes.
Domain and technical terms used in the concept model are defined in the glossary.

The content and description type of a glossary are oriented primarily to the lan-
guage of the application domain. All uncertain terms used in the application domain
should be documented. There is no formal way of specifying which terms are so trivial
or self-evident that they do not belong in a glossary. When different operative depart-
ments use the same terms but with a different meaning, or when several projects build
a joint glossary, it is necessary to clarify the different sources or views of a glossary entry.

476 T & M D O C U M E N T T Y P E S

Structure of a
glossary entry

Zull-13.qxd 31/8/04 2:37 PM Page 476

This is the only way to ensure that glossary entries can eventually conform closely to
a changing domain language, and that design decisions can retrospectively be docu-
mented in domain terms.

THE EMS EXAMPLE

Table 13.1 shows a small part of a glossary in the EMS example.

BASIC ELEMENTS

Glossary entries are usually created in conjunction with scenarios, cooperation pic-
tures, and use cases. It is also important to link a glossary closely to the on-site inter-
views. Scenarios and the accompanying glossary entries are written from the interviews
and the interviewer’s recall of what was discussed. This is the only way to ensure that
the application domain language and not the development team’s version, is documented
in the glossary.

We explicitly warn against trying to save time by taking domain terms from refer-
ence books without first coordinating with the users. It has been shown that even
apparently universal definitions of terms (such as “account” or “service”) have a “local”
interpretation and use that are important for the subsequent design process. Once they
have been entered in a glossary, “fuzzy” terms taken from the literature acquire their
own momentum that is hard to stop and can lead to serious design errors.

13.4.1 Using a Glossary in the Development Process

Glossaries give future users a chance to think, together with developers, about the sig-
nificance of the terms they use both in their normal and technical language. Glossary
entries are often helpful to clarify the developer’s understanding of things, serving as a
catalyst for editing other documents.

Glossaries refer directly to the terms used in scenarios, use cases, and system
visions. A glossary should reflect the current state and develop a “project language.”
Ideally, project glossaries and histories can be extracted from an integrated glossary. It
therefore makes sense to link design documents with glossary entries.

In some cases, it may be necessary to clarify whether to create an integrated
glossary or several project-specific glossaries. From the technical view, a single large
glossary is more difficult to maintain than several small ones. From the application

G L O S S A R I E S 477

TABLE 13.1
Using a glossary
in the EMS
example.

Term Explanation

Offer An offer shows the price of a device of a piece of
equipment with VAT included.

Workplace Every team member has a workplace of his or her own. It
is located in a room identified by a room number.
A workplace comprises a workplace computer.

Workplace computer Synonym for device.

…

Common or
project-specific
glossaries

The EMS
example

Zull-13.qxd 31/8/04 2:37 PM Page 477

domain’s view, however, a large glossary means that each project can access the con-
solidated results of previous projects for their own work. On the other hand, there will
be little motivation from the view of an individual project in maintaining the consis-
tency of a large glossary without the necessary technical support.

The optimal solution for glossaries in the development process depends on the
availability of appropriate technical support, similarly to a good project library: each
project can “check out its excerpt” from a glossary and work independently on this
excerpt for an extended period of time. In fixed intervals, the project glossary is reinte-
grated (“checked in”) into the complete glossary. This integration does not mean that
the project-specific view is lost. It only means that the glossary has to be checked to
see where standardization is sensible and necessary and where project-specific differ-
ences should be maintained for a term.

For example, the term “customer information” can mean something totally differ-
ent for self-services support than for financial consulting. However, it would be useless
if both projects had an incompatible interpretation of the term “account number.”

Great progress has been made through the use of data dictionaries, compared to
manual glossary management. However, there is still room for improvement in sorting,
searching, and managing cross-references in extensive glossaries. A large glossary is
unlikely to be used unless it is extremely user-friendly. As a consequence, we see a sec-
ond negative effect: When a glossary is only partially updated, it raises the question of
which descriptions of terms are still up-to-date and which ones have already become
outdated in practice.

We have had positive experiences in projects that use the hypertext capabilities of
Web browsers for document management. Separate project websites are also very
suitable; these are used as community spaces that provide general information and
allow users to exchange documents.

One of the questions frequently asked in this respect is how many glossary entries
should be created and what kind of effort to produce them is justified. The same thing
we said about scenarios applies here as well. The terms of a domain language can never
be defined exhaustively. Also, an attempt to create a glossary at the beginning of a
project doesn’t make much sense. The reason is that, as time goes by, the terms of the
“original” domain language are gradually supplemented by terms evolving from the
new application system, which will eventually be part of the application domain.
These new terms help to determine where and to what degree changes have occurred
in the domain language, that is, where the domain language has been “reconstructed.”

This shows that a glossary has to undergo constant development during the
development process.

RELATION TO OTHER DOCUMENT TYPES

Altogether, we can say that the use of a glossary is not limited to the development and
evolution of an application system; it also serves as the basis for user manuals.

The glossary is the basis for the concept model. Each term adopted in the concept
model should be carefully defined in the glossary.

Coordination problems can occur between the glossary and the designs when, for
example, form descriptions or computation instructions are so detailed that they
cannot easily be added to the glossary. These descriptions should then be incorporated
directly into a design document.

478 T & M D O C U M E N T T Y P E S

Tool support

Zull-13.qxd 31/8/04 2:37 PM Page 478

Together with the concept model and the scenarios, glossaries form the basis for
system visions, use cases, and the terms of a cooperation picture (see Section 13.7),
and, consequently, also for prototype preparation.

13.4.2 Glossaries, UML, and UP

UML does not use glossaries, and they play a subordinate role in UP. However, they are
considered very important for the development process. In UP, a glossary is an artifact
and corresponds to our definition. It is used with the requirement specification and
supports use cases. It also plays an important role in domain modeling. This means
that UP defines and uses glossaries in the same way as in our approach.

13 . 5 S Y S T E M V I S I O N S

A system vision describes in short prosaic text form how tools, automatons, and
materials can be used to handle domain tasks.

A system vision takes both the domain and the software views into account.
When focusing on workflows, system visions and use case descriptions are equivalent.

A system vision provides developers with a sound basis to develop a common
understanding of the design of a future application system. This means that system
visions document the current understanding that the project team has of the system
under development.

THE PURPOSE

In the T&M approach, system visions are important to link analysis and design. They
form the logical connection between the domain models and the actual system and its
prototypes.

System visions promote the design process in a team. Using system visions raises
questions about the objects being designed, their usage model, and the tasks to be
supported. In the case of large teams or teams that do not have an adequate common
background of experience, answers to these questions should be documented. This is
one of the main purposes of system visions.

System visions should serve different purposes due to the different kinds of issues
involved. Consequently, they also vary in detail and focus.

● They provide an overview of the entire system being developed.
● They present a dynamic sequence of events from a domain or software

engineering view. This corresponds to the use case descriptions in UML.
● Accordingly, they model the design metaphors of each system element.
● They represent specifications for system construction, thus serving as targets for

the developers. The story cards and engineering cards used in eXtreme
Programming can be interpreted as a special form of system visions.

The main idea behind system visions is to link the concepts of the application
domain as seamlessly as possible with the concepts of software construction. They
respond to questions that arise and document design decisions even before answers can
be tested on prototypes or executable system versions.

S Y S T E M V I S I O N S 479

Variants of
system vision

Zull-13.qxd 31/8/04 2:37 PM Page 479

THE STRUCTURE

A system vision

● has a domain-motivated title;
● is either domain or software-oriented; and
● helps find answers to specific questions.

This formal structure is kept very general and is always substantiated through the
problems being worked on.

THE EMS EXAMPLE

In our EMS example, a short system vision might look like this:

Updating Devices

The device manager starts the device organizer at his workplace. In order to compile a list
of devices that have to be updated, he does the following:

He clicks the “Find” button of the device organizer. He selects the option “Find all
devices updated before . . . months” and enters “6.” Then he selects the local equipment
folder. After clicking “Compile list,” the list of devices to be updated is compiled. The tool
displays the number of devices found. After clicking the button “Edit list,” the forms editor
is started.

13.5.1 Using System Visions in the Development Process

System visions help developers to express their ideas and document them for further dis-
cussion. In our experience, only certain visions are meaningful for cooperative work
with users. They have to provide an overview of the general purpose and features of the
system without technical details. Then they can provide a useful decision-making basis
for the management of the development and application organization, for example,
by giving an idea of the future task distribution. These visions can be supplemented by
use case diagrams.

More technical visions are normally not suitable for discussions between develop-
ers and users, because users lack the software engineering background needed to
develop a consistent picture of things, such as the behavior of a tool or the execution
of an automaton. Prototypes are much better for this.

For large teams or complex systems, system visions are used by the project team as
sketches and meeting notes. The note-taker records his or her view of the discussion
results in a system vision and is then the author. In the next project session the other
members of the development team are the critics, whose job it is to combine the
author’s description with their own views. This procedure develops the next version of
a document.

DISCUSSION

The kinds of visions that we should write, which questions are relevant in a project,
and in which sequence questions should be handled are issues that have to be dealt
with on a project-specific basis. Not all projects will require visions to cover the open
questions. Small manageable applications are often developed only using the resources
of eXtreme Programming, that is the story and engineering cards (see Section 12.8.4).

480 T & M D O C U M E N T T Y P E S

The EMS
example

Zull-13.qxd 31/8/04 2:37 PM Page 480

This applies mainly to well-trained teams that work jointly in short feedback cycles on
one application system.

A system vision is a tool that helps developers to write a concept of a joint idea,
or a vision of a future system. In most projects, the documents themselves are mainly
memory aids or notes from the discussion process. This situation changes when a
development process has to meet increased demands for quality assurance. This is the
case when an external audit, an independent review team, or a formal certification
process has to be incorporated. In these cases, system visions become domain specifi-
cation documents that can be linked to program code and system tests.

BASIC ELEMENTS

System visions are often written along with the scenarios. This allows us to establish a
direct reference between the current and future situation, and gives developers a cer-
tain assurance that they have not overlooked anything important. Of course, a concept
model and cooperation pictures are important for system visions.

It is important, however, that the domain model is only used as a starting point for
system visions. In many cases a direct mapping of processes or even tasks is neither pos-
sible nor desirable. Cooperation pictures of future business processes help to decide
which part of the future work should be supported by the system under development.

NUMBER AND SCOPE OF SCENARIOS

There is a certain risk inherent in the use of nonexecutable documents for developers.
Documentation work should never be approached as an end in itself and with a
demand for perfection and completeness.

The work involved for a vision must always be viewed in relation to gaining
knowledge. The team has to make a decision concerning:

● whether system visions are even sensible or whether, for example, it would not
be better to build prototypes on the basis of scenarios and concept and class
hierarchies with CRC cards; and

● whether a discussed system vision should be revised or whether the team has
developed a common understanding of the issues in the meantime.

Project management should make sure that this decision is not made too hastily.
Many teams, particularly when the members are inexperienced, would greatly benefit
from working with system visions, but often tend to start programming, while neglect-
ing the documentation part. This is clearly not our approach.

RELATION TO OTHER DOCUMENT TYPES

Visions must be consistent among themselves and with other documents. The devel-
opers must check whether the tasks described in the scenarios and requiring support by
the future system have also been modeled sufficiently in visions. The terminology used
in the visions and in the glossary also has to be consistent, and lastly, the tasks being
supported must be modeled in their processes as well as at the level of the individual
components.

We therefore already tend to specify in system visions how a system is to be
designed through tools, materials, automatons, and service providers. Here, we also use
the domain terms that are then arranged in hierarchies of the concept model and are

S Y S T E M V I S I O N S 481

Decisions for
using system
visions

Zull-13.qxd 31/8/04 2:37 PM Page 481

realized as a class model. We have stipulated this connection with our requirement for
structural similarity (see Section 5.2.5).

13.5.2 System Visions and XP

Story cards are the key application-oriented document type in eXtreme Programming.
They are used in the planning game where actors in the roles of programmers and cus-
tomers agree on the requirements of a future system. The story cards are written by the
customer in “original” XP and then elaborated by the programmers after priorities have
been jointly set and a time estimate projected. Here story cards are pure domain
descriptions of the characteristics and interaction forms of the system.

We also use story cards for the planning game, but in a different way than in
“pure” XP, and our planning game also differs in some aspects. Firstly, we divide the
customer role into “customer” and “user.” While the customer signs the contract and
arranges for payment, the user will actually use the future system. In most of our
projects, neither the users nor the customers write story cards, because they normally
do not have the time, appropriate skills, or process knowledge necessary. But this
depends on type of project and on the customer and users. Our developers usually
write story cards based on interviews with users and observations of their actual work
situations. These story cards are reviewed by the users and the customer. The users
have to assess whether the implementation of the story cards will support them. They
therefore review the developers’ understanding of the application domain. The
customer decides which story cards to implement in the next development iteration
and which priority to assign to them. To avoid serious conflicts of interest between the
users and the customer, both parties are involved in the planning game. Users can
then articulate their interests and discuss the priorities of the story cards with the
customer.

Our experiences have shown that the users and the customer will normally com-
promise on their mutual interests. However, the decision about what will be imple-
mented next will not be made finally by developers but by the customer, regardless of
a planning game’s outcome.

A complex project will have a mass of story cards, which makes it difficult for
users, customers, and developers to obtain an overall picture from the story cards. For
such projects, we use the additional document types described in this chapter.

In addition to application-oriented story cards, we use engineering cards for refac-
toring in XP. These cards are written by developers for developers and define a devel-
opment task. These cards also include a time estimate and are ordered by priority. The
programming pair that works on a story or an engineering card ticks off a card and
writes down what work was actually involved.

13.5.3 System Visions and UML

It is obvious that system visions are closely related to use cases. The basic idea of our
version of interaction visions is directly comparable to normal use cases.

A closer look shows that use cases, as Jacobson originally proposed them, can be
seen as an important addition to our system visions. Use cases are brief descriptions of
how an action initiated by an actor is processed by the system, which produces a reac-
tion. This means that each use case describes one potential execution throughout the

482 T & M D O C U M E N T T Y P E S

Story cards

The limitations
of using story

cards

Use cases

Zull-13.qxd 31/8/04 2:37 PM Page 482

system. The set of all use cases describes all reactions possible in the system. This set is
normally never written in its entirety, but the basic idea is very helpful. It provides a
domain and software description of the system behavior. The technical version of use
cases is usually represented in a sequence or interaction diagram. This establishes a
connection to the technical construction. Moreover, system tests can be based directly
on use cases.

Use case diagrams represent an important addition to system visions. System
visions can be easily drawn as overviews in these diagrams.

At this point another comment about the actor concept would be useful:
According to UML/UP, people as well as technical aggregates may be regarded as
actors. This is certainly useful when it comes to embedded application systems. We
recommend, however, that human actors be represented differently than mechanical
ones. Developers must always be clear about whether a person or a machine will be
expected at the interface of the system they are developing.

13 . 6 P R O T O T Y P E S

We will start with a definition:

A prototype is an executable model of selected aspects of an application system.
Prototypes serve as a discussion and decision-making basis for developers
and users. They offer the most important foundation for evaluating future
application systems.

However, prototypes are also used to experiment and gain knowledge and
experience. This means that they help us clarify specification and construction
problems.

THE PURPOSE

Prototypes can be built to support various activities in a software development process,
including:

● Project initiation
● Analysis of the application domain
● Design and construction of the application system

Following Christiane Floyd, we distinguish between different prototyping kinds,
depending on the relationship between a prototype and its purpose:

Explorative prototyping is used when problems are not clear. The requirements of
users and the management of an application system are clarified. The develop-
ers familiarize themselves with the application domain and the tasks handled by
the users.

Experimental prototyping is used when the technical implementation of a devel-
opment goal needs clarification. The users experimentally clarify their ideas of
the application system. The developers obtain a good idea about the feasibility
and suitability of the system.

P R O T O T Y P E S 483

Human and
technical actors

Prototyping kinds

Zull-13.qxd 31/8/04 2:37 PM Page 483

Evolutionary prototyping is an ongoing process to adapt an application system
rapidly to changing conditions. Software is developed in a continuous, evolu-
tionary process rather than in self-contained projects.

THE STRUCTURE

We can say little that is specific about the structure of a prototype, besides the guide-
lines given for general T&M system construction. But we can distinguish between
the following prototype categories and the associated questions regarding goals and
purposes, and how they are evaluated for development:

A presentation prototype supports formulating a first impression of a future sys-
tem. Its goal is to show the customer what the application system will basically
look like. It should provide developers and users with an initial idea of how the
system will be handled and what use context it covers. Presentation prototypes
are normally evaluated by the corporate management.

A functional prototype helps to clarify problems and answer design questions. It
shows parts of the user interface, combined with a section of the functionality.
Functional prototypes usually already incorporate the architecture of the appli-
cations system and, therefore, also support the construction of the system.
These prototypes are evaluated by all groups.

Breadboards are pure technical prototypes aimed at clarifying the software engi-
neering issues that arise during the construction of an application system. They
use a section of the implementation model for this purpose. This prototype
category is also found in traditional development projects. Breadboards are
evaluated by developers only.

A pilot system is used and evaluated during the transition stage in the application
domain. This is a technically mature prototype. The initial pilot system often
corresponds to the core system of the future application. It is enhanced in an
evolutionary way through extension levels (see Section 12.7.2). Pilot systems
offer comfortable and secure handling and a minimum of user manuals. Users
have a major influence on the evaluation of pilot systems.

THE CONTENT

We have organized the issues and contents for the construction of a prototype, based
on the prototype category we want to build:

Presentation prototypes:
● Which guiding metaphors and design metaphors should the prototype clarify?
● Which parts of the application domain can potentially be supported by the

future system?
● Which basic manipulation and presentation should the system offer?

Functional prototypes:
● Which problems or design issues need to be clarified with the users?
● Which tasks and work sequences should be supported and how?
● Can selected tasks and sequences be dealt with easily and in line with business

rules and regulations with the prototype?

484 T & M D O C U M E N T T Y P E S

Prototype
categories

Issues of the
prototype
categories

Zull-13.qxd 31/8/04 2:37 PM Page 484

Breadboards:
● Which construction alternatives are available for a technical problem?
● How do the various implementation possibilities work with the architecture of

the application system?
● How does the application system behave in an embedded system basis?

Pilot systems:
● How well does the pilot system prove itself in the handling of everyday work

activities?
● Can the extension level planned still be tackled on the basis created?
● How does the application system behave in real-time operation?

THE T-PROTOTYPE

In practice, mixed forms of prototypes are frequently developed along with the pure
prototype categories listed above. The so-called T-prototype has proven effective in
many projects. It consists of a combination of a presentation prototype and breadboard.
Like a presentation prototype, it is structured broadly so that it clarifies the funda-
mental handling and presentation of an application system at the interface. As a bread-
board, it is structured deeply to demonstrate the technical feasibility. This produces an
overall impression of the application system that is then enhanced by individual oper-
ative components.

T-prototype construction is particularly good if the prototype is evaluated by dif-
ferent target and interest groups. Often both domain and technical criteria are empha-
sized, especially when both users and the development management group evaluate the
success of a prototype.

13.6.1 Using Prototypes in the Development Process

Prototypes provide the prime basis that enables developers and users to talk substan-
tially about a system. An evaluation of domain-related and technical design decisions
is possible on the basis of the different prototypes. The most important prototypes are
those that encompass a developed user interface as well as the domain model of the
application system and an implementation model. Again, this stresses the importance
of our demand for structural similarity (see Section 5.2.5).

● The use of prototypes shows users that the analysis process with application-
oriented document types (scenario, glossary, cooperation pictures, and purpose
tables) produces relevant operational results that support their work.

● For the development team it is important that the system visions do not have
the character of illusions, that is, they have to show that it is basically possible
to construct the solution they are seeking.

● Development management receives clarification that the innovative development
process will lead to workable results (pilot systems) at an acceptable cost in the
near future, and that these pilot systems can be integrated into the existing
application domain and the technical basis.

● Lastly, user management clearly sees that the development process is leading to
a solution that can be justified in organizational and operational terms, and
that this solution is more efficient than the current one in terms of dealing
with the respective tasks.

P R O T O T Y P E S 485

The T-prototype
as a mixed form

Benefits of
prototyping

Zull-13.qxd 31/8/04 2:37 PM Page 485

In addition to prototypes, breadboards in a narrower sense—as prototypes used by
the developer team to evaluate design alternatives—are always a valuable enhance-
ment to the development process. They are useful because they help to clarify con-
struction problems for developers and also often serve as a catalyst for new and
far-reaching ideas for system design.

The use and evaluation of prototypes in the development process is important for
the success of prototyping as part of the development strategy (see Section 12.3.2).

WORKSHOP VISITS

In addition to the classic form of prototype evaluation within project reviews and user
work groups, we have had great success using workshop visits as a methodical element
in different projects.

Workshop visits are informal meetings at the developers’ workplaces. In their
own work environment, the developers present the prototypes of a future appli-
cation system to its users.

This kind of prototype demonstration has several strategic advantages over normal
meetings, workshops, or reviews. First, the atmosphere is informal, and communication
can take on a more personal character. This atmosphere can help clarify many prob-
lems in advance, before official project deadlines or reviews. Another advantage of
workshop visits is that they contribute to the ongoing cooperative work between
developers and users. Partial results can be presented at a workshop visit even before a
prototype is completed. No one would expect to see a finished product. Nevertheless,
the impression is given that something is happening, one can see where the develop-
ment is going, and users feel they are actually involved.

In general, feedback cycles allowing users to evaluate prototypes should be within
short intervals, because these discussions form the basis for a common project culture
in which mutual domain competence is accepted.

PROTOTYPE SCREENPLAYS

We have also been successful in using prototype screenplays with workshop visits and
other forms of prototype evaluation.

A prototype screenplay is a short script that represents a brief description of
everyday work situations in the application domain. The handling of tasks is
described in a way that approximates everyday reality, without explicit reference
to the new application system. The scenes from a screenplay are then played
out, with a prototype.

The main value of prototype screenplays is that they facilitate a targeted and prac-
tical evaluation of prototypes. The emphasis is on relevant tasks, without relying on
the concrete usage model.

Prototype screenplays help to avoid the risk that users or developers might make
unnecessary or nonsensical things the subject of their evaluation by interactively play-
ing with prototypes. For example, instead of conducting fruitless discussions about the
detail of a screen layout, participants can concentrate on the domain-specific core of a

486 T & M D O C U M E N T T Y P E S

Zull-13.qxd 31/8/04 2:37 PM Page 486

prototype and the usability of modeled tools and materials. Incidentally, we should
mention that domain-motivated screenplays are very useful in evaluating standard
software.

NUMBER AND SCOPE OF PROTOTYPES

The kinds of prototypes just discussed are normally built over the entire period of a
development project. This means that we use the entire spectrum of prototype cate-
gories, depending on the problem involved, especially in large projects. It also means
that prototyping is not reduced to one development phase, such as identifying
requirements.

The value of prototyping to high-quality software is undisputed. This is also
confirmed by the Unified Process demand for an iterative and prototype-oriented
approach.

Finally, prototypes are the most effective means for presenting the dynamics of a
design and turning it into something that can be discussed by all participating groups.
They play a key role when project progress is identified in stages (see Section 12.8.2),
and as pilot systems form the flexible transition between a core system and its exten-
sion levels. It is therefore not sensible to limit the number of prototypes in general.

RELATION TO OTHER DOCUMENT TYPES

Prototypes, apart from relating to all document types described in this chapter, are par-
ticularly connected to system visions. One reason is that system visions occur at the
decisive interface between the analysis of a current situation and the design of a future
system. On the other hand, we have pointed out that system visions only have
restricted suitability for discussions between all participating groups. We therefore have
to coordinate system visions properly with prototypes that can be evaluated on both a
domain and a technical basis.

Prototype evaluations typically intensify the author-critic cycles. Scenarios and
glossaries are often revised after a prototyping session. On the technical side, func-
tional prototypes and breadboards can influence questions about the embedding of new
system parts.

13.6.2 Prototypes and UP

Prototypes do not play an independent role in UML, which is obvious. The Unified
Process is a different matter. Prototypes are very important in an iterative approach.
UP uses two prototype categories:

● Exploratory prototypes are supposed to show potential solutions, but are not
developed into complete applications (disposable prototypes). Examples include
prototypes that implement the user interface or an interesting new algorithm.

● Evolutionary prototypes are supposed to be developed in successive stages, such
as architectural prototypes.

We conclude that prototyping is firmly integrated in the Unified Process.
However, the concepts are not as differentiated as they are in T&M. Moreover, it
appears that authors do not yet have as much experience with the approach. Overall,
however, we can see that there is a shared fundamental understanding of prototyping.

P R O T O T Y P E S 487

UP prototype
categories

Zull-13.qxd 31/8/04 2:37 PM Page 487

13 . 7 C O O P E R AT I O N P I C T U R E S

A cooperation picture is a visual representation of a cooperative work situation.
Self-explanatory pictograms and arrows are used in cooperation pictures.
Cooperation pictures show how people (as actors) work together on the
basis of a division of labor and what they exchange with each other in
their work.

Cooperation pictures can be used, among other things, for actual state analysis and for
the design of future IT-supported work sequences.

THE PURPOSE

Scenarios, glossaries, and system visions are very useful in describing different tasks and
activities from the view of individual workplaces. What is lacking, however, is an over-
all view of the cooperative situation, especially with complex comprehensive tasks.
It is not easy simply to create this overall view, because it is unlikely that any of the
application experts will have dealt with this aspect of day-to-day work before the
software project started. This problem arises when complex cooperative tasks have to
be supported.

Application development is often accompanied by organizational changes to
introduce new workflows or business processes. For software developers, it is important
to understand these new processes and represent the relationship between these
processes and IT support in an intuitive way for the users.

There is another, more general problem: The set of scenarios for complex cooper-
ative tasks, such as loan management in a bank or patient admittance in a hospital,
normally involves a considerable amount of text, so that these documents are not suit-
able for overviews or joint discussions with participants.

To solve this problem, cooperation pictures can be used additionally to clarify how
and in what way participants should cooperate in a complex environment. Apart from
providing feedback on analytical results, cooperation pictures can be used in a joint
analysis of cooperative tasks. And finally, cooperation pictures are also suitable in
assessing the effects of organizational changes.

THE STRUCTURE

Cooperation pictures are labeled icons representing roles, actors, or workplaces
connected by arrows. The arrows between the actors or workplaces are labeled with
pictograms and indicate that materials or information is passed on or exchanged.
The pictograms on the arrows describe the type of material or information exchanged.
Cooperation pictures show especially well how these things are exchanged. Arrows can
be numbered so that they present a typical or sample sequence of task completion.

Pictograms symbolize objects or information that is being exchanged between
workplaces or actors. If the symbol is a telephone or a little running man, then the
medium used to send information or a work object is also obvious.

There are no more rules and regulations for composing cooperation pictures.

EXAMPLE

The cooperation picture in Figure 13.5 shows an example from a used cars company.

488 T & M D O C U M E N T T Y P E S

Creating the
overall view

Zull-13.qxd 31/8/04 2:37 PM Page 488

THE CONTENT

Cooperation pictures show how a cooperative task is or should be carried out between
participants in a work situation. Thus they illustrate the current situation or possible
future ones, and provide information on the following:

● Which actors, roles, or workplaces are involved in a cooperative task.
● Which object or information is exchanged between them, and which medium

is used for exchange and coordination.
● Which roles are covered by the employees or customers of an organization.
● Which typical or special sequences occur.

SUBTYPES OF COOPERATION PICTURES

The following subtypes of cooperation pictures have proven useful in many of our real-
world projects:

● Overviews: Here the focus is on representing a complex comprehensive task or
whole set of tasks. The sequence and individual work steps (see Figure 13.6) are
of little interest.

● Task pictures: A task picture shows how a comprehensive task is carried out by
different people. The individual steps involved between the participants are
presented and ordered into sequences (see Figure 13.7).

C O O P E R A T I O N P I C T U R E S 489

FIGURE 13.5 An example of cooperation pictures.

E-mail

Acquisition

Hotline

Sales

After sales agent DB sales

Buyer

Offers

Sales system

List of offers

List of offers

Acquisition

State requests

Customer support

Car data

Customer data

Leasing Oracle finance

Acquisition data
Reservation

Contracts

Acquisition

Customer info

Offer

Car dataWeb page

Host

Accounting

Rating

Issues for
cooperation
pictures

Zull-13.qxd 31/8/04 2:37 PM Page 489

● Planning pictures: This is a picture of a cooperative task with the different
possibilities for supporting it with an application system. Here the potential
system support is presented in the different versions of a cooperation picture.
The starting point is usually an overview or a task picture of the current
situation (e.g., the different extension levels of a hospital information system
with their effect on patient admittance). Symbols of system components can
be added as materials or cooperation media. Transparencies that are marked
or placed one on top of the other, or appropriate presentation software, are
suitable for this purpose.

13.7.1 Cooperation Pictures in the Development Process

The way in which a cooperation picture is produced generally depends on its respec-
tive purpose.

Cooperation pictures are often created as part of the domain model, as shown in
the example that follows. The preliminary work for developers consists in conducting
a series of interviews and writing scenarios. The objective is to develop a preliminary
understanding of the general tasks and obtain appropriate feedback from users on

490 T & M D O C U M E N T T Y P E S

 admission
office

nursing
unit

X-ray
depart-

ment

adminis-
tration secretary

of chief
physician

gate

kitchen

laboratory

archive

general
practicioner

home

central
bedregister

health
insurance

relatives

typist

resident
physician

senior
physician

FIGURE 13.6
Using overview

cooperation
pictures.

Zull-13.qxd 31/8/04 2:37 PM Page 490

individual work contexts. The setting is formed by a workshop in which small groups
work two to four hours, depending on the scope of the task. The participants include:

● Interview partners
● Employees who are familiar with the respective tasks from their everyday work
● Other members of the user organization who have an interest in or a

relationship to these tasks
● Developers

In the workshop, we have usually produced cooperation pictures as wall pictures.
This involves preparing labeled and unlabeled icons and a large number of different
pictograms. To create these wall pictures, we begin with a specification of “start
symbols.” The cooperation picture is developed from the discussion with the work
group. A developer who acts as the moderator or her helpers draws the arrows by hand
directly on the paper using a felt-tip pen and affixes the corresponding pictograms and
icons to a pin wall. The other developers maintain a passive role and make notes. It is
useful if the developers produce a cooperation picture in a preparatory phase. This puts
them in a better position to prepare the necessary pictograms and gives them an initial
impression of what the cooperation picture covers. Recently, we have started to
produce cooperation pictures with an extended version of a graphics tool (Adonis by
BoC). This has helped a great deal to speed up the design process.

Cooperation pictures can also be worked out by developers. In this case, they use
information from scenarios and other analysis documents. We mainly take this

C O O P E R A T I O N P I C T U R E S 491

Acquisition

Controlling

Back office

Head of
Dept.

Bookkeeping

Municipality

Credit contract

Order form Mail
folder

Mail
folder

Mail
folder

Voucher

1

2

3

4

5

6

8

7

FIGURE 13.7 Using task pictures.

Participants of a
workshop for
designing
cooperation
pictures

Zull-13.qxd 31/8/04 2:37 PM Page 491

approach when we want to present the potential effects of IT systems on previously
modeled work situations. Here, the cooperation pictures help to clarify the con-
sequences of design decisions for developers and users in advance. Ideally, cooperation
pictures of the actual situation are already available. Developers can then demonstrate
how work processes, responsibilities, and work objects can change in the future. The
result can be presented to users in a slide show, using presentation software, with over-
lays to collect the relevant feedback.

In summary, cooperation pictures accompany the entire development process. Of
course, a model of the current situation plays a major role, especially at the beginning
of a project. Since developers and users gradually develop an understanding of com-
prehensive tasks, frequent revisions will be made later using cooperation pictures.
Cooperation pictures show the processes taking place as the system develops.

EXAMPLE

The first cooperation picture (see Figure 13.6) that we ever prepared was in a work ses-
sion for one of our first hospital projects. All the participants (nursing staff, doctors,
administrative personnel, project members) were in for a surprise. It turned out that
the regular morning admittance routine for a patient involved up to seventeen phone
calls and numerous actions by nursing staff. This realization immediately resulted in a
discussion about which procedures were necessary and sensible, and what aspect of the
work involved could be handled through computer support. The cooperation picture
produced as a wall picture made it obvious—to many participants for the first time—
that most of their work does not involve caring for patients and that a considerable
part is dedicated to cooperation and documentation work.

DISCUSSION

Cooperation pictures help users and developers in meetings and workshops to work out
a common understanding of the character and sequence of cooperative activities.
Cooperation pictures are suitable for users in the following way:

● They promote an understanding of each person’s own work situations. Compared
to other means of software representation, cooperation pictures do not have a
formal or largely abstract syntax. Instead, they can be understood almost
immediately. Users find themselves and their work reflected in these pictures.

● After only a few minutes of familiarization and explanation, users can actively
participate in the analysis and planning of tasks from the outset. Thus, in a
relatively short period of time, a wall picture can be worked out to substantiate
how a comprehensive task can be completed by different people, who does
what, and why something is done in a particular way.

● Cooperation pictures illustrate to users the complexity of their work. They are a
vehicle for discussion that easily puts users in a position of thinking about their
own organization and analyzing it.

● Cooperation pictures promote a mutual understanding. Discussions involving
work with cooperation pictures clarify to many users (often for the first time)
which tasks and subtasks are handled by other organizational areas and how
they are executed. This can result in developing a better understanding among
different departments.

492 T & M D O C U M E N T T Y P E S

Benefits for users
from using

cooperation
pictures

Zull-13.qxd 31/8/04 2:37 PM Page 492

● Cooperation pictures are effective in helping application management and
staff to recognize organizational weaknesses in cooperative work. They serve
as the basis for possible changes in the process organization as well as in the
structural organization.

● Users can use cooperation pictures to discuss potential changes in workflows in
view of a new application system with developers. Since developers can
demonstrate the places where a new software system will intervene in the work
process, users can quickly assess the effect this will have on their work.

Cooperation pictures are also suitable for enabling developers to familiarize them-
selves with complex application domains that have an extensive division of labor.

● Cooperation pictures are a technique used for feedback with user groups. They
enable developers to check whether their view of work contexts based on
individual scenarios corresponds to the users’ view. Unclear points can be
solved quickly.

● Unknown connections can be worked out, so that developers are able to
recognize “a piece of uncharted territory” in their analysis. They receive tips on
which actors to interview.

● Cooperation pictures substantiate the interrelations between workplaces. They
show how and where information and communication flows, and how objects
are forwarded. They provide the background needed to identify cooperation
forms and categorize objects, particularly documents, according to their
importance for cooperation and coordination.

● Substantiating cooperation connections also shows the “density” of information
flow. This provides the opportunity for an evaluation of the cooperation forms
that a system should support.

RELATION TO OTHER DOCUMENT TYPES

In some cases, cooperation pictures in their pure form may not be understood by third
parties, because they usually develop as a result of direct dialogs between developers and
users. Moreover, most of them are not detailed enough to exist as independent models.

Developers need scenarios before they can create a cooperation picture and follow
what is said in discussions with users. The reason is that scenarios clarify the tasks
at individual workplaces. The glossary supplies the necessary explanation of terms.
Therefore, a combination of cooperation pictures, related scenarios, and a glossary
usually provides a solid basis for discussion even with people not directly involved in
the software project.

A cooperation picture with purpose tables (see Section 13.8) that detail and
motivate certain segments can be supplied for ongoing work.

Since cooperation pictures clarify which tasks an employee can complete, which
tasks are completed by others, and which ones can only be carried out jointly, this has an
impact on the character of workplaces and work environments (see Section 7.6). It
affects all other design documents, the prototypes, and ultimately the application system.

Cooperation pictures provide the basis for prototype screenplays and prototyping
sessions (see Section 13.6.1) in which future task handling is “acted out” according to
typical tasks from scenarios and domain-oriented use cases.

C O O P E R A T I O N P I C T U R E S 493

Benefits for
developers from
using cooperation
pictures

Zull-13.qxd 31/8/04 2:37 PM Page 493

13.7.2 Cooperation Pictures and UML

UML uses a diagram type that models workflows and cooperative work; these
diagrams are called activity diagrams. Activity diagrams are actually flowcharts that
show a system’s flow of control from activity to activity. Activity diagrams do not
give a truly object-oriented view of work processes, because—at best—work objects
can be represented in the names of the activities or by using object flows to extend a
diagram.

We found that, even with these extensions, activity diagrams are a presentation
tool for developers and are not really suitable for cooperative work with users. This
means that UML lacks an application-oriented diagram type similar to cooperation
pictures, which is why we also use them successfully in UML-based projects.

13 . 8 P U R P O S E TA B L E S

A purpose table lists selected procedures or work processes, specifying who does
what with whom and with what. The “what” is explicitly aimed at the purpose of
an activity or the use of an object.

A method from the object behavior analysis (OBA) proposed by Rubin and Goldberg
serves as the conceptual basis of purpose tables. This method describes tasks according
to the pattern “who – does what – with what – which service must an object provide.”

THE PURPOSE

Purpose tables describe procedures or work processes that involve several people. They
essentially record why or for what purpose objects are worked with and why they are
passed on. Purpose tables therefore mainly complement cooperation pictures for
selected tasks. They are used in the detailed modeling and feedback of these tasks and
activities. Purpose tables are also useful in clarifying whether these tasks should be
maintained or modified, based on the domain, and if so, how.

Purpose tables show the details of the dynamics of individual cooperation rela-
tionships. They mainly address domain-related questions without dealing with techni-
cal issues.

THE STRUCTURE

Purpose tables are named according to the task they describe. The simplest purpose
tables consist of two columns. The first column lists the activities (of the task
described) while the second column shows why an individual activity is carried out and
what its consequences can be (see Table 13.2).

The rows in purpose tables may be numbered. This is useful when the table is used
to refer to the steps in a cooperation picture, such as in Figure 13.7. Then the num-
bering relates to the numbers on the arrows in the cooperation picture. If used on their
own, a numbering scheme is useful for sequencing and cross-referencing.

THE CONTENT

We represent selected cooperative tasks in purpose tables to highlight the significance
of the objects used in a work situation. In the T&M approach, the objects of an appli-
cation domain form the starting point for domain modeling.

494 T & M D O C U M E N T T Y P E S

Zull-13.qxd 31/8/04 2:37 PM Page 494

We have said that there is no one-to-one representation of the objects in the
model of the application system. Consequently, there is a risk of overlooking the
purpose and various implications of an object when modeling cooperative tasks. In the
example shown in Table 13.2, it is important that the order entry sheet be located at a
particular spot depending on what is being worked on. This is how doctors and nurses
coordinate their work.

If we decide not to model an object in a system or to do so only with certain
selected characteristics, then we can use purpose tables to estimate the related effects
on the organization of cooperative work and discuss this with application experts.

13.8.1 Using Purpose Tables in the Development Process

We have pointed out that, in the case of comprehensive tasks involving a division of
labor, there is no “single user” to whom developers can direct their questions, because the
users themselves are only able to make a limited assessment of the detailed relationships

P U R P O S E T A B L E S 495

Individual Activities of an Order Entry Purpose/Implications

Physician writes the order on the physicians It is documented who ordered the test at
order form. what (forensic, quality assurance).

To kick on the implementation of the test.

Physician puts the order entry sheet in the Nurse is alerted that she has to act. She
nurse’s mail basket. knows what is planned with her patient.

Nurse enters patient’s name, other relevant Nurse prepares the order entry sheet in order
data and the type of test on the order entry to relieve the physician of such burdens.
sheet.

Nurse enters the test with pencil on the It is documented for every member of the
patient’s flowsheet. care team and physicians when the

examination was ordered and to which
further examinations he is scheduled.

Nurse puts the order entry sheet in the Physician knows that he has to validate
physician’s mail basket. the order.

Physician sees the order entry sheet in his The physician that carries out the test
basket, enters the relevant clinical knows what to do and that the ordering
information, signs it and puts it in the physician is responsible for the test.
nurse’s mail basket.

Nurse carries the order entry sheet to the The X-ray department can schedule
X-ray department. the test and the performing physician can

check the order.

Radiology technician chooses a date for the The tests are coordinated within the X-ray
test and conveys it by phone to the unit. department. The nurses know when to

take the patient to the X-ray Department.

Nurse enters the date of the test in the units Whole nursing stuff knows about the date.
calendar.

TABLE 13.2 Example of a purpose table.

Zull-13.qxd 31/8/04 2:37 PM Page 495

of their individual activities (see Section 13.7). As a consequence, it is difficult to check
new processes and cooperation forms that may be introduced with a new application
system as to whether they are meaningful in everyday practice and support the work of
the users. Purpose tables are helpful in forming a good basis for discussion.

Purpose tables are created by developers based on scenarios to supplement coop-
eration pictures. They are usually prepared before the actual evaluation process with
the users. When complex comprehensive tasks are analyzed, purpose tables are pre-
pared together with users and along with cooperation pictures in workshops.

Purpose tables are a useful means for supporting communication and learning
processes, because they promote intensive domain-specific discussion with the appli-
cation experts. They make users aware of details and implicit relationships in the
application domain.

Purpose tables usually cover only sections of an application model. We normally
select the critical sections for use in modeling the future system. Therefore, the choices
written in purpose tables are always design decisions.

Purpose tables ultimately have an effect on the organizational development. They
help to define the grounds for easy implementation of organizational changes. In par-
ticular, they show why something is done. Thus, if a task disappears or is handled by
another person or through software support, we have to ensure that the purpose asso-
ciated with that task is still achieved.

RELATION TO OTHER DOCUMENT TYPES

In addition to their obvious relationship with cooperation pictures and system visions,
purpose tables are also associated with design documents. For tasks based on a division
of labor, the objects of an application are often important for cooperation. Purpose
tables characterize an important aspect of domain objects that we have to consider in
the class model.

Since purpose tables form the basis for analyzing the effects of modeling domain
objects in the future system, they also influence prototype development. Finally,
purpose tables are not a substitute for scenarios. They “consolidate” knowledge about
the purpose of objects and task connections.

13.8.2 Purpose Tables and UML

In our view, UML does not have a diagram type similar to purpose tables. All UML
diagram types are useful in presenting the what and how in the development process,
but they do not show why.

13 . 9 T E C H N I C A L D O C U M E N T T Y P E S I N U M L

All document types, and particularly diagram types that developers use for the
technical and construction aspects of software development, are considered technical
document types.

We are very pragmatic in our selection of such technical document types. The rea-
son is that important criteria of application-oriented documentation do not apply here
(see Section 5.3.9). Technical documents are designated for software developers and
should be comprehensible and easy to use for this target group. Furthermore, technical

496 T & M D O C U M E N T T Y P E S

Technical
documents are

not application-
oriented

Zull-13.qxd 31/8/04 2:37 PM Page 496

document types should serve their purpose and describe the relevant aspects of large
object-oriented application systems.

During the last few years, we have observed a stronger concentration on document
types that more or less meet these criteria effectively and have become one of the basic
tools in object-oriented software development. These document types have been
described and used in many publications in recent years. The quasi-standardization of
UML has combined the key document types and notations for technical design. We
outline this choice below and report on our experience with UML. We assume that the
reader is familiar with the graphic notations of the different diagrams or will look them
up in the relevant literature.

Our general opinion is as follows:

● Technical document types as such are frequently overrated. A multitude of
diagrams cannot amend a poor design.

● Technical document types cannot be evaluated by domain experts, if only
technical documents are used so there is the inherent chance of missing the
domain-related goal of a project.

● Technical documents should be able to capture the elements and relations of
the technical (programming) model used.

● Experienced developers should combine the diagrams and technical document
types that best meet their requirements.

UML currently defines the following nine diagram types:

1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Statechart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram

13.9.1 Class Diagrams

In this book, we use class diagrams to represent the statics of object-oriented programs.
In the use relationship between classes, we graphically distinguish object references,
aggregations, and creation. We use the general undirected associations of UML as little
as we use association classes.

Until now we have never provided a complete graphic specification of a system,
so our class diagrams always show only the visible interfaces or operations. Consequently,
we have not yet used the visibility modifiers of UML.

13.9.2 Object Diagrams

We use object diagrams to present object networks in object-oriented programs at run-
time. We find it confusing to mix classes and objects in one diagram, something that
UML allows.

T E C H N I C A L D O C U M E N T T Y P E S I N U M L 497

Our view of
technical
documents

Zull-13.qxd 31/8/04 2:37 PM Page 497

13.9.3 Use Case Diagrams

Use case diagrams provide an overview of use cases and participating actors. In our
view, they are useful for combining and discussing business use cases, use cases, and
scenarios. In addition, they can be used in an actual/target comparison: existing tasks
with their actors can be compared with the planned situation. Figure 13.2 shows a
simple use case diagram.

13.9.4 Interaction Diagrams

To show the dynamics of object-oriented systems in this book, we have used the object-
interaction diagrams originally introduced by Jacobson. With some minor extensions,
they correspond to those recommended in the UML standard, which calls it variant
sequence diagram. We find collaboration diagrams confusing and do not use them.

13.9.5 Statechart Diagrams

Statecharts originate from the world of reactive technical embedded systems and were
developed by Daniel Harel. They are suitable to model the behavior of systems that
can be described by the principle of state machines or finite automatons.

We have primarily used statecharts to model critical classes or, more precisely,
instances of these classes. The theory and formal notation of statecharts are relatively
complex. Unfortunately, this is not well covered in the UML literature. For projects
that have to model technical systems, we therefore recommend the relevant original
literature or the work of Bruce Douglass.

In addition to strictly formalized statechart diagrams, we often use domain-
motivated statecharts for state modeling of operations on objects (see Section 12.4.2).

13.9.6 Activity Diagrams

In our discussion of cooperation pictures (see Section 13.7), we also looked at activity
diagrams. We stressed their limited suitability for cooperation with users. However, we
still have not used this diagram type for technical modeling and construction. So far in
our real-world projects, we have noticed that activity diagrams induce developers to
take an imperative and procedural view of a design. Developers from traditional
environments are initially able to deal well with this form of flowcharts. However,
there is a risk that processes become more important than objects. These developers
consequently write object-oriented software in the form of a control object (main
program) with calls of stateless procedural objects (subprograms).

13.9.7 Component Diagrams

Component diagrams can be used like class or object diagrams. Since they are good at
representing interfaces, they are another means of expressing the static relationships of
a system.

13.9.8 Deployment Diagrams

We have not yet used deployment diagrams and, to our knowledge, they have not been
used in any other project. On the other hand, such diagrams are certainly useful for the
actual deployment of a software-hardware system.

498 T & M D O C U M E N T T Y P E S

Zull-13.qxd 31/8/04 2:37 PM Page 498

13.9.9 Application-Oriented and Technical Documents

The role of documentation has changed over the last ten years. Traditionally, software
engineering stressed the importance of formal technical documents in the develop-
ment process. While this type of documents still plays a predominant rule in the design
of technical embedded system, the importance of application-oriented documents for
application system development has become clear. The current discussion on agile
methods like eXtreme Programming again has shifted the focus: we should minimize
documentation to that extend which is needed for communication between develop-
ers and customers. The resources saved should better be invested in additional itera-
tions of the software. But we are sure that the discussion on documentation has not
reached its end point.

13 .1 0 R E F E R E N C E S

B. P. Douglass: Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks
and Patterns. Reading, Mass.: Addison-Wesley, 1999.

A seminal work on UML for real-time systems.

G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modeling Language. Reading, Mass.: Addison-
Wesley, 1999.

The current standard work on UML.

K. Beck, W. Cunningham: A Laboratory for Teaching Object-Oriented Thinking. ACM SIGPLAN
Notices, Conference proceedings on object-oriented programming systems, languages and
applications, Volume 24, Issue 10, 1989, 1–6.

The seminal paper that introduced CRC cards.

C. Floyd: A Systematic Look at Prototyping. In: Approaches to Prototyping. R. Budde,
K. Kuhlenkamp, L. Mathiassen, H. Züllighoven (Hrsg.). Berlin, Heidelberg: Springer-Verlag,
1984, pp. 1–18.

A seminal paper which has coined the terminology and concepts of prototyping.

D. Harel: Statecharts: A visual formalism for computer systems. Science of Computer Programming,
8/3, 1987, pp. 231–274.

The seminal paper on Statecharts.

I. Jacobson: Object-Oriented Software Engineering–A Use Case Driven Approach. Reading, Mass.:
Addison-Wesley, 1992.

The book in which Jacobson originally introduced his use case concept.

R E F E R E N C E S 499

Zull-13.qxd 31/8/04 2:37 PM Page 499

I. Jacobson, G. Booch, J. Rumbaugh: The Unified Software Development Process. Reading, Mass.:
Addison-Wesley, 1999.

Currently the standard work on procedures in projects in the context of UML.

A. Krabbel, I. Wetzel, S. Ratuski: Participation of Heterogeneous User Groups: Providing an
Integrated Hospital Information System. In: Proceedings PDC-Conference, Boston, November
13–15, 1996, pp. 241–249.

A paper introducing the principles of cooperation pictures.

M. M. Lehman: Uncertainty in Computer Applications is Certain. In: Proceedings of the 1990 IEEE
International Conference on Computer Systems and Software Engineering, IEEE, Tel Aviv,
May 1990.

Lehman shows in this paper that we cannot understand software on the basis of its code only.

K. S. Rubin, A. Goldberg: Object Behaviour Analysis. In: CACM, Vol. 35, No. 9, September
1992, pp. 48–62.

The paper introduces the object behaviour analysis which is a source of our purpose tables.

500 T & M D O C U M E N T T Y P E S

Zull-13.qxd 31/8/04 2:37 PM Page 500

abstract classes, 34–35, 420
defined, 34
example, 35
operations declared in, 34
patterns with, 35
specializing, 35
See also classes

abstract data types
classes as, 39
contract model and, 39–40

abstract factory, 330
abstract operations, 34
Abstract Windowing Toolkit

(AWT), 229
ACID properties, 371
activity diagrams, 498
activity scenarios, 466
actors

defined, 465
human, 483
technical, 483

adapter pattern, for class
collaboration, 198

addressability, 24
adjusting tool pattern, 181–183

architecture, 260
background, 182
illustrated, 181
problem, 181–182
rationale, 183
relationship, 182
solution, 182
See also conceptual patterns

adjusting tools
design, 182
in multiprocessing space,

260–261

with probes, 183
technical automatons and, 259
using, 182–183
See also tools

altering states, 67
announcing, 262
application domains, 118,

119–120, 427
actual state, 112
business domain layer and, 311
context, 127–128
defined, 119
domain model of, 283
domain-specific language, 119
importance, 119
modeling, 120–122
size of, 427
software development and, 127
types of, 119
work environments in, 156
See also domains

application frameworks, 91–92
characteristics, 92
complexity, 92
defined, 91
See also frameworks

application orientation, 2,
102–103, 394

background, 103
characteristics, 102
defined, 102, 105
focus, 4
selection, 427
tasks and, 102–103

application software
characteristics, 102
defined, 2, 102

designing, 57–59
guiding metaphors, 59–63
implementation, 102
interactive, 2, 5, 104
large-scale, 2
usage quality, 4

application system model, 122–125
defined, 122, 123
design model, 123–124
examples, 124–125
implementation model, 124
structural similarity, 123
submodels, 123
usage model, 123
See also software development

model
application systems, 125–127

characteristics, 126
connecting, to databases, 358
defined, 126
documentation, 402
elements, 126
embedded, 178
influences, 127

application-oriented document
types, 7, 109–110

defined, 109
technical documents and, 499
See also document types

application-oriented software
development, 2, 101–115

arguments for, 101
author-critic cycle, 107–108
characteristics, 105
defined, 105
as document-driven process, 106
documents, 109–110

I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 501

application-oriented software
development (continued)

motivation for, 101
objectivity and

independence, 106
prerequisites, 106
process, 105–115

application-oriented transparency,
344–345

applications
distributed, 54
handling/presentation

and, 308
“look and feel,” 118

applied technique, 128–129
defined, 128
example, 128
system base, 128–129
technology, 129
See also software development

contexts
architectural style, 282
architecture group, 411–412

defined, 412
qualification profile, 412
responsibilities, 412
See also IT organization

development
archive management, 359
aspect classes, 195–196

standard implementations
and, 195

subsystems and, 198
tool use of, 196
use benefits, 195

aspect pattern, 190–201
background, 192–194
defined, 187
example, 192
illustrated, 190
intent, 190
problem, 190
rationale, 194
relationship, 191
solution, 191
trade-offs, 194

aspects
behaviors, specifying, 194
characteristics, 191
construction obstacles, 194
generalizing, 197

implementing
(inheritance/interfaces),
195–198

implementing (object adapters),
198–200

inheritance, 195–198
interfaces, 193, 195–198
materials and, 194, 197
multiple inheritance and, 195
realizing (development tools),

200–201
single inheritance and, 194
static typing, 196–198
use alternatives, 201

asynchronous communication, 262
asynchronous coupling, 261
author-critic cycle, 107–108, 413

defined, 8, 107
example, 108
schematic, 107
task analysis, 107

automaton pattern, 167–171
defined, 138
example, 168
illustrated, 167
intent, 167
problem, 167
relationship, 168
solution, 168
trade-offs, 170
See also conceptual patterns

automatons, 70–71
adjusting, 261–262
asynchronous

communication, 262
big, 71
building, 168
characteristics, 70–71
database, 381–382
defined, 6, 70
as design metaphor, 70–71
for domains, 252
for functional workplaces, 168
implementing, 168
interactive user interfaces, 170,

182
large, 170
in multiprocessing space,

260–261
persistence, 389
for routines, activities, 170

for routines, criteria, 170
run location, 70
small, 71, 168
software, 71
in T&M design, 71
as technical processes, 169
tools vs., 169
use of, 169
uses, 170

automatons in embedded systems
pattern, 258–264

defined, 189
example, 261–263
illustrated, 258
intent, 258
problem, 258–259
rationale, 264
relationship, 259
trade-offs, 263–264
See also design patterns

back-office workplace type, 75–76
characteristics, 75
defined, 75
handling, 76
See also workplace types

bank example
application system model, 124
business domain modeling,

291–293
business domains, 289–290
combination of layers, 304–305
combination of layers with bridge

pattern, 305
customer orientation, 409
direct manipulation guiding

metaphor, 61
domain hierarchy, 328
domain model, 121
domain relationships, 293–294
domain values, 49
ideal business domains, 291
layered architecture, 313–314
minimal core system, 435
object life cycle, 29
object-oriented layer

architectures, 300
open-closed principle, 301–302
product domain, 288
project goals, 430–431
use context, 286

502 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 502

work environment, 155
workplace types, 286–287

base lines, 441–443
checking, 441
defined, 441
defining tasks, 441
discussing, 442
entering, 443
example, 442–443
scheduling with, 443
in Unified Process, 442
See also project planning

base operations, 35
big automatons, 71
black-box frameworks, 92–94

connecting, 94
defined, 92
using, 92
white-box frameworks

comparison, 93
See also frameworks; white-box

frameworks
black-box tests, 422
BLOBs, 385
body/handle pattern, 242
breadboards

content, 485
defined, 484
See also prototypes

business domain layer, 311–312
application domain and, 311
defined, 311
implementing, 311
reusing parts of, 312

business domains, 289–293
company organization and, 291
concepts/objects, 290
constructors in, 335
defined, 290
design criteria, 290
elements, 290
example, 289–290
ideal, 291
minimal, 290
modeling, 291–293
overlap, 289
restructuring, 293
See also domains

“business modeling,” 121
business transactions, 175
business use case diagrams, 467

C++
types and, 45
using, 219

calibration, 428–430
dimensions, 428, 429
important aspects of, 429–430
See also projects

Certified Aircraft Engine Software
project, 11–12

chain of responsibility, 217–219
event pattern vs., 218
example, 218
functionalities, 217
pattern, 82
rationale, 219
trade-offs, 219

class diagrams, 473, 497
class evolution, 382
class libraries, 90–91

as basic elements, 297
characteristics, 90
defined, 90
example, 91
open-closed principle and, 90–91

class mapping, 389–392
class-based languages, 19
classes, 25–27

abstract, 34–35, 420
as abstract data types, 39
aspect, 195–196, 198
collaboration, 198
defined, 18, 25, 26
in design, 43
in domain model, 25–26
domain value, 238–240
form, 253
illustrated representation, 26
inheritance relationship, 18
modules and, 36
organization, 422
in software model, 26
superclass, 238
testing, 421–422
type differences, 43–44
types and, 43–45
user-defined, 49

client-server architecture, 374–378
persistence-capable clients,

374–375
persistence-capable servers, 375
SyLab, 387, 387–388

trade-offs, 375
cohesion, 37
Collection interface, 277
combination tools

constructing, 209–210
defined, 206
event pattern for, 214
feedback problem, 213
implementing, 209
See also tools

command objects, multiple
registration, 235

common user access (CUA)
guidelines, 114–115

company organization, 284
complex tools, 216–217
component diagrams, 498
components, 96–99, 297

background, 80
for building combination tools,

209–210
for building tools, 208–209
characteristics, 97
current products, 98
defined, 79, 97
frameworks and, 98–99
implementation, 97
loosely coupled, 36
programming, 97
runtime, 97
software, 96
technical, representing, 178
technologies, using, 410

composability, 37
composition relationship, 473, 474
Computer Aided Software

Engineering (CASE) tools,
8, 127

computer-supported cooperative
work (CSCW), 58, 59,
341–345

defined, 341, 342
as important design issue,

341–342
See also cooperative work

concept models, 472–475
content, 473
defined, 472
in development process, 475
document types and, 475
elements, 474–475

I N D E X 503

Zull-Ind.qxd 31/8/04 2:40 PM Page 503

concept models (continued)
example, 473–474
generalization, 473, 474
purpose, 472
structure, 472–473
UML and, 475
See also document types

conceptual patterns, 3, 83–84, 87,
135–183

adjusting tool, 181–183
allocating, 84
automaton, 138, 167–171
container, 138, 159–163
defined, 83
in development process, 136
domain service provider,

138–139, 171–176
form, 138, 164–167
guided tour, 137–139
as guideline, 84
hierarchy, 137
illustrated, 87
interrelation of tools and

materials, 84, 137–138,
139–142

list, 136
material design, 138, 142–145
probe, 179–181
problems addressed by, 136
T&M, 136
technical automaton, 139,

176–179
tool design, 138, 146–151
work environment, 138, 152–159
See also patterns

conceptual stage (UP), 445
conference planning, 440–441
configuration scripts, 337
connectors, framework, 94
consistency checks, 157, 383

general principle, 158
types of, 157–158
See also work environment

construction guidelines, 87
construction stage (UP), 446
Container interface, 277
container pattern, 159–163

background, 162–163
defined, 138
example, 160–161
illustrated, 159

intent, 159
problem, 159
rationale, 163
relationship, 160
solution, 160
trade-offs, 161–162
See also conceptual patterns

containers, 71–73
changes to, 250–252
characteristics, 72
contents, 161
data structures and, 163
defined, 71
as design metaphor, 72
domain, 162, 163, 244–252
explicitly modeling, 163
loading, 247
management function

implementation, 162
material transport, 162
as materials, 162
modeling, 245–246
moving, 160
order principles, 161–162
ordering, 72
polymorphic, 161
processes and, 72
representations, 71
services, 160
specialized, 162
in T&M design, 72–73
tables of contents, 248–249
technical, 163, 246–247
transport medium

implementation, 162
contains relationships, 144
context tools

defined, 206
designing, 210
See also tools

continuity, 37
continuous feedback, 399
contract model, 38–40

abstract data types and, 39–40
defined, 38
introduction, 38
service provider/client in, 39
T&M design and, 40

contracts
defined, 38
operation calls and, 38

pre-condition specification,
38–39

violations, 40
cooperation

explicit, 343, 346–356
implementing, 158–159
implicit, 343, 345–346
material, 343
routinized, 353
rules, 432
support with mailing system, 349

cooperation medium
defined, 343
mailboxes, 346–348
mailing system, 349–350
routing slips, 354–355

cooperation model
defined, 342
mailbox systems, 349
mailboxes, 347
for registry, 361–363
routing slips, 354–355

cooperation model (registry),
361–363

access to copies only, 362
background, 361
example, 363
exclusive access, 361–362
illustrated, 363, 366
problem, 361
solution, 361
trade-offs, 363
usage model with, 365

cooperation pictures, 488–494
benefits, 492–493
content, 489
defined, 8, 488
designing, 491
in development process, 490–493
document types, 493
example, 488–489, 492
illustrated, 489
issues, 489
mutual understanding and, 492
overviews, 489, 490
planning pictures, 490
purpose, 488
structure, 488
subtypes of, 489–490
task pictures, 489, 491
UML and, 494

504 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 504

unknown connections and, 493
See also document types

cooperative development process,
402, 405–406

cooperative work, 341–356
analysis, 7
characteristics, 342
computer-supported, 58, 59,

341–345
coordination and, 342–343
defined, 6
domain concepts, 358
original and copy in, 361

Cooperative Workplace System
project, 13

coordination
cooperative work and, 342–343
defined, 343
phase, 408

core concepts, 320, 322, 327
core objects, 317

defined, 318
dynamic extension, 322
extending properties of, 322
illustrated, 319
interaction, 320
interfaces, 321
use relationship, 322

core system
coordination, 432
defined, 433
example, 433–434
extension levels and, 434–436
minimal, 434–435
with special-purpose systems, 434

coupling
defined, 37
loose, 35–36

coupling tools and materials
pattern, 85

CRC cards, 472
creating objects, 28
current work objects, 157
customer orientation, 1–2, 409

defined, 285
example, 409
implementation, 285

customers
group segmentation, 285
satisfaction, 2
uniform image, 173

cyclic structures, 296–297

data consistency, 371
data warehouses, 379
databases

automaton, using, 381–382
connecting application systems

to, 358
legacy, 382–383
relational, 377–378

decision principles, 431
decomposability, 37
deleting objects, 28
dependency relationship, 473
deployment diagrams, 498
descriptive software development

model, 118
design guidelines, 58–59, 114–115
design metaphors, 5, 63–64

automaton as, 6, 70–71
basis, 87
characteristics, 64
container as, 72
defined, 6, 63, 64
example, 64
materials as, 6, 68
patterns and, 66–67
requirements, 64
tools as, 6, 7
in uniform application system

design, 287
work environment as, 6, 69–70
See also metaphors

design model, 123–124
defined, 23
representation, 123

design patterns, 3, 84–85,
185–279

aspect, 187, 190–201
automatons in embedded systems,

189, 258–264
characteristics, 84
construction parts, 86
coupling tools and materials, 85
defined, 83
descriptive part, 86
domain container, 244–252
domain services, 189, 264–268
domain values, 188, 236–243
environment, 189, 268–271
example, 85

feedback between interaction
forms and IP, 188, 232–236

feedback between tool parts, 188,
212–220

form system pattern, 189,
252–258

frameworks and, 85
guided tour, 187–190
hierarchy, 186
illustrated, 87
introduction, 185–186
for JWAM framework, 190,

271–279
object comparison, 333
overview, 187–190
product trader, 327–338
programming guidelines and,

114–115
role, 315–327
separating FP and IP, 221–227
separating function and

interaction, 187, 202–204
separating handling and

presentation, 188, 227–232
T&M model architecture, 86,

314–338
tool composition, 187–188,

204–212
in uniform application systems

design, 287
uses, 85
See also patterns

design stage (UP), 445–446
development domain, 428
development process, 8, 393–455

activities sequence, 400–401
application-oriented, 410
concept models in, 475
cooperation pictures in, 490–493
cooperative, 402, 405–406
defined, 395
division of

labor/depersonalization, 401
evolutionary, 394
glossaries in, 477–478
IT organization development,

409–412
models in, 452–454
objectifying, 401–402
organizational/domain

integration, 406–409

I N D E X 505

Zull-Ind.qxd 31/8/04 2:40 PM Page 505

development process (continued)
project management, 425–428
project planning, 428–432
project structuring, 432–436
purpose tables in, 495–496
quality assurance, 413–419
scenarios in, 462–464
scheduling, 437–451
staff fluctuation in, 406
strategy, 400–412
system visions in, 480–482
T&M, 451–455
task planning, 437–451
UP, 451–455

development tools, for aspect
realization, 199–200

direct manipulation guiding
metaphor, 61

direct mapping, 38
direct user integration, 413
distributed applications, 54
distributed communication usage

model, 263
Distributed Component Object

Model (DCOM), 96
document types, 459–499

application-oriented, 110–113
classification, 111–113
concept model, 472–475
cooperation pictures, 488–494
defined, 110
glossaries, 475–479
identified requirements, 114–115,

463, 470
interviews, 467–472
prototypes, 483–487
purpose tables, 494–496
scenarios, 459–467
system visions, 479–483
T&M, 113
technical, 112, 496–499

documentation, 108–109
defined, 108
guidelines, 114–115
problems, 109
writing, 109

document-based modeling, 398–399
documents

application-oriented,
109–110, 499

defined, 109

in development process, 111
domain, 425
elaborating, 109
milestone, 109, 113
planning, 426
project, 113–115
project control, 114
ranking within communication

process, 112
types, 110–113
in UML, 110

domain container pattern, 244–252
background, 245
example, 245
illustrated, 244
intent, 244
problem, 244–247
rationale, 246
relationship, 245
solution, 245
trade-offs, 245–246
See also design patterns

domain containers
building, 245, 246
design, 244
modeling, 245
using, 364

domain core
application, 283–284
business domain, 289–293
domain relationships, 293–295
product domain, 287–289
software architecture, 283–295
use context, 285–287

domain functionality, 143
implementing, 265
in material design, 143

domain model, 20, 120–122
application domain aspects, 121
building, 119–120
class diagrams for, 473
classes, 25–26
defined, 120
inheritance, 30
interrelations, 20
objects, 21
scenarios as part of, 460
structural similarity, 122–123

domain service provider pattern,
171–176

background, 172–173

defined, 138–139
example, 172
illustrated, 171
intent, 171
problem, 171
rationale, 176
relationship, 171
solution, 171–172
See also conceptual patterns

domain service providers
behind application

frontends, 173
business transactions and, 175
collections of functions and,

175–176
defined, 172
implementation, 172
information management, 175
resources and, 174
as stateful, 174

domain services
clients, 267
functionality, 265
implementing, 265
JWAM framework, 279
knowledge, 265
operations, 267
requirement, 265
technical features, 267

domain services pattern, 264–268
defined, 189
example, 266–267
illustrated, 264
intent, 264
problem, 264–265
rationale, 268
relationship, 265
solution, 265–266
trade-offs, 267–268
See also design patterns

domain transparency, 344–345
domain values, 49–50

building, 50
classes, 238–240
composite, 237
data types, 237
defined, 45, 49
example, 49
factory, 276
finite, 237
for FP-IP interaction, 239–240

506 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 506

for IAFs, 140
immutable objects, 240–241
implementing, 49–50, 237
implementing, as streams, 243
infinite, 237, 238
JWAM framework, 274–277
motivation for, 49
mutable, 242–243
objects, 276
operations on, 50
for PFs, 240
summary, 50
in T&M design, 49
tables of contents

implementation as, 249–250
types, 49
types by configuration, 243
using, 239–240
See also values

domain values pattern, 236–243
background, 238
defined, 188
illustrated, 236
intent, 236
problem, 237
rationale, 238
relationship, 237
solution, 237
See also design patterns

domains
application, 118, 119–120,

127–128, 427
business, 289–293
change, handing within project

team, 295
change impact on

architecture, 295
development, 428
integration, 408–409
product, 287–289
relationships, 293–295
separation of, 305
technology, 427–428
terms, reconstruction of, 120
use contexts, 285–287

domain-specific identity, 24
dynamic binding, 34
dynamic identifiers, 22

E programs (Lehman classification),
403–405, 406

author-critic cycle and, 405
defined, 403
evaluation, 405
illustrated, 404
understanding of, 406

eclipse component model, 98, 99
Eiffel, 45
electronic commerce frontend

workplace type, 76–77
characteristics, 76
defined, 76
See also workplace types

embedded application systems,
178, 259

Embedded Medical Lab System
project, 12

encapsulation, 24, 419
business transactions, 175
data exchange and, 158
defined, 24
with IAFs, 230
implementing, 158
system platform, 231
use, 26

engineering cards, 450
Enterprise JavaBeans, 98, 99
enterprise resource planning

(ERP), 98
environment pattern, 268–271

background, 269
defined, 189
example, 270
illustrated, 268
problem, 268
rationale, 271
relationship, 268
solution, 269
trade-offs, 271
See also design pattern

environments
building, 269
concepts, 269
defined, 269
features, 270
functions, 269
JWAM framework, 279
tools/materials in, 269
workspace and, 270

Equipment Management System
(EMS) example

activity scenarios, 466

application domain, 120
application system model,

124–125
applied technique, 128
aspect interface, 195
aspect pattern, 192
author-critic cycle, 108
automatons, 71
business use case diagram, 467
chain of responsibility, 218, 219
combination tool building, 210
concept model, 473–474
conceptual patterns, 84
container changes, 250, 251–252
container pattern, 160–161
containers, 72–73
defined, 14
device description, 21
direct manipulation guiding

metaphor, 61
domain container

implementation, 246
domain container pattern, 245
domain model, 122
domain service provider

pattern, 172
event objects, 215–216
feedback between IAFs and IP

pattern, 234
flyweight pattern, 241
form pattern, 165–166
form system pattern, 255
glossary, 477
handling and presentation, 130
interrelation of tools and

materials pattern, 140
material design pattern, 143–144
materials, 69
object life cycle, 29
patterns, 81
room plan, 15
scenarios, 461
separating FP and IP pattern,

222–223
separating handling and

presentation pattern, 231
software tools, 68
system vision, 480
tool boundaries

identification, 211
tool composition, 206–207

I N D E X 507

Zull-Ind.qxd 31/8/04 2:40 PM Page 507

Equipment Management System
(EMS) example (continued)

tool design pattern, 147–148
work environment, 70
work environment pattern,

153–154
equipment manager, 14–15
ethnographic video-supported

studies, 462
event objects, 215–217

example, 215–216
rationale, 217
trade-offs, 216–217
See also objects

event pattern, 214–215
for combination tools, 214
with event objects, 216
example, 275
rationale, 215
trade-offs, 214–215

evolutionary cycles, 443–444
defined, 444
phases, 444

evolutionary process model,
398–399

actual/target states
adjustment, 399

constant feedback, 399
document-based modeling,

398–399
idealized, 398–399
illustrated, 398
principles, 398
See also process models

evolutionary prototypes, 484, 487
evolutionary system

development, 108
characteristics, 108
defined, 7, 108

exclusive access, 361–362
to materials, 361–362
on original, 362

experimental prototyping, 483
expert activities, 66
expert workplace guiding

metaphor, 64–66
materials, 65
supportive view, 65–66
tools, 65

expert workplace type, 74
characteristics, 74

defined, 74
See also workplace types

explicit cooperation, 346–356
by exchanging materials,

346–350
defined, 343
model, 350–356
transaction processing support,

350–356
See also cooperation

explorative prototyping, 483
exploratory prototypes, 487
extension levels, 435–436

core system with, 436
defined, 435
example, 436
See also core system

eXtreme Programming, 4, 416, 449
comparison, 455
for detailed iteration planning,

450–451
story cards, 450
system visions and, 482
T&M and, 454
uses, 454

factory design pattern, 240
factory guiding metaphor, 62–63
factory method, 329
feedback between interaction forms

and IP pattern, 232–236
defined, 188
example, 234
illustrated, 232
intent, 233
problem, 233
rationale, 236
relationship, 233
solution, 233–234
trade-offs, 234–235
See also design patterns

feedback between tool parts
pattern, 212–220

background, 213
defined, 188
illustrated, 212
intent, 212
problem, 212–213
relationship, 213
solution, 213
See also design patterns

feedback mechanisms
building, 213
distinguishing, 213
implementing, 233

feedback problem
combination tool, 213
defined, 212–213
between FP and IP, 224

file logbook, 359
fixed-price projects, 408
Fleet Management System

project, 11
flow organization, 284
flyweight pattern, 240–241
form pattern, 164–167

defined, 138
example, 165–166
illustrated, 164
intent, 164
problem, 164
rationale, 167
relationship, 164
solution, 164–165
trade-offs, 166
See also conceptual patterns

form system pattern, 252–258
defined, 189
illustrated, 252
intent, 253
problem, 253
rationale, 258
relationship, 253
solution, 253–254
trade-offs, 255–256
See also design patterns

formal reviews, 415–416
defined, 415
rules, 415–416
See also reviews

forms
classes, 253
consistency conditions, 165, 257
developing, 246–247
generic modeling, 165
hierarchy, 254
as independent conceptual

patterns, 164
JWAM framework, 278
layout, 165, 257
materials and, 166
paper, 164

508 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 508

problems, 255–256
tools, 165, 257
use support, 253
using, 255

forms editor, 329, 330
case statement, 329
specialized, 330

frameworks, 2–3, 90–96
application, 91–92
background, 80
black-box, 92–94
characteristics, 91
components and, 98–99
connection, 296
connectors between, 94
defined, 79, 91
design patterns and, 85
directories for, 315
JWAM, 95–96
patterns and, 91
using, 410
white-box, 92–94

functional part (FP), 203, 204,
226–227

buffers, 260
combining with IP, 222
defined, 222, 226
design decisions, 226–227
rationale, 227
separating, 227
as starting point, 222
task separation, 226
tool division, 222

functional prototypes, 484
functional workplace type, 74–75

characteristics, 75
defined, 74
identification, 74
See also workplace types

functional workplaces, 370
automatons for, 168
defined, 370
See also workplaces

functionality
domain, 143, 265
interaction, 214
simple tools, 206
tools, 146–147

functions, 25

generalization, 473, 474

generic operations, 145
defined, 27
at internal interface, 28
in T&M, 27–28
uses, 27

generic persistence service, 369–373
architecture, 373
background, 369–370
data consistency, 371
high performance/throughput

requirements, 372
material handling and, 371
problem, 369
software registry vs., 372
solution, 370
trade-offs, 371–373
See also persistence

glossaries, 475–479
common, 477
content, 476–477
defined, 7, 112, 463, 475
in development process, 477–478
document types and, 478–479
elements, 477
entries, 476
example, 477
project-specific, 477–478
purpose, 476
structure, 476
UML and, 479
UP and, 479
See also document types

goals (project), 430–431
example, 430–431
formulating, 430
project stages, 446

graphic user interfaces (GUIs), 103,
155, 221–222

designing, 228–229
widgets, 232

Graphic Workflow Editor project,
11

gray-box tests, 421
groupware, 342
guiding metaphors, 59–63

application software, 59–63
back-office, 5
defined, 5, 59
direct manipulation, 61
electronic commerce frontend

workplace, 76

expert workplace, 5, 64–66
factory, 62–63
functional workplace, 5
functions, 59
“granular,” 6
object worlds, 60–61
requirements, 64
in software development, 59, 60

handling and presentation,
129–130

defined, 129
example, 130
as independent context, 130
See also software development

contexts
handling and presentation layer, 96,

310–311, 366
defined, 310–311
implementing, 311

HTML clients, 265, 266
human computer interaction

(HCI), 58, 59

identified requirements, 114–115,
463, 470

identifiers, 375–376
defined, 21
dynamic, 22
object (OIDs), 376
static, 22
trade-offs, 376

identity
defined, 24
domain-specific, 24
software-specific, 24

imperative variable concept, 48
implementation

components, 97
model, 124
specifications and, 35

implicit cooperation, 345–346
characteristics, 345
cooperation material and, 346
defined, 343
transparency, 345
See also cooperation

incoming interface, 22
information hiding, 38, 420

defined, 24
principle, 420

I N D E X 509

Zull-Ind.qxd 31/8/04 2:40 PM Page 509

inheritance
aspects and, 194, 195
for common properties

abstraction, 31
concept, 20
domain model, 30
for hierarchy of terms, 31
for incremental modifications, 31
layered architecture and, 301
multiple, 30, 317
object-oriented layer

architectures, 301, 309
relationship, 18, 30
role hierarchies and, 323
single, 30
software model, 30
to specialize customers for

product domain, 317
structure-oriented hierarchies, 32
in T&M design, 31–32
testing and, 420
three-tier architecture and, 307
using, 30–31, 421

insourcing, 407
instances

subtype, 42
type, 44

instruction-function-predicate
pattern, 86

instructions, 25
integration tests, 421, 422
interaction diagrams, 498
interaction forms (IAFs)

defined, 230
domain values, 231, 240
examples, 230
JWAM framework, 278
separating, 232
set of, 231

interaction planning, 449–451
interactive application software, 2,

5, 104
interactive application systems,

357–392
background, 357–358
persistence services and, 358–373

interactive part (IP), 203, 204,
225–226

combining with FP, 222
defined, 222, 225
FP operation identification, 233

GUI design of, 228–229
main task, 226
rationale, 226
separating, 227
task separation, 226
tool division, 222

interfaces, 24
aspect, 193
component model, 193
explicit, 38
few, 38
incoming, 22
internal, 22, 26, 28
outgoing, 22
private, 27
public, 22, 26
restricting, 30
small, 38
structuring, 25
syntax specification, 41

internal interface
defined, 26
generic operations at, 28
See also interfaces

interrelation of tools and materials
pattern, 82, 83, 84, 137–138,
139–142

background, 140
defined, 137–138
example, 140
illustrated, 139
intent, 139
problem, 139
rationale, 142
relationship, 139
solution, 140
See also conceptual patterns

interviewers, 468–469
interviews, 467–472

assessment, 471
characteristics, 468
general principles, 468
guideline, 468
interviewers, 468–469
moderators, 469
note-takers, 469
observers, 469
open conversation, 470
process, 468–472
purpose, 467
qualitative, 467

questions to be clarified, 469
role-playing, 470
structure, 468
targeted questions, 471
user feedback on, 471–472
See also document types

inventory directory, 359
IT Department Reorganization

project, 11
IT organization development,

409–412
architecture group, 411–412
product planners, 411
project teams, 411

iteration planning, 449–451
plan types, 449–450
XP for, 450–451

iterations, 448–449
content and, 449
defined, 448
length, 449
of medium-sized projects, 449
as miniprojects, 448
scope of, 448
UP, 451, 452

Java
types and, 44
using, 219

JWAM framework, 95–96, 99
component-like tools

construction, 278
defined, 95
design patterns for, 190, 271–279
domain services, 279
domain values, 274–277
domain-specific application layer,

95
forms, 278
handling and presentation layer,

96, 366
IAFs, 278
language extensions, 96
materials construction, 271–272
PFs, 278
software registry architecture,

365–369
structure illustration, 95
technology layer, 96
tools construction, 272–274
work environment, 279

510 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 510

See also frameworks
JWAM projects, 383–386

experiences from, 386
OODBs, 385
RDBMS mapping, 384–385

JWAM registry, 174

language extensions, 309–310
defined, 309
elements, 310

languages
class-based, 19
functional, 238
information hiding, 24
object-based, 19
object-oriented, 19–20, 238
objects in, 48–49
types and, 44–45
values in, 48–49

large projects, 429
large-scale application software, 2
late binding, 23
layered architectures

build rules, 312–313
example, 313–314
object-oriented, 299–303
protocol-based, 297–299

layers
combining, with bridge pattern,

305
concept, 303–305
direct combination of, 304–305
directories for, 315
interfaces/relationships and, 303
model architecture, 303
open-closed principle

implementation with,
302–303

transparency of, 304
legacy databases, 382–383
Lehman software classification,

402–405
applying, 405
background, 402–405
defined, 402
E programs, 403–405
P programs, 403, 404
S programs, 402–403

load-on-demand, 379–381
example, 380–381
problems, 380

trade-offs, 380–381
using, 379

loan applications example, 351–353
“look and feel,” 118
loose coupling, 35–36

achieving, 233
defined, 36
object creation and, 36

macrostructures, 285
defined, 125
identifying, 283
modeling units and, 293
structural similarity and, 125

mailboxes, 346–348
common, 347
construction approach, 348
cooperation model, 347
example, 348
personalized, 348
unrestricted, benefit of, 347
See also cooperation medium

mailing systems, 349–350
construction approach, 350
cooperation model, 349
dispatch folders and, 355
example, 350
to support cooperation, 349
See also cooperation medium

management activities
connection between, 424, 426
interplay of, 426

management process, 425–428
contexts of, 427–428
continuous feedback, 399
defined, 395
development and, 398
fundamental activities, 425–426

management styles, 425
Management System Redesign

project, 13
material design pattern, 142–145

defined, 138
domain functionality focus, 143
example, 143–144
generic operations, 145
illustrated, 142
intent, 142
problem, 142–143
rationale, 145
relationship, 143

solution, 143
trade-offs, 144–145
See also conceptual patterns

materials
adapting for use contexts, 199
aspects and, 194
binding tools to, 191
collections, 174
conceptual unity, 143
construction, 271–272
copies, 344
cultural history, 66
defined, 6, 68
as design metaphor, 68
in environments, 269
exclusive access to, 361–362
in expert workplace guiding

metaphor, 65
forms and, 166
interaction and, 144
loading, 247–248
loading, from containers, 248
modeling, 145
notion of place and time, 344
objects and, 141
original, 344
references between, 380
relationships between, 143
similarity of, 140
software, 68–69
state, 145
in T&M design, 68–69
tables of contents, implementing,

249
tools and, 149–150, 193
transport, 162

MedIS, 386
medium-sized projects

defined, 429
iterations of, 449
See also projects

message brokers
exchanging information through,

368
implementing, 368
runtime architecture using, 369

metaclasses, 52
metalevel architectures, 52
metaobject protocols (MOPs),

50–55
categories, 51

I N D E X 511

Zull-Ind.qxd 31/8/04 8:24 PM Page 511

metaobject protocols (MOPs),
(continued)

defined, 51
introduction, 50–51
motivation for, 51
operations list support, 53
representing application model,

52–53
representing runtime system,

53–55
metaphors

defined, 63
design, 5, 6, 63–64
generic, 63
guiding, 5–6, 59–63
patterns and, 66–67

microelements, 125
“middleware,” 130
milestone documents, 113
minimal core system, 434–435

defined, 435
example, 435
with extension levels, 436
specification questions, 435
See also core system

model architecture
criteria, 308
defined, 282
defining, 295
layers, 303
prerequisites, 288
technology implementation, 314

model-view-controller (MVC), 203
moderators, 469
modularization, 36–38, 285

criteria, 37
object-oriented, 37–38
rules, 38
use relationships and, 33

modules, classes and, 36
monolithic tools, 274
multiple inheritance

defined, 30
use of, 31
See also inheritance

multiprocess space
adjusting tools/automatons in,

260–261
defined, 260

note-takers, 469

object adapters
for aspect implementation,

198–200
benefits, 199
drawbacks, 199
use recommendation, 200

object behavior analysis (OBA),
494

object diagrams, 497
object identifiers (OIDs), 376

as common key, 377
SyLab system, 388–389

object life cycle, 28–29
creation, 28
defined, 28
deletion, 28
T&M design and, 29
transformation, 28–29

object metamodels, 17–55
classes, 18, 25–27
defined, 18
descriptions, 18
domain model, 20
elements, 282
introduction, 17
purpose, 18–19
software model and, 20
values in, 48

object worlds guiding metaphor,
60–61

object-based languages, 19
object-oriented database (OODB)

systems, 376–377
load-on-demand, 379–381
problems with, 385
using, 385

object-oriented design, 37
object-oriented languages, 19–20
object-oriented layer architectures,

299–303
defined, 299–300
elements, 300
example, 300
inheritance and, 301, 309
layers, 299–300
open-closed principle and, 300

object-oriented models, 57
Object-Oriented Programming

Environment project, 10
objects, 20–24

characteristics of, 46–47

command, 235
composition/containment

relationship, 473, 474
core, 317, 318, 320
creating, 28
current work, 157
defined, 21, 46
deleting, 28, 219
dependency relationship, 473
with different technical

identities, 316
domain, mapping to model

concepts, 121
in domain model, 21
domain value, 276
identifiers, 21
identity, 24–25, 375
immutable domain value,

240–241
interface, 22, 24
materials and, 141
mutable, 242–243
organization, 25
persistent, 54
in programming languages, 48–49
protocols, 23
register, 337
request, 391
role, 317, 318, 320
runtime creation, 21
services, 22, 23
in software model, 21
state, 22
structures, 379
transforming, 28–29
types, 21, 40–45
values and, 45–50

observers, 469
OO testing, 419–424

characteristics, 419–421
complexity and dependencies,

420
encapsulation, 419
information hiding, 420
inheritance, 420
polymorphism, 421
process, 421–424

open conversation, 470
open-close principle, 38

class libraries and, 90
defined, 37

512 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 512

example, 301–302
implementing, with layers,

302–303
layered architecture and,

300–302
operation calls, 54
operations

abstract, 34
activating, 21
base, 35
calling, 23
declaration, 22
defined, 23
of domain services, 267
generic, 145
inherited, 30
names, passing, 234
on domain values, 50
redirecting, 54
signature, 21

order principles, 157
organization structures

by business sectors, 284–285
company, 284
flow, 284
as macro elements, 284
object principle and, 284–285

organizational context, 394
organizational integration, 407
outgoing interface, 22
overview scenarios, 464–465

actors, 465
defined, 464
tasks, 465
See also scenarios

overviews, 489, 490

P programs (Lehman classification),
403, 404, 406

author-critic cycle and, 405
defined, 403
elements, identifying, 406
evaluation, 405
illustrated, 404

pair programming, 407, 416–418
advantages, 417–418
collective ownership, 418
defined, 416
example session, 417
potential, 417–418
roles, 416

for team training, 417
See also quality assurance

pattern collections, 89–90
pattern form, 88

background, 88
context, 88
defined, 81
problem, 88
solution, 88
in T&M design, 88

patterns, 80–90
with abstract classes, 35
adjusting tool, 181–183
aspect, 187, 190–201
automatons, 138, 167–171
automatons in embedded systems,

189, 258–264
background, 80
body/handle, 242
chain of responsibility, 82
characteristics, 81–83
conceptual, 3, 83–84, 135–183
container, 138, 159–163
context, 82
coupling tools and materials, 85
coverage, 82
design, 3, 84–85, 86, 185–279
domain container, 244–252
domain service provider,

138–139, 171–176
domain services, 189, 264–268
domain values, 188, 236–243
elements, 81
environment, 189, 268–271
as experience-based concept, 81
factory design, 240
feedback between interaction

forms and IP, 188, 232–236
feedback between tool parts, 188,

212–220
flyweight, 240
form, 138, 164–167
form system, 189, 252–258
frameworks and, 91
handling guidelines, 87
as hot issue, 80
instruction-function-

predicate, 86
interrelation of tools and

materials, 82, 83, 84,
137–138, 139–142

material design, 138, 142–145
metaphors and, 66–67
probe, 179–181
programming, 85–86
purpose of, 81
separating FP and IP, 221–227
separating function and

interaction, 187, 202–204
separating handling and

presentation, 188, 227–232
singleton, 279
T&M roadmap, 89
taxonomy, 83
technical automaton, 139,

176–179
tool composition, 187–188,

204–212
tool design, 138, 146–151
understandable descriptions, 82
work environment, 138, 152–159

persistence
architectural concepts, 358
distributing, 374–375
generic service, 369–373
implementation design criteria,

373–383
services, 358–373
software registry, 358–369
technical, concepts, 369
workplace types and, 357

persistence automation
interface, 372
polymorphic queries

implementation, 389
sample code, 370–371

persistence-capable clients, 374–375
persistence-capable servers, 375
persistent objects, 54
personalized mailboxes, 348
pictograms, 488
pilot systems

content, 485
defined, 484
See also prototypes

planning pictures, 490
pointer swizzling, 55
polymorphic containers, 161
polymorphic queries, 389

number of, 390
relational joint operations

for, 391

I N D E X 513

Zull-Ind.qxd 31/8/04 2:40 PM Page 513

polymorphism, 33–34, 201
defined, 33
dynamic binding and, 34
for object binding, 304
testing and, 421
unrestricted, 33
use of, 421
See also inheritance

predicates, 25
presentation forms (PF)

defined, 230
domain values, 240
JWAM framework, 278
separating, 232

presentation prototypes, 484
private interface, 27
probe pattern, 179–181

background, 180
illustrated, 179
problem, 179–180
rationale, 181
relationship, 180
solution, 180
See also conceptual patterns

probes
adjusting tools with, 183
attachment, 180
defined, 180
design, 180
technical automatons and,

181, 259
uses, 180–181

probing states, 67
procedures, 25
process models

application orientation, 394–395
background, 393–399
context, 394
evolutionary, 398–399
“how-to” rules, 393
spiral, 397
waterfall, 395–396

process patterns, 353–354
defined, 353
for loan application cases, 354
normal case pattern, 353

process-controlled view, 63
processes

containers and, 72
technical, representing, 178
tools and, 148–150

Product Design System and
Contract Management
project, 12–13

product domains, 287–289
constructors in, 335
defined, 288
example, 288
inheritance for specializing

customers for, 317
layer, 312
as logical architecture basis, 289
modeling, 289
problematic coupling, 292
use context and, 288–289
workplace types and, 294

product planners, 411
product trader pattern, 327–338

background, 328
benefits, 334
creators, 336
drawbacks, 334–336
error-prone code, 334
example, 328–330, 331
implementation, 336–337
intent, 327
interactions, 333
object comparison, 333
participants, 332–333
problem, 327–328
rationale, 338
sample code, 337–338
solution, 330–331
specification ambiguity, 335
specifications, 336
structure, 332
structure complexity, 334
trade-offs, 334–336
See also design patterns

product traders
allocation specifications

management, 336
context-specific, 334
use situations, 338

products, class hierarchy, 334
program concatenation, 30
programming

components, 97
eXtreme, 4, 416, 449, 450–451,

482
guidelines, 114–115
pair, 407, 416–418

programming patterns, 85–86
defined, 83, 85
example, 85
instruction-function-

predicate, 86
languages and, 85
See also patterns

project contracts, 113–114
defined, 113
elements, 113–114

project control, 425–426
documents, 114
importance, 425–426

project documents, 113–114
identified requirements, 114–115
project contract, 113–114
project control, 114

project management, 425–428
project planning

backward, 439
base lines for, 441–443
calibration, 428–430
decision principles, 431
defined, 425
establishment, 432
goals, 430–431
stages, 438–441
team, 440

project profiles, 446–448
adaptation rules, 447–448
characteristics, 446
defined, 446

project stage plans, 446–448
contents, 446
defined, 446
project profiles and, 446–448
resources distribution, 447

project stages, 448
backward planning and, 439
conference planning and,

440–441
defined, 438, 444
evaluating, 439
example, 440
finishing, 439
goals, 446
planning, 438–441
project-specific objectives, 448
size, 439
T&M project, 445

project steering, 425

514 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 514

project teams, 411
projects

calibration, 428–430
classification of, 429
establishment, 432
goals, 430–431
large, 429
medium-sized, 429, 449
small, 429, 449
strategic importance, 429
structuring, by system

decomposition, 432–436
team experience, 429

protocol-based layer architectures,
297–299

characteristics, 298–299
defined, 298
hierarchy, 298
layers, 298
three-tier, 297–298

protocols, 23
prototypes, 414, 483–487

address problems, 414
breadboards, 484
categories, 484
content, 484–485
defined, 7, 483
in development process, 485–487
document types and, 487
evaluating, 415, 486
evolutionary, 487
exploratory, 487
functional, 484
number of, 487
pilot system, 484
presentation, 484
purpose, 483–484
scenarios and, 464
scope of, 487
screenplays, 486–487
structure, 484
T-prototype, 485
UP and, 487
workshop visits, 486
See also document types

prototyping, 414
benefits, 485
evolutionary, 484
experimental, 483
explorative, 483
types of, 483–484

public interface, 22, 26
purpose tables, 494–496

content, 494–495
defined, 494
in development process, 495–496
document types and, 495
example, 495
purpose, 494
structure, 494
UML and, 496
See also document types

qualitative interviews, 467
quality assurance, 413–424

in construction, 419–424
in development process, 413–419
direct user integration, 413
OO testing, 419–424
pair programming, 416–418
prototyping, 414
refactoring, 418–419
reviews, 414–416

queries
operative data, 378
polymorphic, 389, 390, 391

reaction mechanisms, tool
component with, 219–220

Refactoring: Improving the Design
of Existing Code, 419

refactoring, 418–419
benefits, 418
defined, 418
historical use of, 419
time pressures and, 418
See also quality assurance

reference semantics, 33
referential transparency, 48
register objects, 337
registering, 261
registrar

defined, 359
interface, 367
registration means, 359
software registry use, 360

registration means, 359, 360
registry. See software registry
regression tests, 422
relational database management

systems (RDBMS), 377
BLOBs in, 385

mapping, 384–385
structures, 384

relational databases, inheritance in,
377–378

requests
defined, 25
objects, 391

reservation list, 359
Reverse Auctions Application

Redesign project, 12
reviews, 414–416

formal, 415–416
informal, 414
road shows, 415
user work groups, 415
See also quality assurance

road shows, 415
role concepts, 318, 321
role objects, 317

defined, 318
dynamically adding, 321
illustrated, 319
implementing, 318
interaction, 320
interfaces, 321
managing, 321
use relationship, 322

role pattern, 315–327
background, 318
benefits, 320–321
coding, 321
drawbacks, 321
illustrated, 320
implementation, 321–323
intent, 315–316
interactions, 320
participants, 319
rationale, 327
recursive application of, 323
role dependencies and, 327
sample codes, 323–327
trade-offs, 320–321
See also design patterns

role relationships, 32
roles

client request of, 320
of core concept, 327
hierarchies, 323
implementing, 322
roles of, 322
roles of, object diagram, 324

I N D E X 515

Zull-Ind.qxd 31/8/04 2:40 PM Page 515

roles (continued)
strong dependencies between,

327
root concept, 322
routing slips, 354–355

characteristics, 354–355
construction approach, 355–356
cooperation model, 354–355
designing, 355–356
modifying, 355
using, 355
See also cooperation medium

routinized cooperation, 353
runtime components, 97
runtime system, 53–54
Runtime Type Information

(RTTI), 52

S programs (Lehman classification),
402–403

author-critic cycle and, 405
defined, 402
elements, identifying, 406
evaluation, 405
illustrated, 403

scenarios, 459–467
activity, 466
content, 460–461
defined, 7, 112, 459
description, 461
in development process, 462–464
document types and, 463–464
elements, 462
example, 461
number of, 463
overview, 464–465
as part of domain model, 460
prototypes and, 464
purpose, 460
scope of, 463
structure, 460
subtypes of, 464–466
system tests and, 464
task, 465
titles, 460
UML and, 466–467
writing, 460
See also document types

scheduling book, 359
separating FP and IP pattern,

221–227

background, 223–224
defined, 221
example, 222–223
illustrated, 221
intent, 221
problem, 221–222
rationale, 225
relationship, 222
solution, 222
trade-offs, 224–225
See also design patterns

separating function and interaction
pattern, 202–204

background, 203
defined, 187
illustrated, 202
intent, 202
problem, 202
rationale, 204
relationship, 202
solution, 203
trade-offs, 203–204
See also design patterns

separating handling and
presentation pattern, 227–232

background, 228–229
defined, 188
example, 231
illustrated, 227
intent, 228
problem, 228
rationale, 232
relationship, 228
solution, 230–231
trade-offs, 231–232
See also design patterns

service architectures, 267
services

call of, 23
of containers, 160
defined, 22

simple tools, 206
single inheritance

defined, 30
use of, 31
See also inheritance

singleton pattern, 279
small automatons, 71
small projects

defined, 429
iterations and, 449

Smalltalk
development environment, 407
types and, 45

sniffers, 364
software architects, 412
software architecture

combining elements rules,
296–297

components, 296
connectors, 296
contexts influence, 130–132
design, 284
domain core, 283–295
elements, 282, 296

software construction, 31
software development, 2

application domain and, 127
application-oriented, 2
author-critic cycle, 107–108
as communication/learning

process, 106
defined, 105
dilemma of, 402
documentation, 108–109
document-driven, 106
evolutionary system

development, 108
as modeling process, 117–132
See also application-oriented

software development
software development contexts,

127–130
application domain, 127–128
applied technique, 128–129
handling and presentation,

129–130
influences between,

examples, 132
models and, 131
as semi-autonomous

dimensions, 131
software architecture influence,

130–132
types of, 127

software development model
application domain and, 119–120
application system model and,

122–125
contexts, 118
descriptive, 118
domain model and, 119–122

516 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 516

illustrated, 118
paradox, 122
simplified, 117–118

software factory. See factory guiding
metaphor

software model
classes, 26
inheritance, 30
objects, 21
structures, 308

software projects
allocation of, 409
application-oriented, 410
characteristics, 394
dimensions, 395
fixed-price, 408
goals, 394

software registry, 358–369
architecture for, 365–369
background, 359, 360
based on cooperation model, 363
characteristics, 360
classes for, 367
combining with persistence

service, 374
comparison model, 361–363
concept, 360
domain usage model, 358
elements, 359
generic persistence

service vs., 372
with originals/copies, 361
problem, 358, 360
purposes, 360
solution, 360
usage model, 364–365
using, 382

software system. See application
system

software-specific identity, 24
special-purpose systems

alternative, 433
core system with, 434
defined, 433
example, 433–434

specifications
implementation and, 35
product trader pattern, 336

spiral model, 397
state modeling, 423–424

defined, 423–424

explicit implementation, 424
illustrated, 424

statechart diagrams, 498
states

altering, 67
defined, 22
material, 145
probing, 67
representation, 52
tool, 149–150
work, 155–156

static identifiers, 22
static typing, 196–198
story cards, 450, 482

defined, 450
use limitations, 482
using, 450

streams, 243
structural mapping, 289, 377

classes to relations, 377
insert operations and, 390

structural similarity, 122–123
benefits, 104
defined, 104
macrostructures and, 125

structure, this book, 3–4
subclasses

defined, 34
operations implemented in, 420
use of, 35
white-box framework, 93

subfunctionalities, 209, 210, 214
context functionality and, 210
interaction, 214

subjects
closed, 318
defined, 318
identity, managing, 323
implementation, 322
modeling, 319
state integrity, 322

subtools, 205
building, 206
defined, 206
functionality reuse for, 208

subtypes, 42
superclasses

attributes, 389
defined, 34
domain values, 238
form, 278

supportive view, 65–66, 73
characteristics, 65–66
defined, 65

SyLab
background, 386–387
class mapping, 389–392
client-server architecture, 387
defined, 386
identifiers, 388–389
material structure, 389
structural mapping, 389
tasks covered by, 386
technical data modeling, 389
workplaces, 387

system base, 128–129
system base layer, 310
system decomposition, 433
system tests, 464
system visions, 479–483

for complex systems, 480
decisions for using, 481
defined, 7, 112, 479
in development process, 480–482
document types and, 481–482
elements, 481
example, 480
purpose, 479
story cards and, 482
structure, 480
technical, 480
as tools, 481
UML and, 482–483
variants, 479
XP and, 482
See also document types

T&M model architecture,
281–338

background, 307
build rules, 312–313
business domain layer, 311–312
concepts and elements, 295–314
defined, 282
design patterns, 314–338
document types, 459–499
domain core, 283–295
elements, 308–309
handling and presentation layer,

310–311
language extensions, 309–310
layer concept, 303–305

I N D E X 517

Zull-Ind.qxd 31/8/04 2:40 PM Page 517

T&M model architecture,
(continued)

object-oriented layer
architectures, 299–303

problem/solution, 307
product domain layer, 312
product trader, 327–338
protocol-based layer

architectures, 297–299
role pattern, 315–327
software architecture

components, 296
system base layer, 310
technology implementation, 314
technology layer, 310
user context layer, 312

T&M process model
comparison, 455
at conceptual level, 452
structural similarity

principle, 452
UP development process vs.,

451–452
uses, 454
workflows and, 453
XP and, 454

T&M projects, 9–15
Certified Aircraft Engine

Software, 11–12
Cooperative Workplace

System, 13
Embedded Medical Lab

System, 12
Fleet Management System, 11
Graphic Workflow Editor, 11
IT Department Reorganization, 11
Management System Redesign, 13
Object-Oriented Programming

Environment, 10
planning, 443–451
Product Design System and

Contract Management,
12–13

Reverse Auctions Application
Redesign, 12

scope, 10–14
Workplace Frontend, 14
Workplace System for Retail

Banking, 10
TableOfContents class

interfaces, 277–278
tables of contents, 248–250

implementing, as domain values,
249–250

implementing, as materials, 249
See also containers

targeted questions, 471
task cards, 450
task pictures, 489, 491
task scenarios, 465
tasks

application orientation and,
102–103

defined, 103
overview scenarios, 465
tool support, 148–150

team planning, 440
team training, 417
technical automaton pattern,

176–179
background, 178–179
defined, 139
illustrated, 176
intent, 177
problem, 177
relationship, 177
See also conceptual patterns

technical automatons
adjusting tools and, 259
complex, 179
concept, 178
defined, 177
example, 179
parameters, modifying, 183
probes and, 181, 259
See also automatons

technical containers, 163
to domain container

implementation, 246–247
illustrated, 247

technical context, 394
technical documents, 112, 496–499

activity diagrams, 498
application-oriented documents

and, 499
class diagrams, 473, 497
component diagrams, 498
deployment diagrams, 498
interaction diagrams, 498
object diagrams, 497
opinion, 497
statechart diagrams, 498
use case diagrams, 467, 483, 498

technical integration, 409

technical transparency, 344,
344–345

technology
defined, 129
domain, 427–428
selection, 428

technology layer, 310
template methods, 34
testing

classes, 421–422
OO, 419–424

tests
black-box, 422
cases, 423
classes, 423
defined, 25
gray-box, 421
integration, 421, 422
regression, 422
unit, 421

three-tier architecture, 283,
297–299, 305–307

defined, 297
for distributed systems, 299
domain separation, 305
drawbacks, 306–307
example, 297–298
illustrated, 297
inheritance and, 307
specialized, 299
See also protocol-based layer

architectures
time estimates

general rules, 437–438
problems, 438
rules of thumb, 437–438

tool composition pattern, 204–212
background, 206
defined, 187–188
example, 206–207
illustrated, 204
intent, 205
problem, 205
rationale, 208
relationship, 205
solution, 205
trade-offs, 207–208
See also design patterns

tool design pattern, 146–152
defined, 138
design characteristics and,

150–151

518 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 518

example, 147–148
illustrated, 146
intent, 146
problem, 146
rationale, 151
relationship, 146
solution, 146–147
trade-offs, 148–150
See also conceptual patterns

toolkits
defined, 228
encapsulating, 228
library, 229
linking tools to, 229

tools, 140
adjusting, 182–183
asynchronous communication, 262
automatons vs., 169
binding, to materials, 191
boundaries identification, 210–212
building, by composition, 205
building, JWAM framework,

272–274
building, with components,

208–209
CASE, 8, 127
combination, 206, 209–210
combination, building, 209–210
component model, 219
components, with reaction

mechanisms, 219–220
conceptual division, 203
conceptual properties, 67
context, 206, 210
cultural history, 66
defined, 6, 67
design alternatives, 207
design characteristics, 150
design guidelines, 203
as design metaphors, 67
designing, 150
in environments, 269
in expert workplace guiding

metaphor, 65
form, 165, 257
function granularity, 147
functional part (FP), 203, 204
functionality, 146–147
graphical representation, 150
handling, 67
handling and presentation, 202
handling modes, 150

implementing, 203
initializing, 151
interactive, responsibilities, 203
interactive part (IP), 203, 204
linking, 207
linking, to toolkit, 229
materials and, 149–150, 193
matured, 141
memory, 150
monolithic, 274
name, 150
processes and, 148–150
purposes, 67
as reactive systems, 223–224
schematic, 151
separate interaction and

functionality, 273
simple, 206
size, 149–150
software, 67–68
state, 149
status indicator, 150
subtools, 205, 206
in T&M design, 67–68
task support, 148–150
understanding, 141
user interface, 223

Tools & Materials Approach
(T&M), 1, 4–9

automatons in, 71
central architectural theme, 5
classes and types in, 45
conceptual patterns, 135–183
construction overview, 275
containers in, 72
contract model in, 40
design, 25
design patterns, 86, 185–279
document types, 111–113
domain values in, 49
expert workplace metaphor,

64–66
generic operations in, 27–28
inheritance in, 31–32
as method, 8–9
as methodical framework, 9
object life cycle and, 29
object metamodel, 17–55
overview, 4–8
pattern form, 88
pattern roadmap, 89
pattern taxonomy, 83

relationship to UML/UP, 9
software materials in, 68–69
software tools in, 67–68
work environment in, 70
See also T&M model

architecture; T&M projects
T-prototype, 485
transactions

business, 175
defined, 381
processing support, 350–356

transforming objects, 28–29
transition stage (UP), 446
transparency

application-oriented, 344–345
in implicit cooperation, 345
technical, 344

types, 40–43
behavior and, 41
class differences, 43–44
classes and, 43–45
defined, 41
hierarchy, 42
instances behavior, 44
introduction, 40
programming languages and,

44–45
properties, 42
subtypes, 42
theoretical concept of, 41–42
See also objects

understandability, 37
Unified Modeling Language

(UML), 3, 4
activity diagrams, 498
class diagrams, 473, 497
component diagrams, 498
concept models and, 475
cooperation pictures and, 494
deployment diagrams, 498
documents in, 110
glossaries and, 479
interaction diagrams, 498
object diagrams, 497
purpose tables and, 496
scenarios and, 466–467
statechart diagrams, 498
system visions and, 482–483
T&M relationship, 9
technical document types in,

496–499

I N D E X 519

Zull-Ind.qxd 31/8/04 2:40 PM Page 519

Unified Modeling Language
(UML), (continued)

use case diagrams, 112, 467,
483, 498

Unified Process (UP), 3
actors, 465
base lines in, 442
comparison, 455
conceptual stage, 445
construction stage, 446
cycles, 451
design stage, 445–446
development process structure,

451–454
evolutionary cycles, 443–444
glossaries and, 479
interpreting, 444–445
iterations, 451, 452
phases, 445–446, 451
project planning, 443–451
prototypes and, 487
T&M relationship, 9
transition stage, 446
workflows, 451

unit tests, 421
usage model, 123

defined, 58, 103, 123
distributed communication, 263
dynamics, 123
implementation, 129

usage model (registry), 364–365
background, 364
cooperation model with, 365
problem, 364
solution, 364

usage quality, 104
use case diagrams, 112, 467, 483, 498
use cases, 482
use contexts, 285–287

defined, 285
as domain analysis starting point,

286
example, 286
identifying, 287
layer, 312
product domain and, 288–289
workplace types and,

286–287, 293
use relationships, 32–33, 144

defined, 32
modularization and, 33
in software model, 32

user feedback, 471–472
user interface toolkits. See toolkits
user observation, 462
user work groups, 415
user-defined classes, 49

values, 45–50
characteristics of, 46–47
defined, 46
domain, 45, 49–50
in object metamodel, 48
objects vs., 46–47
in programming languages, 48–49
using, 47–48

variables
defined, 48
instance, storage manipulation, 54

Visual Basic Extension (VBX), 96

waterfall model, 395–396
defined, 395
illustrated, 396
weaknesses, 396
See also process models

white-box frameworks, 92–94
black-box frameworks

comparison, 93
defined, 92
subclasses, 93
using, 92–93
See also black-box frameworks;

frameworks
widgets

defined, 228
GUI, 232
linking, 228
use of, 231

work contexts
defined, 156
realization, 285–286

work environment pattern,
152–159

background, 154–155
defined, 138
example, 153–154
illustrated, 152
intent, 152
problem, 152
rationale, 159
relationship, 152
solution, 152–153
trade-offs, 155–159

See also conceptual patterns
work environments, 69–70

in application domain, 156
as conceptual unit, 154
consistency checks, 157
as cooperation location, 154
defined, 6, 69
as design metaphor, 69–70
electronic desktop, 155, 156
as location, 154
modeling, 152
objects, actions for, 156
order principles, 157
personalizing, 156
representation problems,

154–155
requirements, 153
space implementation, 155
spatial/logical dimensions, 153
in T&M design, 70
use context implementation, 156
for work organization, 154

work relationships, 141
work state, maintaining, 155–156
work units, 466
workflows, 102

container representation, 71
management systems, 63
T&M models and, 453
UP, 451, 453

Workplace Frontend project, 14
Workplace System for Retail

Banking project, 10
workplace types, 73–77

back-office, 75–76
characteristics, 74
defined, 74
electronic commerce frontend,

76–77
example, 286–287
expert, 74
functional, 74–75
identification of, 342
overview, 73
persistence and, 357
product domains and, 294
use context and, 286–287, 293

workplaces
defined, 69
functional, 168, 370
SyLab, 387

workspace, environment and, 270

520 I N D E X

Zull-Ind.qxd 31/8/04 2:40 PM Page 520

